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Abstract

Scheduling is a fundamental technique for improving performance in computer systems. From web servers
to routers to operating systems, how the bottleneck device is scheduled has an enormous impact on the
performance of the system as a whole. Given the immense literature studying scheduling, it is easy to
think that we already understand enough about scheduling. But, modern computer system designs have
highlighted a number of disconnects between traditional analytic results and the needs of system designers.
In particular, the idealized policies, metrics, and models used by analytic researchers do not match the
policies, metrics, and scenarios that appear in real systems.

The goal of this thesis is to take a step towards modernizing the theory of scheduling in order to provide
results that apply to today’s computer systems, and thus ease the burden on system designers. To accom-
plish this goal, we provide new results that help to bridge each of the disconnects mentioned above. We will
move beyond the study of idealized policies by introducing a new analytic framework where the focus is on
scheduling heuristics and techniques rather than individual policies. By moving beyond the study of individ-
ual policies, our results apply to the complex hybrid policies that are often used in practice. For example, our
results enable designers to understand how the policies that favor small job sizes are affected by the fact that
real systems only have estimates of job sizes. In addition, we move beyond the study of mean response time
and provide results characterizing the distribution of response time and the fairness of scheduling policies.
These results allow us to understand how scheduling affects QoS guarantees and whether favoring small
job sizes results in large job sizes being treated unfairly. Finally, we move beyond the simplified models
traditionally used in scheduling research and provide results characterizing the effectiveness of scheduling
in multiserver systems and when users are interactive. These results allow us to answer questions about the
how to design multiserver systems and how to choose a workload generator when evaluating new scheduling
designs.
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CHAPTER 1

Introduction

Scheduling policies are implicitly (or explicitly) used everywhere that a resource needs to be allocated.
Whenever there is contention for a limited resource, a queue builds, and a scheduling policy is used to
determine the order in which the resource is allocated to satisfy requests.

This happens almost everywhere we venture in our daily lives. From restaurants and supermarkets, to
banks and amusement parks, we queue for service in a variety of ways. In many convenience stores there is
a single cash register where people line up, and are then served in First Come First Served (FCFS) order. In
large supermarkets, there are many registers and some are dedicated to serving only customers with a small
number of items. On the other hand, in restaurants everyone gets a little bit of service all of the time, which
can be viewed as a form of Processor Sharing (PS). In fact, even deciding what order you will do the things
on your to-do list can be thought of as a scheduling policy. Do you want to finish the most urgent tasks first,
i.e. use Earliest Deadline First (EDF), or work on the tasks that you can finish the quickest, i.e. use Shortest
Remaining Processing Time (SRPT)?

In addition to these everyday examples, scheduling policies are fundamental components of a variety of
modern computer systems. Applications such as web servers, routers, operating systems, supercomputers,
databases, and disks all face a constant barrage of requests and need to determine how best to allocate
resources to users. In all these cases, queues of service requests build and a scheduling policy (discipline) is
used to decide the order of service.

Wherever scheduling policies are used, they can have a dramatic impact on system “performance.” In
particular, at a high level, requests experience delay as a result of waiting in queues for service at a limited
resource; thus how requests are scheduled at this resource is a fundamental determinant of delay. In fact, the
delay experienced by requests can differ by orders of magnitude across scheduling policies.

This means that scheduling is especially important in computer systems, because users of computer
systems are extremely demanding and unforgiving. In our daily lives, we are willing to accept some delay
while we queue for service, but, in computer systems, users demand service that is both instantaneous and
predictable. For example, web users become dissatisfied if response times for requests exceed 5 seconds and
view delays of greater than 10 seconds as intolerable [65]. Further, meeting the high expectations of users in
computer systems is crucial because it is often effortless for users to switch to a competitor’s product. If we
again consider the example of a web user, the competition is always “just a click away.” Thus, a fundamental
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design goal of computer systems today is to minimize theresponse timesof users, i.e. the time between the
moment a user makes a request and the moment the request is completed.

Scheduling is a fundamental tool for minimizing response times (reducing delays) and, as a result, the
study of scheduling policies has a long history including a vast literature of analytic results. However, in
recent years, the field has been going through a resurgence. This resurgence is a result of a variety of
“scheduling success stories” in computer systems. In particular, at all levels of computer systems, designers
have dramatically reduced user response times by making small changes to the scheduling policy used at
the bottleneck resource. We will provide an overview of a few examples of success stories in Section1.1,
where we will see that the essence of these scheduling success stories is very simple (Section1.2). In
particular, in all the examples, system designers identify the bottleneck resource in a system, determine how
it is scheduled, and then design a new scheduling policy in order to improve performance. This third step is
really the defining aspect of the success story, and is the focus of this thesis.

In Section1.3 we will begin to explore the issues involved in designing a new scheduling policy for a
computer system. This task is not easy – there is an enormous variety of scheduling policies from which
to choose. As a result, computer system designers are often guided by analytical results about scheduling
policies, and we discuss what traditional analytical results about scheduling suggest for computer system
design in Section1.3.1. However, we will see in Sections1.3.2and1.3.3that there are many gaps between
the analytical results and what happens in practice. Because of these disconnects between theory and prac-
tice, traditional analytic results do not apply for the policies that system designers use in practice. This fact
is problematic because analytic results can be an important tool for system design.

The goal of this thesis is to develop a modernized theory of scheduling that can provide analytic results
that apply to today’s computer systems, easing the burden on system designers. To accomplish this goal,
we will provide new results that help to bridge the disconnect between the analytical results and the needs
of practitioners. We detail our approach for bridging these disconnects in Section1.4and then we conclude
the introduction by providing an overview of the thesis in Section1.5.

1.1 Scheduling success stories
Across applications, computer system designers have been suggesting new designs for the scheduling poli-
cies at the core of systems. This increasing focus has led toscheduling success storiesat all levels of
computer systems. In web servers [96, 182], routers, [179, 180], wireless networks [102, 136], peer-to-peer
systems [178], operating systems [74], databases [138, 139], and beyond, researchers have made simple
changes to the scheduling policies used at the bottleneck resources in computer systems that have led to
dramatic improvements in user response times. Not only do these new designs result in improved response
times, they do so without requiring the purchase of additional resources.

Example: Static Web Servers
The scheduling success story that is perhaps the easiest to explain is that of web servers. If we
consider a web server that serves primarily static requests, its operation is very simple at a high
level. Static requests are typically of the form “get me a file.” In order to fulfill such a request, the
web server must retrieve the file and then send the file over the outgoing link. Typically the amount of
bandwidth at the web server is the bottleneck device since purchasing more bandwidth is much more
expensive than upgrading the disks or CPUs at the web server [142, 59]. Even a modest web server
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can saturate a T3 or 100Mbps Ethernet connection. Thus, much of the delay experienced by requests
for files is a result of queueing for bandwidth.

In standard web server designs, such as Apache [225] and Flash [168] servers, the bandwidth is
allocated by cycling through the queued files, giving each a small slice of service. Specifically, each
connection between a client and the web server has a corresponding socket buffer into which the web
server writes the contents of the requested file. The sockets are then drained in a cyclic manner where
a handful of packets from each socket are sent before moving to the next socket. This behavior is
typically modeled using the Processor Sharing (PS) scheduling policy, which gives an equal share of
the service capacity to each job in the queue at all times.

Now comes the success story. Harchol-Balter et al. [96] have recently achieved dramatic re-
ductions in user response times at static web servers by adjusting the scheduling policy used in web
servers. They modified the way sockets are drained in order to implement a version ofSRPT and
found that not only were response times much smaller [96], but also the performance in periods of
overload was improved [203] and the response times of large files did not suffer as a result of the
bias towards small files [25]. Further, following the initial work of Harchol-Balter et al., other re-
searchers have gone on to design improvements to the scheduling policy, thus providing even more
dramatic improvements over standard web server designers [182, 131, 130, 88]. We will talk in more
detail about the actual policies in these designs later in the chapter.
�

Example: Network Edge Routers
From a user-level perspective, a user is sending a sequence of packets, i.e. a flow, on a path through a
number of routers in the network. Thus, a router must share resources between a number of competing
flows. Typically, one of these routers is the bottleneck link along the path and contributes the majority
of the network delay. Often times, this bottleneck router is the edge router, i.e. the router on the edge
of the core of the network. Further, the bottleneck resource of the bottleneck router is the most fre-
quently the outgoing bandwidth of the router [179], since it is much more expensive to overprovision
bandwidth than it is to overprovision other resources. (Though, the complexity of scheduling policies
used at routers is limited due to the fact that routers must make scheduling decisions very quickly so
as to operate at line speed.) Thus, a key determinant of the delay experienced on a network path is
how the bandwidth at the bottleneck router in the network is scheduled.

In standard router designs, variants of fair queueing are commonly used to allocate bandwidth
to packets from competing flows at a router. These policies guarantee that the average bandwidth
given to each flow through the router is approximately equal. This means thatPS and variants such
as GeneralizedPS (GPS) and DiscriminatoryPS (DPS) serve as a good model of the scheduling
policy at the router [250, 35, 36].

Many techniques have been applied to try to reduce the delay in routers, including admission
control, active queue management, and others. However, recently, Rai et al. [179] were able to
dramatically reduce response times of flows by implementing a simple scheduling change in routers
– they implement a policy that gives priority to flows with the least attained service, i.e. the flow that
has had the fewest packets sent so far. With only this small change to the way flows are scheduled Rai
et al. were able to reduce response times by an order of magnitude [179, 180]. We will provide more
details about the policy they implement later in the chapter.
�
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Example: Wireless Access Points
Wireless networks offer a number of interesting challenges when compared with traditional wired
networks. One of the key challenges is that the wireless channel is a shared resource among all the
users of a given access point. In order to achieve reliable transfers, users must reserve exclusive
access to the shared channel. As a result of this and other concerns, wireless networks are severely
bandwidth-limited, and the wireless link itself is the bottleneck resource. Thus, a key determinant of
user response times is how the wireless channel is scheduled.

Allocation of the shared channel is performed in a centralized manner by the network access
point. Typically, the access point polls clients to give them channel access grants, traditionally grant-
ing access in a round-robin manner so as to guarantee fairness among competing users. So, again,
PS is a good model of the scheduling policy being used at a standard wireless access point.

But, there are many reasons why this allocation strategy is inefficient and many recent designs
have dramatically reduced response times in wireless networks using simple changes to the scheduling
policies used in wireless access points [102, 136]. These recent designs again apply variants of the
SRPT policy to schedule user requests. We will provide more details about the specific variants they
implement later in the chapter.
�

We could easily continue to list other recent scheduling success stories in applications such as operating
systems [74], databases [138, 139], peer-to-peer systems [178], and beyond; however from these examples
we can already see that changing the scheduling policy at the bottleneck device in computer systems can lead
to dramatic performance gains at the system-level. Further, from these examples, we can already observe
that there are many similarities between these success stories.

1.2 The essence of a scheduling success story
Though every system is different and each of the scheduling success stories we just described has its own
nuances, the essence of these scheduling success stories is the same across systems. There is a consistent
three-step design process that is followed.

1. The first step is to determine the bottleneck resource of the system. Identifying the bottleneck resource
is one of the fundamental steps in system design. Knowing what resource is the bottleneck allows
designers to focus on the part of the system responsible for the majority of delay in the system.
This resource is exactly where scheduling changes will have the most dramatic effect on system-level
performance. We saw that in static web servers the bottleneck is typically the limited bandwidth
that the server has bought from its ISP [142, 59]. Similarly, in network routers and wireless access
points bandwidth is again typically the bottleneck [179, 250]. In operating system scheduling, the
bottleneck is typically the CPU [74], while in databases the bottleneck can either be the CPU or the
database locks depending on the workload [138].

2. Once the bottleneck device is known, the next step is to understand how the bottleneck device is cur-
rently scheduled. This knowledge helps to determine what performance improvements are possible.
It turns out that, across computer systems, the status-quo is typically to use a very simple scheduling
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ServerQueueNew Arrivals

Figure 1.1: An illustration of a single server queue.

policy to schedule the bottleneck device, often either First Come First Served (FCFS) or Processor
Sharing (PS). In particular, as we saw in our examples, it is most common that the bottleneck device
is scheduled using a form ofPS. This happens because most systems time-share, giving each request
a small slice of service and cycling through the requests in a round robin fashion. For example,PS
is a good approximation of the way web servers and routers (at a flow level) allocate bandwidth [96].
Additionally, operating systems tend to use variants ofPS to schedule jobs at the CPU.

3. After the bottleneck has been identified and it has been determined how the bottleneck is being sched-
uled, the last step in a “scheduling success story” is to design and implement an improved scheduling
discipline for the bottleneck resource. However, the details of the improved policy are very much
application dependent. This step is the defining aspect of the scheduling success story. After the first
two steps, system designers know which resource is the bottleneck and how it is being allocated, but
the question is then,what is the best, or at least an improved, design for a new scheduling policy?

1.3 Choosing a scheduling policy
The defining aspect in recent scheduling success stories is the decision of which scheduling policy to im-
plement at the bottleneck resource. This is not an easy decision – there are an infinite variety of possible
scheduling disciplines to choose from. As a result, though it is possible to develop a new design through an
ad hoc process of tuning and testing new proposals, performance modeling is often a key tool in developing
a new scheduling discipline for the bottleneck device. In particular, by considering a single server queue (as
illustrated in Figure1.1) as a model of the bottleneck resource, designers can make use of a vast literature of
analytic results about scheduling in order to better predict the performance of new design proposals. So, all
a system designer needs to do after determining which scheduling discipline is used by the bottleneck device
is to pick up one of the many books on scheduling [61, 119, 120, 176] and look for an improved policy.

Well, at least it seems that easy.In reality, there are many gaps between what the traditional analytic
results provide and what system designers need in practice. These gaps mean that the results proven in
theory do not end up applying to the systems that are built in practice.

1.3.1 What traditional theory says
The study of scheduling has a long history, including an extremely diverse set of application areas and
models. The classical case of minimizing response times at a single server with a single queue is the case
that is most relevant to our scheduling success stories. In any scheduling book, one of the first results that
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Figure 1.2: Mean response time,E[T ], is shown as a function of load,ρ, underSRPT, PS, andFCFS
in an M/GI/1 queue. The service distribution has mean 1 and is (a) Deterministic, (b) Exponential, and (c)
Weibull with a variance of 10.

is presented is that a simple, greedy policy is optimal in the single server model. In particular, Shortest
Remaining Processing Time (SRPT) minimizes both the mean queue length and the mean response time
regardless of the arrival sequence or job sizes [202, 201]. SRPT works by devoting the full service capacity
to the job with the smallest remaining size. Thus, it greedily works on the job that can be completed the
quickest.

However, simply knowing thatSRPT minimizes the mean response time tells us nothing about how
much improvement can be gained from usingSRPT instead of other common policies likePS or FCFS.
Therefore, we also need to understand the quantitative comparison of response times underSRPT, PS, and
FCFS under practical workload assumptions.

To provide such a comparison, the traditional model that is used is a single server queue with an infinite
buffer (see Figure1.1) where the interarrival times of requests are assumed to be independent and identically
distributed (i.i.d.) random variables, the single server works at a constant speed, and the service times
(processing times, job sizes) of arrivals are assumed to be i.i.d. Moreover, the sequences of interarrival times
and service times are assumed to be independent. This model is one of the most basic queueing models,
and is referred to as the GI/GI/1 queue. The first GI indicates that the arrival process is a sequence of
generally-distributed, independent random variables; the second GI indicates that the service requirements
are generally-distributed, independent random variables; and the 1 indicates that there is 1 server. Most
typically, scheduling policies are studied in the simpler M/GI/1 model, where the M stands for “Markovian”
and indicates that the arrival process is Poisson, i.e. has exponentially distributed interarrival times.

A huge variety of scheduling policies have been studied in the M/GI/1 setting, and there are a number
of excellent books that summarize the important results [61, 119, 120, 176]. We will survey many of the
results in Chapter3. However, let us now provide a simple comparison ofSRPT, PS, andFCFS in order
to illustrate the performance gains that are possible.

To provide this comparison we will use an M/GI/1 queue with three different service distributions. In
Figure1.2, we show a comparison betweenSRPT, PS, andFCFS under (a) a deterministic distribution
where all jobs have size 1, (b) an exponential distribution, which is a common distribution because it is
analytically tractable, and (c) a high-variance Weibull distribution. Figure1.2illustrates thatSRPT provides
an enormous improvement in mean response time in some settings; however the improvement depends very
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much on properties of the workload. In particular, the improvement depends very strongly on the variability
of service demands (job sizes) and the system load (utilization). UsingSRPT instead ofPS or FCFS
provides only limited improvement in mean response time when job sizes are not very variable or if the
system load is low. However, the improvement is dramatic if job sizes are highly variable or the system is
moderate or highly loaded. The reason for this is simple. First, if the system is lightly loaded, then the queue
lengths are small regardless of the scheduling policy used, so reordering jobs in the queue can only have
a limited impact on response times. However, if the system is moderate or heavily loaded, queue lengths
can be very large, and reordering jobs in the queue can have a big impact. Second, variability is important
because when job sizes are highly variable, one large job can wreak havoc underFCFS. In particular, under
FCFS, many small jobs can get stuck behind a large job in the queue. Further, one large job can have a
negative effect onPS because a large job will stay in the system for a long time and, thus, limit the service
capacity devoted to other jobs. In contrast, underSRPT, small jobs are unaffected by large jobs because
they bypass larger jobs in the queue.

To summarize, the key observation from Figure1.2is that,SRPT can provide enormous improvements,
but only under certain system loads and job size distributions. Thus, in order to understand whetherSRPT
will provide significant improvements for a given application, it is important to first understand the system
load the application will experience and the distribution of service demands.

Let us start with the system load. Though it is not uncommon for designers to try to overprovision com-
puter systems, the unpredictability and burstiness of computer system workloads means that it is common to
experience extended periods of moderate-to-heavy load. For example, in web applications, surges in traffic
as a result of special promotions, an abrupt increase in a site’s popularity, or many other reasons, result in
extended periods of high load. As a result, even well-provisioned systems spend a significant amount of
time running in moderate or high-load, and maybe even in overload. These periods of high load are typi-
cally some of the most important times to provide users responsive service, and so scheduling policies for
computer applications need to be designed with the high load periods in mind.

Next, let us consider the service demand distributions experienced by computer applications. Over the
last decade, there has been an explosion of workload characterization research in the computer system com-
munity. This research has led to the growing realization that heavy-tailed and highly variable distributions,
such as the Weibull and Pareto, are everywhere in computer system workloads [16, 62, 208, 172, 174].
Examples can be found in UNIX process lifetimes [91, 68], web file sizes [173, 62], and the number of
embedded files in web sites [16, 28].

So, in designing scheduling policies for computer applications, the most important workload setting
to consider is a highly loaded server with highly variable job sizes. This is exactly the setting where the
performance improvements ofSRPT are most dramatic, so,SRPT is the clear choice for use in computer
systems according to traditional theoretic results.

1.3.2 What happens in practice
We just saw that theoretical results motivate the use ofSRPT in computer systems –SRPT minimizes the
mean response time and provides dramatic improvements over common policies likePS under practical
workloads. Thus, it would seem that one should always useSRPT scheduling, regardless of the application
that is being considered.

But, the picture painted by the theoretical results is a bit deceiving. In particular, the reality of computer
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systems is far more complex than the simple models and idealized scheduling policies one finds in the books
on scheduling.

To illustrate this briefly, notice the setting that was used in Figure1.2 to analyze the performance im-
provements obtained bySRPT: Figure1.2shows the mean response time in an M/GI/1 queue usingSRPT
scheduling. Though we have seen that the assumption of highly variable Weibull service demands is fairly
realistic, it is easy to find fault with each of the other assumptions. Real systems cannot implement pure
SRPT; real arrival processes are not Poisson; real systems care about more than mean response time; and
real systems do not always use a single server. To drive this point home, let us consider a few applications
in detail.

Example: Static Web Servers
We saw earlier that the bandwidth purchased from the ISP is typically the bottleneck in web servers
that serve primarily static content. Further, we saw that bandwidth is allocated to requests according
to PS scheduling. Additionally, the workload in web applications is typically highly variable and
web applications must be designed with high load periods in mind. Thus, web servers seem to be a
perfect place to useSRPT.

SRPT is indeed the motivation for a number of recent web server designs [96, 182, 131, 130, 87,
88]. However, many complications of the real systems prohibit these new designs from using pure
SRPT. In particular, the proposed designs use the remaining sizes of the files being served in order
to prioritize. However, these remaining sizes are only estimates of the remaining service demand of a
request because the network delays, which are are not known exactly, also affect the service demands.
As a result, many proposals do not use only the remaining sizes of the files, but also attempt to estimate
the propagation delay to the users making the requests [182, 131, 130]. Another complication is the
fact that implementations have tended to use only 5-10 priority levels instead of using a continuum
possible priority levels (as pureSRPT does) as a result of the overheads associated with maintaining
priorities and switching between jobs [96, 182]. As a result of these, and other, adjustments toSRPT,
the policies that are actually implemented may perform significantly worse than pureSRPT, and the
magnitude of the differences is not understood.

Not only are there many reasons why pureSRPT cannot be implemented in web servers, there
are a number of reasons why designers do not want to use pureSRPT. A primary reason is that
mean response time, although important, is not the only performance measure of interest. Designers
also need to provide fairness and QoS guarantees. Further, it is often important to provide service
differentiation between high priority customers (who have paid for improved service) and standard
customers. As a result of these competing performance metrics, many design suggestions for web
servers have used hybrids ofSRPT and variants ofPS [87, 88].

In addition to adjustments to the policy that is implemented, there are many complexities of the
practical workloads that are not accounted for by the traditional M/GI/1 queue. First of all, web
users are interactive. When using a web site a user will click on a link and then wait for the response
before clicking on the next link. Therefore, the arrival process is dependent on the departure process,
unlike in the M/GI/1. Further, users are impatient, and will click on the refresh button if the response
time for a certain page is too long. The effect of this is to abandon requests that are in the queue and
have already received service, thus wasting bandwidth. This is an issue that is ignored by the M/GI/1
model.
�
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Example: Network Edge Routers
We saw that the bandwidth is typically the bottleneck in edge routers and that the way a standard
router allocates bandwidth can be viewed, at a flow level, asPS. Like the case of web servers, routers
are typically highly loaded and flow sizes tend to be highly variable. Thus, routers again seem like a
perfect place to applySRPT scheduling.

However, it is impossible to applySRPT in routers because the sizes/lengths of flows (i.e. the
number of packets in the flows) are unknown a priori. It is not even possible to estimate the lengths
of flows accurately; all that is known about a flow is how much service it has received so far. But, it
turns out that the amount of service received so far provides some indication of the remaining length
of the flow. In particular, if a flow has received a large amount of service already, it is likely to require
an even larger amount of service in order to complete [208]. Using this information, designers have
proposed policies that give priority to the flows that have received the least service so far, e.g. variants
of the Foreground-Background (FB) policy [179, 180] and the Multi-level Processor Sharing (MLPS)
policy [6, 5]. However, such proposals have been shown to starve large flows, e.g. streaming videos,
of service in addition to increasing jitter when compared with standard router designs [180]. Thus,
hybrid designs combining aspects ofPS with FB andMLPS have been proposed [180].

Not only is it impossible to applySRPT in routers, it is obvious that the M/GI/1 queue is an
overly simplistic model of router workloads. Like in web servers, users of routers are interactive and
impatient. When using a web site a user will click on a link and then wait for the response before
clicking on the next link. Further, if a request is delayed too long a user will abandon the request,
e.g. by hitting the refresh button in her browser. The effect of these abandonments is actually quite
dramatic: 20% of network traffic has been shown to correspond to aborted transfers [251]. Another
important aspect of network traffic that is ignored in the M/GI/1 model is the fact that workload
characteristics tend to be time-varying, e.g. time of day effects.
�

Example: Wireless Access Points
We saw that the wireless link is the bottleneck resource in wireless networks and thatPS serves as
a good model of the way a traditional access point typically allocates the wireless link bandwidth.
Further, we described that recently suggested designs have been able to dramatically improve perfor-
mance using variants ofSRPT scheduling. But, for many reasons, these variants are far from pure
SRPT.

The main reason that pureSRPT is not implemented is that the channel conditions are variable.
In a multiuser wireless network, at any given point there are likely to be users that have “good”
channel conditions, which allow data to be sent at a high rate, and users that have “bad” channel
conditions, which limit data transfer speeds. If one ignores the channel conditions and uses pure
SRPT, the throughput of the network as a whole will be much lower than if one is opportunistic when
scheduling requests. As a result, the designs that are implemented tend to be hybrids ofSRPT where
both the channel conditions and the remaining size of requests are taken into account [102, 136].
However, note that the fact that channel conditions vary over time means that the remaining sizes
used to schedule are not exact.

In addition to variable channel conditions, wireless networks are subject to a number of other
complexities that are not accounted for in traditional theoretical models. In particular, power man-
agement is a fundamental design constraint and needs to play a role in wireless link scheduling.
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Further, multi-channel network designs are increasingly being used, and these networks are better
modeled with a multiserver queue than with a single server queue. Finally, many of the complexities
of network traffic that we have discussed for web servers and network routers also play a role in
wireless networks, e.g. interactive and impatient users.
�

We could have easily continued to list other examples such as disks, databases, and supercomputing
centers, however the above examples are enough to make the point that there are many aspects of real
systems that differ from the traditional theoretical models. Further, the result of these differences is that
pureSRPT, the “optimal” policy according to traditional theoretical results, is never used in practice. Thus,
the theoretical results we just described do not immediately apply to real system designs.

1.3.3 Gaps between theory and practice
The previous two sections have illustrated a mismatch between the traditional theoretical research on schedul-
ing and the use of scheduling in modern computer system designs. To summarize a few of the differences
that we saw, notice that we repeatedly observed that real computer systems can never implement the pure,
idealizedSRPT policy that is optimal in theory. Two of the reasons for this are that (i) it is rare that real
implementations know exact remaining sizes and (ii) real implementations must be adjusted to account for
the overheads associated with preemption. Not only is it unrealistic to consider pureSRPT, it is unrealis-
tic to assume a Poisson arrival process since, in reality, users are interactive: users typically must wait to
receive one request before making another, thus the arrival process is dependent on the completion process.
Similarly, it is increasingly unrealistic to consider only a single server queue – server farm and multi-core
architectures are increasingly prevalent. Finally, considering mean response time as the only performance
metric is also unrealistic. In real systems, mean response time is definitely important, but it is also important
to be “fair” and to provide QoS guarantees (among a long list of other metrics).

This laundry list of differences is really only the tip of the iceberg. However, from this list and the
applications we looked at in detail, three different themes are emerging. Though these three themes are not
all inclusive, they cover a wide range of gaps between traditional theoretic results and the needs of system
designers.

• The idealized policies studied traditionally in theory cannot be used in practice.
For example, pureSRPT is never implemented in practice. Instead, the policies that are implemented
use estimates of remaining size, use only 5-10 priority levels, or are hybrids ofSRPT andPS-type
policies. Each of these variants ofSRPT will not provide response times that are as small as under
pureSRPT, however traditional theoretic results do not provide any information about how much
performance will suffer.

• Many performance measures that are important in practice are not studied in theory.
Mean response time is typically the focus of theoretical scheduling research, however in practice QoS
and fairness metrics are also important. Additionally, power management, reliability, and many other
performance measures are important. Once these other measures are considered,SRPT is no longer
the clear choice. Worries pervade thatSRPT is unfair to large job sizes due to its bias towards small
jobs pervade. Similarly, worries about providing good QoS guarantees for large job sizes are common.
Traditional theoretical results cannot be used to address such worries.
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• The traditional, simplified theoretical models include many unrealistic assumptions.
The M/GI/1 model is at the heart of a majority of research studying the performance of scheduling
policies, but both the M (Markovian arrivals) and the 1 (single server) are often unrealistic.1 For
example, real arrival processes tend to be bursty and real users tend to be interactive and impatient.
Further, many modern system designs make use of multiserver architectures, e.g. server farms and
multi-core processers. ThoughSRPT is optimal in the M/GI/1 setting, once one considers interactive,
impatient users and multiserver settings,SRPT is no longer the optimal policy for mean response
time. Further, the performance ofSRPT in these more complex settings has not been studied in the
traditional theoretical literature.

Each of these themes brings into question the usefulness of traditional theoretical results to modern
computer system design. Traditional results suggest thatSRPT is optimal and can provide dramatic im-
provements in response time, but these results apply only in simplified settings to pureSRPT. Once real-
istic settings and policies are considered, the performance improvements that come from usingSRPT will
be much less dramatic, and the exact degree of improvement is not understood. Further, results about how
SRPT performs for other metrics of interest are simply not available; thus it is not easy to dismiss worries
about, for example, providing QoS guarantees and fairness underSRPT. The bottom line is that the tradi-
tional analytic results about scheduling provide limited help for system designers because of the may gaps
between theoretical models and real system designs.

1.4 Bridging the gaps between theory and practice
The fact that traditional analytic results do not apply to real system designs is a problem because analytic
results can (and should) be invaluable to system designers during the development process. Without analytic
results, designers need to test every every new design proposal using extensive experiments over a wide array
of settings, which can be prohibitive during early stages of design. Further, even after such testing, designers
are left without performanceguaranteesfor the new designs.

However, analytic results could potentially provide provable guarantees to guide the design process. For
example, if (as in the case of web servers) estimates of remaining sizes must be used instead of the true
values, it is important to know how the accuracy of the estimates will affect response times under the policy.
Understanding the impact of the accuracy of the estimates is key because there is often an overhead involved
with making estimates and the amount of overhead is dependent on the accuracy needed for the estimates.
A good example of this tradeoff is the task of estimating network delays for files being sent by a web server.
This is one example of how analytic results can aid the design process, but there are many others. Analytic
results are also important when deciding what level of QoS guarantees can be provided. Analytic results can
help in determining the appropriate number of priority levels to use in order to balance between minimizing
the overheads and maximizing performance. Analytic results are also fundamental to capacity planning of
computer systems. We could list many other examples here, but the main point is simple: without analytic
results, the task of a system designer is made much more difficult. Further, this difficulty is magnified by
the enormous variety of possible scheduling policies from which to choose.

1Of course, one could argue that the GI (generally distributed, independent job sizes) is also unrealistic, but we feel this is less
of an issue than either the M or the 1.
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The goal of this thesis provide analytic results that apply to today’s computer systems. Our results will
bridge most (but not all) of the gaps between theory and practice that we have described so far. In particular,
we will take steps towards resolving the issues in each of the three themes we described in the previous
section.

• Moving beyond idealized policies
We have seen that the idealized policies studied in theory are not used in practice and, instead, a
wide variety of variants of these policies are used. Thus, traditional analytic results are inadequate
for system designers. One natural approach to remedy this situation is to study each of the variants
that are used in practice directly. However, using such an approach, it would be impossible to keep up
with the new designs being developed across all levels of computer systems. So, we need a different
approach.

The approach we propose in this thesis is to move beyond the study of individual, idealized
policies. Instead, we will formalize many common scheduling heuristics and techniques into classi-
fications of scheduling policies, and then prove bounds on the performance of scheduling policies in
each of these classifications. For example,SRPT is characterized by the fact that it uses the schedul-
ing technique of “prioritizing based on remaining sizes” to apply the heuristic of “prioritizing small
jobs.” So, instead of studyingSRPT, we will define and analyze a class of policies that prioritizes
based on remaining sizes and a class of policies that prioritizes small jobs.

This new style of scheduling research is motivated by the fact that, though the idealized policies
studied in theory are not used in practice, the policies that are implemented in practice tend to be
motivated by the theoretical policies. Thus, real system designs tend to apply the same heuristics
and techniques found in the idealized policies. As a result, this new style of scheduling research
has both practical and theoretical benefits. On the practical side, the scheduling classifications we
define include, not only idealized policies likeSRPT, but also the variants of these idealized policies
that are actually used in practice. Thus, by providing results about scheduling classifications we
are eliminating the need to analyze, one-by-one, each individual policy implemented in computer
systems. On the theoretical side, analyzing scheduling techniques and heuristics adds structure to the
space of scheduling policies that cannot be attained through the analysis of individual policies alone.

• Moving beyond mean response time
Though mean response time is an important metric for computer systems, system designs must do
more than simply provide small response times. We have seen that there are a wide variety of other
performance measures that are also important. It is not enough if a new design provides improved
mean response times, it must also guarantee fairness, provide QoS guarantees, and do many other
things. But, unfortunately, the performance of scheduling policies with respect to many of these
measures is not understood. In order to begin to bridge this gap, in this thesis we will focus on two
measures of broad importance: the distribution of response time and fairness.

Extending our understanding of scheduling policies beyond the mean response time to the dis-
tribution of response times is essential for applicability in modern computer systems because users
can become even more frustrated by highly variable service than by having large response times on
average [65, 255]. For example, reducing the jitter in streaming applications is at least as important as
reducing the response time of the flow. Further, as we have discussed, it is increasingly important to
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provide QoS guarantees, and knowledge about the response time distribution of scheduling policies
is fundamental to this task. In this thesis, we not only provide many new results characterizing the
response time distribution under scheduling policies; we also provide the first analytic results studying
the response time distribution under scheduling classifications.

In addition, extending our discussion beyond mean response time to the fairness of scheduling
policies is essential to the applicability of our results in real systems. One of the fundamental worries
about designs that are motivated bySRPT is that large job sizes will have unfairly large and variable
response times as a result of the priority given to small job sizes [30, 210, 215, 223]. Such worries are
difficult to address because of the amorphous nature of “fairness,” and thus there is no analytic work
characterizing the fairness of scheduling policies. In this thesis, we introduce a variety of novel mea-
sures of fairness that are motivated by computer applications. In addition, we provide the first analysis
of the fairness of scheduling policies. Not only that, we extend our analysis to handle classifications
of scheduling policies as well.

• Moving beyond the M/GI/1
Due to the difficulty of the analysis of scheduling policies, traditionally they have been analyzed
only in fairly simple models, primarily the M/GI/1 queue. Though this model allows for general job
sizes, as we have discussed, the assumptions of Poisson arrivals and a single server are often overly
restrictive. We will move beyond these restrictive assumptions and study scheduling in settings where
the arrivals are generated by interactive users and in settings where the system uses a multiserver
architecture.

One fundamental difference between arrivals to real systems and Poisson arrivals is that real users
are interactive. That is, they must wait for their previous request to complete before submitting a
new request. This interactivity introduces dependencies between the arrival and completion processes
which is not present in the M/GI/1 model. We will characterize the impact of these dependencies on
the performance of scheduling policies. We will illustrate that if the dependencies are strong enough,
the effectiveness of scheduling can be limited, but that in many practical settings scheduling is still
very beneficial.

Another important difference between real systems and the M/GI/1 is that real systems are in-
creasingly using multiserver architectures. The reason for this is that buying a single fast server is
much more expensive than buying a large number of slower servers. The use of multiserver architec-
tures has a huge effect on the impact of scheduling. For instance, in multiserver architecturesSRPT
is not optimal (in general) for mean response time. Further, while in a single server a single large job
can block the server if small jobs are not given priority, in a multiserver system small jobs can by-
pass a single large job even without being given high priority. This intuition suggests that scheduling
may not be as effective in multiserver settings. However, we will illustrate that clever scheduling in
multiserver systems can still be very beneficial. Further, we will present results about how schedul-
ing affects the design of multiserver systems, i.e. how scheduling impacts the number of servers that
should be used.
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1.5 An overview of the thesis
The thesis is organized into five parts. In Part I, we provide the motivation and background for the thesis.
In Parts II-IV, we focus on bridging each of the three major disconnects we have described in this chapter.
In Part II we focus on moving beyond individual policies to scheduling classifications; in Part III we move
beyond mean response time and focus on a diverse set of other metrics; and in Part IV we focus on moving
beyond the M/GI/1 model to understand the effect of more realistic assumptions on the performance of
scheduling policies. Finally, in Part V, we will conclude the thesis by discussing the impact of the results
in the thesis for system design and by discussing a number of future research directions motivated by the
thesis.

When reading the thesis, the five parts need not be read in their entirety or in order. A reader familiar
with stochastic scheduling can easily skim the majority of the remainder of Part I. Further, Parts II, III, and
IV are largely independent of one another. The scheduling classifications introduced in Part II appear in
Parts III and IV, however an informal understanding of the classifications should be all that is necessary
when reading these parts. In addition, each of the chapters in Parts II, III, and IV can be read independently
of one another.

1.5.1 Synopsis of Part I: Motivation and Background
In Part I of the thesis (which you are currently reading) we provide the motivation for the thesis (Chapter
1), as well as an overview of the analytic model at the heart of the thesis (Chapter2) and the common,
idealized policies studied in the literature (Chapter3). Chapter3 is especially important for the remainder
of the thesis because it includes a survey of classical results and analytic techniques for studying common
scheduling policies. Additionally, Chapter3 includes a number of new results characterizing the mean
response time of policies in heavy traffic.

1.5.2 Synopsis of Part II: Moving beyond idealized policies
After attaining the necessary background on the model and on classical results for common scheduling poli-
cies, we move to the heart of the thesis. In Part II, our focus is on bridging the gap between the policies
studied in theory and the policies implemented in practice. For example, though many recent designs have
been motivated by the optimality ofSRPT for mean response time, none have implemented pureSRPT.
Thus, the analytic results aboutSRPT do not apply to the resulting system designs. Perhaps the most
straightforward approach for bridging this disconnect would be to model the details of the policies that are
actually implemented in practice and then study these, more realistic policies, analytically. However, the
wide variety of applications and, thus, policies used in practice, means that such an approach is unmanage-
able. So, instead we will develop a new approach: we define scheduling classifications that formalize the
scheduling heuristics and techniques applied by system designers. For example, instead of studying pure
SRPT, we will study classifications that formalize the heuristic of “prioritizing small jobs” and the tech-
nique of “prioritizing based on remaining size.” By studying these scheduling classifications we can attain
results for the policies that are used in a wide variety of different applications at once and eliminate the need
to analyze these policies one-by-one. For example, thoughSRPT is not implemented in practice, many
variations of policies that “prioritize small jobs” are implemented.
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Figure 1.3: An illustration of the scheduling classifications studied in this thesis. The heuristic-based clas-
sifications introduced in Chapter4 are shown in ovals and the technique-based classifications introduced in
Chapter5 are shown in rectangles. An overview of the acronyms for scheduling policies in this figure can
be found in Table2.1.

1.5.2.1 A wide variety of classifications
We will study scheduling classifications that formalize a wide variety of scheduling heuristics and tech-
niques. The heuristic of “prioritizing small job sizes” is perhaps the most common scheduling heuristic,
but many other heuristics are also used. We introduce and study classifications of scheduling policies that
formalize four common scheduling heuristics:

(i) TheSMART classification formalizes the heuristic of prioritizing small jobs
(ii) TheFOOLISH classification formalizes the heuristic of prioritizing large jobs

(iii) TheSYMMETRIC classification is a broad generalization of the classicalPS policy
(iv) ThePROTECTIVE class formalizes a notion of fairness.

Further, there are a wide variety of scheduling techniques that are used. We will formalize four technique-
based classifications:

(i) Preemptive size based policies
(ii) Remaining size based policies

(iii) Age based policies
(iv) Non-preemptive policies

These eight classifications are illustrated in Figure1.3, which also includes a number of variants of
these classifications that we will discuss in Part II. These classifications cover a wide variety of schedul-
ing heuristics and techniques that have been applied across a range of applications including web servers,
routers, disks, operating systems, and others. TheSMART class was introduced by Wierman et al. [241];
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theFOOLISH class is novel to this thesis; theSYMMETRIC class was introduced by Kelly [113]; and the
PROTECTIVE class was introduced by Henderson and Friedman [78]. Further, the classes of remaining
size based policies, preemptive size based policies, and age based policies were introduced by Wierman et
al. in [238, 240], while the class of non-preemptive policies has been studied often in the literature, see for
example [119, 120, 247].

In Part II, we will focus on proving bounds on the response times under each of these classifications.
For example, we will prove that allSMART policies have mean response time within a factor of 2 of
optimal (SRPT) in the M/GI/1 model. These classifications will then serve as building blocks throughout
the remainder of the thesis, and we will return to them in Part III to discuss their performance with respect
to other performance metrics and in Part IV to discuss their performance in more general models than the
M/GI/1. For example, in Part III, we will prove that allSMART policies have a response time distribution
that is asymptotically equivalent to that ofSRPT in the GI/GI/1 model.

1.5.2.2 The benefits of studying scheduling classifications
By studying these scheduling classifications instead of studying individual, idealized policies, we attain
many important benefits, both of theoretical and practical interest.

From a theoretical point of view, the analysis of classifications exposes the performance impact of
scheduling techniques and heuristics, providing a deeper understanding of scheduling than the analysis of
only idealized policies. For example, we will prove that noSMART policy can be fair under all workloads,
which provides an interesting impossibility result: in order to provide near optimal mean response times (by
giving priority to small jobs) a policy must sacrifice fairness.

From a practical point of view, the analysis of classifications provides analytic results for the policies
that are actually implemented in real system designs. In particular, though real designs cannot implement
the idealized policies studied in theory, the idealized policies serve as motivation for the policies the designs
used in practice. Thus, the practical designs are based on the same scheduling heuristics and techniques as
the idealized policies. So, by defining classifications that formalize these heuristics, practical system designs
can be included within the classifications; and thus results proven about the classifications can apply to the
designs used in practice.

Further, these classifications themselves can provide results that aid in the design process. For example,
we will define a class of policies calledSMARTε that includes all policies that “prioritize small jobs” using
inexact job size information. The performance bounds we prove for theSMARTε class will be in terms of
the accuracy of the job size estimates. Thus, we will illustrate the tradeoff between the accuracy of estimates
used to prioritize and the response times that result. As we saw in our web server example, this tradeoff can
be a key design criteria.

1.5.3 Synopsis of Part III: Moving beyond mean response time
Throughout Part II of the thesis, we focus almost entirely on mean response time. This focus allows us to
move beyond the study of idealized scheduling policies to study scheduling classifications, and thus provide
result for the policies that are actually used in practice. Our focus on mean response time is not unusual:
traditionally, in the stochastic scheduling community mean response time is the primary metric of interest.
However, it is not enough for system designs to provide improved mean response times, there are a wide
variety of other important metrics as well. For example, fairness and QoS guarantees are often important, as
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is minimizing power and maximizing availability.
In Part III of the thesis we will move beyond mean response time and consider a wide variety of other

metrics that are important across computer systems. Clearly, we cannot hope to provide results for every
important metric, so we will focus on two measures that have broad applicability: the distribution of response
time and “fairness.” Our goal in studying these measures is not only to provide results for traditional,
idealized policies, but also to provide results for the scheduling classifications introduced in Part II.

1.5.3.1 The distribution of response time
Extending our discussion beyond mean response time to the distribution of response time is essential for
applicability in modern computer systems. Computer users demand not only response times that are fast on
average, but also response times that are predictable. In fact, they become even more frustrated by highly
variable service times than by having large response times on average. Another motivation for studying the
distribution of response times is that QoS guarantees are increasingly important in computer systems, and
providing QoS guarantees requires an understanding of the distribution of response times.

Unfortunately, understanding the distribution of response time is known to be a difficult task. In partic-
ular, exact derivations of the response time distribution are only possible in very specialized settings such
as the M/M/1 and only under very simple scheduling policies, such asFCFS. Due to the difficulty of exact
analysis, a common approach to studying the distribution of response times is to study an asymptotic scaling
of the distribution. In particular, the most common scaling is to study the tail behavior of the distribution
of response time,T , i.e. Pr(T > x) asx → ∞. This is a natural scaling to consider because it provides
bounds on the likelihood of large delays, which are exactly what is necessary in QoS and capacity planning
applications. Further, this scaling is useful for system design because it often provides an understanding
of the most likely way for a large delay to occur, i.e. the “critical event” in large deviations parlance. This
knowledge can then be used to limit the occurrence of such events.

Our goal in Chapter6 will be to characterize the response time distribution under both common indi-
vidual policies and scheduling classifications. The study of the response time distribution is not new to
this thesis, so there are is already a large literature analyzing the tail behavior of response time under many
common policies. We will extend this literature by generalizing the results for some common policies from
the M/GI/1 queue to the GI/GI/1 queue, e.g.FB. But, our primary goal is to analyze the tail behavior under
scheduling classifications, and to this end we will provide results for theSMART, FOOLISH, PROTEC-
TIVE, and non-preemptive classifications. These results provide a number of interesting contrasts. For
instance, we will show thatSMART policies provide an asymptotically optimal response time tail when
the service distribution is heavy-tailed, but provide a response time tail that is as heavy as possible under
light-tailed service distributions. In contrast,FOOLISH policies have response time tails that are as heavy
as possible, i.e.Pr(T > x) decays as slowly as possible, under both light-tailed and heavy-tailed service
distributions. Similarly, non-preemptive policies have as heavy a response time tail as possible under heavy-
tailed service distributions, but can have an asymptotically optimal response time tail under light-tailed
service distributions.

These results have an immediate impact for system design. In particular, they highlight the need for
understanding the tail behavior of job sizes before making design decisions about which scheduling policy
to use. Further, the derivations of the results provide insight into the causes of large delays under different
policies. For example, under non-preemptive policies, the analysis formalizes the idea that when a tagged
job experiences a long delay, it is likely due to a large job being at the server when the tagged job arrives. In
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contrast, underSMART policies, the analysis illustrates that when a tagged job experiences a long delay it
is likely the result of a burst of arrivals (having smaller sizes) arriving just after the arrival of the tagged job.

1.5.3.2 Fairness
Extending our discussion beyond mean response time to consider fairness metrics is also important for the
applicability of our results in practice. Fairness metrics are important in any system where there are human
users. Although typically not the primary metric of interest, it is important that low priority users are not
starved of service. This is a particular concern for designs that try to improve response times by giving
priority to small jobs at the expense of large jobs. Large jobs are typically some of the more important tasks,
for instance the large jobs at e-commerce sites are the shopping cart transactions, and thus it is important
that these jobs are not starved of service. In fact, worries about fairness to large jobs have plagued designs
suggesting the use ofSRPT-like policies in web servers and wireless networks.

Though it is clear that fairness is important, fairness is an amorphous concept and thus difficult to define.
Further, fairness can take on many different meanings depending on the application being considered. As a
result, there is almost no work studying the fairness of scheduling policies.

In Chapter7, we develop a two notions of fairness, each motivated by different application requirements.
First, we develop a framework for studyingproportional fairnessand then we develop a framework for
studyingtemporal fairness. Proportional fairness refers to the idea that all job sizes should receive equitable
service, i.e. no job size should have disproportionately large response times. Temporal fairness refers to the
idea that it is fair (polite) to respect the seniority of jobs, i.e. it is in some sense unfair for a job that just
arrived to jump in front of a job waiting in the queue.

When studying both proportional and temporal fairness our approach is similar. We will start by pro-
viding both intuitive and mathematical motivation for our proposed frameworks. Then, we will investigate
how common, individual policies perform. And, finally, we will build on the results for individual policies
and study the fairness of scheduling classifications.

A brief overview of some of the results that we will obtain is shown in Figure1.4. This figure illustrates
a wide array of interesting results. For example, notice thatSRPT is Sometimes Fair and Sometimes Polite.
This means that under some loads and service distributions,SRPT provides both proportional fairness and
temporal fairness while optimizing mean response time. These results are counter to the intuitive worries that
SRPT will be unfair to large job sizes as a result of its bias towards small jobs. Further,SRPT is not alone
in this behavior. Figure1.4 illustrates that all policies that prioritize towards small job sizes (i.e.SMART
policies) have similar behavior. Further, this fairness behavior is superior to that of many other common
scheduling heuristics and techniques. Thus, these results indicate that the conflict between providing small
mean response times and being fair is not as severe as many people have worried.

1.5.4 Synopsis of Part IV: Moving beyond the M/GI/1
Throughout Parts II and III, the model underlying our analysis is primarily the M/GI/1 queue. Limiting
our focus to this model allows us to consider general classifications of scheduling policies and a broad
range of performance metrics; however, as we have discussed, there are many ways in which the M/GI/1
model is an unrealistic model for computer systems. While the assumption of general, independent job
sizes is fairly broad, both the assumption that the arrival process is Poisson and the assumption of a single
server can be unrealistic in many settings. Thus, it is important that we understand how the effectiveness of
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(a) Proportional fairness (b) Politeness

Figure 1.4: An illustration of the classifications of common prioritization techniques and heuristics with
respect to proportional and temporal fairness (politeness). Much more detail on these classifications will be
provided in Chapter7.

scheduling changes under generalizations of this model. Providing this understanding is the focus of Part
IV. Specifically, we will generalize both the M and the 1. We will consider a model where the arrival process
is governed by interactive users and we will consider multiserver architectures.

1.5.4.1 Interactive users
In real computer systems, the arrival process is far from Poisson. One fundamental difference we have
discussed is that users of computer systems are interactive: they must wait for their previous request to
complete before submitting a new request. This interactive behavior introduces a dependency between job
completions and job arrivals that is missing entirely from the M/GI/1 model.

Intuitively, these dependencies will lessen the effectiveness of scheduling. In the M/GI/1 model, schedul-
ing is the only way to avoid having large queues build when a large job is at the server; however in systems
with interactive users, users cannot submit a new request until their previous request has completed, so there
is an inherent limit on how quickly queues can build. As a result, one might make the intuitively appealing
claim that scheduling is not beneficial when users are interactive.

In Chapter8, we will investigate the validity of this claim using the closed and partly-open system
models (see Figure1.5 for an illustration of these models). We will find that, it is true that insomesettings
scheduling is ineffective. When systems have a small population of simultaneous users and they tend to have
long interactive sessions (> 10 requests per session), scheduling does not lead to significant performance
gains. However,we will show that such settings are the exception rather than the rule.We investigate
a number of workloads from real systems and find that in a majority of the workloads, users have short
to moderate length sessions (1-7 requests per session), and thus scheduling can still provide significant
performance gains.

These results provide an important cautionary tale for system designers: it is important to understand
user behavior both when designing new systems and when evaluating new systems. When designing a
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Figure 1.5: Illustrations of the closed and partly-open system models.

system, scheduling is an effective design choice in settings where users interact with systems for moderate
length sessions, but if user session lengths are long, designers should use other techniques. In addition,
when evaluating new systems, designers need to be careful to choose a workload generator based on a
system model with the appropriate user model.

1.5.4.2 Multiserver architectures
There is a growing trend in computer systems to use multiple, slower, cheaper servers instead of a sin-
gle, faster, more expensive server. For instance, in web servers, server farm architectures are increasingly
prevalent and in wireless networks multi-channel designs are becoming commonplace. Further, multi-core
processors are beginning to reach home users. Given the growing adoption of multiserver architectures,
it is important to understand how the benefits of scheduling in the M/GI/1 model translate to multiserver
systems. To this end, we will investigate the effectiveness of scheduling in the M/GI/k.

Intuitively, scheduling will be less effective in multiserver settings than in single server settings. In
single server settings, scheduling is the only mechanism for preventing many small jobs from queueing
behind a single large job. However, in multiserver systems this is no longer the case – if a large job is
queued at one server smaller jobs may bypass this job by using other servers. As a result, one might claim
that using multiserver designs is a replacement for using scheduling-based designs. We will show that this is
not necessarily the case, i.e. that scheduling still can provide significant performance benefits in multiserver
settings, even if these performance gains are not as dramatic as in the M/GI/1 setting.

Our goal in Chapter9 is to provide analytic results relating the effectiveness of scheduling in multiserver
architectures to that in single server settings. However, the analysis of multiserver systems is a notoriously
difficult problem in queueing theory. Outside ofFCFS scheduling little is understood analytically, and
even when studyingFCFS researchers typically result to approximate techniques. Thus, we will not be
able to provide results in the same generality as we do for the rest of the thesis. Instead, our results in
this chapter will focus on one important aspect of scheduling: prioritization. In particular, we will focus
on systems where there are a finite number of priority levels and jobs are served preemptively according
to their priority. Such schemes are commonly used in practice in order to provide service differentiations,
e.g. certain customers pay more in order to receive high-priority service at some high demand resource.
Further, understanding priority queues is the first step towards understanding more complicated priority
based policies such asSRPT.
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In Chapter9, we will develop a new analytical approach that provides the first near-exact analysis of
priority queues in multiserver settings. Our new analytic technique allows us to obtain many insights about
the effectiveness of prioritization in multiserver settings. For example, we will contrast the performance of
systems withk servers each having speed1/k with the performance of systems with a single server of speed
one. Further, among a long list of other topics, we will study the effectiveness of prioritizing small jobs in a
multiserver environment and how best to design a multiserver system given a fixed total service rate, i.e. we
will determine “how many servers are best?”

1.5.5 Synopsis of Part V: Further discussion and conclusion
Finally, we will conclude the thesis in Part V. Our goal in this part is to summarize the contributions of
the thesis and discuss the implications of the results in the thesis for both computer system designers and
scheduling researchers. To this end, we will review a number of specific examples of the impact the results
in the thesis have for system design and theoretical scheduling research. Then, we will end the thesis by
highlighting a number specific future research directions that are motivated by the results in the thesis.
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CHAPTER 2

The basic model of the thesis

The study of scheduling has a long history, including an extremely diverse set of application areas from
manufacturing, to computer systems, to call centers, to airport gate and flight scheduling, and beyond. The
wide ranging applications of scheduling has led to an enormous analytic literature studying a wide variety
of models and performance metrics. Models range from simple single server setups where the job sizes are
independent of the order they are served and the arrival times and job sizes are known in advance, to complex
job shop models where jobs must receive service in a specific order from different stations in the system,
have precedence constraints governing the order in which they can be served at each station, and have sizes
that depend on the order they are served. In addition to the wide range of models that have been studied,
there are a metrics that are used to quantify the performance of different scheduling policies. In some cases
minimizing response times and queue lengths is important, while in others minimizing the makespan (the
time until the last job completes) is the goal. In others, jobs have due dates that they must complete before.

As a result of the wide range of models and performance measures that are of interest, a wide range of
analytic techniques have been used to analyze these scheduling policies. A large community of researchers
approaches scheduling from a deterministic perspective, where there are a finite number of arrivals to be
scheduled and the goal is to understand the worst case performance of scheduling disciplines. In the deter-
ministic scheduling world, no assumptions are made about the job sizes or arrival sequence, and thus results
characterize the worst case performance of scheduling policies. The goal is to prove results such as: the
mean response time of policyP is never more thanO(log n) away from optimal, wheren is the number
of jobs that were scheduled. In contrast, a separate community of researchers approaches scheduling using
stochastic techniques. Here, distributional assumptions are made about the job sizes and arrival sequence
and then the performance of policies is analyzed under these assumptions. The goal here is to prove results
that provide formulas for the mean response time as a function of the distributional assumptions about the
arrival process and the job sizes.

In this thesis, we will use primarily stochastic techniques. The reason for this choice is that our goal is to
understand how the policies used in real implementations perform in practice. Thus, we are less interested
in providing worst case guarantees and more interested in understanding the performance of scheduling
policies under realistic workloads.

However, even within the stochastic scheduling community there is a huge variety of “standard” model-
ing assumptions and techniques that are adopted by different subfields. While queueing theory researchers
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can often provide beautiful and simple formulas to analyze scheduling policies under simple model as-
sumptions, for more complex models obtaining such formulas is often impossible. As a result, researchers
often either apply computational techniques (e.g. matrix analytic methods) or study asymptotic scalings of
the systems. Further, there are a wide variety of asymptotic scalings of the systems that researchers have
considered, from fluid and diffusion scalings to large buffer and many-sources large deviations scalings.

With this cacophony of possible models, it is required that we begin by spending some time introducing
the model, notation, and probability distributions that we will use throughout the thesis. That is the purpose
of the remainder of this chapter. We will start by providing an overview of the model we consider (Section
2.1). Then, we will summarize the key performance metrics that we will study (Section2.2). Next, we
provide a summary of the notation that is most commonly used in the thesis (Section2.3). Finally, we
provide an overview of the probability distributions that appear frequently in the thesis (Section2.4).

2.1 An overview of the model
In this thesis, we are interested in evaluating the performance impact of scheduling changes at the (single)
bottleneck resource in computer systems. Thus, we consider primarily single server queues, though we
will also extend our discussion to multiserver queues in Chapter9. We apply primarilystochastic tech-
niquesto analyze scheduling policies in these queues. In particular, we will be considering single and
multiserver queues where the interarrival times and service demands (a.k.a. processing times or job sizes) of
jobs/customers are assumed to be independent and identically distributed (i.i.d.) random variables. More-
over the sequences of interarrival times and service demands are assumed to be independent of one another.

To specify the distributional assumptions made about the interarrival and service demands, we make use
of Kendall’s notation [115]. A queue is referred to by an expression of the formA/B/k C whereA andB
stand for the distributions of the interarrival times and service demands respectively,k stands for the number
of servers in the system, andC denotes the scheduling policy that governs the queue. We will primarily be
considering single server queues, sok will typically be 1. Further,A will either take the shape ofM , which
stands for memoryless (exponential) interarrival times (i.e. a Poisson arrival process) orGI, which denotes
general i.i.d. interarrival times. Similarly,B will primarily take the shape ofM or GI. However, we will
also consider deterministic service times, which we denoteD, phase-type service, which we denotePH,
and a variety of heavy-tailed distributions such as the Weibull and Pareto. Background and notation for each
of these distributions can be found in Section2.4.

Since our focus in this thesis is on understanding the effects of scheduling,C will take a wide variety of
forms. Table2.1provides a brief overview of some of the most common scheduling disciplines, however it is
far from a complete list of the policies we will discuss in the thesis. We will provide much more background
about these policies in Chapter3, where we will survey known performance results and analytic techniques.
However, for now, let us just note that Table2.1 includes both scheduling policies that areblind, i.e. that do
not use job size information to schedule, and policies that prioritize based on job size information. Further,
Table2.1 includes both policies that arepreemptive, i.e. allow the job at the server to be interrupted and
restarted later, and policies that arenon-preemptive, i.e. never interrupt a job that has begun service.

Two important assumptions we make about the policies we consider are the following. We assume the
preempt-resumemodel, thus we allow any preempted job to be resumed from where it was left off without
penalty. Further, the scheduling policies we consider will almost exclusively bework conserving, which
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Policy Description
FB Foreground-Background preemptively serves those jobs that have received

the least amount of service so far. For details, see Section3.2.5.
FCFS First Come First Served serves jobs in the order they arrive. For details,

see Section3.1.1.
FSP Fair Sojourn Protocol preemptively serves the job in the system that would

have the smallest remaining size if the system were usingPS. For details,
see Section4.5.

LCFS Last Come First Served non-preemptively serves the job that arrived the
most recently. For details, see section3.1.3.

LJF Longest Job First non-preemptively serves the job in the system with the
largest original size. For details, see Section3.2.6.3.

LRPT Longest Remaining Processing Time preemptively serves the job in the
system with the largest remaining processing time. For details, see Section
3.2.6.1.

PLCFS Preemptive Last Come First Served preemptively serves the most recent
arrival. For details, see Section3.1.2.

PLJF Preemptive Longest Job First preemptively serves the job in the system
with the largest original size. For details, see Section3.2.6.2.

PS Processor Sharing serves all customers simultaneously, at the same rate.
For details, see Section3.1.4.

PSJF Preemptive Shortest Job First preemptively serves the job in the system
with the smallest original size. For details, see Section3.2.3.

ROS Random Order of Server non-preemptively chooses a random job from the
queue to serve. For details, see Section3.1.3.

RS RS preemptively serves the job in the system with the smallest product of
remaining size and original size. For details, see Section5.2.

SJF Shortest Job First non-preemptively serves the job in the system with the
smallest original size. For details, see Section3.2.2.

SRPT Shortest Remaining Processing Time preemptively serves the job with the
shortest remaining service requirement. For details, see Section3.2.4.

Table 2.1: A brief introduction to some of the most common scheduling disciplines in the thesis. This list
is far from complete, but provides an indication of the variety of policies we will study.

means that the server is always serving with its full capacity whenever there is at least one job in the system.
In other words, the server never idles while there is work in the queue.
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2.2 Performance metrics of interest
We will study a wide range of performance metrics in the thesis, but the primary metric of interest will be
the response timeof a customer, which is defined as the time between when a job arrives and when the job
completes service. Response times are of primary importance across computer applications because users
of computer systems are extremely demanding and unforgiving. While in our daily lives we are usually
willing to accept some delay while we queue for service, in computer systems users demand service that is
both instantaneous and predictable. For instance, if an online shopping site is loading very slowly (i.e. has
large response times for pages), customers will become frustrated and take their business elsewhere since
the competition is always “just a click away.” Similarly, providing small response times is fundamental to
routers, operating systems, disks, etc. User studies have consistently found that web users become dissatis-
fied if response times for requests exceed 5 seconds and view delays of greater than 10 seconds as intolerable
[65].

We will denote the response time of a job under policyP by TP. Note that response time is referred
to by a variety of names in different communities. In particular, the termssojourn timeandflow timeare
sometimes used instead of response time. When studying the response time under policyP, we will often
be content to derive the mean response time,E[T ]P. However, in some cases, we will also study higher
moments of response timeE[T i]P, as well as the distribution of response timeP (TP > x).

In addition toTP, it will many times be of interest to consider the conditional response time experienced
by a job of sizex under policyP, which we denote byT (x)Pand refer to as the “conditional response
time.” One can think ofT (x)Pas the response time experienced by a tagged job of sizex that arrives to a
stationary queue. This is quantity is often used as a first step in derivingTP, i.e., often in order to derive
TPit is necessary to first condition on the size of the job that is arriving. However, beyond its use as a
stepping stone,T (x)Pwill be of fundamental importance when we study the fairness of scheduling policies
in Chapter7.

Beyond response time, we will also also be interested in a number of other metrics that we will introduce
later in the thesis. But, one other metric worth mentioning here is theslowdownor stretch. The slowdown
of a job is a weighted response time measure defined as the response time of the job divided by the size of
the job. Thus, the slowdown experienced by a job of sizex, denotedS(x), is equal toT (x)/x. Again, we
will consider both the overall slowdown, denotedSP, and the conditional slowdown,S(x)P.

In order to analyze the response time and slowdown of scheduling policies, it will typically be useful to
decompose the response time into two pieces: (i) thewaiting timeand the (ii)residence time. The waiting
time of a job under policyP, denotedWP, is the time between when the job arrives and when the job first
receives service. The residence time of a job under policyP, denotedRP, is the time between when the job
first receives service and when the job completes service. Notice that the residence time may include time
that the job is not receiving service, e.g. underSRPT a large job may begin to receive service but then be
interrupted by the arrival of a small job. Similarly toT (x)P, the conditional waiting time,W (x)Pand the
conditional residence time,R(x)Pwill also be of interest.

2.3 Commonly used notation
Our discussion so far has already resulted in a lot of notation, and we have only skimmed the surface.
Further complicating things is the fact that many different researchers use very different “standard” notation
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for the same quantities. For the remainder of this chapter, we will try to summarize the notation that is used
commonly in this thesis. Our hope is that by summarizing all this information in one place, there will be a
single point of reference for the reader in the event of notation overload.

2.3.1 Basic mathematical notation
Let us first introduce our notation for some common mathematical functions:

E[Y ] the expectation ofY
V ar[Y ] the variance ofY

LY (s) = E[e−sY ] the Laplace transform ofY
MY (s) = E[esY ] the moment generating function ofY

ZY (z) = E[zY ] the z-transform ofY

Table 2.2: A brief overview of some of the most notation used in the thesis.

Next, let us introduce some asymptotic notation that will show up frequently in the thesis. We use
the notationf(x) ∼ g(x) to indicate thatlimx→∞ f(x)/g(x) = 1. Further, we use the notationf(x) =
O(g(x)) asx → a to indicate thatlimsupx→a f(x)/g(x) < ∞. Similarly we use the notationf(x) =
Ω(g(x)) asx → a to indicate thatliminfx→a f(x)/g(x) > 0. If f(x) = O(g(x)) andf(x) = Ω(g(x)) we
say thatf(x) = Θ(g(x)). Finally, we say thatf(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.

In addition to these standard quantities, there are a few less commonly used quantities that will appear
frequently. We will often use the squared coefficient of variation to quantify the variability of a distribution

C2[Y ] =
V ar[Y ]
E[Y ]2

, the squared coefficient of variation ofY

The squared coefficient of variability is a normalized measure of variability under whichC2[Y ] = 1 whenY
is an exponential random variable. Thus, all distributions withC2 < 1 are less variable than the exponential
and all distributions withC2 > 1 are more variable than the exponential.

Another less common distributional statistic that we will use are the cumulant moments. Cumulants
have appeared only sporadically in queueing [71, 85, 137], tending to be used in large deviation limits.
Cumulants are a descriptive statistic similar to moments. Formally, the cumulant moments of a random
variableX, κi[X] i = 1, 2, . . ., are defined in terms of the moments ofX, E[Xi], as follows:

eκ1[X]t+
κ2[X]t2

2!
+... = 1 + E[X]t +

E[X2]t2

2!
+ . . . (2.1)

From this definition it follows that the cumulants ofX can be generated from the cumulant generating
function,

KX(s) = log(LX(s)).

That is,(−1)iK(i)
X (0) = κi[X]. Further, it follows that the cumulants of any distribution can be found from
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the raw moments,µn, as follows

κn = µn −
n−1∑
j=1

(
n− 1

j

)
µjκn−j (2.2)

whereκ1 = µ1 [116]. Immediately from (2.2), we can see that the cumulants capture many of the standard
descriptive statistics. The first cumulant is the mean; the second cumulant is the variance; the third cumulant
is the third central moment and thus measures the skewness of the distribution; and the fourth cumulant
measures the kurtosis of the distribution. See [116] for tables of the relationships between higher order
cumulants, raw moments, and central moments.

Although not immediately evident from the definition, cumulants have many properties that both raw
and central moments lack. For instance, lettingc be a constant,κ1[X + c] = κ1[X] + c but for i ≥ 2,
κi[X + c] = κi[X]. Thus, the first cumulant is shift-equivariant, but all others are shift-invariant. Other nice
properties of cumulants include homogeneity and additivity. Homogeneity states thatκi[cX] = ciκi[X].
Additivity states that for independent random variablesX andY , κi[X+Y ] = κi[X]+κi[Y ]. We will see in
Chapter7 that these properties make cumulant moments very convenient for characterizing the distribution
of T (x).

2.3.2 Queueing-specific notation
Probably the most fundamental pieces of the queueing model are the interarrival distribution and the service
distribution. We will use the following notation to describe these distributions. We will denote a generic
service time (job size) asX. The cumulative distribution function (c.d.f.) ofX will be denoted byF (x),
with F (x) = 1 − F (x). Further, the probability density function (p.d.f.) ofX will be denoted byf(x). It
will turn out that thefailure rate(hazard rate) of job sizes will play an important role in the performance of
a number of scheduling policies. We denote the failure rate ofX by µ(x) = f(x)

F (x)
. Moving to the interarrival

times, we will letA denote a generic interarrival time, and we will denote the average arrival rate byλ.
Another fundamental quantity is the system load (utilization), which we define asρ = λE[X] =

E[X]/E[A]. We will almost exclusively be discussing stationary queues, thus we will require thatρ < 1.
Beyond the above quantities, there are many other random variables that are of interest. In fact, we have

already defined a number of important performance metrics. We summarize these below for easy reference:

T a generic response time
T (x) the response time for a job of sizex

S the slowdown (stretch)
S(x) = T (x)/x the slowdown for a job of sizex

W the waiting time
W (x) the waiting time for a job of sizex

R the residence time
R(x) the residence time for a job of sizex

Table 2.3: A brief overview of some of the most common performance metrics in the thesis.
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It is worth spending a moment discussing these measures. First of all, notice that the response time of

a job is simply the sum of the residence time and the waiting time of the job, thus we have thatT (x) d=
R(x) + W (x). Further, though we will most commonly be interested in studyingT , we will also useT (x)
to understand how the response time of a job depends on the size of a job. SinceT (x) grows linearly with
x, since the response time of a job includes (at minimum) the job size, we will often use figures showing
E[T (x)]/x in order to contrast the behavior of conditional response time across different job sizes. This is
a useful measure because, in many cases, it is appropriate for response times to be proportional to job size
(i.e. small jobs should have small response times and large jobs should have large response times). We will
discuss this in much more detail in Chapter7.

There are also a number of other important system measures that will appear throughout the thesis. In
particular, we will denote thework in the systemseen by an arrival asQ, thenumber of jobs in systemseen
by an arrival asN , and thenumber of jobs in the queueseen by an arrival asNq.

One quantity, above all others, will prove to be fundamental to the analysis of many scheduling policies:
the length of a busy period. Abusy periodis simply the time between when a server switches from idle to
busy and the time when the server next becomes idle. We will denote the length of a generic busy period as
B, and we will denote the length of a busy period started by a job of sizex asB(x). In addition to these two
types of busy periods, we will find that a number of other types of busy periods are useful in the analysis
of priority-based scheduling disciplines. But, we will wait until a bit later (Section3.2.1) to introduce these
other types of busy periods.

In addition to busy periods, two other quantities that are fundamental to the analysis of scheduling
policies are theageandexcess(a.k.a. residual life) of the service distribution. These quantities are best
defined by considering a job in service as seen by an arriving job to a simpleFCFS queue. The age of
the job in service is the amount of service it has received so far, and the excess of the job in service is the
remaining size of the job. To define age and excess more formally, let us consider a renewal process where
the distribution of renewal times follows the service distribution. Now consider a random point in timet,
which corresponds to the job that arrived to theFCFS queue. The age at timet is the time since the last
renewal (the attained service) and the excess at timet is the time until the next renewal (the remaining size).
A fundamental result in renewal theory is that the age and excess follow the same distribution. We will
denote the age byA and the excess byE . The moments, the p.d.f., and the transform ofE are well known
and will occur frequently in this thesis:

E[E i] =
E[Xi+1]

(i + 1)E[X]

fE(x) =
F (x)
E[X]

LE(s) =
1− X̃(s)
sE[X]

2.4 Commonly used distributions
At the core of our queueing model are the distributions that the interarrival times and service times of the
queue follow. Since many of these distributions are not common across computer science, we will spend
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a significant amount of time here introducing the distributions that are most commonly used in the thesis.
By summarizing the notation here, we can avoid introducing this notation repeatedly throughout the thesis.
Further, this section can serve as a single point of reference for the reader while working through the thesis.

Our discussion in this section will focus on two classes of distributions:phase type distributions, which
include exponential, Coxian, hyperexponential, and Erlang distributions, andheavy-tailed distributions,
which include Pareto, Weibull, subexponential, and regularly varying distributions. For each class, we
will discuss properties of the class as a whole in addition to providing background on the most common
individual distributions in the class. We will start with a discussion of phase-type distributions and then
move to heavy-tailed distributions.

2.4.1 Phase-type distributions
Probably the most fundamental distribution in queueing is the exponential distribution. An exponential
distribution with rateλ is defined by

F (x) = e−λx

f(x) = λe−λx

and has momentsE[Xi] = i!
λi . The defining characteristic of an exponential distribution is the fact that it

has a constant failure rate:µ(x) = λ. This means that the exponential is “memoryless,” i.e. regardless of
how long an exponentially distributed task has been run, it’s remaining size is identically distributed.

The prominence of the exponential distribution in queueing is a result of the fact that when one assumes
the interarrival times and service times of a queue both follow exponential distributions, the queue length of
the system can easily be modeled using a simple Markov chain. However, in most settings, job sizes are far
from exponential. In computer and telecommunication applications job sizes tend to be much more variable
than an exponential, and in manufacturing and inventory applications job sizes tend to be much less variable
than an exponential. Thus, this simple Markov chain is often unrealistic.

However, one would still like to be able to use a Markov chain to analyze systems with non-exponential
service and interarrival times. To do this, it is necessary to use some mixture of exponential distributions
to model a distribution with more/less variability than an exponential. The class of phase type distributions
(PH) captures many such mixtures.

At its most general, a PH distribution is simply the distribution of time until absorption into state0 in a
Markov chain. Thus, it can be viewed as an arbitrarily complex mixture of exponential random variables (the
lengths of the visits to each state). To characterize a PH distribution, we can use the infinitesimal generator
of its underlying Markov chain, denotedT, and a distribution of the starting point in the chain, denoted~τ .
We will use the notationX ∼ PH(~τ ,T) to indicate thatX is distributed as the time until absorbtion into
state0 in a Markov chain on states(0, 1, . . . , n) with initial probability vector(1− ~τ~1, ~τ) and infinitesimal
generator (

0 ~0
~t T

)
where~t = −T~1.
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(a) Exponential (b) 2-phase hyperexponential

(c) 2-phase Erlang (d) 3-phase Coxian

Figure 2.1: Simple examples of phase-type distributions.

Given the definition of PH distributions, it is not hard to write the c.d.f. and p.d.f. of PH distributions:

F (x) = ~τ exp(Tx)~1
f(x) = ~τ exp(Tx)~t

where~t = −T~1 andexp(X) =
∑∞

i=0
1
i!X

i.
Further, the moments of PH distributions can be written quite succinctly

E[Xi] = i!~τ(−T−1)i~1

Obviously the class of PH distributions is quite broad. In fact, the set of PH distributions is dense in the
set of nonnegative, continuous distributions [154]. In practice though, using PH distributions that rely on
large complex Markov chains is computationally prohibative; thus it is common to use only a small portion
of the set of PH distributions for analysis.

We provide some examples of PH distributions in order to solidify the general definition we have just
stated. The simplest form of a PH distribution is the exponential distribution. The exponential distribution
is a PH distribution withT = −λ and~τ = 1. Specializing the formulas for the c.d.f. and p.d.f. then returns
the well-known formulas stated above.

Beyond the exponential distribution three of the most common classes of PH distributions are Erlang
distributions, hyperexponential distributions, and Coxian distributions. Before we define these classes, note
that these PH distributions are all defined byacyclicMarkov chains. That is, no state in the Markov chain is
visited more than once. Further, these PH distributions are typically indexed by the number of non-absorbing
states in the Markov chain. For example, ann-phase Erlang distribution is an Erlang distribution where the
Markov chain defining the distribution hasn non-absorbing states.
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2.4.1.1 The Erlang distribution
The Erlang distribution was developed by Agner K. Erlang to examine the number of telephone calls oc-
curring at the same time at switching stations. Ann-phase Erlang distribution is simply the sum ofn i.i.d.
exponential distributions. Thus, the Markov chain hasn non-absorbing states labeled1, . . . , n and statei
transitions only to statei− 1. To illustrate this, consider the example of a two phase Erlang where the both
phases have rateλ (see Figure2.1). In this case, we have that~τ = (0, 1) and

T =
(
−λ 0
λ −λ

)
In general, we can write the c.c.d.f. and p.d.f. of the Erlang as follows:

F (x) =
n−1∑
i=0

e−λx (λx)i

i!

f(x) =
λnxn−1e−λx

(n− 1)!

Further, it is easy to see that the mean of an Erlang isn/λ and the variance isn/λ2. Thus, Erlang distribu-
tions are all less variable (i.e. have a smaller coefficient of variation) than an exponential distribution with
the same mean. Specifically,C2[X] = 1/n ≤ 1 for Erlang distributions.

2.4.1.2 The hyperexponential distribution
An n-phase hyperexponential distribution is simply the mixture ofn exponential distributions. Thus, the
Markov chains consist ofn non-absorbing states, all of which transition only to the absorbing state. To
illustrate this, consider the example of a two phase hyperexponential where the two phases have ratesλ1 and
λ2 and the probability of beginning in phase 1 isτ1 (see Figure2.1). In this case, we have that~τ = (τ1, 1−τ1)
and

T =
(
−λ1 0
0 −λ2

)
In general, if we consider ann-phase hyperexponential with ratesλi and corresponding initial probabilities
τi for i = 1, . . . , n, we have that

f(x) =
n∑

i=1

τiλie
−λix

Thus, the mean of a hyperexponential is
∑n

i=1
τi
λi

and the second moment is
∑n

i=1
2τi

λ2
i

. Clearly, hyperex-

ponential distributions are always more variable than an exponential distribution with the same mean, i.e.
C2[X] ≥ 1 for all hyperexponential distributions.

2.4.1.3 The Coxian distribution
Unlike the Erlang and hyperexponential distributions that we just discussed, the class of Coxian distributions
includes both low variability distributions and highly variable distributions. Thus, they are useful in a variety
of settings. We define a PH distribution as a Coxian distribution when the Markov chain used to define
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the distribution is acyclic and maintains the property that every state has at most one transition to a non-
absorbing state. A simple example of this is the three phase Coxian distribution diagramed in Figure2.1.
Formally, this Coxian distribution is defined by~τ = (τ1, τ2, τ3) and

T =

 −λ10 − λ12 λ12 0
0 −λ20 − λ23 λ23

0 0 −λ30


2.4.2 Heavy-tailed distributions
Over the past decade there has been growing empirical support for the assertion that the service time dis-
tributions in computer systems should be modeled by distributions with power-tails and infinite variance.
Examples where power-tails and infinite variance have emerged are numerous [16, 62, 172, 174]; for exam-
ple, Crovella and Bestavros [62] find that the file sizes and transmission times of files in the Internet are well
modeled by power-tail distributions with infinite variance.

The emergence of these “heavy-tailed” distributions has had a huge impact on the design of scheduling
policies for computer systems; thus an important focus for queueing theorists has been to study this impact
theoretically. Unfortunately though, the class of PH distributions is not appropriate for such a study. Despite
the fact that the class of PH distributions is dense in the set of all non-negative distributions, in practice PH
distributions cannot model distributions with power-tails and infinite variance because, for any finite sized
Markov chain, the tail of a PH distribution will decay with an exponential rate and all the moments of the
distribution will be finite. However, there is no shortage of heavy-tailed distributions for queueing theorists
to use, though none have proven to be as useful for computational queueing theory as PH distributions have
proven to be. Instead, heavy-tailed results tend to be asymptotic in nature, characterizing only the asymptotic
tail behavior of distributions.

Formally, the class of heavy-tailed distributions is defined as follows.

Definition 2.1 We say that a distributionF is heavy-tailedif for all s > 0

E[esX ] = ∞,

or equivalently if for allε > 0,

lim
x→∞

F (x)
e−εx

= ∞.

In contrast, we say a distribution islight-tailed if E[esX ] < ∞ for somes > 0.

Clearly, many distributions are heavy-tailed, e.g. the Weibull, Pareto, and Lognormal distributions. How-
ever, the breadth of the class of heavy-tailed distributions typically makes it difficult to use for analysis.
Instead, individual heavy-tailed distributions or subclasses of heavy-tailed distributions are often used. In
this section, we will introduce two of the most common heavy-tailed distributions: the Weibull and the
Pareto distributions. These two distributions will be used to provide illustrative examples throughout the
thesis. In addition, in this section we introduce two large classes of heavy-tailed distributions that have
properties which facilitate their use in analysis: the class of regularly varying distributions and the class of
subexponential distributions.
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2.4.2.1 The Weibull distribution
Introduced by Waloddi Weibull, the Weibull distribution is often used in the field of data analysis due to
its flexibility. Depending on parameters, the Weibull can behave as a Normal distribution, an exponential
distribution, or a heavy-tailed distribution. Similarly, its usefulness in queueing stems from its flexibility.
Depending on parameters it can have a decreasing, increasing, or even a constant failure rate. Further, the
Weibull has recently emerged as a good model of empirical distributions in many computer applications.
See for example, [28, 69, 127, 174] and the references therein.

A Weibull distribution is summarized by two parameters: a shape parameter,α, and a scale parameter,
λ. We will write X ∼ Wei(α, λ) to indicate thatX follows a Weibull distribution. The c.d.f. and p.d.f. of
the Weibull distribution are defined as follows:

F (x) = e−(
x
λ)α

f(x) =
αxα−1

λα
e−(

x
λ)α

It is relatively straightforward to calculate the moments of a Weibull from the c.d.f. In particular, we can
write the moments as follows:

E[Xi] = λiΓ
(

1 +
i

α

)
whereΓ(a) =

∫∞
0 xα−1e−xdx and can be thought of as a continuous version of the factorial function. In

particular,Γ(n) = (n− 1)! for any positive integern.
Further, the failure rate of the Weibull is as follows:

µ(x) =
αxα−1

λα

Notice thatWei(α = 1, λ) is equivalently an exponential distribution with rate1/λ. Thus, the failure
rate of a Weibull is constant ifα = 1. In addition, we can see that the failure rate is decreasing whenα < 1
and increasing whenα > 1. Further, it is easy to see thatC2[X] > 1 whenα < 1 andC2[X] < 1 when
α > 1. To get a feeling for the how variable a Weibull withα < 1 can be, notice that forα = 1/n wheren
is limited to positive integer values, we have thatC2[X] =

(
2n
n

)
− 1. Thus, asα decreases the distribution

becomes more variable very quickly. Typical observed values forα in computer applications range between
1/3 and 2/3 which correspond toC2[X] values in the range of 3 to 19.

2.4.2.2 The Pareto distribution
The Pareto distribution, named after Italian economist Vilfredo Pareto, is a power-law distribution that
arises across an amazing variety of real-world situations. Pareto originally used the distribution to describe
the wealth of individuals, since it models the property that a large portion of the wealth is owned by a tiny
fraction of the population. More simply, the Pareto distribution captures the “Pareto principle,” a.k.a. the
“80-20 rule,” which states that 80% of the population owns 20% of the wealth. However, following its use
in economics, the Pareto distribution has been found to be broadly applicable. It has been used to describe
the frequency of words, the populations of cities, the sizes of sand particles, the size of areas burnt by forest
fires, and many other phenomenon. Even within computer systems, the Pareto distribution serves as a good
model of many phenomenon including, but not limited to, UNIX process lifetimes [91, 68], web file sizes
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[173, 62], number of embedded files in web sites [16, 28].
A Pareto distribution is summarized by 2 parameters. A shape parameterα and a scale parameterxL.

We will write X ∼ Pareto(α, xL) to indicate that the r.v.X follows a Pareto distribution. The distribution
of a Pareto is as follows (forx > xL):

F (x) =
(xL

x

)α

f(x) =
αxα

L

xα+1

From the above, it is easy to see that thei-th moment of a Pareto distribution will only be finite ifα > i.
Specifically, we can write moments of the Pareto as follows:

E[Xi] =
αxi

L

α− i
for i < α

Thus, the variance of the Pareto (assumingα > 2) is

V ar[X] =
αx2

L

(α− 1)2(α− 2)

which gives

C2[X] =
1

α(α− 2)

Note however that it is quite typical for the variance and squared coefficient of variation to be infinite in
real world situations: the Pareto distributions that emerge in computer system applications typically have
α ∈ (0.9, 1.3).

Another important statistic of the Pareto distribution is the failure rate, which can be written as

µ(x) =
α

x

The key observation about the above is that the Pareto has a decreasing failure rate (DFR) for allα.
In many computer systems where Pareto distributions arise there is some natural upper bound on the

maximum size in the distribution. For instance, in measuring the distribution of file sizes, the size of the
disk they reside on serves as an upper bound on the size. Thus, often times, a bounded Pareto distribution
is used instead of the unbounded Pareto, e.g. [93, 92, 25]. The only difference between a bounded and
an unbounded Pareto is that the bounded Pareto is defined on a finite range. In particular, one additional
parameter is needed to define a bounded Pareto distribution,xU , which is the upper bound on the distribution.
We will write X ∼ BP (α, xL, xU ) to indicate thatX follows a bounded Pareto distribution. The c.d.f. and
p.d.f. of a bounded Pareto are:

F (x) =

(
xL
x

)α − ( xL
xU

)α

1−
(

xL
x

)α
f(x) =

αxα
L

xα+1(1− (xL/xU )α)
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Clearly, the range of the bounded Pareto is[xL, xu]. Thus, the bounded Pareto isnot a heavy-tailed dis-
tribution, though it is highly variable and maintains the so called “heavy-tailed property” mentioned in
[93, 92, 25] whereby more than one half of the load is made up by the largest 1% of the jobs.

There are a few key differences between the bounded Pareto and the unbounded Pareto. First, it is
important to notice that all moments of the bounded Pareto are finite regardless ofα. We can write them as
follows:

E[Xi] =


αxi

L
α−i

(
1−(xL/xU )α−i)

1−(xL/xU )α

)
, for α > i;

αxi
L

1−(xL/xU )α log
(

xU
xL

)
, for α = i;

αxα
L

i−α

(
xα−i

U −xα−i
L

1−(xL/xU )α)

)
, for α < i.

