A Logic for Reasoning About Time-Dependent
Access Control Policies

Henry DeYoung

May 20, 2008
CMU-CS-08-131

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Advisors:
Frank Pfenning
Deepak Garg

Submitted in partial fulfillment of the
Senior Research Thesis Program.

This work was sponsored in part by the National Science Foundation under grant no. NSF-0716469 and the Air
Force Research Laboratory under grant no. FA87500720028. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing official policies, either expressed or implied, of
any sponsoring institution, the U.S. government, or any other entity.

Keywords: access control systems, authorization logic, proof-carrying authorization, temporal
logic, hybrid logic

Abstract

Allowing access to resources, including data and hardware, without compromising their security
is a fundamental challenge in computer science. Because of the number and complexity of au-
thorization policies in access control systems, it is clear that ad hoc methods for specifying and
enforcing policies cannot inspire a high degree of trust. Authorization logics have been proposed
as a theoretically sound alternative.

However, for an authorization logic to be useful in practice, it should be able to model most,
if not all, naturally occurring policy features. One common feature is the time-dependency of au-
thorizations. For example, a user may only be permitted to access a given resource on workdays.
Surprisingly, of the numerous proposals for access control logics, we know of no logic that incorpo-
rates time internally.

In an attempt to fill this void, this thesis develops a logic with explicit time that permits rea-
soning about complex, yet natural, time-dependent authorizations. The logic is then extended to
account for authorizations that may be used only once. A careful study of the meta-theory of both
logics is conducted, and the logics’ rich expressive power is demonstrated through several examples.
Finally, a proof checker for the latter logic is formalized and discussed.

Acknowledgments

First, I would like to express my gratitude to Frank Pfenning for taking time out of his very busy
schedule to advise me this year, and for helping me gain valuable experience in the research process.
I would also like to thank him for suggesting such an interesting and accessible thesis topic.
Second, I wish to thank Deepak Garg for being so exceptionally generous with his time and
advice, and for his patience while introducing me to new topics and reviewing old ones.
Finally, I would like to thank my family for their love, support, and encouragement over not
only the course of this thesis, but also at every step in my education.

Contents

1 Introduction
1.1 Related Work e

2 Preliminaries: Garg-Pfenning Authorization Logic

2.1 Logical System
2.1.1 First-order Terms and Sorts
2.1.2 Judgments
2.1.3 Propositions
2.1.4 Inference Rules

2.2 Examples e
2.2.1 Office Entry e
2.2.2 Chemical Laboratory Inspections

2.3 Meta-theory L

2.4 Conclusion e

3 1nn Logic

3.1 Logical System e
3.1.1 First-order Terms and Sorts
3.1.2 Constraints e e e
3.1.3 Judgments
3.1.4 Propositions e
3.1.5 Imference Rules

3.2 Examples e
3.2.1 Office Entry
3.2.2 Journal Publication

3.3 Meta-theory and Correspondence to GP Logic.
3.3.1 Meta-theory e
3.3.2 Correspondence to GP Logic

3.4 Conclusion e e e

4 n; Logic
4.1 An Overview of Linear Logic
4.2 Logical System

vii

17
17
17
18
18
19
20
25
25
27
28
28
29
31

viii

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3.1

4.3.2 Filling Painkiller Prescriptions

4.3.3 A Homework Assignment Administration System
4.4 Meta-theory
4.5 Conclusion

A Proof Checker for n; Logic
5.1 Formal Proof Checker
Sorts, Function Symbols, and Predicates
Terms,

5.1.1
5.1.2
5.1.3
5.14
5.1.5
5.1.6

5.2.1

5.2.3
5.2.4

5.3 Conclusion

Conclusion
6.1 Future

First-Order Terms and Sorts

Constraints
Judgments
Propositions

Inference Rules
4.3 Examples

Office Entry

Constraints

Propositions and Types
Proof Terms and Their Typing Judgments
Inference Rules
5.2 Implementing the Proof Checker
Explicit Substitutions
5.2.2 de Bruijn Indices
Linearity

Constraints

Work

CONTENTS

List of Figures

2.1

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
0.7

The inference rules for Garg-Pfenning logic.

The inference rules for ny logic.o
The inference rules for ny logic, continued.

The inference rules for iz, logic.
The inference rules for ng logic, continued. oo

The well-formedness rules for signatures and sorts.
The well-formedness rules for parameter contexts and terms.
The well-formedness rule for constraints and constraint contexts.
The well-formedness rules for propositions and categorical judgments.
The well-formedness rules for proof contexts.
The bidirectional typing rules. L oo
The bidirectional typing rules, continued.

X

12

Chapter 1

Introduction

The tension between protecting an object and allowing it to be used or displayed is a fundamental
one, even for objects that are not digital. For example, how can intruders be prevented from reading
a classified document while still allowing the members of that document’s security compartment
to read and edit it? Or, how can the public be prevented from using a departmental photocopier,
while still allowing members of the department to use it?

Because of this fundamental tension, organizations usually establish policies that delineate the
conditions under which an object can be accessed. These policies, along with a mechanism for their
enforcement, constitute an access control system. But an access control system is valuable only if
it can be trusted to be correct: the policies must allow only what is desired by the organization
and the system must correctly enforce all of the policies.

As access control systems become more widespread and more complex, it is increasingly clear
that ad hoc methods can no longer guarantee a sufficient level of trust in the system’s correctness: a
formal approach to access control is needed. One promising avenue is the use of logic for specifying
policies. Given an appropriately defined logic, policies can be encoded as concrete logical structures,
rather than relying on abstract policy descriptions.

But why is logic a solid foundation for access control? The specification of policies in a logic
provides three important benefits. First, once written in a formal logic, policies have precisely
specified meanings. The ambiguity inherent in a natural language formulation no longer exists.
Instead, the semantics of the logic define the meaning of a policy exactly.

Second, by expressing them in a logic, access control policies can be enforced by proof-carrying
authorization (PCA) [6, 7]. In a PCA-based access control system, each resource is guarded by a
resource monitor. A user requesting access to a resource must present the corresponding resource
monitor with a formal proof of why she is authorized, under the system’s policies, to access that
resource. The monitor then checks this proof for correctness. If the proof is correct, access is
granted; if the proof is incorrect, access is denied.

In PCA, then, the logical model of access control coincides with access control in the real world:
access is granted in practice if, and only if, it is granted formally by the logical forms of the policies.
In this way, a PCA-based implementation of an access control system is guaranteed to correctly
adhere to that system’s policies, whatever they may be.

Third, policies written in a logic can be subjected to extensive meta-analysis. For example,

2 CHAPTER 1. INTRODUCTION

non-interference properties of the logic can be proven and used in this analysis, as demonstrated by
Garg and Pfenning [24]. Potentially unintended consequences of the policies can then be discovered
by automated, or semi-automated, policy analysis tools based on these properties. This and other
meta-analyses increase confidence in policies’ correctness.

To take advantage of these benefits, it is crucial that the underlying authorization logic be able
to model as many policy motifs as possible. In some cases, if the logic cannot express a critical
feature of some policy, that feature could be enforced by extra-logical methods. But by abandoning
the use of logic and reverting to ad hoc methods, the above benefits will no longer apply to that
feature. Specifically, although a PCA proof may be correct according to the logic’s rules, access
may still be denied due to the failure of the extra-logical checks. This destroys the correspondence
between the logical model of access and access in practice. Even worse, meta-analysis of the formal
policies cannot be used to guarantee their correctness with respect to an informal specification
because the logic does not model a critical feature.

For this reason, when designing an authorization logic, common policy motifs should be con-
sidered for inclusion. One such motif is time. It is often desirable to limit the times during which
a resource can be accessed or to grant authorizations that expire. For example, students should
not be able to view the solutions to a homework assignment until after the due date. Because of
the ubiquity of such time-dependent access control policies, one would hope that an authorization
logic incorporating time exists.

Surprisingly, of the numerous logics [2, 4, 24, 23, 30, 6, 14, 29, 22] and languages [10, 18, 39]
proposed in the access control literature, few allow time-dependent policies. Those that do handle
time, such as SecPAL [10], do so using extra-logical mechanisms: we know of no authorization logic
that incorporates time internally. This void motivates us to develop an authorization logic with
time.

Because time-dependent authorizations typically use explicit times, such as “between 9am and
5pm” or “during the month of May 2008,” the logic developed in this thesis incorporates explicit
time intervals rather than relative times, such as “at some time in the future.” For this reason, the
logic is dubbed 7 logic, where 1 (spelled “eta”) stands for Explicit Time Authorization.

n logic borrows ideas from constructive hybrid logic [13, 37, 16, 11] to model time intervals
as possible worlds in which propositions may be true. Accordingly, the @ connective of hybrid
logic is used to relativize the truth of a proposition to a time interval, as in A @ I. 7 logic also
adopts techniques from constraint-based reasoning [38, 27] to manage an inclusion relation between
intervals.

Another common policy motif is that of consumable credentials. One often wants to allow
only a finite number of accesses. For example, students might be freely authorized to make 250
photocopies per semester and must purchase the authorization to make additional copies. That is,
a finite number of accesses are free of charge.

An authorization logic that can express changes of state would be able to account for such
policies. Linear logic [26, 17] is a logic that can model consumable resources. For this reason, logics
of authorization that include ideas from linear logic have been proposed [23, 14]. To incorporate
linear policies in addition to time-dependent ones, 1 logic is extended with techniques from linear
authorization logics. Thus, n logic is actually a family of logics comprised of a non-linear n logic,
nn logic, and a linear n logic, ny, logic.

1.1. RELATED WORK 3

In summary, this thesis makes two conceptual contributions. First, an authorization logic that
directly incorporates time is developed and its applicability to natural time-dependent policies is
demonstrated. Second, the linear version of 7 logic shows that linearity can peacefully coexist with
explicit time. This was not initially obvious because both linearity and time “consume” objects:
linearity by usage and time by expiration.

This thesis also makes a small practical contribution. The natural deduction proof checker
presented shows that a full-fledged PCA implementation of 1z, logic should be easily constructible,
at least in a centralized system.

Finally, it should be noted that this thesis lies in the same line as earlier joint work with Garg
and Pfenning [19], and describes the latest version of n logic.

1.1 Related Work

Authorization Logics and Languages. We provide only a brief overview of the vast literature
on logics and languages for access control. For more information, the reader is referred to a survey
by Abadi [1].

The study of access control logics was initiated by Abadi, Burrows, and Lampson [4, 29] in
two landmark papers. This work was the first to introduce the “says” connective for modeling the
policies of principals, a connective found in nearly all authorization logics that followed. The work
also considered an algebra over principals to model groups, delegation, and jointly made policies. 7
logic does not include such an algebra in this thesis, and instead relies on universal quantification
to account for groups and limited delegation, as in earlier work [24].

Breaking from the classical pattern of the work of Abadi et al., Garg and Pfenning [24] were the
first to propose a constructive authorization logic. In addition, they proved several non-interference
theorems for their logic. Garg et al. [23] continued this study by adding linearity and knowledge to
their logic. 7 logic is primarily derived from these constructive authorization logics. The affirmation
judgment, linearity, judgmental formulation, and constructive philosophy are all adopted from those
works.

Subsequently, Abadi interpreted work on the Dependency Core Calculus [3] as a calculus of
access control, obtaining a logic with lax-like modalities [2] similar to that of Garg and Pfen-
ning. However, Abadi significantly extended the earlier work by describing a different, but related,
non-interference theorem, proof terms through the Curry-Howard isomorphism, and second order
quantification.

Notable policy languages for access control include SecPAL [10] and Binder [18]. SecPAL is the
only authorization logic or language that we know of to handle time. However, in SecPAL, time
restrictions are enforced by an external constraint mechanism and not reasoned about within the
language. Binder extends the datalog logic programming language with constructs for reasoning
about authorization.

Logics for Time. Incorporating time into logics has been the subject of much study. The most
common class is that of temporal logic [31] in which times are relative to each other. Most temporal
logics include the [, {, and () modalities for representing all future times, some future time, and
the next time (in a discrete system), relative to the current time. But, having only these relative

4 CHAPTER 1. INTRODUCTION

modalities, temporal logics cannot refer to absolute times. Temporal logics were indeed briefly
considered for the design of a time-dependent authorization logic in this thesis. However, because
access control policies typically refer to absolute, and not relative, times, this approach was rejected.

Closely related to traditional temporal logic is interval temporal logic [33], which represents an
interval as a discrete sequence of events. Again, these times are relative and seem unsuitable for
authorization policies.

In a departure from the temporal logic paradigm, Kanovich et al. [28] have modeled real-time
systems using linear logic and a distinguished predicate Time(t) to represent the time ¢. While
this approach permits the absolute representation of time that appears necessary for access control
policies, it still seems too weak in a different way. For example, it is not clear how to express a
conjunction of A occurring at time t4 and B occurring at time tg.

Closest in spirit to 7 logic is Temporal Annotated Constraint Logic Programming (TACLP) [21].
TACLP contains a connective similar to the @ connective of n logic, but only allows it to annotate
atomic propositions with time intervals. TACLP also differs from 7 logic in that the former is not
an authorization logic; the fundamental interaction between time and authorization handled by 7
logic is nontrivial, and is therefore a unique contribution of n logic.

Hybrid Logic. To represent the interval at which a proposition is true, n logic borrows ideas
from hybrid logic [11]. Hybrid logic extends modal logic by allowing the possible worlds to appear
within propositions.

As n logic is constructive, it is most closely related to the constructive hybrid logics presented
by Brauner and de Paiva [13] and Chadha et al. [16]. Reed [37] also describes a constructive hybrid
logical framework that inspired the hybrid features of n logic.

Constraint-Based Reasoning. The incorporation of constraints into the proof theory of n logic
is heavily derived from earlier work by Saranl and Pfenning [38] on a logic for robotic planning
and work by Jia [27] in the context of reasoning about memory invariants. Jia’s comments on the
tradeoffs of including disjunctive constraints informed the decision to keep the constraints of n logic
simple.

Linear Logic. In his influential paper on the subject, Girard pioneered linear logic [26], a logic
for modeling consumable resources and other kinds of mutable state. Later, Chang et al. [17]
introduced a judgmental reconstruction of intuitionistic linear logic by refining the hypothetical
judgment. As ny, logic is also based on judgmental principles, a similar refinement is used.

The inclusion of linearity in an authorization logic to model finitely-usable credentials is certainly
not unique to ny, logic; it was first adopted by Garg et al. [23] and independently discovered by
Cederquist et al. [14].

Enforcing the single-use nature of consumable certificates in an implementation of a linear au-
thorization logic is relatively straightforward if the certificates are stored in a central database.
Bowers et al. [12] discuss the more difficult problem of coordinating accurate consumption of dis-
tributed certificates, and suggest contract-signing protocols as a solution.

Proof-Carrying Authorization. Appel and Felten [6] introduced proof-carrying authorization

1.1. RELATED WORK)

(PCA) as a mechanism for enforcing access control policies via higher-order logic. In their inter-
pretation, security policies are written in an application-specific logic and encoded in higher-order
logic. Then, before access will be granted, the user must construct a correct, explicit proof of why
the security policies justify access. Thus, access in practice and access in the logic coincide. To
take advantage of this correspondence, we intend that 7 logic be amenable to PCA enforcement.

Previous implementations of PCA have been used to control access to webpages [7] and offices [9,
8]. Recently, Vaughan et al. [39] have designed a strongly typed language that directly incorporates
PCA. It would be interesting to explore how time could be added to this language by using ideas
from n logic.

Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews a non-linear logic of autho-
rization that does not use time. Examples are given to clarify the use of the logic and demonstrate
the need for time-dependent policies. In Chapter 3, we develop ny logic. Examples highlight the
increased expressive power of 7y logic and indicate the need for linear policies. Meta-theoretic
properties of the logic are proven, increasing our confidence in the logic’s soundness. Chapter 4
extends the previous logic by adding linearity. As the examples show, linearity increases the ex-
pressive power even more. The meta-theoretic properties are also extended to account for linearity.
Finally, Chapter 5 presents a natural deduction formulation of 7y, logic and briefly describes the
corresponding implementation.

Chapter 2

Preliminaries: Garg-Pfenning
Authorization Logic

1 logic draws very heavily from a constructive, proof-theoretic authorization logic developed by
Garg and Pfenning [24]. Before presenting n logic, it will be useful to review this logic (hereafter
GP logic). This review will allow us to introduce concepts from proof-theoretic authorization logics,
including the key concept of affirmation, will familiarize the reader with the expression of access
control policies in an authorization logic through two examples, and will afford us an opportunity
to present some meta-theory.

2.1 Logical System

Proof-theoretic logics, as an alternative to axiomatic logics, were first introduced by Gentzen [25].
These logics make the meanings of propositions exact by precisely specifying how each form of
proposition may be verified. By coinciding a logic’s semantics with its syntactic proofs, proof
theory provides a high degree of assurance in that logic’s correctness.

Later, Martin-Lof introduced a distinction between judgments and propositions [32]. Under
this formulation, a judgment is an object of knowledge and is made evident by a formal proof.
Propositions, then, are the subjects of judgments.

GP logic adheres to both of these fundamental ideas in an effort to keep the meanings of proofs
clean and direct. (For details on this judgmental approach, the reader is referred to a discussion
by Pfenning and Davies [34].) We begin by reviewing the first-order terms and sorts of the logic.
Next, we introduce the truth and affirmation judgments that form the foundation of GP logic. This
introduction is carefully separated from the description of the logic’s propositions, to emphasize
Martin-Lof’s distinction. Finally, we present the proof rules of GP logic as a Gentzen-style sequent
calculus.

2.1.1 First-order Terms and Sorts

To account for atomic propositions built from predicates and for universal and existential quantifi-
cation, GP logic contains terms ¢ which are classified by sorts s. That term ¢ has sort s is denoted

7

8 CHAPTER 2. PRELIMINARIES: GARG-PFENNING AUTHORIZATION LOGIC

by the judgment ¢:s.

