
Adaptive Binary Search Trees

Jonathan Carlyle Derryberry

CMU-CS-09-180

December 2009

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Daniel Sleator, Chair

Guy Blelloch
Gary Miller

Seth Pettie, U. Michigan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2009 Jonathan Carlyle Derryberry

This research was sponsored by the National Science Foundation under grant number CCR-0122581. The
views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: binary search trees, adaptive algorithms, splay trees, Unified Bound, dy-
namic optimality, BST model, lower bounds, partial-sums

Abstract

A ubiquitous problem in the field of algorithms and data structures is that
of searching for an element from an ordered universe. The simple yet pow-
erful binary search tree (BST) model provides a rich family of solutions to
this problem. Although BSTs require Ω(lg n) time per operation in the worst
case, various adaptive BST algorithms are capable of exploiting patterns in
the sequence of queries to achieve tighter, input-sensitive, bounds that can
be o(lg n) in many cases. This thesis furthers our understanding of what is
achievable in the BST model along two directions.

First, we make progress in improving instance-specific lower bounds in
the BST model. In particular, we introduce a framework for generating lower
bounds on the cost that any BST algorithm must pay to execute a query se-
quence, and we show that this framework generalizes previous lower bounds.
This suggests that the optimal lower bound in the framework is a good candi-
date for being tight to within a constant factor of the optimal BST algorithm
for each input. Further, we show that lower bounds in this framework are also
valid lower bounds for instances of the partial-sums problem in a restricted
model of computation, which suggests that augmented BSTs may be the most
efficient way of maintaining sums over ranges of an array when the entries of
the array can be updated throughout time.

Second, we improve the input-sensitive upper bounds that are known to
be achievable in the BST model by introducing two new BST algorithms,
skip-splay and cache-splay. These two algorithms are the first BSTs that are
known to have running times that have nontrivial competitiveness to Iacono’s
Unified Bound, which is a generalization of the dynamic finger and work-
ing set bounds. Skip-splay is a simple algorithm that is nearly identical to
splaying, and it achieves a running time that is within additive O(lg lg n) per
operation of the Unified Bound. Cache-splay is a slightly more complicated
splay-based algorithm that is the first BST to achieve the Unified Bound to
within a constant factor.

iv

Acknowledgments

I would first like to thank my thesis committee. My advisor Danny Sleator was especially
helpful in suggesting topics to explore, helping me focus on my best ideas, and supporting
my progress as a graduate student in general and on this thesis in particular. Additionally,
I would like to thank Gary Miller, Guy Blelloch, and my external committee member Seth
Pettie for their suggestions and feedback along the way.

Also, I thank my friends and office mates for giving me advice and encouragement
through the years as I navigated my way through the graduate program.

Additionally, I thank Weijia for tolerating my long hours as I worked toward finishing
this thesis, and for providing occasional refreshing distractions.

Finally, I thank my family for being so patient as I worked toward finishing. I would
like to particularly thank my father, whom I miss dearly. I wish he could have been here
to see me finish.

v

vi

Contents

1 Introduction 1

2 The Binary Search Tree Model 7
2.1 Alternatives to the BST Model . 8

2.1.1 The RAM Model . 8

2.1.2 The Comparison Model . 9

2.1.3 Alternative Memory Models . 11

2.2 Definition of the BST Model . 12

3 Lower Bounds in the BST Model 15
3.1 Wilber’s First Bound and the Interleave Bound 17

3.2 The Dynamic Interleave Lower Bound 21

3.3 Wilber’s Second Lower Bound . 23

3.4 The Independent Rectangle Lower Bound 25

3.5 The MIBS Lower Bound . 26

3.5.1 Proving Wilber’s Lower Bounds with the MIBS Lower Bound . . 31

3.6 The BST Model and the Partial-Sums Problem 34

4 Adaptive Binary Search Bounds 39
4.1 Competitive Search in a BST . 39

4.2 Other Kinds of Competitiveness . 41

4.3 Exploiting Spatial and Temporal Locality 42

4.4 The Unified Bound . 43

vii

4.5 Beyond the Unified Bound . 44

4.6 Adaptive Search in Higher Dimensions 47

5 Skip-Splay Trees 49
5.1 The Skip-Splay Algorithm . 49

5.2 Analyzing Skip-Splay Trees . 51

5.3 Remarks on Improvements to Skip-Splay 60

6 Cache-Splay Trees 63
6.1 The Cache View of Cache-Splay . 63

6.2 Implementing the Cache View with a BST 65

6.3 The Cache-Splay Algorithm . 65

6.4 Cache-Splay Satisfies the Unified Bound 70

6.5 Making Cache-Splay a Strict BST Algorithm 75

6.6 The Next Steps for Adaptive BSTs . 76

7 Conclusion 77

Bibliography 79

viii

List of Figures

2.1 An example of a BST rotation and its mutual inverse 13

3.1 A two-dimensional visual representation of a query sequence 17

3.2 The state of a lower bound tree for Wilber’s first bound 18

3.3 The state of a lower bound tree for the interleave bound 19

3.4 A visualization of the definition of Wilber’s second lower bound 24

3.5 The definition of the MIBS bound . 27

3.6 The rotation that is associated with a box for the MIBS bound 29

3.7 A MIBS-based proof of Wilber’s first lower bound 32

3.8 A MIBS-based proof for Wilber’s second lower bound 33

4.1 A BST that efficiently serves interleaved sequential accesses 45

5.1 A schematic of a skip-splay tree . 50

5.2 An example of a four-level skip-splay tree 51

5.3 A schematic of the skip-splay algorithm 52

6.1 The definition of blocks for the cache view of a cache-splay tree 64

6.2 The cache view of the execution of a query in a cache-splay tree 66

6.3 The blocks of a “cache” compared to a cache-splay tree 68

6.4 The cache loop and the eject loop of the cache-splay algorithm 70

ix

x

Chapter 1

Introduction

The search problem is one of the simplest problems in all of theoretical computer science.
Abstractly, and informally, the search problem can be stated as follows. Given a set of
convex regions that partition some space in addition to a point in that space, return the
region that contains that point. Of course, if we only had one query, we could use a naı̈ve
brute force algorithm and simply test each region one by one to see whether it contained
the point. However, we are usually concerned with serving a sequence σ = σ1 · · ·σm

of queries where each σj represents a query to a point σj in the search space. When
executing such a sequence of queries, it usually makes sense to organize the input into a
data structure that helps speed up each query.

To illustrate this, consider the case of one-dimensional search, in which the regions are
all individual line segments. For ease of theoretical analysis, we will make the simplifying
assumption that each region is a point, or key, from the set S = {1, . . . , n}. In reality, we
would generally want to support keysets that were not consecutive integers, allow queries
to points that were in between the keys of S, and support insertion and deletion of keys.
Suppose a search algorithm used no data structure so that the elements of S were stored
in memory cells that were scattered throughout memory with no organization whatsoever.
Then, for each query σj , we would have to compare σj to each of the n members of S to
ensure that we found the queried element. However, if we simply sorted the members of
S, then we could rule out half of the remaining members of S with a single comparison
during each step of computation.

Even in this one-dimensional case of the search problem, there is a rich and seemingly
endless abundance of possibilities for how to create such a data structure for helping an
algorithm serve queries quickly. One family of such data structures is binary search trees
(BSTs), which comprise a set of nodes, each representing a key from the set S. These

1

nodes are linked together into a rooted binary tree with the keys in symmetric order, and
this tree can be modified by the BST algorithm during the sequence of queries it is ex-
ecuting. Each query begins at the root of the tree with a comparison to the root’s key,
and proceeds to one of the root’s children according to the result of the comparison. See
Chapter 2 for a formal description of the BST model that we will use in this thesis.

Even with the constraints imposed on BSTs, substantial flexibility remains for the
design of a BST algorithm. As mentioned above, not only can a BST algorithm use any
valid initial BST, but it can also adjust the structure of this tree during the sequence of
queries if doing so seems likely to speed up the responses to future queries. For example, if
one particular region of keyspace were accessed several times in a row, the BST algorithm
may move the portion of the tree that corresponds to that region closer to the root in order
to accelerate future queries to that region.

Any search algorithm that tries to make such an improvement is called an adaptive
algorithm. If the queries are uniformly at random and the search algorithm is online so that
it does not know what the future queries are, then such attempts to “guess future queries”
will not speed up the algorithm on average. However, suppose that the queries of the
sequence are correlated with each other so that the conditional probability distribution for
the current query, depending on all previous queries, is highly skewed. In this case, it is in
principle possible for an online search algorithm to serve queries faster than when queries
are uniformly at random. Such correlation might be expected to exist in actual sequences
of queries if the queries are being generated by another algorithm that is scanning across
the data in some regular manner rather than probing completely at random.

To exploit such correlation, we do not need prior knowledge of the distribution from
which queries are drawn. As long as we make some prior assumptions for the type of cor-
relation that might exist, we may be able to ensure that we can exploit the correlation if the
actual sequence of queries is generated by such a distribution. This motivates bounding the
running time for serving a query sequence with a function that depends on the amount of
correlation that appears in the sequence of queries. We will call such a bound an adaptive
bound.

There are many examples of such adaptive bounds as well as data structures that prov-
ably meet these bounds. For a query to key x at time j, the working set bound is defined
to be lg w(x, j), where w(x, j) is the number of distinct keys queried during the period of
time between the most recent query to x and time j, assuming such a query exists. A data
structure whose running time is O(lg w(σj, j)) for each query σj exploits the possibility
that recently-queried keys may be more likely to be queried than other keys. Alternatively,
the dynamic finger bound for query σj with j > 1 is defined to be lg(|σj − σj−1| + 1).
A data structure whose running time is O(lg(|σj − σj−1| + 1) exploits the possibility that

2

most queries might be near to the previous query. Chapter 4 will discuss these bounds and
others in greater detail, and will also discuss previous work toward provably achieving
such bounds with various data structures. Chapters 5 and 6 will discuss BST algorithms
that achieve a substantially richer bound called the Unified Bound [37, 16] that subsumes
both the working set bound and the dynamic finger bound.

The above adaptive bounds are useful in that they clearly specify what the cost bound
is for each query sequence, and they each have an intuitive interpretation and quantitative
meaning. However, such formulaic bounds are limited in that, by themselves, they say
nothing about whether we have reached the limit of what is achievable in a particular model
of computation. One could imagine a seemingly endless quest for achieving better – or at
least different – adaptive bounds that attempt to capture any type of query correlation we
can imagine. No matter how many of these bounds we proved for a particular algorithm,
we would never know for sure whether it performed well on all inputs for which a speedup
was possible, or know if such a universally adaptive algorithm even existed.

To accomplish this goal, we need to use competitive analysis, which compares the
performance of an algorithm on a specific input against the performance of all other al-
gorithms on that same input. The competitive ratio of an algorithm A is roughly defined
to be the maximum ratio, across all inputs, between the running time of A and the fastest
algorithm on the same input.

There are multiple ways of proving that an algorithm is competitive. First, we could
directly compare the performance of the candidate competitive algorithm to that of an arbi-
trary competitor and show that the candidate’s performance is not much worse, regardless
of the input. If we succeed in proving that the candidate performs almost as well as the
competitor, then we have proved that the candidate is competitive because both the com-
petitor and the input were arbitrary. This was the strategy first used in showing that the
move-to-front list update heuristic was constant-competitive [53].

However, sometimes it is not clear how to show that the candidate performs well com-
pared to an arbitrary algorithm. In such cases, an alternative approach to proving compet-
itiveness is first to prove a lower bound that tightly bounds the minimum cost required by
any algorithm to serve a particular sequence of queries, and second to show that the cost
of the competitive algorithm on an input is never much more than the lower bound for that
input. All of the known algorithms that have nontrivial competitive ratios with the optimal
BST algorithm use this approach [21, 61, 32, 42, 10]. Chapter 3 expounds many of the
lower bounds that have been proven for the BST model, and discusses their usefulness in
proving competitiveness.

Although competitiveness of an algorithm within a particular model of computation
can be a strong result, it is important to consider whether we may have sacrificed too

3

much by limiting ourselves to a particular model of computation. After all, if we suffi-
ciently limit the model of computation, then it may become easy to prove an algorithm
to be competitive, but the algorithm may not actually perform well. For example, even
though move-to-front is a good algorithm for the list update problem, it is not a good al-
gorithm for the search problem. Despite being dynamically optimal, move-to-front suffers
Ω(n) expected cost for random queries compared to a balanced BST, which requires only
O(lg n) time.

One could argue that the BST model, even though it allows binary search, is too re-
strictive. Relative to the pointer-based comparison model, the BST model restricts how
we can organize our data, and relative to the RAM model, the BST model ignores the pos-
sibility of speeding up search by using direct-addressing or word-level parallelism. Even
though the BST model is interesting in its own right as a simple and elegant model, it is
worthwhile to consider whether we may have thrown away too much flexibility by limiting
ourselves to such a restrictive model. Chapter 2 provides some additional discussion of
this possibility by describing some of the differences in what is known to be achievable in
some of the most popular models of computation.

One way of vetting a model of computation is to prove that various formulaic bounds,
such as the working set bound and the dynamic finger bound, are achievable in the model
so that any competitive algorithm is also guaranteed to meet these bounds. Before the
first BST algorithm with a nontrivial competitive ratio was found, it was already clear that
the BST model permitted good performance when a variety of types of nonrandomness
were present in the input, and Chapter 4 discusses some of these results. A nice side
benefit to proving an algorithm to be competitive when many adaptive bounds have already
been proven in that model is that the competitive algorithm provably inherits all of the
previously proved adaptive properties. Conversely, proving a formulaic bound for some
new algorithm after a competitive result has already been proven demonstrates not only
that the new algorithm satisfies the bound, but also that the competitive algorithm satisfies
a corresponding bound as well. For example, when the cache-splay BST algorithm of
Chapter 6 was shown to satisfy the Unified Bound, the Tango BST algorithm [21, 22] was
automatically shown to satisfy the Unified Bound to within a factor of O(lg lg n) because
Tango is O(lg lg n)-competitive in the BST model.

An even stronger way to vet a model of computation is to show that the complexity of
the problem it is being used to solve is identical to the complexity of the data structure.
Such a result demonstrates definitively that the selected model of computation is not too
restrictive, and moreover that the search for better algorithms for solving the problem can
be reduced to the search for better data structures in the selected model of computation.
In the case of the BST model, Chapter 3 will provide evidence that suggests that BSTs,

4

due to the fact that they can be augmented to store information about their subtrees, might
fully encapsulate the partial-sums problem. Although it is straightforward to show that
the partial-sums problem can be solved with any BST, it is not immediately clear that the
partial-sums problem cannot be solved asymptotically faster on any instance.

Other than concerns about the performance of a data structure, another concern is its
simplicity. Not only is the simplicity of a data structure important for aesthetic reasons,
but simple data structures also are more likely to be used in practice because they are
easy to implement and often have low constant factors in their running times. For ex-
ample, although O(lg lg n)-competitive BST algorithms such as Tango and multi-splay
trees have competitive guarantees that splay trees lack, they are both significantly more
complicated than splay trees, and are unlikely to be implemented in practice despite their
better guarantees of competitiveness. We will see another example of such a tradeoff in
Chapter 5 when we introduce the extremely simple skip-splay algorithm, which is nearly
identical to splaying and within additive O(lg lg n) of being constant-competitive to the
Unified Bound. By comparison, the more complicated cache-splay algorithm in Chapter 6
is constant-competitive to the Unified Bound.

This introduction has sketched out some of the key motivating ideas and goals asso-
ciated with adaptive search in general and with the BST model in particular. To reiterate
the ideals behind the work in this thesis, the ultimate goal is to prove competitive bounds
for the simplest algorithm in a computational model that is as general and flexible as pos-
sible. The work contained in this thesis adds to our understanding of the performance that
can be achieved in the BST model when we look beyond simple worst-case analysis to
consider instance-specific bounds. Chapter 7 concludes this thesis with a discussion of
various directions for future work that would resolve some of the lingering questions from
this work.

5

6

Chapter 2

The Binary Search Tree Model

This chapter formalizes the definition of the BST model that was sketched in Chapter 1. To
begin, we reiterate the formal definition of the one-dimensional search problem as follows.
Given as input a set S of keys, which we take for simplicity’s sake to be {1, . . . , n}, and
a sequence of queries σ = σ1 · · ·σm, where each σj ∈ S, return a sequence of pointers to
the memory cells that represent each σj in the order specified by the input.

We will typically have some information associated with each σj that we will want to
return. For example, if we were storing a set of words and their associated definitions,
the input would be a sequence of words to look up, and the output would be the memory
locations of the definitions of the words. Also, it is important to note that there are other
operations that one might want to support besides a simple lookup. For example, in ad-
dition to successful queries, we might want to support queries to elements that are not in
S. As we will show in this Chapter, not all algorithms for solving the above simplified
version of the problem have an easy extension when we demand more from the algorithm.

There are a number of models of computation that we may use when designing and
analyzing algorithms for the one-dimensional search problem. In this thesis, we will not
be presenting any new results for one-dimensional search outside of the BST model, but
it is important to understand how results in the BST model compare with results obtained
in other computational models. Therefore, Section 2.1 describes some other models of
computation, and assumes familiarity with at least an informal definition of the BST model
for the purpose of comparison. We briefly summarize how the search problem can be
solved in those alternative models, and at what cost. Section 2.2 will cover the BST model
more formally and in greater detail than the other models. It will specify in detail what a
BST is allowed to do and what it must pay for.

7

2.1 Alternatives to the BST Model

In this section, we consider two variables for models of computation. First, we consider
what operations will be permitted. Algorithms that achieve upper bounds using a restricted
set of operations are generally more powerful than those that are allowed greater freedom
in their instruction sets, while lower bounds in a restricted model are weaker. Second,
we specify what operations, or events, we will charge for. This second specification may
at first seem a little strange, but to simplify our analysis, it can sometimes be useful to
consider models of computation that provide some operations for free. This allows us
to concentrate on analyzing one particular type of cost that we expect to dominate in
practice. With these variables in mind, we will define a few of the popular models of
computation that are relevant to our discussion of one-dimensional search, and summarize
what is achievable in those models.

2.1.1 The RAM Model

In the RAM model, the computer’s memory is modeled as a collection of w-bit memory
cells that can be accessed by the algorithm via their addresses so that no explicit pointers
to memory are needed. We assume that w bits is enough to address all of the memory
that we will need, and that we will only be storing keys that fit in a constant number
(usually just 1) of w-bit words. An algorithm is permitted to perform all of the standard
arithmetic operations, such as addition and multiplication, on pairs of words. The cost of
an algorithm is defined to be the number of memory accesses or arithmetic operations that
are performed. The RAM model is the classic model of computation that is used most
frequently in the field of algorithms and data structures, and can be used to implement
algorithms defined in most more restrictive models with just a constant factor slowdown.

One natural solution to the search problem in the RAM model is hashing, which costs
just O(1) worst-case time per query if perfect hashing is used. Hashing requires access to
a random number generator, and crucially relies on there being no unsuccessful queries,
since hashing does not support finding successors. Note that if the set S were really
{1, . . . , n}, as we have assumed for simplicity, then we would not even need random-
ization. We could simply store all of the keys in an array, and use each key’s value as its
address in the array.

Unfortunately, when we stray only slightly from our simple definition of the search
problem, and allow queries that fall in between two elements of S, we need to support ef-
ficiently finding the successor (or predecessor) of the queried element in the search space.
With this extension, the RAM model still provides the ability to achieve better worst-case

8

performance than that which can be achieved in more restrictive models such as the com-
parison model, which is summarized in Section 2.1.2.

For example, we could use the y-fast tries of Willard [63], which store all of the prefixes
of each x ∈ S in a hash table T , and serve each query σj in O(lg w) time by performing
binary search to find the length of the longest prefix of σj that appears in T . With a little
more work, space usage can be reduced to linear by bucketing bunches of contiguous
elements together, and storing the prefixes of only a single representative element of each
bucket in T . To eliminate the need for randomization, the same bound on queries can be
achieved via the van Emde Boas data structure [59, 58], although the use of randomization
and hashing is still helpful in tightening the space usage bound from O(2w) to O(n).

