
Resource Allocation under Incentive,
Information, and Complexity Constraints

Ankit Sharma

CMU-CS-14-124

July 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum and Anupam Gupta, Chair

Ariel Procaccia
Jan Vondrák, IBM Almaden

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2014 Ankit Sharma

This research was sponsored by the National Science Foundation under grant numbers CCF-0830540, CCF-
1101215, CCF-1116892, CCF-1215883, CCF-0905390, CCF-1016799, IIS-1065251, and IIS-1350598;
Microsoft Research and Carnegie Mellon University Center for Computational Thinking; Google Inter-
university center for Electronic Markets and Auctions; Israel Science Foundation; United States-Israel Bi-
national Science Foundation (BSF); Israeli Ministry of Science (MoS)

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
Government, or any other entity.

Keywords: Resource allocation, Mechanism design, Approximation algorithms

Dedicated to my parents for their unconditional love, support and guidance. Thank you,
Ma and Pa, for always being with there with me through the highs and lows of life. You
have given me several invaluable pieces of advice, have always patiently listened to me,

and have helped me shape my life. Ma and Pa, it is hard for me to express my gratitude in
words to you. Dedicating this thesis to you is a small way to say “Thank you” for

everything you have done for me.

iv

Abstract

This thesis studies the problem of resource allocation from multiple per-
spectives under a variety of constraints and objectives. Resource allocation
is a central theme in many economic settings (markets, auctions etc.) and,
more broadly, is prevalent in almost everything we do (for instance, everyday,
we make decisions about allocating our money and time). The problem of
resource allocation is usually driven by the fact that the resource under con-
sideration is limited, and less than the number of claimants demanding it. And
hence, we need to decide who to allocate the resource to and in what propor-
tion. What makes resource allocation an extremely active area of research is
that there is no single good allocation mechanism for the myriad constraints
and objectives under which we encounter this problem. In this thesis, we make
advances by designing new allocation mechanisms, studying the properties of
existing ones, and understanding the complexity of how we value resources.

Specifically, our main contributions are: (a) we introduce a more general
and realistic model of limitation of resources and under this limitation model,
design allocation mechanisms that allocate resources to an online stream of
self-interested buyers with combinatorial valuations through item pricing while
approximately optimizing the objectives of social welfare and profit, (b) we
design adaptive and non-adaptive allocation mechanisms for resource allo-
cation under uncertain valuations, where the values can be determined only
through expensive queries, (c) we analyze the performance of some of the
popular auction formats in the presence of ‘spiteful’ bidders whose utility is
negatively affected by other bidders’ positive outcome, and (d) we understand
the complexity of submodular valuation functions, a class of valuations char-
acterized by decreasing marginal utilities, vis-á-vis some of its well-studied
sub-classes such as budget additive, coverage and cut functions.

vi

Acknowledgements

Avrim and Anupam, thank you for always giving me the freedom to explore my interests,
for patiently listening to my research ideas, and for all the useful pieces of advice on every
aspect of research and career. Ariel and Jan, thank you for giving me the opportunity to
work on many interesting problems with you and helping me understand different ways to
think about and attack research problems.

I am grateful to Tuomas Sandholm, Yishay Mansour, Mohit Singh, Nikhil Devanur,
Nitish Korula and Vahab Mirrokni for giving me the immense opportunity to work with
them. And special thanks to Alan Frieze, R. Ravi, Ryan O’Donnell and Venkat Guruswami
for the invaluable research discussions, and to Mor Harchol-Balter for being a wonderful
person and being extremely approachable whenever I was in need of advice. And Deb,
thank a lot! You have always been there to help! Thank you, Marilyn!

Thank you, Anuj, Anvesh, Ashique, Mehdi, Malav, Mayur, Pallav, Shayak, Shrikant
for the countless discussions over dinner! And, again, thank you, Anuj!! Thank you,
Sarah, for the long fascinating conversations and for introducing me to contra dancing.
Thank you, Jamie and Nika, for being wonderful co-researchers and friends! Thank you,
John and Gabe, for being awesome office-mates. John and Carol, I owe you for introducing
me to the wonderful world of western classical music. Thank you, Carla LaRocca, for
being an awesome piano teacher! And thanks, Athula, for the impromptu conversations!

I want to thank NSF and the other funding agencies for helping fund and making
possible the research work contained in this thesis.

Thank you, Pittsburgh! You have been a wonderful city to live in! And thank you,
India and U.S.; there is a lot I owe you!

P.S. Dear reader, thank you for taking out the time to read the section on acknowledg-
ments. I hope you will find the contents of this thesis interesting and useful! :)

vii

viii

Contents

1 Introduction 1

1.1 Resource Allocation . 1

1.2 Resource allocation under procurement costs 3

1.2.1 Results . 4

1.2.2 Techniques . 5

1.2.3 Related Work . 6

1.3 Resource allocation with expensive queries on stochastic input 7

1.3.1 Results . 8

1.3.2 Techniques . 9

1.3.3 Related Work . 9

1.4 Study of existing allocation mechanisms in presence of spiteful agents . . 10

1.4.1 Results . 11

1.4.2 Techniques . 11

1.4.3 Related work . 12

1.5 Approximating valuation functions . 12

1.5.1 Results . 12

1.5.2 Techniques . 13

1.5.3 Related work . 13

2 Online Resource Allocation with Procurement Costs 15

2.1 Introduction . 15

ix

2.2 Model of Limitation . 16

2.2.1 Our Results and Techniques . 17

2.3 Notation . 18

2.3.1 (α, β) approximation factor definition 19

2.4 Single Resource Goodness and Structural Lemma 19

2.4.1 Proving (α, β)-single-resource-goodness 21

2.4.2 Relaxed conditions for Single Resource Goodness 22

2.5 Some ‘natural’ pricing schemes . 23

2.5.1 Pricing at Cost . 24

2.5.2 Pricing at Twice the Cost . 24

2.6 Algorithm: Pricing at twice the index 24

2.6.1 Performance on some cost functions 25

2.6.2 Trade-off between the multiplicative guarantee and additive loss . 26

2.6.3 The Necessity of Additive Loss 27

2.6.4 Bad Example for Pricing at Twice the Index 28

2.7 General Increasing Cost Functions . 28

2.7.1 Algorithm . 28

2.7.2 Analysis . 29

2.8 Smoothing Algorithm . 32

2.8.1 Intuition . 32

2.8.2 The smoothing algorithm . 33

2.8.3 The main ideas . 34

2.8.4 The Analysis . 35

2.8.5 Convex cost curves . 45

2.9 Profit Maximization . 54

2.10 Acknowledgment . 61

3 Resource allocation with expensive queries on stochastic input 63

3.1 Introduction . 63

x

3.1.1 Model . 64

3.1.2 Our Results and Techniques . 65

3.1.3 Related Work . 66

3.2 Preliminaries . 67

3.3 Adaptive Algorithm: (1− ε)-approximation 69

3.4 Non-adaptive algorithm: 0.5-approximation 73

3.5 Generalization to k-Set Packing . 77

3.5.1 Disjoint Constant-Size Augmenting Structures for k-Set Packing . 78

3.5.2 Adaptive Algorithm for k-Set Packing 80

3.5.3 Non-Adaptive Algorithm for k-Set Packing 83

3.6 Matching Under Correlated Edge Probabilities 86

3.6.1 Adaptive Algorithm in Adversarial Setting 87

3.6.2 Adaptive Algorithm in Stochastic Setting 88

3.6.3 Non-adaptive algorithm in Adversarial Setting 89

3.6.4 Non-adaptive algorithm in Stochastic Setting 90

3.7 Computational complexity of budget-constrained non-adaptive solution . 90

3.7.1 4-cycle cover is optimal . 91

3.7.2 Hardness result . 94

3.8 Almost optimal budget-constrained non-adaptive solution for Kidney Ex-
change Graphs . 96

3.8.1 Background . 96

3.8.2 Complete Graphs and Bipartite Graphs 97

3.8.3 General Graphs . 101

3.8.4 Complete Kidney Exchange Graphs 104

3.8.5 Realistic Kidney Exchange Graphs 112

3.9 Directions for Future Research . 121

3.10 Acknowledgment . 121

4 Spiteful Auctions 123

xi

4.1 Introduction . 123

4.2 Model . 124

4.3 Spite in the discrete valuations setting 126

4.3.1 Complete information setting 126

4.3.2 Incomplete information setting 127

4.4 Prior results . 128

4.5 Asymmetric spite results . 129

4.5.1 The 2-bidder case . 129

4.5.2 The n-bidder setting with directed spite 135

4.6 Conclusions and future research . 137

4.7 Acknowledgment . 138

5 Understanding the complexity of Submodular Functions 139

5.1 Introduction . 139

5.1.1 Our Results and Techniques . 141

5.1.2 Related Work . 142

5.1.3 Preliminaries and Formal Statement of Results 143

5.2 Approximating General Submodular Functions by Directed Cut Functions
of Graphs . 145

5.3 Approximating Symmetric Submodular Functions by Undirected Cut Func-
tions of Graphs . 147

5.4 Approximating Budgeted Additive Functions by Coverage Functions . . . 150

5.5 Uniform Submodular and Matroid Rank Functions 153

5.6 Application to Online Submodular Function Maximization 154

5.7 Approximating Monotone Submodular Functions by Coverage Functions
and by Budgeted Additive Functions . 154

5.7.1 Upper Bound . 155

5.7.2 Lower Bound . 156

5.8 Future Directions . 158

5.9 Acknowledgment . 158

xii

6 Directions for Future Research 159
6.1 Online resource allocation with preemption 159

6.2 Other directions for future research . 160

Bibliography 163

xiii

xiv

List of Figures

2.1 Structural Lemma: if the lightly shaded area is bounded by a small multi-
ple of the doubly shaded area, then we get good social welfare. xi is the
last sold copy of the item and xi+1 is the first unsold copy. The lower con-
tinuous curve is the cost curve while the upper dashed curve is the price
curve. 22

2.2 Smoothing algorithm . 34

2.3 The figure shows the pricing curve drawn by the smoothing algorithm for the
procurement curve ci(x) = x3. The lower line is the procurement curve. The
upper thicker line is the pricing curve. We can observe that the price curve is flat
towards the extreme right; this flat region contains the right-most price interval.
Towards the extreme left the price curve appears to be a smooth curve. The inset
shows the individual price intervals. 36

2.4 The figure shows the pricing curve drawn by the smoothing algorithm for
the linear procurement curve . 36

2.5 The figure shows the pricing curve drawn by the smoothing algorithm a piece-
wise linear procurement curve. The lower line is the procurement curve. The
upper thicker line is the pricing curve. 37

2.6 The figure shows the pricing curve drawn by the smoothing algorithm a procure-
ment curve which grows as x2 initially and as x3 in the final phase. The lower
line is the procurement curve. The upper thicker line is the pricing curve. 37

3.1 Illustration of the construction in Example 3.2.1, for t = 4 and β = 1/2. . 68

3.2 The blue and red edges represent the matching picked at rounds 1 and 2,
respectively. The green edges represent the edges picked at round 3 and
above. The dashed edges are never picked by the algorithm. 77

3.3 The proof of Lemma 3.7.5 illustrated for the case of n = 6. 93

xv

3.4 The gadget used in the proof of Lemma 3.7.7. 95

3.5 The proof of Claim 3.8.4 illustrated for the case of l = 10. Solid edges
exist, dotted edges do not exist, and dashed edges may or may not exist. . 98

3.6 Edges chosen by Algorithm 3.8.11 in the kidney exchange graph. The grey
circles are over-demanded labels, the white circles are under-demanded
labels, and the black circles are reciprocally demanded and self-demanded
labels. 110

4.1 The circles denote the points where the second-price auction yields higher
expected revenue than the first-price auction. The pluses denote the points
where the reverse occurs. 134

4.2 The bid in a first-price auction varies with the expressed spite αe. The
curves are for different valuations v, with the lowest curve corresponding
to v = 0.1 and the highest to v = 1. 135

4.3 The bid in a second-price auction varies with the expressed spite αe. The
curves are for different valuations v, with the lowest curve corresponding
to v = 0.1 and the highest to v = 0.9. For v = 1, the bidder always bids 1. 136

xvi

List of Tables

3.1 The table shows the difference in the size of matching between 4-cycle
plus path P ′2, and path P ′1 for various possibilities of edge outcomes of
a, b, c and whether |P ′2| is even or odd. Edge d exists in all cases. An edge
exists (resp., does not exist) if its column shows 1 (resp., 0). 99

3.2 The set of compatible blood-types for all under-demanded, self-demanded
and reciprocally-demanded type vertices. 112

4.1 Joint probability distribution over valuations. 127

4.2 Bidding functions under symmetric spite. 128

4.3 Equilibrium in the 2-bidder asymmetric-spite setting. 132

4.4 The values in the table are bidderA’s αe. The rows correspond to various
values of bidder A’s αt and the columns correspond to values of bidder
B’s αt. 133

4.5 Expected revenue for given αe’s in 2-bidder setting. 134

4.6 Bidding function for n-bidder asymmetric-spite first-price sealed-bid and
Dutch auctions. 137

5.1 Our results are described in the first three rows. The results in the last row
are either implicit in the references or follow as a corollary (Section 5.7).
When the output class is a cut function of a graph, we assume that the
input function f satisfies f(∅) = f(U) = 0, as every cut function must
satisfy this constraint. Here, n denotes the size of the ground set. 142

xvii

xviii

Chapter 1

Introduction

1.1 Resource Allocation

Allocating limited resources among competing claimants is a primary driving force of sev-
eral economic activities. Markets allocate goods to buyers. Art auctions allocate scarce
works of art to bidders. Ad auctions allocate impressions to advertisers. Mechanisms such
as selling in the free market or auctions serve as means to make the allocation among the
claimants who are usually individuals or firms or some times, even countries. In recent
years, one of the key areas of research at the intersection of Computer Science and Eco-
nomics is the study and the design of mechanisms that make allocations that are efficient to
implement, optimize certain objective, and operate under certain constraints. An example
of this research is the study and design of ad auctions that are used to allocate impressions
to advertisers with the objective of maximizing either revenue or the viewer’s utility.

This thesis aims to understand

how to allocate limited resources among competing claimants to optimize a
desired objective under certain constraints.

The limited resources could be natural resources such as land, coal etc., or machines re-
sources such as CPU, memory, network bandwidth etc., or the merchandise of an online
retailer, or the budget of an online advertiser. The corresponding claimants could be hu-
mans, computer programs, online buyers and impressions. In most scenarios, the demand
for these resources usually exceeds their supply and this mismatch of demand and supply
sets up the basis for this research question – which of the claimants should be allocated
what resources. To facilitate setting up the problem mathematically, we assume that each

1

claimant has a valuation function that assigns some value (maybe zero) for each subset of
resources, and hence every allocation brings some value to every claimant.

Different settings of resource allocation exhibit extremely varied constraints and have
different objectives. When an online retail website sells (and, as a result, allocates) its
inventory, it wants to maximize its revenue while facing game theoretic constraints from
an online stream of buyers. In contrast, in allocating servers to an online stream of job re-
quests, usually there are no game theoretic constraints, and the objective is to maximize the
sum of values of the requests that get allocated their desired resources. Hence, the objective
of the resource allocation could be to maximize the total value of allocation (a.k.a. social
welfare in game theoretic settings), or maximize the minimum allocation (i.e., maximize
fairness), or minimize the maximum allocation (i.e., minimize makespan), or maximize
revenue. And the constraints could be computational, game-theoretic, informational (of-
fline vs online) among others. Such extremely varied constraints and objectives make the
design of a single ‘good’ allocation mechanism for all settings a difficult proposition. This
thesis aims to understand the interplay of the different constraints and crystallize the key
ideas that should drive the design of resource allocation mechanisms.

Here is the roadmap for remaining parts of this Chapter: In Section 1.2, we preview
Chapter 2, where we introduce a new model of resource limitation, one that we show to
be more general than the previous model and that more accurately captures limitations in
many settings than the previous model. In this model, we show how to allocation resources
via item pricing to an online stream of self-interested agents to approximately maximize
social welfare and profit. In Section 1.3, we preview Chapter 3, where we analyze settings
where the value for allocating a resource to a claimant is unknown and expensive queries
need to be made to find it out. With the help of available stochastic information, we
show how to make a few queries and make an allocation with value close to that of a
mechanism that makes all queries. In Section 1.4, we preview Chapter 4, where we study
some of the common existing auction formats – first- and second-price auctions, in the
presence of ‘spiteful’ bidders. Finally, in Section 1.5, we preview Chapter 5, we study
the properties of submodular functions, a special class of valuation functions marked by
decreasing marginal utility.

We also want to take this opportunity to point the reader to Chapter 6 that discusses
some potential directions for future research.

2

1.2 Resource allocation under procurement costs

An important aspect of studying resource limitation is the modeling of limitation itself.
Previous work [Bartal et al., 2003] has modeled limitation by considering the case where
we have a fixed number of copies of each resource. While this model of limitation captures
several resources of interest such as seats on an airplane, rooms in a hotel etc., it does not
suit well to many other resources. To illustrate this point, let us consider a few resources
and understand why they are considered limited. Human resource in a firm is limited since
while a firm can always hire more people, hiring every additional employee incurs a cost –
there is cost to interview and hire a suitable candidate, followed by the cost to remunerate
the individual for his work, supply her with office space and provide her with support
staff. Similarly, resources such as network bandwidth are limited not because additional
capacity cannot be added but there is a cost required for such augmentation. Therefore,
for many resources of interest,

the resource is limited not because there is only so much of it but more often
there is a cost to procure extra copies of the resource and this procurement
cost is the limiting factor. In contrast to this, the traditional model of limitation
that computer science literature has used is granting only a limited number of
copies of the resource to the allocation mechanism.

It is not just that this traditional fixed-number-of-copies limitation model does not ac-
curately capture limitation for these resources. For such resources, applying resource al-
location algorithms that assume a fixed number of copies for the resource is not straight-
forward since it is not obvious what this fixed number should be (especially if extra copies
can be procured at moderate costs).

In Chapter 2, we consider a new model of limitation where each resource has a pro-
curement cost curve; the procurement cost curve gives, for every i ∈ N, the marginal
cost of procuring the ith copy of the resource. We study the special case where these
procurement cost curves are non-decreasing1. We consider how resources are allocated to
self-interested agents to maximize either social welfare or profit in an online setting. The
allocation scheme prices individual resources, and allows the self-interested agents to buy
their utility-maximizing set of resources. The loss in social welfare compared to the opti-
mal is bounded by a multiplicative (and an additive) constant factor in case the limitation
is ‘soft’, and this loss becomes logarithmic in case of a ‘hard’ limitation.

1While some procurement cost curves in the real world may not be non-decreasing for the entire domain,
for our study, we choose the class of non-decreasing curve since it is the simplest class of curves that captures
limitation.

3

Interestingly, the limitation model using procurement costs can also capture the fixed-
number-of-copies model. In terms of procurement costs, the fixed-number-of-copies model
of limitation has the first so many copies ‘free’ and any copy beyond this number has an in-
finite cost. Hence, this modeling of limitation through procurement costs not only analyzes
a more general model of limitation but it also helps bridge our understanding between the
two extreme modes of limitation that have been considered by previous literature – the
mode where there are only a fixed number of copies of a resource [Bartal et al., 2003] and
the mode where there is no limitation at all, also called the digital-goods model.

1.2.1 Results

As mentioned in the previous section, we allocate resources through item pricing. Each
‘potential’ copy of each resource carries a price tag and at any point, the price for a re-
source is the price of its cheapest available copy. The claimants are utility maximizing
agents and buy the set of resources that maximize their value (for the set) minus the sum
of prices of the resources (in the set). We note that this implies that we make our allocation
with the help of ‘demand’ queries: for any set of prices, we can compute for any buyer
their utility maximizing bundle.

We first study procurement cost curve that model ‘soft’ limitation. Herein we study
polynomial procurement cost curves and logarithmic cost curves. We price the copies
of the resources using the ‘Twice the Index’ pricing scheme. Here the price of the kth

copy of a resource is the procurement cost of the (2k)th copy of that resource. For the
objective of social welfare, we show that this pricing scheme is able to guarantee a constant
factor multiplicative approximation to the optimal welfare in addition to some additive
loss, where the constant factor depends only the parameters defining the cost curve. The
additive loss is linear in the number of the distinct resources. This results shows that with
significantly soft limitations, we can achieve a constant factor approximation to social
welfare, something that in the case of fixed-number-of-copies model we do not know for
any case where the number of copies is sub-linear in the number of claimants, no matter
how large this number is [Bartal et al., 2003]

Next, we analyze the case of arbitrary procurement cost curves. As we mentioned
earlier, the procurement cost model also captures, as a special case, the fixed-number-
of-copies model. This implies that any inapproximability hardness results known for the
latter model also translate to the case where we have arbitrary procurement cost curves,
and therefore we can only fear worse approximation guarantees for arbitrary cost curves.
Nevertheless, we design a pricing scheme (that builds on the work of Bartal et al. [2003])
that guarantees a logarithmic factor multiplicative approximation to the optimal social

4

welfare, in addition to some additive loss. In contrast to the case of ‘soft’ cost curves, the
multiplicative depends not only the cost curve but also on the number of buyers.

Thus far, we presented two pricing schemes. One that gives constant factor multiplica-
tive loss for ‘soft’ cost curves and another that gives logarithmic factor multiplicative loss
for arbitrary cost curves. Ideally, we would like to have a single pricing scheme that guar-
antees a small loss for soft limitation and a moderate loss for hard limitation. None of the
two pricing schemes we presented has this property. While we are not able to give such
a pricing scheme for arbitrary cost curves, we are able to design a third pricing scheme,
called the ‘Smoothing’ pricing scheme that achieves this goal for convex cost curves.

Profit Maximization The discussion so far focused on the objective of maximizing so-
cial welfare. We now present our results for the objective of profit maximization. Here we
are able to show a general result, stated formally as Theorem 2.9.1 in Section 2.9. Here is
an informal presentation of the result.

Theorem 1.2.1. Given an online multi-buyer social-welfare maximization algorithm A
with ρ multiplicative and β additive losses, and an offline single-buyer profit maximiza-
tion algorithm B with µ multiplicative and κ additive losses, we can construct a random-
ized online multi-buyer profit-maximizing algorithm C with (ρ+ µ) multiplicative and
(β + µ ·m) additive losses. (Here m is the number of buyers.)

This result helps us combine each of our social welfare maximizing schemes with the
single buyer profit maximizing scheme of Balcan et al. [2008] to generate a profit max-
imizing scheme for a sequence of online buyers. Using this result, we achieve a pricing
scheme whose expected profit, for arbitrary procurement cost curves, is within a logarith-
mic multiplicative loss of the optimal profit with some additive loss.

1.2.2 Techniques

A significant property of our results is that it allows for arbitrary combinatorial valuation.
With arbitrary combinatorial valuations, in the very special setting where there is only
one copy of every resource, several strong inapproximability results are known [Hastad,
1996]. Furthermore, analyzing allocation schemes for arbitrary combinatorial valuation
functions, in general, is hard.

The crucial result that makes it amenable for us to analyze our pricing schemes for
arbitrary valuation function is the “Structural Lemma”. This result lends its power by
extending guarantees of a pricing scheme from the case of a single resource to the case of

5

an arbitrary number of resources. Analyzing a pricing scheme is much simpler for the case
of a single resource since the problem loses it combinatorial nature in this special case.
And the Structural Lemma makes the analysis for this much simpler case sufficient for
deriving guarantees for the combinatorial case. Our proof of the Structural Lemma builds
on a similar result shown by Bartal et al. [2003] albeit for the case with no procurement
costs.

The second general result in our work, stated informally in Theorem 1.2.1, and one that
powers the results for profit maximization builds on a similar result shown by Awerbuch
et al. [2003] in the setting without procurement costs.

1.2.3 Related Work

There is a huge body of literature on combinatorial auctions and pricing algorithms. The
setting of combinatorial auctions has been considered both in Bayesian (stochastic) set-
tings, where the buyers’ valuations are assumed to come from a known prior distribution,
and non-Bayesian (adversarial) settings. Our work focuses on the non-Bayesian or ad-
versarial setting. We refer the reader to Blumrosen and Nisan [2007] and Hartline and
Karlin [2007] and the references therein—in particular, note Bartal et al. [2003], Lehmann
et al. [2006], Dobzinski et al. [2005], Dobzinski [2007], Briest et al. [2005] and Lavi and
Swamy [2005] – for a more comprehensive survey of the results in this area.

The works of Briest et al. [2005] and Bartal et al. [2003] are closely related to our set-
ting. The algorithms of Briest et al. [2005] give truthful mechanisms that achieve constant
approximations to social welfare for Ω(log n) copies of each item (see also [Archer et al.,
2004]) in the offline setting. For the online setting, Bartal et al. [2003] give posted-price
welfare-maximizing algorithms for combinatorial auctions in the limited supply setting—
the approximation guarantees they give are logarithmic (when there are Ω(log n) copies of
each item) or worse (when there are fewer copies); their results are (nearly) tight for the
online limited-supply setting. Our pricing scheme, the smoothing algorithm, presented in
Section 2.8, generalizes the results of Bartal et al. [2003] from the the fixed-number-of-
copies model to our more general non-decreasing procurement costs.

The work of Awerbuch et al. [2003] shows how to convert deterministic (or some spe-
cial kind of randomized) online mechanisms for allocation problems into (randomized)
posted-pricing schemes that achieve (ρ + log Vmax)-fraction of the optimal profit possi-
ble, where the online algorithm is ρ-competitive for the allocation problem and Vmax is
the maximum valuation of any agent over the set of items. We extend their analysis to
convert our social welfare maximizing algorithms to profit maximizing algorithms (Theo-

6

rem 1.2.1).

1.3 Resource allocation with expensive queries on stochas-
tic input

Thus far we assumed that the value of allocating a resource to a claimant is known, either
to the allocation mechanism as part of the input or to the claimant who may be a self-
interested agent, in which case the mechanism has to incentivize the agent to report it
truthfully. In certain scenarios, however, the value of awarding a certain resource to a
claimant is unknown. The value can be known only through queries and the queries are
expensive. Hence, the mechanism has to make resource allocation without necessarily
knowing the entire input. Rather, the mechanism has to choose what parts of the input to
query based on which it decides how to allocate the resources. Since queries are expensive,
their number should be small. The information that guides the queries of the mechanism
is stochastic – the mechanism has the knowledge of the distribution from which the input
is drawn. In Chapter 3, we consider the following question:

Without access to the entire input, which parts of the input does the resource
allocation mechanism (guided by stochastic information) query, to make an
allocation that has the maximum value?

Resource allocation with expensive queries can be modeled theoretically in a variety of
ways. We consider the problem of set-packing (U,A) where each set from the collection
A of sets contains elements from U (with |U | = n). Each element of U represents a
resources, and each set represents a claimant. The stochastic information available is the
following: For each set e, we know the probability pe, that the value of the set is found to
be 1 on query; with probability 1− pe, the value of the set is zero. We want to query sets
in A and based on the answers to the queries, pick a collection S ⊆ A of pairwise-disjoint
sets of maximum value.

To model expensive queries, one approach is to put a cap on the number of queries that
can be made to the input, and the allocation mechanism has to decide which set of queries
(under this cap) are made, and based on the results of the queries, how the resources are
allocated. And these queries can be either non-adaptive or adaptive. A related question
is the minimum number of queries required for the allocation mechanism to achieve a
solution of a desired quality. We consider questions of both flavors – the first where we

7

cap the number of queries and ask how best to use this budget of queries, and the second
where we ask what the minimum number of queries is to achieve a desired solution quality.

There are two parameters that are important for this problem. The first parameter is the
total number of queries that are made by the allocation mechanism. The second parameter
is the number of rounds in which the algorithms makes these queries. A non-adaptive
algorithm issues all its queries in one round. A completely sequential algorithm will take
as many rounds as the number of queries it makes. If the same number of queries are
issued in a smaller number of rounds then it implies that more queries can be answered
in parallel and parallelism is usually desirable in a real world system. Hence, we aim to
minimize both the number of rounds and the number of queries.

Our work is motivated from the practical application of kidney exchange, and we de-
scribe this connection now. One medical solution to kidney failure is to transplant a kidney
from a willing donor to a patient. For the transplant to be successful, the kidney has to
be biologically compatible with the patient. Many times, however, the donor is a friend
or a relative of the patient, who is willing to donate her kidney but is biologically incom-
patible with the patient. A practical solution to this is to try to find two such pairs that
are mutually compatible, i.e., the donor of the first pair is compatible with the patient of
the second and vice-versa. Kidney exchange does precisely the task of finding several
mutually compatible pairs from a large pool of patient-donor nodes. To find whether a pa-
tient and a potential donor are compatible requires an expensive laboratory test, called the
cross-match test. For kidney exchange, it is prohibitively expensive to do a cross-match
test for every pair of patient and potential donor. Rather, it would like to conduct a few
cross-match tests and be able to find sufficiently many mutually compatible pairs so as to
satisfy most of the patients. Hence, kidney exchange provides a setting for resource alloca-
tion, where the value of allocating kidneys (resources) to patients (claimants) is unknown
and can be found only through the cross-match tests (queries). In Chapter 3, we detail the
implications of our theoretical framework and results to kidney exchange.

1.3.1 Results

We have two sets of results corresponding to the two flavors of questions we mentioned
earlier, and we start with the results of the first flavor. For stochastic k-set packing (each set
has at most k elements of U), we give a adaptive algorithm that proceeds for Oε(1) rounds
and outputs a solution whose expected value is at least 2

k
− ε fraction of the expected

value of the omniscient optimum – one that queries all the sets. For any given resource,
among the sets that contain the resource, the adaptive algorithm queries at most one set.
Hence, the algorithm makes Oε(1) queries for any resource. For the case of stochastic

8

matching (k = 2), we therefore get (1− ε)-approximate adaptive algorithm. Furthermore,
for the sake of comparison, the best known polynomial-time algorithm for optimizing k-set
packing in the standard non-stochastic setting has an approximation ratio of 3

k+1
−ε [Fürer

and Yu, 2013].

While our adaptive algorithm takes only O(1) rounds, we ideally would like a non-
adaptive algorithm that gets a (1− ε) approximation.While it is an open question whether
an non-adaptive algorithm can achieve (1−ε)-approximation withO(1) queries per vertex,
we present a non-adaptive algorithm that achieves 0.5 − ε approximation for stochastic
matching (k = 2) and (2

k
− ε)2-approximation for stochastic k-set packing (for k > 2).

In the second set of results corresponding to ones of the second flavor, we explore the
computational complexity of finding the best non-adaptive solution with per-vertex query
budget of two. We show that this problem is NP-hard. Furthermore, for a particular class
of ‘realistic’ kidney exchange distributions, we provided a polynomial time algorithm that
for most graphs from the distribution gives an almost optimal solution to this per-vertex
budget constrained problem.

1.3.2 Techniques

Our adaptive algorithm makes use of the local search algorithms [Hurkens and Schri-
jver, 1989] known for the problem of k-set packing. Specifically, starting from any set
of answered queries, it prepares its queries for the next round by finding several disjoint
constant-size structures that can augment the current solution formed out of the answered
queries. The fact that the structures are disjoint means that the answers to the queries
are stochastically independent, and the constant-size of each structure implies that each
will exist with constant probability. This allows the adaptive algorithm to make signifi-
cant progress towards the omniscient optimal in each round, and proceeding for a constant
(depending on ε) number of rounds bring it ε close to it.

We show the NP-hardness of finding the best non-adaptive solution with per-vertex
budget of two via a structural result showing that if a collection of disjoint 4-cycles exists
in a graph, then this collection is the optimal solution and finding a 4-cycle is hard via a
reduction from 3D-matching.

1.3.3 Related Work

Chen et al. [2009] consider a scenario of resource allocation with adaptive queries. The
problem they consider is inspired by kidney exchange. They consider the following prob-

9

lem: Given a random graph G with known edge probabilities pe, in what order should one
query the edges in order to maximize the expected cardinality of the matching? They im-
pose two constraints on the query pattern of the algorithm: any queried edge that is found
to exist must be added to the matching, and for every node v, there is a specified budget on
the total number of queries that can be made on edges incident to the node. They show that
a greedy algorithm which queries the edges in decreasing order of the edge probabilities
gives a 0.25-approximation. Adamczyk [2011] later improved the analysis to show that the
greedy algorithm in fact yields a 0.5-approximation.

Bansal et al. [2012] extend the work of Chen et al. [2009] by considering the weighted
version of the problem, where in addition to edge probabilities pe, each edge has a weight
we and the objective is maximize the expected weight of matching (as opposed to cardi-
nality). They give an LP-based solution that achieves a 0.25-approximation for the case
of a weighted general graph and a 0.33-approximation for the case of a weighted bipar-
tite graph. These results have been generalized to other packing problems by Gupta and
Nagarajan [2013].

1.4 Study of existing allocation mechanisms in presence
of spiteful agents

The previous sections have focused on designing new allocation mechanisms. While new
mechanisms are needed when the existing mechanisms do not suffice, in some cases, the
existing mechanisms cannot be replaced due to practical constraints. In such cases, we
analyze the properties of the existing mechanisms to quantify their behavior in practical
scenarios of interest.

Auctions are one of the principal ways of allocating limited resources to self-interested
agents. The first-price and second-price auctions with their sealed-bid and dynamic vari-
ants are very commonly used in practice. These auctions are well studied under the as-
sumption that the bidder’s utility is determined solely by their own outcome, and their
utility is zero on losing. This, however, is not always the case, and this gap in our under-
standing forms the basis of our work in Chapter 4, where we study the behavior of certain
popular auction formats in the presence of ‘spiteful’ agents.

Spiteful agents A spiteful agent’s utility function is determined not just by what they
received from the auction, but also what others received. Furthermore, the dependence is
of a negative nature – when others are better-off, the agent is worse-off. In particular, the

10

agent’s utility on losing may be a negative number (and not zero). This negative depen-
dence stems from both strategic reasons and from purely psychological ones [Saijo and
Nakamura, 1995, Levine, 1998, Loewenstein et al., 1989]. An instance where this depen-
dence stems from strategic reasons is in an auction where several companies that operate
in different markets of the world are bidding. The utility of a company on losing, in part,
depends on whether the winner of the auction conducts their business in the same geo-
graphical location as itself. If the winner of the auction has its primary market the same
as the losing firm, then the utility on losing the auction is probably lower (or the negative
utility is higher) than if the winner focuses on a different market.

We consider the question of how spiteful agents bid in the common auction formats,
and how these contrast to the case with no spite. Furthermore, how does this spite affect
the winner of the auction and the revenue that the auctioneer derives from it? Previous
work by Morgan et al. [2003] studied the special case where all the agents are equally
spiteful and moreover, have their utility equally affected by different bidders. We ana-
lyze the more realistic case, where different agents are ‘spiteful’ to different extents and
furthermore, can have asymmetric spite to different bidders. And so our results apply to
involved settings where an agent A can be more spiteful to agent B than to agent C, and
agent C may not be spiteful at all to agent A.

1.4.1 Results

We study the one-item auction and give analytical expressions for the equilibrium bids
made by the agents. In addition, we analyze who wins the auction and how much they pay.
We show that unlike the setting without spite, the revenue equivalence of the first-price and
second-price auction is no longer true. In fact, unlike the symmetric spite setting, no one
type of auction dominates the other in terms of revenue. Depending on how different the
bidders are in their spite, one type can bring more or less revenue than the other. Moreover,
from the perspective of resource allocation, the auctioned item may be won by a player
who does not value it the most.

1.4.2 Techniques

We derive a Nash equilibrium for the spiteful bidders using first principles. We augment
this by making careful guesses of the equilibrium bidding function to come up with closed-
form solutions for them. For many of the settings, we consider the bidding functions given
by Morgan et al. [2003] in the symmetric setting, and make educated guesses about their

11

potential form in the asymmetric setting.

1.4.3 Related work

Morgan et al. [2003] initiated the study of the auctions for the case when the compet-
ing bidders are spiteful. They compute the equilibrium bidding functions of the spiteful
bidders, and compare the revenue attained in spiteful settings to that attained in settings
without spite.

1.5 Approximating valuation functions

One aspect of resource allocation mechanisms that we have not touched on so far is the
valuation function. The valuation function gives the value that a particular claimant has
for a given set of resources. While in Chapter 2, we considered the case of arbitrary
combinatorial valuations, usually, allowing from arbitrary combinatorial valuations makes
the computational problem of allocation extremely hard. For this reason, research has
considered special classes of valuation functions and given mechanisms that achieve either
optimal or approximate solutions .

In Chapter 5, we study the class of submodular functions. This class of functions is
important due to two reasons. First, in many economic settings, buyers display valuation
functions obeying the property of ‘decreasing marginal return’ and the class of submodular
functions is used to capture this property mathematically. The second reason is that many
combinatorial optimization functions turn out to be submodular.

There are some special classes of submodular functions that are well studied. These
include the class of matroid rank functions, cut functions and coverage functions. The ob-
jective behind the work in Chapter 5 is to understand how the complexity of expressiveness
of these various subclasses compare to one another and to the parent class of submodular
function. Specifically, we ask how closely a member of one subclass can be approximated
by members of a different class.

1.5.1 Results

Our main results are:

12

• General submodular functions2 can be approximated by cut functions of directed
graphs to a factor of n2/4, which is tight.

• General symmetric submodular functions1 can be approximated by cut functions of
undirected graphs to a factor of n− 1, which is tight up to a constant.

• Budgeted additive functions can be approximated by coverage functions to a factor
of e/(e− 1), which is tight.

Here n is the size of the ground set on which the submodular function is defined. We also
observe that prior works imply that monotone submodular functions can be approximated
by coverage functions with a factor between O(

√
n log n) and Ω(n1/3/ log2 n).

1.5.2 Techniques

Unlike some of the previous work [Goemans et al., 2009, Balcan and Harvey, 2011,
Badanidiyuru et al., 2012] that analyze non-negative monotone submodular functions, in
this work, we look at arbitrary submodular functions. For instance, we consider the ques-
tion of approximating arbitrary submodular functions by cut functions. An arbitrary sub-
modular function can take zero value on non-trivial sets, and in particular, is not monotone.
Since we aim for a purely multiplicative approximation, this implies that our cut functions
should be zero exactly where the submodular function takes the zero value. Therefore, we
face some unique challenges. In the case of symmetric submodular function, for instance,
we use the cut function of the Gomory-Hu tree [Gomory and Hu, 1961, Queyranne, 1993]
representation for the function to approximate it.

For approximating budgeted additive functions by coverage functions, we design a
randomized construction. Furthermore, to show the optimality of the achieved approxi-
mation, we write a Linear Program whose objective is the best approximation factor, and
then analyze the dual of this program to show that the primal value is at least the achieved
approximation factor.

1.5.3 Related work

Submodular function have been studied from a number of perspectives. Goemans et al.
[2009] consider the question of approximating a non-negative monotone submodular func-
tion using a simpler class of functions. They give O(

√
n log(n)) approximation. Balcan

2We additionally assume that the submodular function takes value 0 on the null set and the universe.

13

and Harvey [2011] take the learning perspective and study the problem of probabilisti-
cally learning a monotone submodular function, given the values the function takes on a
polynomial sized sample of its domain. They provide a lower bound of Ω(n1/3) on the
best possible approximation a learning algorithm can give to the submodular function.
Badanidiyuru et al. [2012] consider whether there can be polynomially sized ‘sketches’
to sub-additive functions (submodular function is a sub-class of sub-additive functions)
and present a O(

√
n polylog(n)) approximation sketch. Seshadhri and Vondrák [2011]

and Chakrabarty and Huang [2012] consider the question of testing whether a function
belongs to the class of sub-modular function and coverage functions respectively.

14

Chapter 2

Online Resource Allocation with
Procurement Costs

2.1 Introduction

In this chapter, we consider resource allocation in an online setting under game theoretic
constraints. The main focus of this work is understanding how the extent of limitation of
the resources plays out and affects the guarantees we can achieve for resource allocation
under the given setting. We consider two objectives – social welfare maximization and
profit maximization.

In order to understand the effect of limitation of resources, we need a model of limita-
tion. Prior work has considered capturing limitation of resources by allowing some fixed
number of copies of each resource. This accurately models resources as the rooms in a ho-
tel or seats on an airplane. Under this model of limitation, prior work has explored the wel-
fare (or profit) guarantees that can achieved as we vary the number of copies available for
the resources. This model of limitation however fails to capture several resource settings of
interest. For instance, consider the following resources – human resource and petroleum.
For these resources, there is no a priori fixed number of copies. We can always hire extra
personnel to join the labour force and can procure extra gallons of petroleum. What then
limits us in allocating as many quantities of these resources as demanded. The answer is
that there is a cost associated in procuring additional quantities of these resources. In case
of human personnel, we may have to expend costs in the form of conducting interviews for
recruitment, for training and in remuneration. For petroleum, we can get extra gallons but
again we have to expend cost in drilling and refining it. For these resources, what limits

15

us is not the total fixed number of copies of these resources. What limits us is the cost that
we have to expend in procuring additional copies.

In this work, we introduce a new model of limitation that captures these settings more
accurately. In this model, there is a procurement cost curve associated with each resource.
This cost curve captures the cost that needs to expended in procuring extra copies of the
resource. In addition to capturing these new setting, what makes this model extremely
useful is that it can also capture settings that were modeled by prior work, i.e., where there
are only a fixed number of copies of a resource. With this new model of limitation, we
explore how to allocate resources to optimize the two objectives under consideration –
social welfare and profit.

The allocation of resources is through item pricing. We set prices for individual re-
sources and the total price for a bundle of resources is the sum of the resources in that
bundle. The claimants for these resources are buyers with arbitrary combinatorial val-
uations. The claimants arrive online, one at a time, and consume that set of resources
which maximize their utility at the current prices. In this work, we show that extremely
simple pricing functions – the price for every resource depends only on how many copies
of that resources have been allocated so far – can achieve good approximation factors to
social welfare. For a broad class of cost curves that capture limitation that is not extremely
restrictive, we have a constant factor approximation. In case, the cost curves capture ex-
tremely restrictive limitation, we achieve a logarithmic factor approximation.

The roadmap for the rest of the chapter is as follows. We first define the model of
limitation that we use in this work. Then we summarize in greater details the results of this
work. Later we present the item pricing schemes that we design for resource allocation,
followed by their analysis. We conclude with some possible extensions of this work.

2.2 Model of Limitation

We consider the following setting. A seller is selling a set U = {1, . . . , n} of n items
to a sequence B of m buyers who arrive one at a time. The seller can obtain (or pro-
duce) additional copies of each item but at increasing (or at least non-decreasing) procure-
ment cost; specifically, let ci(k) denote the procurement cost to the seller for the kth copy
of item i. For each item i, let Ci(k) be the cumulative cost for the first k copies—i.e.,
Ci(k) =

∑
k′≤k ci(k

′). Let cinv
i (p) be the number of copies of item i available before the

procurement cost exceeds p; in case ci(·) is invertible, it follows that cinv
i (p) = c−1

i (p).

Before each buyer arrives, the seller may mark up the costs to determine a sales price

16

πi for each item i. Every buyer b has some (unknown to the seller) valuation function
vb : 2U → R over possible bundles of items (we only require that vb(φ) = 0 i.e. value on
the empty bundle is zero), and purchases the utility-maximizing bundle for herself at the
current prices. That is, buyer b purchases the set S maximizing vb(S) −

∑
i∈S πi. After a

buyer finishes purchasing her desired set, the seller may then readjust prices, and then the
next buyer arrives, and so on.

2.2.1 Our Results and Techniques

For a wide range of reasonable cost functions (linear, low-degree polynomial, logarithmic),
we present a pricing scheme that achieves a social welfare within a constant factor of the
optimal social welfare allocation minus a necessary additive loss. This holds for buyers
with arbitrary combinatorial valuation functions. Furthermore, the algorithm is quite ‘nat-
ural’ and reasonable: we price the kth copy of any good at the procurement cost of the
2kth copy1. This pricing scheme, that we call twice-the-index, appears in Section 2.6.

Twice-the-index pricing scheme however fails to give good guarantees for all increas-
ing cost functions. For instance, for the 0−∞ case, where the first few copies are available
at zero cost and thereafter the copies have an extremely high procurement cost, buyer in-
stances can be easily be created where twice-the-index fails to give any any ‘reasonable’
guarantee (Section 2.6.4). Bartal et al. [2003] propose a pricing scheme for the 0 − ∞
setting which fetches a logarithmic approximation to social welfare in case the number of
copies available at zero cost are logarithmically many. We borrow their idea and apply it to
any general increasing cost curve by breaking up the curve into contiguous chunks, each
containing logarithmically many copies, and apply their pricing scheme separately for
each chunk. This pricing scheme, presented in Section 2.7, gives roughly a logarithmic
approximation to (optimal social welfare minus the procurement cost of logarithmically
many initial copies).

While Twice-the-index pricing scheme gives constant approximation guarantees for
‘nice’ curves, the pricing scheme in Section 2.7 gives a logarithmic approximation for
general increasing curves. We would ideally want a single algorithm that can give us
constant approximation guarantees for ‘nice’ curves and logarithmic guarantees for gen-
eral curves. We achieve this for the case of convex increasing curves. In Section 2.8, we
present a smoothing pricing scheme that attains constant approximation to optimal social
welfare for polynomial curves and a logarithmic approximation for general convex curves
(plus some additive loss in both cases).

1For illustrative examples showing why some closely related algorithms fail, see Section 2.5.

17

Interestingly, in order to prove the approximation guarantee for all of the presented
social welfare maximizing schemes, we use a crucial result which we call the Structural
Lemma. This result is stated and proved in Section 2.4. The result reduces the problem of
proving the social welfare guarantee of a pricing scheme for buyers with arbitrary valua-
tions to a case of proving that for every item, the profit generated through sales of copies
of the item is comparable to the area between the procurement curve of the item and a line
parallel to x-axis and at a height equal to the prices of the lowest priced unsold copy of the
item. Structural Lemma therefore simplies the analysis considerably since it allows the
problem to be seen per item even though the original problem is combinatorial. Further-
more, we note that we are implicitly making use of demand queries to make the allocation:
for any set of prices, we can compute for any buyer their utility maximizing bundle.