The particular sorts and terms available in GP logic are left open-ended, with the exception
that a sort principal of principals is specifically assumed. Principals are the entities, typically users
or machines, that can make statements of affirmation. The meta-variable K is used to stand for
an arbitrary principal.

Because we will want to be able to reason parametrically with terms, GP logic introduces a
context!, 3, to track the parameters in scope and their respective sorts. The syntax of a parameter
context is:

Y= X,xs

Thus, a parameter context is simply a map of parameter-sort pairings: it may be empty, written
as -; or, it may be a parameter context ¥ followed by the ascription of a sort s to a parameter x,
written as 3, x:s. To avoid ambiguities, we assume that all parameters declared in ¥ are distinct
from z; this convention can be maintained by implicitly a-renaming variables.

Since GP logic includes parameters, the judgment t:s must be extended to account for param-
eters, in addition to ground terms. The new judgment is:

YFts

meaning that term ¢ has sort s in parameter context . In particular, X, z:s F x:s holds. Also,
[t/x] stands for the capture-avoiding substitution of term ¢ for all occurrences of the free variable
x. In particular, [t/z]A is the proposition A with all free occurrences of x replaced by ¢.

2.1.2 Judgments

In GP logic, it is necessary to reason about the truth of propositions. That is, statements of the
form “Proposition A is true” are objects of knowledge and the subjects of proofs. Following Martin-
Lof’s philosophy, GP logic therefore includes the judgment form A true, which presupposes that A
is a well-formed proposition. For syntactic simplicity, the modifier true will often be dropped, so
that A will implicitly stand for the judgment A true.

However, the truth of propositions is not a sufficiently expressive notion upon which to base
an authorization logic. In addition to reasoning about objective truths, it is necessary to reason
about principals’ policies or intents. The approach taken by GP logic is to add a new judgment
form K affirms A, meaning that “Principal K affirms that proposition A is true.” A principal,
then, issues a policy by affirming the truth of that policy. The affirmation K affirms A should not
be interpreted narrowly as a direct statement of A by K. Instead, it may follow indirectly from
other affirmations made by K. For example, in an implementation, K affirms A will be established
either directly by a digital certificate signed by K containing A or indirectly by a logical derivation
stemming from such certificates.

These judgments of truth and affirmation are the basic judgment forms of GP logic. However,
they are of little use in isolation; in a logic, we need to be able to reason from hypotheses. The
mechanism that GP logic uses is termed a hypothetical judgment or sequent, an extension of a
basic judgment that explicitly lists the allowable assumptions.

! Although this meaning is distinct from its usage in the access control literature, we will continue to use this
terminology, as it is common in logic and type theory.

2.1. LOGICAL SYSTEM 9

Specifically, GP logic uses two hypothetical judgment forms:

;' = A true
¥, I' = K affirms A

where 3 is a context of the parameters, ascribed with sorts, that may appear free in I'; K, and A;
and I' is an unordered set of hypotheses of the form A true. In the following sections, we write ~y
in place of the basic judgment appearing to the right of = when its form does not matter; v may
stand for either A true or K affirms A.

The first of the above hypothetical judgments may be read “Under the hypotheses of I', propo-
sition A is true, parametrically in the terms of ».” Similarly, the second hypothetical judgment
states “Under the hypotheses of I, principal K affirms that proposition A is true, parametrically
in the terms of 3.”

2.1.3 Propositions

The syntax of propositions in GP logic is:
AB:=P|ANB|T|AVB|ADDB |Vris.A| dris.A| (K)A

GP logic contains nearly all of the ordinary connectives from first-order logic: atomic propositions,
P; conjunction, A A B; truth, T; implication, A D B; universal quantification, Vz:s.A; and existen-
tial quantification, Jz:s.A. But falsehood, L, is conspicuously absent. Falsehood is omitted from
nn logic for practical reasons that will be discussed in Section 3.1.4, and, for consistency, it is also
omitted here. However, it should be noted that adding falsehood does not affect the logic itself;
the meta-theorems presented in Section 2.3 have been verified with falsehood included.

Despite the close similarity of these propositions to those of first-order logic, there is one form
of proposition that is unique to authorization logics: (K)A, read “K says A”. This proposition
internalizes the affirmation judgment K affirms A, meaning that it is semantically equivalent to
K affirms A, but is a proposition rather than a judgment.

Having an affirmation proposition allows affirmations to be combined with logical connectives,
such as implication. For example, we could not combine the judgment K affirms A with the proposi-
tion B via implication because this would violate Martin-Lof’s distinction between judgments and
propositions: only propositions, and not judgments, can be operated on by the logical connectives.
But we can combine the proposition (K)A with the proposition B via implication as ((K)A) D B.

2.1.4 Inference Rules

GP logic possesses a proof-theoretic semantics, and its proof rules are thus critically important.
They, and not any other external semantics, establish the meaning of the truth and affirmation
judgments. We therefore proceed to present the proof rules of GP logic.

Each inference rule is written in the form:

J Jy ooy
7 label

10 CHAPTER 2. PRELIMINARIES: GARG-PFENNING AUTHORIZATION LOGIC

This notation means that if the premise judgments Jy, Js, ..., J, are evident, then the conclusion
judgment J is also evident by the rule named label. Note that n may be 0. In this case, the rule
has the form:

T label

and the conclusion judgment J is always evident: such rules are axioms.

With the notation explained, we can now describe the inference rules of GP logic. We begin by
examining the meaning of hypotheses through the init rule.

>0,pP— p Nt

We would expect that an assumption A true could be used to immediately conclude A true. This is,
in fact, the case. However, for technical reasons relating to proof search, we do not adopt this in its
full generality as an inference rule, but instead use the above init rule which restricts the direct use
of hypotheses to atomic propositions P. We can recover the more general form as a meta-theorem
(Theorem 2.1, Section 2.3).

Next, we consider the rules for the affirmation judgment and its internalization as a proposition.

»I=A
;' = K affirms A

affirms

When is an affirmation judgment evident? That is, when can we conclude that a principal K
affirms the truth of proposition A? If A is true, it is made evident by a proof. When this proof
is presented to K, K is confronted with irrefutable evidence of the truth of A. K cannot possibly
deny the truth of A, for doing so would violate K’s rationality. Instead, K must affirm it. Thus,
one way of establishing K affirms A is to establish A true. This is captured by the above affirms
rule.

In a sequent calculus, the meaning of each logical connective x is defined by a set of right rules
and a set of left rules. Right rules show how A x B true may be established, and left rules show
how a hypothesis A x B true may be used. For the () connective, there is one right rule and one
left rule:

;T = K affirms A) T (K)A, A = K affirms B
5= (K)A T (K)A = K affirms B

The right rule, () R, specifies that (K)A true may be established by evidence that K affirms A holds.
This is consistent with our above claim that the proposition (K)A is the internalization of the
judgment K affirms A. We now know how to verify (K)A true, but how does one use the hypothesis
(K)A true?

The left rule, ()L, gives instructions for how the hypothesis (K)A true may be used. Because
(K') A true represents the knowledge that K affirms A true, from K’s perspective, A may as well be
true. So, provided that we are reasoning about an affirmation made by K, that is, provided that
we are inside K’s mind, the hypotheses (K)A true and A true are equivalent.

This rule also holds principals accountable for their statements. Having affirmed A true, prin-
cipal K cannot refute it, and so (K)A may be used as A true when reasoning about an affirmation
made by K.

2.1. LOGICAL SYSTEM 11

We now review the inference rules for implication and universal quantification. A reader familiar
with the sequent calculus presentation of first-order logic may skip this discussion; there is nothing
unique to GP logic in the remaining rules.

First, we give the rules for implication.

SLA=B o S:T,A>B=A Y, A>B,B=~
ST — A>B - SiT,ADB=— 1~

DL

The implication A O B may be intuitively thought of as a plan for converting a proof of A true to
a proof of B true. Such a conversion can be established by assuming that a proof of A true is given
and constructing a proof of B true from this assumption. This is captured by the right rule, DR.
The conversion intuition also suggests that the hypothesis A D B true can be used by executing
this plan. Given A true, the plan A D B true can be carried out to produce B true. This intuition
is formalized in the left rule, DL.

Next, we give the rules for universal quantification.

Yrs; = A Yhts XN T\Vois A t/x]A = v
ST — Vos A 1 7y p—

VL

The right rule, VR, states that Vz:s.A true may be verified by establishing A true for all possible
terms of sort s. This is done by introducing a new parameter x of sort s and establishing A true
parametrically in . Just as the implication A D B can be thought of as a plan for converting a
proof of A true to a proof of B true, the right rule, VR, suggests that Vx:s.A can be thought of as a
plan for creating a proof of [t/x]A true for any term ¢ of sort s. So, assuming such a plan and given
a term ¢ of sort s, the plan can be carried out to produce [t/z]A true. This intuition is captured
by the left rule, VL.

The remaining connectives of GP logic and their rules are taken directly from first-order logic,
as for implication and universal quantification. A summary of all of the inference rules in GP logic
is given Figure 2.1.

Before concluding this section, we illustrate some properties of GP logic. We write — A
if, for all X, ¥;- = A true is derivable, and write 7= A otherwise. Also, A = B abbreviates
(ADB)AN(BDA).

1. = AD ((K)A)

2. = ((K)(K)A4) > ((K)A)

3. = ((K)(A > B)) > ((K)A) > ((K)B))
4. #= ((K)A) > A

5. #= A

Properties 1-3 show that (K') is similar to a lax modality [20]. Property 4 highlights the difference
between truth and affirmation: truth is always affirmed (as shown in Property 1), but an affirmation
by some principal does not entail truth. Finally, property 5 establishes the consistency of GP logic
by demonstrating that an arbitrary proposition is not true a priori.

12 CHAPTER 2. PRELIMINARIES: GARG-PFENNING AUTHORIZATION LOGIC

Initial Rule
ST, pP— p Mt
’Afﬁrmation and <K)A‘
>’ = A p
;T = K affirms A attirms
;T = K affirms A) T, (K)A, A = K affirms B 0L
T — (K)A 5T, (K)A — K affirms B

’ Other Connectives ‘

W= A ¥ I'=—B

sT—AanrB B
Z;F,A/\B,A:’y/\L Z;F,A/\B,B:’y/\L
YT, ANB = ~ L YT, ANB =~ 2
ST—=1 ' f
YW= A VR, >;I'=—= B VR,
>;I'=—= AVB >;I'=—= AVB
BMLAVB A=y STAVBB=y
3IVAVB = v
>, I'YA=— B R Y5IADB=—A X I''ADB,B=~ SI
S T—A>B S:[,A> B =~
Yoo = A Yktis N0, Vais A t/x]A = v
ST — Vos A 1 ST Vas A — ~ VL
Ykts Z;F:[t/x]AEI E,x:s;F,EIx:s.A,A:>73L
;' = dx:s.A R X1 s A = v

Figure 2.1: The inference rules for Garg-Pfenning logic.

2.2. EXAMPLES 13

2.2 Examples

Now that we have presented the judgments and crucial inference rules of GP logic, the reader
should be sufficiently prepared to consider a few examples of policies written in GP logic. First,
we present an example that will recur throughout the remainder of this thesis: controlling access
to academic offices. Although this example is relatively small, it will still demonstrate the use of
affirmation in GP logic, and, in later chapters, highlight the increased expressive power of n logic.
Second, we examine the application of GP logic to chemical laboratory inspections.

In these examples, we adopt the conventions that vV and D are right associative, and that binding
precedence decreases in the order: (), V, D, V.

2.2.1 Office Entry

In this example, we describe two hypothetical policies for the Grey system [9, 8], an architecture
for controlling entry to academic offices that was developed and is currently deployed at Carnegie
Mellon University. In the Grey system, each office door is equipped with a processor that controls
access to the office through PCA. Following the standard PCA methodology, the office door will
unlock only if the principal requesting access presents the doorfront processor with a correct proof
that, under the security policies of the system, she is authorized to enter.

For this example, we postulate the existence of an administrating principal, admin, that controls
entry to the various faculty, staff, and student offices in his administrative domain. For simplicity,
we also assume that the ownership relation between principals and offices is an injective function,
so that each office can be named according to its owner.

Only one predicate is used here: may_enter. may_enter(Ks, K1) means that principal Ky is
allowed to enter K7’s office.

One reasonable policy to include in such a system is the authorization of every principal to
enter her own office. Because admin controls each office, this policy is expressed in GP logic as:

own : (admin) (VK :principal.may_enter(K, K)) true

This policy may be read as “The administrator says that each principal K may enter her own
office.” Although extremely simple, this policy exhibits an important point. Because the certificate
corresponding to an affirmation must be an independent object, it cannot contain free variables.
Thus, any quantifiers must appear inside the top-level affirmation, as seen in the own policy. For
example, the following logically equivalent formulation is difficult to enforce, as it requires one
certificate from admin for each member of the potentially expandable set of principals:

VK :principal.(admin)may_enter(K, K) true

Another reasonable feature to have in an office access control system is the ability of each office
owner to decide who may enter her office. To accomplish this, the administrator can agree to trust
office owners’ access control decisions:

trust : (admin) (VK :principal.VKs:principal.
(K1)may_enter(Ko, K1) D
may_enter(Ko, K1)) true

14 CHAPTER 2. PRELIMINARIES: GARG-PFENNING AUTHORIZATION LOGIC

This policy may be read as “The administrator says that, for all pairs of principals K; and Ko, if
K says K9 may enter K;’s office, then K9 may indeed enter K7’s office.” The trust policy expresses
a kind of delegation: K7 now speaks for admin on matters of K7’s office.

To clarify how the trust policy can be used, consider a professor Alice and her graduate student
Bob. Suppose that Alice is out of the office on May 7, 2008. Bob needs to retrieve a paper from
Alice’s office that he and Alice are collaborating on. He calls Alice and she agrees to issue the
following credential:

C : (Alice)may_enter(Bob, Alice) true

Bob then approaches Alice’s door and requests entry to her office using his cell phone. Before the
door will unlock, Bob must submit a correct proof of

YA,B;own, trust,C = (admin)may_enter(Bob, Alice) true

where XA g assigns sort principal to all principals in the system. That is, Bob must prove that
the administrator allows him to enter Alice’s office. Bob’s phone constructs the required proof by
simply applying the trust hypothesis to the C hypothesis (up to an approximation). The doorfront
processor checks this proof, and, since it is correct, unlocks the door.

Although this policy serves its purpose, it is a rather coarse approximation of the behavior
desired in general. It is likely that Alice wants the credential C to allow Bob access to her office
only on May 7, 2008. If he needs access at a later time, he should be required to contact Alice
again. But, under GP logic, once Alice issues credential C, Bob will be able to enter her office at
any time, even months or years after May 7, 2008!

As noted previously, time might be handled in such a system using extra-logical checks. But
then, the proof does not accurately reflect the true state of the system: access might be denied
even though the proof is correct. This inaccuracy, even for such a simple example as office entry,
motivates the development of 1 logic. We will revisit this example in Section 3.2.1 and show that,
in 7 logic, users can restrict access to their offices by time.

2.2.2 Chemical Laboratory Inspections

We now consider a more complicated example. Inspection duties of the United States Occupational
Safety and Health Administration (OSHA) include the oversight of chemical laboratories. As a
rough approximation, the inspection process can be thought of as a verification that all employees
of the laboratory are “safe” in some appropriately defined way. OSHA will certify the laboratory
only if this safety can be guaranteed.

To model the inspection process in GP logic, we assume the existence of a sort, lab, of chemical
laboratories and the existence of a distinguished principal OSHA. The following predicates are
required:

is_.employee(K, L) Principal K is an employee of lab L.
is_-manager(K,L) Principal K is a manager of lab L.
is_technician(K, L) Principal K is a technician of lab L.
is_janitor(K, L) Principal K is a janitor of lab L.

is_safe(K, L) Principal K is safe in lab L.

is_certified (L) Lab L is certified and may continue operating.

2.3. META-THEORY 15

It is reasonable to assume that OSHA classifies each employee of a laboratory according to his
job description. We assume that the three classes established by OSHA are: manager, technician,
and janitor. This classification policy can be expressed as:

job : (OSHA)(VL:lab.VK :principal.
is_employee(K, L) D
(is_manager(K, L) vV
is_technician(K, L) V
is_janitor(K, L))) true

This policy provides a method for distinguishing the job that an employee holds. Employees holding
different positions may be “safe” under different conditions. For example, janitors may be exposed
to chemicals but need not operate lab equipment, while technicians will handle chemicals and
operate equipment. For this reason, a janitor might be “safe” if he can access safety procedures for
all chemicals in the lab, but he need not (and perhaps should not) access equipment manuals. On
the other hand, a technician would need to be able to access both chemical safety procedures and
equipment manuals to be “safe.”
OSHA'’s certification policy can then be expressed as:

certify : (OSHA)(VL:lab.
(VK :principal.is_.employee(K, L) D is_safe(K, L)) D
is_certified(L)) true

This can be read as “OSHA says that a lab L is certified if, for all employees K of lab L, K is safe
in lab L.”

In many policies, credentials are required to establish a result. Note that, in the certify policy,
however, the requirement is a kind of conditional credential: the safety of a principal K in lab L
is only needed when K is an employee of L. Because this condition exists, it is possible, using the
case analysis induced by the job policy, to take the specific job of K into account when determining
K’s safety.

2.3 Meta-theory

One of the key advantages of a proof-theoretic logic is its singular amenability to a rigorous meta-
theoretic analysis. Meta-theorems are stated as natural and desirable properties of the logic—
properties that one would expect to hold. The proofs of these properties serve as a “sanity check”
on the design of the logic; if some expected property fails to hold, perhaps the logic’s design should
be reconsidered.

As a proof-theoretic logic, the meta-theory of GP logic can be explored in this way. There are
two reasonable properties for GP logic. First, as alluded to in the discussion of the init rule (cf.
Section 2.1.4), for any proposition A, from the assumption that A is true, it should be possible to
establish that A is true. For atomic propositions P, this is captured explicitly in the init inference
rule. For arbitrary propositions A, this is stated and proved as the following theorem.

Theorem 2.1 (Identity). For any proposition A, 3;T', A true = A true.

