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Abstract

We consider the problem of assigning prices to goods of fixed marginal cost in order to maximize revenue
in the presence of single-minded customers. We focus in particular on the question of how pricing certain
items below their marginal costs can lead to an improvement in overall profit, even when customers behave
in a fully rational manner. We develop two frameworks for analyzing this issue that we call the discount and
coupon models, and examine both fundamental “profitability gaps” (to what extent can pricing below cost
help to improve profit) as well as algorithms for pricing in these models in a number of settings. To design
our algorithms, we use several tools including a particular DAG representation and graph decomposition
techniques which may be of independent interest.
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1 Introduction

The notion of loss-leaders, namely pricing certain items below cost in a way that increases profit overall
from sales of other items, is a common technique in marketing. For example, a hamburger chain might price
its burgers below production cost but then have a large profit margin on sodas. Grocery stores often give
discounts that reduce the cost of certain items even to zero, making money from other items the customers
will buy while in the store. Video game makers often sell game consoles below cost and make up their profit
on the games themselves.

Such “loss leaders” are often viewed as motivated by psychology: producing extra profit from the emo-
tional behavior of customers who are attracted by the good deals and then do not fully account for their total
spending. Alternatively, they are also often discussed in the context of selling goods of decreasing marginal
cost (so the loss-leader of today will be a profit center tomorrow once sales have risen). However, even for
items of fixed marginal cost, with fully rational customers who have valuations on different bundles of items
and act to maximize utility, pricing certain items below cost can produce an increase in profit. For example,
DeGraba [7] analyzes equilibria in a 2-firm, 2-good Hotelling market, and argues that the power of loss lead-
ers is that they provide a method for focusing on high-profit customers: “a product could be priced as a loss
leader if, in a market in which some customers purchase bundles of products that are more profitable than
bundles purchased by others, the product is purchased primarily by customers that purchase more profitable
bundles.” Balcan and Blum [2] give an example, in the context of pricing n items of fixed marginal cost to
a set of single-minded customers, where allowing items to be priced below cost can produce an Ω(log n)
factor more profit than possible by pricing all items above cost. However, the issue of developing algorithms
taking advantage of this idea was left as an open question.

In this paper we consider this problem more formally, introducing two theoretical models which we call
the discount model and the coupon model for analyzing the profit that can be obtained by pricing below cost.
These models are motivated by two different types of settings in which such pricing schemes can naturally
arise. We then develop algorithms for several problems studied in the literature, including the “highway
problem” [14] and problems of pricing vertices in graphs, as well as analyze fundamental gaps between the
profit obtainable under the different models.

The two models we introduce are motivated by two types of scenarios. In the discount model, we
imagine a retailer (say a supermarket or a hamburger chain) selling n different types of items, where each
item i has some fixed marginal (production) cost ci to the retailer. The retailer needs to assign a sales price
si to each item, which could potentially be less than ci. That is, the profit margin pi = si − ci for item i
could be positive or negative. The goal of the retailer is to assign these prices so as make as much profit
as possible from her customers. We will be considering the case of single-minded customers, meaning that
each customer j has some set Sj of items he is interested in and will purchase the entire set (one unit of each
item i ∈ Sj) if its total cost is at most his valuation vj , else nothing. As an example, suppose we have two
items {1, 2}, each with production cost ci = 10 and two customers, one interested in item 1 only and willing
to pay 20, and the other interested in both and willing to pay 25. In this case, by setting s1 = 20 and s2 = 5
(which correspond to profit margins p1 = 10 and p2 = −5, and hence the second item is priced below cost)
the retailer can make a total profit of 15. This is greater than the maximum profit (10) obtainable from these
customers if pricing below cost were not allowed.

One thing that makes the discount model especially challenging is that profit is not necessarily monotone
in the customers’ valuations. For instance, in the above example, if we add a new customer with Sj = {2}
and vj = 3 then the solution above still yields profit 15 (because the new customer does not buy), but if we
increase vj to 10, then any solution will make profit at most 10.
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The second model we introduce, the coupon model, is designed to at least satisfy monotonicity. This
model is motivated by the case of goods with zero marginal cost (such as airport taxes or highway tolls).
However, rather than setting actual negative prices, we instead will allow the retailer to give credit that can
be used towards other purchases. Formally, each item i has marginal cost ci = 0 and is assigned a sales
price pi which can be positive or negative, and the price of a bundle S is max(

∑
i∈S pi, 0), which is also the

profit for selling this bundle. We again consider single-minded customers. A customer j will purchase his
desired bundle Sj iff its price is at most his valuation vj . Note that in this model we are assuming no free
disposal: the customer is only interested in a particular set of items and will not purchase a superset even if
cheaper (e.g., in the case of highway tolls, we assume a driver would either use the highway to go from his
source to his destination or not, but would not travel additional stretches of highway just to save on tolls).
As an example of the coupon model, consider a highway with three toll portions (items) 1, 2, and 3. Assume
there are four drivers (customers) A, B, C, and D as follows: A, B, and C each only use portions 1, 2, and
3 respectively, but D uses all three portions. Assume that A, C, and D each are willing to pay 10 while B
is wiling to pay only 1. In this case, by setting p1 = p3 = 10 and p2 = −10, we have a solution with profit
of 30 (driver B gets to travel for free, but is not actually paid for using the highway). This is larger than
the maximum profit possible (21) in the discount model or if we are not allowed to assign negative prices.
Note that unlike the discount model, the coupon model at least satisfies monotonicity: because no individual
customer produces a loss, increasing the valuation of a customer cannot reduce overall profit.

We can make the discount model look syntactically more like the coupon model by subtracting produc-
tion costs from the valuations. In this view, wj := vj −

∑
i∈Sj

ci represents the amount above production
cost that customer j is willing to pay for Sj , and our goal is to assign positive or negative profit margins pi

to each item i to maximize the total profit
∑

j:wj≥p(Sj)
p(Sj) where p(Sj) =

∑
i∈Sj

pi. It is interesting in
this context to consider two versions: in the unbounded discount model we allow the pi to be as large or as
small as desired, ignoring the implicit constraint that pi ≥ −ci, whereas in the bounded discount model we
impose those constraints. Note that in this view, the only difference between the unbounded discount model
and the coupon model is that in the coupon model we redefine p(Sj) as max(

∑
i∈Sj

pi, 0).
We primarily focus on two well-studied problems first introduced formally by Guruswami et al. [14]:

the highway tollbooth problem and the graph vertex pricing problem. In the highway tollbooth problem, we
have n items (highway segments) 1, . . . , n, and each customer (driver) has a desired bundle that consists of
some interval [i, i′] of items (consecutive segments of the highway). The seller is the owner of the highway
system, and would like to choose tolls on the segments (and possibly also coupons in the coupon model)
so as to maximize profits. Even if all customers have the same valuation for their desired bundles, we
show that there are log(n)-sized gaps between the profit obtainable in the different models. In the graph
vertex pricing problem, we instead have the constraint that all desired bundles Sj have size at most 2. Thus,
we can consider the input as a multi-graph whose vertex set represent the set of items and whose edges
represent the costumers who want end-points of the edges. In this setting, the case that all customers have
the same valuation v is not interesting (you can simply price all items at v/2), but if customers have different
valuations then there again are gaps between the models. We show that if this graph is planar then one can
in fact achieve a PTAS for profit in each model.