In Section 2.9, we consider the objective of profit maximization, with profit being de-
fined the sum of prices of goods sold minus the procurement cost of the goods. Here
we give a randomized pricing scheme that takes as input any social welfare maximizing
scheme (with approximation factor say ρ) and a single-buyer profit maximizing pricing
(with approximation factor say µ), and converts it to a profit maximization pricing scheme
that achieve a (ρ + µ) approximation to optimal profit for any sequence of buyers. In
particular, we use the single-buyer profit maximization algorithm of Balcan et al. [2008]
and combine it with the social-welfare pricing schemes mentioned above to get a loga-
rithmic approximation to optimal profit for any general increasing curve. Our recipe for
combining a social welfare maximization pricing scheme with a single-buyer profit max-
imization algorithm borrows ideas heavily from a similar result presented in Awerbuch
et al. [2003]. In fact, it extends their results to a more general setting with procurement
costs and arbitrary valuations.

2.3 Notation

For any particular sequence of buyers, let opt be the allocation that maximizes the social
welfare. Clearly, the social welfare achieved under opt, denoted by W (opt), is an upper
bound on both the maximum social welfare and maximum profit achievable by any online
algorithm.

For any algorithm alg, W (alg) shall denote the social welfare attained through the
algorithm. The algorithm shall determine a pricing scheme for the seller and πi(k) shall
denote the sales price charged for the kth copy of item i ∈ U . While this could in principle
depend on other items sold, for all our algorithms it depends only on k and the cost-curve
for the item. xi shall denote the total number of copies of item i sold by the algorithm, and

18

P f
i shall denote the price of the first unsold copy of item i—i.e., P f

i = πi(xi + 1).

We shall denote the total procurement cost suffered by the algorithm byC(alg) and and
the revenue made byR(alg). profiti shall denote the profit made by the algorithm from the
sales of item i. The total profit made by the algorithm is

∑
i∈U profiti = R(alg)−C(alg).

Since xi are the total number of copies sold by the algorithm alg for item i, therefore,
C(alg) =

∑
i∈U
∑xi

k=1 ci(k), R(alg) =
∑

i∈U
∑xi

k=1 πi(k) and profiti =
∑xi

k=1 πi(k) −∑xi
k=1 ci(k).

The total valuation of buyers on their allocated bundles under alg is denoted by V (alg) =∑
b∈B vb(alg(b)) where alg(b) denotes the set of items bought by buyer b from the algo-

rithm alg. The social welfare made by the algorithm W (alg) is V (alg)− C(alg).

For opt, the welfare-maximizing allocation, λi denotes the number of copies of item i
allocated in opt. C(opt), V (opt) and W (opt) are defined analogously.

2.3.1 (α, β) approximation factor definition

Definition 2.3.1 ((α, β)-welfare approximation). An allocation scheme is said to be (α, β)-
welfare approximate if for every possible set σ of buyers arriving in any sequence, the
welfare achieved through the allocation scheme is at least (opt(σ)− β)/α, where opt(σ)
is the optimal welfare on the buyer set σ.

2.4 Single Resource Goodness and Structural Lemma

We now present the central lemma that drives the results mentioned in Section 3.1.2. The
lemma makes it sufficient to consider the one resource case. For instance, it says that if
a pricing scheme can achieve an (α, β)–approximation factor for the single resource case,
then it can achieve (α, nβ) approximation in case the number of resources is n in the
special case where all the resources have the same approximation factor. This allows us to
focus on the special case where we have just one resource and we want to design a pricing
function for it. This case is significantly simpler to reason about since it does not have
combinatorial structure of the original problem where we have multiple resources and the
buyers can have arbitrary valuations for various subsets of resources.

Definition 2.4.1. A price curve π is (α, β)-single-resource-good for a resource with cost
curve c, if in the single resource setting involving just that resource, the allocation scheme
that uses the price curve π is an (α, β)-approximate.

19

Lemma 2.4.2. (Structural Lemma) Consider the allocation schemes that uses (αi, βi)-
single-resource-good price curve πi for the ith resource.Then the allocation scheme is
(maxi∈[n] αi,

∑
i∈[n] βi)-welfare approximate.

Proof. When buyer b ∈ B arrives, let x(b)
i be the number of copies of item i sold before b

comes in. Hence, the price b sees for item i would be πi(x
(b)
i + 1); for brevity we denote

this qb(i), and for a set S ⊆ U , qb(S) :=
∑

i∈S qb(i). The utility of a set S for buyer b
therefore is vb(S)− qb(S). Since each buyer buys the set that maximizes her utility, hence
in particular it implies that the set Sb = alg(b) which buyer b bought from alg must be
giving her at least as much utility as the set S∗b that opt allocated to her i.e.

vb(Sb)− qb(Sb) ≥ vb(S
∗
b)− qb(S∗b) .

Summing over all buyers, we get∑
b∈B(vb(Sb)− qb(Sb)) ≥

∑
b∈B(vb(S

∗
b)− qb(S∗b)) .

Adding and subtracting C(alg) and C(opt) on the left hand and right hand sides respec-
tively, we get (∑

b∈B

vb(Sb)− C(alg)
)
−
(∑
b∈B

qb(Sb)− C(alg)
)

≥
(∑
b∈B

vb(S
∗
b)− C(opt)

)
−
(∑
b∈B

qb(S
∗
b)− C(opt)

)
.

Identifying the term
∑

b∈B vb(Sb)−C(alg) with W (alg), the term
∑

b∈B qb(Sb)−C(alg)
with

∑
i∈U profiti and the term

∑
b∈B vb(S

∗
b)− C(opt) with W (opt) we get

W (alg)−
∑
i∈U

profiti ≥ W (opt)−
(∑
b∈B

qb(S
∗
b)− C(opt)

)
. (2.1)

Since prices are non-decreasing, hence the price faced by any buyer cannot be more than
the final price of the various items. Therefore for each buyer b, qb(S∗b) =

∑
i∈S∗b

πi(x
(b)
i +

1) ≤
∑

i∈S∗b
πi(xi+1) =

∑
i∈S∗b

P f
i . Hence, the term

∑
b∈B qb(S

∗
b) is at most

∑
b∈B
∑

i∈opt(b) P
f
i =∑

i∈U(P f
i · λi) where recall that λi denotes the number of copies of item i allocated under

opt. Moreover, since C(opt) =
∑

i∈U
∑λi

k=1 ci(k), we have

∑
b∈B

qb(S
∗
b)− C(opt) ≤

∑
i∈U

(P f
i · λi)−

∑
i∈U

λi∑
k=1

ci(k)

=
∑

i∈U
∑λi

k=1(P f
i − ci(k)) . (2.2)

20

The quantity (P f
i − ci(k)) is non-negative until ci(k) ≤ P f

i , that is it is non negative for
k ≤ cinv

i (P f
i). Hence, we have

∑
b∈B qb(S

∗
b) − C(opt) ≤

∑
i∈U
∑λi

k=1(P f
i − ci(k)) ≤∑

i∈U
∑cinv

i (P fi)

k=1 (P f
i − ci(k)). Therefore, using Equation (2.1), we get

W (alg)−
∑
i∈U

profiti ≥ W (opt)−
(∑
b∈B

qb(S
∗
b)− C(opt)

)
≥ W (opt)−

∑
i∈U

cinv
i (P fi)∑
k=1

(P f
i − ci(k)) .

It is easy to see that since the allocation schemes uses (αi, βi)-single-resource-good
price curve for the ith resource, hence by Lemma 2.4.3, it is the case that ∀i ∈ U ,∑cinv

i (P fi)

k=1 (P f
i − ci(k)) ≤ αi profiti + βi. Hence, on combining these inequalities with

the earlier inequality, we get

W (alg)−
∑
i∈U

profiti ≥ W (opt)−
∑
i∈U

(αi profiti + βi)

⇒W (alg) + (max
i∈U

αi − 1)
∑
i∈U

profiti ≥ W (opt)−
∑
i∈U

βi .

Finally using the social welfare generated by the algorithm is at least the profit made,
i.e. W (alg) ≥

∑
i∈U profiti, we get the desired resultW (alg) ≥ (W (opt)−

∑
i∈U βi)/maxi∈U αi

�

2.4.1 Proving (α, β)-single-resource-goodness

In this section, we show how to analyze the single resource case and prove that a price
curve π is (α, β)-single-resource-good for a some cost curve c.

Lemma 2.4.3 (Condition for being single-resource-good). A non-decreasing price curve
π is (α, β)-single-resource-good for a given cost curve c if and only if for every x ∈ N≥0,

x∑
i=1

(π(i)− c(i)) ≥

cinv(π(x+1))∑
i=1

(π(x+ 1)− c(i))− β

 /α.

Proof. First, we prove that the inequality

x∑
i=1

(π(i)− c(i)) ≥

cinv(π(x+1))∑
i=1

(π(x+ 1)− c(i))− β

 /α

21

cost curve ci()price curve πi()

P f
i = ci(xi + 1)

xi + 1
cinvi (P f

i)
xi

Figure 2.1: Structural Lemma: if the lightly shaded area is bounded by a small multiple
of the doubly shaded area, then we get good social welfare. xi is the last sold copy of the
item and xi+1 is the first unsold copy. The lower continuous curve is the cost curve while
the upper dashed curve is the price curve.

is a necessary condition for the price curve to be (α, β)-single-resource-good for cost
curve c. Suppose not. Consider a (α, β)-single-resource-good price curve and assume that
for some value of x ∈ N≥0, the inequality does not hold. Then consider the sequence of
buyers with the first x buyers having values π(1), π(2), · · · , π(x) respectively, followed
by cinv(π(x + 1)) buyers each with value π(x + 1) − ε (for arbitrarily small ε > 0). It
is not hard to see that the optimal allocation will allocate to the cinv(π(x + 1)) buyers
each with value π(x + 1) − ε, while the algorithm will allocate to the first x buyers.
The welfare made by the algorithm is

∑x
i=1(π(i) − c(i)) while the optimal welfare is∑cinv(π(x+1))

i=1 (π(x + 1) − c(i)) − ε · cinv(π(x + 1)). (α, β)-single-resource-goodness will
imply the desired inequality for arbitrarily small ε > 0, leading to a contradiction.

The other direction that shows that the inequality is sufficient follows from the proof
of Lemma 2.4.2 restricted to the case of a single resource. �

2.4.2 Relaxed conditions for Single Resource Goodness

When we have more information about the buyers, we can satisfy (α, β)-single-resource-
goodness for a price curve under more relaxed conditions than in Lemma 2.4.3. In par-
ticular, suppose we know the total (or an upper bound of the) number of buyers in the
sequence, and let us call it m. Furthermore, we know an upper bound on the maximum

22

welfare a single buyer can contribute, and call this Z. Mathematically, Z is at least

Umax = max
b∈B

max
T⊆U

(
vb(T)−

∑
i∈T

ci(1)

)

We now prove a variant of the structural theorem. For a given resource with cost curve
c(), define cinvt(p) = min{cinv(p),m, cinv(Umax)} where m is the number of buyers and
for a given set of buyers B and items U , is the maximum welfare any single buyer can
achieve.

Lemma 2.4.4 (Relaxed condition for being single-resource-good with additional knowl-
edge about buyer sequence). With knowledge of m and Z, and cinvt as defined above, a
non-decreasing price curve π is (α, β)-single-resource-good for a given cost curve c if for
every x ∈ N≥0,

x∑
i=1

(π(i)− c(i)) ≥

cinvt(π(x+1))∑
i=1

(π(x+ 1)− c(i))− β

 /α. (2.3)

Furthemore, an allocation schemes that uses (αi, βi)-single-resource-good price curve πi
for the ith resource is (maxi∈[n] αi,

∑
i∈[n] βi)-welfare approximate.

Proof Sketch: Note that in the proof of Lemma 2.4.2 just after Equation (2.2), we ar-
gued that λi ≤ cinv

i (P f
i). Instead of summing all the way to cinv

i (P f
i), we could stop the

summation at min{cinv
i (P f

i),m, cinv
i (Umax)}. Indeed, this is because

• λi ≤ m: each buyer wants at most one copy of each item, so at most m copies of
item i can be allocated in the optimal solution.

• λi ≤ cinv
i (Umax): each copy beyond cinv

i (Umax) has cost strictly greater than Umax;
allocation of any such copy can only decrease the social welfare.

�

2.5 Some ‘natural’ pricing schemes

We first give some natural pricing schemes and instances where they fail to achieve good
social welfare.

23

2.5.1 Pricing at Cost

While the algorithm of pricing at cost (i.e., setting π(k) = c(k)) gives an optimal welfare
for the unlimited supply setting (where procurement costs are zero), it is not a good al-
gorithm even for “simple” cost curves. E.g., for a single item with linear costs c(k) = k,
consider a sequence of m buyers with the ith buyer having value i for i ∈ {1, . . . ,m},
followed by m buyers with value m each. Pricing at cost will sell to the first m buyers
and give zero welfare for them, after which the procurement cost will be too high to sell
any further copies. In contrast, the optimal solution is to sell to the second set of m buyers
with welfare m2 − m(m+1)

2
= Ω(m2).

2.5.2 Pricing at Twice the Cost

Another natural algorithm is to price at twice (or any fixed multiple) of the cost of each
item. However, while this can be shown to perform well for linear and low-degree polyno-
mial cost functions, it performs poorly for the case of logarithmic costs. Indeed, consider a
single item with procurement cost c(x) = log x, and suppose we price the ith item at cost
π(i) = 2 log i. Suppose the first m buyers have valuations 2 log 1, 2 log 2, . . . , 2 logm
respectively, and are followed by m2 buyers with valuation 2 logm = logm2. The
algorithm would sell to the first m buyers, getting a social welfare of

∑m
i=1(2 log i −

log i) = O(m logm), after which the cost would be too high for the remaining buy-
ers. In contrast, optimum would sell to the last m2 buyers, and get a social welfare of∑m2

i=1(logm2 − log i) = Ω(m2).

2.6 Algorithm: Pricing at twice the index

The first two ideas for pricing items with procurement costs are perhaps to (a) sell at cost,
or (b) sell at some constant times the cost; however, as we have seen in Section 2.5, these
schemes fail even for simple cost functions like linear and logarithmic procurement costs,
respectively. In this section, we consider the next natural pricing scheme: The price πi(k)
of the kth copy of an item is the procurement cost of the (2k)th copy. I.e.,

πi(k) := ci(2k).

There is nothing special about pricing at twice the index, other factors would work as well,
just giving slightly different bounds. We shall analyze this algorithm for function classes
including polynomial ci(x) = xd and logarithmic ci(x) = ln(1 +x). Since these functions

24

are strictly increasing and hence invertible, hence we shall have cinv
i (ci(x)) = x for all

x ≥ 0. To analyze this algorithm, we shall use the result of Lemma 2.4.3.

(Single resource goodness condition for Twice the Index pricing scheme)
To show (α, β)-single-resource-goodness, we want to show that for all x ∈ N≥0,

x∑
k=1

(c(2 k)− c(k)) ≥

cinv(c(2 (x+1)))∑
k=1

(c(2 (x+ 1))− c(k))− β

 /α

This is since the price π(k) of the kth copy is c(2 k). For ease of notation, call A(x) =∑cinv(c(2 (x+1)))
k=1 (c(2 (x+ 1))− c(k)) and B(x) =

∑x
k=1(c(2 k)− c(k)).

2.6.1 Performance on some cost functions

We now show that for some “well-behaved” classes of functions, we get Ai(x) ≤ α ·
profiti(x) + βi; the βi term will usually depend on the procurement cost of the first few
copies of the items—hence we will guarantee that we get a multiplicative α-fraction of the
welfare if we ignore the procurement cost of the first few copies.

• Linear procurement costs: c(x) = a x + b for some constant a, b ≥ 0. It is easy to
verify that then we have A(x) = a(x + 1)(2x + 1), and B(x) = 1

2
a x(x + 1), and

hence we have (6, a)-single-resource-goodness. Lemma 2.4.2 implies that

W (alg) ≥ 1
6

(
W (opt)−

∑
i∈U ai

)
= 1

6

(
W (opt)−

∑
i∈U(ci(2)− ci(1))

)
,

where ci(x) = ai x + bi. This result, with suitably modified guarantees, can easily
be extended to the case where the actual procurement cost lies between two linear
curves whose slopes are within a constant factor of each other.

• Polynomial procurement costs: ci(x) = aix
d for d > 1. ThenAi(x) ≤ ai

d
d+1

(2(x+

1))d+1, whereasBi(x) ≥ ai
1
d+1

(2d−1)xd+1, so some algebra implies that (12 d, 2d+1 (d+

2)d+1 ai)-single-resource-goodness. Hence

W (alg) ≥ 1
12 d

(
W (opt)− 2 (d+ 2)d+1

∑
i∈U ci(2)

)
.

25

Such a bound also holds for ci(x) being a polynomial of degree at most d with
positive coefficients. The additive loss of 2O(d log(d)) should be compared to the
lower bound of Ω(2d/d) in Corollary 2.6.3

• Logarithmic procurement costs: ci(x) = ln(1 + x). By algebra, Ai(x) ≤ (2x + 3),
and Bi(x) ≥ ln(3

2
)x, so we have (2

ln(3/2)
, 3)-single-resource-goodness, and again,

Lemma 2.4.2 implies (ln(3/2)
2

, 3|U |)-welfare approximation.

2.6.2 Trade-off between the multiplicative guarantee and additive loss

In the guarantees given above, gains in the multiplicative factor can be made while trading-
off commensurate losses in the additive loss terms. Specifically, consider the polynomial
procurement cost ci(x) = xd. For a given xi, we have that Ai(xi) ≤ d

d+1
(2 (xi + 1))d+1

and Bi(xi) ≥ (2d−1)xd+1
i

d+1
. Hence,

Ai(xi) ≤
d

d+ 1
(2 (xi + 1))d+1 =

d

d+ 1
(1 + 1/xi)

d+1 2d+1 xd+1
i ≤ 4 d (1 + 1/xi)

d+1 Bi(xi)

(2.4)

where we have used ∀d ≥ 1, 2d − 1 ≥ 2d−1. Therefore, using that

− for all xi ≤ q, Ai(xi) ≤ d
d+1

(2 (xi + 1))d+1 ≤ d
d+1

(2 (q + 1))d+1, and

− for all xi > q, Ai(xi) ≤ 4 d (1 + 1/xi)
d+1 Bi ≤ 4 d (1 + 1/q)d+1Bi(xi),

for any q ≥ 1, we can write

∀xi ≥ 0, Ai(xi) ≤ 4 d (1 + 1/q)d+1 Bi(xi) + (d/(d+ 1)) (2 (q + 1))d+1 .

Denoting αq = 4 d (1 + 1/q)d+1 and βq = (d/(d+ 1)) (2 (q+ 1))d+1, we can write for any
q ≥ 1, we achieve (αq, βq)-single-resource-goodness. A large q means a higher additive
loss but with the benefit of a lower multiplicative factor. Hence, depending on the specific
situation, we can look for a sweet spot by varying the parameter q. In the previous section,
we had chosen q = d+ 1 to give the result for polynomial case.

As we show in Section 2.6.3, a social-welfare maximizing algorithm which has no
estimate of W (opt) has to lose an additive factor. At a high level, q represents the number
of initial copies which we are ready to lose.

26

While the “twice-the-index” algorithm works for the above cost functions, its behavior
worsens if the function grows very fast; Section 2.6.4 shows a bad example for the algo-
rithm. Hence, in the next section, we give a logarithmic-approximation algorithm for the
case of general increasing procurement cost curve.

2.6.3 The Necessity of Additive Loss

If we do not have an estimates for W (opt), we give a trade-off between the additive and
multiplicative loss (even for a single item), for any algorithm where the prices are at least
the procurement cost.

Lemma 2.6.1. With no estimate of W (opt) it is impossible for a deterministic algorithm
to give a purely multiplicative guarantee i.e. a guarantee of the form

W (alg) ≥ W (opt)/α

for any finite α.

Proof. Suppose we have an algorithm A that gets such a α-approximation for all inputs.
Consider a single item with procurement cost function c(k) = k. Suppose the price of the
first copy is set to any 1 + θ, for θ > 0. Then we can send in a single buyer with valuation
1 + θ − ε, getting a zero social welfare, whereas the optimal welfare is θ − ε > 0. On the
other hand, if the price of the first copy is 1, then first send a buyer with value 1, and then
a buyer with value 1.9—the optimal welfare of 0.9 is achieved by selling to the second
buyer, but we only sell to the first buyer, get zero welfare again. �

Some Quantitative Trade-offs

Lemma 2.6.2. For any deterministic pricing algorithm (in a single item setting) acting on
procurement costs c() and that price copies at at least their procurement cost, to give the
guarantee W (alg) ≥ (W (opt)−∆)/α, it is necessary that α ≥ c(2)−c(1)

∆
− 1.

Proof. Let π(1) = c(1) + γ. Note that γ ≤ ∆ because otherwise a buyer sent in with
valuation c(1) + γ − ε would buy nothing and hence W (alg) = 0 while W (opt) = γ − ε
and therefore W (alg) ≥ (W (opt)−∆)/α would be false.

Now consider a sequence of two buyers, the first with valuation c(1) + γ and the
second with valuation c(2) − ε. The first buyer will buy the first copy. Since the price of
second copy is at least c(2), hence the second buyer won’t buy. Hence, W (alg) = γ while

27

W (opt) = c(2) − c(1) − ε. In such a scenario, for the guarantee to hold we require that
γ ≥ (c(2)− c(1)− ε−∆)/α which implies that γ α+ ∆ ≥ c(2)− c(1)− ε. Noting that
γ ≤ ∆ and that the inequality needs to hold for any ε ≥ 0, the claim follows. �

The following corollary follows immediately.

Corollary 2.6.3. For procurement curves c(x) = xd, for α = 4 d, ∆ = Ω(2d/d).

2.6.4 Bad Example for Pricing at Twice the Index

Here is an example where twice-the-index algorithm fails to produce good social welfare—
e.g., consider the limited supply-like setting where c(k) = 0 for k ≤ T , and c(k) = V
for k > T . Consider sending in T buyers with valuation zero, followed by T buyers with
valuation V − ε. Twice-the-index prices the first T/2 copies at zero, and the rest at V ,
whence we get zero welfare, whereas the optimal welfare of T (V − ε) is achieved by
selling to just the later T buyers.

2.7 General Increasing Cost Functions

In this section, we present an algorithm that applies to general increasing cost functions,
giving a logarithmic approximation minus an additive term that depends on the cost func-
tion (Theorem 2.7.2). The guarantee is achieved through a simple discretization of the
cost function that allows us to reduce to the case of step functions and apply the algo-
rithm of Bartal et al. [2003]. In fact, we get a multiplicative logarithmic approximation to
W (opt) as long as the procurement cost of the first few logarithmic copies of all the items
is small compared to W (opt). For the 0 −∞ procurement cost setting (i.e. the first few
copies at zero cost and subsequent at an extremely high cost), if we have Ω(log nm) copies
of each item available at zero cost, the additive loss is zero and the algorithm presented
here gets a logarithmic fraction of the optimal social welfare just as in Bartal et al. [2003].

2.7.1 Algorithm

Before describing the algorithm, let us introduce some notation. Define Umax as the max-
imum welfare any single buyer can achieve. Mathematically,

Umax(U,B) = maxb∈B maxT⊆U
(
vb(T)−

∑
i∈T ci(1)

)
, (2.5)

28

Note that the optimal social welfare, W (opt), lies between Umax and m · Umax. The
algorithm requires a parameter Z which satisfies Z ∈ (Umax, Umax/ε]

2. For item i, define
`i = min{cinv

i (Z),m} and cinvt
i (p) = min{cinv

i (p), cinv
i (Z),m}. We can think of `i as the

‘effective’ number of copies of item i that are available and of cinvt
i (p) as the function

which gives the ‘effective’ number of copies of item i whose procurement cost is at most
p; cinvt

i (p) is the maximum number of copies of item i that opt can allocate before the
procurement cost exceeds p (Lemma 2.4.4). Note that using cinvt

i (as opposed to using cinv
i)

is a technicality; one can imagine cinvt
i ≈ cinv

i for a first read.

We now describe the pricing algorithm. In order to price copies for an item i, the
algorithm divides `i copies into contiguous steps and each step has τi number of copies
where τi = dlog(4n `i/ε)e; hence the first step contains copies 1 through τi, the second
from τi + 1 through 2τi and so on. Let srq denote the qth copy relative to the rth step; note
that q varies from 1 to τ . The procurement cost of copy srq is therefore ci((r− 1) · τi + q);
the first copy in step r has cost ci((r − 1)τi + 1) and the last copy has cost ci(r · τi).

The algorithm sets the price of copy srq as

πi(srq) =
ε Z

4n `i
· 2q + ci(r · τi)

so that the first copy in step r has price ε Z
4n `i

+ ci(r · τi) while the last copy has price at
least Z + ci(r · τi). Note that since any copy in the rth step has procurement cost at most
ci(r · τi), therefore, the price of every copy in the rth step is greater than its procurement
cost.

For every item, the algorithm sells copies of the item in increasing order of prices, so
it might so happen that after the sale of a few copies from the first step, copies from the
second step start selling, even before all copies of the first step are exhausted, since the
copies in the second step are cheaper than the copies remaining in the first step.

2.7.2 Analysis

The crucial lemma of this section that will help prove the social welfare guarantee is

Lemma 2.7.1. For every item i ∈ U , the price curve is (4 · τi, ε Z2n
+ (ci(τi) − ci(1)) · τi)-

single-resource-good.

2We can remove this assumption at a further loss of O(logW (opt) (log logW (opt))2) in the approxi-
mation guarantee [Balcan et al., 2008].

29

We now use Lemma 2.7.1 to prove the main result of this section. Theorem 2.7.2
roughly states that the social welfare achieved by the algorithm is a logarithmic approxi-
mation to (optimal social welfare minus the sum of procurement cost of the first few copies
of every item).

Theorem 2.7.2. Given a parameter Z ≥ Umax, alg is (4 ·maxi∈U τi,
ε Z
2

+
∑

i∈U(ci(τi)−
ci(1)) · τi)-welfare approximate. Furthermore, if Z ∈ (Umax, Umax/ε], then

W (alg) ≥
W (opt)/2−

∑
i∈U(ci(τi)− ci(1)) · τi

4 ·maxi∈U τi

where τi = dlog(4n `i/ε)e and `i = min{cinv
i (Z),m}.

Proof. That alg is (4 · maxi∈U τi,
ε Z
2

+
∑

i∈U(ci(τi) − ci(1)) · τi)-welfare approximate
follows from Lemma 2.7.1 and Lemma 2.4.4. The “furthermore” part of the claim follows
from the observation that if Z ∈ (Umax, Umax/ε], then εZ/2 ≤ W (opt)/2. �

We now need to prove Lemma 2.7.1. The analysis below considers any particular item
i ∈ U . Recall that P f

i denotes the price of the lowest price unsold copy of item i. Let
t be the step which contains the copy cinvt

i (P f
i). Define for 1 ≤ r < t, sr = τi, and

st = min{τi, cinvt
i (P f

i)− (t− 1)τi} so that we have
∑t

r=1 sr = cinvt
i (P f

i). Further, for item
i, let profiti(r) denote the total profit made by the algorithm from the sales of copies of the
item from its rth step. Finally for convenience of analysis define ci(0) = ci(1).

The following lemma bounds the left hand side of the inequality claimed in Lemma 2.7.1
in terms of a related quantity.

Lemma 2.7.3.
∑cinvt

i (P fi)

k=1 (P f
i − ci(k)) ≤

∑t
r=1(P f

i − ci((r − 1) · τi)) · sr

Proof. Note that
∑cinvt

i (P fi)

k=1 (P f
i − ci(k)) =

∑t
r=1

∑sr
x=1(P f

i − ci((r − 1) · τi + x)) where
we have broken up the summation across the different steps. Finally, ci((r− 1) · τi +x) ≥
ci((r − 1) · τi) since we are dealing with a non-decreasing procurement curve ci() and
therefore for each r, we have

∑sr
x=1(P f

i − ci((r−1) · τi+x)) ≤ (P f
i − ci((r−1) · τi)) · sr.

This gives us the desired result. �

Lemma 2.7.4. For each step r such that 2 ≤ r ≤ t, (P f
i −ci(r ·τi)) ≤ 2 ·profiti(r)+ ε Z

4n `i
.

Proof. This is because

30

− either (P f
i − ci(r · τi)) > ε Z

4n `i
, in which case profiti(r) ≥ (P f

i − ci(r · τi))/2.

This is because for every p such that ε Z
4n `i

≤ p ≤ Z, the rth step has a copy whose
price is in the range [p/2 + ci(r · τi), p + ci(r · τi)) and hence in particular, there
is a copy in the rth step whose price q is in the range [(P f

i − ci(r · τi))/2 + ci(r ·
τi), (P

f
i − ci(r · τi)) + ci(r · τi)) = [(P f

i − ci(r · τi))/2 + ci(r · τi), P f
i). Therefore

the price q of such a copy is strictly less than P f
i and since the P f

i is the price of the
lowest priced unsold copy of item i, therefore the copy at price q must have been
sold. Any copy in rth step has procurement cost at most ci(r · τi), hence the sale of
a copy at price q ≥ (P f

i − ci(r · τi))/2 + ci(r · τi) must result in a profit of at least
(P f

i − ci(r · τi))/2.

− or (P f
i − ci(r · τi)) ≤ ε Z

4n `i
.

Since profiti(r) is a non-negative quantity, hence we see that in both cases the desired
inequality is satisfied. �

Proof of Lemma 2.7.1 :
Note that

t∑
r=1

(P f
i − ci((r− 1) · τi)) · sr = (P f

i − ci(0)) · s1 +
t∑

r=2

(P f
i − ci((r− 1) · τi)) · sr (2.6)

First, using Lemma 2.7.4 we bound the second summation on the right hand side of
equation (2.6).

t∑
r=2

(P f
i − ci((r − 1) · τi)) · sr ≤ 2 ·

t∑
r=2

profiti(r − 1) · sr +
t∑

r=2

ε Z

4n `i
· sr

≤ 2 · (max
r
sr) ·

t∑
r=2

profiti(r − 1) +
ε Z

4n `i
·

t∑
r=2

sr

≤ 2 · τi · profiti +
ε Z

4n
(2.7)

where in the last inequality we have used
∑t

r=2 sr = cinvt
i (P f

i) ≤ `i and that τi ≥ sr for
any r.

31

Now we bound the first term on the right hand side of equation (2.6).

(P f
i − ci(0)) · s1 = (P f

i − ci(τi)) · s1 + (ci(τi)− ci(0)) · s1

≤ 2 · τi · profiti(1) +
ε Z

4n
+ (ci(τi)− ci(0)) · s1

≤ 2 · τi · profiti +
ε Z

4n
+ (ci(τi)− ci(0)) · s1 (2.8)

where the first inequality follows from Lemma 2.7.4 and the second follows from not-
ing that the total profit profiti made through sales of copies of item i is at least as much as
the profit profiti(1) made through the sale of copies from the first step of the item.

Using Lemma 2.7.3 and Equations (2.6), (2.7) and (2.8) derived above we get

cinvt
i (P fi)∑
k=1

(P f
i − ci(k)) ≤ 4 · τi · profiti + 2 · ε Z

4n
+ (ci(τi)− ci(0)) · τi

Using Claim 2.7.3, and noting that by definition ci(0) = ci(1), and Lemma 2.4.4, we get
the desired result. �

2.8 Smoothing Algorithm

The pricing algorithm of Section 2.7 gives us a logarithmic multiplicative guarantee along
with some additive loss for all increasing cost curves. Twice-the-index algorithm presented
in Section 2.6 gives a constant approximation factor plus an additive loss for polynomial
curves. This raises the question of whether there is a pricing algorithm which can achieve
the best of both the worlds i.e. give logarithmic multiplicative guarantees for general
curves but constant factor guarantee for nice curves such as polynomial and logarithmic.
In this section we present a pricing algorithm that achieves that for the case of convex cost
functions. It gives logarithmic guarantees for general convex curves (Corollary 2.8.15)
but in addition, gives for polynomial cost curves, a constant factor approximation (Theo-
rem 2.8.25).

2.8.1 Intuition

Ideally, we would like to set prices which are sufficiently far above the cost curve (so
that we generate a large social welfare), yet not be too far above it (else the high prices

32

may result in no sales, causing a large additive loss). Hence, we run into problems when
the cost curve increases sharply—and the intuitive goal is to create a price curve which
smooths out these sharp changes in the cost curve while staying “close” to it.

The smoothing algorithm takes the cost curve, and creates a price function which is a
monotone step function: copies of the item are grouped into intervals, with all copies in
an interval having the same price. We call these intervals “price intervals”. The algorithm
creates the price curve from right to left. If we think of `i as the effective number of
copies of item i and Z as the highest price, then the `thi copy is priced first at price Z
through creation of the price interval [b2

3
`ic,∞)3, with items in this interval priced at

Z; subsequently, price intervals are created progressively moving leftwards until we have
priced the first copy. At each point, we use the intuition from above: if the price is much
higher than the cost, we set the price for the new interval such that the price-cost gap is
slashed by a factor of 2, else we set the price to maintain a sufficient gap from the cost.

2.8.2 The smoothing algorithm

Before we give the algorithm (in Figure 2.2), let us give some definitions; we urge the
impatient reader to jump to Section 2.8.3 to get a quick rough feel of the algorithm. We
assume that the cost of the first copy of every item is 0 i.e. ∀i, ci(1) = 0 4. Recall the
notation Umax defined in Equation 2.5 in Section 2.7; it represented the maximum welfare
which can be made through a single buyer. In the present scenario since ci(1) = 0, hence
Umax equals maxb∈B maxT⊆U vb(T)

Define `i = min{cinv
i (Z),m} and Bi = d12 log(4n`i/ε)e. Similar to Section 2.7, at

a high level, think of `i as being the “effective number” of copies of item i available,
and Bi as the “number of different price levels” we create in our price curve. cinvt

i (p), as
in Section 2.7, is defined as the “truncated” value min{cinv

i (p), cinv
i (Z),m}; please refer to

Section 2.7 to get a sense of why cinvt
i is defined the way it is. Define widthi(p) :=

⌊ cinvt
i (p)

Bi

⌋
;

this function will determine the number of copies we group together in a price interval. We
assume that

`i ≥ Bi ≥ 12; (2.9)

see Claim 2.8.6 for why this is without loss of generality.

Let πi : Z+ → R+ be the price function and let Ji denote the set of price intervals
for item i, and with zi = |Ji|. We refer to the qth interval of item i as Jiq, with Ji1 being

3We abuse notation slightly by denoting the integer interval {r, r + 1, . . . , s − 1} as the half-open real
interval [r, s).

4 In Lemma 2.8.9 we show that this is without loss of generality.

33

1: for all x ≥ b2
3
`ic, set πi(x) := Z

2: set x← b2
3
`ic

3: while x > 1 do
4: if widthi(πi(x)) ≥ 1 then
5: set x′ ← max{x− widthi(πi(x)), 1}
6:

set ∆ =

{
πi(x)−ci(x)

2
if πi(x) ≥ 3 ci(x)

ci(x)
2

otherwise

7: for all y ∈ [x′, x) , set πi(y) := ci(x) + ∆
8: set x← x′

9: else
10: for all y ∈ [1, x), set πi(y) := πi(x)
11: set x← 1

Figure 2.2: Smoothing algorithm

the price interval that contains the first copy of item i, and Jizi = [b2
3
`ic,∞). Let πi(Jiq)

be the price of the copies in the interval Jiq. Depending on the procurement curve, two
consecutive price intervals may have the same price. Also, we will formally state later that
the prices we generate are non-decreasing, and always stay above the procurement cost for
all copies less than `i.

2.8.3 The main ideas

Smoothing: Step 6 ensures a smooth price curve: if the price is more than thrice the
procurement cost, we slash the gap between the price and procurement cost by two else
we allow the price to stay at a sufficient gap from the cost.

Price Interval Size : The idea of the analysis is to show that whenever the number of
copies sold moves from a lower price interval to a higher one, the social welfare generated
by selling copies at the lower price is enough to be competitive against opt, even if we
sell no further copies at the higher price. Consequently, the size of a price interval Jiq
must depend on the price of items in the next interval Ji q+1. It turns out that to get a

34

multiplicative approximation factor of O(Bi), if the price of copies in Ji q+1 were P , it
suffices to set the width of Ji q to be b c

invt
i (P)

Bi
c = widthi(P). Here is a simple special case

that illustrates why: suppose only item iwas being sold and we sold all copies from Jiq but
no copies from interval Ji q+1. We would like to apply Lemma 2.4.4. The final price P f

i

in that case is P = πi(Ji q+1). Staring at the left hand side of Equation (2.3), we see that
it is at most P · cinvt

i (P). Since we sold all the copies in price interval Jiq, we sold at least
|Jiq| = b c

invt
i (P)

Bi
c many copies, each at profit at least P/6 (something we will prove later).

Hence on the right hand side of Equation (2.3), the term profiti is at least P · b c
invt
i (P)

Bi
c/6.

Putting α = O(Bi) we satisfy Equation (2.3) and thereby get an O(Bi) approximation.
Since the width of Jiq depends on the price of Ji q+1, it is natural that our pricing algorithm
creates price intervals from right to left.

Termination: The algorithm terminates in one of two ways: either while creating such
appropriately sized price intervals, we hit the first copy (i.e., x′ ← 1 in Step 5, and then
the loop condition fails in Step 3) or the price p of some price interval is low enough
that p < ci(Bi), which implies cinvt

i (p) < Bi (the proof of implication appears later) and
therefore widthi(p) =

⌊ cinvt
i (p)

Bi

⌋
< 1: this causes x ← 1 in Step 11. In the latter case,

the price has become low enough that we can simply group all remaining copies into the
lowest priced interval Ji1 at price p. The subsequent analysis will often have to separately
consider these two cases: whether x← 1 is achieved in Step 5 or in Step 11.

2.8.4 The Analysis

The main result of this section is the following:

Lemma 2.8.1. Given an estimate Z ∈ (Umax, Umax/ε], the smoothing algorithm on a
non-decreasing cost curve is (12Bi, πi(Ji2) · cinvt

i (πi(Ji2))-single-resource-good, where
Bi := d12 log(4n`i/ε)e, and `i := min{cinv

i (Z),m}.

And this result with the use of Lemma 2.4.4 immediately yields the welfare approxi-
mation guarantees of the smoothing algorithm.

Theorem 2.8.2. The social welfare W (alg) achieved by the smoothing algorithm on a
non-decreasing cost curve given an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥
W (opt)−

∑
i∈U πi(Ji2) · cinvt

i (πi(Ji2))

12 maxi∈U Bi

,

35

Figure 2.3: The figure shows the pricing curve
drawn by the smoothing algorithm for the pro-
curement curve ci(x) = x3. The lower line is
the procurement curve. The upper thicker line is
the pricing curve. We can observe that the price
curve is flat towards the extreme right; this flat
region contains the right-most price interval. To-
wards the extreme left the price curve appears to
be a smooth curve. The inset shows the individual
price intervals.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Figure 2.4: The figure shows the pricing
curve drawn by the smoothing algorithm for
the linear procurement curve

where Bi := d12 log(4n`i/ε)e, and `i := min{cinv
i (Z),m}.

Theorem 2.8.2 roughly states that the social welfare attained by the smoothing algo-
rithm is a logarithmic approximation to (optimal social welfare minus the price of the first
few copies of each item). Now to prove Lemma 2.8.1, we make use of two lemmas –
Lemma 2.8.12 and Lemma 2.8.14. We now explain their role in the analysis.

Let us call an interval Jiq = [r, s) to be full-sized if its width equals widthi(πi(s)).
Note that the right-most interval Jizi is not full sized since it semi-infinite. Further, the
left-most interval Ji1 may not be full-sized either because the algorithm ran out of copies,
or the price became too low so that all remaining unpriced copies were bunched together.
We first show that if we sell at least |Ji1|+ |Ji2| copies of item i, i.e., we have sold at least
one full-sized interval, we get a good approximation factor for the reasons we discussed
in Section 2.8.3. This is proved in Lemma 2.8.12.

Then we consider the case when the number of items sold is less than |Ji1| + |Ji2|: in
this case we cannot show a good multiplicative loss. Instead, we show that the price of
items in the first two intervals is small in this case, which bounds the additive loss. This is

36

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7
x 10

4

Figure 2.5: The figure shows the pricing curve
drawn by the smoothing algorithm a piece-wise
linear procurement curve. The lower line is the
procurement curve. The upper thicker line is the
pricing curve.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 10

8

Figure 2.6: The figure shows the pricing curve
drawn by the smoothing algorithm a procurement
curve which grows as x2 initially and as x3 in the
final phase. The lower line is the procurement
curve. The upper thicker line is the pricing curve.

proved in Lemma 2.8.14.

All the intervals except the leftmost Ji1 and rightmost Jizi ones are created in a similar
fashion; intervals Ji1 and Jizi have to treated as special cases at several points in the anal-
ysis. Also, the analysis which follows from this point onwards up till (and not including)
Theorem 2.8.2 is per item. Hence the subscript i in the terms involved is irrelevant from
the point of analysis and is present only to maintain uniformity in presentation.

To begin, we state some useful properties of the prices and widths of the intervals.

Lemma 2.8.3 (Prices and Widths). The following facts about interval prices hold for the
intervals in Ji for any non-decreasing cost curve:

a. For any Jiq = [r, s) such that q 6= zi, πi(Jiq) ≥ 3
2
ci(s). Hence, πi(x) ≥ 3

2
ci(x) for

x ∈ Jiq.

a’. If the cost curve is convex, πi(b2
3
`ic) ≥ 3

2
ci(b2

3
`ic).

b. For consecutive Jiq and Ji q+1 and q 6= zi − 1, we have πi(Jiq) ≤ πi(Ji q+1) ≤
2πi(Jiq). If the cost curve is convex the claim also holds for q = zi − 1.

c. All price intervals Jiq = [r, s) (q /∈ {1, zi}) have |Jiq| = widthi(πi(s)) = widthi(πi(Ji q+1)).

Lemma 2.8.3(a) states that the price of any copy is sufficiently far from the procure-
ment cost of that copy. Lemma 2.8.3(a’) states the same claim about the left end of the

37

right-most interval Jizi in case the cost curve is in addition convex. Lemma 2.8.3(b) states
the price of copies in the interval Ji q+1 is higher than that of Ji q, but not too far from it.
Lemma 2.8.3(d) states that all price intervals except possibly the left-most and the right-
most are full-sized. Armed with these facts, we first show that if “many” copies of item i
are sold, then we are in good shape. The other case where “few” copies are sold, is dealt
with subsequently.

We now prove Lemma 2.8.3. We start with a couple of observations which are easy to
prove.

Observation 2.8.4. widthi(p) is non-decreasing in p.

Observation 2.8.5. Assuming the parameter Z > 0, for every copy x, the price set by the
algorithm, πi(x) > 0.

Claim 2.8.6. In the analysis of the smoothing algorithm, it is sufficient to consider only
those items that have `i ≥ Bi.

Proof Sketch: We would like to show that we can assume `i ≥ Bi ≥ 12 without loss
of generality. We first show that Bi ≥ 12. Recall that `i := min{cinv

i (Z),m} and Bi =
d12 log(4n`i/ε)e. We can assume that Umax > 0, so Z > 0, and since ci(1) = 0, hence
`i ≥ 1; in turn this implies that Bi ≥ 12.

Now, if the minimum `i < Bi becausem is small, we can always add in dummy buyers,
this does not change any of the arguments. Else, it must be the case that `i = cinv

i (Z) < Bi,
which means ci(Bi) > Z ≥ Umax. We claim that we can just drop all such items from the
instance, and run our algorithm on the remaining items, with guarantees identical to those
in Theorem 2.8.2.

Indeed, how many copies of item i could we possibly sell in the optimal solution? At
most `i, since after that its cost is at least ci(`i) ≥ Z, too high for opt to allocate to anyone
without decreasing the social welfare as the cost exceeds the valuation. Therefore, since
at most `i copies of such an item can be allocated, so ignoring this item entirely can drop
W (opt) by at most `i ·Umax < Bi · ci(Bi). Hence, dropping all such items implies that the
remaining set of items U ′ (and the original set of buyers) have an modified optimal welfare
of W (opt′) ≥ W (opt)−

∑
i∈U\U ′ Bi · ci(Bi). For this new instance, Theorem 2.8.2 gives

a welfare of

W (alg) ≥
W (opt′)/2−

∑
i∈U ′ Bi · ci(Bi)

12 maxi∈U ′ Bi

≥
W (opt)/2−

∑
i∈U Bi · ci(Bi)

12 maxi∈U Bi

(2.10)

Hence, we can assume `i ≥ Bi ≥ 12 without loss of generality. �

38

Lemma 2.8.7. The number of price intervals, zi ≥ 3

Proof. zi 6= 1 since the first time the algorithm checks for condition x > 1 in Step 3, it
evaluates to true because x is set to b2

3
`ic by Step 2 and since by Equation (2.9), `i > 3,

therefore x = b2
3
`ic ≥ `i/3 > 1. Hence, the algorithm creates at least one price interval

other than [b2
3
`ic,∞).

We now prove that zi is at least 3. We prove by contradiction. If it were the case
zi = 2, then it implies that the algorithm terminates the second time it checks for the
condition x > 1 in Step 3. As observed earlier, x can be set to 1 either by Step 5 or
by Step 11. To disambiguate let the value of x be x1 and x2 the first and second time
respectively, the while loop condition at Step 3 is checked. We know from Step 2, that
x1 = b2

3
`ic. For zi to be 2, we require x2 to be 1.