16 CHAPTER 2. PRELIMINARIES: GARG-PFENNING AUTHORIZATION LOGIC

Second, the logic should possess the cut elimination property. One cut rule for GP logic states
that a proof of A true can be used to replace the hypothesis A true in a proof of v to yield a direct
proof of 7. For this reason, a cut rule might be intuitively thought of as a method for creating and
using lemmata: the proof of A true functions as the lemma and the hypothesis A true in the proof
of v corresponds to the use of the lemma in proving the main theorem.

Since GP logic also permits conclusions of the form K affirms A, a cut rule for affirmation is
also needed. K affirms A can replace the hypothesis A true in a proof of K affirms B since, from K’s
perspective, truth and K’s affirmations are equivalent.

Cut elimination means that an explicit cut rule is not needed in the logic: any uses of the rule
are unnecessary. The following theorem states the admissibility of cut. Because cut elimination
follows from this by a straightforward induction, often only the admissibility of cut is formally
stated and proven.

Theorem 2.2 (Admissibility of Cut).
1. If ;T = A true and 3; 1", A true = =, then ;I = ~.
2. If ;' = K affirms A and X; T, A true = K affirms B, then ¥;I' =— K affirms B.

The proofs and associated lemmata for the above meta-theorems are given in [24].

2.4 Conclusion

In hopes of adequately preparing the reader for the following discussion of 7 logic, this chapter
has reviewed a proof-theoretic authorization logic developed by Garg and Pfenning [24]. We have
also seen the application of GP logic to two disparate systems: office access control and chemical
laboratory inspections. Finally, we have presented the meta-theory of GP logic and explained its
importance as an expression of the logic’s soundness. We now proceed to develop ny logic, which
is heavily based on principles from GP logic reviewed in this chapter.

Chapter 3
ny Logic

As reviewed in the preceding chapter, an authorization logic can form a theoretically sound basis
for access control systems. However, as demonstrated in the office entry example, it is necessary
that the logic express time-dependent policies in order to facilitate more accurate models of access
control in practice.

In this chapter, we develop an authorization logic with explicit time, ny logic, by modifying
GP logic. After giving a formal description of ny logic, we present two applications of the logic
to systems with time-dependent policies. Finally, we carry out a careful study of the logic’s meta-
theory and establish a formal correspondence with GP logic.

3.1 Logical System

nn logic synthesizes ideas from several diverse logics. The concept of affirmation is borrowed from
GP logic, the notion of truth relativized to an interval is inspired by the use of worlds in hybrid
logic, and the combination of constraints and proof theory is adapted from constraint-based logics.

The presentation of the logic is therefore broken into several sections. We begin by discussing
first-order terms and sorts, followed by a description of the system of constraints. Next, we introduce
the judgments and propositions of the logic. Finally, we construct a proof-theoretic semantics for
the logic by giving the inference rules.

3.1.1 First-order Terms and Sorts

The basic system for first-order terms and sorts remains as it is in GP logic. ¥ is still a context
listing the parameters in scope and their respective sorts. We continue to write X F t:s for the
judgment that term ¢ has sort s and [t/x]A for the substitution of term ¢ for the free variable z in
proposition A.

The sort principal of principals is carried over from GP logic. ny logic includes two additional
sorts: the sort time of times and the sort interval of time intervals. Application-specific sorts can
be added as needed.

Times are the components that comprise the time intervals about which ny logic reasons.
Because the logic does not depend on it, a concrete structure for times is not given, but instead left

17

18 CHAPTER 3. ny LOGIC

to be specified by individual applications. However, one may intuitively think of times as points
on the real line. Times are usually represented by ¢; it should be clear from the context whether a
given occurrence of ¢ indicates an arbitrary term or a time.

Intervals, represented with the meta-variable I, are sets of time about which reasoning occurs.
Despite the use of the terminology “interval,” these sets of time need not be intervals in the
mathematical sense; that is, they need not have the form [t1,t2] = {z | t1 <z < t2} or the related
open interval forms. ny logic is flexible enough to permit the use of arbitrary sets of time. However,
we overlook the slight abuse of terminology since sets that are strictly intervals appear naturally
in many applications.

3.1.2 Constraints

As will be seen in Section 3.1.5, the rules of ny logic will require an inclusion relation for inter-
vals. Because interval parameters are permitted in the logic, it is not sufficient to simply adopt
a mathematical definition of interval inclusion. Instead, a constraint domain is incorporated in
the logic. The superset constraint form I D I’ is required, but the remainder of this domain is
left open-ended: other constraint forms may be freely added for application-specific purposes. The
meta-variable C' denotes an arbitrary constraint form.

Because it will be necessary to assume that certain constraints hold during reasoning, a con-
straint context is introduced, with the following syntax:

Vo= |v,C

Thus, each constraint context W is a (possibly empty) set of constraints. Reordering of the members
of U is freely permitted. We will use the constraint entailment judgment

50 E=C

to mean “Under the constraints of ¥, constraint C' holds, parametrically in the members of >.”
Note that the context X is required because ¥ and C' may contain parameters from X.

Because the structure of intervals is left abstract, even the particular decision procedure used
to solve superset constraints remains relatively unspecified: any system satisfying the following
six basic properties can be used as the constraint domain. These properties are required for the
meta-theory that will be presented in Section 3.3.

(Hypothesis) ¥; ¥, C = C.

(Weakening) If ;¥ |= C, then X, ¥; U, ¥ = C.

(Cut) I ;¥ |=C and E;0,C | C', then &; ¥ = C'.

(Substitution) If ¥ F ¢t:s and ¥, x:5; ¥ = C, then ¥; [t/z]V = [t/z]C.
(Reflexivity) ;0 =12 1.

(Transitivity) If 2; 0 =7 D1 and ;0 =1 D 1", then ;0 =1 D 1.

3.1.3 Judgments

Our goal in designing ny logic is to allow reasoning about explicit time within an authorization
logic. Instead of reasoning about the truth of propositions, as was done in GP logic, it is necessary

3.1. LOGICAL SYSTEM 19

to reason about the truth of propositions during explicit time intervals. Therefore, the objects of
knowledge in ny logic are not statements of the form “Proposition A is true,” but rather “Proposi-
tion A is true during interval I.” According to Martin-Lof’s philosophy, the logic should therefore
include a judgment form that relativizes truth to a time interval. We choose to write A[I] for the
judgment meaning “Proposition A is true during interval 1.”

In addition to its truth judgment form, A true, GP logic includes an affirmation judgment form,
K affirms A, to model principals’ intents and policies. It is therefore natural to include affirmation
in ny logic, since it is still necessary to model policies. But how should affirmation interact with
explicit time intervals?

By adopting the reasonable notion that everything can be relativized to a time interval, it can
be concluded that each affirmation made by a principal occurs on some time interval. Moreover, a
principal cannot affirm a proposition, but must instead affirm a judgment. Combining these two
ideas naturally leads to statements of the form “During interval I, principal K affirms the truth
of proposition A on interval I'” as objects of knowledge. Using the @ connective described in the
next two sections, the previous statement will be equivalent to “During interval I, principal K
affirms the truth of proposition A @ I’ on interval I.” As a result, it is sufficient to consider only
statements of the latter form: if the interval of truth is different than the interval of affirmation, it
can be embedded in the proposition.

We therefore arrive at the judgment form (K affirms A) at [meaning that “During interval I,
principal K affirms the truth of proposition A on I.” Since, as mentioned previously, principals
do not affirm propositions, but instead affirm judgments, it would be more precise to write the
affirmation judgment form as (K affirms A[I]) at I. But because the two intervals are the same, we
can elide the first interval.

Because reasoning from assumptions is needed, ny logic extends the basic judgment forms A[I]
and (K affirms A) at I to permit hypotheses. The hypothetical judgment forms are:

U = A[I]

;U ' = (K affirms A) at [
where X is a context ascribing sorts to the parameters that may appear in ¥, I', K, A, and I; ¥
is a constraint context containing the constraints assumed to hold; and I' is a set of hypotheses of
the form A[I]. In the following sections, we will write v in place of the basic judgment to the right
of = when its form does not matter.

The first hypothetical judgment form means “Assuming that the constraints in ¥ hold and

under the assumptions in I', proposition A is true during interval I, parametrically in the members
of 3.7 Similarly, the second hypothetical judgment form means “Assuming that the constraints in

¥ hold and under the assumptions in I', during interval I, principal K affirms that proposition A
is true on I, parametrically in the members of X.”

3.1.4 Propositions

The propositions in 7y logic are given by the following grammar:
AB:=P|AANB|T|AVB|ADB|Vris.A|dx:s.A
| (K)A|AQT|CDA|CAA

20 CHAPTER 3. ny LOGIC

These propositions include those of GP logic. Just as (K)A internalizes the judgment K affirms A
in GP logic, (K)A internalizes the judgment (K affirms A) at I in ny logic. Although the formal
meanings of the connectives must shift with the change from time-independent basic judgments to
time-dependent ones, the connectives still retain their intuitive meanings. For example, A A B still
behaves like a pair of A and B. This is made precise by the formal correspondence between GP
logic and a fragment of ny logic established in Section 3.3.2.

There are three new proposition forms in 1y logic: AQI, CDA, and CAA. The proposition AQT
internalizes the new judgment A[I], allowing us to legitimately combine it with the other logical
connectives. For example, although (A[I]) D B would violate the distinction between judgments
and propositions, (A @ I) D B is a well-formed proposition.

C DA and C A A are constraint implication and constraint conjuction propositions, respectively,
adapted from Saranlh and Pfenning’s Constrained Intuitionistic Linear Logic [38]. They permit the
constraint domain to interact with the rest of the logic.

It should be noted that falsehood, 1, is not included in the logic, stemming from the need
to avoid security risks. If falsehood was included and, by some accident of policy management, a
contradiction existed for any interval I, even an arbitrarily small one, then the judgment L[I] would
be derivable. From this judgment, any user would be able to give a valid proof of any judgment,
including those allowing him to access protected resources even at times outside of I.! We therefore
exclude falsehood from the logic to prevent this scenario from ever arising.

One consequence of the absence of falsehood is that policies to explicitly deny a group of users
access cannot be written; only policies that explicitly allow a group of users access can be written.
Stated differently, only whitelists, and not blacklists, can be created.

3.1.5 Inference Rules

Following the presentation of GP logic, we now state a few key proof rules and attempt to provide
some intuition for them. We postpone the inference rules for the well-formedness of propositions,
judgments, and contexts to Section 5.1 to avoid obscuring the key proof rules.

We begin by presenting the init rule that defines the nature of hypotheses:

S EIDT
ST, P[] = P[I']

init

We would expect that, from the assumption that proposition A is true on interval I, it should be
possible to prove that A is true on I. More generally, since truth on an interval refers to truth over
the whole of that interval, it should be possible to prove that A is true on any subinterval I’ of I
from this assumption. The init rule captures this intuition, though, as in GP logic, it is restricted
to atomic propositions P for technical reasons relating to proof search. The init rule in its full
generality is proven admissible in Theorem 3.2 (cf. Section 3.3.1).

Next, consider the new connective: @.

50T = A[l] QR 50T, AQ I, Alll = v
U= AQI[I'] S, U TAQI = v

QL

!The admissibility of cut requires that a L[I] hypothesis prove judgments at arbitrary intervals, not just at I.

3.1. LOGICAL SYSTEM 21

The right rule, @R, shows that establishing A[I] is sufficient evidence for A @ I[I’], for any interval
I'. The left rule, QL, allows the hypothesis A @ I[I'] to be used as A[I].

Taken together, these rules imply an equivalence between A[I] and A@ I[I'] for any I’, and also
show that A @ I internalizes the hybrid judgment A[I]. For example, establishing that “In 2008, it
is true that ‘During 1815-1821, Napoleon Bonaparte is in exile’” is equivalent to establishing that
“During 1815-1821, Napoleon Bonaparte is in exile.” In other words, whether it is true now that
Napoleon was in exile depends only on whether it was true then that Napoleon was in exile.

Next, we examine the constraint connectives. First, the rules for constraint implication:

50,07 = A[I] . LU EC XU CDA[ILAIl =~ .
ST — 05 A f S 0T, C D A[l] = + -

C D A represents the proposition A with the constraint precondition C. Thus, as formalized in the
DR rule, verifying C' D A[I] involves verifying that A is true during interval I under the assumption
that constraint C holds. The DL rule states that to establish A[I] from C D A[I], one must simply
establish the constraint precondition C'.

The other constraint connective is constraint conjunction.

YLZ,UEC LU= A[l] . 0,05, C A Al Al = v |
ST — caag E ST, CAA — 4

The AR rule requires that the constraint C' hold and that A be true during interval I, reminiscent
of the right rule for ordinary conjunction. The AL rule allows the hypothesis C' A A[I] to be used
by projecting out the two component hypotheses: C and A[I].

Next, we consider the rules for the affirmation judgment (K affirms A)at/ and its internalization
as (K)A.

50T = A[l] o YU I' = (K affirms A) at [>
50T — (K affirms A)at &0 S 0T = (K)A[I]

S0 T (K)A[I], A[I] => (K affirms B)atI! S0 =121’
¥, 0T (K)A[I] = (K affirms B) at I’

The affirms rule indicates that, during interval I, every principal K is prepared to affirm the truth
of A on I if confronted with incontrovertible evidence of it: K cannot possibly ignore the evidence
and must therefore affirm A[I].

The right rule, ()R, shows that (K)A internalizes the affirmation judgment (K affirms A) at I.
That is, by establishing (K affirms A) at I, one may conclude that the proposition (K)A is true on
interval I.

The left rule, () L, shows how to use an affirmation made by K during interval I. As in GP logic,
the distinction between K’s affirmations and truth disappears when trying to prove an affirmation
made by K. However, with time-dependent affirmations, the disappearance of this distinction is
only valid for affirmations made by K during a superinterval I of the interval I’ for the affirmation
made by K that is being established. Without the interval constraint, this rule would be incorrect.
If I is not a superinterval of I’, one cannot be assured that K still affirms A during all of interval
r.

22 CHAPTER 3. ny LOGIC

Next, we examine implication. Implication interacts very strongly with time, as evidenced by
the combination of parameters, constraints, and hybrid worlds in its right and left rules:
Y, dzinterval; U, I O i; T, A[i]| = BYi]
U, I' = A D B[]

OR

S5O T,AD B[] = A[ll'l| 3,9 =121 %,U;I'AD B[I],B[l'| =~
S, 0T AD B[] = v

DL

The judgment A D B[I] may be intuitively thought of as a plan for converting A to B that
is available during any subinterval of I. Such a conversion can be established by deriving Bli]
under the assumption A[i], parametrically in the arbitrary subinterval i of I. The parameter and
corresponding constraint ensure that the conversion is valid at every time in I. This intuition is
formalized in the right rule, DR.

The conversion intuition also appears in the left rule, DL. The plan A D B[I] for converting A
to B can be carried out to produce B[I'] from A[I'], provided I’ is a subinterval of I. The rule is
incorrect without the subinterval proviso because the plan would not be available at an arbitrary
r.

The remaining connectives interact with time in straightforward ways. One such connective is
conjunction:

U= A[l] %;U;T = B[]
5,0 I' = AA B[]

AR

B WD ANBIL A =y ST, A A B[], BlI] = ~
;0T ANB[I| =~ 5,0 TAANB[I| =~

ALo

To show that A A B is true on interval I, it is sufficient to show both that A is true on I and that
B is true on [I; this is captured by the AR rule. The left rules, AL; and ALy, show that both A
and B are true on I if AA B is true on I. These right and left rules do not manipulate the interval
annotations; they are the same as the rules in first-order logic for conjunction, but are tagged with
intervals.

Note that these rules and the rules for D imply the usual equivalence of curried and uncurried
implications: A D (B D C)[I] and (A A B) D C[I] entail each other.

The remaining proof rules follow the pattern of the rules for conjunction, and are given in
Figure 3.1.

Before concluding this section, we state some properties of ny logic. We write = A if, for all
Y, ¥, and I”, ¥;W;- = A[I"] is derivable, and write = A otherwise. Also, A = B abbreviates
(ADB)AN(BDA).

First, as in GP logic, (K) is similar to a lax modality [20] and (K) A does not imply A in general:

1. = AD ((K)A)
2. = ((K)(K)A) D ((K)A4)
3. = ((K)(A > B)) > ((K)A) > ((K)B))

3.1. LOGICAL SYSTEM 23

Initial Rule

SiWEIDT
ST, Pl = P[I]

init

[Aal]

DD = Al ST, AQ I, Al = ~
U= AQI[I'] S, UTAQI = v

50,0, = A[l] . U EC U, 0D AILAL = v
ST — O 5 A S, 0T, C S A[l] = 5

OL

L 0EC U= A[l] . 0,057, C AA[I A =~ |
ST — c A ST, CAALl — 4

Affirmation and (K)A ‘

50T = A[l @ ;U ' = (K affirms A) at I
S W T = (K affirms A)atl &0 S 0T = (K)A[I]

OR

20T, (K)A[I], All] = (K affirms B)at I’ ;U =121’
0T, (K)A[I] = (K affirms B) at I’

0L

’ Other Connectives ‘

50T = All] ;0T = B[]

S0, T — AA B[] N

ST ANBIL A= S W T, AA B[], B[] = ~

L
0T, AA B[] = v ! ST AAB — 5 2

50T = T[] TR

W= Al S 0; T = B[]
ST = AvB[I] 0T = AV B[]

V Ry

5,0 AV B[, Alll =~ 5;9;T,AV B[I],B|[l] =~
Y, U:T AV B[] =~

VL

Figure 3.1: The inference rules for ny logic.

24 CHAPTER 3. ny LOGIC

Other Connectives, cont.

Y, dzinterval; U, I O i; T, A[i] = Bli]
%0, I = A D BJ[I]

DR

;W T,AD B[] = A[l'] S;U|=121I S;U:;T,AD B[], B[I') =

50T, A S B[I] = 4 oL

Y, x50 T = A[I] VR Yrts NW T Vais Al [t/z]All] = v VI
U T = Vs . A[l] U Vais Al =
Yrhts S0 = [t/z]AlI] Y, x5 U T, 3uis. AL, Al = v

iR 3L

0T = FJas Al 0T, Jeis Al = v

Figure 3.2: The inference rules for 7y logic, continued.