A slightly more complicated data structure for the search problem in the RAM model is
fusion trees [29]. Essentially, fusion trees are B-trees (see Section 2.1.3) with a branching
factor of wΩ(1). By using word-level parallelism, fusion trees can find the correct child on
the search path by essentially performing Ω(lg w) comparisons in O(1) time to achieve a
worst-case query time of O(lg n/ lg w). Combining the van Emde Boas and fusion tree
bounds to get the optimal tradeoff in terms of n yields a bound of

O(min{lg w, lg n/ lg w}) = O(
√

lg n).

It is important to note that the van Emde Boas data structure and fusion trees both
require the keys to be integers, and they do not support augmentation within their spec-
ified time bounds. To guarantee such functionality, we need more restrictive models of
computation.

2.1.2 The Comparison Model

Although the RAM model gives us more freedom as algorithm designers to exploit a rich
instruction set, this flexibility places constraints and caveats on the input if we wish to ex-
ploit this flexibility to achieve the minimum possible running time. One simpler and more
restrictive computational model is the comparison model, in which memory is modeled as
a collection of memory cells, each with at most a constant number of movable pointers to
other cells. The only mathematical operations that are permitted on keys are comparisons
that determine whether one element is less than another element. The cost of an algorithm
is defined to be the number of comparisons that are executed. This restriction is helpful
because it allows us to abstract the type of data that is being stored. Instead of requiring the
keys to be integers, as the RAM model does, the comparison model encapsulates search
among arbitrary comparable objects.

9

The restrictions imposed by the comparison model relative to the RAM model come at
a price because it is easy to see that no online search algorithm in the comparison model
can achieve a worst-case running time of o(lg n) per query. However, the simple Ω(lg n)
lower bound on worst-case search cost assumes that queries are random, and this is often
not the case. Although all of the BST algorithms with input-sensitive running time bounds
are valid examples of comparison-based algorithms that can beat the Ω(lg n) lower bound,
we mention some notable adaptive comparison-based data structures that are not BSTs in
the following paragraphs.

If the user of a search data structure has a reasonably accurate guess as to the location
of the key for which they are searching (i.e., that particular access is not uniformly at
random), then we can accelerate search by using a finger search tree. In a finger search
tree, for each query σj , the user supplies a pointer to a finger fj whose rank is ideally
as near as possible to that of σj . Finger search trees serve queries with a running time
of O(lg(|fj − σj| + 2)), where |fj − σj| represents the difference in sorted order ranks
between σj and fj . A finger search tree can be built to work in the comparison model by
adding level links to a balanced BST, starting the search at the finger, and exponentially
expanding the search space.

For example, Brown and Tarjan showed how to achieve finger search by adding level-
links to a 2-3 tree [15]. Note that if we were to allow random access and did not care about
supporting insertion and deletion, we could achieve the above finger search bound using
an array and executing each search by starting at the finger and exponentially expanding
the search radius in the obvious manner. Also, it is worth noting that finger search cannot
be supported in the BST model because the user can always choose a finger fj such that
|fj−σj| = O(1) and the shortest path of pointers from fj to σj has a length that is Ω(lg n).
Thus, a BST’s pointer traversals may cost too much even if we charged only for pointer
traversals rather than requiring the accessed element to be rotated to the root as specified
in Section 2.2.

Another example of an input-sensitive bound that can be achieved in the comparison
model is the Unified Bound, which can be achieved by using the Unified Structure [37, 16].
The Unified Bound stipulates that queries run much faster than O(lg n) in cases in which
many of the keys that are queried are near to a recently accessed key. The Unified Structure
achieves this bound by acting like a multi-level cache. It keeps a small set of recently used
fingers in a small BST for which search is fast, and uses the recently accessed fingers to
perform a quick finger search in a finger search tree. More details regarding the Unified
Bound will be discussed in Chapter 4. Prior to the work in this thesis, it was unknown
whether a BST could achieve the Unified Bound. The first BST algorithms to compete
with the Unified Bound appear in Chapters 5 and 6.

10

2.1.3 Alternative Memory Models

The above alternatives to the BST model are similar to the BST model in that they assume
a flat memory structure and charge for individual instructions. A different line of research
is motivated by the observation that if a computer uses a hierarchical memory structure, as
most computers do, then the running time of its programs is often dominated by the amount
of time spent accessing slow memory. This phenomenon motivated the development of
external memory and cache-oblivious models of computation. These two models allow
rigorous analysis of the performance of algorithms whose running times are dominated by
accesses to slower memory.

The external memory model [1] splits memory into two levels: fast memory of size M
bits and slow memory of unlimited size. All data is assumed to be divided into contiguous
pages of memory containing B bits each. All computation is performed on data that resides
in fast memory, and pages are swapped into fast memory from slow memory whenever
their data is needed. A constant cost is associated with each swap of a page from slow
memory to fast memory, and all other operations are assumed to be free. Assuming b
keys fit into a page of memory, balanced B-trees provide a worst-case running time of
O(logb+1 n). This bound is overly pessimistic if several search paths fit into fast memory
and recently accessed elements are likely to be queried so that it is possible that there are
virtually no cache misses.

The cache-oblivious model [48, 30] assigns costs similarly to the external memory
model, but the parameters M and B are unknown. Therefore, the goal is to lay out the
data structure in memory in a way such that it performs well regardless of the values of M
and B that occur when the data structure is used. Because results in the cache-oblivious
model hold for all values of M and B, the cache-oblivious model yields more powerful
results than the external memory model. In fact, since modern memory architectures often
have more than two levels of memory, results in the cache-oblivious model are especially
powerful because they obviate the need to study each level separately. By laying out a
balanced BST carefully in memory, it is possible to achieve a worst-case running time of
O(logb+1 n) per query [5, 7, 13, 6], the same bound that B-trees achieve in the external
memory model.

These results in alternative memory models are not directly comparable to the results
in this thesis, but they are included because they provide context for alternative views on
how to measure the cost of a search algorithm, and because finding adaptive data structures
in such memory models may be a fruitful direction for future research. It is worth noting
that accelerating splay trees using increased arity seems to be difficult because the natural
extension of splay trees yields a bound that is no better than that which is achieved by
ordinary splay trees [52, 45].

11

2.2 Definition of the BST Model

Although most people who study computer science are familiar with the concept of using a
BST to solve the search problem, it is important to formally define what a BST algorithm
is to facilitate the proof of input-sensitive lower bounds and develop competitive BST
algorithms. In this thesis, we use the definition of the BST model that is similar to that
which was described by Wilber [62], and we describe this definition below.

We define a BST node to be a memory cell that contains three pointers: a parent
pointer, a left child pointer, and a right child pointer. In addition, each node also stores a
key and may store additional data in auxiliary fields. Each of the n keys that are stored in
a BST has its own BST node, and these n BST nodes are linked together into a binary tree
T in symmetric order so that every node that can be reached by following child pointers
starting from the left child of a node has a key value that is less than that of the original
node. Typically, we only want to use O(1) auxiliary fields per node, and we forbid extra
pointers from being used, but these extra requirements are not necessary for our strict
definition of the BST model. Even without these extra restrictions, augmentation can still
be achieved for any BST, and the proofs of the lower bounds in Chapter 3 are still valid.

During the query sequence, the structure of T is only modified by an operation called a
rotation, which is defined on every BST node that has a parent. During a rotation of node
x over its current parent p, the node x becomes the parent of p, and one of x’s children is
moved to be a child of p so that the constraint that T is binary is maintained. Note that
if T were to be represented by the ancestor relation over the set of BST nodes, a rotation
removes the pair (p, x), adds the pair (x, p), and keeps all other ancestor relationships the
same. An important characteristic of the rotation operation is that it is entirely local. Only
a constant number of pointers need to be changed to execute it, and it does not affect any
parent-child relationships anywhere else in the tree. Examples of each of the two types of
rotations, right and left, are shown in Figure 2.1.

Next, we define a BST algorithm A to be a procedure that, given as input an initial set
of elements S = {1, . . . , n} and a sequence of queries σ = σ1 · · ·σm, produces an initial
BST T containing S and a sequence of valid rotations r1 · · · rt on that tree. For A to be
considered a valid BST algorithm for serving sequence σ, there must be a monotonically
increasing sequence of time indices k1 · · · km such that each kj ∈ {0, . . . , t} and for j ∈
{1, . . . ,m}, the node representing σj is the root node of T immediately after rotation rkj

is executed (if kj = 0 then σj must be the initial root of T , before any rotations have been
performed).

The cost of a BST algorithm on access sequence σ is defined to be m + t. All other
computation is considered to be free. Note that for an online BST algorithm, the initial

12

x

y

y

x

A B

C A

B C

rotate x

rotate y

Figure 2.1: An example of a BST rotation and its mutual inverse. The rotations of x and y
are termed, respectively, right and left rotations.

structure of T is independent of the input, and the sequence of rotations r1 · · · rkj
is inde-

pendent of σj+1 · · ·σm for some valid setting of k1 · · · km as defined above.

Essentially, this definition is saying that a BST algorithm must rotate each accessed
node to the root of the tree. This definition poses no problems for the splay algorithm [55].
However, other classic BST algorithms, such as red-black trees [4, 34], do not rotate the
accessed node to the root of T , and are analyzed by charging for pointer traversals rather
than rotations. Nevertheless, such BST algorithms can easily be coerced into Wilber’s
model with just a constant factor penalty to running time by rotating each accessed node
to the root and back down to its location before the extra rotate-to-root operation was
performed. In Chapters 5 and 6, we will describe the skip-splay and cache-splay BST
algorithms, which must be coerced into this model because they do not rotate the queried
node all of the way to the root.

Even though this definition of the BST model does not strictly adhere to the compari-
son model, a BST algorithm with the above definition can be coerced into the comparison
model by noting that for each query, the full access path must be rotated for the queried
node to become the root. Each of these rotations corresponds to a comparison that would
be performed if we were analyzing a BST algorithm in the comparison model.

Before we conclude this chapter, it is important to note how the BST model compares
with other models of computation. Since the BST model allows for a strict subset of the
algorithms that are permitted in the RAM and comparison models, a BST algorithm can be
no faster than the best algorithms in the more flexible models, though the cost accounting
may be lower for a BST in some cases because BSTs are only charged for rotations. Due
to the constraints imposed by the BST model, there is trivial lower bound of Ω(lg n) on the
worst-case cost per query for an online BST. The proof that offline BSTs require Ω(lg n)
time in the worst case is a little more difficult, but can nevertheless be shown [62, 9]. As
in the comparison model, we can beat these lower bounds by exploiting nonrandomness

13

in the input to achieve running times that are a function of some property of the input.
Numerous examples of this will be discussed in Chapters 4, 5, and 6.

The added restrictions on BSTs also convey benefits. Every BST can be augmented
so that each node stores the value of some associative function over the elements in its
subtree. For example, if a numerical value, not necessarily the key, is stored in each node
x, then we can store inside x the sum of all such values that belong to nodes in x’s subtree.
It is straightforward to update such sums in constant time whenever a rotation is performed,
and the value itself can be changed when the node is at the root of T because it appears
in no other node’s subtree. This is an important attribute of BSTs, and this feature makes
BSTs useful for countless applications, including solving the partial-sums problem as will
be described in Section 3.6.

14

Chapter 3

Lower Bounds in the BST Model

Using the formal definition of the BST model originally presented by Wilber [62] and re-
produced in Chapter 2, we can get a better understanding of what work must be performed
by any BST algorithm that serves a sequence of queries σ = σ1 · · ·σm, where each query
σj is to a member of S = {1, . . . , n}.

A straightforward information-theoretic argument shows that any online BST algo-
rithm must pay Ω(lg n) rotations for each query in the worst case because if each suc-
cessive query is chosen randomly, the expected depth of each queried node is Ω(lg n), so
Ω(lg n) rotations are required to bring the queried node to the root as required. Moreover,
even an offline BST algorithm can be shown to require Ω(lg n) rotations per query in the
worst case via an information-theoretic argument that was presented by Blum et al. in [9].
Blum et al. further showed that at most 2O(km) sequences of length m have optimal cost at
most O(km).

To summarize their argument, we can show that the rotations r1 · · · rt of a BST algo-
rithm can be encoded in O(t) bits, so algorithms with t rotations can serve at most 2O(t)

distinct sequences. To see that a BST algorithm can be encoded in O(t) bits, note that any
BST algorithm can be converted, at no additional cost, into one that during each query
performs rotations only on a connected set of nodes including the root [44]. Further, the
rotations performed on a connected set of nodes of size k including the root can be en-
coded in O(k) bits by writing a binary encoding of two Euler tours of these k nodes: one
tour that shows the structure of these nodes prior to the access and another that shows the
structure of them afterward.

It is worth emphasizing the importance of being able to prove a nontrivial lower bound
for an offline algorithm. Without this capability, we would have little hope of proving an
online algorithm to be dynamically optimal. Consider the comparison model with arbitrary

15

pointers. The optimal offline algorithm can essentially guess every query and serve any
sequence at O(1) cost per operation, making it impossible for any online search algorithm
in the comparison model to have a competitive factor that is any better than the trivial
factor of O(lg n).

Although the above information-theoretic bound gives us an idea of how many se-
quences may have lower optimal BST access costs than the pessimistic bound of O(lg n),
it is not clear what those sequences might be. Chapter 4 discusses some upper bounds
that give us an idea of some of the kinds of sequences for which it is possible to achieve
better than O(lg n) cost per access, but this still does not tell us what is not possible. To
determine what we cannot achieve with a BST, we need lower bounds that are capable of
assigning a minimum cost that any BST algorithm must pay to execute a query sequence.

The first nontrivial instance-specific lower bounds for the BST model were shown by
Wilber [62], who proved two lower bounds that we will call “Wilber’s first lower bound”
and “Wilber’s second lower bound”. Subsequent work has built on the ideas in the Wilber
bounds to achieve an even better understanding of what is, and is not, achievable in the
BST model.

In this chapter, we summarize some of the previous work in BST lower bounds, and
then introduce a more general framework for computing BST lower bounds in which a set
of boxes is packed onto a two-dimensional representation of the query sequence σ. The
number of boxes will be shown to be a lower bound on the cost that any BST algorithm
must pay to execute σ, and the largest such bound is called the maximum independent box-
set (MIBS) lower bound. We will see that each of the previous lower bounds is at most
the value of the MIBS lower bound. Additionally, we will see that if we allow fractional
boxes, the optimal fractional MIBS solution also provides a lower bound on the cost of
the optimal BST, and is at least as large as the optimal integral solution. Moreover, this
fractional solution can be computed in polynomial time using linear programming.

One interesting aspect of the MIBS bound is that it bolsters the connection between
the BST model and the partial-sums problem, which also has a worst-case lower bound of
Ω(lg n) per operation, even in the more general cell-probe model of computation [50, 51].
It is obvious that any BST algorithm, with augmented BST nodes, can be used to solve the
partial-sums problem with a cost that is dominated by the BST operations required by this
approach. What is interesting about the MIBS lower bound is that it provides evidence
that the converse may be true. That is, it provides evidence that the partial-sums problem
cannot be solved asymptotically faster than by using an augmented dynamically optimal
BST. We will present more details about this in Section 3.6.

In this chapter, we will frequently make use of a two-dimensional visual representation
of a query sequence. To construct the two-dimensional representation of a query sequence,

16

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

Figure 3.1: A two-dimensional visual representation of the following query sequence:
σ = 9, 7, 8, 6, 16, 12, 2, 3, 13, 3, 1, 15, 7, 10, 4.

we simply plot the queries on a scatter plot with keyspace on the horizontal axis, and time
on the vertical axis, increasing in the downward direction. An example of such a two-
dimensional visualization of a query sequence is shown in Figure 3.1.

3.1 Wilber’s First Bound and the Interleave Bound

Wilber’s first lower bound uses a fixed lower bound tree P with 2n− 1 nodes. The leaves
of P are exactly the elements of S, and each internal node v of P has at least one preferred
child, which is typically the child whose subtree contains the most recent query. The only
exception occurs when neither child’s subtree contains a previous query, in which case v

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.2: The state of a lower bound tree P for Wilber’s first bound. Note that the set
S = {1, . . . , 16} of elements that is stored in T is stored in the leaves of P .

prefers both children, if v has two children. If we execute the query sequence σ on P ,
count the number of times an unpreferred child of v becomes a preferred child (i.e., the
number of times the preferred child switches from one to the other), and add up these
counts across all nodes of P , then the resulting sum, Wil1(σ, P), is a lower bound on the
number of rotations required by any BST algorithm for executing the query sequence σ.
An example of the state of the reference tree for Wilber’s first lower bound is shown in
Figure 3.2.

The interleave bound, introduced by Demaine et al. in [21, 22], is a modification of
Wilber’s first lower bound that changes the definition of P to include exactly the n nodes of
S. Other than that change, the interleave bound, denoted by IB(σ, P), is defined identically
to Wilber’s first lower bound. The important difference between the interleave lower bound
and Wilber’s first lower bound is that the lower bound tree for the interleave lower bound
does not have extra nodes in addition to those of the keys of S. This characteristic is helpful
for proving BST algorithms to be O(lg lg n)-competitive as we will discuss in more detail
in Chapter 4. An example of the state of the lower bound tree for the interleave bound is
shown in Figure 3.3. Note how this tree compares with the lower bound tree of Wilber’s
first lower bound that is shown in Figure 3.2.

Note that Wilber’s first lower bound and the interleave lower bound are both valid
for any lower bound tree, and the optimal lower bound tree for a specific sequence can
be found in polynomial time using dynamic programming. Also, these two bounds are
superficially very similar, and we can show that they are the same, up to a constant factor,
if the optimal lower bound tree is used for both of them. We show this by proving the

18

13

1410

11

12

151

2

3

4

5 7

6

8

9

Figure 3.3: The state of a lower bound tree P for the interleave bound. Note that P
contains the set S = {1, . . . , 15}, exactly the same set of elements that is stored in T .

following two theorems.

Theorem 1. For every query sequence σ and n-node lower bound tree P for the interleave
bound, there exists a corresponding lower bound tree P ′ for Wilber’s first lower bound
containing 2n− 1 nodes such that Wil1(σ, P ′) ≥ IB(σ, P).

Proof. Create a corresponding reference tree P ′ that is initially identical to P . Then,
redefine all of the keys of P ′ so that each key x ∈ P ′ changes to x + 1

2
. Next, insert the

elements {1, . . . , n} into P ′ using the standard BST insert algorithm. Finally, delete the
node n + 1

2
in P ′ so that each of the internal nodes of P ′ has two children, and the set S is

completely stored at the leaves of P .

Now, execute the query sequence σ for both lower bound trees. Consider a switch in
P at an arbitrary node x that has its preferred child changed from the left to the right.
Notice that x was previously set to prefer left when a query σj was executed in x’s left
child’s subtree, and that the internal node x′ = x + 1

2
also preferred left after σj was

executed. Further, the next query σj′ that causes a switch at x in P is to a member of
x’s right child’s subtree in P . It follows that x′ also prefers to the right in P ′ after σj′ is
executed. Therefore, at least one switch has been performed at x′ during this time interval.
A similar argument applies to all nodes in P and to right-to-left switches as well so that
Wil1(σ, P ′) ≥ IB(σ, P).

Theorem 2. For every query sequence σ and lower bound tree P ′ for Wilber’s first lower
bound with 2n− 1 nodes, there exists a corresponding n-node lower bound tree P for the
interleave bound such that 3 IB(σ, P) + 5m + n ≥ Wil1(σ, P ′).

19

Proof. Our first step is to create a new bound IB′(σ, P) that is identical to IB(σ, P) except
that a query to an internal node x sets all of x’s children to be unpreferred. The value of
IB′(σ, P) is defined to be the number of times an unpreferred child changes to a preferred
child (recall that at the beginning all edges are defined to be preferred edges). Clearly,
IB′(σ, P) ≤ IB(σ, P)+m, so it suffices to show that 3 IB′(σ, P)+2m+n ≥ Wil1(σ, P ′)
for some P .