Further, the failure rate of the bounded Pareto is not strictly decreasing – it increases unboundedly nearxU :

µ(x) =
α

x(1− (x/xU )α)

2.4.2.3 Regularly varying distributions
The class ofregularly varying distributionsis a generalization of the Pareto distributions that we just dis-
cussed. Intuitively, a distribution is regularly varying if its tail asymptotically decays according to a power-
tail. Formally, we have the following:

Definition 2.2 We say thatF is a regularly varying distributionwith indexα, denotedF ∈ RV(α), if

F (x) = L(x)x−α

whereL(x) is aslowly varying function, i.e.L(x) is such that for ally > 0

lim
x→∞

L(yx)
L(x)

= 1

Regular variation is a topic of research in its own right, with broad ranging applications in fields such
as complex analysis and number theory in addition to its uses in probability theory. Even within probability
theory, regular variation has found application in a number of areas, of which queueing is only one.

To begin developing an understanding of the properties of regularly varying distributions. It is useful
to start by discussing slowly varying functions. Examples of slowly varying functions are constants and
logarithms. In general, slowly varying functions are exactly those functions that can be treated as a constant
in the asymptotic evaluation of integrals of power functions. In particular, forα > 1,∫ ∞

x
y−αL(y)dy ∼ 1

α− 1
x1−αL(x)

Building on this characterization of slowly varying functions, we obtain a number of nice properties of
regularly varying distributions. In particular, it is easy to see that regularly varying functions asymptotically
behave like1/xα with respect to integration and differentiation. This is typically referred to as Karamata’s
Theorem [33]. Formally, it states that
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Theorem 2.1
If F ∈ RV(α) with α > 1 then G(x) =

∫∞
x F (t)dt ∈ RV(α− 1) and further

xF (x) ∼ (α− 1)G(x)

A number of interesting properties of regularly varying distributions follow easily from Karamata’s
Theorem. In particular, it is straightforward to see that

E[Xi] < ∞ ⇔ α > i

Further, ifX ∈ RV(α1) andY ∈ RV(α2) thenX + Y ∈ RV(min(α1, α2)). Similarly, if X ∈ RV(α)
andY hasE[Y α+ε] < ∞ for someε > 0 thenXY ∈ RV(α).

Though the above properties of regularly varying distributions are important, probably the most useful
tool for studying queues with regularly varying service distributions is the following Tauberian theorem,
which relates the asymptotic behavior of a regularly varying distribution function with the behavior of its
transform. Before stating the theorem, let us defineφn(s) as the following function of the transform:

φn(s) = (−1)n+1

LX(s)−
n∑

j=0

E[Xi]
(−s)j

j!


whereE[Xn] < ∞.

Theorem 2.2
Let n be an integer such that n < α < n+1, L be a slowly varying function, and C ≥ 0. Then the following
are equivalent

φn(s) ∼ (C + o(1))sαL(1/s) s ↓ 0

F (x) ∼ (C + o(1))
(−1)n

Γ(1− α)
x−αL(t)

The proof of this theorem was provided by Bingham and Doney [32] for the case ofC > 0 and by
Boxma and Dumas [43] for the case whenC = 0. Whenα is integer, things become more complex and we
refer the reader to [33].

The power of Theorem2.2in queueing settings comes from the fact that it is typically possible to derive
explicit expressions for the transforms of various performance metrics, but inverting these transforms is
often impossible. In such cases, Theorem2.2provides a simple way to obtain asymptotic information about
the distribution from the transform.

There are many extensions of regularly varying distributions that have arisen in queueing applications.
Two of these generalizations, introduced originally by Cline [56], will appear in this thesis: the class of
intermediate regular variationand the class ofO-regular variation. These extensions appear in many ways
to be superficial generalizations of the class of regularly varying distributions; however they often turn out
to provide precisely the characterization of the distribution necessary for proofs.
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Definition 2.3 We say thatF (x) is of intermediate regular variation, denotedF ∈ IR, if

lim
ε↓0

liminf
x→∞

F ((1 + ε)x)
F (x)

= 1

Definition 2.4 We say thatF (x) is O-regularly varying, denotedF ∈ OR, if for someΛ > 1,

0 < liminf
t→∞

F (λt)
F (t)

≤ limsup
t→∞

F (λt)
F (t)

< ∞ for all λ ∈ [1,Λ]

It is easy to see that ifX ∈ RV thenX ∈ IR, and further, ifX ∈ IR thenX ∈ OR. In addition,
Cline [56] shows thatIR andOR both have Karamata Theorems that parallel Theorem2.1 for regularly
varying distributions.

2.4.2.4 Subexponential distributions
We now move to a class of heavy-tailed distributions that generalizes all the heavy-tailed distributions we
have studied so far: the class ofsubexponential distributions. The class of subexponential distributions was
introduced independently by Chistyakov [54] and Chover et al. [55] in order to study the asymptotic prop-
erties of branching processes. However, the class has proven useful far beyond the domain of branching
processes. The reason for the usefulness of subexponential distributions is that, intuitively, subexponential
distributions are the class of distributions where a large sum is most likely the result of a single large sum-
mand – other summands make only a negligible contribution to the sum. This “catastrophe principle” has
led to subexponentiality becoming a common paradigm for insurance mathematics and queueing.

Let us now state the formal definition of the class of subexponential distributions. To do so, we will
denote then-fold convolution of a distribution functionF by Fn∗(x).

Definition 2.5 We say thatF is subexponential, denotedF ∈ S, if for somen ≥ 2

F
n∗(x) ∼ nF (x) (2.3)

Equivalently,F is subexponential if for somen ≥ 2

P (X1 + . . . + Xn > x) ∼ P (max(X1, . . . , Xn) > x) (2.4)

In many cases the relation (2.4) is more appealing than (2.3); however both are useful in practice. To
intuitively see why the two are equivalent notice that the distribution ofmax(X1, . . . , Xn) satisfies

P (max(X1, . . . , Xn) > x) = 1− (1− F (x))n ∼ nF (x)

Clearly, the class of subexponential distributions is very broad. We have already commented that the
class includes Pareto, Weibull, and regularly varying distributions. In addition, the class includes an array of
other common heavy-tailed distributions. For example, Lognormal distributions are subexponential. (Recall
that Lognormal distributions haveP (X > x) = P (eµ+σN > x) whereN is a standard normal random
variable.)
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It is important to point out that the class of subexponential distributions has a number of counterintu-
itive properties. For example, the class isnot closed under convolution: ifX andY follow independent
subexponential distributions,X + Y is not necessarily subexponential. Similarly, the productXY is not
necessarily subexponential. However, results from Leslie [128] and Cline & Samorodnitsky [57] prove that
if Y is sufficiently well-behaved then bothX + Y andXY will be subexponential.
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CHAPTER 3

An introduction to common policies

Our goal in this thesis is to develop a new style of scheduling research that can bridge the gaps between
the needs of practitioners and the analytic results proven by theoreticians. As we have described in Chapter
1, there are many ways in which traditional theoretical results do not match the needs of system designers.
To list a few, traditional results focus on idealized policies, focus on a limited set of metrics, and focus on
simplistic models. However, before we can move forward and describe how to bridge these gaps, we need
to understand both the traditional analytic results about common policies and the techniques used to derive
these results. Providing this background is the goal of this chapter.

In particular, our goal in this chapter is threefold. First and foremost, our goal is tointroducethe policies
that form the basis of scheduling research in queueing. The scheduling community has studied a wide variety
of policies, and we must first understand these idealized policies if we are to move beyond them to more
practical policies. For instance, we must first understand howSRPT performs before we can study the
impact of using only estimates of remaining sizes.

Secondly, our goal is to provide insight into theperformanceof these policies by summarizing and
contrasting the results characterizing response times under these policies. In order to do this we will both
(i) survey the existing literature deriving the moments and transform of response time under a variety of
scheduling policies, and (ii) derive new results characterizing the behavioral properties of response time as
a function of system load and job size variability under a variety of scheduling policies.

Finally, our third goal is to provide background into thetechniquesused to analyze response times under
these policies. Thus, we will provide insight into which analytic techniques are most appropriate for which
policies. This will be important for our analysis of scheduling classifications later in the thesis.

We will start the chapter in Section3.1 by discussing a group of the simplest and most common
policies: First-Come-First-Served (FCFS), Preemptive-Last-Come-First-served (PLCFS), non-preemptive
blind policies, and Processor-Sharing (PS). These policies are some of the most commonly used policies
both in computer systems and beyond.FCFS is used at a packet level in routers, as well as in lock queues
in databases and at supercomputing centers. Further, of course,FCFS is used whenever you wait in a line
in your everyday life.PLCFS is also quite common in computer systems – the operation of a stack is gov-
erned usingPLCFS. But, PS is perhaps the most common scheduling policy in computer systems. From
web servers to operating systems to flow scheduling at routers,PS is at the core of time-sharing applications
at all levels of computer systems.

43
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Though simple policies likeFCFS andPS are traditionally the most common policies used in com-
puter systems, more recently, there has been a growing trend towards using designs based on priority-based
policies. There are a number of different flavors of priority-based policies. In Section3.2 we will discuss
policies that prioritize based on many different criteria including job sizes, job remaining sizes, or job ages
(the attained service of the job). As we discussed in Chapter1, applications of priority based policies have
recently been suggested in web servers [96, 182], routers [179, 180], wireless networks [102], operating
systems [74], databases [138] and beyond. Priority-based policies are being suggested primarily for two
reasons. First, by giving priority to jobs with small sizes, it is possible to provide dramatic improvements in
mean response time when compared with simple policies likePS andFCFS. For example,SRPT is known
to optimize the mean response time. Second, it is often desirable to provide service differentiation in com-
puter applications. For example, it is common to provide customers different levels of service depending on
how much they pay.

Finally, we conclude this introduction with a small note to the reader. This chapter is meant primarily to
provide an up-to-date background of results and techniques in stochastic scheduling, thus much of it may be
familiar to readers who are experts in the field. However, be aware that there are a large number of results
in this chapter that have only appeared in the past few years. In addition, there are many results that are new
to this thesis. In particular, over the last three years a new understanding of the effects of variability and
load on priority-based policies has begun to emerge. Specifically, there are a number of new results in this
chapter characterizing the “near insensitivity” and the “heavy-traffic growth rate” of mean response time
under policies that prioritize small jobs.

3.1 Simple policies
We will start our overview of common scheduling policies with the simplest and most common policies:
First-Come-First-Served (FCFS), Preemptive-Last-Come-First-served (PLCFS), non-preemptive blind poli-
cies, and Processor-Sharing (PS). As we have already mentioned, these policies are some of the most com-
mon policies both in computer systems and beyond. Further, the analysis of these policies will provide
an excellent overview of the building blocks necessary for analyzing more complex policies. However, be
aware that the fact that these policies are governed by simple scheduling rules does not mean that the anal-
ysis of these policies is always simple! In particular, the last policy we discuss,PS, is one of the more
difficult scheduling policies to study analytically.

3.1.1 First-Come-First-Served (FCFS) and the stationary workload
FCFS is the natural starting point for a discussion of scheduling in queues because in many practical settings
FCFS (a.k.a. First-In-First-Out,FIFO) is the most natural scheduling discipline. Further, in theory,FCFS
is probably the most commonly studied policy.

UnderFCFS when a jobj arrives to the system, it must wait behind all of the jobs that are already in
the system; however, no later arrivals will receive service beforej completes. Thus, it is easy to see that the
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stationary response time ofFCFS is simply the size ofj plus the stationary workload,Q:

TFCFS d= X + Q

T (x)FCFS d= x + Q

As a result, we can focus on providing results characterizingWFCFS d= QFCFS . This is nice, because not
only are results aboutQFCFS useful in analyzingFCFS, results about the behavior ofQFCFS are useful far
beyondFCFS. In particular, we will focus almost exclusively in this thesis onwork conservingscheduling
policies, and under work conserving disciplines the stationary workloadQ is always the same regardless of
the policy, i.e.Q = QFCFS . This fact means that the results provided in this section will be of great use in
our analysis of other policies in this chapter.

The formula forE[Q], the Pollaczek-Khinchin (P-K) mean value formula, is probably the most well-
known result for the M/GI/1 queue:

E[Q] =
λE[X2]
2(1− ρ)

(3.1)

This simple expression already is quite illustrative about the behavior ofE[T ]FCFS . In particular, we can
see thatE[T ]FCFS < ∞ only whenE[X2] < ∞ andρ < 1. Further, we can see thatE[T ]FCFS is linearly
dependent on the second moment of the service distribution, thus for highly variable service distributions,
such as the ones that appear in many computer systems,E[T ]FCFS can be quite large. Further, the P-K
mean value formula characterizes the behavior ofE[T ]FCFS as a function of load. We can see that the
mean response time underFCFS explodes asρ → 1 at a rate ofΘ(1/(1− ρ)).

The derivation of the P-K mean value formula is actually quite straightforward. It also serves as a
nice illustration of thetagged jobtechnique, which analyzes response time by tracking the experience of a
“tagged” arrival. In particular, let us consider what a tagged arrival sees when arriving to a stationaryFCFS
queue. First, the arrival seesNq jobs in the queue, each having i.i.d. sizeXi distributed according to the
service distribution. Further, the tagged arrival sees the server busy with probabilityρ and, when the server
is busy, the job at the server has remaining size distributed as the excess of the service distribution,E . Thus,
we have that

E[Q] = E

 Nq∑
i=1

Xi

+ ρE[E ]

= E[Nq]E[X] + ρE[E ]
= λE[Q]E[Xi] + ρE[E ]

whereE[Nq] = λE[Q] via Little’s Law. Next, it follows that

E[Q] =
ρE[E ]
1− ρ

=
λE[X2]
2(1− ρ)
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Note that this means

E[T ]FCFS = E[X] +
λE[X2]
2(1− ρ)

Beyond the mean ofQ, it is also important to have information about higher moments and the distribu-
tion of Q. The P-K transform equation provides this information for the M/GI/1 queue:

LQ(s) =
s(1− ρ)

s− λ + λLX(s)
=

1− ρ

1− ρLE(s)
(3.2)

This transform provides an enormous amount of information aboutQ. First and foremost, it allows the
derivation of higher moments ofQ. For instance, it is easy to calculateE[Q2], and thusV ar[Q]:

E[Q2] =
λE[X3]
3(1− ρ)

+
(λE[X2])2

2(1− ρ)2

V ar[Q] =
λE[X3]
3(1− ρ)

+ E[Q]2

Further, it facilitates the derivation of a recursive formula for higher moments. This is commonly referred
to as the Takács recurrence formula:

E[Qk] =
λ

1− ρ

k∑
i=1

(
k

i

)
E[Xi+1]

i + 1
E[Qk−i]

In addition to its use in deriving the moments ofQ, (3.2) also provides a useful new interpretation ofQ.
In particular, we can rewriteLQ(s) as

LQ(s) =
1− ρ

1− ρLE(s)

= (1− ρ)
∞∑

n=0

ρnLE(s)n (3.3)

This form of the transform is quite intriguing because(1− ρ)ρn is the distribution ofNq in the M/M/1 and

thus (3.3) is saying that the work in this system can be viewed as coming fromN
M/M/1
q i.i.d. jobs with

sizes distributed as the excess of the service distribution, i.e.Q
d=
∑N

M/M/1
q

i=0 Ei. It is not at all obvious why
this should be true underFCFS, but we will see an explanation for this behavior later when we discuss
Processor-Sharing (PS).

3.1.2 Preemptive-Last-Come-First-Served (PLCFS) and busy periods
Like FCFS, PLCFS is a very natural scheduling discipline for many applications. UnderPLCFS, the
server is always working on the most recent arrival to the system. So, upon arrival the job at the server is
preempted, and may only resume service once the system is empty of newer arrivals. Thus,PLCFS acts as
a stackwhere new jobs are placed on the top of the stack and the server is always working on the job at the
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top of the stack.
The natural way to view the response time underPLCFS is in terms of thebusy periodstarted by an

arriving job. A busy period is just the time from when a job arrives into an idle system until the system again
becomes idle. To viewTPLCFS as a busy period, first consider that if a tagged job arrives to an idle system,
then when the tagged job completes underPLCFS the system will again become idle, i.e. the response time
is the same as the length of the busy period. Now, to see that this is true even when the tagged arrival does
not arrive to an idle system; notice that the jobs in the system at the arrival of the tagged job are irrelevant
to the response time of the tagged job. Thus, we can view the system as idle at the arrival of the tagged job
without loss of generality. So, lettingB be the length of a standard busy period andB(x) be the length of a
busy period started by a job of sizex, we have that

TPLCFS d= B

T (x)PLCFS d= B(x)

Thus, in this section, we will focus on the behavior of busy periods. Beyond their importance toPLCFS, the
behavior of busy periods will be fundamental to the analysis of many other scheduling policies. In particular,
we will see that busy periods are the building blocks used to study many priority based policies.

Analyzing the mean behavior of busy periods turns out to be quite straightforward. We will consider the
experience of a tagged arrivalj underPLCFS. As soon as the job arrives it begins service. However, that
service is interrupted by any arriving job. In particular, each job that arrives whilej is in service causes an
interruption that consists of the arriving jobja, and all arriving jobs untilja completes. Thus, the interruption
is of length equal to that of a busy period. Noting that the average number of arrivals whilej is at the server
is λE[X] we have

E[B] = E[X] + λE[X]E[B]

which gives

E[B] =
E[X]
1− ρ

This result can also be derived using renewal-reward techniques. The sequence of idle and busy periods
in an M/GI/1 queue is clearly a renewal process. Suppose, we assign reward at a constant rate whenever the
system is busy. Then the time average award earned isρ, since this is the utilization of the queue. Further,
the award earned in one idle-busy cycle is simply the length of the busy period. Finally, we know (because
of the Poisson arrival process) that the expected idle time is1

λ . This gives:

ρ =
E[B]

E[B] + 1
λ

⇒ E[B] =
E[X]
1− ρ

The analysis ofB(x) proceeds much like the derivation ofE[B]. We will again consider the experience
of a tagged job of sizex. While x is at the server, other jobs arrive with rateλ and whenever a new job
arrives, it causes an interruption of service to the tagged job of length equal in distribution to a busy period.
Thus, lettingAx be the number of arrivals while the tagged job is at the server andBi be i.i.d. standard busy
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periods, we have

B(x) d= x +
Ax∑
i=1

Bi (3.4)

from which it follows that

E[B(x)] =
x

1− ρ

At this point, let us take a moment to contrast the behavior of the mean response time underPLCFS and
FCFS. We will start by contrasting the behavior ofE[T ] under the two policies. First of all, notice that both
E[T ]PLCFS andE[T ]FCFS grow asΘ(1/(1 − ρ)) asρ → 1. So the behavior of mean response time as a
function of load is similar under these policies. However, the effect of the second moment of the service dis-
tribution onE[T ] under these two policies is completely different. In particular,E[T ]PLCFS is not affected
by E[X2] while E[T ]FCFS grows linearly withE[X2]. Thus, in settings where the service distribution is
highly variableE[T ]PLCFS is much smaller thanE[T ]FCFS . At the extreme, notice thatE[T ]PLCFS < ∞
wheneverE[X] < ∞ andρ < 1, while E[T ]FCFS = ∞ whenE[X2] = ∞ even ifρ < 1. On the flip side
however,E[T ]PLCFS can be larger thanE[T ]FCFS if the service distribution is not variable. For instance,
if the service distribution is deterministic, we haveE[T ]FCFS = (1 − ρ/2)E[T ]PLCFS , which shows that
PLCFS can have response times as much as twice those ofFCFS. Interestingly, it turns out that crossover
point forE[T ] happens whenC2[X] = 1, i.e. when the service distribution is exponential. In particular,

E[T ]PLCFS < E[T ]FCFS ⇔ C2[X] > 1

This should be intuitive because in the case of an M/M/1, preempting or not does not affect the distribution
of the remaining service time of the job in service or the job being sent to the queue.

The conditional mean response times ofPLCFS andFCFS also provide an interesting contrast. In
both casesE[T (x)] grows linearly withx, however it is clear that small job sizes preferPLCFS to FCFS
since asx → 0, E[T (x)]PLCFS → 0 while E[T (x)]FCFS/x → E[Q]. In contrast, large job sizes prefer
FCFS sinceE[T (x)]FCFS/x → 1 while E[T (x)]PLCFS/x → 1/(1− ρ). Interestingly, the cutoff point is
determined by the mean excess of the service distribution:

E[T (x)]PLCFS ≤ E[T (x)]FCFS ⇔ x ≤ E[E ] =
E[X2]
2E[X]

Thus, in the M/M/1 the cutoff point is simplyE[X] and as the service distribution becomes more highly
variable the cutoff point increases.

Let us now move beyond the mean behavior ofPLCFS and discuss the distributional behavior ofB.
Deriving the transform ofB is not too much more complicated than deriving the mean behavior ofB. In
particular, we can make use of (3.4), which characterizes the distributional behavior ofB(x). We use (3.4)
to derive the transform ofB(x), which we can then use to derive the transform ofB. Beginning withB(x),
we have

LB(x)(s) = e−x(s+λ−λLB(s))
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Next, we can decondition to obtain the transform of a standard busy period:

LB(s) =
∫ ∞

0
e−x(s+λ−λLB(s))f(x)dx

= LX(s + λ− λLB(s))

Notice thatLB(x) has a recursive form. However, it is still possible to use the transform in order to obtain
higher moments ofB. In particular, we have:

E[B2] =
E[X2]

(1− ρ)3

V ar[B] =
V ar[X]
(1− ρ)3

+ λE[B]3

Similarly, for B(x) we have:

E[B(x)2] =
(

x

1− ρ

)2

+
λxE[X2]
(1− ρ)3

V ar[B(x)] =
λxE[X2]
(1− ρ)3

Before moving on, it is again worth taking a moment to contrast the behaviors ofV ar[T ]PLCFS and
V ar[T ]FCFS . Similarly to what we saw in the case of the mean,V ar[T ]PLCFS does not depend on the
third moment of the service distribution, whileV ar[T ]FCFS does. Thus, in settings whereE[X3] is large,
V ar[T ]PLCFS is much smaller thanV ar[T ]FCFS . However, we can also notice thatV ar[T ]PLCFS grows
asΘ(1/(1 − ρ)3) asρ → 1 while V ar[T ]FCFS = Θ(1/(1 − ρ)2). Thus, for high loadsV ar[T ]FCFS is
much lower thanV ar[T ]PLCFS .

3.1.3 Non-preemptive blind scheduling
FCFS is one example of a policy that is both non-preemptive, i.e. never interrupts a job receiving service,
and blind, i.e. schedules without knowledge of job size information. However, there are many other common
non-preemptive, blind scheduling policies. Two of the most common are Non-preemptive Last-Come-First-
Served (LCFS), which serves the most recent arrival to the queue after each completion, and Random-Order-
of-Service (ROS), which chooses a job to serve uniformly at random from the queue after each completion.

Though the operation of these non-preemptive blind policies seems very different, with a little thought it
is easy to see that all non-preemptive blind policies behave equivalently with respect to the number of jobs in
the systemN . In particular, no matter how the choice of the next job to service is made after a completion,
the distribution of the size of the job is the same because the decision is made without knowledge of the
sizes of the job in the queue. Thus, the time until the next completion is equivalent under all of the policies.
The fact that the distribution of the number of jobs in the system is the same also implies that the mean
response time of all non-preemptive blind policies is the same using Little’s Law.
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Proposition 3.1
In an M/GI/1 queue any non-preemptive blind policy P has NP d= NFCFS and thus

E[T ]P = E[T ]FCFS = E[X] +
λE[X2]
2(1− ρ)

Though all non-preemptive blind policies have the same distribution on the number of jobs in the system
and the same mean response time, it is important to point out the the distribution of response times can be
very different. To illustrate this, let us consider the behavior of the variance of the waiting time,V ar[W ],
underFCFS, ROS, andLCFS.

We have already seen that

V ar[W ]FCFS =
λE[X3]
3(1− ρ)

+
λ2E[X2]2

4(1− ρ)2

UnderLCFS, one expects that very long response times are more likely than underFCFS, and thus the
variance of the waiting time should be higher. We will derive the transform for waiting time underLCFS in
order to illustrate how much higher the variance actually is.

To derive the waiting time underLCFS consider the experience of a tagged arrival to the system. An
arriving job that finds the server idle experiences no waiting time. On the other hand, an arriving jobja that
finds the server busy takes precedence over all jobs waiting in the queue, but must wait for the job at the
serverjs to complete. Further,ja must wait for the busy period of arrivals started by the remaining size of
js to complete since all later arrivals beforejs completes will receive priority overja. Thus, we have that

WLCFS = B(E)1[busy]

From the above, the transform and all moments of waiting time can be easily derived.

V ar[W ]LCFS =
λE[X3]

3(1− ρ)2
+

λ2E[X2]2

4(1− ρ)3
=

V ar[W ]FCFS

1− ρ

LW (s)LCFS = (1− ρ) +
λ(1− LB(s))

s + λ− λLB(s)

Thus, while the mean waiting times ofFCFS andLCFS are the same, the variances differ by a factor of
1/(1− ρ). This indicates a strong preference forFCFS overLCFS.

It turns out that all other non-preemptive blind policies haveV ar[W ] somewhere betweenV ar[W ]FCFS

andV ar[W ]LCFS . (See [247] page 282 for a simple proof.) For example, though the analysis ofROS is
much more difficult than that for eitherFCFS or LCFS, V ar[W ]ROS has been derived in a few special
cases. One such case is the M/M/1 [120], where we have that

V ar[W ]ROS =
V ar[W ]FCFS

1− ρ/2
.
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3.1.4 Processor-Sharing (PS)
PS is probably the scheduling discipline most often used to model scheduling in computer systems. Unlike
the policies we have discussed so far,PS is a time-sharingpolicy, i.e. the server is shared among multiple
jobs at once instead of being devoted to a single job. In particular, every job in the system receives an equal
share of the service capacity at all instants underPS. Thus, if the total service rate is 1 and there areN jobs
in the system, then every job is being served at rate1/N . The observation thatPS shares the server evenly
at all times leads toPS being viewed as a “fair” policy in some sense. Another way to viewPS is as an
analytically tractable version of Round Robin (RR), which is a good approximation of what is done in many
computer systems. UnderRR, the job at the front of the queue receives a quantumδ of service and is then
moved to the back of the queue. Thus, asδ → 0, RR becomesPS.

Though the workings ofPS are very easy to state and understand, unlike the other simple policies we
have discussed in this section, the analysis of the response time ofPS is not straightforward.

Intuitively, we can understand the response time ofPS as follows. Consider the experience of a tagged
arrival jx of sizex. Sincejx arrives into astationarysystem,jx will share the server withE[NPS ] other
jobs, on average, until it completes. Thus,

E[T (x)]PS = (E[NPS ] + 1)x = (λE[T ]PS + 1)x (3.5)

Integrating overx, we obtain
E[T ]PS = ρE[T ]PS + E[X]

or equivalently

E[T ]PS =
E[X]
1− ρ

(3.6)

Returning to (3.5) also gives

E[T (x)]PS =
x

1− ρ
(3.7)

The weak point in this argument is the assumption that a tagged arrival will share the system with a
constant mean number of other jobs throughout its response time. Though, this assumption is by no means
obvious, the expressions in (3.6) and (3.7) are correct and Mitrani points out the assumption can be made
rigorous [147].

Amazingly, the expressions forE[T ]PS andE[T (x)]PS exactly match the corresponding expressions
for PLCFS that we derived earlier. Thus, as we discussed in Section3.2.1, E[T ]PS is independent of the
variability of the service distribution and grows likeΘ(1/(1 − ρ)) asρ → 1. Further, we can see that
E[T (x)]PS is strictly linear inx. Thus, a job that is twice as long as another job will have twice as long a
response time on average. This is a very appealing property with respect to “fairness,” and we will return to
it in Chapter7.

So far, we have only discussed the mean response time ofPS. We would obviously like to learn more
about thePS queue, but to do so, we need to take a different view of thePS system. The derivation of
E[T ]PS that we have discussed so far relies on viewing the mean number of jobs in thePS system as
constant throughout the response time of an arrival, but this is insufficient for studying other aspects of the



52 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

PS queue.
A more powerful viewpoint of thePS queue comes from “reversibility.” This approach is detailed by

Kelly [113] and Ross [193], among others. The idea is to show that the forward process of thePS queue is
equivalent to the reverse process of thePS queue, and then to use this equivalence to analyze the system.
Using this approach, we can derive the entire distribution ofNPS . Let ~x = (x1, x2, . . . , xn) be the queue
state wherexi is the attained service (age) of theith job in the queue.

Theorem 3.2
In an M/GI/1 queue

P (NPS = n) = ρn(1− ρ)

Further, given there are n jobs in the queue, the age (excess) of each job is i.i.d. and follows the equilibrium
distribution. Thus,

P (~x = (x1, x2, . . . , xn)|N = n) =
n∏

i=1

F (xi)
E[X]

This characterization of the system state of aPS queue is quite intriguing. It is amazing that the distribu-
tion of the number in the queue depends only on the system load, and is thus independent of anything but the
mean of the service distribution. This property is termed “insensitivity” and is an appealing property beyond
PS (see [35, 36, 37] for other practical examples of insensitive policies and queueing networks). Theorem
3.2 has many other consequences. For instance, (3.6) follows from Theorem3.2 almost immediately by
applying Little’s Law:

E[T ]PS =
1
λ

E[NPS ]

=
1
λ

∞∑
n=0

nρn(1− ρ)

=
E[X]
1− ρ

Further, with a little more work we can also derive (3.7) for E[T (x)]PS using a special case of Little’s Law
applied only to jobs of size betweenx andx + ε for ε → 0.

Beyond the uses of Theorem3.2in derivingE[T ]PS andE[T (x)]PS , it is also important outside ofPS.
In particular, Theorem3.2provides an extremely useful view of the total work in the system,Q. In fact, it
provides an explanation for the mysterious form ofLQ(s) that we derived in (3.3). Using Theorem3.2, we
have that

Q =
NPS∑
i=1

Ei

whereEi are independent excesses andNPS has distributionP (NPS = n) = ρn(1 − ρ). As we already
mentioned, this form ofQ is very useful for calculating moments and other statistics of of the stationary
workload.

We now understand both the system state ofPS and the mean response time ofPS. However, even with
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Figure 3.1: An illustration of how to viewPS as a branching process. In this diagram there are two jobs in
the queue when the tagged jobjx arrives. The response time ofjx is the sum of the lengths of the branches
between the arrival and completion instants ofjx.

this information, it is impossible to calculate higher moments and the transform of the response time ofPS.
In order to calculate these, we will need yet another view ofPS.

Probably the most powerful view ofPS is as a branching process. This view, first introduced by Yashkov
[252, 253], has led to the derivation of the transform ofT (x)PS in the M/G1/1 queue, from which formulas
for the variance and higher moments ofT (x) have emerged. The idea behind viewingPS as a branching
process is illustrated in Figure3.1.4. We view the response time for a tagged jobjx of sizex as the sum
of the lengths of branches in a random tree. Corresponding to each job, there is a branch of length equal
to the size of the job. Letnt be the number of branches at timet. Thus, whenjx arrives (at timet = 0) it
seesn0 = NPS existing branches, each having remaining lengthE , and it starts a branch of lengthx. The
process evolves ast grows by having the total arrival rate at each timet bentλ, split evenly among thent

branches in the system at timet. The arrivals each form new branches attached to the branch they occurred
during. One can see that this is equivalent to aPS queue by scaling the time in the branching process by
nt at each timet. Using this equivalence, it is clear that the response time ofjx is simply the sum of the
lengths of the branches in the system between time0 and timex. If we denote the sum of the lengths of the
branches of a tree started by a branch of lengthb at height0 between time0 and timea asLa(b), we can use
this view ofPS to writeT (x)PS as follows:

T (x)PS d= Lx(x) +
NPS∑
i=1

Lx(E) (3.8)

Though this view ofPS is not as simple as the others we have discussed, it has proven to be very
powerful. Let us illustrate how to use this view in the simple case of an M/D/1 queue.

Example
Our goal will be to rederive (3.7) for E[T (x)]PS in this simple case using the branching process.
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Before we begin, let us first define some notation. Letx be the job size in the M/D/1. Further,
note that the excess,E , and age,A, of a deterministic distribution both follow a uniform distribution.
Thus, we will defineU as a random variable that follows a uniform distribution on(0, x).

Now, we begin by taking the expectation of (3.8):

E[T (x)]PS d= E[Lx(x)] + E[NPS ]E[Lx(E)] (3.9)

Thus, in order to calculateE[T (x)]PS we need to deriveE[Lx(x)] andE[Lx(E)].
We will deriveE[Lx(x)] first. In the M/D/1,E[Lx(x)] is particularly easy to write since all

arrivals will create new branches that extend beyond timex, which is the end of the period being
studied. Thus, an arriving job at timex − t will start a new subtree that will contributeLt(t) to the
total tree length. Given the constant arrival rateλ, we have

E[Lx(x)] =
∫ x

0
(1 + λE[Lt(t)])dt

Taking the derivative of both sides, gives the following differential equation,

dE[Lx(x)]
dx

= 1 + λE[Lx(x)]

which has solution

E[Lx(x)] =
x

ρ

(
eλx − 1

)
=

x

ρ
(eρ − 1) (3.10)

Now, we move to calculatingE[Lx(E)]. Notice that in the M/D/1 it is easy to rewriteE[Lx(E)]
in terms ofE[Lx(x)]. In particular, we have that

E[Lx(E)] = E[Lx(x)]− E[LA(A)]

Now, we observe thatE[LA(A)] is of the same form asE[Lx(x)], so we can calculate it by condi-
tioning onA as follows:

1
x

E[LA(A)] = E[L(x−u)(x− u)|U = u]

=
∫ x

0

1
λ

(
eλ(x−u) − 1

) 1
x

du

=
1
ρ2

(eρ − ρ− 1)

Moving back toE[Lx(E)], we have that

E[Lx(E)] = E[Lx(x)]− E[LA(A)]

=
x

ρ2
(ρeρ − eρ + 1) (3.11)
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Finally, we are ready to put everything together and calculateE[T (x)]PS using (3.8), (3.10), and
(3.11).

E[T (x)]PS = E[Lx(x)] + E[NPS ]E[Lx(E)]

=
x

ρ
(eρ − 1) +

(
ρ

1− ρ

)
x

ρ2
(ρeρ − eρ + 1)

=
x

ρ

(
eρ − 1 +

1
1− ρ

(eρ(ρ− 1) + 1)
)

=
x

ρ

(
ρ

1− ρ

)
=

x

1− ρ

Thus, we have arrived at the well-known result forE[T (x)]PS .
�

Though this derivation is far more complex than our original derivation ofE[T (x)], and may seem like
overkill for such a simple model as the M/D/1, the power of this view ofPS comes in the extensibility of
this argument. In particular, it is straightforward to mimic the above argument in order to derive the variance
of response time in the M/D/1, and with a bit more work it can be pushed through to derive explicit formulas
for the mean and variance in the M/M/1 model. Further, the branching process view ofPS is at the heart
of the most elegant derivations of the transform ofT (x)PS . In particular, Yashkov uses this view to derive
LT (x)(s)PS in [252, 253].

In addition to Yashkov’s analysis, a number of other derivations of the transform have appeared, for
example [197, 167, 256]. Probably the most useful form for the transform was provided by Zwart and
Boxma in [256]. They write the transform as the following power series:

LT (x)(s)
PS =

( ∞∑
k=0

sk

k!
αk(x)

)−1

whereα0(x) = 1, α1(x) = x/(1− ρ), and fork ≥ 2

αk(x) =
k

(1− ρ)k

∫ x

t=0
(x− t)k−1F

(k−1)∗
Q (t)dt

with Fn∗
Q (t) denoting the distribution of then-fold convolution of the work in the system,Q. Equivalently,

we could have written

αk(x) =
(

x

1− ρ

)k

− δk(x)

where

δk(x) =
k

(1− ρ)k

∫ x

t=0
(x− t)k−1F

(k−1)∗
Q (t)dt

The reason this form of the transform is so useful is that it is easy to use it to obtain formulas for all
higher moments ofT (x)PS , which can be difficult using other forms of the transform. In particular, [256]
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finds that

E[T (x)k]PS = −
k∑

i=1

(
k

i

)
(−1)iE[T (x)k−i]PSαi(x) (3.12)

from which we can deriveV ar[T (x)]PS :

V ar[T (x)]PS =
2

(1− ρ)2

∫ x

0
(x− t)FQ(t)dt (3.13)

3.2 Priority-based policies
Though simple policies likeFCFS and PS are traditionally the most common policies used to model
scheduling in computer systems. More recently, there has been a growing trend towards using designs
based on priority-based policies.

There are many ways that priority-based policies can assign priorities. Commonly, users are willing to
pay money in order to receive high priority service and, thus, spend less time queueing. Other times, the
goal may be to assign priorities in a way that minimizes some cost function (such as mean response time)
of the queue. In the second scenario, it is often beneficial to give priority to small job sizes. In this section
we will introduce a wide variety of priority based policies. We will talk about both non-preemptive and
preemptive priority policies. Further, we will consider both policies that prioritize based on some external
priority structure (such as customer payments) and policies that prioritize based on statistics of arriving jobs
(such as the sizes of the jobs or the remaining sizes of the jobs).

The analysis of all priority based policies relies on using “transformations” of the service distribution
and busy periods. Thus, before we talk about specific policies, it is useful to spend some time introducing
the transformed service distributions and busy periods that will come up throughout the section.

3.2.1 Notation for priority-based policies
Under priority-based policies, the performance of the high priority jobs is often not impacted low priority
jobs. For example, underPSJF the response time of a job with sizex is unaffected by any job with size
> x. Thus, as far as a job of sizex is concerned, the service distribution may as well be cut off atx. We will
see behavior similar to this under a wide variety of policies that prioritize small jobs, e.g.SRPT andFB,
however the what happens to the probability mass in jobs of size> x will vary depending on the scheduling
policy. As a result, it will be useful to have notation to describe various ways to cut off, or truncate, the
service distribution. In order to serve as a reference, we will summarize the notation for two of these here.

First, let us consider the case where all jobs with size> x are simply removed from the service distri-
bution:

Xx = X1[X<x]

mi(x) = E[Xi
x] =

∫ x

0
tif(t)dt

ρ(x) = λm1(x)
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Heremi(x) is thei-th moment of the jobs with size≤ x (ignoring all job with size> x andρ(x) is the
load of a system with the same arrival process and a cut-off service distribution. Notice thatρ(x) can also
be interpreted as the load made up by jobs with size< x.

Next, let us consider the case where all jobs with size> x have their size reduced tox:

X̃x = X ∧ x = min(X, x)

m̃i(x) = E[X̃x
i
] = i

∫ x

0
ti−1F (t)dt

= mi(x) + xiF (x)
ρ̃(x) = λm̃1(x)

Againm̃i(x) is thei-th moment of the truncated distribution andρ̃(x) is the load of a system with the same
arrival process and a truncated service distribution.

For each of these “transformed” service distributions, it will also be important to characterize how busy
periods behave. These “transformed” busy periods will be fundamental to the analysis of priority based
policies. For reference, Table3.1summarizes the various types of busy periods that we will use.

notation service distribution arrival rate
B, B(y) X λ

Bx, Bx(y) Xx = XI(X < x) λ

B̃x, B̃x(y) X̃x = min(X, x) λ

Table 3.1: A summary of the busy period variations studied in this thesis

Clearly, the moments ofBx, Bx(y), B̃x, andB̃x(y) are all easily calculated by writing the formulas for
B andB(y) using the appropriate service distribution. For reference purposes, we will list them here.

E[Bx(y)] =
y

1− ρ(x)

V ar[Bx(y)] =
λym2(x)

(1− ρ(x))3

E[B̃x(y)] =
y

1− ρ̃(x)

V ar[B̃x(y)] =
λym̃2(x)

(1− ρ̃(x))3

3.2.2 Non-preemptive priority queues
Non-preemptive priority queues are the simplest of the priority based policies we will discuss. In non-
preemptive priority queues jobs are assumed to arrive with some externally assigned priority structure. That
is, arriving jobs are tagged with a certain priority level,c = 1, 2, . . ., and then jobs of priorityi can only
move into service when the queue is empty of jobs of priority< i. Further, jobs within the same class are
served inFCFS order. It is important to remember that we are in the non-preemptive setting, so once a job
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is chosen for service, it cannot be interrupted.
The analysis of a non-preemptive priority queue is actually quite straightforward. LetWi, Ni, Xi, λi,

andρi be the waiting time, number in queue, job sizes, arrival rate, and load of the jobs in thei-th class.
We will use a tagged job approach. Consider a tagged jobj from priority classc ≥ 1. The waiting time of
j consists of three pieces: (i) the remaining work in the job at the server, denotedW0, (ii) the work from
classes1, . . . , c in the queue at the arrival ofj, and (iii) the work from classes1, . . . , c− 1 that arrives while
j is in the queue. It is easy to see that the work in (i) is simplyW0 = EI(busy). Using Little’s Law, we
can write (ii) as

∑c
i=1 E[Xi]λiE[Wi]. Further, we can write (iii) as

∑c−1
i=1 E[Xi]λiE[Wc] since all arrivals

during the waiting time ofj from classes1, . . . , c− 1 receive priority overj. Thus, we have that

E[Wc] = E[W0] +
c∑

i=1

E[Xi]λiE[Wi] +
c−1∑
i=1

E[Xi]λiE[Wc]

which gives

E[Wc] =
E[W0] +

∑c−1
i=1 ρiE[Wi]

1−
∑c

i=1 ρi

This set of equations can easily be solved recursively, from which we obtain

E[Wc] =
λE[X2]

2(1−
∑c−1

i=1 ρi)(1−
∑c

i=1 ρi)
(3.14)

whereX is still the overall service distribution.
The form of this final equation is quite enlightening. We see a distinction between the effect of the jobs

that arepresentin the queue at the arrival of the tagged job (the1−
∑c

i=1 ρi term) and the jobs thatarrive
while the tagged job is in the queue (the1−

∑c−1
i=1 ρi term). Intuitively, we can view the formula as stating

that the expected work in the queue that finishes before the tagged job isE[V ] = λE[X2]

2(1−
∑c

i=1 ρi) and then the

waiting time is a busy period started byV work including only arrivals from higher priority classes. This
viewpoint will be central to the analysis of many of the other priority based policies in this section.

There are a number of interesting observations that can be made about (3.14). First of all notice that it is
possible for high priority classes to remain stable at loads much larger than 1. Thus, prioritization provides
an insulation from overload for high priority jobs. Second, it is interesting to note the improvements over
E[T ]FCFS that are possible from very simple priority schemes. For example, if we consider a 2-class
system, we can see that

E[T ] =
λ1

λ
E[W1] +

λ2

λ
E[W2]

= E[W ]FCFS

(
1− λ1E[X]
1− λ1E[X1]

)
(3.15)

Examining the form of this equation, it becomes clear that wheneverE[X1] < E[X] prioritization provides
a smaller response time thanFCFS. Further, the difference can be dramatic ifE[X1] is much less than
E[X]. This observation is a key motivation for the heuristic of “prioritizing small jobs.”

Note that both higher moments and the transform of the waiting time distribution of non-preemptive
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priority queues have been derived in the literature. But since the derivations are involved and they are not
central to this thesis, we refer the interested reader to [61, 222] for the details.

There are many variations of the non-preemptive priority queue. Two of the most common arenon-
preemptive threshold based policiesand non-preemptive Shortest-Job-First(SJF). We will provide an
overview of each of these policies in the next two sections.

3.2.2.1 Non-preemptive threshold based policies
A non-preemptive threshold based policy is simply a non-preemptive priority queue where the priority
classes are determined using job size thresholds. In particular, given thresholds0 = t0 < t1 < . . . <
tn = ∞ an arriving job of sizex is assigned priorityi if x ∈ [ti−1, ti).

The motivation for introducing threshold based policies follows immediately from our discussion in the
previous section. In particular, from (3.15) we see that the mean response time of a non-preemptive priority
queue is lowest when the high priority queues have the smallest possible mean service demand. Thus, if we
hope to optimizeE[T ], we need to minimize the mean service demands of the high priority class – which is
exactly what happens under threshold based policies.

The analysis of the waiting time under non-preemptive threshold based policies follows immediately
from our discussion of general non-preemptive priority queues. Thus, it is possible to obtain the transform
and the moments of waiting time for these policies. In particular, we have that under ann class non-
preemptive threshold based policy, denotedNPn, the mean waiting time of a classi job is as follows

E[Wi]NPn =
λE[X2]

2(1− ρ(ti−1))(1− ρ(ti))
,

whereρ(ti) = λ
∫ ti
0 sf(s)ds.

From the above, we can also calculate the overall response time for the system as follows:

E[T ] = E[X] +
n∑

i=1

(F (ti−1)− F (ti))E[Wi]

Despite the fact that this formula is easy to write down, it is hard to completely understand. Though it is
easy to see thatE[T ] < ∞ only whenE[X2] < ∞, even understanding simple questions such as howE[T ]
behaves as a function of load and howE[T ] changes asn grows is difficult. We will spend the rest of this
section investigating these questions.

If the thresholds are constant as load grows,E[T ] = Θ(1/(1 − ρ)) as ρ → 1, which is the same
behavior we have already seen forFCFS, PS, and the other simple policies discussed so far. But, clearly
the thresholds should vary depending on load. In fact, by choosing the thresholds for each load optimally, it
is possible to provide dramatic improvements inE[T ] overPS andFCFS for high loads.

In particular, Bansal and Gamarnik [24] have shown that using any numbern ≥ 2 priority classes in an
M/M/1 queue is enough to guarantee thatE[T ]NPn grows much more slowly thanΘ(1/(1 − ρ)) and thus
provides huge improvements inE[T ] in heavy traffic.
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Theorem 3.3
In an M/M/1 for any n ≥ 2

E[T ]NPn = Θ

 1

(1− ρ) log
(

1
1−ρ

)


Further, non-preemptive threshold based policies can behave even better under other service distribu-
tions. In particular, we will prove a novel result that characterizes the growth rate ofE[T ] under Pareto
distributions. Before stating the theorem we need to introduce some notation. Definegi(α) as follows:

g−1(α) = 0
g0(α) = 1
gi(α) = 1 + (α− 1)gi−1(α) for i ≥ 1

Thus, note that
gi−1(α)
gi(α)

=
gi−1(α)

1 + (α− 1)gi−1(α)
=

1
α− 1 + 1

gi−1(α)

Now we are ready to state the theorem.

Theorem 3.4
Let the service distribution be Pareto(α) with α > 2 so E[X2] < ∞. Consider a NPn+1 policy with
thresholds 0 = t0 < t1 < . . . < tn < tn+1 = ∞ and define ti for i = 1, . . . , n such that F (ti) = (1− ρ)ai

with
an−i

α
= gi(α)εn+1 − gi−1(α)

where

εn+1 =
gn−1(α)
gn(α)

=
1

(α− 1) + 1
gn−1(α)

Then

E[T ]NPn+1 = Θ
(

1
(1− ρ)1−εn+1

)
Clearly, the growth rate ofE[T ] as a function ofρ is much slower under a Pareto distribution (Theorem

Theorem3.4) than it is under an M/M/1 distribution (Theorem3.3). Further, Theorem3.4 provides an
interesting contrast to Theorem3.3 in terms of the impact of the number of priority classes used by the
scheduler. While in the M/M/1 case, using more than 2 priority classes provided no improvement in the
growth rate ofE[T ]; in the case of a Pareto service distribution, we see an improvement from each priority
class added, sinceεn increases withn.

Proof of Theorem 3.4. We first writeE[T ]NPn+1 as follows:

E[T ]NPn+1 = E[X] +
n+1∑
i=1

λE[X2](F (ti−1)− F (ti))
2(1− ρ(ti−1))(1− ρ(ti))

Now, we note that by choosingF (ti) = (1 − ρ)ai for i = 1, . . . , n we have thatk/ti = (1 − ρ)ai/α
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(since we are considering a Pareto distribution), which gives that

1− ρ(ti) = 1− ρ + ρ

(
k

ti

)α−1

= 1− ρ + ρ(1− ρ)(α−1)ai/α

∼ (1− ρ)(α−1)ai/α asρ → 1

Further,(1− ρ(t0)) = 1 and(1− ρ(tn+1)) = (1− ρ).
Continuing, we now see that asρ → 1

E[T ]NPn+1

= E[X] +
n+1∑
i=1

λE[X2](F (ti−1)− F (ti))
2(1− ρ(ti−1))(1− ρ(ti))

∼ λE[X2]
2

(
1− (1− ρ)a1

(1− ρ)(α−1)a1/α
+

(
n∑

i=2

(1− ρ)ai−1 − (1− ρ)ai

(1− ρ)(α−1)ai−1/α(1− ρ)(α−1)ai/α

)
+

(1− ρ)an

(1− ρ)(α−1)an/α(1− ρ)

)

∼ λE[X2]
2

(
(1− ρ)−(α−1)a1/α +

(
n∑

i=2

(1− ρ)ai−1−(α−1)ai−1/α−(α−1)ai/α

)
+ (1− ρ)an−1−(α−1)an/α

)

=
λE[X2]

2

(
(1− ρ)−(α−1)a1/α +

(
n∑

i=2

(1− ρ)ai−1/α−(α−1)ai/α

)
+ (1− ρ)−1+an/α

)

Note that the best heavy traffic behavior occurs when all the exponents of(1− ρ) are equal (if they are
not balanced, a local improvement can be made). We will show that, when all of the exponents are equal,
they are equal to−1 + εn+1, from which the theorem will follow.

Plug an−i

α = gi(α)εn+1 − gi−1(α) into each of the exponents of(1− ρ) above. Note that by definition
of gi(α), we have(α− 1)gi(α)− gi−1(α) = −1 for all i. We start with the constraints forai, i > 1.

−1 +
an

α
= −1 + g0(α)εn+1 − g−1(α)

= −1 + εn+1
ai−1

α
− (α− 1)

ai

α
= gi−1(α)εn+1 − gi−2(α)− (α− 1)(gi(α)εn+1 − gi−1(α))

= [(α− 1)gi−1(α)− gi−2(α)]− [(α− 1)gi(α)− gi−1(α)] εn+1

= −1 + εn+1

Next, we consider the final constraint ona1. Here, we will need to use the fact thatεn+1 = gn−1(α)/gn(α).

−(α− 1)
a1

α
= −(α− 1)gn−1(α)εn+1 + (α− 1)gn−2(α)

= −1 + εn+1 + [1 + (α− 1)gn−2(α)]− [1 + (α− 1)gn−1(α)] εn+1

= −1 + εn+1 + gn−1(α)− gn(α)εn+1

= −1 + εn+1
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�

3.2.2.2 Non-preemptive Shortest-Job-First (SJF)
If our goal is truly to optimizeE[T ] using a non-preemptive threshold based policy, we have seen that we
want to have as many priority classes as possible. If we take non-preemptive threshold based policies to the
extreme and add thresholds until the thresholds become arbitrarily close, the resulting policy isSJF. Under
SJF, the shortest job in the queue is given non-preemptive priority. Thus, at every completion instant, the
job in the queue with the smallest service time is given service, and this service is not interrupted until the
job completes.

SinceSJF can be viewed as the limiting case of a non-preemptive threshold based policy, it is clear that
the moments and transform of the response time ofSJF can be obtained by taking the appropriate limits of
NPn. Assuming the service distribution is continuous, this limit results in the following formulas for the
first few moments and transform of conditional response time underSJF:

E[T (x)]SJF = x +
λE[X2]

2(1− ρ(x))2

V ar[T (x)]SJF =
λE[X3]

3(1− ρ(x))3
+

λ2m2(x)E[X2]
(1− ρ(x))4

− λ2E[X2]2

4(1− ρ(x))4

LT (x)(s)
SJF =

LX(s)
s

((1− ρ)(s + λF (x)− λF (x)LBx(s))

+λF (x)(1− LX>x(s + λF (x)− λF (x)LBx(s)))
)

whereX>x has c.d.f.F (x)/F (x).
Before moving to the overall response time ofSJF, let us take a second to contrast the conditional

response time ofSJF with that of non-preemptive threshold based policies. Notice that the small jobs
in each class of the non-preemptive threshold based policy have larger mean response times than they do
underSJF while the large jobs sizes in each class have smaller response times than they do underSJF.
Thus,E[T (x)]SJF is not uniformly better thanE[T (x)]NPn , thoughSJF provides a smaller overall mean
response time.

Let us now move forward and discuss the overall mean response time ofSJF. GivenE[T (x)]SJF it is
easy to calculateE[T ]SJF :

E[T ]SJF = E[X] +
λE[X2]

2

∫ 1

0

dF (x)
(1− ρ(x))2

As with non-preemptive threshold based policies, despite the ease with which this formula can be writ-
ten, it is difficult to understand the behavior ofSJF as a function ofρ. This is a trend we will see throughout
this chapter. However, very recently, a few results that characterize the growth rate ofSJF as a function of
ρ under certain distributions have emerged. In particular, Bansal and Gamarnik [24] have characterized the
behavior ofSJF under Pareto distributions and Bansal & Wierman [26] have characterized the behavior of
SJF under Exponential distributions. We summarize these results in the following proposition.
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Proposition 3.5
In an M/M/1,

E[T ]SJF = Θ

 1

(1− ρ) log
(

1
1−ρ

)


Further, in an M/GI/1 where X ∼ Pareto(α) with α > 2 so that E[X2] < ∞,

E[T ]SJF = Θ

(
1

(1− ρ)
α−2
α−1

)

It interesting to contrast Theorem3.5with Theorems3.3and3.4, which characterize the growth rate ofE[T ]
under non-preemptive threshold based policies. In the M/M/1 setting, we see thatE[T ]SJF = Θ(E[T ]NPn),
which is quite surprising since it says using two priority classes provides the same benefits as using an infinite
number of priority classes. However, the case of Pareto service distributions provides a different picture.
Under Pareto distributions we have that

E[T ]SJF = Θ

(
1

(1− ρ)
α−2
α−1

)
= Θ

(
1

(1− ρ)1−
1

α−1

)

and

E[T ]NPn+1 = Θ

 1

(1− ρ)1−
gn−1(α)

gn(α)

 = Θ

 1

(1− ρ)
−1+ 1

α−1+1/gn−1(α)


→ Θ

(
1

(1− ρ)1+
1

α−1

)
asn →∞

Thus,E[T ]NPn approaches the growth rate ofE[T ]SJF asn → ∞, butNPn does not achieve the growth
rate ofSJF for any finiten.

3.2.3 Preemptive priority queues
Preemptive priority queues are very similar to the non-preemptive priority queues we just discussed. Again,
jobs are assumed to arrive tagged with a priority classc = 1, 2, . . ., and jobs within each class are served in
FCFS order. The difference is that a job of priorityc can only receive service when there are no jobs with
priority < c in the system, i.e. a job of priorityc in service is preempted whenever an arrival of priority< c
occurs.

The analysis of preemptive priority queues can be performed in a manner parallel to the analysis of non-
preemptive priority queues (see [120, 222] for example). However, instead of mimicking the analysis of the
non-preemptive priority queues here, we will present a more intuitive analysis that is only possible in the
preemptive case. To accomplish this, let us break up the response time of a tagged customer with priorityc
into the residence time and the waiting time of the job.

To analyze the residence time of a classc job, denotedRc, notice that all arrivals with priority< c
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receive preemptive priority over the tagged job. Thus, the residence time of the tagged job is simply a busy
period started by the tagged job including all arrivals of jobs in classes1 . . . , c − 1, which we will denote
B≤c−1(Xc).

Similarly, we can view the waiting time as a busy period including all arrivals from classes1, . . . , c− 1
started by the work in the system from classes1, . . . , c, denotedB≤c−1(Q≤c). All that remains is to deter-
mine the distribution ofQ≤c. This can be accomplished by viewingQ≤c as the workload in a transformed
system where only arrivals from classes1, . . . , c are included. Noting that this transformed system is still
work conserving (by definition of a preemptive priority queue), we can see thatQ≤c is the stationary work-
load in aFCFS queue with arrival rateλ≤c =

∑c
i=1 λi and service distributionX≤c = Xi with probability

λi/λ≤c for i ≤ c. Thus, we can writeE[Tc] as follows:

E[Tc] = E[B≤c−1(Xc) + B≤c−1(Q≤c)] (3.16)

=
E[Xc]

1−
∑c−1

i=1 ρi

+
∑c

i=1 λiE[X2
i ]

2(1−
∑c−1

i=1 ρi)(1−
∑c

i=1 ρi)
(3.17)

Similarly, it is easy to calculate higher moments ofTc and the transformTc using this formulation.
Notice the contrasts between the form of (3.17) for E[Tc] in preemptive priority queues and (3.14) for

E[Wc] in non-preemptive priority queues. Clearly, the waiting time for classc jobs is larger in the non-
preemptive case because it includes the second moment of the full service distribution. However, under
non-preemptive priority queues a job cannot be interrupted once it begins service. Thus, the residence time
of classc jobs in the non-preemptive case is much lower than the residence time in the preemptive case.

As in the non-preemptive case, there are two common variations of the preemptive priority queue: pre-
emptive threshold based policies and Preemptive-Shortest-Job-First (PSJF). In the next two sections we
will provide an overview of each of these policies.

3.2.3.1 Preemptive threshold based policies
Paralleling the definition of non-preemptive threshold based policies, a preemptive threshold based policy
Pn is simply a preemptive priority queue where then priority classes are determined using job size cutoffs.
That is, given thresholdst0 < t1 < . . . < tn = ∞ an arriving job of sizex is assigned priorityc if
x ∈ [tc−1, tc). Thus, applying the results from the previous section, it is easy to see that

E[Tc]Pn =
E[Xc]

1− ρ(tc−1)
+

λm2(tc)
2(1− ρ(tc−1))(1− ρ(tc))

Similarly, the transform and higher moments of response time follow immediately from the corresponding
results for preemptive priority queues.

It is interesting at this point to contrast the behavior of preemptive threshold based policies with the
behavior of the non-preemptive threshold based policies we previously introduced. In particular, it is natural
to think that response times under preemptive threshold based policies should be lower than response times
under non-preemptive threshold based policies. However, we can see from comparing the formulas for
E[Tc] in each case that the waiting time is larger in the non-preemptive case, but the residence time is larger
in the preemptive case. To see how these two terms trade off, let us consider the special case of 2 class
disciplines where the thresholds are the same under both the preemptive and the non-preemptive policies.
Then, the increase inE[R] for class 2 jobs in moving from the non-preemptive policy to the preemptive
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policy is ρ1E[X2]
1−ρ1

. In contrast, the decrease inE[W ] experienced by class 1 jobs isλ2E[X2
2 ]

2(1−ρ1) . Thus, the
preemptive threshold based policy has smallerE[T ] only when

λ2ρ1E[X2]
1− ρ1

− λ1λ2E[X2
2 ]

2(1− ρ1)
< 0

which gives that

E[T ]Pn < E[T ]NPn ⇔ E[X1] <
E[X2

2 ]
2E[X2]

This final condition is quite illustrative. Recall that the RHS of the equation is simply the mean excess of a
class 2 job. Thus, preemptive threshold based policies are better only when the expected remaining size of
a class 2 job that is being preempted is larger than the expected size of the class 1 job that is preempting it.

The above comparison provides a first step towards understanding the behavior of the mean response
time under preemptive threshold based policies. In particular, in the M/M/1 we have thatE[T ]P2 = E[T ]NP2

which gives

E[T ]P2 = Θ

 1

(1− ρ) log
(

1
1−ρ

)


Further, we can prove a novel result that shows thatE[T ]Pn = Θ(E[T ]NPn) in general.

Theorem 3.6
In an M/GI/1 queue, E[T ]Pn = Θ(E[T ]NPn) as ρ → 1.

Note that Theorem3.6 combined with Theorems3.3 and3.4 immediately gives us the growth rate of
E[T ]Pn with ρ under the Exponential and Pareto service distributions.

Proof. Let us begin by observing that both preemptive and non-preemptive threshold based policies have
E[T ] < ∞ only whenE[X2] < ∞ andρ < 1 since in both cases the waiting time of thenth class has an
E[X2] term. Thus, we need only consider service distributions whereE[X2] < ∞.

We continue by boundingE[Ti]Pn in terms ofE[Ti]NPn .

E[Ti]Pn =
E[Xi]

1− ρ(ti−1)
+

λm2(ti)
2(1− ρ(ti−1))(1− ρ(t1))

= E[Xi] +
λm2(ti) + E[Xi]ρ(ti−1)(1− ρ(t1))

2(1− ρ(ti−1))(1− ρ(ti))

= E[Xi] +
(

m2(ti) + E[Xi]m1(ti−1)(1− ρ(ci))
E[X2]

)
E[Wi]NPn

≤ E[Xi] + 2E[Wi]NPn

≤ 2E[Ti]NPn

Similarly, it is easy to see that

E[Ti]NPn ≤ E[X2]
m2(ti)

E[Ti]Pn
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which gives that
m2(t1)
E[X2]

E[T ]NPn ≤ E[T ]Pn ≤ 2E[T ]NPn

Thus, as long ast1 > ε asρ → 1, E[T ]NPn andE[T ]Pn are always within a constant factor. But, ift1 → 0,
that would mean thatρ(t1) → 0 since the increase inλ is bounded. Thus, the limiting policy would be an
n−1 class policy, which is a contradiction sinceE[T ]Pn ≤ E[T ]Pn−1 for the optimal choices of thresholds.
�

3.2.3.2 Preemptive-Shortest-Job-First (PSJF)
As in the non-preemptive case, increasing the number of priority classes in preemptive threshold based
policies decreasesE[T ]. If we take preemptive threshold based policies to the extreme and add thresholds
until they become arbitrarily close, the resulting policy isPSJF. UnderPSJF the job in the system with
the smallest original size is always receiving service. Thus, a job at the server is always interrupted when a
smaller job arrives. As in the non-preemptive case, taking the appropriate limits ofPn yieldsE[T (x)]PSJF

when the service distribution is continuous:

E[T (x)]PSJF =
x

1− ρ(x)
+

λm2(x)
2(1− ρ(x))2

The first term in this equation is the residence time ofPSJF, R(x)PSJF , and the second term is the waiting
time ofPSJF, W (x)PSJF .

Though it is easy to obtain higher moments and the transform ofT (x)PSJF by taking limits of threshold
based policies, it is perhaps more illustrative to derive the statistics ofT (x)PSJF directly. To this end, let
us first considerR(x)PSJF . Once a tagged job of sizex, jx, begins to receive service the only jobs that
can receive higher priority thanjx are new arrivals with size< x. Thus,jx will complete at the end of a
busy period started byx work including only arrivals of size< x, denotedBx(x). Further, we can view
W (x)PSJF as a busy period started by the work in the system at the arrival ofjx having original size< x
including only new arrivals with size< x. Thus,W (x)PSJF = Bx(QPSJF

x ) whereQPSJF
x is the stationary

workload of a system where only arrivals size< x are considered. Combining all these statements and using
the linearity of busy periods, we obtain

T (x)PSJF d= Bx(x + QPSJF
x ) d= Bx(x) + Bx(QPSJF

x )

from which the moments and transform ofPSJF follow directly. Let us just state theV ar[T (x)] and the
transform, since these will be of use later in the thesis.

V ar[T (x)]PSJF =
λxm2(x)

(1− ρ(x))3
+

λm3(x)
3(1− ρ(x))3

+
3
4

(
λm2(x)

(1− ρ(x))2

)2

LT (x)(s)
PSJF =

1
s
(1− ρ(x))(s + λF (x)− λF (x)LBx(s))e−x(s+λF (x)−λF (x)LBx (s))

So far, we have only discussed the conditional response time underPSJF, T (x)PSJF , but typically the
metric of interest is actually the overall response time, specificallyE[T ]PSJF . ClearlyE[T ]PSJF can be
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computed by deconditioningE[T (x)] as follows:

E[T ]PSJF =
∫ 1

0
E[T (x)]dF (x) =

∫ ∞
0

(
x

1− ρ(x)
+

λm2(x)
2(1− ρ(x))2

)
f(x)dx

However, this form is difficult to work with. In particular,E[W ]PSJF typically needs to be calculated
numerically, and further the above equation provides little intuition about the behavior ofE[T ]PSJF as
ρ → 1 or as job size variability grows. To provide such intuition, Wierman, Harchol-Balter, and Osogami
prove the following simple bounds onE[T ]PSJF in [241].

Theorem 3.7
Consider an M/GI/1 PSJF queue. Let K satisfy λm2(x) ≤ Kxρ(x) and X1 and X2 be i.i.d. service
demands. Then

E[X]
(

ρE[(X1 ∧X2)2]
4E[X]2

+
1
ρ

log
(

1
1− ρ

))
≤ E[T ]PSJF ≤ E[X]

(
K/2
1− ρ

+
(

1−K/2
ρ

)
log
(

1
1− ρ

))
Notice that Theorem3.7 is stated in terms of a parameterK, whereK is such thatλm2(x) ≤ Kxρ(x).

ClearlyK ≤ 1 for all service distributions, but it is not immediately clear howK behaves under specific
distributions. In Theorem3.8 we illustrate how this constant may be set under common distributions. For
example, we show that the constantK may be set at23 when the service distribution is decreasing. Further,
in more generality, it definesK in a way that is highly tied to the tail properties off(x).

Theorem 3.8
Let i be a positive integer. Define j such that xjf(x) is decreasing and j < i + 1. Then,

mi+1(x) ≤
(

i− j + 1
i− j + 2

)
xmi(x)

Since the proof of Theorem3.8 is tangential to the current discussion, we defer it to the end of the
section.

Proof of Theorem 3.7. First, we calculateE[R]PSJF exactly. Note thatddxρ(x) = λxf(x).

E[R]PSJF =
1
λ

∫ ∞
0

λxf(x)
1− ρ(x)

dx

= − 1
λ

log(1− ρ)

Next, we can calculate an upper bound on the waiting time ofPSJF:

E[W ]PSJF ≤ K

2λ

∫ ∞
0

λxf(x)ρ(x)
(1− ρ(x))2

dx

=
K

2λ

(
ρ

1− ρ
+ log(1− ρ)

)
Finally, to prove the lower bound on waiting time, recall that the p.d.f. ofX1 ∧ X2 is fmin(x) =
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Figure 3.2: This figure shows the mean response time ofPSJF, PS, and FCFS as a function of the
variability of the service distribution (C2[X]). The load is 0.7 and the service distribution is a Weibull with
mean 1 in each case. The bounds shown are in Theorem3.7.

2f(x)F (x). Thus

E[W ]PSJF ≥ λ

2

∫ ∞
0

f(x)
∫ x

0
t2f(t)dtdx

=
λ

4

∫ ∞
0

2t2f(t)F (t)dt

=
λ

4
E[(X1 ∧X2)2]

�

Though the bounds in Theorem3.7 do not completely characterize the behavior ofE[T ]PSJF , they
already provide some useful information. First and foremost, notice thatE[T ]PSJF < ∞ even when
E[X2] = ∞. This is a huge contrast with the behavior of the other preemptive and non-preemptive thresh-
old based policies we have studied, under whichE[T ] = ∞ if E[X2] = ∞. Further, since the bounds on
E[T ]PSJF in Theorem3.7are completely independent ofE[X2], they indicate thatPSJF is “nearly” insen-
sitive to variability in the service distribution. In fact, the bounds characterize the degree to which variability
can affectE[T ]PSJF . In addition, the bounds are as tight as possible without making use of the variability
in the service distribution: we see that the upper bound becomes tight when the service distribution has low
variability and the lower bound becomes tight when the service distribution is highly variable (Theorem
3.9). It is interesting to note that variability tends to improve mean response time underPSJF. This is a
result of the fact that having a big distinction between large and small jobs (as is true when variability is
high) is what allows the heuristic of “prioritizing small jobs” to be effective. This is in stark contrast to
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(a) Deterministic
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(b) Exponential
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Figure 3.3: This figure illustrates the behavior of mean response time underPSJF, FCFS, andPS as a
function of load.1 The mean response time is scaled by(1− ρ) in order to highlight differences between the
policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with α = 1.2 (thus they haveE[X2] = ∞). In all cases,E[X] = 1. Note thatFCFS is not included in (c)
becauseE[T ]FCFS = ∞ in this case.

FCFS, for which variability is extremely detrimental.
Beyond the new insights into the effect of variability onE[T ]PSJF , Theorem3.7provides the beginnings

of an understanding of the behavior ofE[T ]PSJF as a function of load. In particular, the upper bound is
Θ(1/(1 − ρ)) asρ → 1, which matches the growth rate ofPS andFCFS, and the lower bound grows like
Θ(log(1/(1−ρ)), which is a huge improvement overPS andFCFS. It is not immediately clear that the the
lower bound is ever achieved, but Figure3.2 hints that it is, and it has recently been proven by Bansal and
Gamarnik [24] that the growth rate ofPSJF under a Pareto service distribution matches that in the lower
bound. Further, Wierman et. al. also characterize the growth rate ofPSJF under an Exponential distribution
[26].

Theorem 3.9
In an M/M/1 queue

E[T ]PSJF = Θ

 1

(1− ρ) log
(

1
1−ρ

)


Further in an M/GI/1 queue with X ∼ Pareto(α) where α > 1 so that E[X] < ∞,

E[T ]PSJF =


Θ
(
log
(

1
1−ρ

))
, if α < 2

Θ
(
log2

(
1

1−ρ

))
, if α = 2

Θ
(
(1− ρ)−

α−2
α−1

)
, if α > 2.

Contrasting Theorem3.9 with the parallel results forSJF, preemptive threshold based policies, and
non-preemptive threshold based policies is quite interesting. The first thing to notice is that the growth rate
of all of these policies is the same in the M/M/1 queue. Further, under a Pareto distribution, as long as
E[X2] < ∞ the growth rate ofPSJF matches that ofSJF, which is the limiting case of bothPn andNPn
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asn → ∞. However, the case when the service distribution is Pareto andE[X2] = ∞ is when the growth
rate ofE[T ]PSJF is a huge improvement over the other priority based policies we have discussed so far.
Thus, the best case forPSJF corresponds to the worst case forSJF and threshold based policies.

We end the section by providing a proof of Theorem3.8.

Proof of Theorem 3.8.
First, we observe the following equality:∫ x

t=0
mi(t)dt =

∫ x

t=0

∫ t

s=0
sif(s)dsdt

=
∫ x

s=0
sif(s)

∫ x

t=s
dtds

=
∫ x

s=0
(x− s)sif(s)ds

= xmi(x)−mi+1(x) (3.18)

We will now use this relation to boundmi+1(x) in terms ofmi(x) by first bounding
∫ x
0 mi(t)dt. Re-

member, by assumption we know thatsjf(s) is decreasing for somej such thatj < i + 1.∫ x

t=0
mi(t)dt =

∫ x

t=0

∫ t

s=0
sif(s)dsdt

≥
∫ x

t=0
tjf(t)

∫ t

s=0
si−jdsdt

=
1

i− j + 1

∫ x

t=0
tjf(t)ti−j+1dt

=
1

i− j + 1
mi+1(x) (3.19)

In this chain of equalities, the inequality follows directly from the assumption thatsjf(s) is decreasing.
Finally, combining Equation3.18and Equation3.19, we can complete the proof.

xmi(x)−mi+1(x) ≥ 1
i− j + 1

mi+1(x)(
i− j + 1
i− j + 2

)
xmi(x) ≥ mi+1(x)

�

3.2.4 Shortest-Remaining-Processing-Time-First (SRPT)
We now move to probably the most well known priority based policy:SRPT. Under SRPT, at every
instance, the job with the smallest remaining service time is scheduled. So,SRPT differs from the priority
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based policies we have discussed so far in that the priority of a job actually increases while the job is in
the system, i.e. as the remaining size of the job decreases. In this waySRPT greedily tries to minimize
the number in system by always working on the job that can be finished the quickest. In the preempt-
resume setting, this greedy approach is good enough to minimize the number in the system, and thusE[T ],
regardless of the arrival and service processes because any scheduling decision can be reversed without
penalty if a more attractive (smaller) candidate arrives [201]. Because of this optimality,SRPT has received
a large amount of attention in the literature.

As we have for previous priority based policies, we will begin our discussion ofSRPT by analyzing the
conditional response time and then we will exploit this analysis in order to study the overall mean response
time ofSRPT.

3.2.4.1 Deriving the conditional response time of SRPT
Beginning as early as 1966, Schrage and Miller had already analyzed the moments and the transform of
T (x) underSRPT [202]. The resulting form ofT (x) is quite complex, and best understood by breaking it
into pieces that correspond to the residence time and waiting time.

We start with the residence time. Recall that the residence time of a job is the time from when it first
receives service until it completes. Once a tagged jobj begins to receive service, it has higher priority than
all other jobs in the system, and thus, only new arrivals with smaller original size than the remaining size of
j can preemptj. Further, once one such job preemptsj whenj has remaining sizet, the job starts a period
where all arriving jobs with size< t receive higher priority thanj. This is clearly a busy period,Bt. So,
the time it takesj to move from having remaining sizet to having remaining sizet − dt is simplyBt(dt).
Integrating overt, we can obtain the moments and transform ofR(x)SRPT

E[R(x)]SRPT =
∫ x

0
E[Bt(dt)] =

∫ x

0

dt

1− ρ(t)

V ar[R(x)]SRPT =
∫ x

0
V ar[Bt(dt)] =

∫ x

0

λm2(t)
(1− ρ(t))3

dt

LR(x)(s)
SRPT = e−

∫ x
0 (s+λF (y)−λF (y)LBy (s))dy

Moving to the analysis ofW (x)SRPT , there are two approaches that can be used for the analysis.
The first approach, which is what Schrage and Miller used in the original analysis [202], is to viewSRPT

as a particular case of a non-preemptive threshold based policy. In particular,W (x)SRPT is equivalent to
the waiting time of class 2 jobs in the following 3-class non-preemptive priority queue. Class 1 jobs are
those with size< x. Class 2 jobs are those of sizex. Class 3 jobs are those of size> x, and only arrive at
the instant they achieve remaining sizex in theSRPT system. Thus, the arrivals of class 1 and 2 jobs are
Poisson, but class 3 jobs do not have a Poisson arrival process. With a little work, it is easy to show that
the waiting time of class 2 jobs in the non-preemptive priority queue is equivalent toW (x)SRPT , and then
results forSRPT follow from those in Section3.2.2.

However, instead of working through the details of this first approach, we will focus on a second ap-
proach for analyzingT (x)SRPT that provides more intuition for the final results. We begin by noting that
W (x)SRPT can be viewed as a busy period as follows. First, denote the work with remaining size< x seen
by a tagged job upon arrival byQSRPT

x . Then, notice that the tagged job’s waiting time is exactly the time
until the system becomes idle of jobs with remaining size< x. Noting that a later arrival contributes to the
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waiting time of the tagged job only when the size of the arrival is< x gives:W (x) d= Bx(QSRPT
x ). Thus,

determining the moments and transform ofW (x)SRPT reduces to the problem of understandingQSRPT
x .

Deriving the moments ofQSRPT
x is typically not too difficult becauseQSRPT

x is simply the workload of a
work conserving queue in a transformed system,QT

x , where jobs arrive the instant their remaining size is
< x. Thus, in the transformed system jobs with original size< x arrive according to a Poisson process
with rateλF (x) and jobs with original size≥ x arrive to an idle server when they obtain remaining size
< x in the original queue. As an example, let us deriveE[QSRPT

x ]. First, notice thatQT is simply the
stationary workload of a work conserving queue, so we can view the scheduling policy asFCFS. Next
notice that the load in the transformed system isρ̃(x) and the mean of the excess of the job at the server is

E[X̃x
2
]/(2E[X̃x]). Thus, we have that

E[QT
x ] = ρx

E[X̃x
2
]

2E[X̃x]
+ E[Nq]E[Xx]

=
λ

2
m̃2(x) + E[QT

x ]ρ(x)

which results in

E[QT
x ] =

λm̃2(x)
2(1− ρ(x))

Thus, we have that

E[W (x)]SRPT = E[B(QT
x )]

=
λm̃2(x)

2(1− ρ(x))2

Using either of these techniques, it is possible to derive higher moments and the transform of the
W (x)SRPT . We summarize these formulas below.

E[W (x)2]SRPT =
λm̃3(x)

3(1− ρ(x))3
+

λm2(x)λm̃2(x)
(1− ρ(x))4

LW (x)(s)
SRPT =

1
s
(1− ρ̃(x)) (s + λF (x)− λF (x)LBx(s)) + λF (x)

(
1− e−x(s+λF (x)−λF (x)LBx (s))

)
Combining the results for the waiting time and the residence time ofSRPT gives the following formulas

for the mean, variance, and transform of conditional response time underSRPT:

E[T (x)]SRPT =
∫ x

0

dt

1− ρ(t)
+

λm̃2(x)
2(1− ρ(x))2

V ar[T (x)]SRPT =
∫ x

0

λm2(t)
(1− ρ(t))3

dt +
λm̃3(x)

3(1− ρ(x))3
+

λm2(x)λm̃2(x)
(1− ρ(x))4

− 1
4

(
λm̃2(x)

(1− ρ(x))2

)2

=
∫ x

0

λm2(t)
(1− ρ(t))3

dt +
λm̃3(x)

3(1− ρ(x))3
+

3
4

(
λm̃2(x)

(1− ρ(x))2

)2

− λ2x2m̃2(x)F (x)
(1− ρ(x))4
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At this point, it is illustrative to compare the response time ofSRPT with those ofPSJF andSJF.
Intuitively, SRPT provides a middle ground betweenPSJF andSJF in the sense thatSRPT allows small
arrivals to preempt a large job in service only if the remaining size of the large job is still large. For this
reason,SRPT is sometimes termed asemi-preemptivepolicy [120]. The conditional response time ofSRPT
provides a formalization of this intuition. In particular, if we compare the residence times ofSRPT, PSJF,
andSJF we find that

R(x)SJF ≤st R(x)SRPT ≤st R(x)PSJF

Further, when we compare the waiting times of these three policies we find that

W (x)PSJF ≤st W (x)SRPT ≤st W (x)SJF

3.2.4.2 The overall mean response time of SRPT
So far, we have only discussed the conditional response time ofSRPT. Though the conditional response
time is an important measure, typically the metric of interest for applications is the overall response time.
As we have in the past, we can easily write a formula for the mean response time ofSRPT using the results
for T (x)SRPT . In particular, we have that

E[T ]SRPT =
∫ 1

0
E[T (x)]SRPT dF (x)

=
∫ ∞

0

(∫ x

0

dt

1− ρ(t)
+

λm̃2(x)
2(1− ρ(x))2

)
f(x)dx

Though this formula is easy to write, and can be evaluated numerically, it provides little information
about the behavior ofE[T ]SRPT . Further, the numerical calculations are quite time-consuming – in many
situations simulating the policy is faster than evaluating the formulas numerically in Mathematica – and
are numerically imprecise at high loads. As a result, it is important to provide simple bounds on the mean
response time ofSRPT in order to characterize its behavior.

Bounding the mean response time of SRPT
In [241], Wierman, Harchol-Balter, and Osogami prove the first such bounds.

Theorem 3.10
Consider an M/GI/1 SRPT queue. Let K satisfy λm2(x) ≤ Kxρ(x). Then

E[X]
ρ

log
(

1
1− ρ

)
≤ E[T ]SRPT ≤ E[X]

(
K(1− ρ/2)

1− ρ
+
(

1−K

ρ

)
log
(

1
1− ρ

))
Like Theorem3.7 for PSJF, Theorem3.10 is stated in terms of aK such thatλm2(x) ≤ Kxρ(x).

To understandK, note thatK ≤ 1 for all distributions andK ≤ 2/3 for decreasing service distributions.
Further, Theorem3.8provides a characterization ofK in terms of the tail behavior of the service distribution.

There are a number of interesting observations that follow from Theorem3.10. Though the bounds in
Theorem3.10do not completely characterize the behavior ofE[T ]SRPT , they already provide some useful
information. First and foremost, notice thatE[T ]SRPT < ∞ even whenE[X2] = ∞. Further, since the
bounds onE[T ]SRPT in Theorem3.7 are completely independent ofE[X2], they indicate thatSRPT is
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Figure 3.4: This figure shows the mean response time ofSRPT, PS, and FCFS as a function of the
variability of the service distribution (C2[X]). The load is 0.7 and the service distribution is a Weibull with
mean 1 in each case. The bounds shown are in Theorem3.10.

“nearly” insensitive to variability in the service distribution, similarly to what we saw forPSJF. In addition,
as illustrated in Figure3.4, the bounds are as tight as possible without making use of the variability in the
service distribution. To see that the upper bound is tight, consider a deterministic service distributions. Then,

E[T ]SRPT = E[T ]FCFS =
1− ρ/2
1− ρ

E[X]

which is the same as the upper bound withK = 1. Further, the lower bound becomes tight when the service
distribution is highly variable and load is high (as illustrated in Figure3.4).

The proof of Theorem3.10is a bit involved, so we will break up the proof into a number of lemmas that
will be of use later in the thesis.

In order to boundE[T ]SRPT , we start by characterizing the difference in the residence times ofSRPT
andPSJF. It turns out that the difference in the residence times ofSRPT andPSJF is very related to the
difference in the waiting times ofSRPT andPSJF. In particular, define

E[W2] = E[W ]SRPT − E[W ]PSJF =
∫ ∞

0

λx2f(x)F (x)
2(1− ρ(x))2

dx

Lemma 3.11
In an M/GI/1 queue,

2E[W2] = E[R]PSJF − E[R]SRPT
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Proof. We can prove this result by repeated interchanging of the integrals.

2E[W2] =
∫ ∞

0

λx2f(x)F (x)
(1− ρ(x))2

dx

=
∫ ∞

0
f(t)

∫ t

0

xρ′(x)
(1− ρ(x))2

dxdt

=
1
λ

∫ ∞
0

ρ′(t)
1− ρ(t)

−
∫ ∞

0
f(t)

∫ t

0

1
1− ρ(x)

dxdt

= − 1
λ

log(1− ρ)−
∫ ∞

0

F (x)
1− ρ(x)

dx

= E[R]PSJF − E[R]SRPT

�

Next, we relateE[W2] with the waiting time ofPSJF.

Lemma 3.12
In an M/GI/1 queue

E[R]SRPT + 2E[W ]PSJF ≥ E[R]PSJF and thus

E[W ]PSJF ≥ E[W2]

Proof. We start by proving a conditional version of the lemma.

E[R(x)]SRPT + 2E[W (x)]PSJF

=
x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)
(1− ρ(x))(1− ρ(t))

dt +
λm2(x)

(1− ρ(x))2

≥ x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)
(1− ρ(x))2

dt +
λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
− xρ(x)− xρ(x) + λm2(x)

(1− ρ(x))2
+

λm2(x)
(1− ρ(x))2

= E[R(x)]PSJF

Now, we decondition.

E[R]SRPT + 2E[W ]PSJF ≥
∫ ∞

0
E[R(x)]PSJF f(x)dx

= E[R]PSJF
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Further, combining the above with Lemma3.11, we have:

E[W ]PSJF ≥ 1
2
(
E[R]PSJF − E[R]SRPT

)
= E[W2]

�

Finally, we upper bound the sum of the residence time ofSRPT and the waiting time ofPSJF.

Lemma 3.13
Let K satisfy λm2(x) ≤ Kxρ(x).

E[R]SRPT + 2E[W ]PSJF ≤ 1
λ

(
Kρ2

1− ρ
+ 2Kρ + (2K − 1) log(1− ρ)

)

Proof. We start by proving a conditional version of the theorem.

