
Measuring and Injecting Latency in Web Apps

Adam Goode, Steven Hillenius, Bonnie John, M. Satyanarayanan
June 2009

CMU-CS-09-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In mobile computing and other contexts, latency is a more critical resource than bandwidth.
Interactive performance relies on low latency response to the user. The question of how much
performance is necessary (and when) is still open.
These sources of latency manifest themselves in different ways and with differing severities. When
designing systems for a Web 2.0 framework, it is important to have a good means for measuring
existing latencies as well as simulating new latencies, throughout all parts of a system.
This report discusses a web app latency analysis framework with respect to a set of representative
tasks. These tasks include: web usage, navigation with tabs, navigation between many open
windows, and significant copying and pasting.

This research was supported by the National Science Foundation (NSF) under grant number CNS-0833882. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or Carnegie Mellon University.



Keywords: latency, logging, network simulation, web 2.0, web applications



1 Motivation and Background
In mobile computing and other contexts, latency is a more critical resource than bandwidth.
Interactive performance relies on low latency response to the user. The question of how much
performance is necessary (and when) is still open.

Previous work looked at the effects of timesharing systems on users. More recently, there has
been a focus on interactive performance of web pages, for example Galletta looked at the effects of
delay on user performance, attitudes, and intentions [6]. Since the time of Galletta’s work, a new
kind of interaction has emerged on the web, combining local processing with background server
communication. Various names for this new interaction method include Web 2.0, AJAX, and Rich
Internet applications.

In Web 2.0 applications, there are more potential sources of latency than before. These include:

• Local processing delay

• Remote (server-side) delay

• Network delay

These sources of latency manifest themselves in different ways and with differing severities.
When designing systems for a Web 2.0 framework, it is important to have a good means for
measuring existing latencies as well as simulating new latencies, throughout all parts of a system.

In this report, we will be looking at applying our framework to a modern version of Card,
Moran, and Newell’s Experiment 8A “Experimental Validation of the Model” [2, p. 270]. The
tasks include significant web usage, navigation with tabs, navigation between many open windows,
and significant copying and pasting. For the purposes of validation (section 4), we will limit our
task to the creation of a two-hour long event in Google Calendar (http://www.google.com/
calendar/). This involves clicking, dragging, and typing.

The idea of running a new version of Experiment 8A came about after attempting to build a
cognitive model of a user performing a task with a modern interface. This user leveraged extensive
keyboard shortcuts to navigate through websites and enter text, and the model was predicting much
slower performance for the task than was observed directly. After verification of the cognitive
modeling system (which is based in part on results from Experiment 8A), it was hypothesized that
the experimental results generated in 1983 do not accurately predict the performance of today’s
computer users.

This new version of the experiment was built in 2008, and although the experiment was up and
running, no logging system were accurate enough for our needs. In some situations, the logger
slowed down the computer so much that it nearly doubled pilot experiment times. Our ideal goal
was to have a logger that was as good or better to what Card, Moran, and Newell used in their
verification experiments in 1983. (The original experiment specified a logging tolerance of 33 ms.
[2, p. 154]) Until we put together the system described in this report, we had not found an accurate
logging system, and could not run our experiment.

1

http://www.google.com/calendar/
http://www.google.com/calendar/


2 Existing Tools
For this project, we first evaluated several tools for both measuring and injecting latency. Some
tools were useful with some modifications, and others were usable directly.

2.1 Measuring Latency
Latency can be measured by taking the time difference between user action and system response.
For our work, we wanted to record keyboard and mouse action at a high temporal resolution (within
10 ms of jitter). This level of resolution is required because interesting events in human cognition
happen at this timescale.

Initially, we wanted to be able to measure latency on both Windows and Mac OS systems. For
this reason, we looked first at RUI [8] and VIA [7].

2.1.1 RUI (Penn State)

RUI [8] (Recording User Input), available at http://acs.ist.psu.edu/projects/
RUI/, was developed for Windows and Mac OS to record and playback keyboard and mouse
inputs.

2.1.2 VIA (Rensselaer)

VIA [7] (Visualization-Interaction Architecture), available at http://www.cogsci.rpi.
edu/cogworks/?view=modules.research.spec&id=63, is a network-based mecha-
nism for logging. A small piece of code is written for each platform under examination which
connects to a logging server over TCP/IP. Its goals are similar to RUI: being a powerful tool for
logging human interaction for research.