To construct P , given an arbitrary reference tree P ′ for Wilber’s first lower bound, we
store every key x′ of P ′ except n in its successor in P ′, and we delete all of the leaves
except n.

To show that 3 IB′(σ, P)+2m+n ≥ Wil1(σ, P ′), we will define a potential function on
P ′ that is equal to the negative of the number of right preferred edges in P ′ that correspond
to unpreferred edges in P (we will call such an edge a “bogus right edge”). The amortized
number of switches in P ′ is equal to the number of actual switches in P ′, plus the change
in potential.

Let us consider the amortized number of switches resulting from an arbitrary query
to node v in P ′. Notice that v’s access path in P ′ is the same as its access path in P ,
except that the path in P ′ may consist of an additional left inner path (as defined in [62]),
consisting of only right edges, whose shallowest node is the left child of v′ = v + 1

2
. (This

definition of v′ assumes that the internal nodes of P ′ represent the midpoints between the
members of S.)

We pay for the switch (and possible destruction of a bogus right edge) at v′ in P with
our extra allotment of two switches per query, and we note that the amortized number of
switches that occur in this left inner path is zero because each such switch creates a bogus
right edge (this is true because if a node u on the corresponding path in P prefers to the
right, then the last query in u’s subtree was in its right child’s subtree, which implies that
u′ = u + 1

2
should prefer to the right in P ′ as well).

Therefore, we restrict our attention to the switches that occur on the access path to v in
P and to v′ = v+ 1

2
in P ′. Our goal will be to show that each switch in P is responsible for

paying for at most three amortized switches in P ′. To show this, we consider the following
three exhaustive cases for switches that occur at an arbitrary node x′ = x + 1

2
in P ′.

First, suppose there is a switch at both x and x′. In this case the switch at x pays for the
switch at x′, and we are done because there is no change in potential due to these switches.

Second, suppose there is a switch at x but not at x′. In this case, there may be an
amortized switch in P ′ due to the destruction of a bogus right edge, and this is paid for by
the switch at x.

Third, suppose there is a switch at x′ but not at x. In this case, note that the switch at

20

x′ must be right-to-left because if x prefers right before this query, x′ must also. In this
case, we charge the switch at x′ (and the amortized switch resulting from the destruction
of the bogus right edge) to the deepest node u that is switched in P on the path from x to
x’s right parent. Because u is required to be on this path, it is only charged for one switch
of a bogus right edge. Further, u must exist because every bogus right edge is created by a
query to its right parent p in P , which creates an unpreferred child edge to p’s left. While
the edge remains bogus, it cannot be traversed in P , and every query that does not alter this
edge’s status as a bogus right edge leaves an unpreferred edge to the right of the deepest
member of p’s left inner path that is traversed during that query.

Note that in the above cases, no switch in P is charged for more than three amortized
switches in P ′, and the potential function’s minimum value is no less than −n, so the
theorem follows.

In Section 3.5.1, after we define and prove the MIBS lower bound, we will show that
the MIBS lower bound is at least as large as Wilber’s first lower bound. In addition to
showing the strength of the MIBS lower bound, this essentially serves as an alternative
proof to Wilber’s original proof of his first bound. Together with Theorem 1, this proves
that the interleave bound is also a valid lower bound, and this serves as an alternative proof
to the original proof of the interleave bound.

As stated above, the interleave lower bound, and by extension, its original version,
Wilber’s first lower bound, are useful for proving a variety of BST algorithms to be
O(lg lg n)-competitive. This raises the question of whether it might be possible to prove an
algorithm is o(lg lg n)-competitive using a similar technique. One difficulty of achieving
such a result is that the interleave lower bound is loose by a factor of Ω(lg lg n) for any spe-
cific lower bound tree. To see this, note that any lower bound tree for the interleave bound
must have at least one path of length lg n, and accessing only nodes on this path causes
no switches, while random access to this path requires Ω(lg lg n) rotations per operation.
By Theorem 2, every lower bound tree for Wilber’s first lower bound has sequences for
which the lower bound is also loose by a factor of Ω(lg lg n). It is not immediately clear
whether the optimal tree for any specific access sequence yields a bound that can be loose
by a factor of ω(1) though this seems likely.

3.2 The Dynamic Interleave Lower Bound

There are a couple of shortcomings of the original interleave lower bound. First, it is a
static lower bound because it does not handle insertion or deletion, so it is not clear how
the lower bound could handle competitiveness in a dynamic setting. Second, as discussed

21

in Section 3.1, for every fixed lower bound tree, the interleave bound is loose by a factor of
Ω(lg lg n) for some access sequences. This is troubling because it suggests that it will be
difficult to prove a Tango-like BST to be o(lg lg n)-competitive using a fixed lower bound
tree. This motivates the idea of allowing rotations on the lower bound tree, which was
explored by Wang, Sleator, and me in [61].

To summarize the technique here, we can create a version of the interleave lower bound
that allows rotations as follows. A particular instance of the dynamic interleave lower
bound can be described by an initial lower bound tree P along with a sequence of rota-
tions to be performed on P at the end of each access. These rotations can depend on the
access sequence if needed. As in the static interleave lower bound, each internal node has
no unpreferred children at the beginning of the access sequence and all of its children are
preferred. During a sequence of BST operations, after each access, every node on the ac-
cess path except the root is defined to be a preferred child, and every sibling of some node
on the access path is defined to be an unpreferred child. As for the interleave bound, we
increase the lower bound by one for every unpreferred child that becomes preferred. After
the access path is transformed into a preferred path, the lower bound tree is potentially
modified via rotations. For each node x that is one of the two nodes that are involved in
such a rotation, both of x’s children are set to be preferred in the lower bound tree with no
increase to the lower bound. Note that for the purpose of creating a Tango-like algorithm,
we would maintain an invariant that every internal node in the lower bound tree has at
most one preferred child with the appropriate adjustment to the lower bound.

As suggested above, there are two benefits to this bound. First, as described in [61],
we can keep the lower bound tree P balanced while inserting and deleting elements
into and from P . This requires only a constant number of rotations per dynamic oper-
ation, so it does not greatly affect our lower bound, and allows us to achieve O(lg lg n)-
competitiveness in a dynamic setting using Tango, multi-splay trees, or any other algo-
rithm using the same approach to BST competitiveness. To fully support competitiveness
in a dynamic setting, we also need to modify Wilber’s BST model to allow insertions and
deletions. This detail is described in [61].

Second, the ability to rotate the lower bound tree suggests an approach to improve
upon the current-best competitive factor of O(lg lg n) for a BST. Note that the factor of
O(lg lg n) for Tango and multi-splay trees stems from the fact that each switch of a child
from unpreferred to preferred corresponds to a constant number of BST operations in a
BST of size O(lg n). Intuitively, if many queries visit the same preferred path of length
Ω(lg n), then the lower bound tree for the dynamic interleave bound could perform rota-
tions on this path to decrease its length so that each traversal of this preferred path would
have a smaller running time bound. Although this idea for improving the best known

22

competitive ratio for a BST algorithm shows some promise, it seems to remain difficult to
achieve any provable results.

To get a sense of the difficulty, suppose we wanted to prove that splay trees were
dynamically optimal by using the splay tree itself as the lower bound tree. During each
access, we would create a solid path to the accessed node in the splay tree with unpreferred
edges to the siblings of nodes on the access path. However, when we splayed the accessed
node to the root, we would destroy all of the unpreferred edges that we just created before
we could switch them to preferred and count them towards the lower bound. This prevents
us from showing a lower bound of more than a constant per operation for any access
sequence using a simple application of the dynamic interleave lower bound.

One might think that this problem can be circumvented by performing path compres-
sions without rotating every edge on the access path so that many unpreferred edges remain
after the rotations for each access are executed (to conform to the BST model, we could
rotate these edges and then unrotate them without affecting the lower bound). However,
the above problem of many unpreferred edges being destroyed still occurs when a few
repeated accesses are executed on the same node. Thus, new ideas are needed for this
approach to proving dynamic optimality to work.

3.3 Wilber’s Second Lower Bound

Although Wilber’s first lower bound has so far proved to be the more useful bound in
terms of developing competitive BST algorithms, it is worth noting that Wilber introduced
a second lower bound [62], which we briefly describe below.

For an access sequence σ = σ1 · · ·σm consisting only of queries, we define the Wilber
number of each query σj as follows (See Figure 3.4 first for a more intuitive visual defini-
tion of the Wilber number). First, we give the following two definitions:

right(j1, j2) = {j′ ∈ {j1 + 1, . . . , j2 − 1} | σj′ ≥ σj2},
rightRecords(j) = {j′ ∈ right(0, j) | σj′ < min

j′′∈right(j′,j)
σj′′}.

Then, we define left(j) and leftRecords(j) analogously, and following that we define
records(j) = rightRecords(j) ∪ leftRecords(j). Figure 3.4(a) shows a visual depiction
of these sets of records for one access. Second, define query j′ to be a crossing access for
query j if one of the following two conditions holds:

j′ ∈ leftRecords(j) ∧ succrecords(j)(j
′) ∈ rightRecords(j)

j′ ∈ rightRecords(j) ∧ succrecords(j)(j
′) ∈ leftRecords(j).

23

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

1
5

11

(a) An example of the progression of “records” on
each side of a the query σ13. The right path cor-
responds to the set rightRecords(13), and the left
path corresponds to the set leftRecords(13). The
queries that are filled in with light gray are the mem-
bers of records(13).

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
1
5

11

(b) The connections between each member of the
set records(13) and its successor in the same set.
Note that the crossing accesses for query σ13 are the
members of records(13) whose successor crosses
to the other side of the dotted line.

Figure 3.4: A visualization of the definition of Wilber’s second lower bound. Subfig-
ures (a) and (b) show how to compute the Wilber number for a particular access, in this
case σ13.

Figure 3.4(b) shows a visualization of these crossing accesses as compared to the records
shown in Figure 3.4(a). The Wilber number, Wil2(σ, j), of query σj is defined to be the
number of crossing accesses for query j, and Wilber’s second lower bound is defined as
Wil2(σ) =

∑m
j=1 Wil2(σ, j).

An alternative way of understanding Wilber’s second lower bound is that it is the num-
ber of “corners” (i.e., a right child followed by a left child or vice versa) that are en-
countered on the access path of each queried node during the execution of the most basic
“rotate-to-root” BST algorithm that simply rotates each queried element repeatedly until
it becomes the root of the tree. To see this, note that rotate-to-root is equivalent to a treap
for which the priorities are set according to how recently a node has been accessed, and
each node on an access path corresponds to a record using the above definition of a record
while each corner corresponds a new record on a different side of the accessed node (i.e.,
a crossing access).

Although Wilber’s second lower bound does not currently have any practical use, one

24

advantage that it has over Wilber’s first lower bound is that it is not known that Wil2(σ)
is loose by more than a constant factor for any query sequence σ. On the other hand,
however, it is also not known whether Wil2(σ) can ever be smaller than Wil1(σ, P) by
more than a constant factor for any σ and lower bound tree P for Wilber’s first bound.

3.4 The Independent Rectangle Lower Bound

Demaine et al. devised a lower bound that was at least within a constant factor of both
Wilber’s first lower bound and Wilber’s second lower bound [20, 36]. This lower bound
was developed independently of our generalization of Wilber’s bounds [26], and it is not
clear what the relationship is between them, though it seems likely that they are asymptot-
ically the same on all inputs.

In their lower bound, Demaine et al. use a slightly different definition for the BST
model from that which we are using in this thesis. They require all searches to start from
the root and follow the pointers of the BST, and charge a BST algorithm for every node it
touches while allowing arbitrary restructuring on all touched nodes. It is easy to see that
this definition is computationally equivalent to Wilber’s definition, as defined in Chapter 2,
to within a constant factor because any BST of k nodes can be transformed into any other
tree of k nodes using just 2k − 6 rotations [54]. Even though Wilber’s model does not
require the rotated nodes to form a connected set, it is easy to see that such “disconnected
rotations” can be performed lazily at no additional cost [44].

Essentially, the lower bound of Demaine et al. is defined as follows. Let each pair
of queries (i, j) to distinct elements form an axis-aligned rectangle in a two-dimensional
representation of an access sequence, such as the one shown in Figure 3.1. These rectan-
gles are identically specified to those of the MIBS lower bound defined in Section 3.5 and
shown in Figure 3.5(a), with the exception that there is no divider in the rectangles used
for the independent rectangle lower bound.

Demaine et al. define two rectangles to be dependent if one of the rectangles has a
corner inside of the other or one of the points defining the box is on the border of the other,
and they define the rectangles to be independent otherwise. They show that if R is a set of
independent rectangles for a query sequence σ, then the cost of the optimal BST algorithm
for executing σ in the “node-touch” definition of the BST model is at least |R|/2 + m.

It is worth noting that Harmon’s thesis contains another type of lower bound called
a cut bound, which was also independently developed using the node-touch model. The
definition of this bound is more complicated, but it is equivalent [36] to the independent
rectangle bound of [20, 36] that is described above.

25

3.5 The MIBS Lower Bound

In this section, we introduce a lower bound called the independent box-set lower bound
that is similar to the independent rectangle lower bound defined in [20]. As stated in
Section 3.4, is it not currently known whether either bound is always at least within a
constant factor of the other, and the two bounds apply to different definitions of the BST
model. However, both bounds are always at least as large as Wilber’s second lower bound,
and it is also unknown whether Wilber’s second lower bound is within a constant factor
of the cost of the optimal BST, so it could be the case that all three bounds are within a
constant factor of OPT(σ) for all sequences σ.

Essentially, the independent box-set lower bound is a simple, geometric framework
that facilitates proofs that certain rotations must be performed by any BST algorithm for
serving the specified sequence. Thus, the ultimate goal is to show that some BST algorithm
“must” perform all of its rotations, or at least a constant fraction of them, so that the
algorithm will be proved to be dynamically optimal. Although such a result has not been
achieved, we hope that this framework will be helpful in understanding near-optimal BST
algorithms in the future.

The description of the independent box-set bound here is slightly modified from the
original presentation of the bound in [26], but the difference in the definitions is superficial.
Using a two-dimensional representation of an access sequence, such as that which appears
in Figure 3.1, we define a box to be an axis-aligned rectangle that has two of its corners
located at points corresponding to two queries to distinct elements. Additionally, each box
has a vertical divider located in the box’s horizontal range.1 The horizontal coordinate
of this divider is restricted to be at the midpoint between two successive keys. Formally,
given two queries σi and σj with i < j, box (i, j, z) is valid exactly when σi 6= σj and
z is a midpoint between two integers such that min{σi, σj} < z < max{σi, σj} (for a
general keyset, the constraints on z could be defined differently to ensure that the divider
is distinct from the keyset). To give an example, if σ3 = 4 and σ5 = 8 then (3, 5, 6.5) is a
valid box. Another example of a valid box is shown in Figure 3.5(a). We define B(σ) to
be the set of valid boxes for query sequence σ.

If σi < σj then box (i, j, z) is directed left-to-right, else it is directed right-to-left.
Note that the box in Figure 3.5(a) is directed left-to-right. We declare that two boxes
(i, j, z) and (i′, j′, z′) conflict if both boxes have the same direction, the boxes intersect,
and their intersection contains part or all of both dividers. Examples of conflicting and
non-conflicting boxes are shown in Figures 3.5(b) and 3.5(c).

1As noted in [26], the divider could traverse any path that moves monotonically across the keyspace from
the first query of the box to the second. It is unknown whether this is helpful on any sequences.

26

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

(a) The valid box (4, 14, 8.5) for the depicted ac-
cess sequence. This box is directed left-to-right.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

(b) Two boxes that conflict because both are left-to-
right and their intersection contains both dividers.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

(c) The black and blue boxes do not conflict be-
cause they are in different directions, and the black
and green boxes do not conflict because their inter-
section does not contain both dividers.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

(d) An example of how to pack many independent
boxes onto the scatter plot of an access sequence.
This set is not maximal because additional boxes
could be added without creating conflicts.

Figure 3.5: An isolated box is shown in (a), and a conflicting box is shown in (b). Ex-
amples of intersecting but nonconflicting boxes are shown in (c), and (d) shows how an
algorithm might choose many independent boxes to achieve a good lower bound (the de-
picted set of independent boxes is not maximal).

27

It is straightforward to define the independent box-set lower bound once we have de-
fined when boxes conflict. The size of any set of independent boxes, such as that which
is shown in Figure 3.5(d), is a lower bound on the cost that a BST algorithm must pay to
execute σ. Formally, we have the following theorem:

Theorem 3. For the query sequence σ = σ1 · · ·σm, let B ⊆ B(σ) be a set of valid, non-
conflicting boxes. Any BST algorithm for executing the queries in σ must perform at least
|B| rotations.

Proof. It suffices to provide a one-to-one mapping f : B → {r1, . . . , rt} where r1 · · · rt is
the sequence of rotations performed by an arbitrary BST algorithm for executing sequence
σ. We map each box (i, j, z) ∈ B to the first rotation r that occurs after query σi such that
the LCA of σi and σj moves from one side of z to the other (See Figure 3.6).

It suffices to show that no two boxes map to the same rotation. Clearly, if two boxes
do not overlap in time, they cannot be mapped to the same rotation. Moreover, if two
boxes are oriented in different directions, they cannot map to the same rotation because a
rotation of a left child over its parent can only move an LCA to the left and a rotation of a
right child over its parent can only move an LCA to the right. Finally, if rotation r changes
the LCA of box (i, j, z), then any box (i′, j′, z′) whose divider is outside the horizontal
interval of σi and σj will not have its corresponding LCA changed by rotation r, so box
(i′, j′, z′) cannot be mapped to r.

Because we typically want to show lower bounds that are as large as possible, The-
orem 3 motivates the question of finding a maximum independent box-set for a specified
sequence σ. We will use MIBS(σ) to refer to the maximum size of an independent set of
boxes for access sequence σ. Note that here and elsewhere, we omit mention of the set
S that is associated with MIBS(σ) because even though the set of dividers depends on S,
this dependence is only for our convenience in later sections, and it is straightforward to
remove this dependence. For the purposes of defining and computing the optimal MIBS
bound, we only need to ensure that there is at least one potential divider between each pair
of successive keys that are accessed, and this can be determined directly from σ without
knowledge of the full set of keys S.

Finding the value of MIBS(σ) in polynomial time is not straightforward, and we do
not currently know how to achieve even a constant factor approximation to MIBS(σ),
though as we will see, an O(lg lg n)-approximation follows from the fact that there are
BST algorithms that provably achieve a running time that is within a factor O(lg lg n) of
optimal. Nevertheless, as suggested by Anupam Gupta, it turns out that we can solve for
a maximum independent box-set if we allow fractional solutions and use linear program-
ming [35]. In short, the relaxation of the MIBS lower bound states that we can choose

28

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

associated rotation

Figure 3.6: The blue path inside box (3, 6, 9.5) traces the location of the LCA of 8 and 12
(i.e., σ3 and σ6) for some unspecified BST algorithm for serving the depicted sequence.
Note that the location of the LCA of 8 and 12 only changes during a rotation of the current
LCA with another node from the interval [8, 12]. The red segment of the path is the rotation
that is associated with this box in the proofs of Theorems 3 and 4. Note that the red rotation
is between two nodes that are members of the interval [8, 12], so it cannot cause the LCA
of the green box to change to the other side of the green divider, one way or the other.
Therefore, the red rotation cannot be mapped to the green box.

29

each valid box with a fractional weight, and there is no conflict as long as the weighted
sum of the boxes conflicting with each box is at most 1. One can imagine that it might be
possible to prove that some sort of rounding scheme for an optimal fractional MIBS solu-
tion might produce an integral MIBS solution that was provably close to the fractional one.
However, it turns out that this is not necessary, at least for the purpose of efficiently com-
puting a lower bound because not only is the optimal fractional MIBS solution solvable in
polynomial time, it is also a valid lower bound on OPT(σ).