Related work: Revenue maximizing auctions and algorithmic pricing problems have generated a great
deal of interest recently; for a survey see the chapter “Profit Maximization in Mechanism Design” of Hart-
line and Karlin in [16]. Here we briefly describe related algorithmic work in the context of combinatorial
auctions with single-minded customers.

Algorithmic pricing problems of this form were first posed by Guruswami et al. [14] though item-
pricing for unit-demand consumers with several alternative payment rules (i.e., rules that do not represent
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quasi-linear utility maximization) were independently considered by Aggarwal et al. [1]. Guruswami et
al. [14] show an O(log m + log n)-approximation for the general hypergraph problem (where customers
have valuations over larger subsets,), where n is the number of items (vertices) and m is the number of
customers (hyperedges). They also show that even the graph vertex pricing problem is APX-hard — and
this is true even when all valuations are identical (if self-loops are allowed) or all valuations are either 1 or
2 (if self-loops are not allowed). In related work, Hartline and Koltun [15] give a (1 + ε)-approximation
that runs in time exponential in the number of vertices, but that is near-linear time when the total number
of vertices in the hypergraph is constant. Recently, Demaine, Feige, Hajiaghayi, and Salavatipour [8] have
shown that it is hard to approximate the hypergraph vertex pricing problem within a factor of logδ n, for
some δ > 0, assuming that NP 6⊆ BPTIME

(
2nε)

for some ε > 0. In the case that the cardinality of the
desired bundles is bounded by k, Briest and Krysta [4] give an O(k2) approximation algorithm, which is
improved to O(k) by Balcan and Blum [2]. Finally, both Briest and Krysta [4] and Grigoriev et al. [13]
proved that optimal pricing is weakly NP-hard for the special case of the highway problem. For the same
problem [2] improved the approximation of Guruswami et al. [14] from O(log m + log n) to O(log n).
We note that all previous work focused just on the case that pricing below production cost is not allowed;
pricing below cost was posed as an intriguing open question in [2].

Our results: The pricing problems as defined above are very general. In this paper, we focus on
designing efficient algorithms for several important cases of this problem with guaranteed approximation
factors.

We begin by proving fundamental profitability gaps between the different models under consideration.
We then present several structural properties of our models that will be used in our algorithms. One of these
is that for the graph and highway problems, we can polynomially bound the absolute values of positive and
negative prices in an optimal solution in the coupon and unbounded discount models. Note that this is not
trivial since one could imagine very large (e.g., exponential) positive and negative prices which cancel each
other out. In fact, it is not even true for the general hypergraph problem even for edges of size 3. We also
introduce a DAG representation for dealing with the highway tollbooth problem, that is especially convenient
for algorithms. Roughly speaking, in this representation, the problem becomes one of partitioning a DAG
into levels to optimize different objectives depending on the models. Here the vertices of the DAG are partial
sums for initial segments of the highway tolls and the edges correspond to the customers who want to use
this highway partially. We use the DAG representation both for designing our algorithms, and for proving
the existence of bounded optimal solutions under all models (see above).

Next, we present two constant factor approximation algorithms for the highway problem under the
coupon model when the customers valuations are all equal. The first has approximation factor 2.33 and is
based on a semidefinite programming approach. The second approximation is a simpler 4-approximation
randomized algorithm which has the advantage of being oblivious; here, we post prices for the items in-
dependently from the customers’ valuations (even before seeing any customers) and in this sense our algo-
rithms are even stronger than online pricing in this model. Our 4-approximation extends to the tollbooth
problem on tree-networks as well (not just the line). Moreover, these algorithms generalize to the case when
customers have a small number of distinct valuations. Furthermore, with extra assumptions, we obtain a
QPTAS for the highway problem under general customer valuations with a bounded number of negatively
priced items.

We show two polynomial-time approximation schemes (PTAS’s), one for vertex pricing of planar graphs
(more generally graphs excluding a fixed minor) and one for the special case of the highway problem when
the customers form a hierarchy, under both coupon and discount models. In the former PTAS, we use the
recent result of Demaine et al. [9] for decomposing H-minor-free graphs into graphs of bounded treewidth,
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and for the latter PTAS, we use bounded negative prices (as mentioned above) together with dynamic pro-
gramming.

It is worth mentioning we do not focus on incentive-compatibility issues in this paper, since that issue is
very similar to the one considered in [3, 2].

2 Notation and Definitions

We assume we have m customers and n items (or “products”). We are in an unlimited supply setting, mean-
ing that the seller is able to sell any number of units of each item. We consider single-minded customers,
which means that each customer is interested in only a single bundle of items and has valuation 0 on all
other bundles. Therefore, valuations can be summarized by a set of pairs (e, ve) indicating that a customer
is interested in bundle (hyperedge) e and values it at ve. Given the hyperedges e and valuations ve, we wish
to compute a pricing of the items that maximizes the seller’s profit. We assume that if the total price of
the items in e is at most ve, then the customer (e, ve) will purchase all of the items in e, and otherwise the
customer will purchase nothing. Given a price vector p over the n items, it will be convenient to define
p(e) =

∑
i∈e pi.

Let us denote by E the set of customers, and V the set of items, and let h be maxe∈E ve. Let G =
(V, E, v) be the induced hypergraph, whose vertices represent the set of items, and whose hyperedges rep-
resent the customers. Notice that G might contain self-loops (since a customer might be interested in only a
single item) and multi-edges (several customers might want the same subset of items). The special case that
all customers want at most two items, so G is a graph, is known as the graph vertex pricing problem [2, 5, 6].
Another interesting case considered in previous work [2, 5, 6, 14] is the highway problem. In this problem
we think of the items as segments of a highway, and each desired subset e is required to be an interval [i, j]
of the highway.