2.1.3 X11 + Record Extension

Although initially we wanted to have a logging system that worked on Windows and Mac OS,
we realized that it was possible to relax this constraint. Because we were interested in testing
user interaction with a web application (Google Calendar), we could do just as well by using the
standard Firefox browser on a Linux based system with the X11 windowing system. The flexibility
of this system allows us to configure the mouse and keyboard to work as they do on either the Mac
or PC: an important consideration for users even when using a cross-platform application like a
browser.

Once we started using X11, we could leverage the standard Record Extension[14] that allows us
to record mouse and keyboard events with very low jitter. By using the standard X server, Firefox,
and unmodified Xnee[13] (a Record client), we were able to capture system-wide keyboard and
mouse events with high fidelity. Additionally, a separate program was created to capture the text
of the title of the active window as it changed while the user interacted with the system. Most
importantly, all three kinds of data (mouse, keyboard, and title) are captured as a single stream of
events with the same clock reference. This allows for easy reconstruction of events during later
analysis.

2

http://acs.ist.psu.edu/projects/RUI/
http://acs.ist.psu.edu/projects/RUI/
http://www.cogsci.rpi.edu/cogworks/?view=modules.research.spec&id=63
http://www.cogsci.rpi.edu/cogworks/?view=modules.research.spec&id=63


Another tool we looked at was PyKeylogger[5]. While nicer than Xnee in some ways, it did
not capture exact timings for keystrokes and mouse movements. Though it would be possible to
customize PyKeylogger to work as we needed, Xnee worked well enough for now that we did not
spend the effort of customization at this time.

2.1.4 Wireshark

Wireshark[3] is a program that captures and analyzes network packets. It is useful in logging
network traffic that goes between the local machine and any remote servers. Sophisticated packet
filtering and analysis are available. Though we didn’t use this advanced functionality yet, it is
likely to be useful in the future.

2.2 Injecting Latency
The second half of the system involves injecting latency into the system. This allows us to test
psychological hypotheses related to user reactions to varying system response times. Because
latency in different parts of the system will manifest in different ways, we need to be able to inject
latency in various places.

2.2.1 Application Level

To inject latency at the application level, one must intercept and delay events coming from the user
or delay the display of information going to the user.

In an existing study [6], we found that latency was injected using custom webpages with a
delay function written in JavaScript. This works when an experiment (like Galletta’s) has full
control over all content, but it doesn’t work when we do not control the server nor the pages (like
Google Calendar). In the next section, we discuss our solution to this issue.

2.2.2 Network Level

There are many ways of injecting latency at the network level, both in software and in hardware.
We will look at two existing tools that we are familiar with: NetEm[10] and the Apposite
Technologies Linktropy 4500[1]. Both work on the same principle, by slowing or limiting network
packets, network latency can be emulated. The difference is in the implementation: NetEm is
software, embedded in the Linux kernel, and the Linktropy is a hardware device that sits standalone
in a rack.

With NetEm, the standard way of injecting latency is a command like this: tc qdisc add
dev eth0 root netem delay 100ms. This will introduce an outgoing delay of 100 ms
to the network device eth0. Much more complicated setups are available, including introducing
packet loss, duplication, and reordering. All of these events are generated by customizable
statistical distributions, which allow for very realistic simulations. NetEm does have issues with
simulation of newer radio-based networks (UMTS, WiMax, and others), but work is ongoing to
address this[4].

The Linktropy 4500 basically encapsulates the functionality of NetEm into a hardware device
with a web-based simple user interface. Either of these tools can work to inject latency, though

3



NetEm may be more useful for rapidly and automatically changing parameters (for example,
between experimental cases), and for making per-packet decisions about how to apply emulation
settings.

3 Our Tools
As mentioned in the previous section, we initially started with the idea of using cross-platform
tools for logging. Since the experiment we are building is web-based, we were able to relax this
requirement and use a Linux system running X11. This gave us more flexibility in logging and
injecting latencies.

3.1 Keyboard, Mouse, and Titlebar Logging
For keyboard and mouse logging, we settled on using Xnee with the X Record Extension. Our
target machine was a Fedora 10 system on a modern ThinkPad. One important issue with using
this setup was that, by default, Fedora disables the Record Extension in X11.1 It was necessary to
recompile the X Server to enable this functionality. Once this was done, Xnee worked perfectly.