To see this, we formally state the fractional MIBS lower bound as the following linear
program. Let w(b) : B(σ) → [0, 1], and for b, b′ ∈ B(σ) let

c(b, b′) : B(σ)2 → {0, 1} (3.1)

be a function such that c(b, b′) = 1 exactly when b and b′ conflict. (Note that c(b, b) = 1.)
We seek to maximize ∑

b∈B(σ)

w(b) (3.2)

subject to the constraints,

∀b′ ∈ B(σ),
∑

b∈B(σ)

c(b, b′)w(b) ≤ 1. (3.3)

Note that if the weights w(b) were constrained to be from {0, 1} instead of [0, 1], this
definition would be equivalent to the integral version of the MIBS lower bound proved in
Theorem 3.

We can show that the objective function in Equation 3.2 is a lower bound on the cost
of OPT(σ) by proving the following theorem:

Theorem 4. Let w be a solution to the optimization problem given in Equations 3.2
and 3.3. Any BST algorithm for σ must perform at least

∑
b∈B(σ) w(b) rotations.

Proof. To prove that the sum of weights w(b) is a lower bound on OPT(σ), we will create
a many-to-one mapping from valid boxes to rotations of an arbitrary BST algorithm, and
show that the sum of the weights of the boxes that are mapped to each rotation is at most
one. We map each box (i, j, z), as in the proof of Theorem 3, to the first rotation after time
i that switches the LCA of σi and σj from one side of z to the other.

Now, consider the set of boxes Br that are mapped to an arbitrary rotation r of the BST
algorithm. We know that each box in Br overlaps the time at which r is executed because
the LCA of each member (i, j, z) ∈ Br must switch from one side of z to the other before

30

query σj is completed. Further, we know that each box has the same direction because
the change in LCA during this rotation is identical for all such boxes, so the LCA of the
horizontal interval of each box must have started on the same side of its divider as all of the
others. Finally, for each (i, j, z) ∈ Br, if we choose another box (i′, j′, z′) ∈ Br, we know
that z′ ∈ [min{σi, σj}, max{σi, σj}], or else the LCA of box (i, j, z) would be unchanged
by rotation r. Therefore, boxes (i, j, z) and (i′, j′, z′) conflict, and by Equation 3.3 the sum
of the weights of the boxes of Br is at most one.

The MIBS lower bound is less structured than other lower bounds, so it is not clear how
it can be used to prove a good competitive ratio for some BST algorithm, especially when
it is compared to the interleave bound in this respect. Nevertheless, one possible approach
to proving dynamic optimality would be to map each rotation r1 · · · rt of a particular BST
algorithm to a box, and show that there are at least αt independent boxes for some constant
α ≤ 1 from among the set of boxes chosen by r1 · · · rt.

Also, what the MIBS bound lacks in specificity, it makes up for in its flexibility. The
following sections show that Wilber’s lower bounds can be stated as valid integral solutions
to the MIBS bound. Therefore, both the optimal integral MIBS bound and the optimal
fractional MIBS bound are at least as good as these bounds.

3.5.1 Proving Wilber’s Lower Bounds with the MIBS Lower Bound

To show the flexibility of the independent box-set framework, we show that Wilber’s first
and second lower bounds are valid because they are never more than MIBS(σ) for any
sequence σ. To show this, we prove both bounds using the independent box-set framework
as follows.

Theorem 5. For an arbitrary query sequence σ and lower bound tree P for Wilber’s first
lower bound, MIBS(σ) ≥ Wil1(σ, P).

Proof. For each switch of an unpreferred child v to a preferred child, create the box (i, j, z)
where i is the time index of the previous access in v’s sibling’s subtree, j is the time index
of the current access, and z is equal to the value of v’s parent p. Note that any other box
using p as its divider does not overlap box (i, j, z) in time, and any divider outside of p’s
subtree does not overlap (i, j, z). Applying this logic over all boxes from switches at the
bottom of P to the top shows that no two boxes defined in this way conflict. An example
of the boxes used in this proof is shown in Figure 3.7.

31

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) The boxes that use 8.5 as the divider.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b) The boxes whose divider is a depth-1 node.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

1
4

1
5

1
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c) The boxes whose divider is a depth-2 node.

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
1
3

1
4

1
5

1
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(d) The boxes whose divider is a depth-3 node.

Figure 3.7: The boxes that are included in the proof that MIBS(σ) ≥ Wil1(σ, P). Note
that no box overlaps a divider from a shallower level in P .

32

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

Figure 3.8: All boxes created for query σ13 in the proof that MIBS(σ) ≥ Wil2(σ).

Theorem 6. For an arbitrary query sequence σ, it is true that MIBS(σ) ≥ Wil2(σ).

Proof. For every query σj , we create the following boxes. For each crossing access σj′ of
σj , we include the box (j′, succrecords(j)(j

′), σj + δ), where δ = 0.5 if the box is directed
left-to-right and δ = −0.5 if the box is directed right-to-left. An example of all such boxes
for a single access is shown in Figure 3.8.

To see that no two boxes conflict, suppose σj is an arbitrary query, and σj′ is an arbi-
trary query occurring after σj . Additionally, suppose that σj′ > σj . Note that any right-
to-left box (i′′, j′′, z′′) formed from the crossing accesses of query σj′ does not overlap the
vertical line through σj−0.5 if i′′ < j because otherwise j would be in leftRecords(j′), so
such boxes do not conflict with the right-to-left boxes formed by the crossing accesses of
σj . Further, note that any left-to-right box (i′′, j′′, z′′) formed from the crossing accesses of

33

query σj′ does not overlap the vertical line through σj +0.5 if i′′ < j because any member
of leftRecords(j′) occurring at time i′′ < j must be at least σj +1. An analogous argument
applies when σj′ < σj , and the case when σj′ = σj is trivial. Applying this reasoning to
every query proves the theorem.

3.6 The BST Model and the Partial-Sums Problem

One question that is important to ask whenever we are studying any model of computation
is how powerful it is. Although the BST model has many nice properties, such as support-
ing both good adaptive performance and competitive analysis, it is not immediately clear
whether the conditions imposed on a BST algorithm are overly restrictive. One way to
show that this is not the case is to find a reasonably general problem, and prove that its
complexity on any input is identical to the cost of the optimal BST algorithm on a corre-
sponding sequence. In this section, we do not achieve this result, but we do make some
progress that suggests that this might be true. In particular, we show that the MIBS lower
bound, which seems likely to be tight for the BST model, is also a valid lower bound for
the partial-sums problem with a few constraints. The importance of this is that it sug-
gests that the BST model may not only describe a class of data structures, but also fully
encapsulate all possible solutions to the partial-sums problem.

The partial-sums problem is the problem of maintaining an array of values x1, . . . , xn

with two types of operations allowed. The operation update(i, v) changes xi’s value to
v, and the operation sum(i) returns

∑i
j=1 xj using the current value of each xj (actually,

here we allow the “add” operation to be any associative and commutative operator). To
formalize this, let x(i, j) represent the value of the ith array cell, for all i ∈ {1, . . . , n},
after the jth operation has been executed. Let x(i, 0) = 0 for all i. The input to the partial-
sums problem is a sequence of operations σ = σ1 · · ·σm where each σj is either of the
form update(i, v) or sum(i). We define x(i, j) = v if σj is update(i, v); otherwise, we let
x(i, j) = x(i, j − 1). The output is a sequence of values y1 · · · ym, one for each operation,
such that if σj is an update operation, then yj = 0, and if σj is sum(i), then the output is∑i

i′=1 x(i′, j).
The partial-sums problem clearly can be solved by any BST algorithm that stores the

keys {1, . . . , n} in its tree T , stores each array value x(i, j) in the node i ∈ T at time j,
and maintains the sum of the array values that appear in i’s subtree in another field of i.
To see this, note that if we rotate i to the root, it costs only O(1) additional time to execute
an update(i, v) or sum(i) operation using only only add instructions. Thus, it is clear that
the optimum BST provides an upper bound on the cost to execute the sequence σ. On
the other hand, Pǎtraşcu and Demaine [50, 51] showed that in the worst case, one can do

34

no better than using a BST. They proved a bound of Ω(lg n) for the partial-sums problem
by showing that there were instances of the partial-sums problem that required Ω(lg n)
memory probes to solve the instance. Pǎtraşcu further suggested that Wilber’s first lower
bound, with the time index representing the keys and array index representing time, was
a lower bound on each instance of the partial-sums problem [49]. (Although this lower
bound is instance-specific, it still requires randomization over the update values.)

In this section, we take the first steps toward proving something even stronger, that
MIBS(σ) is a valid lower bound for the partial-sums problem if the array indices are
mapped to keys in a BST. Showing that the MIBS bound is a valid lower bound for the
partial-sums problem provides strong evidence that each instance of the partial-sums prob-
lem can be solved no faster than how it is solved using a BST because the MIBS lower
bound is an excellent candidate for a tight lower bound in the BST model.

There are a few caveats worth stressing about this new result, however. First, we will be
using a weaker model of computation than the cell-probe model that was used in [50, 51].
In particular, we will be using the set-sum model of computation that charges only for
instructions of the form add(c1, c2) rather than charging for all memory accesses as in the
cell-probe model. Aside from only charging for arithmetic operations, the set-sum model
places constraints on how an algorithm can compute the output vj of a sum(i) operation.
Define the set-sum sum(S, j) to be

∑
i=S x(i, j). We define a memory cell c to store the

set-sum sum(S, j) exactly when one of the following two conditions holds:

• Cell c stores sum(S, j − 1) and σj is not an operation of the form update(i, v) such
that i ∈ S.

• Cell c was written by an instruction add(c1, c2), where cell c1 stores sum(S1, j), cell
c2 stores sum(S2, j), the sets S1 and S2 do not intersect, and the union of S1 and S2

is S.

Informally, the above constraints say that the only arithmetic computation an algorithm
is permitted is the addition of two non-overlapping sums. The use of inverses, double-
counting, or any other fancy arithmetic tricks is forbidden. This model of computa-
tion is significantly weaker than the cell-probe model, which is essentially used to prove
information-theoretic lower bounds on what running times are achievable in [50, 51].

Nevertheless, this model of computation is not as weak as it may superficially appear.
First, it permits augmented BSTs because augmented BSTs always only store valid set-
sums and only need addition to perform updates and rotations. Second, one might argue
that this model is so restrictive that the only algorithms that are permitted essentially are
BSTs, so that proving a lower bound in the set-sum model is trivial when such a bound

35

has already been shown in the BST model. This complaint is refuted by the observation
that the set-sum model allows not just BSTs, but also multiple BSTs. Thus, it is not at
all clear how to transform an arbitrary sequence of set-sum operations into a BST because
this would require, as a special case, the ability to combine two arbitrary BST algorithms
into one BST whose running time was the minimum of the two original BST algorithms,
and even this special case seems difficult. Consider, for example, what would be required
to combine Tango [21] and splay trees [55] into a single BST.

With the above constraints and definitions, we are ready to prove the main theorem for
this section.

Theorem 7. Let σ = σ1 · · ·σm be a sequence of partial-sums operations, and moreover
let B ⊆ B(σ) represent a set of valid, non-conflicting boxes for the MIBS bound that
contains only left-to-right boxes (i, j, z) where σi is an update operation, σj is a sum
operation, and the horizontal coordinate of each point is defined by the array index of
the corresponding instruction. The number of add instructions required to serve σ in the
set-sum model of computation is at least |B|.

Proof. Our approach will be to map each box to an add instruction and show that these op-
erations are distinct. This mapping will be analogous to the mapping of boxes to rotations
that was used in the proofs of Theorems 3 and 4. Box (i, j, z) is mapped to the earliest
instruction c = add(c1, c2) that is executed after time i such that c stores sum(S, i), for
which the following three conditions are true. First, x(σi, i) ∈ S, where σi here represents
the index of the update operation. Second, for some k ∈ [z, σj], where σj here represents
the index of the sum operation, it is true that x(k, i) ∈ S. Third, for no k′ ∈ (σj, n] does
S include x(k′, i′), for any i′.

First, note that this instruction occurs during the time interval (i, j] because at the
latest, such an instruction must be executed prior to the sum operation σj . Therefore,
two boxes that do not intersect in time cannot map to the same instruction. Second, note
that both operands of the instruction to which box (i, j, z) is mapped must contain some
value that is in the horizontal range of the box. Further, note that the one operand of this
instruction must not contain any values to the right of the divider z. Therefore, if boxes
(i, j, z) and (i′, j′, z′) intersect in time and z < σi′ , then the add instruction mapped to
by (i, j, z) contains one operand that does not intersect box (i′, j′, z′)’s horizontal range so
they cannot be mapped to the same instruction. On the other hand, if boxes (i, j, z) and
(i′, j′, z′) intersect in time and z > σj′ , then both of the operands of the instruction that
box (i′, j′, z′) maps to must not contain any value to the right of z, so box (i, j, z) cannot
be mapped to this instruction. These cases suffice to prove the theorem.

36

Note that as for Theorem 3, we can relax the integral version of Theorem 7, and the
fractional bound is also a lower bound on the cost of an algorithm for executing the se-
quence of partial-sums operations. Further, we could include right-to-left boxes in the
bound if the sum operation were required to additionally return the sum of the current
array values from the specified index to the end of the array, so that it returned both a
“prefix-sum” and a “suffix-sum”.

It is also worth noting that if updates and sums were batched together, as in a sequence
of operations that included n update operations followed by n sum operations, such a
sequence could be served in linear time regardless of ordering among the update operations
despite the fact that using a BST to serve some of such sequences would require Ω(n lg n)
time. A way to get around this shortcoming would be to assume such batched updates and
sums could be reordered into a BST-friendly order, such as sorted index order, but this is
pure speculation.

37

38

Chapter 4

Adaptive Binary Search Bounds

In Chapter 3, we showed a variety of lower bounds for the BST model, and in so doing we
gained some insights into what operations must be performed by a BST. In this chapter, we
describe insights from the other direction by covering various upper bounds for search data
structures, mostly BSTs. First, we will discuss competitive data structures, and summarize
work related to developing a competitive BST. Then, we will consider other kinds of adap-
tive bounds that have a more clear intuitive meaning than competitiveness, but that are not
necessarily closely related to competitiveness in any particular model of computation.

4.1 Competitive Search in a BST

The richest adaptive search property that one can prove for a BST, or any other data struc-
ture, is competitiveness. When a family of data structures exhibits the possibility of adapt-
ing to patterns in the query sequence, a natural question to ask is “which is the best”? In
the offline setting, one could use brute force and try out all algorithms for each input to
determine which one was fastest for that particular input. Obviously, such a brute force
solution has two drawbacks. First, this requires an inordinate amount of time. Second,
when a data structure is actually used, it does not have knowledge of the future.

The concept of dynamic optimality solves this by hypothesizing that there exists an
online data structure whose cost on each input is within a constant factor of the best cost
possible, even without the benefit of hindsight or boundless computation. The possible
existence of a dynamically optimal BST algorithm was suggested in [55], when Sleator and
Tarjan posited the Dynamic Optimality Conjecture, which suggested that their extremely
simple splay algorithm was dynamically optimal in the BST model.

39

At first, only special cases of dynamic optimality were proven for splay trees. Even-
tually, after proving the dynamic optimality of splay trees began to seem increasingly
difficult, Demaine et al. suggested proving a small but non-constant competitive fac-
tor for a different BST algorithm called Tango, which they showed to be O(lg lg n)-
competitive [21, 22].

The idea behind Tango can be understood as follows. Wilber’s first lower bound, as
suggested in Chapter 3, can be recast so that the lower bound tree is, itself, a valid BST for
the set of keys S that the query sequence σ accesses (See Figure 3.3). Note that we could
show that this tree was O(1)-competitive if we could show that we only traverse O(1)
preferred edges for every unpreferred edge we traverse. Thus, to prove the trivial statement
that a balanced BST is O(1)-competitive on uniformly random access sequences, we need
only to note that the probability of a switch at each node on the access path is at least a
constant. This avoids the intermediate step of showing that both the information-theoretic
lower bound and the algorithm itself cost Θ(lg n).

Of course, in general, a query sequence containing significant nonrandomness may
traverse at least lg n preferred edges for each unpreferred edge encountered. This suggests
the idea of restructuring long preferred paths so that the BST algorithm does not spend
as much time in between unpreferred edges. Demaine et al. achieved this in Tango by
rotating each preferred path into the shape of a red-black tree. This showed that Tango
was O(lg lg n)-competitive, but had the unfortunate side effect of burdening Tango with
a worst-case performance bound of O(lg n lg lg n), which was tight for cases in which
Ω(lg n) switches were performed. (They would later suggest a modification to Tango to
improve the worst-case running time to O(lg n) in the journal version of the paper [22].)

To remedy this shortcoming of Tango, Wang, Sleator, and I introduced the multi-
splay algorithm [61], which essentially replaced the red-black trees of Tango with splay
trees, creating a data structure that was similar to link-cut trees. This seemingly minor
change enabled multi-splay trees to provably achieve not only O(lg lg n)-competitiveness,
but also O(lg n) amortized running time, the working set bound (which subsumed the
O(lg n) amortized bound), and the deque property, which was not even proven for splay
trees [25, 60]. In addition, it was shown how multi-splay trees could be made dynamic
while still maintaining O(lg lg n)-competitiveness by introducing a dynamic BST model
and modifying the interleave bound to allow rotations on the lower bound tree so that the
lower bound tree’s balance could be restored after insertions and deletions as suggested in
Section 3.2.

Other later work on BST competitiveness all involved other variations on the original
idea in Tango. These data structures include chain-splay trees [32], which are similar
to multi-splay trees and independently discovered; Poketree, a non-BST whose running

40

time is worst-case O(lg n) and O(lg lg n)-competitive to the optimal BST [42]; and the
zipper-tree, a BST that achieves the same guarantee as Poketree [10].

4.2 Other Kinds of Competitiveness

In addition to competitiveness in the classic BST model, there are a couple of notable
variations. Lucas [44] and Munro [46] independently devised an offline BST algorithm,
which we call “Greedy Future” (as named in [20]), that used its knowledge of the future
to rotate the access path into a tree that was heap ordered according to how recently each
node and child-subtree of the access path would be queried. Roughly, the access path was
rotated so that the next node to be accessed would be as shallow as possible in the tree,
and this process was repeated recursively on each side of the next query’s region of the
access path. Remarkably, Demaine et al. showed how to create an online algorithm whose
running time is within a constant factor of this greedy offline algorithm [20].

Intuitively, Greedy Future seems like it should be a good candidate for dynamic opti-
mality even though it still has not been shown that its cost is amortized O(lg n). The reason
this greedy algorithm seems like it should be efficient is that if we have to touch every node
on the access path, why not rotate the path greedily so as to minimize the number of nodes
blocking the search paths of the accesses that will be soonest to occur? Greedy Future
only really seems to be limited by the fact that it can only rotate the access path, because
in general, the exact optimum BST algorithm requires the BST to rotate nodes that form a
tree starting at the root, and Munro gave an example for which this occurs [46]. This last
observation raises an important point, however.

One might hypothesize that the only reason that Greedy Future failed to achieve exact
optimality was because it was forbidden from rotating any node that was off the access
path. However, at least when only considering such greedy algorithms, the fact that it is
restricted to rotating the access path is the only constraint that keeps its cost from being
vastly higher than optimal. To see this, suppose that after each access the BST is restruc-
tured so that depths obey heap order according to the time of next access. This corresponds
to the time-reversal of the rotate-to-root heuristic which is known to suffer Θ(n) cost per
operation for sequential access. Thus, the unconstrained greedy algorithm is worse than
the optimal algorithm by a factor of Θ(n) on some sequences.

Another notable contribution to work on competitive BSTs is the algorithm of Blum
et al. [9]. They introduced an online exponential time algorithm that achieved what they
called dynamic search optimality, which they defined to mean that their algorithm had
a cost that was within a constant factor of optimal if their algorithm was granted free

41

rotations and computation time so that it only had to pay for the length of the search path.
One way of viewing this result is that it showed how to optimally (for a BST, to within
a constant factor, given access to unbounded computing resources) compress a stream of
keys that appeared online, one by one. This was an important result because it showed that
dynamic optimality was achievable, at least in principle, from an information-theoretic
standpoint, by an online algorithm.