E[R(x)]SRPT + 2E[W (x)]PSJF

=
∫ x

0

dt

1− ρ(t)
+

λm2(x)
(1− ρ(x))2

=
x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)
(1− ρ(x))(1− ρ(t))

dt +
λm2(x)

(1− ρ(x))2

≤ x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)
(1− ρ(x))

dt +
λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
− xρ(x)− xρ(x) + λm2(x)

(1− ρ(x))
+

λm2(x)
(1− ρ(x))2

= E[R(x)]PSJF +
λm2(x)ρ(x)
(1− ρ(x))2

Now, we can decondition as follows:

E[R]SRPT +
∫ ∞

0

λm2(x)
(1− ρ(x))2

f(x)dx

≤
∫ ∞

0

(
x

1− ρ(x)
+

λm2(x)ρ(x)
(1− ρ(x))2

)
f(x)dx

≤ − 1
λ

log(1− ρ) +
K

λ

∫ ∞
0

λxf(x)ρ(x)2

(1− ρ(x))2
dx

= − 1
λ

log(1− ρ) +
K

λ

(
ρ2

1− ρ
+ 2 log(1− ρ) + 2ρ

)
=

1
λ

(
Kρ2

1− ρ
+ 2Kρ + (2K − 1) log(1− ρ)

)
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�

Combining the above lemmas, we can now easily prove Theorem3.10.

Proof of Theorem 3.10. We first prove the upper bound using Lemmas3.11and3.13:

E[T ]SRPT = − 1
2λ

log(1− ρ)− 1
2
E[R]SRPT

+E[W ]PSJF + E[R]SRPT

≤ − 1
2λ

log(1− ρ)

+
1
2λ

(
Kρ2

(1− ρ)
+ 2Kρ + (2K − 1) log(1− ρ)

)
=

(
K − Kρ

2
+ (K − 1)

(
1− ρ

ρ

)
log(1− ρ)

)
E[T ]PS

Next, we prove the lower bound using Lemma3.12:

E[T ]SRPT = − 1
2λ

log(1− ρ)− 1
2
E[R]SRPT + E[W ]PSJF + E[R]SRPT

≥ − 1
2λ

log(1− ρ)− 1
2λ

log(1− ρ)

�

The growth rate of the mean response time of SRPT
The bounds onE[T ]SRPT in Theorem3.10provide a number of useful insights into the behavior of the
mean response time ofSRPT; however they also leave a number of questions unanswered. In particular,
the growth rate ofE[T ]SRPT as a function of load under any specific service distribution cannot be inferred
from Theorem3.10. This is unfortunate because understanding the growth rate ofE[T ]SRPT is fundamental
to benchmarking the performance of other policies. For example, we have seen that a number of policies

includingPSJF andSJF haveE[T ] = Θ

(
1

(1−ρ) log
(

1
1−ρ

)
)

in the M/M/1. It is natural to wonder how this

growth rate compares to that ofE[T ]SRPT . Further, we have results characterizing the growth rate ofPSJF
andSJF under Pareto service distributions, how do these growth rates compare with optimal?

Bansal recently proved the first result characterizing the growth rate ofSRPT under a specific service
distribution. In particular, Bansal derived the growth rate ofSRPT in the M/M/1 queue [23]. Soon after,
Bansal and Gamarnik derived the growth rate ofE[T ]SRPT under a Pareto service distribution [24]. Not
surprisingly, in both casesE[T ]SRPT has far better behavior asρ → 1 than simple policies likePS and
FCFS. Summarizing these two results, we have the following.
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(b) Exponential
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Figure 3.5: This figure illustrates the behavior of mean response time underSRPT, FCFS, andPS as a
function of load.2 The mean response time is scaled by(1− ρ) in order to highlight differences between the
policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with α = 1.2 (thus they haveE[X2] = ∞). In all cases,E[X] = 1. Note thatFCFS is not included in (c)
becauseE[T ]FCFS = ∞ in this case.

Theorem 3.14
In an M/M/1 queue

E[T ]SRPT = Θ

 1

(1− ρ) log
(

1
1−ρ

)


Further in an M/GI/1 queue with X ∼ Pareto(α) where α > 1 so that E[X] < ∞,

E[T ]PSJF =


Θ
(
log
(

1
1−ρ

))
, if α < 2

Θ
(
log2

(
1

1−ρ

))
, if α = 2

Θ
(
(1− ρ)−

α−2
α−1

)
, if α > 2.

Interestingly, a consequence of Theorem3.14is thatSRPT, PSJF, SJF, and threshold based policies
all have the same growth rate for mean response time in the M/M/1 setting. Further, under a Pareto service
distribution,SRPT andPSJF have equivalent growth rates forE[T ]. In fact, the parallel behavior of the
growth rates ofSRPT andPSJF observed under these two service distributions holds much more generally:
Wierman, Harchol-Balter, and Osogami have proven that:

Theorem 3.15
In an M/GI/1 queue, E[T ]SRPT ≤ E[T ]PSJF ≤ 3

2E[T ]SRPT .

Proof. First, let use show thatE[W2], which we have defined asE[W ]SRPT − E[W ]PSJF , is also equal
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to E[T ]SRPT − E[T ]PSJF :

E[T ]SRPT = E[R]SRPT + E[W ]PSJF + E[W2]

=
1
2
E[R]PSJF +

1
2
E[R]SRPT + E[W ]PSJF

= E[T ]PSJF − 1
2
E[R]PSJF +

1
2
E[R]SRPT

= E[T ]PSJF − E[W2]

Combining the above, with Lemma3.12we can complete the proof.

E[T ]PSJF = E[T ]SRPT + E[W2]

= E[T ]SRPT

(
1 +

1
2E[W2] + 1

2E[W2]
E[T ]SRPT

)

≤ E[T ]SRPT

(
1 +

E[W ]PSJF + E[W2]
2E[T ]SRPT

)
≤ 3

2
E[T ]SRPT

�

Theorem3.15is important for many reasons. First and foremost, it is of practical importance thatPSJF,
which is easier to implement thanSRPT since it uses only static properties of jobs, always provides near
optimal mean response times. However, almost as importantly, another consequence of Theorem3.15is that
when trying to characterize the behavior ofE[T ]SRPT it suffices to study the behavior ofE[T ]PSJF , which
is a much simpler task.

Using this observation, we can prove the following result summarizing the effect of an upper bound on
the service distribution on the growth rate ofE[T ]SRPT .

Theorem 3.16
Consider an M/GI/1 queue. If the service distribution is bounded, then

E[T ]SRPT = Θ
(

1
1− ρ

)
.

However, if the service distribution is unbounded, then

E[T ]SRPT = o

(
1

1− ρ

)
.

Notice the huge impact an upper bound on the service distribution has on the behavior ofE[T ] as
ρ → 1. If there is no upper bound, than, in heavy traffic,SRPT provides huge gains over standard policies
like PS andFCFS that haveE[T ] = Θ(1/(1− ρ)). However, when there is an upper bound on the service
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distribution, no scheduling policy can have a heavy traffic growth rate better thanΘ
(

1
1−ρ

)
, which can be

achieved under even the simplest policies.

Proof of Theorem 3.16. We will start by proving the result in the case of a bounded service distribution.
Clearly, the theorem holds for the deterministic service distribution (whereSRPT is equivalent toFCFS),
so we letX be non-deterministic. LetxU be the upper bound of the service distribution andy > 0 be a
point such thatρ(y) < 1− ε for someε > 0. Then

E[T ]SRPT ≥
∫ xu

0

λm̃2(x)f(x)
2(1− ρ(x))2

dx

≥ m̃2(y)
2

∫ xu

y

λxf(x)
(1− ρ(x))2

1
x

dx

≥ m̃2(y)
2xu

∫ xu

y

ρ′(x)
(1− ρ(x))2

dx

=
m̃2(y)
2xu

(
1

1− ρ
− 1

1− ρ(y)

)
∼ 1

1− ρ
asρ → 1

To prove the upper bound, we note that

E[T ]SRPT ≤ E[R]SRPT +
∫ xu

0

λm̃2(x)f(x)
2(1− ρ(x))2

dx

≤ E[R]PSJF +
x2

u

2

∫ y

0

λf(x)
(1− ρ(x))2

dx +
x2

u]
2

∫ xu

y

λxf(x)
(1− ρ(x))2

1
x

dx

≤ E[R]PSJF +
λx2

u

2(1− ρ(y))2
+

x2
u

2y

∫ xu

0

ρ′(x)
(1− ρ(x))2

dx

=
1
λ

log
(

1
1− ρ

)
+

x2
u

2y

(
1

1− ρ
− 1

1− ρ(y)
+

λy

(1− ρ(y))2

)
∼ x2

u

2y

1
1− ρ

asρ → 1

Thus,E[T ]SRPT = Θ
(

1
1−ρ

)
.

Let us now move to the proof of the result in the case of an unbounded service distribution. By Theorem
3.15, we can equivalently studyPSJF. Further, sinceE[R]PSJF = Θ(log(1/(1− ρ))), we need only study
the behavior of the waiting time underPSJF.

E[W ]PSJF =
∫ ∞

0

λm2(x)f(x)
2(1− ρ(x))2

dx

=
1
2

∫ ∞
0

ρ′(x)
(1− ρ(x))2

m2(x)
x

dx
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For any service distribution with a finite mean, we have that forx →∞,

m2(x) =
∫ x

0
t2f(t)dt = o(x).

Thus, for everyε > 0, there is ay(ε) such that for allx > y(ε) m2(x)/x < ε. Further, note that∫ y(ε)

0

ρ′(x)
(1− ρ(x))2

m2(x)
x

≤ λm2(y(ε))
(1− ρ(y(ε)))

F (y(ε))

which is simplyΘ(1) asρ → 1. Thus,

E[W ]PSJF ∼ 1
2

∫ ∞
y(ε)

ρ′(x)
(1− ρ(x))2

m2(x)
x

dx (3.20)

≤ 1
2
ε

∫ ∞
y(ε)

ρ′(x)
(1− ρ(x))2

≤ 1
2

ε

1− ρ

Sinceε > 0 was arbitrary, this completes the proof of the unbounded case.

�

3.2.4.3 Competitive analysis in the M/GI/1
Now that we have characterized the optimal mean response time, it is interesting to go back and understand
“which scheduling polices provide near optimal mean response times for all loads and service distributions?”
In order to address this question, we will borrow the notion ofcompetitive analysisfrom the worst case style
of scheduling analysis, and adjust it to fit our stochastic setting. In particular, we introduce the following
definition:

Definition 3.1 A scheduling policyP is c-competitivewrt D if there exists a constantc such that

E[T ]P ≤ cE[T ]SRPT ∀ρ < 1, andX ∈ D. (3.21)

When no service distribution is specified, it is assumed thatD is the set of all distributions with finite
mean. Further, if there exists somec such thatP is c-competitive, then we say simply thatP is competitive.

The important point in the above definition is that the constantc does not depend on the loadρ or the
service distributionX. Thus, if an algorithm isc-competitive, it means that the response time is no more
thanc times worse under any load or service distribution. Note that becausec must hold across all loads, it
must hold asρ → 1. Further, the interesting case is when the load is very high, since under low loads all
policies are within a constant factor. In fact, it is easy to see that a policyP is c-competitive if and only if
E[T ]P = Θ(E[T ]SRPT ) asρ → 1 under all service distributions.
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Guaranteeing that a policyP is competitive is an extremely strong guarantee about the performance of
P . In fact, in many ways it seems like an unreachable goal. However, we have already seen one policy that
is competitive:PSJF. In particular, Theorem3.15proves thatE[T ]PSJF ≤ 3

2E[T ]SRPT regardless of the
load and service distribution; thusPSJF is 3/2-competitive.

However, outside ofPSJF we have not discussed any other competitive policies in this chapter! Even
the preemptive threshold based policies from whichPSJF is obtained as a limiting case are not competitive
whenE[X2] = ∞. Further, it is immediate to see that no non-preemptive policies are competitive when
E[X2] = ∞, E[T ]SRPT < ∞ while all non-preemptive policies haveE[T ] = ∞. In addition, no blind
policy is competitive since all blind policies haveE[T ] = E[X]/(1− ρ) in the M/M/1 whileE[T ]SRPT =
o(1/(1− ρ)) in this setting.

Despite the fact that non-preemptive and blind policies are not competitive across all service distri-
butions, they can be competitive for certain classes of service distributions. For instance, if the service
distribution is bounded, Theorem3.16tells us thatE[T ]SRPT = Θ(1/(1 − ρ)), which means thatFCFS
andPS, in addition to many other non-preemptive and blind policies, are competitive under bounded distri-
butions. Even outside of bounded distributions, some non-preemptive and blind policies can be competitive.
In particular, it turns out thatSJF is competitive as long asE[X2] < ∞. We will also see thatFB, the blind
policy we will discuss in the next chapter, can be competitive in some settings.

Theorem 3.17
Consider an M/GI/1 SJF queue. Let X1 and X2 be i.i.d. service demands. If E[X2] < ∞, then SJF is

3E[X2]
E[min(X,X1)2]

-competitive.

Notice that, thoughSJF is competitive under service distributions with finite variance, it pays a price in
performance for not using preemption. This price in performance can be seen in the fact that the competitive
ratio ofSJF is much larger than that of its preemptive counterpartPSJF.

Proof. We start by comparing the waiting time ofSJF andPSJF.

E[W ]SJF =
∫ 1

0

λE[X2]
2(1− ρ(x))2

dF (x)

= E[W ]PSJF +
∫ 1

0

λ
∫∞
x t2f(t)dt

2(1− ρ(x))2
dF (x)

We will now apply the Chebyshev integral inequality. For details on the inequality, see [237]. Noting
that

∫∞
x t2f(t)dt is monotonically decreasing and λ

2(1−ρ(x))2
is monotonically increasing, the Chebyshev

integral inequality gives∫ 1

0

λ
∫∞
x t2f(t)dt

2(1− ρ(x))2
dF (x) ≤

∫ 1

0

∫ ∞
x

t2f(t)dtdF (x)
∫ 1

0

λ

2(1− ρ(x))2
dF (x)
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Thus,

E[W ]SJF ≤
∫ 1

0

∫ ∞
x

t2f(t)dtdF (x)
∫ 1

0

λ

2(1− ρ(x))2
dF (x)

≤ E[W ]PSJF +
1

E[X2]

∫ ∞
0

t2f(t)F (t)dt

∫ 1

0

λE[X2]
2(1− ρ(x))2

dF (x)

≤ E[W ]PSJF +
1

E[X2]

(∫ ∞
0

t2f(t)dt− 1
2

∫ ∞
0

2t2f(t)F (t)dt

)
E[W ]SJF

≤ E[W ]PSJF +
(

1− E[min(X, X1)2]
2E[X2]

)
E[W ]SJF

from which it follows that

E[W ]SJF ≤ 2E[X2]
E[min(X, X1)2]

E[W ]PSJF

Finally, noting thatE[R]SJF ≤ E[R]PSJF andE[T ]PSJF ≤ (3/2)E[T ]SRPT , we have

E[T ]SJF ≤ 2E[X2]
E[min(X, X1)2]

E[T ]PSJF

≤ 3E[X2]
E[min(X, X1)2]

E[T ]SRPT

�

3.2.5 Foreground-Background scheduling (FB)
Throughout this chapter we have seen examples of policies that provide small response times by discrimi-
nating in favor of small jobs. In all of the policies we have studied, this discrimination is accomplished by
using job size or remaining size information to prioritize. However, in many applications job size informa-
tion is not available, thus some other job statistic must be used as a substitute for job size when scheduling.
One statistic that can help provide information about the remaining size of jobs is theage(a.k.a. the attained
service) of a job. To see this, consider the case when the service distribution has a decreasing failure rate
(DFR). In this setting, the larger the attained service the longer the remaining size of the job.FB is designed
to perform well in exactly this setting.

FB is not as common a policy as many of the disciplines we have discussed in this chapter and as a re-
sult the literature onFB in different communities has developed somewhat independently. The policy itself
has been referred to by a number of different names, including Foreground-Background Processor-Sharing
(FBPS), Least-Attained-Service-Time first (LAS , or LAST), and Shortest-Elapsed-Time first (SET). Cur-
rently though, it seems thatFB is the commonly excepted name, thoughLAS is still preferred in some
Computer Science communities.

This cacophony of names already provides a fairly complete description of the workings ofFB . Under
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FB the server is shared evenly at all times among the cohort of jobs with the smallest age. Thus, when a
new job arrives it immediately receives service, and continues to reside at the server until its attained service
matches that of the cohort of jobs it preempted, at which point the server is shared evenly among the cohort
and the new job. In this way, when the service distribution has a DFR,FB is sharing the server among the
jobs with the smallest expected remaining size. Thus, in some sense,FB is behaving like a “poor man’s
SRPT.”

ThoughFB behaves likeSRPT when the service distribution is DFR, this clearly will not always be the
case. For example, if the service distribution is IFR, then the jobs with the smallest remaining size are likely
to be the jobs with the largest age. Thus,FB is doing completely the opposite thing, and using a policy that
favors jobs with the largest age (i.e.FCFS) is a much better idea.

The intuition behindFB that we just described can actually be formalized in a very natural way. In
particular, Righter and Shantikumar [188, 189] have proven thatFB optimizes the queue length process
among blind policies when the service distribution has a DFR, but has the largest queue length among blind
policies when the service distribution has an IFR. LetN(t) be the queue length (in jobs) at timet.

Proposition 3.18
In the GI/GI/1, let P be a blind policy and the service distribution be DFR, then for all t ≥ 0,

N(t)FB ≤st N(t)P ≤st N(t)FCFS

Further, if the service distribution is IFR the inequalities are reversed.

This proposition already indicates thatFB has very interesting behavior with respect toE[T ]. For
instance, using Little’s Law, it follows thatE[T ]FB ≤ E[T ]PS for DFR distributions andE[T ]FB ≥
E[T ]PS for IFR distributions. Further, it is easy to see that all blind policies have equivalentN(t) processes
in the M/M/1, thusE[T ]FB = E[T ]PS in this case.

To understand more about the behavior of mean response time underFB, we need to first derive the
behavior of the conditional response time,T (x)FB. After deriving the behavior ofT (x)FB we will return
to a discussion of the behavior ofE[T ]FB.

3.2.5.1 The conditional response time of FB
Let us begin our analysis ofT (x)FB by considering the experience of a tagged arrival,jx, of sizex. Notice
that no job with age≥ x will ever receive service while there is a job with age< x in the system. Thus,
we can transform the service distribution fromX to X̃x = X ∧ x without affecting theT (x). Further,
notice that the transformed system is still work conserving. Finally, notice thatjx finishes exactly when this
transformed system goes idle. Thus, if we defineQFB

x as the steady state work in transformed system and
B̃x(y) as the length of a busy period started byy work where arrivals occur at rateλ and with sizeX̃x, we
have

T (x)FB d= B̃x(x + QFB
x ) (3.22)
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From this equation it is easy to obtain the moments and the transform ofT (x)FB in the M/GI/1 setting.

E[T (x)]FB =
x

1− ρ̃(x)
+

λm̃2(x)
2(1− ρ̃(x))2

(3.23)

V ar[T (x)]FB =
λxm̃2(x)

(1− ρ̃(x))3
+

λm̃3(x)
3(1− ρ̃(x))3

+
3
4

(
λm̃2(x)

(1− ρ̃(x))2

)2

(3.24)

LT (x)(s)
FB =

(1− ρ̃(x))(s + λ− λL
B̃x

(s))

s
e−x(s+λ−λL

B̃x
(s)) (3.25)

whereρ̃(x) = λm̃1(x) andm̃i(x) = i
∫ x
0 ti−1F (t)dt = mi(x) + xiF (x).

Since a job immediately receives service underFB, the residence time ofFB is equal to the response
time of FB. However, the formT (x) underFB parallels that ofSRPT so closely, that it will be useful for
analytic purposes to break the formulas for the moments ofFB into pseudo residence time and waiting time
pieces. Thus, we define

R(x)FB d= B̃x(x)

E[R(x)]FB =
x

1− ρ̃(x)

V ar[R(x)]FB =
λxm̃2(x)

(1− ρ̃(x))3

and

W (x)FB d= B̃x(QFB
x )

E[W (x)]FB =
λm̃2(x)

2(1− ρ̃(x))2

V ar[W (x)]FB =
λm̃3(x)

3(1− ρ̃(x))3
+

3
4

(
λm̃2(x)

(1− ρ̃(x))2

)2

Clearly, the formulas for the moments ofFB appear to be quite similar to the corresponding results for
PSJF andSRPT that we derived in previous sections. This is an indication thatFB truly is discriminating
in favor of small jobs, despite the fact that it is scheduling without any information about service demands.
To illustrate the parallels betweenFB and policies that prioritize small jobs, notice that by replacingmi(x)
in the formulas forPSJF with m̃(x) we obtain the corresponding formulas forFB. Thus,FB is equivalent
to runningPSJF on a transformed service distribution.

However, thoughFB mimics the behavior ofPSJF, FB clearly pays a price for not using job size
information to prioritize. Sincemi(x) ≤ m̃(x), we can see that the mean and variance ofT (x) are smaller
underPSJF than underFB. Similarly, it is easy to bound the first few moments ofT (x)SRPT by those of
T (x)FB.

Theorem 3.19
In an M/GI/1 queue for P ∈ {SRPT, PSJF}, E[T (x)]P ≤ E[T (x)]FB and V ar[T (x)]P ≤ V ar[T (x)]FB .

Further, we can bound the distributional behavior ofT (x)PSJF by that ofT (x)FB. Comparing (3.22)
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Figure 3.6: This figure shows the mean response time ofFB, PS, andFCFS as a function of the variability
of the service distribution (C2[X]). The load is 0.7 and the service distribution is a Weibull with mean 1 in
each case.

with (3.18) immediately gives that in an M/GI/1T (x)PSJF ≤st T (x)FB. In addition, with a lot more work
Nuyens, Wierman, and Zwart [161] recently proved the following stochastic bound comparing bothSRPT
andPSJF to FB.

Theorem 3.20
In an M/GI/1 queue,

R(x)PSJF + W (x)SRPT ≤st T (x)FB

Notice that it follows from Theorem3.20that bothT (x)PSJF ≤st T (x)FB andT (x)SRPT ≤st T (x)FB

since we have already observed thatR(x)SRPT ≤st R(x)PSJF andW (x)PSJF ≤st W (x)SRPT .

3.2.5.2 The overall response time of FB
Now that we understandT (x)FB, we can use that information to analyzeE[T ]FB. Like we have done in
the past, we can calculateE[T ]FB as follows:

E[T ]FB =
∫ 1

0
E[T (x)]dF (x)

However, as in the cases ofPSJF andSRPT, the complicated form ofE[T (x)] makes it difficult to under-
stand the behavior ofE[T ], so more work is necessary.

We have already seen some bounds onE[T ]FB. In particular, from Proposition3.18we know that for
all blind policiesP , E[T ]FB ≤ E[T ]P when the service distribution has a DFR, and that the reverse holds
when the service distribution has an IFR.
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In addition, it follows from Theorem3.20that

E[T ]SRPT ≤ E[T ]PSJF ≤ E[T ]FB.

It is not really surprising that usingFB results in larger response times than using eitherSRPT or PSJF
sinceFB does not use job size information while bothSRPT andPSJF do. However, what is surprising
is that, although the mean response time ofFB is larger than those ofPSJF or SRPT, in some cases
E[T ]FB still has the same growth rate asPSJF andSRPT. In particular, Bansal and Gamarnik prove that
E[T ]FB = Θ(E[T ]SRPT ) when the service distribution is Pareto [24].

Theorem 3.21
In an M/GI/1 queue with X ∼ Pareto(α) where α > 1 so that E[X] < ∞,

E[T ]FB =


Θ
(
log
(

1
1−ρ

))
, if α < 2

Θ
(
log2

(
1

1−ρ

))
, if α = 2

Θ
(
(1− ρ)−

α−2
α−1

)
, if α > 2.

Though the growth rate ofE[T ]FB is optimal in the case of a Pareto service distribution, it is clear that
the growth rate ofFB is not always so good. For instance, in the M/M/1,

E[T ]M/M/1/FB = Θ
(

1
1− ρ

)
.

Even worse, in the M/D/1,FB finishes every job at the end of the busy period into which it arrives. Thus,

E[T ]M/D/1/FB = θ

(
1

(1− ρ)2

)
,

which is as bad as possible under any work conserving policy. Even distributions that are not deterministic
can cause the heavy traffic growth rate ofFB to be quite bad. In particular, Nuyens has illustrated that
E[T ]FB has a faster growth rate thanPS for a large class of distributions that generalize uniform distribu-
tions [159]. We strengthen the result of Nuyens here.

Theorem 3.22
Consider an M/GI/1 with a service distribution of the form F (x) ∼ α(xU − x)β for some α, β > 0 and
xU < ∞ as x → xU . Then as ρ → 1,

E[T ]FB = Θ
(

1
(1− ρ)1+1/(β+1)

)
Note that asβ → 0, we again get behavior matching the worst possible behavior under any work-

conserving policy. Further, asβ → ∞ the growth rate converges to1/(1 − ρ), which is the same growth
rate ofPS.

Proof. First, note thatE[R(x)]FB ≤ x
1−ρ , so it will not dominate the behavior asρ → 1 in this setting
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and we can focus on the waiting time. Lettingµ(x) = f(x)/F (x) be the failure rate, we have (asρ → 1),

E[W ]FB =
∫ xU

0

λm̃2(x)f(x)
2(1− ρ̃(x))2

dx

= Θ
(∫ xU

y

ρ̃′(x)
(1− ρ̃(x))2

µ(x)dx

)
for arbitrary constanty

where the second step follows from (i) noting that the contribution of sizes from0 to y is asymptotically
negligible asρ → 1 since the load these jobs experience is bounded byρ(y), and (ii) boundingm̃2(x)
betweenm̃2(y) andE[X2].

Thus, what remains is to understand the behavior ofµ(x). Using the behavior ofF (x) in the statement
of the theorem, we have that asx → xU ,

µ(x) ∼ αβ(xU − x)β−1

α(xU − x)β
∼ β

(xU − x)

Further, asρ → 1,

1− ρ̃(x) ∼ ρ− ρ̃(x) = λ

∫ xU

x
α(xU − t)βdt ∼ λα(xU − t)β+1β

Thus, choosingy large enough and then lettingρ → 1, we have

E[W ]FB = Θ
(∫ xU

y

ρ̃′(x)
(1− ρ̃(x))2

µ(x)dx

)
= Θ

(∫ xU

y

ρ̃′(x)
(1− ρ̃(x))2+1/(β+1)

dx

)
= Θ

(
1

(1− ρ)1+1/(β+1)

)
where the interchange of the integral and the limit in the second step is justified using the bounded conver-
gence theorem.
�

The results we have seen so far illustrate a trend that is common in results aboutFB: the heavy traffic
growth rate ofFB is better than that ofPS andFCFS when the service distribution is “highly variable”,
and worse when the service distribution is “lightly variable.” However, the results we have seen so far only
consider a few specific classes of distributions, so it has not been determined whatpropertiesof the service
distribution lead to good/bad heavy-traffic growth rates underFB. As a step towards answering this question,
Nuyens and Wierman [160] prove the following result. The theorem shows that a key determining factor as
to whether the heavy traffic growth rate ofFB is better or worse thatPS andFCFS is whether or not there
is an upper bound on the service distribution.
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Figure 3.7: This figure illustrates the behavior of mean response time underFB , SRPT, FCFS, andPS
as a function of load.3 The mean response time is scaled by(1−ρ) in order to highlight differences between
the policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with α = 1.2 (thus they haveE[X2] = ∞). In all cases,E[X] = 1. Note thatFCFS is not included in (c)
becauseE[T ]FCFS = ∞ in this case.

Theorem 3.23
Consider an M/GI/1 queue with a continuous service distribution with failure rate µ(x).

(i) If the service distribution is bounded, then E[T ]FB = Ω(1/(1− ρ)) as ρ → 1.

(ii) If the service distribution is unbounded and m̃2(x)µ(x) = O(1), then E[T ]FB = O(1/(1 − ρ)) as
ρ → 1.

Note that the condition (ii ) holds for most well-behaved unbounded distributions. For instance, if
E[X2] < ∞, then it simply requires thatµ(x) is bounded, which occurs under all common unbounded distri-
butions (though it is possible to construct examples where this is not the case, e.g.,f(x) =

∑∞
n=1 1[n,n+2−n](x)).

On the other hand, ifE[X2] = ∞, thenµ(x)m̃2(x) = O(1) requires a tradeoff between the growth of the
second moment and the rate of decrease of the hazard rate. However, this tradeoff is met under most com-
mon distributions. For example, under regularly varying distributionsµ(x) = Θ(1/x) andm2(x) = O(x).

Proof. We will start by proving the result in the case of a bounded service distribution. LetxU be the
upper bound of the service distribution. Note thatρ̃(x) ≥ ρ(x) andρ′(x) = λxf(x). Then, we have for all
y ≥ 0,

E[T ]FB ≥
∫ xU

0

λm̃2(x)f(x)
2(1− ρ(x))2

dx

≥ m̃2(y)
2

∫ xU

y

λxf(x)
(1− ρ(x))2

1
x

dx

≥ m̃2(y)
2xU

∫ xU

y

ρ′(x)
(1− ρ(x))2

dx = Ω
(

1
1− ρ

)
asρ → 1.
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To prove the result in the case of an unbounded service distribution, note thatρ̃′(x) = λF (x). Then for all
z ≥ 0,

E[T ]FB =
∫ ∞

0

x

1− ρ̃(x)
f(x)dx +

∫ ∞
0

λm̃2(x)f(x)
2(1− ρ̃(x))2

dx

≤ E[X]
1− ρ

+
∫ z

0

λ

2
m̃2(x)

(1− ρ̃(x))2
f(x)dx +

∫ ∞
z

m̃2(x)µ(x)
ρ̃′(x)

2(1− ρ̃(x))2
dx. (3.26)

Sincem̃2(x)µ(x) = O(1), there exists anx0 and anN such thatm̃2(x)µ(x) ≤ N for x ≥ x0. Taking
z = x0 in (3.26) yields that

E[T ]FB ≤ E[X]
1− ρ

+
λx0x

2
0F (x0)

2(1− ρ̃(x0))2
+
∫ ∞

x0

m̃2(x)µ(x)
ρ̃′(x)

2(1− ρ̃(x))2
dx

≤ E[X]
1− ρ

+ O(1) +
N

1− ρ
= O

(
1

1− ρ

)
asρ → 1.

�

3.2.5.3 When is FB competitive?
Now that we have spent some time analyzing the mean response time underFB, let us contrast the behavior
of FB with that of SRPT. In particular, let us move to a discussion of the competitive ratio ofFB. Since
FB does not use job size information to schedule, it is clear that it cannot be competitive across all service
distributions – we have already discussed a number of distributions whereFB is worse than evenPS.
However, when the service distribution has a DFR, we have seen thatFB manages to “prioritize small jobs”
in a certain sense. That is,FB prioritizes jobs with small ages, and jobs with small ages are more likely to
have small remaining sizes under DFR distributions. Thus, under DFR distributions, one expects thatFB
provides smallE[T ], though the response times will certainly be larger than in policies such asPSJF that
do not time-share.

BecauseFB optimizesE[T ] among blind policies when the service distribution is DFR, we know that

for all DFR distributions,E[T ]FB = O
(

1
1−ρ

)
. However, sinceE[T ]FB = E[X]/(1 − ρ) in the M/M/1,

it is clear thatFB is not competitive for all DFR distributions. But, if the failure rate is decreasing strongly
enough,FB is competitive. In particular, we will show that for distributions where the failure rate, denoted
µ(x), is such thatµ(x) = Θ(1/x), FB is competitive. This property holds for a large class of practical
distributions:O-regularly varyingdistributions. The class of O-regularly varying distributions generalizes
regularly varying distributions, and thus includes a wide array of practical distributions such as Pareto dis-
tributions. For some background on these distributions, see Section2.4.2.3.

Theorem 3.24
In an M/GI/1 queue with F ∈ OR, FB is competitive with respect to E[T ].

Proof. Let us begin by deriving a sufficient condition for proving thatFB is competitive. In particular, we
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will argue thatFB is competitive when

sup
x

1− ρ(x)
1− ρ̃(x)

< γ < ∞ (3.27)

To prove this, we calculate as follows. Noting thatE[R(x)]FB is exactly1−ρ(x)
1−ρ̃(x)E[R(x)]PSJF andE[W (x)]FB

is exactly(1− ρ(x))2/(1− ρ̃(x))2E[W (x)]SRPT we have

E[T (x)]FB =
1− ρ(x)
1− ρ̃(x)

E[R(x)]PSJF +
(

1− ρ(x)
1− ρ̃(x)

)2

E[W (x)]SRPT

≤
(

1− ρ(x)
1− ρ̃(x)

)2 (
E[R(x)]PSJF + E[W (x)]SRPT

)
≤ γ2

(
E[R(x)]PSJF + E[W (x)]SRPT

)
(3.28)

Further, we have that

E[R(x)]PSJF − E[R(x)]SRPT =
x

1− ρ(x)
−
∫ x

0

dt

1− ρ(t)

=
∫ x

0

(ρ(x)− ρ(t))dt

(1− ρ(t))(1− ρ(x))

≤
∫ x

0

(ρ(x)− ρ(t))dt

(1− ρ(x))2

=
λ
∫ x
0 t2f(t)dt

(1− ρ(x))2

≤ 2E[W (x)]SRPT (3.29)

Combining (3.28) and (3.29) we have that

E[T (x)]FB ≤ 3γ2E[T (x)]SRPT

Thus, after proving that (3.27) holds for the class of O-regularly varying distributions, it follows that
E[T ]FB ≤ 3γ2E[T ]SRPT .

To prove that (3.27) holds, begin by noting that for allρ bounded away from 1, (3.27) holds trivially.
Next, noticeρ− ρ(x) = λ

∫∞
x tdF (t) and, from partial integration we have that∫ ∞

x
tdF (t) = −

∫ ∞
x

tdF (t) = −tF (t)|∞t=x +
∫ ∞

x
F (t)dt = xF (t) +

∫ ∞
x

F (t)dt

It then follows that

lim
x→∞

lim
ρ→1

1− ρ(x)
1− ρ̃(x)

= lim
x→∞

∫∞
x tdF (t)∫∞
x F (t)dt

= 1 + lim
x→∞

xF (x)∫∞
x F (t)dt

Now, we complete the proof by applying Karamata’s Theorem forOR distributions from [56].
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�

3.2.6 Other priority based policies
To this point, we have focused almost entirely on “smart” priority based policies, i.e. policies that prioritize
small jobs. It is natural to focus on such policies since prioritizing small job sizes typically results in
policies that provide small mean response times. However, it is important to at least mention policies that
use a contrasting heuristic – policies that prioritize large job sizes.

We have seen that there are a wide variety of different policies that prioritize small jobs, similarly
there are a number of different policies that prioritize large job sizes. The three most common poli-
cies are Longest-Remaining-Processing-Time first (LRPT), Preemptive-Longest-Job-First (PLJF), and non-
preemptive Longest-Job-First (LJF). Though, for the most part, these policies are not of practical interest,
they provide an interesting contrast in behavior when compared with policies that favor small jobs. Further,
we will find them useful as upper bounds on a number of occasions in the thesis.

Our goal in this section is simply to provide some background introducing each ofLRPT, PLJF, and
LJF.

3.2.6.1 Longest-Remaining-Processing-Time (LRPT)
UnderLRPT, the job in the system with the longest remaining size is given preemptive priority. Thus,
underLRPT no job can finish service before the end of a busy period because if it were to do so it would
have smaller remaining size than another job in the system. As a result,LRPT finishes every job at the last
moment possible under any work conserving policy.

Using the above observation, the analysis ofLRPT is fairly straightforward. In particular, a tagged job
of sizex will finish at the end of the residual busy period into which it arrives. That is, it will finish at the
end of a busy period started byQ + x work. Thus,

T (x)LRPT = B(x + Q)

The moments and transform ofLRPT follow immediately from the above formula.

E[T (x)]LRPT =
x

1− ρ
+

λE[X2]
2(1− ρ)2

V ar[T (x)]LRPT =
λxE[X2]
(1− ρ)3

+
λE[X3]
(1− ρ)3

+
3
4

(
λE[X2]
(1− ρ)2

)2

LT (x)(s)
LRPT =

(1− ρ)(s + λ− λLB(s))
s

e−x(s+λ−λLB(s))

It is important to notice thatE[T ]LRPT = Θ(1/(1− ρ)2) asρ → 1, which provides an upper bound on the
heavy traffic growth rate of any work conserving policy.
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3.2.6.2 Preemptive-Longest-Job-First (PLJF)
The second policy that favors long jobs which we will introduce isPLJF. UnderPLJF the job in the system
with the largest original size receives preemptive priority. Thus, a job of sizex can only receive service
when there are no jobs of size> x in the system.

As with PSJF, PLJF can be viewed as the limiting case of a preemptive priority queue. Thus, we can
obtain the moments and transform of response time directly from the results in Section3.2.3. For example,
we can write the mean and variance ofT (x) as follows:

E[T (x)]PLJF =
x

1− ρ + ρ(x)
+

λ(E[X2]−m2(x))
2(1− ρ + ρ(x))2

V ar[T (x)]PLJF =
λx(E[X2]−m2(x))

(1− ρ− ρ(x))3
+

λ(E[X3]−m3(x))
(1− ρ + ρ(x))3

+
3
4

(
λ(E[X2]−m2(x))

(1− ρ + ρ(x))2

)2

3.2.6.3 Non-preemptive Longest-Job-First (LJF)
The last policy we will discuss in this section isLJF. UnderLJF the job in the system with the largest
original size receives non-preemptive service. That is, at completion instants, the largest job in the queue is
chosen for service, and the service of this job is not interrupted, even if a larger job arrives.

As with SJF, LJF can be viewed as the limiting case of a non-preemptive priority queue. So, the
moments and transform of the response time ofLJF follow from taking the appropriate limits of the results
in Section3.2.2. In the case of the first and second moments ofT (x), this results in:

E[T (x)]LJF = x +
λE[X2]

2(1− ρ + ρ(x))2

E[W (x)2]LJF =
λE[X3]

(1− ρ + ρ(x))3
+

λ2m2(x)E[X2]
(1− ρ + ρ(x))4

3.3 Concluding remarks
In this chapter we have provided an overview of the common scheduling policies and analytic techniques
that are the basis of the theoretic study of scheduling in queueing. We have covered a range of simple
common policies, such asFCFS, PLCFS, andPS, in addition to a range of priority based policies, such
asPSJF, SRPT, andFB. For each of these policies we have discussed primarily the mean response time
metric, though we often presented the Laplace transform of response time as well. In addition, we pre-
sented a number of different techniques that are used to analyze scheduling policies in the M/GI/1 setting.
These techniques have ranged from tagged job techniques and branching process methods, to asymptotic
approaches and renewal arguments.

Figure3.8illustrates the comparison between a number of the policies we have discussed. We have seen
thatFCFS, probably the simplest and most common policy, actually performs very well when job sizes are
not variable. For instance, under deterministic job sizesFCFS is optimal forE[T ]. But, when job sizes are
highly variable,FCFS is a disaster because many small jobs are forced to queue up behind large jobs.PS,
another simple and common policy, time-shares the server in order to allow small jobs to bypass large jobs
in the queue. This is effective when variability is high, andPS outperformsFCFS if C2[X] > 1, but when



94 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

load, ρ

E
[T

] (
1−

ρ)

 

 

FB
PS
FCFS, SRPT, PSJF

(a) Deterministic

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

load, ρ

E
[T

] (
1−

ρ)

 

 

FB, PS, FCFS
PSJF
SRPT

(b) Exponential
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(c) Pareto (α = 1.2)

Figure 3.8: This figure illustrates the behavior of mean response time as a function of load under a range
of common policies. The mean response time is scaled by(1− ρ) in order to highlight differences between
the policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with α = 1.2 (thus they haveE[X2] = ∞). In all cases,E[X] = 1. Note thatFCFS is not included in (c)
becauseE[T ]FCFS = ∞ in this case.

job sizes are not variable,PS can give up as much as a factor of 2 when compared withFCFS. However,
beyond these simple policies, we have seen that policies that prioritize small jobs can provide dramatic
improvements in mean response time.SRPT andPSJF perform well across all service distributions, and
provide orders-of-magnitude improvements in mean response time when job size variability is high. Further,
even without knowing job sizes,FB is able to almost match the performance ofSRPT andPSJF when job
sizes are highly variable.

In this chapter we have primarily presented classical results about scheduling policies. However, apart
from the simplest policies, classical results provide very complex formulas characterizing the behavior of
mean response time. For example, the in order to calculateE[T ]SRPT it is necessary to numerically evaluate
a triply-nested integral. Typically, it is faster to simulate the result than it is to evaluate it numerically. The
complexity of the results have hidden many behavioral properties of these policies for many years. To
remedy this, we have provided a number of new results characterizing the behavioral properties of priority-
based policies such asSRPT, PSJF, andFB. In particular, we have provide new results showing thatSRPT
andPSJF are “nearly insensitive” to job size variability (Theorems3.7 and3.10) and we have proven a
number of new results characterizing the growth rate ofE[T ] as a function of load under priority based
policies (e.g. Theorems3.16and3.23). Surprisingly, we have found that the growth rate under policies that
prioritize small jobs is strongly tied to properties of the service distribution, as illustrated in Figure3.8.

Let us end this chapter by reminding the reader that there are many gaps between the traditional theo-
retical results that we have summarized in this chapter and the needs of system designers. As we discussed
in Chapter1, the idealized policies traditionally studied in theory are not implemented in practice. Further,
many other metrics besides mean response time are important in practice. Finally, the M/GI/1 model that
we have focused on in this chapter ignores many factors that are important in practice. Bridging these gaps
will be the focus of the remainder of the thesis.
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Theoretical research studying the scheduling of queues has traditionally focused on
a limited range of idealized scheduling policies, however these idealized policies
are hardly ever implemented in their pure form in computer systems. For example,
though many recent systems have been designed using the heuristic of “prioritizing
small jobs” none have implemented pureSRPT. There are many reasons for this.
One reason is that, in many cases, job sizes and remaining sizes are not known
exactly, and must be estimated. Another reason is that metrics beyond mean re-
sponse time are also important. For instance, if one wants to provide “fair” service
or QoS guarantees, then hybrids ofSRPT will outperform the pure version. In
addition, one can easily list many other reasons why the idealized policies that are
traditionally studied in theory are not used in practice.

To provide theoretical results that are applicable to the policies implemented in
practice, it is important to move beyond the study of individual scheduling poli-
cies. In Part II of this thesis, we develop a new theory for scheduling based on
studying scheduling heuristics and techniques instead of individual policies. For
example, though pureSRPT is not implemented in practice, the policies that are
implemented still obey the same general heuristic of “prioritizing small jobs.” So,
by characterizing the performance of all policies that “prioritize small jobs,” we
can provide theoretical results for the policies that are implemented in practice.
Further, the analysis of scheduling classifications exposes the performance impact
of scheduling techniques and heuristics, which provides a deeper theoretical under-
standing of scheduling than the analysis of individual policies.

Part II is divided into two chapters. In Chapter4 we introduce classifications of
scheduling policies based onscheduling heuristics(e.g. we introduce classes of
policies that prioritize small/large jobs); and then in Chapter5 we introduce classi-
fications of scheduling policies based onscheduling techniques(e.g. we formalize
the class of age based policies, the class of remaining size based policies, and oth-
ers). Throughout these chapters, in addition to defining the classifications, we prove
bounds on the mean response time of each class.

The classifications we introduce in Part II of the thesis serve as building blocks for
the remainder of the thesis. We will return to these classes throughout the thesis in
order to discuss their performance with respect to other performance metrics such
as fairness and predictability.





CHAPTER 4

Classification via scheduling heuristics

Many recent designs of computer systems have been motivated by the optimality ofSRPT for mean re-
sponse time, but none have implemented pureSRPT. For example, in web servers, the version ofSRPT
that was implemented uses only 5-10 priority levels and prioritizes based on estimates of the remaining
service demands of jobs. However, the policies that are implemented, though not pureSRPT, still obey
the heuristic of “prioritizing small jobs.” Thus, to provide theoretical results that are applicable to the poli-
cies implemented in practice, it is important to move beyond the study of individual scheduling policies
and study scheduling heuristics instead. By proving results about a class of policies that “prioritizes small
jobs” instead of just proving results aboutSRPT, we can provide results for the policies that are actually
implemented in practice.

The heuristic of “prioritizing small jobs” is probably the most common scheduling heuristic, but many
others are also used. In this chapter, we introduce and study classifications of scheduling policies that
formalize four common scheduling heuristics:

(i) TheSMART classification formalizes the heuristic of prioritizing small jobs

(ii) TheFOOLISH classification formalizes the heuristic of prioritizing large jobs

(iii) TheSYMMETRIC classification is a broad generalization of the classicalPS policy

(iv) ThePROTECTIVE class formalizes a notion of fairness

These classes are illustrated in Figure4.1. TheSMART class was introduced by Wierman et. al. [241]; the
FOOLISH class is novel to this thesis; theSYMMETRIC class was introduced by Kelly [113] in the context
of queueing networks; and thePROTECTIVE class was introduced by Henderson and Friedman [78].

The range of scheduling heuristics spanned by these four classes is broad enough to allow us to charac-
terize the impact of disparate scheduling heuristics. These four heuristics represent the type of scheduling
used in a wide range of computer applications. The heuristic of biasing towards small jobs sizes has been
applied to a range of applications, including both web servers [52, 96, 182] and databases [138, 139]. While
FOOLISH policies are not practical in many settings, in some cases it is necessary for large user tasks
to receive precedence over smaller background tasks.SYMMETRIC disciplines, such asPS, are primarily
used to model the behavior of scheduling policies in network applications, such as routers [34, 179]. Finally,
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Figure 4.1: An illustration of the common policies that fall into each of the classifications studied in
this thesis. The scheduling heuristic classifications introduced in this chapter are shown in ovals and the
scheduling technique classifications introduced in Chapter5 are shown in rectangles.

PROTECTIVE policies have recently been suggested for use in applications where concerns about fairness
are prevalent, such as web servers.

For each of the four scheduling heuristics described above, this chapter provides an introduction to the
classification that includes examples of policies in the class and bounds on bothE[T (x)] andE[T ] for
policies in the class. The bounds onE[T ] help to characterize the overall efficiency of each heuristic and
the bounds onE[T (x)] illustrate the effect of scheduling heuristics on the response times of individual job
sizes, which is important when contrasting the impact of the heuristics.

The chapter is organized as follows. We begin with theSMART class in Section4.1. Because of the
practical importance of “prioritizing small jobs,” we will also discuss the tradeoff between breadth of the
class and the tightness of results provable about the class in Section4.2 using a generalization ofSMART
calledSMARTε. TheSMARTε classification will allow us to include policies that “prioritize small jobs”
without exact size information. Next, we move to a discussion of theFOOLISH classification in Section
4.3, which is followed by discussions of theSYMMETRIC class in Section4.4 and thePROTECTIVE
class in Section4.5. Finally, we conclude the chapter in Section4.6by contrasting the bounds onE[T ] and
E[T (x)] under the four scheduling heuristics discussed in the chapter.

Though we will discuss a number of scheduling heuristics in this chapter, one heuristic in particular is by
far the most interesting from a practical perspective: that of prioritizing small jobs. Thus, the definitions of
SMART andSMARTε represent an important contribution both theoretically and practically. We will prove
that all SMART policies are within a factor of 2 of optimal with respect to mean response time. Further,
we will show that even when policies prioritize small jobs using only estimates of job sizes, they are still
within a constant factor of optimal with respect to mean response time, where the constant depends on the
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accuracy of the estimates. These results provide a theoretical validation of recent designs for web servers,
wireless networks, etc. that apply the heuristic of “prioritizing small jobs” but do not implement pureSRPT
[182, 131, 130, 102, 136]. Further, these results aid system designers in determining how good job size
estimates must be to provide a desired level of performance.

4.1 The class of SMART policies
It is well known that policies that “prioritize small jobs” perform well with respect to mean response time. As
we have already discussed, this idea has been fundamental to many computer systems applications ranging
from web servers and routers to supercomputing centers and operating systems. However, despite the fact
that the same heuristic guides all these implementations, the policies that result differ due to (i) implemen-
tation restrictions and (ii) concerns about metrics other than mean response time (e.g. avoiding starvation
of large jobs). In particular, hybrid policies are used instead of the idealized policies that prioritize small
jobs that are studied in the theoretical literature, such asSRPT andPSJF. TheSMART class formalizes
the heuristic of “prioritizing small jobs” in order to provide “SMAll Response Times1” using three simple
properties described below. These three properties are broad enough to allow the class to include practical
hybrid policies and simple enough to be easy to understand and maintain.

In this section, we will define the class ofSMART policies and then validate the heuristic of “prioritizing
small jobs” by deriving simple bounds on the mean response time of any policy in theSMART class. Our
bounds illustrate thatall policies in theSMART class have near optimal mean response times. In fact, all
SMART policies have mean response time within a factor of two of optimal across all loads and all service
distributions. In addition to bounding the overall mean response time underSMART policies, we also prove
stochastic bounds on the conditional response time,T (x), underSMART policies.

Though we only bound the response time ofSMART policies in this section, theSMART class will
serve as a fundamental part of the thesis, and so we will return to theSMART class throughout the thesis in
order to discuss howSMART policies perform with respect to many other important performance metrics,
e.g. we will discuss the response time distribution underSMART policies in Chapter6 and we will discuss
the fairness ofSMART policies in Chapter7.

4.1.1 Defining SMART scheduling
We will now formally define theSMART class. Jobs will typically be denoted bya, b, or c. Joba will have
remaining sizera, original sizesa, and arrival timeta. The original sizes, remaining sizes, and arrival times
of b andc are defined similarly. Throughout, we definejob a to have priority over jobb if job b can never
run while joba is in the system.

We now defineSMART as follows.

Definition 4.1 A work conserving policyP belongs to theSMART class, denotedP ∈ SMART, if it obeys
the following properties.

Bias Property: If rb > sa, then joba has priority over jobb.

1We thank Hanoch Levy for his suggestion of this acronym.
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Figure 4.2: These diagrams illustrate the priority structure induced by the Bias Property in the definition of
SMART (Definition4.1). Furthermore, the Consistency and Transitivity properties in theSMART definition
guarantee that a job will find at most one job with higher priority in the white region upon arrival.

Consistency Property: If job a ever receives service while jobb is in the system, thereafter joba has
priority over jobb.

Transitivity Property: If an arriving job b preempts jobc at timet; thereafter, until jobc receives service,
every arrival,a, with sizesa < sb is given priority over jobc.2

This definition has been crafted to mimic the heuristic of biasing towards jobs that are (originally) short
or have small remaining service requirements. Each of the three properties formalizes a notion of “smart”
scheduling. The Bias Property guarantees that the job being run at the server has remaining size smaller
than the original size of all jobs in the system. In particular, this implies that the server will never work on
a new arrivalof size greater thanx while a previous arrival of original sizex is in the system. The priority
structure enforced by the Bias Property is illustrated in Figure4.2.

The Consistency and Transitivity Properties ensure coherency in the priority structure enforced by the
Bias Property. In particular, the Consistency Property prevents time-sharing by guaranteeing that after joba
is chosen to run ahead ofb, job b will never run ahead of joba. Said a different way, this means that once
job a is given priority over jobb, job a will forever have priority overb. This makes intuitive sense because
our priority function is based on the heuristic of giving priority to small jobs, and as joba receives service,
it can only get smaller. Finally, the Transitivity Property guarantees thatSMART policies do not second
guess themselves: if an arrivala is estimated to be “smaller” than jobb (and hence is given priority over job
b), future arrivals smaller thana are also considered “smaller” thanb until b receives service.

It is important to point out that the definition ofSMART has been constructed so as not to enforce a
total ordering on the priorities of jobs in the system. Instead, only apartial ordering is forced, and thus
SMART policies can, for instance, change how the policy makes decisions at arrival and departure instants.
See Figure4.3 for an example. This is an important point to bring out because traditional analysis of

2Note that every such joba would have had priority over jobb at timet due to the Bias Property sincesa < sb = rb(t), where
rb(t) is the remaining size ofb at timet.
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Figure 4.3: This example illustrates that theSMART definition only enforces a partial ordering on the
priorities of jobs in the system. Thus aSMART policy may change its priority rule over time, e.g. from
PSJF to SRPT at time 9 in the example. In the diagram, an arrow froma to b indicates thata has priority
over b. Up until time 9, jobs have been scheduled according toPSJF . However, after time 9, ifPSJF
scheduling is continued, jobd will receive service before joba, and if SRPT is used instead, joba will
receive service before jobd. Both of these choices are possible regardless of the priority rule used up to
time 9.

scheduling policies assumes that policies obey one fixed priority rule, whileSMART policies may change
their prioritization rule over time. This fact complicates much of the analysis of theSMART class, but (as
we will see) is important for the applicability of the classification to practical settings.

4.1.2 Examples of SMART policies
Many common policies are part of theSMART class – Figure4.1 provides an overview. Of course, the
SMART class includesSRPT andPSJF. Further, it is easy to prove that theSMART class includes the
RS policy, which assigns to each job the product of its remaining size and its original size and then gives
highest priority to the job with lowest product. Likewise, theSMART class includes many generalizations
of these policies. Specifically,SMART includes all policies of the formRiSj , wherei, j > 0 and a job is
assigned the product of its remaining size raised to theith power and its original size raised to thejth power
(where again the job with highest priority is the one with lowest product). TheSMART class also includes
a range of policies having more complicated priority schemes. To illustrate this breadth, we introduce the
SMART∗ classification, a subset ofSMART including a range of static priority policies.

Definition 4.2 A policyP ∈ SMART∗ if, at any given time,P schedules the job with the highest priority
and gives each job of sizes and remaining sizer a priority using a fixed priority functionp(s, r) such that
for s1 ≤ s2 andr1 < r2, p(s1, r1) > p(s2, r2).
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Note thatSMART∗ includes all commonSMART policies (e.g.SRPT, PSJF, andRS), but that there
are still manySMART policies that are not inSMART∗.

Theorem 4.1
SMART∗ ( SMART

Proof. Suppose policyP ∈ SMART∗. To see that the Bias Property is maintained, lets1 andr1 be the
original size and current remaining size of a tagged job in the queue. Supposes2 andr2 correspond to the
the original size and current remaining size of another job in the queue such thatr2 > s1. It follows that
s2 > r2 > s1 > r1. Thus,p(s2, r2) < p(s1, r1), so job 2 will not be served.

To see thatSMART∗ policies obey the Consistency Property observe thatp(s, r1) > p(s, r2) for r1 < r2

under allSMART∗ policies. Thus, while serving, a job can only increase its priority, which is already the
highest in the system.

To see thatSMART∗ policies obey the Transitivity Property, assume that an arrival with sizes2 preempts
a job in service with sizes1 and remaining sizer1. Thusp(s1, r1) < p(s2, s2). Under anySMART∗ policy,
a future arrival of sizes3 < s2, must havep(s3, s3) > p(s2, s2) > p(s1, r1), which completes the argument.

Finally, notice thatSMART is strictly larger thanSMART∗. We can see this by giving an example of a
policy in SMART that is not inSMART∗. One such example is a policyP that simply alternates the priority
function across busy periods, i.e. uses priority functionp1(s, r) for odd numbered busy periods and priority
functionp2(s, r) for even numbered busy periods wherep1 6= p2 are both inSMART∗.
�

Given the range of performance metrics used in modern computer systems, it is of practical importance
thatSMART includes such a wide range of static priority policies. In particular, systems typically need to
perform well for a combination of metrics, e.g., mean response time, mean slowdown, and response-time
tail. For many of these metrics, the optimalSMART policy is notSRPT or PSJF, it depends on the service
distribution. For instance, no singleSMART policy can optimize the mean slowdown across all service
distributions, thus the best choice for optimizing a combination of mean response time and mean slowdown
depends on the service distribution. A key motivation for characterizing the class as a whole instead of
studying the individual policies in the class is that no singleSMART policy is optimal for all applications.

Apart from static priority policies,SMART also includestime-varying policies, i.e. policies that can
change their priority rules over time based on system-state information or randomization. These generaliza-
tions are possible because theSMART definition enforces only apartial orderingon priorities of jobs in the
system. It is of enormous practical importance that time-varying policies are included inSMART because
it allows system designers to use theSMART class in order to performonline multi-objective optimiza-
tion. Specifically, suppose a system designer wants to optimize a secondary objective while still providing
small mean response times. In order to accomplish this, the system designer can implement a parameter-
ized version ofSMART, such as prioritizing based onp(s, r) = s−ir−j , and then use machine learning
techniques to search the space(i, j) online for theSMART policy that optimizes the secondary objective.
(Note thati andj can be chosen to achieveSRPT, PSJF, RS, and many other policies.) This technique can
be extremely useful in web applications where the service distribution is time-varying and thus the optimal
scheduling policy is not static. BecauseSMART includes time-varying policies, the bounds on the mean
response time from prior work and on the tail of response time proven here will hold even as the priority
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function varies. The inclusion of online optimization policies is another key benefit of studying theSMART
class as a whole, as analysis of such policies is absent from the literature.

4.1.3 Policies excluded from SMART
To this point we have only discussed the breadth ofSMART; however it is also important to note that many
policies are excluded fromSMART. Clearly,SMART does not include policies that give priority to large
jobs such asLJF, PLJF, andLRPT. In addition,SMART does not include policies that only “weakly”
prioritize small jobs. For example,SMART does not include any non-preemptive policies, not even ones
like SJF that prioritize small jobs; nor does it include policies that do not use knowledge about the job sizes
(blind policies), not evenFB.

The exclusion of these policies is a result of the tension between thebreadthof the class and thetightness
of the results provable about the class. In particular, excluding policies such asSJF andFB that bias weakly
towards small job sizes is necessary in order to show thatSMART policies provide a near optimal mean
response time across all service distributions and all loads. For example, thoughSJF can provide good
mean response time when the second moment of the service distribution,E[X2] is small, the mean response
time of SJF is arbitrarily larger than the optimal asE[X2] → ∞. Similarly, thoughFB can provide near
optimal mean response time under service distributions having decreasing failure rates, when the service
distribution has an increasing failure rate,FB is one of the worst disciplines to use. In particular, when the
service distribution is deterministic, the quotientE[T ]FB/E[T ]SRPT can be arbitrarily large.

The tension between the breadth and tightness of the class also leads to the exclusion of policies that
use only job size estimates and that use only a finite number of priority levels (such policies violate the Bias
Property). It is particularly unfortunate to exclude these policies because in many cases system designers are
forced to use job size estimates and simplify implementations by using only 5-10 priority levels without sac-
rificing too much performance in practice, see for example [96, 180, 131]. We will discuss a generalization
of SMART that includes such policies in Section4.2.

4.1.4 Bounding response times for SMART policies
The strength of theSMART classification comes from the fact that we can show that allSMART policies
have near optimalE[T ]. Thus, allSMART policies, even practical hybrid policies, provide provably “SMAll
Response Times” by “doing the SMART thing.”

Theorem 4.2
In an M/GI/1 queue, for P ∈ SMART:

E[T ]SRPT ≤ E[T ]P ≤ 2E[T ]SRPT

We defer details of the proof of Theorem4.2to Section4.1.4.2.
Theorem4.2 serves as a validation of theSMART class. It proves that allSMART policies behave

like SRPT in a very strong sense. Further, this result is of practical importance because it guarantees that
all SMART policies, even ones with strange time-varying priority schemes, provide near optimal mean
response times regardless of the load and regardless of the service distribution. Thus, even asρ → 1 and
E[X2] →∞ theE[T ]P for all P ∈ SMART will stay within a factor of two of optimal. In contrast, in this
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Figure 4.4: This figure illustrates the bounds onE[T (x)] andE[T ] under the class ofSMART policies
in Theorems4.4 and4.3. The shaded area indicates the response times attainable usingSMART policies.
In addition, the behaviors of the two most commonSMART policies,SRPT andPSJF , are illustrated. In
both plots the service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

settingE[T ]FCFS andE[T ]PS may be arbitrarily larger than the optimalE[T ].

Remark 4.1 It is important to note that Theorem4.2 is tight. Clearly, the lower bound is tight since
SRPT ∈ SMART andE[T ]SRPT is optimal. To see that the upper bound is tight, we consider the M/D/1
setting where all jobs have sizeb. In this setting,SRPT is actually doingFCFS, thus

E[T ]M/D/1/SRPT = b +
λb2

2(1− ρ)
=

b(1− ρ/2)
1− ρ

.

Further, in this setting,PLCFS ∈ SMART (this only holds in the M/D/1 setting). SinceE[T ]M/D/1/PLCFS =
b/(1− ρ), we can see that

lim
ρ→1

E[T ]PLCFS

E[T ]SRPT
= lim

ρ→1

1
1− ρ/2

= 2.

This observation provides a nice intuitive understanding of why the factor of 2 arises in Theorem4.2 – it
comes from the freedom in how jobs of very similar sizes are scheduled.

Though Theorem4.2 is simple and tight, it provides little intuition about how parameters such as
load and job size variability influence the mean response times ofSMART policies. The problem is that
E[T ]SRPT is quite complicated to express, as we discussed in Section3.2.4. Though we have proven sim-
ple bounds on the behavior ofSRPT in Theorem3.10, naively combining these bounds with Theorem4.2
results in bounds that are very loose in many cases, thus it is important to approach bounding the response
times ofSMART policies directly.
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Theorem 4.3
Consider an M/GI/1 queue with P ∈ SMART. Let X1 and X2 be independent random job sizes. Let K

satisfy λm2(x) ≤ Kxρ(x) and h(ρ) =
(

1
ρ

)
log
(

1
1−ρ

)
. Then,

h(ρ)E[X] ≤ E[T ]P ≤
(

K − 1
2(1− ρ)

+
ρ

4

(
1 +

E[(X1 ∧X2)2]
E[X]2

)
+
(

K − 3
2

)
h(ρ)

)
E[X]

We defer the proof of Theorem4.3 to Section4.1.4.3, however we provide a simple illustration of the
bounds in Figure4.4. Further, it is important to point out that the lower bound in Theorem4.3 is the
same as the lower bound we proved forSRPT in Theorem3.10, thus it becomes tight when we consider
Pareto distributions. Further, the upper bound in Theorem4.3becomes tight as the distribution approaches
a deterministic distribution.

Though we defer the details of the proofs of Theorems4.2 and4.3 to Sections4.1.4.2and4.1.4.3; the
method we use to prove these theorems is the following. We first bound the conditional response time,
T (x), using the next theorem (Theorem4.4) and then decondition to obtain bounds on the overall response
time. Thus, Theorem4.4acts as a stepping stone toward obtaining Theorem4.2. However, Theorem4.4 is
important in its own right as well: it will be of primary importance when studying fairness later in Chapter
7.

Theorem 4.4
In an M/GI/1 queue, for all x and all P ∈ SMART,

R(x)SRPT + W (x)PSJF ≤st T (x)P ≤st R(x)PSJF + W (x)SRPT

Further, ∫ x

0

dt

1− ρ(t)
+

λm2(x)
2(1− ρ(x))2

≤ E[T (x)]P ≤ x

1− ρ(x)
+

λm̃2(x)
2(1− ρ(x))2

The proof of this theorem is deferred to Section4.1.4.1.

Remark 4.2 It follows from combining Theorem4.4 and Theorem3.20 that T (x)P ≤st T (x)FB for all
P ∈ SMART.

Observe that the bounds in Theorem4.4are a combination of the response times of the two most com-
monSMART policies,SRPT andPSJF. Intuitively, this is not surprising.PSJF maximizes residence time
amongSMART policies because it allows the greatest number of arrivals to preempt service, and minimizes
the waiting time because it does not allow any jobs with larger original size and smaller remaining size to
obtain higher priority. Further,SRPT minimizes the residence time amongSMART policies because only
arriving jobs with original size smaller than the tagged jobs remaining size are given higher priority, and
maximizes waiting time amongSMART policies because it allows the greatest amount of work already in
the system to finish before an arriving job. This observation illustrates the tightness of the bounds, and
the proof of the theorem formalizes these ideas. Note that, though the proof of Theorem4.4 for SMART
presented here is quite involved, a much simpler proof is possible if Theorem4.4 is proven instead for only
for P ∈ SMART∗.
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It is important to note that, thoughSMART policies all have quite similar response time behavior,
SMART policies can differ significantly in their performance on other metrics. For instance, in Chapter7
we will see that differentSMART policies can behave differently with respect to fairness and predictability
measures. Thus, one way to view theSMART class is as a starting point for picking a scheduling policy
when you want to optimize bothE[T ] and some other secondary metric of interest.

4.1.4.1 Proof of Theorem 4.4
In this section we will prove Theorem4.4. We start with two lemmas. LetDP

x denote the time average
portion of work in the system at the Poisson arrival of a tagged job of sizex that will complete underP
before the tagged job does. Note that underSMART policies,DP

x may in general depend on the behavior
of the system afterx arrives.

Lemma 4.5
In an M/GI/1 queue, for all x and all P ∈ SMART,

DPSJF
x ≤st DP

x ≤st DSRPT
x .

Proof. For the lower bound, letQP
x be the work in the queue made up by jobs with original size≤ x.

SincePSJF devotes the full server to jobs of size≤ x (when such jobs exist), we have

DPSJF
x = QPSJF

x ≤ QP
x .

The Bias Property implies thatQP
x ≤st DP

x , and the result follows.
The proof of the upper bound is much more involved. Consider a tagged jobjx of sizex arriving to

the steady state system at timetjx . In order to analyzeDP
x , we track “contributing” work. At timetjx , the

“contributing” work will be equal toDP
x .

We define “Small Contributors” as all jobs of original size< x. ForSMART policies, all Small Contrib-
utors in the system at timetjx serve ahead ofjx and thus add their remaining size at timetjx to the response
time of jobjx. We say a Small Contributor is “contributing” the whole time that it is in the system and its
“contribution” at any time is its remaining size. Thus, at timetjx every Small Contributor in the system is
“contributing” the amount of work it adds to the response time ofjx.

We define “Large Jobs” as all jobs of original size≥ x. For all SMART policies, at mostoneLarge
Job,c, in the system at timetjx can add to the response time of jobjx; call jobc a “Large Contributor.” The
uniqueness ofc is proven in Lemma4.6. We say that Large Jobc becomes a Large Contributor whenrc

becomesx. The amount jobc adds to the response time ofjx is the remaining size ofc at timetjx , which
can be at mostx. We considerc to be “contributing”rc at all times whenrc ≤ x. Thus, at timetjx , c is
“contributing” the amount it adds to the response time ofjx.

We now limit our discussion to timest ∈ [t0, tjx ] wheret0 is the last moment beforejx arrives that no
job is “contributing.” So, att0 either a Large Job becomes a Large Contributor, a Small Contributor arrives,
or jx arrives (t0 = tjx). Further, fort ∈ (t0, tjx), there is always either a Large or Small Contributor in the
system. We refer tot0 as the beginning of the “contribution period” into whichjx arrives.

We defineDP
x (t) as the total work being contributed by Small and Large Contributors in the system at

time t underP , where, as usual, the definition of Contributors is relative to jobjx arriving at timetjx . It is
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important to point out thatDP
x (tjx) = DP

x , i.e. the work contributing whenjx arrives is exactly the work
that will serve ahead ofjx.

There are three types of periods into whichjx can arrive:

Type (a) A period idle of contributing jobs (i.e.tjx = t0). Thus, jobjx seesDP
x (t0) = 0 for all P ∈

SMART.

Type (b) A contribution period started by a Small Contributorb arriving and contributingsb < x. Thus,
DP

x (t0) = sb under allP ∈ SMART.

Type (c) A contribution period started by a Large Jobc becoming a Large Contributor and contributingx,
i.e. rc becomesx at timet0. Thus,V P

x (t0) = x under allP ∈ SMART.

Let pP
a , pP

b , andpP
c be the time-average probability ofjx arriving into a contribution period of type

(a), (b), and (c) respectively under policyP ∈ SMART. Recall thatjx is a Poisson arrival, so PASTA
applies. Notice that these are the only legal possibilities for what can occur at timet0 and that there is zero
probability of more than one event happening.

Claim (1) pP
a ≥ pSRPT

a , pP
b ≥ pSRPT

b , and thuspP
c ≤ pSRPT

c .

CLAIM (1): We divide the proof of claim (1) into two parts.
Part (a): We will first show thatpP

a is minimized underSRPT. UnderSRPT, the system is idle of
Small and Large Contributors exactly when there are no jobs in the system having remaining size< x.
Using PASTA and the fact thatjx is a Poisson arrival, this gives thatpSRPT

a = 1 − ρ̃(x), i.e. the time-
average idle time in a system having arrival rateλ and job sizesXx = min(x,X). All P ∈ SMART
are also guaranteed to be idle of Small and Large Contributors when there are no jobs in the system with
remaining size< x; however they may also be idle of Contributors when thereexistjobs in the system with
remaining size< x if these jobs will not receive priority overjx whenjx arrives. Thus,pP

a ≥ pSRPT
a .

Part (b): We now prove thatpP
b ≥ pSRPT

b . A type (b) period is started when a Small Contributor arrives
into a system idle of contributors. Small Contributors arrive independently ofP according to a Poisson
process with rateλF (x). Thus,pP

b ≥ pSRPT
b becauseSRPT is the least likelyP ∈ SMART to be idle of

contributing jobs (from part (a)). It follows thatpP
c ≤ pSRPT

c sincepP
a ≥ pSRPT

a andpP
b ≥ pSRPT

b . We can
also see thatpP

c ≤ pSRPT
c directly by noting thatall Large Jobs can become Large Contributors and thus

start type (c) periods underSRPT. We are now finished with the proof of claim (1).
Consider whatjx sees when it arrives into the system. With probabilitypP

a ≥ pSRPT
a , jx sees a type (a)

period, and with probabilitypP
b + pP

c = 1 − pP
a ≤ 1 − pSRPT

a = pSRPT
b + pSRPT

c , jx sees a contribution
period. Thus, in provingDP

x ≤st DSRPT
x it suffices analyze theDP

x (tjx) in a contribution period, i.e. given
jx arrives into a type (a) or (b) period.

We will complete the proof of the theorem by showing that

Claim (2) DP
x (t0) ≤st DSRPT

x (t0), i.e. the initial jump of the contribution period is smaller underP than
underSRPT.

Claim (3) Fort ∈ (t0, tjx), DP
x (t) is always reduced at the full service rate and increases only at the Poisson

arrivals of Small Contributors under allP ∈ SMART.

Claim (4) DP
x (tjx) ≤st DSRPT

x (tjx) for Poisson arrivaljx during a contribution period.
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CLAIM (2): Note that the initial contribution in a type (b) period is at most the initial contribution in a
type (c) period. The claim then follows becausepP

b ≥ pSRPT
b andpP

c ≤ pSRPT
c .

CLAIM (3): To prove claim (3), notice that, under allP ∈ SMART, Large Jobs that are not Large
Contributors cannot receive service givent ∈ (t0, tjx) (Lemma4.6). Thus, allP ∈ SMART reduceDP

x (t)
at the maximal rate for allt, i.e. the full service rate is devoted to contributing jobs. Further, under all
P ∈ SMART, arriving Large Jobs cannot become Large Contributors after timet0 (Lemma4.6). Thus, the
only arrivals that affectDP

x (t) are Small Contributors, which arrive according to a Poisson process of rate
λF (x) under allP ∈ SMART, includingSRPT.

CLAIM (4): To prove claim (4) we will analyze the contributing work thatjx sees upon arrival into a
contribution period underP ∈ SMART andSRPT . Note thatjx arriving into a contribution period under
P seesDP

x |(DP
x > 0) contributing work. By claim (2),DP

x (t0) ≤st DSRPT
x (t0). Thus, there is some

random timet∗ > t0 whenDP
x (t0)

d= DSRPT
x (t∗) for the first time. Iftjx ≥ t∗ ≥ t0 underSRPT then

DP
x (tjx) = DSRPT

x (tjx) (by claim (3) and the definition oft∗). If t0 < tjx < t∗, thenjx sees a stochastically
larger amount of contributing work (by the definition oft∗). So,DP

x (tjx) ≤st DSRPT
x (tjx).

�

We now prove a lemma used in the above proof in order to characterize the effect of the Consistency
and Transitivity properties.

Lemma 4.6
There is at most one Large Contributor in the system at any time, where a Large Contributor is defined with
respect to job jx. Further, no Large Jobs that are not Large Contributors can receive service while a Large
or Small Contributor is in the system.

Proof. Supposeb becomes a Large Contributor at timet1 and is the only Large Contributor in the system
at t1. We will show that no other Large Jobs can become Large Contributors whileb is in the system.

Note that a Large Job must be receiving service when it becomes a Large Contributor, and thus a Large
Job can only become a Large Contributor when the system is idle of Small Contributors due to the Bias
Property.

We first show that a Large Jobc 6= b, in the system at timet1, cannot become a Large Contributor. Note
that c, by definition, is not a Large Contributor att1, and thus must receive service in order to become a
Large Contributor. Further,c is in the queue att1 andb is at the server. Soc can never receive service while
b is in the system because of the Consistency Property.

To complete the proof, we will show that a Large Jobc that arrives aftert1 cannot become a Large
Contributor. Again,c must receive service before timetjx in order to become a Large Contributor. Further,
c must be in the system at timetjx to be a Large Contributor. However, upon arrivalsc = rc > x, so if jobc
runs ahead of jobb, the Consistency Property gives jobc priority over jobb. Further, sincec is in the system
at timetjx , b cannot receive service until then, and thus the Transitivity Property will givejx priority overb
whenjx arrives. This contradicts the fact thatb is a Large Contributor. Thusc can never run ahead ofb, and
c can never become a Large Contributor.
�

We can now prove Theorem4.4.
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Proof of Theorem 4.4. Let P ∈ SMART. We break up the response time for a tagged jobjx of sizex
arriving to the steady state system into: (i)DP

x , the portion of the work in the system whenjx arrives that
will complete underP beforejx completes, (ii)x work made up byjx, and (iii) the work done byP on jobs
that arrive afterjx arrives.

Notice that the Bias property guarantees that (iii) includes, at most, all arriving jobs of size less thanx.
Thus, we can stochastically upper boundT (x)P with the length of a busy period that is started byx + DP

x

work and made up only of arrivals having size smaller thanx:

T (x)P ≤st Bx(x + DP
x ) d= Bx(x) + Bx(DP

x ). (4.1)

The upper bound now follows from Lemma4.5and the facts thatW (x)SRPT d= Bx(DSRPT
x ) andR(x)PSJF d=

Bx(x).
For the lower bound, note that due to the Consistency Property, theDP

x work must be completed before
jx receives service. Thus, by the Bias Property, all jobs of size< x that arrive during the time theDP

x work
is being completed are guaranteed to be served beforejx. So, the waiting time ofjx is Bx(DP

x ). Further,
oncejx begins service, the Bias property implies that, at minimum, all arrivals having size smaller than the
remaining size ofjx have priority overjx. Since the residence time underSRPT consists exactly of these
jobs, we have

T (x)P ≥st R(x)SRPT + Bx(DP
x ).

Applying Lemma4.5and the fact thatW (x)PSJF d= Bx(DPSJF
x ) completes the proof.

�

4.1.4.2 Proof of Theorem 4.2
In this section, we will prove that allSMART policies are2-competitive and thatPSJF, a commonSMART
policy, is3/2-competitive. Remember that the lower bound onSRPT serves as a lower bound on the mean
response time of any policy in theSMART class sinceSRPT is known to be optimal with respect to overall
mean response time. Also, recall the definition ofE[W2] from Section3.2.4:

E[W2] = E[W ]SRPT − E[W ]PSJF =
∫ ∞

0

λx2f(x)F (x)
2(1− ρ(x))2

dx

Proof of Theorem 4.2. It is clear thatE[T ]SRPT ≤ E[T ]P becauseSRPT is optimal with respect to
mean response time. Thus we need only show the upper bound.

We will start the proof of the upper bound by studyingE[W2]. Although we cannot evaluateE[W2] ex-
actly, we can show that the mean response time ofPSJF is exactlyE[W2] away from optimal. In particular,
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using Lemma3.11, we have:

E[T ]SRPT = E[R]SRPT + E[W ]PSJF + E[W2]

=
1
2
E[R]PSJF +

1
2
E[R]SRPT + E[W ]PSJF

= E[T ]PSJF − 1
2
E[R]PSJF +

1
2
E[R]SRPT

= E[T ]PSJF − E[W2]

Now, combining the above with Lemma3.11gives that

E[T ]P ≤ E[T ]SRPT + 2E[W2]

Finally, using Lemma3.12, we have

E[T ]P ≤ E[T ]SRPT + 2E[W2]

= E[T ]SRPT

(
1 + 2

1
2E[W2] + 1

2E[W2]
E[T ]SRPT

)

≤ E[T ]SRPT

(
1 +

E[W ]PSJF + E[W2]
E[T ]SRPT

)
≤ 2E[T ]SRPT

�

4.1.4.3 Proof of Theorem 4.3
In this section, we derive the bounds onE[T ] underSMART policies in Theorem4.3. Since the lower
bound onSRPT in Theorem3.10serves as a lower bound on the mean response time of any policy in the
SMART class, we need only prove the upper bound in the theorem.

Proof of Theorem 4.3.
To begin, we will prove a lower bound on the residence time ofSRPT. Recall that the p.d.f. of

min(X1, X2) is fmin(x) = 2f(x)F (x). Thus

E[R]SRPT =
∫ ∞

0
f(x)

(
x +

∫ x

0

ρ(t)
1− ρ(t)

dt

)
dx

≥
∫ ∞

0
f(x)

(
x +

∫ x

0
ρ(t)dt

)
dx

= E[X] +
1
λ

∫ ∞
0

ρ′(x)ρ(x)dx− λ

∫ ∞
0

t2f(t)F (t)dt
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Using Theorem3.7, Lemma3.11, and the above, we have:

E[T ]P ≤ E[T ]PSJF + E[W2]

≤ K − 3
2λ

log(1− ρ) +
K

2
E[T ]PS − 1

2
E[R]SRPT

≤ K − 3
2λ

log(1− ρ) +
K

2
E[T ]PS

−1
2

(
E[X] +

ρ2

2λ
− λ

2
E[min(X1, X2)2]

)
=

(
ρ

4
+

K − 1
2

− ρ2

4
+ (1− ρ)

λE[min(X1, X2)2]
4E[X]

+
(

K − 3
2

)(
1− ρ

ρ

)
log(1− ρ)

)
E[T ]PS

This final form is equivalent to the form in Theorem4.3, which completes the proof.
�

4.2 Generalizing the SMART class
Implicit in the definition of theSMART class is a tension between thebreadthof the class and thetightness
of the results provable about the class. In particular, there is a tension between the strength of bias towards
small jobs required in the Bias Property and the goal of showing that all policies are within a constant factor
of the optimal mean response time, i.e. arecompetitivewith respect to mean response time. In this section,
we will explore this question further by developing an understanding of how weakening the bias towards
small jobs affects thecompetitive ratioof the class with respect to mean response time, i.e. thek such that
E[T ] ≤ kE[T ]SRPT .

This tension between the breadth of theSMART class and the tightness of results provable about
SMART policies is of huge practical importance since one fundamental goal of studying classifications
is to bridge the gap between the results provided by theoreticians and the needs of practitioners. This gap
results from (i) implementation restrictions and (ii) concerns about metrics other than mean sojourn time
(e.g. avoiding starvation of large jobs). As defined so far,SMART does a nice job of bridging (ii), but does
little to help bridge (i). In particular, two key implementation restrictions thatSMART does not bridge
are the following. First, the overhead involved in distinguishing between an infinite number of different
priority classes typically causes system designers to discretize policies such asSRPT andPSJF so that
they use only a small number (5-10) of priority classes [96, 180]. Second, in many cases information about
the service demands (sizes) of jobs is inexact. For instance, when serving static content, web servers have
exact knowledge of the sizes of the files being served, but have inexact knowledge of network conditions.
Thus, the web server only has an estimate of the true service demands [131, 182]. In this section we will
explore how to broadenSMART to handle these implementation restrictions while still keeping the class
tight enough to guarantee that it is competitive with respect to mean response time.
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Figure 4.5: This diagram illustrates the priority structure induced by the Bias Property in the definition of
SMARTε (Definition4.3).

4.2.0.4 The tension between breadth and tightness
To begin our exploration, let us consider the case of non-preemptive policies. Is it possible to include non-
preemptive policies that bias towards small job sizes, e.g.SJF, in a generalizedSMART class and still
provide a competitive guarantee under all service distributions and all loads? It is easy to see that that
answer is no: any non-preemptive policy must have infiniteE[T ] if E[X2] is infinite, whileE[T ]SRPT is
finite wheneverE[X] < ∞. Thus, a generalizedSMART class cannot both include non-preemptive policies
and provide a competitive guarantee on mean response time.

Similarly, the SMART class cannot be generalized to include policies blind to job sizes while still
providing a competitive guarantee on mean response time. To see this, recall that for the M/M/1 queue all
blind scheduling policies have the same mean response time,E[T ] = E[X]/(1 − ρ). But, in this setting
E[T ]SRPT (1 − ρ) → 0 asρ → 1 (see Theorem3.14). Thus, there is nok < ∞ such thatE[T ]P ≤
kE[T ]SRPT under all service distributions and all loads for any blind policyP .

Summarizing the discussion so far, we can conclude that, in an M/GI/1 queue, for a policy to be competi-
tive with respect to mean response time it must (i) use job size information to schedule and (ii) be preemptive.
Thus, in studying the tradeoff between the breadth (in terms of policies) and the tightness (in terms of mean
response time) within theSMART class, we can limit ourselves to discussing preemptive policies that use
job size information. We capture a wide range of such policies in the definition ofSMARTε, a generalization
of theSMART class.

4.2.1 Defining SMART ε

We now formally define the class ofSMARTε policies.

Definition 4.3 For all x ∈ [0,∞), definexε = ε(x) for some non-decreasing functionε whereε(x) ≥ x.
A work conserving policyP ∈SMARTε if it obeys the following properties at all times.

Bias Property: If sa = x andrb > xε, then joba has priority over jobb.



4.2: GENERALIZING THE SMART CLASS 115

Consistency Property:If job a ever receives service while jobb is in the system, then at all times thereafter
job a has priority over jobb.

Transitivity Property: If an arriving job b preempts jobc, then thereafter, until jobc receives service,
every arrivala with sizesa = x such thatxε < sb is given priority over jobc.

TheSMARTε class is defined in an almost parallel way to theSMART class. In particular, theSMART
class is a subclass ofSMARTε that can be obtained by settingxε = x. The parameterxε provides a
formal way to capture the effect of “weakening the bias towards small jobs.’ If, for example, we think of
ε(x) = (1 + σ)x, asσ grows the bias towards small jobs sizes required ofSMARTε policies decreases.
Thus, by varyingε, we can study the impact of broadening the class on the competitive ratio of the class.
Refer to Figure4.5for an illustration of theSMARTε Bias Property.

As with the definition of the originalSMART class, each of the three properties in the definition of
SMARTε formalizes a notion of “smart” scheduling. The Weak Bias Property guarantees that the job being
run at the server has remaining size not too much larger than the original size of every job in the system,
which formalizes the idea of “prioritizing small jobs.” The Consistency and Transitivity Properties ensure
coherency in the priority structure enforced by the Bias Property. In particular, the Consistency Property
prevents time-sharing by guaranteeing that after joba is chosen to run ahead ofb, job b will never run
ahead of joba. This makes intuitive sense because allSMARTε policies are based on the heuristic of
giving priority to small jobs, and as joba receives service, it can only get smaller. Finally, the Transitivity
Property guarantees thatSMARTε policies do not second guess themselves: if an arrivala is determined to
be “smaller” than jobb in some sense (i.e. is given priority over jobb), future arrivals with smaller size than
a should also considered “smaller” thanb until b receives service.

4.2.2 Examples of SMART ε policies
Of course, theSMARTε class includes allSMART policies. Thus, it includesSRPT andPSJF in addition
to a wide range of hybrids of these policies, including policies with time-varying behavior. As we have
already discussed, the inclusion of these time-varying policies is particularly important because it allows
system designers to use the class in order to perform online multi-objective optimization, which is extremely
useful in web applications where the service distribution is time-varying and thus the optimal scheduling
policy often is not static.

In addition toSMART policies, SMARTε includes many practical policies that are excluded from
SMART because of the rigidity of the original Bias Property. First, notice thatSMARTε can include poli-
cies that have only a finite number of priority levels. In particular, it can include preemptive threshold based
policies where there are a finite number of thresholds0 = t1, . . . , tn = ∞ and a job of sizes is assigned
priority p(s, r) = i if p1(s, r) ∈ [ti, ti+1) for some static priority functionp1(s, r) ∈ SMART such as
p1(s, r) = s (i.e. PSJF). The inclusion of these policies is of particular practical importance because in
many cases system designers simplify implementations by using only 5-10 priority levels.