Reduced Instance: In many of our algorithms, it is convenient to think about the reduced instance
G̃ = (V,E, w) of the problem which is defined as follows. Let bi denote the marginal cost of item i. Suppose
customer e has valuation ve. Then, in the reduced instance, its valuation becomes we := ve−

∑
i∈e bi. Now,

if we give item i a price pi in the reduced instance, then its real selling price would be si := pi + bi. In
previous work [2, 5, 6, 14], the focus was on pricing above cost, which in our notation, corresponds to the
case where pi ≥ 0, for every item i. However, as mentioned in the introduction, in many natural cases, we
can potentially extract more profit by pricing certain items below cost (which corresponds to the case where
pi < 0).

From now on, we always think in terms of the reduced instance. We formally define all the pricing
models we consider as follows:

Positive Price Model: In this model, we require the selling price of an item to be at or above its
production cost. Hence, in the reduced instance, we want the price vector p with positive components
pi ≥ 0 that maximizes Profitpos(p) =

∑
e:we≥p(e) p(e). Let p∗pos be the price vector with the maximum

profit under positive prices and let OPTpos = Profitpos(p∗pos).
Discount Model: In this model, the selling price of an item can be arbitrary. In particular, the price

can be below the cost, or even below zero. We want the price vector p that maximizes Profitdisc(p) =∑
e:we≥p(e) p(e). Let p∗disc be the price vector with the maximum profit and let OPTdisc = Profitdisc(p∗disc).
B-Bounded Discount Model: In this model, the selling price of an item i can be below its production

cost bi, but cannot be below zero. This corresponds to a negative price in the reduced instance, but it is
bounded below by −bi. For simplicity, we assume that the production costs of all items are each B. We
want the price vector p with components pi ≥ −B that maximizes ProfitB(p) =

∑
e:we≥p(e) p(e). Let
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p∗B be the price vector with the maximum profit and let OPTB = ProfitB(p∗B). Observe that from the
definitions OPTpos ≤ OPTB ≤ OPTdisc.

Coupon Model: This model makes most sense in which the items have zero marginal cost, such as
airport taxes or highway tolls. In this model, the selling price of an item can actually be negative. However,
we impose the condition that the seller not make a loss in any transaction with any customer. We want the
price vector p that maximizes Profitcoup(p) =

∑
e:we≥p(e) max(p(e), 0). Let p∗coup be the price vector with

the maximum coupon profit and let OPTcoup = Profitcoup(p∗coup). From the definition, it is immediate that
OPTpos ≤ OPTcoup.

2.1 Gaps between the Models

We state below a few fundamental gaps between the models. In proving these gaps we use the following
note which follows from a proof in [14].

Note 1 If all the valuations are integral, then there exists an optimal solution with all prices integral, under
all our models (positive, coupon, and (B-bounded) discount models).

Theorem 1 For the highway problem, there exists an Ω(log n) gap between the positive price model and
the (B-bounded) discount model, even for B = 1.

Proof: In this example, each customer e has valuation we = 1. Let S0 be the instance that consists of one
item i0 and one customer of the form {i0}. We then define Sr recursively for r ≥ 1. In order to construct
Sr, we first construct two copies of Sr−1, placed side by side, with one new item placed between the two
copies; finally, we include 2r customers, each of whose set includes all items.

It follows that the number of items in Sr is nr := 2r+1 − 1. Moreover, by setting the prices of the
items to (1, -1, 1, -1, · · · , -1, 1), we can collect one unit of profit from each customer, and hence we have
OPTB(Sr) = 2rr.

Next, we show by induction on r that OPTpos(Sr) = 2r+1 − 1. The claim is trivial for r = 0 as there
is only 1 customer. Assume the result is true for some r ≥ 0. Consider the instance Sr+1. Observe that we
can assume that the optimal solution has integral prices, by Note 1. If we collect some profit from customers
whose sets include all items, there can be exactly one item priced 1 and the rest priced 0. Hence, in this
case, the profit is 1 + 2 + · · · + 2r+1 = 2r+2 − 1. If we do not collect any profit those customers, then
we have two independent copies of Sr and hence by induction hypothesis, the maximum profit collected is
2(2r+1 − 1) = 2r+1 − 2. Hence, we have OPTB/OPTpos = Ω(r) = Ω(log nr) and the claim follows.

Theorem 2 For the highway problem, there exists an Ω(log n) gap between the coupon model and the
(B-bounded) discount model.

Proof: This proof is a bit more involved than for Theorem 1 and appears in Appendix A.

Theorem 3 For the graph vertex pricing problem, there exists an Ω(log B) gap between the positive price
model and the B-bounded discount model, even for a bipartite graph.

Proof: Analogous to the example in [2].

Note 2 The graph vertex pricing problem is APX-hard under all our models.1

1One can easily extend the result in [14] to our setting too.
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3 Main Tools

We describe the main tools we use throughout the paper. These tools allow us to give bounds on the prices
of items in an optimal solution in each of the pricing models.

3.1 DAG Representation of the Highway Problem

We describe here an alternative, very convenient representation of the Highway Problem. This representation
proves to be extremely convenient both for the analysis (as seen in the following lemma) and for the design
of algorithms (as seen in the algorithms we present in Section 4.1).

Suppose the n items are in the order l1, l2, . . . , ln, with corresponding prices p1, p2, . . . , pn. Then, for
each 0 ≤ i ≤ n, we have a node vi labelled with the partial sum si :=

∑i
j=1 pi, where s0 = 0. A customer

corresponds to a subset of the form {li, . . . , lj}, which is represented by a directed arc from vi−1 to vj .

Lemma 1 Under all pricing models (positive price model, (bounded) discount model, coupon model), there
is always an optimal solution such that smax − smin ≤ nh, where sM := max{si : 0 ≤ i ≤ n} and
sm := min{si : 0 ≤ i ≤ n}, and h is the maximum valuation.

Proof: In each of the models, consider the optimal solution that minimizes sM − sm. Suppose in this case,
we still have sM − sm > nh. Then, it follows that there must exists an open interval I in the real line of
length L strictly greater than h such that no si lies in I . We show that it is possible to reduce all those si’s
that is to the right of I by δ := L− h without decreasing the profit. This would contradict the minimality of
sM − sm.

Note that we only have to consider arcs between the left and right of I . If there are no such arcs, then of
course we can reduce all those si’s to the right of I by δ without changing the profit. If there is an arc going
from si to sj where si < I and sj > I , then no profit is generated from the customer corresponding to this
arc anyway. After reducing sj by δ, the valuation of this arc is still at least h and so the profit due to this arc
cannot decrease.