• If x2 is set to 1 by Step 11, it implies that the condition widthi(πi(x1)) ≥ 1 in
Step 4 must have evaluated to false. However, πi(x1) = Z (by Step 1) and there-
fore, widthi(πi(x1)) = bcinvt

i (Z)/Bic. Now cinvt
i (Z) = min{cinv

i (Z), `i} and `i =
min{cinv

i (Z),m} and therefore, cinvt
i (Z) = `i. Hence, widthi(πi(x1)) = b`i/Bic ≥

1 since `i ≥ Bi by Equation (2.9). Hence, x2 could not have been set to 1 by Step 11.

• The other case is that x2 is set to 1 by Step 5. This implies that max{x1−widthi(πi(x1)), 1} =
1. However, x1 − widthi(πi(x1)) = b2

3
`ic − b`i/Bic ≥ `i/3 − `i/Bi ≥ 2 which is

satisfied due to Equation (2.9). Therefore, x2 > 2 and hence could not have been set
to 1 by Step 5.

This proves the contradiction. �

Proposition 2.8.8 (The left-most interval). The following facts hold for the left-most in-
terval Ji1:

a. If the procedure terminated through Step 5 creating Ji1 = [1, s), then |Ji1| ≤
widthi(πi(s)) = widthi(πi(Ji 2)).

b. If the procedure terminated through Step 11, then πi(Ji1) = πi(Ji2).

Proof. If the algorithm terminated through Step 5, then by construction we have |Ji1| ≤
widthi(πi(s)) = widthi(πi(Ji2)). If the algorithm terminated through Step 11, then we
have no non-trivial bound on |Ji1|, however, by Step 10, we have πi(Ji1) = πi(Ji2). �

Proof of Lemma 2.8.3 :

39

• Part (a): We first prove that for Jiq = [r, s), πi(Jiq) > 3
2
ci(s). First consider the case

q 6= 1.

– either πi(s) ≥ 3 ci(s), in which case,

πi(Jiq) = ci(s) +
πi(s)− ci(s)

2
=
πi(s) + ci(s)

2
≥ 3 ci(s) + ci(s)

2
= 2 ci(s).

– or, πi(s) < 3 ci(s), in which case,

πi(Jiq) = ci(s) +
ci(s)

2
=

3

2
ci(s).

In both cases, the inequality πi(Jiq) ≥ 3
2
ci(s) is true. Now for the case q = 1: the

above argument also holds if the algorithm terminated in Step 5. If however the
algorithm terminated in Step 11, then let Ji1 = [1, r) and Ji2 = [r, s) (Ji2 6= Jizi by
Lemma 2.8.7). The observations

1. πi(Ji1) = πi(Ji2) implied by Proposition 2.8.8(b),

2. πi(Ji2) ≥ 3
2
ci(s), which is at least 3

2
ci(r), the first implied by the above argu-

ment for q 6= 1 and the second implied by monotonicity of ci().

together imply the result for Ji1.

Having proved that πi(Jiq) > 3
2
ci(s), note that since ci() is non-decreasing, therefore

we have ci(x) ≤ ci(s) for all x ∈ [r, s), so πi(x) = πi(Jiq) ≥ 3
2
ci(s) ≥ 3

2
ci(x) which

proves the second part of the claim.

• For part (a’), convexity implies that ci(b2
3
`ic) ≤ 2

3
ci(`i). By the definition of `i,

this is at most 2
3
Z. On the other hand, πi(b2

3
`ic) = πi(Jizi) = Z. Therefore,

πi(b2
3
`ic) ≥ 3

2
ci(b2

3
`ic).

• For part (b), first consider the case where q /∈ {1, zi − 1}, where Jiq = [r, s) and
Ji q+1 = [s, t).

– Either πi(s) ≥ 3 ci(s): then

πi(Jiq) = ci(s) +
πi(s)− ci(s)

2
=
πi(s) + ci(s)

2

≤
πi(s) + 1

3
πi(s)

2
=

2

3
πi(s) =

2

3
πi(Ji q+1) .

Also, πi(Jiq) = πi(s)+ci(s)
2

≥ πi(s)
2

= 1
2
πi(Ji q+1). Hence, πi(Jiq) ≤ πi(Ji q+1) ≤

2πi(Jiq).

40

– Or πi(s) < 3 ci(s): then

πi(Jiq) = ci(s) +
ci(s)

2
=

3

2
ci(s) ≤

3

2
ci(t) ≤ πi(t) = πi(Ji q+1)

where the first inequality follows from the monotonicity of ci, and the second
from Lemma 2.8.3(a). Further, πi(Jiq) = 3

2
ci(s) > 1

2
πi(s) = 1

2
πi(Ji q+1).

Hence, we get πi(Jiq) ≤ πi(Ji q+1) ≤ 2 πi(Jiq).

Now for the case of Ji1 (q = 1). Note that from Lemma 2.8.7, zi ≥ 3. Therefore in
particular, Ji2 6= Jizi . The analysis above for Jiq also holds for Ji1 if the algorithm
terminated in Step 5. Otherwise, by Proposition 2.8.8(b), πi(Ji1) = πi(Ji2) in which
case the both the inequalities trivially follow.

Finally for the case of q = zi − 1. Let Ji zi−1 = [r, s) and Ji zi = [s,∞). Note that
since s is left end point of Jizi , hence s = b2

3
`ic. Either πi(s) ≥ 3 ci(s) in which

case the analysis above for q /∈ {1, zi − 1} holds for q = zi − 1 as well and shows
that πi(Ji zi−1) ≤ πi(Jizi) ≤ 2πi(Ji zi−1); or πi(s) < 3 ci(s), in this case

πi(Ji zi−1) = ci(s) +
ci(s)

2
=

3

2
ci(s) ≤ πi(s) = πi(Jizi)

where the second inequality follows from Lemma 2.8.3(a’).

• Part (c): By construction (Step 5-7), for all price intervals Jiq = [r, s) (except maybe
Ji1 and Jizi) we have |Jiq| = widthi(πi(s)). Since s ∈ Ji q+1, therefore, πi(s) =
πi(Ji q+1) and hence we have |Jiq| = widthi(πi(s)) = widthi(πi(Ji q+1)).

�

Translating the Cost Curve We show that it is fine to translate the cost functions ci()
to satisfy ci(1) = 0.

Lemma 2.8.9. Given a pricing algorithm A′ for production cost curves {c′i()}, which
for any set of buyers achieves a guarantee of (W (opt) − β)/α, we can create a pricing
algorithm A for the cost curves ci(x) = c′i(x) + δi1x>0 for constants δi ≥ 0, that achieves
the same guarantees.

Moreover, in caseA′ needs an estimate of maxb∈B maxS⊆U vb(S), A takes as input an
estimate of

max
b∈B

max
S⊆U

(vb(S)−
∑
i∈S

δi).

41

Proof. The algorithmA just usesA′ to generate the price functions π′i(), and sets πi(x) =
π′i(x) + δi1x>0. To show the social welfare guarantee for A, we consider any sequence of
buyers σ = b1, b2, . . . , bm for which the optimal welfare is W (opt(σ, {ci})).

Below, we show how to construct another sequence of fake buyers σ′ = b′1, b
′
2, . . . , b

′
m,

and prove that

W (opt(σ, {ci})) = W (opt(σ′, {c′i})) (2.11)
W (A(σ, {ci})) = W (A′(σ′, {c′i})) (2.12)

Now the algorithm A′ gives the guarantee that for all σ′,

W (A′(σ′, {c′i})) ≥
1

α
(W (opt(σ′, {c′i}))− β)

we would get the same guarantee for A, and hence get the proof. The definition of the
fake buyers b′i is natural: their valuation function is v′i(S) = vi(S) −

∑
i∈S δi—note that

fake buyers may have non-monotone valuation functions, and they may also have negative
values for some sets, but this is not a concern. Now to prove (2.11) and (2.12).

Claim 2.8.10. For any j ∈ [m], buyer bj ∈ σ buys the same set from A as b′i ∈ σ′ buys
from A′.

Proof. We prove this by induction. The base case is j = 1. Utility function u1(·) for buyer
b1 is ∀S ⊆ U, u1(S) = v1(S)−

∑
i∈S πi(1) while the utility function u′1(·) for buyer b′1 is

∀S ⊆ U, u′1(S) = v′1(S)−
∑S

i=1 π
′
i(1). Using definition of v′1 and πi we get

∀S ⊆ U, u′1(S) = v′1(S)−
∑
i∈S

π′i(1) = v1(S)−
∑
i∈S

ci(1)−
∑
i∈S

π′i(1) = v1(S)−
∑
i∈S

πi(1) = u1(S).

Hence, b1 and b′1 have the same utility maximizing set and therefore they buy the same set
of items.

Assume the induction hypothesis is true for j < k. We prove that buyer bk and b′k buy
the same set of items. Since for all j < k, buyers bj and b′j bought the same set of items,
therefore, the number of copies xi and x′i of item i sold by A and A′ when bk and b′k arrive
are equal. Therefore,

∀S ⊆ U, u′k(S) = v′k(S)−
∑
i∈S

π′i(x
′
i + 1) = vk(S)−

∑
i∈S

ci(1)−
∑
i∈S

π′i(xi + 1)

= vi(S)−
∑
i∈S

πi(xi + 1) = ui(S).

Hence, bk and b′k buy the same set of items. This completes the step of induction. Hence
proved. �

42

Define an allocation vectorXij ∈ {0, 1}n×m so thatXij = 1 ⇐⇒ buyer bj is assigned
a copy of item i.

Claim 2.8.11. Any allocation vector X achieves equal social welfare on buyer sequence
σ with cost functions {ci}, and on buyer sequence σ′ with cost functions {c′i}.

Proof. Denote by yi the number of copies of item i allocated under the scheme Xij; hence
yi =

∑
j Xij . Also, let Sj ⊆ U denote the set of items allocated to jth buyer.

Note that W (X(σ, {ci})) =
∑

j vj(Sj) −
∑

i∈U
∑yi

k=1 ci(k) and W (X(σ′, {c′i})) =∑
j v
′
j(Sj)−

∑
i∈U
∑yi

k=1 c
′
i(k). Using definition of v′i() and πi() we get

W (X(σ, {ci})) =
∑
j

v′j(Sj)−
∑
i∈U

yi∑
k=1

c′i(k)

=
∑
j

(
vj(Sj)−

∑
i∈Sj

ci(1)
)
−
∑
i∈U

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
j

∑
i∈U

Xij · ci(1)−
∑
i∈U

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
i∈U

yi · ci(1)−
∑
i∈U

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
i∈U

yi∑
k=1

(ci(1) + c′i(k))

=
∑
j

vj(Sj)−
∑
i∈U

yi∑
k=1

ci(k) = W (X(σ′, {c′i}))

which proves the claim. �

Claim 2.8.11 says having the same allocations in the two settings achieves the same
social welfare; this proves (2.11). Moreover, by Claim 2.8.10, the allocation made by A
to buyer sequence σ is the same as that made by A′ to buyers σ′; this proves (2.12).

Finally note that in case A′ needs an estimate of maxb′∈B maxS⊆U v
′
b(S) for its guar-

antee to hold, then A passes the estimate of maxb∈B maxS⊆U(vb(S) −
∑

i∈S δi since by
definition of v′b both quantities are equal. �

43

The Case of Many Copies.

Suppose we sell all copies in some interval Jiq for q > 1: then we get that the profit made
from that interval alone gives us a good approximation.

Lemma 2.8.12. If the number of sold copies xi of item i is at least |Ji1| + |Ji2|, then
P f
i · cinvt

i (P f
i) ≤ 12Bi · profiti, where profiti :=

∑xi
k=1(πi(k)− ci(k)).

Proof. Let q be the largest integer such that Jiq = [r, s) is completely sold out; hence q ∈
[2, zi). The final price is P f

i = πi(Ji q+1) = πi(s). We want to show we make a reasonable
profit from the sales of copies in Jiq. From Lemma 2.8.3(c), there are widthi(πi(s)) many
copies in Jiq. For each of these copies k ∈ [r, s), the profit is πi(k)−ci(k) ≥ πi(k)−ci(s),
because costs are non-decreasing.

However, by Step 7 of the pricing algorithm, for all k ∈ Jiq, πi(k) = ci(s) + ∆, where
∆ is determined by Step 6.

1. Either πi(s) ≥ 3ci(s), ∆ = 1
2

(πi(s)− ci(s)) ≥ 1
3
πi(s),

2. Or πi(s) < 3ci(s), ∆ = ci(s)/2 >
1
6
πi(s).

So, we make a profit of at least πi(s)/6 from each of the widthi(πi(s)) = b c
invt
i (πi(s))

Bi
cmany

copies in Jiq:
profiti ≥

πi(s)
6
· b c

invt
i (πi(s))

Bi
c ≥ πi(s)·cinvt

i (πi(s))

12Bi
,

where the last inequality is because btc ≥ t/2 for t ≥ 1. Plugging in P f
i = πi(s) completes

the proof. �

The Case of Few Copies

Now suppose item i is such that the number of copies we sell either lies within the left-
most interval Ji1, or only covers a small fraction of the second interval Ji2: the argument
given above does not hold in that case. However we can show the following result.

Lemma 2.8.13. If the number of sold copies xi of item i is less than |Ji1| + |Ji2| then
πi(P

f
i) · cinvt

i (P f
i) ≤ πi(Ji2) · cinvt

i (πi(Ji2)).

Proof. Since we end up selling less than |Ji1|+ |Ji2| copies, hence the final price P f
i is at

most max{πi(Ji1), πi(Ji2)} which is πi(Ji2) since Lemma 2.8.3(b) tell us that πi(Ji1) ≤
πi(Ji2). Hence, P f

i · cinvt
i (P f

i) ≤ πi(Ji2) · cinvt
i (πi(Ji2)) (cinvt

i (p) is non-decreasing function
of p). �

44

Finishing the Analysis

Lemma 2.8.12 and Lemma 2.8.13 together give us the main result of this section.

Proof of Lemma 2.8.1 : For each item i, depending on the number of copies sold, either
Lemma 2.8.12 or Lemma 2.8.13 applies, which implies that for each i ∈ U ,

P f
i · cinvt

i (P f
i) ≤ 12Bi · profiti + πi(Ji2) · cinvt

i (πi(Ji2)).

Using Lemma 2.4.4, our result follows. �

2.8.5 Convex cost curves

Theorem 2.8.2 leaves us unsatisfied since the additive loss, which is the price of the first
few copies of each item, is not stated in terms of quantities that are part of the problem
statement such as procurement cost. For convex curves, we are able to overcome that
deficiency. The additive loss would be roughly the sum of procurement cost of the first
few copies of every item. The crucial lemma which we will prove in this section is:

Lemma 2.8.14. For a convex cost curve, πi(Ji2) · cinvt(πi(Ji2)) ≤ max{Bi ci(Bi),
ε Z
2n
}.

which will suffice to prove the following result.

Corollary 2.8.15. The social welfare W (alg) achieved by the smoothing algorithm on a
non-decreasing convex cost curve given an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥
W (opt)/2−

∑
i∈U Bi · ci(Bi)

12 maxi∈U Bi

,

where Bi := d12 log(4n`i/ε)e, and `i := min{cinv
i (Z),m}.

Corollary 2.8.15 gives us the same approximation factor to optimal social welfare as
guaranteed by Theorem 2.8.2, except that it states the additive loss to be the sum of pro-
curement cost of first few copies of each item.

Proof of Corollary 2.8.15 : Putting Theorem 2.8.2 and Lemma 2.8.14 together,

W (alg) ≥
W (opt)− ε Z/2−

∑
i∈U Bi · ci(Bi)

12 maxi∈U Bi

.

Using εZ ≤ Umax ≤ W (opt), we get the desired result. �

45

We now need to prove Lemma 2.8.14. The pricing algorithm terminates when it has
priced all the copies, i.e. x is set to 1 and the if condition in Step 3 becomes false. x can
be set to 1 either in Step 8 (preceded by x′ being set to 1 in Step 5) or in Step 11. We
consider these two cases separately.

− Algorithm terminates through Step 11: Lemma 2.8.17 proves that cinvt
i (πi(Ji2)) ·

πi(Ji2) < Bi · ci(Bi).

− Algorithm terminates through Step 5: Lemma 2.8.22 proves that cinvt
i (πi(Ji2)) ·

πi(Ji2) < εZ
2n

.

Proof of Lemma 2.8.14 : The algorithm terminates either through Step 5 or Step 11
and Lemma 2.8.22 and Lemma 2.8.17 together indicate that πi(Ji2) · cinvt(πi(Ji2)) ≤
max{Bi ci(Bi),

ε Z
2n
}. �

Before proving Lemma 2.8.17 and Lemma 2.8.22, we state and prove the following
lemma that characterizes the circumstances under which the algorithm terminates in either
condition.

Lemma 2.8.16. The pricing algorithm terminates through Step 11 if and only if πi(Ji2) <
ci(Bi).

Proof. Let Ji2 = [s, r). We first prove that if πi(Ji2) < ci(Bi), then the algorithm termi-
nates in Step 11. If πi(s) = πi(Ji2) < ci(Bi), then it implies that cinv

i (πi(s)) < Bi, and by
definition of cinvt(), cinvt

i (πi(s)) < Bi which implies that widthi(πi(s)) = b c
inv
i (πi(s))

Bi
c = 0.

Hence, right after creation of Ji2, when the algorithm checks for the if condition on point
s in Step 4, it shall evaluate to false and therefore, the algorithm shall terminate through
Step 11.

To prove the other direction, if the algorithm terminates through Step 11, then it must
be the case that the if condition in Step 4 evaluated to false for some x. Further, x must
be the left-end point of Ji2. This is because once the if condition evaluates to false, the
algorithm jumps to Step 11 and creates a single price interval containing all copies that
have not been priced yet and it includes the first copy and hence, this price interval must
be Ji1. So x must be the left-end point of the price interval just after Ji1, i.e. Ji2.

Now, widthi(πi(x))= widthi(πi(Ji2))= b c
invt
i (πi(Ji2))

Bi
c < 1 implies that cinvt

i πi(Ji2))

Bi
< 1

and so cinvt
i (πi(Ji2)) < Bi. By definition of cinvt

i (), this implies that min{cinv
i (πi(Ji2), `i} <

Bi. Since by Equation (2.9), `i ≥ Bi, it must be the case cinv
i (πi(Ji2)) < Bi, which by

definition of cinv
i () can occur only if πi(Ji2) < ci(Bi). �

46

We now prove Lemma 2.8.17 and Lemma 2.8.22 that treat the two conditions under
which the algorithm can terminate.

Algorithm terminates through Step 11: The proof that price of Ji2 is small follows
almost immediately in this case.

Lemma 2.8.17. If the algorithm terminated through Step 11 then πi(Ji2) · cinvt
i (πi(Ji2)) <

ci(Bi)Bi.

Proof. If the algorithm terminated through Step 11, then Lemma 2.8.16 implies that πi(Ji2) <
ci(Bi). By definition of cinvt

i (), this implies that cinvt
i (πi(Ji2)) < Bi and hence we get the

result. �

Algorithm terminates through Step 5: We will prove that price of the interval Ji2 is
‘small’ by showing that relative to the price of right-most interval Jizi , the prices for the
subsequently created intervals on its left, have been slashed sufficiently often. For item i,
label a copy x close if πi(x) < 3 ci(x), else label it as far. Depending on which of r and s
are close or far, mark a price interval Jiq = [r, s) as one of {(C,C), (F,C), (C,F), (F, F)}.
Note that the right-most interval Jizi is not marked since it is semi-infinite. The follow-
ing lemma indicates that in case prices are ‘far’ from the procurement cost, the algorithm
slashes the prices exponentially.

Lemma 2.8.18. If a contiguous sequence of price intervals Jiq, Ji q+1, · · · , Ji q+t−1 are all
marked (F, F) and Ji q+t is marked (F,C), then πi(Jiq) ≤ (2

3
)t πi(Ji q+t).

Proof. If interval Jip = [r, s) is marked (F, F) which implies that 3 ci(s) < πi(s) =
πi(Ji p+1), then the pricing algorithm, by Step 6, sets

πi(Jip) = ci(s) + πi(s)−ci(s)
2

= πi(s)+ci(s)
2

≤ πi(s)+
1
3
πi(s)

2
= 2

3
πi(s) = 2

3
πi(Ji p+1).

Hence, πi(Jiq) ≤ (2
3
) πi(Ji q+1) ≤ · · · ≤ (2

3
)t πi(Ji q+t). �

Lemma 2.8.19. If the pricing algorithm terminated through Step 5, then for any Jiq, it is
true that for all q′ < q, |Jiq′| < widthi(πi(Jiq)).

Proof. Consider any Jiq. By Lemma 2.8.3(b), we know that for q′ < q, πi(Jiq′) ≤
πi(Ji q′+1) ≤ πi(Jiq). Hence, for all price intervals q′ < q and q′ 6= 1, by Lemma 2.8.3(c),
|Jiq′| = widthi(πi(Ji q′+1)) ≤ widthi(πi(Ji q)) where the last inequality follows by Obser-
vation 2.8.4. Further, by Proposition 2.8.8(a), |Ji1| ≤ widthi(πi(Ji2)) ≤ widthi(πi(Ji q)).
This finishes the proof. �

47

Lemma 2.8.20 states that if we ever have a price interval that is marked (F,C), there
are ‘many’ price intervals to the left of that interval. Lemma 2.8.21 states that there are
‘many’ intervals to the left of the right-most interval Jizi .

Lemma 2.8.20. Consider an interval Jiq = [r, s) with q 6= zi that is marked (F,C). If
the algorithm terminated through Step 5, then there are at least Bi/4 intervals Jiq′ with
q′ < q. In particular, Jiq cannot be the first price interval i.e. q 6= 1.

Proof. Since s is close i.e. πi(s) < 3 ci(s), the algorithm, by Step 6, sets πi(Jiq) =

ci(s) + ci(s)
2

= 3
2
ci(s). From the definition of r being marked far, ci(r) ≤ 1

3
πi(r) =

1
3

3
2
ci(s) = 1

2
ci(s). Hence, across the interval Jiq, the cost function increases by at least

1
2
ci(s). Since ci(·) is convex, the procurement cost should rise by at least 1

2
ci(s) starting

from copy s onwards for every |Jiq| copies. So, ci(r + 5 · |Jiq|) = ci(s + 4 · |Jiq|) ≤
ci(s) + 4 · 1

2
(ci(s)) = 3 · ci(s) and hence

cinvt
i (3 ci(s)) ≤ cinv

i (3 ci(s)) < s+ 4 · |Jiq| = r + 5 · |Jiq|. (2.13)

By Lemma 2.8.3 (for q 6= 1) and Proposition 2.8.8(a) (for q = 1), we know that |Jiq| ≤
widthi(πi(s)). Since πi(s) < 3 ci(s), |Jiq| ≤ widthi(πi(s)) ≤ widthi(3 ci(s)) ≤ cinvt

i (3 ci(s))

Bi
where for the second inequality we have used Observation 2.8.4 which says widthi(p) is a
non-decreasing function of p. Using (2.13), we get

|Jiq| ≤ cinvt
i (3 ci(s))

Bi
≤ r+5·|Jiq |

Bi
=⇒ |Jiq| ≤ r

Bi−5

By Equation (2.9), Bi ≥ 12 and therefore, Bi − 5 ≥ Bi/2, hence the above equation
implies that |Jiq| · Bi2 ≤ r. Since |Jiq| ≥ 1 (any price interval contains at least one copy)
and B ≥ 12, hence r ≥ |Jiq| · Bi2 ≥ 6. Therefore q cannot be 1, since for q = 1, we have
r = 1 i.e. Ji1, by definition, is of the form [1, s).

Now, since, q 6= 1, Jiq cannot contain the first copy i.e. r ≥ 2 and hence r − 1 ≥ r/2,
and since we already have |Jiq| · Bi2 ≤ r, therefore we get,

|Jiq| · Bi4 ≤ r − 1 (2.14)

Since the algorithm terminated in Step 5, by Lemma 2.8.19, for all q′ < q, |Jiq′| ≤
widthi(πi(Jiq)). Moreover, |Jiq| = widthi(πi(Ji q+1)) ≥ widthi(πi(Jiq)) where the equal-
ity follows from Lemma 2.8.3 and the inequality follows from Observation 2.8.4 and
Lemma 2.8.3(b). Hence, we have that for all q′ < q, |Jiq′| ≤ |Jiq|. Since there are
r − 1 copies to the left of Jiq and for all q′ < q, |Jiq′| ≤ |Jiq|, therefore, by (2.14), we get
the desired result that there are at least Bi/4 price intervals Jiq′ with q′ < q. �

48

Lemma 2.8.21. If the algorithm terminated through Step 5, then there are at least Bi/3
intervals Jiq with q < zi.

Proof. Note that πi(Jizi) = Z and so cinvt
i (πi(Jizi)) = `i. Consequently, widthi(πi(Jizi)) ≤

`i
Bi

. Since the algorithm terminated through Step 5, hence by Lemma 2.8.19, for all q′ < zi,
|Jiq′| ≤ widthi(πi(Jizi)) ≤ `i

Bi
.

Since we have b2 · `i/3c− 1 copies to the left of Jizi (which due to Equation (2.9) is at
least `i/3), therefore, the number of intervals Jiq with q < zi is least `i/3

`i/Bi
= Bi/3. �

Lemma 2.8.22. If the algorithm terminated through Step 5 then πi(Ji2) · cinvt
i (πi(Ji2)) <

εZ
2n

.

Proof. The interval Ji1 can be marked either (F,C) or (F, F), since ci(1) = 0 while
πi(1) > 0 (Observation 2.8.5). By Lemma 2.8.20, Ji1 cannot be marked (F,C). Hence,
the only case left is when Ji1 is marked (F, F). Let q be the smallest value, if one exists,
such that Jiq is marked (F,C); note that q > Bi/4 by Lemma 2.8.20, and in particular
q > 2. If no such (F,C) interval exists, set q ← zi.

By definition of Jiq, all intervals between Ji1 and Jiq are marked (F, F). Depending
on whether q 6= zi or q = zi, Lemma 2.8.20 or Lemma 2.8.21 respectively imply there
are at least Bi/4 of these intervals. By Lemma 2.8.18, πi(Ji1) ≤ (2

3
)Bi/4 πi(Jiq) ≤ πi(Jiq)

4n`i/ε
,

since Bi = d12 log(4n`i/ε)e.

Moreover, by Lemma 2.8.3(b), πi(Ji2) ≤ 2 · πi(Ji1) ≤ 2πi(Jiq)

4n`i/ε
. By definition of cinvt(),

cinvt(πi(Ji2)) ≤ `i; this gives πi(Ji2) · cinvt(πi(Ji2)) ≤ 2πi(Jiq)

4n`i/ε
· `i ≤ εZ

2n
. �

The smoothing algorithm can give purely multiplicative guarantees as long as the cost
of the first O(log n) copies of the items is small compared to W (opt). As an example,
suppose the cost functions are ci(k) = 0 for k ≤ d log n, and ci(k) = ∞ for k > d log n
for some constant d. Then `i ≤ d log n, and Bi = O(log n/ε). So for d large enough
constant, Bi · c(Bi) = 0, and we get an O(log n) approximation to the social welfare,
as in Bartal et al. [2003]. (This is best possible for online algorithms [Awerbuch et al.,
1993].)

49

Polynomial procurement curves

For the case of polynomial procurement curves of the form5 ci(x) = (x − 1)d , we show
that the smoothing algorithm gives approximation guarantees close to that of pricing at
twice the index; refer Theorem 2.8.25 and the approximation guarantees given by twice-
the-index algorithm on polynomial curves in Section 2.6.

In the analysis below we make a few assumptions. First, we assume that m ≥ cinv
i (Z)

for all items i. This case interests us since it is here that the number of copies of an item
that are available are less than the number of buyers. In this scenario, for all p ≤ Z,
cinvt
i (p) = cinv

i (p) where recall that Z is the parameter supplied to the smoothing algorithm
that satisfies Z ∈ (Umax, Umax/ε]. Second, we assume that

Bi ≥ 18 (2d+ 1) and `i ≥ 2(Bi + 1) (2.15)

These requirements on `i and Bi subsume the ones mentioned in Equation 2.9.

The crucial result which will help us prove the improved bound is Lemma 2.8.23.

Lemma 2.8.23. For all copies x in the range [Bi, b(2/3)`ic−(2d+1)·b`i/Bic], 3
2
·ci(x) <

πi(x) < 3 · ci(x).

The result says that apart possibly from a few copies on the left and right ends, the
price is close to the procurement cost for all copies. We now show how such a result helps
in proving in the improved bound. In preparation for applying the structural lemma in
Theorem 2.8.25, the following result gives us the per-item profit equation.

Lemma 2.8.24. For every item i, we have cinv
i (P f

i) · P f
i ≤ 18 (d+ 1) (27/16)d+1 profiti +

18 ci(Bi) ·Bi.

Proof. We consider three cases based on the number of copies xi of item i that were sold
by the smoothing algorithm alg.

− The algorithm sold at most Bi copies of item i.

By Lemma 2.8.23, the price of Bth
i copy is at most 3 · ci(Bi) = 3 (Bi − 1)d. Since

algorithm sold less than Bi copies of item i, and by Lemma 2.8.3(b), prices are non-
decreasing from left to right, hence, P f

i ≤ 3 (Bi − 1)d and therefore, cinv
i (P f

i) ≤
31/d(Bi − 1) + 1. We have P f

i · cinv
i (P f

i) ≤ 3 (Bi − 1)d (31/d(Bi − 1) + 1).

5In case the reader is curious on why we choose the polynomial cost curve to be (x − 1)d instead of
the more natural choice of xd, we recall that the smoothing algorithm analysis assumed that ci(1) = 0 and
hence we made the choice of (x− 1)d.

50

− The algorithm sold at least Bi copies and less than b(2/3)`ic − (2d + 1) · b`i/Bic
copies.

Let xi be the last copy sold. We have P f
i = πi(xi + 1) < 3 · ci(xi + 1) = 3 · xdi

where the inequality follows from Lemma 2.8.23. Hence, cinv
i (P f

i) ≤ 31/d · xi + 1.
We have P f

i · cinv
i (P f

i) < (31/d · xi + 1) · 3 · (xi)d < 6 · 31/d · xd+1
i .

For every copy x uptil xi, alg earned profit at least ci(x)/2. From Lemma 2.8.23,
πi(x) − ci(x) > ci(x)/2. Therefore, the profit profiti earned by alg from the sales
of item i is at least

∑xi
k=1

ci(k)
2

=
∑xi

k=1
1
2
(k− 1)d ≥

∫ xi
1

1
2
(k− 1)ddk ≥ 1

2(d+1)
(xi−

1)d+1. Since xi ≥ Bi and by Equation 2.15, Bi ≥ 18(2d + 1) ≥ 54, therefore,
(xi−1) ≥ (53/54)·xi. Hence, we have cinv

i (P f
i)·P f

i < 2(d+1)(54
53

)d+1·6·31/d·profiti.

− The algorithm sold at least b(2/3)`ic − (2d+ 1) · b`i/Bic copies.

First we note that P f
i ·cinv

i (P f
i) ≤ `di ·`i = `d+1

i . Now following the same argument as
in previous case, we know that the profit profiti is at least

∑xi
k=1

1
2
ci(x) ≥ 1

2(d+1)
(xi−

1)d+1 where xi ≥ b(2/3)`ic − (2d + 1) · b`i/Bic. Since by Equation 2.15, Bi ≥
18(2d+ 1), hence, b(2/3)`ic− (2d+ 1) · b`i/Bic ≥ (2/3)`i−1− (2d+ 1) · `i/Bi ≥
(2/3)`i − `i/18− 1 = (11/18)`i − 1.

Hence the profit profiti is at least 1
2(d+1)

((11/18)`i−1−1)d+1 ≥ 1
2(d+1)

(16/27)d+1`d+1
i

where we have used that ((11/18)`i − 2 ≥ (16/27)`i since by Equation 2.15,
`i ≥ 2(Bi + 1) ≥ 2 · (18(2d + 1) + 1) ≥ 110. Hence cinv

i (P f
i) · P f

i ≤ 2(d +
1)(27/16)d+1 · profiti.

In all three cases, P f
i ·cinv

i (P f
i) ≤ 18 (d+1) (27/16)d+1profiti+3 (Bi−1)d (31/d(Bi−

1) + 1). Now note that ci(Bi) = (Bi − 1)d and 3 (31/d(Bi − 1) + 1) ≤ 18Bi. Hence we
have the desired result. �

We now present the main result of this section.

Theorem 2.8.25. The social welfare W (alg) achieved by the smoothing algorithm on the
polynomial curve ci(x) = (x− 1)d satisfies

W (alg) ≥
W (opt)− 18

∑
i∈U Bi · ci(Bi)

18 (d+ 1) (27/16)d+1

where we assume Bi ≥ 18(2d+ 1), `i ≥ 2(Bi + 1) and that for all items i, the number of
buyers m, exceeds cinv

i (Z).

51

Theorem 2.8.25 roughly states that social welfare attained by the smoothing algorithm
on polynomial procurement curve (x − 1)d is a constant approximation to the (optimal
social welfare minus the procurement cost of the first d many copies of each item).

Proof of Theorem 2.8.25 : Since for all items i, m ≥ cinv
i (Z), hence for all p ≤ Z,

cinvt
i (p) = cinv

i (p). Hence, the result of Lemma 2.8.24 along with Lemma 2.4.3 proves that
the price curve for item i is (18 (d + 1) (27/16)d+1, 18 ci(Bi) · Bi)-single-resource-good.
Using Lemma 2.4.2, we have the desired result. �

We would now like to prove Lemma 2.8.23. In preparation for that, we shall next prove
a few lemmas. The following lemma states for a price interval Jiq = [s, t), if at copy t,
price is close to the procurement cost, then so it is at copy s. This implies in particular that
the price is close to procurement curve for all copies in the price interval Jiq.

Lemma 2.8.26. For the polynomial procurement curve (x− 1)d (d ≥ 1), consider a price
interval Jiq = [s, t) created by the smoothing algorithm such that t ≥ Bi. If πi(t) <
3 · ci(t), then πi(s) < 3 · ci(s). In particular, for all x ∈ [s, t), πi(x) < 3 · ci(x).

Proof. First note that since t ≥ Bi, therefore, ci(t) ≥ ci(Bi). Also, from Lemma 2.8.3, we
know that πi(t) ≥ 3

2
ci(Bi). Hence, cinv

i (πi(t)) ≥ Bi, and since cinv
i () = cinvt

i (), therefore,
it implies that widthi(πi(t)) ≥ 1. The width and price of Jiq shall therefore be decided by
Steps 5- 7.

Since πi(t) < 3 · ci(t), therefore, πi(Jiq) = 3
2
ci(t). Further, since πi(t) < 3 · ci(t),

hence widthi(πi(t)) = bcinvt
i (πi(t))/Bic ≤ b(31/d · (t − 1) + 1)/Bic which implies that

s ≥ t− 31/d · (t− 1)/Bi − 1.

Moreover, since πi(Jiq) = 3
2
ci(t), hence the condition πi(s) < 3 · ci(s) is equivalent

to 3
2
ci(t) < 3 · ci(s) or ci(s) > ci(t)/2. Since ci(x) = (x − 1)d, therefore, we require

(s − 1) > (t − 1)/21/d. Since s ≥ t − 31/d · (t − 1)/Bi − 1, it suffices to have (t −
1) − 31/d · (t − 1)/Bi − 1 > (t − 1)/21/d which for t ≥ Bi, is equivalent to demanding
Bi ≥ 31/d/(1− 1/(t− 1)− 1/21/d). By Equation 2.15, we have t ≥ Bi ≥ 18(2d+ 1) and
hence the inequality is satisfied.

Since for all x ∈ [s, t), πi(x) = πi(s) and ci(x) ≥ ci(s), hence, πi(s) < 3 · ci(s)
implies that ∀x ∈ [s, t), πi(x) < 3 · ci(x). �

Corollary 2.8.27 states that in case there is a copy in the range [Bi, b(2/3) `ic] in the
range that is the left end point of a price interval and has its price close to its cost, then for
all copies from Bi uptil that copy, the price curve is close to the procurement curve.

52

Corollary 2.8.27. If at point x such that x ∈ [Bi, b(2/3) `ic], πi(x) < 3 · ci(x) and x is
the left end point of a price interval, then for all copies x′ in the range [Bi, x] (i.e. for all
copies to the left of x and to the right of Bi), πi(x′) < 3 · ci(x′).

Proof. Consider a point x such that b(2/3) `ic > x > Bi and πi(x) < 3 · ci(x). Say x is
the left end point of the price interval Jiq. Let Ji q−1 = [r, x). By Lemma 2.8.26, for all
copies y ∈ Ji q−1, πi(y) < 3 ci(y). If the left end point r of Ji q−1 is such that r ≤ Bi, then
we have completed the proof of our claim.

Else if the left end point r of Ji q−1 is such that r > Bi, we can repeat the argument
above since we have πi(r) < 3 ci(r) and r is the left end point of Ji q−1 and therefore
inductively, we have proved the claim. �

Corollary 2.8.27 is sufficient to prove Lemma 2.8.23 in case we can show that a copy
which is the left end point of a price interval and has its price close to cost exists in the
appropriate range. The following lemma proves the existence of such a copy.

Lemma 2.8.28. For at least one price interval Jip to the right of the point b(2/3)`ic −
(2d+ 1) · b`i/Bic, it is the case that the left end point of Jip is marked close.

Proof. Denote the point b(2/3)`ic − (2d + 1) · b`i/Bic by w1 and the point b(2/3)`ic −
2d · b`i/Bic by w2. Let I be the interval [w1, w2].

We prove the claim by contradiction; assume that for all price intervals Jip to the right
of w1, the left end point of Jip is marked far. Since the width of any price interval is at
most b`i/Bic and |I| = b`i/Bic, hence there must be a price interval whose left end point,
say τ , lies in the interval I .

In order to the contradict the assumption, we need to prove that 3 ci(τ) > πi(τ).
For this it suffices to show that 3 · ci(w1) > πi(w2). This is because for any x ∈
[w1, w2], since procurement curve ci() is non-decreasing, therefore, ci(x) ≥ ci(w1); also
by Lemma 2.8.3(b), πi(x) ≤ πi(w2). Therefore, 3 · ci(w1) > πi(w2) implies that for any x
in [w1, w2], 3 ·ci(x) ≥ 3 ·ci(w1) > πi(w2) > πi(x) and hence in particular 3 ci(τ) > πi(τ).

We now prove that 3 · ci(w1) > πi(w2). We have

− ci(w1) ≥ (`i/2− (2d+ 1) · `i/Bi)
d

This is because ci(w1) = (b(2/3)`ic − (2d + 1) · b`i/Bic − 1)d ≥ ((2/3)`i − 1 −
(2d+ 1) · `i/Bi− 1)d ≥ (`i/2− (2d+ 1) · `i/Bi)

d where we use (2/3)`i− 2 ≥ `i/2
since by Equation 2.15, `i ≥ 2(Bi + 1) ≥ 2 (18(2d+ 1) + 1) ≥ 110.

53

− πi(w2) = πi(Jiq) ≤ (2
3
)2d · `di .

To see this, let w2 lie in price interval of Jiq. Note that Jiq cannot be the rightmost
price interval Jizi since the left end-point of Jizi is b(2/3) `ic and w2 < b(2/3)`ic.
As all price intervals Jiq′ to the right of Jiq have their left end point marked far,
hence, in other words, all price intervals between Jiq and Jizi are marked (F, F).
Since a price interval has size at most b`i/Bic, therefore, there are at least 2d price
intervals between Jiq and Jizi . By Lemma 2.8.18, πi(w2) = πi(Jiq) ≤ (2

3
)2d · `di .

To prove that 3 · ci(w1) > πi(w2), it suffices to have (2
3
)2d · `di < 3 · (`i/2 − (2d +

1) · `i/Bi)
d which is equivalent to demanding (2

3
)2 · 1

31/d
< 1

2
− (2d + 1) · 1

Bi
or Bi >

(2d+ 1)/(1
2
− (2

3
)2 · 1

31/d
); by Equation 2.15, Bi > 18(2d+ 1), and hence we have satisfied

the desired inequality. �

We now prove Lemma 2.8.23 which recall roughly states that apart from the ‘few’ left-
most copies and right-most copies, the price curve is close to the procurement curve for
all copies.

Proof of Lemma 2.8.23 : From Lemma 2.8.3(a), we can infer one side of the inequality
i.e. for all x in the desired range, πi(x) ≥ 3 ci(x)/2. Now for the other side of the
inequality i.e. πi(x) < 3ci(x).

Denote the point b(2/3)`ic−(2d+1)·b`i/Bic byw. First we note thatw lies to the right
ofBi i.e. w ≥ Bi. In order to see this, it suffices to show (2/3) `i−1−(2d+1)·`i/Bi ≥ Bi.
By Equation 2.15, we have Bi ≥ 18(2d+ 1), and hence (2/3)`i − 1− (2d+ 1) · `i/Bi ≥
(2/3)`i−1− `i/18 = (11/18)`i−1. And hence it suffices to have `i ≥ (18/11) · (Bi + 1)
which by Equation 2.15 is true.

From Lemma 2.8.28, we know that there is at least one price interval Jip to the right
of w whose left end point say τ is marked close. Note that τ ≥ w ≥ Bi. Further since
τ is the left end point of a price interval, therefore, τ ≤ b(2/3)`ic. Hence, we have
Bi ≤ τ ≤ b(2/3) `ic. Thus, by Corollary 2.8.27, we get the desired result. �

2.9 Profit Maximization

In this section, we present a result that shows how any social welfare maximizing item pric-
ing scheme for a stream of buyers can be combined with a single-buyer profit maximizing
item pricing scheme to yield a profit maximizing scheme for a stream of buyers. This result
helps us in converting the item-pricing social welfare maximizing schemes from previous

54

sections into item-pricing profit maximizing schemes. Specifically, suppose we are given
access to two algorithms:

1. a deterministic item pricing (α, β)-welfare approximate algorithm A, that is, given
cost curves {ci}i∈U ,A outputs pricing schemes {πi(·)}i∈U such that on any sequence
σ of buyers,

ρ ·W (A(σ)) + β ≥ opt(σ) (2.16)

2. and, a randomized single-buyer profit maximization algorithm B, which outputs a
non-negative price vector ~π for items i ∈ U and gives the guarantee that for any
buyer b, with valuation vb(),

µ · Eτ [
∑
i∈S~π

~πi] + κ ≥ max
s⊆U

vb(s) (2.17)

where S~π is the set of items bought by the buyer b when the price vector ~π is pre-
sented and so

∑
i∈S~π ~πi is the resultant profit generated from buyer b.

Note that maxs⊆U vb(s) is an upper bound on maximum profit that can be generated
from buyer b. Further algorithm B operates in a world with zero procurement costs, and
may take as input a parameter T such that maxS⊆U vb(S) < T ; the parameters µ, κ may
be functions of T .6 We further assume that for every item i ∈ U and k ∈ N, the price
πi(k) set by algorithm A is at least as much as the procurement cost of that copy of the
item. The main result of this section is

Theorem 2.9.1. Given a (ρ, β)-social welfare maximization algorithm A (satisfying Equa-
tion (2.16)) and a (µ, κ)-single buyer profit maximization algorithm B (satisfying Equa-
tion (2.17)), we can construct a randomized profit-maximizing algorithm C whose expected
profit over any sequence σ of buyers is at least (opt(σ)−O(β + κ · |σ|)) /O(ρ+ µ) .

We now construct an algorithm C which uses A and B, and gives expected profit of
approximately W (opt(σ))

(2 ρ+8µ)
(with some additive loss) over any sequence σ of buyers. The

construction of algorithm C and subsequent analysis heavily borrows ideas from a similar
result proved in Awerbuch et al. [2003]. Our result can be seen as extension of their result
to situations with production costs and arbitrary valuations.

6 Balcan et al. [2008] give such a single-buyer profit maximization algorithm, a slight variant of which
has κ = T/(2mn) and µ = O(log(mn)). The algorithm picks a uniform price on a geometric scale for all
items. It can be combined with either of the social welfare maximizing algorithms in this chapter to give a
O(log(mn))-profit maximizing algorithm+additive loss.

55

The AlgorithmC: In case algorithmB requires an estimate T , such that maxS⊆U vb(S) <
T , algorithm C takes as input a parameter T such that Umax < T , where Umax is defined
as in (2.5). The parameter T is used each time algorithm B is invoked by C.

On a sequence σ of buyers, for buyer j, let xji denote the number of copies of item i
already sold when buyer j walks in.

1. With probability 1/2, set tj = 0 and with probability 1/2, generate a random price
vector ~π using algorithm B and set tj = τ .

2. Let the price of each item i be ωi(x
j
i + 1) + tj(i).

Simply put, algorithm C maintain a copy of algorithm A running in the background
and keeps updating A’s state with the sets buyers are buying. When buyer j walks in, with
probability 1/2, algorithm C presents the price vector as specified by the current state of
A (determined by the number of various items sold up till then), and with probability 1/2,
adds a random price vector, generated using B, to the price vector specified by A.

We now present an analysis of profit generated by algorithm C with the final result
mentioned in Theorem 2.9.1.

Analysis: For any allocation η : B → 2U (where η(j) denotes the set of items allocated
to buyer j),

∑
k<j:i∈ηk 1 denotes the number of copies of item i allocated to buyer k < j

under η. Hence, χjη(i) = ci(1+
∑

k<j:i∈η(k) 1) denotes the cost of allocating a copy of item
i to buyer j, given that the buyers previous to her have received their allocations under η.
The cost of allocating η(j) to buyer j is therefore

∑
i∈η(j) χ

j
η(i) and the social welfare

achieved by allocating η(j) to buyer j is vj(η(j))−
∑

i∈η(j) χ
j
η(i).

Let ŝj = opt(j) be the set allocated to buyer j under the optimal allocation, opt, when
she is part of sequence σ. Denote by γ̂j the social welfare achieved by allocating ŝj to j,
which is equal to vj(ŝj)−

∑
i∈ŝj χ

j
opt(i).