4. &= ((K)A) D A

Next, we state a few properties of the @ connective:
5. 4= (AQI)D (AQ)

6. = (IDI)D((AQI)D> (AQlT))

7. AQl)=(AQralr)
AANB)QI)=((AQI)A(BQT))
AvB)QI)=((AQI)v(BQI))
ADB)QI)D ((AQI)>(BQI))

8. (
(
(
(AQ@I)>(BQ@I)>((A>B)Ql)
(
(K

10.

= (
= (
= (
9. = (
= (
11. #=(

7= (

12. (K)A)Ql) > ((K)(AQT))

yAan) s ((K)A)al)

Property 5 shows that truth on one interval does not entail truth on another interval, in general;
the intervals may be unrelated. When the intervals are related by inclusion, the entailment does
hold, as in property 6. Property 7 indicates that only the innermost @ I matters. This relates to
the previously mentioned equivalence between A[I] and A @ I[I’]. Properties 8 and 9 show that
@ naturally distributes over A and V, intuitive and desirable properties. Properties 10 and 11
demonstrate that @ distributes over D only in one direction. Properties 12 and 13 state that @
does not commute with (K).
Finally, nn logic is consistent:

14. &= A

13. = (

3.2. EXAMPLES 25

3.2 Examples

With ny logic formalized, we can now illustrate its application to time-dependent access control
policies by considering two examples. First, we revisit the office entry example and refine its policies
to incorporate time. Second, we examine a journal publication system.

In these examples, we adopt the conventions that D and O are right associative, and that
binding precedence decreases in the order: (); @; D and D; V.

3.2.1 Office Entry

Recall, from Section 2.2.1, the office entry example that was based on the Grey system. This
example assumed an administrating principal, admin, that controlled entry to the offices, named
each office according to its owner, and used the predicate may_enter, where may_enter(Ko, K1)
meant that Ko may enter K1’s office. The two policies proposed for a PCA architecture based on
GP logic were:

own : (admin) (VK :principal.may_enter(K, K)) true

trust : (admin) (VK :principal.¥Ks:principal.
(K1)may _enter(Ky, K1) D
may_enter(Ko, K1)) true

The first of these policies allowed every office owner to enter her own office. The second policy
allowed an office owner to make decisions about who may enter her office, decisions which the
administrator trusted.

The above GP logic policies were sufficient for controlling who could enter an office, but not for
controlling when that person could enter. This deficiency resulted from the inability of GP logic to
reason with time internally. Now that we have developed 7y logic as an authorization logic with
time, it is natural to check that the new logic is expressive enough to handle time-based office entry
policies.

First, consider creating a ny logic analogue of the own policy. Because 7y logic includes all
connectives from GP logic and because these connectives retain their intuitive meanings, a natural
attempt uses the same proposition as own:

(admin) (VK :principal.may_enter(K, K))[?]

At this moment, the judgment is incomplete: the time interval over which the proposition is true
has not yet been specified (indicated by ‘?’).

What interval should be used? It must be the same as the interval over which the policy will
be valid. If the administrator wants to allow each office owner to enter her own office only during
interval I, then the interval for this policy should be I. In the setting of academic offices, it would
seem unusual for an office owner to be prevented from entering her office at any time. So, in this
specific instance, the interval is (—oo0, 00). The ny logic analogue of own is then:

own’ : (admin) (VK :principal.may_enter(K, K))[(—o0, 00)]

26 CHAPTER 3. ny LOGIC

This policy means that “At all times, the administrator says that each principal K may enter her
own office at any time.”

Note that the administrator need not commit to a policy for an extended period of time. For
example, suppose that the administrator only wants to commit to allowing an office owner to enter
her own office during 2008. The administrator would issue the policy with 2008 as its validity
interval. If the administrator later chooses to extend the policy through 2009, he can reissue the
same policy with the new interval 2009. If, instead, the administrator chooses not to renew the
policy, he simply does nothing: the 2008 version will no longer be valid in 2009.

Next, consider creating an analogue of the trust policy. Again, we use the same proposition as
in trust. For concreteness, we choose (—o0,00) as the validity interval, but it should be noted that
any desired interval could be used. The policy is then:

trust’ : (admin) (VK7 :principal.V Ky:principal.
(K1)may_enter(K2, K1) D
may_enter(Ko, K1))[(—00, 00)]

This policy means that “At all times, the administrator says that, for all pairs of principals K7 and
Ko, if K1 says K9 may enter K7’s office at some time, then K may indeed enter K7’s office at that
time.”

With this policy, we can now reconsider the situation of the professor Alice and her graduate
student Bob. Recall that Alice is out of the office on May 7, 2008 and that Bob needs to retrieve
a paper from Alice’s office. Alice agrees to authorize Bob to enter her office, but only for that day.
So, she issues the following credential:

C' : (Alice)may_enter(Bob, Alice)[5/7/08]

At some time t, Bob will approach Alice’s office door and request access using his cell phone. Before
the door will unlock, he must present a correct proof of:

¥a,B;;own’, trust’, C" = (admin)may_enter(Bob, Alice)][t,]|

where YA p assigns the sort principal to all principals in the system. Provided that ¢ is some time
during May 7, 2008 (formally, = 5/7/08 D [t,t]) Bob’s phone can construct a correct proof by
applying the trust’ policy to the credential C’ that Alice supplied, and Bob will be granted access.
If ¢ is not during May 7, 2008 (formally = 5/7/08 D [t,t]), there is no correct proof of the required
judgment, and Bob will not be granted access.

As is evident from this example, ny logic permits the expression of a richer set of policies than
is possible in GP logic. However, the logic is still not sufficiently expressive. The deficiency occurs
even in this small office entry example. Alice can now restrict the times during which Bob may
access her office, but it is not possible to restrict the number of times Bob may enter. Specifically,
because the credential C’ is never consumed during use, Bob may enter the office as many times as
he wants on May 7, 2008 by repeatedly using C’.

Because nn logic models the expiration of, but not the consumption of, credentials, the above
deficiency motivates us to extend the logic with linearity, just as Garg and Pfenning cleanly added
linearity to an authorization logic without time [23]. This effort toward a linear n logic that can
model consumable credentials is the focus of the following chapter.

3.2. EXAMPLES 27

3.2.2 Journal Publication

To further demonstrate the increased expressiveness of ny logic, consider a peer-review publication
system as employed by academic journals. This example uses time in a more complex way than the
previous example and also illustrates the use of time-based constraints and constraint implication.

We postulate the existence of two application-specific sorts: the sort journal of academic journals
and the sort article of journal articles. To ease the notation, we also use the syntax ¢t € I as an
abbreviation for the constraint I D [t,¢]. The following predicates are required:

is_approved(A, K,J) Article A is approved by principal K for publication in journal J.
is_reviewer(R, A, J) Principal R is the reviewer for article A submitted to journal J.
is_editor(E, J) Principal £ is an editor for journal J.

is_published(A, J) Article A is published in journal J.

Journal J appoints E as an editor for term I by issuing the credential (J)is_editor(E, J)[I].
One of an editor’s duties is to assign reviewers to articles submitted to the journal. Editor F
assigns principal R as the reviewer for article A from time ¢ onward by issuing the credential
(E)is_reviewer(R, A, J)[[t, 00)]. For simplicity, we assume that each article has at most one reviewer,
justifing the reference to a reviewer of an article as the reviewer.

Another one of an editor’s duties is to process reviews as they come back from reviewers. Editor
E accomplishes this by signing the following credential:

approve : (E)(VR:principal.Vt,:time.
(R)is_approved(A, R, J) Q [ty,ta] D
is_reviewer(R, A, J) Q [t,,ta] D
(to € Ip) >\
is_approved(A, E, J) Q [t,, 00))[(—00, 00)]

If principal R decides to approve article A for publication in journal J, he can submit a positive
review at time ¢, by issuing (R)is_approved(A, R, J)[[tq,ts]]. Provided that editor E agrees that R
is the reviewer of article A at time t, and that ¢, € Ig, E will accept R’s review and approve the
article for publication from time ¢, onward. If R is not the reviewer of article A or if ¢, ¢ Ig, then
the review will not be accepted.

Note that, unlike the policies we have previously seen, approve is not a fixed policy, but rather
a template. When E signs the credential, he must instantiate Ir with the interval over which he
will accept reviews.

In a similar way, each journal must specify the conditions under which it accepts articles ap-
proved by editors. This is done by issuing the following credential:

publish : (J)(VE:principal .V, :time.
(E)is_approved(A, E, J) Q [ty, tq] D
is_editor(E, J) Q [t4, tq] D
(tq € 1) D
is_published(A4, J) Q [t,, 00))[(—00, 00)]

If principal E approves article A for publication in journal J, he issues the consumable credential
(E)is_approved(A, E, J)[[ta,ta]]- If journal J has appointed E as editor during time ¢, and if ¢, € I,

28 CHAPTER 3. ny LOGIC

J will accept editor E’s approval and publish the article from ¢, onward. Again, this policy is a
template: J must instantiate I; with the interval during which it will accept articles for publication.

3.3 Meta-theory and Correspondence to GP Logic

As a proof-theoretic logic, ny logic permits a rigorous study of its meta-theory. We examine three
properties here: identity, subsumption, and admissibility of cut. In addition, we easily establish a
formal correspondence between a fragment of ny logic and GP logic, which is not surprising given
the parentage relationship between the two logics.

3.3.1 Meta-theory

The meta-theory for ny logic is slightly more complicated than that of GP logic because of the
addition of time. But, it still serves to increase confidence in the soundness of the logic by providing
a kind of “sanity check.”

Before considering the core meta-theorems, we must state a few lemmata that will be used in
the following meta-theoretic proofs:

Lemma 3.1.
1. If 3; ;T = v, then X, %0,V '\ TV = ~.
2. If 50 IDI" T =~y and 5;V ETIDI, then Z; U, I' D 1";T = ~.
3. If %0 = C and ;0,0 T = v, then &; ;T = +.
4. If S Ft:s and 8, 2:5; ;T = 7, then X; [t/x]|V; [t/z]l = [t/x]y.

Proof. All parts follow by structural induction on the given derivation. O

As in GP logic, we are still interested in verifying the identity principle. However, with the
shift in underlying judgments to hybrid, time-dependent forms, the statement of the theorem must
change. For any proposition A, it should be possible to conclude from the hypothesis A[I] that
A[I'], provided I’ is a subinterval of I. This generalizes the init rule, and is formalized in the
following theorem.

Theorem 3.2 (Identity). For all propositions A, if ¥;¥ =12 I, then X;V; T, A[I] = A[I'].
Proof. By structural induction on A. O

A natural time-dependent property to expect of ny logic is the notion of subsumption. For
example, whenever one can prove that A is true on interval I, it should be possible, for any
subinterval I’ of I, to construct a similar proof that A is true on I’. This can be easily generalized
to affirmations. Because this type of subsumption occurs in proof conclusions and not assumptions,
it appears to the right of the = symbol in a hypothetical judgment. It is therefore termed right
subsumption.

Theorem 3.3 (Right Subsumption).

LIS, 0T = All] and S0 =1 D I, then ¥ ¥;T = A[I'].
2. If 3,0, = (K affirms A) at I and 2; 0 =12 I', then ¥; ;T = (K affirms A) at I'.

3.3. META-THEORY AND CORRESPONDENCE TO GP LOGIC 29

Proof. By simultaneous structural induction on the first given derivation.]

Subsumption can also occur for hypotheses. If interval I is a superinterval of I’, the assumption
that A is true on interval I is at least as powerful as assuming that A is true on I’: the former
assumption contains as much (and possibly more) information as the latter. Because hypotheses
appear on the left side of the = symbol in a hypothetical judgment, this kind of subsumption is
termed left subsumption.

Theorem 3.4 (Left Subsumption). If¥; ¥; T, A[l'l = vy and 3; ¥ =1 D I, then X; U; T, A[l] =
7.

Proof. By nested induction on the structures of A and the first given derivation. O

Finally, we can reconsider cut elimination in the context of ny logic. The admissibility of cut
for the truth judgment remains relatively unchanged: a proof of A[I] can replace the assumption
A[I] of any other proof. However, the admissibility of cut for the affirmation judgment changes in
a significant way. As argued in the description of the ()L rule, an affirmation made by K during
interval [is equivalent to truth, but only if we are currently reasoning about the beliefs that K
holds during a subinterval I’. Thus, a proof of (K affirms A) at I can replace the assumption A[[]
in a proof of (K affirms B) at I’, provided that I is a superinterval of I’.

Theorem 3.5 (Admissibility of Cut).
1. If ;0T = A[I] and ;U T, A[l] = 7, then 5;¥; T = ~.
2. If ;0 = (K affirms A) at I, X; U; T, A[l] = (K affirms B) atI’, and ;W =1 D I, then
¥, U T = (K affirms B) at I'.

Proof. By simultaneous nested induction on the structures of A and the given derivations. O

The above meta-theorems have been mechanically verified using the Twelf logical framework [35].
The Twelf proofs are available at http://www.andrew.cmu.edu/user/hdeyoung/etalogic/twelf.

3.3.2 Correspondence to GP Logic

Upon careful comparison of the rules of GP logic and the rules of ny logic, a correspondence
becomes evident. For example, consider the AR and ()L rules:

GP Logic nn Logic
S T=A %I = B BT = Al % WT = Bl
sT—arB S 0T — A B[] A
SO EIDT
T, (K)A, A = K affirms B I 0T (K)YA[T], All] = (K affirms B) at I 0L
T (K)A = K affirms B 0T, (K)YA[I] = (K affirms B) at I’

http://www.andrew.cmu.edu/user/hdeyoung/etalogic/twelf

30 CHAPTER 3. ny LOGIC

Because there are no notions of time or constraints in GP logic, the correspondence does not extend
to these constructs.

The above intuition suggests that GP logic can be encoded into ny logic. Let I denote a list
of time intervals. Also, if ' = A4,..., A, is a GP logic context and I= Li,..., Iy, let F[f] be the
nn logic context A1[l1],..., An[l,].? Finally, define a translation for parameter contexts such that
Y is ¥ with interval and time parameters removed.

This permits us to state the following theorem.

Theorem 3.6.
] IfEF:>A(de\Il|—IDI’f0rallI€IthenE‘lJF[I All'].

—

2. If $;T = Kaffirms A and $; % =1 D I’ for all I € I, then ¥; U;T[I] = (K affirms A)at I’

Proof. By simultaneous structural induction on the first given derivation. O

Informally, this theorem states that by choosing appropriate intervals for the hypotheses and
conclusion of a hypothetical judgment, it is possible to translate a valid GP logic derivation into
a valid ny logic derivation. In particular, if the lattice imposed by interval inclusion contains
a greatest element, possibly written (—oo,0), then that greatest element can be used for each
hypothesis and conclusion in the constructed ny logic derivation.

It is natural to consider whether the converse of the above theorem holds. Specifically, is it
possible to derive ¥;T' = A in GP logic and verify that ;¥ = I D I’ holds for each I € I,
whenever ; W; I'[I] = A[I'] is derivable in 7y logic? (An analogous converse can be stated for
affirmation consequents.)

The full converse does not hold: it is not the case that ¥; ¥ =1 D I’ for each I € I. When
;- = I D I, the following is a simple counterexample.

s EL 2D
i AL, PlI2] = P[]

init

However, as the following theorem shows, a partial converse does indeed hold.

Theorem 3.7.
1. If ;U T[I] = A[I'], then ;T = A.
2. If S;W; T'[I] = (K affirms A) at I, then ;T = K affirms A.

Proof. By simultaneous structural induction on the given derivation. O

Due to the difficulty of reasoning about context translations in Twelf and the existence of
a translation from I' to Fm in these theorems, the above theorems have not been mechanically
verified. This is an opportunity for future work.

2There is an implicit identity translation from GP logic propositions to nx logic propositions here.

3.4. CONCLUSION 31

3.4 Conclusion

In this chapter, we have derived an authorization logic with explicit time from GP logic, as reviewed
in Chapter 2. We illustrated its ability to model complex time-dependent policies through office
entry and journal publication examples. We also studied the logic’s meta-theory and established a
correspondence to GP logic. In addition, we noted the logic’s inability to model restrictions on the
number of accesses. The effort to correct this deficiency is the focus of the next chapter.

Chapter 4
n;, Logic

In the previous chapter, we developed a non-linear authorization logic with explicit time and demon-
strated its increased expressive power in the contexts of office entry and journal publication. In
addition, we studied the logic’s meta-theoretic properties and proved that it subsumes GP logic.

However, we also saw that even ny logic is not sufficiently rich to model many natural access
control policies. In particular, policies that place limits on the number of accesses or require finitely
useable credentials could not be expressed in the logic.

To express such use-limited policies in a time-independent setting, previous work [23] has com-
bined an authorization logic with linear logic, allowing the authorization constructs to model access
control and the linear constructs to model usage limits. In this chapter, we follow this approach
and combine ny logic with linear logic to yield a logic that can model both time-dependent and
use-limited policies.

Following a brief overview of linear logic, we present the formal system of 7y logic. The new
logic’s increased expressiveness is demonstrated through several examples. Finally, we study a few
meta-theoretic properties of the logic, including the admissibility of cut.

4.1 An Overview of Linear Logic

Recall the office entry example from Section 3.2.1 in which an office owner could issue a credential
to give a trusted colleague access to his office. For example, we described a scenario in which Alice
could allow Bob to enter her office on only May 7, 2008 by issuing the credential:

(Alice)may_enter(Bob, Alice)[5/7/08]
Bob could then use this credential in conjunction with the trust’ policy to derive
(admin)may_enter(Bob, Alice)[[t, t]]

for any time t during May 7, 2008. However, because the assumption corresponding to Alice’s

credential is persistent, Bob can enter her office an unlimited number of times on that day.
Instead, Alice would like to ensure that Bob can enter only once and only on that day. If the

assumption corresponding to Alice’s credential could somehow be consumed upon its first use, then

33

34 CHAPTER 4. n LOGIC

it could not be used to authorize further accesses. A possible solution, then, is the extension of ny
logic with an ability to model the consumption of objects.