It remains to consider an arc going from sj to si, where sj > I and si < I . There can be no such arc
in the positive price model. In this case, we have to suffer a loss of sj − si in the (bounded) discount model
and just gain nothing in the coupon model. Hence, if we reduce sj by δ, the loss suffered would be reduced
by δ in the discount model due to this arc, and no change in the coupon model. In either case, the total profit
does not decrease.

3.2 The Existence of a Bounded Solution for Graph Vertex Pricing

Remember that in the graph setting, we denote the set of items by V , and each customer is interested in at
most two items. We represent the set of customers interested in exactly two items by the set of (multi) edges
E, and the set of customers interested in exactly one item by the (multi) set N , where for each e ∈ E ∪N ,
we ∈ Z is customer e’s valuation.

Lemma 2 Under all the pricing models (in particular the coupon model and (bounded) discount model),
there is an optimal price vector p∗ ∈ RV that is half-integral if all customers’ valuations are integral.
Moreover, if all valuations are at most h, then p∗ can be chosen to be bounded in the sense that for all
v ∈ V , |p∗(v)| ≤ 2nh.
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Proof: Our description works for all models and distinctions would be made where necessary. We first
consider B-bounded discount model. Observe that prices must be in the range [−B, h + B]. Hence, if B is
small, then the result is trivial. If B is large, then we actually show that it is not necessary to price too low
by resorting to the proof for the (unbounded) discount model.

Observe that the optimal price vector p∗ is an extreme point of some polytope which we describe as
follows. Suppose we know A ⊆ E and B ⊆ N are the customers from whom we obtain a positive profit in
an optimal solution. Consider the following polytope:

pi + pj ≤ we, for e = {i, j} ∈ A (1)

pi ≤ we, for e = {i} ∈ B (2)

Note that the objective function we are maximizing is different under different models.
Coupon model:

∑
{i,j}∈A(pi + pj) +

∑
{i}∈B pi

discount model:
∑
{i,j}∈E(pi + pj) +

∑
{i}∈N pi

Hence, an optimal solution p∗ corresponds to some basic solution specified by a system of equalities
indexed by J ⊆ E and I ⊆ N .

pi + pj = we, for e = {i, j} ∈ J

pi = we, for e = {i} ∈ I

We first show that there exists a half-integral p such that for all e = {i, j} ∈ J , p(i) + p(j) = we.
Observe that if a component of the graph (V, J) contains some i such that {i} ∈ I , then for all j in that
component, p(j) is integral. Hence, without loss of generality, we assume that I is empty. First consider the
case when the graph (V, J) is bipartite with bipartition (A,B). Observe that for any δ > 0, we can increase
the price of all items in A by δ and decrease the price of all items in B by δ without violating any equalities
in J . By considering each connected component of (V, J) and observing that we’s are integral, we conclude
there exists an integer p satisfying all equalities in J .

For general (V, J), we use a standard technique. Consider two copies V 1, V 2 of V such that for each
e = {i, j} ∈ J , we have two equalities: p1

i + p2
j = we and p2

i + p1
j = we. It follows that {pi = 1

2(p1
i + p2

i )}
is a solution to the original system iff {p1

i , p
2
i } is a solution to the new system. Since the new system

corresponds to a bipartite graph, it must have an integral solution. Hence, it follows that the original system
has a half-integral solution.

We next show that there exists a bounded optimal price vector p∗. We consider each connected compo-
nent C in (V, J). Consider any two vertices x and y in C and any p satisfying the equalities in J . Then,
there exists x = x0, x1, . . . , xk = y, where k ≤ |C| − 1, such that for 1 ≤ i ≤ k, ei = {xi−1, xi} ∈ J .
Hence, it follows that p(xi−1) + p(xi) = ci. Multiplying each equation by (−1)i+1 and summing up over
i, we have |p(x0) + (−1)k+1p(xk)| = |∑k

i=1(−1)i+1ci| ≤ kh ≤ (n − 1)h. Hence, if we can show
that there exists x ∈ C such that |p(x)| ≤ nh, then it follows that for all y in C, |p(y)| ≤ 2nh. This is
certainly achieved if the component contains some i such that {i} ∈ I . Hence, without loss of generality,
we assume this is not the case. If the component C is bipartite, then using a similar argument as above,
one can show that there exists a solution p such that for some x in C, p(x) = 0. If the component C is
non-bipartite, then there must be an odd cycle x0, x1, . . . , xk, xk+1 = x0, where k is even. As before, we
have 2x0 = x0 + (−1)k+2xk+1 =

∑k+1
i=1 ci. Hence, it follows that |x0| ≤ 1

2nh.

4 Coupon Model

We next consider the coupon model. The main feature of the coupon model is that even when the sum of the
prices for the items that a customer wants is negative, the net profit obtained from that customer is still zero.
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4.1 Constant Factor Approximation Algorithms for the Highway Problem

We show in the following constant factor approximation algorithms for the highway problem under the
coupon model, in the case when all the customers’ valuations are identical.2

We start by presenting our first 4-approximation algorithm. As mentioned before, this algorithm is
oblivious, i.e., we post prices for the items before seeing any customers and in this sense our guarantees
are even stronger than those for the online pricing in this model. We also show how we can extend this
algorithm to tollbooth problem on tree-networks.

Since all valuations we are equal, for simplicity and without loss of generality we assume all are equal
to 1.

Theorem 4 There is a 4-approximation algorithm under the coupon model for the highway problem in the
case when all all customers’ valuations are precisely 1.

Proof: First, we represent the problem as a DAG as described in Section 3.1: each node corresponds to a
partial sum and each customer is represented as a directed edge from its left node to right node. Then, we
simply randomly assign 0 or 1 to each partial sum independently. (This then clearly corresponds to a pricing
vector in the original instance that uses only prices 0, 1 and −1.)

To see that this algorithm is a 4-approximation algorithm, it’s enough to simply notice that with prob-
ability 1

4 we get a profit of 1 from each customer; this clearly implies a 4-approximation algorithm for the
coupon model.

Markov Chain interpretation: The randomized algorithm described in Theorem 4 has a Markov Chain
interpretation. The system has a state that corresponds to the partial sum of the prices of items beginning
from the left. If the state is 0, then with probability 1

2 , the state remains the same and the price of the next
item is 0, and with probability 1

2 , the state changes to 1 and the price of the next item is 1. Similarly, if the
state is 1, then with probability 1

2 , the state remains the same and the price of the next item is 0, and with
probability 1

2 , the state changes to 0 and the price of the next item is −1.
Note: Our randomized algorithm can actually be generalized for the Highway Problem on Trees. In this
setting, we are given a tree and each edge corresponds to an item, while a customer’s bundle corresponds
to a (simple) path in the tree, and as before we assume that each customer’s valuation is 1. For a precise
algorithm and proof see Theorem15 in Appendix A.