In addition to including threshold based policies,SMARTε includesSMART policies that are being
run using inexact job size information. The inclusion of these policies is again of practical interest. For
many applications information about the service demands of jobs is inexact. For instance, when serving
static content, web servers have exact knowledge of the sizes of the files being served, but have inexact
knowledge of network conditions. Thus, web servers have only an estimate of the true service demands.
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When one performsSRPT or some otherSMART policy on job size estimates, the resulting policy is not
in SMART and is difficult to study directly; however the resulting situation does fall intoSMARTε for a
suitableε(x). As an example, if the inexact job sizes are a result of a time-varying service capacity (such
as a web server with only an estimate of network conditions), takingε(x) = (1 + σ)x models the situation
where the maximum change in service rate isσ. Notice, that this does not assume any distribution on the
job size estimates; thus the estimates may be adversarial.

4.2.3 Bounding response times for SMART ε policies
Our goal in the remainder of this section is to characterize the relationship between the breadth ofSMARTε

(i.e. xε) and the tightness of the bounds on mean response time (i.e. the competitive ratio ofSMARTε

policies with respect to mean response time).
As with the analysis ofSMART policies, we approach the analysis of mean response time by first

analyzing the behavior of the conditional response time. Thus, we start by extending the stochastic bounds
onSMART in Theorem4.4to SMARTε.

Theorem 4.7
In an M/GI/1 queue, for all P ∈SMARTε ,

T (x)P ≤st Bxε(x + DSRPT
xε

)

Thus,

E[T (x)]P ≤ x

1− ρ(xε)
+

λm̃2(xε)
2(1− ρ(xε))2

Proof. Let P ∈ SMARTε. We break up the response time for a tagged jobjx of sizex arriving to the
steady state system into: (i)DP

x , the portion of the work in the system whenjx arrives that will complete
underP beforejx completes, (ii)x work made up byjx, and (iii) the work done byP on jobs that arrive
afterjx arrives.

Notice that the Bias Property guarantees that (iii) includes, at most, all arriving jobs of size less thanxε.
Thus, we can stochastically upper boundT (x)P with the length of a busy period that is started byx + DP

x

work and made up only of arrivals having size smaller thanxε:

T (x)P ≤st Bxε(x + DP
x ). (4.2)

The upper bound now follows from the observation thatDP
x ≤st DSRPT

xε
, which follows from an argument

that parallels the proof of Lemma4.5for theSMART class.
�

Using these stochastic bounds on the conditional response time, we can decondition to obtain bounds on
the overall mean response time. These bounds on the overall mean response time characterize the relation-
ship betweenxε and the competitive ratio ofSMARTε.
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Theorem 4.8
Consider an M/GI/1 queue with P ∈SMARTε . If there exists an σ ≥ 0 such that xε ≤ (1 + σ)x for all x
and a 0 ≤ γ < 1 such that ρ(xε)− ρ(x) ≤ γ(ρ− ρ(x)), then

E[T ]SRPT ≤ E[T ]P ≤ 2
(

1 + σ

1− γ

)2

E[T ]SRPT

That is, P is 2
(

1+σ
1−γ

)2
-competitive with respect to mean response time.

Note that if we takeγ = σ = 0 we get back Theorem4.2, which says that allSMART policies are 2-
competitive with respect to mean response time. Before proving Theorem4.8, we first prove the following
two simple lemmas.

Lemma 4.9
If there exists a 0 ≤ γ < 1 such that ρ(xε)− ρ(x) ≤ γ(ρ− ρ(xε)), then

1− ρ(x)
1− ρ(xε)

≤ 1
1− γ

Proof.

1− ρ(x)
1− ρ(xε)

= 1 +
ρ(xε)− ρ(x)

1− ρ + ρ− ρ(xε)

≤ 1 +
ρ(xε)− ρ(x)

ρ− ρ(xε)

= 1 +
1

ρ−ρ(x)
ρ(xε)−ρ(x) − 1

≤ 1 +
1

1
γ − 1

=
1

1− γ

�

Lemma 4.10
If there exists a σ ≥ 0 such that xε ≤ (1 + σ)x for all x, then

m̃2(xε)
m̃2(x)

≤ (1 + σ)2
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Proof.

m̃2(xε)
m̃2(x)

= 1 +

∫ xε

x tF (t)dt∫ x
0 tF (t)dt

≤ 1 +
F (x)

∫ xε

x tdt

F (x)
∫ x
0 tdt

≤ 1 +
x2

ε − x2

x2

≤ (1 + σ)2

�

We now prove Theorem4.8using the above two lemmas.

Proof of Theorem 4.8. By Theorem4.7, we have that

E[T (x)]P ≤ 1− ρ(x)
1− ρ(xε)

E[R(x)]PSJF +
(

1− ρ(x)
1− ρ(xε)

)2(m̃2(xε)
m̃2(x)

)
E[W (x)]SRPT .

We now apply Lemmas4.9and4.10. Thus, we have that

E[T (x)]P ≤ E[R(x)]PSJF

1− γ
+
(

1 + σ

1− γ

)2

E[W (x)]SRPT

≤
(

1 + σ

1− γ

)2 (
E[R(x)]PSJF + E[W (x)]SRPT

)
Noting thatE[R(x)]PSJF +E[W (x)]SRPT is the upper bound used in the proof of Theorem4.2completes
the proof.
�

Theorem4.8 presents two properties thatxε must maintain in order forSMARTε to be competitive
with respect to mean response time. The first of these conditions is thatxε ≤ (1 + σ)x for all x. This
condition bounds how large a job can be and still get priority over a job of sizex. The second condition in
Theorem4.8 is thatρ(xε) − ρ(x) ≤ γ(ρ − ρ(x)). This condition bounds the percentage of the load made
up by jobs larger than sizex that can have priority over a job of sizex. Thus, the two conditions present
complementary formulations of how much the Bias Property can be weakened: you can let significantly
larger jobs have priority without paying a price in mean response time as long as the larger jobs do not make
up too much load. The tradeoff between these two conditions will vary depending on the service distribution,
but under the practical case of a Pareto distribution, the two conditions are actually equivalent, i.e. only the
xε ≤ (1 + σ)x constraint is necessary. Recall that a Pareto distribution is defined byF (x) = (xL/x)α.

Corollary 4.11
Consider an M/GI/1 queue with P ∈SMARTε and X ∼ Pareto(α, xL) having finite mean. If there exists
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an σ ≥ 0 such that xε ≤ (1 + σ)x then

E[T ]P ≤ 2(1 + σ)2αE[T ]SRPT .

Proof. Assume thatxε ≤ (1 + σ)x. We will show that this guarantees that

ρ(xε)− ρ(x) ≤ (1− (1 + σ)1−α)(ρ− ρ(x)).

This bound gives aγ for Theorem4.8such that

(1− γ) ≤ (1 + σ)1−α,

which in combination with Theorem4.8completes the proof.
In order to prove thatρ(xε)− ρ(x) ≤ (1− (1 + σ)α−1)(ρ− ρ(x)), we calculate as follows:

ρ(xε)− ρ(x)
ρ− ρ(x)

=

∫ xε

x tf(t)dt∫∞
x tf(t)dt

=
1

xα−1 − 1
xα−1

ε

1
xα−1

= 1−
(

x

xε

)α−1

≤ 1− (1 + σ)1−α

�

In addition to characterizing the effect of the rigidity of the bias towards small jobs in a policy, Theorem
4.8and Corollary4.11can also be used to characterize the effect of inexact knowledge of job size informa-
tion. Most prior work in this regard has used simulation experiments, e.g. [131], howeverSMARTε allows
easy back-of-the-envelope calculations. For example, if we have a Pareto service distribution withα = 1.1
and job sizes can be estimated to within a factor of 50%, anySMARTε policy (which includes running
SRPT or PSJF on the job size estimates) still provides a mean response time within a factor of4.88 of
the optimal regardless of the load. This factor is quite small given that the variance is infinite, the bound
holds forρ arbitrarily close to 1, and adversarial errors in the estimates are allowed. As a comparison no
finite constant bound is possible for many common policies, includingFCFS andPS. Beyond this simple
example, Figure4.6 illustrates the effect of inexact job size information. Figure4.6 (a) illustrates that the
competitive ratio increases quickly as the worst case accuracy of the job size estimates increases. Figure4.6
(b) illustrates thatSMARTε policies may perform worse than non-size based policies, e.g.PS, under low
load, but at high load they can significantly outperform non-size based policies. Further, the penalty they
pay at low load is exaggerated due to the fact that adversarial error sequences are allowed. In reality, the
performance under low load of policies that use inexact estimates is not nearly as bad as the upper bound in
Figure4.6(b) suggests.

Finally, we can also view Theorem4.8 and Corollary4.11 as a strong statement about the behavior
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of policies with a finite number of priority classes. Though there has been a lot of work analyzing such
policies [61, 120], it is still difficult to understand how far from optimal the mean response times of these
policies are due to the fact that determining the optimal threshold values is typically not tractable (see [61]
for a discussion). However,SMARTε again provides a simple way to understand how close the mean
response times of policies with only a finite number of priority classes are to optimal. In particular, the
condition ofxε ≤ (1 + σ)x provides a direct relation between the spacing of thresholds (i.e. the range of
job sizes included in each priority level) and the guarantee on mean response time. Interestingly, there is
a stark contrast between the behavior of policies that use only a finite number of priority classes under (i)
unbounded service distributions and (ii) bounded service distributions.

First, let us consider the case of an unbounded service distribution, e.g. the Pareto. Clearly, no finite
number of thresholds can satisfyxε ≤ (1 + σ)x for all x; thus, we cannot apply Theorem4.8or Corollary
4.11. This may seem like a restriction, but it turns out that under many unbounded distributions for any finite
number of classes,E[T ] is not within a constant ofE[T ]SRPT asρ → 1. For instance, from Theorems3.4
and3.6we can conclude that under a Pareto distribution no finite number of classes is enough to giveE[T ]
within a constant ofE[T ]SRPT for all loads.

Next, let us consider the case of bounded service distributions. LetxU be the upper bound on the service
distribution. Clearly in this case policies with a finite number of priority levels haveE[T ] within a constant
factor ofE[T ]SRPT since we have already proven that both areΘ(1/(1− ρ)) in this setting. Unfortunately
though, we cannot directly apply Theorem4.8 to determine the constant. Choosing a finite number of
thresholds such thatxε ≤ (1 + σ)x is satisfied is no problem since the range of the distribution is finite.
However, choosing aγ such thatρ(xε)−ρ(x) ≤ γ(ρ−ρ(x)) is a problem since forx in the highest priority
class, we havexε = xU Thus,ρ(xε) = ρ for suchx and thusγ = 1, which means that Theorem4.8 does
not apply. This turns out to be easily remedied though. In particular, we need only adjust the requirements
for x such thatxε = xU . Let t = infx{xε ≥ xU}. Then, we have the following.

Corollary 4.12
Consider an M/GI/1 queue with P ∈SMARTε and a bounded service distribution. Let σ ≥ 0 such that
xε ≤ (1 + σ)x for all x and 0 ≤ γ < 1 such that ρ(xε) − ρ(x) ≤ γ(ρ − ρ(x)). If t is such that
1− ρ(t) ≤ (1− ρ)/(1− γ) and E[X2]/m̃2(t) ≤ (1 + σ)2 then

E[T ]SRPT ≤ E[T ]P ≤ 2
(

1 + σ

1− γ

)2

E[T ]SRPT

This corollary gives a simple bound on the behavior of threshold based policies in terms of (i) the spacing
between the priority thresholds and (ii) the load in the lowest priority class. Thus, it provides back-of-the-
envelope calculations determining how many classes are necessary in order to achieveE[T ] within a certain
constant of optimal.

Proof. To prove the result, we need only make minor adjustments to Lemmas4.9 and4.10 in order to
handle the case whenxε = xU . To adjust Lemma4.10 we simply note that forx such thatxε = xU ,
m̃2(xε) = E[X2] and, by assumption, for suchx we have

m̃2(xε)
m̃2(x)

≤ E[X2]
m̃2(t)

≤ γ
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Figure 4.6: An illustration of the impact of the accuracy of the estimates used inSMARTε policies. Plot
(a) shows the relationship between the accuracy of the estimates and the worst case competitive ratio of the
resulting policy. Plot (b) shows the attainable response times underSMARTε policies as a function of load.
SMARTε policies all have response time within the shaded region. Notice that the benefit of using job size
estimates is very dependent on the load. The accuracy assumed in (b) is 50%. In both cases, the service
distribution is Pareto with mean 1 andα = 1.2.

We will now adjust Lemma4.9. Note that forx such thatxε = xU , we have thatρ(xε) = ρ. Thus

1− ρ(x)
1− ρ(xε)

= 1 +
ρ(xε)− ρ(x)

1− ρ

≤ 1 +
ρ− ρ(t)
1− ρ

=
1− ρ(t)
1− ρ

≤ 1
1− γ

Now, we complete the proof by combining the above with Lemmas4.9and4.10, and boundingE[T ] as
in the proof of Theorem4.8.
�

4.3 The class of FOOLISH policies
Now that we have formalized the common heuristic of “prioritizing small jobs,” and proved that all such
policies are near-optimal for mean response time, it is natural to ask how policies that bias towards large
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Figure 4.7: This diagram illustrates the priority structure guaranteed by the Bias Property in the definition
of theFOOLISH class. Note that the Bias Property underFOOLISH is more strict than the Bias Property
underSMART , and was chosen in this way so thatPLJF could serve as a lower bound forFOOLISH
policies.

job sizes compare. In this section, we will introduce the class ofFOOLISH policies, which are policies
that bias towards jobs with either large sizes or large remaining sizes. ThoughFOOLISH policies may not
be practical in settings where providing small response times is the goal, policies that prioritize large jobs
are known to perform well when minimizing the makespan (time until the last job completes) is the goal.
See, for example, [176] for more details. In addition, it is interesting to study them in order to contrast the
behavior of policies that bias towards large jobs with the behavior of policies using other heuristics, such as
those that bias towards small jobs.

4.3.1 Defining FOOLISH scheduling
We now formally define theFOOLISH class. Recall that jobs will typically be denoted bya, b, or c. Job
a will have remaining sizera, original sizesa, and arrival timeta. The original sizes, remaining sizes, and
arrival times ofb andc are defined similarly.

Definition 4.4 A work conserving policyP ∈ FOOLISH if it obeys the following property:

Bias Property:If rb > ra andsb > sa, then jobb has priority over joba.

Notice that Definition4.4parallels Definition4.1of SMART policies. In particular, the Bias Properties
in these definitions are similar in form. The relationship between the Bias Properties in theSMART and
FOOLISH definitions can be seen by comparing Figures4.2 and4.7. However, an important difference
between the two definitions is that the definition ofFOOLISH policies does not include a Consistency or
Transitivity Property like theSMART definition does. This is because these properties are used by the
SMART definition to avoid time-sharing and other such behaviors that increase response times. However,
all FOOLISH policies will have large response times, so there is no need to exclude these behaviors from
theFOOLISH class.
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Figure 4.8: This figure illustrates the bounds onE[T (x)] andE[T ] under the class ofFOOLISH policies
in Theorems4.14 and 4.15. The shaded area indicates the response times attainable usingFOOLISH
policies. In addition, the behaviors of the two most commonFOOLISH policies,PLJF and LRPT , are
illustrated. The service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

4.3.2 Examples of FOOLISH policies
Many common policies are part of theFOOLISH class – Figure4.1 provides an overview. Of course, the
FOOLISH class includesLRPT andPLJF. Further, it is easy to prove that theFOOLISH class includes
a range of policies having more complicated priority schemes. To illustrate this breadth, we introduce the
FOOLISH∗ classification, a subset ofFOOLISH including a range of static priority policies.

Definition 4.5 A policyP ∈ FOOLISH∗ if, at any given time,P schedules the job with the highest priority
and gives each job of sizes and remaining sizer a priority using a fixed priority functionp(s, r) such that
for s1 ≤ s2 andr1 < r2, p(s1, r1) < p(s2, r2).

Theorem 4.13
FOOLISH∗ ( FOOLISH

Note thatFOOLISH∗ includes all commonFOOLISH policies (e.g.LRPT andPLJF), but that there are
still manyFOOLISH policies that are not inFOOLISH∗. In particular, as withSMART, the definition of
theFOOLISH class induces only a partial priority ordering on jobs in the queue. Thus, aFOOLISH policy
may use time-varying prioritization where the priority function changes over time based on system-state
information or randomization.

4.3.3 Bounding response times for FOOLISH policies
Now that we understand the definition and breadth of theFOOLISH class, we can move to bounding re-
sponse times underFOOLISH policies. We will first derive bounds onT (x)P for P ∈ FOOLISH and then
we will use the bounds onT (x)P in order to derive bounds onE[T ]P .
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Theorem 4.14
In a GI/GI/1 queue, for P ∈ FOOLISH,

T (x)PLJF ≤st T (x)P ≤st T (x)LRPT

Thus, for the M/GI/1,

x

1− ρ + ρ(x)
+

λ(E[X2]−m2(x))
2(1− ρ + ρ(x))2

≤ E[T (x)]P ≤ x

1− ρ
+

λE[X2]
2(1− ρ)2

Proof. Consider the response time of tagged jobjx of sizex underP ∈ FOOLISH. First, notice that
underLRPT every job finishes at the last moment of the residual busy period they arrive into and this is the
last possible moment under any work conserving policy. Thus,T (x)P ≤st T (x)LRPT .

To prove the lower bound, note that the moment beforejx completes, every job with size> x (regardless
of their remaining size) will have higher priority thanjx. Thus, the response time ofjx must include, at
minimum, the time to complete every job of size> x that is in the system at the arrival ofjx and that arrives
while jx is in the system. The arriving work of size> x is exactly the arriving work that is completed under
PLJF. Further, sincePLJF always devotes the full server to jobs with size> x when they exist,PLJF
minimizes the work in the system made up of jobs with size> x. Thus,T (x)PLJF ≤st T (x)P .

The bounds onE[T (x)]P can now be derived from the stochastic bounds.
�

The bounds in Theorem4.14 are pictured in Figure4.8 and show a stark contrast in behavior when
compared with the bounds onP ∈ SMART. UnderFOOLISH policiesE[T (x)]/x has a decreasing trend
as compared with an increasing trend underSMART policies. Further,E[T (x)]/x is unbounded under
FOOLISH policies and bounded underSMART policies.

We will now use the bounds on the conditional mean response time ofFOOLISH policies in order to
derive bounds on the overall mean response time ofFOOLISH policies.

Theorem 4.15
In an M/GI/1 queue with P ∈ FOOLISH,

E[T ]PLJF ≤ E[T ]P ≤ E[T ]LRPT

Further,
E[X]

2

(
1

1− ρ
+

1
ρ

log
(

1
1− ρ

))
≤ E[T ]P ≤ E[X]

1− ρ

(
1 + λE[E ]

1
1− ρ

)
Note that the bounds onE[T ]P for P ∈ FOOLISH in terms ofE[T ]PLJF andE[T ]LRPT follow im-

mediately from Theorem4.14; however, though they are simple and elegant, they provide little information
about the behavior ofE[T ] as a function of the load or the job size variability underFOOLISH policies due
to the complexity of the formula for mean response time underPLJF (LRPT has a simple mean response
time). Thus, we provide a simple lower bound onE[T ]PLJF that provides intuitive understanding of it’s
behavior.
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Proof. The upper bound follows immediately from the observation thatE[T ]P ≤ E[T ]LRPT for all
work conserving policies. To prove the lower bound, letg(x) = ρ − ρ(x) and thusg′(x) = −ρ′(x) in the
following:

E[W ]P ≥
∫ ∞

0

λ
∫∞
x t2f(t)dtf(x)

2(1− ρ + ρ(x))2
dx

≥ 1
λ

∫ ∞
0

ρ′(x)(ρ− ρ(x))
2(1− ρ + ρ(x))2

dx

=
E[X]

ρ

∫ ∞
0

−g′(x)g(x)
(1− g(x))2

dx

= −E[X]
2ρ

(
1

1− g(x)
+ log(1− g(x))

∣∣∣∣∞
0

=
E[X]
2ρ

(
1

1− ρ
− 1 + log(1− ρ)

)
=

E[X]
2(1− ρ)

+
1
2λ

log (1− ρ)

Noting that

E[R]P ≥ 1
λ

∫ ∞
0

ρ′(x)
1− ρ + ρ′(x)

= − 1
λ

log(1− ρ)

completes the proof.
�

The bounds onE[T ] underFOOLISH policies are illustrated in Figure4.8. It is again interesting
to compare the bounds onE[T ] underFOOLISH andSMART policies. The mean response time under
SMART policies is significantly smaller than the mean response time underFOOLISH policies, and in fact,
under many service distributions (for instance the Exponential used in Figure4.8) all SMART policies have
smaller mean response time than allFOOLISH policies under all loads.

4.4 The class of SYMMETRIC policies
We now move to the study ofSYMMETRIC scheduling policies. The class ofSYMMETRIC policies was
introduced by Kelly nearly 30 years ago [113] and has proved fundamental to the study of queueing net-
works. SYMMETRIC disciplines have the important property that the departure process is stochastically
identical to the arrival process when time is reversed. Thisquasi-reversibilityproperty allows the decompo-
sition of queueing networks where each server uses a symmetric discipline, and has led to the importance of
theSYMMETRIC class to queueing networks.

However, in this thesis, we consider the class ofSYMMETRIC disciplines not because of their behavior
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in queueing networks, but because they provide an interesting generalization of classicalPS scheduling,
which is one of the most common models of scheduling in computer systems. In addition,SYMMETRIC
policies provide “fairness” in the sense that they do not schedule based on any job traits – all arrivals are
treated equivalently. This fact will have strong implications when we discuss fairness in Chapter7.

4.4.1 Defining SYMMETRIC scheduling
We will now formally define theSYMMETRIC class. Consider a queue containing customers in positions
1, 2, . . . , n where upon the completion of theith job the jobs in positionsi + 1, . . . , n move to positions
i, . . . , n − 1 and upon an arrival to theith position the jobs in positioni, . . . , n move to positionsi +
1, . . . , n + 1.

Definition 4.6 A scheduling policy is aSYMMETRIC discipline if whenn jobs are in the queue, the
service rate isγ(n), a proportionδ(i, n) of the server is directed to theith customer in the queue, and
an arrival enters positioni with probability δ(i, n). Of course,

∑n
i=1 δ(i, n) = 1 for all n. Further, a

scheduling policy is anM/GI/1 SYMMETRIC disciplinewhenγ(n) = 1 for all n. Unless otherwise stated,
we will only be considering M/GI/1SYMMETRIC disciplines in this thesis.

Intuitively, SYMMETRIC policies are policies where the arrival and service rates for each position in
the queue are “symmetric.” Thus, the symmetry between the arrival rate and the service rate leads to the
nameSYMMETRIC.

The class ofSYMMETRIC policies presents a nice counterpoint to theSMART andFOOLISH classes
becauseSYMMETRIC policies treat all jobs equivalently as opposed to making scheduling decisions based
on the size of arriving jobs. Thus, it is interesting to contrast the behavior of response times underSYM-
METRIC policies with the behavior of response times underSMART andFOOLISH policies.

4.4.2 Examples of SYMMETRIC scheduling
Figure4.1provides an overview of policies in theSYMMETRIC class. It may not be immediately apparent,
but the class ofSYMMETRIC policies is actually quite broad, even in the case whenγ(n) = 1 (i.e. the
M/GI/1 setting). For instance, by takingδ(i, n) = 1/n, we obtainPS. Further, we can obtainPLCFS by
takingδ(i, n) = 1 for i = n andδ(i, n) = 0 otherwise. In fact, we can obtain a wide variety of other hybrids
betweenPLCFS andPS. For example, theSYMMETRIC policy with δ(i, n) = 1/(k ∧ n) for i < k and
δ(i, n) = 0 otherwise performsPS among the lastk jobs to arrive.

Though, we will primarily be concerned with M/GI/1SYMMETRIC policies, it is worthwhile to point
out the increased generality of theSYMMETRIC class in the case whenγ(n) is allowed to vary. For
instance, we can obtain an M/GI/∞ queue as follows:

γ(n) = n

δ(i, n) = 1

Further, we can obtain a M/GI/k/k system (a system withk servers where jobs either receive service imme-
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Figure 4.9: This figure illustrates the behavior ofE[T (x)] and E[T ] under the class ofSYMMETRIC
policies. Recall that allSYMMETRIC policies have equivalentE[T (x)] and E[T ]. In both plots the
service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

diately upon arrival or are rejected) as follows:

γ(n) =
{

n n = 1, . . . , k
ξ n = k + 1, . . .

δ(i, n) =


1/n i = 1, . . . , n; n = 1, . . . , k
1 i = n; n = k + 1, . . .
0 i = 1, . . . , n n = k + 1, . . .

whereξ is very large.3

Before moving on, it is important to also discuss the policies that are excluded from theSYMMETRIC
class. Clearly any policy that prioritizes based on job size information is not in theSYMMETRIC class.
Thus, theSYMMETRIC class is distinct from theSMART andFOOLISH classes. In addition, theSYM-
METRIC class excludes policies that prioritize based on the age of jobs such asFCFS andFB. It may at
first seem surprising thatFCFS is not in theSYMMETRIC class, but notice that underFCFS the arrival
rate is only positive for the last spot in the queue while the service rate is only positive for the first spot in
the queue.

4.4.3 Bounding response times for SYMMETRIC policies
Now that we have explored the policies in theSYMMETRIC class, we are ready to bound the response
times ofSYMMETRIC policies. We will start by presenting results characterizing the stationary queue
state underSYMMETRIC policies, and then we will use these results in order to analyze the response times
underSYMMETRIC policies. All of the results in this section are adapted from Section 3.3 of [113] and

3For technical reasons,ξ cannot be infinite, see [113] for a discussion.
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Section 5.7 of [192].
We need to begin by defining some notation. Let~x = (x1, x2, . . . , xn) be the queue state wherexi is

the attained service (age) of theith job in the queue. Using this notation it is possible to characterize the
stationary system state ofSYMMETRIC policies as follows.

Theorem 4.16
In an M/GI/1 queue with P ∈ SYMMETRIC the probability that the queue contains n jobs is

P (N = n) = ρi(1− ρ)

Further, given there are n jobs in the queue, the age (excess) of each job is i.i.d. and follows the equilibrium
distribution. Thus,

P (~x = (x1, x2, . . . , xn)|N = n) =
n∏

i=1

F (xi)
E[X]

Amazingly, this theorem states that allSYMMETRIC policies have stochastically equivalent queue
states. The proof of this theorem is presented for the special case ofPS in Section 5.7 of [192], and in com-
plete generality in Section 3.3 of [113]. This theorem is a direct consequence of the fact thatSYMMETRIC
policies are pseudo-reversible. It is important to point out that since Theorem4.16is in the M/GI/1 setting,
it also characterizes the system state at arrival and departure instants.

Using Theorem4.16, it is easy to derive the mean conditional response time ofSYMMETRIC policies,
from which the overall mean response time follows immediately.

Theorem 4.17
In an M/GI/1 queue with P ∈ SYMMETRIC,

E[T (x)]P =
x

1− ρ

Thus,

E[T ]P =
E[X]
1− ρ

.

It is quite interesting that the mean response time of allSYMMETRIC policies is the same. Not only
that, the mean response time (and queue length distribution) ofSYMMETRIC policies is insensitive to the
service distribution beyond the mean. Further, the fact thatE[T (x)] is purely linear inx is an important
property with many connotations for fairness that we will discuss in detail in Chapter7.

Interestingly, Figure4.9 illustrates that the behavior ofE[T (x)] underSYMMETRIC policies is quite
different from the behavior ofE[T (x)] under theSMART andFOOLISH classes. WhileE[T (x)]/x is
a constant underSYMMETRIC policies, which illustrates an even treatment of all job sizes,E[T (x)]/x
has an increasing (decreasing) trend acrossx underSMART(FOOLISH) policies, which indicates the bias
toward small (large) job sizes under these policies.

BeyondE[T (x)] andE[T ], little is known about the distribution of response time under the class of
SYMMETRIC disciplines as a whole. However, it is clear thatSYMMETRIC policies are not equivalent
with respect to higher moments of response time. A few results have been obtained for individual policies
such asPS andPLCFS, but little has been proven about response times of otherSYMMETRIC policies.
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Two rare exceptions are the work of Avi-Itzhak and Halfin [9], whereV ar[T (x)] underPLCFS, PS, and
one other less commonSYMMETRIC policy are compared, and the work of Kella, Zwart, and Boxma
[112], where the tail behavior of some time-dependent properties ofSYMMETRIC policies are derived.
Since, the study of the behavior of higher moments of response time under the class ofSYMMETRIC
policies is difficult, in this thesis we will typically limit our focus to the most common twoSYMMETRIC
policiesPS andPLCFS.

4.5 The class of PROTECTIVE scheduling
In designing scheduling policies there is always a tradeoff between providing small mean response times and
providing “fairness.” We have seen in Section4.1 that it is possible to provide near optimal mean response
times by prioritizing small job sizes; however it is commonly suggested that such policies maystarvelarge
jobs. In contrast,PS is typically thought of as a “fair” policy since it shares the server evenly among all
jobs in the system, butPS has a mean response time that is far from optimal.

Despite the growing amount of research, the search for a fair policy with near optimal performance
proved elusive until the 2003 ACM Sigmetrics conference when Friedman and Henderson presented a new
policy called Fair-Sojourn-Protocol (FSP), which provides the first example of a fair policy that significantly
improves upon the performance of Processor-Sharing (PS) [78]. The idea behindFSP is that it computes
the times at which jobs would complete if the system were runningPS and then prioritizes the jobs in terms
of their PS completion times. That is,FSP devotes the full processor to the (uncompleted) job with the
earliestPS completion time. Thus,FSP can be thought of as performingSRPT on the remaining times of
a virtual PS system. Using simulations, Friedman and Henderson show thatFSP has a very small mean
response time. In fact, in may cases the mean response time ofFSP is quite close to that ofSRPT [78].

Following the introduction ofFSP, the ideas behindFSP have led to the development of a number of
other policies that also guarantee thatall jobs have smaller response times than they would have had under
PS on every sample path. ThePROTECTIVE class, introduced by Friedman and Hurley, includes all such
policies [79].

In this section we will first present the details ofFSP and then we will use the ideas from the discussion
of FSP in order to motivate and introduce the class ofPROTECTIVE policies.

4.5.1 Fair-Sojourn-Protocol (FSP)
FSP is motivated by one simple idea: at any given point, it is easy to tell what the next job to finish underPS
is. Given this information, it is possible to avoid wasting time time-sharing among jobs, and thus improve
the response times ofPS dramatically.

The easiest way to understand theFSP policy is to imagine that at any point in time you know the
full state of a virtualPS queue, with the same arrival process. (Note, this won’t actually be needed for
the implementation below.) Under theFSP policy, the job being run is always the job that the virtualPS
queue would have completed first. Observe that theFSP policy, like PS, is work-conserving; it just avoids
time-sharing by choosing to focus all attention on one job at a time.

To understand the power and efficiency ofFSP, consider the simple scenario of 3 jobs of size1− ε, 1,
1 + ε that all arrive at time0 at the server. UnderPS, all jobs would time-share the server, slowing each
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other down, and would all finish at about time3. UnderFSP, an ordering would be assigned to the jobs,
and consequently the first arrival would finish at time1− ε, the second at time2− ε, and the third at time3.

Remark 4.3 Observe that theFSP algorithm is related to Weighted-Fair-Queueing (WFQ). Both policies
involve simulatingPS, andFSP can be viewed as apreemptiveversion ofWFQwhere each packet forms
its own stream. Note that this is askew from the wayWFQis used in practice, which is to evenly distribute
bandwidth among connections in a network while adhering to packetized constraints. In such a setting,
non-preemptive implementations are used. Further, due to the more general parameters ofWFQ, analyses
do not provide bounds on performance any better than to state thatWFQis not worse thanPS by the length
of the largest packet [66, 171]. The specific settings ofWFQthat give rise toFSP have not been analyzed.

4.5.1.1 FSP in practice
The implementation ofFSP is not very complex, in fact it is quite similar to the implementation of the
SRPT algorithm. As inSRPT, preemptions may only occur at moments when a new job arrives under
FSP or when a job departs underFSP. Thus the total number of preemptions is at most twice the number
of arriving jobs, which in practice is far less than the number of preemptions under implementations of
PS (which involve time quantums). Aside from preemptions, as inSRPT, there are also priority updates
needed underFSP. These priority updates occur only at “event times,” where an event is an arrival or
departure underFSP or under the virtualPS system. Again, the number of updates is clearly not great. It
is at most three times the number of outside arrivals.

We now explain the priority update needed at event points. LetEi denote the most recent prior event
and letEi+1 denote the current event. Observe that during the time between any two events there is only one
job, call it j, in service underFSP. During the time betweenEi andEi+1, call this timet, the remaining
size of jobj underFSP decreases byt. Further, at the moment ofEi+1, we need to decrease the remaining
time of every job under the virtualPS system byt/n, wheren is the number of jobs inPS. Observe that
our definition of events ensures that the number of jobs underPS does not change between two consecutive
events.

We have seen that the implementation ofFSP is quite similar to that ofSRPT. TheSRPT scheduling
policy has been implemented in many real-world applications, such as scheduling in web servers [52, 96,
203]. The implementation ofSRPT in [96] involves updating the priority of sockets in the Linux kernel,
based on the remaining processing time required, and then draining these sockets into the network in order
of their priority. An implementation ofFSP would be equally simple, the only change would be that the
priority updates would occur at the event points described above.

4.5.1.2 Bounding response times for FSP
The power ofFSP comes from the following property of the policy:FSP finishes every job at least as early
PS would. Intuitively, this is simply because, by its definition,FSP is only reordering the work that is being
done so as to be more efficient. This result was proven by Friedman and Henderson in [78], but we include
it here because the ideas are provide an important viewpoint on the behavior ofFSP.

Let~rPS and~rFSP be vectors indicating the remaining work of each job underPS andFSP respectively.
The vectors are ordered in the same way such thatrPS

1 ≤ rPS
2 ≤ . . . ≤ rPS

n . Thus,rPS
i andrFSP

i refer
to the remaining work of the same job inPS andFSP respectively. Notice that (i)~rFSP is not necessarily
ordered according to increasing remaining sizes and (ii) it is possible forrFSP

i = 0 while rPS
i > 0 for



4.5: THE CLASS OF PROTECTIVE SCHEDULING 131

several values ofi.

Proposition 4.18
At all arrival and completion instants, for all m ≤ n,

m∑
i=1

rPS
i ≥

m∑
i=1

rFSP
i

where n is the number of jobs in the system.

Notice that this result immediately implies that every job finishes no later underFSP than it would have
underPS.

Proof. We prove the result using induction on the sequence of events in a busy period. An event is
either a virtual service completion (a completion inPS), an arrival, or a service completion underFSP. Let
~rPS � ~rFSP indicate that for allm ≤ n,

∑m
i=1 rPS

i ≥
∑m

i=1 rFSP
i . We can see that the claim holds for the

first arrival of a busy period; thus the base case holds trivially.
Now, suppose~rPS � ~rFSP at the time of eventEe, e ≥ 1. Let~rPS and~rFSP be the vectors at the time

of eventEe and lett be the time between the occurrence of eventEe and eventEe+1. Let ~rPS′ and~rFSP ′

be the updated vectors just before eventEe+1. Let i be the index of the first nonzero value in~rFSP . Then

rFSP ′
j = rFSP

j = 0, j = 1, . . . , i− 1

rFSP ′
i = rFSP

i − t

rFSP ′
j = rFSP

j , j = i + 1, . . . , n

rPS′
j = rPS

j − t/n, ∀j

Notice that, becauset is defined as the time between eventEe andEe+1, t ≤ rFSP
i andt/n ≤ rPS

j for all

j. We can now see that~rPS′ � ~rFSP ′ is maintained immediately before eventEe+1, which completes the
proof.
�

Apart from Proposition4.18, there exists very little work analyzing the performance ofFSP. Thus, in
order to understand how muchFSP improves response times overPS, researchers have been limited to
simulation studies such as those in [78, 87, 88]. Following the lines of these studies, we will now briefly
illustrate how the mean response time ofFSP compares to that ofPS and further, to the optimal mean
response time,E[T ]SRPT .

Figure4.10illustrates a simple comparison of the response times underFSP, PS, andSRPT. In Figure
4.10(a) the behavior ofE[T (x)] under each of these policies is shown. We can see that thoughFSP provides
improvements overPS in response times for all job sizes, the improvements are most dramatic for small
job sizes. But, the bias towards small job sizes is not as extreme underFSP as it is underSRPT. Moving
to Figure4.10(b) and (c), we can see that the overall response times ofFSP andSRPT are very similar as
long as the load is not too high. Only whenρ → 1 doesSRPT provide dramatic gains inE[T ] overFSP.
Further, we can see thatFSP, like SRPT, has a mean response time that is nearly insensitive to service
demand variability.
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Figure 4.10: These plots show a comparison betweenPS, FSP, andSRPT with respect to bothE[T (x)]
andE[T ]. The service distribution in (a) and (b) is Exponential with mean 1. In (c) the service distribution
is a 2-phase Coxian with mean 1 and varyingC2[X]. The load in (a) and (c) is 0.7.

4.5.2 Defining PROTECTIVE scheduling
We will now generalize the ideas fromFSP in order to present the class ofPROTECTIVE policies, which
were originally introduced by Friedman and Hurley in [79].

Definition 4.7 A scheduling policyP is PROTECTIVE if for any input sequence, the response time of
any job underP is not greater than it would have been underPS.

Clearly,FSP ∈ PROTECTIVE while SRPT andPSJF are notPROTECTIVE policies. In fact, the
class ofPROTECTIVE policies is actually quite narrow, and includes only policies that behave very simi-
larly to FSP.

In order to characterize the class ofPROTECTIVE policies we will use the concept ofslack. The slack
of a job represents how tightly the “protectiveness” constraint binds each job. Formally, the slack of themth
job under policyP , denotedsm, is defined as

sm =

(
m∑

i=1

rPS
i

)
+ (n−m + 1)rPS

m −

(
m∑

i=1

rP
i

)

Further,s(t) = (s1, . . . , sn) is the vector of the slacks of each job at timet.
Though the formula for slack may seem complicated, this is a very intuitive concept. Consider the first

job in the virtualPS queue. If no further jobs arrive, the first job will complete at timenrPS
1 in the virtual

PS queue. If the ourPROTECTIVE policy P works on this job it will finish at timerP
1 . Thus, the slack of

this job isnrPS
1 − rP

1 . Similarly, the second job will complete at timerPS
1 + (m− 1)rPS

2 in the virtualPS
queue and at timerP

1 + rP
2 under policyP . Thus, the slack iss2 = rPS

1 + (m− 1)rPS
2 − rP

1 + rP
2 .

Proposition 4.19
A scheduling policy P is PROTECTIVE if and only if s(t) is always non-negative.
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Using this proposition, we can now easily develop a large number ofPROTECTIVE policies. Clearly,
FSP always maintains a positives(t), however in addition two other policies are of interest: OptimisticFSP
(OFSP) and PessimisticFSP (PFSP). In describing these policies the following definitions are useful:

Definition 4.8 A job isservableat timet if a PROTECTIVE policy can serve it at timet, independent of
future arrivals. Further, a job iscompletableat timet if a PROTECTIVE policy can serve it to completion
starting at timet, independent of future arrivals.

It follows immediately from the above definition that jobm is servable if and only if for alli < m,
si > 0, and jobm is completable if and only if for alli < m, si > rP

m.
These two concepts provide a nice description the three most commonPROTECTIVE policies:

FSP FSP serves the lowest indexed uncompleted, servable job.
OFSP OptimisticFSP serves the servable job with the smallest remaining processing time.
PFSP PessimisticFSP serves the completable job with the smallest remaining processing time.

By definition, all three of these policies have smaller mean response time thanPS under all service dis-
tributions and arrival processes. Further, Friedman & Hurley show thatPFSP has a smaller mean response
time thanFSP under all service distributions and all loads [79]. Interestingly though,OFSP andPFSP
have the property that noPROTECTIVE policy can have smaller mean response times across all loads and
all service distributions. Additional results on the worst case behavior of these three policies can be found
in [79]; however, no queueing results exist for anyPROTECTIVE policies.

4.5.3 Bounding response times for PROTECTIVE policies
We will now present simple bounds on the response times of protective policies. As we have seen, the
description ofPROTECTIVE policies relies heavily on decisions based on the current state ofPS. Thus,
a tight analysis of the class ofPROTECTIVE policies is extremely difficult. We can obtain some simple
bounds on the class that provide some indication on the behavior of response times.

We begin by noting that the definition of thePROTECTIVE class immediately gives the following
bounds on overall mean response time. Note that the upper bound is tight sincePS is a PROTECTIVE
policy, but the lower bound is simply the lower bound onSRPT proven in Theorem3.10and is thus loose
asρ → 1.

Theorem 4.20
In an M/GI/1 system, for P ∈ PROTECTIVE, For all P ∈ PROTECTIVE,

E[X]
ρ

log
(

1
1− ρ

)
≤ E[T ]SRPT ≤ E[T ]P ≤ E[X]

1− ρ

It turns out that it is hard to obtain a better lower bound on the overall mean response time ofPROTEC-
TIVE policies than the above because the tagged job approach is not feasible. That is, you cannot obtain a
tight lower bound on the overall mean response time by analyzing the mean response time of a tagged job
because aPROTECTIVE policy can be designed so as to perform very well for any particular job size at the
expense of other job sizes. In particular, imagine a policy where a job of sizex receives service whenever it
is servable.
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Figure 4.11: This figure illustrates the behavior ofE[T (x)] andE[T ] under the class ofPROTECTIVE
policies. The shaded area indicates the response times attainable usingPROTECTIVE policies. Recall
that PS provides an upper bound on bothE[T (x)] and E[T ] underPROTECTIVE policies. We do not
have a lower bound onE[T (x)] underPROTECTIVE policies, so none is shown; however, we have proven
that E[T (x)]/x → 1/(1 − ρ) asx → ∞ andE[T (x)]/x → 1 asx → ∞. Thus any lower bound on the
PROTECTIVE class will have a similar behavior to that ofFSP , which is illustrated in the figure. In both
plots the service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

However, we can get a feel for the behavior ofPROTECTIVE policies by studying the behavior of the
conditional response time underPROTECTIVE policies,T (x). Again, deriving tight bounds onT (x) for
all x is difficult, so we focus on the limiting cases ofx → 0 andx → ∞. Interestingly,PROTECTIVE
policies can behave very differently with respect to small job sizes,limx→0 T (x)PS/x = 1/(1 − ρ) a.s.
while limx→0 T (x)FSP /x = 1 a.s. However, allPROTECTIVE policies treat large jobs equivalently:

Theorem 4.21
Consider a GI/GI/1 system with P ∈ PROTECTIVE. For all x we have

1 ≤ E[T (x)]
x

≤ 1
1− ρ

Further, as x →∞,

lim
x→∞

T (x)
x

=
1

1− ρ

The proof of the bounds onE[T (x)]/x is immediate from the definition ofPROTECTIVE policies and
the . The proof of the limit asx → ∞ is also straightforward, but requires techniques that we introduce in
Section7.2.1where we study the limiting behavior ofT (x)/x asx →∞ under a range of common policies,
so we will omit it.

It is interesting to contrast the results in Theorems4.20and4.21with the corresponding results for the
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SMART, FOOLISH, andSYMMETRIC classes. Figure4.11 provides an illustration of the behavior of
PROTECTIVE policies. Upon comparison with Figures4.4, 4.8, and4.9, it seems thatPROTECTIVE
policies are obtaining the best of both worlds. They guarantee thatE[T (x)] ≤ E[T (x)]P for all x and
all P ∈ SYMMETRIC, but still provide mean response times that are far lower than those ofFOOLISH
policies, and are even comparable with those ofSMART policies. However, analysis has not yet yielded
tight lower bounds on the performance ofPROTECTIVE policies, thus it is difficult to make any defini-
tive conclusions about the comparison betweenE[T ] underSMART policies andPROTECTIVE policies.
Simulations seem to indicate that in many cases, especially under high load,SMART policies can signifi-
cantly outperformPROTECTIVE policies with respect toE[T ]. However, this is exactly the setting where
starvation becomes an issue inSMART policies, which is an indication of the inherent tradeoff scheduling
policies must make between efficiency and fairness.

4.6 Concluding remarks
The work in this chapter develops a new style of research that attempts to bridge the gap between theo-
reticians and practitioners by studying classifications of scheduling policies instead of individual idealized
policies. The goal is to formalize a scheduling heuristic such as “prioritizing small jobs” and then study
the impact of thisheuristicinstead of studying one specific policy that obeys the heuristic. The hope is that
the analysis of these heuristic classifications provides both practical and theoretical benefits. Theoretically,
such results add structure to the space of scheduling policies that cannot be obtained by analyzing individual
policies, and practically, such results provide analyses of the policies that are implemented in practice.

In particular, we presented four heuristic classes: the class ofSMART policies (and its generalization
– theSMARTε class), the class ofFOOLISH policies, the class ofSYMMETRIC policies, and the class
of PROTECTIVE policies. In addition to defining the four classifications, we began to analyze the perfor-
mance of each heuristic by proving bounds on the overall and conditional mean response times of policies
in each class. These bounds illustrate the enormous impact that the underlying scheduling heuristic used in
a policy has on determining the performance of the policy. Figures4.12and4.13illustrate the contrasting
response time behavior under the four heuristic classes studied in this chapter. There are many interesting
comparisons that can be made using these figures.

First of all, notice the contrast between the behavior ofSMART andFOOLISH policies: whileE[T (x)]/x
has an increasing trend underSMART policies, it has a decreasing trend underFOOLISH policies. This
is indicative of the bias towards small jobs underSMART policies and the bias towards large jobs under
FOOLISH policies. Interestingly though, there are someFOOLISH policies that have largerE[T (x)]/x
for large job sizes than anySMART policy does. With respect toE[T ], the comparison betweenSMART
andFOOLISH policies is as expected:E[T ] for all SMART policies is lower thanE[T ] for anyFOOLISH
policy.

It is also interesting to observe the similar behaviors ofSYMMETRIC andPROTECTIVE policies.
Policies in both cases provide fair response times, in the sense that no job size receives “unfairly” large
E[T (x)]/x, butPROTECTIVE policies can provide strictly betterE[T (x)]/x andE[T ] thatSYMMETRIC
policies.

Finally, it is important to notice the contrast between the size based classes (SMART and FOOL-
ISH) and the fairness based classes (SYMMETRIC andPROTECTIVE). Under the fairness based classes
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Figure 4.12: These figures illustrate the bounds onE[T (x)]/x under scheduling heuristics. The ser-
vice distribution is taken to be Exponential with mean 1, and the load is 0.7. Note that no bounds are
shown forPROTECTIVE policies because, thoughE[T (x)]/x ≤ 1/(1 − ρ) underPROTECTIVE poli-
cies, we have no good lower bound forE[T (x)]P /x for P ∈ PROTECTIVE. However, we have proven that
E[T (x)]/x → 1/(1− ρ) asx →∞ andE[T (x)]/x → 1 asx →∞.
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Figure 4.13: These figures illustrate the bounds onE[T ] under scheduling heuristics. The service distri-
bution is taken to be Exponential with mean 1.

E[T (x)]/x is fairly constant or moderately increasing, while under the size based classes, the bias towards
particular job sizes shows up strongly in the behavior ofE[T (x)]/x. This observation will have ramifica-
tions later in the thesis when we discuss the fairness of these heuristic classifications.

Let us end this chapter with one final note. Though we have discussed a number of scheduling heuristics
in this chapter, one heuristic in particular is by far the most interesting from a practical perspective: that of
prioritizing small jobs. Thus, the definitions ofSMART andSMARTε represent an important contribution
both theoretically and practically. In this chapter, we have proven that allSMART policies have mean
response time within a factor of 2 of optimal. This result can be seen as a theoretical validation of recent
designs suggesting the use of variants ofSRPT in web servers and wireless networks. Further, we have seen
that even when policies prioritize based on estimated job sizes (SMARTε), they are still within a constant
of the optimalE[T ]. This is especially important since, in many applications, exact job size information
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is not known. For example, in web servers and wireless networks, designs that prioritize the job with the
smallestestimatedremaining size have been proposed [182, 131, 130, 102, 136]. But, in such designs a key
question is “how good must job size estimates be to provide improvements in response time?” The reason
this question is so important is that there are overheads involved in estimating the job sizes. For example, in a
web server, estimating the network delay a request will experience requires using packet probing techniques.
The SMARTε classification allows us to provide simple bounds that illustrate the tradeoff between the
accuracy of job size estimates and the performance of the resulting policy. Further, our results illustrate how
the underlying true job size distribution affects this tradeoff.

Due to their importance, we will return to theSMART andSMARTε classifications often throughout the
remainder of the thesis. For example, we will show that allSMART policies are asymptotically equivalent
with respect to the response time distribution (Chapter6) and have similar fairness properties (Chapter7).
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CHAPTER 5

Classification via scheduling
techniques

Thescheduling heuristicapplied in a scheduling policy is only one defining aspect of the policy, another is
thescheduling techniqueused by the policy. For instance,SRPT is defined both by the fact that it prioritizes
small jobs (the scheduling heuristic) and the fact that it uses remaining sizes to prioritize (the scheduling
technique). While the scheduling heuristic used in a policy is typically determined by the system designer,
the scheduling technique used is often determined by the application itself. For example, a designer may
wish to applySRPT, since it optimizes mean response time, but the application itself may prevent the use
of SRPT, thus forcing the use of a policy that prioritizes small jobs using a different scheduling technique.

There are many factors in applications that limit the use of certain scheduling techniques. Consider the
case ofSRPT. If an application does not have knowledge of the remaining sizes of jobs (e.g. an operating
system deciding which process to run or a router deciding which flow to schedule) scheduling withSRPT
is impossible.SRPT is also not feasible for applications where preemption is not possible, e.g. in systems
such as supercomputers and databases where preemption is too computationally expensive to use. Finally,
SRPT is not an option when the system cannot distinguish between an infinite number of classes of jobs.
UnderSRPT the system must distinguish between every possible remaining size, but in cases such as web
servers this infinite precision requires too much overhead.

The limitations applications place on the scheduling techniques that are available to system designers
have a huge impact on the performance attainable for that application. Consider the availability of pre-
emption. In an application such as databases, where preemption is too computationally expensive and the
scheduler does not have job size information, one cannot hope to obtain the same performance as in web
server scheduling where preemption is possible and job sizes can be estimated accurately.

Our focus in this chapter is on formalizing classes of policies based on scheduling techniques. We will
then use these classes throughout the thesis to illustrate the impact of scheduling techniques on the efficiency
and fairness of policies. In particular, we formalize four classifications of scheduling policies based on the
technique used:

(i) Preemptive size based policies

(ii) Remaining size based policies

139
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Figure 5.1: An illustration of the common policies that fall into each of the classifications studied in
this thesis. The scheduling heuristic classifications introduced in Chapter4 are shown in ovals and the
scheduling technique classifications introduced in this chapter are shown in rectangles.

(iii) Age based policies

(iv) Non-preemptive policies

These classes are illustrated in Figure5.1and cover a wide variety of scheduling techniques that have been
applied across a range of applications including web servers, routers, disks, operating systems, and others.
The classes of remaining size based policies, preemptive size based policies, and age based policies were
introduced by Wierman et al. in [238, 240], while the class of non-preemptive policies has been studied
often in the literature, see for example [119, 120, 247].

We begin our discussion of scheduling techniques by discussing the class of preemptive size based
policies in Section5.1. Then, in Section5.2, we move to the class of remaining size based policies. Next, in
Section5.3, we consider age based scheduling, which uses no job size information. And finally, we consider
non-preemptive policies in Section5.4. For each scheduling technique, we will introduce a formal definition
of the class, discuss examples of policies in the class, and derive bounds on the attainable response times of
policies in the class.

The bounds on the attainable response times help to characterize the overall efficiency of each of these
techniques and also illustrate the effect of scheduling techniques on the response times of individual job
sizes. Since these classes are defined only by the scheduling technique and allow arbitrary scheduling
heuristics to be applied, the bounds are often quite broad and seem to provide little information about the
behavior of scheduling policies in the class. However, these bounds will be of great use later when discussing
the fairness of scheduling techniques.
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5.1 The class of preemptive size based policies
We have seen many times in this thesis already that when applications know the sizes of the jobs in the queue,
using this information to schedule can provide substantial gains in mean response time. In this section, we
study the class of all policies that prioritize according to some bijection of (original) job sizes. Thus, the
results apply toPSJF , which prioritizes jobs with small original size, andPLJF, which prioritizes jobs with
large original size, in addition to hybrid policies having more complex priority assignments, e.g. policies
that prioritize both small and large job sizes to ease fairness concerns.

5.1.1 Defining a class of preemptive size based policies
Formally, we define the class of preemptive size based policies as follows.

Definition 5.1 Under apreemptive size based policy, the priority of a job is assigned based on a fixed
priority function that is a bounded bijection from job sizes to priorities. Priorities are assigned upon arrival
and cannot be adjusted. The job with the highest priority is run at all instants, and if two jobs of the same
size (and thus priority) are in the system, then the job that arrived first is given higher priority.

It is important to point out the breadth of this definition. ClearlyPSJF andPLJF are both preemptive
size based policies. Thus, the class of preemptive size based policies includes someSMART policies that
prioritize small job sizes as well as someFOOLISH policies that prioritize large job sizes. In addition, the
class of preemptive size based policies includes many hybrid policies that are neitherSMART or FOOLISH.
For example, the class of preemptive size based policies includes policies where both jobs with small sizes
and some large job sizes receive elevated priority in order to curb unfairness.

Despite the breadth of this definition, it also has some limitations that would be interesting to address in
future work. Two important extensions of this group would be (i) to include the possibility that ranges of job
sizes all receive the same priority and (ii) to include policies where the priority function can depend on the
service distribution and load. However, such extensions would make the class significantly more difficult to
study analytically.

5.1.2 Bounding response times for preemptive size based policies
As with all of the classifications based on scheduling techniques, the class of preemptive size based policies
includes policies that use a wide range of scheduling heuristics, and so, policies in the class have a a wide
range of attainable response times. For example, the class includesPSJF, which hasE[T ] within a constant
factor of optimal, andPLJF, which hasE[T ] nearly as large as possible. However, it is still possible to
obtain bounds that are useful for analyzing the fairness of policies in the class.

We begin the analysis by boundingE[T (x)].

Proposition 5.1
For any preemptive size based policy P ,

x ≤ E[T (x)]P ≤ x

1− ρ
+

λE[X2]
2(1− ρ)2

.
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Figure 5.2: This figure illustrates the bounds onE[T (x)] andE[T ] under the class of preemptive size based
policies. The shaded area indicates the response times attainable using preemptive size based policies. In
addition, the behaviors of the two most common preemptive size based policies,PSJF and PLJF, are
illustrated. In both plots the service distribution is taken to be Exponential with mean 1, and the load in (a)
is 0.7.

Further,
E[T ]PSJF ≤ E[T ]P ≤ E[T ]PLJF .

Proof. The optimality ofPSJF (among preemptive size based policies) forE[T ] follows immediately
from Phipps [175] or similar arguments in Aczel [10], and the fact thatPLJF maximizesE[T ] follows from
parallel arguments. Thus, we restrict our focus to proving the bounds onE[T (x)]. The lower bound follows
from the fact thatE[T (x)]P must at least be long enough to serve the job itself. The upper bound follows
from the fact that a job must complete by the end of the residual busy period it arrives into,E[B(x + Q)],
whereQ is the steady-state work in the system.
�

The bounds in Proposition5.1are pictured in Figure5.2.
Note that Proposition5.1 is tight. Clearly the bounds onE[T ] are tight sincePSJF and PLJF are

both preemptive size based policies. To see that the bounds onE[T (x)] are tight consider a policyPx that
gives highest priority to a job of sizex. Under any service distribution where jobs of sizex make up zero
probability mass,E[T (x)]Px = x since any arriving job of sizex receives preemptive priority. Similarly
if a policy P ′x gives jobs of sizex lowest priority then under any service distribution where jobs of sizex
make up zero mass, an arriving job of sizex will finish at the end of the busy period into which it arrives,
which matches the upper bound. Thus, for allx, there is some preemptive size based policy that achieves
the bounds in Proposition5.1.

However, though the bounds are tight, they convey little information about the behavior of any individual
size based policy: the lower bounds onE[T (x)] andE[T ] are (near) optimal and the upper bounds are
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(nearly) as large as possible under work conserving policies. We will remedy this in Chapter7 where we
will show that any individual size based policy must have somex1 such thatE[T (x1)] matches the lower
bound in Proposition5.1and somex2 such thatE[T (x2)] matches the upper bound in Proposition5.1. This
improved result will be fundamental to understanding the fairness of preemptive size based policies.

5.2 The class of remaining size based policies
In applications where the remaining size of a job is known, it is an invaluable resource for use in scheduling.
We have already seen thatSRPT is optimal with respect to mean response time, but many hybrids ofSRPT
also maintain near optimal mean response times. In this section, we study the class of all policies that
prioritize using only the remaining size of jobs. Thus, the results apply toSRPT as well asLRPT, which
prioritizes jobs with large remaining sizes. In addition, the results apply to a wide range of other disciplines
having more complex priority schemes in order to curb fairness concerns, e.g. those suggested by Gong and
Williamson [87, 88].

5.2.1 Defining a class remaining size based policies
Formally, we define the class of remaining size based policies as follows.

Definition 5.2 Under a remaining size based policy, the priority of a job is assigned based on a fixed
priority function that is a bounded bijection from remaining sizes to priorities. The priority of a job is
updated as the remaining size of the job changes, and the job with the highest priority is preemptively given
service. If two jobs have the same remaining size, the job that attained that remaining size first is given
higher priority.

It is important to point out the breadth of this definition. ClearlySRPT andLRPT are both remaining
size based policies. Thus, the class of remaining size based policies includes someSMART policies that
prioritize small job sizes as well as someFOOLISH policies that prioritize large job sizes. In addition, the
class of remaining size based policies includes many hybrid policies that are neitherSMART or FOOLISH.
For example, the class of remaining size based policies includes policies where small remaining sizes receive
high priority and some large remaining sizes also receive high priority in order to curb unfairness.

As with the class of preemptive size based policies, there are some limitations to the definition of pre-
emptive size based policies that hopefully can be addressed in future research. The class of remaining size
based policies does not include policies where jobs with different remaining sizes have equivalent priorities.
Further, the results in this section do not include randomized policies.

5.2.2 Bounding response times for remaining size based policies
We now move to bounding response times under remaining size based policies. Clearly, since bothSRPT
andLRPT are remaining size based policies, there are a wide range ofE[T ] that are possible within this
class. For instance,SRPT optimizesE[T ] while LRPT has the largest possibleE[T ] among work conserv-
ing policies. Thus, no non-trivial bounds are possible forE[T ] under remaining size based policies.
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Figure 5.3: This figure illustrates the bounds onE[T (x)] andE[T ] under the class of remaining size based
policies. The shaded area indicates the response times attainable using remaining size based policies. In
addition, the behaviors of the two most common remaining size based policies,SRPT and LRPT, are
illustrated. In both plots the service distribution is taken to be Exponential with mean 1, and the load in (a)
is 0.7.

However, it is possible to obtain useful bounds on the behavior ofE[T (x)] under remaining size based
policies. Recall thatQSRPT

x is the stationary work in theSRPT queue made up by jobs with remaining size
< x.

Proposition 5.2
For any remaining size based policy P ,

x +
λm̃2(x)

2(1− ρ(x))
≤ E[T (x)]P ≤ x

1− ρ
+

λE[X2]
2(1− ρ)2

Further,
E[T ]SRPT ≤ E[T ]P ≤ E[T ]LRPT

Proof. We have already discussed the bounds onE[T ], so we need only prove the bounds onE[T (x)].
The upper bound follows from the fact that every job must finish before the end of the residual busy period
into which it arrives, i.e.E[B(x + Q)]. Note that this bound is achieved for allx underLRPT.

The lower bound follows from the fact that all work in the system having remaining size less thanx
will complete before an arriving tagged job of sizex. Further,SRPT always devotes the full processor to
completing such work when it exists and this quantity of work makes up the same average load under all
scheduling policies. ThusSRPT minimizes the time average quantity of such work and the result follows
using PASTA and the fact that the work having remaining size less thanx underSRPT is λm̃2(x)

2(1−ρ(x)) .

�
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The bounds in Proposition5.2 are illustrated in Figure5.3. Clearly, the upper bound in Proposition5.2 is
tight sinceLRPT is a remaining size based policy. However, it seems that the lower bound is likely loose.
In particular, it is unclear how to optimizeE[T (x)] for a fixedx because giving jobs with remaining sizex
highest priority (as we did for preemptive size based policies) is far from optimal! Further, bothSRPT and
LRPT haveE[T (x)]/x → 1/(1 − ρ) asx → ∞ so it seems that this is likely true for all remaining size
based policies, but the lower bound hasE[T (x)]/x → 1. Thus, an interesting question for future work is to
derive a tight lower bound.

Though the bounds onE[T ] andE[T (x)] seem to indicate that the behavior of policies in the class is
too disparate to allow non-trivial analysis, we will be able to make strong conclusions about the fairness and
predictability of response times under remaining size based policies in Chapter7.

5.3 The class of age based policies
In many modern computer systems, scheduling decisions must be made without knowledge of the service
requirements of jobs. For example, in routers, the length of the current flow being scheduled is completely
unknown and in operating systems the service demand of any process being executed is unknown. In these
settings, the age (i.e. attained service) of a job can serve as an indication of the remaining size of a job.
For instance, when the service distribution has a decreasing (increasing) failure rate, jobs with large ages
likely have larger (smaller) remaining sizes. Two of the most common age based policies areFCFS and
FB. FCFS prioritizes according to an increasing function of the age of a job (the larger the age, the higher
the priority); whereasFB prioritizes according to a decreasing function of the age of a job (the larger the
age, the lower the priority).

In this section, we study all policies that prioritize according to some bijection of the ages of jobs. Thus,
the results apply toFCFS andFB as well as hybrid policies having more complex priority curves. Such
hybrid policies have been suggested by a number of researchers, e.g. [180], as a way to curb the unfairness
to large job sizes underFB.

5.3.1 Defining a class of age based policies
Formally, we define age based policies as follows.

Definition 5.3 Under anage based policy, the priority of a job is assigned based on a fixed priority
function that is a bounded bijection from ages to priorities. The priority of a job is updated as the age
(attained service) of the job changes. The job with the highest priority is preemptively given service, and if
two jobs have the same age (and thus priority), the job that attained that age first is given higher priority.

Clearly, FCFS obeys this definition. To see thatFB obeys this definition, observe that underFB ,
priority is strictly decreasing with age. Thus, a new arrival will run alone until it achieves the age,a, of the
youngest job in the system; and then those jobs of agea will timeshare. This timesharing is caused by the
fact that if one job starts to run, its priority will drop, causing a different job to immediately run, and so on.

In addition to these two common policies, a wide range of other disciplines fall into the class of age
based policies. For instance, one can imagine a priority curve that assigns high priority to jobs having both
small and large ages in order to relieve fairness concerns.
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Figure 5.4: This figure illustrates the bounds onE[T (x)] andE[T ] under the class of age based policies.
The shaded area indicates the response times attainable using age based policies. In addition, the behaviors
of the two most common age based policies,FCFS andFB, are illustrated In both plots the service distri-
bution is taken to be Exponential with mean 1, and the load in (a) is 0.7. Recall that all blind policies, which
includes all age based policies, have equivalentE[T ] when the service distribution is Exponential; however
the response times of these policies differ under any distribution that does not have a constant failure rate.

We will find when studying the behavior of higher moments ofT (x) under age based policies that the
age based policies which are non-preemptive (and thus equivalent toFCFS) behave quite differently from
the rest of the age based policies. In order to separate such policies from the rest of the class of age based
policies, we define the following subclass of age based policies.

Definition 5.4 The class ofpreemptive age based policiesis a subclass of age based policies where there
exists some finite agea such that the priority of jobs with agea is lower than the priority of jobs with age0,
i.e. the age based policy is not equivalent to a non-preemptive policy.

5.3.2 Bounding response times for age based policies
We now move to the task of bounding the response times of age based policies. The behavior of age based
policies is quite interesting. For example, in the special case of an Exponential service distribution, all age
based policies have the sameE[T ], despite the fact thatE[T (x)] can behave very differently under different
policies in this setting.

Though age based policies have not been studied prior to this work, the more general class of blind
scheduling policies (policies “blind” to job size information) has been studied, so many of the results here
are special cases of results proven for the class of blind policies.

We begin by presenting a bound onE[T (x)] under age based policies proven by Kleinrock [121].
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Proposition 5.3
For any age based policy P ,

x +
λm̃2(x)

2(1− ρ̃(x))
≤ E[T (x)]P ≤ x

1− ρ̃(x)
+

λE[X2]
2(1− ρ̃(x))(1− ρ)

The bounds in Proposition5.3are illustrated in Figure5.4.
Note that for allx, there is some age based policyP that hasE[T (x)]P equal to the bounds in Proposition

5.3. However, despite the fact that these bounds are tight, they do little to identify the behavior ofE[T (x)]/x
under age-based policies. For instance, the bounds seem to allow the possibility that a policy hasE[T (x)]/x
significantly lower than1/(1− ρ) for all x. However, in Chapter7 we will be prove that that all age based
policies have some peak whereE[T (x)]/x > 1/(1− ρ).

Further, despite the fact that the bounds onE[T (x)]/x are tight, they provide little information about
the behavior of age based policies with respect toE[T ]. In many cases it is possible to obtain much better
bounds onE[T ] using other techniques. For example, if the service distribution has a decreasing failure rate,
we know thatE[T ] is minimized underFB and maximized underFCFS (among blind scheduling polices)
[188, 189]. And if the service distribution has an increasing failure rate the opposite is true. However, under
distributions that do not have monotonic failure rates, it is not clear how to derive tight bounds onE[T ]
under age based policies.

We will wrap up this section by contrasting the behavior ofE[T (x)] andE[T ] under age based policies
with the behaviors we have already observed for remaining size based and preemptive size based policies.
Though the bounds onE[T (x)] under age based policies are quite broad, similarly to those onE[T (x)] under
preemptive size based and remaining size based policies, the bounds onE[T ] under age based policies are
much more restrictive than the bounds onE[T ] under either preemptive size based or remaining size based
policies. In particular, all age based policies are equivalent when the service distribution is Exponential.
Further, though differences do appear when the service distribution is non-Exponential, the differences only
become severe under service distributions with high variability and the differences are never as severe as in
cases of either remaining size based or preemptive size based policies.

5.4 The class of non-preemptive policies
So far, all the scheduling techniques we have discussed are preemptive, they allow jobs to be interrupted and
restarted without penalty. However, in many applications preemption is costly and thus only non-preemptive
polices are appropriate, e.g. databases and supercomputers.

In this section, we study the class of non-preemptive policies; thus the results apply to non-preemptive
blind policies such asFCFS andROS, as well as non-preemptive size based policies such asSJF andLJF.

5.4.1 Defining classes of non-preemptive policies
Formally, the class of non-preemptive policies is defined as follows.

Definition 5.5 Under anon-preemptive policya job cannot be interrupted once it has begun service.
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Figure 5.5: This figure illustrates the bounds onE[T (x)] and E[T ] under the class of non-preemptive
policies. The shaded area indicates the response times attainable using non-preemptive policies. In addition,
the behaviors of the three most common non-preemptive policies (FCFS, SJF, and LJF) are illustrated.
Recall that all blind non-preemptive policies haveE[T (x)] andE[T ] equal to that underFCFS. The service
distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

However, in some cases (especially when considering fairness metrics) it will be useful to divide up
non-preemptive policies into two subclasses: policies that are blind to job size information and policies that
schedule using job size information.

Definition 5.6 Under anon-preemptive blind policya job cannot be interrupted once it has begun service
and no job size information can be used to make scheduling decisions.

Definition 5.7 Under anon-preemptive size based policy, the priority of a job is assigned based on a
fixed priority function that is a bounded bijection from job sizes to priorities. Priorities are assigned upon
arrival and cannot be adjusted. The job with the highest priority is run non-preemptively, and if two jobs of
the same size (and thus priority) are in the queue, then the job that arrived first is given higher priority.

Thus, the class of non-preemptive blind policies includes, among other,FCFS, ROS, andLCFS. In
contrast, the class of non-preemptive size based policies includesSJF, LJF, and a range of policies with
more complex priority curves.

5.4.2 Bounding response times for non-preemptive policies
Unlike the scheduling techniques we have described so far in this chapter, all non-preemptive policies behave
very similarly with respect to bothE[T (x)] andE[T ]. This is because, in many cases, response times of
non-preemptive policies are dominated by the excess of the job in service.

This factor is easily seen in the following bounds onE[T (x)] under non-preemptive policies:
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Proposition 5.4
In an M/GI/1, for any non-preemptive policy P ,

x +
λ

2
E[X2] ≤ E[T (x)]P ≤ x +

λE[X2]
2(1− ρ)2

Proof. The lower bound follows from the fact that, at minimum, at job must wait behind the excess of the
current job in service. Further, the upper bound follows from the fact that, at most, an arriving tagged job
must wait behindB(Q), whereQ is the steady-state work in the system.
�

These bounds are illustrated in Figure5.5.
Clearly, the fact that a policy is non-preemptive already provides a lot of information about the behavior

of T (x), even without any information about how the policy prioritizes. In fact, using only these bounds,
we will be able to classify the fairness of non-preemptive policies in Chapter7.

Moving to the bounding the overall mean response time,E[T ], we can again obtain tight bounds. In
particular, Phipps has proven thatSJF minimizesE[T ] [175], and it follows from a parallel argument
that LJF maximizesE[T ]. Further, as we discussed in Chapter3 all non-preemptive blind policies have
equivalentE[T ]. Summarizing the above, we have

Proposition 5.5
In an M/GI/1 queue, for any non-preemptive policy P ,

E[T ]SJF ≤ E[T ]P ≤ E[T ]LJF .

Further, for any blind non-preemptive policy P , E[T ]P = E[T ]FCFS .

These bounds are illustrated in Figure5.5.
The combination of the bounds in Proposition5.4 and Proposition5.5 present an enormous contrast

to the bounds we have proven on other scheduling techniques in this chapter. In particular, as illustrated
in Figure5.5 the bounds onE[T (x)]/x give an good idea of the behavior of all non-preemptive policies,
which has not been the case for the bounds on the other scheduling techniques discussed in this chapter, e.g.
preemptive size based and age based policies. Further, because of the dominant effect the excess of the job
at the server has on the overall mean response time of non-preemptive policies, even the behavior ofE[T ]
is well characterized by the simple bounds in Proposition5.5. Again, this is a huge contrast to the bounds
onE[T ] under remaining size based and preemptive size based policies, which are too disparate to provide
a useful understanding of any individual policy.

5.5 Concluding remarks
In this chapter, we have defined formal classifications of scheduling policies based onscheduling techniques.
We focused on four particular techniques that span a wide range of applications: remaining size based
scheduling, preemptive size based scheduling, age based scheduling, and non-preemptive scheduling. In
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Figure 5.6: These figures illustrate the bounds onE[T (x)]/x under scheduling techniques. The service
distribution is taken to be exponential with mean 1, and the load is 0.7.
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Figure 5.7: These figures illustrate the bounds onE[T ] under scheduling techniques. The service distri-
bution is taken to be exponential with mean 1.

addition to defining the four classifications, we began our analysis of each class by proving simple bounds
on the overall and conditional mean response times attainable by policies in each class. These bounds go a
long ways towards illustrating the impact of the scheduling technique used by a policy on its performance.

Figures5.6 and5.7 illustrate the bounds on the attainable response times under each scheduling tech-
nique. There are a few notable contrasts that are worth expanding on.

The most obvious contrast in Figure5.6 is how different the bounds on non-preemptive polices are
from the bounds on the other technique classifications. In particular, under preemptive size based policies,
remaining size based policies, and age based policies the behavior ofE[T (x)] can be quite varied; while
all non-preemptive policies have a strongly decreasing trend. To isolate the impact of preemption, it is
interesting to contrast the behavior of preemptive size based policies and non-preemptive size based policies.
Though both classes include size based policies, the the impact of preemption is dramatic. In particular,
looking at the behavior ofE[T (x)]/x we see that all non-preemptive policies give very large job sizes
approximately the sameE[T (x)]/x while preemptive size based policies can differ significantly in terms
of the response times of large jobs. Further, notice that non-preemptive policies treat large job sizes nearly
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optimally. Thus, even when a non-preemptive policy biases against large job sizes, large jobs have near
optimal response times, while under preemptive size based policies biasing against large job sizes leads to a
significant increase in the response time of large job sizes.

Another interesting comparison across scheduling techniques is the comparison ofE[T ] illustrated by
Figure5.7. Under many of the scheduling heuristicsE[T ] can be quite disparate. For instance, remaining
size based policies can achieve both the optimal and worst possibleE[T ]. Similarly, preemptive size based
policies can be both near optimal and very far from optimal. In contrast, other scheduling techniques guar-
antee very similar mean response times in certain settings. For instance, when job sizes are exponentially
distributed, all age based policies are equivalent and non-preemptive policies all have very similar response
times. However, the bounds onE[T ] under these scheduling techniques can also become quite disparate
when the job size distribution has high variability.

The scheduling technique based classifications discussed in this chapter are complementary to the
heuristic classifications introduced in Chapter4. By comparing the two types of classifications we can
develop a new understanding of the differing impacts of scheduling techniques and heuristics. Understand-
ing these different impacts will be a key theme throughout the thesis; however we can already begin to make
a few observations by recalling Figures4.12and4.13and comparing them to Figures5.6and5.7.

The biggest contrast in these figures is that the scheduling heuristic used plays a more defining role in
determiningE[T ] than the scheduling technique. Some scheduling techniques guarantee similarE[T ] under
certain distributions (e.g. the age based and non-preemptive techniques under the exponential distribution);
however to a large extent the scheduling technique used provides little information about the behavior of
E[T ]. For instance, under service distributions with large variance, all four scheduling techniques contain
policies with disparateE[T ]. In contrast, all of the scheduling heuristics isolateE[T ] across all service
distributions. Prioritizing small jobs always leads to near optimalE[T ] while prioritizing large jobs always
leads to very largeE[T ]. Further,PROTECTIVE andSYMMETRIC scheduling always lead to similar
E[T ].

Similarly, when comparing the behavior ofE[T (x)]/x under scheduling heuristics with that under
scheduling techniques, we see that the scheduling heuristic used plays a much larger role in determining
the behavior ofE[T (x)]/x. Under the scheduling heuristics, all the policies in each class have similar
functional behavior: they are all increasing/decreasing/constant acrossx. However, under the scheduling
technique classifications, each class has policies with a range of behaviors. For instance, the class of re-
maining size based policies includes both policies that haveE[T (x)]/x increasing withx and policies that
haveE[T (x)]/x decreasing withx.

The trend of the scheduling heuristic playing a defining role in the performance of the policy will extend
throughout the thesis under both fairness and efficiency measures. However, we will see in Chapter7 that,
with respect to fairness measures, the scheduling technique used provides a more useful way of understand-
ing performance. Further, some scheduling techniques, especially the class of non-preemptive policies, will
play a strong role in determining the performance of policies under other efficiency measures such as the
behavior of the tail of the response-time distribution.

Let us end this chapter with one final note. Chapters4 and5 have introduced a wide variety of classifi-
cations. These classifications are in many cases novel, e.g. theSMART, SMARTε, FOOLISH, preemptive
size based, remaining size based, and age based classifications. Other classifications have been studied for
many years, but are viewed in a new light in by this thesis, e.g. theSYMMETRIC and non-preemptive
classifications. Another, thePROTECTIVE classification, is an example of a new classification that was
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introduced by the new focus on classifications provided by this thesis. Further, thePROTECTIVE clas-
sification is not the only example of other researchers developing new classifications, motivated by the
work of this thesis. In particular, following the work of Wierman & Harchol-Balter [238] there has been a
growing focus of research introducing and analyzing scheduling classifications. For example, many other
researchers also became interested in theSMART class, and this led to a collaboration with Bert Zwart and
Misja Nuyens analyzing the distribution of response time underSMART policies in the large buffer large de-
viations regime (see Chapter6 [161]. In addition, it led to a collaboration with Sanjay Shakkottai and Chang
Woo Yang on the analysis ofSMART policies in the many sources large deviations regime [248]. Further,
other researchers have started to introduce their own scheduling classifications. In addition to thePRO-
TECTIVE class that we discussed in Chapter4, Feng, Misra, & Rubenstein [74], Nunez-Queija & Kherani
[118], and Kherani [117] have all introduced interesting classifications of other scheduling techniques and
heuristics.
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Until this point in the thesis, we have focused almost entirely on characterizing the
mean response time under a range of individual policies and scheduling classifi-
cations. However, in practice, many other metrics are also important to computer
systems. It is not enough for a new design to provide an improved mean response
time, it must also guarantee fairness, provide quality of service (QoS) guarantees,
limit buffer overflows, limit power usage, etc. In Part III of the thesis, we move be-
yond the study of mean response time and consider a variety of other metrics that
are important across applications. In Chapter6 we study the distributional behav-
ior of response time and in Chapter7 we introduce and study a variety of fairness
metrics.

Extending our discussion beyond mean response time to the distribution of re-
sponse time is essential for applicability in modern computer applications because
users can become even more frustrated by highly variable service times than by
having large response times on average. Further, providing QoS guarantees under
scheduling policies depends on knowledge of the distribution of response times.
Unfortunately, studying the distribution of response times under scheduling poli-
cies directly is known to be an extremely difficult task. As a result, in Chapter
6, we study only the tail behavior of the distribution, i.e. we studyP (T > x) as
x →∞. By limiting ourselves to this asymptotic regime we are able to derive new
results characterizing the response time distribution under both common individual
scheduling policies and scheduling classifications.

Extending our discussion to consider fairness metrics is also essential to the ap-
plicability of our results to real systems. Fairness metrics are important in any
computer system where there are human users. Although typically not the primary
metric of interest, it is important that low priority users, which are in many cases
the users with large service demands, are not starved of service in order to obtain
efficiency gains. However, fairness is an amorphous concept, and thus is difficult to
define. This difficulty has traditionally stifled research into the fairness of schedul-
ing policies. In Chapter7, we introduce a variety of novel measures of fairness
that are motivated by computer applications such as routers and web servers. In
addition, we analyze both common individual scheduling policies and scheduling
classifications with respect to these new fairness metrics.





CHAPTER 6

The distribution of response time

Until this point in the thesis we have focused almost entirely on the mean response time of scheduling poli-
cies. Though, providing small mean response times is typically the primary goal for computer applications,
extending our discussion beyond the mean response time to the distribution of response time is essential for
real world applicability. In fact, users have been shown to prefer response times that are larger on average if
the response times are less variable, and thus more predictable [65, 255]. Further, understanding the distri-
butional behavior of response time is fundamental when considering QoS, admission control, and capacity
planning applications where guarantees of the form “90% of the time the response time is <C” are desired.

Clearly, the study of the distribution of response times is important, and as a result understanding it is a
classical problem in queueing. However, it is a problem that has proven to be extremely difficult, especially
in the case of complex scheduling policies. In particular, exact derivations ofP (T > x) are only possible in
very specialized settings, such as the M/M/1, and under only very simple policies, such asFCFS. Instead,
the traditional approach for understandingP (T > x) has been to derive the Laplace transform of response
time. However, though obtaining the Laplace transform of response time is useful in characterizing the
moments of response time, the “Laplace curtain” hides the behavioral properties of the distribution – other
techniques are necessary to “see through the curtain.”

Due to the difficulty of exact analysis, modern studies of the response time distribution tend to either
use (i) numerical techniques or (ii) asymptotic techniques. Numerical approaches typically to rely on either
using transform inversion techniques, e.g. [7, 8], or using phase type (PH) service and arrival distributions
combined with matrix analytic techniques, e.g. [125, 163]. We will apply these matrix analytic techniques
in Chapter9 when we analyze multiserver systems. However, such an approach is not ideal because sit can
only be applied for light-tailed service distributions, and heavy-tailed service distributions are prevalent in
computer applications [28, 69, 127, 174]. Asymptotic approaches to studying the distribution ofP (T > x)
have no such limitations – they can be applied to both light-tailed and heavy-tailed service distributions.

This chapter will focus on one particular asymptotic regime for studyingP (T > x): the large buffer
large deviationsregime. Under the large buffer regime, the asymptotic tail of response time is studied, i.e.
the behavior ofP (T > x) asx →∞ is characterized. This is a natural asymptotic regime to study since it
provides bounds on the likelihood of large delays, which are exactly what QoS and buffer provisioning ap-
plications require. Results in the large buffer framework provide an understanding of what “critical events”

157



158 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

lead to large response times, and thus, how scheduling can and priority mechanisms can limit the likelihood
of large delays.

The large buffer framework has received an enormous amount of attention over the last decade. Moti-
vated by the emergence of measurements indicating heavy-tailed file size distributions in many computer
applications [28, 69, 127, 174], there has been an explosion of results analyzing the tail behavior of a vari-
ety of scheduling policies in the heavy-tailed setting. Beginning with results forFCFS [40, 60, 169], and
eventually leading to the analysis a a wide range of policies such asPS [41, 90], PLCFS [141], SRPT
[158], LCFS [40], FB [158, 159], and others. The results for these individual policies are quite illustra-
tive. In particular, two common behaviors have emerged: common policies either (i) have a response time
tail proportional to the tail of the service distribution (e.g.SRPT andPS) or (ii) have a response time tail
proportional to the tail of the residual of the service distribution, i.e. the tail of the excess of the service
distribution (e.g.FCFS andLCFS).

In the process of this explosion of work, four general analytic approaches emerged. Results were ob-
tained either from (i) an analytical approach relying on Tauberian theorems relating the tail behavior of a
distribution to the Laplace transform of the distribution; (ii) a probabilistic approach using Markov’s in-
equality to relate the occurrence of a large response time to the occurrence of a large service demand; (iii) a
sample path approach that directly characterizes the critical event; or (iv) a probabilistic approach based on
an explicit random walk representation of the waiting time distribution. We will provide an illustration of
each of these techniques in this chapter, however the interested reader can also refer to the excellent survey
paper by Borst et al. [40].

Following the explosion of results in the heavy-tailed setting, in the past few years, there has been a
growth in work studying the tail behavior of response time in the light-tailed setting. Many of the same
proof techniques apply to both the heavy and light-tailed settings; thus analyses of many common policies
have quickly emerged:FCFS [181], PS [135, 41, 72], SRPT [162], PLCFS [170], FB [134, 161], ROS
[135], and others. As in the heavy-tailed setting, it seems that two types of tails are emerging: policies either
(i) have a response time tail proportional to the stationary workload in the queue (e.g.FCFS) or (ii) have
a response time tail proportional to the length of a busy period (e.g.SRPT andPS). Interestingly, these
two behaviors, in a sense, parallel what happens in the heavy-tailed setting: in the heavy-tailed setting a
busy period has the same tail as the service distribution and the stationary workload has the same tail as the
residual of the service distribution. The difference is that, in the light-tailed setting, the tail of a busy period
is heavier than the tail of the workload, while the opposite is true in the heavy-tailed setting. Thus, there is
a general trend indicating that policies which behave well under heavy-tailed service distributions behave
poorly under light-tailed service distributions. This contrast between the behavior of scheduling policies
under light and heavy-tailed service distributions has spurred research in this area.

Our goal in this chapter is to shed light on the contrast between the behavior of scheduling policies in
the light and heavy-tailed settings by taking a new approach to the study of response time tails: analyzing
the behavior ofscheduling classificationsinstead of focusing on individual policies. By characterizing the
behaviors of scheduling classifications we hope to develop an understanding of the scheduling heuristics
and techniques that underly the contrast between the light-tailed and heavy-tailed settings.