Below is an example trace log using our tools. This output was generated using Xnee and a
custom X client derived from the xev tool. For the lines that do not start with a timestamp, the 8th
field is the timestamp. Ignore fields that are not documented below:

Starts with Meaning
0,2 Key down, 6th value is keycode given by xmodmap -pk
0,3 Key up, 6th value is keycode given by xmodmap -pk
0,4 Mouse down, 5th value is mouse button
0,5 Mouse up, 5th value is mouse button
0,6 Mouse motion: next two values are (x, y) position
[timestamp] Active window (given by hex value) or titlebar has changed

In the lines with commas, the numbers given by the last column are in milliseconds, and represent
the X server’s clock. This number is typically the number of milliseconds since the kernel was
booted. This is the output from Xnee. In the lines that start with a bracket, the timestamp comes
first and is followed by the active window’s id and title. This output is from our custom tool.

The log below shows a user navigating from the terminal to a Firefox browser. The user enters
www.cmu.edu in the address bar, hits enter, and clicks on a link. Finally, the user closes the tab.
Some mouse motion is elided for brevity.

0,6,664,537,0,0,0,1041338
0,6,665,537,0,0,0,1041350
0,6,666,537,0,0,0,1041386
[1041667] 0x2c00007 agoode@localhost:˜/xnee-3.02
0,6,662,533,0,0,0,1041772

1This issue is tracked in Red Hat Bugzilla as https://bugzilla.redhat.com/show_bug.cgi?id=
472168.

4

https://bugzilla.redhat.com/show_bug.cgi?id=472168
https://bugzilla.redhat.com/show_bug.cgi?id=472168


0,6,661,532,0,0,0,1041785
0,6,657,528,0,0,0,1041802
0,6,649,520,0,0,0,1041816
0,6,648,519,0,0,0,1041831

... mouse elided ...

0,6,667,347,0,0,0,1043375
0,6,679,347,0,0,0,1043392
0,6,701,349,0,0,0,1043407

... mouse is over Firefox window, note the active window event below ...

[1043408] 0x4600121 Mozilla Firefox
0,6,711,351,0,0,0,1043423
0,6,729,355,0,0,0,1043440
0,6,737,357,0,0,0,1043449
0,6,743,359,0,0,0,1043462
0,6,744,359,0,0,0,1043527

... user clicks to bring Firefox to the front, note the mouse down, mouse up ...

0,4,0,0,1,0,0,1043552
0,5,0,0,1,0,0,1043625
0,6,743,359,0,0,0,1043764
0,6,743,358,0,0,0,1043789
0,6,741,357,0,0,0,1043802
0,6,735,349,0,0,0,1043813
0,6,719,327,0,0,0,1043833
0,6,709,307,0,0,0,1043847

... mouse elided ...

0,6,615,157,0,0,0,1044800
0,6,615,155,0,0,0,1044830
0,6,614,155,0,0,0,1044845
0,6,614,154,0,0,0,1044858

... user clicks on address bar (mouse down, mouse up) ...

0,4,0,0,1,0,0,1045009
0,6,614,155,0,0,0,1045039
0,5,0,0,1,0,0,1045097
0,6,614,154,0,0,0,1045147
0,6,614,153,0,0,0,1045275

... user types “www.cmu.edu” and presses enter (note the key down, key up events) ...

5



0,2,0,0,0,25,0,1045693
0,3,0,0,0,25,0,1045757
0,2,0,0,0,25,0,1045851
0,3,0,0,0,25,0,1045907
0,2,0,0,0,25,0,1046010
0,3,0,0,0,25,0,1046089
0,2,0,0,0,60,0,1046146
0,3,0,0,0,60,0,1046295
0,2,0,0,0,54,0,1046296
0,2,0,0,0,58,0,1046391
0,3,0,0,0,54,0,1046429
0,3,0,0,0,58,0,1046488
0,2,0,0,0,30,0,1046540
0,3,0,0,0,30,0,1046619
0,2,0,0,0,60,0,1046755
0,3,0,0,0,60,0,1046843
0,2,0,0,0,26,0,1046879
0,2,0,0,0,40,0,1046935
0,3,0,0,0,26,0,1047014
0,2,0,0,0,30,0,1047038
0,3,0,0,0,40,0,1047076
0,3,0,0,0,30,0,1047148
0,2,0,0,0,36,0,1047229
0,3,0,0,0,36,0,1047317
[1047911] 0x4600121 Carnegie Mellon University - Mozilla Firefox
0,6,614,154,0,0,0,1048341
0,6,613,154,0,0,0,1048450
0,6,613,155,0,0,0,1048529
0,6,612,155,0,0,0,1049238
0,6,611,155,0,0,0,1049263
0,6,610,155,0,0,0,1049265
0,6,608,156,0,0,0,1049282
0,6,600,156,0,0,0,1049292
0,6,597,156,0,0,0,1049309
0,6,594,156,0,0,0,1049323