Consider a particular run of algorithm C and for r < s, let tr:s denote the set of random
choices tj made for buyers j ∈ {r, r + 1, · · · , s}. Let sj , a random variable determined
completely by t1:j−1, be the set which buyer j would have bought if tj were chosen to be
0, and let γj be the social welfare achieved by allocating sj to j. Note that sj may not be
the set actually bought by buyer j, depending on whether or not tj is zero.

Let pj , a random variable determined completely by t1:j , be the profit made by C from
buyer j. Therefore, the total profit made by algorithm C is

∑
j∈Q pj where Q is the set of

buyers.

We partition the set of buyers Q into two sets:

56

1. Let Q1 be the set of buyers for whom γj ≥ 1
2
γ̂j .

2. Let Q2 be the set of buyer for whom γj <
1
2
γ̂j .

The partition of Q into Q1 and Q2 is determined by the set of random choices t1:m.
The following observation follows from the definition of γ̂j .

Observation 2.9.2. The optimal profit is at most the optimal social welfare and that is∑
j∈Q γ̂j .

We now state and prove Lemma 2.9.3 and Lemma 2.9.4 which bound the welfare made
by the optimal allocation for the buyer sets Q1 and Q2 respectively.

Note that for any j, the offsets t1:j−1 completely determine the bundles bought by
buyers 1 through j−1. Given t1:j−1, for convenience let us define πj(s) =

∑
i∈s ωi(x

j
i+1).

πj(s) is equal to the price that would be offered to buyer j for set s, in case the offset tj
were chosen to be zero.

Lemma 2.9.3 (Low welfare buyers). For any set of values t1:m,
∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj+
2 β.

Proof. Consider any set of values t1:m. Consider a buyer j in Q2. sj is defined to be the
utility-maximizing set if tj were to be 0, therefore, vj(sj) − πj(sj) ≥ vj(ŝj) − πj(ŝj).
Now, γj ≥ vj(sj) − πj(sj) and γ̂j ≤ vj(ŝj). Since buyer j is in Q2, hence γj < 1

2
γ̂j and

therefore we get

vj(ŝj)− πj(ŝj) ≤ vj(sj)− πj(sj) ≤ γj <
1

2
γ̂j (2.18)

which implies that

πj(ŝj) > vj(ŝj)−
1

2
γ̂j (2.19)

Let s′j be the actual set bought by buyer j from algorithm C.

Now consider the sequence σ′ composed of buyers j′ defined as follows

• for every buyer j in Q2, we introduce a buyer j′ who has non-zero valuation for
exactly two sets – she values set s′j at πj(s′j) and set ŝj at vj(ŝj)− 1

2
γ̂j , and

• for every buyer j in Q1, we introduce buyer j′, such that she is single-minded and
has valuation πj(s′j) for set s′j .

57

The sequence of buyers in σ′ is the natural ordering i.e. m′ < n′ if and only if m < n. It
is not difficult to verify that when algorithm A is run on sequence σ′,

1. for all j ∈ Q1, buyer j′ shall buy the set s′j from A,

2. for all j ∈ Q2, buyer j′1 shall buy the set s′j from A (and not the set ŝj by (2.19))

Consider the allocation η for sequence σ′, wherein for every j ∈ Q2, j′ is allocated
set ŝj and rest of the buyers are allocated nothing. The social welfare achieved by η is∑

j∈Q2

(
vj(ŝj)− 1

2
γ̂j −

∑
i∈ŝj χ

j
η(i)
)

where for each j ∈ Q2, vj(ŝj)− 1
2
γ̂j is the value of

buyer j′ for set ŝj and
∑

i∈ŝj χ
j
η(i) is the cost of allocating that set. Now observe that for

each j,
∑

i∈ŝj χ
j
η(i) ≤

∑
i∈ŝj χ

j
opt(i) i.e. the cost of allocating the set ŝj to buyer j′ under η

on sequence σ′ is at most the cost of allocating that set to the buyer j under opt on sequence
σ. This is because for any prefix of buyers, η allocates only at most as many copies of
any item as opt for that prefix. Therefore, for each j ∈ Q2, vj(ŝj) −

∑
i∈ŝj χ

j
η(i) ≥

vj(ŝj)−
∑

i∈ŝj χ
j
opt(i) = γ̂j , and therefore, vj(ŝj)− 1

2
γ̂j −

∑
i∈ŝj χ

j
η(i) ≥ 1

2
γ̂j . Hence the

allocation η achieves a social welfare of at least
∑

j∈Q2

1
2
γ̂j

The (ρ, β)-approximation guarantee of A should hold on σ′ as well and therefore us-
ing (2.16), and the fact optimal welfare on σ′ is at least as much the welfare made through
allocation η we have,

∑
j∈Q2

1
2
γ̂j ≤ ρ ·

∑
j∈Q1∪Q2

(πj(s
′
j)− cj(s′j)) + β.

However, the profit pj made by C on sequence σ is πj(s′j) − cj(s
′
j) +

∑
i∈s′j

tj(i)

and therefore in particular, pj ≥ πj(s
′
j) − cj(s

′
j). Hence, we get the desired claim i.e.∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj + 2 β. �

Lemma 2.9.4 (High welfare buyers). E
t1:m

[
∑

j∈Q1
γ̂j] ≤ 8µ E

t1:m
[
∑

j∈Q1
pj] + 4κ E

t1:m
[|Q1|].

Proof. For a buyer j in Q1, we know that γj = (vj(sj)− cj(sj)) ≥ 1
2
γ̂j .

• Either, (πj(sj) − cj(sj)) ≥ 1
2
γj ≥ 1

4
γ̂j: With probability 1/2, we choose tj = 0,

and by definition of sj , we know that buyer j would buy set sj and therefore the
profit from buyer j, pj = (πj(sj)− cj(sj)) ≥ 1

2
γj ≥ 1

4
γ̂j .

• Or, (πj(sj)− cj(sj)) < 1
2
γj . In this case, vj(sj)− πj(sj) ≥ 1

2
γj because (vj(sj)−

πj(sj)) + (πj(sj)− cj(sj)) = γj .

With probability 1/2, we set tj to be a random vector ~π generated using algorithm
B. Consider a setting with zero production cost and a buyer b whose valuation vb()

58

is given as ∀s ⊆ U, vb(s) = vj(s)− πj(s). For any ~π and for any set s, buyer j and
buyer b have the same utility as we can see in the following equation:

vb(s)−
∑
i∈s

~πi = vj(s)− πj(s)−
∑
i∈s

~πi

Hence on being presented with price vector ~π, buyer b shall the buy the same set as
buyer j, call the set S~π. Therefore, the expected value of

∑
i∈S~π ~πi is equal to the

expected profit made from buyer b which by (2.17) is

maxs⊆U vb(s)− κ
µ

.

Since we are in the case where (πj(sj)− cj(sj)) < 1
2
γj , therefore maxs⊆U vb(s) =

vj(sj)− πj(sj) ≥ 1
2
γj . Since for buyer j, we choose a random offset ~π with proba-

bility 1/2, therefore, the expected profit from buyer j is at least

maxs⊆U vb(s)− κ
2µ

≥
1
2
γj − κ
2µ

.

Therefore, taking both of the above cases into account, for any buyer j ∈ Q1,

E
tj |t1:j−1

[pj] ≥
1
2
γj − κ
2µ

≥
1
4
γ̂j − κ
2µ

.

Taking expectation over t1:j , we get

E
t1:j

[pj · I[j ∈ Q1]] ≥
E
t1:j

[(1
4
γ̂j − κ) · I[j ∈ Q1]]

2µ

where I[·] is the indicator function. The expectation can be extended to be over t1:m since
t1:j completely determine pj and I[j ∈ Q1]. Therefore,

E
t1:m

[pj · I[j ∈ Q1]] ≥
E
t1:m

[(1
4
γ̂j − κ) · I[j ∈ Q1]]

2µ

Using Linearity of expectation, we get the desired result. �

We now state the main theorem which as we later show is equivalent to Theorem 2.9.1
and thereby prove the claimed profit guarantee.

59

Theorem 2.9.5 (Profit Guarantee).∑
j∈Q

γ̂j ≤ (2 ρ+ 8µ)E[
∑
j∈Q

pj] + 4κ |Q|+ 2 β.

Proof. From Lemma 2.9.3, we get that for any set of values t1:m,
∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj+
2 β and therefore, E

t1:m
[
∑

j∈Q2
γ̂j] ≤ 2 ρ E

t1:m
[
∑

j∈Q pj] + 2 β.

From Lemma 2.9.4, we get

E
t1:m

[
∑
j∈Q1

γ̂j] ≤ 8µ E
t1:m

[
∑
j∈Q1

pj] + 4κE[|Q1|].

Hence using Linearity of Expectation, we get∑
j∈Q

γ̂j ≤ (2 ρ+ 8µ) E
t1:m

[
∑
j∈Q

pj] + 4κ |Q|+ 2 β.

�

Proof of Theorem 2.9.1 : Recall that the optimal social welfare, and hence the optimal
profit, on sequence σ is upper-bounded by

∑
j∈Q γ̂j (Observation 2.9.2), while the ex-

pected profit generated by algorithm is C is given by E[
∑

j∈Q pj]. Hence Theorem 2.9.5
is equivalent to result quoted in Theorem 2.9.1. �

Remark 2.9.6. 1. In case the social-welfare maximizing algorithm A takes estimate of
Umax: Suppose the estimate given to algorithm C (which passes it on to the copy
of A running in the background) is that Umax ∈ [δ Z, Z). Note that the only place
where we use the guarantee is in Lemma 2.9.3. In the proof, in the stream σ′, add a
fake δ Z- valuation buyer at the end of the stream to make the guarantee hold. The
profit guarantee changes to∑

j∈Q

γ̂j ≤ (2 ρ+ 8µ)E[
∑
j∈Q

pj] + 4κ |Q|+ 2 β + 2 ρ δ Z

2. Balcan et al. [2008] give a single-buyer profit maximization algorithm under zero
production cost, which with slight modification, given a parameter T > Umax, has
values of parameters κ = T

2mn
and µ = O(log(mn)). This profit maximization

algorithm picks a uniform price on a geometric scale for all items and can be com-
bined with either of the social welfare maximizing algorithms in this chapter to give
a O(log(mn))-profit maximizing algorithm with some additive loss.

60

2.10 Acknowledgment

The results in this chapter are part of a joint work with Avrim Blum, Anupam Gupta and
Yishay Mansour [Blum et al., 2011].

61

62

Chapter 3

Resource allocation with expensive
queries on stochastic input

3.1 Introduction

In many scenarios of interest, the value of allocation a resource to a claimant is a priori
unknown. Examples include allocating an advertisement to a particular impression (a
priori we do not know the value that the user has for a certain impression), allocating
resources to a project (a priori we do not know how successful the project is), and matching
donor-recipient pairs in a kidney exchange (a priori we do not know whether the recipient
of one pair is compatible with the donor of other pair, and vice versa).

In such situations, there is usually a way to ‘query’ the value of allocating the resource
to a claimant. For instance, by displaying an advertisement to a user, we can guess its value
for the user depending on whether the user clicks on it or not. In allocation of resources
to projects, by making a temporary allocation of a resources to a project and letting the
project run for some time, we can ascertain the value of the project by looking at its short
term success and market response. In case of kidney exchange, we can have lab tests done
to ascertain the compatibility of the donor and the recipient.

In many cases, the queries that we form are expensive. For instance, lab tests in case
of kidney exchange are monetarily expensive (and there is a hard-to-determine cost for the
patients waiting to receive their kidneys). In project allocation, by making poor temporary
allocation decisions early on, we pay the opportunity cost of making bad resource alloca-
tion decisions. For online advertisements, when we show “poor” ad to a user, we have lose
the opportunity to show the user a good ad, which usually means loss in revenue.

63

Hence, ideally what we would like to do is to be able to perform few queries and within
those few queries make good allocation decisions. There are two questions that are natural
at this point. The first one is what benchmark we compare our allocation, made based on
a few queries, against and the second is what information we have at our disposal that will
guide us to make ‘good’ queries. We assume stochastic information is present that tells the
probability distribution for the value of every potential allocation. We compare the value
of the allocation that the algorithm makes to the highest expected value that any allocation
could have achieved. We will detail the nature of stochastic information when we define
the problem formally.

An important point of interest both from theoretical and application perspective is
whether the queries we make are adaptive or non-adaptive, and on a related note, whether
we can issue the queries in parallel or whether we need to issue them sequentially, i.e., wait
for the result of the last query and then issue the new query. The ideal thing would be to
have an algorithm that issues all necessary queries in parallel, and then makes allocations
decisions once it receives the values of the different queries. We will explore the level of
parallelism and non-adaptivity we can incorporate in the algorithm.

3.1.1 Model

We formalize our model and start with the simple case where each claimant wants exactly
two resources and has value either 0 or 1, that is a priori unknown. We model this using a
graph where each node of the graph represents a resources, and each edge represents the
claimant that wants the two resources which form the end points of the edge. For each edge
(claimant) e of the graph, we are given a number pe which denote the prior probability that
the value is 1. That is, on querying the value of the claimant e, with probability pe, the
value returned will be 1, and with probability 1 − pe, the value returned is zero. We want
to query a ‘few’ edges of the graph, and give an allocation whose value in expectation is
close to the expected value of omniscient optimum – one that queries all the edges and
computes the maximum matching (which is the optimal allocation) among the existing
edges.

In the general case where each claimant wants at most k resources, we are given a hy-
pergraph, where each resource is mapped to a node and claimant is mapped to a hyperedge
containing the nodes corresponding to the resources. Again, for each hyperedge e, we are
given a number pe that corresponds to the probability that the value returned is 1.

We measure the number of queries that the allocation mechanism makes on a per-
resource level. That is, we ask the maximum number of queries that have been made

64

by the allocation mechanism to any single resource. Clearly, this maximum number of
queries to a node (resource) in a graph is the number of edge (or hyperedges) incident to
it. In case of a graph, this number can be at most n, the number of nodes (resources) in the
graph.

Our main question is: In order to perform as well as the omniscient optimum, do we
need to query (almost) all the edges, that is, do our per-vertex budgets need to be Θ(n),
where n is the number of vertices? Or, can we, for any arbitrarily small ε > 0, achieve
performance that is very close to the omniscient optimal solution by using an o(n) per-
vertex budget?

3.1.2 Our Results and Techniques

Our main result gives a positive answer to our question, by showing that, surprisingly, a
constant per-vertex budget is sufficient to get ε-close to the omniscient optimum. Indeed,
we design a polynomial-time algorithm with the following properties: for any constant
ε > 0, the algorithm queries at most O(1) edges incident to any particular vertex, requires
O(1) rounds of parallel queries, and achieves a (1−ε) fraction of the omniscient optimum.1

The foregoing algorithm is adaptive, in the sense that its queries are conditioned on the
answers to previous queries. Even though it requires only a constant number of rounds,
it is natural to ask whether a non-adaptive algorithm — one that issues all its queries in
one round — can also achieve a similar guarantee. We do not give a complete answer
to this question, but we do present a non-adaptive algorithm that achieves a 0.5(1 − ε)-
approximation (for arbitrarily small ε > 0) to the omniscient optimum2.

While as mentioned it is still an open question whether a non-adaptive solution can
achieve a (1−ε)-approximation, we prove in Section 3.7 that finding the best non-adaptive
solution with a per-vertex guarantee is NP-hard. Specifically, if we are to place a per-vertex
budget constraint of 2, then finding the subset of edges that obeys this constraint and has
the maximum expected size of matching is NP-hard. This hardness result is shown using
a characterization of the optimal non-adaptive solution followed by a reduction from the
3D-MATCHING problem. Interestingly, for the application of kidney exchange that in
part motivates our work, we show a polynomial time algorithm to find an almost optimal
non-adaptive solution with per-vertex budget constraint of two (Section 3.8).

We extend our algorithmic results to the stochastic k-set packing problem, where we

1This guarantee holds as long as all the non-zero pe’s are bounded away from zero by some constant.
The constant can be arbitrarily small but should not depend on n.

2We extend our matching results to a more general stochastic model in Section 3.6.

65

are given a collection of sets, each with cardinality at most k. Stochastic Matching is
a special case of Stochastic k-set packing: each set (which corresponds to an edge) has
cardinality 2, that is, k = 2. In stochastic k-set packing, each set s exists with some known
probability ps, and we need to query the sets to find whether they exist. Our objective is to
output a collection of disjoint sets of maximum cardinality. We present adaptive and non-
adaptive polynomial-time algorithms that achieve, for any constant ε > 0, at least (2

k
− ε)

and (1 − ε) (2/k)2

2/k+1
fraction, respectively, of the omniscient optimum, again using O(1)

queries per element and hence O(n) overall. For the sake of comparison, the best known
polynomial-time algorithm for optimizing k-set packing in the standard non-stochastic
setting has an approximation ratio of 3

k+1
− ε [Fürer and Yu, 2013].

To better appreciate the result, we show how naı̈ve algorithms fail to achieve our goal,
even if they are allowed many queries. For example, querying a sublinear number of
edges incident to each vertex, chosen uniformly at random, gives a vanishing fraction of
the omniscient optimum — as we show in Section 3.2.

The primary technical ingredient in the design of our adaptive algorithm is that if, in
any round r of the algorithm, the solution computed by round r (based on previous queries)
is small compared to the omniscient optimum, then the current structure must admit a large
collection of disjoint constant-sized ‘augmenting’ structures. These augmenting structures
are composed of sets that have not been queried so far. Of course, we do not know whether
these structures we are counting on to help augment our current matching actually exist;
but we do know that these augmenting structures have constant size (and so each structure
exists with some constant probability) and are disjoint (and therefore the outcomes of the
queries to the different augmenting structures are independent). Hence, by querying all
these structures in parallel in round r, in expectation, we can close a constant fraction of the
gap between our current solution and the omniscient optimum. By repeating this argument
over a constant number of rounds, we achieve a (1−ε) fraction of the omniscient optimum.
In the case of stochastic matching, these augmenting structures are simply augmenting
paths; in the more general case of k-set packing, we borrow the notion of augmenting
structures from Hurkens and Schrijver [1989].

3.1.3 Related Work

Our model of the resource allocation problem where each claimant wants two resources
goes by the name of stochastic matching in literature. Prior work has considered multiple
variants of stochastic matching. The primary variant that has been considered is that of
query-commit, where the algorithm is forced to add any queried edge to the matching if

66

the edge is found to exist (that is, any claimant found to have value 1 has to be allocated
the resources). Furthermore, the query-commit setting has been studied with per-vertex
budget constraints (see, e.g., [Bansal et al., 2012]). Here there is a given budget bv for
every vertex v, which denotes the maximum number of edges incident to this vertex that
can be queried by the algorithm. Several papers, including those by Chen et al. [2009],
Adamczyk [2011], and Bansal et al. [2012], design algorithms that achieve constant-factor
approximations to the optimal maximum matching, subject to the foregoing constraints. In
this work, we eschew the query-commit requirement since it has been show that the best
approximation factor achievable with this constraint is bounded away from 1 [Costello
et al., 2012], and our goal is to achieve (1− ε)-approximation for arbitrarily small ε > 0.

3.2 Preliminaries

For any graph G = (V,E), let M(E) denote its maximum (cardinality) matching.3 In
addition, for two matchingsM andM ′, we denote their symmetric difference byM∆M ′ =
(M ∪M ′) \ (M ∩M ′); it includes only paths and cycles consisting of alternating edges
of M and M ′.

In the stochastic setting, given a set of edges X , define Xp to be the random subset
formed by including each edge of X independently with probability p. We will assume
for ease of exposition that pe = p for all edges e ∈ E. Our results hold when p is a lower
bound, i.e., pe ≥ p for all e ∈ E. Furthermore, in Section 3.6, we show that we can extend
our results to a more general setting where the existence probabilities of edges incident to
any particular vertex are correlated.

Given a graph G = (V,E), define M(E) to be E[|M(Ep)|], where the expectation is
taken over the random draw Ep. In addition, given the results of queries on some set of
edges T , define M(E|T) to be E[|M(Xp ∪ T ′)|], where T ′ ⊆ T is the subset of edges of
T that are known to exist based on the queries, and X = E \ T .

In the non-adaptive version of our problem, the goal is to design an algorithm that,
given a graph G = (V,E) with |V | = n, queries a subset X of edges in parallel such that
|X| = O(n), and maximizes the ratio M(X)/M(E).

In contrast, an adaptive algorithm proceeds in rounds, and in each round queries a
subset of edges in parallel. Based on the results of the queries up to the current round, it
can choose the subset of edges to test in the next round. Formally, an R-round adaptive

3In the notation M(E), we intentionally suppress the dependence on the vertex set V , since we care
about the maximum matchings of different subsets of edges for a fixed vertex set.

67

B C DA

Figure 3.1: Illustration of the construction in Example 3.2.1, for t = 4 and β = 1/2.

stochastic matching algorithm selects, in each round r, a subset of edges Xr ⊆ E, where
Xr can be a function of the results of the queries on

⋃
1≤i≤rXi. The objective is to maxi-

mize the ratio E[|M(
⋃

1≤i≤RXi)|]/M(E), where the expectation in the numerator is taken
over the outcome of the query results and the sets Xi chosen by the algorithm.

To gain some intuition about our goal of arbitrarily good approximations to the omni-
scient optimum, and why it is challenging, let us consider the naı̈ve (non-adaptive) algo-
rithm which queries tα, for any α < 1, random neighbors of each vertex. The following
example shows that this algorithm performs poorly.

Example 3.2.1. Consider the graph G = (V,E) whose vertices are partitioned into sets
A, B, C, and D, such that |A| = |D| = tβ and |B| = |C| = t, for some 1 > β > α.
Let E consist of one perfect matching between vertices of B and C, and two complete
bipartite graphs, one between A and B, and another between C and D. See Figure 3.1
for an illustration. Let p = 0.5 be the existence probability of any edge.

The omniscient optimal solution can use any edge, and, in particular, it can use the
edges between B and C. Since, these edges form a matching of size t and p = 0.5, they
alone provide a matching of expected size t/2. Hence, M(E) ≥ t/2.

Now, consider the algorithm described above. For every vertex in B, the probability
that its edge toC is chosen is at most tα

tβ+1
(similarly for the edges fromC toB). Therefore,

the expected number of edges chosen between B and C is at most 2t1+α

tβ+1
, and the expected

number of existing edges between B and C, after the coin tosses, is at most t1+α

tβ+1
. A and D

each have tβ vertices, so they contribute at most 2tβ edges to any matching. Therefore, the
expected size of the overall matching is no more than t1+α−β + 2tβ . Using n = Θ(t), we
conclude that the approximation ratio of the naı̈ve algorithm approaches 0, as n → ∞.
For α = 0.5 and β = 0.75, the approximation of the naı̈ve algorithm ratio is O(1/n0.25),
at best.

68

3.3 Adaptive Algorithm: (1− ε)-approximation

In this section, we present our main result: an adaptive algorithm — formally given as
Algorithm 1 — that achieves a (1 − ε) approximation to the omniscient optimum for
arbitrarily small ε > 0, using O(1) queries per vertex and O(1) rounds.

The algorithm is initialized with the empty matching M0. At the end of each round
r, our goal is to maintain a maximum matching Mr on the set of edges that are known to
exist (based on queries made so far). To this end, at round r, we compute the maximum
matching Or on the set of edges that are known to exist and the ones that have not been
queried yet (Step 2a). We consider augmenting paths in Or∆Mr−1, and query all the
edges in them (Steps 2b and 2c). Based on the results of these queries (Qr), we update the
maximum matching (Mr). Finally, we return the maximum matching MR computed after
R = log(2/ε)

p2/ε
rounds. (Let us assume that R is an integer for ease of exposition.)

1 Input: A graph G = (V,E).
2 Parameter: R = log(2/ε)

p2/ε

3 Algorithm:
1. Initialize M0 to the empty matching and W1 ← ∅.

2. For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in (V,E \Wr).

(b) Set Qr to the collection of all augmenting paths in Or∆Mr−1.

(c) Query the edges in Qr. Let Q′r and Q′′r represent the set of existing and
non-existing edges.

(d) Wr+1 ← Wr ∪Q′′r .

(e) Set Mr to the maximum matching in
(
V,
⋃r
j=1Q

′
j

)
.

3. Output MR.

Algorithm 1: ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: (1− ε) AP-
PROXIMATION

It is easy to see that this algorithm queries at most log(2/ε)

p2/ε
edges per vertex: In a given

round r, the algorithm queries edges that are in augmenting paths of Or∆Mr−1. Since
there is at most one augmenting path using any particular vertex, the algorithm queries

69

at most one edge per vertex in each round. Furthermore, the algorithm executes log(2/ε)

p2/ε

rounds. Therefore, the number of queries issued by the algorithm per vertex is as claimed.

The rest of the section is devoted to proving that the matching returned by this algo-
rithm after R rounds has cardinality that is, in expectation, at least a (1 − ε) fraction of
M(E).

Theorem 3.3.1. For any graphG = (V,E) and any ε > 0, Algorithm 1 returns a matching
whose expected cardinality is at least (1− ε) M(E) in R = log(2/ε)

p(2/ε)
rounds.

As mentioned in Section 3.1.2, one of the insights behind this result is the existence of
many disjoint augmenting paths of bounded length that can be used to augment a matching
that is far from the omniscient optimum, that is, a lower bound on the number of elements
in Qr of a given length L. This observation is formalized in the following lemma. (We
emphasize that the lemma pertains to the non-stochastic setting.)

Lemma 3.3.2. Consider a graph G = (V,E) with two matchings M1 and M2. Suppose
|M2| > |M1|. Then in M1∆M2, for any odd length L ≥ 1, there exist at least |M2| − (1 +

2
L+1

)|M1| augmenting paths of length at most L, which augment the cardinality of M1.

Proof. Let xl be the number of augmenting paths of length l (for any odd l ≥ 1) found
in M1∆M2 that augment the cardinality of M1. Each augmenting path increases the size
of M1 by 1, so the total number of augmenting paths

∑
l≥1 xl is at least |M2| − |M1|.

Moreover, each augmenting path of length l has l−1
2

edges in M1. Hence,
∑

l≥1
l−1
2
xl ≤

|M1|. In particular, this implies that L+1
2

∑
l≥L+2 xl ≤ |M1|. We conclude that

L∑
l=1

xl =
∑
l≥1

xl −
∑
l≥L+2

xl ≥ (|M2| − |M1|)−
2

L+ 1
|M1| = |M2| −

(
1 +

2

L+ 1

)
|M1|.

�

The rest of the theorem’s proof requires some additional notation. At the beginning of
any given round r, the algorithm already knows about the existence (or non-existence) of
the edges in

⋃r−1
i=1 Qi. We use Zr to denote the expected size of the maximum matching

in graph G = (V,E) given the results of the queries
⋃r−1
i=1 Qi. More formally, Zr =

M(E|
⋃r−1
i=1 Qi). Note that Z1 = M(E).

For a given r, we use the notation EQr [X] to denote the expected value of X where
the expectation is taken only over the outcome of query Qr, and fixing the outcomes on
the results of queries

⋃r−1
i=1 Qi. Moreover, for a given r, we use EQr,...,QR [X] to denote the

70

expected value of X with the expectation taken over the outcomes of queries
⋃R
i=rQi, and

fixing an outcome on the results of queries
⋃r−1
i=1 Qi.

In Lemma 3.3.3, for any round r and for any outcome of the queries
⋃r−1
i=1 Qi, we lower-

bound the expected increase in the size of Mr over the size of Mr−1, with the expectation
being taken only over the outcome of edges in Qr. This lower bound is a function of Zr.

Lemma 3.3.3. For any r ∈ [R], odd L, and Q1, · · · , Qr−1, it holds that EQr [|Mr|] ≥
(1− γ)|Mr−1|+ αZr, where γ = p(L+1)/2

(
1 + 2

L+1

)
and α = p(L+1)/2.

Proof. By Lemma 3.3.2, there exist at least |Or| − (1 + 2
L+1

)|Mr−1| augmenting paths
in Or∆Mr−1 that augment Mr−1 and are of length at most L. The Or part of every aug-
menting path of length at most L exists independently with probability at least p(L+1)/2.
Therefore, the expected increase in the size of the matching is:

EQr [|Mr|]− |Mr−1| ≥ p
L+1
2

(
|Or| −

(
1 +

2

L+ 1

)
|Mr−1|

)
= α|Or| − γ|Mr−1|

≥ αZr − γ|Mr−1|,

where the last inequality holds by the fact that Zr, which is the expected size of the optimal
matching with expectation taken over non-queried edges, cannot be larger than Or, which
is the maximum matching assuming that every non-queried edge exists. �

We are now ready to prove the theorem.

Proof of Theorem 3.3.1. Let L = 4
ε
− 1; it is assumed to be an odd integer for ease

of exposition.4 By Lemma 3.3.3, we know that for every r ∈ [R], EQr [|Mr|| ≥ (1 −
γ)|Mr−1| + αZr, where γ = p(L+1)/2(1 + 2

L+1
), and α = p(L+1)/2. We will use this

inequality repeatedly to derive our result. We will also require the equality

EQr−1 [Zr] = EQr−1

[
M(E|

r−1⋃
i=1

Qi)

]
= M(E|

r−2⋃
i=1

Qi) = Zr−1. (3.1)

First, applying Lemma 3.3.3 at round R, we have that EQR [|MR|] ≥ (1− γ)|MR−1|+
αZR. This inequality is true for any fixed outcomes of Q1, . . . , QR−1. In particular, we
can take the expectation over QR−1, and obtain

EQR−1,QR [|MR|] ≥ (1− γ) EQR−1
[|MR−1|] + α EQR−1

[ZR].

4Otherwise there exists ε/2 ≤ ε′ ≤ ε such that 4
ε′ − 1 is an odd integer. We use a similar simplification

in the proofs of other results.

71

By Equation (3.1), we know that EQR−1
[ZR] = ZR−1. Furthermore, we can apply Lemma 3.3.3

to EQR−1
[|MR−1|] to get the following inequality:

EQR−1,QR [|MR|] ≥ (1− γ) EQR−1
[|MR−1|] + α EQR−1

[ZR]

≥ (1− γ) ((1− γ) |MR−2|+ α ZR−1) + α ZR−1

= (1− γ)2 |MR−2|+ α (1 + (1− γ)) ZR−1.

We repeat the above steps by sequentially taking expectations over QR−2 through Q1,
and at each step applying Equation (3.1) and Lemma 3.3.3. This gives us

EQ1,...,QR [|MR|] ≥ (1− γ)R|M0|+ α (1 + (1− γ) + · · ·+ (1− γ)R−1)Z1

= α
1− (1− γ)R

γ
Z1,

where the second transition follows from the initialization of M0 as an empty matching.
Since L = 4

ε
− 1 and R = log(2/ε)

p2/ε
, we have

α

γ

(
1− (1− γ)R

)
=

(
1− 2

L+ 1

)(
1− (1− γ)R

)
≥ 1− 2

L+ 1
− e−γR ≥ 1− ε

2
− ε

2

= 1− ε,

where the second transition is true because e−x ≥ 1 − x for all x ∈ R. We conclude that
EQ1,...,QR [|MR|] ≥ (1 − ε) Z1. Because Z1 = M(E), it follows that expected size of the
algorithm’s output is at least (1− ε) M(E). �

In Section 3.6, we extend our results to the setting where edges have correlated exis-
tence probabilities — an edge’s probability is determined by parameters associated with
its two vertices. This generalization gives a better model for kidney exchange, as some
patients are highly sensitized and therefore harder to match in general; this means that
all edges incident to such vertices are less likely to exist. We consider two settings, first,
where an adversary chooses the vertex parameters, and second, where these parameters
are drawn from a distribution. Our approach involves excluding from our analysis edges
that have too low an existence probability. We do so by showing that (under specific con-
ditions) excluding any augmenting path that includes such edges still leaves us with a large
number of constant-size augmenting paths.

72

3.4 Non-adaptive algorithm: 0.5-approximation

The adaptive algorithm, Algorithm 1, augments the current matching by computing a max-
imum matching on queried edges that are known to exist, and edges that have not been
queried. One way to extend this idea to the non-adaptive setting is the following: we
can simply choose several edge-disjoint matchings, and hope that they help in augmenting
each other. In this section, we ask: How close can this non-adaptive interpretation of our
adaptive approach take us to the omniscient optimum?

In more detail, our non-adaptive algorithm — formally given as Algorithm 2 — iterates
R = log(2/ε)

p2/ε
times. In each iteration, it picks a maximum matching and removes it. The set

of edges queried by the algorithm is the union of the edges chosen in some iteration. We
will show that, for any arbitrarily small ε > 0, the algorithm finds a 0.5(1−ε)-approximate
solution. Since we allow an arbitrarily small (though constant) probability p for stochastic
matching, achieving a 0.5-approximation independently of the value of p, while query-
ing only a linear number of edges, is nontrivial. For example, a naı̈ve algorithm that
only queries one maximum matching clearly does not guarantee a 0.5-approximation —
it would guarantee only a p-approximation. In addition, the example given in Section 3.2
shows that choosing edges at random performs poorly.

1 Input: A graph G(V,E).
2 Parameter: R = log(2/ε)

p2/ε

3 Algorithm:
1. Initialize W1 ← ∅.

2. For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in
(
V,E \

⋃
1≤i≤r−1Wi

)
.

(b) Wr ← Wr−1 ∪Or.

3. Query all the edges in WR, and output the maximum matching among the edges
that are found to exist in WR.

Algorithm 2: NON-ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: 0.5-
APPROXIMATION

The number of edges incident to any particular vertex that are queried by the algorithm
is at most log(2/ε)

p2/ε
, because the vertex can be matched with at most one neighbor in each

round. The next theorem establishes the approximation guarantee of Algorithm 2.

73

Theorem 3.4.1. Given a graph G = (V,E) and any ε > 0, the expected size M(WR) of
the matching produced by Algorithm 2 is at least a 0.5(1− ε) fraction of M(E).

Lemma 3.4.2. Let E1 be an arbitrary subset of edges of E, and let E2 = E \ E1. Then
M(E) ≤M(E1) +M(E2).

Proof. LetE ′ be an arbitrary subset of edges ofE, and letE ′1 = E1∩E ′ andE ′2 = E2∩E ′.
We claim that |M(E ′)| ≤ |M(E ′1)|+ |M(E ′2)|. This is because if T is the set of edges in a
maximum matching in graph (V,E ′), then clearly T ∩E ′1 and T ∩E ′2 are valid matchings
in E ′1 and E ′2 respectively, and thereby it follows that |M(E ′1)| ≥ |T ∩E ′1| and |M(E ′2)| ≥
|T ∩E ′2|, and hence |M(E ′)| ≤ |M(E ′1)|+ |M(E ′2)|. Expectation is a convex combination
of the values of the outcomes. For every subset E ′ of edges in E, multiplying the above
inequality by the probability that the outcome of the coin tosses on the edges of E is E ′,
and then summing the various inequalities, we get M(E) ≤M(E1) +M(E2). �

In order to lower bound M(WR), we first show that for any round r, either our cur-
rent collection of edges has an expected matching size M(Wr−1) that compares well with
M(E), or in round r, we have a significant increase in M(Wr) over M(Wr−1).

Lemma 3.4.3. At any iteration r ∈ [R] of Algorithm 2 and odd L, if M(Wr−1) ≤
M(E)/2, then

M(Wr) ≥
α

2
M(E) + (1− γ)M(Wr−1),

where γ = p(L+1)/2(1 + L+1
2

) and α = p(L+1)/2.

Proof. Define U = E \Wr−1. Assume that M(Wr−1) ≤ M(E)/2. By Lemma 3.4.2, we
know that M(U) ≥ M(E) −M(Wr−1). Hence, |Or| = |M(U)| ≥ M(U) ≥ M(E) −
M(Wr−1) ≥M(E)/2.

In a thought experiment, say at the beginning of round r, we query the set Wr−1 and
let W ′

r−1 be the set of edges that are found to exist. By Lemma 3.3.2, there are at least
|Or| − (1 + 2

L+1
)|M(W ′

r−1)| augmenting paths of length at most L in Or∆M(W ′
r−1) that

augment M(W ′
r−1). Each of these paths succeeds with probability at least p(L+1)/2. We

have,

M(Or ∪W ′
r−1|W ′

r−1)− |M(W ′
r−1)| ≥ p(L+1)/2

(
|Or| − (1 +

2

L+ 1
)|M(W ′

r−1)|
)

≥ p(L+1)/2

(
1

2
M(E)− (1 +

2

L+ 1
)|M(W ′

r−1)|
)
,

74

where the expectation on the left hand side is taken only over the outcome of the edges in
Or. Therefore, we have M(Or ∪W ′

r−1|W ′
r−1) ≥ α

2
M(E) + (1 − γ)|M(W ′

r−1)|, where
α = p(L+1)/2 and γ = p(L+1)/2 (1+ 2

L+1
). Taking expectation over the coin tosses onWr−1

that create outcome W ′
r−1, we have our result, i.e.,

M(Wr) ≥ EWr−1 [M(Or ∪W ′
r−1|W ′

r−1)] ≥M(Or ∪Wr−1) ≥ α

2
M(E) + (1− γ)M(Wr−1).

�

Proof of Theorem 3.4.1. For ease of exposition, assume L = 4
ε
− 1 is an odd integer.

Then, either M(WR) ≥ M(E)/2 in which case we are done. Or otherwise, by repeatedly
applying Lemma 3.4.3 for R steps, we have

M(WR) ≥ α

2
(1 + (1− γ) + (1− γ)2 + · · ·+ (1− γ)R−1)M(E) ≥ α

2

(1− (1− γ)R)

γ
M(E).

Now, α
γ
(1 − (1 − γ)R) ≥ 1 − 2

L+1
− e−γR ≥ 1 − ε for R = log(2/ε)

p2/ε
. Hence, we have our

0.5(1− ε) approximation. �

As explained in Section 3.9, we do not know whether in general non-adaptive algo-
rithms can achieve a (1 − ε)-approximation with O(1) queries per vertex. However, if
there is such an algorithm, it is not Algorithm 2! Indeed, the next theorem shows that the
algorithm cannot give an approximation ratio better than 5/6 to the omniscient optimum.
In fact, it holds even when R = Θ(log n).

Theorem 3.4.4. Let p = 0.5. For any ε > 0 there exists n and a graph (V,E) with
|V | ≥ n such that Algorithm 2, with R = O(log n), returns a matching with expected size
of at most 5

6
M(E) + ε.

Claim 3.4.5. Let G = (U ∪ V, U × V) be a complete bipartite graph between U and V
with |U | = |V | = n. For any constant probability p, M(E) ≥ n− o(n).

Proof. Denote by Ep the random set of edges formed by including each edge in U × V
independently with probability p. We show that with probability at least 1 − 1

n8 , over the
draw Ep, the maximum matching in the graph (U ∪ V,Ep) is at least n− c log(n), where
c = 10/ log(1

(1−p)), and this will complete our claim.

In order to show this, we prove that with probability at least 1− 1
n8 , over the draw Ep,

all subsets S ⊆ U of size at most n − c log(n), have a neighborhood of size at least |S|.
By Hall’s theorem, our claim will follow.

75

Consider any set S ⊆ U of size at most n− c log(n). We will call set S ‘bad’ if there
exists some set T ⊆ V of size (|S| − 1) such that S does not have edges to V \ T . Fix
any set T ⊆ V of size |S| − 1. Over draws of Ep, the probability that S has no outgoing
edges to V \ T is at most (1− p)|S||V \T | = (1− p)|S|(n−|S|+1). Hence, by union bound, the
probability that S is bad is at most

(
n
|S|−1

)
(1− p)|S|(n−|S|+1).

Again, by union bound, the probability that some set S ⊆ U of size at most n−c log(n)
is bad is at most

∑
1≤|S|≤n−c log(n)

(
n
|S|

)(
n
|S|−1

)
(1− p)|S|(n−|S|+1) and this in turn is at most∑

1≤|S|≤n−c log(n)

n|S|n|S|(1− p)|S|(n−|S|+1) ≤
∑

1≤|S|≤n−c log(n)

e|S|·(2 log(n)+(n+1) log(1−p)−|S| log(1−p))

Note that the exponent in the summation achieves its maximum for |S| = 1. For c =
10/ log(1

1−p), we have that the given sum is at most exp(−n
2

log(1
1−p)), and hence with

high probability, no set S ⊆ U of size at most n− c log(n) is bad. �

Proof of Theorem 3.4.4. Let (V,E) be a graph, illustrated in Figure 3, whose vertices are
partitioned into sets A, B, C, and D, such that |A| = |D| = t

2
, |B| = |C| = t. The edge

set E consists of one perfect matching between vertices of B and C, and two complete
bipartite graphs, one between A and B, and another between C and D. Let p = 0.5 be the
existence probability of any edge.

We first examine the value of the omniscient optimal, M(E). Since p = 0.5, in ex-
pectation, half of the edges in the perfect matching between B and C exist, and therefore
half of the vertices of B and C will get matched. By Claim 3.4.5, with high probability,
the complete bipartite graph between the remaining half of B and A has a matching of
size at least t/2− o(t). And similarly, with high probability, the complete bipartite graph
between remaining half of C and D has a matching of size at least t/2− o(t). Therefore,
M(E) is at least 3

2
t− o(t).

Next, we look at Algorithm 2. For ease of exposition, let B1 and B2 denote the top and
bottom half of the vertices in B. Similarly, define C1 and C2. Since Algorithm 2 picks
maximum matchings arbitrarily, we show that there exists a way of picking maximum
matchings such that the expected matching size of the union of the edges picked in the
matching is at most 5

4
t (= 5

6
3
2
t).

Consider the following choice of maximum matching picked by the algorithm: In the
first round, the algorithm picks the perfect matching between B1 and C1, and a perfect
matching between A and B2, and a perfect matching between C2 and D. In the second
round, the algorithm picks the perfect matching between B2 and C2, and a perfect match-
ing each between A and B1, and between C1 and D. After these two rounds, we can see

76

...

...

...

...

...
...

B1

B2

C1

C2

DA

Figure 3.2: The blue and red edges represent the matching picked at rounds 1 and 2,
respectively. The green edges represent the edges picked at round 3 and above. The
dashed edges are never picked by the algorithm.

that there are no more edges left between B and C. For the subsequent R − 2 rounds,
in each round, the algorithms picks a perfect matching between A and B1, and a perfect
matching between C1 and D. It is easy to verify that in every round, the algorithm has
picked a maximum matching from the remnant graph.

We analyze the expected size of matching output by the algorithm. For each of the
vertices in B2 and C2, the algorithm has picked only two incident edges. For any vertex
in B2 and C2, with probability at least (1 − p)2 = 1

4
, none of these two incident edges

exist. Hence, the expected number of vertices that are unmatched in B2 and C2 is at least
1
4
(t

2
+ t

2
) = t

4
. Since the vertices in A can only be matched with vertices in B, and

the vertices in D can only be matched with vertices in C, it follows that at least t
4

of
the vertices in A and C are unmatched in expectation. Hence, the total number of edges
included in the matching is at most 5

4
t. This completes our claim. �

3.5 Generalization to k-Set Packing

So far we have focused on stochastic matching, for ease of exposition. But our approach
directly generalizes to the k-set packing problem.

Formally, a k-set packing instance (U,A) consists of a set of elements U , |U | = n, and
a collection of subsets A, such that each subset S in A contains at most k elements of U ,
that is, S ⊆ U and |S| ≤ k. Given such an instance, a feasible solution is a collection of
sets B ⊆ A such that any two sets in B are disjoint. We use K(A) to denote the largest
feasible solution B.

77

Finding an optimal solution to the non-stochastic k-set packing problem is NP-hard
(see, e.g., [Abraham et al., 2007] for the special case of k-cycle packing). Hurkens and
Schrijver [1989] designed a polynomial-time local search algorithm with an approximation
ratio of (2

k
− η), using local improvements of constant size that depends only on η and

k. We denote this constant by sη,k. More formally, consider an instance (U,A) of k-
set packing and let B ⊆ A be a collection of disjoint k-sets. (C,D) is said to be an
augmenting structure for B if removing D and adding C to B increases the cardinality
and maintains the disjointness of the resulting collection, i.e., if (B ∪ C) \D is a disjoint
collection of k-sets and |(B ∪ C) \D| > |B|, where C ⊆ A and D ⊆ B.

Turning to the stochastic version of the problem, given (U,A), let Ap be a random
subset of A where each set from A is included in Ap independently with probability p. We
then define K(A) to be E[|K(Ap)|], where the expectation is taken over the random draw
Ap. Similarly to the matching setting, this is the omniscient optimum — our benchmark.

A notation that we will use in some parts of the analysis is K(A|B) that we define as
follows: Given a collection B ⊆ A that has been queried and B′ ⊆ B that exists, we use
K(A|B) to denote E[|K(Xp∪B′)|] whereXp is the random set formed by including every
element of A \B independently with probability p.

In Section 3.5.1, we give a polynomial time algorithm that finds a linear number of
disjoint constant-sized augmenting structures for a given solution of k-set packing. Next,
in Sections 3.5.2 and 3.5.3, we introduce and analyze the adaptive and non-adaptive algo-
rithms for k-set packing, respectively.

3.5.1 Disjoint Constant-Size Augmenting Structures for k-Set Pack-
ing

Hurkens and Schrijver [1989] prove the following on augmenting structures for k-set pack-
ing:

Lemma 3.5.1 ([Hurkens and Schrijver, 1989]). Given a collection B of disjoint sets such
that |B| < (2/k − η)|K(A)|, there exists an augmenting structure (C,D) for B such that
both C and D have at most sη,k sets, for a constant sη,k which depends only on η and k.

However, we need to find many augmenting structures. We use Lemma 3.5.1 to prove:

Lemma 3.5.2. If |B| < |K(A)|, then there exist 1
k sη,k

(|K(A)|− |B|
2
k
−η) disjoint augmenting

structures that augment the cardinality of B, each with size at most sη,k. Moreover, this
collection of augmenting structures can be found in polynomial time.

78

We introduce Algorithm 3 that runs on a k-set instance and a current solution, and
returns a linear number of disjoint augmenting structures.