4.3 Exploiting Spatial and Temporal Locality

Although competitive bounds are powerful, they say little about what the actual perfor-
mance of the algorithm is, other than proving that it is almost as good as possible. An
alternative approach is to show that an algorithm achieves good performance as a function
of some kind of nonrandomness in the input.

For example, one might want to show that an algorithm performs well when the access
distribution is highly skewed, or whenever recently accessed elements are likely to be
queried during each access. The working set bound characterizes this behavior as follows.
For a query sequence σ = σ1 · · ·σm, define w(x, j) to be, at time j, the number of distinct
elements including x that have been queried since the previous query to x, or n if no such
previous query exists. The working set bound states that the cost to execute the sequence
σ is O(lg w(x, j)) for each query σj .

Splay trees have been shown to satisfy the working set bound using amortization [55],
and layered working-set trees later showed that it was possible to achieve the working
set bound using worst-case analysis in the BST model [11, 12]. Iacono showed that the
working set bound was equivalent to key-independent optimality, which he introduced as
a term for the expected running time of the optimal algorithm on each query sequence σ
if a random permutation was applied to the keys [39]. In a result that was related to the
working set bound for splay trees, Georgakopoulos introduced a variation on the access
lemma for splay trees, which was originally used to prove the working set bound for splay
trees, called the reweighing lemma. This result extended the access lemma for splay trees
to allow the weights of nodes to be reweighed during the course of the access sequence,
even if they had not been accessed [31].

On the other hand, one might want to exploit spatial patterns in the query sequence.
There are two primary types of bounds that capture such performance. First, along with
each query σj , the user of a data structure could specify a finger fj that was believed to
be close to σj , and achieve a running time that varies in accordance with how accurate
these guesses are. This property is called finger search, and the running time bound of

42

a data structure that achieves the finger search bound is O(lg(|fj − σj| + 2)), assuming
the keys are {1, . . . , n} (otherwise, the cost is the logarithm of the difference in ranks).
A variety of data structures achieve the finger search bound in the comparison model,
including [14, 33, 15], and even better finger search bounds can be achieved in the RAM
model [2, 3, 41]. As noted in Section 2.1.2, it is not possible for a BST to achieve the
finger search bound.

Strictly speaking, a finger search data structure does not directly exploit spatial locality
in the access sequence, but it is trivial to use a finger search data structure to achieve this.
For example, it is straightforward for a finger search data structure to achieve the dynamic
finger bound, which states that the cost of each query is O(lg(|σj − σj−1|+ 2)), assuming
j > 1. The dynamic finger bound is achievable in the BST model, and was shown to hold
for splay trees in [19, 18]. Further, [8] showed how to achieve the dynamic finger bound
for any balanced BST by adding a small auxiliary data structure called a hand.

Aside from the dynamic finger bound, there are a couple of additional noteworthy
bounds that BSTs can achieve. It is clear that an optimal BST can operate like a linked
list, and be either scanned sequentially (e.g., σ = 1, 2, . . . , n) or used as a deque using
only O(1) amortized time per operation. Even though the scanning theorem, which states
that splay trees pay O(n) cost to execute the sequence 1, 2, . . . , n, is an extremely simple
theorem, it requires non-trivial proofs [57, 56, 28]. Further, despite intense effort, splay
trees have only been proved to have the deque property to within a factor of α(n) by
Sundar [56], and to within a slightly better factor of α∗(n) by Pettie [47].

4.4 The Unified Bound

Although the working set bound and the dynamic finger bound show that data structures
such as splay trees exhibit good performance whenever locality exists in either time or
space, they do not say anything about performance on sequences that exhibit a hybrid
of both kinds of locality. Consider the sequence σ = 1, n

2
+ 1, 2, n

2
+ 2, . . . , n

2
, n. This

sequence exhibits a great amount of structure, and it is easy to see that there is a BST
algorithm that serves this sequence in O(n) total time, but both the working set bound and
the dynamic finger bound provide a bound of only O(n lg n) for this sequence. This could
be remedied by devising a new dynamic “fingers” bound that allowed two fingers, but the
sequence σ = 1, n

3
+ 1, 2n

3
+ 1, 2, . . . , n would serve as a bad example for a two-finger

dynamic finger bound. Similarly, using any constant number of fingers has an analogous
counterexample.

Motivated by this observation, Iacono introduced the Unified Bound, which was a

43

more robust generalization of the working set bound and the dynamic finger bound than
a simple dynamic finger bound with multiple fingers [37]. Roughly, a data structure that
satisfies the Unified Bound has good performance for sequences of operations in which
most accesses are likely to be near a recently accessed element. More formally, for the
query sequence σ = σ1 · · ·σm, where each query σj is to a member of {1, . . . , n}, the
Unified Bound can be defined as follows:

UB(σ) =
m∑

j=1

min
j′<j

lg(w(σj′ , j) + |σj′ − σj|). (4.1)

To achieve a running time of O(m+UB(σ)), Iacono introduced a data structure called
the Unified Structure. The Unified Structure did not require amortization to achieve this
bound, and the Unified Structure was later improved by Bădoiu et al. to be simpler and
allow insertion and deletion [16]. The Unified Structure was comparison-based but did
not adhere to the BST model. Thus, in addition to leaving open questions regarding how
powerful the BST model was, it was not clear, for example, how to achieve the Unified
Bound while keeping track of aggregate information on subsets of elements as can be done
with augmented BSTs.

These unresolved issues motivated the question of whether a BST algorithm exists that
achieves the Unified Bound. It is worth stressing that achieving this goal contrasts with
the separate pursuit of a provably dynamically optimal BST algorithm in that it is possible
for a data structure that achieves the Unified Bound to have the trivial competitive ratio of
Θ(lg n) to an optimal BST algorithm, as will be shown in Section 4.5.

Conversely, prior to the work in Chapters 5 and 6, even if a dynamically optimal BST
algorithm had been found, it would not have been clear whether it satisfied the Unified
Bound to within any factor that was o(lg n) since dynamic optimality by itself says noth-
ing about actual formulaic bounds, and prior to the work in Chapters 5 and 6, no compet-
itive factor better than O(lg n) was known for the cost of the optimal BST algorithm in
comparison to the Unified Bound.

4.5 Beyond the Unified Bound

Although the Unified Bound is a robust bound that generalizes the dynamic finger bound
by allowing an arbitrary number of fingers with a working set bound penalty for using
stale fingers, there are still counterexamples that show that the optimal BST can execute
some sequences of queries faster than the Unified Bound by a factor of Ω(lg n). Consider

44

Figure 4.1: The state of an O(n)-time BST algorithm for serving a sequence of the form
shown in Equation 4.2.

the following sequence σ∗:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3, (4.2)
...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Essentially, σ∗ is the sequence that results if the keys are laid out on a square grid left-
to-right, top-to-bottom, and then queried top-to-bottom, left-to-right. The Unified Bound
cost for each query is Ω(lg n), but nevertheless a BST can easily handle this sequence at a
total cost of O(n). An example of the state of such a BST is shown in Figure 4.1.

The intuition for how this BST works is the following. First, observe that the access
sequence σ = 1, 2, . . . , 10 can be served by a BST that behaves much like a 10-inch rope
slinking over a nail on a wall. The sequence starts with the first inch of the left end of
the rope hanging over the nail, and each access is executed by sliding the rope one inch
to the left. Second, note that if we attach 10 pins spaced one inch apart on this rope, and
slink a 10-inch piece of string over each of these pins, we can create a physical version
of a BST for serving a sequence of the form in Equation 4.2 at a cost of just O(1) per
operation (assuming “10” is allowed to be an arbitrary positive integer). Each access
typically corresponds to slinking the main rope one inch to the left, and then slinking the
string nearest to the nail one inch to the left over its pin. Occasionally, a “carriage return”
must be executed on the main rope by slinking it all the way to the right for the next access

45

so that the leftmost inch of the main rope returns to being situated directly over the nail.

Notice that this type of sequence still appears to have spatial and temporal locality
even though it causes the Unified Bound to fail to give a tight bound for the optimal BST.
In particular, it is essentially

√
n interleaved sequential access sequences. This suggests

an extension to the Unified Bound that allows the keyspace to be partitioned into a two-
level hierarchy so that the cost of each query is broken down into the cost of finding the
contiguous subset of keys in which a query resides, and then finding the queried element
within that set. This bound could be achieved for a fixed two-level hierarchy, for example,
by storing the minimum and maximum element of each subset in one data structure that
achieves the Unified Bound, such as the cache-splay trees of Chapter 6, and then storing
each subset separately in its own such data structure. Note that the fact that the optimal
BST can achieve such a bound implies that the O(lg lg n)-competitive BSTs have good
performance on sequences for which this two-level Unified Bound has a low value.

Unfortunately, even this two-level hierarchical extension of the Unified Bound is loose
by a factor of Ω(lg n) when compared to the optimal BST cost for some sequences. To
see this, note that the example in Equation 4.2 can be extended one more level as follows.
Number a cube with the elements of S left-to-right, top-to-bottom, front-to-back, and
generate the query sequence by traversing the cube front-to-back, top-to-bottom, left-to-
right. The two-level Unified Bound would specify a cost of O(n lg n) when the optimal
BST could access this sequence in O(n) time. Still, it would constitute significant progress
in BST analysis to prove that a simple BST algorithm like splay trees met such a bound
(indeed, proving that splay trees satisfy even the Unified Bound would be major progress).

However, as a first step, we could prove something simpler. Suppose we write the
elements {1, . . . , n} using an arbitrary base b, and suppose that n = bk for some k. De-
fine the base-b digit-reversal permutation to be the permutation σ(b) = σ1 · · ·σm, where
σd1d2...dk

= dkdk−1 . . . d1. We define the base-b digit reversal conjecture as follows.

Conjecture 1. The cost of splay trees on a base-b digit-reversal permutation is O(n · lg n
lg b

).

Note that Conjecture 1 is a generalization of the scanning theorem (base-n) and the
balance theorem applied to the bit-reversal permutation (base-2). Further, note that Con-
jecture 1 is a special case of the Dynamic Optimality Conjecture of [55] because it is easy
to prove that the optimal BST algorithm for such a sequence costs Θ(n · lg n

lg b
). The upper

bound portion of this claim follows from the extension of the “hanging rope with pins”
algorithm to lg n

lg b
levels (i.e., a nail with a hanging rope with pins with hanging strings with

needles with hanging threads, and so on). The lower bound portion of this claim follows
by using Wilber’s first lower bound with a balanced lower bound tree. The same logic that
Wilber applied to the bit-reversal permutation [62] shows that there are Ω(n) switches of

46

an unpreferred child to a preferred child in every contiguous set of lg b levels of the lower
bound tree, so Ω(n · lg n

lg b
) switches occur in total.

4.6 Adaptive Search in Higher Dimensions

Although this thesis focuses mainly on one-dimensional search and the binary search
tree model, it is worth briefly discussing the pursuit of input-sensitive bounds for higher-
dimensional versions of the search problem.

Ideally one would like to have a model of computation similar to the BST model for
higher-dimensional search. This would facilitate the development of a competitive algo-
rithms for higher-dimensional search. Unfortunately, it seems difficult to define an analog
of the BST model for higher-dimensional search that permits reasonably good bounds.
Without a reasonable computational model from which to choose search algorithms, we
cannot even begin to design an algorithm that is competitive in any meaningful way, even
for two-dimensional search. Also, as dimension increases, the curse of dimensionality
makes it difficult to find high quality algorithms, even when we are only concerned with
the performance in the worst case.

Nevertheless, several adaptive search algorithms have been developed for search in a
higher number of dimensions. Demonstrating the possibility of temporal adaptivity for the
two-dimensional planar point location problem, Iacono [38] and Arya et al. independently
showed how to achieve the entropy bound of O(lg(1/p(x))) for each query to a region x,
where p(x) is the probability that x is queried. Demonstrating the possibility of spatial
adaptivity for two-dimensional search, Iacono and Langerman showed how to achieve a
two-dimensional version of the dynamic finger bound for both planar point location [40]
and a more restrictive version of two-dimensional search that required all queries to be
successful searches to stored points [23]. Finally, Sheehy, Sleator, Woo, and I [24] showed
how to achieve spatial adaptivity for approximate nearest neighbor search in an arbitrary
but fixed dimension by modifying and carefully analyzing the space-filling curve technique
of [43, 17].

47

48

Chapter 5

Skip-Splay Trees

This chapter discusses a new BST algorithm called skip-splay that was originally intro-
duced in [27]. The skip-splay algorithm has three important qualities. First, it conforms
to the BST model and has a running time of O(m lg lg n + UB(σ)), where UB(σ) is Ia-
cono’s Unified Bound, which is defined in Equation 4.1 of Chapter 4. Thus, skip-splay
trees nearly achieve the same robust performance as the Unified Structure [37, 16] for
sequences of queries in which most queries are likely to be near a recent query. Skip-
splay trees achieve this despite being restricted to the BST model, unlike the Unified
Structure, which uses arbitrary pointers and cannot, for example, be used to solve the
partial-sums problem. Second, the skip-splay algorithm is very simple in comparison to
the Unified Structure. The majority of the complexity of skip-splay trees resides in the
analysis of skip-splaying, not in the design of the algorithm itself. Finally, skip-splaying
is almost identical to splaying, which suggests that a similar analysis, in combination with
new insight, might be used to prove that splay trees satisfy the Unified Bound, at least to
within some nontrivial multiplicative factor or additive term. The Unified Conjecture of
Iacono [37] originally suggested that splay trees might achieve the Unified Bound, and
skip-splay trees show that with just a small amount of additional structure added to the
splay algorithm, this conjecture can be proved to within an additive O(lg lg n) term per
query using a significantly simpler proof than the simplest known, but extremely long and
complicated, proof of the less general dynamic finger bound for splay trees [19, 18].

5.1 The Skip-Splay Algorithm

We assume for simplicity that a skip-splay tree T stores all elements of {1, . . . , n} where
n = 22k−1 − 1 for some positive integer k, and that T is initially perfectly balanced. We

49

c1 c2 c√n

√
n elements

g1 g2 g
n

1
4

n1/4 elements

Figure 5.1: A schematic of a skip-splay tree. The size of a splay tree at each level is the
square of the size of a splay tree one level deeper in the skip-splay tree, and the splay trees
at the deepest level have a constant number of nodes. Note that there are

√
n “child trees”

of the top-level splay tree, and there are n1/4 “grandchild trees” of the top level splay tree
that are children of its first child c1. The number of child trees of a tree is roughly equal to
the number of nodes in the tree.

mark as a splay tree root every node whose height (starting at a height of 1 for the leaves)
is 2i for i ∈ {0, . . . , k−1}.1 Note that the set of all of these resulting splay trees partitions
the elements of T . A schematic of what this decomposition of splay trees looks like is
shown in Figure 5.1, and the actual initial structure of a small skip-splay tree is shown in
Figure 5.2.

The following definitions will help us describe the algorithm more clearly:

1. Let Ti be the set of all keys x whose path to the root of T contains at most i root
nodes, including x itself if x is marked as a root.

2. Define level i of T to be the set of keys x whose path to the root contains exactly i
root nodes. We will sometimes use the adjective “level-i” to refer to objects associ-
ated with level i in some way.

3. Let tree(x) be the splay tree that contains x. Also, tree(x) can represent the set of
elements in tree(x).

1If we allow the ratio between the initial heights of successive roots to vary, we can achieve a parameter-
ized running time bound. We use a ratio of 2 for simplicity.

50

Figure 5.2: An example of a four-level skip-splay tree T at the beginning of a query
sequence. The nodes filled with white are the roots of the splay trees that make up T , and
the gray edges are never rotated. If the bottom element of the bold red path is queried,
then each of the boxed nodes is splayed to the root of its splay tree.

We assume that all operations are queries, and we use σ = σ1 · · ·σm to denote the
sequence of queries. To query an element σj , we first perform binary search through T to
locate σj . Then, we splay σj to the root of tree(σj), and transfer the relevant root marker
to σj . If we are at the root of T , we terminate, else we “skip” to σj’s new parent x, and
repeat this process by splaying x to the root of tree(x). The cost of a query is defined to
be the number of nodes on the access path to σj .2 Figure 5.2 shows an example of what a
skip-splay tree looks like at the beginning of an access sequence, and depicts how a query
is performed. Figure 5.3 gives a schematic of what a skip-splay tree looks like before and
after a query.

Intuitively, skip-splaying is nearly competitive to the Unified Bound because if the
currently queried element σj is near to a recently queried element σf , then many of the
elements that are splayed while querying σj are likely to be the same as the ones that were
splayed when σf was queried. Therefore, by the working set bound for splay trees, these
splays should be fairly cheap. The analysis in Section 5.2 formalizes this intuition.

5.2 Analyzing Skip-Splay Trees

Our analysis in this section consists of three lemmas that together prove that skip-splay
trees nearly achieve the Unified Bound with a running time of O(m lg lg n + UB(σ)) on
query sequence σ. The purpose of the first lemma is to decompose the cost of skip-splay

2Note that this algorithm can be coerced into the BST Model defined in [62] by rotating σj to the root
and back down, incurring only a constant factor of additional cost.

51

(a) A skip-splay tree before an access to the red node. To execute the access the solid
red node is splayed to the root of its splay tree, the solid green node is splayed to the
root of its splay tree, and the solid blue node is splayed to the root of its splay tree.

(b) A skip-splay tree after the three splays have been executed to access the red node.
Each node that was splayed is now at the root of its splay tree.

Figure 5.3: A schematic of the skip-splay algorithm. Subfigure (a) shows what a skip-
splay tree looks like before an access to the red node, and (b) shows what the tree looks
like after the access is performed, which consists, in this case, of three splays, one in each
tree that is touched during the access.

52

trees into a series of “local working set costs,” with one cost term for each level in T . The
second lemma is the main step of the analysis, and it uses the first lemma to prove that
skip-splay trees satisfy a bound that is very similar to the Unified Bound, plus an additive
O(lg lg n) term for each query. The third lemma shows that this similar bound is within
a constant factor of the Unified Bound, so our main analytical result, that skip-splay trees
run in O(m lg lg n + UB(σ)) time, follows immediately from these three lemmas.

In the first lemma and in the rest of this chapter, we will use the following custom
notation for describing various parts of T :

1. Let ρk = 1 and for i < k let ρi = 22k−i−1 so that ρi = ρ2
i+1 for i < k − 1. Note that

if element x ∈ T is in level i for i < k, then | tree(x)| = ρi − 1.

2. Let Ri(x), the level-i region of x ∈ T be defined as follows. First, define the offset
δi = δ mod ρi, where δ is an integer that is arbitrary but fixed for all levels of T .
(Our analysis will later make use of the fact that we can choose δ to be whatever we
want.) Then, let Ri(x) = R∗

i (x) ∩ T where

R∗
i (x) =

{⌊
x+δi

ρi

⌋
ρi − δi, . . . ,

⌊
x+δi

ρi

⌋
ρi − δi + ρi − 1

}
.

Note that the level-i regions partition the elements of T , and the level-i + 1 regions
are a refinement of the level-i regions. Two regions R and R′ are said to be adjacent
if they are distinct, occupy the same level, and their union covers a contiguous region
of keyspace. Note that |Ri(x)| = ρi if R∗

i (x) ⊆ T . Also, note that we omit δ from
the notation for a region out of convenience even though, strictly speaking, every
region’s identity depends on δ.

3. Let Ri(x), the level-i region set of x, be the set of level-i regions that are subsets of
Ri−1(x) with R1(x) defined to be the set of all level-1 regions. Note that |Ri(x)| =
ρi if 1 < i < k and R∗

i−1(x) ⊆ T .

Additionally, we give the following definitions of working set numbers and some aux-
iliary definitions that will also be helpful (these definitions assume we are working with a
fixed query sequence σ):

1. Let splays(j) be the set of elements that are splayed during query σj .

2. Let p(x, j) represent the index of the previous access to x before time j. More
formally, assuming such an access exists, let

p(x, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ = x}).

We define p(x, j) = −n if the argument to max is the empty set.

53

3. Let pi(x, j) represent the index of the previous access to region Ri(x). More for-
mally, assuming such an access exists, let

pi(x, j) = max({1, . . . , j − 1} ∩ {j′ | Ri(σj′) = Ri(x)}).