As a well-established logic for modeling such changes of state, linear logic [26, 17] is a perfect
starting point. To model the consumption of objects, linear logic does not have a single notion of
truth, but instead distinguishes truth into two classes: truths that must be used once, and only
once, and truths that may be used zero or more times without restriction. A single-use truth
corresponds to a resource, while a multi-use truth is akin to a fact: objects are ephemeral, but
knowledge is persistent. It is also occasionally useful to think of an unrestricted truth as a resource
factory that can produce an unlimited number of copies of a given resource.

Introducing such a refinement of truth affects the connectives found in linear logic. For example,
implication splits into two forms. Linear implication, —o, can be applied to resources and facts.
Unrestricted implication, D, on the other hand, can only be applied to facts. Conjunction splits into
two forms as well. Simultaneous conjunction, ®, represents the existence of two resources in the
same state: both resources can be had. On the other hand, alternative conjunction, &, represents
a choice between two resources: both resources can be had, but only alternatively. As alternative
conjunction represents an internal choice made by the reasoner, it is distinct from disjunction, @,
which corresponds to an external choice made by the environment.

4.2 Logical System

Now, we formally present 1y, logic, making the above suggested combination of linear logic and ny
logic explicit. Changes are made to the system’s judgments, and consequently its propositions and
inference rules, while the first-order terms and sorts and constraints are unaffected.

4.2.1 First-Order Terms and Sorts

The system of first-order terms and sorts is carried over en bloc from 7y logic. Sorts principal, time,
and interval are still required, and the other sorts remain open-ended. Y continues to stand for a
context of parameters in scope ascribed with sorts. The judgment X - ¢:s still means that term ¢
has sort s. Finally, we continue to write [t/z] for the substitution of term ¢ for all free occurrences
of z.

4.2.2 Constraints

We also make no changes to the system of constraints. Superset constraints, I D I’, are still
required, and other application-specific constraint forms may still be added as needed. ¥ continues
to stand for a context of constraint assumptions. The constraint entailment judgment ;¥ = C
still states that constraint C' holds, assuming the constraints in W. Finally, although the constraint
entailment judgment remains unspecified, the same six properties are required (repeated here for
convenience).

(Hypothesis) ;0. C | C.
(Weakening) If ;¥ |= C, then X, ¥; U, ¥ = C.
(Cut) I ;0 = C and %;0,C | C', then &; ¥ = C'.

4.2. LOGICAL SYSTEM 35

(Substitution) If ¥ F ¢:s and ¥, x:5; ¥ |= C, then X; [t/z|¥ | [t/z]C.
(Reflexivity) ;0 =12 1.
(Transitivity) f X; 0 =T D' and ;¥ =1' D 1", then ;0 =17 D 1”7,

4.2.3 Judgments

In accordance with the goal of combining linear logic and ny logic, we modify the judgments of 7y
logic to become the resource-aware judgments of 7y logic. These modifications are analogous to
the changes made to ordinary first-order logic to create linear logic.

In the transition from first-order logic to linear logic, truth forks into single-use truth and
multi-use truth. In the same way, we split 7y logic’s interval truth into single-use interval truth
and multi-use interval truth. So, instead of having a judgment form meaning “Proposition A is
true during interval I,” we have two judgment forms: A[I], meaning “Proposition A is a single-use
truth (resource) during interval I,” and A[I], meaning “Proposition A is a multi-use truth (fact)
during interval I.” Note that the syntax for the single-use interval truth judgment is the same as
the syntax for the interval truth judgment of ny logic. This should not cause confusion because
the underlying logic should always be clear from the context.

To model principals’ intents and policies, ny logic contains an affirmation judgment form
(K affirms A) at I, meaning “During interval I, principal K affirms the truth of proposition A
on interval I.” This judgment form is converted to the resource-aware (K affirms A) at I, meaning
“During interval I, principal K affirms that proposition A is a single-use truth (resource) on in-
terval I.” This modification of the affirmation judgment for truth to an affirmation judgment for
resources is based on the difference between linear GP logic [23] and (non-linear) GP logic [24].
Note that the single-use affirmation judgment uses the same syntax as the affirmation judgment of
nn logic; again, the underlying logic should be clear from the context.

As in ny logic, iz, logic continues to use hypothetical judgments as the mechanism for handling
assumptions. However, because the basic judgments have changed, it is necessary to reconsider the
hypothetical judgment forms; in particular, it should be possible to assume both resources A[I]
and facts A[I].

The hypothetical judgment forms of linear 7 logic are:

50T A = Al
50T A = (K affirms A) at [

where X is a context of parameters, ascribed with sorts, that may appear in ¥, I', A, K, A, and
I; ¥ is a context of constraints that are assumed to hold; I" is a set of fact hypotheses of the form
A[I]; and A is a multiset of resource hypotheses of the form A[I]. In the following sections, we
will write v in place of the basic judgment to the right of = when its form does not matter.

The first of these hypothetical judgment forms means “Assuming that the constraints in ¥ hold,
under the fact assumptions in I', and by using each resource assumption in A exactly once, resource
A exists during interval I, parametrically in the members of 3. Similarly, the second hypothetical
judgment form means “Assuming that the constraints in W hold, under the fact assumptions in I,
and by using each resource assumption in A exactly once, principal K affirms, during interval I,
that resource A exists on interval I, parametrically in the members of 3.”

36 CHAPTER 4. n LOGIC

4.2.4 Propositions

Now that the judgments of 71, logic have been introduced, it is possible to describe the propositions
that these judgments act upon with the following grammar. We retain the propositions relating to
affirmation, time, and constraints from 7y logic, but replace the propositions derived from ordinary
first-order logic with those of linear logic.

AB:=P|A®B|1]|A&B|T|A®B|A—-B|!A|ADB|Vx:s.A| Jz:s.A
| (K)YA|AQIT|CDA|CAA

P stands for an arbitrary atomic proposition. A® B, A& B, A®@ B, A — B, and A D B are
simultaneous conjunction, alternative conjunction, disjunction, linear implication, and unrestricted
implication, respectively, as described in Section 4.1. 1 is multiplicative truth, the unit for ®, and
T is additive truth, the unit for &. !A is the fact A encoded as a resource. Vz:s.A and Jx:s.A are
universal and existential quantification, respectively. (K)A internalizes the affirmation judgment
(K affirms A) at I. A @ I internalizes the resource judgment A[I]. C' D A and C' A A are constraint
implication and constraint conjunction, respectively, adapted from Saranh and Pfenning [38].

One might expect falsehood, 0, from linear logic to be included here. As for | in 7y logic, any
derivation of 0 would permit every principal to access every resource. Including 0 would therefore
be a security risk. For this reason, we exclude 0 from 7y, logic, as we did L from 7y logic.

4.2.5 Inference Rules

Following the presentations of both GP logic and ny logic, we now examine the inference rules for
nr logic. According to the philosophies of Gentzen [25] and Martin-Lof [32], these inference rules
establish the logic’s formal semantics.

We begin our discussion of the inference rules with the rule that defines the meaning of linear
hypotheses:

SU =IO
¥, ;T P[I] = P[I']

init

One would expect that, by assuming resource A exists during interval I, it should be possible to
conclude that resource A exists during any subinterval I’ of I. As in the previous logics, this
property, restricted to atomic propositions P, is stated explicitly in the init rule. The rule is
recovered in its full generality as Theorem 4.2 (cf. Section 4.4). Note that only the single resource
hypothesis P[I] is permitted in this rule. This ensures that resources cannot be discarded: since
only P[I] is used in this rule, any other resources that might have been allowed here would not
have been used.
Next, we examine the inference rule that defines the meaning of fact hypotheses:

%00 AT A Al = v
ST A; A = v

copy

We previously mentioned that it is occasionally useful to think of facts as resource factories that
can produce an unlimited number of resources of a given type. The copy rule is the most convincing

4.2. LOGICAL SYSTEM 37

example of this perspective. If the resource factory A[I] is assumed to exist, it can be called upon at
any point to produce the resource A[I]. Producing this resource does not incapacitate the factory,
and so the hypothesis A[I] persists in the copy rule’s premise.

Next, we consider the right and left rules for the @ connective:

50T A = Al QR 50T A Al = v
YU A = AQI[I] LU AAQI =

QL

These rules have very similar structure to the corresponding rules of ny logic (cf. Figure 3.1).

There are only two differences. First, the rules now carry resource hypotheses, A, in addition to

fact hypotheses, I'. Second, the left rule operates on resource assumptions, not fact assumptions.

These two differences are also present in the rules for other connectives borrowed from 7y logic.
Next, we consider the right and left rules for linear implication:

Y, @:interval; U, T D ;T A, Ali]| = BJi]
5,0 A = A — BII]

—o

LU A = A[l'] ;9 EIDI X0, Aq, Bll'| = v
N0 T A Ag, A —o BlI] = v

—oL

The judgment A —o B[I] can be intuitively thought of as a plan for converting resource A to resource
B that is only available during interval I. Such a conversion can be established by deriving B][i]
from A[i], parametrically in the arbitrary subinterval i of I. The use of the fresh parameter ¢ and
constraint I D i ensures that the conversion A —o B is available at all times during /. This intuition
is captured by the right rule, —R. It is important to note that Ali] is a resource hypothesis in the
premise of this rule: A[i] must be used exactly once in the derivation of Bli].

The left rule, —L, also supports the conversion intuition for A — B[I]. Given the resource
A[I'], the conversion can be carried out to produce the resource B[I'], provided I’ is a subinterval
of I. Observe that the resources are split among the premises of the rule; the resources A; used to
establish A[I'] are consumed and cannot be used to establish « in the other premise.

Next, we give the right and left rules for unrestricted implication:

Y, ¢:interval; W, I D 4; T, A[i]; A = BJj]
0T A = AD B[]

OR

U= A[l'l 5,9 EIDI S0 0A Bl = v
S, U AAD Bl = v

DL

These rules are quite similar to the —oR and —L rules for linear implication. A D B[I] may also be
thought of as a conversion. However, the conversion is from fact A, not resource A, to resource B.
For this reason, the A[i] assumption introduced in the DR rule is a fact hypothesis. Accordingly,
no resources may be used in establishing the requisite A[I’] in the DL rule; the conversion only
applies to facts. It should be noted that A O B can be defined in terms of —o and !, whose rules
are given in Figure 4.1, as (!14) — B; the DR and DL rules are derivable.

38 CHAPTER 4. n LOGIC

Finally, we present the right and left rules for simultaneous conjunction:

ST Ay = A[Il 29T Ay = BJI] R S, Uy A AT Bl =
0T A, Ay = A® B ®© S, U AAR Bl =

®L

The judgment A ® B[I] represents the existence of resources A and B in the same state during
interval I. The right rule, ® R, shows that in establishing A ® B[], the resource hypotheses A, Ay
are split among the premises, with A; and Ay being used to establish A[I] and B[I], respectively.
By splitting the resources, the left rule, ®L, is justified: from A ® B[I]|, we may have both A[I]
and B[I] because the resources used to originally establish them were disjoint.

These rules and the rules for — imply the usual equivalence of curried and uncurried linear
implications: A — (B —o C')[I] and (A ® B) — C[I] entail each other.

The remaining connectives are all standard to linear logic [26, 17]. Because they interact only
weakly with time, their rules are rather straightforward modifications of the corresponding rules in
linear logic. Figure 4.1 summarizes all of the inference rules of 7, logic.

Before concluding this section, we illustrate some key properties of 7z, logic. We write = A
if, for all ¥, ¥, and I, 3;¥; ;- = A[I"] is derivable, and write = A otherwise. Also, A = B
stands for (A — B) & (B — A).

First, we note that (K') remains similar to a lax modality [20] and that (K)A does not entail A
in general:

1. = A — ((K)A)
2. = ((K)(K)A) = ((K)A)

w

. = ((K)(A — B)) — (((K)A) — ((K)B))
A= ((K)A) —o A

Next, we give a few properties of the @ connective. These properties are analogous to those of ny
logic.

W

5. 4= (AQI) — (AQT)

6. = (IDI)S((AQTI) — (AQT))

7. = (AQ)=(AQIQr)

8. = (Ae@B)al)=((AQ@l)® (BQI))
9. = (A& B)Ql)=((AQI) & (BQI))
10. = (AeB)Ql)=((AQI)® (BQI))
11. = (A—B)@I) — (AQI) — (BQI))
12. #= (AQT) — (B@TI)) — ((A — B) Q1)
13. = ((AD>B)QI)— ((AQI)D(BQI))

4.2. LOGICAL SYSTEM

SUEIor
>0 Pl — Pl ™
AQ]
50T A = Al
QR

0 TA = AQ 1]

| Constraints |

50,0 A = A[I
ST A — C O Al °

LZUEC U A= A[l] .

S WD AL A Al = v
50T Al A =y

copy

50T A Al =

U AAQII =y L

S0 EC SO A Al =7 .

¥, 0T A = C A Al

Affirmation and (K)A ‘

50T A = All
0T A = (K affirms A) at [

affirms

YU T A CD Al =

20,00 A Al = v

0T ACA AL = A

50T A = (K affirms A) at [

YU A = (K)A[T

50T AVA[ll = (K affrms B)at ! S0 =121

0T A (K)A[I) = (K affirms B) at I

’ Other Connectives ‘

50U A = A[ll ;9T Ay = BJI]

0T A, Ay = A® Bl

50T = 1]]] LR

;Wi T; A, All, Bl = v

50T A A B[l = v

YU A = v
S0 AL =y

1L

Figure 4.1: The inference rules for 77, logic.

39

40 CHAPTER 4. n LOGIC

Other Connectives, cont.

50T A = A[ll ;9T A = BJI]
YU A = A& B[

&R

YU T AVA[l =
S, U AA& Bl =

YW T A, Bl = v
YU A A& Bl =

&Ll &L2

50T A = T Th

50T A = Al R U A = B[l
S UT:A — Ao B M S 0T A — A B[]

® Ry

ST AVA[ll =y 50T A B[l =
50T AAe Bl =

®L

Y, azinterval; U, I D ;1 A, Ali] = BYi]
YU T A = A — BII]

—R

0T A = All') ;9 ET1DI U A, BlI' = v
0T A, Ag, A — B[l = v

—oL

50T = Al | ST AL A = |
0T = 1A[] HH ST AA[=

Y, d:interval; U, T D 4; T, Ai]; A = Bi]
0T A = A D B[]

U= A[l') ;9 EIDI %A Bl = v
5,0 TAAD B[l = v

DL

Y, a5, U T A = Al VR Ykhts S0 A [t/z]All] = v
0T A = Vs Al 50T A Vas Al =

Ykhts 50T A = [t/x])All] . S,os; U T AV A =
U T A = Fais Al R YU T A Jes Al = v

3L

Figure 4.2: The inference rules for 7y, logic, continued.

4.3. EXAMPLES 41

14. 4 (AQI)> (BQI)) — ((AD B)@I)
15. #= ((K)A) Q) — ((K)(A Q1))
16. = ((K)(A@ 1)) — ((K)A) @)

Property 5 shows that, in general, truth on one interval does not imply truth on another interval:
the two intervals may be unrelated. However, as property 6 demonstrates, truth on an interval does
indeed imply truth on a subinterval. Property 7 shows that only the innermost @ I qualification
matters. Properties 8-10 indicate that the natural distributive laws for @Q over ®, &, and @ hold.
Properties 11-14 show that @ distributes over —o and D only in one direction. Properties 15 and
16 demonstrate that @ does not distribute over (K) in either direction.

Finally, n;, logic is consistent:

17. &= A

4.3 Examples

To highlight the increased expressive power of 7y, logic, we now present two examples that illustrate
the use of finitely-usable credentials in combination with explicit time. First, we refine the office
entry example from previous chapters for the new logic. Second, we consider the application of the
logic to a simple homework assignment administration system.

In these examples, we adopt the conventions that ®, —, D, and D are right associative, and
that binding precendence decreases in the order: (); @Q; ®; —o, D, and D; V.

4.3.1 Office Entry

Recall, from Section 3.2.1, the office entry example inspired by the Grey system [9, 8]. The example
assumed an administrating principal, admin, that managed access to offices, and used the predicate
may_enter, where may_enter(Ky, K1) meant that Ky could enter K;’s office. The policies proposed
for a PCA architecture based on 7y logic were:

own’ : (admin) (VK :principal.may_enter(K, K))[(—00, 00)]

trust’ : (admin) (VK7 :principal.VKy:principal.
(K1)may_enter(Ka, K1) D
may_enter(K2, K1))[(—00, 00)]

But these policies did not model restrictions on the number of times that a user may enter an office.
In fact, these restrictions cannot be expressed in ny logic, motivating the design of 7y, logic. Now
that we have developed a logic ostensibly capable of modeling single-use authorizations, it should
be possible to refine the own’ and trust’ policies to incorporate the desired usage restrictions. We
begin by revising own’.