Note that the algorithms in Theorems 4 and 15 are extremely simple and they use posted prices, which
directly implies we can adapt them to the online setting. We present in the following a more refined approx-
imation algorithm that achieves a better 2.33-approximation guarantee for the basic highway problem.

Theorem 5 There is a 2.33-approximation algorithm under the coupon model for the highway problem in
the case when all all customers’ valuations are precisely 1.

Proof: First, we represent the problem as a DAG as described in Section 3.1: each node corresponds to a
partial sum and each customer is represented as a directed edge from its left node to right node. We then use
the algorithm 0.859 approximation algorithm presented in [12] for the MAX DICUT problem to get 1

0.859
approximation for OPT that uses no more than two levels, i.e., the partial sums are either 0 or 1.

Hence, in order to show the result, it suffices to use Note 1 and show that there exists a solution in which
the partial sums are either 0 or 1 and has profit at least 1

2OPTcoup. Consider the partial sums in an optimal

2For this special case the problem was shown to be solvable in polynomial time under the positive price model; specifically, [14]
shows an exact O(m3)-time dynamic programming algorithm.
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solution. Observe that for each customer from which we get a profit (of 1), we still obtain a profit for that
customer after modifying the solution in exactly one of the following ways:
1. If a partial sum is even, set it to 0, otherwise set it to 1.
2. If a partial sum is even, set it to 1, otherwise set it to 0.

Hence, by choosing the modification that yields higher profit, the claim follows.

Note that Lemma 1 implies here a fully polynomial time approximation scheme for the case that the
desired subsets of different (single-minded) customers form a hierarchy. Specifically:

Theorem 6 Under the coupon model we have a fully polynomial time approximation scheme for the case
that the desired subsets of different customers form a hierarchy.

Proof: We can extend the algorithm presented in [2] for the positive price model. The correctness follows
from the analysis in [2] by additionally using the result in Lemma 1.

Moreover, under additional assumptions, we can obtain (1 + ε)-approximation with a QPTAS, which
is based on the construction by Elbassioni et. al. [11]. We sketch the proof of the following theorem in
Appendix B.

Theorem 7 There exists a QPTAS for the highway problem under the coupon model with general valuations
if there exists an optimal pricing that has only a bounded number of negatively priced items, and the corre-
sponding revenue obtained from positively priced items is at least twice that of the revenue from negatively
priced items.

4.2 Planar and Minor-free Graph Vertex Pricing Problem

Recall that in the graph vertex pricing problem, E is the multi-set of customers who are interested in exactly
two items, and N is the multi-set of customers who are interested in exactly one item. For any graph H ,
the instance is H-minor free if the graph (V, E) is H-minor-free. For example planar graphs are both K3,3-
minor-free and K5-minor-free. In this subsection, we consider minor-free instances of the problem under
the coupon model. We first show that in for this type of restricted input, the optimal profit obtained under
the positive price model is at least a constant fraction of that obtained under the coupon Model.
Constant Gap between Positive and Coupon Models for Planar and minor-free Graphs

We use the following deep result from DeVos et al. [10] that states that a minor-free graph can be edge-
partitioned into a constant number of trees.

Theorem 8 ([10]) For any graph H , there exists an integer JH such that any H-minor free graph can be
edge-partitioned into JH trees.

Theorem 9 Consider the graph vertex pricing problem on a H-minor free graph. Then, there exists a
constant CH depending only on H such that the optimal profit under the positive price model is at least
1/CH times the optimal profit under the coupon model.

Proof: First, suppose we have the vertex price problem on a tree. Pick any vertex as the root and consider the
odd and the even level edges. An odd level edge is one in which the further end point from the root is at odd
distance from the root. Then, by obtaining profit from either the odd or the even level edges using positive
prices, we can obtain at least half the optimal profit obtained under the coupon model. By Theorem 8, any
H-minor free graph can be partitioned into JH trees. Hence, by considering profit from positive pricing for
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each of the trees, we conclude that be setting CH := 2JH , there exists a positive pricing that achieves at
least 1/CH fraction of the optimal profit under coupon model.

PTAS for Planar and Minor-free Graph Instance
Theorem 10 There exists a PTAS for minor-free instances of the graph vertex pricing problem under the
coupon model.

We will use the following decomposition procedure for H-minor-free graphs by Demaine et al. [9]- see
Theorem 3.1.

Theorem 11 (PARTITION INTO BOUNDED-TREEWIDTH GRAPHS)For any graph H , there is a constant
CH , such that for any integer k ≥ 2 and for any H-minor-free graph G, the edges of G can be partitioned
into k sets such that any k − 1 of the sets induce a graph of treewidth at most CHk. Furthermore, such a
partition can be found in polynomial time.

Proof of Theorem 10 We next describe how to use Theorem 11 to solve the minor-free graph vertex pricing
problem.
Algorithm Outline We use the decomposition procedure in Theorem 11 to partition the edges of (V,E)
into k = 1

ε sets E = ∪k
i=1Ei. We discard the set Ei whose sum of valuations is the smallest, and let E′

to be the union of the remaining k − 1 parts. Since (V, E′) has bounded treewidth, we can use dynamic
programming to solve the instance restricted to E′ and N exactly, thereby achieving a solution whose value
is at least (1− ε) that of the optimal solution.

We next describe a dynamic program to solve the problem restricted to the customers in E′ ∪ N . Let
T = (T, ET ) be a tree decomposition of (V,E′). In particular, for each t ∈ T , there exists Vt ⊆ V
such that V = ∪tVt, and for each {i, j} ∈ E′, there exists t ∈ T such that {i, j} ⊆ Vt. Moreover, if
{t1, t2}, {t2, t3} ∈ ET , then Vt1 ∩Vt3 ⊆ Vt2 . Since the treewidth of (V, E′) is at most CHk, we can assume
for all t ∈ T , |Vt| = κ := CHk + 1.

Pick any node in T to be the root r. The terms child, parent, ancestor and descendant are used in their
usual sense. For any t ∈ T , let T (t) be the subtree rooted at t. For any t ∈ T , let A(t) be the set of
customers whose items are contained in ∪q∈T (t)Vq.