However, before we can study scheduling classifications, we must begin by understanding the behavior
of individual policies. Thus, in Section6.2we will provide an overview of results about individual schedul-
ing policies. This section will include results aboutFCFS, SRPT, PS, FB, andLCFS. Note that some of
these results are new to this thesis. For example, we extend the analysis ofFB andSRPT from the M/GI/1
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setting to the GI/GI/1 setting. In addition, this section will include a number of proof sketches illustrating
the common techniques used in this area.

After taking a thorough look at the behavior of individual policies, in Section6.3, we will move to the
analysis of scheduling classifications. In this section, we will derive results characterizing the response time
tail under the class of non-preemptive policies, theSMART class, and theFOOLISH class. These results
represent a departure from the standard results in the field because of the focus onclassesof policies instead
of individual policies. The benefits this of this new focus are that (i) it provides a deeper understanding
of what in a policy determines the behavior of the response time distribution, and (ii) it allows the results
to be applied not only to the idealized policies studied in theory, but also to the policies that are actually
implemented in practice.

The analyses of the tail behavior of response time under these scheduling classifications illustrates a
number of important contrasts between scheduling heuristics/techniques. For instance, we will show that
SMART policies provide an asymptotically optimal response time tail when the service distribution is
heavy-tailed, but provide a response time tail that is as heavy as possibly under light-tailed service dis-
tributions. In contrast,FOOLISH policies have response time tails that are as heavy as possible under both
light-tailed and heavy-tailed service distributions. Similarly, non-preemptive policies have as heavy a re-
sponse time tail as possible under heavy-tailed service distributions, but can have an asymptotically optimal
response time tail under light-tailed service distributions. These results shed new light on the reasons for the
contrasting behavior of individual policies under light-tailed and heavy-tailed service times. Further, these
results have a clear impact for system design. In particular, they highlight the need for understanding the
tail behavior of job sizes before making design decisions about which scheduling policy to use. Further, the
derivations of the results provide insight into the causes of large delays under different policies. For exam-
ple, under non-preemptive policies, the analysis formalizes the idea that when a tagged job experiences a
long delay it is likely due to a large job being at the server when the tagged job arrives. In contrast, under
SMART policies, the analysis illustrates that when a tagged job experiences a long delay it is likely the
result of a burst of arrivals (having smaller sizes) arriving just after the arrival of the tagged job.

6.1 Preliminaries
Before proceeding, it is important that we spend some time introducing the notation and distributions that
we will be using in this chapter. We will be considering two classes of service distributions, one heavy-tailed
and one light-tailed.

The class ofheavy-taileddistributions that we will focus on are those of intermediate regular varia-
tion, IR, see Section2.4.2.3for an introduction to these distributions. This class generalizes the class of
regularly varying distributions, and thus includes Pareto distributions. In addition it includes policies that
“dominate” a Pareto tail. In addition toIR distributions, we will occasionally discuss the broader class of
subexponential distributions,S. Refer to Section2.4.2.4for an introduction to these distributions.

The class oflight-tailed distributions we study obeys the following assumptions:

Assumption 6.1 MX(s) < ∞ for somes > 0.

Assumption 6.2 P (X = xF ) = 0.
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Note that the distributions that satisfy both of these assumptions include light-tailed distributions with
infinite endpoints (e.g., exponential, gamma, and certain Weibull distributions), as well as all continuous
distributions with finite support (e.g., uniform and beta distributions).

When studying light-tailed distributions, we will describe the logarithmic behavior of the tail of the
response time distribution using thedecay rate.

Definition 6.1 The(asymptotic) decay rateγ(Y ) of a random variableY is defined by

γ(Y ) = lim
x→∞

− log P (Y > x)
x

,

given that the limit exists.

Informally, for largex, one may writeP (Y > x) ≈ e−γ(Y )x. It should be noted that a smaller decay rate
corresponds to a larger tail of the distribution.

In both the light and heavy tailed case, our analysis will depend heavily on the use of busy periods (B).
Thus, it is important to recall the wide variety of busy periods that we introduced in Section3.2.1. Further,
it is important to understand the tail behavior of the busy period in both the light-tailed and heavy-tailed
settings.

In the heavy-tailed setting, De Meyer and Teugels [141] have proven

P (B > x) ∼ P (X > (1− ρ)x) asx →∞ (6.1)

in an M/GI/1 queue with regularly varying job sizes. Further, (6.1) has been shown to hold in a GI/GI/1
queue under the more general class of subexponential distributions if the distribution is alsosquare-root
insensitive, i.e. if P (X > x) ∼ P (X > x −

√
x) asx → ∞ [21, 105]. Note that, for example, the Pareto

distribution is always square-root insensitive but the Weibull distribution is not.
In the light-tailed setting, the decay rate of the busy period can be expressed in terms of the moment

generating functions of the interarrival times,A, and the service times,X [162]. We state the result here in
a form that will be of use later in our analysis ofSMART policies.

Lemma 6.1
For 0 < x ≤ ∞,

γ(Bx) = sup
s≥0

[
s +M−1

A

(
1

MXI(X<x)(s)

)]
γ(B̃x) = sup

s≥0

[
s +M−1

A

(
1

MX∧x(s)

)]
γ(B) = sup

s≥0

[
s +M−1

A

(
1

MB(s)

)]
Note that the expressions forγ(B), γ(Bx) andγ(B̃x) can in general be solved numerically. However, if

the arrival process is Poisson with rateλ, we can obtain a more explicit formula:

γ(B) = sup
s≥0

[s− λ(MX(s)− 1)]
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Further, specializing this to theM/M/1 queue, where the service times have an exponential distribution
with rateµ, we get the expression

γ(B) = µ(1−√ρ)2.

6.2 The response time tail under individual policies
With the preliminaries out of the way, we are now ready to study the tail behavior of response time under
common individual scheduling policies. Our goal here is twofold. First, and foremost, we hope to provide an
overview of the known results about tail behavior for the common policies studied in the queueing literature
so that the results we will later prove about classes of policies can be placed in the greater context of the
field. However, just as importantly, we also hope to provide an overview of the common analytic techniques
used in the literature so that a non-expert can more easily understand the arguments we will use to analyze
scheduling classifications.

We will organize this subsection as follows. We will have subsections for each of the common individual
policies. In each case, we will survey results characterizing the tail behavior of response time under both
light-tailed and heavy-tailed service distributions. In addition, for many policies we will provide an overview
of the derivation of the results, and in some cases we will provide multiple derivations for the same policy
in order to contrast the intuition provided by each argument.

6.2.1 FCFS
As you might expect,FCFS was one of the first policies for which the tail behavior of response time
was studied. Initially, the behavior ofFCFS was studied under light-tailed service distributions in simple
models such as the M/M/1. Then, as empirical observations provided increasing support for the importance
of heavy-tailed distributions in practice, the focus of analysis shifted to the heavy-tailed setting. Thus, we
will start by providing a brief summary of results aboutFCFS in the light-tailed setting, and then we will
survey the results and techniques for studyingFCFS in the heavy-tailed setting.

Light-tailed service times
The first results about the tail behavior ofFCFS emerged in simple queueing models and are part of most
introductory queueing theory texts, e.g. [119, 247, 222]. For instance, it is quite straight forward to study the
tail behavior ofFCFS in simple models such as the M/M/1. Specializing the Pollaczek-Khinchin transform
formula to the case of the M/M/1 yields

LT (s)FCFS =
µ(1− ρ)

s + µ(1− ρ)

whereµ is the service rate. This is clearly the transform of an exponential distribution, thus we can invert
the transform to obtain the following p.d.f. of the response time

fT (x)FCFS = µ(1− ρ)e−µ(1−ρ)x
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However, the analysis of the GI/GI/1 tail behavior ofFCFS under light tailed service times did not
emerge until much later. It is easy to see that the decay rate ofFCFS matches the decay rate of the workload;
however, deriving an explicit form for the decay rate of the workload is more difficult. We defer the details
of the proof to [17, 162] and simply state the result here. In particular, we have that (under Assumption6.1)

log P (Q > x) ∼ −γ(Q)x asx →∞

where
γ(Q) = sup{s : MA(−s)MX(s) ≤ 1}

To understand this decay rate, it is useful to contrast it with the decay rate of a busy period. It is easy to
see thatγ(B) ≤ (1 − ρ)γ(Q) for all ρ < 1 (see [162] for the details). Thus, the tail of the busy period is
always heavier than that of the workload. In fact, Ramanan and Stolyar have shown that the decay rate of
the workload is as large as possible (thus the tail is as light as possible) [181].

Heavy-tailed service times
The first analysis ofFCFS in the heavy-tailed setting was provided by Cohen [60], who showed that

P (WFCFS > x) ∼ ρ

1− ρ
P (E > x), asx →∞ (6.2)

in the GI/GI/1 queue when the service distribution is regularly varying. However, many other authors have
since studied the tail behavior ofFCFS, and (6.2) has been shown to hold in much more general settings.
In particular, Pakes proved that (6.2) holds whenever the excess of the service distribution is subexponential
[169]. In addition, Korshunov [122] established a converse result for the GI/GI/1 which shows thatE ∈ S
is not only sufficient, but is also necessary. That is

E ∈ S ⇔ WFCFS ∈ S ⇔ P (WFCFS > x) ∼ ρ

1− ρ
P (E > x)

The importance of subexponentiality in this setting should not be too surprising given the background
we have provided on the composition of the workload in theFCFS queue. In particular, we can recall from
(3.3) that the waiting time underFCFS has a random sum decomposition. In particular, we have that

P (W > x) = (1− ρ)
∞∑

n=0

ρnP (E1 + . . . + En > x)

From the definition of subexponential distributions in Section2.4.2.4it is clear that subexponential distribu-
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tions are extremely well-suited to analyze such a random sum. In particular, ifE ∈ S, we have

P (W > x) = (1− ρ)
∞∑

n=0

ρnP (E1 + . . . + En > x)

∼ (1− ρ)
∞∑

n=0

ρnnP (E > x)

=
ρ

1− ρ
P (E > x)

Note that the interchange of the summation and the limit can be justified using the dominated convergence
theorem in combination with an upper bound such as the one in [18] which says that ifE ∈ S, andε > 0,
then there exists aK such thatP (E1 + . . . + En) > x) ≤ K(1 + ε)nP (E > x).

Clearly, subexponential distributions provide a useful class for studying the tail behavior ofFCFS in
the heavy-tailed setting. However, due to its simplicity,FCFS provides a venue for illustrating some other
common analytic techniques. Thus, we will also sketch two other derivations of (6.2): one using a transform
approach and one using a sample path argument.

We will start by illustrating the transform approach. Whenever the transform of the quantity being
studied is known, a simple way to derive the tail asymptotics of the transform is to apply a Tauberian
theorem, such as Theorem2.2 for regularly varying distributions. Combining Theorem2.2 with the P-K
transform formula (see (3.2)) we can easily derive the asymptotic tail behavior ofWFCFS in the M/GI/1
setting with a regularly varying service distribution. For illustrative purposes, let us assume thatF ∈ RV(α)
for 1 < α < 2, however this can easily be extended. To begin, recall that whenX isRV(α), E isRV(α−1).
Thus, applying Theorem2.2, we have that

1− LE(s) = 1− 1− LX(s)
E[X]s

= −
(

Γ(1− α)
E[X]

+ o(1)
)

sα−1L(1/s), ass ↓ 0,

whereL(·) is a slowly varying function. Further, we have that

LW (s)FCFS =
1− ρ

1− ρLE(s)
∼ ρ

1− ρ

Γ(1− α)
E[X]

sα−1L(1/s)

Another application of Theorem2.2gives (6.2).
The the transform argument that we just worked through is simple and direct, but it provides little

intuition for why (6.2) holds. The sample-path approach we will describe now is a technique for formalizing
intuition about thecauseof a large delay. In particular, underFCFS the cause of a large delay is intuitively
the arrival of one very large job (when the service distribution is heavy-tailed). Amazingly, it turns out that
it is possible to formalize this simple heuristic into an argument for obtaining tail asymptotics by simply
computing the probability of this scenario occurring and then showing that all other scenarios happen with
negligible probability.

To illustrate how such a derivation is performed, let us focus on the workload in the system at some time
t = 0. Our intuition tells us that a large workload att = 0 is likely due to the arrival of a large job at some
prior time, t = −y. Following timet = −y, the workload in the queue decreases roughly linearly at rate
1 − ρ (sinceρ work arrives and the server works at rate1). Thus, in order for the workload to exceedx at
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t = 0, the large job that arrived must be larger thanx + y(1 − ρ). Now, in the M/GI/1 setting we have an
arrival rate ofλ, so we have

P (WFCFS > x) ≈
∫ ∞

y=0
P (X > x + y(1− ρ))λdy

=
λ

1− ρ

∫ ∞
z=x

P (X > z)dz

=
ρ

1− ρ
P (E > x)

Note that the second step follows from the change of variablesz = x + y(1− ρ) and the final step follows
from recalling thatfE(x) = P (X > x)/E[X].

Obviously the above is only a sketch of the argument, however this sketch can be made into a rigorous
lower bound onP (WFCFS > x) with only a little additional effort. But, deriving a matching upper bound
turns out to be much more difficult, and we refer the reader to [40] or [257] for a more comprehensive
description.

6.2.2 SRPT
The analysis of the tail ofSRPT requires a much different approach than those that we just illustrated
for FCFS. Results about the tail behavior of response time underSRPT first emerged in the heavy-tailed
setting, so we will begin there and then move to the light-tailed setting.

Heavy-tailed service times
Analyzing the tail behavior ofSRPT was an open problem until Nunez-Queija [158] proved that, in the
M/GI/1 withRV service times,SRPT is (what he termed) a “tail-equivalent” policy, i.e. the tail of response
times are the tail of service times are equally heavy:

P (TSRPT > x) ∼ P (X > (1− ρ)x) asx →∞ (6.3)

This tail behavior is an enormous improvement over the behavior we saw underFCFS, where the tail of
response times was as heavy as the tail of the excess of the service times. Further, (6.3) illustrates thatSRPT
has an asymptotically optimal response time tail in this setting since it is impossible to have a response time
tail that is lighter than the tail of the service distribution.

In order to prove (6.3) Nunez-Queija introduced a new technique that reduces results about the tail
behavior response time underRV job sizes to the study of the conditional response time distribution. In
particular, Nunez-Queija proved that the following three conditions are enough to characterize the tail-
behavior of a scheduling policy any policyP [158].

Condition 6.1 There existsg > 0, E[T (x)]P /x → g asx →∞.

Condition 6.2 LetF ∈ RV(α). There existsκ > α such that

P (T (x)P − E[T (x)]P > t) ≤ h(x)
tκ
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with h(x) = o(xκ−δ) for someδ > 0.

Condition 6.3 T (x)P is stochastically increasing inx ≥ 0.

Theorem 6.2
If F ∈ RV(α) and Conditions 6.1-6.3 hold, then

P (T (x)P > gx) ∼ P (X > x) as x →∞

Using Theorem6.2, it is very straightforward to prove (6.3). In fact Condition6.3 is immediate and Condi-
tion 6.1follows from the following:

lim
x→∞

E[T (x)]SRPT

x
=

1
x

∫ x

0

dt

1− ρ(t)
+

λm̃2(x)
2(1− ρ(x))2

= lim
x→∞

1
x

∫ x

0

dt

1− ρ(t)

= lim
x→∞

1
1− ρ(x)

(by L’Hopital’s rule)

=
1

1− ρ

Finally, to illustrate the verification of Condition6.2, we will limit ourselves to1 < α < 2 and use Cheby-
shev’s inequality to reduce the condition to the form

P (T (x)P − E[T (x)]P > t) ≤ V ar[T (x)]P

tκ

Thus, we need only study the limiting behavior ofV ar[T (x)]SRPT . We will start with the analysis of
V ar[R(x)]SRPT . Let ε > 0, then

V ar[R(x)]SRPT =
∫ x

0

λm2(t)
(1− ρ(t))3

≤ λ

(1− ρ)3

∫ x

0
t2F (t)− m̃2(t)

= o(x3−α+ε)asx →∞

Similarly, it is easy to verify that
V ar[W (x)]SRPT = o(x3−α+ε)

Finally, we can complete the proof of (6.3) by applying Theorem6.2.
The strength of this technique for analyzing the tail behavior ofSRPT is that it does not require the

availability of the transform of response time, which is difficult to work with underSRPT and many other
policies. Further, the technique studies only the behavior ofT (x), which is easy to understand under priority
based policies such asSRPT. However, the technique is limited by the fact that typically verifying Condition
6.2 involves using Markov’s or Chebyshev’s inequalities on higher moments ofT (x). Thus, in situations
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where moments ofT (x) cannot be expressed easily (such as outside the M/GI/1 model) Theorem6.2 is
difficult to apply. To remedy this, Guillemin et. al. introduced complementary conditions in [90]. These
conditions were later applied by Nuyens, Wierman, and Zwart to show that (6.3) also holds in the more
general GI/GI/1SRPT queue withIR service times [161].

Condition 6.4 For someg > 0, T (x)/x → g a.s. asx →∞.

Condition 6.5 There exists a constantk such that

P (T (x) > kx) = o(F (x)).

Theorem 6.3
If Conditions 6.4 and 6.5 hold, F ∈ IR, and E[Xp] < ∞ for some p > 1, then

P (T > gx) ∼ P (X > x) as x →∞.

Notice that Condition6.4is a strengthened version of Condition6.1; however, as we saw, Condition6.2
is typically the easiest to verify, so strengthening this condition is not typically problematic. Further, the
form of Condition6.5makes it applicable in situations where Condition6.2 is difficult to apply (though the
reverse is also true). Note that we will illustrate the use of Theorem6.3in our analysis of theSMART class
later in the thesis.

Light-tailed service times
The analysis of the tail behavior of the response time ofSRPT in the light-tailed setting has only emerged
very recently. In particular, Zwart and Nuyens were the first to present an analysis [162]. The analysis they
present consists of first analyzing the behavior of a 2 class priority queue and then relating the behavior of
the low priority class to the behavior of the largest job size in theSRPT queue using sample path arguments.
We will not include the analysis here because many of the arguments are generalized later in this section
when we derive the tail behavior of theSMART classification. Instead, we will simply state the results.

First, in the case when both Assumptions6.1and6.2hold (i.e. the service distribution is light-tailed and
has no mass at the right endpoint), we have that

log P (TSRPT > x) ∼ −γ(B)x asx →∞

Thus, in this case the tail ofSRPT behaves like the tail of a busy period, which we have already seen is
the heaviest possible tail among all work conserving policies. This is quite a contrast to the tail behavior of
SRPT in the heavy-tailed setting.

If the service distribution has mass in its right endpoint, then the tail ofSRPT can be better. For instance,
in the M/D/1 queue,SRPT is equivalent toFCFS, thus the tail is equivalent to that of the workload. In
other cases, when the right endpoint has mass, the tail behavior ofSRPT falls in between the tail of the
workload and the tail of the busy period. DefineX1 such thatP (X1 ≤ x) = P (X ≤ x|X < xU ). Then,
under Assumption6.1, we have that if0 < P (X = xU ) < 1,

log P (TSRPT > x) ∼ −γ(T )SRPT x
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where

γ(T )SRPT = sup
s∈[0,γ(Q)]

[
s +M−1

A

(
1

MX1(s)

)]
Thus, the tail of the response time underSRPT decays like the tail of a busy period including only the jobs
smaller than the right endpoint of the service distribution (sinceSRPT serves jobs with the same remaining
size according toFCFS order).

6.2.3 PS
The analysis of the tail behavior ofPS can be approached with a wide variety of techniques. The first results
for PS were obtained in the heavy-tailed setting, so we will start by surveying heavy-tailed results and then
move to the light-tailed setting.

Heavy-tailed service times
The first derivation of the tail behavior ofPS used the same transform approach that we described for
FCFS. In particular, Zwart and Boxma [256] use the Tauberian theorem for regularly varying distributions
(Theorem2.2) in concert with the transform ofTPS (see Section3.1.4) in order to obtain the asymptotics
of the response time distribution of the M/GI/1PS queue. They prove that

P (TPS > x) ∼ P (X > (1− ρ)x) asx →∞ (6.4)

Interestingly, this indicates that the tail behavior ofPS is asymptotically equivalent to that ofSRPT under
regularly varying service distributions, and both are optimal (up to a constant factor).

Following the initial derivation of (6.4) using a transform approach, a number of other analyses ofPS
in the heavy-tailed setting have emerged. In particular, Nunez-Queija [158] shows that Conditions6.1- 6.3
hold in the case of the M/GI/1PS queue, which provided a far simpler derivation of (6.4). Further, Guillemin
et. al. [90] verified Conditions6.4-6.5 in the case of the GI/GI/1PS queue, guaranteeing that (6.4) holds in
this more general setting. Finally, Jelenkovic and Momcilovic [105] use a sample path approach to show
that (6.4) holds even under subexponential service distributions that have the additional property that they
aresquare-root insensitive, i.e.

P (X > x) ∼ P (X > x−
√

x) asx →∞

Note that this condition is always met in the case of regularly varying distributions. The necessity of this
condition can be understood intuitively using the central limit theorem as follows. We already know that
underPS, the rare event{TPS > x} is determined by the event{X > x(1 − ρ)}. If we defineS(t) to be
the inverse ofT (x)PS so thatS(t) = x means thatT (x)PS = t, we know thatS(t)/x → 1− ρ asx →∞.
Further, can be shown using the central limit theorem thatS(t) = (1− ρ)x + O(

√
x). Thus, we have that

P (TPS > x) = P (X > S(x)) ≈ P (X > (1− ρ)x + O(
√

x))

which illustrates the importance of having a service distribution that is square-root insensitive.
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Light-tailed service times
The tail behavior ofPS under light-tailed service distributions is far more complex than in the heavy-tailed
setting. In fact, until very recently only asymptotics forPS in the M/M/1 setting were known. In particular,
by relating the behavior of an M/M/1PS queue to that of an M/M/1ROS queue, Borst et. al. [39] were
able to apply the results of Flatto forROS [76] in order to prove the following ‘exact asymptotics’ for the
response time of the M/M/1PS queue:

P (TPS > x) ∼ cx−5/6e−αx1/3
e−γx

for some constantsc, α, γ.
However, in the more general GI/GI/1 model, only logarithmic asymptotics have been found. Mandjes

and Zwart [135] have characterized the response time decay rate under a large class of light-tailed service
distributions. In particular, the class of service distributions that satisfy the following assumption:

Assumption 6.3 For each constantc > 0, we have

lim
x→∞

1
x

log P (X > c log x) = 0

Note that this assumption equivalently requires thateX is heavy-tailed. This is satisfied by most common
light-tailed service distributions, e.g. phase-type and Gamma distributions, but rules out distributions having
extremely light tails such as distributions with c.d.f. of the forme−ex

.
The result that Mandjes and Zwart prove about the tail ofPS is that under Assumptions6.1and6.3

log P (TPS > x) ∼ log P (B > x) asx →∞

Thus, in this setting the tail behavior ofPS matches that of a busy period, which is the heaviest possible
tail. However, likeSRPT, there are other settings wherePS can have a lighter tail than a busy period. For
example, Egorova, Zwart, and Boxma [72] have shown that in the M/D/1 setting the decay rate ofPS falls
between that ofFCFS and a busy period.

6.2.4 FB
The analysis of the tail behavior ofFB can be approached in much the same way as that ofSRPT. In fact,
the results forFB nearly parallel to those forSRPT.

Heavy-tailed service times
The analysis of the tail of response time underFB was first approached in the heavy-tailed setting. In
particular, Nunez-Queija proved that Conditions6.1- 6.3hold forFB in the M/GI/1 queue when the service
distribution is regularly varying and1 < α < 2 [158]. Thus, it follows from Theorem6.2that

P (TPS > x) ∼ P (X > (1− ρ)x) asx →∞ (6.5)

This result was then generalized by Nuyens [159], where it was shown to hold for allα > 1. Even more
recently, Nuyens, Wierman, and Zwart [161] proved that (6.5) holds in the GI/GI/1 queue for allIR service
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distributions. This last result was obtained using Conditions6.4 and6.5 in combination with Theorem6.3
in a way that is general enough to accommodate allSMART policies in addition to justFB. Thus, we defer
the proof to Section6.3.

Light-tailed service times
In the light-tailed setting, the first analysis ofFB was performed by Mandjes and Nuyens [134], where it
was proven that in the M/GI/1 queue under Assumptions6.1and6.2

log P (TFB > x) ∼ log P (B > x) asx →∞ (6.6)

that isγ(T )FB = γ(B). This result was later generalized by Nuyens, Wierman, and Zwart [161], who
showed that the same relation holds for the GI/GI/1 queue under Assumption6.1.

Clearly, the behavior ofFB is very similar to that ofSRPT in this setting; however it is important to
point out thatFB performs slightly worse thanSRPT with respect to the tail of response time. In particular,
if the service distribution has mass in the right endpoint, the decay rate ofSRPT is larger than that of the
busy period, while the decay rate ofFB is the same as that of the busy period. This difference results from
the fact thatSRPT finishes jobs of the same size inFCFS order whileFB finishes all jobs in the system
with the same size at the same moment.

6.2.5 LCFS
The last scheduling policy we discuss isLCFS. The tail behavior of response time underLCFS has not
received much attention in the literature, but it was used as an example in a recent survey by Borst et. al.
[40]. In particular, they show that the tail behavior of response time underLCFS can be derived in a number
of different ways. It is easy to analyze using a transform approach, either set of sufficient conditions, or
sample path analyses. Though, [40] only presents the analyses in the M/GI/1, it is clear that the analysis can
be translated to the GI/GI/1 setting with little difficulty by recalling thatWLCFS = B(E)1[busy]. Thus, we
have that, in a GI/GI/1 queue withIR service,

P (TLCFS > x) ∼ ρP (E > (1− ρ)x) asx →∞

Further, in a GI/GI/1 queue with a light-tailed service distribution it is clear that the tail behavior of
LCFS will match that of a busy period, so we have that

log P (TLCFS > x) ∼ log P (B > x) asx →∞

under any distribution that satisfies Assumption6.1. Thus,LCFS is an example of a policy that performs
badly (with respect to the response time tail) under both light-tailed and heavy-tailed service distributions.
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6.3 The response time tail under scheduling classifica-
tions

Now that we have surveyed the results characterizing the tail behavior of response time under a wide range
of individual policies, we can move to a discussion of how scheduling heuristics and techniques affect the
tail of response time. Recall that by broadening our focus from individual, idealized policies to scheduling
classifications based on heuristics and techniques we are accomplishing two important goals. First, we are
deriving results that apply to the hybrid policies that are actually implemented in real systems, and second
we are providing structural results that serve to organize and explain many of the results for individual
scheduling policies that we have just surveyed.

In this section, we will show that the tail of response time is asymptotically equivalent under a number
of different scheduling techniques and heuristics. This is interesting because it shows that the performance
of a policy is dominated by the heuristic and technique it uses rather than the details of the policy itself.
In particular, we will prove that all non-preemptive policies have asymptotically equivalent response time
tails under heavy-tailed service distributions. Further,SMART andFOOLISH policies have asymptotically
equivalent response time tails under both light-tailed and heavy-tailed service distributions.

The bulk of the section will focus on the analysis of theSMART class, since this class formalizes the
heuristic of “prioritizing small jobs” and is thus the most practical of the scheduling classifications. For this
class, we prove that, regardless of how small jobs are given priority, the tail behavior of response time is
asymptotically equivalent to that ofSRPT. This can be viewed as a theoretical proof that the adjustments
made toSRPT in practical settings do not have a large effect on the response times of the resulting policies.

6.3.1 The class of non-preemptive policies
We start our analysis by considering the case of non-preemptive policies. We will first discuss the case of
heavy-tailed service demands and then move to the case of light tailed service demands.

In the heavy-tailed setting, the behavior of non-preemptive policies can be understood using one sim-
ple observation: all non-preemptive policies must wait behind, at minimum, the excess of the job at the
server. When the service distribution is heavy-tailed, this excess dominates the tail-behavior. Thus, all non-
preemptive policies are asymptotically equivalent (ignoring constants) toFCFS with respect to the tail of
response time.

Theorem 6.4
Consider an M/GI/1 queue governed by a non-preemptive policy P with F ∈ IR. Then

lim
x→∞

ρP (E > x) ≤ liminf
x→∞

P (TP > x) and limsup
x→∞

P (TP > x) ≤ lim
x→∞

ρ

1− ρ
P (E > (1− ρ)x)

This theorem generalizes the results of Anantharam in [14], where the tail behavior of response time un-
der non-preemptive policies is first discussed. Interestingly, many non preemptive policies have tail behavior
similar in form to the bounds above. For instance

P (TFCFS > x) ∼ ρ

1− ρ
P (E > x), x →∞

P (TLCFS > x) ∼ ρP (E > (1− ρ)x), x →∞
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We are now ready to prove Theorem6.4

Proof of Theorem 6.4. The lower bound in the theorem is immediate from the observation that if a
tagged job arrives and finds the server busy, then the tagged job must wait at minimum job the job at the
server to complete, which is an excess. Thus,P (TP > x) ≥ ρP (E > x).

To prove the upper bound, we use a similar tagged job argument. First, notice thatP (TP > x) ≤ (1−
ρ)P (X > x)+ρP (B(Q) > x) whereQ is the steady state workload. Noting that the second term dominates
the asymptotics, and can focus our attention onB(Q). Recalling thatP (B(Q) > x) ∼ P (Q > (1 − ρ)x)
andP (Q > x) ∼ 1

1−ρP (E > x) completes the proof.
�

Interestingly, though non-preemptive policies have asymptotically equivalent tails in the heavy-tailed
setting, they can have very different tails in the light tailed setting. In particular,

lim
x→∞

log P (TFCFS > x) = lim
x→∞

log P (Q > x)

lim
x→∞

log P (TLCFS > x) = lim
x→∞

log P (B > x)

WhereQ is the steady-state workload andB is a standard busy period. As we have already seen, these are
the largest and smallest decay rates possible in this setting.

6.3.2 The SMART class
We now move to the analysis of the tail behavior ofSMART scheduling policies. We will show that all
SMART policies are asymptotically equivalent toSRPT in both the heavy-tailed and light-tailed settings.
These results were first proven in Nuyens, Wierman, and Zwart [161]. The technique that we apply to
analyze theSMART class turns out to be quite general. It turns out that it can easily be generalized to
analyze a variety of other priority-based policies. In order to illustrate this fact, we will use theFB policy as
a running example throughout this section.

Heavy-tailed service times
In this section we derive the tail behavior of response time forSMART policies underIR service distribu-
tions. The main result that we prove is the following.

Theorem 6.5
In the GI/GI/1 queue with P ∈ SMART, if F ∈ IR, then

P (TP > x) ∼ P (X > (1− ρ)x), as x →∞. (6.7)

To prove the above theorem, we will use Conditions6.4and6.5 in combination with Theorem6.3.
Note that we have prove that allSMART policies satisfy Condition6.4in Section7.2, thus we will only

prove thatSMART policies satisfy condition6.5 in this section.
Before proving that Condition6.5 holds forSMART policies, we prove an auxiliary result. A similar

result has been shown before for the workload in theM/G/1 queue [105].
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Lemma 6.6
Let Xi be i.i.d. random variables with E[(X+

i )p] < ∞ for some p > 1. Let Sn(y) =
∑n

i=1(Xi∧ y). Define
M(y) = supn Sn(y). For every β > 0, there exists a k > 0 such that P (M(x) > kx) = o(x−β).

A key ingredient to the proof of this auxiliary result is the following lemma, which is due to Resnick
and Samorodnitsky [186].

Lemma 6.7
Let Sn = X1 + · · ·+ Xn be a random walk with i.i.d. step sizes such that E[X1] < 0 and E[(X+

1 )p] < ∞
for some p > 1. Then, for any α < ∞, there exist c, k∗ > 0 such that for any n, x and k > k∗,

P (Sn > kx | Xi < x, i ≤ n) ≤ cx−α.

Using Lemma6.7, we will now prove Lemma6.6.

Proof. Let β > 0. For fixedy ≥ 1, we write the standard geometric random sum decomposition

M(y) d=
N(y)∑
i=1

Hi(y),

with N(y) the number of ladder heights, andHi(y) theith overshoot; for details see e.g. Chapter VIII of [].
By a sample-path comparison, it follows that

M(y)
st
≤

N(∞)∑
i=1

[Hi(∞) ∧ y].

Writing Hi = Hi(∞), we have for anyk, γ > 0,

P (M(x) > kx) ≤ P (N(∞) > bxγc) + P
( bxγc∑

i=1

(Hi ∧ x) > kx
)
, (6.8)

wherebzc is the largest integer smaller than or equal toz. Since the number of overshoots is geometrically
distributed, the first term in (6.8) behaves likeexp(−cbxγc) for somec > 0. Since this decays faster than
any power tail for anyγ > 0, it suffices to consider the second term.

Let 0 < q < min{1, p− 1}. Since the tail ofHi is one degree heavier than that of theXk (see Theorem
2.1 in Chapter VIII of Asmussen (2003)), we haveEHq

i < EHp−1
i < ∞. Hence,Hq

i − 2E[Hq
i ] satisfies
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the assumption of Lemma6.7. Takeγ ∈ (0, q). Sinceyq is a concave function iny, we have

P
( bxγc∑

i=1

(Hi ∧ x) > kx
)

= P
([ bxγc∑

i=1

(Hi ∧ x)
]q

> (kx)q
)

≤ P
( bxγc∑

i=1

(Hi ∧ x)q > (kx)q
)

= P
( bxγc∑

i=1

((Hi ∧ x)q − 2E[Hq
i ]) > (kx)q − 2bxγcE[Hq

i ]
)
.

To apply Lemma6.7, we need conditioned, and not truncated random variables. Choose an integerl >
β/(q − γ). Considering the event that at leastl of theHi are larger thanx, and its complement, we find

P
( bxγc∑

i=1

((Hi ∧ x)q − 2E[Hq
i ]) > (kx)q − 2bxγcE[Hq

i ]
)

≤
(
bxγc

l

)
P (Hi > x)l + P

( bxγc∑
i=1

(Hq
i − 2E[Hq

i ]) > (kx)q − 2bxγcE[Hq
i ]
∣∣∣#{i : Hi > x} < l

)

≤ xγlP (Hi > x)l + P
( bxγc−l∑

i=1

(Hq
i − 2E[Hq

i ]) > (kx)q − lxq − 2bxγcE[Hq
i ]
∣∣∣Hi ≤ x

)
. (6.9)

We complete the proof by showing that both terms in (6.9) areo(x−β).
SinceE[Hq

i ] < ∞, we know thatP (Hi > x) = o(x−q). Hence, since0 < γ < q, andl > β/(q − γ),
we havexγlP (Hi > x)l = o(xγlx−ql) = o(x−β). Let k > 0. Sinceq > γ, for k large enough, the second
term in (6.9) is smaller than

P
( bxγc−l∑

i=1

(Hq
i − 2E[Hq

i ]) > k
(
xq − 2E[Hq

i ]
) ∣∣∣Hq

i − 2E[Hq
i ] ≤ xq − 2E[Hq

i ]
)
. (6.10)

Applying Lemma6.7with a suitable choice ofk, there existc > 0 andη > β/q such that (6.10) is smaller
than

c
(
xq − 2E[Hq

i ]
)−η ∼ c

(
xq
)−η = o(x−β), x →∞.

This completes the proof.
�

Consider now aGI/GI/1 queue with the same interarrival-time distribution as before, but with generic

service timeX ∧ x. SetAx(t) =
∑K(t)

i=1 (Xi ∧ x), with K(t) the number of arrivals in(0, t], soAx(t) is
the work entering the queue in the time interval(0, t]. Furthermore, at the beginning of each busy period an
initial setup timex is added. LetB̃∗sx be the residual busy period after the arrival of a customer of sizex.
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ThenB̃∗sx can be represented as follows:

B̃∗sx = inf{t : x + Q̃s
x + Ax(t)− t = 0},

with Q̃s
x the steady-state workload upon customer arrivals in this queue, including the effect of the initial

set-up.
Furthermore, letDP

x (t) be the stochastic processes of work under policyP that would have priority over
an arriving job of sizex at timet.

Lemma 6.8
For P = FB and all P ∈ SMART, we have

T (x)P ≤st B̃∗sx .

Note that we design this so as to includeFB to illustrate that the same proof technique we are using for
SMART policies can be easily adjusted to handle many other priority based policies.

Proof. The bound holds forFB, since the residual busy period boundsT (x)FB if the setup time were not
included.

To see that the residual busy period also boundsT (x)P for P ∈ SMART, note that the processDP
x (t)

consists of two types of busy periods: (i) busy periods started by a job of original size> x that now has
remaining size≤ x and (ii) busy periods started by a job of original size≤ x. In both cases, the Bias Prop-
erty prevents any job with remaining size> x from receiving service during the busy period; thus only new
arrivals of size≤ x can contribute once the busy period is started. Since the initial job underP ∈ SMART is
necessarily smaller than the setupx of B̃∗sx , and the arrivals during the busy period are stochastically larger
in B̃∗sx , the residual length of both of these busy periods is stochastically smaller thanB̃∗sx .
�

The following lemma implies that Condition6.5holds forSMART policies.

Lemma 6.9
For every β > 0, there exists a constant k such that

P (T (x)P > kx) = o(x−β), x →∞ (6.11)

for all P ∈ SMART. As a consequence, Condition 6.5 holds for P ∈ SMART.

Proof. Let P ∈ SMART. We will boundT (x)P using the residual busy period̃B∗sx as per Lemma6.8.
Furthermore, define

U c
x = sup

t>0
[Ax(t)− ct + x] = x + sup

t>0
[Ax(t)− ct]. (6.12)
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ThenU1
x = Q̃s

x. For(1− ρ)/2 < δ < 1/2 andk > 1/δ, we have by Lemma6.8,

P (T (x)P > kx) ≤ P (B̃∗sx > kx)
≤ P (x + U1

x + Ax(kx)− kx > 0)
≤ P (U1

x + Ax(kx)− (1− 2δ)kx + x > δkx)
≤ P (U1

x > δkx/2) + P (Ax(kx)− (1− 2δ)kx + x > δkx/2)
≤ P (U1−2δ

x > δkx/2) + P (sup
t>0

[Ax(t)− (1− 2δ)t + x] > δkx/2)

= 2P (U1−2δ
x > δkx/2).

By takingk = kδ/2, andc = 1− 2δ, it suffices to show that there exists ak > 1 such that

P (U c
x > kx) = P (U c

x − x > (k − 1)x) = o(x−β). (6.13)

We complete the proof by viewingU c
x − x in terms of a random walk. Since the supremum in (6.12) is

attained at arrival instants, we may write

U c
x − x = sup

n

n∑
i=1

(Xi ∧ x)− cAi ≤ sup
n

n∑
i=1

[(Xi − cAi) ∧ x],

whereAi is the time between the(i− 1)st arrival and theith arrival. SinceE[Xi − (1− 2δ)Ai] < E[Xi −
ρAi] = 0 andE[((Xi − (1− 2δ)Ai)+)p] ≤ E[Xp

i ] < ∞, we may apply Lemma6.6, and (6.13) follows.
To show thatP ∈ SMART obey Condition6.5, note that sinceF ∈ IR, there exists aβ > 0 such that

x−β = o(P (X > x)). Take thisβ and choosek as in (6.11). Condition6.5now follows.
�

Light-tailed service times
We will now derive the tail behavior of response time forSMART policies under service distributions for
which Assumptions6.1and6.2hold. We prove the following two main theorems.

Theorem 6.10
In the GI/GI/1 queue with P ∈ SMART, if Assumption 6.1 holds, then

γ(B) ≤ γ(TP) ≤ γ(T SRPT).

Furthermore, if both Assumptions 6.1 and 6.2 hold, then γ(TP) = γ(T FB) = γ(B). That is,

log P (TP > x) ∼ log P (B > x), as x →∞. (6.14)

Theorem 6.11
Suppose P ∈ SMART. Let y be such that P (X = y) = 0. Then

γ(TP(y)) = γ(By). (6.15)
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Theorem6.10 follows from Lemmas6.14, 6.15, and6.16; while Theorem6.11 follows from Lemma
6.17.

We start by upper bounding the tail ofTP under all work-conserving disciplinesP using the observation

thatTP ≤ B∗, whereB∗
d= B(Q + X) is the length of the busy period starting with the amount of work

Q + X, Q is the steady-state amount of work in the system (upon customer arrivals), andX is a generic
service time. Furthermore,B(·), Q andX are independent, i.e.,B∗ is a residual busy period.

It can be shown that the decay rates ofB∗ andB coincide. Moreover, we have the following upper
bound:

Lemma 6.12
For all work-conserving disciplines P,

limsup
x→∞

1
x

log P (TP > x) ≤ −γ(B∗) = −γ(B). (6.16)

Proof. The first inequality follows from the above observation thatTP ≤ B∗. The equalityγ(B∗) = γ(B)
is trivial in the M/G/1 queue, but for theGI/GI/1 queue we need additional arguments. LetQ be the
steady-state virtual waiting time in theGI/GI/1 queue. By Lemma 3.2 in [],B andB(Q) have the same
decay rate. However, we are interested in the decay rate ofB(Q + X). In theM/G/1 case, we could

apply PASTA. In the general case, we note thatT
d= (Q + X − A∗)+, with A∗ a residual interarrival time.

Therefore,T is stochastically smaller thanQ + X. Consequently,γ(B∗) = γ(B(Q + X)) ≤ γ(B(T )) =
γ(B). To prove the upper bound, letA(t) be the total amount of work fed into the system between time0
andt. Using the Chernoff bound, we find

P (B(Q + X) > x) ≤ P (A(x)− x + Q + X > 0) ≤ E[esQ]E[esX ]E[es(A(x)−x)].

The proof is now completed by minimizing the last factor overs, and showing that for the optimizing
arguments∗, we haveE[es∗Q] < ∞ andE[es∗X ] < ∞. Since this is exactly what is done in Proposition
3.1 of [162], refer to that work for the remaining supporting arguments.
�

The following lemma, which is Proposition 2.2 in [162], will play a key role in our arguments.

Lemma 6.13
For a GI/GI/1 queue under Assumption A, γ(Bx) ↓ γ(B) and γ(B̃x) ↓ γ(B) as x ↑ xF .

After these two preliminary lemmas, we are now ready to prove Theorems6.10and6.11. We start by
analyzing the behavior ofSMART . We start by doing the analysis in the simplest case: both Assumptions
6.1and6.2hold, and the service distribution is unbounded.

Lemma 6.14
In the GI/GI/1 queue with P ∈ SMART, if Assumptions 6.1 and 6.2 hold, and xF = ∞, then γ(TP) =
γ(B). That is,

log P (TP > x) ∼ log P (B > x), as x →∞.
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Proof. Let A1 be the first arrival after that of a tagged customer with sizeX0. Let a be such that
P (A < a) > 0 andy < xF − a. Then for allP ∈ SMART,

P (TP ≥ x) ≥ P (T (X0)P > x, A1 < a, X0 > y + a)
= P (A1 < a, X0 > y + a)P (T (X0)P > x|A1 < a, X0 > y + a).

Conditional onX0 > y + a andA1 < a, the tagged job has remaining service time larger thany when the
new job arrives. The Bias Property implies that this new job has higher priority than the tagged job if its
service times is smaller thany. Furthermore, all jobs with service time smaller thany that arrive while the
new job is in the system will also have higher priority than the tagged job. Thus, conditional onX0 > y + a
andA1 < a, we haveT (X0)P ≥st By. Hence,

P (TP ≥ x) ≥ P (A1 < a, X0 > y + a)P (By > x).

SinceP (A1 < a, X0 > y + a) > 0, the existence ofγ(By) implies that

liminf
x→∞

1
x

log P (TP ≥ x) ≥ liminf
x→∞

1
x

P (By > x) = −γ(By). (6.17)

To prove the lemma, it suffices to show that the liminf result corresponding to (6.16) holds. Lettingy go to
∞ in (6.17), and applying Lemma6.13, yields

liminf
x→∞

1
x

log P (TP ≥ x) ≥ −γ(B).

This completes the proof.
�

We now relax the assumption that the service distribution is unbounded. This relaxation results in the
need for a more involved argument.

Lemma 6.15
In the GI/GI/1 queue with P ∈ SMART, if Assumptions 6.1 and 6.2 hold, and xF < ∞, then γ(TP) =
γ(B).

Proof. If P (A < a) > 0 for all a > 0, then the result follows from (6.17) and Lemma6.13, as in the
proof of Lemma6.14. However, this may not be the case, so we need a different construction.

By definition of xF , there exists a decreasing sequence{εn} such thatεn → 0 as n → ∞, and
P (xF − εn < X < xF − εn/2) > 0 for all n. SinceP (X > A) > 0, we can assume thatε1 is such that
P (A < xF − 2ε1) > 0. Let Zn be the event that the lastbxF /εnc customers that arrived before the tagged
customer had a service time in the interval[xF − εn, xF − εn/2], and that the lastbxF /εnc inter-arrival
times were smaller thanxF − 2εn. By definition ofεn, we haveP (Zn) > 0 for all n.

Furthermore, the Bias Property guarantees that, on the eventZn, there is a customer with remaining
service time larger thankεn after thekth of the inter-arrival times. Hence, at the arrival of the tagged
customer (afterk = bxF /εnc arrivals), there is a customer in the system with remaining service time in the
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interval [xF − εn, xF − εn/2]. If the tagged customer has service timeX0 > xF − εn/2, his sojourn time
satisfiesTP ≥ BxF−εn . Consequently, for alln ∈ N,

P (TP > x) ≥ P (Zn)P (X0 > xF − εn/2)P (BxF−εn > x).

Thus, forP ∈ SMART, we have

liminf
x→∞

1
x

log P (TP > x) ≥ −γ(BxF−εn).

Asn →∞, and henceεn ↓ 0, Lemma6.13implies thatγ(BxF−εn) → γ(B). Using Lemma6.12completes
the proof.
�

Finally, we relax Assumption6.2. In contrast toFB, the sojourn-time tail ofSMART policies can
improve when there is mass in the endpoint of the service distribution. This is not surprising since many
SMART policies, e.g.,SRPT, are equivalent toFCFS in the GI/D/1 queue. However,SMART also includes
policies where, likeFB, jobs of the same size are not served inFCFS order. Thus, theSMART policies
have a range of possible sojourn-time tails in this setting.

Lemma 6.16
In the GI/GI/1 queue, under Assumption 6.1, for all P ∈ SMART,

γ(B) ≤ γ(TP) ≤ γ(T SRPT). (6.18)

Proof. By Theorem6.10, we only need to deal with the case that Assumption6.2 does not hold, i.e.,
P (X = xF ) > 0. The first inequality follows from Lemma6.12. For the second inequality, note that
P (TP > x) ≥ P (T (xF )P > x)P (X = xF ). Thus, sinceP (X = xF ) > 0, γ(TP) ≤ γ(T (xF )P).
Furthermore, for allP ∈ SMART, T (xF )P ≥st W (xF )P ≥st W2(xF ), whereW2(xF ) is the waiting time
of a low priority job in a 2-class priority queue where the high-priority class includes all jobs smaller thanxF .
To complete the proof, we apply Theorems 3.1 and 4.2 of [162], which state thatγ(W2(xF )) = γ(T SRPT).
�

We end this section with the analysis of the conditional sojourn time underSMART policies.

Lemma 6.17
In the GI/GI/1 queue with P ∈ SMART, if P (X = y) = 0, then

γ(T (y)P) = γ(By). (6.19)

Proof. For the lower bound, we remark thatTP(y) ≥st B∗y for all P ∈ SMART. By Lemma6.12, this
residual busy period has decay rateγ(By).

For the upper bound, we use the fact that, at any point in time, at most one customer with original service
time larger thany has remaining service time smaller thany. Denoting byQy the stationary workload, upon
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arrival instants, made up of customers with service time smaller thany, we can bound

TP(y) ≤st By(Qy + y + y).

Denoting the amount of work brought by customers (with size smaller thany) entering the queue in the
interval[0, x] by Ay(x), the Chernov bound yields that for alls ≥ 0,

P (TP(y) > x) ≤ P (By(Qy + 2y) > x) ≤ P (Qy + 2y + Ay(x) > x)

= P (exp(s(Qy + 2y + Ay(x)) > esx) ≤ e−sxe2syEesQyEesAy(x).

Hence, for alls < γ(Qy), we have

limsup
x→∞

1
x

log P (TP(y) > x) ≤ −s + limsup
x→∞

1
x

log EesAy(x) = −s− Φ←A

(
1

ΦXI(X<y)(s)

)
,

where the equality follows from Lemma 2.1 in [135]. Taking the infimum over alls ∈ [0, γ(Qy)) yields

limsup
x→∞

1
x

log P (TP(y) > x) ≤ − sup
0≤s<γ(Qy)

[
s + Φ←A

(
1

ΦXI(X<y)(s)

)]
= −γ(B∗y),

where the equality follows from equation (5.1) in [162]. Noting thatBy andB∗y have the same decay rate
yields the desired upper bound, and completes the proof.
�

6.3.3 The FOOLISH class
We now move to the class ofFOOLISH policies. The tail behavior ofFOOLISH policies provides a huge
contrast to the results for the class ofSMART policies we just discussed. Not surprisingly, we will show that
the class ofFOOLISH policies has the worst possible tail behavior under both light-tailed and heavy-tailed
service distributions.

Heavy-tailed service times
The main result we will prove aboutFOOLISH policies under heavy-tailed service distributions is the
following.

Theorem 6.18
In an M/GI/1 queue governed by P ∈ FOOLISH with F ∈ IR,

lim
x→∞

ρ

1− ρ
P (E > x) ≤ liminf

x→∞
P (TP > x) and limsup

x→∞
P (TP > x) ≤ lim

x→∞

ρ

1− ρ
P (E > (1− ρ)x)

Though we prove this result in the M/GI/1 setting, it can be extended to the GI/GI/1 setting using
arguments parallel to those used in the analysis ofSMART.
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Proof. We will start by proving the lower bound onP (TP > x) using a sample path argument. Recall
thatTPLJF ≤st TP , thus we can usePLJF to lower bound the tail ofP . We will show that the critical
event leading to the large delay of a tagged jobX0 that arrives at timet = 0 is the arrival of a big jobXb at
some pointt = −y before the arrival ofX0. Formally, defineU c = supt≥0{ct− A(0, t)} whereA(0, t) is
the amount of work arriving in a time interval(0, t). For anyε > 0, δ > 0,

P (TP > x) ≥ P (TPLJF > x)

≥
∫ ∞

y=0
λP (A(0, y) + Xb − y > x)P (Xb > X0)dy

≥ λ

∫ ∞
y=0

P (A(0, y)− y(ρ− δ) ≥ −εx)P (Xb > x(1 + ε) + y(1− ρ + δ))P (Xb > X0)dy

≥ λP ( inf
u≥0

(A(0, y)− u(ρ− δ)))
∫ ∞

z=x(1+ε)
P (Xb > z)P (Xb > X0)

dz

1− ρ + δ

≥ P (Uρ−δ ≤ εx)
ρ

1− ρ + δ
P (E > x(1 + ε))P (X0 ≤ x(1 + ε))

Note thatP (Uρ−δ ≤ εx) → 1 asx →∞ because of the law of large numbers. Further,P (X0 ≤ x(1+ε)) →
1 asx →∞. Thus, the proof of the lower bound is complete.

To prove the upper bound, we recall thatTP ≤st TLRPT . Thus, we need only analyze the tail behavior
of LRPT. But, in the M/GI/1 setting,

TLRPT d= B(X + Q)

whereQ is the steady state work in system. Recalling thatP (B(X + Q) > x) ∼ P (X + Q > (1 − ρ)x),
TFCFS d= X + Q, andP (TFCFS > x) ∼ ρ

1−ρP (E > x) completes the proof of the upper bound.
�

Light-tailed service times
We now characterize the response time tail ofFOOLISH policies under light-tailed service distributions.

Theorem 6.19
Consider a GI/GI/1 queue governed by P ∈ FOOLISH under Assumption 6.1 and the assumption that
P (X = xL) = 0 where xL = infa(F (a) > 0). Then, γ(TP ) = γ(B). That is,

log P (TP > x) ∼ log P (B > x), as x →∞.

The assumption thatP (X = xL) = 0 acts similarly to Assumption6.2 in the case ofSMART policies.
Without this assumption,FOOLISH policies are not asymptotically equivalent. For example,PLJF and
LRPT differ becauseLRPT will complete all jobs in the system of sizexL at the same time andPLJF will
complete jobs of sizexL in FCFS order, which leads to a smaller decay rate when jobs of sizexL have
positive probability mass. For a simple example of this, think of the case of a GI/D/1 queue.

Proof. We have already seen thatγ(B) is the smallest possible decay rate for work conserving policies,
thus we need only prove an upper bound on the decay rate ofTP (i.e. a lower bound on the tail ofTP ).
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To accomplish this we will construct a critical event that leads to a large delay under allPLJF, which is a
stochastic lower bound for allP ∈ SMART.

To construct a critical event, consider the arrival of a big jobXb, followed by the arrival of a small job
Xs after an interarrival timeA0. At the time when the small job arrives, the remaining size of the large job,
r, starts a busy period of jobs larger thanXs, B>Xs(r), which are guaranteed to complete beforeXb. Let
the lower bound of the service distribution bexL and the upper bound bexU . For anyε > 0, b > a > 0,

P (TP > x) ≥ P (Xb > b + a,Xs < xL + ε, A0 < a)P (B>xL+ε(b) > x)

Finally, lettingε → 0 and recalling that a conditional busy period has the same decay rate as a standard busy
period completes the proof.
�

6.4 Concluding remarks
In this chapter, we have moved beyond mean response time and provided a number of results characterizing
the distribution of response time both under individual policies and scheduling classifications. Such a study
is essential to the applicability of scheduling in practice because users in computer systems demand both
response times that are fast on average and response times that are predictable. Further, distributional results
about response time are fundamental to QoS, admission control, and capacity planning applications.

But, unfortunately, studying the distribution of response time under scheduling policies is known to be a
difficult problem, and thus we cannot hope to attain exact results. Instead, our focus has been on studying the
tail behavior of response time in the large buffer large deviations regime. That is, we have characterized the
behavior ofP (T > x) asx → ∞. Such a regime is of practical importance because it provides bounds on
the likelihood of large delays, which are exactly what is needed for QoS and capacity planning applications.

In this chapter, we provided a thorough summary of recent results studying the tail behavior of response
time under a wide variety of scheduling policies. In addition, we added to the literature by deriving the tail
behavior of response time underSRPT andFB in a heavy-tailed GI/GI/1 queue for the first time, and by
deriving the tail behavior of response time in light-tailed GI/GI/1FB queues for the first time. Further, our
main focus in this chapter was on characterizing the response time tail of scheduling classifications, and
we attain the first results for theSMART andFOOLISH classifications. These results are essential for the
application of scheduling in real-world settings because the classifications include not only idealized policies
like SRPT, but also the variations of these policies that are actually implemented in practice. Not only are
our results about classifications of practical importance, they also add structure to the space of scheduling
policies. For example, all policies in theSMART class have a response time tail that is asymptotically
optimal in the heavy-tailed setting but as heavy as possible in the light-tailed setting. This is a behavior
that has been observed under many common individual policies, but by showing that the behavior occurs
under all policies that “prioritize small jobs” we have provided a formalization of the reason this behavior
emerges.

To conclude this chapter, it is important to point out that the large buffer scaling that we used in this
chapter is only one scaling that can be used to study the response time distribution. It is the most commonly



182 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

used scaling for studying scheduling policies, but recently, themany sourceslarge deviations regime has also
emerged as a useful tool for analyzing scheduling policies. In the many sources framework, the number of
arriving flows, the buffer size, and the service capacity are scaled up proportionally yielding a system with
a huge number of arriving flows and huge service capacity. In this asymptotic setting, it is then possible
to directly study the delay distribution. Practically speaking, this framework is motivated by applications
such as high traffic web servers and routers that have enormous available bandwidth and thousands of si-
multaneous flows. The analysis of scheduling (beyondFCFS) in the many sources framework is much less
mature than the large buffer framework, and has only recently yielded results. In particular, until recently,
only results for a handful of individual policies have been able to be attained [42, 64, 209, 123, 249]. But,
very recently, we introduced a novel technique for the analysis of both individual scheduling policies and
classes of scheduling policies in the many sources regime [248]. This technique, that we refer to as thetwo
dimensional queueing framework, adds tie-break rules to policies in ways that do not alter the asymptotic
performance of the policies, but greatly simplify their analysis. The strength of this novel framework is that
it enables:(i) the study of policies that depend on the job state (age and/or remaining size), as opposed to
only the queue length; and(ii) the study of aclass of policies, as opposed to only the analysis of individ-
ual policies. In [248], we illustrate the generality of this technique by analyzing bothFB and theSMART
classification in the many sources regime.

Note that the many sources and large buffer regimes provide very different views of the response time
distribution. Each regime captures the impact of some practical factors that the other regime does not.
For instance, the large buffer scaling provides results that contrast the behavior of response time under
heavy-tailed service distributions with infinite support and light-tailed service distributions that may have
finite support and may be discrete. In contrast, the many sources regime requires the service distribution
to be discrete and have finite support, thus it can only provide results for a small set of light-tailed service
distributions. On the other hand, the many sources framework captures the impact of statistical multiplexing
between arrival flows and allows the estimation ofP (T (k) > x) for all x, neither of which can be captured
in the large buffer setting.

As a result of these differences, the two regimes provide complementary descriptions of the “most likely
way” (thecritical eventin large deviations parlance) in which large response times occur. Under the large
buffer setting, especially when the service distribution is heavy-tailed, it is common that the critical event is
the arrival of a handful of very large jobs. In contrast, under the many sources setting, the critical event is
the arrival of a large burst of jobs (i.e. a moderate number of arrivals per flow from a large number of flows).
Practically, each of these critical events can be important depending on the system that is considered. For
instance, if one considers a low-to-moderate traffic web server or router, the arrival of a handful of very
large requests is likely to choke the system, and such an event is more likely than a large burst of arrivals.
Thus, in this setting the large buffer regime provides useful results. However, in a high traffic web server
or router, one with enormous bandwidth (typical large web-servers today handle multi-Gbps traffic) that is
accessed by a large number of flows, the arrival of handful of large requests from any single flow is unlikely
to choke the system; rather, the critical event is a burst of moderate sized (compared to the scale of the
server capacity) arrivals from a large number of flows, which matches the results from the many sources
framework.
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Fairness

Traditionally, and until this point in this thesis, the performance of scheduling policies has been measured
using the mean response time and the tail of response time. Under these measures, we have seen that policies
that give priority to small job sizes at the expense of larger job sizes perform quite well. For example,SRPT
minimizes the mean response time. As a result, designs based on these policies have been suggested for a
variety of computer systems in recent years. However, the adoption of these new designs has been slow
due to fears about the fairness of these policies. Specifically, there are worries that large job sizes may be
“starved” of service under a policy that gives priority to small job sizes, which would result in large job sizes
having response times that are unfairly long and variable [30, 210, 215, 223].

These worries have recurred nearly everywhere size based policies have been suggested. A first example
is the case of web servers, where recent designs have illustrated that giving priority to requests for small files
can significantly reduce response times [96, 182]. However, it is important that this improvement does not
come at the expense of providing large job sizes unfairly large response times, which are typically associated
with the important requests. For example, at an online shopping site the large requests are often the shopping
cart transactions and at an online music site the large requests are the song and album downloads. The
same tradeoff has appeared across diverse application areas. For example, UNIX processes are assigned
decreasing priority based on their current age, i.e. CPU usage so far. The worry is that this may create
unfairness for old processes [74]. Similar tradeoffs can be found in recent designs for routers [179, 180],
wireless networks [102], transport protocols [250], and beyond.

To address these worries, it is important to develop a theoretical framework for studying the fairness
of scheduling policies. However, fairness is an amorphous concept, and nearly impossible to define in a
universal way. The difficulty in defining the fairness of scheduling policies is best illustrated using a few
simple examples:

(i) Suppose jobsa andb are the same size, anda enters the queue slightly beforeb.
(ii) Suppose jobsc andd are very large and very small respectively, and jobc enters the queue slightly

before jobd.

Most people agree that it is fair to serve joba before jobb and to serve jobd before jobc. Thus, there is a
common consensus that it is unfair for small jobs to queue behind larger ones and that it is unfair for a job

183
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that arrived later to bypass jobs that arrived earlier. However, these are clearly competing notions of fairness
– when a small job arrives some length of time after a large job, it is unclear which job it is most “fair” to
serve.

Further, notice how the fair service order changes depending on the setting being considered. If the
queue in question is a ticket box office, then it is more fair to serve jobc before jobd because, since tickets
are a limited resource, it would be unfair for someone who arrived later to get a ticket if an earlier arrival
does not. If the setting is a grocery store however, it is quite acceptable to allow small jobs to bypass large
jobs (by using the “ten items or less lane”). If the setting is a hospital, however, things change completely.
In a hospital, it is more fair to serve the more urgent job, regardless of the sizes or arrival order.

These simple examples illustrate how difficult it is to formalize what is meant by “fairness.” As a result
of these difficulties, the topic of fairness has not been approached in the queueing literature until this work.
In this chapter we will provide an overview of our recent work introducing the first fairness metrics for the
M/GI/1 queue. Additionally, we will provide results characterizing the fairness of both individual policies
and scheduling classifications with respect to these new metrics. Finally, we will survey some of the newly
emerging fairness metrics that other researchers have developed following our work on fairness.

In order to develop a formal definition of fairness, it is important that we first have a clear idea of
what is meant by the term “fair” in the context of the applications in which we are interested. In computer
applications, there are two notions of fairness that appear quite commonly. We will refer to these two types
of fairness asproportional fairnessandtemporal fairness. Both of these notions of fairness are illustrated
by the simple example that we considered at the opening of this chapter.

• Proportional fairness refers to the idea that all job sizes should receive equitable service, i.e. no job
size receives disproportionately large response times.1

• Temporal fairness refers to the idea that it is fair to respect the seniority of jobs in the queue, i.e. it is
in some sense unfair for a small job that just arrived to the queue to jump in front of the large job.

Each of these notions of fairness is appropriate, to different degrees, in a variety of applications. For
instance, in web servers and routers, proportional fairness is important because it is necessary to make sure
that no class of jobs is “starved” of service, i.e. all jobs receive an equitable service rate. This is especially
relevant when considering priority-based designs. Temporal fairness is fundamental in e-commerce appli-
cations where it is important to guarantee that a item gets sold to the first person to request it. Similarly, in
databases and other applications where data consistency is important, temporal fairness is very relevant.

Though proportional and temporal fairness are relevant to a wide range of applications, both in computer
systems and other application areas, it is important to realize that these are only two possible meaning of
the term “fairness.” Fairness can take on entirely different meanings in other contexts. For instance, there
is a large literature studying the fairness of bandwidth allocations to flows at a network level [34, 100, 114].
But, we will limit ourselves to the notions of proportional and temporal fairness in this chapter.

We will start the chapter by focusing on proportional fairness measures. Over the course of Sections
7.1-7.4, we will develop a novel framework for studying proportional fairness. To begin, we will limit our
discussion to proportional fairness in expectation in Section7.1, where we introduce a new definition of
fairness and study the behavior of both individual policies and scheduling classifications. Then, in Sections

1Do not confuse this notion of “proportional fairness” with the one introduced in [114]. We are considering only single server
queues in this chapter, while [114] considers network resource allocation.
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7.2-7.4we will extend the notion of proportional fairness we develop for the mean to a general framework
for studying distributional properties of proportional fairness. Again, we will study the behavior of both
individual scheduling policies and scheduling classifications using this new framework. In our exploration
of proportional fairness, we find many surprises. Perhaps the biggest surprise is that, for quite a few common
policies, proportional fairness is a function of load. That is, at moderate or low loads, these policies are fair
to all jobs; yet at higher loads these policies become unfair.SRPT is the most well-known policy that
exhibits this behavior. With respect to designing scheduling policies, we find that under high load, almost
all scheduling policies are unfair. However under low load one has the opportunity to make a policy fair
by sometimes increasing the priority of large jobs, e.g.SRPT allows large jobs to increase their priority as
their remaining size drops.

Following our discussion of proportional fairness, we will move to a discussion of temporal fairness
in Section7.5. The metric we develop here is also new to this thesis. Again, we explore the behavior
of both common individual policies and scheduling classifications. Our exploration yields many surprises.
Probably the biggest surprise is that policies that “prioritize small jobs” are some of the most fair policies
in this setting. Further, we prove that no policy can simultaneously provide both temporal and proportional
fairness to all job sizes.

Finally, after exploring both proportional and temporal fairness individually, in Section7.6, we survey
a number of fairness metrics that emerged following our work on fairness. These proposals develop hybrid
measures that combine the notions of proportional and temporal fairness into one measure.

7.1 Proportional fairness in expectation
The first notion of “fairness” that we will discuss isproportional fairness. The concept of proportional
fairness derives intuitively from Aristotle’s notion of fairness: like cases should be treated alike; different
cases should be treated differently; and different cases should be treated differently in proportion to the
difference at stake [187]. In the context of scheduling queues, this matches the common intuition that: small
jobs should have small response times; large jobs should have large response times; and the differences
in response times of small and large jobs should be proportional to the differences between the job sizes.
Specifically, the response time for a job of sizex, T (x), should be proportional tox.

Proportional fairness arises naturally in many computer applications due to the inherent tradeoff between
providing jobs of different sizes “fair” performance and providing “efficiency,” which requires biasing to-
wards small job sizes at the expense of large job sizes. This tradeoff between efficiency and fairness is
often an important design constraint. For example, in the case of web servers, it has been shown that by
giving priority to requests for small files, a Web server can significantly reduce response times; however it is
important that this improvement not come at the cost of unfairness to requests for large files [96]. The same
tradeoff applies to other application areas; for example, scheduling in supercomputing centers. Here too it
is desirable to get small jobs out quickly, while not penalizing the large jobs, which are typically associated
with the important customers. The tradeoff also occurs for age based policies. For example, UNIX processes
are assigned decreasing priority based on their current age – CPU usage so far. This can create unfairness
for old processes. To address the tension between minimizing mean response time and maintaining fairness,
hybrid scheduling policies have also been proposed; for example, policies that primarily bias towards young
jobs, but give sufficiently old jobs high priority as well.
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7.1.1 Defining proportional fairness in expectation
Defining a metric for studying proportional fairness is a difficult task due to the amorphous nature of “fair-
ness.” In the first half of this chapter, we will develop a a unified framework for studying the proportional
fairness of the entire distribution ofT (x); but we begin in this section by studying proportional fairness in
expectation only. The following metric for fairness was introduced through a series of papers starting with
Bansal and Harchol-Balter [25] and culminating with Wierman and Harchol-Balter [238].2

Definition 7.1 Let 0 < ρ < 1 in an M/GI/1 system. A job sizex is treatedfairly under policyP , service
distributionX, and loadρ if

E[S(x)]P =
E[T (x)]P

x
≤ x

1− ρ

Otherwise, a job sizex is treatedunfairly . A scheduling policyP is fair if every job size is treated fairly.
OtherwiseP is unfair .

Definition 7.1consists of two pieces: a metric,E[S(x)] = E[T (x)]/x, and a criterion,1/(1 − ρ). The
metric clearly relates to the intuition that the response time of a job should be proportional the size of the
job; however the criterion is less intuitive. There are two motivations for this choice of metric and criterion.

1. PS is typically thought of as a fair policy because at every instant every job in the system receives
an equal share of the server. This matches Rawls’ theory of social justice [183]. Further,PS satisfies
the idea thatE[T (x)] should be proportional tox, since the slowdown underPS is constant across
x: E[S(x)]PS = 1/(1 − ρ). In fact, among policies with constant slowdownPS minimizes mean
response time (see Theorem7.9). Thus, a scheduling policyP can intuitively be viewed as unfair if
jobs of some sizex haveE[T (x)]P > E[T (x)]PS = x/(1− ρ).

2. More formally, when comparingE[T (x)]P acrossx, we want ametric that scalesE[T (x)]P ap-
propriately to allow for comparison ofE[T (x)]P between small and largex. For E[T (x)]P , it
is clear that1/x is an appropriate scaling factor becauseE[T (x)]P = Θ(x) under all work con-
serving scheduling policies [97], and thus we need to normalize by the growth rate. Thecriterion
1/(1 − ρ) stems from two formal motivations. First, it provides a min-max notion of fairness:
minP maxx E[T (x)]P /x = 1/(1 − ρ) (see Theorem7.9). Second,1/(1 − ρ) provides a criterion
that distinguishes between patterns of behavior of policies with respect to the metricE[T (x)]P /x.

With Definition 7.1 in hand, it is now possible to classify scheduling policies based on whether they (i)
treat all job sizes fairly or (ii) treat some job sizes unfairly. Curiously, we find that some policies may fall
into either type (i) or type (ii) depending on the system load. We therefore definethree classes of unfairness.

Definition 7.2 Let 0 < ρ < 1 in an M/GI/1 queue whereX is non-deterministic.3 A scheduling policyP
is: (i) Always Fair if P is fair for all suchρ andX; (ii) Sometimes Fairif P is fair under someρ andX and
unfair under otherρ andX; or (iii) Always Unfair if P is unfair under all loads and service distributions.

2Note that throughout the remainder of this section we will refer to “proportional fairness” as simply “fairness” in order to
simplify the exposition. This also matches with the literature where the term fairness has been typically used, [25, 78, 87, 97, 179,
185, 238]. We will use the term “proportional fairness” only when it is necessary to distinguish it from the other notions of fairness
discussed in this chapter.

3We exclude deterministic distributions because the concept of proportional fairness is only interesting when there exist jobs of
different sizes.
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Note that Definition7.2is a generalization of the definition in [238]. Initially, in [ 238], only distributions
with finite variance were considered. However, more recently Brown [47] was able to extend many of the
results to allow the consideration of distributions withinfinite variance. The extension led to some counter-
intuitive results that we will discuss later in the thesis.

In this remainder of this section, we will study the fairness of both individual scheduling policies and
the fairness of scheduling classifications. Our goal will be to classify scheduling policies, techniques, and
heuristics as either Always Fair, Always Unfair, or Sometimes Fair. Further, we will characterize the degree
of unfairness under many common individual policies. The main results are summarized in Figure7.1. Our
aim in providing this taxonomy is, first, to allow researchers to judge the unfairness of existing policies and,
second, to provide heuristics for the design of new scheduling policies. Since very little analytical prior work
exists on understanding the unfairness of scheduling policies, and what does exist is isolated to a handful
of individual policies [96, 179], this section represents the first broad study of the unfairness of scheduling
policies.

In our attempts to understand unfairness, we find many surprises. Perhaps the biggest surprise is that for
quite a few common policies, unfairness is a function of load and variability. In particular, some policies
are fair at moderate or low loads, but become unfair under higher loads. Further, some policies are fair
for highly variable service distributions (withE[X2] = ∞), but are unfair ifE[X2] < ∞. SRPT is a
well-known policy that exhibits both of these behaviors.

These surprises have a direct impact on designing scheduling policies for computer applications. In
particular, we find that under high load, almost all scheduling policies are unfair; but that under low load
one has the opportunity to make a policy fair by sometimes increasing the priority of large jobs. For example,
PSJF andSRPT have very similar behavior and delay characteristics, but becauseSRPT allows large jobs
to increase their priority it is more fair under low loads.

Since so many policies are Always Unfair, and so many others are Sometimes Fair, it is important to ask
who is being treated unfairly. We present a number of results characterizing who is being treated unfairly
and how unfairly they are treated. Initially it may seem that unfairness is an increasing function of job
size, with the largest job being treated the most unfairly. This is in fact the case for most bounded job
size distributions. However, for unbounded job size distributions, we find that this is usually not the case.
Instead, under many policies, unfairness is monotonically increasing with job size up to a particular point;
and later is monotonically decreasing with job size. Thus, the job being treated most unfairly is far from the
largest (see Figure7.2). Interestingly, the position of this “hump” changes as a function of load.

7.1.2 The proportional fairness of individual policies
To get a feel for Definition7.1, it is useful to begin by studying the behavior of common individual policies
with respect to fairness.

As a first step, it is easy to see that each ofFSP, PS, andPLCFS are Always Fair because

E[S(x)]FSP ≤ E[S(x)]PLCFS = E[S(x)]PS =
1

1− ρ

Thus, there are a number of policies that are fair under all service distributions and all loads.
However, most common policies are not Always Fair. For example, we will see thatFCFS, and all

other non-preemptive blind policies, are Always Unfair (Section7.1.3.2) because the smallest job size in
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Figure 7.1: An illustration of the classification of common prioritization techniques and heuristics with
respect to proportional fairness.

the service distribution will always be treated unfairly. Further, we will see that by giving priority to small
jobs, it is possible to be Sometimes Fair. In particular, we will see thatSRPT andFB are Sometimes Fair.
FB is unfair when the service distribution has finite variance, but can be fair when the service distribution
has infinite variance andSRPT is unfair if load is high and the service distribution has finite variance, but
can be fair if the load is moderate or if the service distribution has infinite variance. Further, we will see that
even in the settings where these policies are unfair, the degree of unfairness to large job sizes is not as bad
as one might expect.

In this section, we will focus only onFB andSRPT due to their practical importance, however, we have
also analyzed the fairness of many other common policies in [238] and we summarize these results in Figure
7.1and Figure7.2. We do not include the analyses here because they are similar in tone to the analyses of
SRPT andFB; thus it would have become to repetitive for the reader.

7.1.2.1 FB
Given the bias thatFB provides for small jobs (since they are always young), it is natural to ask about the
performance of the large jobs. Thus, understanding the growth of slowdown as a function of the job sizex is
important. It turns out that the performance ofFB is strongly related to that ofPSJF. The first results on the
fairness ofFB were published simultaneously by Wierman & Harchol-Balter [238] and Rai, Urvoy-Keller,
& Biersack [179] under the assumption thatE[X2] < ∞. In this setting it was found thatFB was always
unfair. However, recently Brown found, surprisingly, thatFB can be fair when the service distribution has
infinite variance [47]. We summarize the major results in the following theorem:
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(a) Low load (ρ = 0.5)
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(b) High load (ρ = 0.9)
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Figure 7.2: The conditional mean is illustrated under a variety of both preemptive and non-preemptive
policies. The service distribution is exponential with mean 1. The dotted line shows the criteria for propor-
tional fairness.

Theorem 7.1
FB is Sometimes Fair. FB is unfair when E[X2] < ∞. However, FB is fair when the service distribution is
regularly varying with rate α ∈ (1, 1.5).

Theorem7.1 illustrates that, surprisingly, in many casesFB is fair to all job sizes. In fact,FB is often
fair in practical settings since workloads in many computer applications are thought to be regularly varying
with α ∈ (1, 1.5).

Though Theorem7.1says thatFB can be fair in some situations, more often than not,FB is unfair. Thus,
it is important to understand which job sizesFB is unfair to and how unfairly these job sizes are treated. To
provide an answer to this question, let us consider the case of ofE[X2] < ∞ in more detail. We will limit
our discussion to unbounded service distribution, but case of bounded service distributions can be handled
similarly.

Theorem 7.2
In an M/GI/1 FB queue with E[X2] < ∞ there is some job size y such that for all x > y, E[S(x)]FB >
1/(1− ρ) under any unbounded service distribution, for all ρ. Furthermore, E[S(x)]FB is not monotonic in
x.

Proof. Notice thatlimx→∞E[S(x)]FB = 1/(1 − ρ) since the service distribution is assumed to have
finite variance. As a result, to prove the theorem it is sufficient to show thatd

dxE[S(x)] converges to zero
from below asx →∞.
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By observing that

d

dx
E[S(x)]FB =

d

dx

E[T (x)]FB

x

=
x d

dxE[T (x)]FB − E[T (x)]FB

x2
,

our goal reduces to showing that asx →∞

x
d

dx
E[T (x)]FB − E[T (x)]FB < 0 (7.1)

Let us begin by differentiating response time:

x
d

dx
E[T (x)]FB =

2λ2F (x)x
∫ x
0 tF (t)dt

(1− ρ̃(x))3
+

2λx2F (x)
(1− ρ̃(x))2

+
x

1− ρ̃(x)

which gives us

x
d

dx
E[T (x)]FB − E[T (x)]FB =

(
2λ2F (x)x

∫ x
0 tF (t)dt

(1− ρ̃(x))3

)
+

(
2λx2F (x)
(1− ρ̃(x))2

−
λ
∫ x
0 tF (t)dt

(1− ρ̃(x))2

)
(7.2)

Recall from (7.1) that the above gives us the sign ofd
dxE[S(x)]FB. There are two terms in (7.2). The

first term is clearly positive. Notice that forx such thatF (x) ≥ 1
4 we have:

x
d

dx
E[T (x)]FB − E[T (x)]FB ≥ λ

(1− ρ̃(x))2

(
2x2F (x)− 1

2
x2

)
≥ 0

which shows thatE[S(x)]FB is monotonically increasing forx such thatF (x) ≤ 3
4 .

We now prove that the expected slowdown converges to1/(1 − ρ) from above asx → ∞. First, we
know thatlimx→∞E[S(x)]FB = 1/(1− ρ) [97]. Next, (7.2) gives us the sign ofddxE[S(x)]FB. Note that,
for any distribution with finite second moment, we know thatF (x) = o(x−2). Using this observation and
the fact that̃ρ(x) → ρ asx →∞,

lim
x→∞

x
d

dx
E[T (x)]FB − E[T (x)]FB =

−λE[X2]
2(1− ρ)2

< 0

Thus, there exists some job sizex0 such that for allx > x0, E[S(x)]FB is monotonically decreasing inx.
�

The proof of this theorem shows us that all job sizes greater than a certain size have higher mean response
time underFB than underPS. Counter-intuitively however, the job that is treated the most unfairly is not
the largest job. Thus, the intuition that by helping the small jobsFB must hurt the biggest jobs is not entirely
true.
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Interestingly, this theorem is counter to the common portrayal ofFB in the literature. When investigating
E[S(x)]FB, previous literature has used percentile plots, which hide the behavior of the largest one percent
of the jobs. When looking at the same plots as a function of job size the presence of a hump becomes
evident. This contrast is illustrated in Figure7.2. In fact, even under bounded distributions this hump exists,
regardless of the bound placed onx.

Having shown that some job sizes are treated unfairly underFB scheduling, it is next interesting to
understand exactly which job sizes are seeing poor performance. The following theorem places a lower
bound on the size of jobs that can be treated unfairly.

Theorem 7.3
In an M/GI/1 queue, for x such that ρ̃(x) ≤ 1−

√
1− ρ, E[T (x)]FB ≤ 1/(1− ρ)

Proof. The proof will proceed by simply manipulatingE[T (x)]FB.

E[T (x)]FB =
λ
∫ x
0 tF (t)dt

(1− ρ̃(x))2
+

x

1− ρ̃(x)

≤
λx
∫ x
0 F (t)dt

(1− ρ̃(x))2
+

x

1− ρ̃(x)

=
ρ̃(x)x

(1− ρ̃(x))2
+

x(1− ρ̃(x))
(1− ρ̃(x))2

=
x

(1− ρ̃(x))2

Letting ρ̃(x) ≤ 1−
√

1− ρ we complete the proof of the theorem.
�

It is important to notice that asρ increases, so does the lower bound1 −
√

1− ρ on ρ̃(x). In fact, this
bound converges to 1 asρ → 1, which signifies that the size of the smallest job that might be treated unfairly
is increasing unboundedly asρ increases.

7.1.2.2 SRPT
SRPT has long been known to optimizeE[T ]. However, its use in practice has been hindered by the fear that
large job sizes experience unfairly long response times. The fairness ofSRPT was first studied by Bansal
& Harchol-Balter [25] under the assumption thatE[X2] < ∞. These initial results were later extended
by Wierman & Harchol-Balter [238], and then by Brown [47], who was the first to consider fairness when
E[X2] = ∞. We summarize the major results in the following theorem:

Theorem 7.4
SRPT is Sometimes Fair. SRPT is fair when ρ ≤ 0.5 or when the service distribution is regularly varying
with rate α ∈ (1, 1.5). However, when E[X2] < ∞, under all service distributions there exists a ρc < 1
such that for all ρ > ρc SRPT is unfair.

Theorem7.4 illustrates that, surprisingly, in many casesSRPT is fair to all job sizes. Thus, in many
cases it is possible to optimizeE[T ] while still providing fair response times to all job sizes. In particular,
when the system load is small enough or the tail of the service distribution is heavy enough,SRPT is fair.
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In fact,SRPT is often fair in practical settings since workloads in many computer applications are thought
to be regularly varying withα ∈ (1, 1.5).

Though Theorem7.4says thatSRPT can be fair in many situations, in many casesSRPT is unfair, e.g.
under high load. We illustrate this behavior in Figure7.2. Thus, it is important to understand which job
sizesSRPT is unfair to and how unfairly these job sizes are treated. To provide an answer to this question,
let us consider the case of ofE[X2] < ∞ in more detail.

Theorem 7.5
In an M/GI/1 queue with E[X2] < ∞, for x such that ρ(x) ≤ 1

2 , E[S(x)]SRPT is monotonically increasing
in x.

Proof. The proof will follow the same technique that we used in proving Theorems7.2and7.1. Begin by
noting that

m2(x) =
∫ x

0
t2f(t) = 2

∫ x

0
tF (t)dt− 2x2F (x)

Then we can derive

x · d

dx
E[T (x)]SRPT =

2λ2f(x)x2
∫ x
0 tF (t)dt

(1− ρ(x))3
+

λx2F (x)
(1− ρ(x))2

+
x

1− ρ(x)

which gives us

x · d

dx
E[T (x)]SRPT − E[T (x)]SRPT =

(
2λ2f(x)x2

∫ x
0 tF (t)dt

(1− ρ(x))3

)
+

(
λx2F (x)

(1− ρ(x))2
−

λ
∫ x
0 tF (t)dt

(1− ρ(x))2

)

+
(

x

1− ρ(x)
−
∫ x

0

dt

1− ρ(t)

)
=

(
2λ2f(x)x2

∫ x
0 tF (t)dt

(1− ρ(x))3

)
−
(

λm2(x)
2(1− ρ(x))2

)
+
(

x

1− ρ(x)
−
∫ x

0

dt

1− ρ(t)

)
This expression provides us with the sign of the derivative of slowdown. There are 3 terms in the above

expression. The first of these terms is clearly positive. The third of these terms is also clearly positive. We
will complete the proof by showing that the third term is of larger magnitude than the second term.

To obtain a bound on the third term, we can quickly show that

x

1− ρ(x)
−
∫ x

0

dt

1− ρ(t)
=

∫ x

0

(1− ρ(t))− (1− ρ(x))
(1− ρ(t))(1− ρ(x))

dt (7.3)

≥ 1
1− ρ(x)

∫ x

0
ρ(x)− ρ(t)dt
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To further specify this bound we can compute∫ x

0
ρ(t)dt = λ

∫ x

0

∫ t

0
sf(s)dsdt

= λ

∫ x

0

∫ x

s
sf(s)dtds

= λ

∫ x

0
sf(s)(x− s)ds

= ρ(x)x− λm2(x) (7.4)

Finally, putting all three terms back together we see that whenρ(x) ≤ 1
2 ,

x · d

dx
E[T (x)]SRPT − E[T (x)]SRPT =

(
2λ2f(x)x2

∫ x
0 tF (t)dt

(1− ρ(x))3

)
−
(

λm2(x)
2(1− ρ(x))2

)
+
(

x

1− ρ(x)
−
∫ x

0

dt

1− ρ(t)

)
(7.5)

≥ −
(

λm2(x)
2(1− ρ(x))2

)
+
(

λm2(x)
1− ρ(x)

)
≥ 0

�

Corollary 7.6
In an M/GI/1 queue with E[X2] < ∞, if ρ ≤ 1

2 , E[S(x)]SRPT is monotonically increasing for all x.
Furthermore E[S(x)]SRPT ≤ 1/(1− ρ) for all x.

Proof. This follows immediately from the above theorem and Theorem7.17, which gives that: for any
work conserving scheduling policyP , limx→∞E[S(x)]P ≤ 1/(1− ρ).
�

Having seen thatSRPT is Sometimes Fair, it is interesting to consider which job sizes are being treated
fairly/unfairly. The following theorem shows that asρ increases, the number of jobs being treated fairly also
increases.