Because 71, logic contains (K) and V propositions and uses the same interval structures as ny
logic, a first attempt at revision would be to use the same proposition and validity interval as own’.
But, should the policy be represented as a fact or as a resource? Because it is natural to expect

42 CHAPTER 4. n LOGIC

that an office owner should be able to enter his office an unlimited number of times (at least in the
setting of academic offices), the policy should be represented as a fact:

own” : (admin) (VK :principal.may_enter(K, K))[(—oc, 00)]

It is also possible to refine the trust’ policy for use with 7y, logic. Again, most of the policy can
remain unchanged. However, because trust’ uses implication, we must carefully choose the form of
nr logic implication. Since our goal is to permit office owners to restrict the number of times a
colleague may enter, we choose —o: it can be applied to single-use resources, while D can only be
applied to multi-use facts. Since no usage restrictions should be placed on the trust” policy itself,
it is represented as the fact:

trust” : (admin) (VK7 :principal.VKy:principal.
(K1)may_enter(Ks, K1) —o
may_enter(Ko, K1))[(—00,)]

We now revisit the dilemma of Alice and Bob: Alice is away from the office on May 7, 2008 and
wants to allow Bob to enter her office once (and only once) on that day. To do this, Alice can now
issue the single-use credential, imported into the system as the resource hypothesis:

C" : (Alice)may_enter(Bob, Alice)[5/7/08]

Suppose that Bob approaches Alice’s office door at time tg and requests access. Provided that t
is during May 7, 2008, Bob can combine the trust” policy with Alice’s credential to construct the
required proof of

YA B; sown” trust”; C” = (admin)may_enter(Bob, Alice)[[to, to]]

where X5 p assigns the sort principal to all principals in the system. However, the —o in the trust”
policy causes the resource hypothesis C” to be consumed. The reference monitor records this usage
of C”. 1f Bob attempts to enter Alice’s office again at some later time t1, he will be asked to prove

YA B;;own” trust”; - = (admin)may_enter(Bob, Alice)[[t1, t1]]

The reference monitor does not allow the resource hypothesis C” to be used in this proof because
it has already been consumed by the proof at time ty. It is easy to check that it is impossible to
prove the judgment required for access at time t;. Thus, Alice has successfully restricted Bob to
entering her office at most once during May 7, 2008.

As this example shows, 7y, logic has improved ny logic by permitting usage restrictions on
authorizations. We proceed to give two further examples of the increased expressive power of 7,
logic.

4.3.2 Filling Painkiller Prescriptions

We now consider the specification of pharmacy policies for dispensing painkilling medications in
ng, logic. To prevent addiction, painkillers are tightly regulated. A patient must submit a valid
doctor’s prescription to the pharmacist and may only receive a few days worth of pills at a time.

4.3. EXAMPLES 43

Only after those pills are used can the patient be given more medication. The policies described
below enforce these restrictions.

This example requires the application-specific sort int for integers, function symbols + and — for
integer addition and subtraction, and a < order constraint over integers. In addition, the following
predicates are used:

submit_order A request to submit a prescription.

script(K,n) A prescription for principal K to have n days worth of pills.
is_doctor(D) Principal D is a doctor.

record(K, n) A pharmacist’s record that principal K has n remaining days

worth of pills on his prescription.
receipt(D, K, n,) A receipt that a prescription signed by principal D for principal
K to have n days worth of pills during interval i was received.
request_dispense(n) A request that n days worth of pills be dispensed.
pills(K, n) Principal K has n days worth of pills.

Suppose that a doctor D wishes to issue a prescription for n days worth of painkilling medication
to his patient K. He does so by issuing the consumable credential (D) (script(K,n) @ i)[[t;, 00)].
1 is the interval over which the prescription is valid and medication may be dispensed. t; is the
time at which the doctor signs the prescription. Note that the left endpoint of ¢ need not match
t;; for example, the doctor may sign the prescription several days before the surgery for which the
medication is needed.

The first policy, order, specifies the procedure for submitting a doctor’s prescription to a phar-
macy:

order : (VK :principal.Vt:time.VD:principal . Vn:int.Vi:interval.
(K)submit_order Q [¢,¢] —o
(D) (script(K,n) @14) Q [t,t] —o
(P)is_doctor(D) @ [t,t] D
((P)(record(K,n) @4) Q [t,00) ®
(P)receipt(D, K, n,i) Q[t,00)))[(—o0, 00)]

Principal K begins a transaction at time ¢ by creating the single-use credential (K)submit_order([t, t]].
The pharmacy P accepts the prescription and issues a receipt if the following conditions are met:

1. (D)(script(K,n) Qi) @ [¢,t|—at time ¢, there must exist a prescription for K to have some
medication over some interval.

2. (P)is_doctor(D) @ [t, t]—the pharmacy P must verify that principal D is indeed a certified
doctor at time ¢.

Under these conditions, the pharmacy will create an internal record of the prescription so that
medication can be dispensed by issuing the credential (P)(record(K,n) @ i) @ [t,00). In addition,
the pharmacy will give K a receipt of the transaction, modeled as (P)receipt(D, K,n,i) Q [t;, 00).

The second policy of the system, dispense, specifies the conditions under which medication can
be dispensed:

44 CHAPTER 4. n LOGIC

dispense : (VK :principal.Vn':int.Vt:time.VP:principal . Vn:int.V¢ s :time.
(K)request_dispense(n’) @Q [t, t] —o
(P)(record(K,n) Q [t ts]) @Q[t,t] —o
M>0>M <n)dMN <7D
(pills(K,n’) @ [t,00) ®
(P)(record(K,n —n') Q [t +n',ts]) Q[t,00)))[(—00,00)]

A principal K requests that n’ days worth of medication be dispensed at time ¢ by creating the
single-use credential (K)request_dispense(n’)[[t,t]]. The pharmacy P carries out this request and
updates its internal record if the following conditions are met:

1. (P)(record(K,n) @]t ts]) Q[t,t]—at time ¢, the pharmacy has a record that K may be given
n days worth of medication during [¢,y].

2. n’ > 0—the number of days worth of medication requested is positive. This prevents negative
requests that would increase the amount listed in the pharmacy’s record.

3. n’ < n—the number of days worth of medication requested is no more than the total remaining
amount K may have. This prevents K from exceeding his prescribed amount.

4. n' < 7—the number of days worth of medication requested is no more than 7. This ensures
that at most one week’s worth of medication is dispensed at one time.

Provided that these conditions are satisfied, the pharmacy will dispense n’ pills to K. K possesses
these pills from time ¢ onward. The pharmacy also updates its record by deducting n’ from the
number of pills remaining on K'’s prescription. In addition, the interval over which K may request
these remaining pills is changed to [t + n/,t¢]. The expiration date remains the same, but the left
endpoint is moved so that K must wait n’ more days before new pills can be dispensed. This
controls the average rate at which K can consume the pills.

Observe that it is critical that the pharmacy’s record is a consumable credential. If the record
was persistent, it would be impossible to accurately deduct medication dispensed and adjust the
validity interval: one could use the old record to obtain more medication than prescribed.

4.3.3 A Homework Assignment Administration System

In this example, we consider the application of 7, logic to a homework assignment administration
system. Time is used to express the release and due dates of assignments, while linearity is used
to model changes of state in the system.

We postulate sorts for assignments and courses: assignment and course, respectively. In addition,
we introduce the following predicates:

request_view(A, C) A request to view assignment A of course C.
request_submit(A, C) A request to submit answers for assignment A of course C.
is_professor (P, C) P is a professor for course C.

is_student (.S, C) S is a student enrolled in course C.

is_assignment(A, C) A is an asignment for the students in course C.
may_view (S, A, C) S may view assignment A of course C.

may_submit(S, A, C) S may submit answers for assignment A of course C.

change_date(A, C,t],t/)) A request to change the release and due dates for assignment
A of course C' to t,. and t;, respectively.

4.3. EXAMPLES 45

We also assume an administrating principal, admin, that manages the system. This adminis-
trator is responsible for initializing the courses in the system at the beginning of each semester.
First, the administrator issues multi-use certificates identifying the instructors of each course. For
example, if principal P is the professor for course C' during Spring 2008, the administrator issues
(admin)is_professor(P, C')[S'08]. Second, the administrator issues a multi-use certificate for each
student enrolled in each course. For example, if principal S is a student enrolled in course C' during
Spring 2008, the administrator issues (admin)is_student(.S, C')[S'08].

During the semester, a professor P can create an assignment A for course C' with release date t,
and due date t4 by stating (P)is_assignment(A, C)[[tr,tq]]. Note that this is a single-use credential.
This is done to permit the professor to change the release and due dates, if desired (using the
change policy).

The system’s first policy specifies the conditions under which a principal may view an assign-
ment:

view : (VS:principal.V A:assignment.VC':course.
Vt:time.VP:principal.Vt,:time.Vt:time.

(S)request_view(A,C) Q [t, t] —o
(admin)is_student(S,C) Q [t,t] D
(P)is_assignment(A, C) Q [t,, t4] —o
(adm1n>|s professor(P,C) @ [t,, t4] D
(t> 1)

((admin)may_view(S, A, C) Q [¢,t] ®

(P)is_assignment(A, C) Q [t,, t4]))[(—o0, 00)]

A principal S can make a request to view assignment A for course C at time ¢t by creating the
certificate (S)request_view(A, C)|[t,t]]. The adminstrator will let S view the assignment at time ¢,
represented as (admin)may_view(S, A, C') Q [t, ¢], if the following four conditions are met:

1. (admin)is_student(S, C)@Jt, t|—the administrator affirms that principal S is a student enrolled
in course C' at the time the request is made, that is, at time ¢.

2. (P)is_assignment(A, C') Q [t,, t4]—some principal P affirms that A is an assignment for course
C with release and due dates ¢, and t4, respectively.

3. (admin)is_professor(P,C') Q [t,, t4]—the administrator affirms that the above principal P is
actually an instructor for course C for the duration the assignment, that is, during [¢,, t4].

4. t > t,—the time at which student S requests access is after the assignment has been released.
This prevents students from viewing a draft assignment.

Note that the is_assignment credential is consumed and immediately regenerated by this policy. It
must be a consumable credential to facilitate the changing of the assignment release and due dates,
and yet it cannot be permanently consumed in this policy because then the first viewing would
destroy the assignment.

The system also includes a policy that describes how a principal may submit answers to an
assignment:

46 CHAPTER 4. n LOGIC

submit : (VS:principal.V A:assignment.VC':course.
Vt:time.VP:principal.Vt,:time.Vt:time.

(S)request_submit(A4,C) Q [¢,t] —o
(admin)is_student(S,C) Q [¢,¢] D
(P)is_assignment(A, C) Q [t,, ty] —o
(admin)is_ professor(P C)Qlt,, tq] D
(t € [t t4]) >

((admin)may _submit(S, A,C) Q [t, 1] ®

(P)is_assignment(A, C) Q [t,, t4]))[(—00, 00)]

This policy is quite similar to the view policy. A principal S signals his intent to submit answers for
assignment A in course C' at time t by constructing the credential (S)request_submit(A, C)[[t,t]].
The administrator allows S to submit answers at time ¢, represented in the submit policy as
(admin)may_submit(S, A, C) Q [t, t], if four conditions are met. The first three conditions are the
same as those for the view policy. The fourth condition is ¢ € [t,,t4], that is, the time of request
must be before the assignment due date (and after the release date). This prevents late assignments
from being submitted. Note that, as in the view policy, the is_assignment credential is regenerated.
The final policy permits a course professor to change assignment release and due dates:

change : (VP:principal.V A:assignment.VC':course.
Vt).:time.Vt):time. Vi, :time. Vi :time.
(P)change_date(A, C,t.,t)) —o
(P)is_assignment(A, C) Q [t,, ty] —o
(admin)is_professor(P, C') D
(P)is_assignment(A, C) Q [t t/)])[(—oc0, 00)]

A principal P can initiate the process of changing the release and due dates of assignment A for
course C' to t]. and t;, respectively, by issuing the credential (P)change_date(A, C,t,t)). If the same
principal P has already declared A to be an assignment for course C, represented in the change
policy as (P)is_assignment(A4, C) Q [t,, t4], and if the administrator affirms P to be a professor for
course C, represented as (admin)is_professor(P,C'), then the dates will be changed. This policy
finally justifies the decision to make is_assignment credentials usable only once: if the credential

was persistent, then the assignment would have two release dates and two due dates.

4.4 Meta-theory

Now that 7, logic has been formally described and its increased expressive power has been illus-
trated by examples, we turn to a study of its meta-theoretic properties. As for previous logics, we
show that natural properties of 17, logic indeed hold, to increase confidence in the logic’s foundations
and demonstrate its soundness.

Before considering any meta-theorems that are interesting in their own right, we must state a
few lemmatas:

Lemma 4.1.
1 If ;0T A = v, then X, X, 0,0, T"; A = ~.

4.4. META-THEORY 47

2. If S0 IDI" T A=~y and 5;V EI DI, then ;0. I' D I";T; A = .
3. If %0 = C and ;0,0 T A = ~, then ;¥ T, A = .
4. If S Ft:s and 8, 2:5;U; T A = v, then I [t/x]V; [t/z]|1; [t/z]A = [t/x]y.

Proof. All parts follow by structural induction on the given derivation. O

In the presentation of 7y logic’s meta-theory (cf. Section 3.3.1), we studied an identity principle
that generalized the init rule from atomic propositions to compound propositions. It is possible to
make the same generalization in 7 logic. As the following theorem shows, from the assumption
that proposition A is a resource during interval I, it is possible to conclude that A is a resource
during any subinterval I’ of I. Because the theorem concerns resource hypotheses and each resource
hypothesis must be used exactly once, no other resource hypotheses are permitted here.

Theorem 4.2 (Identity). For all propositions A, if ¥;¥ =12 I, then ¥;V; T'; A[I] = A[I'].
Proof. By structural induction on A. O

In the presentation of ny logic, we also examined subsumption as a meta-theoretic property.
The most basic form of subsumption occurred on the right side of =>: from a proof that A is true
on interval I, we were able to construct a similar proof that A is true on a subinterval I’. This
notion of right subsumption from 7y logic can be easily extended to 7y logic; the theorem and
proof are no more complicated.

Theorem 4.3 (Right Subsumption).
1 If S0, T5A = A[l] and ;9% =1 D I, then X;¥; T A = A[I'].
2. If 5, U, T A = (K affirms A) at I and ;9 =1 D I, then 3; ¥; Ty A = (K affirms A) at I.

Proof. By simultaneous structural induction on the first given derivation. O

For nn logic, we also considered subsumption on the left of =. We were able to replace an
assumption that A is true on interval I’ with an assumption that A is true on a superinterval I.
It is also possible to extend this notion of left subsumption to 7nr logic. Because the logic now
includes fact hypotheses, the theorem must be expanded to make an analogous statement about
fact hypotheses.

Theorem 4.4 (Left Subsumption).
1. If SO AVA) = vy and S0 =1 D I/, then ;U T A Al = .
2. If S, U T A A = v and ;9 =12 I, then 3,0, T, A[I]; A = .

Proof. By simultaneous nested induction on the structures of A and the first given derivation. O

Finally, we examined the admissibility of cut in our study of the meta-theory of ny logic. We
can also establish the admissibility of cut for ny logic. However, two significant modifications must
be made to the theorem statement. First, when replacing the resource hypothesis A[I] with a proof
of A[I], we must be careful to respect the single-use nature of resources. For this reason, the cut
rules join the distinct multi-sets of resources, A and A’, used by the two proofs being combined.
Second, a cut rule for fact hypotheses is needed. The proof used to replace a fact hypothesis must
prove a fact, and therefore cannot contain resource hypotheses.

48 CHAPTER 4. n LOGIC

Theorem 4.5 (Admissibility of Cut).
1. If ST A = A[I] and X 9;T; A ATl = v, then ;0T AV A = .
2. If 5,0 T - = A[I] and ;9 T, A[I]; A = 7, then X; U1 A = 4.
3. IfS; ;T A = (K affirms A)at I, ¥; U; I'; A, A[I] = (K affirms B)atI’, and ;¥ |= I D I,
then ¥;U;T; A’ A = (K affirms B) at I'.

Proof. By simultaneous nested induction on the structures of A and the given derivations. O

Because of the difficulty of encoding the meta-theory of linear logics in Twelf, we have not
attempted to mechanically verify the above theorems, instead relying on traditional pencil-and-
paper proofs. However, Reed’s work on hybrid LF [37] shows promising preliminary steps toward
a framework for mechanically verifying linear meta-theorems. We expect that verifying the meta-
theory of iz, logic would be a straightforward exercise in such a framework.

In Section 3.3.2, we established a formal correspondence between ny logic and GP logic, in
addition to the metatheory for ny logic itself. It is also possible to establish a correspondence
between 77, logic and a linear version of GP logic (as in [23]). However, in the interest of space, we
will not present a linear GP logic, and therefore do not state the correspondence theorem.

4.5 Conclusion

In this chapter, we revised 7y logic to account for access control policies that require finitely usable
credentials, creating 1y, logic. We illustrated the new logic’s increased expressiveness through two
examples: office entry and homework administration. Finally, we conducted a small meta-theoretic
study of the logic, culminating in a proof of the admissibility of cut. In the following chapter, we
continue to discuss 1y, logic by constructing an alternative, natural deduction formulation of the
logic and a simple proof checker for it.

Chapter 5

A Proof Checker for n; Logic

In the previous chapter, we developed a linear authorization logic with explicit time by naturally
modifying 1y logic to possess judgments for single-use resources and multi-use facts. We saw that
1, logic is sufficiently expressive to model authorization policies that require single-use credentials
or other mutable state.

Proof-carrying authorization (PCA) [6, 7] is an appealing mechanism for enforcing such policies
in practice. In PCA, the reference monitor for a given resource requests a proof of authorization
for each access request. Only after the reference monitor has verified the proof’s correctness will
access be granted. For this reason, a sound (and complete) proof checker is a critical component
of any PCA architecture.

As the first small step toward a PCA architecture based on ny, logic, this chapter concerns the
implementation of a proof checker for the logic. First, we present the well-formedness rules for terms,
constraints, and propositions that have been deferred by earlier chapters. Next, we introduce proof
terms and describe a bidirectional type checking system built from the logic. Finally, we discuss the
implementation techniques used in handling the diverse aspects of the logic, most notably linearity
and constraints.

A proof-of-concept implementation of the proof checker presented in this chapter is available
online at http://www.andrew.cmu.edu/user/hdeyoung/etalogic/checker.

5.1 Formal Proof Checker

5.1.1 Sorts, Function Symbols, and Predicates

We retain from 77, logic the distinguished sorts principal, time, and interval for principals, times, and
intervals (sets of time), respectively. The language of sorts can still be extended with application-
specific sorts, but this open-endedness must now be made explicit for the purpose of implementation.
Sort constants « are introduced to this end, completing the language of sorts:

s ::= principal | time | interval | «
To list the available sort constants, a signature is needed:

$ = | P asort | ...