... mouse elided ...

0,6,473,684,0,0,0,1056114
0,6,474,683,0,0,0,1056154
0,6,475,683,0,0,0,1056177
0,6,475,682,0,0,0,1056188
0,6,476,681,0,0,0,1056203
0,6,476,680,0,0,0,1056218
0,6,477,680,0,0,0,1056231

6



0,6,476,680,0,0,0,1056890
0,6,475,680,0,0,0,1057088
0,6,474,680,0,0,0,1057226

... user clicks on a link ...

0,4,0,0,1,0,0,1057903
0,5,0,0,1,0,0,1057984
0,6,474,681,0,0,0,1057995
[1058634] 0x4600121 Alice 3 Software - Carnegie Mellon University - Mozilla Firefox
0,6,474,680,0,0,0,1060027
0,6,475,679,0,0,0,1060057
0,6,477,671,0,0,0,1060089
0,6,478,669,0,0,0,1060103
0,6,480,657,0,0,0,1060116
0,6,484,647,0,0,0,1060130
0,6,488,623,0,0,0,1060143
0,6,490,607,0,0,0,1060158
0,6,490,593,0,0,0,1060175
0,6,494,563,0,0,0,1060186

... mouse elided ...

0,6,362,249,0,0,0,1061363
0,6,362,250,0,0,0,1061375
0,6,363,251,0,0,0,1061575
0,6,363,252,0,0,0,1061596
0,6,364,253,0,0,0,1061615
0,6,364,254,0,0,0,1061703
0,6,364,255,0,0,0,1061871

... user clicks close tab button ...

0,4,0,0,1,0,0,1061962
0,6,365,255,0,0,0,1061972
0,5,0,0,1,0,0,1062037
[1062195] 0x4600121 Mozilla Firefox
0,6,365,256,0,0,0,1062659
0,6,367,256,0,0,0,1062671
0,6,369,257,0,0,0,1062684

It is with this logging output that we can record and analyze user actions in an experiment.

7



3.2 Application Level Delay and Logging
To inject delays into web apps, we implemented a simple (but flawed) JavaScript using the
Greasemonkey[9] framework. The script injects itself into any webpage loaded in the browser
and runs JavaScript code whenever a key is pressed or the mouse is clicked. In theory, with this
mechanism, any event can be delayed on its way from the user to a web application. Unfortunately,
JavaScript provides no current way for a function to synchronously delay execution. Workarounds
exist, but frequently fail. Although this mechanism worked sometimes, it often halted the browser,
breaking the interaction with the user. Another scheme must be found if application level delay is
required.

The Greasemonkey script also logged the events it delayed by connecting to a logging server
running on the local machine. Because Greasemonkey scripts cannot access the filesystem, logging
had to be done via the GM_xmlhttpRequest method. A simple logging server implemented in
Python was written to listen for these log events.

3.3 Network Level Delay
To introduce network delays, we used NetEm (as described in section 2.2.2) running on the local
machine. With this setup, we could rapidly change the delay parameters as often as necessary, and
could even selectively delay some packets and not others.

3.4 Network Logging
To log packets, we used Wireshark (as described in section 2.1.4).

4 Validation
We did not do any kind of analysis on latency injection. For latency measurement, we performed
validations with the help of a special microphone, a video camera, and software called ELAN[12].

4.1 Experimental Setup
In order to verify the quality of each logger, we decided to measure the sounds of keystrokes with
a sensitive microphone and then correlate the waveforms with the output of the logger.