Theorem 7.7
In an M/GI/1 queue with E[X2] < ∞, for x such that ρ(x) ≤ max{1 −

√
1− ρ, 1

2}, E[T (x)]SRPT ≤
1/(1− ρ).

The proof follows immediately from Theorem7.3, Theorem7.5, and Theorem3.19, which bounds the
performance ofSRPT by that ofFB.
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7.1.3 The proportional fairness of scheduling classifications
The power of definitions7.1 and 7.2 are that they are simple enough to be tractable for the analysis of
the fairness of scheduling classifications, not just individual scheduling policies. For the remainder of this
section, we will focus on understanding the impact of common scheduling heuristics and techniques on the
fairness of the resulting policies. We will start by studying the techniques and heuristics that lead to Always
Fair policies, then we will move through the techniques that are Always Unfair, and finally we will study
the techniques and heuristics that are Sometimes Fair.

We provide an overview of the known results in Figure7.1. However, to avoid repetition, we will not
provide the proofs for all the classifications listed in Figure7.1 since many of the proofs are very similar
to one another. Instead, we will illustrate the important proof techniques using a handful of classifications
here, and refer the reader to [238] for the proofs not provided.

7.1.3.1 Always Fair
We start our study of scheduling classifications by studying heuristics and techniques that are Always Fair,
i.e. policies that are fair to all job sizes under all loads and all service distributions.

Two of our heuristic-based classifications are Always Fair: theSYMMETRIC and thePROTECTIVE
classes. This is not surprising. Clearly, allP ∈ SYMMETRIC are Always Fair since they all have
E[S(x)]P = E[S(x)]PS = 1/(1 − ρ). Further, since allPROTECTIVE policies guarantee that no job
finishes later than it would underPS, all PROTECTIVE policies are also Always Fair.

Proposition 7.8
In an M/GI/1 queue, all SYMMETRIC policies are Always Fair. In addition, all PROTECTIVE policies
are Always Fair.

Outside of these two classes, we are not aware of any Always Fair policies. However, we can prove
a necessary condition for Always Fair policies, which will be useful when showing that policies arenot
Always Fair.

Theorem 7.9
In an M/GI/1 queue with E[X2] < ∞,

min
P

max
x

E[S(x)]P =
1

1− ρ

Further, if scheduling policy P is Always Fair, then

lim
x→∞

E[S(x)]P = 1/(1− ρ)

Note that in addition to providing a necessary condition for the Always Fair class, Theorem7.9serves as
a key justification for the notion of proportional fairness defined in Definition7.1. Once we takeE[S(x)] as
a metric for fairness, the fact that1/(1− ρ) is the min-max value ofE[S(x)] provides a crucial justification
for using1/(1− ρ) as a fairness criterion.

Proof. First, becauseP is Always Fair,E[S(x)]P ≤ 1/(1−ρ) for all x, and thereforelimx→∞E[S(x)]P ≤
1/(1− ρ). Thus, we need only show thatlimx→∞E[S(x)]P ≥ 1/(1− ρ). We accomplish this by bounding
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the expected slowdown for a job of sizex from below, and then showing that the lower bound converges to
1/(1− ρ) as we letx →∞.

To lower bound the expected slowdown, we consider a modified policyQx,a that throws away all arrivals
whose response time underP is greater than or equal toa and also throws away arrivals with size greater
thanx. Further,Qx,a works on the remaining jobs at the exact moments thatP works on these jobs. We will
begin by calculating the load made up of jobs of size less thany (wherey < a < x) underQx,a, ρ(y)Qx,a .
By Markov’s Inequality we obtainP (T (y)P < a) ≥ 1− y

a(1−ρ) . Thus, we see that

ρ(y)Qx,a ≥ λ

∫ y

0

(
1− t

a(1− ρ)

)
tf(t)dt

= ρ(y)P − λm2(y)
a(1− ρ)

whereρ(y)P = λ
∫ y
0 tf(t)dt is the load made up by jobs of size less than or equal toy in P andm2(y) =∫ y

0 t2f(t)dt. The intuition behind the remainder of the proof is that asa, y, andx get very large,ρ(y)Qx,a

approachesρ which tells us that the load of jobs thatmustcomplete beforex underP goes toρ.
We now derive a lower bound on the response time of a job of sizex under policyP . We will be

interested in largex, with a < x. We divideT (x)P into two partsT1 andT2 whereT1 represents the
time from whenx starts service until it has remaining sizea andT2 represents the time from whenx has
remaining sizea until it completes service. We first note thatT2 ≥ a. To lower boundT1 consider the set of
jobs,Sy, with size less thany and whose response time underP is less thana. The jobs inSy are worked on
at the same moments underQx,a andP , and they comprise loadρ(y)Qx,a . During timeT1, job x receives
service underP at most during the time the system is idle of jobs inSy, which is1 − ρ(y)Qx,a fraction of
the time. Thus

E[T1] ≥
x− a

1− ρ(y)Qx,a
.

It follows that

E[T (x)]P = E[T1] + E[T2] ≥
x− a

1− ρ(y)Qx,a
+ a

E[S(x)]P ≥ x− a

x
(
1− ρ(y)P + λm2(y)

a(1−ρ)

) +
a

x

Now, we must sety anda as functions ofx such that, as we letx → ∞, we converge as desired.
Notice that asx → ∞, we would likeρ(y)P → ρ, λm2(y)

a(1−ρ) → 0, and a
x → 0. Thus, we must havea � x

such thaty → ∞ anda → ∞. We can accomplish this by settinga = 4
√

x andy =
√

x. Notice that
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m2(
√

x) → E[X2] < ∞ asx →∞. Now, looking at expected slowdown we see that asx →∞:

E[S(x)]P ≥ x− 4
√

x

x
(
1− ρ(

√
x) + λm2(

√
x)

4
√

x(1−ρ)

) +
4
√

x

x

=
1− 4/

√
x

1− ρ(
√

x) + λm2(
√

x)
4
√

x(1−ρ)

+
4√
x

→ 1
1− ρ

�

7.1.3.2 Always Unfair
We will now prove that a large number of common scheduling techniques and heuristics are Always Unfair,
i.e. are guaranteed to treat some job size unfairly under all system loads and service distributions. For
an overview of scheduling techniques that are Always Unfair, see Figure7.1. The policies in the Always
Unfair class exhibit fundamentally different behavior with respect toE[S(x)] than those in the Always Fair
class. While policies in the Always Fair class have either monotonically increasing or constantE[S(x)], the
policies we study here typically exhibit decreasing behavior (see Figure7.2).

Non-preemptive blind policies
The analysis in this section is based on the simple observation that any policy where a small job cannot
preempt the job in service will be unfair to small jobs. In fact, the analysis holds for all non-preemptive
policies as long as the service distribution includes jobs of arbitrarily small sizes.

Lemma 7.10
In an M/GI/1 queue with E[X2] < ∞4, any non-preemptive policy P is unfair for all loads under any
service distribution defined on a neighborhood of zero.

Proof. We can bound the performance ofP by noticing that, at a minimum, an arriving job of sizex

must takex time plus the excess of the job that is serving. Thus,E[T (x)]P ≥ x + ρE[X2]
2E[X] . Notice that

limx→0 E[S(x)]P = ∞. Thus, there exists some job sizey such thatE[S(y)]P > 1/(1− ρ), for all ρ < 1.
�

Under service distributions with non zero lower bounds on the smallest job size, not all non-preemptive
policies are Always Unfair. However, all non-preemptive blind policies can be classified as Always Unfair.
(Note that the remainder of the possible non-preemptive policies are explored in Section7.1.3.3.)

Theorem 7.11
In an M/GI/1 queue with E[X2] < ∞, all non-preemptive blind policies P are Always Unfair.

4Note that non-preemptive policies require thatE[X2] <∞ in order forE[T ] <∞
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Proof. Assume that the service time distribution has lower boundC > 0 (we have already dealt with the
case ofC = 0). We will show that jobs of sizeC are treated unfairly. Recall that all non-preemptive, blind
based policies have the same expected response time for a job of sizex

E[T (C)]P = C +
λE[X2]
2(1− ρ)

=
C(1− ρ) + λ

∫∞
0 (t + C)F (t + C)dt

1− ρ

=
C − Cρ + Cρ + λ

∫∞
0 tF (t + C)dt

1− ρ

>
C

1− ρ

where the last inequality follows since the service distribution is required to be non-deterministic.
�

FOOLISH scheduling
We now analyze the class ofFOOLISH policies (i.e. policies that prioritize large job sizes). The two
most common examples of such policies are Preemptive-Longest-Job-First (PLJF) and Longest-Remaining-
Time-First (LRPT). It is not surprising thatFOOLISH policies will always be unfair to small job sizes, since
large job sizes have preemptive priority.

Theorem 7.12
In an M/GI/1 queue with E[X2] < ∞5, all FOOLISH policies are Always Unfair.

Proof. Let xL be the lower bound of the service distribution. Then, asx → xL, E[T (x)]PLJF →
E[B(xL + W )] since the service distribution is continuous. Thus, under allP ∈ FOOLISH, asx → xL,
E[T (x)]P → E[B(xL +W )]. So, allP ∈ FOOLISH are Always Unfair sinceE[B(xL +W )] > E[B(xL)]
for ρ > 0.
�

7.1.3.3 Sometimes Fair
We now move to the class of Sometimes Fair policies – policies that for someρ, andX treat all job sizes
fairly, but for otherρ andX treat some job size unfairly. For an overview of scheduling techniques that
are Sometimes Fair, see Figure7.1. The policies that are Sometimes Fair have more complicated behavior
with respect toE[S(x)] than we observed in the cases of the Always Fair and Always Unfair classes. For
instance,SRPT maintains monotonicE[S(x)] for low loads similarly to policies in the Always Fair class,
but SRPT exhibits non-monotonic behavior under high enough load. This behavior is illustrated in Figure
7.2.

5Note thatFOOLISH policies require thatE[X2] <∞ in order forE[T ] <∞
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Non-preemptive, size-based policies
This section completes the analysis of non-preemptive policies begun in Section7.1.3.2. It is based on
the observation that if there is a lower bound on the smallest job size in the service distribution, then it is
possible for a non-preemptive policy to avoid being Always Unfair.

Theorem 7.13
In an M/GI/1 queue with E[X2] < ∞, any non-preemptive, size-based policy P is either Sometimes Fair
or Always Unfair.

Proof. We will prove in Section7.2thatlimx→∞E[S(x)]P = 1 for all non-preemptive policiesP . Thus,
we can apply Theorem7.9to conclude that a non-preemptive policyP cannot attain Always Fair, soP must
be either Always Unfair or Sometimes Fair.

Further, observe there are examples of size based, non-preemptive policies in each of the two classes.
For instance, it can easily be shown that the Longest-Job-First (LJF ) policy is Always Unfair. However,
Shortest-Job-First (SJF) is only Sometimes Fair – that is, there exist service distributions and loads such
thatE[S(x)]SJF ≤ 1/(1− ρ) for all x. One example of such a distribution and load is(X − 2) ∼ Exp(1)
with ρ = 0.2.
�

SMART Scheduling
The fairness ofSMART policies is of particular interest due to the intrinsic bias against large job sizes under
these policies. It is well known that policies that bias towards small job sizes or jobs with small remaining
service times perform well with respect to mean response time and mean slowdown, but the concerns about
fairness of such policies has led to their limited acceptance in computer applications.

We have already seen one example of aSMART policy that is Always Unfair. However, it is possible
for SMART policies to be fair. In fact we find that manySMART policies (e.g.SRPT ) can be fair un-
der low loads regardless of the service distribution. Further, if the service distribution is highly variable,
SMART policies can be fair at even high loads. However, under everySMART policy, under every service
distribution withE[X2] < ∞, there exists some load that is high enough to cause the policy to be unfair.
Interestingly though, as we saw inPSJF, it is not the largest job size that is treated the most unfairly.

Theorem 7.14
In an M/GI/1 queue, all SMART policies are Sometimes Fair.

In the remainder of this section, we will prove the above result for the class ofSMART policies. Then,
we will focus on the specific case ofSRPT in the next section.

Before we can prove Theorem7.14, we first need to develop a few technical lemmas about the behavior
of E[T (x)]SRPT .

Lemma 7.15
Let h(x) > 0 be a continuous, increasing function of x such that

∫ x
0 h(x) = H(x).∫ x

0

h(t)
(1− ρ(t))i

dt ≥ H(x)
(1− ρ(x) + λm2(x)/x)i
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Proof. We prove this using Chebyshev’s Integral Inequality [89]. The following holds for alli ≥ 1.(∫ x

0
1− ρ(t)dt

)(∫ x

0

h(t)
(1− ρ(t))i

dt

)
≥ x

∫ x

0

h(t)
(1− ρ(t))i−1

dt

Thus, ∫ x

0

h(t)
(1− ρ(t))i

dt ≥ xiH(x)(∫ x
0 1− ρ(t)dt

)i
=

H(x)
(1− ρ(x) + λm2(x)/x)i

�

Lemma 7.16
Define δx = λm2(x)/x and let ε > 0. Then

x(1 + ε)
1− ρ(x)

−
∫ x

0

dt

1− ρ(t)
≤ λm2(x)(1 + ε) + (1− ρ(x))xε

(1− ρ(x) + δx)(1− ρ(x))

Proof. We will use the bound in Lemma7.15in the first step, and then calculate directly.

x(1 + ε)
1− ρ(x)

−
∫ x

0

dt

1− ρ(t)
≤ x(1 + ε)

1− ρ(x)
− x

1− ρ(x) + λm2(x)/x

=
x

1− ρ(x) + δx

(
(1 + ε)

1− ρ(x) + δx

1− ρ(x)
− 1
)

=
xδx(1 + ε) + (1− ρ(x))xε

(1− ρ(x))(1− ρ(x) + δx)

�

Now, we are now ready to prove the main result.

Proof of Theorem 7.14. Note that it follows immediately from Brown’s results forFB andSRPT [47]
that allSMART policies are fair if job sizes are regularly varying withα ∈ (1, 1.5). Thus, we need only
show that allSMART policies are unfair ifE[X2] < ∞ for large enoughρ to complete the proof.

Let P ∈ SMART andδx = λm2(x)/x. We will start by proving the result in the case of an unbounded
service distribution. Let

εx =
ρ− ρ(x)

1− ρ

such that1 + εx = (1− ρ(x))/(1− ρ). Note thatx(ρ− ρ(x)) = λx
∫∞
x tf(t)dt ≤ λ

∫∞
x t2f(t)dt = o(1)

sinceE[X2] < ∞. Thus,εx = o(1/x).



200 CHAPTER 7: FAIRNESS

Now, we can calculate using Lemma7.16:

x

1− ρ
− E[T (x)]P =

x(1 + εx)
1− ρ(x)

− E[T (x)]P

≤ x(1 + εx)
1− ρ(x)

−
∫ x

0

dt

1− ρ(t)
− λm2(x)

2(1− ρ(x))2

≤ λm2(x)(1 + εx) + (1− ρ(x))xεx

(1− ρ(x))(1− ρ(x) + δx)
− λm2(x)

2(1− ρ(x))2

=
λm2(x)
1− ρ(x)

(
1 + εx + (1− ρ(x))εx/δx

1− ρ(x) + δx
− 1

2(1− ρ(x))

)
Thus,P is unfair tox when the following equivalent statements hold

2(1− ρ(x))(1 + εx + (1− ρ(x))εx/δx)− (1− ρ(x) + δx) < 0 (7.6)

(1− ρ(x))(1 + 2εx + 2(1− ρ(x))εx/δx)− δx < 0
(1− ρ(x))(1 + o(1))− δx < 0

(1− ρ)(1 + o(1)) + (ρ− ρ(x))(1 + o(1))− δx < 0 (7.7)

We now show that (7.7) holds for large enoughx andρ. Note thatρ− ρ(x) = o(1/x). Let γ > 0 such
that there exists anxγ large enough that both(1 + o(1)) < 2 and(ρ− ρ(x))2− δx < −γ. We can find such
aγ sinceδx = λm2(x)/x. Chooseργ < 1 large enough that2(1− ργ)− γ < 0. Thus,P treatsxγ unfairly
under loadργ , which completes the proof in the case of an unbounded service distribution.

Note that in the case of a service distribution with upper boundxU , we can plugx = xU into (7.6) and
obtain

2(1− ρ)− (1− ρ + δxU ) = 1− ρ +
λE[X2]

xU
< 0

which holds for large enoughρ.
�

7.2 Proportional fairness to large jobs
In the previous section, we began our study of proportional fairness by studying proportional fairness in
expectationacrossall job sizes. We now move from a discussion of proportional fairness with respect to
all jobs sizes to a discussion about onlylarge job sizes. By focusing on only the behavior of large job
sizes, we will be able to study thedistributional behaviorof proportional unfairness instead of being limited
to studying proportional fairness in expectation. Characterizing the distribution of proportional fairness
experienced by large job sizes is especially important because it has often been cited that the superior
performance of scheduling policies that bias towards small jobs may come at the cost of starving large jobs,
resulting in both larger andmore variableresponse times [30, 215, 223, 210]. In addition to characterizing
the fairness experienced bylarge job sizes, the results in this section are a necessary building block towards
developing a framework for studying the distributional behavior of proportional fairness acrossall job sizes.
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In fact, the results in this section provide theoretical justification for the generalized framework for studying
proportional fairness presented in Section7.3.

In order to study the distributional behavior of proportional unfairness we need to understand how to
generalize the metric in Definition7.1, E[S(x)] = E[T (x)]/x. There are many different possibilities, each
with there own strengths and weaknesses. The most natural generalization of Definition7.1 is to study the
behavior ofS(x) = T (x)/x. This matches the motivation for proportional fairness that response times
should be proportional to job sizes. We study the behavior ofS(x) for large job sizes in detail in Section
7.2.1, where we prove thatS(x)P converges almost surely asx → ∞ under a wide range of common
policies. In fact, we show that all work conserving scheduling policies have slowdown no worse than that of
PS with respect to large jobs. In particular, we prove that the slowdown as job size tends to infinity under
any work conserving policy is a.s. bounded by1/(1− ρ); even under policies that clearly bias against large
jobs.

Though usingS(x) to characterize the distributional behavior of proportional fairness is natural, the
fact thatS(x) converges almost surely asx → ∞ hints that other metrics with weaker scaling factors may
provide more information about the distribution of proportional fairness. Specifically, the normalization
factor1/x in S(x) hides information about the variability of the response times of large job sizes; thus it is
important to consider other scaling factors. In Section7.2.2, we illustrate that cumulant moments6 provide
a useful characterization of the the limiting response times of large job sizes. Further, we prove results that
parallel the results attained when studyingS(x) asx →∞: we show that all work conserving policies have
smaller asymptotic cumulant moments thanPS.

7.2.1 Asymptotic behavior of slowdown
In order to study the distributional behavior of proportional fairness, the most natural metric to begin with
is the slowdown for a job of sizex, S(x) = T (x)/x. Slowdown clearly captures the idea that the response
time of a job should be proportional to the size of the job, in addition it is a simple enough metric to allow
the analysis of a wide range of scheduling policies. Further, as we saw in Chapter6, the asymptotic behavior
of slowdown is important for the study of the tail behavior ofT in addition to its importance as a fairness
metric.

In this section, we will show that many preemptivework conservingscheduling policies have the same
performance asPS with respect to large jobs. In particular, we show that the slowdown as job size tends
to infinity under any work conserving policy is at most11−ρ ; even for policies that clearly bias against large
jobs and that this limit is attained under many common preemptive policies. We will first prove the bound
on all work conserving policies, and then we will analyze the performance of a range of individual policies,
scheduling techniques, and scheduling heuristics.

Theorem 7.17
In a M/GI/1 with E[X2] < ∞, under any work conserving policy P it holds a.s. (assuming the limit exists)
that

lim
x→∞

S(x)P ≤ 1
1− ρ

.

If the policy is also non-preemptive, then the limit does exists and S(x)P → 1 a.s. as x →∞.

6For a brief overview of cumulants see Section2.3.1.
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Proof. The proof fornon-preemptive, work conserving policies is quick. Start with the observation that

P (S(x)P ≥ 1) = 1 ∀x,∀ policiesP

This follows simply by definition of slowdown. Thus, by taking limits, a.s. it holds that

liminf
x→∞

S(x)P ≥ 1,∀ policiesP

Further, we can upper bound the response timeT (x) under any non-preemptive policy with

T (x)P ≤st x + B(Q)

whereQ is the work in the system. Thus, we have a.s. that

S(x)P ≤ 1 +
B(Q)

x
∀x, ∀work conserving, non-preemptive policiesP

Taking limits we have a.s. that

limsup
x→∞

S(x)P ≤ 1,∀work conserving, non-preemptive policies P

It follows that for all work conserving, non-preemptive policiesP the limit does exists and

S(x)P → 1a.s. asx →∞.

The remainder of the proof will concentrate on work conserving policies that allow preemption. We
know that a.s.

T (x) ≤ B(x + Q).

Thus

lim
x→∞

T (x)/x ≤ lim
x→∞

B(x + Q)
x

.

We will complete the proof by showing that

lim
x→∞

B(x + Q)
x

=
1

1− ρ
a.s. (7.8)

If we let {Bi : i ≥ 1} denote an i.i.d. sequence of regular busy periods (non-exceptional), thenB(x) can be
expressed as

B(x) = x +
N(x)∑
i=1

Bi

where{N(x) : x ≥ 1} is a Poisson process of rateλ independent of{Bi : i ≥ 1}. We conclude that this
version of{B(x) : x ≥ 0} is a compound Poisson process with a linearx term added on, so it has stationary
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and independent increments. Thus, almost surely,

lim
x→∞

B(x)
x

= E[B(1)] (by S.L.L.N)

=
1

1− ρ

Finally, notice that replacingx by x + Q does not change this limit.
�

Remark 7.1 Theorem7.17can be easily extended to the GI/GI/1 setting. However, Theorem7.17does not
extend to policies that are not work conserving. In fact, for everyz ∈ [1,∞) there is a non work conserving
policy such thatlimx→∞ S(x) = z. To see this, consider the policy that makes each job wait(z − 1)x time
before it is allowed to enter the queue of a non-preemptive, work conserving system.

We now prove that the upper bound onS(x) asx →∞ under all work conserving policies matches the
limit under PS. Thus, no work conserving policy can treat large job sizes too much worse thanPS does.
SincePS is typically taken as a benchmark for fairness, this means that one never need to worry too much
about the behavior of very large jobs. However, as we saw in Section7.1, there is often some range of large
(but not the largest) jobs that are treated unfairly under policies that bias towards small jobs.

Theorem 7.18
In a GI/GI/1 queue, S(x)PS → 1/(1− ρ) a.s. as x →∞.

Proof. DefineG(t) to be the service given in timet to a permanent customer arriving to a stationary queue
at time zero. Note thatP (G(t) > x) = P (T (x) > t). Because thePS queue is stationary, we know that
(t−G(t))/t converges toρ a.s. ast → ∞. That is, the amount of fraction service given to non-permanent
customers must converge toρ, otherwise the system would not be stable. Thus, we have thatG(t)/t → 1−ρ
almost surely, or equivalently,S(x) = T (x)/x → 1/(1− ρ) a.s.
�

We complete this section by proving that many other preemptive policies haveS(x) that converges to
1/(1 − ρ) asx → ∞. In fact, almost all common preemptive policies have the same performance with
respect to limiting slowdown.

Theorem 7.19
In a GI/GI/1 queue, for P ∈ {SMART,FB,PLCFS}, S(x)P → 1/(1− ρ) a.s. as x →∞.

Proof. Note that Theorem7.17gives an upper bound, so all we need to show is a lower bound.
To prove the lower bound, we first derive a stochastic lower bound for the sojourn time ofP = FB and

P ∈ SMART in terms of a single busy period. ForFB we have

T (x)FB ≥st B̃x(x) ≥st Bx(x) ≥st Bεx((1− ε)x), 0 < ε < 1. (7.9)
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Furthermore, forP ∈ SMART, the Bias property guarantees that until the tagged job has received(1− ε)x
units of service, all arriving jobs smaller thanεx receive priority. Hence,

T (x)P ≥st Bεx((1− ε)x), 0 < ε < 1. (7.10)

To understand the length of this busy period, we will analyze aPLCFS system. DefineGy(t) to be
the service given in timet to a permanent customer arriving in an empty queue at time 0 when the generic
service time isXI[X<y]. Denoting the inverse ofBy by B−1

y , we have for allx andt,

P (Gy(t) > x) = P (By(x) < t) = P (B−1
y (t) > x).

Hence,Gy is stochastically equal toB−1
y , so that

lim
x→∞

By(x)
x

= lim
x→∞

x

B−1
y (x)

= lim
x→∞

x

Gy(x)
a.s.

Note that this also holds ify is a function ofx. Furthermore, defineG(t) = limy→∞Gy(t). Then

lim
t→∞

G(t)
t

= 1− ρ a.s. (7.11)

Setz = (1− ε)x. From (7.9), (7.10) and (7.11), it follows that for all0 < ε < 1,

lim
x→∞

T (x)P

x
≥ lim

x→∞

Bεx((1− ε)x)
x

= (1− ε) lim
z→∞

Bεz/(1−ε)(z)
z

= (1− ε) lim
z→∞

z

Gεz/(1−ε)(z)

=
1− ε

1− ρ
a.s.

The final equality follows because for any constantc, there exists az(c) such that for allz > z(c), Gc(z) ≤st

Gεz/(1−ε)(z) ≤st G(z). This completes the proof of the lower bound.
�

Before we move away from studying the convergence of slowdown, it is important to point out that for
everyz ∈ [1, 1

1−ρ ] there is a work conserving policy such thatS(x) → z, a.s. asx →∞.
To see this, consider the Jump-To-Front (JTF) policy. JTF is linear combination ofFCFS andPLCFS.

More specifically, underJTF, with probabilityq an arriving job preempts the job being serviced and with
probability1− q an arriving job is placed at the back of aFCFS queue to await service.

We can quickly analyze this policy to findS(x)P . Consider an arrival that gets placed at the front of
the queue. This arrival can only be bothered by other jobs that are allowed to preempt. Thus, for this job
T (x) = B(x)|λ′ , whereλ′ = qλ for q ∈ [0, 1]. That is,T (x) is the length of a busy period started by a job
of sizex where the arrival rate isλ′.
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Now consider a job that gets placed in the back of the queue. If the system is idle when the job arrives,
we again see thatT (x) = B(x)|λ′ . However, if the system is busy at the time of the arrivalT (x) =
B(x + Q|busy))|λ′ , whereQ is the amount of work in system seen by an arbitrary arrival, andQ|busy is
the work seen by an arrival which finds the system busy. As in the analysis above, the effect ofQ disappears
in the limit.

Let ρ′ = λ′E[X]. Then, putting these three pieces together, we see thatS(x)P → 1
1−ρ′ a.s. Sinceρ′ is

an arbitrary number in[0, ρ], we can make 1
1−ρ′ any number in[1, 1

1−ρ ].

7.2.2 Scaling response times
The fact thatS(x) converges almost surely asx →∞ provides an interesting perspective on the unfairness
experienced by large job sizes, but it provides very little information about the variability ofT (x) asx →∞.
In order to characterize the variability of response times experienced by large job sizes, we need to consider
weaker scalings ofT (x) thanS(x) = T (x)/x. In this section we will contrast the behavior of common
scalings ofT (x) asx → ∞ in order to illustrate that cumulant moments are unique in the sense that they
have a scaling factor that retains information about the variability of the limiting distribution ofT (x) as
x →∞.

In order to illustrate the issues in finding an appropriate scaling factor for the limit asx → ∞, we will
begin by looking at the asymptotic behavior of a busy period started by a job of sizex, B(x). Busy periods
are fundamental to the analysis of many size based scheduling policies, and we will find that the correct
scaling factor forB(x) will match the scaling necessary for response times under many policies. Recall that
the Laplace transform ofB(x), LB(x)(s), is:

LB(x)(s) = e−x(s+λ−λLB(s))

whereLB(s) is the Laplace transform of a standard M/GI/1 busy period.
The most natural possibility for an appropriate metric for studyingB(x) asx → ∞ is to scale the raw

moments ofB(x). We can calculate the moments ofB(x) usingh(s) = −x(s + λ − λLB(s)). Thus,
h′(0) = − x

1−ρ andh(i)(0) = (−1)iλxE[Bi] for i > 1. It is important to notice that in each of these terms,

x has degree one sinceE[Bi] does not depend onx. Thus, we can determine the growth ofE[T (x)i] as
x →∞:

E[B(x)] =
x

1− ρ

E[B(x)2] =
(

x

1− ρ

)2

+ λxE[Bi]

E[B(x)i] =
(

x

1− ρ

)i

+ o(xi)

So, we must scale theith raw moment byxi in order to obtain a limit. This is equivalent to considering the
slowdown ofB(x) as done in Section7.2.1, and thus is too heavy handed for the current purpose since it
hides the behavior of the higher moments ofB(x). Specifically, normalizing byxi leads to a degenerate
limiting distribution: limx→∞ V ar[B(x)]/x2 = 0.
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Another natural suggestion for an appropriate scaling factor is to consider the central moments ofB(x),
E[(B(x)−E[B(x)])i]. Up until the third central moment, it seems that central moments can be scaled using
a linear factor:

E[(B(x)− E[B(x)])2] = λxE[B2]
E[(B(x)− E[B(x)])3] = λxE[B3]

However, beyond the third central moment the scaling becomes more convoluted and it becomes apparent
that there is no simple scaling factor for the central moments that will capture the complete behavior of the
higher moments. That is, any scaling factor will hide the effect of lower order variability terms, e.g.

E[(B(X)− E[B(X)])4] = λx
(
E[B4]

)
+ 3(λxE[B2])2

The observation that the first three central moments are well behaved is important however. It hints
that cumulants might provide the correct asymptotic metric. Defineκi[Y ] as theith cumulant ofX and
KX(s) = log(LX(s)) as the cumulant generating function ofX. For a brief overview of cumulants see
Section2.3.1.

In contrast to raw and central moments, the cumulants ofB(x) have a very simple form.

KB(x)(s) = log(LB(x)(s)) = −x(s + λ− λLB(s))

Calculating the cumulant moments through differentiation:

κi[B(x)] =
{

x/(1− ρ) for i = 1
λxE[Bi] for i > 1

Thus, usingκi/x, it is possible to capture all the variability in the limiting distribution of response time. In
fact,κi[T (x)]/x is an appropriate metric across a wide range of scheduling policies.

Theorem 7.20
In an M/GI/1 queue, let E[Xi+1] < ∞. Under any work conserving policy P ,

lim
x→∞

κi[T (x)]P

x
≤
{

1/(1− ρ) for i = 1
λE[Bi] for i > 1

(7.12)

Equality holds for P ∈ {SMART,FB,PLCFS}. Further, under any non-preemptive work conserving
policy P ,

lim
x→∞

κi[T (x)]P

x
=
{

1 for i = 1
0 for i > 1

Proof. Let P be a work conserving policy andQ be the time average work in system. Then,T (x)P ≤
B(x + Q) becauseB(x + Q) = B(x) + B(Q) corresponds to the time it would take to finish all the work
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in the system whenx arrived in addition to all the arriving work whilex is in the system. Thus, asx →∞

KB(x+Q)(s)/x = log(LB(x+Q)(s))/x

= log(LB(x)(s))/x + log(LB(Q)(s))/x

→ s + λ− λLB(s)

which yieldslimx→∞ κ1[B(x + Q)]/x = 1
1−ρ and limx→∞ κi[B(x + Q)]/x = λE[Bi] for i > 1; from

which the result follows.
To prove that equality holds forP ∈ {SMART, FB, PLCFS}, we can use a sequence of straight-

forward calculations using the cumulant generating functions (c.g.f.) for each policy and the bounds for
SMART. Normalizing the c.g.f. byx and lettingx →∞ shows that the c.g.f. converges to the c.g.f ofB(x)
in each case.

Finally, to prove the limit in the non-preemptive case, we note thatT (x)P ≤ x + B(Q) for any non-
preemptive policyP . Thus, asx →∞

K1+B(Q)/x(s) = s + log(LB(Q)(s))/x → s

which yieldslimx→∞ κ1[B(x + Q)]/x ≤ 1. We can observe that, by definition, we also have that
limx→∞ κ1[T (x)P ]/x ≥ 1. Further, fori > 1 differentiation yieldslimx→∞ κi[T (x)P ]/x = 0.
�

Now that we understand the behavior ofκi[T (x)] under a range of policies, it is important to compare
this behavior to that ofPS. In [240] it was conjectured that equality holds for the limit in (7.12) under
PS. However, known asymptotics are only tight enough to show the convergence of the first and second

cumulants. In particular, it is known that [256]: E[T (x)i]PS = xi

(1−ρ)i + λxi−1E[X2]i(i−1)
2(1−ρ)i+1 + o(xi−1), which

proves the result forκ1[T (x)]PS andκ2[T (x)]PS . However, information about higher cumulants is lost in
theo(xi−1) term.

We now present an algorithm for computing the asymptoticith cumulant underPS and show that equal-
ity holds in (7.12) for at least the first 10 cumulants ofPS.

Theorem 7.21
Consider an M/GI/1 queue. For positive integer i ≤ 10, let E[Xi+1] < ∞. Then, κi[T (x)]PS/x → λE[Bi]
as x →∞.

The moments of response time in an M/GI/1/PS queue have a complex form. Letα0(x) = 1, δ0(x) =
δ1(x) = 0, and fori ≥ 1

αi(x) =
(

x

1− ρ

)i

− δi(x) (7.13)

δi(x) =
i

(1− ρ)i

∫ x

0
(x− t)i−1R

(i−1)∗(t)dt (7.14)

whereR
n∗(t) is then-fold convolution of the waiting time distribution in the M/GI/1/FCFS queue,WFCFS =
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W . Then, we can write the moments ofT (x)PS recursively as follows [256]

E[T (x)k]PS = −
k∑

i=1

(
k

i

)
(−1)iE[T (x)k−i]PSαi(x) (7.15)

where theE[T (x)] = 1/(1− ρ).
To calculate the moments of the convolution of waiting time,µi[Wn∗] we will make use of the additivity

of the cumulants and then use (2.2) to calculate the moments of the convolution in terms of the moments of
W :

µ1[Wn∗] = nκ1[W ]

µi[Wn∗] = n

κi[W ]−
i−1∑
j=1

(
i− 1

j

)
µj [Wn∗]κi−j [W ]

 (7.16)

κ1[W ] = µ1[W ]

κi[W ] = µi[W ]−
i−1∑
j=1

(
i− 1

j

)
µj [W ]κi−j [W ] (7.17)

Finally, we can use Takács recursive formula for the moments ofW to finish the calculation [221]:

µ0[W ] = 1

µi[W ] =
λ

1− ρ

i∑
j=1

(
i

j

)
E[Xj+1]

j + 1
µi−j [W ] (7.18)

Proof of Theorem 7.21.
We will present an algorithm for the computation oflimx→∞ κi[T (x)]PS/x and illustrate the computa-

tion for i ≤ 4. We have carried out the calculations fori ≤ 10 using Mathematica.
We begin by using (7.13), (7.14), (7.15), and (2.2) to derive formulas forκi[T (x)]PS in terms ofδn(x).

κ1[T (x)]PS =
x

1− ρ
(7.19)

κ2[T (x)]PS = δ2(x) (7.20)

κ3[T (x)]PS =
3xδ2(x)
1− ρ

− δ3(x) (7.21)

κ4[T (x)]PS =
6x2δ2(x)
(1− ρ)2

− 4xδ3(x)
1− ρ

+ 3δ2(x)2 + δ4(x) (7.22)

To see thatκi[T (x)]PS/x → λE[Bi] asx → ∞, we need to understand the asymptotic behavior of
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δn(x). Note that we can rewriteδn(x) as

δn(x) =
n

(1− ρ)n

n−1∑
i=0

(
n− 1

i

)
(−1)n−1−ixi

∫ x

0
tn−1−iR

(n−1)∗(t)dt (7.23)

Further,
∫ x
0 tn−1−iR

(n−1)∗(t) = µn−i[W
(n−1)∗
x ]/(n− i) whereWx = min(W,x).

We now combine (7.23) with (7.19) - (7.22) and note thatWx → W asx → ∞ to obtain the limit of
κi[T (x)]PS/x in terms ofκi[W ].

lim
x→∞

κ1[T (x)]PS

x
=

1
1− ρ

lim
x→∞

κ2[T (x)]PS

x
=

2κ1[W ]
(1− ρ)2

lim
x→∞

κ3[T (x)]PS

x
=

9κ1[W ]2 + 3κ2[W ]
(1− ρ)3

lim
x→∞

κ4[T (x)]PS

x
=

64κ1[W ]3 + 48κ1[W ]κ2[W ] + 4κ3[W ]
(1− ρ)4

To complete the proof, we calculate the cumulants ofW using (7.17) and (7.18) and derive the final
expressions for the limits.

lim
x→∞

κ1[T (x)]PS

x
=

1
1− ρ

lim
x→∞

κ2[T (x)]PS

x
=

λE[X2]
2(1− ρ)3

lim
x→∞

κ3[T (x)]PS

x
=

λE[X3]
(1− ρ)4

+
3λ2E[X2]2

(1− ρ)5

lim
x→∞

κ4[T (x)]PS

x
=

λE[X4]
(1− ρ)5

+
10λ2E[X2]E[X3]

(1− ρ)6
+

15λ3E[X2]3

(1− ρ)7

Then, noting that the busy period moments can be derived from the Laplace transformB̃(s) = X̃(s +
λ − λB̃(s)) or more efficiently using an algorithm such as [70], we can verify that the limits indeed match
λE[Bi].
�

7.3 A unified framework for proportional fairness
As we have seen, providing proportional fairness is an important design constraint under a variety of appli-
cations where users desire small mean response times, but also want to be treated “fairly,” e.g. web servers
and routers. In many of these settings, system designers are hesitant to use policies that provide small mean
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response times by prioritizing small job sizes (at the expense of large job sizes) due to worries that large
job sizes will be starved of service. Specifically, there are worries that large job sizes will receive dispro-
portionately large response times and that large job sizes will receive disproportionately variable response
times. Thus, it is important to study both proportional fairness in expectation and the distributional behavior
of proportional fairness.

In this section, we will extend the approach used to study proportional fairness in expectation (Section
7.1) using the results characterizing the distributional behavior of the response times of large jobs (Section
7.2) in order to motivate a framework of metrics for studying the distributional behavior of proportional
fairness. We will accomplish this by generalizing Definition7.1 to higher moments using the cumulant
moments ofT (x) as follows. For a brief overview of cumulants see Section2.3.1. Recall thatB is the
length of a busy period.

Definition 7.3 Let0 < ρ < 1 andE[Xi] < ∞ in an M/GI/1. A job sizex is treatedfairly under policyP ,
service distributionX, and loadρ if

κi[T (x)]P

x
≤ 1[i=1] + λE[Bi]

Otherwise a job sizex is treatedunfairly . A scheduling policyP is fair if every job size is treated fairly.
OtherwiseP is unfair .

The above definition was first introduced by Wierman and Harchol-Balter in [240]. It is worth pointing out
that, though the1[i=1] may appear strange at first, it is a fundamental result of the fact that the first cumulant
is shift-equivariant while all others are shift-invariant: lettingc be a constant,κ1[Y + c] = κ1[Y ] + c but for
i ≥ 2, κi[Y + c] = κi[Y ].

Notice that there are many parallels between Definition7.1, for studying proportional fairness in expec-
tation, and Definition7.3. Both definitions have two pieces: a metric and a criterion. Further, the metric
and criterion in Definition7.1 match the metric and criterion fori = 1 in Definition 7.3: κ1[T (x)]/x =
E[T (x)]/x and1 + λE[B] = 1/(1 − ρ). Additionally, the motivation for the metric and criterion parallel
the motivations for the metricE[T (x)]/x and the criterion1/(1− ρ) in Definition7.1.

In both Definition7.1and Definition7.3, themetricis motivated by the behavior of jobs of sizex →∞.
Specifically, the metric must scale moments ofT (x) appropriately to allow for comparison of moments of
T (x) between small and largex. ForE[T (x)]P , it is clear that1/x is an appropriate scaling factor because
E[T (x)]P = Θ(x) under all work conserving scheduling policies, and thus we need to normalize by the
growth rate. For higher moments ofT (x), the correct scaling factor is not obvious; however in Section
7.2we illustrated thatκi[T (x)] is Θ(x) for common preemptive policies andO(x) for all work conserving
policies (Theorems7.20and7.21). Hence, scaling by1/x makes sense; whereas using a stronger scaling
would hide the variability in the distribution ofT (x) asx →∞.

The motivation for the criteria in Definitions7.1 and 7.3 is more involved. The criterion1/(1 −
ρ) in Definition 7.1 stems from two formal motivations. First, it provides a min-max notion of fair-
ness: minP maxx E[T (x)]P /x = 1/(1 − ρ). Second, the criterion1/(1 − ρ) has the property that
limx→∞E[T (x)]P /x = 1/(1−ρ). This property is key to the derivation a broad classification of scheduling
policies as one of Always Fair, Sometimes Fair, or Always Unfair (see Section7.1). The classification is per-
haps the strongest motivation for the criterion1/(1− ρ) because it illustrates that the criterion distinguishes
between patterns of behavior of policies with respect to the metricE[T (x)]P /x.
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The motivation for the criterion in Definition7.3 parallels that for the criterion in Definition7.1; how-
ever it is not as cut-and-dry. Just as the criterion1/(1 − ρ) used in Definition7.1 has the property that
limx→∞E[T (x)]P /x = 1/(1−ρ) under many common policies, Theorems7.20and7.21illustrate that the
criterion in Definition7.3also serves as the limit forκi[T (x)]/x under many common scheduling policies.
However, a priori, it is not clear whether this limiting behavior distinguishes between patterns of behaviors
with respect toκi[T (x)] in the same way1/(1− ρ) did for E[T (x)]/x. All we can do to provide this justifi-
cation is to illustrate that in the case ofi = 2, whenκ2[T (x)]/x = V ar[T (x)]/x, the criterionλE[B2] does
indeed differentiate between contrastingV ar[T (x)]P /x behaviors. This is what we will do in Section7.4.
Specifically, we will illustrate that Definition7.3 distinguishes between between non-monotonic “hump”
behaviors – where some mid-range job sizes are treated the most unfairly – and monotonically increasing
behaviors in the case ofi = 2 just as it does in the case ofi = 1. Further, the classifications that result from
Definition 7.3 in the cases ofi = 1 andi = 2 parallel each other; and thus we conjecture that fori > 2
similar classifications will emerge. However, deriving classifications for these higher order moments will
be a difficult task.

7.4 Predictability
In this section, we will provide an illustration of the generalized framework for studying proportional fair-
ness presented in Definition7.3. We specifically consider the case ofκ2[T (x)]/x = V ar[T (x)]/x. In
studying the behavior ofV ar[T (x)] acrossx, we are characterizing the “predictability” of response times,
which is an important metric in its own right. In fact, in many modern computer systems improving the
predictability of response times is of fundamental importance: it can be even more urgent than improving
the response times on average. This is because users expect certain response times based on past experience
and become frustrated if they must wait longer than expected. So, an important goal for a scheduling policy
is to provide identical jobs nearly identical response times.

Though there has been a significant amount of prior literaturederiving V ar[T (x)] and higher mo-
ments ofT (x) under many common policies [222, 253, 119, 120]; little work has studied thebehavior
of V ar[T (x)] and higher moments ofT (x) acrossx, possibly due to the complicated nature of the derived
formulas. Understanding the behavior ofT (x) beyond the mean is key to many applications where users
know the size of the job they are submitting and would like to minimize the difference between theirexpe-
riencedresponse time,T (x), and theirexpectedresponse time,E[T (x)]; thus maximizing “predictability.”
Reducing “unpredictability” in response times can be more important to users than reducing the response
times themselves because waiting much longer than expected causes far more user frustration than simply
waiting longer on average [65, 255]. Note that higher moments ofT (x) provide a better measure of user-
perceived “predictability” than do higher moments ofT in the situation where the size of the job is known by
the user. Further, many QoS guarantees are of the form “90% of the time a job of sizex will have response
time< g(x),” for some functiong(·). Such guarantees can be phrased as bounding higher moments ofT (x)
by applying tail inequalities such as Chebyshev’s Inequality.
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7.4.1 Defining predictability
The notion of predictability that we define in this section is a special case of the framework for proportional
fairness in Definition7.3 that we have developed in this chapter; thus we have already provided motivation
for the metric and criteria in this definition in Section7.3. Specifically, we consider the case ofκ2[T (x)]/x =
V ar[T (x)]/x and introduce the following definition:

Definition 7.4 Let 0 < ρ < 1 andE[X2] < ∞ in an M/GI/1 system. A job sizex is treatedpredictably
under policyP , service distributionX, and loadρ if

V ar[T (x)]P

x
≤ λE[B2] =

λE[X2]
(1− ρ)3

Otherwise a job sizex is treatedunpredictably. A scheduling policyP is predictableif every job size is
treated predictably. OtherwiseP is unpredictable.

As with proportional fairness in expectation in Section7.1, we build on Definition7.4 to develop a
classification of predictability.

Definition 7.5 Let 0 < ρ < 1 andE[X2] < ∞ in an M/GI/1 queue whereX is non-deterministic.7 A
scheduling policyP is: (i) Always Predictableif P is predictable for all suchρ and X; (ii) Sometimes
Predictableif P is predictable under someρ andX and unpredictable under otherρ andX; or (iii) Always
Unpredictableif P is unpredictable under all loads and service distributions.

The above definitions were introduced by Wierman and Harchol-Balter in [240].

Remark 7.2 In addition to the fact that Definition7.4 is a special case of the generalized framework in
Definition 7.3, the definition of predictability is also motivated by the task of providing QoS guarantees.
Many QoS guarantees take the form “90% of the timeT (x)−E[T (x)] < g(x),” or equivalentlyP (T (x)−
E[T (x)] ≥ g(x)) ≤ 10%. Chebyshev’s Inequality [193] gives us a bound of the form

P (T (x)P − E[T (x)]P ≥ g(x))) ≤ V ar[T (x)]P

g(x)2
(7.24)

Thus, we can provide the desired QoS guarantee by ensuring thatV ar[T (x)]/g(x)2 is not too large.8 Look-
ing more closely at (7.24), to determine an appropriate metric for predictability, we need to ask “what is
the smallest value ofg(x) that allowsV ar[T (x)]/g(x)2 to be bounded by a constant (10% in the above
example) for allx?”

Suppose thatg(x) = kxi for somek independent ofx and some constanti. Then, we need to choose
the smallesti that allowsV ar[T (x)]/g(x)2 to be bounded by a constant. Notice that we can immediately
rule out i > 1 becauseT (x)P andE[T (x)]P grow linearly inx for all P ; thus it does not make sense to

7We exclude deterministic distributions because the concept of proportional fairness is only interesting when there exist jobs of
different sizes.

8Note that a more complex bound including other information about the distribution ofT (x) could be used to provide QoS
guarantees in practice. However, the simple calculation of (7.24) provides intuition for an appropriate metric with which to study
V ar[T (x)].
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boundT (x)P − E[T (x)]P by something growing super-linearly. We can also rule outi < 1/2 because for
suchi, V ar[T (x)]P /x2i → ∞ asx → ∞ under allP . This leavesi ∈ [1/2, 1], wherei = 1/2 is the most
desirable because it provides the tightest bound onT (x)− E[T (x)] asx grows.

Definition 7.4 uses the metricV ar[T (x)]P /x, which corresponds to choosingi = 1/2. This choice
makes sense becauseV ar[T (x)]P /x is O(1) under all work conserving policiesP . Thus, any policy that
is predictable will allow a QoS bound that is constant acrossx. Note that choosingi ∈ (1/2, 1] is also
reasonable; however the results are less interesting.9

In the remainder of this section we will classify individual policies, scheduling techniques, and schedul-
ing heuristics as one of Always Predictable (Section7.4.3.1), Always Unpredictable (Section7.4.3.2), or
Sometimes Predictable (Section7.4.3.3). This classification is illustrated in Figure7.3. Interestingly, the
classification of predictability has many parallels to the classification of proportional fairness (see Figure
7.1). For instance,PS andPLCFS are both Always Fair and Always Predictable. Similarly,SRPT is both
Sometimes Fair and Sometimes Predictable and exhibits the same interesting non-monotonic (hump shaped)
behavior under both measures. In fact, the almost all technique-based and heuristic-based classifications re-
ceive exhibit parallel behavior under the two measures, the only exception being non-preemptive non-size
based policies.

In classifying scheduling policies with respect to predictability, we find thatV ar[T (x)]P /x can exhibit
four different patterns of functional behavior (see Figure7.4). Some policies, e.g.PS, haveV ar[T (x)]P /x
that grows monotonically and is bounded by a constant acrossx; whereas other policies, e.g.FCFS, have
V ar[T (x)]P that decreases monotonically inx and is unbounded asx → 0. Further, it seems that prioriti-
zation, be it age based, size based or remaining size based, leads to non-monotonic behavior in normalized
conditional response times. In particular, underPSJF, FB, andSRPT mid-range job sizes have the largest
V ar[T (x)]P /x. Further,SJF has a similar hump behavior for mid-range jobs; however the smallest job
sizes still receive unboundedV ar[T (x)]P /x. Our work illustrates that the criterionλE[X2]/(1 − ρ)3 in
Definition 7.4 for predictability distinguishes between these functional behaviors. If a policy has mono-
tonically increasing, boundedV ar[T (x)]P /x under some service distributions and loads then the policy is
Always or Sometimes Predictable; otherwise the policy is Always Unpredictable because under all service
distributions and loads eitherV ar[T (x)]P /x is unbounded or some mid-range job sizes receive significantly
worseV ar[T (x)]/x than other job sizes.

The parallels between the classifications of fairness and predictability beg the question of whether simi-
lar classifications exist for higher conditional moments. We conjecture that using the generalized framework
in Definition7.3to study higher moments will lead to classifications that parallel the results presented here;
however the task of deriving such classifications seems difficult.

7.4.2 The predictability of individual policies
To get a feel for Definition7.4, it is important to begin by studying the behavior of common individual
policies with respect to predictability.

9For i ∈ (1/2, 1], V ar[T (x)]P /x2i → 0 asx → ∞ under allP . As a result, it can quickly be seen that policies fall into one
of two classes based the behavior ofV ar[T (x)]P asx → 0, i.e whetherlimx→0 V ar[T (x)]P /x2i < ∞. This makes intuitive
sense because the bound onT (x)P − E[T (x)]P is much looser asx grows and thus the performance of the small jobs dominates
the QoS bound.



214 CHAPTER 7: FAIRNESS

Figure 7.3: An illustration of the classification of common prioritization techniques and heuristics with
respect to predictability.

As a first step, it is easy to see that

E[T (x)]PLCFS =
λE[X2]
(1− ρ)3

Thus, PLCFS is Always Predictable. However, beyondPLCFS, the only other common policy that is
Always Predictable isPS, which we will analyze in Section7.4.2.1below. Most policies fall into the Some-
times Predictable or Always Predictable classifications. In fact, as is illustrated in Figure7.3, the behavior
of many policies with respect toV ar[T (x)]/x mimics the behavior ofE[T (x)]/x. We will illustrate this in
this section using the examples ofPS, PSJF, FB, andSRPT.

7.4.2.1 PS
To analyze the behavior ofV ar[T (x)]PS , we begin with the following useful representation ofV ar[T (x)]PS :

V ar[T (x)]PS =
2

(1− ρ)2

∫ x

0
(x− t)R(t)dt

whereR(t) = 1−R(t) andR(t) = (1− ρ)
∑∞

n=0 ρnF ∗n(t) with F ∗n(t) =
∫∞
0 F ∗(n−1)(t− s)dF ∗1(s),

F ∗1(t) = 1
E[X]

∫ t
0 (1− F (s))ds, andF ∗0(t) =

{
1, x ≥ 0
0, x < 0

.

The complexity of this formula has led to mainly asymptotic analysis of the conditional variance ofPS.
However, we can to exploit this asymptotic information in order to show thatPS is predictable for allx.
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Theorem 7.22
In an M/GI/1 queue with E[X2] < ∞ PS is Always Predictable. Further, V ar[T (x)]PS/x is strictly
monotonically increasing in x.

Proof. We will prove the result by showing thatddx

(
V ar[T (x)]PS/x

)
> 0 for all x. In combination with

the fact thatV ar[T (x)]PS/x → λE[B2], this will complete the proof.

d

dx

V ar[T (x)]PS

x
=

2
(1− ρ)2

d

dx

(∫ x

0
R(t)dt− 1

x

∫ x

0
tR(t)dt

)
=

2
(1− ρ)2

(
R(x)−R(x) +

1
x2

∫ x

0
tR(t)dt

)
> 0

�

It is interesting thatV ar[T (x)]PS/x is monotonically increasing inx under all service distributions
because this is different thanE[T (x)]PS/x = 1/(1 − ρ), which is constant acrossx. This illustrates why
V ar[T (x)]PS/x is not an appropriate criterion for a definition of predictability. It is important to point out
that the predictability ofPS has been studied in much more detail by Ward and Whitt [233]. While we
assume no knowledge of the system state in order to study how well response times will match with prior
user experience, Ward and Whitt study how wellT (x)PS can be predicted given knowledge of the system
state (e.g. the number of jobs in the system upon arrival,N ). They look at the question analytically as
N →∞ andx →∞ and prove that predictions can be made quite accurately when eitherx or N is large.

7.4.2.2 PSJF
We now move to another important individual policy, Preemptive-Shortest-Job-First (PSJF). PSJF is the
canonical example of a policy that prioritizes based on size, and it will serve as the building block for the
analysis of all size based policies.PSJF significantly improves on the mean response time ofPS, and has
is near optimal with respect to mean response time as we saw in Theorem4.2.

In this section, we will first prove that under distributions withE[X3] < ∞ PSJF exhibits non-
monotonic behavior inV ar[T (x)]PSJF /x, where mid-range job sizes are treated the most unpredictably.
Then, we will bound the position and size of this “hump.”

Theorem 7.23
In an M/GI/1 queue with E[X3] < ∞, PSJF is unpredictable. Further, there exists some L such that all
x ≥ L are treated unpredictably.

Note that the above result only discusses the case thatE[X3] < ∞. No published work has appeared
for PSJF in the case thatE[X3] = ∞, but Brown has an unpublished manuscript in which he proves that
PSJF can be predictable in this setting. Thus, we classifyPSJF as Sometimes Predictable.

Proof. We will start by proving the result for the case when the service distribution has some finite upper
boundL and then move to the case when the service distribution has no upper bound.
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Figure 7.4: The conditional variance is illustrated under a variety of both preemptive and non-preemptive
policies. The service distribution is exponential with mean 1. The dotted line shows the criteria for pre-
dictability.

In the case where the service distribution has some finite upper boundL the result is immediate.

V ar[T (L)]PSJF =
λLE[X2]
(1− ρ)3

+
λE[X3]

3(1− ρ)3
+

3
4

(
λE[X2]
(1− ρ)2

)2

>
λLE[X2]
(1− ρ)3

The case of unbounded service distributions is more complicated. Observe thatV ar[T (x)]PSJF /x is
increasing inx for smallx. Also, recall that from Theorem7.20thatV ar[T (x)]PSJF /x → λxE[X2]/(1−
ρ)3 asx → ∞. Hence, if we can show that the limit is approached from above, rather than below, we
will have exhibited non-monotonic behavior. We accomplish this by showing thatd

dx

(
V ar[T (x)]PSJF /x

)
approaches 0 from below asx →∞. By observing that

d

dx

V ar[T (x)]PSJF

x
=

x d
dxV ar[T (x)]PSJF − V ar[T (x)]PSJF

x2

our goal reduces to showing that asx →∞

x
d

dx
V ar[T (x)]PSJF − V ar[T (x)]PSJF < 0 (7.25)
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Computation yields that for any distribution with finite third moment:

x
d

dx
V ar[T (x)]PSJF =

λxm2(x)
(1− ρ(x))3

+ O(x4f(x))

So,

x
d

dx
V ar[T (x)]PSJF − V ar[T (x)]PSJF =

λxm2(x)
(1− ρ(x))3

+ O(x4f(x))− V ar[T (x)]PSJF

< 0 asx →∞

Thus,PSJF is unpredictable for all loads and all unbounded service distributions.
�

Although there are always some sizes that are treated unpredictably underPSJF, most sizes receive
predictable response times.

Theorem 7.24
In an M/GI/1 queue, let K1 be a constant such that m3(x) ≤ K1xm2(x). Then

V ar[T (x)]PSJF ≤ V ar[B(x)]h1(ρ, x)PSJF

where

h1(ρ, x)PSJF =
(1− ρ)3

(1− ρ(x))4

{(
1 +

K1

3

)
+
(

5K1

12
− 1
)

ρ(x)
}

Further, noting that K1 ≤ 1 for all service distributions, we have that h1(ρ, x) ≤ (1−ρ)3

(1−ρ(x))4

{
4
3 −

7
12ρ(x)

}
.

Proof. The proof follows from direct calculation.

V ar[T (x)]PSJF ≤ λxm2(x)
(1− ρ(x))3

+
λm3(x)

3(1− ρ(x))3
+

3λ2m3(x)m1(x)
4(1− ρ(x))4

≤ V ar[B(x)]
(1− ρ)3

(1− ρ(x))4
m2(x)
E[X2]

{(
1 +

K1

3

)
(1− ρ(x)) +

3K1ρ(x)
4

}
≤ V ar[B(x)]

(1− ρ)3

(1− ρ(x))4

{(
1 +

K1

3

)
+
(

5K1

12
− 1
)

ρ(x)
}

�

Notice that this bound guarantees that a large percentage of job sizes will be treated predictably. In

particular, all job sizes such thatρ(x) ≤ 1 −
(

4
3(1− ρ)3

)1/4
. For example, if the load is 0.8, all job sizes

x such thatρ(x) ≤ 0.678 will be treated predictably. If the job size distribution is highly variable, this is
nearly all jobs (since a small percentage of the largest jobs make up half the load).

Example
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ConsiderX ∼ Exp(1). Thus,f(x) = e−x. Then,ρ(x) = ρ (1− e−x − xe−x). So,ρ(x) ≤

1−
(

4
3(1− ρ)3

)1/4
whene−x +xe−x ≥ 1− 1−( 4

3
(1−ρ)3)1/4

ρ . This says that whenρ = 0.8, PSJF will
be predictable for at least jobs of sizex ≤ 3.3. Thus,PSJF will be predictable for at least 96.3% of
the jobs.
�

Further, an even larger percentage of job sizes can be shown to be treated predictably ifK1 is bounded
below 1 using Theorem3.8. For instance, iff(x) is decreasing,K1 can be set to 3/4.

Theorem7.24shows that small (and in fact most) job sizes receive predictable service, but the question
still remains as to how unpredictably the large jobs can be treated. The dependence of Theorem7.24on the
boundm3(x) ≤ K1xm2(x) leads to an overestimate ofV ar[T (x)]PSJF for large job sizes. Thus, we must
take a different approach in order to obtain a tighter bound for the large jobs.

DefineM2[X] = E[X2]
E[X2]

andM3[X] = E[X3]
E[X]E[X2]

.

Theorem 7.25
In an M/GI/1 queue with E[X3] < ∞, for jobs of size x > K2E[X]

V ar[T (x)]PSJF ≤ V ar[B(x)]h2(ρ)

where

h2(ρ) =
(

1 +
M3[X]
3K2

)
+

3ρM2[X]
4K2(1− ρ)

Proof. We again proceed with direct calculation onV ar[T (x)]

V ar[T (x)]PSJF ≤ λxE[X2]
(1− ρ)3

+
λE[X3]

3(1− ρ)3
+

3λ2E[X2]2

4(1− ρ)4

≤ V ar[B(x)]
1− ρ

{(
1 +

M3[X]
3K2

)
(1− ρ) +

3ρM2[X]
4K2

}

�

The combination of the Theorems7.24and7.25provides a technique for determining both (i) which job
sizes are treated unpredictably and (ii) how unpredictably they can be treated. We illustrate this process in
the next example.

Example
Returning to the case ofX ∼ Exp(1) we can use our prior calculation to setK2 = 3.3 in the
case whereρ = 0.8 in our PSJF system. Now, noting thatM3[X] = 3 and M2[X] = 2 in the
case of the exponential, we haveV ar[T (x)]PSJF ≤ 3.1V ar[B(x)]. Thus, althoughPSJF is Always
Unpredictable, even in the case of an exponential service distribution withρ = 0.8, PSJF is only
unpredictable for at most4% of jobs and this small fraction of jobs only receives a factor of 3.1 higher
variance. This agrees with the behavior shown in Figure7.4.
�
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7.4.2.3 FB
We next turn to another important priority-based policy:FB. In this section, we will first prove thatFB ex-
hibits non-monotonic behavior inV ar[T (x)]FB/x, where large, but not the largest, job sizes are treated
the most unpredictably. We will then bound the position and size of this “hump” through bounds on
V ar[T (x)]FB.

Lemma 7.26
For all x, V ar[T (x)]PSJF ≤ V ar[T (x)]FB

This Lemma is a special case of Theorem3.19. Combining Lemma7.26with Theorem7.23, we have:

Corollary 7.27
In an M/GI/1 with E[X3] < ∞, FB is unpredictable. Further, there exists some L such that all x > L are
treated unpredictably.

Note that the above result only discusses the case whenE[X3] < ∞. As with PSJF, no published work
has appeared forFB in the case thatE[X3] = ∞, but Brown has an unpublished manuscript in which he
proves thatFB can be predictable in this setting. Thus, we classifyFB as Sometimes Predictable.

Now, let us return to the case ofE[X3] < ∞. Although there are always some job sizes that are treated
unpredictably underFB whenE[X3] < ∞, most job sizes receive predictable response times.

Theorem 7.28
In an M/GI/1 queue, let K1 be a constant such that m3(x) ≤ K1xm2(x). Then

V ar[T (x)]FB ≤ V ar[B(x)]h1(ρ, x)FB

where

h1(ρ, x)FB =
(1− ρ)3

(1− ρ̃(x))4

{(
1 +

K1

3

)
+
(

2K1

3
− 1
)

ρ̃(x)
}

Further, noting that K1 ≤ 1 for all service distributions we have that h1(ρ, x)FB ≤ (1−ρ)3

(1−ρ̃(x))4

{
4
3 −

1
3 ρ̃(x)

}
.

The proof follows using Lemmas7.29and7.30which are stated below.

Lemma 7.29
λ2m̃2(x)2 ≤ 4

3λm̃3(x)ρ̃(x)

Proof.

λ2m̃2(x)2 ≤ 4λ2

(∫ x

0
(tF (t)1/2)2dt

)(∫ x

0
(F (t)1/2)2dt

)
=

4
3
λm̃3(x)ρ̃(x)

�
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Lemma 7.30
Let K1 be such that m3(x) ≤ K1xm2(x). Then m̃3(x) ≤ K1xE[X2].

Proof.

m̃3(x) = m3(x) + x3F (x)

≤ K1xm2(x)
(

1 +
x2
∫∞
x f(t)dt

m2(x)

)
≤ K1xm2(x)

(
1 +

∫∞
x t2f(t)dt

m2(x)

)
= K1xm2(x)

(
1 +

E[X2]−m2(x)
m2(x)

)
= K1xE[X2]

�

The bound in Theorem7.28guarantees that a large percentage of job sizes will be treated predictably.

In particular, all job sizes such that̃ρ(x) ≤ 1 −
(

4
3(1− ρ)3

)1/4
. Thus, if ρ = 0.8, all jobs such that

ρ̃(x) ≤ 0.678 will be treated predictably. However, the question still remains as to how unpredictably the
large jobs can be treated.

Theorem 7.31
In an M/GI/1 queue with E[X3] < ∞, for jobs of size x > K2E[X],

V ar[T (x)]FB ≤ E[B(x)]h2(ρ)

where

h2(ρ) =
(

1 +
M3[X]
3K2

)
+

3ρM2[X]
4K2(1− ρ)

Note that this is the same bound on the hump size as underPSJF. The difference will come in the
application because the bound on the position of the hump is in terms ofρ̃(x) underFB instead ofρ(x) as
underPSJF, soK2 will be smaller. We illustrate this using our running example.

Example
Again considerX ∼ Exp(1). Then,ρ̃(x) = ρ (1− e−x). So,ρ̃(x) ≤ 1 −

(
4
3(1− ρ)3

)1/4
when

e−x ≥ 1 − 1−( 4
3
(1−ρ)3)1/4

ρ . This says that whenρ = 0.8, FB will be predictable for at least jobs of
sizex ≤ 1.8. Thus,FB will be predictable for at least 83.4% of the jobs. We can use this result to set
K2 = 1.8 in the case whereρ = 0.8, which givesV ar[T (x)]PSJF ≤ 4.9V ar[B(x)]. Thus, although
FB is Always Unpredictable, whenρ = 0.8, FB is only unpredictable for at most17% of jobs and
this fraction of jobs only receives at most a factor of 5 higher variance. Note that although this is not
nearly as good as what we saw underPSJF, FB is operating without knowledge of job sizes. This
agrees with the behavior shown in Figure7.4.
�
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7.4.2.4 SRPT
SRPT is perhaps the most important priority-based policy due to the fact that it has been shown to be optimal
with respect to mean response time. We will start the section by showing thatSRPT provides predictable
response times for all job sizes at low load, regardless of the service distribution. Then, we will show that,
even whenSRPT might not provide predictable response times for all job sizes, only a tiny percentage of
the jobs receive unpredictable response times, and this unpredictability is not too bad.

We will first prove one technical lemma.

Lemma 7.32
In an M/GI/1 queue,

V ar[R(x)]SRPT =
∫ x

0

λm2(t)
(1− ρ(t))3

dt ≤ λxE[X2]
(1− ρ(x))3

− λm̃3(x)
(1− ρ(x))3

Proof. ∫ x

0

λm2(t)
(1− ρ(t))3

dt ≤
∫ x
0 λm2(t)dt

(1− ρ(x))3
=

λxm2(x)− λm3(x)
(1− ρ(x))3

≤ λxE[X2]
(1− ρ(x))3

− λx3F (x)
(1− ρ(x))3

− λm3(x)
(1− ρ(x))3

=
λxE[X2]

(1− ρ(x))3
− λm̃3(x)

(1− ρ(x))3

�

We can now prove thatSRPT behaves predictably under low load.

Theorem 7.33
In an M/GI/1 queue, let K1 be a constant such that m3(x) ≤ K1xm2(x). Under all service distributions
SRPT is predictable when ρ ≤ 0.4. Further, all x such that ρ(x) ≤ 0.4 are treated predictably under all
service distributions, and for x such that ρ(x) > 0.4,

V ar[T (x)]SRPT ≤ V ar[B(x)]h1(ρ, x)SRPT

where

h1(ρ, x)SRPT =
(1− ρ)3

(1− ρ(x))4

{(
1− 2

3
K1

)
+
(

5
3
K1 − 1

)
ρ(x)

}
Noting that for all distributions m3(x) ≤ xm2(x), we can set K1 = 1 and obtain h1(ρ, x) ≤ (1−ρ)3

(1−ρ(x))4

{
1
3 + 2

3ρ(x)
}

.

Note that the above result only discuss the case thatE[X3] < ∞. As with PSJF andFB, no published
work has appeared forSRPT in the case thatE[X3] = ∞, but Brown has an unpublished manuscript in
which he proves thatSRPT can be predictable in this setting.
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Proof. First, we upper boundV ar[T (x)]SRPT using Lemmas7.29and7.32

V ar[T (x)]SRPT ≤ λxE[X2]
(1− ρ(x))3

− λm̃3(x)
(1− ρ(x))3

+
λm̃3(x)

3(1− ρ(x))3

+
3
4

4
3λm̃3(x)ρ̃(x)
(1− ρ(x))4

− λ2xm̃3(x)F (x)
(1− ρ(x))4

=
λxE[X2]

(1− ρ(x))3
− 2

3
λm̃3(x)

(1− ρ(x))3
+

λm̃3(x)ρ(x)
(1− ρ(x))4

=
λxE[X2]

(1− ρ(x))3

(
1 +

m̃3(x)(5ρ(x)− 2)
3xE[X2](1− ρ(x))

)
From this, we see thatV ar[T (x)]SRPT ≤ V ar[B(x)] for all x such that5ρ(x) − 2 < 0, i.e. ρ(x) ≤ 0.4.
Then, we apply Lemma7.30in the case whenρ(x) > 0.4 to finish the proof.

V ar[T (x)]SRPT ≤ λxE[X2]
(1− ρ(x))3

(
1 +

K1xE[X2](5ρ(x)− 2)
3xE[X2](1− ρ(x))

)
=

λxE[X2]
(1− ρ(x))4

((
1− 2

3
K1

)
+
(

5
3
K1 − 1

)
ρ(x)

)

�

Using this theorem, we can see that most job sizes will be treated predictably underSRPT even under
high load. Forx such thatρ(x) > 0.4, V ar[T (x)]SRPT ≤ V ar[B(x)] wheneverρ(x) ≤ 1 − (1 − ρ)3/4.
Notice that this gives a much better range than theρ(x) < 0.4 whenρ is high. Whenρ = 0.8, SRPT is
predictable for all job sizesx that haveρ(x) ≤ 0.7 regardless of the service distribution.

We now show that, thoughSRPT can provide predictable response times for all job sizes under low
loads,SRPT will be unpredictable for some job size under high enough load. This result follows immedi-
ately from Theorems7.37(which holds for the entireSMART class) and7.33.

Theorem 7.34
In an M/GI/1 queue with E[X3] < ∞, SRPT is Sometimes Predictable. For every service distribution,
there exists some ρcrit and L such that, for all ρ > ρcrit, SRPT is unpredictable for all jobs of size x ≥ L.

The prior theorems give bounds on the position and existence of the hump inV ar[T (x)]SRPT /x; to
bound the height of the hump it turns out to be effective to use the same bound that we have used forPSJF
andFB.

Lemma 7.35
In an M/GI/1 queue, for all x V ar[T (x)]SRPT ≤ V ar[T (x)]FB

This lemma is a special case of Theorem3.19.
Lemma7.35allows us to use the bound already derived forFB in Theorem7.31. As in the cases of

PSJF andFB, the combination of the above theorems provides tight bounds on the position and size of the
hump inV ar[T (x)]SRPT /x.
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Example
Again considerX ∼ Exp(1). ρ(x) ≤ 1 − (1 − ρ)3/4 whene−x + xe−x ≥ 1 − 1−(1−ρ)3/4

ρ . This
says that whenρ = 0.8, SRPT will be predictable for at least jobs of sizex ≤ 3.6, which is at least
97.2% of the jobs. We can use this result to setK2 = 3.6 in the case whereρ = 0.8 which gives
V ar[T (x)]SRPT ≤ 2.9V ar[B(x)]. Thus, althoughSRPT can be unpredictable, in the case of an
exponential service distribution withρ = 0.8, SRPT is only unpredictable for at most3% of jobs and
this fraction of jobs only receives at most a factor of 3 higher variance. Note both of these bounds are
better than were obtained for eitherPSJF or FB.
�

7.4.3 The predictability of scheduling classifications
The power of Definitions7.4and7.5is that they are simple enough to be tractable for the analysis of schedul-
ing classifications in addition to the analysis of individual policies. For the remainder of this section, we will
focus on understanding the impact of common scheduling heuristics and techniques on the predictability of
the resulting policies. We will start by discussing the Always Predictable classifications, and then we will
move to the Always Unpredictable and Sometimes Predictable classifications. We provide an overview of
all the known results in Figure7.3. However, to avoid repetition, we will not provide the proofs for all the
classifications listed in Figure7.3since many of the proofs are very similar to one another and to the proofs
for the case of mean proportional fairness. Instead, we will limit our focus to a few of the most interesting
classifications.

7.4.3.1 Always Predictable
We begin by studying the class of Always Predictable policies, policies where every job size is treated pre-
dictably under all service distributions and system loads. One might expect that, sincePS andPLCFS are
both Always Predictable, it might be possible to also show that allSYMMETRIC policies are Always Pre-
dictable. Unfortunately, little has been proven about the variance of response times of otherSYMMETRIC
policies. A rare exception is the work of Avi-Itzhak and Halfin [9], whereV ar[T (x)] underPLCFS, PS,
and one other less commonSYMMETRIC policy are compared. However, intuitively,V ar[T (x)]P for all
SYMMETRIC policies should fall betweenV ar[T (x)]PS andV ar[T (x)]PLCFS , thus we conjecture that
in fact allP ∈ SYMMETRIC are Always Predictable.

Similarly, sincePS is Always Predictable, one might conjecture that allPROTECTIVE policies are
Always Predictable. Again though, the analysis ofPROTECTIVE policies is difficult and no analytic
results have been obtained about the variance of response times of policies in this class. There have been
some simulation results studyingV ar[T (x)]FSP [86], but it is intuitively unclear whetherPROTECTIVE
policies will turn out to be Always Predictable because it seems possible that the variance of response times
may be larger than that ofPS sinceE[T (x)] is guaranteed to be smaller.

7.4.3.2 Always Unpredictable
We now move to a discussion of Always Unpredictable policies, i.e. policies guaranteed under all system
loads and all service distributions to treat some job size unpredictably. The only scheduling classification
that turns out to be Always Unpredictable is theFOOLISH classification (see Figure7.4).



224 CHAPTER 7: FAIRNESS

FOOLISH Scheduling
We start with the class ofFOOLISH policies, i.e. policies that bias towards large job sizes. As one would
expect,FOOLISH policies will always be unpredictable for small job sizes, since the large job sizes are
allowed to preempt small ones upon arrival.

Theorem 7.36
In an M/GI/1 queue, all FOOLISH policies are Always Unfair.

Proof. Let xL be the lower bound of the service distribution. Then, asx → xL, T (x)PLJF d→ B(xL+W )
since the service distribution is continuous. Further,T (x)LRPT d= B(x + W ). Thus, under allP ∈
FOOLISH, asx → xL, T (x)P d→ B(xL + W ). Thus, allP ∈ FOOLISH are Always Unpredictable since
for all i, κi[B(xL + W )] ≥ κi[B(xL)] for ρ > 0.
�

7.4.3.3 Sometimes Predictable
We will now show that many classes of policies are neither Always Predictable or Always Unpredictable.
Instead, many classes have include policies that fall into the Sometimes Predictable class. That is many
policies can be predictable for all job sizes under some loads and service distributions and unpredictable
for some job size under other loads and service distributions. The policies that are Sometimes Predictable
have more complicated behavior with respect toV ar[T (x)] than we observed in the cases of the Always
Predictable and Always Unpredictable classes. These more complicated behaviors are illustrated in Figure
7.4.

SMART scheduling
The predictability ofSMART policies is of particular interest due to the intrinsic bias against large job sizes
under these policies. We have already seen one example of aSMART policy that is Always Unpredictable.
However, it is possible forSMART policies to be predictable. In fact, manySMART policies (e.g.SRPT )
can be predictable under low loads regardless of the service distribution. Further, if the service distribution
is highly variable,SMART policies can be predictable at even high loads. However, under everySMART
policy, under every service distribution, there exists some load that is high enough to cause the policy to be
unpredictable.

Theorem 7.37
In an M/GI/1 queue with E[X3] < ∞ there exist ρc < 1 such that all SMART policies are unpredictable
ρ > ρc.

By combining Theorem7.37with the soon to be published work of Brown (which extends [47]) that
shows thatSMART policies are predictable in under some distributions havingE[X3] < ∞, it follows that
all SMART policies are Sometimes Predictable

In proving Theorem7.37, we need to prove a tighter bound onV ar[T (x)] than Theorem4.4 gives
directly. Thus, we first prove tighter bounds on the behavior ofV ar[R(x)]P for P ∈ SMART in the
following corollary.
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Corollary 7.38
In an M/GI/1 queue, for P ∈ SMART,∫ x

0

λm2(t)
(1− ρ(t))3

dt +
λm3(x)

3(1− ρ(x))3
+
(

λm2(x)
(1− ρ(x))2

)2

−
(

λm̃2(x)
2(1− ρ(x))2

)2

(7.26)

≤ V ar[T (x)]P ≤

λxm2(x)
(1− ρ(x))3

+
λm̃3(x)

3(1− ρ(x))3
+

λm2(x)m̃2(x)
(1− ρ(x))4

−
(

λm2(x)
2(1− ρ(x))2

)2

(7.27)

Proof. Let P ∈ SMART. To boundV ar[W (x)]P , we use the bounds onE[W (x)2] andE[W (x)]2

provided by Theorem4.4. However, to boundV ar[T (x)]P we need a better bound onV ar[R(x)]P than is
provided by the bounds onE[R(x)2] andE[R(x)]2. We will obtain better bounds by deriving the cumulant
generating function ofR(x)P .

View R(x)P as a special type of busy periodB∗(x) started by the tagged jobjx. We begin by partitioning
the job size intok small intervals of length∆ = x/k. The partition defines a set ofk + 1 points0 = x0 <
x1 < . . . < xk = x. We will be takingk →∞ to obtainκB∗(x)(s), as in [202].

While the remaining size ofjx is in [xi, xi+1) we will sayjx is in classi. DuringB∗(x), jx must remain
in classi for a timeTi during which∆ work is performed onjx and all arriving work with higher priority is
served.

To see which arrivals will have higher priority, recall that the Consistency Property guarantees that once
a tagged jobjx of sizex begins service, only newer arrivals can preemptjx. Further, once a new arrival
jy of sizey preemptsjx, the Transitivity Property guarantees that all new arrivals of size< y will have
priority overjx until jx next receives service (which can only happen when all new arrivals of size< y have
completed). Thus, the length of the interruptionjy begins is the same as the length of busy period including
all arrivals of size< y, i.e. By. Note that if the remaining size ofjx is r whenjy arrives, then it must be
thatr ≤ y ≤ x.

Under anySMART policy (for large enoughk), there is some cutoff sizeyi for classi jobs withxi ≤
yi ≤ x such that all arriving jobs of size< yi have priority overjx while jx is in classi. Thus,Ti

d= Byi(∆)
which gives

κTi(s) = −∆(s + λF (yi)− λF (yi)κByi
(s))

Note thatyi may depend on the current system state, past history, or even an external random choice.
However, though theyis may be dependent, the length of the corresponding busy periods are conditionally
independent given the choice of theyis. Thus we have

κBk∗(x)(x|y1, . . . , yk) = −
k∑

i=0

∆(s + λF (yi)− λF (yi)κByi
(s))

Taking derivatives to obtain the variance, we have

V ar[Bk∗(x|y1, . . . , yk)] =
k∑

i=0

∆λF (yi)E[B2
yi

]
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Recalling thatxi ≤ yi ≤ x gives

k∑
i=0

∆λF (xi)E[B2
xi

] ≤ V ar[Bk∗(x)] ≤
k∑

i=0

∆λF (x)E[B2
x]

Finally, lettingk →∞ gives∫ x

0
λF (t)E[B2

t ]dt ≤ V ar[B∗(x)] ≤ λxF (x)E[B2
x]

which simplifies to ∫ x

0

λm2(t)
(1− ρ(t))3

dt ≤ V ar[B∗(x)] ≤ λxm2(x)
(1− ρ(x))3

�

Before starting the proof of Theorem7.37we need two other technical lemmas.

Lemma 7.39
Define δx = λm2(x)/x and let ε > 0.

λx(1 + ε)m2(x)
(1− ρ(x))3

−
∫ x

0

λm2(t)
(1− ρ(t))3

dt ≤ λ2m2(x)2

(1− ρ(x))3
h(x) +

λm3(x)
(1− ρ(x) + δx)3

where

h(x) =
{

ε/δx +
3

(1− ρ(x) + δx)
+

3δx

(1− ρ(x) + δx)2
+

δ2
x

(1− ρ(x) + δx)3

}
Proof. We will use the bound in Lemma7.15in the first step, and then calculate directly.

λx(1 + ε)m2(x)
(1− ρ(x))3

−
∫ x

0

λm2(t)
(1− ρ(t))3

dt

≤ λx(1 + ε)m2(x)
(1− ρ(x))3

− λxm2(x)− λm3(x)
(1− ρ(x) + δx)3

=
λxm2(x)

(1− ρ(x))3

{
(1 + ε)− (1− ρ(x))3

(1− ρ(x) + δx)3

}
+

λm3(x)
(1− ρ(x) + δx)3

=
λxm2(x)

(1− ρ(x))3

{
ε +

3(1− ρ(x))2δx + 3(1− ρ(x))δ2
x + δ3

x

(1− ρ(x) + δx)3

}
+

λm3(x)
(1− ρ(x) + δx)3

≤ λxm2(x)
(1− ρ(x))3

{
ε +

3δx

(1− ρ(x) + δx)
+

3δ2
x

(1− ρ(x) + δx)2
+

δ3
x

(1− ρ(x) + δx)3

}
+

λm3(x)
(1− ρ(x) + δx)3

�
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Lemma 7.40
Let E[X3] < ∞ and define εx = E[X2]

m2(x)

(
1−ρ(x)

1−ρ

)3
. Then, εx = o(1/x). That is xεx → 0 as x →∞.

Proof.
It is sufficient to prove that(1− ρ(x))3 E[X2]

m2(x) − (1− ρ)3 = o(1/x). First, note that

E[X2]
m2(x)

= 1 +

∫∞
x t2f(t)dt∫ x
0 t2f(t)dt

= 1 + o(1/x)

Thus, we have

(1− ρ(x))3
E[X2]
m2(x)

− (1− ρ)3 =
3∑

i=0

(
3
i

)
(−1)i

(
(1 + o(1/x))ρ(x)i − ρi

)
Now, looking term by term, clearly thei = 0 term iso(1/x). For i ≥ 1,(

3
i

)
(−1)i

(
(1 + o(1/x))ρ(x)i − ρi

)
≤ 3(ρi − ρ(x)i(1 + o(1/x)))

= 3(ρi − ρ(x)i) + o(1/x)
≤ 3i(ρ− ρ(x)) + o(1/x) = o(1/x)

where the last inequality follows from the fact that for0 ≤ a < b ≤ 1 and positive integeri:

bi − ai = (b− a)(bi−1 + abi−2 + . . . + ai−2b + ai−1) ≤ i(b− a)

�

We are now ready to prove Theorem7.37.

Proof of Theorem 7.37. The proof will mimic the proof of Theorem7.14, with added complexity due to
the form of (7.26). Let P ∈ SMART andδx = λm2(x)/x.

Defineεx as

εx =
E[X2]
m2(x)

(
1− ρ(x)

1− ρ

)3

− 1

In Lemma7.40we show thatεx = o(1/x).
Now, we can calculate

λxE[X2]
(1− ρ)3

− V ar[T (x)]P =
λm2(x)x(1 + εx)

(1− ρ(x))3
− V ar[T (x)]P

≤ λm2(x)x(1 + εx)
(1− ρ(x))3

−
(∫ x

0

dt

1− ρ(t)

)2

− λm3(x)
3(1− ρ(x))3

− 1
2

(
λm2(x)

(1− ρ(x))2

)2

(7.28)
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where we use the fact thatE[X3] < ∞ impliesF (x) = o(x3) to bound
(

λm̃2(x)
2(1−ρ(x))2

)2
< 1

2

(
λm2(x)

(1−ρ(x))2

)2

for large enoughx in the final step.
Looking at the pieces in (7.28) using Lemmas7.15, 7.16, 7.39, and the calculations in the proof of

Theorem7.14, we have

λm2(x)x(1 + εx)
(1− ρ(x))3

−
∫ x

0

λm2(t)
(1− ρ(t))3

dt ≤ λm3(x)
(1− ρ(x) + δx)3

+
λ2m2(x)2

(1− ρ(x))3
h(x)

whereh(x) =
{

εx/δx + 3
(1−ρ(x)+δx) + 3δx

(1−ρ(x)+δx)2
+ δ2

x
(1−ρ(x)+δx)3

}
Plugging this bound into (7.28) we obtain

λxE[X2]
(1− ρ)3

− V ar[T (x)]SMART ≤
(

λm3(x)
(1− ρ(x) + δx)3

− λm3(x)
3(1− ρ(x))3

)
+
(

λ2m2(x)2

(1− ρ(x))3
h(x)− 1

2
λ2m2(x)2

(1− ρ(x))4

)
(7.29)

We now show that forx andρ large enough, each term in (7.29) can be made negative. We will start
with the first term and then move to the second term.