We define pi(x, j) = −ρi if the argument to max is the empty set. Also, let pi(R, j)
be equivalent to pi(x, j) if R = Ri(x).

4. For x ∈ T , let w(x, j) represent the number of elements queried since the previous
access to x. More formally, if p(x, j) > 0 let

w(x, j) =
∣∣∣{σj′ | j′ ∈ {p(x, j), . . . , j − 1}

}∣∣∣.
Else, if p(x, j) ≤ 0 then let w(x, j) = −p(x, j).

5. For x ∈ T , let wi(x, j) represent the number of regions inRi(x) that contain a query
since the previous access to a member of Ri(x). More formally, if pi(x, j) > 0 let

wi(x, j) =
∣∣∣{Ri(σj′) | j′ ∈ {pi(x, j), . . . , j − 1}

}
∩Ri(x)

∣∣∣.
Else, if pi(x, j) ≤ 0 then let wi(x, j) = −pi(x, j). Also, let wi(R, j) be equivalent
to wi(x, j) if R = Ri(x).

In the proof of the first lemma, we will be making use of the reweighing lemma of
Georgakopoulos [31], which is an extension of the access lemma of Sleator and Tarjan [55]
that allows the weights of nodes to be modified at a cost of O(max{0, lg(w′/w)}), where
w′ and w are the new and old weights, respectively. For simplicity, we assume we are
starting with a minimum potential arrangement of each splay tree, so the final potential
can be ignored in our tabulation of the cost of a sequence of accesses. With this in mind,
we proceed to prove the following lemma to make our later analysis easier.

Lemma 1. For a query sequence σ that is served by a skip-splay tree T with k levels, the
amortized cost of query σj , using an arbitrary value of δ to define the regions, is

O

(
k +

k∑
i=1

lg wi(σj, j)

)
. (5.1)

Proof. Our proof will make use of the reweighing lemma of [31], and we maintain an
invariant that at time j the weight of each node x in each level-i splay tree is at least

1
wi(R,j)2

for any level-i region R such that x can be splayed during an access to R. As

54

long as we can maintain these weights and keep the sum of weights in each splay tree
bounded by O(1) without paying more credits than our allotment for each query, we will
have proved the lemma.

We set up our weighing scheme as follows. First, for any level-i node x that can be
splayed as a result of an access to two different level-i region sets, we assign a permanent
weight of 1, and we call such nodes divider nodes. Note that there are at most two such
nodes in any splay tree. Second, besides the divider nodes, the weight of every other node
x is defined to be maxR∈R(x)

1
wi(R,j)2

, whereR(x) is the set of regions R for which a query
to R can result in a splay of x. Note that at most 6 nodes in any splay tree (3 for each of the
2 level-i region sets that overlap a level-i tree) can have a weight of 1

k2 for any k (the count
of 6 does not include the divider nodes for k = 1). Therefore, the sum of the weights in
every splay tree is O(1).

Note that whenever we access a level-i region R, splaying the node we need to splay (if
any), and reweighing the nodes we need to reweigh, costs O(lg wi(R, j)) by construction
because at most one node needs to be splayed and at most three nodes need to have their
weight increased to 1 from a weight of at least 1

wi(R,j)2
.

We note that the splay trees start at their minimum potential configuration so the sum
of the amortized costs of each query, according to Lemma 1, is an upper bound on the
cost of the sequence. Using Lemma 1, we can prove a bound that is similar to the Unified
Bound, but has an additive O(lg lg n) term per query. This bound differs from the Unified
Bound in that the working set portion of the cost consists not of the number of elements
accessed since the previous query to the relevant element, but instead of the number of
queries since the previous query to the relevant element. Before we prove this bound, we
give the following definitions, which will be useful in formally describing the bound and
proving it:

1. Let fj represent the element σj′ such that

j′ = argmin
j′′<j

lg(w(σj′′ , j) + |σj − σj′′|).

To provide some intuition for this definition, fj represents the “finger” for query σj

because it represents the previously-queried element that yields the smallest Unified
Bound value for query σj .

2. For x ∈ T , let t(x, j) represent the number of queries (rather than distinct elements
accessed) since the previous access to x. More formally, let

t(x, j) = |{p(x, j), . . . , j − 1}| = j − p(x, j).

55

Note that the above definition handles the case in which p(x, j) ≤ 0.

3. For x ∈ T , let ti(x, j) represent the number of queries to all members ofRi(x) since
the previous access to a member of Ri(x). More formally, let

ti(x, j) =
∣∣∣{j′ ∈ {max(1, pi(x, j)), . . . , j − 1} | Ri(σj′) ∈ Ri(x)

}∣∣∣,
with an additional −pi(x, j) added if pi(x, j) ≤ 0.

4. For x ∈ T , let t̂i(x, j) represent the number of queries to all members ofRi(x) since
the previous access to x. More formally, let

t̂i(x, j) =
∣∣∣{j′ ∈ {max(1, p(x, j)), . . . , j − 1} | Ri(σj′) ∈ Ri(x)

}∣∣∣,
with an additional ρ2

i added if p(x, j) ≤ 0.

Next, we define UB′(σ), a variant of the Unified Bound, as

UB′(σ) =
m∑

j=1

lg(t(fj, j) + |σj − fj|), (5.2)

and we are ready to proceed with our second lemma.

Lemma 2. Executing the skip-splay algorithm on query sequence σ = σ1 · · ·σm costs
time O(m lg lg n + UB′(σ)).

Proof. In this proof, we will be making use of the bound in Lemma 1 with a randomly
chosen offset δ that is selected uniformly at random from {0, . . . , ρ1 − 1}. We will use
induction on the number of levels i from the top of the tree while analyzing the expected
amortized cost of an arbitrary query σj . In the inductive step, we will prove a bound that is
similar to the one in Lemma 2, and this similar bound will cover the cost associated with
levels i and deeper. Even though we are directly proving the inductive step in expectation
only, because the bound in Lemma 1 is proven for all values of δ, we know that there
exists at least one value of δ such that the bound holds without using randomization if we
amortize over the entire query sequence. Therefore, the worst-case bound on the total cost
of the access sequence in Lemma 2 will follow.

Our inductive hypothesis is that the cost of skip-splaying σj that is associated with
levels i + 1 and deeper according to Lemma 1 is at most

α lg t̂i+1(fj, j) + β lg min(1 + |σj − fj|2, ρi+1) + γ(k − i), (5.3)

56

where k, as before, represents the number of levels of splay trees in T .

We choose levels k and k−1 to be our base cases. The inductive hypothesis is trivially
true for these base cases as long as we choose the constants appropriately. Also, the bound
for the inductive hypothesis at level 1, summed over all queries, is O(m lg lg n+UB′(σ)),
so proving the inductive step suffices to prove the lemma.

To prove the inductive step, we assume Equation 5.3 holds for level i + 1, and use this
assumption to prove the bound for level i. Thus, our goal is to prove the following bound
on the cost that Lemma 1 associates with query σj for levels i and deeper:

α lg t̂i(fj, j) + β lg min(1 + |σj − fj|2, ρi) + γ(k − i + 1). (5.4)

As a starting point for the proof of the inductive step, Lemma 1 in addition to the inductive
hypothesis allows us to prove an upper bound of

lg wi(σj, j) + α lg t̂i+1(fj, j) + β lg min(1 + |σj − fj|2, ρi+1) + γ(k − i), (5.5)

where we have suppressed the constant from Lemma 1 multiplying lg wi(σj, j).

Our proof of the inductive step consists of three cases. First, if |σj − fj|2 ≥ ρi, then
substituting ρi for ρi+1 increases the bound in Equation 5.5 by

lg ρi − lg ρi+1 = lg
(

ρi

ρi+1

)
= lg (ρi+1) = lg

(
ρ

1/2
i

)
≥ lg

(
wi(σj, j)

1/2
)
, (5.6)

which offsets the elimination of the cost lg wi(σj, j) as long as β ≥ 2. The other substitu-
tions only increase the bound, so for this case we have proved the inductive step.

Second, if |σj − fj|2 < ρi and Ri(σj) 6= Ri(fj), then we simply pay lg wi(σ, j) which
is at most lg ρi. However, we note that the probability of this occurring for a random choice
of δ is at most ρ

1/2
i /ρi = ρ

−1/2
i , so the expected cost resulting from this case is at most

ρ
−1/2
i lg ρi, which is at most a constant, so it can be covered by γ.

The third and most difficult case occurs when |σj − fj|2 < ρi and Ri(σj) = Ri(fj),
and we will spend the rest of the proof demonstrating how to prove the inductive step for
this case. First, we note that lg ti(fj, j) ≥ lg wi(fj, j) = lg wi(σj, j), so we can replace
lg wi(σj, j) with lg ti(fj, j) and ρi+1 with ρi in Equation 5.5 without decreasing the bound
and prove a bound of

lg ti(fj, j) + α lg t̂i+1(fj, j) + β lg min(1 + |σj − fj|2, ρi) + γ(k − i). (5.7)

It remains only to eliminate the term lg ti(fj, j) by substituting t̂i(fj, j) for t̂i+1(fj, j)
while incurring an additional amortized cost of at most a constant so that it can be covered
by γ.

57

Observe that if σj satisfies

t̂i+1(fj, j) ≤ t̂i(fj ,j)

ti(fj ,j)
1
2
, (5.8)

then we have an upper bound of

lg ti(fj, j) + α(lg t̂i(fj, j)− lg ti(fj ,j)

2
) + β lg min(1 + |σj − fj|2, ρi) + γ(k − i), (5.9)

which would prove the inductive step if α ≥ 2. However, it is possible that t̂i+1(fj, j) does
not satisfy the bound in Equation 5.8. In this latter case, we pessimistically assume that
we must simply pay the additional lg ti(fj, j). In the rest of the proof, we show that the
amortized cost of such cases is at most a constant per query in this level of the induction,
so that it can be covered by the constant γ.

We first give a few definitions that will make our argument easier. A query σb is
R-local if Ri(σb) = R. Further, if σb is R-local and satisfies Ri(fb) = R as well as
the bound t̂i+1(fb, b) > t̂i(fb, b)/ti(fb, b)

1
2 , then we define σb also to be R-dense. Note

that if σb is R-dense then p(fb, b) > 0. Finally, if σb additionally satisfies the inequality
τ < ti(fb, b) ≤ 2τ , then we define σb also to be R-τ -bad. Notice that all queries that
have an excess cost at level i due to being in this third case and not meeting the bound in
Equation 5.8 are R-τ -bad for some level-i region R and some value of τ (actually a range
of values τ).

Our plan is to show that the ratio of R-τ -bad queries to R-local queries is low enough
that the sum of the excess costs associated with the R-τ -bad queries can be spread over
the R-local queries so that each R-local query is only responsible for a constant amount
of these excess costs. Further, we show that if we partition the R-dense queries by succes-
sively doubling values of τ , with some constant lower cutoff, then each R-local query’s
share of the cost is exponentially decreasing in lg τ , so each R-local query bears only a
constant amortized cost for the excess costs of all of the R-dense queries. Lastly, note that
in our analysis below we are only amortizing over R-local queries for some specific but ar-
bitrary level-i region R, so we can apply the amortization to each level-i region separately
without interference.

To begin, we bound the cost associated with the R-τ -bad queries for arbitrary level-i
region R and constant τ as follows. Let σb be the latest R-τ -bad query. First, note that
the number of R-τ -bad queries σa where a ∈ {p(fb, b) + 1, . . . , b} is at most t̂i(fb, b)/τ
because there are t̂i(fb, b) queries to Ri(fb) in that time period, and immediately prior to
each such σa, the previous τ−1 queries toRi(fb) are all outside of R so that ti(fa, a) ≥ τ .
Second, note that because σb was chosen to be R-τ -bad we have

t̂i+1(fb, b) > t̂i(fb,b)

ti(fb,b)1/2 ≥ t̂i(fb,b)

(2τ)1/2 . (5.10)

58

Thus, the ratio of the number of R-local queries in this time period, t̂i+1(fb, b), to the
number of R-τ -bad queries in this time period is strictly greater than

t̂i(fb,b)

(2τ)1/2 · τ
t̂i(fb,b)

= (τ
2
)1/2. (5.11)

The constraint that ti(fa, a) ≤ 2τ for each of the aforementioned R-τ -bad queries σa

implies that the excess level-i cost of each is at most lg(2τ), so we charge each R-local
query with a time index in {p(fb, b) + 1, . . . , b} a cost of lg(2τ)/(τ

2
)1/2 to account for the

R-τ -bad queries that occur during this time interval. Notice that we can iteratively apply
this reasoning to cover the R-τ -bad queries with time indices that are at most p(fb, b)
without double-charging any R-local query.

To complete the argument, we must account for all R-dense queries, not just the R-
τ -bad ones for some particular value of τ . To do this, for all R-dense queries σj such
that ti(fj, j) ≤ τ0, for some constant τ0, we simply charge a cost of lg τ0 to γ. Next, let
τq = 2qτ0 for integer values q ≥ 0. From above, we have an upper bound on the amortized
cost of the R-τq-bad queries of lg(2q+1τ0)/(2

q−1τ0)
1/2, so the sum over all values of q is

at most a constant and can be covered by γ.

To complete the argument that skip-splay trees run in O(m lg lg n + UB(σ)) time, it
suffices to show that UB′(σ) is at most a constant factor plus a linear term in m greater
than UB(σ). Thus, the following lemma completes the proof that skip-splay trees run in
time O(m lg lg n + UB(σ)).

Lemma 3. For query sequence σ = σ1 . . . σm, the following inequality is true:

m∑
j=1

lg(t(fj, j) + |σj − fj|) ≤ mπ2 lg e
6

+ lg e +
m∑

j=1

2 lg(w(fj, j) + |σj − fj|). (5.12)

Proof. To begin, we give a new definition of a working set number that is a hybrid between
w(fj, j) and t(fj, j) for arbitrary time index j. Let hi(fj, j) be defined as

hi(fj, j) = max(w(fj, j)
2, min(t(fj, j), j − i)).

Note that lg hm(fj, j) = 2 lg w(fj, j) and h−n(fj, j) ≥ t(fj, j) for all j. Also, note that if
p(fj, j) > 0 then lg h−n(fj, j)− lg h0(fj, j) = 0, else if p(fj, j) ≤ 0, which is true for at
most n queries, then

lg h−n(fj, j)− lg h0(fj, j) ≤ lg(n2 + n)− lg(n2) ≤ lg e
n

.

59

Next, note that lg hi(fj, j)− lg hi+1(fj, j) = 0 if i ≥ j or t(fj, j) ≤ j − i− 1, and for
all j we have

lg hi(fj, j)− lg hi+1(fj, j) ≤ lg e
w(fj ,j)2

.

Also, we know that at most w0 queries σj , for w0 ∈ {1, . . . , n}, satisfy the following three
constraints:

i < j

t(fj, j) ≥ j − i

w(fj, j) ≤ w0.

This is true because each such query is to a distinct element since they all use a finger
that was last queried at a time index of at most i (if two of these queries were to the same
element, then the second query could use the first as a finger). If there were w0 + 1 such
queries, the latest such query σ` would have w(f`, j) ≥ w0 + 1 because of the previous w0

queries after time i to distinct elements, a contradiction. Therefore,

m∑
j=1

(lg hi(fj, j)− lg hi+1(fj, j)) ≤
n∑

k=1

lg e
k2 ≤ π2 lg e

6
,

so that
m∑

j=1

(lg t(fj, j)− 2 lg w(fj, j)) ≤
m∑

j=1

(lg h−n(fj, j)− lg hm(fj, j)) ≤ mπ2 lg e
6

+ lg e.

The fact that

lg(t(fj, j) + d)− 2 lg(w(fj, j) + d) ≤ lg t(fj, j)− 2 lg w(fj, j)

for all j and non-negative d completes the proof.

5.3 Remarks on Improvements to Skip-Splay

The ideal improvement to this result is to show that splay trees satisfy the Unified Bound
with a running time of O(m + UB(σ)). However, achieving this ideal result could be
extremely difficult since the only known proof of the dynamic finger theorem is very com-
plicated, and the Unified Bound is stronger than the dynamic finger bound.

In light of this potential difficulty, one natural path for improving this result is to apply
the analysis of skip-splay to splay trees, perhaps achieving the same competitiveness to

60

the Unified Bound as skip-splay trees. Intuitively, this may work because the skip-splay
algorithm is essentially identical to splaying, except a few rotations are skipped to keep
the elements of the tree partitioned into blocks with a particular structure that facilitates
our analysis. One potential first step to accomplishing this would be to show that semi-
splaying [55] satisfies the reweighing lemma of Georgakopoulos (or even just the working
set bound). If this were true, then semi-splay trees could replace splay trees as the auxiliary
data structure of skip-splay trees, and the difference between semi-splay trees and “skip-
semi-splay trees” would seem to be even less than the difference between splay trees and
skip-splay trees.

The other natural improvement to skip-splay trees, finding a BST that satisfies the
Unified Bound with no non-constant multiplicative factor or additive term is achieved by
cache-splay trees, which are described in Chapter 6.

61

62

Chapter 6

Cache-Splay Trees

In this Chapter, we present the cache-splay algorithm, which is the first BST algorithm
that is provably constant-competitive to the Unified Bound of Iacono [37, 16]. This shows
that it is possible to build an augmentable data structure that performs well when queries
exhibit a combination of locality in space and time (i.e., queries are fast when they are near
to a recently accessed element). In comparison to the skip-splay trees of Chapter 5, cache-
splay trees maintain a slightly more well-defined structure to the tree. On the one hand,
this makes the algorithm less practical and more difficult to program. On the other hand,
it greatly simplifies the proof of competitiveness to the Unified Bound, and allows cache-
splay trees to eliminate the additive O(lg lg n) term that skip-splay trees require in their
running time bound relative to the Unified Bound. As elsewhere, we make the simplifying
assumption that the set of keys stored in the BST is {1, . . . , n}.

6.1 The Cache View of Cache-Splay

Before we define the cache-splay BST algorithm, we will present a simpler version of
the algorithm that operates on an array in a multi-level memory hierarchy rather than a
BST. This array-based algorithm will serve as a model for how cache-splay trees work.
Suppose we have an array containing the elements {1, . . . , n} in sorted order as shown in
the bottom-level rectangle of Figure 6.1. (Note that the elements stored in the array are the
same as those that are stored in the cache-splay tree.)

Next, suppose we create a series of partitionings of this array. Each such partitioning
splits the array into equally-sized contiguous blocks, and each successive partitioning is
a refinement of the previous partitioning. The size of a block in each partitioning is 22i

63

1 2 3 256

Figure 6.1: The definition of blocks for the cache view of a cache-splay tree. This fig-
ure shows the series of partitionings of an array containing the elements {1, . . . , n} for
n = 256. The bottom rectangle can be considered to be an array containing the elements
{1, . . . , 256}, and also represents the level-3 partitioning of the array. The second level
represents the level-2 partitioning of the array in which each block contains 222

= 16
elements, and the top level represents the level-1 partitioning where each block contains
221

= 4 elements.

for i ∈ {1, . . . , lg lg n} (we assume for simplicity that lg lg n is a positive integer), and we
define i to be the level of the partitioning. Figure 6.1 shows a visual representation of this
series of partitionings of the array with level 1 at the top and level lg lg n at the bottom.

Each element of the array is stored in exactly one level, and initially all elements are
stored in the bottom level (i.e., they are initially in the “disk”). A level-i block is defined
to be stored at level i if every element of that block is stored at level i or higher (i.e., if a
level 2 block B contains some portions that are stored at level 1, and the rest are stored at
level 2, then B is stored at level 2).

To perform a query of element x, we begin at level 1 and execute a binary search
among all level-1 elements for x. If x is found at level 1, we terminate, else we continue
by performing a binary search at the next level unil we find x in its current level i. Then,
we cache x’s level-i − 1 block by storing each member of this block in level i − 1, and
continue this caching process until x is in level 1 in a block of size 4.