By Lemma 2, we only need to consider prices in U := {s : |s| ≤ 2nh, 2s ∈ Z}. The running time
would have hence have a dependence on h. If h is large, then we can use a standard rounding argument. Let
δ := εh/2n and consider prices in U ′ := {lδ : |lδ| ≤ 2nh, l ∈ Z}. Note that |U ′| = O(mn2/ε). Let S be
the one among U and U ′ that has smaller cardinality. Hence, we consider prices from a set of size at most
|S| = O(n) ·min{mn/ε, h}.

For each t ∈ T , we fix some ordering on the r vertices in Vt such that any x ∈ Sκ represents a price
assignment for the items in Vt.

Suppose u, v ∈ T such that u is the parent of v. Given xu, xv ∈ Sκ, let B(u, v, xu, xv) be the profit
obtained from customers of the form e = {i, j} such that i ∈ Vu, j ∈ Vv and e 6∈ A(v), where items in
Vu are priced according to xu and those in Vv according to xv. If xu and xv are inconsistent because of
common items in Vu and Vv, let B(u, v, xu, xv) be −∞.

Given t ∈ T and x ∈ Sκ, let C(t, x) be the maximum profit obtained from customers in A(t) such that
items in Vt are priced according to x. If t is a leaf, then it is trivial to compute C(t, x). Otherwise, C(t, x)
can be computed by the following equation: C(t, x) =

∑
u maxx′∈Sr(B(t, u, x, x′) + C(u, x′)), where the

summation is over all children u of t. The optimal solution to the problem is given by maxx∈Sκ C(r, x).
To compute each C(t, x), we need to try each x′ for each child of x. Hence, this takes time n · |S|κ. The
total number of such entries is at most n · |S|κ. Hence, the total time is n2|S|2κ ≤ n2 · |S|O(CH/ε), where
|S| = O(n) ·min{mn/ε, h}.
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5 B-Bounded Discount Model

We next consider the bounded discount model. The main feature is that the net profit we obtain from a
customer is exactly the sum of the prices of the items in the bundle of that customer, and hence can be
negative. As explained in the introduction, the extra condition that the price of an item must be at least
−B corresponds to the real life situation in which the selling price of an item can be below its cost, but not
negative. We state below our main results in this model and we prove them in the Appendix A.

Theorem 12 There exists an O(B) approximation algorithm for the vertex pricing problem under the B-
bounded discount model.

Theorem 13 There exists an PTAS for minor-free instances of the graph vertex pricing problem under the
B-bounded discount model for fixed B under either one of the following assumptions:
(1) All customers have valuations at least 1.
(2) There is no multi-edge in the graph.

Theorem 14 There exists an FPTAS for the case that the desired subsets of different customers form a
hierarchy under both the discount and the B-bounded discount models.

6 Discussion and Open Problems

In this paper, we have formally introduced the problem of assigning positive or negative markups to goods of
fixed marginal cost in order to maximize revenue in the presence of single-minded customers, and we have
shown that by pricing certain items below their marginal costs, we can obtain a substantial improvement in
the overall profit. We have also developed approximation algorithms for the discount and coupon models
for several interesting special cases considered previously in the literature.

Obtaining constant factor appropriation algorithms in the coupon model for general graph vertex pricing
problem3 and the highway problem with arbitrary valuations seems believable but very challenging. In the
light of the proof construction of the recent almost logarithmic hardness result by Demaine et al. [8], it is
conceivable that in the coupon model, finding an optimal pricing for general single-minded customers (even
all with valuations one) is hard to approximate better than a logarithmic factor.

We have also studied the discount without loss model, another mathematically interesting model for
pricing below cost. This is a model “in between” the discount model and the coupon model. Here our
goal is to compete with an optimum which prices the items in a way that for any customer, the sum of the
selling prices of items in his desired set is at least the sum of the marginal costs. We present some results in
Appendix C and it would be interesting to explore this model further.

3Note that obtaining a constant factor approximation for bipartite graphs implies a constant factor approximation for general
graphs in the coupon model.
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A Proofs

Theorem 2 For the highway problem, there exists an Ω(log n) gap between the coupon model and the
(B-bounded) discount model.
Proof: Again, we set B := 1. We construct a similar example Tr. For r = 0, T0 is the same as S0. But
for r ≥ 1, Tr consists of two copies of Tr−1, but without an extra item between them. We also have 2r

customers, each of which has valuation 1 and corresponds to a set containing all items. In this case, the
number of items is nr := 2r.

Using a randomized argument shown later in Theorem 4 from Section 4, OPTcoup = Ω(2rr). We next
consider the profit of Tr under the B-bounded discount model. First, observe that the optimal solution can
be attained by integer prices. We first show that if the sum of the prices of all items is λ, then the profit
under the discount model is at most λ(2r+1 − 1). We show this by induction on r. For r = 0, the result is
trivial. Consider Tr+1 and suppose the sum of the prices of all items is λ. Recall that Tr+1 consists of two
copies of Tr. Let λ1 and λ2 be the sum of the prices of items in each copy. Then, we have λ = λ1 + λ2. We
consider separate cases.

(1) λ > 1 In this case, the customers that are interested in all items will not buy. Hence, the maximum
profit obtained is, by induction hypothesis, λ1(2r+1 − 1) + λ2(2r+1 − 1) = λ(2r+1 − 1) ≤ λ(2r+2 − 1).

(2) λ ≤ 1 In this case, the net profit obtained from the 2r+1 customers who want all items is λ · 2r+1.
By the induction hypothesis, the net profit by all other customers is at most λ1(2r+1− 1) + λ2(2r+1− 1) =
λ(2r+1 − 1). Hence, the total net profit is at most λ(2r+1 + 2r+1 − 1) = λ(2r+2 − 1), as required.

We next show that for the instance Tr, the maximum net profit is achieved when the sum of the prices
of all items is 1, and hence by the result we just show, the maximum net profit obtained from Tr is at most
2r+1 − 1. Again, we show this by induction on r. First, the result is trivial for r = 0. Next, consider Tr+1.
Observe that if we just set the price of one item to be 1 and the rest to 0, then the net profit obtained is
2r+2 − 1. By the previous result, we know if the sum of the prices of all items is non-positive, then the net
profit obtained is also non-positive. Hence, it suffices to consider the case when the sum of the prices of all
items is greater than 1. In this case, the customers that are interested in all items will not buy. By induction
hypothesis on the two copies of Tr, the maximum net profit obtained is at most 2(2r+1 − 1) < 2r+2 − 1, as
required.

Hence, OPTcoup/OPTB = Ω(log nr).