Working with the first term, we have

λm3(x)
(1− ρ(x) + δx)3

− λm3(x)
3(1− ρ(x))3

= λm3(x)
(

1
(1− ρ(x) + δx)3

− 1
3(1− ρ(x))3

)
which is negative when3(1 − ρ(x))3 < (1 − ρ(x) + δx)3. Noting that 3

√
3 < 2, we can simplify this

condition to

2(1− ρ(x))− (1− ρ(x) + δx) < 0
(1− ρ) + (ρ− ρ(x))− δx < 0 (7.30)

As in (7.7), this inequality holds for large enoughx andρ.
We now move to the second term in (7.29). Simplifying, we have

λ2m2(x)2

(1− ρ(x))3

(
εx/δx +

3
(1− ρ(x) + δx)

+
3δx

(1− ρ(x) + δx)2
+

δ2
x

(1− ρ(x) + δx)3
− 1

2(1− ρ(x))

)
(7.31)

We will compare each of the positive terms to 1
8(1−ρ(x)) in order to show that (7.31) is negative.

First, note thatεx/δx = o(1), thereforeεx/δx − 1
8(1−ρ(x)) < 0 for large enoughx.

For the remainder of the positive terms in (7.31), we argue as follows. Letc > 0 andi ≥ 0 be constants.
The following are equivalent

cδi
x

(1− ρ(x) + δx)i+1
<

1
8(1− ρ(x))

8cδi
x(1− ρ(x)) < (1− ρ(x) + δx)i+1
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Noting that(1− ρ(x) + δx)i+1 > δi+i
x , it is sufficient to show that

8c(1− ρ(x)) < δx (7.32)

which holds for large enoughρ andx by a parallel argument to what was used for (7.7) and (7.30). This
completes the proof for the case of an unbounded service distribution.

In the case of a service distribution with upper boundxU , it is sufficient to look at the performance of
the largest job size. Thus, by noting thatεxU = 1, x2

UF (xU ) = 0, and pluggingx = xU into (7.30) and
(7.32), we obtain the result.
�

Non-preemptive policies
We now move to a discussion of the predictability under non-preemptive policies.

Non-preemptive policies have very different behavior than preemptive policies. We have seen in Section
7.2that large job sizes see nearly deterministic response times under non-preemptive policies, because once
they begin service they cannot be interrupted. However, one result of this bias towards large job sizes is that
small job sizes can receive extremely variable service because they may have to wait behind the excess of a
much larger job.

In fact, whenever the service distribution includes arbitrarily small jobs, these small jobs will receive
unpredictable response times under non-preemptive policies.

Theorem 7.41
In an M/GI/1 queue with E[X3] < ∞,10 all non-preemptive policies are either Sometimes Predictable or
Always Unpredictable. All non-preemptive policies are unpredictable for all loads if the service distribution
includes arbitrarily small job sizes.

Proof. Let P be a work conserving non-preemptive policy. The response time of a jobjx of sizex
underP is the sum of the work in the system that will serve ahead ofjx, Wjx , and all arrivals whilejx is
in the system that serve ahead ofjx. This second piece can be viewed as a busy period,Bjx(Wjx). We
can boundWjx from below by the excess of the job at the server upon the arrival ofjx, E . Further, we
can boundV ar[Bjx(Wjx)] ≥ V ar[Wjx ] ≥ V ar[E ]. Finally, we can complete the proof by observing that

limx→0
V ar[T (x)]P

x ≥ limx→0
V ar[E]

x = ∞.
�

However, in many real world cases there is some lower bound that can be placed on the size of a service
request. In this case, non-preemptive policiescanprovide predictable service. We illustrate this using the

10Note that non-preemptive policies require thatE[X3] <∞ in order forV ar[T (x)] <∞.
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examples ofFCFS and non-preemptive Shortest-Job-First (SJF). Note that [222]

V ar[T (x)]FCFS =
λE[X3]
3(1− ρ)

+
λ2E[X2]2

4(1− ρ)2

V ar[T (x)]SJF =
λE[X3]

3(1− ρ(x))3
+

λ2m2(x)E[X2]
(1− ρ(x))4

− λ2E[X2]2

4(1− ρ(x))4

Theorem 7.42
In an M/GI/1 queue with E[X3] < ∞, FCFS is Sometimes Predictable. (i) For all service distributions
with no non-zero lower bound, FCFS is unpredictable. (ii) For all service distributions with lower bound
L 6= 0, there exists a ρcrit such that for all ρ ∈ (ρcrit, 1) FCFS is predictable.

Theorem 7.43
In an M/GI/1 queue with E[X3] < ∞, SJF is Sometimes Predictable. (i) For all service distribution with
no non-zero lower bound, SJF is unpredictable. (ii) For service distributions with lower bound L 6= 0, SJF
is predictable when M3[X]

3 + 3ρM2[X]
4(1−ρ) ≤ L

E[X] .

The proofs of these theorems are straightforward manipulations ofV ar[T (x)], and are thus omitted.
These two examples illustrate the strange effects of size based prioritization. WhileFCFS and all blind

based non-preemptive policies haveV ar[T (x)]/x that is strictly decreasing inx, size based non-preemptive
policies, such asSJF, exhibit non-monotonic behavior similar to that seen under preemptive policies such
asSRPT, FB, andPSJF. This contrast is illustrated in Figure7.4.

7.5 Temporal Fairness
To this point, we have considered onlyproportional fairnessmeasures, which are motivated by the idea
that it is fair for jobs to receive response times proportional to their service times. Thus, under proportional
fairness measures, it is unfair to force a small job to queue behind a large job because the response time of
the small job will become unfairly large. However, proportional fairness is not the most appropriate form
of fairness for every application. For instance, if a large job has been waiting in the queue for a long time,
it is in some sense “unfair” for a small job that just arrived to the queue to jump in front of the large job.
In this section, we consider an alternative to the concept of proportional fairness calledtemporal fairness.
Temporal fairness refers to the idea that it is “fair” to serve jobs in the order in which they arrive, i.e. the
order ofseniority.

Like proportional fairness, temporal fairness arises naturally in many computer applications due to the
inherent tradeoff between providing jobs of different sizes “fair” performance and providing a small overall
mean response time, which requires allowing small job sizes to violate the seniority of large job sizes. This
tradeoff between minimizing mean response time and maintaining temporal fairness is often an important
design constraint. For example, in applications such as scheduling flows in routers, there is a tension between
providing flows small overall mean response times and ensuring that streaming flows (which tend to be large)
do not experience jitter as a result of being interrupted by smaller flows [179, 180]. Similarly, in designing
web servers there is a tension between prioritizing small files such as .html files over larger files such as



7.5: TEMPORAL FAIRNESS 231

image files in order to improve overall mean response time because if large files are always interrupted by
small files web sites (which depend on both large and small files) will load more slowly [96, 182].

The tradeoff between efficiency (e.g. mean response time) and temporal fairness is perhaps best illus-
trated by the fact that the onlystrictly temporally fair policy isFCFS, which serves jobs in the order they
arrive; however,FCFS can have extremely large mean response times under highly variable service distri-
butions. Thus, in designing a policy for an application like web servers and routers where both temporal
fairness and mean response times are important, one must strike a balance between allowing small jobs to
preempt large jobs and respecting the seniority of large jobs.

In the remainder of this section, we introduce a measure of temporal fairness calledpoliteness, which
helps to characterize this tradeoff (Section7.5.1). Then, in Section7.5.2, we analyze the politeness indi-
vidual scheduling policies. Finally, in Section7.5.3we study the politeness of scheduling techniques and
heuristics.

7.5.1 Defining politeness
Informally, the idea behind the notion of politeness is that a job is treated “politely” if the fraction of time
that the seniority of the job is violated is small. More formally, we have the following definition.

Definition 7.6 We denote thepoliteness experienced by a job of sizex under policyP asPol(x)P where
Pol(x)P is the fraction of the response time (of a job of sizex) during which the seniority of the job is
respected. Theimpoliteness experienced by a job of sizex under policyP is 1− Pol(x)P .

Clearly, the politeness ofFCFS is Pol(x)FCFS = 1, which is the “most polite” a policy can be. To see
how “impolite” a policy can be, let us considerPLCFS. PLCFS is the worst case forPol(x) among work
conserving policies. To see this, notice that a work conserving policy can serve at mostB(ε)− ε work with
lower seniority for everyε work with higher seniority served, which is exactly what happens underPLCFS.

Proposition 7.44
In an M/GI/1 queue, E[Pol(x)]PLCFS = 1− ρ.

Proof. UnderPLCFS, the only time during which the seniority of the tagged job is not violated is when
the tagged job is being served. We can use renewal-reward to calculatePol(x) as follows. Consider a
sequence of response timesT (x)PLCFS

i where in each renewal, reward is earned with rate 1 whenever the
tagged job (of sizex) is being served. Thus,x reward is earned in each renewal. Further, the expected length
of each renewal isE[T (x)]PLCFS = x/(1− ρ). Thus,

E[Pol(x)]PLCFS =
x

x/(1− ρ)
= 1− ρ

�
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7.5.2 The politeness of individual policies
We have already analyzed the politeness of two policies that provide upper an lower bounds on the politeness
of work conserving policies:FCFS andPLCFS. In this section, we will analyze a wide range of policies
with respect to politeness.

Though the politeness ofFCFS andPLCFS are independent ofx, this is not always the case. For
example, consider the cases of Preemptive-Shortest-Job-First (PSJF) and Non-preemptive Shortest-Job-
First (SJF).

Proposition 7.45
In an M/GI/1 queue with E[X2] < ∞, we have that E[Pol(x)]PSJF = 1 − ρ(x) and E[Pol(x)]SJF =
1− ρ(x)CSJF

x where

CSJF
x =

1
1 + x

E[W (x)]SJF

=
1

1 + 2x(1−ρ(x))2

λE[X2]

Note that Proposition7.45immediately gives that

E[Pol(x)]PLCFS ≤ E[Pol(x)]PSJF ≤ E[Pol(x)]SJF ≤ E[Pol(x)]FCFS ,

which matches with intuition for how these four policies should be ordered. For an illustration of the
behavior ofE[Pol(x)] under these and other common policies, see Figure7.5.

Proof. Let us begin withPSJF . Consider a tagged job of sizex entering aPSJF system. The only times
the seniority of the tagged job is not being violated is while tagged job is being served and while the work
in the system seen by the tagged job upon arrival completes. This is exactlyx + λm2(x)

2(1−ρ(x)) work. Thus, the
time when seniorityis being violated is

E[T (x)]PSJF − x− λE[X2]
2(1− ρ(x))

=
x

1− ρ(x)
− x +

λm2(x)
2(1− ρ(x))2

− λm2(x)
2(1− ρ(x))

=
xρ(x)

1− ρ(x)
+

λm2(x)ρ(x)
2(1− ρ(x))2

= ρ(x)E[T (x)]PSJF

Using renewal-reward, as in Proposition7.44, we obtain

1− E[Pol(x)]PSJF =
ρ(x)E[T (x)]PSJF

E[T (x)]PSJF

= ρ(x)

from which the proposition follows.
Now consider a tagged job of sizex entering aSJF system. The only times when the seniority of the

tagged job is not being violated is while the tagged job is being served and while the work in the system

seen by the tagged job upon arrival is being served. This is exactlyx+ λE[X2]
2(1−ρ(x)) work. Thus, the time when
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Figure 7.5: An illustration of the politeness of common preemptive and non-preemptive policies. The
service distribution is Exponential with mean 1 and the load is fixed atρ = 0.9. All plots showFCFS and
PLCFS, which act as upper and lower bounds on the possible values ofE[Pol(x)]. The top row shows
E[Pol(x)] as a function of jobs size,x, and the bottom row showsE[Pol(x)] as a function of the percentile
of the job,F (x).

seniority is being violated is

E[T (x)]SJF − x− λE[X2]
2(1− ρ(x))

=
λE[X2]

2(1− ρ(x))2
− λE[X2]

2(1− ρ(x))

=
λE[X2]ρ(x)
2(1− ρ(x))2

= ρ(x)E[W (x)]SJF

Again using renewal-reward, we obtain

1− E[Pol(x)]SJF =
ρ(x)E[W (x)]SJF

x + E[W (x)]SJF

= ρ(x)CSJF
x

from which the proposition follows.
�

Using arguments that parallel the above, we can deriveE[Pol(x)] under a wide range of common
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policies. Notice that the form ofE[Pol(x)] we saw underPSJF andSJF extends throughout many other
common policies, with a notable exception beingPS.

Theorem 7.46
In an M/GI/1 queue with E[X2] < ∞,

E[Pol(x)]LCFS = 1− ρCLCFS
x

E[Pol(x)]SRPT = 1− ρ(x)CSRPT
x

E[Pol(x)]LRPT = 1− ρ

E[Pol(x)]FB = 1− ρ̃(x)

E[Pol(x)]PS = 1− ρ +
λm̃2(x)

2x

where

CLCFS
x =

1
1 + x/E[W (x)]LCFS

=
1

1 + 2x(1−ρ)
λE[X2]

CSRPT
x =

∫ x
0

ρ(t)
ρ(x)

dt
1−ρ(t) + E[W (x)]SRPT

E[T (x)]SRPT

Proof. We will only prove the result for the case ofPS since the other arguments all mimic the proof of
Proposition7.45.

To prove the result forPS, recall Theorem4.16, which characterizes the system state underSYMMET-
RIC policies. Consider the experience of a tagged job of sizex. We can calculate the amount of work done
on jobs in the system when the tagged job arrived using the fact that all jobs in the system upon the arrival of
the tagged job have i.i.d. remaining sizes distributed as the equilibrium distribution,E . Further, the number
of jobs in the system,NPS , is geometric with meanρ/(1 − ρ). Thus, the work done on jobs in the system
when the tagged job arrived is

E

[ ∞∑
i=1

EI(E < x)

]
=

∞∑
i=1

iE[EI(E < x)]P (NPS = i)

= E[NPS ]E[EI(E < x)]

=
ρ

1− ρ

(∫ x

0

tF (t)
E[X]

dt

)
=

λm̃2(x)
2(1− ρ)
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Thus, we have that

E[Pol(x)]PS =
x + λm̃2(x)

2(1−ρ)

x/(1− ρ)

= 1− ρ +
λm̃2(x)

2x

�

The politeness of the policies in Theorem7.46and Proposition7.45is illustrated in Figure7.5. Clearly,
many of these policies are polite to most job sizes; however, under all the policies so far (exceptFCFS)
there are cases where some particular job size is treated as impolite as possible, i.e.E[Pol(x)] = 1 − ρ.
For instance,PSJF, FB, andPS haveE[Pol(x)] → 1 − ρ asx → ∞ for all ρ, andSJF will treat some
medium-large sized job as impolitely as possible asρ → 1. This is unsatisfactory, and so our goal now
is to present a family of policies that have “bounded impoliteness”. To formalize this concept, we use the
following definition.

Definition 7.7 Let0 < ρ < 1 andE[X2] < ∞ in an M/GI/1 system. A policyP is k-polite if

inf
x

E[Pol(x)]P > 1− kρ.

For k = 1, we simply say that scheduling policyP is polite. If infx E[Pol(x)]P = 1 − ρ, we say thatP is
impolite.

All the policies we have seen so far have some service distribution where some job size is treated
impolitely. However, the following simple family of policies provides “bounded impoliteness” in the sense
that the family provides a policy that isk-polite for arbitraryk.

Definition 7.8 Under theJump-To-Front(q) (JTF(q)) policy an arriving job joins the back of the queue
with probability1 − q and goes immediately into service (pushing every other job back one position in the
queue) with probabilityq.

Before we can analyze the politeness ofJTF policies, we will first derive the mean response time of
these policies.

Proposition 7.47
In an M/GI/1 queue with E[X2] < ∞,

E[T (x)]JTF (q) =
x + λ(1−q)E[X2]

2(1−ρ)

1− qρ

Proof. Consider a tagged job of sizex. With probabilityq the job will wait only behind other arriving
jobs that “jump to the front.” These jobs form a busy period with loadqρ. With probability1−q the job will

wait behind all the work in the queue,λE[X2]
2(1−ρ) , and the busy period of arriving jobs that jump to the front.
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Again the load of the arriving jobs that jump to the front isqρ. The proof is completed by noting that for
any random variableY , E[B(Y )] = E[Y ]/(1− γ), whereγ is the load of the arriving jobs:

E[T (x)]JTF (q) = q

(
x

1− qρ

)
+ (1− q)

x + λE[X2]
2(1−ρ)

1− qρ


=

x + λ(1−q)E[X2]
2(1−ρ)

1− qρ

�

Using the Proposition7.47, it is now straightforward to analyze the politeness ofJTF(q) policies.

Theorem 7.48
In an M/GI/1 queue with E[X2] < ∞, JTF(q) is q-polite.

Proof. Consider the politeness experienced by a tagged job of sizex. With probability1− q all the work
the tagged job sees upon arrival will complete before the tagged job. Otherwise, none of the work the tagged
job sees upon arrival will complete before the tagged job. Thus,

E[Pol(x)]JTF (q) =
x + (1− q)λE[X2]

2(1−ρ)

x+
λ(1−q)E[X2]

2(1−ρ)

1−qρ

= 1− qρ

�

7.5.3 The politeness of scheduling classifications
Using the understanding of the politeness of individual policies that we developed in the previous section,
we now move to the task of classifying the politeness of scheduling techniques and heuristics. Parallel to
proportional fairness and predictability, we introduce the following classes.

Definition 7.9 Further, we say that a policyP is Always Politeif P is polite under all loads and service
distributions. A policyP is Sometimes Politeif P is polite under some loads and service distributions and
impolite under other loads and service distributions. A policyP is Always Impoliteif P is impolite under
all loads and service distributions.

These three classes identify three distinct behaviors with respect to politeness, and are simple enough to
allow us to analyze the classes of scheduling techniques and mechanisms that are the focus of this thesis.

Using Theorem7.46, we can already classify many common policies according to politeness. For ex-
ample,FCFS is Always Polite,PSJF is Always Impolite, andSJF is Sometimes Polite. In the remainder
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Figure 7.6: An illustration of the classification of common prioritization techniques and heuristics with
respect to politeness.

of this section, we will extend the analyses of individual policies in order to classify the behavior of classes
of scheduling techniques and heuristics with respect to politeness. The results are summarized in Figure
7.6. Figure7.6 illustrates that most common scheduling techniques and heuristics lead to policies that are
impolite in many situations. However, if we restrict our discussion to service distributions with finite upper
bounds, many of these techniques and heuristics can be polite. For example,PS andSRPT are polite in
such settings.

A useful tool in the analysis of scheduling techniques and heuristics is the following necessary condition
for an Always Polite policy. This theorem provides a simple technique for showing that a class of policies
is not Always Polite.

Theorem 7.49
In an M/GI/1 queue with E[X2] < ∞, if a policy is Always Polite then

lim
x→∞

E[T (x)]
x

<
1

1− ρ

In particular, any policy P with E[T (x)]P /x → 1/(1− ρ) as x →∞ is impolite when the service distribu-
tion has no finite upper bound.

This theorem provides an interesting view of the tradeoff between temporal fairness and proportional
fairness. In particular, combining Theorem7.49with Theorem7.9yields the following corollary.
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Corollary 7.50
In an M/GI/1 queue, no policy can be Always Polite and Always Fair.

Now, let us prove Theorem7.49.

Proof of Theorem 7.49. Consider a the politeness experienced by a tagged job of sizex. At most, the

work done (before the tagged job completes) on jobs with higher seniority isx + λE[X2]
2(1−ρ) . Thus,

E[Pol(x)]P ≤
x + λE[X2]

2(1−ρ)

E[T (x)]P

Now, consider a policyP such thatE[T (x)]P /x → 1/(1− ρ) asx →∞. Under such aP ,

lim
x→∞

E[Pol(x)]P ≤ lim
x→∞

1 + λE[X2]
2x(1−ρ)

E[T (x)]P /x

= (1− ρ)

Thus, no suchP is Always Polite.
�

7.5.3.1 Scheduling techniques
We will start the analysis of the politeness of scheduling classes by analyzing the politeness of various
scheduling techniques.

Non-preemptive policies
Clearly, we expect non-preemptive policies to be polite since once a job gets to the server no one else can
violate job’s seniority. This turns out to be the case, even under policies such aSJF where small jobs
can violate the seniority of large jobs until they begin to receive service. However, not all non-preemptive
policies are Always Polite, for instance asρ → 1, E[Pol(x)]SJF → 1− ρ = 0 for somex.

Theorem 7.51
In an M/GI/1 queue, all non-preemptive policies are either Always Polite or Sometimes Polite

Note that we have already seen thatFCFS is Always Polite andSJF is Sometimes Polite, so this
classification is as tight as possible.

Proof. Consider the politeness of a tagged job having sizex. Let Q be the amount of work that is in
the system upon the arrival of the tagged job that completes before the tagged job. Then, at worst, the
impoliteness experienced by the tagged job is

1− E[Pol(x)] ≤ E[B(Q)]− E[Q]
x + E[B(Q)]
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since at worst all later arrivals will violate the seniority of the tagged job. Now, we need only show that
1− E[Pol(x)] < ρ for some some load and service distribution regardless ofQ.

1− E[Pol(x)] ≤ E[B(Q)]− E[Q]
x + E[B(Q)]

=
E[Q]
1−ρ − E[Q]

x + E[Q]
1−ρ

= ρ
E[Q]1− ρ

x + E[Q]
1−ρ

So, clearlyE[Pol(x)] < 1− ρ for all x under any distribution with non-zero lower bound.
�

Preemptive size based policies
As one would expect, all preemptive size based policies turn out to be Always Impolite. These policies must
give some job size the lowest priority, and this job size is then treated impolitely.

Theorem 7.52
In an M/GI/1 queue, all preemptive size based policies are Always Impolite.

Proof. First, consider the case when there is a sizey that receives the lowest priority. Then, since all other
job sizes have priority overy, the response time ofy is

E[T (y)] =
x

1− ρ
+

λE[X2]
2(1− ρ)2

Further, all the work in the system wheny arrives will complete beforey. Thus, the politeness ofy is

E[Pol(y)] =
x + λE[X2]

2(1−ρ)

x
1−ρ + λE[X2]

2(1−ρ)2

= (1− ρ)

So, the policy is impolite.
To handle the case when no finite sizey receives the lowest priority, simply create an infinite sequence

of job sizes{yi} such that the mass of job sizes with lower priority thanyi monotonically converges to zero.
Then, using the same argument as above,E[Pol(yi)] → (1− ρ).
�
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7.5.3.2 Scheduling heuristics
We now move to the analysis of the politeness of various scheduling techniques. Unfortunately, we can
only present results for theSMART andFOOLISH classes. The analysis of thePROTECTIVE andSYM-
METRIC classes is more difficult, though we have already analyzed the politeness of twoSYMMETRIC
policies:PS andPLCFS.

SMART policies
One might expect thatSMART policies are Always Impolite to large job sizes becauseSMART policies
prioritize small jobs at the expense of larger ones. However, it turns out that manySMART policies can be
polite under when the service distribution is upper bounded, e.g.SRPT andRS.

Theorem 7.53
In an M/GI/1 queue, all SMART policies are Sometimes Polite or Always Impolite.

Proof. We will prove the result under the assumption thatE[X2] < ∞, but the same arguments can easily
be extended to the case whenE[X2] = ∞. Consider the experience of a job of sizex. We will show that
any job of sizex →∞ must be treated impolitely. Using the bounds in Theorem4.4, we have that Then

lim
x→∞

E[Pol(x)] =
xλE[X2]

2(1−ρ)

x
1−ρ + λE[X2]

2(1−ρ)2

= (1− ρ)

�

FOOLISH policies
As expected, it turns out that allFOOLISH policies are Always Impolite because small job sizes are guaran-
teed to be biased against and have no hope of increasing their priority as the wait in the queue. This leads to
an interesting contrast betweenSMART andFOOLISH policies.SMART policies can treat large job sizes
politely by allowing the priority of large job sizes to increase as they become smaller; where asFOOLISH
policies force small jobs to be the lowest priority the whole time they are in the queue.

Theorem 7.54
In an M/GI/1 queue, all FOOLISH policies are Always Impolite.

Proof. Consider the experience of a job of sizex. Let x− be the lower bound of the service distribution.
Using the bounds in Theorem4.14, we have that

E[Pol(x)] ≤
x + λ(E[X2]−m2(x))

2(1−ρ+ρ(x))

x
1−ρ + λE[X2]

2(1−ρ)2

→ (1− ρ) asx → x−
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�

7.6 Hybrid fairness metrics
Until this point in the chapter, we have presented fairness metrics that study either proportional or temporal
fairness in isolation. Following our work, a number of other researchers have used a contrasting approach.
Motivated by our metrics, other researchers have begun developing fairness metrics that capture both pro-
portional and temporal fairness within one measure. These hybrid fairness metrics capture both the idea that
seniority should be respected and the idea that small jobs should not be forced to wait behind larger jobs.
In this section, we will survey the three most well developed metrics to emerge in the last two years: Order
Fairness (OF) [19], Resource Allocation Queueing Fairness Measure (RAQFM) [185], and Discrimination
Frequency (DF) [195]. We will introduce each of these measures and survey how common individual poli-
cies perform under each. Our goal is not to provide a detailed summary of these measures, but rather to alert
and excite the reader about ongoing work in the field.

7.6.1 Order Fairness
Order fairness, introduced by Avi-Itzhak and Levy in [19] is defined as follows:

Definition 7.10 Consider a GI/GI/1 queue and a non-preemptive policyP , theexpected order fairnessis
defined asE[OF ]P = V ar[W ]P .

Order fairness is actually primarily motivated by the concept of temporal fairness. The authors develop
the measure by studying the behavior of non-preemptive policies in a GI/D/1 queue, where proportional fair-
ness is inconsequential because all jobs have the same size. In this setting they take an axiomatic approach
to developing a measure for temporal fairness in such a system: they present four axioms of fairness and
then categorize the metrics that satisfy these axioms. The four axioms they present each characterize how
the fairness measure should react when two jobs are interchanged by the scheduling policy (i.e. when the
positions of jobsi andj in the service order are switched). Definefi,j,P to be the change in the fairness
measure after switching the positions ofi andj under policyP and letP ′ be the resulting policy.

• Monotonicity under job interchange: fi,j,P is strictly increasing in the seniority difference of jobsi
andj.

• Reversibility under job interchange: fi,j,P = −fj,i,P ′ .

• Independence of position and time: fi,j,P is independent of the positions ofi andj in the queue and
of the time when the switch occurs.

• Independence of customers not interchanged: fi,j,P is independent of all customers in the queue other
thani andj.
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In the GI/D/1 queue it can be proven that fairness measures that obey these axioms are of the form

c
∑

i

aid
P
i + αi (7.33)

wherec > 0 andα are constants anddP
i is the displacement of theith job underP (i.e. the number of

positions jobi is pushed ahead or behind in the queue underP ). Further, Definition7.10follows from the
(7.33) by taking expectation under the assumption thatc is the same across all busy periods andα = 0. This
serves as a nice validation of Definition7.10in the GI/D/1 setting.

However, outside of the GI/D/1 setting, it is clear that the four axioms above are not achievable. Further,
the axioms above are only appropriate under non-preemptive scheduling policies (where the policy can
be viewed as an order on the jobs in the queue). The restriction to non-preemptive scheduling cannot be
avoided, but the authors do argue for the appropriateness of order fairness outside of the GI/D/1 setting.

Though Definition7.10does not satisfy the four axioms outside of the GI/D/1 setting, the authors extend
the applicability of order fairness by injecting the notion of proportional fairness into the measure. They
argue intuitively that it is unfair to force a small job to wait behind a large job unless the large job has been in
the system a long time before the small job arrives. Thus, the fairness of customersi, j should be dependent
on the difference in the waiting times of these jobs,wi, wj . In particular, it should be some functionh(·)
that is increasing in|wj − wi|. Noting that

|wj − wi| =
{
|ai − aj − sj |, j is served ahead ofi
|ai − aj + sk|, else

it follows that running jobj with arrival timeaj and service demandsj ahead of jobi is “more fair” than
runningi ahead ofj when

ai − aj > (sj − si)/2

Using pairwise comparisons, the order fairness of a sample path can be written as

lim
n→∞

1
2n2

n∑
i=1

n∑
j=1

h(|wj − wi|)

Finally, by takingh(x) = c/2x2 this notion of fairness can be seen to be equivalent to comparingV ar[W ]
as in Definition7.10. As noted by the authors, this generalization of order fairness to the GI/GI/1 queue
is less than ideal because many of the original axioms no longer hold. For instance, when interchanging
two jobs, the pairwise comparison of other jobs in the system is affected (i.e. the fourth axiom is violated).
However, the simplicity of the resulting measure (V ar[W ]P ) is appealing.

The simplicity of the order fairness measure allows the comparison of many non-preemptive policies. It
is immediately clear thatFCFS is more fair thanLCFS andSJF is more fair thanLJF under this measure.
Thus the measure is in some sense capturing both the notions of temporal and proportional fairness. Further,
it is interesting to note that the comparison ofSJF andFCFS with respect to order fairness is dependent on
the service distribution. For instance, when the service distribution is lightly variable,FCFS can be more
fair thanSJF but when the service distribution is highly variableSJF can be more fair thanFCFS.
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7.6.2 RAQFM
Following the introduction of the Order Fairness measure, Avi-Itzhak and Levy in combination with Raz
present a second hybrid fairness measure that aims directly at accounting for both proportional and temporal
fairness [185].

Definition 7.11 Consider a GI/GI/1 queue. Let the discrimination of a jobi, Di be Di =
∫ di

ai
si(t) −

1/N(t)dt whereai anddi are the arrival and departure times of jobi, si(t) is the percent of the service
capacity given to jobi andN(t) is the number of jobs in the system at timet. Then thefairness of policyP
under RAQFM isV ar[D].

The basic philosophy behind this measure is that at all times, every job in the system is worthy of an
even share of the server capacity, i.e. at every timet, every job in the system deserves a service rate of
1/N(t). Thus, the fairness of a policy is determined by looking at the variation from this service rate jobs
experience.11 In this sense, the measure is a generalization of the idea thatPS is the “most fair” policy. In
fact,PS is the only policy whereV ar[D] = 0.

It can easily be seen that RAQFM combines aspects of both proportional and temporal fairness. If we
consider a non-preemptive setting, it is easy to see that the impact switching the order jobsi and j are
serviced has onV ar[D] is monotonically increasing in both (i) the difference in the arrival times ofi andj
and (ii) the difference in the service demands ofi andj. Thus RAQFM represents one particular weighting
of temporal and proportional fairness, which is motivated byPS; however the measure is not flexible in the
sense that the weighting of temporal and proportional fairness cannot be adjusted.

As one can guess from the form of Definition7.11, deriving V ar[D] under scheduling policies is a
difficult task. In fact, closed form analyses ofV ar[D] under most scheduling policies have proven elusive.
However, it is possible to obtain numerical results for a few simple policies in the M/M/1 setting. In partic-
ular, FCFS, LCFS, ROS, andPLCFShave been compared [185]. These numerical comparisons indicate
that

V ar[D]PLCFS ≥ V ar[D]LCFS ≥ V ar[D]ROS ≥ V ar[D]FCFS ≥ V ar[D]PS = 0

Further, it seems thatV ar[D]P → 0 asρ → 0 and thatV ar[D]P increases monotonically withρ under
all P . Unfortunately, no size based policies have been analyzed with respect toV ar[D]. Though followup
work has looked at 2-class priority policies, the non-Markovian properties of exact size and remaining size
based policies make analysis more difficult.

It should be noted that Definition7.11 is quite easy to generalize beyond single server models. Raz,
Avi-Itzhak, and Levy have already begun work studying the fairness of multiserver and multiqueue systems
using variations of RAQFM [184].

7.6.3 Discrimination Frequency
The final hybrid metric that we will discuss is Discrimination Frequency, which was introduced by Sand-
mann in [195]. Unlike RAQFM, which implicitly captured the notions of proportional fairness and temporal
fairness, Discrimination Frequency is defined as an explicit combination of two measures, one for propor-
tional fairness and one for temporal fairness.

11The variation is of interest becauseE[D] = 0 regardless of the work conserving policy being studied. To see this, note that
whenever the system is busy at timet,

∑
i si(t)− 1/N(t) = 0 because

∑
i si(t) = 1.
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Definition 7.12 Letni be the number of jobs that arrived no earlier than and completed no later than job
i. Letmi be the number of jobs with remaining size no smaller than jobi when jobi arrives that complete
no later than jobi. Then the Discrimination Frequency of jobi is

DF (i) = ni + mi

. In an M/GI/1 queue, fairness is measured usingE[DF ].

Clearly,ni andmi provide measures of temporal and proportional fairness respectively. Thus, one can
easily adjust definition to balance the importance of proportional and temporal fairness as desired for any
particular application. This flexibility is a key benefit of Discrimination Frequency over RAQFM.

Another important property of Discrimination Frequency is that the analysis ofE[DF ]P is not too
difficult under many scheduling policies. In fact, the analysis techniques parallel the simple techniques used
to analyze Politeness is Section7.5. Using these techniques it has been shown that, for example,

E[DF ]FCFS =
λ2E[X2]
4(1− ρ)

+ ρ− λE[min(X1, X2)]

E[DF ]LCFS =
λ23E[X2]
4(1− ρ)

+ ρ− λE[min(X1, X2)]

E[DF ]SJF =
λ2E[X2]

2

∫ ∞
0

F (x)
1− ρ(x)

dF (x) + ρ− λE[min(X1, X2)]

whereX1 andX2 are i.i.d. service demands [196]. Thus,E[DF ]SJF ≤ E[DF ]FCFS ≤ E[DF ]LCFS for
the M/M/1 setting. Further, results for other more complicated scheduling disciplines are not too difficult to
obtain and are forthcoming.

7.7 Concluding remarks
In this chapter, we have moved beyond mean response time to consider thefairnessof scheduling policies.
This is an important task because policies that perform well for mean response time often give priority
to small jobs at the expense of large jobs, e.g.SRPT, and thus create worries about whether large jobs
are treated fairly. Despite the ubiquitousness of such worries, the fairness of scheduling policies is largely
ignored in traditional scheduling research because of the difficulty in defining a measure of fairness.

In this chapter, we have presented, for the first time, a set of metrics for studying the fairness of schedul-
ing policies in M/GI/1 queues. We developed measures for studying the proportional and temporal fairness
of scheduling policies. We presented intuitive, philosophic, and mathematical motivation for our measures.
This work has served to jump-start a new focus on fairness in the scheduling community, which has led to a
number of other researchers introducing their own notions of fairness for use in a wide variety of application
settings (see Section7.6).

In addition to presenting new fairness measures, we analyzed the fairness of both individual policies and
scheduling classifications, see Figure7.7. We found that it is very difficult for scheduling policies to be fair.
In particular, there are very few common policies, techniques, or heuristics that lead to policies that are fair
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(a) Proportional Fairness (b) Predictability

(c) Politeness

Figure 7.7: An illustration of the classifications of common prioritization techniques and heuristics with
respect to proportional fairness, predictability, and politeness. Note the many parallels between the propor-
tional fairness and predictability classifications, which indicates that policies have similar behaviors with
respect toE[T (x)]/x andV ar[T (x)]/x.

across all loads and service distributions with respect to either proportional or temporal fairness. Further,
these two fairness measures are conflicting: we proved that it is impossible for any policy to be both Always
Fair and Always Polite (Corollary7.50). Not only do the two types of fairness conflict with each other,
they conflict with the goal of providing a small mean response time. In particular, there are no common
scheduling policies, techniques, or heuristics that are near optimal with respect to mean response time and
provide either temporal or proportional fairness.

However, we also found that, surprisingly,SRPT can be fair under many common situations. Thus, in
some situations it is possible to minimize mean response time and still be fair. In particular, with respect to
proportional fairness,SRPT is fair when either the load is low enough or the tail of the service distribution is
heavy enough. In fact, beyondSRPT, all SMART policies provide a good balance of proportional fairness,
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temporal fairness, and mean response time (efficiency). By giving small jobs high priority, almost all job
sizes (and sometimesall job sizes) are treated fairly, and mean response time is near optimal.

The results in this chapter help to ease worries that giving priority to small jobs leads to large jobs
being treated unfairly. In fact, the results in this chapter have had a huge impact in this regard: since our
initial work on fairness, a number of new designs that prioritize small jobs have emerged for a wide variety
of applications. For example, in web servers [96, 182], routers, [179, 180], wireless networks [102, 136],
peer-to-peer systems [178], operating systems [74], databases [138, 139], and security applications [?].
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Broader Models: Moving Beyond the
M/GI/1
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Until this point in the thesis, our analysis of scheduling policies has focused al-
most entirely on the M/GI/1 queue. Limiting our focus to this setting has allowed
us to consider general classifications of scheduling policies and a broad range of
performance metrics, thus gaining important insights. However, in order to further
bridge the gap between theoretical results and practical applications it is essential
to understand the impact of practical generalizations of these models. In particular,
there are many aspects of the M/GI/1 model that are unrealistic for computer sys-
tems. Though the model allows for general job sizes, assuming a Poisson arrival
process and a single server is often not realistic. In Part IV, we move beyond these
two assumptions and study (i) arrivals from interactive users and (ii) multiserver
architectures.

In real systems the arrival process of jobs is far from Poisson. One fundamental
difference is that users of computer systems are interactive. That is, a user must wait
for her previous request to complete before submitting a new request. In Chapter8,
we study the impact of these dependencies between arrivals and completions. We
will show that dependencies between the arrival and completion processes can limit
the benefits provided by scheduling with respect to mean response time. However,
we also illustrate that, in many practical settings, scheduling is still quite beneficial.

Next, in Chapter9 we study scheduling in multiserver architectures. This is an
increasingly practical generalization to consider given the growing trend towards
server farm architectures and multi-core designs, which both employ multiple
cheaper, slower servers instead of a single fast, expensive server. In the single
server model we have discussed so far, one large job can swamp the system if the
scheduling discipline does not allow smaller jobs to bypass the larger job in the
queue. However, in a multiserver system one large job cannot swamp the entire
system, thus the presence of multiple servers has a dramatic impact on the effec-
tiveness of scheduling. In addition, scheduling can have a dramatic impact on the
design of multiserver systems.





CHAPTER 8

The impact of interactive users

Until this point in the thesis, we have considered only systems where the arrival process is independent of
the completion process, as in Figure8.1(a). Such a model is referred to as anopen system modeland is
a simplification of the behavior of real users. In practice, there are many cases where users need to wait
for a request to complete before making a second request. For instance, in the case of web servers, a user
must wait for a web page to load before clicking on the link to request a new page. Thus, a common
alternative to an open system model is aclosed system modelwhere new job arrivals are only triggered by
job completions (followed by think time), as in Figure8.1(b). Again however, the closed system model is
often a simplification of the behavior of real users. For example, users do not permanently remain at a web
site. Instead, in many cases, users arrive to a system, behave as if they are in a closed system for a short
while, and then leave the system as in Figure8.1(c). Such a model is referred to as apartly-open system
model, and behaves as a hybrid of the open and closed system models.

Given the feedback between the arrival and completion processes that occurs in computer systems, it is
important to understand how the benefits of scheduling that we have illustrated in the open system model
translate to the closed and partly-open system models. Intuitively, it is clear that scheduling will be less
effective in settings with feedback than it was in the open system model. This is because, for open systems,
scheduling is the only way to avoid having large queues build up while a large job is at the server in an
open system, while in systems with feedback this problem is avoided even underFCFS scheduling because
only a limited number of new arrivals can occur if there are no completions. However, we will show that
scheduling still provides performance benefits in systems with feedback between arrivals and completions
in many practical settings, just not the extreme gains we saw in open systems.

In addition to the importance of understanding the impact of the underlying system model (open, closed,
or partly-open) on the effectiveness of scheduling, understanding the differences between the models is an
important task in its own right due to the fact that a system model is at the heart of every workload generator
used by practitioners to evaluate design decisions. Table8.1surveys the system models in a variety of web
related workload generators used by systems researchers today. The table is by no means complete, but it
illustrates the wide range of workload generators and benchmarks available. There is a mixture of both open
and closed system models at the heart of these generators/benchmarks, though most assume a closed system
model. Interestingly, many generators/benchmarks for the same purpose rely on different system models.
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ServerQueueNew Arrivals

(a) Open system

Think

ServerQueue

ReceiveSend

(b) Closed system

With probability
(1 − p) leave system

With probability
 p submit again

Think

Send

QueueNew Arrivals

Server

(c) Partly-open system

Figure 8.1: Illustrations of the closed, open, and partly-open system models.

Further, for many of these workload generators, it was quite difficult to figure out which system model
was being assumed – the builders often do not seem to view this as an important factor worth mentioning
in the documentation. Thus, though every researcher is well aware of the importance of setting up one’s
experiment so that the system being modeled is “accurately represented,” researchers typically pay little
attention to whether the workload generator uses a closed, open, or partly-open system model.

In this chapter our goal is to illustrate the enormous impact of the underlying system model (open,
closed, or partly-open) in practical settings, particularly the impact of the system model on the effective-
ness of scheduling. However, the analysis of closed and partly-open system models is a difficult problem,
and outside of scheduling policies where product-form results hold (e.g.FCFS andPS) little is understood
analytically. Thus, we cannot hope to obtain results in the generality we have obtained in the open system
setting. Instead, we obtain our results primarily via real-world implementations. We consider a range of
real world case studies in this chapter, including: web servers receiving static HTTP requests, the back-end
database in e-commerce applications, an auctioning web site, and a supercomputing center. Our simulation
and implementation experiments in these case studies lead us to identifyeight principlesthat summarize the
differences between open, closed, and partly-open system models [206]. These principles may be catego-
rized by their area of impact.

The first set of principles (see Sections8.3 and8.4.1) describe thedifference in mean response time
under open and closed system models and howvarious parameters affect these differences. We find, for
example, that for a fixed load, the mean response time for an open system model can exceed that for a
closed system model by an order of magnitude or more. Even under a high Multi-Programming Level
(MPL), the closed system model still behaves “closed” with respect to mean response time, and there is still
a significant difference between mean response times in closed and open systems even for an MPL of 1000.
With respect to service demands (job sizes), while their variability has a huge impact on response times in
open systems, it has much less of an effect in closed models. The impact of these principles is that a system
designer needs to beware of taking results that were discovered under one system model and applying them
to a second system model. For example, if the workload generator being used creates a closed system model,
whereas the real world application is closer to an open system model, then the results obtained using the
workload generator may be far from those witnessed in practice.

The second set of principles (see Section8.4.2) deal with the contrastingimpact of schedulingin closed
and open systems. As we have seen throughout this thesis, scheduling is a common mechanism for improv-
ing mean response time without purchasing additional resources. When system designers seek to evaluate a
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new scheduling policy, they often test its effectiveness using a workload generator and simulation test-bed.
We illustrate that one must be very careful to correctly model the application workload as closed or open,
since the impact of scheduling turns out to be very different under these two models. For example, our prin-
ciples show that favoring short jobs is highly effective in improving mean response time in open systems,
while this is far less true under a closed system model. We find that closed system models only benefit
from scheduling under a narrow range of parameters, when load is moderate and the MPL is very high. The
message for system designers is that understanding whether the workload is better modeled with an open or
closed system is essential in determining the effectiveness of scheduling.

The third set of principles (see Section8.5) deal withpartly-open systems. Our principles specify those
parameter settings for which the partly-open model behaves more like a closed model or more like an open
model with respect to response time. We also find that, counter to intuition, parameters like think time
have almost no impact on the performance of a partly-open model. The principles describing the behavior
of partly-open system models are important because real-world applications often fit best into partly-open
models, and the performance of these models is not well understood. In particular, the effect of system
parameters and scheduling on performance in the partly open system – points which our principles address
– are not known. Our results motivate the importance of designingversatileworkload generators that are
able to support open, closed, and partly open system models. We create such versatile workload generators
for several common systems, including web servers and database systems, and use these throughout our
studies.

The third set of principles also provides system designers with guidelines forhow to choose a system
modelwhen they are forced to pick a workload generator that is either purely closed or purely open, as are
almost all workload generators (see Section8.6). We consider ten different workloads and use our principles
to determine for each workload which system model is most appropriate for that workload: closed, open,
or partly-open. To the best of our knowledge, no such guide exists for systems researchers. Yet given the
tremendous impact of the system model on performance, as described above, it is critical that one take care
to make this decision carefully.

The chapter is organized as follows. We begin by presenting more detailed introductions to the closed,
open, and partly-open system models in Section8.1. Then, in Section8.2we provide details on our method-
ology for comparing the closed, open, and partly-open models. Next, we provide details on the case studies
in Section8.3. We present some results contrasting the three system models in Section8.3, but we provide
far more detailed studies of the open and closed models in Section8.4and of the partly-open model in Sec-
tion 8.5. Next, using the results in Sections8.4and8.5, we present a procedure for choosing the appropriate
system model for a given workload in Section8.6. Finally, we conclude in Section8.7.

8.1 Defining closed, open, and partly-open systems
Before we can begin our comparison of the open, closed, and partly-open systems, we will first provide a
more detailed description of the models.

The open model
Figure8.1(a) depicts an open system configuration. In an open system model there is a stream of arriving
users with average arrival rateλ. Each user is assumed to submit one job to the system, wait to receive the
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Type of benchmark Name System model

Model-based web workload Surge [29], WaspClient [153], Geist [106], WebStone [229], Closed
generator WebBench [231], MS Web Capacity Analysis Tool [143]

SPECWeb96 [219], WAGON [129] Open
Playback mechanisms for HTTPMS Web Application Stress Tool [144], Webjamma [1],
request streams Hammerhead [214], Deluge [213], Siege [80] Closed

httperf [151], Sclient [22] Open
Proxy server benchmarks Wisconsin Proxy Benchmark [11], Web Polygraph [194],

Inktomi Climate Lab [84]
Closed

Database benchmark for e-
commerce workloads

TPC-W [228] Closed

Auction web site benchmark RUBiS[13] Closed
Online bulletin board bench-
mark

RUBBoS[13] Closed

Database benchmark for online
transaction processing (OLTP)

TPC-C [227] Closed

Model-based packet level web IPB (Internet Protocol Benchmark) [132], GenSyn [101] Closed
traffic generators WebTraf [73], trafgen [53]

NS traffic generator [254] Open
Mail server benchmark SPECmail2001 [218] Open
Java Client/Server benchmark SPECJ2EE [217] Open
Web authentication and autho-
rization

AuthMark [146] Closed

Network file servers NetBench [230] Closed
SFS97_R1 (3.0) [216] Open

Streaming media service MediSyn [224] Open

Table 8.1: A summary table of the system models underlying standard web related workload generators.

response, and then leave. The number of users queued or running at the system at any time is unbounded.
The differentiating feature of an open system is that arequest completion does not trigger a new request:
a new request is only triggered by a new user arrival.As before,response time, T , is defined as the time
from when a request is submitted until it is completed. Theserver loadis defined as the fraction of time that
the server is busy. Here load,ρ, is the product of the mean arrival rate of requests,λ, and the mean service
demandE[X]. Note that the throughput in an open model is always equal to the arrival rate.

The closed model
Figure 8.1(b) depicts a closed system configuration. In a closed system model, it is assumed that there
is some fixed number of users, who use the system forever. This number of users is typically called the
multiprogramming level(MPL) and denoted byN . Each of theseN users repeats these 2 steps, indefinitely:
(a) submit a job, (b) receive the response and then “think” for some amount of time. In a closed system,a
new request is only triggered by the completion of a previous request. At all times there are some number
of users,Nthink, who are thinking, and some number of usersNsystem, who are either running or queued to
run in the system, whereNthink + Nsystem = N . Theresponse time, T , in a closed system is defined to be
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the time from when a request is submitted until it is received. In the case where the system is a single server
(e.g. a web server), theserver load, denoted byρ, is defined as the fraction of time that the server is busy,
and is the product of the mean throughput and the mean service demand (processing requirement)E[X].

The partly-open model
Neither the open system model nor the closed system model is entirely realistic for computer systems.
Consider for example a web site. On the one hand, a user is apt to make more than one request to a web site,
and the user will typically wait for the output of the first request before making the next. In these ways a
closed system model makes sense. On the other hand, the number of users at the site varies over time; there
is no sense of a fixed number of usersN . The point is that users visit to the web site, behave as if they are
in a closed system for a short while, and then leave the system.

Motivated by the example of a web site, we also study a more realistic alternative to the open and closed
system configurations: the partly-open system shown in Figure8.1(c). Under the partly-open model, users
arrive according to some outside arrival process as in an open system. However, every time a user completes
a request at the system, with probabilityp the user stays and makes a followup request (possibly after some
think time), and with probability1 − p the user simply leaves the system. Thus the expected number of
requests that a user makes to the system in a visit is Geometrically distributed with mean1/(1 − p). We
refer to the collection of requests a user makes during a visit to the system as asessionand we define the
length of a session to be the number of requests in the session/visit. Theserver loadis the fraction of
time that the server is busy equalling the product of the average outside arrival rateλ, the mean number of
requests per visit, and the mean service demand. For a given load, whenp is small, the partly-open model is
more similar to an open model. For largep, the partly-open model resembles a closed model.

8.2 Comparison methodology
Given the many differences between the closed, open, partly-open systems, it is important when comparing
the systems that we configure each model in a way that provides a “fair” comparison. In this section, we
discuss the relevant parameters and metrics for the three system models and discuss how we set parameters
in order to compare the system models fairly.

Throughout this chapter we choose the service demand distribution to be the same for the open , closed,
and partly-open systems. In the case studies the service demand distribution is either taken from a trace or
determined by the workload generator used in the experiments. In the model-based simulation experiments
later in the chapter, we use hyperexponential service demands, in order to capture the highly variable service
distributions in web applications. Throughout, we measure the variability in the service demand distribution
using the squared coefficient of variation,C2. The think time in the closed system and partly-open systems,
Z, follows an exponential distribution, and the arrival process in the open and partly-open systems is either
a Poisson arrival process with average rateλ, or provided by traces.1 The results for all simulations and
experiments are presented in terms of mean response times and the system loadρ. While we do not explicitly
report numbers for another important metric, mean throughput, the interested reader can directly infer those

1Note that we choose a Poisson arrival process (i.e. exponential inter-arrival times) and exponential think times in order to allow
the open, closed, and partly-open system configurations to be as parallel as possible. This setting underestimates the differences
between the systems when more bursty arrival processes are used.
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numbers by interpreting load as a simple scaling of throughput in all three system models.
In order to fairly compare the open, closed, and partly-open systems, we will hold the system loadρ for

the three systems equal, and study the effect of the system model on mean response time. The load in the
open system is specified byλ, sinceρ = λE[X]. The load in the partly-open system is specified byλ andp.
Thus, for a fixedp, we adjust the load by adjustingλ. Note that the think time in a partly-open system does
not affect the load. Fixing the load of a closed system is more complex, since the load is affected by many
parameters including the MPL, the think time, the service demand variability, and the scheduling policy. The
fact that system load is influenced by many more system parameters in a closed system than in an open or
partly-open system is an interesting difference between the systems. Throughout, we will achieve a desired
system load in a closed system by adjusting the think time (see Figure8.6(b)) since this parallels the notion
of varying the interarrival time that is used in the open and partly-open models.

8.3 Real-world case studies
We can now begin to compare the closed, open, and partly-open models. In this section, we compare the
three system models in the context of four different real-world applications. The applications include (a)
a web server delivering static content in a LAN environment, (b) the database back-end at an e-commerce
web site, (c) the application server at an auctioning web site, (d) scheduling at a supercomputing center, and
(e) a web server delivering static content in a WAN environment. These applications vary in many respects,
including the bottleneck resource, the workload properties (e.g. job size variability), network effects, and the
types of scheduling policies considered. We study applications (a), (b), and (e) through full implementation
in a real test-bed, while our study of applications (c) and (d) relies on trace-based simulation.

An integral part of these case studies is the development of a set of workload generators, simulators, and
trace analysis tools that facilitate experimentation with all three system models: open, closed, and partly-
open. For implementation-based case studies we extend the existing workload generator for each system
(which is based on only one system model) to enable all three system models. For the case studies based
on trace-driven simulation, we implement a versatile simulator that models open, closed, and partly-open
systems and takes traces as input. We also develop tools for analyzing web traces (in Common Logfile
Format or Squid log format) to extract the data needed to parameterize workload generators and simulators.

Sections8.3.1– 8.3.5provide the details of the case studies. The main results are shown in Figures8.2
and8.4. For each case study we first explain the tools developed for experimenting in open, closed, and
partly-open models. We then then describe the relevant scheduling policies and their implementation, and
finally we discuss the results.The discussions at the end of the case studies are meant only to highlight the
key points; we will discuss the differences between open, closed, and partly-open systems and the impact of
these differences in much more detail in Sections8.4and8.5.

8.3.1 Static web content
Our first case study is an Apache web server running on Linux and serving static content, i.e. requests of
the form “Get me a file,” in a LAN environment. Our experimental setup involves six machines connected
by a 10/100 Ethernet switch. Each machine has an Intel Pentium III 700 MHz processor and 256 MB RAM,
and runs Linux. One of the machines is designated as the server and runs Apache. The others generate web



8.3: REAL-WORLD CASE STUDIES 257

Closed System

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Load

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c) PS
SRPT

Open System

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Load

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

PS
SRPT

(a) Static web – LAN

Partly-open System

0 5 10 15 20
0

50

100

150

200

250

300

Mean number of visits

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

PS
SRPT

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Load

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) PELJF

PS
PESJF

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Load

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) PELJF

PS
PESJF

(b) E-commerce site

0 5 10 15 20
0

2

4

6

8

10

Mean number of visits

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) PELJF

PS
PESJF

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) FCFS

PS
PSJF

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) FCFS

PS
PSJF

(c) Auctioning site

0 5 10 15 20
0

5

10

15

20

Mean number of visits

M
ea

n 
R

es
po

ns
e 

Ti
m

e 
(s

ec
) FCFS

PS
PSJF

0.2 0.4 0.6 0.8 1
102

103

104

105

106

Load

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
in

) LJF
FCFS
SJF

0.2 0.4 0.6 0.8 1
102

103

104

105

106

Load

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
in

) LJF
FCFS
SJF

(d) Supercomputing

0 5 10 15 20
102

103

104

105

106

Mean number of visits

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
in

) LJF
FCFS
SJF

Figure 8.2: Implementation and simulation results for real-world case studies. Each row shows the results
for a real-world workload and each column shows the results for one of the system models. In all experiments
with the closed system model the MPL is 50. The partly-open system is run at fixed load0.9.
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requests based on a web trace.

Workload generation
In this case study we generate static web workloads based on a trace. Below we first describe our workload
generator which generates web requests following an open, closed, or partly-open model. We then describe
the tool for analyzing web traces that produces input files needed by the workload generator. Finally we
briefly describe the actual trace that we are using in our work.

Our workload generator is built on top of the Sclient[22] workload generator. The Sclient workload
generator uses a simple open system model, whereby a new request for filey is made exactly everyx msec.
Sclient is designed as a single process that manages all connections using theselect system call. After
each call toselect , Sclient checks whether the currentx msec interval has passed and if so initiates a new
request. We generalize Sclient in several ways.

For the open system, we change Sclient to make requests based on arrival times and filenames specified
in an input file. The entries in the input file are of the form< ti, fi >, whereti is a time andfi is a file
name.

For the closed system, the input file only specifies the names of the files to be requested. To implement
closed system arrivals in Sclient, we have Sclient maintain a list with the times when the next requests are
to be made. Entries to the list are generated during runtime as follows: Whenever a request completes, an
exponentially distributed think timeZ is added to the current timetcurr and the resultZ + tcurr is inserted
into the list of arrival times.

In the case of the partly-open system, each entry in the input file now defines asession, rather than an
individual request. An entry in the input file takes the form< ti, fi1 , . . . , fin > whereti specifies the arrival
time of the session and< fi1 , . . . , fin > is the list of files to be requested during the session. As before,
a list with arrival times is maintained according to which requests are made. The list is initialized with the
session arrival timesti from the input file. To generate the arrivals within a session, we use the same method
as described for the closed system above: after requestfij−1 completes we arrange the arrival of requestfij

by adding an entry containing the arrival timeZ + tcurr to the list, wheretcurr is the current time andZ is
an exponentially distributed think time.

All the input files for the workload generator are created based on a web trace. We modify the Webalizer
tool [44] to parse a web trace and then extract the information needed to create the input files for the open,
closed, and partly-open system experiments. In the case of the open system, we simply output the arrival
times together with the names of the requested files. In the case of the closed system, we only extract the
sequence of file names. Creating the input file for the partly-open system is slightly more involved since it
requires identifying the sessions in a trace. A common approach for identifying sessions (and the one taken
by Webalizer) is to group all successive requests by the same client (i.e. same IP address) into one session,
unless the time between two requests exceeds some timeout threshold in which case a new session is started.
In our experiments, we use the timeout parameter to specify the desired average session length.

The trace we use consists of one day from the 1998 World Soccer Cup, obtained from the Internet Traffic
Archive [103]. The details of the trace are summarized in Table8.2. Note that virtually all requests in this
trace arestatic.
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Number of Req. Mean job size Job size variability (C2) Min job size Max job size
4.5 · 106 5KB 96 41 bytes 2MB

Table 8.2: Summary statistics for the trace used in the static web case study.
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Figure 8.3: Flow of data in Linux withSRPT-like scheduling (only 2 priority levels shown).

Scheduling
Standard scheduling of static requests in a web server is best modeled by processor sharing (PS). However,
recent research suggests favoring requests for small files can improve mean response times at web servers
[96]. In this section we therefore consider bothPS andSRPT policies.

We have modified the Linux kernel and the Apache Web server to implementSRPT scheduling at the
server. For static HTTP requests, the network (access link out of the server) is typically the bottleneck
resource. Thus, our solution schedules the bandwidth on this access link by controlling the order in which
the server’s socket buffers are drained. Traditionally, the socket buffers are drained in Round-Robin fashion
(similar toPS); we instead give priority to sockets corresponding to connections where the remaining data
to be transferred is small. Figure8.3shows the flow of data in Linux after our modifications.

There are multiple priority queues and queuei may only drain if queues0 to i − 1 are empty. The
implementation is enabled by building the Linux kernel with support for the user/kernel Netlink Socket,
QOS and Fair Queuing, and the Prio Pseudoscheduler and by using thetc [12] user space tool. We also
modify Apache to usesetsockopt calls to update the priority of the socket as the remaining size of the
transfer decreases. For more details on our implementation see [96, 206].

Synopsis of results
Figure8.2(a) shows results from the the static web implementation under closed, open, and partly open
workloads in a LAN environment. Upon first glance, it is immediately clear that the closed system response
times are vastly different from the open response times. In fact, the response times in the two systems are
orders of magnitude different underPS given a common system load. Furthermore,SRPT provides little
improvement in the closed system, while providing dramatic improvement in the open system.

The third column of Figure8.2(a) shows the results for the partly-open system. Notice that when the
mean number of requests is small, the partly-open system behaves very much like the open system. However,
as the mean number of requests grows, the partly-open system behaves more like a closed system. Thus, the
impact of scheduling (e.g.SRPT overPS) is highly dependent on the number of requests in the partly-open
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system.

8.3.2 E-commerce site
Our second case study considers the database back-end server of an e-commerce site, e.g. an online book-
store. We use a PostgreSQL[177] database server running on a 2.4-GHz Pentium 4 with 3GB RAM, running
Linux 2.4, with a buffer pool of 2GB. The machine is equipped with two 120GB IDE drives, one used for
the database log and the other for the data. The workload is generated by four client machines having similar
specifications to the database server connected via a network switch.

Workload generation
The workload for the e-commerce case study is based on the TPC-W [228] benchmark, which aims to model
an online bookstore such as Amazon.com. We build on the TPC-W kit provided by the Pharm project [49].
The kit models a closed system (in accordance with TPC-W guidelines) by creating one process for each
client in the closed system. Each process submits a request to the database, waits for the response, sleeps
for an exponentially distributed think time, and then makes the next request.

We extend the kit to also support an open system with Poisson arrivals, and a partly-open system. We
do so by creating a master process that signals a client whenever it is time to make a new request in the
open system or to start a new session in the partly-open system. The master process repeats the following
steps in a loop: it sleeps for an exponential interarrival time, signals a client, and draws the next inter-arrival
time. The clients block waiting for a signal from the master process. In the case of the open system, after
receiving the signal, the clients make one request before they go back to blocking for the next signal. In
the case of the partly-open system, after receiving a signal, the clients generate a session by executing the
following steps in a loop: (1) make one request; (2) flip a coin to decide whether to begin blocking for a
signal from the master process or to generate an exponential think time and sleep for that time.

TPC-W consists of 16 different transaction types including the “ShoppingCart” transaction, the “Pay-
ment” transaction, and others. Statistics of our configuration are as shown in Table8.3.

Database size Mean job size Job size variability (C2) Min job size Max job size
3GB 101 ms 4 2 ms 5s

Table 8.3: Summary statistics for the trace used in the e-commerce case study.

Scheduling
The bottleneck resource in our setup is the CPU, as observed in [138]. The default scheduling policy is
therefore best described asPS, in accordance with Linux CPU scheduling. Note that in this application,
exact service demands are not known, soSRPT cannot be implemented. Thus, we experiment withPESJF
andPELJF policies where the expected service demand of a transaction is based on its type. The “Best-
seller” transaction, which makes up 10% of all requests, has on average the largest service demand. Thus,
we study 2-priorityPESJF andPELJF policies where the “Bestseller” transactions are “expected to be
long” and all other transactions are “expected to be short.”
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To implement the priorities needed for achievingPESJF andPELJF, we modify our PostgreSQL server
as follows. Simple CPU prioritization of a process using Linux “Nicing” will just increase the time quantum
of the prioritized process, but will not give absolute priority to it. We therefore base our implementation on
the real-time scheduler that Linux provides. We use thesched_setscheduler() system call to set the
scheduling class of a PostgreSQL process working on a high priority transaction to “SCHED_RR,” which
marks a process as a Linux real-time process. We leave the scheduling class of a low priority process at the
standard “SCHED_OTHER.” Real-time processing in Linux always has absolute, preemptive priority over
standard processes. For more details on the implementation, see [139, 206]

Synopsis of results
Figure8.2(b) shows results from the e-commerce implementation described above. Again, the difference in
response times between the open and closed systems is immediately apparent – the response times of the
two systems differ by orders of magnitude. Interestingly, because the variability of the service demands is
much smaller in this workload than in the static web workload, the impact of scheduling in the open system
is much smaller. This also can be observed in the plot for the partly open system: even when the number of
requests is small, there is little difference between the response times of the different scheduling policies.

8.3.3 Auctioning web site
Our third case study investigates an auctioning web site. This case study uses simulation based on a trace
from one of the top-ten U.S. online auction sites.

Workload generation
For simulation-based case studies we implement a simulator that supports open, closed, and partly-open ar-
rival processes which are either created based on a trace or are generated from probability distributions. For
a trace-based arrival process the simulator expects the same input files as the workload generator described
in Section8.3.1. If no trace for the arrival process is available the simulator alternatively offers (1) open
system arrivals following a Poisson process; (2) closed system arrivals with exponential think times; (3)
partly-open arrivals with session arrivals following a Poisson process and think times within the sessions be-
ing exponentially distributed. The service demands can either be specified through a trace or one of several
probability distributions, including hyper-exponential distributions and more general distributions.

For our case study involving an auctioning web site we use the simulator and a trace containing the
service demands obtained from one of the top ten online auctioning sites in the US. No data on the request
arrival process is available. The characteristics of the service demands recorded in the trace are summarized
in Table8.4.

Number of jobs Mean job size Job size variability (C2) Min job size Max job size
300000 0.09s 9.19 0.01s 50s

Table 8.4: Summary statistics for the trace used in the auctioning case study.
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Scheduling
The policy used in a web site serving dynamic content, such as an auctioning web site, is best modeled by
PS. To study the effect of scheduling in this environment we additionally simulateFCFS andPSJF.

Synopsis of results
Figure8.2(c) shows results from the auctioning trace-based case study described above. The plots here
illustrate the same properties that we observed in the case of the static web implementation. In fact, the
difference between the open and closed response times is extreme, especially underFCFS. As a result,
there is more than a factor of ten improvement ofPSJF overFCFS (for ρ > 0.7), whereas there is little
difference in the closed system.

This effect can also be observed in the partly-open system, where for a small number of requests per
session the response times are comparable to those in the open system and for a large number of requests
per session the response times are comparable to those in the closed system. The actual convergence rate
depends on the variability of the service demands (C2). In particular, the e-commerce case study (lowC2)
converges quickly, while the static web and auctioning case studies (higherC2) converge more slowly.

8.3.4 Supercomputing center
In this section we model the Cray J90 and Cray C90 machines at the Pittsburgh Supercomputing Center
(PSC)[2]. These servers have between 4 and 16 processors and typically execute exactly one job at a time.
The jobs are run-to-completion, i.e. no preemption or timesharing.

Workload generation
To simulate the workload for the supercomputing case study we use our simulator described in Section8.3.3
and two traces that we obtained from the PSC. The traces were collected from January through December
1997 and contain the service demands for a total of more than 50,000 jobs. The statistics of the traces are
summarized in Table8.5. Note the high variability in the workloads.

System Number of jobs Mean job size Job size variability (C2) Min job size Max job size
C90 54962 4562.6s 43.16 1s 2.22e6s
J90 3582 9448.6s 10.02 4s 0.61e6s

Table 8.5: Summary statistics for the trace used in the supercomputing case study.

Scheduling
The Cray J90 and Cray C90 machines can only be scheduled in a non-preemptive fashion. In addition to
FCFS, which is the standard non-preemptive policy, we consider two size-based policies that are of interest
in this setting. The Non-preemptive-Shortest-Job-First (SJF) policy gives preference to the job with the
smallest service demand, while the Non-preemptive-Longest-Job-First policy (LJF) favors the longest one.
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Figure 8.4: Effect of WAN conditions in the static web case study. The top row shows results for good WAN
conditions (average RTT=50ms, loss rate=1%) and the bottom row shows results for poor WAN conditions
(average RTT=100ms, loss rate=4%). In both cases the closed system has an MPL of 200. Note that, due
to network effects, the closed system cannot achieve a load of 1, even when think time is zero. Under the
settings we consider here, the max achievable load is≈ 0.98.

Synopsis of results
Figure8.2(d) shows results from the super-computing trace-based case study for the PSC C90 workload. The
same trends we have observed in the first three case studies are again prominent here. The closed system
response times are orders of magnitude lower for the closed system than the open system. Furthermore,
scheduling is far less effective for the closed systems than the open ones. Looking more closely at the
closed systems, we see that scheduling is only significant in certain regions of moderate load, even under
this highly variable workload. By contrast, for open systems the high variability of the workload results in
orders of magnitude disparity between the scheduling policies.

In the partly open system, across all applications, when the mean number of requests per session is
small, the system behaves very much like the open system; as the mean number of requests per session
grows, the partly-open system behaves more like a closed system. The actual convergence rate depends on
the variability of the service demands (C2). In particular, the e-commerce case study (lowC2) converges
quickly, while the supercomputing case study (highC2) converges slowly.
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8.3.5 Study of WAN effects
To study the effect of network conditions, we return to the case of static web requests (Section8.3.1), but
this time we include the emulation of network losses and delays in the experiments.

Workload generation
The setup and workload generation is identical to the case study of static web requests (Section8.3.1),
except that we add functionality for emulating WAN effects as follows. We implement a separate module
for the Linux kernel that can drop or delay incoming and outgoing TCP packets (similarly to Dummynet
[190] for FreeBSD). More precisely, we change theip_rcv() and theip_output() functions in the
Linux TCP-IP stack to intercept in- and out-going packets to create losses and delays. In order to delay
packets, we use theadd_timer() facility to schedule the transmission of delayed packets. We recompile
the kernel withHZ=1000 to get a finer-grained millisecond timer resolution. In order to drop packets, we
use an independent, uniform random loss model which can be configured to a specified probability, as in
Dummynet.

Synopsis of results
Figures8.4compares the response times of the closed and the open systems under (a) relatively good WAN
conditions (50ms RTT and 1% loss rate) and under (b) poor WAN conditions (100ms RTT and 4% loss rate).

We find that under WAN conditions the differences between the open and closed systems are smaller
(proportionally) than in a LAN (Figure8.2 (a)), however, they are still significant for high server loads
(load> 0.8). The reason that the differences are smaller in WAN conditions is that response times include
network overheads (network delays and losses) in addition to delays at the server. These overheads affect
the response times in the open and closed system in the same way, causing the proportional differences
between open and closed systems to shrink. For similar reasons, scheduling has less of an effect when WAN
effects are strong, even in the case of an open system.SRPT improves significantly overPS only for high
loads, and even then the improvement is smaller than in a LAN. The reason is that scheduling changes only
the time spent at the server, not network delays and losses. Therefore, it is effective when server delays
dominate response time, which does not happen under low loads when WAN effects are strong.

8.4 Open versus closed systems
The case studies in the previous section have illustrated the dramatic impact of the system model in practice;
however, more experimentation is needed in order to understand the reasons for these differences. In this
section, we will develop principles that help explain both the differences between the open and closed
system and the impact of these differences with respect to scheduling. In addition to the case studies that we
have already discussed, we will use model-based simulations in order to provide more control over system
parameters, such as job size variability, that are fixed in the case studies. We start with the simple case of
FCFS scheduling and then move to more complicated scheduling policies.
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Figure 8.5: Model and trace-based simulation results showing mean response time as a function of load
and service demand variability underFCFS scheduling. (a) and (b) use model based simulation, while (c)
and (d) uses trace-based simulation. In all cases, the solid line represents an open system and the dashed
lines represent closed systems with different MPLs. The load is adjusted via the think time in the closed
system, and via the arrival rate in the open system. In the model-based simulations,E[X] = 10. In (a) we
fix C2 = 8 and in (b) we fixρ = 0.9.

8.4.1 FCFS
Our study of the simple case ofFCFS scheduling will illustrate three principles that we will exploit when
studying more complex policies.

Principle (i): For a given load, mean response times are significantly lower in closed systems than in open
systems.

Principle (i) is maybe the most noticeable performance issue differentiating open and closed systems
in our case studies (Figure8.2). We bring further attention to this principle in Figure8.5 due to its impor-
tance for the vast literature on capacity planning, which typically relies on closed models, and hence may
underestimate the resources needed when an open model is more appropriate.

For fixed high loads, the response time under the closed system isorders of magnitudelower than those
for the open system. While Schatte [198, 199] has proven that, underFCFS, the open system will always
serve as an upper bound for the response time of the closed system, the magnitude of the difference in
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Figure 8.6: Model-based simulation results illustrating how the service demand variability, the MPL, and
the think time can affect the system load in a closed system. These plots useFCFS scheduling, however
results are parallel under other scheduling policies.

practical settings has not previously been studied. Intuitively, this difference in mean response time between
open and closed systems is a consequence of the fixed MPL,N , in closed systems, which limits the queue
length seen in closed systems toN even under very high load. By contrast, no such limit exists for an open
system.

Principle (ii): As the MPL grows, closed systems become open, but convergence is slow for practical pur-
poses.

Principle (ii) is illustrated by Figure8.5. We see that as the MPL,N , increases from 10 to 100 to
1000, the curves for the closed system approach the curves for the open system. Schatte [198, 199] proves
formally that asN grows to infinity, a closedFCFS queue converges to an open M/GI/1/FCFS queue.
What is interesting however, is how slowly this convergence takes place. When the service demand has
high variability (C2), a closed system with an MPL of 1000 still has much lower response times then the
corresponding open system. Even when the job service demands are lightly variable, an MPL of 500 is
required for the closed system to achieve response times comparable to the corresponding open system.
Further, the differences are more dramatic in the case-study results than in the model-based simulations.

We can explain the convergence of a closed system to an open one asN gets very large. In the open
M/GI/1 system, the arrival process is Poisson and thus has exponential interarrival times each having a
constant rate, which is independent of the completions at the server. In the closed system, the interarrival
times are governed by the exponential think times; however, the rate changes with each job completion.
WhenN is small, the rate can change drastically. WhenN is large though, there will likely be many jobs
“thinking” at any given point in the closed system. So a completion, which incrementsNthinking by one,
has very little effect on the arrival rate. AsN goes to infinity, the effect of a completion on the arrival rate
disappears completely and the closed arrival process matches the open arrival process.

This principle impacts the choice of whether an open or closed system model is appropriate. One might
think that an open system is a reasonable approximation for a closed system with a high MPL; however,
though this can be true in some cases, the closed and open system models may still behave significantly
differently if the service demands are highly variable.
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Principle (iii): While variability has a large effect in open systems, the effect is much smaller in closed
systems.

This principle is difficult to see in the case-study figures (Figure8.2) since each trace has a fixed vari-
ability. However, it can be observed by comparing the magnitude of disparity between the e-commerce site
results (low variability) and the others (high variability). This principle is most significant for the supercom-
puting workload, whereC2 can be very high.

Using simulations, we can study this effect directly. Figure8.5(b) compares open and closed systems
under afixed loadρ = 0.9, as a function of the service demand variabilityC2. For an open system, we
see thatC2 directly affects mean response time. This is to be expected since highC2, underFCFS service,
results in short jobs being stuck behind long jobs, increasing mean response time. In contrast, for the closed
system with MPL 10,C2 has comparatively little effect on mean response time. This is counterintuitive,
but can be explained by observing that for lower MPL there arefewershort jobs stuck behind long jobs in a
closed system, since the number of jobs in the system (Nsystem) is bounded. As MPL is increased,C2 can
have more of an effect, sinceNsystem can be higher.

It is important to point out that by holding the load constant in Figure8.5(b), we are actually performing
a conservative comparison of open and closed systems. If we didn’t hold the load fixed as we changedC2,
increasingC2 would result in a slight drop in the load of the closed system as shown in Figure8.6(b). This
slight drop in load, would cause a drop in response times for closed systems, whereas there is no such effect
in open systems.

8.4.2 The impact of scheduling
The value of scheduling in open systems is understood and cannot be overstated. In open systems, there
are order of magnitude differences between the performance of scheduling policies because scheduling can
prevent small jobs from queueing behind large jobs. In contrast, scheduling in closed systems is not well
understood.

Principle (iv): While open systems benefit significantly from scheduling with respect to response time, closed
systems improve much less.

Principle (v): Scheduling only significantly improves response time in closed systems under very specific
parameter settings: moderate load (think times) and high MPL.

Figure8.2illustrates the fundamentally different behavior of mean response time in the open and closed
systems in realistic settings. In Figure8.7, we further study this difference as a function of (a) load and (b)
variability using simulations. Under the open system, as load increases, the disparity between the response
times of the scheduling policies grows, eventually differing by orders of magnitude. In contrast, at both high
and low loads in the closed system, the scheduling policies all perform similarly; only at moderate loads is
there a significant difference between the policies – and even here the differences are only a factor of 2.5.
Another interesting point is that, whereas forFCFS the mean response time of an open system bounded that
in the corresponding closed system from above, this does not hold for other policies such asPESJF, where
the open system can result in lower response times than the closed system.

We can build intuition for the limited effects of scheduling in closed systems by first considering a
closed feedback loop with no think time. In such a system, surprisingly, the scheduling done at the queue
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Figure 8.7: Model-based simulation results illustrating the different effects of scheduling in closed and
open systems. In the closed system the MPL is 100, and in both systems the service demand distribution has
mean 10. For the two figures in (a)C2 was fixed at 8 and in the two figures in (b) the load was fixed at 0.9.

is inconsequential – all work conserving scheduling policies perform equivalently. To see why, note that in
a closed system Little’s Law states thatN is the product of the mean throughput andE[T ], whereN is the
constant MPL across policies. We will now explain why the mean throughput is constant across all work
conserving scheduling policies (when think time is 0), and hence it will follow thatE[T ] is also constant
across scheduling policies. The mean throughput is the long-run average rate of completions. Since a new
job is only created when a job completes, over a long period of time, all work conserving scheduling policies
will complete the same set of jobs plus or minus the initial setN . As time goes to infinity, the initial set
N becomes unimportant; hence the mean throughput is constant. This argument does not hold for open
systems because for open systems Little’s Law states thatE[N ] = λE[T ], andE[N ] is not constant across
scheduling policies.

Under closed systems with think time, we now allow a varying number of jobs in the queue, and thus
there is some difference between scheduling policies. However, as think time grows, load becomes small
and so scheduling has less effect.

Throughout Figure8.7, the MPL is held constant at 100. Recall from Principle (ii) in Section8.4.1that
the effect of MPL is to transition between open and closed systems. Thus, under smaller MPL, the effects
of scheduling are even less noticeable in the closed system; however, for larger MPL scheduling can have a
larger effect.
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A very subtle effect, not yet mentioned, is that in a closed system the scheduling policy actually affects
the throughput, and hence the load. “Good” policies, likePESJF, increase throughput, and hence load,
slightly (less than 10%). Had we captured this effect (rather than holding the load fixed), the scheduling
policies in the closed system would have appeared even closer, resulting in even starker differences between
the closed and open systems.

The impact of Principles (iv) and (v) is clear. For closed systems, scheduling provides small improve-
ment across all loads, but can only result in substantial improvement when load (think time) is moderate. In
contrast, scheduling always provides substantial improvements for open systems.

Principle (vi): Scheduling can limit the effect of variability in both open and closed systems.

For both the open and closed systems, better scheduling (PS andPESJF) helps combat the effect of
increasing variability, as seen in Figure8.7. The improvement; however, is less dramatic for closed systems
due to Principle (iii) in Section8.4.1, which tells us that variability has less of an effect on closed systems
in general.

8.5 Partly-open systems
So far we have limited our comparisons primarily to the open and closed system models. We now begin our
discussion of the partly-open model. The partly-open model is of particular interest because it (a) serves as
a more realistic system model for many applications; and (b) helps illustrate when a “purely” open or closed
system is a good approximation of user behavior.

We focus on the effects of the mean number of requests per session and the think time because the other
parameters, e.g. load and job size variability, have similar effects to those observed in Sections8.4.1and
8.4.2. Throughout the section, we fix the load of the partly-open system by adjusting the arrival rate,λ.
Note that, in contrast to the closed model, adjusting the think time of the partly-open model has no impact
on the load.

The partly-open model we discuss aims to mimic user behavior at a web site where, after making a
request, the user will stay and make another request with probabilityp. This model has been mentioned
both by prior theoretical [191, 77, 253] and implementation [96] research. Many other variations of partly-
open systems have also been proposed in the literature. For instance, Dowdy and Chopra create a hybrid
system by specifying the MPL of a closed system using a probability distribution [67]. Another proposed
hybrid model places upper and lower bounds on the number of jobs allowed into an open system [124]. A
differentiating feature of the partly-open model we discuss is its behavioral nature.

Principle (vii): A partly-open system behaves similarly to an open system when the expected number of
requests per session is small (≤ 5 as a rule-of-thumb) and similarly to a closed system when the expected
number of requests per session is large (≥ 10 as a rule-of-thumb).

Principle (vii) is illustrated clearly in the case study results shown in Figure8.2 and in the simulation
results shown in Figure8.8(a). When the mean number of requests per session is 1 we have a significant
separation between the response time under the scheduling policies, as in open systems. However, when the
mean number of requests per session is large, we have comparatively little separation between the response
times of the scheduling policies; as in closed systems. Figures8.2and8.8(a) are just a few examples of the
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Figure 8.8: Model and implementation-based results for the partly-open system. (a) and (b) are model-
based simulations showing mean response time as a function of the expected number of requests per session.
(c) and (d) show the mean response time as a function of the think time, for a fixed load. In (a)-(c),E[X] =
10 andC2 = 8. In (c) and (d), we fixρ = 0.6 andp = 0.75, which yields and average of 4 requests per
session.

range of configurations we studied, and across a wide range of parameters, the point where the separation
between the performance of scheduling policies becomes small is, as a rule-of-thumb, around 10 requests
per session. Note however that this point can range anywhere between 5 and 20 requests per session asC2

ranges from4 to 49 respectively. We will demonstrate in Section8.6 how to use this rule-of-thumb as a
guideline for determining whether a purely open or purely closed workload generator is most suitable, or
whether a partly-open generator is necessary.

Principle (viii): In a partly-open system, think time has little effect on mean response time.

Figure8.8illustrates Principle (viii). We find that the think time in the partly-open system does not affect
the mean response time or load of the system under any of these policies. This observation holds across all
partly-open systems we have investigated (regardless of the number of requests per session), including the
case-studies described in Section8.3.
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Principle (viii) may seem surprising at first, but forPS andFCFS scheduling it can be shown formally
under product-form workload assumptions. Intuitively, we can observe that changing the think time in the
partly-open system has no effect on the load because the same amount of work must be processed. To
change the load, we must adjust either the number of requests per session or the arrival rate. The only effect
of think time is to add small correlations into the arrival stream.

8.6 Choosing a system model
The previous sections brought to light vast differences in system performance depending on whether the
workload generator follows an open or closed system model. A direct consequence is that the accuracy of
performance evaluation depends on accurately modeling the underlying system as either open, closed, or
partly-open.

A safe way out would be to always choose a partly-open system model, since it both matches the typical
user behavior in many applications and generalizes the open and closed system models – depending on the
parameters it can behave more like an open or more like a closed system. However, as Table8.1 illustrates,
available workload generators often support only either closed or open system models. This motivates
the following fundamental questions for workload modeling:“Given a particular workload, is a purely
open or purely closed system model more accurate for the workload? When is a partly-open system model
necessary?”

In the remainder of this section we illustrate how our eight principles might be used to answer this
question for various web workloads. Our basic method is as follows. For a given system we follow these
steps:

1. Collect traces from the system.

2. Construct a partly-open model for the system, since the partly-open model is the most general and
accurate. In particular, obtain the relevant parameters for the partly-open model.

3. Given the parameterized partly-open model, determine if an open/closed model is an appropriate
substitute for the partly-open model or if the partly-open model is necessary.

Table8.6summarizes the traces we collected as part of Step 1. Our trace collection spans many different
types of sites, including busy commercial sites, sites of major sporting events, sites of research institutes,
and an online gaming site.

We next model each site as a partly-open system. According to Principles (vii) and (viii) the most rel-
evant parameter of a partly-open system model is the number of requests issued in a user session. Other
parameters such as the think time between successive requests in a session are of lesser importance. Deter-
mining the average number of requests per user session for a web site requires identifying user sessions in
the corresponding web trace. While there is no 100% accurate way to do this, we employ some common
estimation techniques [15, 140].

First, each source IP address in a trace is taken to represent a different user. Second, session boundaries
are determined by a period of inactivity by the user, i.e. a period of time during which no requests from the
corresponding IP address are received. Typically, this is accomplished by ending a session whenever there
is a period of inactivity larger than timeout thresholdτ . In some cases, web sites themselves enforce such a
threshold; however, more typicallyτ must be estimated.
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Type of site Date Total #Req.
1 Large corporate web site Feb’01 1609799
2 CMU web server [4] Nov’01 90570
3 Online department store June’00 891366
4 Science institute (USGS[3]) Nov’02 107078
5 Online gaming site [232] May’04 45778
6 Financial service provider Aug’00 275786
7 Supercomputing web site [2] May’04 82566
8 Kasparov-DeepBlue match May’97 580068
9 Site seeing “slashdot effect” Feb’99 194968

10 Soccer world cup [103] Jul’98 4606052

Table 8.6: A summary table of the web traces used to illustrate how to choose between the open and closed
system models.

We consider two different ways of estimatingτ . The first one is to use a defacto standard value forτ ,
which is 1800s (30 min) [140]. The second method is to estimateτ from the traces themselves by studying
the derivative of howτ affects the total number of sessions in the trace. We illustrate this latter method for
a few representative traces in Figure8.9(a). Notice that as the threshold increases from 1-100s the number
of sessions decreases quickly; whereas from 1000s on, the decrease is much smaller. Furthermore, Figure
8.9(b) shows that with respect to the number of requests, stabilization is also reached atτ > 1000s. Hence
we adoptτ = 1800s in what follows.

The mean number of requests per session whenτ = 1800s for all traces is summarized in Table8.7.
The table illustrates that the average number of requests for web sessions varies largely depending on the
site, ranging from less than 2 requests per session to almost 13. Interestingly, even for similar types of web
sites the number of requests can vary considerably. For example sites 8 and 10 are both web sites of sporting
events (a chess tournament and a soccer tournament), but the number of requests per session is quite low
(2.4) in one case, while quite high (11.6) in the other. Similarly, sites 2, 4, and 7 are all web sites of scientific
institutes but the number of requests per sessions varies from 1.8 to 6.