1 Input: k-set instance (U,A) and a collection B ⊆ A of disjoint sets.
2 Output: Collection Q of disjoint augmenting structures (C,D) for B.
3 Parameter: sη,k (the desired maximum size of the augmenting structure)
4 Algorithm:

1. Initialize A1 ← A and Q← φ (empty set).

2. For t = 1, · · · , |A|

(a) Find a sη,k-sized augmenting structure (C,D) for B on the k-set instance
(U,At).

(b) Add (C,D) to Q. (If C is an empty set, break out of the loop.)

(c) Set At+1 to be At minus the collection C and any set in At \B that
intersects with C.

3. Output Q.

Algorithm 3: FINDING CONSTANT-SIZE DISJOINT AUGMENTING STRUCTURES

FOR k-SETS

Proof of Lemma 3.5.2. We prove this lemma using Algorithm 3. We claim that if we
run this algorithm on the k-set instance (U,A) and the collection B, then it will return a
collection Q of at least T = 1

k sη,k
(|K(A)| − |B|

2
k
−η) disjoint augmenting structures (C,D)

for B. By Step 2c, we are guaranteed that Q consists of disjoint augmenting structures.
Hence, all that is left to show is that in each of the first T iterations, at Step 2a, we are able
to find a non-empty augmenting structure (C,D) for B.

By Lemma 3.5.1, we know that if at iteration t, it is the case that |B| < (2
k
−η)|K(At)|,

then we will find a sη,k-sized augmenting structure (C,D) forB. To prove that the inequal-
ity holds at each iteration t ≤ T , we first claim that for all t, |K(At)| ≥ |K(A)| − (t −
1) · k · sη,k. We prove this by induction. The claim is clearly true for the base case of
t = 1. For the inductive step, suppose it is true for t, then we know that |K(At)| ≥
|K(A)| − (t − 1) · k · sη,k. At iteration t, the augmenting structure (C,D) can intersect
with at most sη,k · k many sets of K(At). This is true since K(At) consists of disjoint
sets, and the augmenting structure (C,D) is of size at most sη,k. Hence, Step 2c reduces
|K(At)| by at most k · sη,k. So, |K(At+1)| ≥ |K(At)| − k · sη,k. Combining the two

79

inequalities, |K(At)| ≥ |K(A)| − (t− 1) · k · sη,k and |K(At+1)| ≥ |K(At)| − k · sη,k, we
have |K(At+1)| ≥ |K(A)| − t · k · sη,k.

Hence, if the for-loop adds non-empty augmenting structures only for the first t rounds,
it must be the case that |B| ≥ (2

k
−η)|K(At+1)|, and therefore that |B| ≥ (2

k
−η)(|K(A)|−

t · k · sη,k) which implies that t ≥ 1
k sη,k

(|K(A)| − |B|
2
k
−η). �

3.5.2 Adaptive Algorithm for k-Set Packing

In this section, we extend the ideas introduced earlier for obtaining the adaptive solution
for matching, together with Lemma 3.5.2 and additional ingredients, to obtain the follow-
ing result.

Theorem 3.5.3. There exists an adaptive polynomial-time algorithm that, given a k-set
instance (U,A) and ε > 0, uses O(1) rounds and O(n) queries overall, and returns a set
BR whose expected cardinality is at least a (1− ε) 2

k
fraction of K(A).

We introduce Algorithm 4 that is used to find a packing that approximates the om-
niscient optimum. In each round r, the algorithm maintains a feasible k-set packing Br

based on the k-sets that have been queried so far. It then computes a collection Qr of
several disjoint bounded sized augmenting structures to the current solution Br, where the
augmenting structures are composed of the sets that are not queried so far. It issues queries
to these augmenting structures, and uses those that are found to exist for augmenting the
current solution. The augmented solution is fed into the next round.

For any element v ∈ U , the number of sets that it belongs to and are also queried
is at most R. This is because in each of the R rounds, the algorithm issues queries to
disjoint augmenting structures, and each augmenting structure includes at most one set
per element.

We introduce some notation that is used in the remainder of the proofs in this section.
At the beginning of the rth iteration of Algorithm 4, we know the results of the queries⋃r−1
i=1 Qi. We define Zr to be the expected cardinality of the instance (U,A) given the

result of these queries. More formally, Zr = K(A|
⋃r−1
i=1 Qi). We note that Z1 = K(A).

For a given r, we use the notation EQr [X] to denote the expected value of X where
the expectation is taken over only the outcome of query Qr, and fixing the outcomes on
the results of queries

⋃r−1
i=1 Qi. Moreover, for a given r, we use EQr,...,QR [X] to denote the

expected value of X with the expectation taken over the outcomes of queries
⋃R
i=rQi, and

fixing an outcome on the results of queries
⋃r−1
i=1 Qi.

80

1 Input: A k-set instance (U,A), and ε > 0.

2 Parameters: η = ε
k

and R =
(2
k
−η) k sη,k
p
sη,k log(2

ε
) (For a (1− ε)(2

k
)-approximation)

3 Algorithm:

1. Initialize r ← 1, B0 ← ∅ and A1 ← A.

2. For r = 1, . . . , R, do

(a) Initialize Br to Br−1.

(b) Let Qr be the set of augmenting structures output by Algorithm 3 on the
input of k-set instance (U,Ar), the collection Br, and parameter sη,k.

(c) For each augmenting structure (C,D) ∈ Qr.

i. Query all elements in C.
ii. If all elements of C exist, augment the current solution:

Br ← (Br \D) ∪ C.

(d) Set Ar+1 to be Ar minus any queried sets that were found to not exist.

3. Return BR.

Algorithm 4: ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

81

The next result, Lemma 3.5.4, proves a lower bound on the expected increase in the
cardinality ofBr (the solution at round r) with respect toBr−1 (the solution in the previous
round).

Lemma 3.5.4. For every r ∈ [R], it is the case that EQr [|Br|] ≥ (1−γ)|Br−1|+γ(2
k
−η)Zr,

where γ = p
sη,k

(2
k
−η)k sη,k

.

Proof. By Lemma 3.5.2, Qr is a collection of at least 1
k sη,k

(|K(Ar)|− |Br−1|
2
k
−η) disjoint sη,k-

size augmenting structures (C,D) forBr−1. Since in each augmenting structure (C,D), C
has at most sη,k sets, on querying, the set C exists with probability at least psη,k . Therefore,
the expected increase in the size of the solution at Step 2c is:

EQr [|Br|]− |Br−1| ≥ pksη,k |Qr| ≥
psη,k

k sη,k

(
|K(Ar)| −

|Br−1|
2
k
− η

)
≥ γ

(
(
2

k
− η) |K(Ar)| − |Br−1|

)
.

Noting that |K(Ar)| ≥ Zr, we have our result. �

Proof of Theorem 3.5.3. First, we make a technical observation about Zr: For every r ≤
R, EQr−1 [Zr] = Zr−1. This is since

EQr−1 [Zr] = EQr−1 [K(A|
r−1⋃
i=1

Qi)] = K(A|
r−2⋃
i=1

Qi) = Zr−1. (3.2)

Now, similar to the proof of Theorem 3.3.1, we first apply Lemma 3.5.4 to the Rth

step and get EQR [|BR|] ≥ (1− γ)|BR−1|+ γ(2
k
− η)ZR. Next taking expectation on both

sides with respect to QR−1, we get EQR−1,QR [|BR|] ≥ (1 − γ)EQR−1
[|BR−1|] + γ(2

k
−

η)EQR−1
[ZR]. Applying Lemma 3.5.4 to EQR−1

[|BR−1|] and Equation (3.2) to EQR−1
[ZR],

we get

EQR−1,QR [|BR|] ≥ (1− γ)((1− γ)|BR−2|+ γ(
2

k
− η)ZR−1) + γ(

2

k
− η) ZR−1

= (1− γ)2|BR−2|+ γ(
2

k
− η)(1 + (1− γ)) ZR−1.

We can repeat the above steps, by sequentially taking expectation over QR−2 through
Q1, and applying Lemma 3.5.4 and Equation (3.2) at each step, to achieve

EQ1,...,QR [|BR|] ≥ (1− γ)R|B0|+ γ(
2

k
− η)(1 + (1− γ) + · · ·+ (1− γ)R−1) Z1

≥ (
2

k
− η)(1− (1− γ)R) K(A) ≥ 2

k
(1− ηk

2
)(1− e−γR). K(A)

82

We complete the claim by noting that

2

k
(1− ηk

2
)(1− e−γR) ≥ 2

k
(1− ε

2
)(1− ε

2
) ≥ (1− ε)2

k
,

where the penultimate inequality comes from the fact that η = ε/k and

R =
(2
k
− η) k sη,k

psη,k
log(

2

ε
) =

1

γ
log(

2

ε
).

Therefore, the cardinality of BR in expectation is at least a (1− ε) 2
k
K(A). �

3.5.3 Non-Adaptive Algorithm for k-Set Packing

Theorem 3.5.5. There exists a non-adaptive polynomial-time algorithm that, given a k-
set instance (U,A) and ε > 0, uses O(n) queries overall and returns a k-set packing with
expected cardinality (1− ε) (2/k)2

2/k+1
K(A).

To prove Theorem 3.5.5, we introduce a simple non-adaptive algorithm (Algorithm
5) that proceeds as follows. For R rounds, at every round, using the local improvement
algorithm of Hurkens and Schrijver [1989], we find a (2

k
− η)-approximate solution to the

k-set instance and remove it from the instance. Then, we query every set that is included
in these R solutions. We show that the expected cardinality of the maximum packing on
the chosen sets is a (1− ε) (2/k)2

2/k+1
of the expected optimal packing.

It is simple to see that for any v ∈ U , there are at most R sets that include v and are
queried by the algorithm. This is because the sets chosen at each round are disjoint since
they form a feasible k-set packing solution.

Before proving Theorem 3.5.5, we present a technical claim.

Claim 3.5.6. Let A1 ⊆ A and A2 = A \ A1. Then K(A) ≤ K(A1) +K(A2).

Proof. Let A′ be any subset of A, A′1 = A1 ∩ A′, and A′2 = A2 ∩ A′. Since the k-set
packing of A′ restricted to A′1 and A′2 are valid k-set packings for these subsets, hence
|K(A′)| ≤ |K(A′1))|+ |K(A′2)|. For every A′ ⊆ A, the above inequality holds. Expecta-
tion is a linear combination of the values of the outcomes, and so this inequality also holds
in expectation. That is, K(A) ≤ K(A1) +K(A2). �

83

1 Input: A k-set instance (U,A), and ε > 0.

2 Parameters: η = ε
2k

and R =
(2
k
−η) k sη,k
p
sη,k log(2

ε
). (For

(1− ε) (2/k)2

2/k+1
-approximation)

3 Algorithm:

1. Let B0 ← ∅.

2. For r = 1, . . . , R, do

(a) Assign Or to a (2
k
− η)-approximate solution to the k-set instance

(U,A \
⋃r−1
i=1 Bi). (Or is found using the local improvement algorithm of

Hurkens and Schrijver [1989].)

(b) Set Br ← Br−1 ∪Or.

3. Query the sets in O1, and assign Q1 to be the sets that are found to exist.

4. For r = 2, · · · , R, do

(a) Find augmenting structures in Or that augment Qr−1. This is achieved by
giving k-set instance (U,Qr−1 ∪Or) and solution Qr−1 as input (with
parameter sη,k) to Algorithm 3.

(b) Query all the augmenting structures in Or, and augment Qr−1 with the
ones that are found to exist. Call the augmented solution Qr.

5. Output QR.

Algorithm 5: NON-ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

84

Proof of Theorem 3.5.5. We claim that the expected cardinality of the k-set solution out-
put by Algorithm 5 is at least (1− ε

2
)

(2
k
−η)2

1+ 2
k
−ηK(A). The claimed approximation will follow

since η = ε
2k

.

For ease of exposition, let α =
2
k
−η

1+ 2
k
−η , and now note that (2

k
−η)2

1+ 2
k
−η = α(2

k
− η) =

(1− α)(2
k
− η)2.

Assume that K(BR) ≤ α ·K(A) (else it will be immediately follow that the expected
cardinality of the k-set solution output by the algorithm is at least (2

k
− η)αK(A) and this

will complete the claim).

First, we make an observation. For each round r ∈ [R], we have K(Br) ≤ K(BR) ≤
αK(A). If we denote Ar = A \Br−1, then it follows that

|Or| ≥ (
2

k
−η)|K(Ar)| ≥ (

2

k
−η)K(Ar) ≥ (

2

k
−η)(K(A)−K(Br−1)) ≥ (

2

k
−η)(1−α)K(A) ,

where the first inequality follows from the fact that Or is (2
k
− η)-approximation to Ar,

and the second inequality follows from Claim 3.5.6.

We analyze the expected cardinality of the output solution QR by analyzing the R
stages that the algorithm adopts at Steps 3 and 4 to create solution QR. For this analysis,
we use the following notation: For a given r, we use the notation EOr [X] to denote the
expected value of X where the expectation is taken over only the outcome of query Or,
and fixing the outcomes on the results of queries

⋃r−1
i=1 Oi. Moreover, for a given r, we

use EOr,...,OR [X] to denote the expected value of X with the expectation taken over the
outcomes of queries

⋃R
i=r Oi, and fixing an outcome on the results of queries

⋃r−1
i=1 Oi.

In the first stage, Q1 is assigned to the collection of k-sets that are found to exist in
O1. In the second stage, we try to augment Q1 by finding augmenting structures from
O2 and querying them. By Lemma 3.5.2, it finds at least 1

ksη,k

(
|O2| − |Q1|

2
k
−η

)
disjoint

augmenting structures from O2 that have size at most sη,k and augment Q1. Since each
augmenting structure exists independently with probability at least psη,k , in expectation
over the outcomes of queries to O2, the size of Q2, EO2 [Q2], is at least

|Q1|+ psη,k
(

1

ksη,k

(
|O2| −

|Q1|
2
k
− η

))
=
psη,k

ksη,k
|O2|+ (1− psη,k

ksη,k(
2
k
− η)

)|Q1|

≥ p
sη,k

ksη,k
(
2

k
− η)(1− α)K(A) + (1− psη,k

ksη,k(
2
k
− η)

) |Q1|,

and hence the expected size of Q2 is at least β K(A) + (1− γ)|Q1|, where β = p
sη,k

ksη,k
(2
k
−

η)(1− α) and γ = p
sη,k

k sη,k (2
k
−η)

.

85

For the third stage, a similar analysis shows that the expected size ofQ3, EO3 [Q3], with
expectation taken only over the outcomes of the queries to O3, is at least β K(A) + (1 −
γ)|Q2|. If we now, in addition, take expectation over the outcomes of queries toO2, we get
the expected size ofQ3, EO2,O3 [Q3], is at least β K(A)+(1−γ) (β K(A)+(1−γ)|Q1|) =
β(1 + (1− γ)) K(A) + (1− γ)2 |Q1|.

Repeating the above steps, the procedure creates the k-set solutionQR (fromO1, · · · , OR)
whose expected size, with expectation taken over the outcomes of queries to O2 through
OR, is at least

β(1 + (1− γ) + · · ·+ (1− γ)R−2)K(A) + (1− γ)R−1|Q1| .

Finally, taking expectation over outcomes of queries to O1, since the expected size of
|Q1| is at least p|O1| ≥ p (2

k
− η)K(A) ≥ β K(A), we have that the expected size of QR

is at least

β (1 + (1− γ) + · · ·+ (1− γ)R−1)K(A)

=
β

γ
(1− (1− γ)R)K(A) ≥ β

γ
(1− e−γR)K(A) ≥ (1− ε

2
)

(2
k
− η)2

2
k
− η + 1

K(A)

�

3.6 Matching Under Correlated Edge Probabilities

In this section, we extend our framework to a more general setting. Here, the existence
probability of an edge depends on parameters that are associated with the endpoints of
the edge. Specifically, every vertex vi ∈ V is associated with parameter pi, and an edge
eij = (vi, vj) exists with probability pipj .

Importantly, this model is a generalization of the model studied above: we can still
think of each edge e ∈ E as existing with a given probability, and these events are inde-
pendent. However, using vertex parameters gives us a formal framework for correlating
the probabilities of edges incident to any particular vertex. The motivation for this comes
from kidney exchange: Some highly sensitized patients are less likely than other patients
to be compatible with potential donors. Such patients correspond to a small pi parameter.

We consider two settings: adversarial and stochastic. In the adversarial setting, the
vertex parameters pi are selected by an adversary, whereas in the stochastic model, the
parameters are drawn from a distribution. In the former setting, for δ > 0, define fδ to

86

be the number of vertices that have pi < δ. In the latter setting, for a distribution D
and δ > 0, let gδ indicate the probability that a vertex has its parameter less than δ, i.e.,
gδ = Prpi∼D[pi < δ]. We formulate our results in terms of δ, fδ, and gδ, and the desired
value of δ can depend on the application. For example, in kidney exchange, δ would be the
probability that a highly-sensitized patient is compatible with a random donor (a patient is
typically considered to be highly sensitized when this probability is 0.2), and fδ would be
the number of highly-sensitized patients in the kidney exchange pool.

3.6.1 Adaptive Algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex
parameters. We give guarantees on the performance of Algorithm 1 in this setting.

Theorem 3.6.1. For any graph (V,E), any ε > 0, and δ > 0, Algorithm 1 returns a
matching with expected size of (1− ε)(M(E)− fδ) in R = log(2/ε)

δ4/ε
iterations.

The proof of this theorem and the subsequent lemmas are similar to the proofs of Sec-
tion 3.3, and are included here for completeness. In the next lemma, EQr [|Mr|] indicates
the expected size of Mr, where the expectation is over the query outcome of Qr. More
formally, EQr [|Mr|] = M(

⋃r
j=1 Qj|

⋃r−1
j=1 Qj). We use Zr to denote the expected size of

the maximum matching in graph (V,E) given the results of the queries
⋃r−1
j=1 Qj . More

formally, Zr = M(E|
⋃r−1
j=1 Qi). Note that Z1 = M(E).

Lemma 3.6.2. For all r ∈ [R] and odd L, EQr [|Mr|] ≥ (1 − γ)|Mr−1| + α(Zr − fδ),
where γ = δL+1(1 + 2

L+1
) and α = δL+1.

Proof. By Lemma 3.3.2, there exists |Or| − (1 + 2
L+1

)|Mr−1| many augmenting paths in
Or∆Mr−1 that augment Mr−1 and have length at most L. These augmenting paths are
disjoint, so at most fδ of them include a vertex vi, with pi ≤ δ. We will ignore these paths.
Among the remaining augmenting paths, each path of length L, has at most L+1

2
edges

that have not been queried yet. These edges do not share a vertex, so each one exists,
independently of others, with probability at least δ2. Therefore, the expected increase in
the size of the matching from these augmenting paths is:

EQr [|Mr|]−|Mr−1| ≥ δL+1

(
|Or| − (1 +

2

L+ 1
)|Mr−1| − fδ

)
≥ α(Zr−fδ)−γ|Mr−1|.

where the last inequality holds by the fact that Zr, which is the expected size of the optimal
matching with expectation taken over the non-queried edges, cannot be larger than Or,
which is the maximum matching assuming that every non-queried edge exists. �

87

Proof sketch of Theorem 3.6.1. Let L = 4
ε
− 1. First note that for all r, it is true that

EQr−1 [Zr − fδ] = EQr−1 [Zr]− fδ = EQr−1

[
M(E|

r−1⋃
i=1

Qi)

]
− fδ = M(E|

r−2⋃
i=1

Qi)− fδ

= Zr−1 − fδ.

The remainder of the proof is similar to that of Theorem 3.3.1 with Zr − fδ replacing Zr.
Following similar analysis, we have

EQ1,...,QR [|MR|] ≥ α
1− (1− γ)R

γ
(M(E)− fδ).

Since R = log(2/ε)

δ4/ε
, we have

α

γ

(
1− (1− γ)R

)
≥ (1− 2

L+ 1
)
(
1− (1− γ)R

)
≥ (1− ε

2
)(1− e−γR) ≥ (1− ε).

(3.3)

Therefore, Algorithm 1 returns a matching with expected size of (1− ε)(M(E)− fδ). �

3.6.2 Adaptive Algorithm in Stochastic Setting

In this section, we consider the case where the vertex parameters are drawn independently
from a distribution.

Corollary 3.6.3. Given any graph (V,E) with vertex parameters that are drawn from
distribution D and any ε, δ > 0, Algorithm 1 returns a matching with expected size of
(1− ε)(M(E)− ngδ) in R = log(2/ε)

δ4/ε
iterations.

Proof. The result of Theorem 3.6.1 holds for any value of fδ. Hence, on taking expectation
over the value of fδ, we have our result. �

The next corollary shows the implication of Corollary 3.6.3 for the uniform distribu-
tion.

Corollary 3.6.4. For a given graph (V,E) with vertex parameters that are drawn from the
uniform distribution, and any ε > 0, Algorithm 1 returns a matching with expected size of
(1− ε)(M(E)− εn) in R = log(2/ε)

ε4/ε
iterations.

Proof. This follows from Corollary 3.6.3 by setting δ = ε and noting that gε = ε for the
uniform distribution. �

88

3.6.3 Non-adaptive algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex
parameters. We prove performance guarantees for Algorithm 2 in this adversarial setting.

Theorem 3.6.5. Given a graph (V,E) with vertex parameters that are selected by an
adversary, and any ε, δ > 0, Algorithm 2 returns a matching with expected size of 1

2
(1 −

ε)(M(E)− fδ) in R = log(2/ε)

δ4/ε
iterations.

The proof of Theorem 3.6.5 and the subsequent lemma are similar to Section 3.4, and
are included here for completeness.

Lemma 3.6.6. For any iteration r ∈ [R] of Algorithm 2 and odd L, if M(Wr−1) ≤
M(E)/2, then M(Wr) ≥ α

2
(M(E) − fδ) + (1 − γ)M(Wr−1), where α = δL+1 and

γ = δL+1(1 + 2
L+1

).

Proof. Define U = E \Wr−1. Assume that M(Wr−1) ≤ M(E)/2. By Claim 3.4.2, we
know that M(U) ≥ M(E) −M(Wr−1). Hence, |Or| = |M(U)| ≥ M(U) ≥ M(E) −
M(Wr−1) ≥M(E)/2.

LetW ′
r−1 represent one possible outcome of existing edges when edges are drawn from

Wr−1. By Lemma 3.3.2, there are at least |Or| − (1 + 2
L+1

)|M(W ′
r−1)| augmenting paths

of length at most L inOr∆M(W ′
r−1) that augmentM(W ′

r−1). Among these paths, at most
fδ have a vertex vi, with pi < δ. We ignore these paths. Each remaining path succeeds
with probability (δ2)(L+1)/2. Hence, the expected increase in the size of |M(W ′

r−1)| using
the remaining paths of length L is,

M(Or ∪W ′
r−1|W ′

r−1)− |M(W ′
r−1)| ≥ δL+1

(
|Or| − (1 +

2

L+ 1
)|M(W ′

r−1)| − fδ
)

≥ δL+1

(
1

2
M(E)− (1 +

2

L+ 1
)|M(W ′

r−1)| − fδ
)
.

Re-arranging the inequality, we get M(Or ∪ W ′
r−1|W ′

r−1) ≥ α
2

(M(E) − fδ) + (1 −
γ)|M(W ′

r−1)|. Taking expectation over the coin tosses onWr−1 that create outcomeW ′
r−1,

we have

M(Wr) ≥ EWr−1 [M(Or ∪W ′
r−1|W ′

r−1)] ≥ α

2
(M(E)− fδ) + (1− γ)M(Wr−1).

�

89

Proof sketch of Theorem 3.6.5. Let L = 4
ε
− 1. The proof is similar to that of Theo-

rem 3.4.1 with the value of M(E) being replaced by M(E) − fδ. Following a similar
analysis, we get

M(WR) ≥ α

2

(1− (1− γ)R)

γ
(M(E)− fδ).

Now, α
γ
(1 − (1 − γ)R) ≥ (1 − 2

L+1
)(1 − e−γR) ≥ (1 − ε) for R = log(2/ε)

δ4/ε
. Hence,

Algorithm 2 returns a matching with expected size of 0.5(1− ε)(M(E)− fδ). �

3.6.4 Non-adaptive algorithm in Stochastic Setting

We examine the performance of Algorithm 2 in the setting where the vertex parameters
are chosen independently from a distribution.

Corollary 3.6.7. Given a graph (V,E) with vertex parameters that are selected from dis-
tribution D, and ε, δ > 0, Algorithm 2 returns a matching with expected size of 1

2
(1 −

ε)(M(E)− ngδ) with R = log(2/ε)

δ4/ε
non-adaptive queries.

Proof. The result of Theorem 3.6.5 holds for any value of fδ. Hence, on taking expectation
over the values of fδ, we have our result. �

Corollary 3.6.8. For any G = (V,E) with vertex parameters that are drawn from the
uniform distribution, and any ε > 0, Algorithm 2 returns a matching with expected size of
0.5(1− ε)(M(E)− nε) with R = log(2/ε)

ε4/ε
non-adaptive queries.

Proof. This follows from Corollary 3.6.7 by setting δ = ε and noting that gε = ε for the
uniform distribution. �

3.7 Computational complexity of budget-constrained non-
adaptive solution

In previous sections, we aimed to find (either adaptively or non-adaptively) the subset of
edges whose expected size is close to that of the omniscient optimal. While it is an open
question whether we can find a (1−ε)-approximate solution non-adaptively, in this section,
we explore the aspect of non-adaptivity from a different direction. We constrain the subset

90

of edges to be such that each vertex has at most two edges incident to it (i.e., each resource
is queried at most twice). We ask whether in polynomial time, we can find the subset of
edges that observes this constraint and has the maximum expected size of matching. Note
that here we no longer compare ourselves against the omniscient optimal. Rather, we fix
a per-vertex budget of queries and ask for the optimal non-adaptive solution within that
budget. Specifically, we fix our per-vertex budget to 2 and we call this NONADAPTIVE2

problem. Our main result is that finding the optimal solution is NP-hard. This result,
stated formally as Theorem 3.7.6, will be shown via a reduction from the 3D-MATCHING

problem.

Unlike results in the previous sections, the results in this and the following sections are
restricted to the case where the graph G has each non-zero pe = p for some constant p. To
emphasize, we introduce subscript p in the notation Mp(H) that was used to denote the
expected size of matching of the collection of edges H . Furthermore, we use NAOPT2(G)
to denote the optimal solution to NONADAPTIVE2 , i.e., NAOPT2(G) =, maxHMp(H),
where the maximum is over all subsets of edges so that each vertex has maximum incident
degree 2.

3.7.1 4-cycle cover is optimal

For the reduction from 3D-MATCHING problem, we will need the following crucial result,
which states that if the graph has a 4-cycle cover5, then the 4-cycle cover is the unique
optimal subgraph.

Theorem 3.7.1. For any 0 < p < 1, if the graph G admits a 4-cycle cover, then every
optimal H is a 4-cycle cover of G.

Before we prove Theorem 3.7.1, we make a couple of easy observations.

Observation 3.7.2. Due to the degree constraints δE′(v) ≤ 2, the subgraph H is a collec-
tion of disjoint cycles and paths, and maybe isolated vertices.

Observation 3.7.3. A cycle of length l + 1 has higher expected size of matching than a
path of length l (the length of a path or cycle is the number of edges in it).

Corollary 3.7.4. If in H(V,E ′), there exists a path P , whose end points share an edge in
G(V,E), then adding that edge to E ′ does not reduce the size of the expected matching in
H .

5A 4-cycle cover is a collection of cycles each of length 4, such that every vertex lies in exactly one cycle.

91

In order to prove the theorem, we rely on the following crucial lemma. We note that
Lemma 3.7.5 holds for any non-trivial value of p (i.e., p /∈ {0, 1}).

Lemma 3.7.5. For any 0 < p < 1, a 4-cycle has strictly higher expected probability of a
vertex being matched than a cycle or a path of any other length.

Proof. By Observation 3.7.3, it suffices to show that in a 4-cycle, the average probability
of a vertex being matched is strictly higher than that in any other cycle C. Each edge on
this cycle exists independently with probability p. Let Cp be the space of outcomes of the
edges. Since all edges on a cycle have the same probability of existence p, each vertex in
the cycle has the same probability of being matched. We note that — in our analysis —
to ensure that each vertex has the same probability of being matched, whenever there is
more than one possible maximum matching in an instantiation in Cp, we choose each of
the possible maximum matchings with equal probability.

Consider a vertex v ∈ C. Let us calculate the probability that v is matched by breaking
up the outcome space into four cases.

1. Both edges incident to v exist. In this case v is definitely matched if |C| is even
(as is the case with a 4-cycle). For odd length cycles, v is matched with probability
strictly less than one. This event occurs with probability p2.

2. Both edges do not exist. In this case v is definitely not matched, and this occurs with
probability (1− p)2.

3. One of the edges incident to v exists and other does not. Each of these two cases
occurs with probability p(1− p).

To calculate the probability that v is matched in the third case, let us look at Fig-
ure 3.3(a) where v = a1 and n = 6. The edge (a1, a6) is is absent, while the edge (a1, a2)
is present. Clearly it holds that

Pr[a1 matched|@(an, a1),∃(a1a2)] = (1− p) · 1 + p(1− p) · 1

2
+ p2(1− p) · 1

+ p3(1− p) · 1

2
+ · · ·+ pn−3(1− p) · f(n) + pn−2 · g(n),

(3.4)

where f(n) is 1 if n is odd and 1
2

if n is even, and g(n) is the opposite. In Equation (3.4)
we have used the observation that if the path starting at a1 is of even length then a1 is

92

a1 a2

a3

a4a5

a6

(a) Dashed edges may
not be available.

(a2, a3)

1 (a3, a4)

1/2 (a4, a5)

1 (a5, a6)

1/2 1

n y

n y

n y

n y

(b) Probability that vertex v is
matched.

Figure 3.3: The proof of Lemma 3.7.5 illustrated for the case of n = 6.

matched with probability 1
2
, and if it is of odd length then it is matched with probability 1.

1’s and 1
2
’s alternate in the above expression; see Figure 3.3(b) for an illustration. For the

case of a 4-cycle, the expression in Equation (3.4) is equal to (1−p)·1+p(1−p)· 1
2
+p2 ·1.

For any cycle of length greater than 4, the expression is strictly smaller, because

(1− p) · 1 + p(1− p)1

2
+ p2(1− p) · 1 + p3(1− p)1

2
+ · · ·+ pn−3(1− p) · f(n) + pn−2 · g(n)

< (1− p) · 1 + p(1− p) · 1

2
+ p2(1− p) · 1 + p3(1− p) · 1 + · · ·+ pn−3(1− p) · 1 + pn−2 · 1

= (1− p) · 1 + p(1− p) · 1

2
+ p2 · 1,

where the inequality is obtained by replacing all the 1
2
’s starting from the fourth term by

1’s.

It follows that the expected probability that a vertex is matched is strictly higher in a
4-cycle than in a cycle of length greater than 4. The only other cycle length left to consider
is 3. A similar analysis shows that the expected probability that a vertex is matched in a
cycle of length 3 is

(1− p)2 · 0 + p2(p · 1

2
+ (1− p) · 1) + 2 · p(1− p) · ((1− p) · 1 + p · 1

2
) ,

93

while for a 4-cycle the expression is

(1− p)2 · 0 + p2 · 1 + 2 · p(1− p) · ((1− p) · 1 + p(1− p) · 1

2
+ p2 · 1) .

It is easy to verify that the 4-cycle expression is strictly greater than the 3-cycle expression
for all 0 < p < 1. �

Lemma 3.7.5 is one of the main building blocks for our subsequent algorithmic results.
We will use it here to establish Theorem 3.7.1 and that in turn can be applied to establish
the computational hardness of our NONADAPTIVE2 problem.

Proof of Theorem 3.7.1. Consider a graph G that admits a 4-cycle cover H , and consider
any other subgraph H ′ with maximum degree 2. Recall that Mp(H), the expected size
of the matching within subgraph H , is half the sum of the probabilities of the vertices
being matched. By Observation 3.7.2, H ′ is also a collection of cycles and paths. And by
Lemma 3.7.5, the average probability of a vertex being matched is highest in a 4-cycle.
Hence if H ′ has any cycle of length other than 4 or a path, we have Mp(H

′) < Mp(H).
This completes the proof. �

3.7.2 Hardness result

Theorem 3.7.6. NONADAPTIVE2 is NP-complete.

Theorem 3.7.1 states that if a graphG admits a 4-cycle cover, then the optimal solution
to NONADAPTIVE2 for G is always a 4-cycle cover, i.e., any other collection of edges
E ′ would yield a strictly smaller expected number of swaps. In other words, there is a
collection of edges E ′ that has the same value as a 4-cycle cover of n vertices (a value that
is easy to compute) if and only if a 4-cycle cover exists. Theorem 3.7.6 therefore follows
directly from the following lemma that states that finding whether or not a 4-cycle cover
exists is NP-hard. The proof of the lemma is similar to the proof that a cover by cycles of
length at most l for l ≥ 3 is NP-hard [Abraham et al., 2007, Theorem 1].

Lemma 3.7.7. Deciding whether a graph G admits a cover by 4-cycles is an NP-complete
problem.

Proof. We reduce the 3D-MATCHING problem to the problem of finding whether a graph
admits a 4-cycle cover. In 3D-MATCHING there are three vertex sets X , Y and Z, such
that |X| = |Y | = |Z|. In addition, we are given a set S of 3-tuples of the form (x, y, z)

94

xi1

xi2 xi3 xi4

x

yi1

yi2 yi3 yi4

y

zi1

zi2 zi3 zi4

z

x̃

x̃i2 x̃i3 x̃i4

x̃i1

Figure 3.4: The gadget used in the proof of Lemma 3.7.7.

where x ∈ X , y ∈ Y and z ∈ Z. The problem is to decide whether there exists a subset
S ′ ⊆ S, such that |S ′| = |X| = |Y | = |Z| and no two tuples in S ′ share a vertex in either
X or Y or Z. The set S ′ encodes a perfect matching — every x ∈ X is matched to a
unique y ∈ Y and z ∈ Z.

For the reduction, we add a new set of vertices X̃ = {x̃ | x ∈ X}. And for each v ∈
X ∪ Y ∪ Z, for every tuple ti in the 3D-MATCHING instance that v occurs in, we add the
set of vertices {vi1, vi2, vi3, vi4}. Furthermore, if v ∈ X , we also add the set {ṽi1, ṽi2, ṽi3, ṽi4}.
On all these vertices, we construct a graph G, where for every tuple ti = (x, y, z) in S,
we introduce the gadget shown in Figure 3.4. Note that the vertices with superscript i
only appear in a single gadget. The vertices x, x̃, y, z can appear in multiple gadgets, and
moreover x̃ appears in each gadget that contains x. The intuition is that x is covered if and
only if x̃ is covered.

We claim that graph G has a 4-cycle cover if and only if the corresponding 3D-
MATCHING problem has a perfect matching. First, if the 3D-MATCHING problem al-
lows a perfect matching, then graph G has a cover through 4-cycles. Indeed, for ev-
ery tuple ti = (x, y, z) ∈ S ′, we completely cover the corresponding gadget with 4-
cycles using only the gadget’s vertices (there is only one such cover). For all tuples
ti = (x, y, z) ∈ S \ S ′, we cover all the vertices except x, x̃, y, z with 4-cycles using
the gadget’s vertices. It is easy to verify that this is a complete cover by 4-cycles.

In the other direction, if the graph G has a cover via 4-cycles then the 3D-MATCHING

problem admits a perfect matching. The first observation we make is that in a 4-cycle cover
for G, for every x ∈ X , the 4-cycle which covers x has to be of the form (x, xi2, x

i
3, x

i
4),

because the only other possible 4-cycle is (x, xi2, x
i
1, x

i
4) but now xi3 cannot be covered. In

95

addition, once for a particular i the 4-cycle (x, xi2, x
i
3, x

i
4) is included the corresponding

xi1 can only be covered through the 4-cycle (xi1, y
i
1, z

i
1, x̃

i
1). This in turn implies that we

must completely cover the gadget using only the gadget’s vertices. For every i such that
(xi1, y

i
1, z

i
1, x̃

i
1) is included in the cover for graph G, the tuple (x, y, z) is included in the set

S ′. It is easy to verify that S ′ encodes a solution to the 3D-MATCHING problem. �

3.8 Almost optimal budget-constrained non-adaptive so-
lution for Kidney Exchange Graphs

Our main result in this section is Theorem 3.8.20, stated informally as follows.

Theorem 3.8.1 (informal). For most realistic kidney exchange graphs G, we can algo-
rithmically find in polynomial time an almost optimal subgraph H for NONADAPTIVE2

problem.

Note that we defined the NONADAPTIVE2 problem (and the notation NAOPT2(G))
in Section 3.7. To prove this result, we have to go through a number of steps. First, in
Sections 3.8.2 and 3.8.3, we prove structural results for the optimal solution in bipartite
and general graphs. Then in two steps – Sections 3.8.4 and 3.8.5, we define formally a
realistic kidney exchange graph, and prove the result stated informally above.

3.8.1 Background

People who suffer from chronic kidney disease are best treated by transplanting a healthy
kidney from a live donor. However, even patients who are fortunate enough to have a
willing donor (typically a family member or a close friend) may be incompatible with
him. This is where the recent innovation of kidney exchange comes in. The basic insight
that drives kidney exchange is that two incompatible donor-patient pairs may be able to
exchange kidneys so that both patients receive a healthy kidney. To pinpoint as many
of these life-saving opportunities as possible, matching algorithms are run (on a weekly
or monthly basis) on databases that contain the information of registered of donors and
patients.

There are three hurdles that must be cleared before a donation can take place. First,
the donor and patient must pass a blood typing test. There are four blood types (O, A, B,
AB) – depending on the presence of A and B antigens — and only some are compatible
with others. For example, a donor with blood type A can donate to a patient with blood

96

type A or AB, but not to a patient with blood type B or O. Second, the donor and patient
must pass a tissue typing test. There are six tissue antigens; the more of them are shared
by the patient and donor, the more likely it is that the transplant will be successful. Third,
a crossmatch test is performed by (roughly speaking) mixing the donor and patient’s blood
in a tube and spinning it; depending on whether the blood is suspended or stuck together,
doctors can predict whether the patient’s body would attack the new kidney (confusingly
called positive crossmatch) or would accept it (negative crossmatch).

The blood and tissue typing tests are fundamentally different from the crossmatch
test, in that the relevant information can be collected from each donor and each patient
even before matches are made. In contrast, for a crossmatch test (samples of) the blood
of the patient and his intended donor must be physically in the same place. Therefore,
existing kidney exchanges such as the one run by the United Network for Organ Sharing
(UNOS) first compute a matching based only on blood typing and tissue typing tests. Then,
crossmatches are performed only for patients and donors that were matched. Exchanges
where all the relevant crossmatches are negative proceed to the operating room, while
exchanges that involved a positive crossmatch fail.

In graph-theoretic terms, each incompatible donor-patient pair is represented by a ver-
tex. We consider the undirected case where there is an edge between two vertices if each
donor is compatible with the other patient in terms of blood type and tissue type only, that
is, a pairwise exchange is potentially possible if the crossmatch test is negative6. Given
a matching on this graph, a crossmatch is performed for each edge in the matching7; we
model this as flipping an independent coin with some bias p for each edge to determine
whether the edge succeeds or fails.

3.8.2 Complete Graphs and Bipartite Graphs

Our next goal is to characterize optimal solutions for complete graphs and complete bipar-
tite graphs. We start with the complete graph. The following is an immediate corollary of
Theorem 3.7.1.

Corollary 3.8.2. Consider a complete graph G(V,E), i.e., E = {(u, v) : u 6= v, u, v ∈
V }, such that |V | is divisible by 4. Then the optimal subgraph H of G is composed of
|V |/4 vertex disjoint 4-cycles.

6In practice, kidney exchanges also use directed 3-cycles.
7By ‘performing a crossmatch test on an edge’, we really mean ‘performing a pair of crossmatch tests’

on that edge, one for each direction. However, we do not make this explicit, since we focus only on pairwise
exchanges.

97

P1
a b c d e e′

P2
a b

c
d

e e′

Figure 3.5: The proof of Claim 3.8.4 illustrated for the case of l = 10. Solid edges exist,
dotted edges do not exist, and dashed edges may or may not exist.

We now move to complete bipartite graphs. Note that since a bipartite graph may
not admit a 4-cycle cover, the results above do not imply what an optimal subgraph for a
bipartite graph looks like. The main result for this section is the following.

Lemma 3.8.3. For a complete bipartite graph G(L ∪ R,L × R) with |L| ≤ |R| ≤ 2|L|,
there exists an optimal subgraph H consisting only of 4-cycles, paths of length 2, and at
most one path of length 4 or a single edge.

As opposed to complete graphs where a cover by 4-cycles is uniquely optimal if one
exists, here we do not claim uniqueness for this optimal subgraph. For our purposes,
the aspect of the lemma which will prove crucial later is that only “small” structures are
required. To prove this lemma, we first show that we do not lose anything by restricting
our attention to “short” paths.

Claim 3.8.4. For any l ≥ 6, the expected size of the matching under a 4-cycle plus a path
of length l − 4 is at least the expected size of the matching under a path of length l.

Proof. Let P1 be a path of length l ≥ 6, and call its first four edges from the left a, b, c, d, e.
Now we use the first four vertices to close a cycle C4, and we also call its edges a, b, c, d;
the remaining path of length l − 4 ≥ 2, which starts with e, is denoted by P2. We would
like to claim that Mp(P1) ≤Mp(C4 +P2); recall that Mp(H) was the expected size of the
maximum matching in the graphH . We first make the observation that in any instantiation
of the edges, if the edge d is absent then the two structures have maximum matchings of
the same size, so we need only consider outcomes where edge d is present.

Consider such an instantiation of the edges (with edge d present) and let edge e′ be
the first edge in P2 to the right of edge s that fails; if there is no such edge e′, let e′ = ⊥,
i.e., null. See Figure 3.5 for an illustration. To the right of e′, both paths P1 and P2 have
the same maximum matchings, so we need only look to the left of e′. Denote the path

98

segments of P1 and P2 to the left of e′ as P ′1 and P ′2 respectively. We want to show that
Mp(P

′
1) ≤Mp(C4 + P ′2).

We now look at all possible outcomes of edges a, b and c, and the length of the path
P ′2, and tabulate our observations in Table I; they are easy to verify. Here we use M(H) to
denote a maximum matching within the subgraph G. Since Mp(C4 + P ′2) = E[|M(C4 +
P ′2)|] and Mp(P

′
1) = E[|M(P ′1)|], we can use the table to get

Mp(C4 + P ′2)−Mp(P
′
1) = E[|M(C4 + P ′2)|]− E[|M(P ′1)|]

= p
[
((1− p)3 + (1− p)2p+ (1− p)p2 + p2(1− p))Pr(|P ′2| odd)− p(1− p)2Pr(|P ′2| even)

]
= p(1− p) ·

[
(1− p+ 2p2) · Pr(|P ′2| odd)− p(1− p) · Pr(|P ′2| even)

]
,

where in the first equality the leftmost factor of p stands for the probability of edge d being
present, the term ((1−p)3 +(1−p)2p+(1−p)p2 +p2(1−p)) sums up the probabilities of
the outcomes of edges a, b, c where C4 + P ′2 has one more matched edge than P ′1, and the
term p(1 − p)2 is for the single case where P ′1 has one more matched edge than C4 + P ′2.
Now, with l′ = l − 4,

1. l is odd: Pr(|P ′2| odd) = (1−p) ·
(
p+p3 +p5 + · · ·+pl′−2

)
+pl

′ and Pr(|P ′2| even) =

(1− p) · (1 + p2 + p4 + · · ·+ pl
′−1). So, we have Pr(|P ′2| odd) ≥ p · Pr(|P ′2| even).

And hence,

(1− p+ 2p2) · Pr(|P ′2| odd) ≥ p(1− p) · Pr(|P ′2| even) .

2. l is even: Pr(|P ′2| odd) = (1−p)·
(
p+p3+p5+· · ·+pl′−3+pl

′−1
)

and Pr(|P ′2| even) =

(1−p)·(1+p2+p4+· · ·+pl′−2)+pl
′ . So, we have Pr(|P ′2| odd) = p·Pr(|P ′2| even)−

a b c
|M(4C + P ′2)| − |M(P ′1)|

a b c
|M(4C + P ′2)| − |M(P ′1)|

Even Odd Even Odd
0 0 0 0 +1 1 0 0 -1 0
0 0 1 0 0 1 0 1 0 0
0 1 0 0 +1 1 1 0 0 +1
0 1 1 0 +1 1 1 1 0 0

Table 3.1: The table shows the difference in the size of matching between 4-cycle plus
path P ′2, and path P ′1 for various possibilities of edge outcomes of a, b, c and whether |P ′2|
is even or odd. Edge d exists in all cases. An edge exists (resp., does not exist) if its
column shows 1 (resp., 0).

99

pl
′+1. And hence,

(1−p+2p2)·Pr(|P ′2| odd)−p(1−p)·Pr(|P ′2| even) = 2p3·Pr(|P ′2| even)−(1−p+2p2)·pl′+1 .

But, Pr(|P ′2| even) is at least (1− p) + pl
′ from the first expression that we wrote for

that quantity. It follows that 2p3 · Pr(|P ′2| even) ≥ (1− p+ 2p2) · pl′+1 since l′ ≥ 2
as l ≥ 6.

Hence, in both cases, Mp(C4 + P ′2)−Mp(P
′
1) ≥ 0, and the lemma follows. �

Claim 3.8.4 implies that in a complete bipartite graph, paths of length at least six are
useless. Next we compare 4-cycles and short paths.

Claim 3.8.5. 1. For any even l ≥ 4 and any p ∈ (0, 1), the probability of a vertex
being matched in a cycle of length l is strictly more than that in a cycle of length
l + 2.