Theorem 15 There is a 4-approximation Algorithm under the coupon model for the highway problem on
trees in the case when all all customers’ valuations are precisely 1 and each customer’s bundle corresponds
to a simple path in the tree.

Proof: Pick any node v0 as the root. We assign a label to each node v to the tree, which is the sum of the
prices of the items corresponding to the edges in the path from root v0 to node v. Again, for each node, we
assign a label from {0, 1} uniformly at random. This correspond to a pricing. In particular, the price of an
item corresponding to an edge (pv, v), where pv is the parent, is the label of v minus that of pv.

We show that for each customer, the probability that we obtain a profit from that customer is 1
4 . Suppose

the bundle of the customer corresponds to some path P . Observe that there is a unique node u that is an
ancestor of all nodes on path P . We consider two cases.
(1) Path P is a sub-path of the path from the node u to some leaf. In this case, there is a node w that is a
descendant of all nodes on path P . Hence, we can obtain profit from that customer iff the label of u is 0 and
the label of w is 1. This happens with probability 1

4 .

13



(2) Path P consists of two such paths as in (1). In this case, there are two nodes w1 and w2 such that every
node on path P is either on the path from u to w1 or the path from u to w2. It follows that we can obtain a
profit from the customer iff the label of u is 0, and exactly one of the labels of w1 and w2 is 1 and the other
0. This also happens with probability 1

4 .

Theorem 12 There exists an O(B) approximation algorithm for the vertex pricing problem under the B-
bounded discount model.
Proof: Suppose the optimal net profit of for an instance of the vertex price problem under the B-bounded
discount model is OPT . Let m be the number of customers whose valuations are at least 1. We show that
there exists a solution consisting of non-negative prices that has net profit at least OPT

2B+1 . Since there is a
O(1)-approximation algorithm [2] for positive price model, it follows that there is a O(B)-approximation
algorithm under the B-bounded discount model.

We consider the following two solutions with non-negative prices.
(1) Set the price of every item to be 1

2 . Then, it follows the total profit obtained is m, the total number of
customers.
(2) Consider the solution under the B-bounded discount model that attains OPT . We modify the solution
in the following way. If the price of an item is p, we change it to max{0, p−B}. Observe that if a customer
is buying a bundle, then after the modification, the customer is still going to buy the bundle. However, for
every customer, we can potentially lose at most 2B. Hence, the net profit for this non-negative prices is at
least OPT − 2mB.

Observe that if m ≥ OPT
2B+1 , then we can just use the solution in (1). Otherwise, OPT − 2mB ≥ OPT

2B+1 ,
and so we can use the solution in (2).

Theorem 13 There exists a PTAS for minor-free instances of the graph vertex pricing problem under the
B-bounded discount model for fixed B under either one of the following assumptions:
(1) All customers have valuations at least 1.
(2) There is no multi-edge in the graph.
Proof: The proof is very similar to that of Theorem 10. We still decompose the edges of the graphs into k
groups, and after discarding one group the resulting graph has low treewidth, and so we can use dynamic
program. However, since we are working under the B-bounded discount model, we could potentially lose a
lot of profit from the customers that correspond to the discarded edges. We consider cases under either of
the following extra assumptions.
(1) All customers have valuations at least 1. In this case, we set k = 2B+1

ε . Let m be the total number of
customers. Then, we know OPT ≥ m, because we can set each item to have price 1

2 . Suppose we pick any
one of the k groups of edges to discard. Then, it follows the expected sum of valuations of the remaining
customers is exactly (1− 1

k ) of the original sum. Moreover, the expected loss due to the customers discarded
can be at most 2mB

k ≤ 2B
k ·OPT . Hence, it follows that the expected total profit is at least (1− ε)OPT .

(2) There is no multi-edge in the graph. This means that for any two items, there is exactly one customer
that is interested in both items. We do a pre-processing step. If there is an item corresponding to a vertex
such that all edges incident on it has non-positive valuations, then we set the price of that item to +∞.
Essentially, we have removed that vertex, together with the edges that incident on it. Let n be the number
of remaining items and m be the number of remaining edges. It follows that if we set the price of each
remaining item to 1

2 . Then, the profit obtained is at least n
2 . Hence, OPT ≥ n/2. Now the graph is planar

and hence, m ≤ 3n. It follows m ≤ 6OPT . Hence, setting k := B+3
3ε and using the same argument as in

the first case, the expected total profit is at least (1− ε)OPT .

Theorem 14 There exists a fully polynomial time approximation scheme for the case that the desired subsets
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of different customers form a hierarchy under the both the discount and the B-bounded discount models.
Proof: We can extend the algorithm presented in [2] for the positive price model. The correctness follows
from the analysis in [2], and in the case of discount model, by additionally using the result in Lemma 1.

B QPTAS for the Highway Problem

We describe a sketch construction of a QPTAS for obtaining (1 + ε)-approximation the highway problem
for general customer valuations, with additional assumptions. This approach works for both the coupon
model and the bounded discount model. The method we use is based on the dynamic program by Elbassioni
et. al. [11] for solving the highway problem with only non-negative prices. We would only highlight the
modifications we make and the reader is advised to refer to [11] for the complete construction. We first state
the result.

Theorem 7 There exists a QPTAS for the highway problem under the coupon model if there exists an
optimal pricing that has only a bounded number C of negatively priced items, and the corresponding revenue
obtained from positively priced items is at least twice that of the revenue from negatively priced items. The
running time of the algorithm is (m

ε )O(C
ε
(log m

ε
)2).

The main idea is as follows. Suppose the items are in the order {1, 2, . . . , n}, and there are m bidders.
We pick the mid-point î := bn/2c, and recursively solve for both the left {1, . . . , î} and right {̂i+1, . . . , n}
halves. The difficulty is how to handle bidders whose bundles contain both items î and î + 1. The idea
in [11] is to guess 1 = lk < lk−1 < · · · < l1 ≤ î < î + 1 ≤ r1 < r2 < · · · < rk = n and partial sums
f1, f2, . . . , fk and g1, g2, . . . , gk such that the price function p satisfies the following.

1. For 1 ≤ j ≤ k, fj =
∑î

i=rj
p(i) and gj =

∑rj

i=î+1
p(i).

2. For 1 ≤ j < k, fj+1 ≥ (1 + ε)fj and gj+1 ≥ (1 + ε)gj .

3. For 1 ≤ j < k
∑î

i=rj+1+1 p(i) < (1 + ε)fj and
∑rj+1−1

i=î+1
p(i) < (1 + ε)gj .