If we were to continue this for all queries, eventually all elements would percolate up
to level 1 of the memory hierarchy, so that the cost of the top-level binary search would
be high. Therefore, we impose a limit on the number of blocks that can be stored at each
level in the memory hierarchy (just as in a real computer). Specifically, we allow at most
22i blocks to be stored at level i at any time. To enforce this constraint, during a query to
element x, after we have cached x’s level-1 block, we eject a block from any level i that
has exactly 22i blocks stored in it. The block that is chosen to be ejected is the one that
has least recently been queried. Thus, during a typical query to a level-i element x, we

64

perform binary searches in levels 1 through i to find x, then we cache all of x’s blocks (at
levels i − 1 through 1), and then we eject the “stalest” block for levels 1 through i − 1.
This process is shown visually in Figure 6.2.

This invariant ensures that each binary search at level i costs O(2i). Additionally, we
assume that caching or ejecting a level-i block costs O(2i) so that the total cost of the
search is dominated by the cost incurred at the level in which the queried element is found.
We will show later that if we amortize this cost over an entire sequence of accesses, this
running time bound is the same as the Unified Bound to within a constant factor.

6.2 Implementing the Cache View with a BST

Before we prove that the above algorithm meets the Unified Bound, we show how to
implement it with a BST that we call a cache-splay tree. Essentially, a cache-splay tree
consists of a collection of splay trees that are separated by root markers much like multi-
splay trees or skip-splay trees (actually, for cache-splay trees we use a root counter). The
cache-splay algorithm consists of a series of partial splays, again much like multi-splay
trees and skip-splay trees.

A cache-splay tree T is divided into a series of levels so that there is a root node on the
path of parent-child pointers between every pair of nodes that are stored in different levels
in the cache view of cache-splay that is described in Section 6.1. This is similar to the
level structure of layered working-set trees [11]. An edge is defined to be solid if the root
counter of the child has value 0. Otherwise, if the value of the root counter of the child is
strictly greater than 0, then the edge is dashed. An example of the state of a cache and the
corresponding cache-splay tree is shown in Figure 6.3.

All binary searches that are performed during a single query in the cache view are im-
plemented by a single binary search for the queried element in the cache-splay tree. This
single binary search in a cache-splay tree spans as many levels as contain binary searches
in the cache view. The caching and ejecting operations that are performed in the cache
view are implemented by performing a constant number of splays and root counter incre-
ments and decrements at each level. This will be described more formally in Section 6.3.

6.3 The Cache-Splay Algorithm

Before we formally define the cache-splay algorithm, we need some notation. We first
define bi to be 22i for integral i ≥ 0, and by convention we set b0 = 0. The value bi

65

x

(a) The cache view of a cache-splay tree immedi-
ately prior to a query of x.

x

(b) The first iteration of the cache-loop is executed
as x’s block is lifted one level in the cache.

x

(c) The second iteration of the cache-loop is exe-
cuted as x’s block is lifted one more level in the
cache. This block is smaller and more local than the
block that is lifted in (b).

x

(d) The first iteration of the eject-loop is executed
as the stalest block is ejected from the top level of
the cache. This ejected block was chosen because all
other level-1 blocks contain a more recent query.

x

(e) The second iteration of the eject-loop is executed
as the stalest block is ejected from the second level
of the cache.

x

(f) The final state of the cache after the query to x is
complete. Note that the eject loop terminates at the
same level in which the cache loop started.

Figure 6.2: The cache view of the execution of a query to x in a cache-splay tree. The
initial state of the cache before the query is executed is shown in (a); the cache loop is
shown in (b) and (c); the eject loop is shown in (d) and (e); and the final state of the cache
after the query to x has been finished is shown in (f). The block that is chosen to be cached
during each iteration of the cache step is the block that contains the queried node x, and
the block that is chosen to be ejected from each level is the one that has least recently been
accessed.

66

denotes the size of a block at level i in T . We define the level-i block of node x, denoted
by Bi(x), to be {⌊

x
bi

⌋
bi, . . . ,

⌊
x+bi

bi

⌋
bi − 1

}
.

Additionally, for an arbitrary non-negative integral offset δ, we define the δ-offset level-i
block of node x, denoted by Bi(x, δ), to be{⌊

x+(δ mod bi)
bi

⌋
bi − (δ mod bi), . . . ,

⌊
x+(δ mod bi)

bi

⌋
bi − (δ mod bi) + bi − 1

}
.

The term Bi(x, δ) is not used in defining the cache-splay algorithm, but it is helpful in the
analysis of cache-splaying.

We can formally define the cache-splay algorithm as follows. We assign a root counter
to every node in a cache-splay tree T . The tree T is an ordinary BST that is partitioned
by the set of root counters that have a strictly positive value. Every such positively-valued
root counter represents the root of a distinct splay tree. Whenever a node rotates over
another node that has a strictly positive root counter, the root counter is transferred to the
new parent. The set of these splay trees partitions the nodes of T .

We define the level of node x to be the sum of the root counters of nodes on the BST
access path from the root of T to x, including both the root and x. Level i of T is defined
to be the set of level-i nodes in T . We say that a block Bi(x) is contained in level i of T if
the level of every node in Bi(x) is at most i. Figure 6.3 shows a visual depiction of how
the blocks of the keyspace relate to a corresponding cache-splay tree T .

In addition to using the tree, cache-splay trees use a set of linked lists {L1, . . . , Lk},
where k is the number of levels in T . List Li stores a list of level-i blocks B, such that every
element of B has level i. The blocks in Li are ordered in move-to-front order according to
how recently they have been accessed (i.e., the “stalest” block is at the back of Li). The
representative element of each block that is stored in Li is the LCA of the block. We store
bi-directional pointers between each element of Li and the LCA of the block in T . Also,
we keep a pointer to the front and back of each list. We use these lists to implement a
least recently used paging rule at each level in the cache. Below, we will be specifying a
limit on the number of blocks that can be stored at each level, and whenever we cache an
additional block in a level that is already full, we use that level’s linked list to find the least
recently queried block so that we can eject that block from that level of the cache. To give
some intuition for how cache-splay trees work before we formally define the algorithm,
the operation of a single query as seen from the cache view is shown in Figure 6.2.

Although the inclusion of this linked list and extra pointers violates the strict definition
of a BST model defined in Chapter 2, we still perform all of the necessary BST operations

67

level 1 blocks

level 2 blocks

level 3 blocks

level 4 blocks

(a) The cache view of a cache-splay tree. The gray rectangles represent regions of the keyspace that are
stored at the corresponding level, and the white rectangles represent parts of the keyspace that can be
thought of as being cached at that level, but that are actually stored at an even higher level in the cache-
splay tree. The vertical portions of the black borders around the rectangles represent the divisions
between blocks that are stored at a particular level, or they represent the boundary between a portion of
a block that is stored at that level and a portion of that block that is stored at a higher level. Note that
the ratio of block sizes in successive levels is not to scale in this figure.

level 1 of T

level 2 of T

level 3 of T

level 4 of T

(b) A cache-splay tree corresponding to the cache view shown in (a). Each triangle represents a splay
tree that is a member of the indicated level in the cache-splay tree, and each dashed edge between two
triangles represents a single edge that separates two splay trees in a cache-splay tree. Each black line
inside a triangle represents the border between two blocks that are stored, at least partially, in the same
splay tree. It is important to note that many blocks can be stored in the same splay tree, but only blocks
of one particular level can be stored in any one splay tree. Also, the dashed edges that span more than
one level correspond to root counters whose values are strictly greater than one.

Figure 6.3: The blocks of a “cache” compared to the structure of the corresponding cache-
splay tree. The cache view is shown in (a), and the corresponding cache-splay tree struc-
ture is shown in (b). In both (a) and (b), the keyspace is ordered from 1 to n from left to
right, and the vertical position of the rectangles and triangles represents, respectively, the
level of the elements in the corresponding block or splay tree. Neither of the above subfig-
ures is drawn to scale, and the size and number of blocks at each level has been changed
to make the figure easier to understand.

68

to make use of BST augmentation, the key practical difference between the BST model
and other models of computation supporting one-dimensional search. Further, we can
emulate the linked lists with at most O(lg n) additional auxiliary bits per node as we will
see in Section 6.5. For the purpose of simplicity and easier intuition, we will continue to
describe the version of cache-splaying that uses auxiliary linked list data structures.

Also, for simplicity, we will only handle queries, no insertion or deletion, and we
will assume that T is initially balanced and in the minimum-potential initial configuration
so that the amortized bounds we will show constitute a lower bound on the cost of the
algorithm when summed across all queries. Cache-splay trees will maintain the following
invariant, which specifies which blocks are cached at which levels. We will assume that
each level of the cache is initially arbitrarily filled with blocks to satisfy the invariant.

Invariant 1. Immediately prior to every query, there are exactly bi − 1 level-i blocks that
have some members stored at level i or higher in a cache-splay tree T .

To query a node x using the cache-splay algorithm, we perform an ordinary BST search
starting at the root of T , keeping track of the sum of the root counters seen. When x is
reached, we remember the initial level i0 of x. Next, we need to “cache” x’s blocks of
nodes into the “faster levels of the cache”, which is accomplished by the following steps,
beginning at level i = i0.

Cache Loop. While i > 1, repeat the following steps. Splay the minimum element w of
Bi(x), and splay the maximum element y of Bi(x) until it is the right child of w. Then,
splay x’s level-i− 1 predecessor v, and splay x’s level-i− 1 successor z until z is the right
child of v. Next, change x’s level by incrementing the root counters of both w’s left child
and y’s right child, and then decrementing w’s root counter. Finally, if Bi(w) is in Li, then
we remove it from Li. Figure 6.4(a) shows an example of what one iteration of the cache
loop looks like.

Next, in order to restore Invariant 1 for the next query, we need to eject “stale” blocks
of nodes from the fast levels of T . This is accomplished as follows, beginning with level
i = 1.

Eject Loop. While i < i0, repeat the following steps. Eject the block B corresponding
to the last element of Li by first removing its list element from Li. Then, splay B’s level-i
predecessor v, and splay B’s level-i successor z until z is the right child of v. Then, splay
the minimum element w of B until it is a child of z, if z exists, and splay the maximum
element y of B until it is the right child of w. Next, change B’s level by incrementing

69

1 2 3
v z

w x y
x

w
y

v
z

w

x

y

v
z

v
w y

z
x

(a) An example of what one iteration of the cache loop looks like. The cache view of two cache loop
iterations is shown in Figures 6.2(b) and 6.2(c).

1 2 3v
w y

z

v

y

z

w

v

y

z

w v z

w y

(b) An example of what one iteration of the eject loop looks like. The cache view of two eject loop
iterations is shown in Figures 6.2(d) and 6.2(e).

Figure 6.4: An example of what one iteration of the cache loop and eject loop looks
like. Note that the steps performed during one iteration of the eject loop, shown in (b), is
essentially just the reverse of the steps performed during one iteration of the cache loop,
shown in (a).

w’s root counter and decrementing the root counters of both w’s left child and y’s right
child. Finally, if neither v nor z is in Bi+1(w), then insert Bi+1(w) at the front of Li+1.
Figure 6.4(b) shows an example of what one iteration of the eject loop looks like.

To strictly follow the definition of the BST model, after executing the eject loop, we
would rotate x to the root, and then back to its location at the end of the execution of the
eject loop. This would only cost an extra O(1) per operation because after the eject loop,
x is in level 1, and there there are O(1) nodes in level 1.

6.4 Cache-Splay Satisfies the Unified Bound

To analyze the running time of the cache-splay algorithm, we first define some notation,
which will be helpful in our analysis later on. This notation is similar, but slightly different,
to that which is defined for the analysis of skip-splay trees in Section 5.2.

70

• Let p(x, j) represent the index of the previous access to x. More formally, assuming
such an access exists, let

p(x, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ = x}).

Else, if there is no previous access to x at time j, then we define p(x, j) = −n .

• For x ∈ T , let w(x, j) represent the number of elements queried since the previous
access to x. More formally, assuming p(x, j) ≥ 1, let

w(x, j) =
∣∣∣{σj′ | j′ ∈ {p(x, j), . . . , j − 1}

}∣∣∣.
Else, if p(x, j) ≤ 0 then let w(x, j) = −p(x, j). For block B, we assign w(B, j) the
natural definition (i.e., the number of elements queried since a query to B).

• Let pi(x, j) represent the index of the previous access to a member of Bi(x). More
formally, assuming such an access exists, let

pi(x, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ ∈ Bi(x)}).

Else, if there is no previous access to a member of Bi(x) at time j, then we define
pi(x, j) = −n .

• For x ∈ T , let wi(x, j) represent the number of elements queried since the previous
access to a member of Bi(x). More formally, assuming pi(x, j) ≥ 1, let

wi(x, j) =
∣∣∣{σj′ | j′ ∈ {pi(x, j), . . . , j − 1}

}∣∣∣.
Else, if pi(x, j) ≤ 0 then let wi(x, j) = −pi(x, j).

• Let pi(x, δ, j) represent the index of the previous access to a member of Bi(x, δ).
More formally, assuming such an access exists, let

pi(x, δ, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ ∈ Bi(x, δ)}).

Else, if there is no previous access to a member of Bi(x, δ) at time j, then we define
pi(x, δ, j) = −n .

• For x ∈ T , let wi(x, δ, j) represent the number of elements queried since the pre-
vious access to a member of Bi(x, δ). More formally, assuming pi(x, δ, j) ≥ 1,
let

wi(x, δ, j) =
∣∣∣{σj′ | j′ ∈ {pi(x, δ, j), . . . , j − 1}

}∣∣∣.
Else, if pi(x, δ, j) ≤ 0 then let wi(x, δ, j) = −pi(x, δ, j).

71

In the analysis below, we will use a potential function similar to that which was used
to prove the main splay tree theorems in [55], except that the root counters will block the
weight in their subtrees from being felt by the rest of the tree, just as in the analysis of
skip-splay trees as well as multi-splay trees [61].

More specifically, we assign assign a weight of one to every node in T , and define the
size of node x, denoted by s(x), to be equal to the sum of the weights in the subtree of x’s
splay tree that is rooted at x (i.e., the number of nodes that can be reached by following
child pointers starting at x traversing only nodes whose root counter is zero). The potential
of T is defined to be

∑
x∈T lg s(x), and the amortized cost of each access will be defined

to be the sum of the actual costs of the algorithm that are described above and the change
in potential. We assume that the initial configuration of T is one of minimum potential,
so that the sum of amortized costs, according to the splay tree access lemma, of the splays
and root counter changes is an upper bound on the actual cost of the entire sequence.

Note that we are only counting the cost of the rotations in the following analysis.
Pointer traversal, field updates, and changes to the lists Li would, in reality, have costs
too, but these costs are dominated by the number of rotations, so we ignore them and stick
to the BST model’s defined cost metric, in which an algorithm is only charged for the
rotations it performs.

We begin by proving the following lemma, which bounds the cost associated with a
particular level of T during a query sequence.

Lemma 4. During a query sequence in a cache-splay tree containing n nodes, suppose
a node x is queried. The amortized cost of the operations performed at level-i in T is at
most c log bi, for some constant c.

Proof. By Invariant 1, we know that each level-i splay tree contains nodes from at most
bi level-i blocks, so each level-i splay tree contains at most b2

i nodes. Therefore, a splay
in level i of T has an amortized cost of 2 lg bi by the access lemma for splay trees [55],
with the constants of the bound in the splay tree access lemma suppressed for simplicity.
Thus, the up to eight splays that are executed in a level-i splay tree cost a total of at most
16 log bi. Further, the cost of the extra weight added when up to one additional level-i
block is added to level i of T is at most 2 lg bi because the root of the added tree has at
most two ancestors in level-i immediately before it is added to level i of T . An ejection
of a block from level-i has amortized cost at most zero because such an ejection causes a
decrease in potential. However, the merging in of a block that was ejected from level i− 1
causes an additional increase in potential of up to 6 lg b2

i .

72

Lemma 5. During a query sequence in a cache-splay tree containing n nodes, suppose a
node x is queried. The amortized cost of the operations performed at level-i in T is zero if
both i > 1 and wi(x, j) < bi−1.

Proof. First, note that if wi(x, j) < bi−1, then immediately before x is queried x must
reside at level i− 1 or less in T because, at a minimum, bi−1− 1 queries must be executed
following a query to a member of Bi(x) for x to be ejected from level i− 1. Second, note
that the definition of the cache-splay algorithm prevents any operations from occurring at
a level below the level in which x was found.

Next, we enhance the analysis of Lemmas 4 and 5 by allowing an arbitrary offset δ on
the boundaries of the blocks. Note that the actual blocks used by the cache-splay algorithm
do not have this offset, just the blocks used in the analysis. As above, we break the analysis
into two cases, and we describe the potential function used in both proofs here.

In addition to using the ordinary splay tree potentials that were used in the proofs of
Lemmas 4 and 5, we add an additional potential equal to the following. If δ is chosen to be
an arbitrary nonnegative integer, for every δ-offset level-i block Bδ, we assign a potential
of c lg bi exactly when w(Bδ, j) < bi−1 ≤ w(B, j) for one of the up to two level-i blocks
B that intersect Bδ.

Lemma 6. Let δ be an arbitrary nonnegative integer and φδ(T) be the corresponding po-
tential function as defined above. During a query sequence in a cache-splay tree contain-
ing n nodes, suppose a node x is queried. The amortized cost of the operations performed
at level-i in T is at most 2c log bi.

Proof. By Lemma 4, the amortized cost of the level-i operations according to the splay
tree access lemma is c log bi. Additionally, we may increase φδ(T) by up to c log bi.

Lemma 7. Let δ be an arbitrary nonnegative integer and φδ(T) be the corresponding po-
tential function as defined above. During a query sequence in a cache-splay tree contain-
ing n nodes, suppose a node x is queried. The amortized cost of the operations performed
at level-i in T is at most zero if both i > 1 and wi(x, δ, j) < bi−1.

Proof. We consider two cases. First, suppose wi(x, j) < bi−1. In this case, the level-i
terms of φδ(T) do not change, and Lemma 5 shows that the amortized cost associated
with level i is zero. Second, suppose wi(x, j) ≥ bi−1. In this case, the level-i terms of
φδ(T) decrease by at least c lg bi, which, by Lemma 4 is sufficient to pay for the cost at
level i.

73

Using Lemmas 6 and 7, we can prove that cache-splay trees satisfy the Unified Bound,
as shown in the following theorem.

Theorem 8. The cost of a query sequence σ = σ1 · · ·σm, where σj ∈ {1, . . . , n} and
n = 22k

for some integral k ≥ 1, using the cache-splay algorithm starting with an initially
balanced cache-splay tree T , is O(m + UB(σ)).

Proof. Choose an offset δ randomly from {1, . . . , n}. Let σj be an arbitrary query from
sequence σ, and choose j′ < j. It suffices to show that the amortized cost of query σj is at
most O(lg w(σj′ , j) + lg(|σj′ − σj| + 1)). We begin by breaking the cost associated with
query σj into the cost associated with each level. We group these per-level costs into three
sums, and the cost associated with each level is included in at least one of these sums.

First, choose if such that bif ≤ |σj′ −σj| < bif+1. By Lemma 6 we know that the total
cost associated with levels 1 through if in T is at most

if∑
i=1

2c lg bi ≤ 4c lg(bif + 1) = O(lg(|σj′ − σj|+ 1)),

where the argument bif + 1 includes an additive one for the case if = 0.
Second, choose iw such that biw−2 ≤ w(σj′ , j) < biw−1. By Lemma 6 we know that

the total cost associated with levels 1 through iw in T is at most
iw∑
i=1

2c lg bi ≤ 4c lg biw = O(lg wi(σj′ , j)).

Third, choose i∗ = 1 + max{if , iw}. By Lemma 7 and the fact that δ mod bi is
distributed randomly (but not independently) for all i, we know that the expected total cost
associated with levels i∗ and larger in T is at most

∞∑
i=i∗

|σj′−σj |
bi

2c lg bi = O(lg bi∗) = O(lg max{w(σj′ , j), |σj′ − σj|+ 1}).