2. For any p ∈ (0, 1), the expected number of matched edges in a 4-cycle plus an edge
is strictly more than the expected number of matched edges in a cycle of length 6.

3. The expected number of matched edges in a 4-cycle plus two paths of length 2 is
equal to the expected number of matched edges in two paths of length 4.

Proof. 1. The proof of Lemma 3.7.5 shows not only 4-cycle has the highest expected
number of matched edges, but that among even length cycles, a node has strictly
higher expected probability of being matched in cycles of length l than in l + 2 for
all even l ≥ 4.

2. The expected number of matched edges in a 4-cycle is 2p2 + 2p(1 − p)2 + 2p(1 −
p)(1 + p2), for an edge is 1− (1− p)2 and for a cycle of length 6 is 6p(1− p)2(1 +
p/2 + p2 + p3/2 + p4) + 3p2. We can verify that the sum of the first two expressions
strictly dominates the third for all p ∈ (0, 1).

3. For a 4-cycle, the expected number of matched edges is 2p2 + 2p(1− p)2 + 2p(1−
p)(1+p2); for a path of length 2, the expected number of matched edges is 1−(1−p)2

and for the case of a path of length 4, the expected number of matched edges is
2p2 + 2p(1− p)2 + p(1− p)2 + p(1− p)(1 + p2).

Summing the first expression with twice the second, and simplifying shows that it is
equal to twice the third.

�

100

We now present the proof of Lemma 3.8.3.

Proof of Lemma 3.8.3. Consider an optimal choice of edges O for the complete bipartite
graphG. IfO contains a path of odd length≥ 3, we can increase the quality of the solution
by adding an edge between the end points to get an cycle. Also, cycles of odd length are
impossible. Hence an optimal solution can contain only cycles of even length, edges, and
paths of even length. Using the first two parts of Claim 3.8.5 we can assume that all cycles
are of length 4. Next, by repeated application of Claim 3.8.4 to the even-length paths, we
can convert O to a solution O′ that is at least as good, but where we only have 4-cycles
and paths of length 1, 2 and 4. In case, there are multiple paths of length 1 at this stage,
they can be paired and missing edges added to give 4-cycles, thus giving multiple 4-cycles
plus at most one path of length 1, and clearly keeping the expected matching size at least
as much as before.

If at this stage there is more than one path of length 4 in O′, we can use part 3 of
Claim 3.8.5 to further prune these paths and replace them with 4-cycles and paths of length
2. At this point, we claim we cannot have both a path of length 4 and a path of length 1. If
we did, this pair of structures would be worse than a path of length 6, which by Claim 3.8.4
would be worse than a 4-cycle plus a path of length 2. Hence we have only 4-cycles, paths
of length 2, and either a single edge, or a path of length 4. �

3.8.3 General Graphs

Having discussed the case of complete graphs and bipartite graphs (Section 3.8.2), we
now move our attention to general graphs. The following lemma states that if there exists
a vertex u which does not have any edge incident to it in the subgraph H , but which has an
edge incident to it in the original graph G, then that edge can be included in the subgraph
H (perhaps requiring some other edge inH to be deleted), without decreasing the expected
size of matching of H .

Lemma 3.8.6. (No vertex left behind.) Consider an undirected graph G(V,E), and a
subgraph H(V,E ′) (E ′ ⊆ E) with δE′(v) ≤ 2. Suppose there exists a vertex u ∈ V with
δE′(u) = 0 but δE(u) > 0. Let v be a vertex which has an edge with u in E. Then we can
add the edge (u, v) to E ′, and if needed, remove some other edge incident to v under E ′ in
order to ensure δE′(v) ≤ 2, without reducing the expected size of matching of E ′.

From Lemma 3.8.6, we can infer the following result.

Corollary 3.8.7. There exists an optimal solution H(V,E ′) for the subgraph of G(V,E)
with the following property. For every vertex u that has δE′(u) = 0,

101

1. either δE(u) = 0, or

2. for every edge (u, v) present in E, δE′(v) = 2, and if b and d are the two vertices
adjacent to v under E ′, then δE′(b) = 1 = δE′(d).

To prove the corollary, assume to the contrary that δE′(u) = 0 but δE(u) > 0 with
(u, v) ∈ E (and E ′ has the least number of such “violating” vertices among all those edge
sets with the same expected matching size). Then if δE′(v) < 2, we can add (u, v) to E ′.
Else if δE′(v) = 2, and δE′(b) = 2, say, then by Lemma 3.8.6 we can add edge (u, v)
and drop (v, b) to get the set E ′′ with Mp(E

′′) ≥ Mp(E
′). Now E ′′ has fewer vertices

that violate the property, which gives the desired contradiction. We now give the proof of
Lemma 3.8.6.

Proof of Lemma 3.8.6. If δE′(v) < 2, then we can add the edge (u, v) without removing
any edge. Adding an edge cannot decrease the expected size of matching.

Hence, let us consider the case where δE′(v) = 2, and say, the vertices to which v has
an edge are b and d. If either d or b, has exactly one edge incident to it in E ′, say it is d,
then we can drop the edge (v, d) in E ′ and add the edge (v, u). This does not change the
expected size of matching since up to renaming, nothing has changed in the graph (u and
d have exactly the same set of characteristics).

Therefore, we are left with the case where δE′(d) = 2 = δE′(b). Consider E ′′, which
the same as E ′ except that we drop the edge (v, d) and add the edge (v, u). We would like
to show that the expected size of matching in E ′′ is at least as much as in E ′.

In order to show that the expected size of matching in E ′′ is at least as much as in E ′,
we shall partition the sample space of outcomes as follows:

1. Both (v, d) and (v, u) are present: Consider any outcome ω of edges in E where
both (v, d) and (v, u) exist. Consider a maximum matching M for E ′ in ω. If M
matches v to b, then M is also a matching in E ′′ since E ′∆E ′′ = {(v, u), (v, d)} and
both don’t exist in M . Hence the cardinality of the maximum matching in E ′′ is at
least |M |.
If M matches v to d, then consider matching M ′ for E ′′ which is exactly the same
as M , but that it matches v to u (and not v to d). Again, |M ′| = |M |, and hence the
cardinality of the maximum matching in E ′′ is at least |M ′| = |M |.

2. Both (v, d) and (v, u) are absent: Consider any outcome ω of edges in E where both
(v, d) and (v, u) exist. Consider a maximum matching M for E ′ in ω. M is also a

102

matching in E ′′ since E ′∆E ′′ = {(v, u), (v, d)} and both don’t exist in M . Hence
the cardinality of the maximum matching in E ′′ is at least |M |.

3. Exactly one of (v, d) and (v, u) is present: Clearly for any outcomes of edges, the
size of maximum matching in E ′ and E ′′ can differ by at most one. For a partic-
ular outcome of edges ω, denote the size of maximum matching for E ′ and E ′′ by
φ(E ′, ω) and φ(E ′′, ω) respectively.

We shall partition the sub-sample space (where exactly one of the two edges is
present) into two halves. In one half, edge (v, d) would be present and (v, u) ab-
sent, and in the other half, the opposite would be true. Furthermore, we shall have
a one-to-one mapping from points in the first half to that in the second half. The
two points that are mapped to each other shall carry the same probability. In addi-
tion, we shall have the property that if for a particular point ω in say, the first half,
φ(E ′, ω)− φ(E ′′, ω) = 1, then for the sample point ω′ in the other half that ω maps
to, φ(E ′, ω′) − φ(E ′′, ω′) = −1. Hence, in expectation over this sub-sample space,
the size of matching matching of E ′ will be no more than that of E ′′.

We now show the construction of the two halves and the mapping between them. Fix
the outcome ω′ of all edges in E but for (v, d) and (v, u). Let ωu be ω′ with (v, u)
present and (v, d) absent, and let ωd be ω′ with (v, d) present and (v, u) absent. Con-
sider the set A of points ωd that we generate while enumerating over ω′. Similarly,
consider the set B, that consists of points ωu, again while enumerating over all pos-
sible ω′. It is easy to see that A and B are disjoint, and that their union captures the
sub-sample space where exactly one of (v, d) and (v, u) is present. Also, again it is
easy to verify that |A| = |B|. A and B shall constitute our two halves.

We now explain the mapping from A to B. It will be the natural mapping, where
ω1 ∈ A and ω2 ∈ B are mapped to each other, in case the outcome of all edges but
for (v, d) and (v, u) is the same in ω1 and ω2. It is easy to see that this is a well
defined one-to-one map and that both points that are mapped to each other carry the
same probability weight.

Consider a ωd ∈ A and ωu ∈ B that are mapped to each other. Consider the set S of
all maximum matchings for E ′ in outcome space ωd.

(a) Either there exists a maximum matching M in set S that does not use the edge
(v, d).

In this case, φ(E ′′, ωd) ≥ φ(E ′, ωd) = |M | because M is also a matching in
E ′′ since it does not use the edge (v, d) which is the only edge in E ′′ \ E ′.

103

Moreover, φ(E ′′, ωu) ≥ φ(E ′, ωu) since under outcome ωu, edge (v, d) is ab-
sent and hence, the maximum matching M for E ′ under ωu shall also be a
matching in E ′′ under ωu.

(b) Or every maximum matching in S uses the edge (v, d).
As we have claimed earlier, that since |E ′′ \ E ′| = 1, hence φ(E ′, ωd) −
φ(E ′′, ωd) ≤ 1.
Moreover, we have that φ(E ′, ωu) − φ(E ′′, ωu) ≤ −1. Why is this the case?
Well, consider any maximum matching M for E ′ under ωd. We know that
M uses edge (v, d). Construct M ′ which has all the edges as in M but has
edge (v, u) replacing (v, d). M ′ is a legal matching for E ′′ under ωu. Hence,
φ(E ′′, ωu) ≥ |M ′| = |M | = φ(E ′, ωd). Moreover, it is the case that φ(E ′, ωu) ≤
φ(E ′, ωd) for under ωd, E ′ has strictly a superset of edges present as compared
to in ωu. Not only that, it is also the case that φ(E ′, ωu) ≤ |M | − 1, for if it
were the case that φ(E ′, ωu) = |M |, then it means that there exists a matching
in E ′ that has cardinality equal to |M | and does not use the edge (v, d) contra-
dicting the assumption of this subcase that every maximum matching in S uses
the edge (v, d).
In summary, for this subcase we have, φ(E ′, ωd)−φ(E ′′, ωd) ≤ 1 and φ(E ′, ωu)−
φ(E ′′, ωu) ≤ −1.

Hence, in each one of the above cases, we have that in expectation over the sub-sample
space considered in the case, φ(E ′, ω)−φ(E ′′, ω) ≤ 0. And hence, in expectation over all
of sample space, φ(E ′, ω)− φ(E ′′, ω) ≤ 0. �

3.8.4 Complete Kidney Exchange Graphs

In this section, we will deal with a kidney exchange graph where every pair of vertices that
are blood-type compatible share an edge. In our results in this section we implicitly assume
that tissue typing tests are always successful; this assumption is relaxed in Section 3.8.5.

There are four blood types A,B,AB, and O. For blood-type compatibility the patient
should have as many types of antigens as the donor. Blood type O indicates absence of
antigens and hence a donor of blood type O is blood-type compatible with all other blood
groups. Blood groups A, B, and AB indicate presence of antigens A, B, and both A and
B, respectively. Hence, a donor with blood type A is blood type compatible with a patient
of either blood type A or AB. A patient with blood type AB is blood type compatible
with a donor of any blood group.

104

Since every node in the graph represents a (patient, donor) pair, we can label each node
by the blood-types of the patient and the donor. For instance, if the patient has blood type
A and the donor blood type AB, then the label is A− AB.

We now borrow some definitions from Ashlagi and Roth [2011] that will help our
presentation. In each definition X, Y ∈ {A,B,AB,O}.

Definition 3.8.8.

1. A label X − Y is over-demanded if X 6= Y and Y is blood-compatible to donate to
X .

2. A label X − Y is under-demanded if X 6= Y and X is blood-compatible to donate
to Y .

3. All labels of the form X −X are known as self-demanded.

4. The pair of labels A−B and B − A constitute reciprocally-demanded types.

Note that if X − Y is over-demanded, then Y −X must be under-demanded. We will
make the following assumption: For every X − Y such that X − Y is over-demanded
and Y − X is under-demanded, the number of nodes in the graph with label X − Y is
less than half the number of nodes with label Y −X . For instance, an implication of this
assumption is that the number of nodes with blood type AB − A is less than half of the
number of nodes with blood-type A− AB.

Why might such an assumption be realistic? The justification stems from the way
patient-donor pairs are formed in practice. Observe that every patient-donor pair that is
not blood-type compatible has to enter the kidney exchange pool. On the other hand, if the
donor is blood-type compatible to donate to the patient, then only pairs who fail a tissue
typing or crossmatch test join the pool. Hence, a priori one has reason to believe that the
number of pairs in the kidney exchange pool that have label X−Y is significantly smaller
than the number of pairs with label Y −X , so for example Roth et al. [Roth et al., 2007]
assume that there is an endless pool of underdemanded pairs. Moreover, often the willing
donor is a family member of the patient, and among family members there is a higher
chance of the tissue typing and crossmatch tests being successful. In fact, the factor 1/2
has been used by Ashlagi and Roth [Ashlagi and Roth, 2011], who based this assumption
on real data Zenios et al. [2001].

Now, let us the consider the reciprocally demanded labels A − B and B − A. Note
that a donor with blood-type A cannot donate to a patient with blood-type B, and vice
versa. Hence, every (patient, donor) pair of either of these types is forced to enter the

105

kidney exchange market. Moreover, the chances of (patient, donor) pair having blood type
A−B is the same as them having B −A, since there is no reason to believe that a person
with blood type A has a higher or lower chance of kidney failure than a person of type B.
Hence, in our complete kidney exchange graph, we assume that the number of nodes with
label A−B is approximately the same as those with label B − A.

With this we are ready to define our model of the complete kidney exchange graph,
where for now (until Section 3.8.5) we only consider blood-type compatibility and ignore
tissue-type compatibility.

Definition 3.8.9. A complete kidney graph is a graph G(V,E) with the following proper-
ties. The vertex set V can be partitioned into the sets VX−Y where X and Y are the blood
types of the patient and the donor respectively (X, Y ∈ {A,B,AB,O}). Furthermore,

1. Every pair of vertices in G that are blood-type compatible share an edge.

2. For each over-demanded label X − Y , |VX−Y | < 1
2
|VY−X |.

3. The reciprocally demanded labels obey 1
2
|VB−A| ≤ |VA−B| ≤ 2 · |VB−A|.

We define the term an almost optimal subgraph to denote a subgraph whose expected
matching size is off from the optimal solution only by constant additive factors.

Definition 3.8.10. An almost optimal subgraph H for a graph G is a solution to the
NONADAPTIVE2 problem forG, which has expected size of matching at least NAOPT2(G)−
O(1).

We now present the structure of an almost optimal solution for the complete kidney
exchange graph (see Figure 3.6 for an illustration).

Theorem 3.8.11. The subgraph H(V,E ′) with the following description is an almost op-
timal subgraph for the complete kidney exchange graph G(V,E).

1. (Self-demanded form 4-cycles among themselves) For every self-demanded label
X−X , the edges ofH constitute a 4-cycle cover of all (but for maybeO(1)) vertices
of that label.

2. (Each over-demanded pairs with two under-demanded) For every pair of over-demanded
(X − Y) and under-demanded (Y − X) labels, every node with label X − Y has
two edges incident to a unique pair of vertices with label Y −X .

106

3. (Reciprocally demanded pair) Every node in A − B is involved in either a 4-cycle
with one vertex of its own label and two nodes of the opposite label (i.e., B−A), or
a path of length two using vertices of the opposite label and maybe of its own label.
A similar statement holds for each node in B − A.

The crucial result that helps us to prove the the optimality of the above solution is the
following lemma. In a sense, it distills the core properties of kidney exchange graphs, and
presents the structure of an optimal solution for all graphs that have these properties.

Definition 3.8.12. An undirected graph G(V,E) is said to be lopsided-bipartite partition-
able if it has the following structure. The vertex set V can be partitioned into k pairs of sets
(Pi, Qi) (1 ≤ i ≤ k) and R for some k, such that V =

⋃k
i=1(Pi ∪Qi)

⋃
R. Furthermore,

for each 1 ≤ i ≤ k,

1. |Qi| > 2 · |Pi|

2. Pi and Qi form a complete bipartite graph.

3. No vertex v ∈ Qi has an edge incident to it from any vertex in R ∪
⋃k
j=1 Qj .

All other possible edges may or may not be present in G.

Lemma 3.8.13. For a lopsided-bipartite partitionable graphG(V,E) with V =
⋃k
i=1(Pi∪

Qi)
⋃
R, as in Definition 3.8.12, there exists an optimal subgraph H(V,E ′) with the prop-

erty that for every 1 ≤ i ≤ k, all vertices v ∈ Pi have two edges incident to a unique pair
of vertices in Qi×Qi. In particular, H does not have any edge between a vertex in Pi (for
any i) and a vertex in R.

Proof. Consider the optimal subgraph H(V,E ′). If H does not already satisfy the stated
property, we show how to convert it into one that satisfies the stated property and does not
reduce the expected size of its maximum matching.

We can assume that subgraph H satisfies the properties stated in Corollary 3.8.7. We
will now present the procedure to convert H into one that satisfies the properties stated in
the statement of the theorem.

1. Let S ← [k].

2. While S is non-empty

• Pick a j ∈ S, such that there exists a vertex u ∈ Qj with no edges incident to
it under E ′.

107

• If for some v ∈ Pj either of b or d are not members of Qj , say it is b, we shall
replace edge (v, b) by (v, u) in E ′.

• If there does not exist a v ∈ Qj such that v has an edge incident to a vertex not
in Qj , remove j from S.

First we show that the above procedure is well-defined and that it terminates.

Claim 3.8.14. (Well-defined) In each iteration of the while loop, in the first step of the
loop, we can find a j ∈ S and a vertex u ∈ Qj such that no edges are incident to it under
E ′.

Proof. Since

1. the total number of edges in E ′ that are incident to the vertices in the set ∪i∈SPi can
be at most 2 ·

∑
i∈S |Pi| (∵ ∀v ∈ V , δE′(v) ≤ 2), and

2. E, and therefore E ′, does not contain any edge going between a vertex in R and a
vertex in ∪ki=1Qi or an edge going between a vertex in Qi and a vertex in Qj for any
1 ≤ i, j ≤ k,

hence the number of edges incident to vertices in ∪ki=1Qj under edge set E ′ is at most
2 ·
∑

i∈S |Pi|. On the other hand, the cardinality of the set ∪ki=1Qj is strictly greater than
2 ·
∑

i∈S |Pi|. Hence, there must exist a vertex u ∈ Qj for some j ∈ S, such that u does
not have any edge incident to it. �

Claim 3.8.15. (Loop terminates) The while loop eventually terminates.

Proof. After each iteration of the while loop, the number |E ′ ∩
⋃k
i=1(Pi ×Qi)| increases

by one. And this number is upper bounded by 2 ·
∑k

i=1 |Pi|. �

The following claim states that the subgraph H(V,E ′) satisfies the properties stated in
Corollary 3.8.7 at all points of the execution of the procedure.

Claim 3.8.16. At all points in the execution of the procedure (including the point when it
terminates), the subgraph H(V,E ′) satisfies the properties stated in Corollary 3.8.7.

Proof. Before the start of the procedure, we had assumed that the subgraph H satisfies
the properties stated in Corollary 3.8.7, and at no step in the above procedure, we make a
move that can violate the properties stated in Corollary 3.8.7. �

108

We now show that the expected size of matching does not change at any step of the
procedure.

Claim 3.8.17. (No change in solution quality) In each iteration of the while loop, the
change made to E ′ in the second step of the loop, does not change the expected size of
matching

Proof. In any iteration, the pair (j, u) found in the first step of the iteration satisfy the prop-
erty u has an edge to each vertex v ∈ Pj in E. Hence by Corollary 3.8.7 and Claim 3.8.16,
each v ∈ Pj must be incident to two nodes b and d, such that δE′(b) = 1 = δE′(d).

The second step changes E ′ only if there exists a v ∈ Pj that has its edges incident to
a b and d, such that at least one of b or d is outside Qj . Suppose b is the vertex outside Qj .
In such a case, edge (v, b) is replaced with (v, u).

Since before replacement vertex b has only one edge incident to it and that was to v,
by replacing edge (v, b) by (v, u) in E ′, from the point of view of matching, we have only
switched the situation of b and u, and left the situation of v unchanged, and so the expected
maximum matching size does not change. �

The final claim shows that the procedures converts H into one that satisfies the prop-
erties stated in the statement of the theorem.

Claim 3.8.18. At the end of the procedure, the subgraph H(V,E) has the property that
for every 1 ≤ i ≤ k, all vertices v ∈ Pi have, in E ′, two edges incident to a unique pair of
vertices in Qi ×Qi. No other edges are present in E ′.

Proof. The procedure terminates when the set S becomes empty. Since S = [k] at the
beginning of the procedure, hence, for all elements j ∈ [k], there is a point during the
execution when j is removed from set S.

For any element j, consider the point it is removed from set S. That can occur only
under the circumstance that all edges that are incident to vertices in Pj have their other ends
in Qj . Furthermore, since the subgraph H at all points in the execution of the procedure,
satisfies the properties in Corollary 3.8.7, hence we have the property that all vertices
v ∈ Pi have, in E ′, two edges incident to a unique pair of vertices in Qi ×Qi.

Hence, by end of the procedure, we have the property that for every 1 ≤ i ≤ k, all
vertices v ∈ Pi have, in E ′, two edges incident to a unique pair of vertices in Qi × Qi.
These edges exhaust the total number of edges that could have been incident to the set
∪ki=1Pi since each vertex can have at most two edges incident to it in E ′. Furthermore,

109

O-O A-A B-B AB-ABA-B

B-A

A-O B-O AB-O AB-A AB-B

O-A O-B O-AB A-AB B-AB

Figure 3.6: Edges chosen by Algorithm 3.8.11 in the kidney exchange graph. The grey
circles are over-demanded labels, the white circles are under-demanded labels, and the
black circles are reciprocally demanded and self-demanded labels.

note that the graph G does not contain any edges in the set Qi ×Qj for any 1 ≤ i, j ≤ k.
Hence, no other edges can occur in H other than those already listed. �

This completes the proof of the lemma. �

We now complete the proof of the main result.

Proof of Theorem 3.8.11. We first set the stage for the application of Lemma 3.8.13. Con-
sider the following settings of Pi’s, Qi’s and R.

(P1, Q1) , (VAB−A, VA−AB), (P3, Q3) , (VAB−O, VO−AB) (P5, Q5) , (VB−O, VO−B)

(P2, Q2) , (VAB−B, VB−AB), (P4, Q4) , (VA−O, VO−A),
R , (VA−A) ∪ VB−B ∪ VO−O ∪ VAB−AB ∪ VA−B ∪ VB−A)

Every over-demanded label with the corresponding under-demanded label has been put in
one of the (Pi, Qi)’s with the over-demanded label taking the place of Pi. The set of
self-demanded and reciprocally demanded labels have been put in R. Looking at Defini-
tion 3.8.9 and Table 3.8.4 to infer the edges present in G, we can see the graph G satisfies
the condition to apply Lemma 3.8.13.

Hence, using Lemma 3.8.13, we know that there exists an optimal solution K(V,E ′)
for the complete kidney exchange graphG, that for every over-demanded/under-demanded
pair of labels, satisfies the property that every vertex of the over-demanded label (X − Y)
has two edges incident to a unique pair of vertices of the under-demanded label (Y −X).

Furthermore, in graph G (and hence in graph K), the vertices of the under-demanded
types do not have an edge to any vertex in the set R as defined above.

From Table 3.8.4, it is easy to see that

1. For every self-demanded label X − X , a vertex of that label has edges in graph G
to either vertices of of its own label or to an over-demanded label.

110

2. Vertices labeled A − B (resp., B − A) share edges in graph G with vertices with
either an overdemanded label or label B − A (resp., A−B).

By Lemma 3.8.13, the optimal subgraph K does not have any edges between a vertex
with an over-demanded label and a vertex with either a self-demanded or reciprocally
demanded label. Hence,

1. For every self-demanded labeled X − X vertex, graph K can only include edges
that are incident to the vertex from other vertices of the same label.

2. For a vertex labeled A−B (resp., B −A), graph K can only include edges that are
incident to it from vertices with label B − A (resp., A−B).

In other words, for each self-demanded label X −X , graph K might as well treat the
complete graph formed by the vertices of that label in graph G as a separate entity and
optimize on it. Similarly, graph K can optimize over the bipartite graph formed by the
vertices of the reciprocally-demanded labels A−B and B − A separately.

For the complete graph formed by the vertices of a self-demanded labeled X − X ,
we know that if |VX−X | is divisible by 4, Lemma 3.7.1 states that the optimal solution is
a 4-cycle cover of VX−X . Otherwise, a set of vertex disjoint 4-cycles that cover all but
O(1) of the vertices is an almost optimal solution for the complete graph VX−X (for sake
of analysis, we can throw out O(1) vertices to get a complete graph whose number of
vertices is divisible by 4, and we know that for this remaining graph, the 4-cycle cover is
optimal).

Similarly, applying Lemma 3.8.3 to the bipartite graph formed by vertices with the
reciprocally demanded labelsA−B andB−A, we know that an optimal solution consists
of a cover of the vertices by 4-cycles, paths of length two and at most one path of length
4 or an edge. If we throw out this one of path of length 4 or the edge, we get an almost
optimal solution consisting purely of 4-cycles and paths of length two. If an A−B vertex
is in a 4-cycle, then it shares this 4-cycle with one A− B vertex and two B − A vertices.
Moreover, depending on whether |A−B| ≥ |B −A| or the other way, any path of length
two will contain two vertices of label A−B and one of B −A or vice-versa respectively.

Hence, the graph H as described in the statement of the theorem will have an expected
size of matching at least that of K minus O(1). We lose O(1) terms if a 4-cycle cover for
any of the complete graphs formed by vertices of a self-demanded label is not possible or
if the bipartite graph formed by A − B and B − A cannot be covered using 4-cycles and
paths of length 2. This completes the proof. �

111

Patient-
Donor

Com. Patient Com. Donor Patient-
Donor

Com. Patient Com. Donor

A-A A/AB O/A A-AB AB O/A
B-B B/AB O/B B-AB AB B/AB
O-O O/A/B/AB O O-A A/AB O
AB-AB AB O/A/B/AB O-B B/AB O
A-B B/AB O/A O-AB AB O
B-A A/AB O/A

Table 3.2: The set of compatible blood-types for all under-demanded, self-demanded and
reciprocally-demanded type vertices.

An easy corollary of Theorem 3.8.11 is the following result.

Corollary 3.8.19. There exists an almost optimal solution H(V,E ′) for the complete kid-
ney exchange graph G with the following properties:

1. For each self-demanded label, there are b|VX−X |c/4 vertex-disjoint cycles of length
4 in the subgraph H .

2. For each over-demanded label X − Y , there are |VX−Y | vertex-disjoint paths of
length 2, each path involving a vertex of label X − Y with an edge incident to two
unique vertices of label Y −X .

3. There are byc vertex disjoint paths of length 2 and bzc vertex disjoint cycles of length
4 where x and y are given by the equations

y + 2z = min(|VA−B|, |VB−A|) (3.5)
2y + 2z = max(|VA−B|, |VB−A|) (3.6)

In each such path of length 2, a vertex of label arg min (|VA−B|, |VB−A|) has an edge
each to two vertices of the other label. Every cycle of length 4 has two vertices of
label A−B that share an edge each with two vertices of label B − A.

3.8.5 Realistic Kidney Exchange Graphs

We now remove the assumption of successful tissue typing tests that we made in Sec-
tion 3.8.4. In practice, if two pairs of donor-patient are blood-type compatible then the
tissue-type test succeeds with some constant probability [Ashlagi and Roth, 2011]. This

112

probability depends on biological parameters of the patients and donors. Hence, a realistic
kidney exchange graph can be seen as drawn from a distribution over graphs, where the
distribution is defined as follows: The vertex set of each graph in the distribution is the
same as the complete kidney exchange graph (Definition 3.8.9), and obeys the constraints
imposed on its various vertex sets. Each edge of the complete kidney exchange graph ex-
ists independently in the randomly drawn graph with a constant probability c (which for
our purposes can be thought of as a lower bound). The approach of drawing a realistic
kidney exchange graph from a similar distribution has been taken before by Ashlagi and
Roth [Ashlagi and Roth, 2011] and Toulis and Parkes [Toulis and Parkes, 2011].

input : A realistic kidney exchange graph Gr drawn from a distribution.
output: A subgraph Hr of Gr that is a solution to the NONADAPTIVE2 problem for

Gr.

1. For each of the complete graphs VA−A, VB−B, VAB−AB, VO−O, we run
Algorithm 7 and add to Hr the edges it returns.

2. For each of the bipartite graphs (VAB−A, VA−AB), (VAB−B, VB−AB),
(VAB−O, VO−AB), (VB−O, VO−B), (VAB−O, VO−AB), we run Algorithm 8
and add to Hr the edges it returns.

3. For the bipartite graph (VA−B, VB−A), we run Algorithm 9 and add to Hr

the edges it returns.

Algorithm 6: Polynomial time algorithm for the NONADAPTIVE2 problem for real-
istic kidney exchange graphs.

We now present our main result, building on most of the results presented above.

Theorem 3.8.20. For a randomly drawn graph Gr from the kidney exchange graph G,
we can algorithmically find in polynomial time a subgraph Hr that with probability at
least 1− o(1

NAOPT2(G)
) has expected matching size at least (1− o(1))NAOPT2(G) ≥ (1−

o(1))NAOPT2(Gr).

Proof. From the characterization of an almost optimal subgraph H for the kidney graph
G as mentioned in Lemma 3.8.19, we know that H will have the following:

1. α , |VAB−A|+ |VAB−B|+ |VAB−O|+ |VB−O|+ |VAB−O|+ bycmany paths of length
2

113

input : A random graph Gr drawn from a complete graph G.
output: A subgraph Hr of Gr with every node having at most incident edges.

1. Throw out O(1) vertices from Gr to make the cardinality of the
vertex-set divisible by 4.

2. Uniformly randomly partition the vertices of Gr into two sets A and B with
|A| = |B|.

3. In A, pair up the vertices uniformly randomly to get a set A′ which treats each
pair as a vertex and hence |A′| = |A|/2. The vertices of A′ can denoted as vxy
where x and y are the two vertices in A that were paired up.
Do a similar operation with B to get B′.

4. Introduce an edge between a vertex vxy in A′ and a vertex vx′,y′ in B′ if Gr

contains all the edges (x, x′), (x, y′), (y, x′), (y, y′). Note that if Gr contains all
these edges, then x, x′, y, y′ form a 4-cycle in Gr.

5. Compute the maximum matching M in the bipartite graph formed between A′

and B′.

6. For each edge (vxy, vst) included in M , include the corresponding 4-cycle
(x, s, y, t) in Hr.

Algorithm 7: Sub-module for complete graph.

114

input : A random graph Gr drawn from a lopsided complete bipartite graph
G(A ∪B,E), with |A| < 1

2
|B|.

output: A subgraph Hr of Gr where each vertex is incident to at most two edges.

1. Randomly pair up the vertices in B (if |B| is not divisible by 2, throw out
a vertex from B and then pair up the remaining vertices). Construct a new
set B′ by introducing a vertex vxy in B for each pair (x, y) of vertices created
from B.

2. Construct a bipartite graph G′ between A and B′. Introduce an edge between a
vertex u ∈ A and a vertex vxy ∈ B′, if the pair of edges (u, x) and (u, y) exist
in G.

3. Find a maximum matching M in the bipartite graph G′.

4. For every matched edge (u, vxy) in M , add the edges (u, x) and (u, y) to Hr.

Algorithm 8: Sub-module for lop-sided complete bipartite graph.

2. β , b(|VA−A|+ |VB−B|+ |VAB−AB|+ |VO−O|)/4c+ bzc many cycles of length 4

where y and z are given by the set of equations

y + 2z = min(|VA−B|, |VB−A|) (3.7)
2y + 2z = max(|VA−B|, |VB−A|) (3.8)

Hence the expected size of matching of H is given by α ·M2P + β ·M4C where M2P

and M4C denote the expected size of matching in a path of length 2 and a cycle of length
4 respectively.

We will show that for a random graphGr, with high probability, we can algorithmically
find a subgraphHr ofG, that is composed of α−o(n) many paths of length 2 and β−o(n)
many cycles of length 4. Hence, with high probability, the expected matching size of Hr

would be (α− o(n)) ·M2P + (β− o(n)) ·M4C = NAOPT2(G)− o(n). Here n = |V |. It is
easy to see that NAOPT2(G) ≥ NAOPT2(Gr for all graphs Gr since the edge set of Gr is
a subset of that of G, and hence the optimal subgraph solution of Gr is also a subgraph of
G. Hence, it also follows that the expected matching size of Hr is NAOPT2(Gr)− o(n).

All that is left to prove is that for a random graph Gr, with high probability, we can
algorithmically find a subgraph Hr of G, that is composed of α − o(n) many paths of

115

input : A random graph Gr drawn from an almost balanced complete bipartite
graph G(L ∪R,E), with |L| ≤ |R| ≤ 2|L|.

output: A subgraph Hr of Gr where each vertex is incident to at most two edges.

1. With the given values of |L| and |R|, solve for x and y in the equations
2 · x+ y = |L| and 2 · x+ 2 · y = |R|. Consider disjoint subsets L1 and L2 of
L of sizes 2 · bxc and y respectively. Similarly, consider disjoint subsets R1

and R2 of R of sizes 2 · bxc and 2 · y respectively.

2. Pair up the vertices in L1 and for every such pair (s, t), introduce a vertex vst
in a new set L′1. Similarly, pair up vertices in R1 and R2 to construct sets R′1
and R′2 respectively.

3. Construct bipartite graphs G1 over L′1 ∪R′1, and introduce an edge between
vertices vst ∈ L′1 and vpq ∈ R′1 in G1, if each of the edges (s, p), (p, t), (t, q)
and (q, s) are present in Gr (i.e., the vertices (s, p, t, q) form a 4-cycle in Gr).

4. Construct bipartite graph G2 over L2 ∪R′2, and introduce an edge between
vertices u ∈ L2 and vst ∈ R′2 if the edges (u, s) and (u, t) exist (i.e., (s, u, t)
form a path of length 2) in Gr.

5. Find a maximum-cardinality matching M1 in G1, and M2 in G2.

6. For every edge (vst, vpq) ∈M1, include the edges of the 4-cycle (s, p, t, q)
in Hr. For every edge (u, vst) ∈M2, include the edges of the path of length 2
formed by (s, u, t) in Hr.

Algorithm 9: Sub-module for an almost balanced complete bipartite graph.

116

length 2 and β − o(n) many cycles of length 4. We claim Algorithm 6 has the desired
properties.

The algorithm can be easily seen to run in polynomial since each of the sub-algorithms
clearly runs in polynomial time. We now complete the analysis.

1. For each of the bipartite graphs (VX−Y , VY−X) ∈ {(VAB−A, VA−AB), (VAB−B, VB−AB),
(VAB−O, VO−AB), (VB−O, VO−B), (VAB−O, VO−AB)}, using Claim 3.8.27, we add to
Hr, with probability at least 1− o(1

|VX−Y |
), |VX−Y | many paths of length 2.

2. For each of the complete graphs VX−X ∈ {VA−A, VB−B, VAB−AB, VO−O}, applying
Claim 3.8.26, we add, with probability at least 1 − o(1

VX−X
), b(|VX−X |/4c − O(1)

many 4-cycles to Hr.

3. For the bipartite graph (VA−B, VB−A), we can infer from Claim 3.8.28, that we add
to Hr, with probability at least 1 − o(1

T
), byc − o(T) many paths of length 2 and

bzc − o(T) many cycles of length 4, where T = |VA−B ∪ VB−A|.

We now need to sum up over the probability of failure in each of the high probability state-
ments given above. For each high probability statement given above, either the probability
of failure is o(1

NAOPT2(G)
) or the contribution of that term to the size of optimal matching

NAOPT2(G) is o(NAOPT2(G)).

We only have a small number of sub-algorithms, hence using the union bound we can
say that with probability at least 1 − o(1

NAOPT2(G)
), the size of expected matching of the

graph Hr returned by the algorithm is (1− o(1))NAOPT2(G). �

Distribution on graphs

Assume that for a particular graph G(V,E) we have been able to characterize an optimal
subgraph H(V,E ′). Moreover, we can find the subgraph H algorithmically. However,
what if we are not dealing with G, but rather a graph Gr which has the same vertex set
as G and whose edges are drawn from the following distribution: every edge e ∈ E is
included in Gr with some constant probability c. Can we somehow use the fact that we
have been able to solve the problem for G, and use its solution for Gr?

We would like to emphasize here that the aim of this section is to solve NONADAP-
TIVE2 problem for the graph Gr. In solving it, we would like to leverage the fact that we
know that it is drawn from the underlying graph G and have the knowledge of an optimal
or almost optimal solution for NONADAPTIVE2 problem for G.

117

Observation 3.8.21. The expected matching size of an optimal solution for the complete
graph G, denoted by NAOPT2(G), is at least as much as the expected matching size of an
optimal solution for any graph Gr, denoted by NAOPT2(GR).

The reason for the above observation is that the edge set of Gr is a subset of the edge
set of G, and hence any solution for Gr, i.e., a subgraph Hr of Gr, is also a subgraph of
G. Hence, NAOPT2(G) ≥ NAOPT2(Gr). One corollary of the above observation is the
following.

Corollary 3.8.22. If for a graph Gr, drawn from G, we can algorithmically find a sub-
graph Hr, that has expected matching size within some additive loss of NAOPT2(G), then
that implies that the expected matching size ofHr is at least NAOPT2(Gr) within the same
additive loss.

Hence, if we wish to prove that a particular subgraph Hr for a graph Gr has expected
matching size close to NAOPT2(Gr), it suffices to show that the expected matching size
of Hr is close to NAOPT2(G). In this section, we explore this question for various special
cases of G.

Before we delve into the special cases, we would like to state a result on random
bipartite graph.

Claim 3.8.23. Consider a complete bipartite graph G(P ∪ Q,P × Q). Draw a random
bipartite graph Gr(P ∪Q,E ′), where every edge in P ×Q is included in E independently
with probability c, for some constant c. There exists n0 (a constant depending on c) such
that if n = min(|P |, |Q|) ≥ n0, then with probability at least 1 − o(1

n
), there exists a

bipartite matching in Gr of size n.

Proof. Consider the case when |P | ≤ |Q|; the other case can be taken care of similarly.
Let |P | = n, and let us consider an arbitrary subset Q′ ⊆ Q, such that |Q′| = n. We shall
show that the random bipartite graph G′r(P ∪ Q′, E ′ ∩ (P × Q′)) has a perfect matching
with probability at least 1− o(1

n
).

We first show that with probability at least 1 − 1
n2 , every vertex in both sets P and Q′

has degree at least 3 in graph G′r. Consider a particular vertex v ∈ P ∪Q′. Consider the n
independent random variables, each taking value in {0, 1} and representing a possible edge
between v and a vertex from the opposite side. Let these random variable be X1, · · · , Xn.
Since each Xi takes value 1 with probability c, hence the expected degree of vertex v,
E[
∑n

i=1 Xi] = cn.

Let n0 ≥ 6/c. If
∑n

i=1 Xi ≤ 3 (i.e., vertex v has degree at most 3), then in particular,∑n
i=1Xi ≤ cn

2
. By Chernoff bound, Pr[

∑n
i=1Xi ≤ cn

2
] ≤ exp(−cn/8).

118

By union bound, the probability that at least one vertex in P ∪Q′ has degree less than
3 in graph G′r is at most 2n · exp(−cn/8). Let n0 be the minimum integer ≥ 6/c, such
that 2n0 · exp(−cn0/8) ≤ 1

n2
0
. We then have that for all n ≥ n0, with probability at least

1− 1
n2 , every vertex in both sets P and Q′ has degree at least 3 in graph G′r.

Let us condition the analysis from here on to each vertex in P∪Q′ having degree at least
3 in graph G′r. Clearly, once we condition, then each vertex in graph G′r has at least three
random neighbors from the opposite side. We can now apply Walkup’s theorem [Walkup,
1980] to conclude that there exists a perfect matching in G′r with probability at least 1 −
o(1

n
).

Removing the conditioning, we get that with probability at least (1−o(1
n
)) ·(1− 1

n2) =
1− o(1

n
), there exists a perfect matching in G′r, and hence a matching of size n in Gr. �

Remark 3.8.24. For all the graphs that we consider below, we shall assume that the
number of vertices in the graph is large enough to apply Claim 3.8.23.

Complete Graph Suppose thatG is a complete graph. If |V | is divisible by 4, then using
Corollary 3.8.2, we know that the optimal subgraph H for G is a cover of the vertices of G
through 4-cycles. We now use this result for the complete graph G to get the polynomial
time Algorithm 7, which with high probability, gives an almost optimal solution for Gr.

Lemma 3.8.25. Algorithm 7, in polynomial time, constructs a subgraph Hr whose ex-
pected size of matching, with probability at least 1−o(1

|V |), over the draw of random graph
Gr from a complete graph G, is at least NAOPT2(G)−O(1) ≥ NAOPT2(Gr)−O(1).

We first prove an important claim.

Claim 3.8.26. Over the draw of Gr, with probability at least 1− o(1
|V |), the subgraph Hr

computed using Algorithm 7 has |V |/4−O(1) vertex disjoint 4-cycles.

Proof. Having thrown out O(1) vertices in Step 1, consider any fixed partition (A,B) of
the remaining vertices for Step 2 of Algorithm 7, with |A| = |B| and fixed pairing up of
vertices in A and in B to get A′ and B′. Consider a particular pair of vertices vxy ∈ A and
vst ∈ B. Over the draw of Gr, what is the probability that an edge exists between vxy and
vuv? For an edge to exist between these two vertices, the edges (x, s), (s, y), (y, t), (t, x)
must exist in Gr. Each of these edge exists independently with probability c in Gr, and
hence all four exist with probability c4.

Therefore, between any pair of vertices vxy ∈ A and vst ∈ B, an edge exists with
probability c4. Using Claim 3.8.23 and Remark 3.8.24, with probability at least 1− o(1

|V |)

119

over the draw of Gr, the bipartite graph between A and B admits a maximum matching of
size |A| = |B|. This in turn implies that with probability at least 1− o(1

|V |), the subgraph
Hr constructed for Gr has at least |V |/4−O(1) vertex disjoint 4-cycles. �

Proof of Lemma 3.8.25. It is easy to see that Corollary 3.8.2 implies that the subgraph H
for G with b|V |/4c vertex-disjoint 4-cycles has expected size at least NAOPT2(G)−O(1)
where we lose O(1) if the cardinality of the vertex set of G is not divisible by 4. The
expected size of maximum matching in H is b|V |/4c ·M4C , where M4C is the expected
size of maximum matching in a single 4-cycle. In other words, NAOPT2(G) ≤ b|V |/4c ·
M4C +O(1).

Claim 3.8.26 shows that Algorithm 7 produces a subgraph Hr that with probability
at least 1 − o(1

|V |), has at least |V |/4 − O(1) vertex disjoint 4-cycles. Hence, the with
probability at least 1 − o(1

|V |), the expected size of maximum matching in Hr is at least
NAOPT2(G)−O(1). Moreover, from Observation 3.8.21, NAOPT2(G) ≥ NAOPT2(Gr).
Hence the result. �

Almost balanced bipartite graphs We now consider G that is a complete bipartite
graph between the two sets of verticesL andRwith |L| ≤ |R| ≤ 2|L|. From Lemma 3.8.3,
we know that an optimal subgraph H for the graph G consists of 4-cycles and paths of
length 2 (plus maybe a path of length 4 or an edge). Furthermore, by Lemma 3.8.3, it is
easy to discern that a subgraph H which has bxc 4-cycles and y paths of length 2 has ex-
pected matching size at least NAOPT2(G)−O(1) where x and y are given by 2·x+y = |L|
and 2 ·x+ 2 · y = |R|. We now utilize this knowledge to build Algorithm 9 for construct a
subgraph Hr for a randomly drawn graph Gr from G. The guarantee of this algorithm can
be easily inferred from the preceding discussion and the following claim.

Claim 3.8.27. Given bipartite graphG(L∪R,L×R) with |L| ≤ |R| ≤ 2|L|, Algorithm 9,
in polynomial time, constructs a subgraphHr ofGr, that, with probability at least 1−o(1

T
),

over the draw of Gr, has x − o(T) 4-cycles and y − o(T) paths of length 2, where x and
y are given by 2 · x+ y = |L| and 2 · x+ 2 · y = |R|, and T = |L ∪R|.

Proof. If both x and y are Ω(T), we can apply Claim 3.8.23 to each of the bipartite match-
ings M1 and M2, found in Step 5 of Algorithm 9, to infer that

1. with probability at least 1−o(1
x
),M1 has size bxc, and hence, the number of 4-cycles

in Hr is bxc

120

2. with probability at least 1− o(1
y
), M2 has size y, and hence, the number of paths of

length 2 in Hr is y

where Hr is the subgraph returned by Algorithm 9. Hence, we can infer that with proba-
bility at least 1− o(1

T
), Hr has bxc 4-cycles and y paths of length 2.

On the other hand, if one of x or y is o(T), then we can ignore the contribution from
that term, and applying Claim 3.8.23 solely to the other term, get that with probability at
least 1− o(1

T
), Hr has x− o(T) 4-cycles and y − o(T) paths of length 2. �

Lopsided bipartite graphs Let G be a complete bipartite graph between the two sets L
and R, but with |L| < 1

2
|R|. By Lemma 3.8.13, we know that the optimal subgraph H

for G has each vertex in L having an edge each to distinct and unique vertices in R, and
this implies a total of |L| vertex disjoint paths of length 2 in H . Hence, NAOPT2(G) =
|L| ·M2P , where M2P is the expected size of maximum matching in a path of length 2.
We build Algorithm 8 for such a bipartite graph, and the guarantee of the algorithm can be
easily inferred from the following claim.