The laptop is a ThinkPad T61. The microphone is a suction cup type, specifically a Peterson
Signalflex SF20 Guitar Tuner Pickup microphone (see Figure 1). The microphone is placed on the
trackpad of the laptop, which provides excellent signal from the sounds of keypresses and mouse
click (see Figure 2). A video camera is mounted on a tripod and is aimed at the laptop. The
microphone connects to the video camera through a cord.

4.2 Analysis
The software used for the validation is ELAN[12]. Its intended use is to annotate videos for
language processing. In our case, we use it to mark the peaks of the key press/release or mouse

8



Figure 1: The Peterson Signalflex FL20 Guitar Tuner Pickup.

Figure 2: Closeup of the ThinkPad T61 with attached trackpad microphone.

click/release and then note what was pressed, was it a press or release, and what task was currently
being undertaken by the user. (See figure 3.)

ELAN makes it very easy to move carefully through the video and audio to make sure that
the annotation was placed correctly. Although video and audio are both captured, the video does
not have enough temporal resolution as audio (NTSC video runs at 60 Hz, a frame every 16.67
ms), and is only used as a guide. All analysis is done exclusively with audio. Once annotation is
complete, the annotations are exported from ELAN in CSV format.

After the data is exported, a “zero point” event is identified that matches a data point in both
the logging data and the ELAN annotation. The difference is then calculated from all subsequent
points. It is computed by subtracting the ELAN time from the logger time. Absolute difference is
also computed. From there, the mean difference and mean of absolute differences are computed.
An example of this data for Xnee is shown in table 1. RUI 1.0 is shown in table 2 and RUI 2.03 is
shown in table 3. The zero point (shown in line 3 for Xnee, line 9 for RUI 1.0, and line 1 for RUI
2.03) is thrown away and not used in averages or any other calculations for the validation.

9



Figure 3: Audio and video in the ELAN interface.

Event type Xnee time (ms) ELAN time (ms) Diff. (ms) Abs. Diff. (ms)
Mouse down −2865 −2863 −2 2
Mouse up −2724 −2730 6 6
Key down 0 0 0 0
Key down 234 229 5 5
Mouse down 2567 2688 −121 121
Mouse up 2687 2708 −21 21
Mouse down 3996 3987 9 9
Mouse up 4155 4149 6 6
Mouse down 7085 7073 12 12
Mouse up 7225 7179 46 46
Mouse down 8235 8225 10 10
Mouse up 8365 8365 0 0

Table 1: Data for verification of Xnee. Because marking points in ELAN is a tedious manual process,
only 12 points are identified (including the zero point).

4.3 Results
Analysis was done on three loggers: RUI 2.03, RUI 1.0, and Xnee.2 The results are summarized
in Table 4. For each observed event, a time difference is computed. For each logger, the mean of
differences and the mean of absolute differences is shown in the results.

2VIA slowed down interaction with the interface so much that even if the logging were accurate, it would not be
suitable for obtaining natural interaction patterns with an interface. Therefore, we did not analyze the accuracy of the
VIA logger.

10



Event type RUI 1.0 time (ms) ELAN time (ms) Diff. (ms) Abs. Diff. (ms)
Key down 12499 12490 9 9
Key down 12733 12730 3 3
Mouse down 22186 22320 −134 134
Mouse down 33983 34130 −147 147
Mouse down 47983 48170 −187 187
Mouse down 71108 71260 −152 152
Mouse down 73842 74000 −158 158
Mouse down 82936 83100 −164 164
Key down 84030 84030 0 0
Key down 84358 84350 8 8
Key down 85217 85210 7 7
Mouse down 86936 87080 −144 144
Key down 87670 87710 −40 40
Key down 87967 87950 17 17
Mouse down 100327 100500 −173 173
Mouse down 102749 102920 −171 171
Mouse down 109545 109700 −155 155
Mouse down 117499 117670 −171 171
Mouse down 122186 118020 4166 4166
Mouse down 127592 127740 −148 148
Key down 131108 131270 −162 162
Key down 131264 131350 −86 86

Table 2: Data for verification of RUI 1.0.

Event type RUI 2.03 time (ms) ELAN time (ms) Diff. (ms) Abs. Diff. (ms)
Mouse down 22226 22226 0 0
Key down 25461 25508 −47 47
Mouse down 27206 26666 540 540
Mouse down 28023 28034 −11 11
Mouse down 30742 30756 −14 14
Mouse down 31539 31428 111 111
Mouse down 32882 32778 104 104
Key down 34711 34770 −59 59
Mouse down 36366 35694 672 672
Mouse down 36757 36630 127 127
Mouse down 37226 37242 −16 16
Mouse down 38736 38598 138 138
Mouse down 40054 39972 82 82

Table 3: Data for verification of RUI 2.03.