49

http://www.andrew.cmu.edu/user/hdeyoung/etalogic/checker

50 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

F® ok a:sort ¢ Dom(®)
F - ok F &, a:sort ok

O s;:sortforalll<i<n ®F s :sort f¢ Dom(P)
F®, fi(syx - Xxs,) — s ok

O s;:sort foralll1 <i<n p¢Dom(P)
F®,pi(sy X+ x s,) ok

- ® ok - ® ok - ® ok F®ok &(a)=sort
® F principal : sort ® time : sort ® interval : sort ® F «:sort

Figure 5.1: The well-formedness rules for signatures and sorts.

In fact, sort constants and the signatures declaring them were implicitly assumed in the presen-
tation of ny, logic in Chapter 4. However, because the available sort constants remain unchanged
throughout a derivation, we avoided introducing them explicitly to simplify the initial discussion.

Like sort constants, function symbols and predicates were glossed over in Chapter 4 to avoid
obscuring the core of 7y, logic. Because the available function symbols and predicates also remain
unchanged throughout a derivation, they, too, can be included in the signature ®. We write
fi(s1 %+ xs,) — s to indicate that f is a function symbol taking n arguments of sorts sq,..., s,
and returning a term of sort s’, and write p:(s1 X - -+ X 8,,) to show that p is a predicate on n terms
of sorts s1,...,8,.

D =] P asort | D, fi(sy x - X 8,) — 8| Pypisy X X 8y

The judgment - ® ok means that ¢ is a well-formed signature; its rules are given in Figure 5.1.

We write @ I s : sort for the judgment that s is a well-formed sort in the signature ®. Figure 5.1
gives the rules for this judgment. The predefined sorts are well-formed in any context and a sort
constant is well-formed in @ if it appears in ®.

5.1.2 Terms

Although the representation of principals, times, and intervals is left unspecified in 7z logic, our
proof checker must fix constructors for these terms. We choose to give no explicit constructors for
principals, and instead rely on term parameters as the sole source of principals. In keeping with
the examples from Chapters 3 and 4, we let time constants range over integers (1) and positive
and negative infinities (co and —oc). Similarly, an interval is constructed as a pair of terms ([¢,t']).
We also allow the application of function symbols to a list of terms. This leads to the following

5.1. FORMAL PROOF CHECKER ol

F ® ok ®F Yok x¢Dom(X) @F s:sort
d - ok ®F X x:s ok
O, Ut:s
®: ¥+ ¥ ok ®: ¥+ ¥ ok ®: ¥ ¥ ok
®; ;U7 time P; ;U oo time D; ;U —o0: time
;% UHt:time O;5;,0FH¢ :time &0t >¢
O; 3 Uk [t,t] : interval
D(f)=(s1 X - xXs8,) =8 O:E;UH¢:sforalll<i<n O;XFVPok X(x)=s

;U E f(ty,... ty): 8 ;XU kzx:s
Figure 5.2: The well-formedness rules for parameter contexts and terms.

language of terms:
to=nloo| —oo|[t,t]| flt1,...,ta) | T

As in earlier chapters, we require an unordered context of term parameters ascribed with sorts to
track the parameters in scope:

Yu=-| X x5

The well-formedness rules for contexts of parameters are given in Figure 5.2.

With the language of terms defined, we should now describe the conditions under which terms
are well-sorted. It is natural to assume that the time constructors m, oo, and —oo have sort time
under any conditions, as they do not include parameters or any complex structure. Also, we assign
the codomain sort of function symbol f to f(t1,...,t,) if t1,..., and ¢, have the domain sorts of
f. Finally, it is standard practice to assign sort s to parameter x if this assignment is given in the
parameter context .

However, the conditions under which the term [¢, '] should have sort interval are not as clear. We
intend that both ¢ and ¢’ have sort time. If this is adopted as the only condition for well-sortedness,
how should [t,#'] be interpreted? There are at least two options.

We could interpret [t,t'] as an unordered pair of times that corresponds to the set of times
between min{t¢,t'} and max{t,t'}. Or, we could interpret [t,t'] as the empty set whenever ¢ is
larger than t'.

Neither option is particularly compelling, as they do not correspond to typical interpretations of
mathemetical intervals. It seems cleaner to instead require that the left endpoint of an interval be
no larger than the right endpoint. Ordering constraints ¢’ > ¢ from a context ¥ (cf. Section 5.1.3)
are therefore needed during sorting. We write ®;3; W I ¢ : s for the judgment that ¢ has sort s.
Figure 5.2 gives its rules.

52 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

®; 3 U I C constraint

O: YW Ht:time ;5 UHt:time
®;3; 0 -t >t constraint

®:% F U ok

dFYok ®;3; U I C constraint
;¥ F - ok ®: ¥ -V, C ok

Figure 5.3: The well-formedness rule for constraints and constraint contexts.

5.1.3 Constraints

Only ordering constraints ¢ > ¢’ on times are required for the proof checker implementation. Al-
though it would be relatively straightforward to introduce other constraints, we do not choose to
do so. The language of constraints is therefore simply:

Co=t>t

Superset constraints I O I’ are not needed for the proof checker: as discussed in Section 5.2.4,
they can be translated to a conjunction of > constraints. Keeping this in mind, we continue to use
I D I’ to simplify the notation.
The judgment ®;3; ¥ - C constraint means that constraint C' is well-formed. The ordering
constraint ¢ > t' is well-formed if both ¢ and ¢’ are well-formed times. This rule is given in Figure 5.3.
As alluded to in previous rules, a context of constraints is needed:

Vo= |v,C

We write ®; % + ¥ ok when ¥ is a well-formed constraint context. Figure 5.3 gives the rules for
this judgment.

We continue to write ®;%; ¥ |= C for the judgment that constraint C' holds. In the following
presentation of bidirectional type checking, the constraint solver is taken as a black box. The
specific decision procedure that was implemented is discussed in Section 5.2.4.

5.1.4 Propositions and Types

The propositional connectives are retained from 7y, logic, but we refine the description of atomic
propositions. An atomic proposition P is now a predicate p applied to a list of terms tq,...,t,:
p(t1,...,ty). The language of propositions is summarized by the following grammar:

ABu=p(ty,....t)) | A®B |1 | A&B|T|A®B|A—-B|lA|A>D B |Vrs.A| Jas.A
| (K)A|AQT|CDHA|CAA

5.1. FORMAL PROOF CHECKER 93

’@;E;\IJI—Aprop‘

P(p) =s1 x - x5, P;E;WEE s foralll<i<n ®;3; U+ Aprop @;%; U+ B prop

O3V Fp(ty,...,t,) prop ;3 VF A® B prop
®; ¥ F W ok P, UVF Aprop P;X; ¥+ B prop ®; ¥ F Wok
®;3; U 1 prop ;YU - A& B prop ®;3; VT prop
O: YU Aprop 9;%;VF B prop O: YU+ Aprop 9;%;VF B prop
;3 VFH AP B prop ®:¥; ¥ - A — B prop
d;3; U F A prop O: ;U Aprop 9;3;VF B prop
®;%; U+ !A prop ;3 U+ AD B prop
®Fs:sort @;X,1:5,VHF Aprop OFs:sort &;%, x:5,VHF Aprop
D; ;U F Vr:s.A prop ®; ¥ U+ dx:s. A prop
®; ¥ U+ K :principal &;X; ¥V F A prop Q;3;VF Aprop @;%;V F I :interval
®: ;¥ + (K)A prop D; ;0 AQIT prop
®: ;U - C constraint &;3; U C'+ A prop ®; 3 U F C constraint @;3; ¥, C + A prop
®; %0+ C D Aprop ®;%; U+ C A A prop
®;3; U I v cat

Q3 VE Aprop @;%;¥ F I :interval
O: % U - Al cat

®; ¥ W K :principal &;X;UF Aprop @;X;VFI:interval
®; %, U - (K affirms A) at I cat

Figure 5.4: The well-formedness rules for propositions and categorical judgments.

The judgment ®;3; ¥ - A prop means that A is a well-formed proposition. Its rules are given in
Figure 5.4.

We should call particular attention to the rules for C D A and C'A A. In both rules, proposition
A is checked for well-formedness in the presence of constraint C, reminiscent of dependent product
and sum types. The presence of constraint C' is necessitated by the rule for interval well-formedness.
Consider the proposition Va:time.(z > 1) D A @ [1, z], for example. Without the constraint x > 1,
the interval [1,z] (and consequently the whole proposition) is not well-formed. A similar example
using A is Jz:time.(z > 1) A AQ [1, z].

In addition to propositions, categorical judgments are required. These correspond to the single-
use truth and affirmation judgments from 7y, logic:

v = A[l] | (K affirms A) at I

54 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

We write ®;3; U - v cat for the judgment that v is a well-formed categorical judgment. For it to
be well-formed, each A, I, and K in 7 must be a well-formed proposition, interval, and principal,
respectively. Figure 5.4 gives the rules for this judgment.

5.1.5 Proof Terms and Their Typing Judgments

In order to verify the correctness of proofs through type checking, explicit proof objects, called proof
terms, must be included in the formal system. Each proof term, denoted by the meta-variables M
and N, corresponds to a single step in a derivation. We choose a set of natural deduction proof
terms:

M,N :=u|v
| (M :7)
| M®@N |let M =uj @ugin N
| | let M =% in N
| (M,N) | fst M | snd M
| 0
| inl M | inr M | (case M of inl u; = N | inr ug = Na)
| Xi,u.M | M"N 1
| IM |let M =lvin N
| Xi,v.M | M N I
| Ax.M | M[t]
| pack t with M | let M = pack = with u in N
| _affirms M
| ()M |let M = ()uin N
| @t M| @ M
| AM | M _
| _AM|let M =_Auin N

We use v and v (and their decorated variants) for linear and unrestricted variables, respectively.
Because each variable can be identified as linear or unrestricted from the proof term that introduced
it, this naming scheme carries no meaning, but is instead solely adopted for convenience. The syntax
of the remaining proof terms is a mixture of notation from programming languages and notation
mimicking the type corresponding to the proof term.

It should be noted that nearly all type annotations have been eliminated from the proof terms.
(In some cases, the omitted annotations are replaced by _.) This is a consequence of the use of
bidirectional typing judgments.

There are two bidirectional typing judgments for proof terms: a synthesis judgment M T~ and
a checking judgment M | 7.1 As in earlier chapters, these basic judgments are extended to allow

!The reader may find it useful to note that the synthesis and checking judgments roughly correspond to neutral

5.1. FORMAL PROOF CHECKER 95

®: ;U T ok
®: Y+ U ok ;YU FT ok v¢Dom(l)) &;%:;0F Aprop &;%; Uk I:interval
O;%; U F - ok O; %, 0T v:A[l] ok

d; YU Aok
®; 3 F ¥ ok ;YU Aok u¢Dom(A) &;5;,UF Aprop &;%; U+ [:interval
O; ;U k- ok O %, U F A wA[l] ok

Figure 5.5: The well-formedness rules for proof contexts.

assumptions, which are ascriptions of types to proof variables in this case. The context I' contains
unrestricted variable typings, v:A[I], and A contains linear variable typings, u:A[I]. Figure 5.5
gives the well-formedness rules for these contexts. The full bidirectional typing judgment forms
are:

QU IAFEM Ty
O: WA M |y

These two judgments differ from an operational perspective. The type is considered an output
of the synthesis judgment and an input to the checking judgment, justifying the names: M T ~
synthesizes a type ~ for M, while M | v checks M at type ~. It is the operational distinction
that allows most type annotations to be omitted from proof terms. In most cases where a type
annotation would normally be needed, the checking judgment is used, and therefore the purported
type is given as an input. This reduction of required type annotations is a standard benefit of
bidirectional type checking [36].

5.1.6 Inference Rules

We now proceed to describe in detail a few inference rules for the typing judgments. As a general
rule of thumb, introduction rules and closed-scope elimination rules (having proof terms of the form
let ...=... in ...) use the checking judgment M | 7, while the remaining rules use the synthesis
judgment M T 7.

First, compare the hyp rule for synthesizing a type for a linear hypothesis with the hyp’ rule for
checking the type of a linear hypothesis:

O,V EIDT A
;0 U T w A - u | AT P

/

h
o3 U T wA Ful Al P

These rules reiterate the input-output mode difference between the synthesis and checking judg-
ments. Because the hyp rule synthesizes a type for the hypothesis, it must output the largest correct

and normal deductions for logics. The directionality of the arrow notation, however, is often reversed in presentations
of neutral and normal deductions.

56 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

interval; producing a smaller interval would unnecessarily throw away information. On the other
hand, because the hyp’ rule checks the type of the hypothesis against its input, any input interval
I’ smaller than the assumed interval I gives a valid type. (In practice, the hyp’ rule is not needed:
it is derivable from hyp and the other rules.)

Next, we examine the T] rules for mediating between the two judgments:

QU AEMTA[I &5V EITIDT
;U T A M | AL

;YU T AF M1 (K affirms A)at] &; 5,0 =121
;3 WA M | (K affirms A) at I

Tlaffirms

The 7] rule states that if type A[I] can be synthesized for M and I’ is a subinterval of I, then
M checks against type A[I']. From an operational perspective, this means that if we are trying to
check M against a type, we can synthesize a type for M and verify that the two types are related
by subsumption. T]affirms is the analogous rule for affirmation types.

The | T rule mediates between the two judgments in the opposite direction:

O U IAFM |y
;N WA R (M) Ty

1

This rule states that if the proof term M is annotated with a type v and if M indeed checks against
v, then we may synthesize v as the type of M.
Next, we consider the introduction and elimination rules for linear implication:

®; X qcinterval; U, T D ;T A u:Afil = M | BJi]
;00T A F NiyuM | A —o B[

—o]

QU T A FMTA—B[I &5, U:TA, N |A[I] &9 12T
O; 3 Ui Ay, Ao MN I’ 1 B[I']

—oF

The proof term for introduction of linear implication is 5\1', u.M, where i and u are the interval and
proof assumptions created, respectively. (i is needed because intervals can appear in implication
elimination proof terms.) Usually a lambda expression would have its parameter annotated with a
type. However, because the —oI rule checks against a type, writing 5\2', u:Ali].M would be redundant:
A is already known from the input to the checking judgment.

Most other type annotations on proof terms can be omitted for the same reason. This pattern
does not apply to the elimination proof term for linear implication, however. The —oF rule shows
that a type must be synthesized for M"N I’. By synthesizing a type for M, we learn A, B, and
I. N must then be checked against A[I']. Without the annotation I’ in the proof term, we would
not know I’ and would be forced to guess it. It is therefore not possible to maintain a standard
bidirectional system and also eliminate the annotation I’ from this proof term.

For the same reason, the elimination proof term for unrestricted implication also requires an
interval annotation, while the introduction term needs no annotations.

The full set of inference rules for the typing judgments M T~ and M | v is given in Figure 5.6.
To avoid cluttering the rules, all contexts and types are assumed to be well-formed.

5.1. FORMAL PROOF CHECKER o7

"™

O, % U T wAlllFuT A ;% U T v A[I];- v 1 Al vhyp

Q50T AFEMT AL ;59 EIDT
Q; 35U T A M | AL

Tl

;U AF M1 (K affirms A)at] &; %0 =121
;% U AF M | (K affirms A) at I’

Tlaffirms

O: WA R M |y
PN WA (M) Ty

1

;5 U ALEM AL ;5,01 Ax - N | B[
O: YU T A, A F M®N | A® BII]

®I

Q%0 T A FMTA® B @;5;0;T; Ag,up:A[I],ug:B[I| N | v
QU I AL, Ao let M =uy Quoin N | vy

QF

1 QN0 AT EMTLI] &2 0TA,F N |y
;XU T - % | 1[]) DU AL, Ag-let M =%in N | v

1E

O: XU IARM | AL ;5,9 T;A RN | B[
;% U IAF(M,N) | A& B[]

&I

;YU TAF M1 A& B[
O, %0 I A fst M1 A[I]

;% U TAF M1 A& B[
O, %, U; I A+ snd M T B[]

&E1 &E2

O 5T AR () | T TI

o5, U A R M | AL s ;% U AR M | B[
;% U:T;AFinl M | A® B[®h ;% U T Abinr M | A® B[]

&ID)

;%W T; A - M1 A Bl
O; 5 U T Ag,up: Al F Ny |
O; ;U T Ao, ug:B[I] F No | v
O; 3,0, T Ay, Ay - case M of inl uy = Ny | inr ug = Na | v

ST

®; %, iinterval; U, I D 4; T A w:Alil = M | BJi]
&% W T A F Niyu.M | A—o B[

QWA FMTA— B[I] &5, T;A: N A[I'] &5, EIDT1
&5 U:T; Ay, Ag - MON I B[T']

—oF

Figure 5.6: The bidirectional typing rules.

58 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

O, %W T - M | Al | O; %0 T A H M T A[T @;E;\II;F,U:A[[I]];AQI—Nl'y'
O, %W IM [TA[T] O: U T A, AgFlet M =lwin N |~ B

®; ¥ interval; W, I D 4, T, v:A[i]; A+ M | BJi]
;% U T AE Niyv.M | AD B[]

DI

O; 50T AFMTADB[I] &5, 0N |A[I] &:;59 12T 5
% U ;AFMN I BT -

O Y wis; U T A M | AL ; QN0 A M I Veis Al &5, 0t s
O XU TAF Ax. M | Vais. Al v O % U T A F Mt T [t/x] Al

O Ukt:s O350 TARM| [t/x]All]
O; ;U T A+ pack t with M | 3x:s. A[]]

O XU A M 3xis Al @38, 2is; U5 T Ag, w:A[IE N |y
DU T Ay, Ag Flet M = pack x with win N | v

JE

;50T AR M | AL ;YU T AR M | (K affirms A) at T

i I
B:3; UiT; A - affirms M | (K affirms A) at 1 217MS ;W T A F ()M | (K)A[I] 0

;%W ALE M T (K)A[
O, UVEIDI
O; 3 ;T Ao, uw:A[Il F N | (K affirms B) at I

E
;3 U A, Ag b let M = (Juin N | (K affirms B) at I’ Y
O 5T AR M | AT ar O T AFMTAQIT
;%0 AFQTM | AQ T[T O 50T AFQ M T A[
;% 0,C; T A F M | A[l] o7 &N AFMICOAl &0 =C .
@;E;\IJ;F;AI—}\.MleA[I] O XU T AR M T Al =

OV E=C &N T ARM | AL
O:x: U AF AMICAAL M

O30T A M TCAA[I ;59,051 Ag,w: AT E N |y
;5 U A, Aok let M= Auwin N |~ NE

Figure 5.7: The bidirectional typing rules, continued.