Claim 3.8.28. Given a graph G(L ∪R,L×R), with |L| < 1
2
|R|, Algorithm 8, in polyno-

mial time, constructs a subgraph Hr, which has expected matching size, with probability
at least 1− o(1

|A|), over the draw of the graph Gr, has |L| paths of length 2.

Proof. Applying Claim 3.8.23 to the matching found in Step 3, we can see that with prob-
ability at least 1 − o(1

|A|), we find a perfect bipartite matching and hence the subgraph
Hr returned by the algorithm has |L| vertex disjoint paths of length 2. Hence the claim
follows. �

3.9 Directions for Future Research

Our adaptive algorithm for the matching setting achieves a (1− ε)-approximation in O(1)
rounds and using O(1) queries per vertex. Is there a non-adaptive algorithm that achieves
the same guarantee?

3.10 Acknowledgment

The results in this chapter are part of a joint work with Avrim Blum, Anupam Gupta, Nika
Haghtalab and Ariel Procaccia [Blum et al., 2013, 2014].

121

122

Chapter 4

Spiteful Auctions

4.1 Introduction

In Chapters 2 and 3, we designed new allocation mechanisms to match the given objective
function and acting under certain constraints. While we design new allocation mechanisms
to achieve desired properties, in many settings, there are long-established allocation mech-
anisms in place, and these are usually so well accepted that they are hard to be replaced.
In these situations, we would like to analyze the properties of these existing allocation
mechanisms and provide guarantees about their performance. In this chapter, we study the
widely prevalent auction mechanisms and specifically, some of its most common formats
– English, Dutch, first- and second-price sealed bid auctions. While these auction for-
mats are well studied in literature in cases where bidders care only for what they receive
from the auction, here we study them in the case where bidders are negatively affected by
the happiness of other bidders. We will call these agents ‘spiteful’ and try to understand
how these agents bid in these auction formats, and how the revenue and the winner of the
auction are affected by their presence.

Auctions have emerged as effective ways of allocating resources and tasks among hu-
man and software agents. Most of the auction literature assumes that each agent only cares
about her own surplus: what goods she gets and how much she has to pay. However, in
reality agents often have other-regarding preferences where they care about others’ sur-
pluses too. This can take the form of altruism, or more commonly in auctions and similar
settings, spite. The spite motive, which is the preference to make others worse off, stems
from mainly two reasons. The first reason is strategic. The agent might benefit in the long
run by weakening her competitors, for example, driving competitors’ market share down

123

or causing them to have to pay more for a given allocation in the auction (as has been ob-
served in spectrum auctions [Grimm et al., 2001] and sponsored search auctions [Zhou and
Lukose, 2006]). Furthermore, in certain competitions such as the Trading Agents Com-
petition, agents might give more weight to relative rankings rather than absolute perfor-
mance. The second reason is psychological. There is ample evidence from experimental
economics and psychology that people behave against their self-interest in strategic set-
tings, and that this can be explained as rational behavior among agents that inherently have
other-regarding preferences [Saijo and Nakamura, 1995, Levine, 1998, Loewenstein et al.,
1989].

Game-theoretic analysis of spiteful bidding in auctions was initiated relatively re-
cently [Brandt and Weiß, 2001]. Spite can explain why people bid more aggressively
in auctions than theory would predict among self-interested agents [Morgan et al., 2003].
Brandt et al. [2007] and Morgan et al. [2003] discuss the scenario where each bidder is
equally spiteful, and give the equilibrium bidding functions for the first- and second-price
one-item auctions. Vetsikas and Jennings [2007] extend the analysis of the symmetric-
spite setting to multi-unit auctions.

This prior literature has assumed that all bidders are equally spiteful. A priori, how-
ever, there is no reason to believe that each bidder would be equally spiteful [Brainov,
2000]. Different bidders can care to a different extent about the surplus of other bidders.
Moreover, a bidder might care more for the surplus of a particular bidder than for the sur-
plus of some other bidder. In this chapter, we present, to our knowledge, the first auction
analysis of the broader setting where bidders can be asymmetrically spiteful.

4.2 Model

In this chapter, we study 1-item auctions. Making the standard assumptions of quasilinear
utility functions and that losers in the auction pay nothing, we have that in the absence of
spite, the utility function of bidder X is

uX =

{
vX − pX if X wins the auction

0 if X loses the auction

where vX is the bidder’s valuation of the item and pX is the amount the bidder has to pay.

124

In presence of spite, the utility function is

uX =

{
vX − pX if X wins the auction

−αtX · (vY − pY) if Y 6= X wins the auction

(0 ≤ αtX ≤ 1)

where αtX is a measure of the spite of agent X . The subscript X in αtX is to emphasize
that the spite factor depends on the bidder X . The superscript t, where t stands for ‘true’,
is there to distinguish αtX from symbol αeX which we will introduce later in this chap-
ter. Higher αtX means greater spite. In the symmetric model of spite, which has been
considered in the prior work, all agents are equally spiteful (∀X,αtX = αt).

The utility can also be expressed in terms of surplus:

uX =

{
surplus(X) if X wins the auction

−αtX · (surplus(Y)) if Y 6= X wins the auction

So, conditional on losing the auction, the bidder would like to minimize the surplus of the
winning bidder. We assume 0 ≤ αtX ≤ 1, that is, bidders care at least as much for their
own surplus as the negation of anyone else’s surplus.

Among self-interested agents, it is weakly dominant for each bidder to bid her true
valuation in a second-price sealed-bid auction [Vickrey, 1961]. The following example
shows that this ceases to be the case among (even symmetrically) spiteful bidders. Let
there be two bidders, A and B. Let vA = 5 and vB = 10, and αtA = αtB = 0.1. If both
bid truthfully, B wins and pays 5 (second highest bid). B’s surplus is 10 − 5 = 5, so
uA = −0.1 · 5 = −0.5. But, for example, A can get higher utility uA = −0.1 · 2 = −0.2
by bidding 8, thus causing B to pay 8.

We consider the four common auction mechanisms: first-price sealed-bid, second-
price sealed-bid, English, and Dutch. In the first-price (second-price) sealed-bid auction,
all bidders submit their bid in a sealed envelope and the bidder with the highest bid wins the
auction and pays her bid price (second-highest bid price). The English auction is modeled
with a clock displaying the current bid price. The clock price increases continuously
and each bidder has a button which she releases when she wants to drop out. When the
second-to-last bidder releases her button, the auction ends and the remaining bidder wins
at the current price. The Dutch auction is modeled with a clock where the price decreases
continuously. The first bidder to release her button wins and pays the price on the clock at
that point.

125

4.3 Spite in the discrete valuations setting

Before discussing spiteful bidding in the case where the bidders draw their valuation from
a continuous distribution, we first discuss the discrete case which has some characteristics
worth noting and which gives insight into the issues that arise in spiteful bidding.

4.3.1 Complete information setting

Consider the example above, but now in a first-price sealed-bid auction. If A were to bid
too low, say 3, then B could bid 4 and win the item with surplus 10 − 4 = 6. A’s utility
would be−0.1 · 6 = −0.6. So A must bid higher in order to force B to bid higher, thereby
reducing B’s surplus. How high can A go? Once A’s bid overshoots his true valuation
of 5, there is the risk that B does not bid higher which means A wins the item at a price
greater than his own valuation thereby ending up with a negative utility. So, let us try to
calculate the bid price at which even if A wins the item, he would get the same utility as
in the case he loses.

Let the winning price be ρ. If A wins, his utility would be (5 − ρ) and if he loses, it
would be −0.1 · (10 − ρ). Equating these two yields ρ ≈ 5.5. Hence, A is indifferent
between winning and losing at that bid price. At any bid price above that, A would prefer
to lose. At any bid price below that, Awould prefer to win. We call 5.5 the crossover point
for A.

Similarly, we can calculate the crossover point for B, which is approximately 9.5.
Above that price B would prefer to lose, and below that price, B would prefer to win.

There is a range of bid prices from 5.5 to 9.5 whereinA prefers to lose andB prefers to
win. Each bid price between these two values constitutes an equilibrium. If A is adamant
to bid at least 8, it is in B’s best interest to bid at least 8 + ε and win. Similarly, if B is
adamant not to bid above 6, it is in A’s best interest to lose by bidding 6− ε. Conditioned
on B winning, the closer the winning bid is to 5.5, the higher is the B’s utility and the
lower is A’s utility. Similarly, the closer the winning bid is to 9.5, the higher is A’s utility
and the lower isB’s utility. Hence, there is a ‘bargaining problem’ in equilibrium selection
here in the case of asymmetric valuations where the two agents bargain for the equilibrium
bidding price.

In the English and Dutch auction there is no such bargaining problem. In the English
auction the equilibrium is at the higher crossover point (9.5), because the lower-valuation
bidder can safely bid up to that point because the higher-valuation bidder would not want
to drop out before then. Analogously, in the Dutch auction the equilibrium is at the lower

126

crossover point (5.5).

4.3.2 Incomplete information setting

We now discuss the more realistic setting where bidders have incomplete information
about each others’ valuations. Let bidders A and B have the joint distribution of their val-
uations given in Table 4.1. IfA has valuationM , we say thatA is of typeM . In this exam-

Table 4.1: Joint probability distribution over valuations.
A’s type B’s type Probability A’s type B’s type Probability
50 100 1/6 100 50 1/6
50 200 1/6 100 200 1/6
200 50 1/6 200 100 1/6

ple, we intentionally set the probability that both bidders have same type to zero because
tied bids make the analysis more involved. Let the bidders have spite αtA = αtB = 0.1.

Clearly A and B are symmetric so we can look for symmetric bidding strategies that
will constitute an equilibrium. Furthermore, we make the natural assumption that the
equilibrium bids at type 50, 100, and 200 are in increasing order so a bidder of type 50 (if
one exists) always loses and a bidder of type 200 (if one exists) always wins.

Let Q be the bid made by bidder of type 100 in equilibrium. Now a type-50 bidder
can bid anywhere up to Q since she knows that the other bidder (regardless of whether he
is of type 100 or 200) will bid at least Q. Similarly, a type-200 bidder would like to bid
as close to (but higher than) Q as possible since that would maximize her utility. So, in
equilibrium all types bid basically the same amount (but they prefer ties to be broken in
favor of higher types).

Q clearly has to be such that a bidder of type 50 prefers to lose at that bid and a bidder
of type 200 prefers to win at that bid. Let T be the crossover point of the type-50 bidder.
Then, 50− T = −0.1 · (100− T + 200− T)/2 , where the left hand side is her utility if
she wins at T and the right hand side is her expected utility if she loses. Solving this yields
T=59.1. So, Q must be at least 59.1. Similarly, denoting by W the crossover point of the
type-200 bidder, we must have 200 −W = −0.1 · (50 − T + 100 − T)/2. This yields
W = 188.6, soQmust be at most 188.6. IfQ is the bidding price, then the expected utility
of a type-100 bidder is ((100−Q)−0.1 · (200−Q))/2. (Here we have used the fact that a
type-50 other bidder always loses and a type-200 other bidder always wins.) If Q is above
88.9, then the expected utility is negative. Hence, Q must be below 88.9. Q can therefore

127

lie between 59.1 and 88.9. So again, like in the complete information setting, there is a
range of bid values Q that constitute an equilibrium. Thus there is a bargaining problem
in this setting as well.

4.4 Prior results

Prior work has provided equilibrium analysis for settings where bidders draw their valua-
tions from the same distribution and have equal spite values αt (∀X,αtX = αt) [Morgan
et al., 2003, Brandt et al., 2007]. We now summarize some of those prior results in order
to provide a comparison point to the results we will derive. Table 4.2 summarizes the
symmetric equilibrium bidding strategies for the settings where the bidder’s valuation are
drawn uniformly from [0, 1].

Table 4.2: Bidding functions under symmetric spite.
Auction 2-bidders n-bidders
First-price
sealed-bid and
Dutch

(
1+αt

2+αt

)
v

(
n−1

n− αt

1+αt

)
v

Second-price
sealed-bid

(
1+αt

1+2αt

)
v + αt

1+2αt

(
1+αt

1+2αt

)
v + αt

1+2αt

English
(

1+αt

1+2αt

)
v + αt

1+2αt
text explains strategy

So, in the first-price sealed-bid 2-bidder case , agents bid higher under spite than under
self-interest: 2v

3
when αt = 1 and v

2
when αt = 0. This is also the case in the second-price

2-bidder auction: as αt varies from 0 to 1, the bid of the spiteful bidder varies from v to
2
3
v+ 1

3
. Incidentally, in the first-price auction, the bidding function of the 2-bidder case can

be transformed to the n-bidder case by replacing (1+αt) by (n−1)(1+αt). Furthermore,
for the second-price sealed-bid auction, the bidding function is the same in 2-bidder and
n-bidder settings.

In the English auction with n bidders, the bidding strategy differs from the 2-bidder
case and is the following [Morgan et al., 2003].

• If three or more bidders are present, each bidder drops out as the price reaches her
valuation.

128

• If only two bidders remain, each bidder drops out when the price reaches b(v), where
b(v) is the bid she would have submitted in a 2-bidder second-price sealed-bid auc-
tion.

4.5 Asymmetric spite results

We now move to the setting where bidders can be spiteful to different extents. Throughout
the rest of the chapter, we will assume that the bidder’s valuations are drawn uniformly
and independently from [0, 1]. Further, as in prior research, we assume that for a given set
of spite factors of the bidders, the equilibrium bidding function is strictly increasing in the
agent’s valuation. As in prior research, we will focus on studying symmetric equilibria,
that is, equilibria where the form of the bidding function is the same for every agent. That,
of course, does not mean that the agents’ bids are the same because they have different
valuations and different spite factors.

4.5.1 The 2-bidder case

We first analyze the setting with two bidders, A and B. Denote by bB(·) the equilibrium
bidding function of bidderB, that is, ifB has valuation vB, she bids bB(vB) in equilibrium.
Similarly, denote by bA the bid of bidder A when she has valuation vA.

First-price sealed-bid auction and Dutch auction

In the first-price sealed-bid auction (and its strategic equivalent, the Dutch auction), the
expected utility of bidder A is

∫ b−1
B (bA)

0

[vA − bA]dvB − αtA
∫ 1

b−1
B (bA)

[vB − bB(vB)]dvB (4.1)

The first term above is for the case where A wins and the second term is for the case
where she loses. To solve this for A’s bid bA, our high-level approach is to differentiate the
above equation with respect to bA and solve for bA by equating the differential to 0. We
will now present the derivation in detail. We guess that the bidding function in symmetric
equilibrium is a linear functions of the bidder’s valuation (as it was in the symmetric-spite
setting). Hence we can write bB(vB) = rB(αtA, α

t
B)·vB and differentiate (4.1) with respect

129

to bA. Equating the differential to 0, we get

bA =

(
1

2 + αtA(1− 1/rB)

)
vA

We observe that this bidding function forA is of the linear form we guessed. This confirms
the guess that these bidding functions constitute a symmetric equilibrium.

This can be written as bA = rA · vA, where

rA =

(
1

2 + αtA(1− 1/rB)

)
We have an exactly analogous equation for rB. Here, rA and rB are written as functions of
each other, while we would like to express them as functions of the spite coefficients only.
Hence we solve the equations for rA and rB simultaneously to get

rA =
1− αtAαtB

2− αtA − αtAαtB

This can be put in a better-looking form by introducing symbols αeA and αeB, so bA
becomes

bA(v) =

(
1 + αeA
2 + αeA

)
v (4.2)

where

αeA =
αtA

1 + αeB − αtA
= αtA

(
1− αtB
1− αtA

)
(4.3)

We get analogous equations for αeB.

With the above transformation, we can observe that the bidding function in this asymmetric-
spite settings looks like the bidding function in the symmetric-spite setting (Table 4.2)—
except that there is now the symbol αeA in place of αt. Because of their close connection,
we call αt (t)rue α and αe (e)xpressed α, though no semantics behind these names are
intended here.

Note that the first expression for αeA in Equation 4.3 is in terms of αeB and αtA, while
the second expression is in terms of αtB and αtA. Depending on the situation, either of these
forms can be useful.

130

Second-price sealed-bid auction

In the second-price sealed-bid auction, the expected utility of bidder A is∫ b−1
B (bA)

0

[vA − bB(vB)]dvB − αtA
∫ 1

b−1
B (bA)

[vB − bA]dvB (4.4)

We guess that bB is of the form rB(αtA, α
t
B) · vB + sB(αtA, α

t
B) just as it was in the

symmetric-spite second-price sealed-bid setting. Note that the guess here also includes
an additive term sB(αtA, α

t
B) unlike in the first-price sealed-bid setting. Using this form of

bB, we differentiate (4.4) with respect to bA. We then equate the differential to 0 to get

bA =

(
rB

rB − αtA(1− 2rB)

)
vA +

αtA(r2
B + (rB − 1)sB)

rB − αtA(1− 2rB)

This bidding function is of the form we had guessed with

rA =
rB

rB − αtA(1− 2rB)
, sA =

αtA(r2
B + (rB − 1)sB)

rB − αtA(1− 2rB)

We have analogous equations for bidder B. This proves that the guess is correct, that is,
these functions indeed constitute a symmetric equilibrium.

Solving the above equations for rA and sA simultaneously with the analogous ones for
rB and sB, we get

rA =
1− αtAαtB

1 + αtA − 2αtAα
t
B

, sA =
αtA − αtAαtB

1 + αtA − 2αtAα
t
B

These equations can be again put in a nice form by introducing symbols αeA and αeB. We
get the equilibrium bidding function for A as

bA(v) =

(
1 + αeA
1 + 2αeA

)
v +

αeA
1 + 2αeA

(4.5)

where

αeA =
αtA

1 + αeB − αtA
= αtA

(
1− αtB
1− αtA

)
(4.6)

We get analogous equations for bidder B.

We observe that the bidding function is exactly of the form as in the symmetric-spite
case—except that αe has replaced αt. Furthermore, the expression of αe is the same as in
the asymmetric-spite first-price sealed-bid auction.

131

English Auction

In the English auction, when the clock price is z, the expected utility of bidder A as a
function of her bid bA is

1

1− z
(∫ b−1

B (bA)

b−1
B (z)

[vA − bB(vB)]dvB − αtA
∫ 1

b−1
B (bA)

[vB − bA]dvB
)

(4.7)

The methodology to solve for the equilibrium bid function remains the same. We guess
that bB is of the form rB(αtA, α

t
B) · vB + sB(αtA, α

t
B) just as it was in the symmetric-spite

case, and it turns out that we get the same bidding function as in the second-price sealed-
bid auction.

We summarize the results in Table 4.3. We observe that in all cases, the bidding func-
tions in is of the same form as in the symmetric-spite setting (Table 4.2)—except with αe

occupying the place of αt.

Table 4.3: Equilibrium in the 2-bidder asymmetric-spite setting.
Auction type Bidding function for bidder A Expression for

αeA
First-price sealed-bid
and Dutch

(
1+αeA
2+αeA

)
v

αtA
1+αeB−α

t
ASecond-price sealed-

bid and English
(

1+αeA
1+2αeA

)
v +

αeA
1+2αeA

Furthermore, these are the only linear (in case of first-price sealed-bid and Dutch auc-
tions) and affine (in case of second-price sealed-bid and English auctions) equilibrium
bidding functions. This is because guessing these forms for one bidder yielded unique
bidding functions of the same form for the other bidder.

Comparison of αt and αe

In this section we discuss αe as compared to αt. Although αt always lies between 0 and 1
(by assumption), αe is bounded below by 0 and is unbounded from above. Table 4.4 lists
values of αeA for some combinations of αtA and αtB.

From Equation 4.3 and Table 4.4 we see the following.

1. In the symmetric case, αe = αt as we should expect from comparing the equations
of the symmetric and asymmetric case.

132

Table 4.4: The values in the table are bidder A’s αe. The rows correspond to various
values of bidder A’s αt and the columns correspond to values of bidder B’s αt.

0 0.1 0.3 0.5 0.7 0.9
0 0 0 0 0 0 0
0.1 0.11 0.1 0.08 0.06 0.03 0.01
0.3 0.43 0.39 0.3 0.21 0.13 0.04
0.5 1 0.9 0.7 0.5 0.3 0.1
0.7 2.33 2.1 1.63 1.17 0.7 0.23
0.9 9 8.1 6.3 4.5 2.7 0.9

2. In the asymmetric case,

• For a given αtA, the value of αeA decreases linearly with increasing αtB.

• For a given αtB, the value of αeA increases with increasing αtA.

This implies that for a fixed αtA, bidderAmight bid higher or lower in the asymmetric-
spite case than in the symmetric-spite case depending on αtB. In fact, the mapping
between true and expressed spite factors is such that if αtA 6= αtB, then the difference
between αeA and αeB is greater than the difference between αtA and αtB. So, in equi-
librium, the more spiteful bidder expresses an over-exaggerated spite and the less
spiteful bidder expresses an under-exaggerated spite.

Revenue

Brandt et al. [2007] show that in symmetric-spite settings, second-price auctions yield
higher expected revenue than first-price auctions. In contrast, we show that in asymmetric-
spite settings there is no revenue-dominant auction. For a given set of αe’s, we give in
Table 4.5 the expected revenue for a first-price sealed-bid/Dutch auction and a second-
price sealed-bid/English auction.

For αeA = 8.1 and αeB = 0.01, corresponding to αtA = 0.9 and αtB = 0.1, the first-
price auction yields expected revenue 0.63 while the second-price auction yields expected
revenue 0.49. For αeA = 0.39 and αeB = 0.08, corresponding to αtA = 0.3 and αtB = 0.1,
the first-price auction yields expected revenue 0.37 while the second-price auction yields
expected revenue 0.42. So here, neither auction mechanism beats the other in expected
revenue in general. By substituting various values of spite into the formulas of Table 4.5,
we found that when bidders have comparable true spite, the second-price auction yields

133

Table 4.5: Expected revenue for given αe’s in 2-bidder setting.
Auction type Expected revenue Notation
First-price sealed-bid
and Dutch 1

3
(
p2A
pB

+
p2B
pA

) pX =
1+αeX
2+αeX

Second-price sealed-
bid and English

1
2
(qB
qA

+ qA
qB

)− 1
3
(
q2B
qA

+
q2A
qB

)
qX =

1+αeX
1+2αeX

higher expected revenue while if the true spite values differ largely, the first-price auction
yields higher revenue, as can be seen in Figure 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

αt
A

αt B

Figure 4.1: The circles denote the points where the second-price auction yields higher
expected revenue than the first-price auction. The pluses denote the points where the
reverse occurs.

Allocation

In symmetric-spite settings, the bidder with the highest valuation wins the item. In asymmetric-
spite settings, this is no longer true in general. For example, in a first-price sealed-bid
auction, consider the case where bidder A has valuation 0.9 and αtA = 0.1 while bidder B
has valuation 0.7 and αtB = 0.7. For this pair of αt’s, we get αeA = 0.03 and αeB = 2.1, so
A bids 0.46 and B bids 0.53. Hence, the lower-valuation bidder (B) wins.

Figures 4.2 and 4.3 plot a bidder’s bid against her αe for various valuations she may
have in first-price and second-price auctions. For low valuations, v = 0.1 or 0.2, the curve
is nearly flat in the first-price auction. This means that as αe increases, her bid does not

134

increase much. However, in the second-price auction, for the same set of low valuations,
the bid increases steeply as αe increases from 0 to 2, and keeps increasing after that. In
contrast, consider high valuations. For v = 0.9 or 0.8, in the first-price auction, the bid
increases rapidly as αe increases from 0 to 2, and keeps increasing steadily after that. In
the second-price auction, however, for valuations 0.9 and 0.8, there is not much change in
the bid as αe increases from 0 to 10.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

αe

bi
d

va
lu

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.2: The bid in a first-price auction varies with the expressed spite αe. The curves
are for different valuations v, with the lowest curve corresponding to v = 0.1 and the
highest to v = 1.

These observation imply that if A has a high valuation in the second-price auction, it
is unlikely that B can win if B has a slightly lower valuation, say 0.8, no matter how high
αeB is. In the first-price auction however, if A has a high valuation, say 0.9, but low αeA
(< 1), then bidder B can win even with valuation 0.7 but with a high αeB, say 5. Similar
statements can be made for the low valuation case, but with the first-price and second-price
auction switching roles.

4.5.2 The n-bidder setting with directed spite

We now extend our analysis of asymmetric-spite auctions to n bidders. With more than
two bidders, there is the possibility that some bidder(s) have different extents of spite
toward different other bidders. We call this directed spite. For example, bidder A can
have spite factor αtAB toward bidder B and spite factor αtAC toward bidder C, so her utility

135

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

αe

bi
d

va
lu

e

0.9
0.8

0.4
0.3
0.2
0.1

0.7

0.5
0.6

Figure 4.3: The bid in a second-price auction varies with the expressed spite αe. The
curves are for different valuations v, with the lowest curve corresponding to v = 0.1 and
the highest to v = 0.9. For v = 1, the bidder always bids 1.

would be

uA =


vA − pA if A wins

−αtAB · (vB − pB) if B wins
−αtAC · (vC − pC) if C wins

First-price sealed-bid and Dutch auction

The expected utility of A is∫ b−1
C (bA)

0

∫ b−1
B (bA)

0

[vA − bA]dvBdvC

− αtAB
∫ 1

b−1
B (bA)

∫ b−1
C (bB(vB))

0

[vB − bB(vB)]dvCdvB

− αtAC
∫ 1

b−1
C (bA)

∫ b−1
B (bC(vC))

0

[vC − bC(vC)]dvBdvC (4.8)

where bB is the bidding function of B and bC is the bidding function of C. The same
formula extends to any number of agents in the obvious way. We again guess that bA, bB
and bC are linear functions of the valuation, and we indeed find an equilibrium, verifying
the guess. The results for the n-agent case are stated in the last row of Table 4.6. In the
row before that, we also show how these results specialize to the case of undirected spite,
that is, where each agent X has a spite factor αX toward each other bidder.

136

Table 4.6: Bidding function for n-bidder asymmetric-spite first-price sealed-bid and
Dutch auctions.

Case
Bidding function for
bidder A Expression for αeA

1+αeA

Undirected
spite

(
n−1

n−
αe
A

1+αe
A

)
v

αtA
n−1

(∑
X:X 6=A

1
1+αeX

)

Directed spite

(
n−1

n−
αe
A

1+αe
A

)
v 1

n−1

(∑
X:X 6=A

αtAX
1+αeX

)

English auction

The analysis of the English auction is a bit more intricate. We analyze directed spite; the
undirected-spite setting is a special case.

Proposition 4.5.1. In the English auction, an equilibrium strategy for any bidder A is
to stay in if the clock price is lower than max{vA,maxX∈S B(A,X)} and to drop out
otherwise. Here S is the set of other bidders who are still in, and B(A,X) is the bidding
function for A if X were the only other bidder (and we know this form from our analysis
of the two-bidder case, Table 4.3).

Proof. Any n-bidder auction would in the end reduce to a 2-bidder setting. Until what
clock price should A stay in? As long as there is at least one bidder, Z, still in to whom A
would bid higher in a 2-bidder setting than the current clock price, A should stay in. This
is because if A leaves before the clock reaches that price and all other bidders except Z
also exit before the clock reaches that price, then Z will win at a price lower than if A had
stayed in. So, A would end up with a lower utility due to leaving early.

What if there is no such person Z still in? If the clock price has exceededA’s valuation
vA, then A no longer wants to win, so it is best for her to exit. If, on the other hand, the
clock price has not yet reached vA, then A should stay in until she wins or the price exceeds
vA. �

4.6 Conclusions and future research

We game-theoretically analyzed the four common auction mechanisms when bidders have
asymmetric spite. A noteworthy feature is that the symmetric equilibrium bidding function

137

continues to be the same as with symmetric spite—except that the true spite is replaced
by ‘expressed’ spite. Unlike in the symmetric-spite setting, bidders express spites that
are higher or lower than their true spite depending on others’ spites. Moreover, the equa-
tion for expressed spite does not depend on the auction mechanism in the 2-bidder case.
Furthermore, we found that the allocation can be inefficient and that the revenue ranking
may reverse between first- and second-price auctions. We also studied the generalization
in the n-bidders setting where agents can have different extents of spite toward different
other bidders. We also showed that in sealed-bid auctions under asymmetric valuation
distributions, there can be a “bargaining problem” in selecting bids.

Future work includes solving for the equilibrium of the second-price auction in the
n-bidder case. We also plan to study valuation priors that are not uniform.

We assumed the bidders know each others’ true spite. In settings where they do not
know, we have to understand whether the equilibrium will be reached, and how. We con-
ducted experiments that indicate that in a repeated-game setting the equilibrium can be
learned as long as the bidders are able to infer each others’ expressed spites. In our sim-
ulation, each bidder adjusts her own expressed spite given the others’ expressed spites
(using the expression for αe in Table 4.3 or 4.8). The bidders rapidly converged to the
equilibrium values of αe’s regardless of the initial values of the αe’s. Future work includes
proving bounds on this convergence. Another interesting direction would be to solve for
the equilibrium in settings where bidders do not know each others’ true spite coefficients
but have a joint prior over them.

4.7 Acknowledgment

The results in this chapter are part of a joint work with Tuomas Sandholm [Sharma and
Sandholm, 2010].

138

Chapter 5

Understanding the complexity of
Submodular Functions

5.1 Introduction

The previous chapters have either designed new allocation mechanisms or studied existing
ones. We now turn our attention to valuation functions and try to understand the complex-
ity of a particular class of valuations, namely, submodular functions. Valuation functions
give the value that a claimant has for any set of resources. While Chapter 2 dealt with ar-
bitrary valuation functions, usually designing and analyzing allocation mechanisms over
arbitrary valuation functions is hard. One approach to helping with the mechanism design
and analysis is to try to approximate a complex valuation function through simpler valua-
tion functions, and then run known (or design new) allocation mechanisms for this simpler
class. The overall solution guarantee of this approach is a function of the quality of ap-
proximation and the solution guarantee of the allocation mechanism for the simpler class.
Other than this algorithmic reason, it is inherently important to understand the complex-
ity of classes of valuation functions and compare them with other classes. This allows to
relate and reason with the different classes of valuation functions. With this over-arching
motivation, in this chapter, we study the class of submodular functions, and some of its
better known sub-classes and analyze how well these sub-classes approximate each other
and the general class of submodular functions.

Submodular function are an important class of valuation functions since they are char-
acterized by the property of decreasing marginal return. Valuation functions of buyers in
several settings exhibit the feature of decreasing marginal return. Roughly speaking, de-

139

creasing marginal return means that the additional value a resource brings is greater when
it is added to a smaller set of resources than when it added to a larger set. Furthermore, sub-
modular functions are ubiquitous in diverse disciplines, including economics, algorithmic
game theory, machine learning, combinatorial optimization and combinatorics. While sub-
modular function can be minimized efficiently, i.e., in polynomial time [Grötschel et al.,
1981, Schrijver, 2000, Iwata et al., 2001], many natural optimization problems over sub-
modular functions are NP-hard, e.g., Max-k-Coverage [Nemhauser et al., 1978], Max-Cut
and Max-DiCut [Goemans and Williamson, 1995], and Max-Facility-Location [Cornue-
jols et al., 1977]. Consequently, many works, specifically in the setting of algorithmic
game theory [Buchfuhrer et al., 2010, Dughmi, 2011, Dughmi et al., 2011, Hoefer and
Kesselheim, 2012], have explored simpler subclasses of submodular functions for which
the given algorithmic problem can still be well-approximated. Such subclasses of submod-
ular functions have included cut functions of graphs, coverage functions of set systems,
budgeted additive functions, matroid rank functions, etc.

Our work is motivated by the question, how complex can a submodular function be?
Since this is such a fundamental question, it has been asked in different forms previously.
Goemans et al. [2009] consider how many queries to a submodular function are sufficient
to infer the value of the function, approximately, at every point in the domain. Balcan and
Harvey [2011] focus on the problem of learning submodular functions in a probabilistic
model; are few random queries enough to infer the value at almost all points in the domain?
Badanidiyuru et al. [2012] ask whether an approximate sketch of a submodular function,
or more generally a subadditive function, exists (i.e., can the function be represented in
polynomial space)? Seshadhri and Vondrák [2011] consider the testability of submodular
functions: how many queries does it take to check whether a function is close to being
submodular?

We approach this question by noting that not all submodular functions are identically
complex and some have been more amenable to optimization than others. Thus, one natu-
ral way to characterize the relative complexity of one class of submodular functions w.r.t
another, is to ask how well can a function in the first class be approximated by a function
in the second. Formally, we ask the following question. Given two classes of submodular
functions F and G (typically G ⊂ F), what is the smallest θ, such that for every f ∈ F ,
there exists a g ∈ G such that f(S) ≤ g(S) ≤ θ · f(S) for each S ⊆ U? Here class G
would represent the class of submodular functions which are easier to optimize for some
problem and class F would represent a bigger class which we want to optimize over. We
also note that this concept of approximation is not special to submodular functions and can
be asked for any two classes of functions. We focus on submodular functions due to their
ubiquitous nature in optimization.

140

Intuitively, this notion of approximation resembles the long and rich line of work that
deals with the algorithmic applications of geometric embeddings, in which the goal is
to embed hard metric spaces into simpler ones. Some successful examples include em-
bedding general metrics into normed spaces [Bourgain, 1985], dimension reduction in a
Euclidean space [Johnson and Lindenstauss, 1984] and the probabilistic embedding into
ultrametrics [Bartal, 1996, Fakcharoenphol et al., 2004]. As in the metric case, a natural
byproduct of the above approach is that if there exists an α-approximation algorithm for
any submodular function in G, then there exists a (θ · α)-approximation algorithm for all
functions in F . As an application of our approach, we show how to obtain an algorithm
for the online submodular function maximization problem, for general monotone submod-
ular functions [Buchbinder et al., 2012]. Previously, results were known for only certain
subclasses of submodular functions; see Section 5.6 for details.

5.1.1 Our Results and Techniques

We start by asking how well a general submodular function f : 2U → R+ (with the
additional property that f(φ) = 0 = f(U)) can be approximated by a function in the
canonical simpler subfamily of non-symmetric submodular functions, cut function of a
directed graph. We give matching upper and lower bounds for such an approximation
(Theorem 5.1.4). Next, we ask the same question for symmetric submodular functions
vis-a-vis its canonical simpler subfamily, cut functions of undirected graphs. In this case,
we provide nearly matching upper and lower bounds (Theorem 5.1.5). We then move
our attention to two subfamilies, budgeted additive functions and coverage functions, both
of which, as already mentioned in the introduction, have received considerable interest
in the algorithmic game theory setting. We show tight upper and lower bounds for ap-
proximating budgeted additive functions with coverage functions (Theorem 5.1.6). These
results are summarized in Table 5.1. While previous works [Goemans et al., 2009, Balcan
and Harvey, 2011, Badanidiyuru et al., 2012] studied the complexity of submodular func-
tions from different perspectives, they do imply some additional results, both positive and
negative, on the approximation of monotone submodular functions by simpler classes of
submodular functions (as illustrated in Table 5.1 and discussed in detail in Section 5.7).

Let us now briefly discuss the main techniques that we use to obtain our results. In
contrast to previous works [Goemans et al., 2009, Balcan and Harvey, 2011, Badanidiyuru
et al., 2012], arbitrary submodular functions, as opposed to monotone submodular func-
tions, present different challenges. As an illustration, for approximating a submodular
function f via a cut function of a graph G, consider the case when there is a non-trivial
set ∅ 6= S 6= U for which f(S) = 0. Then the weight of the cut (S, S̄) in G is forced to

141

Input Class Output Class Approximation Approximation
Upper Bound Lower Bound

General Submodular Cut Functions (di-
rected)

n2

4
n2

4

Symmetric Submodu-
lar

Cut functions (undi-
rected)

n− 1 n
4

Budgeted Additive Coverage e
e−1

e
e−1

Monotone Submodu-
lar

Coverage/Budgeted
Additive

O(
√
n log n) [Goe-

mans et al., 2009]
Ω(n1/3

log2 n
) [Balcan

and Harvey, 2011,
Badanidiyuru et al.,
2012]

Table 5.1: Our results are described in the first three rows. The results in the last row are
either implicit in the references or follow as a corollary (Section 5.7). When the output
class is a cut function of a graph, we assume that the input function f satisfies f(∅) =
f(U) = 0, as every cut function must satisfy this constraint. Here, n denotes the size of
the ground set.

be zero. Indeed, all sets S with f(S) = 0 must be in a correspondence with cuts in G of
value zero. Thus, given a submodular function f , our construction of G optimizes for the
minimizers of the submodular function f . Surprisingly, this can be shown to give the best
possible approximation. For a symmetric submodular function f , we show that it suffices
to use the cut function of a tree (as opposed to a general undirected graph) utilizing the
Gomory-Hu tree representation [Gomory and Hu, 1961, Queyranne, 1993] of f .

For approximating budgeted additive functions by coverage functions, we first give a
randomized construction achieving an approximation factor of e/(e − 1). We then show
that this is the best possible approximation factor as characterized by a linear program.
The proof of the lower bound of e/(e− 1) uses linear programming duality and proceeds
by presenting a feasible dual solution to the linear program achieving an objective value
of e/(e− 1) in the limit. We would like to point out that all our results are algorithmic and
the claimed approximations can be found in polynomial time given a value oracle for the
submodular function.

5.1.2 Related Work

Goemans et al. [2009] considered the problem of how well a given monotone submodular
function f can be approximated when only polynomially many value oracle queries are

142

permitted. They presented an approximation of O (
√
n log n), and an improved guarantee

of
√
n+ 1 in the case that f is a matroid rank function. Implicit in this algorithm and rele-

vant to our setting is an approximation of all monotone submodular functions by budgeted
additive functions (Section 5.7). The current best lower bound for the problem studied
by Goemans et al. [2009] is given by Svitkina and Fleischer [2011] and is Ω(

√
n/ log n).

Balcan and Harvey [2011] take the learning perspective to the study of the complexity
of submodular functions. They study the problem of probabilistically learning a monotone
submodular function, given the values the function takes on a polynomial sized sample of
its domain. They provide a lower bound of Ω(n1/3) on the best possible approximation a
learning algorithm can give to the submodular function, even when it knows the underlying
sampling distribution, and the submodular function to be learned is Lipschitz. Another
result with this perspective is by Balcan et al. [2012] who show that a symmetric non-
monotone submodular function can be approximated to within

√
n by the square root of a

quadratic function. Furthermore, they show how to learn such submodular functions.

Badanidiyuru et al. [2012], motivated by the problem of communicating bidders’ val-
uations in combinatorial auctions, study how well specific classes of set functions can
be approximated given the constraint that the approximating function be representable in
polynomially many bits. They named such an approximation a sketch, proving that cover-
age functions admit sketches with an arbitrarily good approximation factors. Additionally,
for the larger class of monotone subadditive functions, they construct sketches that achieve
an approximation of

√
n ·polylog(n). Combining the results of Badanidiyuru et al. [2012]

and Balcan and Harvey [2011], a lower bound of Ω(n1/3/ log2 n) follows for the approxi-
mation of monotone submodular functions by budgeted additive functions (Section 5.7).

Testing of submodular functions has been studied recently by Seshadhri and Vondrák
[2011] for general monotone submodular functions and for coverage functions by Chakrabarty
and Huang [2012]. The goal here is to query the function on few domain points and an-
swer whether a function is close to being submodular or not. The measure of closeness
is the fraction of the domain in which the function needs to be modified so as to make it
submodular.

5.1.3 Preliminaries and Formal Statement of Results

Given a ground set U , a function f : 2U → R+ is called submodular if for all subsets
S, T ⊆ U , we have f(S)+f(T) ≥ f(S∪T)+f(S∩T). A submodular function f is called
non-negative if f(S) ≥ 0 for each S ⊆ U . In this chapter, we only consider non-negative
submodular functions. A submodular function f is called symmetric if f(S) = f(U \ S)

143

for each S ⊆ U , and monotone if f(S) ≤ f(T) for each S ⊆ T ⊆ U . We say that a class
of functions G θ-approximates another class F , if for every f ∈ F there exists a g ∈ G
such that f(S) ≤ g(S) ≤ θ · f(S) for any S ⊆ U . We denote by n the size of the ground
set U . We now define certain subclasses of submodular functions that we consider in the
chapter.

Definition 5.1.1 (Coverage function). A function f is a coverage function if there ex-
ists an auxiliary ground set Z, a weight function w : Z → R+ and family of subsets
{Ai : Ai ⊆ Z, i ∈ U} such that ∀S ⊆ U , f(S) =

∑
z∈∪i∈SAi w(z).

Definition 5.1.2 (Budgeted additive function). A function f is a budgeted additive function
if there exist non-negative reals ai for each i ∈ U , and a non-negative real B such that
∀S ⊆ U , f(S) = min{B,

∑
i∈S ai}.

It is well known that coverage functions and budgeted additive functions are monotone
submodular functions.

Definition 5.1.3 (Cut function). A function f is a directed cut function if there exists a
directed graphG = (U,A) with non-negative arc weightsw : A→ R+, such that ∀S ⊆ U ,
f(S) = w(δ+(S)), where δ+(S) denotes the set of outgoing arcs, with their tails in S and
heads in S̄, and w(F) ,

∑
a∈F w(a) for any subset F ⊆ A of arcs.

Similarly, one can define f to be the undirected cut function of an undirected graph by
substituting δ+(S) with δ(S), the set of edges with exactly one endpoint in S. It is well
known that cut functions, whether directed or undirected, are submodular. Furthermore,
clearly, undirected cut functions are symmetric.

Let us now formally state our main results:

Theorem 5.1.4. Let f : 2U → R+ be a non-negative submodular function with f(∅) =
f(U) = 0. Then the class of directed cut functions (n2/4)-approximates f . Moreover,
there exists a non-negative submodular function f : 2U → R+ with f(∅) = f(U) = 0
such that any directed cut function cannot approximate f within a factor better than n2/4.

Theorem 5.1.5. Let f : 2U → R+ be a non-negative symmetric submodular function with
f(∅) = 0. Then the class of undirected cut functions (n − 1)-approximates f . Moreover,
there exists a symmetric submodular function f : 2U → R+ with f(∅) = 0 such that any
undirected cut function cannot approximate f within a factor better than n/4.

Theorem 5.1.6. Let f : 2U → R+ be a budgeted additive function. Then coverage func-
tions (e/(e− 1))-approximates f . Moreover, for every fixed ε > 0, there exists a budgeted
additive function f : 2U → R+ such that any coverage function cannot approximate f
within a factor better than e/(e− 1)− ε.

144

Theorems 5.1.4, 5.1.5 and 5.1.6, are proved in Sections 5.2, 5.3 and 5.4 respectively.

5.2 Approximating General Submodular Functions by Di-
rected Cut Functions of Graphs

In this section we prove Theorem 5.1.4 which provides a tight approximation of a non-
negative submodular function f using a directed cut function of a graphG. Before proving
the main result of this section, we first state a technical lemma.

Lemma 5.2.1. For every submodular function f , and any collection of sets A1, A2, . . .,
An ⊆ U : f(∩ni=1Ai) ≤

∑n
i=1 f(Ai).

Proof of Lemma 5.2.1. The following inequalities are derived from the definition of sub-
modularity:

f(A1) + f(A2) ≥ f(A1 ∩ A2) + f(A1 ∪ A2)

f(A3) + f(A1 ∩ A2) ≥ f(A1 ∩ A2 ∩ A3) + f((A1 ∩ A2) ∪ A3)

...
f(An) + f(∩n−1

i=1 Ai) ≥ f(∩ni=1Ai) + f((∩n−1
i=1 Ai) ∪ An)

Summing up the above inequalities and canceling common terms on the two sides and
using the fact that f is non-negative we obtain that

∑n
i=1 f(Ai) ≥ f(∩ni=1Ai). �

We are now ready to prove Theorem 5.1.4.

Proof of Theorem 5.1.4.
Upper Bound: Given a submodular function f , we construct a directed graph G = (U,A)
with non-negative weights w on the arcs such for every S ⊆ U , f(S) ≤ w(δ+(S)) ≤
n2/4 ·f(S). For every (u, v) ∈ U×U and u 6= v, introduce a directed arc from u to v with
weight: wuv = f(Tuv) where Tuv = argmin {f(R) : R ⊆ U, u ∈ R, v /∈ R}. We start by
proving that:

f(S) ≤ w(δ+(S)) ∀S ⊆ U. (5.1)

If S = U or S = φ, then clearly w(δ+(S)) = f(S) = 0 and (5.1) holds. We now restrict
our attention to the case where S, S̄ 6= ∅. For any u ∈ S note that u ∈ ∩v∈S̄Tuv, since the

145

definition of Tuv implies that u ∈ Tuv for all v ∈ S̄. Additionally, for any w ∈ S̄ note that
w /∈ ∩v∈S̄Tuv, since the definition of Tuv implies that w /∈ Tuw. Thus, one can conclude
that ∪u∈S ∩v∈S̄ Tuv = S and therefore,

f(S)
(i)
≤
∑
u∈S

f(∩v∈S̄Tuv)
(ii)
≤
∑
u∈S

∑
v∈S̄

wuv = w(δ+(S)).

Inequality (i) is derived from the fact that f is submodular and non-negative. Inequality
(ii) is derived from Lemma 5.2.1 and the definition of wuv. This concludes the proof of
(5.1).

We continue by proving that:

w(δ+(S)) ≤ n2

4
f(S) ∀S ⊆ U. (5.2)

If S = U or S = φ, then clearly w(δ+(S)) = f(S) = 0 and (5.2) holds. We now restrict
our attention to the case where S, S̄ 6= ∅. Note that for any u ∈ S and v ∈ S̄, by the
definition of Tuv: f(Tuv) ≤ f(S). Thus, one can conclude that:

w(δ+(S))
(i)
=
∑
u∈S

∑
v∈S̄

f(Tuv)
(ii)
≤
∑
u∈S

∑
v∈S̄

f(S)
(iii)
≤ n2

4
f(S).