11



Logger Mean Difference (ms) Mean of Absolute Differences (ms) # Events
RUI 2.03 136.00 160.00 12
RUI 1.0 PC 92.00 291.00 21
VIA N/A N/A N/A
Xnee −4.55 21.64 11

Table 4: Results of analysis of four loggers. VIA has no results because its method of data collection
wasn’t optimally suited for our task.

We can see that the Xnee solution is an order of magnitude more precise in measuring user
events than other tools, and gets closer to the tolerance of the original experiment: “Accuracy of
time-stamping was to within 33 msec of the actual time of event at the terminal.”[2, p. 154] While
our system is well on the way to being a useful tool, it still needs some work to reach the level of
accuracy seen in 1983. Ensuring the use of high-speed timers and applying some kernel tuning to
reduce jitter may help to eliminate the remaining accuracy issues. These issues are part of ongoing
operating systems research [11].

5 Acknowledgements
This research was supported by the National Science Foundation (NSF) under grant number CNS-
0833882. Any opinions, findings, conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF or Carnegie Mellon
University.

References
[1] APPOSITE TECHNOLOGIES. Linktropy 4500. http://www.apposite-tech.com/products/4500.

html.

[2] CARD, S. K., MORAN, T. P., AND NEWELL, A. The Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA, 1983.

[3] COMBS, G., ET AL. Wireshark. http://www.wireshark.org/.

[4] FABINI, J., REICH, P., AND POROPATICH, A. A generic approach to access network modeling for next
generation network applications. Networking and Services, 2008. ICNS 2008. Fourth International Conference
on (March 2008), 254–260.

[5] FOLKINSHTEYN, D. PyKeylogger. http://pykeylogger.sourceforge.net/.

[6] GALLETTA, D. F., HENRY, R. M., MCCOY, S., AND POLAK, P. When the Wait Isn’t So Bad: The Interacting
Effects of Website Delay, Familiarity, and Breadth. Information Systems Research 17, 1 (2006), 20–37.

[7] GRAY, W. D., SCHOELLES, M., KOTFILA, C., GAMARD, S., AND VEKSLER, V. D. Visualization-Interaction
Architecture. http://www.cogsci.rpi.edu/cogworks/?view=modules.research.
spec&id=63.

[8] KUKREJA, U., STEVENSON, W. E., AND RITTER, F. E. Rui—recording user input from interfaces under
windows and mac os x. Behavior Research Methods 38, 4 (2006), 656–659.

12

http://www.apposite-tech.com/products/4500.html
http://www.apposite-tech.com/products/4500.html
http://www.wireshark.org/
http://pykeylogger.sourceforge.net/
http://www.cogsci.rpi.edu/cogworks/?view=modules.research.spec&id=63
http://www.cogsci.rpi.edu/cogworks/?view=modules.research.spec&id=63


[9] LIEUALLEN, A., BOODMAN, A., AND SUNDSTRÖM, J. Greasemonkey. https://addons.mozilla.
org/en-US/firefox/addon/748.

[10] LINUX NETWORK DEVELOPERS. netem. http://www.linuxfoundation.org/en/Net:Netem.

[11] MANN, V. Operating system jitter. http://domino.research.ibm.com/comm/research_
projects.nsf/pages/osjitter.index.html.

[12] MAX PLANCK INSTITUTE FOR PSYCHOLINGUISTICS. Elan. http://www.lat-mpi.eu/tools/
elan/.

[13] SANDKLEF, H. GNU Xnee. http://www.gnu.org/software/xnee/.

[14] ZIMET, M. Record Extension Protocol Specification. Network Computing Devices, Inc., 1994.

13

https://addons.mozilla.org/en-US/firefox/addon/748
https://addons.mozilla.org/en-US/firefox/addon/748
http://www.linuxfoundation.org/en/Net:Netem
http://domino.research.ibm.com/comm/research_projects.nsf/pages/osjitter.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/osjitter.index.html
http://www.lat-mpi.eu/tools/elan/
http://www.lat-mpi.eu/tools/elan/
http://www.gnu.org/software/xnee/