5.2. IMPLEMENTING THE PROOF CHECKER 99

5.2 Implementing the Proof Checker

The combination of linearity and constraints in 7y, logic introduces several, albeit small, imple-
mentation challenges. The techniques used in resolving these problems are not unique to this
implementation, but are instead borrowed from previous work. We first discuss explicit substitu-
tions and de Bruijn indices as general techniques, and then turn our attention to linearity and the
constraint solver.

5.2.1 Explicit Substitutions

To avoid implementing a direct substitution function for terms and proofs, one can encode the
substitution operation as an explicit proof term. Substitutions can then be lazily computed during
type checking. This method also prevents the size explosion that results from directly substituting
a large object for many variable occurrences.

Despite the advantages of explicit substitutions, there is a possible tradeoff. With the addition
of substitution objects, any hope for the equivalence of terms and propositions based on purely
syntactic means is lost. For example, the term ¢ and the substitution [¢/z] applied lazily to z are
equivalent, but do not share the same syntax. This burdens the implementation with functions for
normalizing terms and propositions and for determining equivalence of these normal forms.

In the end, explicit lazy, and not direct eager, substitutions based on the Ao calculus of Abadi
et al. [5] were implemented in the proof checker. Because neither the advantage of efficiency nor the
disadvantage of additional code were particularly compelling factors for a small proof-of-concept
implementation, the use of explicit substitutions was primarily chosen as an exercise.

5.2.2 de Bruijn Indices

Rather than using a named representation for proof and term variables, de Bruijn indices were
chosen. de Bruijn indices name each occurrence of a variable according to the number of variable
bindings that separate that occurrence from its binder. For example, Ax.A\y.y (Az.z z) would be
represented with de Bruijn indices as A.A.1 (A.3 1).

de Bruijn indices simplify the implementation of a type checker by eliminating the need for
a-conversion; unlike named representations of proof terms, a-equivalent terms have syntactically
identical de Bruijn representations since the underlying names are ignored. In addition, they
cooperate well with explicit substitutions. It is for these reasons that de Bruijn indices were
chosen.

It is natural to expect that the implementation would mirror the formal system by separating
the assumptions into the five contexts. However, this interacts poorly with de Bruijn indices.
Suppose that, as part of an atomic proposition, some type in A mentions the term parameter with
de Bruijn index 1 in X. Now, if a new term parameter is bound, the index 1 in this type must be
shifted to 2, or else the type will refer to the wrong parameter. Such shifts would need to occur for
V. I', and A every time a new term parameter is bound.

A better solution is to combine all of the five contexts into one. Under the convention that a
context entry is well-formed in the tail of its context, shifts will not be incurred for each new term
parameter. Instead, each de Bruijn index in the context will remain fixed thoughout its lifetime.

60 CHAPTER 5. A PROOF CHECKER FOR n;, LOGIC

Only when a type or constraint is used from the context will it need to be shifted. This is the
approach taken by the proof checker implementation.

5.2.3 Linearity

Enforcing the single-use nature of linear hypotheses during type checking requires careful consider-
ation. At a first glance, the problem might appear relatively straightforward: type checking should
simply ensure that each hypothesis is distributed to exactly one recursive call. But, the situation
is complicated by the nondeterministic presentation of some of the inference rules. As an example,
consider the ®I rule:

O 5T AL M| ALl &35, 0T Ay N | Bl
;% U T A, A M®N | A® Bl

®I

A1, As is the multiset of resources that must be used in the proof term M ® N. However, there
are exponentially many ways to distribute these resources among the premises, and it would seem
difficult to find a correct distribution. In fact, through the variables it uses, the proof term lists
(almost) all of the resources consumed. The input-output method [15] leverages this information
to eliminate the nondeterminism of splitting the context.

Under this approach, the proof term M ® N, for example, is checked against A® B[I] as follows.
First, all of the incoming resources, say AT, are used to check M against A[I]. By mentioning
only some of the variables from AT, the proof term M consumes only some of these resources and
outputs the rest, say A. Then, A is used to check N against B[I]. Again, N consumes only some
of these resources and outputs the rest, say A~. Thus, M greedily (and deterministically) decided
how to divide the resources between itself and V.

The implementation of the proof checker follows this model. However, explicitly returning only
the unconsumed part of the context would interfere with the numbering scheme for de Bruijn
indices: the de Bruijn index would no longer correspond to the distance from the front of the
context. So, instead, the full context is returned after flagging each resource as “consumed” or
“unconsumed.”

This marking scheme is further complicated by (), the proof term for T, because it can consume
resources but does not list them explicitly. If A1 is used to check () against T[], then () might
consume these resources, or it might produce them as output. Therefore, a third flag is introduced:
“possibly consumed.” Because it can consume any unconsumed resources in the current context,
() represents a fallback option for any of those resources that are not later consumed. () therefore
re-marks all “unconsumed” resources as “possibly consumed.” Since () is only a fallback, later
proof terms may re-mark “possibly consumed” resources as “consumed.”

The implementation, by using this three flag input-output method, can deterministically and
efficiently type check linear proof terms.

5.2.4 Constraints

The superset constraint solver for the proof checker posed a unique challenge: how should superset
constraints reconcile interval parameters ¢ and explicitly constructed intervals [t,t]?

5.3. CONCLUSION 61

This can be resolved by requiring all terms of sort interval to be explicitly constructed intervals.
Under this approach, the superset constraint [ti,te] O [t},t5] is considered an abbreviation for
a conjunction of two, now primitive, > constraints among times: t; > ¢; and to > t,. The >
constraints can then be solved using a simple decision procedure that builds a reflexive, transitive
closure by saturation.

For this to work, only the representation of interval parameters needs to be changed. Consider
the introduction of an interval parameter i by universal quantification: Vi:interval.A. Instead of
using ¢ directly, two time parameters i; and iy, with 79 > ¢1, are created and ¢ is replaced with
[i1,42]. Then, checking can continue. Thus, the original proposition is effectively translated to:

Vilztime.ViQ:time.(ig > il) >\ ([[21,22]/1]A)

Similar operations are performed for the corresponding proof term and for the introduction of inter-
val parameters in the existential quantification and implication rules. Because interval parameters
are eliminated immediately before use, no other cases need to be considered.

5.3 Conclusion

In this chapter, we have described a proof checker for n; logic. We first reduced the level of
abstraction by refining the treatment of sorts and atomic propositions, and then examined the
intricacies of verifying the well-formedness of terms, particularly intervals, and propositions. Next,
we presented a bidirectonal type checking system upon which the proof checker is built. Finally,
we discussed a few of the implementation challenges and the techniques used to resolve them.

Chapter 6

Conclusion

In this thesis, we have argued that, to be widely applicable, authorization logics should be able to
express the kinds of time-dependent access control policies that arise naturally in practice. This
thesis has therefore focused on the development and study of an authorization logic with an explicit
notion of time.

In summary, this thesis makes two conceptual contributions and a small practical contribution.
First, by developing ny logic, it demonstrates that an authorization logic suitable for expressing
time-dependent policies can be easily obtained by relativizing the judgments of a time-unaware
authorization logic to time intervals. Moreover, through meta-theoretic properties, this thesis has
shown the logic to be sound and formally proven it to be an extension of previous work.

Second, by extending ny logic with linearity to create 7 logic, this thesis has exhibited the
ability of linearity and explicit time to coexist in a logic. Also, a careful study of the logic’s
meta-theory was carried out.

Finally, by presenting a bidirectional type checker, this thesis has made the first, very small
step toward a full-scale PCA architecture based on 7, logic. The successful implementation of this
type checker suggests that such a PCA system should be easily constructible.

Despite these contributions, significant opportunities for continued research on 7 logic remain.
This thesis is therefore concluded with a brief description of possible future work.

6.1 Future Work

Directions for future research relating to 7 logic encompass both immediate and long-term goals.
We outline these possibilities in order of increasing scope.

Formal Comparison to Other Logics and Languages. The authorization logics and lan-
guages that handle time of which we are aware all do so by extra-logical mechanisms. In contrast,
7 logic internalizes time. To transport results from other logics to 7 logic, it would be useful to
formally compare 7 logic with these differing approaches. In particular, the currentTime() predicate
of SecPAL [10] would serve as an interesting starting point.

63

64 CHAPTER 6. CONCLUSION

PCA Architecture. A stated goal of this thesis was the design of a logic for time-dependent autho-
rization policies that could serve as the foundation for a PCA-based policy enforcement mechanism.
Since its design has now been completed, it is natural to consider creating and deploying a full-scale
PCA architecture based on 7 logic. In fact, this work is already underway; as a component of his
doctoral thesis, Deepak Garg is implementing a PCA file system for his own variant of 7 logic [22].

Policy Analysis. As the access control policies of systems are often exceedingly numerous and
complex, policy analysis tools are critical if authorization logics are to be successfully adopted in
practice. Such analysis can be carried out for the logic as a whole using non-interference theorems,
and for specific policies using the completeness of focusing (for example).

The study of policy analysis for an authorization logic via non-interference theorems was initi-
ated by Garg and Pfenning [24]. For example, they established an affirmation flow analysis theorem
for GP logic: in the absence of a connection (or flow of affirmation) between principals K; and K,
no statement made by K; can influence K5’s affirmations. Abadi subsequently showed a related
property for DCC [2]. We expect that these results can be adapted to n logic. Additionally, it will
likely be possible to prove other non-interference theorems specific to time, including a “time flow”
analysis: in the absence of a connection between intervals I3 and I, no event occurring during [y
can influence an event during Is.

In related work, Garg et al. [23] also developed a method, based on the completeness of focusing,
for establishing the correctness of specific policies. We believe that n logic satisfies the completeness
of focusing, but it needs to be formally verified. After doing so, it should be possible to analyze
individual policies by this method.

Privacy Policies. Complementing access control, privacy policies represent the other crucial
component of security. The growing emphasis placed on privacy is evidenced by the large num-
ber of recent regulations enacted by the United States government, such as the Health Insurance
Portability and Accountability Act (HIPAA) and the Family Educational Rights and Privacy Act
(FERPA).

With its importance to security, efforts toward a combined logic for authorization and privacy
are underway. Garg et al. [23] have introduced K has A, a modality for modeling possession. We
believe that the addition of a time-dependent has to 7 logic would permit certain time-dependent
privacy policies to be expressed. For example, K might be allowed to circumvent a given privacy
policy, provided he can satisfy an obligation A during interval I. It seems plausible that the
obligation could be represented as something like (K has (A —o 1))[I]. Further examination of
practical privacy policies is needed to verify this claim.

Bibliography

1]

Martin Abadi. Logic in access control. In Proceedings of the 18th Annual IEEE Symposium
on Logic in Computer Science (LICS ’03), pages 228-233, Ottawa, Canada, June 2003. IEEE
Computer Society Press.

Martin Abadi. Access control in a core calculus of dependency. In Proceedings of the 2006
ACM International Conference on Functional Programming (ICFP '06), pages 263-273, New
York, New York, 2006. ACM Press.

Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’99), pages 147-160, San Antonio, Texas, January 1999.

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming Languages and Systems,
15(4):706-734, September 1993.

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitu-
tions. Journal of Functional Programming, 1(4):375-416, October 1991.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Gene Tsudik,
editor, Proceedings of the 6th ACM Conference on Computer and Communications Security,
pages 52—62, Singapore, November 1999. ACM Press.

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis, Prince-
ton University, November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and Peter
Rutenbar. Device-enabled authorization in the Grey system. In Information Security: 8th
International Conference, ISC 2005, volume 3650 of Lecture Notes in Computer Science, pages
431-445, September 2005.

Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-control sys-
tems. In Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81-95, May
2005.

65

66

[10]

[11]

[12]

BIBLIOGRAPHY

Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and semantics of a decen-
tralized authorization language. In Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium (CSF ’07), pages 3-15, Venice, Italy, July 2007. IEEE Computer Society
Press.

Patrick Blackburn. Representation, reasoning, and relational structures: A hybrid logic man-
ifesto. Logic Journal of the IGPL, 8(3):339-365, 2000.

Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Reiter. Consum-
able credentials in logic-based access-control systems. In Proceedings of the 1/th Annual Net-
work and Distributed System Security Symposium (NDSS ’07), San Diego, California, February
2007.

Torben Braiiner and Valeria de Paiva. Towards constructive hybrid logic. In FElectronic Pro-
ceedings of Methods for Modalities, September 2003.

Jan G. Cederquist, Ricardo Corin, Marnix A. C. Dekker, Sandro Etalle, Jerry I. den Hartog,
and Gabriele Lenzini. Audit-based compliance control. International Journal of Information
Security, 6(2):133-151, 2007.

lliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for
linear logic proof search. Theoretical Computer Science, 232:133-163, 2000.

Rohit Chadha, Damiano Macedonio, and Vladimiro Sassone. A hybrid intuitionistic logic:
Semantics and decidability. Journal of Logic and Computation, 16(1):27-59, 2006.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, December 2003.

John DeTreville. Binder, a logic-based security language. In Martin Abadi and Steven Bellovin,
editors, Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 105-113,
Berkeley, California, May 2002. IEEE Computer Society Press.

Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with explicit
time. In Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF-21),
Pittsburgh, Pennsylvania, June 2008. IEEE Computer Society Press. To appear.

Matt Fairtlough and Michael V. Mendler. Propositional lax logic. Information and Computa-
tion, 137(1):1-33, August 1997.

Thom Frithwirth. Temporal annotated constraint logic programming. Journal of Symbolic
Computation, 22:555-583, 1996.

Deepak Garg. Logic-based authorization. PhD thesis proposal, March 2008.

Deepak Garg, Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter. A lin-
ear logic of affirmation and knowledge. In Dieter Gollman, Jan Meier, and Andrei Sabelfeld,
editors, Proceedings of the 11th European Symposium on Research in Computer Security (ES-
ORICS '06), pages 297-312, Hamburg, Germany, September 2006.

BIBLIOGRAPHY 67

[24]

31]

[32]

[33]

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic. In
Joshua Guttman, editor, Proceedings of the 19th Computer Security Foundations Workshop
(CSFW °06), pages 283-293, Venice, Italy, July 2006. IEEE Computer Society Press.

Gerhard Gentzen. Untersuchungen iiber das logische SchlieBen. Mathematische Zeitschrift,
39:176-210, 405431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68-131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.

Limin Jia. Linear Logic and Imperative Programming. PhD thesis, Department of Computer
Science, Princeton University, November 2007.

Max I. Kanovich, Mitsuhiro Okada, and Andre Scedrov. Specifying real-time finite-state sys-
tems in linear logic. In 2nd International Workshop on Constraint Programming for Time-
Critical Applications and Multi-Agent Systems (COTIC ’98), volume 16 of Electronic Notes
in Theoretical Computer Science, pages 42-59, Nice, France, 1998.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems, 10(4):265—
310, November 1992.

Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans Kaashoek.
Alpaca: Extensible authorization for distributed services. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS-2007), Alexandria, VA, October
2007.

Davide Marchignoli. Natural Deduction Systems for Temporal Logics. PhD thesis, University
of Pisa, February 2002.

Per Martin-Lof. On the meanings of the logical constants and the justifications of the logical
laws. Nordic Journal of Philosophical Logic, 1(1):11-60, 1996.

Ben Moszkowski and Zohar Manna. Reasoning in interval temporal logic. In Edmund Clarke
and Dexter Kozen, editors, Proceedings of the Workshop on Logics of Programs, volume 164
of Lecture Notes in Computer Science, pages 371-382. Springer Verlag, June 1983.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511-540, 2001.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In Harald Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202-206, Trento, Italy, July 1999.

Benjamin C. Pierce and David N. Turner. Local type inference. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98), San Diego, California, 1998.

68 BIBLIOGRAPHY

[37] Jason Reed. Hybridizing a logical framework. In Proceedings of the International Workshop on
Hybrid Logic (HyLo 2006), volume 174 of Electronic Notes in Theoretical Computer Science,
pages 135-148, 2007.

[38] Uluc¢ Saranl and Frank Pfenning. Using constrained intuitionistic linear logic for hybrid robotic
planning problems. In Proceedings of International Conference on Robotics and Automation
(ICRA ’07), Rome, Italy, April 2007. IEEE Computer Society Press.

[39] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based audit. In
Proceedings of the 21st IEEE Symposium on Computer Security Foundations, 2008. To appear.

	Introduction
	Related Work

	Preliminaries: Garg-Pfenning Authorization Logic
	Logical System
	First-order Terms and Sorts
	Judgments
	Propositions
	Inference Rules

	Examples
	Office Entry
	Chemical Laboratory Inspections

	Meta-theory
	Conclusion

	EtaN Logic
	Logical System
	First-order Terms and Sorts
	Constraints
	Judgments
	Propositions
	Inference Rules

	Examples
	Office Entry
	Journal Publication

	Meta-theory and Correspondence to GP Logic
	Meta-theory
	Correspondence to GP Logic

	Conclusion

	EtaL Logic
	An Overview of Linear Logic
	Logical System
	First-Order Terms and Sorts
	Constraints
	Judgments
	Propositions
	Inference Rules

	Examples
	Office Entry
	Filling Painkiller Prescriptions
	A Homework Assignment Administration System

	Meta-theory
	Conclusion

	A Proof Checker for EtaL Logic
	Formal Proof Checker
	Sorts, Function Symbols, and Predicates
	Terms
	Constraints
	Propositions and Types
	Proof Terms and Their Typing Judgments
	Inference Rules

	Implementing the Proof Checker
	Explicit Substitutions
	de Bruijn Indices
	Linearity
	Constraints

	Conclusion

	Conclusion
	Future Work