The choice of rj’s, lj’s, fj’s and gj’s forms a configuration. Note any pricing q has a configuration
consistent with it. Now, given a bidder interested in items I = {l, l + 1, . . . , r − 1, r}, where l ≤ î and
r ≥ î + 1, there exists s and t such that ls+1 < l ≤ ls and rt ≤ r < rt+1. Observe that the following
property is used crucially in [11] for (1 + ε)-approximation.

fs + gt ≤ q(I) ≤ (1 + ε)(fs + gt) (3)

Note that using standard rounding techniques, we can assume k = O(log P/ log(1 + ε)), where P :=
mn2/ε. Hence, the number of configurations is at most L = (nP )2k, and we have the following recursion
for running time: T (n) ≤ poly(m) + 2L · T (n/2). Hence, we get T (n) ≤ (2L)log n · poly(m).

Observe that the inequality (3) holds only when non-negative prices are assigned. In particular, if
q({l, . . . , î}) > 0 and q({̂i + 1, . . . , r) < 0, then fs + gt is no longer a good approximation to q(I)
when fs and gt have similar magnitude. Although we cannot make guarantees about local rounding, we can
ensure the rounding gives a good approximation globally if we make the following assumption.

There exists an optimal pricing q such that
∑

e∈E

∑
i∈e:q(i)>0 q(i) ≥ 2

∑
e∈E

∑
i∈e:q(i)<0(−q(i)).
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Intuitively, this assumption states that the positive revenue of the optimal solution has to be at least twice
that of the negative revenue.

Another technical issue that one encounters is that with negative prices, the f ′j and gj’s are no longer
monotone. Hence, we would have to bound the number C of negatively priced items as well. Hence, at the
beginning, we have to guess which items are negatively priced and their corresponding negative prices. This
introduce an overall multiplicative factor of (nP )C in the running time.

Moreover, there would be C monotone segments and hence we would have to guess kC indices j’s on
both the left and right hand sides, where k = O(log P/ log(1 + ε)). Hence, the number of configurations is
L = (nP )2Ck. As noted in [11], we can always assume n ≤ 2m. Hence, the running time for the dynamic
program with both positive and negative prices is at most (nP )C · (2L)log n · poly(m) = (m

ε )O(C
ε
(log m

ε
)2),

which is quasi-polynomial in m.

C Algorithms for Discount without Loss on Highway Problem

As mentioned in Section 6, in the discount without loss model hte goal is to compete with an optimum
which prices the items in a way that for any customer, the sum of the selling prices of items in his desired
set is at least the sum of the marginal costs. More formally, we want the price vector p that maximizes
Profitrwl(p) =

∑
e:we≥

∑
i∈e

pi

∑
i∈e pi, subject to the extra condition that for each customer e,

∑
i∈e pi ≥ 0.

Let p∗rwl be the price vector with the maximum profit and let OPTrwl = Profitrwl(p∗rwl).
This model has exactly the same DAG representation for the highway problem as before except there

is no backward edges in the corresponding leveled graph. In particular, if there are n items, then for each
0 ≤ i ≤ n, there is a node vi that represents the partial sum si :=

∑i
l=1 pl, where pl is the price of the

lth item. Moreover, if a customer is interested in items i + 1 through j (inclusive), then the customer is
represented by the (directed) arc (vi, vj).

Below we present two theorems in this model for the highway problem.

Theorem 16 For the discount without loss model on the highway problem in which all valuations are 1,
there exists a randomized algorithm that gives O(log n) approximation, where n is the number of items.

Proof: We consider the DAG representation of the instance, in which each node corresponds to a partial
sum. In the discount without loss model, each customer corresponds to an arc (vi, vj) and hence the label
of vi cannot be larger than that of vj . Therefore, all the customers impose a partial ordering on the nodes.
We pick any topological order that satisfy the partial ordering. If no such topological order exists, then the
instance is infeasible. We relabel the nodes such that v0 appears first in the ordering and vn the last.

We group the arcs corresponding to customers into log n groups such that each group is defined to be
Ek := {(vi, vj) : 2k ≤ j − i < 2k+1}, for 0 ≤ k ≤ blog2 nc.

Let k∗ be the group that contains the largest number of customers. Set p := 1/2k∗+1. We set the labels
for the nodes in the following way. We set the label of v0 to be 0. In general, given that the label of vi is set
to l, with probability p the label of vi+1 is set to l + 1, and with probability 1− p it is set to l.

We next show that each customer (vi, vj) in group Ek∗ contributes to a profit of 1 with probability at
least 1

8 . Let r := j−i and hence 2k∗ ≤ r < 2k∗+1. Note that we receive profit from the customer iff the label
increases exactly once going from vi to vj . This happens with probability rp(1− p)r−1 ≥ 1

2(1− p)1/p ≥ 1
8 ,

since p ≤ 1
2 .

Hence, it follows that the expected profit returned is an O(log n) approximation.
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We can solve a restricted version of the problem exactly. Recall that in the DAG representation, each
node has a label that corresponds to a partial sum.

Theorem 17 For the discount without loss model on the highway problem, the restricted version in which
each node in the DAG representation must have a label from {0, 1} can be solved exactly by linear program-
ming.

Proof: Recall that we consider the highway problem in which every customer has valuation 1. Moreover,
we add an extra condition such that when items are traversed from one end to another in the linear order, if
we ignore the items that are priced 0, then the the prices of the remaining items must alternate between 1
and −1. Hence, when we see an item priced 1, we must first see an item priced −1, before we see an item
priced 1 again.

Observe that under the alternate-{−1, 1} condition, each si can only take one of two values. Hence,
we have the following LP relaxation for the restricted version of the highway problem under the discount
without loss model.

max
∑

(i,j)∈E(sj − si)
s.t. sj − si ≥ 0 ∀(i, j) ∈ E

0 ≤ si ≤ 1 ∀0 ≤ i ≤ n

It is not difficult to show that this LP relaxation actually gives the optimal integer solution as well. We
give the following rounding algorithm. Consider picking a random s uniformly from (0, 1). If si < s, then
round it down to 0; otherwise, round it up to 1. It follows that for every customer (i, j) ∈ E, the probability
that we get one unit of profit from it is exactly sj − si. Hence, it follows that the expected total profit we
obtain is

∑
(i,j)∈E(sj − si), i.e., the expected value of an integer solution obtained from rounding is equal

to the value of the optimal fractional solution. Since every integer solution has value at most that of the
optimal fractional solution, it follows that every integer solution obtained from rounding is optimal.
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