Equality (i) is by the definition of weights wuv. Inequality (ii) is be the definition of Tuv.
Inequality (iii) is by the fact that the number of pairs (u, v) ∈ S × S̄ is at most n2/4. This
concludes the proof of (5.2). Combining both (5.1) and (5.2) concludes the proof of the
upper bound of the theorem.

Lower Bound: Assume that n is even and fix an arbitrary A ⊆ U of size |A| = n/2.
Consider the following function f

f(S) =

{
1 if S ∩ A 6= ∅, Ā \ S 6= ∅
0 otherwise

Namely, f(S) is the indicator function that S hits A but does not hit all of Ā. A simple
check shows that f is submodular. Let G = (U,A) be a weighted graph with non-negative
weights w : A→ R+ on the arcs whose directed cut function satisfies for each set S ⊆ U ,
f(S) ≤ w(δ+(S)) ≤ θ · f(S) for some θ. We will show that θ ≥ n2

4
proving the lower

bound.

First, we prove that the arcs with non-zero weight must go from A to Ā. We consider
the following cases.

146

1. Consider an edge (u, v) ∈ A×A. But (u, v) ∈ δ+(U \ {v}) and w(δ+(U \ {v})) ≤
θ · f(U \ {v}) = 0 since Ā \ (U \ {v}) = ∅. Thus, w(u,v) = 0.

2. Consider an edge (u, v) ∈ Ā× Ā. But (u, v) ∈ δ+(Ā \ {v}) and w(δ+(Ā \ {v})) ≤
θ · f(Ā \ {v}) = 0 since A ∩ (Ā \ {v}) = ∅. Thus, w(u,v) = 0.

3. Consider an edge (u, v) ∈ Ā×A. But (u, v) ∈ δ+(Ā) and ,w(δ+(Ā)) ≤ θ·f(Ā) = 0
since A ∩ Ā = ∅. Hence, w(u,v) = 0.

Therefore, all arcs with non-zero weight must go from A to Ā. For any u ∈ A and v ∈ Ā
note that w(u,v) ≥ 1 since:

w(u,v) = w(δ+
(
{u} ∪

(
Ā \ {v}

))
)

(i)
≥ f

(
{u} ∪

(
Ā \ {v}

)) (ii)
= 1. (5.3)

Inequality (i) is derived from the fact w(δ+(S)) ≥ f(S) for each set S. Equality (ii) is by
the definition of f . Furthermore, note that:

n2

4
= |A| · |Ā|

(i)
≤ w(δ+(A))

(ii)
≤ θ · f(A)

(iii)
= θ. (5.4)

Inequality (i) is derived from inequality (5.3). Inequality (ii) is derived from the fact that
w(δ+(S)) ≤ θf(S) for each set S ⊆ U . Equality (iii) is by the definition of f . Note that
inequality (5.4) implies that θ ≥ n2

4
, thus, concluding the proof of the lower bound of the

theorem. �

5.3 Approximating Symmetric Submodular Functions by
Undirected Cut Functions of Graphs

In this section, we prove Theorem 5.1.5 which provides upper and lower bounds on the
approximation of a symmetric submodular function using an undirected cut function of
a graph. For the upper bound, our algorithm uses Gomory-Hu trees of symmetric sub-
modular functions [Gomory and Hu, 1961, Queyranne, 1993]. Given a symmetric non-
negative submodular function f , a tree T = (U,ET) is a Gomory-Hu tree if for every edge
e = (u, v) ∈ ET : f(Re) = min {f(R) : R ⊆ U, u ∈ R, v /∈ R}, where Re is one of the
two connected components obtained after removing e from T (since f is symmetric, it
does not matter which one of the two connected components we choose). In other words,
in a Gomory-Hu tree, the cut e = (u, v) induced in T , corresponds to a minimum value
subset that separates u and v. We prove that the cut function of the Gomory-Hu tree of f
is a good approximation.

147

Proof of Theorem 5.1.5.
Upper Bound: Let f be a symmetric submodular function. We shall construct an undi-
rected tree T = (U,ET) with non-negative weights w : E → R+ on the edges such that
for every S ⊆ U , f(S) ≤ w(δ(S)) ≤ (n − 1) · f(S). We set T to be a Gomory-Hu tree
of f and let the weight of any edge e = {u, v} to be f(Re) where Re is the one of the two
connected components obtained after removing edge e. As mentioned above, the weight
of edge e = {u, v} is the minimum of f(R) over all R separating u and v.

Fix an arbitrary S ⊆ U and denote by {e1, . . . , ek} all the edges crossing the cut
that S defines in T . Let T1, . . . , Tk+1 denote the partition of U induced by deleting the
edges e1, . . . , ek from T . Furthermore, denote by {S1, . . . , Sp} the non-empty sets in
{Ti ∩ S : 1 ≤ i ≤ k + 1}. Observe that S1, . . . , Sp is a partition of S. Since each ei,
1 ≤ i ≤ k, has exactly one vertex in S and the other in S̄, we can associate ei with a
unique set from S1, . . . , Sp, the set containing one of the endpoints of e. Additionally, let
us denote Fi to be the edges which are associated with set Si for each 1 ≤ i ≤ p. Clearly
F1, . . . , Fp form a partition of {e1, . . . , ek}.

We claim that for every 1 ≤ i ≤ p:

f(Si) ≤
∑
f∈Fi

f(Rf). (5.5)

Recall that Rf is one of the connected component after removing edge f from T . Since
Si is a subset of a connected component formed after removing all the edges {e1, . . . , ek}
from T , it must be contained in one of the components formed after removing edge f ∈ Fi
from T . Without loss of generality, we assume that Rf ∩ Si = ∅ for each edge f ∈ Fi. It
is straightforward to see that ∩f∈FiR̄f = Si. Now, we have∑

f∈Fi

f(Rf)
(i)
≥ f (∪e∈FiRf)

(ii)
= f

(
∪f∈FiRf

)
= f

(
∩e∈FiR̄f

) (iii)
= f(Si).

Inequality (i) is derived from the fact that f is submodular and non-negative. Equality (ii)
is derived from the symmetry of f . Equality (iii) is derived from the fact that ∩f∈FiR̄f =
Si.

We start by proving that:

f(S) ≤ w(δ(S)) ∀S ⊆ U. (5.6)

This can be proved as follows:

w(δ(S))
(i)
=

k∑
i=1

f(Rei)
(ii)
=

p∑
i=1

∑
f∈Fi

f(Rf)
(iii)
≥

p∑
i=1

f(Si)
(iv)
≥ f (∪pi=1Si) = f(S).

148

Equality (i) is by the definition of edge weights in T . Equality (ii) is by the fact that
F1, . . . , Fp form a partition of {e1, . . . , ek}. Inequality (iii) is derived from inequality
(5.5). Inequality (iv) is derived from the fact that f is submodular and non-negative. This
concludes the proof of (5.6).

We continue by proving that:

w(δ(S)) ≤ (n− 1) · f(S) ∀S ⊆ U. (5.7)

Let u and v be the endpoints of edge ei and without loss of generality assume that u ∈ S
and v /∈ S. Note that for every 1 ≤ i ≤ k, f(Rei) ≤ f(S) since S is a candidate set
separating u and v. Hence, one can conclude that:

w(δ(S))
(i)
=

k∑
i=1

f(Rei)
(ii)
≤ k · f(S)

(iii)
≤ (n− 1) · f(S).

Equality (i) is by the definition of edge weights in T . Inequality (ii) is what we proved
above, and inequality (iii) is derived from the fact that T contains at most n−1 edges, thus,
k ≤ n − 1. This concludes the proof of (5.7). Combining both (5.6) and (5.7) concludes
the proof of the upper bound of the theorem.

Lower Bound: Consider the following symmetric submodular function f :

f(S) =

{
1 if S 6= ∅, U
0 otherwise

Let G = (U,E) be an edge weighted graph with non-negative weights w : E → R+ on
the edges whose cut function satisfies f(S) ≤ w(δ(S)) ≤ θ · f(S) for each set S ⊆ U for
some θ. We will show that θ ≥ n

4
.

For any vertex v ∈ U , 1 = f({v}) ≤ w(δ({v})). Thus, the total weight of edges
in G is at least 1

2

∑
v∈U w(δ ({v})) ≥ n

2
. Every undirected graph has a non-trivial cut

that contains at least half the total weight of edges in the graph, thus, there exists a cut
S ⊆ U , S 6= ∅, U , where w(δ(S)) ≥ n

4
. The existence of such a cut can be shown by

picking a cut at random where each vertex is in S with probability 1
2

independently. The
expected weight of the cut will be exactly half the total weight of all edges. Now, we have
n
4
≤ w(δ(S)) ≤ θ ·f(S) = θ, concluding the proof of the lower bound of the theorem. �

149

5.4 Approximating Budgeted Additive Functions by Cov-
erage Functions

In this section, we present matching upper and lower bounds for approximating budgeted
additive functions by coverage functions (Theorem 5.1.6)1. The following lemma from
Chakrabarty and Huang [2012] provides the alternate representation of coverage functions
used in our proof of the lower bound.

Lemma 5.4.1. [Chakrabarty and Huang, 2012] A function f : 2U → R+ is a cover-
age function if and only if there exist reals xT ≥ 0 for each T ⊆ U such that f(S) =∑

T :T∩S 6=∅ xT for each S ⊆ U .

Proof of Theorem 5.1.6.
Upper Bound: Consider any budgeted additive function f(·) over some domain U , with
budget B and the values of the elements be denoted by v1, v2, · · · vn where n = |U |.
Without loss of generality, we assume all these values to be integers. Take an auxiliary
ground set G of size B. For each i ∈ U , construct a set Ai ⊆ G, formed by choosing vi
points (with replacement) at random from G. Consider function g : 2U → Z, defined as
g(S) = | ∪i∈S Ai| for all S ⊆ U .

By definition, g(·) is a coverage function. Furthermore, it is easy to see that for all
S ⊆ U , g(S) ≤ f(S). We now show that E[g(S)] ≥ (1 − 1/e) · f(S), where the
expectation is taken over the randomness of the procedure described to construct g(S).
Note that g′(·) = E[g(·)] is a coverage function. Consider any set S ⊆ U . Let f(S) = V ,
i.e.,

∑
i∈S vi = V . Consider the case when V < B. Consider any point in auxiliary ground

set G. The probability that this point is not covered by any of the sets Ai for i ∈ S is at
most (1−1/B)V . Hence, the expected value of |∪i∈SAi| is at leastB ·(1−(1−1/B)V) ≥
B · (1 − e−V/B) ≥ (1 − 1/e) · V . Here we use the inequality 1 − e−x ≥ (1 − 1/e) · x.
Hence, | ∪i∈S Ai| ≥ (1− 1/e) · f(S). The proof for the case when V = B is similar. Thus
for each set S ⊆ U , we have

(1− 1

e
)f(S) ≤ g′(S) ≤ f(S).

Thus, we obtain the function e
e−1

g′(·) approximates f within a factor of e
e−1

.

Lower Bound: We will construct a budgeted additive function which cannot be approxi-
mated by coverage functions to factor better than e

e−1
− ε for any ε > 0. We will consider

the family of budgeted additive function fk, parameterized by the size of domain |U | = n

1It is easy to show that a coverage function can be written exactly as a sum of budgeted additive functions.

150

they are defined on, where n = k2 for some integer k. Under fk, all n = k2 items have
value one and the budget is k. Please note that these also constitute a family of uniform
matroid rank functions. Therefore,

fk(S) =

{
|S| if |S| ≤ k
k o.w. (5.8)

Let hk be a coverage function that gives the maximum value of β such that ∀S ⊂
[n], β · fk(S) ≤ hk(S) ≤ fk(S) and αk be the value of β as given by hk. Observe that
here function hk is always smaller than the function fk. The function hk

β
would give a

1
β

-approximation for approximating function fk. This slight change in notation helps for
exposition below. We shall show that as k →∞, αk tends to a value that is at most 1−1/e.
This shall prove our claim.

Using Lemma 5.4.1, we note that αk can be characterized by a solution to a linear
problem (P) given below. Here, the variables are xT , one for each set T ⊆ U . The dual
(D) of this linear program is given alongside. We will construct a dual solution of value
approaching 1− 1

e
as k →∞. Since every feasible dual solution is an upper bound on αk,

the result follows.

maxαk (P)
subject to

∀S ⊆ U,
∑

T∩S 6=φ

xT ≤ fk(S)

∀S ⊆ U, αkfk(S)−
∑

T∩S 6=φ

xT ≤ 0

∀S ⊆ U, xS ≥ 0

min
∑
S⊆U

fk(S) · uS (D)

subject to

∀S ⊆ U,
∑

T∩S 6=φ

(uT − vT) ≥ 0∑
S⊆U

fk(S) · vS ≥ 1

Since, f(·) is symmetric across sets of the same cardinality, we can assume, without
loss of generality, that the optimal dual solution is also symmetric. Specifically, the values
of the dual variables uT and vT shall depend only the cardinality |T |. Let us write the
symmetrized dual program.

151

min
k∑
j=1

j ·
(
n

j

)
· uj +

n∑
j=k+1

k ·
(
n

j

)
· uj Symmetrized Dual Program

subject to

∀j ∈ [n],
n∑
i=1

((
n

i

)
−
(
n− j
i

))
(ui − vi) ≥ 0 (5.9)

k∑
j=1

j ·
(
n

j

)
· vj +

n∑
j=k+1

k ·
(
n

j

)
· vj ≥ 1 (5.10)

Let cj denote the coefficient of vk in the equation corresponding to set size j, i.e.,
cj =

(
n
k

)
−
(
n−j
k

)
. Further, define ∆cj = cj+1 − cj .

We give the following solution to the dual linear program. Let vk = 1

(nk)·k
, u1 = ∆ck ·vk

and un = (ck − k ·∆ck) · vk. Rest of the variables are set to zero.

We first show that the above solution is feasible for the dual and has objective value
that tends to 1 − 1/e as k → ∞. It is easy to see that with the proposed setting of
vk, Equation (5.10) is satisfied. To show that Equation (5.9) is satisfied, we show that
∀j ∈ [n], j · u1 + un ≥ (

(
n
k

)
−
(
n−j
k

)
)vk. Using our notation, it suffices to show that for all

j ∈ [n], (j − k) ·∆ck + ck ≥ cj .

Claim 5.4.2. cj is an increasing function of j and ∆cj = cj+1−cj is a decreasing function
of j.

Proof. ∆cj = cj+1 − cj = (
(
n
k

)
−
(
n−j−1
k

)
) − (

(
n
k

)
−
(
n−j
k

)
) =

(
n−j
k

)
−
(
n−j−1
k

)
=(

n−j−1
k−1

)
. �

Claim 5.4.3. For all j ∈ [n], (j − k) ·∆ck + ck ≥ cj .

Proof. • For j = k + i such that 0 ≤ i ≤ n− k: LHS = i ·∆ck + ck ≥ ck+i = RHS

• For j = k− i with 0 ≤ i ≤ k: LHS = ck− i ·∆ck ≥ ck−
∑k−1

q=k−i ∆cq = ck−i · vk =
RHS

where the second inequality in both the cases follows because ∆cj is a decreasing
function in j. �

152

Let us now bound the value of the dual objective function. Look at the value that
the dual objective function attains with this setting of variables. The function value is
n · u1 + k · un = (n ·∆ck + k · (ck − k ·∆ck)) · vk. Since n = k2, the dual objective value
is equal to

k · ck · vk = 1−
(
k2−k
k

)(
k2

k

) .

This quantity tends to 1− 1/e as k →∞. �

5.5 Uniform Submodular and Matroid Rank Functions

Definition 5.5.1 (Uniform Submodular Function). A submodular function is said to be
uniform if the value it takes on a set depends only on the cardinality of the set.

Lemma 5.5.2. Any non-negative, integer-valued, monotone, uniform, submodular func-
tion is 1-approximated by a sum of uniform matroid rank functions, and hence by a sum of
budgeted additive functions.

Proof. Consider an integer-valued, non-negative, monotone, uniform, submodular func-
tion f(·) over the universe [n] and let fk be the value f takes for sets S of cardinality k.
Consider uniform matroid rank functions g1, g2, · · · gn where

gi(S) =

{
|S| |S| ≤ i
i |S| > i

(5.11)

We claim that there exist a set of αi’s, such that αi ≥ 0 for all i ∈ [n] such that

∀j ∈ [n], fj =
k∑
i=1

αi · j +
n∑

i=k+1

αi · i (5.12)

It is easy to see that the above claim implies that f(S) =
∑

i αi · gi(S) for all S ⊆ [n].

Now, we prove the claim. If, for every j ∈ [n− 1], we substract equation j from j+ 1,
we get the following set of equations

∀j ∈ [n− 1], fj+1 − fj =
n∑

i=j+1

αi (5.13)

153

From here, we can see that the following assignments to αi is a valid solution to the
above equations. Set α1 = 2 · f2 − f1, αn = fn − fn−1 and for i /∈ {1, n}, set αi =
2 · fi − fi+1 − fi−1. All the αi’s are positive since f is monotone and f is submodular.

Finally, it is easy to see that every uniform matroid rank function is also a budgeted
additive function with all elements having value one, and the budget equal to the rank of
the matroid. �

5.6 Application to Online Submodular Function Maximiza-
tion

We consider the problem of online submodular function maximization as studied by Buch-
binder et al. [2012]. We are given a universe U and matroid M = (U, I). In an online
manner, at each step for 1 ≤ i ≤ m, we are given a monotone submodular function
fi : 2U → R+. The goal is to maintain an independent set Fi ∈ I at any step i such that
Fi ⊆ Fi+1. The objective value to maximize is

∑m
i=1 fi(Fi). As in the notion of competi-

tive analysis, any algorithm is compared to the best offline optimum maxO∈I
∑m

i=1 fi(O).

Buchbinder et al. [2012] give a O(log2 n logm log fratio)-competitive algorithm when
each of the submodular function is weighted matroid rank function where

fratio =
maxi,a fi({a})

mini,a:fi({a})>0 fi({a})
.

In particular, the result applies when each of the functions fi is a coverage function.

Using the fact every monotone submodular function can be approximated by a cover-
age function to a factor of O(

√
n log n), we directly obtain the following corollary.

Corollary 5.6.1. There is aO(
√
n log3 n logmfratio)-competitive online algorithm for the

online submodular function maximization problem when each of the submodular functions
is an arbitrary monotone submodular function.

5.7 Approximating Monotone Submodular Functions by
Coverage Functions and by Budgeted Additive Func-
tions

The two main results of the section are the following.

154

Theorem 5.7.1. Coverage functions can approximate every non-negative monotone sub-
modular function to within a factorO (

√
n log n). Additionally, the class of coverage func-

tions cannot approximate every non-negative monotone submodular function to a factor
within o

(
n1/3

log2 n

)
.

Theorem 5.7.2. The class of sum of budgeted additive functions can approximate every
non-negative monotone submodular function to a factor within (

√
n log n). Additionally,

the class of sum of budgeted additive functions cannot approximate every non-negative
monotone submodular function to a factor within o

(
n1/3

log2 n

)
.

5.7.1 Upper Bound

For the upper-bound, we show that budgeted additive functions can
√
n log(n)-approximate

the class of non-negative, monotone, submodular functions. Then we use Theorem 5.1.6
to infer that the coverage functions too can give approximately the same guarantee.

Lemma 5.7.3. The class of sum of budgeted additive functions can approximate every
non-negative monotone submodular function to within a factor (

√
n log n).

The following corollary follows easily from Lemma 5.7.3 and Theorem 5.1.6

Corollary 5.7.4. The class of sum of coverage functions can approximate every non-
negative monotone submodular function to factor O (

√
n log n).

The proof of Lemma 5.7.3 follows from Lemmas 5.7.5 and 5.7.6. Lemma 5.7.5 [Goe-
mans et al., 2009] gives a particular function that

√
n log(n)-approximates a general mono-

tone, non-negative, sub-modular function, and Lemma 5.7.6 implies that this approximat-
ing function can be written as a sum of budgeted additive functions.

Lemma 5.7.5. [Goemans et al., 2009] For every monotone submodular function f : 2U →
R+, there exists positive reals ae for each e ∈ E such that g : 2U → R+ defined as
g(S) =

√∑
e∈S ae, approximates f within factor

√
n log(n).

Lemma 5.7.6. Every submodular function f : 2[n] → Z+ of the form f(S) = g(
∑

i∈S ai),
where ai ∈ Z+ and g is a non-negative, monotone, concave and integer valued on integral
inputs, can be written as a sum of budgeted additive functions.

Proof. Letm =
∑n

i=1 ai. Consider the function h, over the domain [m], defined as h(S) =
g(|S|) for all S ⊆ [m]. Since g(·) is a non-negative, monotone, concave function, it is easy

155

to verify that h(·) is a non-negative, monotone, submodular function. Construct nmutually
disjoint sets Ai ⊆ [m] such that |Ai| = ai. Clearly, ∀S ⊆ [n], f(S) = h(∪i∈SAi).

From Lemma 5.5.2, we know that h(·) can be expressed as
∑m

i=1 αi · ti(·) where each
ti is a uniform matroid rank function with rank i, over the domain [m] and each αi ≥ 0.

This implies that for all S ⊆ [n], f(S) =
∑m

i=1 αi ·ti(∪i∈SAi). Now, for every i ∈ [m],
construct the budget additive function t′i, defined as ∀S ⊆ [n], ti(S) = min{

∑
i∈S vij, Bi},

where for j ∈ [n], the value vij = aj and the budget Bi is i. Since ti is a uniform matroid
rank function of rank i and Ai’s are mutually disjoint, we have for all i ∈ [m],

∀S ⊆ [n], t′i(S) = ti(∪i∈SAi) (5.14)

Therefore, we get for all sets S ⊆ [n], f(S) =
∑m

i=1 t
′
i(S). �

5.7.2 Lower Bound

For the lower bound, we first show that sum of coverage functions cannot approximate
the class of monotone, submodular functions well, and then use Theorem 5.1.6, to infer
that, therefore, even the class of sum of budgeted additive functions cannot approximate a
monotone submodular function well.

Lemma 5.7.7. The class of sum of coverage functions cannot approximate every non-
negative monotone submodular function to a factor within o

(
n1/3

log2 n

)
.

An easy corollary of Lemma 5.7.7 that follows from Theorem 5.1.6 is the following.

Corollary 5.7.8. The class of sum of budgeted additive functions cannot approximate ev-
ery non-negative monotone submodular function to a factor within o

(
n1/3

log2 n

)
.

We now present the proof of Lemma 5.7.7. We will need to use results from Badani-
diyuru et al. [2012] and Balcan and Harvey [2011], for which we first present a definition.

Definition 5.7.9. A β-sketch of a function f : 2U → R is a polynomially sized (in |U | and
1/(1− β)) representable function g such that ∀S ⊆ U , β · f(S) ≤ g(S) ≤ f(S).

The following result is from Badanidiyuru et al. [2012].

Lemma 5.7.10. [Badanidiyuru et al., 2012] Coverage functions allow from arbitrary well
sketches i.e., for any ε > 0, there exists a 1− ε sketch.

156

The following result is from Balcan and Harvey [2011]. It gives a ‘large’ family of
matroid rank functions, such that any two functions in the class have at least one point
where the values that they take differ by a ‘significant’ factor.

Lemma 5.7.11. [Balcan and Harvey, 2011] For any k = 2o(n
1/3), there exists a family of

sets A ⊆ 2[n] with |A| = k and a family of matroidsM = {MB|B ⊆ A} such that for all
B ⊆ A, it is the case that

∀S ∈ A, rMB
(S) =

{
8 log k if S ∈ B
n1/3 if S /∈ B (5.15)

where rMB
is the rank function of the matroid MB

Proof of Lemma 5.7.7. Let the class of matroid rank functions on the domain of size n
be α-approximable by coverage functions, for some α. That is, for a domain [n], for all
matroid rank function r, there exists a coverage function g such that ∀S ⊆ [n], r(S) ≤
g(S) ≤ α · r(S).

By Lemma 5.7.10, for every ε > 0 and every coverage function g, there exists a
polynomially sized (polynomial in n and 1/ε) representable function h such that ∀S ⊆
[n], (1− ε) · g(S) ≤ h(S) ≤ g(S). Hence, for all ε > 0 and for all matroid rank functions
r, there exists a polynomial sized representable function h such that ∀S ⊆ [n], r(S) ≤
h(S)/(1− ε) ≤ α

1−ε · r(S). For any given ε > 0, there are only 2O(n,1/ε) many different h
functions.

From Lemma 5.7.11, for k = 2log2(n), there exists family of setsA ⊆ 2[n] with |A| = k,
and a 2k sized matroid familyMB such that for all sets A ∈ A and ∀B ⊆ A,

∀S ∈ A, rMB
(S) =

{
8 log2 n if S ∈ B
n1/3 if S /∈ B (5.16)

Now while the number of different g′ functions are 2O(n,1/ε), the number of different
matroid rank functions in this family is 2n

log(n) . Hence, by pigeon-hole principle, there
must be two matroids B and B′ (B 6= B′) such that the best coverage functions g and g′

approximating B and B′ respectively, have the same best polysized representation h. But
since, for every set S ∈ B∆B′, rMB

and rMB′
, differ by a factor of Ω(n1/3/ log2(n)), there-

fore, h cannot approximate at least one of these two to a factor better Ω(n1/3/ log2(n)).
Since the value of g and g′ at any point in the domain is off from that of h by at most 1− ε,
and hence it follows that α = Ω(n1/3/ log2(n)). �

157

5.8 Future Directions

We mention here a couple of main research questions that are left open by the present work.
The first is how well a non-negative monotone submodular function can be approximated
by the sum of matroid rank functions. Dughmi et al. [2011] show that the Hessian matrix
for a matroid rank sum has to be negative semi-definite, and it is easy to come with a
budgeted additive function that does not obey this property. Hence, we cannot hope for the
best approximation factor for a submodular function by a matroid rank sum to be 1; in fact
we can show that the approximation factor cannot be better than some constant bounded
away from 1. In terms of positive results, a O(

√
(n)) factor approximation follows from

Goemans et al. [2009] and a O(maxe∈U f(e)
mine∈U f(e)

) follows from a result in Section 44.6(B) in
Schrijver [2003].

The second is approximating a non-negative symmetric submodular function by a hy-
pergraph cut function (in this chapter, we only considered graph cut functions). The lower
bound example in the chapter for graph cut functions can be extended to show that a r-
regular hypergraph cannot approximate to a factor better than O(n

r
). In terms of positive

results, we know no better than the ones mentioned in this chapter.

5.9 Acknowledgment

The results in this chapter are part of a joint work with Nikhil R. Devanur, Shaddin
Dughmi, Roy Schwartz and Mohit Singh [Devanur et al., 2013].

158

Chapter 6

Directions for Future Research

6.1 Online resource allocation with preemption

In online resource allocation, we know the resources and their limitation upfront, and the
claimants arrive online, and at the time a claimant arrives, we need to decide whether or
not to allocate resources to her. An important dimension along which various settings of
online resource allocation vary, and which will be the main topic for our study, is whether
or not the allocation decisions made are reversible. Consider two practical instances of
online resource allocation – online retail and online job scheduling, to understand the dis-
tinction between reversible and irreversible allocation decisions. Online retail websites
(such as Amazon) allocate their inventory to an online stream of buyers. In this setting,
once a piece of inventory has been sold (and hence allocated) to a buyer, the sold good
cannot be reclaimed from the user in future i.e., allocation decisions made are irreversible.
In online job scheduling, jobs arriving online are allocated the resources of the servers.
In this setting, allocation decisions made are reversible, i.e., jobs that were allocated re-
sources at an earlier time step, can be evicted, possibly at the cost of losing their value.
Note that in reversible allocation settings, we allow only positive allocation decisions to
be reversed; any negative allocation decisions made earlier cannot be reversed. In other
words, the allocation mechanism can only take back the resources from earlier claimants,
and it cannot give more resources to earlier claimants. Furthermore, once a positive allo-
cation is nullified, it cannot be reversed any time in future.

The reason it is interesting to consider the dimension of reversibility/irreversibility of
allocation decisions is because the freedom of reversing previous allocation decisions po-
tentially allows the allocation mechanism to achieve a much better welfare. It is easy to

159

show that no allocation mechanism, regardless of computational complexity, even with
reversible allocation decisions, can achieve the offline optimal welfare. With irreversible
allocation decisions, in many settings of interest, we know, regardless of computational
complexity, tight approximation ratios that can be achieved with respect to the offline op-
timal welfare. For instance, with k resources, and each claimant being a single-minded
buyer with value 1 and claiming at most a small fraction of any resource, we know of an
online allocation mechanism that achieves Ω(1/ log(k)) fraction of offline optimal wel-
fare [Awerbuch et al., 1993], and we have examples showing that no online randomized
allocation mechanism can achieve in expectation a fraction better than O(1/ log(k)).

With reversible allocation decisions, however, the theoretical picture is much less un-
derstood. In many general settings, we do not know whether we can achieve a constant
fraction of the optimal welfare or whether it is only possible to achieve a logarithmic
fraction (as guaranteed by algorithms designed for the irreversible setting). While some
limited progress has been made on specific settings [Adler and Azar, 1999, Azar et al.,
2010, Alon et al., 1999], the general setting is much less understood.

6.2 Other directions for future research

In each of the previous chapters, we listed the main open research questions for future
research. We summarize them here.

1. For allocation settings with procurement cost, our analysis is restricted to online
settings with adversarial stream of self-interested buyers. Can we achieve better
welfare guarantees by relaxing some of these constraints? For instance, is it pos-
sible to achieve better welfare guarantees in the offline setting with self-interested
buyers, in the offline setting with no game theoretic constraints, and in the online
setting with a uniformly random buyer ordering or with buyers drawn from a known
distribution?

2. For resource allocation with stochastic valuations, can we design a non-adaptive
query algorithm that can achieve, in expectation, a (1− ε) fraction of the omniscient
optimum for stochastic matching while making only Oε(1) queries?

3. In analyzing first- and second-price auctions, can we compute equilibrium bidding
functions in settings where the spite factors of the different bidders are not public
information? Rather, the spite factors are drawn from a publicly known, and poten-
tially, bidder-specific distribution.

160

4. Is it possible, regardless of computational constraints, to approximate any non-
negative monotone submodular function by a positive linear combination of matroid
rank functions (each defined over the same universe of elements as the submodular
function) to within a constant factor?

161

162

Bibliography

D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange
markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th ACM Con-
ference on Electronic Commerce (EC), pages 295–304, 2007. 3.5, 3.7.2

M. Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Infor-
mation Processing Letters, 111(15):731–737, 2011. 1.3.3, 3.1.3

Ran Adler and Yossi Azar. Beating the logarithmic lower bound: Randomized preemptive
disjoint paths and call control algorithms. In Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’99, pages 1–10, 1999. 6.1

Noga Alon, Uri Arad, and Yossi Azar. Independent sets in hypergraphs with applica-
tions to routing via fixed paths. In Randomization, Approximation, and Combinatorial
Optimization. Algorithms and Techniques, volume 1671 of Lecture Notes in Computer
Science, pages 16–27. Springer Berlin Heidelberg, 1999. 6.1

Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Éva Tardos. An approximate
truthful mechanism for combinatorial auctions with single parameter agents. Internet
Math., 1(2), 2004. 1.2.3

I. Ashlagi and A. Roth. Individual rationality and participation in large scale, multi-
hospital kidney exchange. In Proceedings of the 13th ACM Conference on Electronic
Commerce (EC), pages 321–322, 2011. 3.8.4, 3.8.4, 3.8.5

B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. In FOCS,
1993. 2.8.5, 6.1

Baruch Awerbuch, Yossi Azar, and Adam Meyerson. Reducing truth-telling online mech-
anisms to online optimization. In STOC, 2003. 1.2.2, 1.2.3, 2.2.1, 2.9

163

Yossi Azar, Uriel Feige, and Daniel Glasner. A preemptive algorithm for maxi-
mizing disjoint paths on trees. Algorithmica, 57(3):517–537, 2010. ISSN 0178-
4617. doi: 10.1007/s00453-009-9305-4. URL http://dx.doi.org/10.1007/
s00453-009-9305-4. 6.1

Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan,
and Tim Roughgarden. Sketching valuation functions. In SODA, pages 1025–1035,
2012. 1.5.2, 1.5.3, 5.1, 5.1.1, 5.1.1, 5.1.2, 5.7.2, 5.7.2, 5.7.10

Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In
STOC, pages 793–802, 2011. 1.5.2, 1.5.3, 5.1, 5.1.1, 5.1.1, 5.1.2, 5.7.2, 5.7.2, 5.7.11

Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item pricing for revenue maxi-
mization. In EC, 2008. 1.2.1, 2.2.1, 2, 6, 2

Maria-Florina Balcan, Nicholas J.A. Harvey, and Satoru Iwata. Learning symmetric non-
monotone submodular functions. In Discrete Optimization in Machine Learning (DIS-
CML), 2012. 5.1.2

N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the cure
for your matching woes: Improved bounds for stochastic matchings. Algorithmica, 63
(4):733–762, 2012. 1.3.3, 3.1.3

Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In FOCS, pages 184–193, 1996. 5.1

Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi unit combinatorial
auctions. In TARK, 2003. 1.2, 1.2.1, 1.2.2, 1.2.3, 2.2.1, 2.7, 2.8.5

Avrim Blum, Anupam Gupta, Yishay Mansour, and Ankit Sharma. Welfare and profit
maximization with production costs. In Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS ’11, pages 77–86, 2011. 2.10

Avrim Blum, Anupam Gupta, Ariel Procaccia, and Ankit Sharma. Harnessing the power
of two crossmatches. In Proceedings of the fourteenth ACM conference on Electronic
commerce, EC ’13, pages 123–140, 2013. 3.10

Avrim Blum, Nika Haghtalab, Ariel Procaccia, and Ankit Sharma. Ignorance is almost
bliss: Near-optimal stochastic matching with few queries. CoRR, abs/1407.4094, 2014.
3.10

164

http://dx.doi.org/10.1007/s00453-009-9305-4
http://dx.doi.org/10.1007/s00453-009-9305-4

Liad Blumrosen and Noam Nisan. Combinatorial auctions. In Algorithmic Game Theory.
Cambridge University Press, 2007. 1.2.3

J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal
of Mathematics, 52(1):46–52, March 1985. 5.1

Sviatoslav Brainov. The role and the impact of preferences on multiagent interaction. In
Nick Jennings and Yves Lespérance, editors, Intelligent Agents VI, LNAI 1757, pages
349–363. Springer-Verlag, 2000. 4.1

Felix Brandt and Gerhard Weiß. Antisocial agents and Vickrey auctions. In J.-J. Ch.
Meyer and M. Tambe, editors, Intelligent Agents VIII, LNAI 2333, 2001. 4.1

Felix Brandt, Tuomas Sandholm, and Yoav Shoham. Spiteful bidding in sealed-bid auc-
tions. In Proceedings of the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI), Hyderabad, India, 2007. Early version in GTDT-05. 4.1, 4.4, 4.5.1

Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for utili-
tarian mechanism design. In STOC, 2005. 1.2.3

Niv Buchbinder, Joseph Naor, R. Ravi, and Mohit Singh. Approximation algorithms for
online weighted rank function maximization under matroid constraints. In ICALP (1),
pages 145–156, 2012. 5.1, 5.6

David Buchfuhrer, Michael Schapira, and Yaron Singer. Computation and incentives in
combinatorial public projects. In ACM EC, pages 33–42, 2010. 5.1

Deeparnab Chakrabarty and Zhiyi Huang. Testing coverage functions. In ICALP (1),
pages 170–181, 2012. 1.5.3, 5.1.2, 5.4, 5.4.1

N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra. Approximating matches
made in heaven. In Proceedings of the 36th International Colloquium on Automata,
Languages and Programming (ICALP), pages 266–278, 2009. 1.3.3, 3.1.3

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to optimize
float: an analytic study of exact and approximate algorithms. Management Sciences,
23:789–810, 1977. 5.1

K. P. Costello, P. Tetali, and P. Tripathi. Matching with commitment. In Proceedings of the
39th International Colloquium on Automata, Languages and Programming (ICALP),
pages 822–833, 2012. 3.1.3

165

Nikhil R. Devanur, Shaddin Dughmi, Roy Schwartz, Ankit Sharma, and Mohit Singh. On
the approximation of submodular functions. CoRR, abs/1304.4948, 2013. 5.9

Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In AP-
PROX/RANDOM, 2007. 1.2.3

Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for
combinatorial auctions with complement-free bidders. In Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages 610–618,
2005. 1.2.3

Shaddin Dughmi. A truthful randomized mechanism for combinatorial public projects via
convex optimization. In ACM EC, pages 263–272, 2011. 5.1

Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan. From convex optimization to random-
ized mechanisms: toward optimal combinatorial auctions. In STOC, pages 149–158,
2011. 5.1, 5.8

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. 5.1

M. Fürer and H. Yu. Approximate the k-set packing problem by local improvements.
CoRR, abs/1307.2262, 2013. 1.3.1, 3.1.2

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42
(6):1115–1145, 1995. 5.1

Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Ap-
proximating submodular functions everywhere. In SODA, pages 535–544, 2009. 1.5.2,
1.5.3, 5.1, 5.1.1, 5.1.1, 5.1.2, 5.7.1, 5.7.5, 5.8

Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the
Society for Industrial & Applied Mathematics, 9(4):551–570, 1961. 1.5.2, 5.1.1, 5.3

Veronika Grimm, Frank Riedel, and Elmar Wolfstetter. The third generation (UMTS)
spectrum auction in Germany. CESifo Working Paper Series CESifo Working Paper
No. 584, CESifo Group Munich, 2001. 4.1

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981. ISSN 0209-9683. doi:
10.1007/BF02579273. URL http://dx.doi.org/10.1007/BF02579273. 5.1

166

http://dx.doi.org/10.1007/BF02579273

A. Gupta and V. Nagarajan. A stochastic probing problem with applications. In Proc. of
16th IPCO, 2013. 1.3.3

Jason Hartline and Anna Karlin. Profit maximization in mechanism design. In Algorithmic
Game Theory. Cambridge University Press, 2007. 1.2.3

J. Hastad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, pages 627–, 1996. 1.2.2

Martin Hoefer and Thomas Kesselheim. Secondary spectrum auctions for symmetric and
submodular bidders. In ACM EC, pages 657–671, 2012. 5.1

C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have
an SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989. 1.3.2, 3.1.2, 3.5, 3.5.1, 3.5.1,
3.5.3, 2a

Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, 2001. 5.1

W. Johnson and J. Lindenstauss. Extensions of Lipschitz maps into a Hilbert space. Con-
temporary Mathematics, 1984. 5.1

Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear
programming. In FOCS, 2005. 1.2.3

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 2006. 1.2.3

David K Levine. Modeling altruism and spitefulness in experiments. Review of Economic
Dynamics, 1:593–622, 1998. 1.4, 4.1

George F. Loewenstein, Leigh Thompson, and Max H. Bazerman. Social utility and de-
cision making in interpersonal contexts. Journal of Personality and Social Psychology,
57(3):426–441, 1989. 1.4, 4.1

John Morgan, Kenneth Steiglitz, and George Reis. The spite motive and equilibrium
behavior in auctions. Contributions to Economic Analysis & Policy, 2(1), 2003. 1.4,
1.4.2, 1.4.3, 4.1, 4.4, 4.4

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions - I. Mathematical Programming, 14:265–294,
December 1978. 5.1

167

M. Queyranne. A gomory-hu tree for symmetric sub- modular functions. unpublished
manuscript, Faculty of Commerce, University of British Columbia, 1993. 1.5.2, 5.1.1,
5.3

A. E. Roth, T. Sönmez, and M. U. Ünver. Efficient kidney exchange: Coincidence of
wants in markets with compatibility-based preferences. American Economic Review,
97:828–851, 2007. 3.8.4

Tatsuyoshi Saijo and Hideki Nakamura. The “spite” dilemma in voluntary contribution
mechanism experiments. Journal of Conflict Resolution, 39(3):535–560, 1995. 1.4, 4.1

A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003. 5.8

Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory, Ser. B, 80(2):346–355, 2000. 5.1

C. Seshadhri and Jan Vondrák. Is submodularity testable? In ICS, pages 195–210, 2011.
1.5.3, 5.1, 5.1.2

Ankit Sharma and Tuomas Sandholm. Asymmetric spite in auctions. In AAAI Conference
on Artificial Intelligence, 2010. 4.7

Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms
and lower bounds. SIAM J. Comput., 40(6):1715–1737, 2011. 5.1.2

P. Toulis and D. C. Parkes. A random graph model of kidney exchanges: efficiency,
individual-rationality and incentives. In Proceedings of the 12th ACM Conference on
Electronic Commerce (EC), pages 323–332, 2011. 3.8.5

Ioannis Vetsikas and Nicholas Jennings. Outperforming the competition in multi-unit
sealed bid auctions. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Honolulu, HI, 2007. 4.1

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance, 16:8–37, 1961. 4.2

David W. Walkup. Matchings in random regular bipartite digraphs. Discrete Mathematics,
1980. 3.8.5

S. Zenios, E. S. Woodle, and L. F. Ross. Primum non nocere: Avoiding harm to vulnerable
candidates in an indirect kidney exchange. Transplantation, 72:648–654, 2001. 3.8.4

Yunhong Zhou and Rajan Lukose. Vindictive bidding in keyword auctions. In Workshop
on Sponsored Search Auctions, 2006. 4.1

168

	1 Introduction
	1.1 Resource Allocation
	1.2 Resource allocation under procurement costs
	1.2.1 Results
	1.2.2 Techniques
	1.2.3 Related Work

	1.3 Resource allocation with expensive queries on stochastic input
	1.3.1 Results
	1.3.2 Techniques
	1.3.3 Related Work

	1.4 Study of existing allocation mechanisms in presence of spiteful agents
	1.4.1 Results
	1.4.2 Techniques
	1.4.3 Related work

	1.5 Approximating valuation functions
	1.5.1 Results
	1.5.2 Techniques
	1.5.3 Related work

	2 Online Resource Allocation with Procurement Costs
	2.1 Introduction
	2.2 Model of Limitation
	2.2.1 Our Results and Techniques

	2.3 Notation
	2.3.1 (,) approximation factor definition

	2.4 Single Resource Goodness and Structural Lemma
	2.4.1 Proving (,)-single-resource-goodness
	2.4.2 Relaxed conditions for Single Resource Goodness

	2.5 Some `natural' pricing schemes
	2.5.1 Pricing at Cost
	2.5.2 Pricing at Twice the Cost

	2.6 Algorithm: Pricing at twice the index
	2.6.1 Performance on some cost functions
	2.6.2 Trade-off between the multiplicative guarantee and additive loss
	2.6.3 The Necessity of Additive Loss
	2.6.4 Bad Example for Pricing at Twice the Index

	2.7 General Increasing Cost Functions
	2.7.1 Algorithm
	2.7.2 Analysis

	2.8 Smoothing Algorithm
	2.8.1 Intuition
	2.8.2 The smoothing algorithm
	2.8.3 The main ideas
	2.8.4 The Analysis
	2.8.5 Convex cost curves

	2.9 Profit Maximization
	2.10 Acknowledgment

	3 Resource allocation with expensive queries on stochastic input
	3.1 Introduction
	3.1.1 Model
	3.1.2 Our Results and Techniques
	3.1.3 Related Work

	3.2 Preliminaries
	3.3 Adaptive Algorithm: (1-)-approximation
	3.4 Non-adaptive algorithm: 0.5-approximation
	3.5 Generalization to k-Set Packing
	3.5.1 Disjoint Constant-Size Augmenting Structures for k-Set Packing
	3.5.2 Adaptive Algorithm for k-Set Packing
	3.5.3 Non-Adaptive Algorithm for k-Set Packing

	3.6 Matching Under Correlated Edge Probabilities
	3.6.1 Adaptive Algorithm in Adversarial Setting
	3.6.2 Adaptive Algorithm in Stochastic Setting
	3.6.3 Non-adaptive algorithm in Adversarial Setting
	3.6.4 Non-adaptive algorithm in Stochastic Setting

	3.7 Computational complexity of budget-constrained non-adaptive solution
	3.7.1 4-cycle cover is optimal
	3.7.2 Hardness result

	3.8 Almost optimal budget-constrained non-adaptive solution for Kidney Exchange Graphs
	3.8.1 Background
	3.8.2 Complete Graphs and Bipartite Graphs
	3.8.3 General Graphs
	3.8.4 Complete Kidney Exchange Graphs
	3.8.5 Realistic Kidney Exchange Graphs

	3.9 Directions for Future Research
	3.10 Acknowledgment

	4 Spiteful Auctions
	4.1 Introduction
	4.2 Model
	4.3 Spite in the discrete valuations setting
	4.3.1 Complete information setting
	4.3.2 Incomplete information setting

	4.4 Prior results
	4.5 Asymmetric spite results
	4.5.1 The 2-bidder case
	4.5.2 The n-bidder setting with directed spite

	4.6 Conclusions and future research
	4.7 Acknowledgment

	5 Understanding the complexity of Submodular Functions
	5.1 Introduction
	5.1.1 Our Results and Techniques
	5.1.2 Related Work
	5.1.3 Preliminaries and Formal Statement of Results

	5.2 Approximating General Submodular Functions by Directed Cut Functions of Graphs
	5.3 Approximating Symmetric Submodular Functions by Undirected Cut Functions of Graphs
	5.4 Approximating Budgeted Additive Functions by Coverage Functions
	5.5 Uniform Submodular and Matroid Rank Functions
	5.6 Application to Online Submodular Function Maximization
	5.7 Approximating Monotone Submodular Functions by Coverage Functions and by Budgeted Additive Functions
	5.7.1 Upper Bound
	5.7.2 Lower Bound

	5.8 Future Directions
	5.9 Acknowledgment

	6 Directions for Future Research
	6.1 Online resource allocation with preemption
	6.2 Other directions for future research

	Bibliography