Summing these three bounds on the costs associated with various subsets of the levels
yields a bound of O(lg(w(σj′ , j) + |σj′ − σj|)), and this bound is sufficient to cover the
expected cost associated with all levels. To finish the proof, we first note that the choice of
j′ was arbitrary and we could choose whatever j′ minimizes the cost when analyzing each
query to achieve a bound of O(minj′<j lg(w(σj′ , j) + |σj′ − σj|)) expected cost for each
query σj . Finally, note that because this expected cost was proved using a random choice
of δ, and this random choice has no effect on the cache-splay algorithm itself, there must
be some choice of δ for which this bound holds without using any random choices in the
analysis.

74

6.5 Making Cache-Splay a Strict BST Algorithm

The cache-splay algorithm, as defined in Section 6.3, does not fit the formal definition
of a BST model that forbids the extra pointers that are needed by the linked lists. We
stress that this is of no practical consequence because the tree portion of a cache-splay tree
still performs the required rotations, so cache-splay trees can be used for anything that a
strict BST can be used for. Further, it is possible to emulate the linked list using a small
additional overhead, and coerce the cache-splay algorithm into this more strict definition
of a BST. One way of achieving this is shown in [11]. Alternatively, we could make the
following modification to cache-splay trees.

In a cache-splay tree T , for every level-i node x that is the LCA of its level-i block,
we could store the “index” of Bi(x) in Li. This “index” would not be the exact index of
Bi(x) but would be monotonically increasing in the position of Bi(x). In such a scheme,
we could emulate the move-to-front list for each level as follows.

To move Bi(x) to the front of Li, we would set the index of x to be one less than the
current minimum index of any level-i block. We consider the case in which this causes an
integer underflow below. This minimum index could be stored for each level at the root or
some separate memory location that is easy to access.

Finding the back element of list Li would be a little harder. To accomplish this, for
every node x in T , for every level i, we maintain a maxIndexi field that stores the max-
imum index that appears in its subtree, considering only the indices of level-i blocks that
are fully stored in level-i. Then, it is straightforward to use binary search to find the level-i
block corresponding to the back of list Li using the standard technique. Note that although
this search starts from the root, this operation would only be called during the eject loop,
and the pointer traversal time used by this search could be charged to the the splays that
are executed to eject this block from its level, with just a constant factor of overhead. Fi-
nally, to remove Bi(x) from list Li, where x is the LCA of Bi(x), we delete x’s index, and
update the maxIndexi fields of x’s ancestors. Again, these field updates can be charged to
the splays executed during the query.

To handle the caveats mentioned above, if one less than the current minimum index
would cause an integer underflow, we could reset the entire tree’s move-to-front indexes
to be at the maximum end of the index range. As long as our indexes were stored in
(1 + ε) lg n bits with ε > 0, we would only have to perform this rebuild operation once
every Ω(n1+ε) operations, so the amortized cost of the rebuild would be o(1) per operation.

Note that each node has Θ(lg lg n) auxiliary fields, which naı̈vely requires a space
usage of Θ(lg lg n lg n) per node. To avoid using ω(lg n) auxiliary bits per node to store
all of the maxIndexi fields, we restrict the range of the indices for the shallower levels

75

in the tree. Specifically, we use only Θ(lg bi) bits to store the index at level i. Because
there are O(b2

i) elements stored at level i and shallower, a similar argument to the above
one shows that it is possible to achieve an amortized rebuild time of o(1) per operation.
Moreover, the total memory usage used when storing all of the maxIndexi fields is just
O(lg n) because the memory usage is dominated by the storage for maxIndexk, where k
is the deepest level in T .

6.6 The Next Steps for Adaptive BSTs

It is worth noting that there is no reason to use splay trees as opposed to a balanced BST
algorithm such as red-black trees for the auxiliary BST algorithm in cache-splay trees. It is
convenient to use splay trees because this allows a more complete version of the algorithm
to be described (no “library calls” to split and join red-black trees). Also, using splay trees
as the auxiliary BST algorithm facilitates a comparison between splay trees and cache
splay trees that may help uncover properties of splaying that can be used to prove the
Unified Bound for splay trees.

On the other hand, if red-black trees were used, it might be possible to achieve the Uni-
fied Bound in the worst case using a cache-splay-tree-like BST algorithm. This would still
require considerable work, however, because even though using red-black trees improves
the worst case running time to O(lg n), proving the Unified Bound still requires amortiza-
tion. To see this, note that a simple linear scan of the keys requires occasional “deep cache
misses” that require a split and merge that consumes Ω(lg n) time. To achieve the Unified
Bound in the worst case, therefore, one would have to develop a scheme for gradually
executing deep cache operations than cannot be fully afforded by any one operation.

Another extension would be to simplify the algorithm so that it would be easier to
implement with less overhead. One idea for doing this is to randomly eject a block at each
level instead of ejecting the least recently used block. This introduces randomization into
the bound, but this seems like it should work since there would still be a reasonably high
probability that the block stays in each level for an amount of time that is polynomial in
the number of blocks stored at that level.

As suggested in Section 5.3, another natural direction for related progress is to prove
better bounds for splay trees. Examples include improving upon Pettie’s proof that splay
trees cost α∗(n) per operation when used as deques, and proving any non-trivial com-
petitiveness to the Unified Bound. Aside from results on splay trees, as suggested in
Section 4.5, it would be interesting to further our understanding of formulaic bounds that
generalize the Unified Bound and can be achieved in the BST model.

76

Chapter 7

Conclusion

This thesis has made a number of contributions to our knowledge of what is achievable in
the BST model when we analyze the cost of BST algorithms on query sequences that may
contain patterns that can be exploited to speed up running time.

We showed a general lower bound framework that not only generalized existing lower
bounds, but also demonstrated a potentially deep connection between BST data structures
and the partial-sums problem, in which sums over ranges of an array are computed while
various array values are updated to new values. In addition to the obvious question re-
garding the tightness of the lower bound framework for the BST model, another equally
important question is whether the lower bound holds true for even more general problems
than the partial-sums problem in the set-sum model of computation.

As even deeper connections are shown between BST algorithms and such problems,
the motivation to seek simpler and provably better BST algorithms is greatly increased.
Knowing that a bound is achievable by a BST is a good thing, and it is even better if this
bound is easy to prove. However, it is still yet better to know that the bound can be achieved
by a simple BST algorithm that can easily be implemented both with low running time
and with low cognitive load by whoever is doing the programming. Even an extremely
complicated proof that a good bound holds for a simple algorithm is extremely valuable
because once the proof is accepted as valid, the programmer only needs to remember the
theorem and the algorithm to make practical use of the result.

To that end, we showed a variety of results for relatively simple BST algorithms that
were based on splaying, which is perhaps the simplest robust adaptive BST algorithm of
all. In addition to the work on multi-splay trees that was summarized in this thesis, and
whose details are found in [61, 60, 25], we showed that the BST model was sufficiently
flexible to achieve the Unified Bound of Iacono, resolving this open question that was

77

posed in 2001 [37]. In doing so, we introduced two new splay-based BST algorithms,
skip-splay and cache-splay. These two algorithms illustrate the tradeoff that algorithm
designers often face between the complexity of the algorithm and the complexity of the
proof. Skip-splay trees are a simpler data structure with more difficult proofs and worse
guarantees since they only achieve the Unified Bound to within additive O(lg lg n). Cache-
splay trees, on the other hand, are more complicated, but have simpler proofs and eliminate
the additive O(lg lg n) term for their competitiveness compared to the Unified Bound.

Now that the Unified Bound has been achieved by a BST, the two most natural direc-
tions for related progress are to prove the Unified Bound for a simpler BST algorithm, such
as splaying, and to devise new bounds that generalize the Unified Bound, with the goal of
finding a formulaic bound that completely encapsulates dynamic optimality in the BST
model. Such results would provide even further motivation for discovering whether the
splay algorithm, or some other online BST, is provably O(1)-competitive to the optimal
BST algorithm.

78

Bibliography

[1] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, 1988. 2.1.3

[2] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic
searching and priority queues. In Proceedings of the 32nd ACM Symposium on The-
ory of Computing (STOC 2000), pages 335–342, 2000. 4.3

[3] Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search
trees. Journal of the ACM, 54(3):Article 13, 2007. 4.3

[4] Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algo-
rithms. Acta Informatica, 1(4):290–306, December 1972. 2.2

[5] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious
B-trees. In Proceedings of the 41st IEEE Symposium on Foundations of Computer
Science (FOCS 2000), pages 399–409, 2000. 2.1.3

[6] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious
B-trees. SIAM Journal on Computing, 35(2):341–358, 2005. 2.1.3

[7] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-preserving
cache-oblivious dynamic dictionary. In Proceedings of the 13th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2002), pages 29–38, Philadelphia, PA, USA,
2002. Society for Industrial and Applied Mathematics. 2.1.3

[8] Guy E. Blelloch, Bruce M. Maggs, and Shan Leung Maverick Woo. Space-efficient
finger search on degree-balanced search trees. In Proceedings of the 14th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2003), pages 374–383, Philadelphia, PA,
USA, 2003. Society for Industrial and Applied Mathematics. 4.3

79

[9] Avrim Blum, Shuchi Chawla, and Adam Kalai. Static optimality and dynamic
search-optimality in lists and trees. In Proceedings of the 13th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2002), pages 1–8, Philadelphia, PA, USA,
2002. Society for Industrial and Applied Mathematics. 2.2, 3, 4.2

[10] Prosenjit Bose, Karim Douı̈eb, Vida Dujmović, and Rolf Fagerberg. An O(log log
n)-competitive binary search tree with optimal worst-case access times. Obtained on
December 7, 2009 from: http://cgm.cs.mcgill.ca/ vida/pubs/papers/ZipperTrees.pdf,
2009. 1, 4.1

[11] Prosenjit Bose, Karim Douı̈eb, Vida Dujmović, and John Howat. Layered working-
set trees. CoRR, abs/0907.2071, 2009. 4.3, 6.2, 6.5

[12] Prosenjit Bose, Karim Douı̈eb, Vida Dujmović, and John Howat. Layered working-
set trees. In Proceedings of the 9th Latin American Theoretical Informatics Sympo-
sium (LATIN 2010), 2010. 4.3

[13] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search trees
via binary trees of small height. In Proceedings of the 13th ACM-SIAM Symposium
on Discrete Algorithms, pages 39–48, 2002. 2.1.3

[14] Gerth Stølting Brodal, George Lagogiannis, Christos Makris, Athanasios K. Tsaka-
lidis, and Kostas Tsichlas. Optimal finger search trees in the pointer machine. Journal
of Computer and System Sciences, 67(2):381–418, 2003. 4.3

[15] Mark R. Brown and Robert Endre Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM Journal on Computing, 9(3):594–614, 1980. 2.1.2,
4.3

[16] Mihai Bădoiu, Richard Cole, Erik D. Demaine, and John Iacono. A unified access
bound on comparison-based dynamic dictionaries. Theoretical Computer Science,
382(2):86–96, 2007. 1, 2.1.2, 4.4, 5, 6

[17] Timothy M. Chan. Closest-point problems simplified on the RAM. In Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pages 472–
473, 2002. 4.6

[18] Richard Cole. On the dynamic finger conjecture for splay trees. part II: The proof.
SIAM Journal on Computing, 30(1):44–85, 2000. 4.3, 5

80

[19] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. part I: Splay sorting log n-block sequences. SIAM Journal
on Computing, 30(1):1–43, 2000. 4.3, 5

[20] Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Pǎtraşcu. The
geometry of binary search trees. In Proceedings of the 20th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), pages 496–505, 2009. 3.4, 3.5, 4.2

[21] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic op-
timality – almost. In Proceedings of the 45th IEEE Symposium on Foundations of
Computer Science (FOCS 2004), pages 484–490, 2004. 1, 3.1, 3.6, 4.1

[22] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic opti-
mality – almost. SIAM Journal on Computing, 37(1):240–251, 2007. 1, 3.1, 4.1

[23] Erik D. Demaine, John Iacono, and Stefan Langerman. Proximate point searching.
Computational Geometry: Theory and Applications, 28(1):29–40, 2004. 4.6

[24] Jonathan Derryberry, Don Sheehy, Daniel D. Sleator, and Maverick Woo. Achieving
spatial adaptivity while finding approximate nearest neighbors. In Proceedings of
the 20th Canadian Conference on Computational Geometry (CCCG 2008), pages
163–166, 2008. 4.6

[25] Jonathan Derryberry, Daniel Sleator, and Chengwen Chris Wang. Properties of multi-
splay trees. Technical Report CMU-CS-09-171, Carnegie Mellon University, 2009.
4.1, 7

[26] Jonathan Derryberry, Daniel Dominic Sleator, and Chengwen Chris Wang. A lower
bound framework for binary search trees with rotations. Technical Report CMU-CS-
05-187, Carnegie Mellon University, 2005. 3.4, 3.5, 1

[27] Jonathan C. Derryberry and Daniel D. Sleator. Skip-splay: Toward achieving the uni-
fied bound in the BST model. In Proceedings of the 11th International Symposium on
Algorithms and Data Structures (WADS 2009), pages 194–205, Berlin, Heidelberg,
2009. Springer-Verlag. 5

[28] Amr Elmasry. On the sequential access theorem and deque conjecture for splay trees.
Theoretical Computer Science, 314(3):459–466, 2004. 4.3

[29] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.
2.1.1

81

[30] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th IEEE Symposium on Founda-
tions of Computer Science (FOCS 1999), Washington, DC, USA, 1999. IEEE Com-
puter Society. 2.1.3

[31] George F. Georgakopoulos. Splay trees: a reweighing lemma and a proof of compet-
itiveness vs. dynamic balanced trees. Journal of Algorithms, 51(1):64–76, 2004. 4.3,
5.2, 5.2

[32] George F. Georgakopoulos. Chain-splay trees, or, how to achieve and prove log log
n-competitiveness by splaying. Information Processing Letters, 106(1):37–43, 2008.
1, 4.1

[33] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A new
representation for linear lists. In Proceedings of the 9th ACM Symposium on Theory
of Computing (STOC 1977), pages 49–60, 1977. 4.3

[34] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In Proceedings of the 19th IEEE Symposium on Foundations of Computer Science
(FOCS 1978), pages 8–21, Washington, DC, USA, 1978. IEEE Computer Society.
2.2

[35] Anupam Gupta. Personal communication with Anupam Gupta of Carnegie Mellon
University, January 2006. 3.5

[36] Dion Harmon. New Bounds on Optimal Binary Search Trees. PhD thesis, Mas-
sachusetts Institute of Technology, 2006. 3.4

[37] John Iacono. Alternatives to splay trees with o(log n) worst-case access times. In Pro-
ceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001),
pages 516–522, Philadelphia, PA, USA, 2001. Society for Industrial and Applied
Mathematics. 1, 2.1.2, 4.4, 5, 6, 7

[38] John Iacono. Optimal planar point location. In Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2001), pages 340–341, 2001. 4.6

[39] John Iacono. Key-independent optimality. Algorithmica, 42(1):3–10, 2005. 4.3

[40] John Iacono and Stefan Langerman. Proximate planar point location. In Proceedings
of the 19th ACM Symposium on Computational Geometry (SoCG 2003), pages 220–
226, 2003. 4.6

82

[41] Alexis C. Kaporis, Christos Makris, Spyros Sioutas, Athanasios K. Tsakalidis,
Kostas Tsichlas, and Christos D. Zaroliagis. Improved bounds for finger search on a
RAM. In Proceedings of the 11th Annual European Symposium on Algorithms (ESA
2003), pages 325–336, 2003. 4.3

[42] Jussi Kujala and Tapio Elomaa. Poketree: A dynamically competitive data structure
with good worst-case performance. In Proceedings of the 17th International Sym-
posium on Algorithms and Computation (ISAAC 2006), pages 277–288, 2006. 1,
4.1

[43] Swanwa Liao, Mario A. Lopez, and Scott T. Leutenegger. High dimensional sim-
ilarity search with space filling curves. In Proceedings of the 17th International
Conference on Data Engineering (ICDE 2001), pages 615–622, 2001. 4.6

[44] J.M. Lucas. Canonical forms for competitive binary search tree algorithms. Technical
Report DCS-TR-250, Rutgers University, December 1988. 3, 3.4, 4.2

[45] D.J. McClurkin and G.F. Georgakopoulos. Sphendamnœ: A proof that k -splay fails
to achieve logk n behaviour. In Proceedings of the 8th Panhellenic Conference on
Informatics (PCI 2001), pages 480–496, 2001. 2.1.3

[46] J. Ian Munro. On the competitiveness of linear search. In Proceedings of the 8th
Annual European Symposium on Algorithms (ESA 2000), pages 338–345. Springer,
2000. 4.2

[47] Seth Pettie. Splay trees, Davenport-Schinzel sequences, and the deque conjecture.
In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), pages 1115–1124, 2008. 4.3

[48] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute
of Technology, June 1999. 2.1.3

[49] Mihai Pǎtraşcu. Hardness results for data structures. Theory seminar talk at Carnegie
Mellon University, October 2008. 3.6

[50] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. In
In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pages 20–29, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics. 3, 3.6

[51] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe
model. SIAM Journal on Computing, 35(4):932–963, 2006. 3, 3.6

83

[52] Murray Sherk. Self-adjusting k-ary search trees. Journal of Algorithms, 19(1):25–44,
1995. 2.1.3

[53] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985. 1

[54] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance,
triangulations, and hyperbolic geometry. In Proceedings of the 18th ACM Symposium
on Theory of Computing (STOC 1986), pages 122–135, New York, NY, USA, 1986.
ACM. 3.4

[55] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32:652–686, 1985. 2.2, 3.6, 4.1, 4.3, 4.5, 5.2, 5.3, 6.4, 6.4

[56] Rajamani Sundar. On the deque conjecture for the splay algorithm. Combinatorica,
12(1):95–124, 1992. 4.3

[57] R. E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica,
5(4):367–378, 1985. 4.3

[58] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6(3):80–82, June 1977. 2.1.1

[59] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Mathematical Systems Theory, 10:99–127, 1977. 2.1.1

[60] Chengwen Chris Wang. Multi-splay trees. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2006. Adviser-Daniel Sleator. 4.1, 7

[61] Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator. O(log log
n)-competitive dynamic binary search trees. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2006), pages 374–383, New York, NY,
USA, 2006. ACM. 1, 3.2, 4.1, 6.4, 7

[62] Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM
Journal on Computing, 18(1):56–67, 1989. 2.2, 2.2, 3, 3.1, 3.3, 4.5, 2

[63] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space
theta(n). Information Processing Letters, 17(2):81–84, 1983. 2.1.1

84

	1 Introduction
	2 The Binary Search Tree Model
	2.1 Alternatives to the BST Model
	2.1.1 The RAM Model
	2.1.2 The Comparison Model
	2.1.3 Alternative Memory Models

	2.2 Definition of the BST Model

	3 Lower Bounds in the BST Model
	3.1 Wilber's First Bound and the Interleave Bound
	3.2 The Dynamic Interleave Lower Bound
	3.3 Wilber's Second Lower Bound
	3.4 The Independent Rectangle Lower Bound
	3.5 The MIBS Lower Bound
	3.5.1 Proving Wilber's Lower Bounds with the MIBS Lower Bound

	3.6 The BST Model and the Partial-Sums Problem

	4 Adaptive Binary Search Bounds
	4.1 Competitive Search in a BST
	4.2 Other Kinds of Competitiveness
	4.3 Exploiting Spatial and Temporal Locality
	4.4 The Unified Bound
	4.5 Beyond the Unified Bound
	4.6 Adaptive Search in Higher Dimensions

	5 Skip-Splay Trees
	5.1 The Skip-Splay Algorithm
	5.2 Analyzing Skip-Splay Trees
	5.3 Remarks on Improvements to Skip-Splay

	6 Cache-Splay Trees
	6.1 The Cache View of Cache-Splay
	6.2 Implementing the Cache View with a BST
	6.3 The Cache-Splay Algorithm
	6.4 Cache-Splay Satisfies the Unified Bound
	6.5 Making Cache-Splay a Strict BST Algorithm
	6.6 The Next Steps for Adaptive BSTs

	7 Conclusion
	Bibliography