Using the rule of thumb in principle (vii), we can conclude that neither the open nor the closed system
model accurately represents all the sites. For sites 1, 2, 4, 6, 8, and 9 an open system model is accurate;
whereas a closed system model is accurate for the sites 5 and 10. Further, it is not clear whether an open or
closed model is appropriate for sites 3 and 7.

The impact of choosing between open and closed system models correctly is demonstrated by site 10, the
world cup dataset. This is the same dataset used in the static web case study, where we saw large differences
depending on whether we modeled the workload using an open or a closed system. We have just concluded
that a closed model is most appropriate for this workload, thus the magnitude of differences between the
open and closed results in Figure8.2 illustrates the impact of the choice of a system model.
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Figure 8.9: Statistics for 3 representative web traces (sites 3, 6, and 10) illustrating (a) the number of
user sessions as a function of the timeout threshold and (b) the expected number of requests per session as
a function of the timeout threshold. The vertical line on each plot corresponds to a timeout of 1800s. From
these plots we can conclude that an open model is appropriate for site 6, a closed model is appropriate for
site 10, and neither an open or a closed is appropriate for site 3.

Site 1 2 3 4 5 6 7 8 9 10
Avg. Req. per session 2.4 1.8 5.4 3.6 12.9 1.4 6.0 2.4 1.2 11.6
Approp. Sys. Model open open ? open closed open ? open open closed

Table 8.7: A summary table of the expected number of visits in the web traces used to illustrate how to
make a choice between the open and closed system models.

8.7 Concluding remarks
In this chapter we considered one particularly important practical extension of the M/GI/1 model: dependen-
cies between service completions and new arrivals. Throughout computer applications it is quite common
that users must wait for one request to complete before making a new request, and this factor is ignored
in traditional queueing models, such as the M/GI/1, that rely on open system models. We have seen that
dependencies between the arrival and completion processes in the closed and partly-open system models
limit the benefits provided by scheduling with respect to mean response time. However, we have also seen
that in many practical settings scheduling can still be quite beneficial.

This chapter presented eight simple principles that function to explain the differences in behavior of
closed, open, and partly-open system models. The more intuitive of these principles point out that response
times under closed systems are typically lower than in the corresponding open system with equal load, and
that as MPL increases, closed systems approach open ones. Less obviously, our principles point out that:
(a) the magnitude of the difference in response times between closed and open systems can be very large,
even under moderate load; (b) the convergence of closed to open as MPL grows is slow, especially when
service demand variability (C2) is high; and (c) scheduling is far more beneficial in open systems than in
closed ones. We also compare the partly-open model with the open and closed models. We illustrate the
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strong effect of the number of requests per session andC2 on the behavior of the partly-open model, and
the surprisingly weak effect of think time.

These principles underscore the importance of choosing a workload generator with the appropriate sys-
tem model when experimenting with system design changes. For example, in the context of web appli-
cations, the arrival process at a web site is best modeled by a partly-open system yet most web workload
generators are either strictly open or strictly closed. Our findings provide guidelines for choosing whether an
open or closed model is the better approximation based on characteristics of the workload. A high number
of simultaneous users (more than 1000) suggests an open model, but a high number of requests per session
(more than 10) suggests a closed model. Both these cutoffs are affected by service demand variability:
highly variable demands requires larger cutoffs. Contrary to popular belief, it turns out that think times are
irrelevant to the choice of an open or closed model since they only affect the load.

The work in this chapter highlights the fact that understanding the appropriate system model is essential
to understanding the impact of scheduling. In particular, once it has been determined whether a closed,
open, or partly-open model is a better approximation, that in turn provides a guideline for the effectiveness
of scheduling. Scheduling is most effective in open systems, but can still provide benefits in closed systems
when both the load is moderate and service demand variability is high. So, though there are some cases
when scheduling is not effective, it is possible to identify these cases easily, and in most practical settings
scheduling is valuable resource for improving system performance, even when there is feedback between
arrivals and completions.



CHAPTER 9

The impact of multiserver architectures

So far in this thesis, we have considered only single server systems. In practice there are many cases where
multiple, slower, cheaper servers are preferable to a single, faster, more expensive server. For instance, high
traffic web sites are increasingly moving towards server farm architectures and processors are increasingly
using multi-core designs. This trend towards multiserver designs is also prevalent across other applications
such as wireless networks, where multi-channel designs are becoming common.

Given the increased adoption of multiserver designs in computer applications, it is important to under-
stand how the benefits of scheduling that we have studied in single server systems translate to multiserver
settings. Intuitively, it is clear that scheduling will be less effective in multiserver settings than it was in sin-
gle server settings. This is because scheduling is the only way to avoid forcing small jobs to queue behind
larger jobs in a single server system, while in a multiserver system this happens even underFCFS schedul-
ing. However, we will show that scheduling still provides performance benefits in multiserver systems, just
not the extreme gains we saw in single server systems.

In this chapter our goal is to characterize the impact of scheduling in multiserver systems. However, the
analysis of multiserver systems is a difficult problem, and outside ofFCFS scheduling little is understood
analytically. Thus, we cannot hope to obtain results in the generality that we obtained for the single server
queue. Instead, we will focus on understanding one important aspect of scheduling: prioritization.

Much of queueing theory is devoted to analyzing priority queues, where jobs are labeled and served
in accordance with a preemptive priority scheme: high-priority jobs preempt medium-priority jobs, which
in turn preempt low-priority jobs in the queue (see Section3.2.3). These simple priority schemes occur
frequently in practice. For example, sometimes the priority of a job is determined by the job’s owner via
a Service Level Agreement (SLA), whereby certain customers have chosen to pay more so as to get high-
priority access to some high-demand resource. Other times, the priority of a job is artificially created, so as
to maximize a company’s profit or increase system utilization. For example, an online store may choose to
give high priority to the requests of big spenders, so that those customers are less likely to go elsewhere, see
[138]. In addition to the practical importance of priority queues, they serve as a theoretical building block
for the analysis of more complicated scheduling policies, e.g.SRPT andPSJF, in the single server setting
(see Section3.2). Thus, one can view the results in this chapter as a first step towards the analysis ofSRPT
in the multiserver setting.

275
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Though analyzing the mean response time (and higher moments of response time) for different classes
of jobs is clearly an important problem, which has been well understood in the case of a single-server
M/GI/1 queue since the 1950’s [58], the problem becomes much more difficult when considered in the
context of a multiserver M/GI/k system. Even for an M/M/k system when jobs have different completion
rates little is known. The reason that priority queueing is difficult to analyze in a multiserver setting is
that jobs of different priorities may be in service (at different servers) at the same time, thus the Markov
chain representation of the multi-class, multiserver queue appears to require tracking the number of jobs of
each class. Hence one needs a Markov chain which is infinite inm dimensions, wherem is the number of
priority classes. While the analysis of a 1-dimensionally infinite Markov chain is easy, the analysis of an
m-dimensionally infinite Markov chain (m > 1) is largely intractable.

In this chapter, we introduce a new analytical approach that provides the first near-exact analysis of
the M/PH/k queue withm ≥ 2 preemptive-resume priority classes. Our approach, which we refer to as
Recursive Dimensionality Reduction (RDR) [242, 95], is very different from prior approaches. RDR allows
us to recursively reduce them-dimensionally infinite state space created by tracking them priority classes to
a1-dimensionally infinite state space, which is analytically tractable. The dimensionality reduction is done
without any truncation; rather, we reduce dimensionality by introducing “busy period transitions” within our
Markov chain, for various types of busy periods created by different job classes. The only approximation
in the RDR method stems from the fact that we need to approximate these busy periods using Markovian
(phase-type) PH distributions. We find that matching three moments of these busy periods is usually possible
using a 2-phase Coxian distribution, and provides sufficient accuracy, within a couple percent of simulation,
for all our experiments.

Our new analytic technique allows us to obtain many interesting insights about prioritization in mul-
tiserver settings [95]. For instance, RDR allows us to compare the performance of priority queueing in a
multiserver system withk servers each of speed1/k with the performance of a priority queue with single
server of speed1. We find that the effect of priorities in a single server system can be very different than in
a multiserver system of equal capacity. In addition, RDR allows us to study the effect of priority policies
that favor short jobs (“smart prioritization”) versus priority policies that favor long jobs (“foolish prioritiza-
tion”) under systems with different numbers of servers. Understanding the effect of “smart” prioritization
is important because many common scheduling policies are designed to give priority to short jobs. Further,
RDR allows us to study how effective class aggregation (aggregatingm > 2 priority classes into just2
priority classes) is as an approximation for dealing with systems having more than two priority classes. We
evaluate two types of class aggregation in order to illustrate when class aggregation serves as a reasonable
approximation.

Our new analytic technique also allows us to address the question of system design [242]. In particular,
in we ask: given the choice ofk slow servers of speeds/k or one fast server of speeds, which is preferable?
The question of “how many servers are best” has a long history in the literature, but this history is limited to
theFCFS setting. We will study this question in the setting of priority queues and then contrast the results
with the case ofFCFS scheduling in order to develop an understanding of the effect of prioritization on the
design of multiserver systems.
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9.1 Prior work analyzing multiserver priority queues
The literature on multiserver priority queues is vast, however almost all results are restricted to onlytwo
priority classes. Further, of the results for two priority classes, all assumeexponential service times. The
only papersnot restricted to two priority classes are approximations based on assuming that the multiserver
behavior parallels that of a single server system [38] or approximations based on aggregating priority classes
in multi-class systems so that it becomes a dual priority queue [148, 157].

Dual priority queues
We start by describing the papers restricted totwo priority classesandexponentially distributed service
demands. Techniques for analyzing the M/M/k dual priority system can be organized into four types on
which we elaborate below: (i) approximations via aggregation or truncation; (ii) matrix analytic methods;
(iii) generating function methods; (iv) special cases where the priority classes have the same mean. Unless
otherwise mentioned, preemptive-resume priorities should be assumed.

Nearly all analysis of dual priority M/M/k systems involves the use of Markov chains, which with two
priority classes grows infinitely in two dimensions (one dimension for each priority class). In order to
overcome this, researchers have simplified the chain in various ways. Kao and Narayanan truncate the chain
by either limiting the number of high priority jobs [107], or the number of low priority jobs [108]. Nishida
aggregates states, yielding an often rough approximation [157]. Kapadia, Kazmi and Mitchell explicitly
model a finite queue system [110]. Unfortunately, aggregation or truncation is unable, in general, to capture
the system performance as the traffic intensity grows large.

Although, in theory, matrix analytic methods can be used to directly analyze a 2D-infinite Markov chain
(see for example [45]), matrix analytic methods are much simpler and more computationally efficient when
applied to a 1D-infinite Markov chain. Therefore, most papers that use the matrix analytic method to analyze
systems involving 2D-infinite Markov chains first reduce the 2D-infinite chain to a 1D-infinite chain by, for
example, truncating the state space by placing an upper bound on the number of jobs [107, 108, 126, 156].
Miller [ 145] and Ngo and Lee [156] partition the state space into blocks and then “super-blocks,” according
to the number of high priority customers in queue. However, [145] experiences numerical instability issues
whenρ > 0.8.

A third stream of research capitalizes on the exponential job sizes by explicitly writing out the balance
equations and then finding roots via generating functions. In general these yield complicated mathematical
expressions susceptible to numerical instabilities at higher loads. See King and Mitrani [148]; Gail, Hantler,
and Taylor [81, 82]; Feng, Kowada, and Adachi [75]; and Kao and Wilson [109].

Finally there are papers that consider the special case where the multiple priority classes all have the
same mean. These include Davis [63], Kella and Yechiali [111] (for non-preemptive priorities), and Buzen
and Bondi [48].

The only work dealing with non-exponential service times is contained in a pair of very recent papers,
by Sleptchenko et. al. [211, 212]. Both papers consider a two-priority, multiserver system where within
each priority there may be a number of different classes, each with its own different exponential job size
distribution. This is equivalent to assuming ahyper-exponential job size distributionfor each of thetwo
priority classes. The problem is solved via a combination of generating functions and matrix analytic
methods. In theory, their technique may be generalizable to PH distributions, though they evaluate only
hyper-exponential distributions due to the increased complexity necessary when using more general PH
distributions.
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More than two priority classes
For the case ofmore than two priority classes, there are only coarse approximations. The Bondi-Buzen
(BB) approximation [38] is beautiful in its simplicity and usability. It is based on an intuitive observation
that the “improvement” of priority scheduling over FCFS scheduling underk servers is similar to that for
the case of one server with equal total capacity:

E[DM/GI/k/prio]
E[DM/GI/k/FCFS]

≈ E[DM/GI/1/prio]
E[DM/GI/1/FCFS]

= scaling factor. (9.1)

HereE[DM/GI/k/prio] is the overall mean delay under priority scheduling withk servers of speed1/k, and
E[DM/GI/k/FCFS] is defined similarly for FCFS, while M/GI/1 refers to a single server queue with speed 1.
This relation is exact when job sizes are exponential with the same rate for all classes; however what happens
when this is not the case is studied for the first time in this chapter.

The other approximation (which we denote by MK-N) that allows for more than two priority classes
and exponential job sizes is due to Mitrani and King [148], and also used by Nishida [157] to extend the
latter author’s analysis of two priority classes tom > 2 priority classes. The MK-N approximation analyzes
the mean delay of the lowest priority class in an M/M/k queue withm ≥ 2 priority classes byaggregating
all the higher priority classes. Thus, instead of aggregating all jobs into one class, as BB does, MK-N
aggregates into two classes. The job size distribution of the aggregated class is then approximated with an
exponential distribution by matching the first moment of the distribution.

9.2 Analyzing the M/PH/k with m priority classes
In this section we describe the RDR technique, dividing our explanation into three parts. As an introduction,
in Section9.2.1, we deal only with the simplest case ofm = 2 priority classes and exponential job sizes,
which we solve using the techniques in [165, 242]. We then move to the difficult case ofm > 2 priority
classes, but still with exponential service times, in Section9.2.2. Here the techniques from [165, 242] do not
apply, so we introduce Recursive Dimensionality Reduction (RDR). The RDR approach uses the analysis
of them − 1 priority classes to analyze them-th priority class. This is a non-trivial procedure form > 2
since it involves evaluating many complex passage times (busy periods) in the chain representing them− 1
priority classes, as these passage times now form transitions within the chain representingm priority classes.
Finally in Section9.2.3, we show how RDR can be applied to the most general case of PH service times
with m > 2 priority classes.

All the analysis up to through Section9.2.3deals with how to derive mean per-class response times. In
Section9.2.4we illustrate how the RDR method can be extended to obtainvariance of response timefor
each class. Finally, in Section9.2.5, we introduce RDR-A, which is an approximation of RDR, allowing
very fast (< 1 second) evaluation of high numbers of priority classes and servers, with small (< 5%) error.

9.2.1 Exponential job sizes and two priority classes
Consider the simplest case of two servers and two priority classes, high (H) and low (L), with exponentially
distributed sizes with ratesµH andµL respectively. Figure9.1(a) illustrates a Markov chain of this system,
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Figure 9.1: (a) Markov chain for an M/M/2 queue with two priority classes. This Markov chain is infinite
in two dimensions. Via the Dimensionality Reduction technique, we arrive at the chain in (b), which uses
busy period transitions, and is only infinite in one dimension. In (b), the busy period is represented by
a single transition. In (c), the busy period is represented by a two phase PH distribution (with Coxian
representation), yielding a 1D-infinite Markov chain.

whose states track the number of high priority and low priority jobs; hence this chain grows infinitely in
two dimensions. Observe that high priority jobs simply see an M/M/2 queue, and thus their mean response
time is well-known. Low priority jobs, however, have access to either an M/M/2, M/M/1, or no server at all,
depending on the number of high priority jobs. Thus their mean response time is more complicated, and this
is where we focus our efforts.

Figure9.1(b) illustrates the reduction of the 2D-infinite Markov chain to a 1D-infinite chain. The 1D-
infinite chain tracks the number of low priority jobs exactly. For the high priority jobs, the 1D-infinite chain
only differentiates between zero, one, and two-or-more high priority jobs. As soon as there are two-or-more
high priority jobs, ahigh priority busy periodis started. During the high priority busy period, the system
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only services high priority jobs, until the number of high priority jobs drops to one.1 The length of time
spent in this high priority busy period is exactly an M/M/1 busy period where the service rate is2µH . We
denote the duration of this busy period by the transition labelledB2µH .

The busy periodB2µH is not exponentially-distributed. Hence it is not clear how it should fit into
a Markov model. We use a PH distribution (specifically a Coxian distribution) to match the first three
moments of the distribution ofB2µH . Parameters of the PH distribution, whose first three moments match
those ofB2µH , are calculated via the closed form solutions provided in [164].

Figure 9.1(c) illustrates the same 1D-infinite chain as in Figure9.1(b), except that the busy period
transition is now replaced by a two phase PH distribution with parameterst1, t12 and t2. The limiting
probabilities in this 1D-infinite chain can be analyzed using matrix analytic methods [125]. These in turn
yield the mean number of low priority jobs, which via Little’s law yields the mean response time for low
priority jobs. The only inaccuracy in the above approach is that only three moments of the high priority busy
period are matched. We will see later that this suffices to obtain very high accuracy across a wide range of
load and job size distributions.

More formally, the 1D-infinite Markov chain is modeled as a (nonhomogeneous) QBD process, where
level` of the process denotes the`-th column, namely all states of the form (iH,`L) for each`. The generator
matrix,Q, of this process can be expressed as a block diagonal matrix:

Q =


L(0) F(0)

B(1) L(1) F(1)

B(2) L(2) F(2)

... ... ...


where submatrixF(`) encodes (forward) transitions from level (column)` to level`+1 for ` ≥ 0, submatrix
B(`) encodes (backward) transitions from level` to level`−1 for ` ≥ 1, and submatrixL(`) encodes (local)
transitions within level̀ for ` ≥ 0. Specifically, for the Markov Chain depicted in Figure9.1(c), we order the
4 states in level̀ as:(0H, `L), (1H, `L), (2+H, `L), (xH, `L). The pair of states{(2+H, `L), (xH, `L)}
are the states used to represent the busy period, where the state(2+H, `L) denotes the start of the busy
period and(xH, `L) denotes the intermediate “bubble” state in the busy period. Given this ordering of
states, we have:

L(`) =


−σ1 λH

µH −σ2 λH

t1 −σ3 t12
t2 −σ4


whereσi =

∑
j 6=i Qij . The delineations of the matrixL(`) are intended to highlight the busy period.

1Throughout the paper a “higher priority busy period” is defined as the time from when the system hask higher priority jobs
until there are onlyk − 1 higher priority jobs.
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Figure 9.2: This chain illustrates the case of two priority classes and three servers. The busy period
transitions are replaced by a Coxian phase-type distribution matching three moments of the busy period
duration, as shown in Figure9.1.

F(`) = λLI, for ` ≥ 0, whereI is a4× 4 identity matrix, and

B(`) = µL


min(2, `)

1
0

0


for ` ≥ 1.

The stationary probabilities of being in level`, ~π`, are then given recursively by~π` = ~π`−1 ·R(`), where
~π0 andR(`) are calculated as follows: Definè̂to be the level that the QBD process starts repeating (in
Figure9.1(c), ˆ̀= 1), then for` = 1, . . . , ˆ̀, we have thatR(`) is given recursively by:

F(`−1) + R(`) · L(`) + R(`) ·R(`+1) ·B(`+1) = 0,

where0 is a zero matrix of appropriate dimension (4 × 4). For ` ≥ ˆ̀+ 1, R(`) = R, whereR is given by
the minimal solution to the following matrix quadratic equation:

F(ˆ̀) + R · L(ˆ̀) + R2 ·B(ˆ̀) = 0.

Vector ~π0 is given by a positive solution of~π0

(
L(0) + R(1) ·B(1)

)
= ~0, normalized by the equation

~π0
∑∞

`=0

∏`
i=1 R(i) · ~1 = 1, where~0 and~1 are column vectors with an appropriate number of elements

of 0 and 1, respectively. The mean response time can now be computed using the stationary distributions,
~π`’s, given above, via Little’s law.

Figure9.2shows the generalization to a three server system. We simply add one row to the chain shown
in Figure9.1, and now differentiate between 0, 1, 2, or 3-or-more high priority jobs. This can be easily
extended to the case ofk > 3 servers.
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9.2.2 Exponential job sizes and m priority classes,
We now turn to the more difficult case ofm > 2 priority classes. We illustrate this for the case of two
servers and three priority classes: high priority (H), medium-priority (M), and low priority (L). The mean
response time for class H jobs and that for class M jobs are easy to compute. Class H jobs simply see an
M/M/2 queue. Class M jobs see the same system that the low priority jobs see in an M/M/2 queue having
two priority classes. Replacing the L’s by M’s in the chain in Figure9.1yields the mean response time for
the M class jobs.

The analysis of the class L jobs is the difficult part. The obvious approach would be to aggregate the H
and M jobs into a single class, so that we have a 2-class system (H-M versus L jobs). Then we could apply
the technique of the previous section, tracking exactly the number of low priority jobs and maintaining
limited state information on the H-M class. This is the approach that we follow in Section9.2.5in deriving
our RDR-A approximation. However, this approach is imprecise because the duration of the busy periods
in the H-M class depends on whether the busy period was started by 2H jobs, 1H and 1M job, or 2M jobs
in service. By ignoring the priorities among H’s and M’s, we are ignoring the fact that some types of busy
periods are more likely than others. Even given the information on who starts the busy period, this still does
not suffice to determine its duration, because the duration is also affected by the prioritization within the
aggregated H-M class.

Thus, a precise response time analysis of class L requires maintaining more information. As before,
we want to exactly track the number of class L jobs. Given that there are two servers, we need to further
differentiate between whether there are zero H and M jobs, one H or M job, or two or more H and M jobs.
Whenever there are two or more H and M jobs, we are in an H-M busy period. For an M/M/2 with three
priority classes, there aresix types of busy periodspossible, depending on the state at the start of the busy
period –(2H, 0M), (1H, 1M), or (0H, 2M) – and the state in which the busy period ends –(1H, 0M) or
(0H, 1M). We derive the busy period duration by conditioning on who starts and ends the busy period.

Figure9.3 (a) shows the level of the 1D-infinite chain in which the number of class L jobs isu. In
state (wH,vM,uL), v class M jobs andw class H jobs are in the system ifv + w < 2; otherwise, the state
(wH,vM,uL) denotes that we are in a H-M busy period that was started byv class M jobs andw class H
jobs. Observe that there are six types of busy periods depicted, labelledB1, B2, . . . ,B6; the busy period is
determined by the state in which it was started and the state in which it ends. Notice, for example, that both
states in the fourth and fifth row are labelled (0H,2M,uL), meaning that the busy period is started by two
class M jobs; but these two states differ in the class of the job that is left at the end of the H-M busy period.
In state (0H,2M,uL) of the fourth row, the busy period ends leaving a class H job, whereas in state of the
fifth row, the busy period ends leaving a class M job. (Recall that the class of job left at the end of a busy
period is probabilistically determined at thebeginningof the busy period and the duration of the busy period
is conditioned on the class of the job left at the end.) Herep2M,H , for example, denotes the probability
that the busy period started by two class M jobs ends leaving one class H job, whereaspHM,M denotes the
probability that the busy period started by one class H and one class M job, ends leaving one class M job.
The remaining probabilities are defined similarly.

It remains to derive the moments of the duration of busy periods,B1, B2, ..., B6, and probabilities
p2M,M , p2M,H , pHM,M , pHM,H , p2H,M , andp2H,H in Figure9.3(a). The trick to deducing these quantities
is to observe that the six busy periods correspond to passage times between two “diagonal” (shaded) levels
in the chain shown in figure9.3(b), which is the 1D-infinite chain that we used to analyze the class M
performance. We refer to the right shaded diagonal level as level` and the left shaded diagonal level as
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Figure 9.3: An overview of applying RDR in the case of 3 priority classes. (a) shows a level of the 1D-
infinite chain used to compute mean response time for low priority jobs in the case of three priority classes
and two servers, and all exponential service times. (b) shows the chain used to compute moments of the
durations of the six busy period transitions.

level ` − 1 (where` = 3). Note that the 3 states in level` correspond to the three possible “start” states
for busy periods, and the two states in level` − 1 correspond to the two possible “end” states for the busy
periods. Thus, for example, busy periodB1 in Figure9.3(a) corresponds to the first passage time from state
(0H, 2M) to state(0H, 1M) in the chain in Figure9.3(b), given that(0H, 1M) is the first state reached
in level ` − 1, when starting in state(0H, 2M) of level `. Likewise, probabilityp2M,M corresponds to
the probability that, in Figure9.3(b), state (0H,1M) is the first state of the two possible “end” states that is
reached in level̀ − 1, given that the “start” state is(0H, 2M). These conditional inter-level passage times
and ending probabilities within the chain in Figure9.3(b) can be calculated using techniques developed by
Neuts in [155]. We provide a precise description of this in [95]. Observe that these computations are greatly
facilitated by the fact that our chains are infinite in only one dimension.

More formally, the 1D-infinite Markov chain shown in Figure9.3(a) is modeled as a (nonhomogeneous)
QBD process, as in Section9.2.1. Here, level̀ of the QBD process denotes the`-th column, namely all
states of the form (iH,jM,`L) for each`. The submatrices of the QBD process,L(`), F(`), andB(`), have
size15 × 15. Specifically, the forward transitions areF(`) = λLI, for ` ≥ 0, whereI is a15 × 15 identity
matrix. The backward transitions are

B(`) = µL

 min(2, `)
1

0


for ` ≥ 1, where0 is a zero matrix of size13×13. We again order the 15 states in level` as:(0H, 0M, `L),
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(0H, 1M, `L), (1H, 0M, `L), followed by the two states associated by busy periodBi, for i = 1, 2, . . . , 6,
where, as before, the two states associated with each busy period are ordered by start state, intermediate
state. The local transitions are then given by:

L(`) =



−σ1 λM λH

µM −σ2 λM~p(2M,M) λM~p(2M,H) λM~p(MH,M) λM~p(MH,H)

µH −σ3 λH~p(MH,M) λH~p(MH,H) λH~p(2H,M) λH~p(2H,H)

~t(1) T(1)

~t(2) T(2)

~t(3) T(3)

~t(4) T(4)

~t(5) T(5)

~t(6) T(6)


for ` ≥ 0, where the lines delineate the six busy periods ordered asB1, B2, . . . , B6, and where

~t(i) =

(
t
(i)
1

t
(i)
2

)
, T(i) =

(
−σ2i+2 t

(i)
12

0 −σ2i+3

)
, andσi =

∑
j 6=i

Qij

~p(X,Y ) = (pX,Y , 0) whereX ∈ {2H,HM, 2M}, Y ∈ {H,M},

for 1 ≤ i ≤ 6, corresponding to busy periodsB1, B2, . . . , B6. Heret
(i)
1 , t

(i)
2 , t

(i)
12 are the rates of the PH

distribution used to represent busy periodBi.
Now, the stationary probability of this QBD process can be calculated via matrix analytic methods, as

in Section9.2.1. The mean response time in the priority system can then be computed using the stationary
distributions via Little’s law.

The extension of RDR tom > 3 classes is straightforward but increases in complexity. For example, for
the case ofm = 4 classes, we proceed as in Figure9.3, where we first create a chain that tracks exactly the
number of jobs in class 4, and creates busy periods for the aggregation of the three higher priority classes.
Then, to derive the busy periods for the three higher priority classes, we make use of the existing chain
for three classes shown in Figure9.3(a), and compute the appropriate passage times for that chain. For an
M/M/k with m priority classes, there are

(
m+k−2

k

)(
m+k−3

k−1

)
possible busy periods, where the first term in the

product represents the number of possible start states (all combinations of up tom− 1 priority classes over
k servers) and the second term represents the number of possible end states (all combinations of up tom−1
priority classes overk − 1 servers). That is, the number of different types of busy periods is polynomial in
k if m is constant (Θ(km)), and it is polynomial inm if k is constant (Θ(mk)); however, it is exponential in
k andm if neitherk norm is constant.2

2We note that in practice the number of busy periods can be reduced further, so that an M/M/k with m priority classes has(
m+k−3

k−1

)2
busy periods of class 1 to classm − 1 jobs. An advantage of this reduction is that the number of busy periods of class

1 to classm − 1 jobs becomes independent of the type of PH distributions that is used to approximate the busy period of class 1
to classm− 2 jobs. The trick to reducing the number of busy periods is illustrated by considering the example of the M/M/2 with
three classes, shown in Figure9.3. Here, by taking the mixture of the six busy periods,B1, B2, ..., B6, we can approximate the
H-M busy period byfour PH distributions. These four distributions of the H-M busy period are differentiated by the state from
which weenterthe H-M busy period (either (1H,0M) or (0H,1M)) and by the state we return to after the H-M busy period (either
(1H,0M) or (0H,1M)). More details are provided in [163].
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Practically speaking, the RDR approach is fast for a small number of servers and a small number of
priority classes. In examples we ran with an M/M/2 and 10 priority classes, the RDR algorithm yielded
mean response times within tens of seconds.3

9.2.3 The M/PH/k with m priority classes
In this section, we explicitly describe how RDR can be applied to analyze the case of PH job size distribu-
tions. We describe RDR for the case of two servers (k = 2) and two priority classes (m = 2), high (H) and
low (L) , where the class H jobs have a particular 2-phase PH job size distribution with Coxian representa-
tion, shown in figure9.4(a).4 Generalization to higherk’s and higherm’s is straightforward by applying the
recursive algorithm introduced in Section9.2.2.

Analyzing the performance of class H is trivial, since high priority jobs simply see the mean response
time in an M/PH/2 queue, which can be analyzed via standard matrix analytic methods. To analyze the
class L jobs, as before, we create a 1D-infinite Markov chain tracking the class L jobs, and use busy period
transitions to represent needed information regarding the class H jobs.

Observe that under the 2-phase Coxian job sizes distribution, we will needfour different types of busy
periods for high priority jobs, depending on the phases of the two jobs starting the busy period (1 & 1, or
1 & 2) and the phase of the job left at the end of the busy period (1 or 2). To derive the durations of these
busy periods, we observe that the busy periods correspond to passage times from shaded level3 to shaded
level 2 in the Markov chain shown in Figure9.4(b). Figure9.4(b) describes the behavior of class H jobs,
where states track the number of high priority jobs in the system and the phases of the jobs being processed.
Namely, at state (0H) there are no high priority jobs in the system; at state (1H,i), there is one high priority
job in phasei; at state (nH,i, j) there aren high priority jobs in the system and the two jobs are being
processed are in phasei andj, respectively (jobs in the queue are all in phase 1). The first passage times in
Figure9.4are computed again using Neuts’ method, as described in [95].

Figure9.4(c) shows a level of the chain that tracks the number of low priority jobs, where the number of
low priority jobs isu. The low priority job sizes are assumed to be exponentially distributed, but this can be
generalized to PH distributions. In state (0H,uL), no high priority jobs are in the system. An arrival of a high
priority job in state (0H,uL) triggers a transition to state (1H,1,uL). In state (1H,j,uL), one high priority job
in phasej is in service forj = 1, 2. An arrival of a high priority job in state (1H,j,uL) triggers a transition
to state (2+H,1, j,uL) for j = 1, 2. In state (2+H,1, j,uL), at least two high priority jobs are in the system,
and the two jobs that started the busy period were in phase1 andj, respectively, forj = 1, 2. The four types
of busy periods are labelled asB1, B2, B3, andB4, and the duration of these busy periods is approximated
by PH distributions by matching the first three moments of the busy period distribution (note that the busy
period cannot start with two jobs in phase two). Finally,p(1,j),i denotes the probability that a busy period
started by two jobs in phases1 andj, ends with a single job in phasei, for j = 1, 2, andi = 1, 2.

3Help with implementing the procedure described in this chapter is provided at [163].
4Under the Coxian job size distribution, a job starts in phase one where it is processed for a time exponentially distributed with

rateµ
(1)
H , and then either completes (with probabilityqH = 1− pH ) or moves to phase two (with probabilitypH ).
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Figure 9.4: (a) A 2-phase PH distribution with Coxian representation. (b) Markov chain which will be used
to compute the high priority job busy periods, in the case where high priority job size have a PH distribution
with Coxian representation shown in (a). (c) Chain for a system with two servers and two priority classes
where high priority jobs have Coxian service times.

9.2.4 Computing higher moments of response time
Throughout our discussion of RDR thus far, we have been concerned with computing the mean per-class
response time. It turns out that computing higher moments of per-class response time is not much more
difficult. Before we present our approach, we make two remarks. First, observe that it is trivial to derive all
moments of the steady-state per-classnumber of jobsin the system, directly from the steady-state probabil-
ities for the Markov chain, which we have already computed. Unfortunately, however, we cannot apply the
beautiful generalization of Little’s Law to higher moments (see [234, 31]) to immediately get the per-class
higher moments of response time, since jobs do not necessarily leave our system in the order in which they
arrive.

Below we sketch our approach for computing per-class variance in response time for the case of two
servers, two priority classes (H and L), and exponential service times. We will refer to Figure9.1(c) during
our discussion. For class H jobs, it is easy to compute the variance of their response time, since they are
oblivious to class L jobs, and the variance of response time in an M/M/2/FCFS queue is well known (see
page 529 in [104]). Thus we will concentrate on class L jobs.

Consider the 1D-infinite Markov Chain shown in Figure9.1(c) that tracks the number of class L jobs.
We use the limiting probabilities to condition on what a class L arrival sees. Specifically, by PASTA (Poisson
Arrivals See Time Averages) a class L arrival with probabilityπ(iH,`L) will see state(iH, `L) when it arrives,
and will cause the system state to change to(iH, (` + 1)L) at that moment.

To calculate the variance in response time seen by this “tagged” (classL) arrival, we remove all theλL
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arcs from the Markov chain in Figure9.1(c), so that there are no more classL arrivals. This enables us
to view the response time for the tagged arrival as the first passage time of this modified chain from state
(iH, (` + 1)L) to the state where the tagged arrival departs. The only complexity is in figuring out exactly
in which state the tagged arrival departs.

The tagged arrival may depart the modified Markov chain the first time it hits(0H, 1L) or (1H, 1L),
depending on the sample path the chain follows. We will compute the passage time to go from state(iH, (`+
1)L) to one of these states {(0H, 1L) or (1H, 1L) }. It is important to observe that the first time we hit a
state with 1L, cannot be state(2+H, 1L), by virtue of the fact that the Markov chain does not have decreasing
arcs in its bottom rows.

If (1H, 1L) is the first state that we hit with 1L, then we know that we must have gotten there from
(1H, 2L), which means that the single L job remaining is in fact the tagged arrival. (We’re assuming
preemption is done “youngest first to be preempted”). Thus we need to now add on the passage time to go
from (1H, 1L) to (∗, 0L) to get the full response time for the tagged arrival.

If (0H, 1L) is the first state that we hit with 1L, then we know that we got there from state(0H, 2L). In
this case, the remaining 1L is equally likely to be the tagged arrival or not. With probability half, the tagged
arrival is already gone, in which case we add nothing to the response time. With probability half, the tagged
arrival remains, in which case we now add on the passage time to go from(0H, 1L) to (∗, 0L) to get the full
response time for the tagged arrival.

Observe that computing the moments of the above passage times is straightforward, since all theλL arcs
have been removed.

9.2.5 A computationally efficient approximation
Clearly, the RDR method can become computationally intensive as the number of priority classes grows.
This motivates us to introduce an approximation based on RDR called RDR-A. RDR-A applies tom > 2
priority classes and PH job size distributions.

The key idea behind RDR-A is that the RDR computation is far simpler when there are only two priority
classes: H and L. In RDR-A, underm priority classes, we simply aggregate these classes into two priority
classes, where them−1 higher priority classes become the new aggregate H class and themth priority class
becomes the L class. We define the H class to have a PH job size distribution that matches the first three
moments of the aggregation of them− 1 higher priority classes.

The RDR-A method is similar to the MK-N approximation. The difference is that in MK-N, both the
H and L classes have exponentially distributed service times. Thus under MK-N, the H class only matches
thefirst moment of the aggregatem − 1 classes, whereas under RDR-Athreemoments are matched. The
reason that we are able to match the first three moments, rather than just the first, is that we have the
RDR technique, which allows the analysis of multiserver priority queues withPH job size distributions, as
described in Section9.2.3.

9.3 Numerical validation and results
We now present numerical results for per-class mean response times in M/M/k and M/PH/k queues with
m = 4 priority classes, derived using RDR and RDR-A, respectively. We will validate our results against
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simulation and show that their relative error is small. Furthermore, the time required to generate our results
is short, typically less than a second for each data point.

Figure9.5 (top row) shows our results for per-class mean response times in an M/M/2 queue (a) and
an M/PH/2 queue (b), both as a function of loadρ. The PH distribution used has two phases andC2 = 8.
All job classes have the same distribution, and the load is distributed evenly between the four classes. The
left plot is derived using RDR and the right plot using RDR-A. Observe that the M/PH/2 queue (right plot)
results in higher mean response time than the M/M/2 queue (left plot), as expected. In both cases the mean
response time of the lower-priority classes dwarfs that of the higher-priority classes.

Figure9.5 (bottom row) shows the relative per-class error for our results, when compared with sim-
ulation. Throughout the paper we always show error indelay (queueing time) rather than response time
(sojourn time), since the error in delay is proportionally greater. We define relative error as

error= 100× (mean delay by RDR or RDR-A)− (mean delay by simulation)
(mean delay by simulation)

(%).

We only show the error for classes 2, 3, and 4, since our analysis is virtually exact for class 1 (solved via
matrix-analytic methods). We see that the relative error in the mean delay of RDR and RDR-A compared
to simulation is within 2% for all classes and typically within 1%, for allρ’s (the jaggedness of the figure
is due to the fact that error is only evaluated at discrete loads). This error increases only slightly when we
move to the case of priority classes with different means.

Figure9.6(top row) again uses RDR-A to calculate per-class mean response time in the M/PH/2 queue
with four classes, but this time as a function ofC2, the squared coefficient of variation of the job size
distribution. (Again, all classes have the same job size distribution). As we see from the figure, the per-class
mean response time increases nearly linearly withC2. Figure9.6 (bottom row) shows the relative error in
mean delay when the results of the RDR-A analysis in the left plot are compared with simulation. Again
the error is under 2%. Again, this error increases only slightly when we move to the case of priority classes
with different means.

Finally, we note that in the above computations RDR is much more computationally efficient than sim-
ulation. Simulation requires tens of minutes to generate each figure, since the simulation is run 30 times,
and in each run 1,000,000 events are generated. By comparison our analysis takes only a few seconds for
each figure. Further, if we try to reduce the number of events in the simulation to 100,000 events, in order
to speed it up, we see five times as much variation in the simulation around our analytical values.

9.4 The impact of prioritization in an M/PH/k
Using RDR and RDR-A, we can now study the impact of prioritization in multiserver systems. We perform
three studies of the impact of prioritization. First, in Section9.4.1we study the interaction of the effect of
prioritization and the number of servers in the system. Thus, we characterize how the impact of prioritization
changes as the number of servers in the system grows. Then, in Section9.4.2, we evaluate the effect of
prioritization schemes that favor short jobs (“smart” prioritization schemes) in multiserver systems. This is
an important interaction to study because multiserver systems inherently allow some small jobs to bypass
large jobs using alternate servers. Finally, in Section9.4.3we contrast the behavior of dual priority systems
with that of systems with more than two priority classes. This is an important study because it provides
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Figure 9.5: The top row shows per-class mean response time for the M/M/2 (a) and the M/PH/2 (b) with
four priority classes. (a) is derived using RDR and (b) is derived using RDR-A. The bottom row shows the
error in our analytically-derived mean delay relative to simulation results, for the corresponding graphs in
the top row.

an understanding of the effect of aggregating multiple priority classes into just two classes, which is the
technique used in RDR-A to speed up the numerical evaluations.

9.4.1 The effect of the number of servers
We start by studying the interaction of prioritization and the number of servers in multiserver systems. Note
that throughout these comparisons,we hold the total system capacity fixed.That is, we compare a single
server of unit speed with a 2-server system, where each server has speed half, with a 4-server system, where
each server has speed one-fourth, etc.

Figure9.7begins our study by considering an M/PH/k system with two priority classes wherek is one,
two, and four. The total system capacity is held fixed and load is fixed atρ = 0.8. The low priority jobs
are exponentially distributed. The high priority jobs follow a PH distribution where the squared coefficient
of variation for high priority jobs,C2

H , is varied. The means of the two classes are the same and the load is



290 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

0 50 100 150
0

100

200

300

400

500

600

C2

m
ea

n 
re

sp
on

se
 ti

m
e

class 1
class 2
class 3
class 4

0 50 100 150
−3

−2

−1

0

1

2

3

C2

er
ro

r (
%

)

class 2
class 3
class 4

Figure 9.6: The top row shows the per-class mean response times for the M/PH/2 with four priority classes
derived via RDR-A analysis. The bottom row shows the relative error in the analytically-derived mean delay
compared with simulation.

split evenly between the two classes. The plots show per-class mean response time as a function ofC2
H . All

results are computed using RDR.
The first thing to observe is that the response times in the case of one server appear very different from

the response times in the case of two servers or four servers. The effect of prioritization in a single server
system offers little (quantitative) insight into the effect of prioritization in a multiserver system, aside from
the fact that in all cases the response times appear to be a nearly linear function ofC2

H .
Figure9.7also illustrates some other interesting points. We see that as the number of servers increases,

underhigh C2
H , the performance of both high priority and low priority jobs improves. By contrast, under

low C2
H , the performance can get worse as we increase the number of servers (this fact is more visible in

Figure9.7 for the high priority jobs). To understand this phenomenon, observe that whenC2
H is high, short

jobs can get stuck behind long jobs, and increasing the number of servers can allow the short jobs a chance
to be served. By contrast whenC2

H is low, all jobs are similar in size, so we do not get the benefit of allowing
short jobs to jump ahead of long jobs when there are more servers. However we do get the negative effect
of increasing the number of servers, namely the under utilization of system resources when there are few
jobs in the system, since each of thek servers only has speed1/k. The behavior under lowC2

H , where more
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Figure 9.7: Contrasting per-class mean response time under (a) one server, (b) two server, and (c) four
server queues with two priority classes and PH service times. Total system capacity is fixed throughout, and
ρ = 0.8. Results are obtained using RDR.
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Figure 9.8: Error in predicting mean delay using the BB approximation (compared with simulation) for
an M/PH/2 with four classes whereρ = 0.8 and (a)C2 = 8 or (b) C2 = 25.

servers lead to worse performance, is more prominent under lower loadρ.
Figure9.7already implies that the effect of prioritization on mean response time in a multiserver system

may be quite different from that in a single server system. In Figure9.8 we investigate this phenomena
more closely, by evaluating the accuracy of the BB approximation [38], which is based on this assumption
of similar behavior in single and multiserver priority queues. Looking at Figure9.8, we see that the error
in the BB approximation appears to increase for higherC2 (right graph) and for more classes. With four
classes and two servers, the error is already 10% whenC2 = 8 and higher for higherC2. By contrast, for
the same 4-class case as shown in figure 8, the error in RDR is always< 2% independent ofC2 and the
number of servers. In the above graphs all classes were statistically identical. In the case where the classes
have different means, the error in BB can be much higher, whereas RDR-A is much less insensitive to this.
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Figure 9.9: Mean response time under SMART-E versus FOOLISH-E prioritization in a 2-class system,
where the classes are exponentially distributed with means one and ten respectively, for the case of one
server, two servers, and four servers.

9.4.2 The effect of “smart” prioritization
Until now, we have assumed that all job classes have the same means. In this section and the next section, we
remove this assumption. In particular, our goal in this section is to consider the effect of priority schemes
which favor short jobs in multiserver systems. As we have seen throughout this thesis, biasing towards
small jobs is a common method for improving mean response time. Here, we use RDR to understand how
the benefit of favoring short jobs in a single server system compares to that for a multiserver system.

Figure9.9 considers a job size distribution comprised of an exponential of mean1, representing jobs
which are “short” in expectation, and an exponential of mean10, representing jobs which are “long” in
expectation (where job sizes are measured in a single-server system). The probability of each type of job
is chosen to split load evenly between the short and long jobs (e.g., withm = 2 classes,1011 of the jobs are
short and 1

11 of the jobs are long). The SMART-E scheduling policy assigns high priority to jobs that are
short in expectation, and the FOOLISH-E scheduling policy assigns high priority to the jobs that are long in
expectation. Figure9.9shows the results for a (a) one server, (b) two server, and (c) four server system.

Looking at Figure9.9, the SMART-E and FOOLISH-E policies are the same when loadρ is low. At
low load, the response time for both policies converges to simply the mean job size, which in these figures
is 20

11 for the single server system,40
11 for the 2-server system, and8011 for the 4-server system (recall that in a

system withk servers, each server runs at1/kth the speed).
The most interesting observation is that more servers lead to less differentiation between SMART-E

and FOOLISH-E schemes. For example, at loadρ = 0.6, there is a factor of five differentiation between
SMART-E and FOOLISH-E with one server and only a 25% difference between SMART-E and FOOLISH-E
with four servers. The effect appears more prominent under lighter load. This can be explained by recalling
our earlier observation that multiserver systems allow short jobs a chance to jump ahead of long jobs, hence
the negative effects of the FOOLISH-E scheme are mitigated.
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Figure 9.10: An illustration of the impact of aggregating priority classes in multiserver systems. The
graphs show error in mean delay of the 4th (lowest priority) class in the MK-N and RDR-A approximations
for an M/PH/2 with SMART-E prioritization, as compared with simulation. (a) shows mean delay as a
function ofC2 whereρ = 0.8, (b) shows mean delay as a function ofρ whereC2 = 8. The classes all have
a 2-phase PH distribution with the same squared coefficient of variationC2 and different means: 1, 2, 4,
and 8.

9.4.3 The effect of priority aggregation
Aggregation of multiple priority classes into two priority classes is a common approximation technique.
We have used this idea in RDR-A, and as early as the 80’s Mitrani and King (later followed by Nishida in
the early 90’s) proposed analyzing prioritization in a multiserver system via aggregation. The approach of
Mitrani and King was as follows: obtain the mean response time of themth class by simply aggregating
classes 1 throughm − 1 into a single high priority class and letting classm represent the low priority
class. The above MK-N approximation required further approximating the single aggregate class by an
exponentialjob size distribution, since it was not known how to analyze even a two class multiserver system
with non-exponential job size distributions. Since RDR enables the analysis of multiserver priority queues
with general PH job size distributions, we can reapply the MK-N aggregation idea, but where now we are
able to capture the higher moments of the aggregated class. This approximation is what we have introduced
as RDR-A, since it combines the use of RDR together with aggregation.

In this section, we will study the effect of priority aggregation. To accomplish this, we consider a two
server system with four priority classes. All the classes have a two phase PH distribution, with varying
squared coefficient of variation (C2). The classes differ however in their mean, having means 1, 2, 4, and 8,
respectively, and are prioritized according to the SMART-E scheme; classes with lower means have higher
priority. (FOOLISH-E prioritization yields similar insights.) Figure9.10examines the error in the mean
delay of the 4th class under RDR-A and under MK-N as a function ofC2 and as a function ofρ.

We see that the error in RDR-A is never more than 5% regardless ofC2 or ρ. By contrast, the error in
MK-N is almost never less than 50%, and gets worse under higher load andC2. We find experimentally that
when the classes are identical, RDR-A incurs only slightly more error than RDR. This makes sense since
aggregating identical classes does not incur additional variability. However when the classes are different,
as in the case of SMART scheduling in Figure9.10, the error can increase to 5% under RDR-A asρ andC2

are varied, while it remains below 3% for RDR over the full range ofρ andC2 depicted in Figure9.10.
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The bottom line is that “aggregation into two classes” is a good method for approximating prioritization
in multiserver systems where the number of classes ism > 2. However, the aggregation needs to be done
carefully – the distribution of the aggregate class must be modeled more closely than can be captured by an
exponential distribution. Thus another benefit of RDR is revealed; by allowing for PH job size distributions
it enables more accurate approximations of multi-class systems via aggregation.

9.5 Designing multiserver systems
We will now apply the understanding of prioritization in multiserver systems that we have developed so far
in order to approach the task of designing multiserver systems. In particular, one fundamental aspect of de-
signing multiserver systems is the task of deciding between using a few fast (but expensive) servers or many
slow (but cheaper) servers given a limited budget. By using fewer, faster servers one avoids underutilizing
the servers when there are only a small number of customers in the system; however by using many, slower
servers the variability of service demands has less of an impact.

In this section, we address this tradeoff by studying the following question:

Is it preferable to use a single fast server of speeds, or k slow servers each of speed
s/k? What is the optimalk?

Though this question uses a simplified cost model, it provides a clear view of the tradeoffs between
using many cheap, slow servers and a few fast, expensive servers. Further, this question has been the focus
of a stream of research [150, 220, 133, 200, 149, 207] (which we discuss in detail in Section9.5.1). All of
this prior work considers the question underFCFS scheduling. We will address the question in theFCFS
setting and extend the discussion to the case of priority queues. Armed with our analysis of the M/PH/k
dual-priority queue, we focus directly on questions involving choosing the optimal resource configuration.
In particular we are interested in the following questions:

1. Under what conditions are multiple slow servers preferable to a single fast server? Is the optimal
number of servers sensitive to changes in the relative arrival rates of the priority classes and changes
in the variability of the service time distributions?

2. Does the answer to “how many servers are optimal” differ for the different priority classes? E.g., does
the lower priority class prefer more or fewer servers than that preferred by the higher priority class?

3. How does the optimal number of servers in adual priority system differ from the case when all jobs
have been aggregated into asinglepriority class?

4. If one chooses a non-optimal number of servers, how does that affect the overall mean response time
and the per-class mean response time?

9.5.1 Prior work
The question of how many servers are best has a long history, all assuming a single priority class. Through-
out this section, we will assume that the performance metric of interest is mean response time rather than
mean delay (queueing time) since it is clear that to minimize mean queueing time one wants an infinite
number of servers [50, 51].
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Figure 9.11: The case of a single priority class. (a) The optimal number of servers as a function of the
load,ρ, and the variability of the job size distribution,C2. (b) Mean response time,E[T ], as a function of
the number of servers at various job size variabilities (C2 = 1, 4, 16, 64) for a fixedρ = 0.6.

As early as 1958 Morse observed that for an M/M/k system the optimal number of servers is one [150].
This was formalized by Stidham [220], who showed that under a general arrival process, and service times
that are exponential, Erlang, or deterministic, a single server minimizes the expected number in system.
Likewise, for a single server, Mandelbaum and Reiman [133] show that one server is best in the extreme
cases when traffic is very light, regardless of job size variability. So, not only is variability important, but
so too is traffic intensity. Scheller-Wolf [200] characterizes the effect of traffic intensity. He shows that
under so-called power-law service times, moments of response time may move from infinite to finite as
a function of both the number of servers and the traffic intensity. Very recently, Molinero-Fernandez et
al. [149] consider the question of how many servers are best in an M/HT/k single priority system, where
HT denotes aheavy-tailedservice distribution. To answer this question, they approximate a heavy-tailed
distribution with a bimodal distribution (BM), and then provide an approximate closed-form analysis of the
M/BM/k queue, which they argue provides a reasonable approximation of the M/HT/k queue. The question
of how many servers is best has also been considered via simulation in the context of an M/G/k queue by
[207]. None of the above work considers priorities.

9.5.2 How many servers are best in a FCFS system
To begin, we consider the simplified problem of determining the number of servers that minimizes the
mean response time under justonepriority class. The M/PH/k/FCFS queue is easily analyzable via matrix
analytic methods [125], as its Markov chain has a state space infinite in only one dimension.

Figure9.11(a) shows the optimal number of servers as a function of the load and the variability of the
job size. All of our results are expressed as a function of the variability of the job size distribution, and the
server load. While other factors, e.g., the exact form of the distribution might affect our results, we posit
that load and variability will be the most relevant factors.
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Observe that under high job size variability and/or high load, the optimal number of servers is more
than 1; we preferk slow servers to1 fast server. For example, at loadρ = 0.4 and the squared coefficient
of variationC2 = 20, we see that 3 servers are best. Computations are only done for up to 6 servers —
the level curves shown will continue into the upper right portion of the plot if larger numbers of servers are
considered.

Figure9.11(b) shows that for any particular job size variability,C2 > 1, having a larger number of
slower servers may reduce the mean response time up to a point, after which further increasing the number
of servers increases the mean response time. To understand why, note that by increasing the number of
servers (while maintaining fixed total capacity), we are allowing short jobs to avoid queueing behind long
jobs — specifically, an arriving short job is more likely to find a server free. Thus increasing the number of
servers mitigates variability, hence improving performance. If the number of servers is too great however,
servers are more likely to be idle, under-utilizing the system resources.

This simple analysis of the single priority M/PH/k queue motivates questions about how having two
priority classes changes the answer to the question of “how many servers?” and whether approximating the
more complicated two priority system with a single priority system is feasible. These questions are central
to the remainder of this chapter.

9.5.3 How many servers are best in a dual priority system
We set out to answer four questions about multiserver system design. We have already addressed the first
of these. In answer to Question 1, we have seen that in both the case of single priority class and in the
case of dual-priority classes multiple slow servers can be preferable to a single fast server. Further, we have
seen that the preference depends on service time variability and system load. The reason why multiple slow
servers are preferable under high variability job sizes is that they offer short jobs a chance to avoid queueing
behind long jobs, which in turn lowers mean response time.

We will now focus our investigation on the three remaining questions. (Question 2) How does the answer
the the question of “how many servers are optimal” differ among priority classes? (Question 3) How does
a dual-priority system differ from its corresponding aggregate single priority system in terms of the optimal
number of servers? (Question 4) How much improvement in mean response time can choosing the optimal
number of servers provide?

We find that the answers to these questions depend on the relative sizes and relative proportions (loads)
of the classes, as well as the variability of high priority jobs. The number of servers preferred by low priority
versus high priority jobs can vary widely. Moreover, the number of servers preferred in the dual priority
case when averaged over both classes typically differs substantially from the number preferred for the single
class aggregate case. Furthermore, the absolute effect on mean response time can be dramatic (ranging from
a factor of2 to 6) as the number of servers is varied. In all studied cases, there exists an “optimal” number
of servers where using fewer or more servers results in worse performance under highly-variable service
distributions.

9.5.3.1 Evaluation setup
We split up our evaluation into 3 cases, depending on the relative sizes of high and low priority jobs:

(i) The mean size of high priority jobs equals that of low priority jobs:E[XH ] = 1, E[XL] = 1.

(ii) The mean size of high priority jobs is smaller than that of low priority jobs:E[XH ] = 1, E[XL] = 10.
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Figure 9.12: How many servers are best when the two priority classes have the same mean job size
(E[XH ] = 1, E[XL] = 1)?
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(iii) The mean size of high priority jobs is larger than that of low priority jobs:E[XH ] = 1, E[XL] = 1/10.

Note that the mean service time changes depending on how many servers are in the system (1 fast server or
k slow servers) so that the systems are comparable. The values specified are the values for the maximum
number of servers used in each plot and the mean sizes for each of the other number of servers is scaled
appropriately.

Throughout our evaluations, we will consider a range of variability in the high priority job sizes, typically
shown on the y-axis, and a range of load typically shown on the x-axis. The variability of the low priority
job sizes is held constant (C2 = 1). Observe that variability in the low priority jobs is less interesting since
the low priority jobs only affect each other under preemptive resume. Lastly we also vary the proportion of
the load made up by high priority and low priority jobs.

Some technicalities of the setup follow. In all the results shown, the high priority job sizes follow a
2-phase PH distribution with Coxian representation, allowing any variabilityC2 ≥ 0.5. When varying the
proportion of load in each priority class, we vary the arrival rates of the classes only. In order to compare
our results for the dual-priority system to the same system having a single aggregate class, we use a mixture
of the two-phase PH high priority job size distribution and the exponential low priority job size distribution
to obtain the overall job size distribution aggregated across both classes.

9.5.3.2 Discussion
Figures9.12, 9.13, and9.14 illustrate the results of our analysis for the three cases described above: (i)
E[XH ] = 1, E[XL] = 1; (ii) E[XH ] = 1, E[XL] = 10; and (iii) E[XH ] = 1, E[XL] = 1/10 respectively.
For each figure column (a) shows the case where the load made up by high and low priority jobs is equal, and
column (b) shows the case whereρH < ρL. We also discuss, but omit showing, the case whereρH > ρL.
For each figure we consider both the case of dual-priority classes and the case of a single aggregate class.

Figure 9.12: Equal mean sizes
Looking at the topmost plot in Figure9.12column (a), we see that the high priority jobs do not always prefer
one server. In fact in the case of higher variability and/or load, they may prefer five or more servers. This is
to be expected based on our results in Section9.5.2.

Surprisingly however, the number of servers preferred by low priority jobs (shown in the second plot
in column (a)) is much greater than that preferred by high priority jobs. Although only up to six servers
are considered in these plots, we will see in later plots (Figure9.15(b)) that the difference in the number of
servers preferred by low and high priority jobs can be more than 10 servers. Low priority jobs prefer more
servers because low priority jobs are preempted by high priority jobs and thus their mean response time
improves with more servers, which allows them to escape from the dominance of high priority jobs.

The preferred number of servers with respect to the overall mean response time (the average of all jobs,
including both low and high priority jobs) is shown in the third plot in column (a), where we see that the
number of servers preferred by the overall mean, as expected, is a hybrid of that preferred by low and high
priority jobs. Note though that this hybrid is more weighted toward the preference of low priority jobs
because adding extra servers only hurts high priority jobs a small amount; whereas adding extra servers
helps low priority jobs enormously. Interestingly, the number of servers preferred with respect to the overall
mean is nearly identical to that shown for a single aggregate class of high and low priority jobs, shown in the
bottom most plot in column (a). To understand why, observe that all jobs in this case have the same mean,
and thus prioritizing in favor of some of them over others does not affect the mean response time greatly.
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Figure 9.13: How many servers are best when the high priority jobs have a smaller mean job size
(E[XH ] = 1, E[XL] = 10)?
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Even though the classes have different variabilities, that is a smaller-order effect. This will not remain true
in general.

Moving to column (b) of the same figure, we see that the same trends are evident when the high priority
jobs make up a smaller fraction of the load. However, the specific numbers are quite different. For example,
in the topmost plot of column (b), we see that the number of servers preferred by high priority jobs is much
lower. An explanation of this is that the high priority jobs only interfere with each other and they are fewer
in number in column (b) than in column (a); thus they want fewer, faster servers.

Less obvious is the fact that the number of servers preferred by low priority jobs in column (b) is
also fewer than that in column (a). This follows from the same reasoning; the low priority jobs are most
strongly affected by preemptions from high priority jobs, and with fewer high priority jobs, there are fewer
interruptions and thus fewer servers are needed to avoid queueing behind high priority jobs.

Since both the high and low priority jobs in column (b) prefer fewer servers than in column (a), it
makes sense that their overall mean (shown in the third plot of column (b)) also indicates that fewer servers
are desired. This third plot also matches the bottom most plot in column (b) consisting of a single-class
aggregation of high and low priority jobs, for the same reason explained above – that jobs have the same
mean.

Not shown in Figure9.12is the case where high priority jobs comprise more of the load. In this case,
both classes prefer more servers and, therefore, the mean of the two classes also prefers more servers. The
reason for this is the converse of the above situation – there are more high priority jobs, and therefore they
see more interference and want more servers. Further, the low priority jobs are preempted more frequently
by high priority jobs and therefore also want more servers to alleviate the effect. Again the single aggregate
class looks very similar to the two priority class overall mean.

Figure 9.13: High priority class has smaller mean
Moving to Figure9.13, we continue to hold the mean high priority job size at 1 and increase the low priority
job size to 10. Here, giving high priority jobs preference schedules the system more efficiently with respect
to minimizing the overall mean response time.

Notice that the preferred number of servers for the high priority jobs is identical to that in Figure9.12
because the high priority job size distribution is unchanged. However, the number of servers preferred by
low priority jobs is now very different: they almost always prefer only one server. This follows from the
fact that there are very few low priority jobs; so there is unlikely to be more than one low priority job in the
system at a time. Thus, low priority jobs prefer a single fast server.

The overall preferred number of servers, averaged over the two priority classes, is again a hybrid of
the preferences of the two classes, but this time is biased toward the preferences of the high priority jobs
because they are in the majority, implying a preference for fewer servers than the corresponding graph in
Figure9.12. Recall that adding servers is a way to help small jobs avoid queuing behind larger jobs. Since
we are in the case where small jobs have priority already, we do not need the effect of multiple servers.
Thus, in this case, priority classes can be viewed as a substitute for adding more servers.

Comparing the overall preferred number of servers for the case of dual priorities with that preferred
under a single aggregate class, we see that this time there is a significant difference in preferences. The
single aggregate class prefers many more servers. This again is a consequence of the fact that in this case
prioritization is a substitute for increasing the number of servers.

Column (b) of Figure9.13illustrates the same graphs for the case where the high priority jobs comprise
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Figure 9.14: How many servers are best when the high priority class has a larger mean job size (E[XH ] =
1, E[XL] = 1/10)?
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less of the total load. The trends are the same as in column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for column (b) of
Figure9.12. In the case (not shown) where high priority jobs make up a greater proportion of the total load,
the number of servers preferred is, as before, always higher than in column (a).

Figure 9.14: High priority class has larger mean
In Figure9.14column (a), we once again hold the mean high priority job size fixed at 1 and now assume the
low priority job sizes have a mean size of1/10. This case differs from the prior figure because now we are
giving priority to the larger job sizes: this reduces efficiency and, consequently, many more servers will be
needed in this case.

Once again, looking the topmost plot in column (a), we see that the preferred number of servers for
high priority jobs is unaffected, since the high priority mean job size distribution has not changed. The low
priority jobs, shown in the second plot of column (a), have vastly different preferences from the prior case.
Here the low priority jobs prefer a very large number of servers; whereas in Figure9.13they almost always
preferred one server. Because the low priority jobs are very small compared to the high priority jobs, they
want more servers in order to avoid being blocked, and forced to queue behind the large, high priority jobs.

The preferred number of servers for the overall mean response time in the dual-priority system, shown
in the third plot of column (a), is again a hybrid of the preferences of the low and high priority jobs, but this
time is strongly biased toward the low priority jobs because there are more of them. Notice therefore, that
the number of servers preferred is much greater in this case. Comparing this with the single class aggregate,
we see that the single class prefers slightly fewer servers than the dual class overall mean. This is due to
the fact that the prioritization toward large jobs in the dual class system is inefficient. Note that because this
case of prioritization is inefficient, the multiple servers provide an even larger benefit than in the other cases.

Column (b) of Figure9.14illustrates the same graphs for the case where the high priority jobs comprise
less of the total load. The trends are the same as in Column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for column (b) of
Figure9.12. In the case (not shown) where high priority jobs make up a greater proportion of the total load,
more servers are preferable.

Figure 9.15: Response time as a function of the number of servers
In all the prior results figures, we were concerned with determining the optimal number of servers as a
function of system load and the variability of high priority jobs. Although we sometimes foundk servers
to be better than 1 server, we never looked at the actual mean response time as a function of the number
of servers. In Figure9.15we do so, ranging the number of servers from 1 to 10. The key points made by
this figure are that: (i) the mean response time of both priority classes is sensitive to the number of servers
and (ii) increasing the number of servers may reduce mean response time up to a point; however making
the number of servers too large increases mean response time – thus forming a “U-shape.” This figure also
reinforces the prior message thatthe greater the variability of the high priority jobs, the greater the number
of servers needed to mitigate this variability.

Figure9.15is divided into two columns: column (a) considers the job size distribution shown in Figure
9.13and column (b) considers the distribution shown in Figure9.14. In the previous figures, we have already
discussed the differences in the number of servers preferred by each class. This same information can be
read off of Figure9.15by observing that each of the plots in the figure have a “U-shape” and the bottom of
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Figure 9.15: Mean response time as a function of the number of servers, which range from 1 to 10. The
system load in these plots isρ = 0.6, with ρH = ρL = 0.3.
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the “U” indicates the optimal number of servers.
Figure9.15however makes the following additional points. First, we see that, under high variability

(C2 = 64), the difference in the overall mean response time between the case of 1 server and the optimal
number of servers is about a factor of 2 in column (a) and, even more, close to a factor of 6 in column
(b). Thus, variability does play a crucial role, imperfectly explored in prior research. Second, we see that,
whereas in column (a) the optimal number of servers is quickly reached, in column (b) the optimal number
of servers is in some cases greater than 10, not even appearing on the plot. Thus, how prioritization is
performed has a large impact on how the system should be designed.

9.6 Concluding remarks
Motivated by the growing adoption of multiserver designs in computer systems, our goal in this chapter
is to begin to understand the impact of scheduling in multiserver systems and to contrast this impact with
the results we have obtained in the single server setting. However, the analysis of multiserver queues is
known to be difficult even underFCFS scheduling, so we could not study the multiserver scheduling in the
generality that we have studied single server scheduling. Instead, we focused on one important scheduling
mechanism, prioritization, and sought to understood its impact in multiserver systems. These results provide
a first step towards the analysis ofSRPT in the multiserver setting.

In order to study multiserver prioritization, we first developed a new analytic approach capable of study-
ing multiserver priority queues with non-exponential service demands: the RDR technique. RDR provides
the first near-exact analysis of an M/PH/k queue withm ≥ 2 priority classes. The RDR algorithm is effi-
cient (requiring only a second or two for each data point in the paper) and accurate (resulting in< 2% error
for all cases that we studied). Although the RDR algorithm is efficient when the number of priority classes
is small, it becomes less practical when the number of priority classes grows (e.g., for an M/M/2 with 10
priority classes, the running time can get as high as tens of seconds). Hence we also introduce the RDR-A
approximation, which works by aggregating them > 2 priority classes into only two priority classes.

This new analysis allows us to obtain insights about priority queueing in multiserver systems. We find
that the effect of prioritization in multiserver systems differs significantly from the effect of prioritization
in comparable single server systems. The reason is that adding servers creates complex effects not present
in a single server. For example, multiple servers provide a strong benefit in dealing with highly variable
job sizes, but they also hinder performance under lighter load. This is especially evident when studying the
effect of “smart” prioritization, where classes of jobs with smaller means are given priority over those with
larger means. We find that, though “smart” prioritization is beneficial in both multiserver and single server
systems, “smart” prioritization has a much stronger impact in a single-server system than in a multiserver
system of equal capacity. This can be explained in part by the observation that multiple servers inherently
aid short jobs by allowing them to jump ahead of long jobs.

Our analysis also allows us to approach the question ofsystem designin the multiserver setting. In
particular, we illustrated that choosing the correct number of servers can improve mean response time dra-
matically, and we provided a number of guiding principles that can aid in determining the optimal number
of servers in both single and dual priority systems. Further, we illustrated how the optimal number of servers
is affected by the heuristic used to prioritize.

Aside from improving mean response time, choosing the number of servers carefully can also ease the
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pain experienced by low priority jobs. It is possible to mitigate the penalty to low priority jobs (particularly
the penalty caused by high variability of high priority job sizes), by choosing a server configuration which
is more favorable to low priority jobs, typically one with more servers. This can often substantially improve
the mean performance of low priority jobs without being significantly detrimental to high priority jobs; thus
it aids in limiting the “unfairness” experienced by low priority jobs. Intuitively, having more servers reduces
unfairness because low priority jobs are not forced to wait for all higher priority jobs to finish before being
served, they just need to wait for one (of many) servers to become available.

The work in this chapter highlights the interaction between prioritization and multiserver system design.
We illustrated that prioritization does indeed provide less dramatic improvements in mean response time
in multiserver systems than in single server systems. However, we illustrated that prioritization is still
beneficial in multiserver systems in practical settings. Further, we showed that prioritization in multiserver
systems is more “fair” than prioritization in single server systems. So, though prioritization in multiserver
systems does not provide the same efficiency gains as in single server systems, the gains provided generally
come with a lower degree of “unfairness.”
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CHAPTER 10

Conclusion

Scheduling policies are at the heart of a wide array of computer systems. Whenever a resource is demanded
by a number of users, a scheduling policy determines the order in which the resource is allocated. The study
of scheduling policies has a long history including a vast literature of analytic results, but in recent years,
the field has been going through a resurgence. This resurgence is a result of a variety of scheduling success
stories in computer systems. In particular, at all levels of computer systems, designers dramatically reduced
user response times by making small changes to the scheduling policy used at the bottleneck resource. There
are examples of scheduling success stories in web servers [96, 182], routers, [179, 180], wireless networks
[102, 136], peer-to-peer systems [178], operating systems [74], databases [138, 139], and beyond. But,
these scheduling success stories have highlighted a number of disconnects between the theoretical research
studying scheduling policies and the needs of system designers, which we detailed in Chapter1. As a result,
the traditional analytic results about scheduling policies often do not immediately apply to the scheduling
policies that are implemented in modern systems.The goal of this thesis has been to develop a modernized
theory of scheduling that can provide analytic results that apply to today’s computer systems.

In order to accomplish this goal, we have identified three categories of disconnects between the needs
of system designers and what is provided by traditional theoretical results:

• The idealized policies studied traditionally in theory cannot be used in practice.
For example, pureSRPT is never implemented in practice. Instead, the policies that are implemented
(i) use estimates of remaining size, (ii) use only 5-10 priority levels, or (iii) are hybrids ofSRPT and
PS-type policies. Each of these variants ofSRPT will provide response times that are larger than
under pureSRPT, however traditional theoretic results do not provide any information about how
much performance will suffer.

• Many performance measures that are important in practice are not studied in theory.
Mean response time is typically the focus of theoretical scheduling research, andSRPT is optimal
with respect to mean response time. However, in practice, QoS and fairness metrics are also important.
Additionally, power management, reliability, and many other performance measures are important.
Once these other measures are considered,SRPT is no longer the clear choice. Worries thatSRPT is
unfair to large job sizes due to its bias towards small jobs pervade. Similarly, worries about providing
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good QoS guarantees for large job sizes are common. Traditional theoretical results cannot be used to
address such worries.

• The traditional, simplified theoretical models include many unrealistic assumptions.
The M/GI/1 model is at the heart of a majority of research studying the performance of scheduling
policies, but both the assumptions of a Poisson arrival process (the M) and a single server (the 1)
are often unrealistic. For example, real arrival processes tend to be bursty and real users tend to be
interactive and impatient. Further, many modern system designs make use of multiserver architec-
tures, e.g. server farms and multi-core processers. ThoughSRPT is optimal in the M/GI/1 setting,
once one considers interactive, impatient users and multiserver settings,SRPT may no longer be the
optimal policy for mean response time. Further, the traditional theoretical research does not study the
performance ofSRPT in these more complex settings.

In this thesis, we have provided a number of tools and results that allow us to begin to bridge each of these
categories of disconnects:

• Moving beyond idealized policies
We have seen that the idealized policies studied in theory are not used in practice and, instead, a
wide variety of variants of these policies are used. Thus, traditional analytic results are inadequate for
system designers. The approach we have developed is to move beyond the study of individual, ide-
alized policies and to study the impact of scheduling heuristics and techniques instead. In particular,
we have formalized many common scheduling heuristics and techniques as scheduling classifications
and, additionally, proven bounds which hold for the performance of all scheduling policies in each
of these classifications. For example,SRPT is characterized by the fact that it uses the scheduling
technique of “prioritizing based on remaining sizes” to apply the heuristic of “prioritizing small jobs.”
So, instead of studying all the variants ofSRPT used in practice, we have defined and analyzed a
class of policies that prioritizes based on remaining sizes and a class of policies that prioritizes small
jobs. This new style of scheduling research is motivated by the fact that, though the idealized policies
studied in theory are not used in practice, real system designs tend to apply the same heuristics and
techniques found in the idealized policies. So, we can study these scheduling heuristics directly and
avoid studying a huge array of non-idealized policies individually.

• Moving beyond mean response time
Though mean response time is an important metric for computer systems, system designs must do
more than provide small response times. We have seen that there are a wide variety of other perfor-
mance measures that are also important. In this thesis we have focused on two performance measures
of importance: fairness and the distribution of response time. In both cases, we not only provide
new results for individual scheduling policies, we also provide the first analytic results for scheduling
classifications. Further, it is important to point out that we have provided thefirst formal metrics for
studying the fairness of scheduling policies.

• Moving beyond the M/GI/1
Due to the difficulty in the analysis of scheduling policies, traditionally they have been analyzed
(primarily) in the M/GI/1 queue. Though this model allows for general job sizes, the assumptions
of Poisson arrivals and a single server are often overly restrictive. In this thesis, we have moved
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beyond the M/GI/1 model and studied scheduling policies in settings where the arrivals are generated
by interactive users and in settings where the system uses a multiserver architecture. In both of these
settings, our work provides the first thorough study of the effectiveness of scheduling.

Obviously, we cannot provide a complete overview of the results from each chapter of the thesis, so we
will instead provide a summary of a number of important lessons and surprises from the thesis (Section10.1).
Then, we will provide a few examples of the impact these lessons and surprises have had for both system
design (Section10.2) and theoretical research on scheduling (Section10.3). Finally, we will summarize a
number of future research directions motivated by the work in this thesis (Section10.4).

10.1 Lessons and surprises
We have covered a wide array of different topics in this thesis, and in each topic our results have provided
us with new, often surprising, lessons about the use of scheduling in computer systems. In this section,
our goal is to conclude the thesis by summarizing a number of these lessons to remind the reader of the
most important results in the thesis. Though we will only discuss the results at a high-level in order to keep
the exposition crisp, we will provide references to the main results that lead to each lesson/surprise. Then,
in Sections10.2and10.3, we will provide examples of the impact of these lessons and surprises both for
system designers and scheduling researchers.

All policies that give priority to small jobs perform well
Traditional theoretical results prove thatSRPT is optimal for mean response time and that the improvement
of SRPT over other policies is dramatic. However, as we have discussed,SRPT is not implemented in
practice. Instead there are many variants ofSRPT that have been suggested by system designers. However,
these variants are not analyzed by the theory community. In this thesis, we have defined theSMART class
to formalize the heuristic of “prioritizing small jobs” in a way that broad enough to include many practical
variations ofSRPT and still simple enough to be easy to apply. Further, we proved that allSMART policies
have mean response time within a factor of 2 of optimal (SRPT), regardless of the load or service distribu-
tion (Theorem4.2). Not only that, we proved that allSMART policies have an asymptotically equivalent
response time distribution (Theorems6.5and6.10). These results eliminate the need for researchers to ana-
lyze each individual variant ofSRPT used in practice, since all such variants are captured by the results on
SMART policies.

Job size estimates are enough
Though theSMART class includes many practical variations ofSRPT, it is limited by the fact that all
SMART policies must use exact job size information. This is a severe limitation because, in practice, it
is common that applications are forced to use estimates of job sizes, for instance this is true in wireless
networks and at web servers. To handle this case, we defined a generalization of theSMART class called
SMARTε that includes policies that prioritize small jobs using job size estimates. Further, we proved that all
SMARTε policies have mean response time that is within a constant of optimal across all loads and service
distributions (Theorem4.8). In addition, we characterized how this constant factor depends on the accuracy
of the job size estimates and properties of the true service distribution (Corollary4.11).
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Using a finite number of priority levels may not be enough
In practice, system designs often cannot a continuum of priority levels, asSRPT requires (every possible
remaining size is a different priority level). Instead, real designs often bin remaining sizes into 5-7 different
priority levels in order to approximateSRPT. In this thesis we show that under some service distributions,
policies that use a finite number of priority levels can still provide mean response times within a constant
of optimal, for instance under Exponential (Theorem3.3) or bounded (Corollary4.12) service time distri-
butions. However, this is not always the case. We also prove that under heavy-tailed distributions no finite
number of priority levels is enough to provide response times within a constant of optimal under heavy
traffic (Theorem3.4).

If you’re blind, pay attention to the workload
In some cases, computer systems do not even have estimates of job sizes. For instance, routers only know
how much service has been given to a flow; they know nothing about how much more service will be
required by the flow. In this case, we have seen that the optimal policy to use is strongly dependent on the
workload. In particular, it has long been known that when job sizes have an increasing failure rate it is best
to useFCFS and when job sizes have a decreasing failure rate it is best to useFB. However, the question
of “which policy is best?” for intermediate distributions is unclear. We prove a number of new results that
help to answer this question. In particular, we show that a key determinant as to which is better for mean
response time is whether or not the service distribution is bounded (Theorem3.23). Further, we prove that
a key determinant as to which is better for the response time distribution is whether the service distribution
is light-tailed or heavy-tailed (Section6.2.4).

The tail behavior of the service distribution affects system design
In Chapter6, we focused on understanding the tail of the response time distribution, and we found that there
is a huge difference in the behavior of scheduling policies under light-tailed and heavy-tailed service distri-
butions. We saw that no common scheduling heuristics or techniques is successful under both heavy-tailed
and light-tailed service distributions. For example, allSMART policies minimize the response time tail
under heavy-tailed service distributions (Theorem6.5) but maximize under light-tailed service distributions
(Theorem6.10). In contrast, some non-preemptive policies minimize the response time tail under light-tailed
service distributions, but all non-preemptive policies maximize the response time tail under heavy-tailed ser-
vice distributions (Theorem6.4). Thus, the tail behavior of the service distribution must play a key role in
determining the scheduling policy used in computer system designs.

There is no universal notion of fairness
In Chapter7, we provide the first formal definitions of fairness in the M/GI/1 queue. However, we illustrate
that fairness is an amorphous concept, whose meaning depends on the context in which it is considered. As
a result, we discuss and define two distinct notions of fairness: proportional fairness and temporal fairness.
Proportional fairness refers to the idea that all job sizes should receive equitable service, i.e. no job size
experiences response times disproportionate to its size (Section7.5). Temporal fairness refers to the idea
that it is fair to respect the seniority of jobs in the queue, i.e. it is in some sense unfair for a small job that
just arrived to the queue to jump in front of the large job (Section7.5). Though there are many other notions
of fairness as well, these two cover the needs of a wide range of computer applications.
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Prioritizing small jobs can help large jobs
The acceptance of designs based onSRPT and otherSMART policies has often been hindered by worries
that large jobs will be starved of service because of the priority given to small jobs. In other words, people
worry thatSRPT andSMART policies are unfair to large job sizes. Surprisingly, we prove in Section7.1
thatSMART policies can actually provide improved mean response time for all job sizes when compared
with PS, which is often the status-quo in computer systems. For example, Theorem7.4 shows that when
the load≤ 0.5, all job sizes preferSRPT overPS when it comes to mean response time. Further, for all
loads and service distributions, Theorem7.19shows that the largest job sizes are treated equivalently under
PS, SRPT, and allSMART policies.

Pay attention to the interactivity of users
In Chapter8 we discussed the impact of interactive users on the performance of scheduling policies. Interest-
ingly, we found that user behavior has an enormous impact on the effectiveness of scheduling. In particular,
if users have long interactive sessions with the server, then the scheduling policy used at the server has
very little impact on the system performance. However, if users have only short interactive sessions, then
the scheduling policy can have an enormous impact on system performance. This is a cautionary tale for
system designers, since the degree of user interaction is typically not viewed as an important workload
characteristic.

How many servers are best?
Our analysis in Chapter9 allows us to approach the question ofsystem designin the multiserver setting.
In particular, we illustrated that choosing the correct number of servers can improve mean response time
dramatically, and we provided a number of guiding principles that can aid in determining the optimal num-
ber of servers in both single and dual priority systems. Further, we characterized how prioritization affects
the optimal number of servers. Aside from improving mean response time, choosing the number of servers
carefully can also reduce the response times experienced by low priority jobs. It is possible to mitigate the
penalty to low priority jobs by choosing a server configuration with more servers. This can often substan-
tially improve the mean performance of low priority jobs without being significantly detrimental to high
priority jobs; thus it aids in limiting the “unfairness” experienced by low priority jobs.

10.2 The impact for system design
Though the thesis has included almost entirely analytic results, the goal of this analysis was to bring theory
closer to practice, and to provide results that apply more directly to real computer systems and, thus, can act
as tools for system design. To illustrate how the results in the thesis can be used for system design, let us
consider a few examples.

Example: Scheduling using job size estimates
In many applications, exact job size information is not known, but it is possible to estimate job sizes
using some system measurement. For example, in web servers and wireless networks, designs that
prioritize the job with the smallest estimated remaining size have been proposed [182, 131, 130, 102,
136]. But, in such designs a key question is “how much can response times be reduced by more
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accurately estimating job sizes?” The reason this question is so important is that there are overheads
involved in estimating the job sizes. For example, in a web server, estimating the network delay a
request will experience requires using packet probing techniques.

In Section4.2, we introduce theSMARTε classification to capture the effect of using job size
estimates in order to prioritize. We provide simple bounds that provide an illustration of the tradeoff
between the accuracy of job size estimates and the performance of the resulting policy. Further, our
results expose the effect of the underlying job size distribution on this tradeoff.
�

Example: Choosing a workload generator
Workload generators are an invaluable resource when evaluating the performance of proposed system
designs. Most workload generators for web server and database workloads assume a closed system
model, where new job arrivals are only triggered by job completions (followed by a think time). In
contrast, whenever a trace is used to generate the workload, an open system model is implicitly
assumed, i.e. new jobs arrive independently of job completions. Though every systems researcher
is well aware of the importance of setting up one’s experiment so that the system being modeled
is “accurately represented;” system designers generally pay little attention to whether a workload
generator is closed or open.

The work in Chapter8 illustrates that there is a vast difference in behavior between the open
and closed models in real-world settings. Not only is the measured response time different under
the two system models, but the two system models respond fundamentally differently to variations in
parameters and scheduling policies, e.g. the impact of scheduling is far more dramatic in the open
model than in the closed model. Further, the differences between these two system models are present
across a range of applications, including static and dynamic web servers, a database back-end, and
an auctioning web site. The differences between the open and closed models motivate the need for
system designers to be able to determine how to choose if an open or closed model is appropriate for
evaluating new designs. As a result, we also provide a simple recipe for how to make this choice in
Chapter8.
�

Example: Online adaptation to time-varying workloads
Not only do scheduling classifications provide a way to analyze existing policies used in practice,
they also provide a technique for improving existing designs. In particular, a defining aspect of
computer system workloads is that they are time-varying, e.g. time of day effects result in certain
periods being far busier than others at e-commerce web sites. As a result of time-varying workloads,
the best scheduling policy to use also changes over time. But, providing adaptive scheduling policies
is extremely difficult, and analyzing them is notoriously hard. Scheduling classifications provide a
way to do both.

To illustrate this, let us consider an example: theSMART class. One can imagine a parame-
terized version of the class where policy(i, j) gives priority to the job with the lowestsir, where
s is the original size of the job andr is the remaining size of the job. Then, one could implement
the SMART class as a policy by using machine learning techniques to adaptively choose the best
(i, j). Not only will this approach lead to a policy that outperforms any staticSMART policy, but
the resulting adaptive policy will still be in theSMART class. Thus, all of the results we have proven
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about theSMART class will hold about the adaptive policy, even as it adapts itself online.
�

Example: Server farm design
An important question facing server farm designers is that of “how many servers are best?” In
particular, given a fixed budget, the question is whether to use a small number of fast, expensive
servers or to use a larger number of cheaper, slower servers.

Our results in Chapter9 provide a number of guiding heuristics for designers. We illustrate that
systems with fewer servers have an advantage over larger systems with respect to utilization, but pay
a price when job sizes are highly variable. Specifically, when fewer servers are used is it more likely
that some servers will sit idle unnecessarily, but it is also more likely that small jobs will become
trapped behind larger jobs. Not only do our results provide these high-level heuristics for designers,
they also provide a technique for obtaining exact results for which server configuration is optimal. In
addition, they illustrate how the optimal configuration is affected by scheduling.
�

We could go on to list many other examples but, hopefully, these examples already make the point that the
results in the thesis begin to bridge the disconnects between the needs of system designers and traditional
analytic results.

10.3 The impact for theoretical scheduling research
Beyond the impact of the thesis for system design, the results in this thesis also present a number of new
directions for theoretical research on scheduling – both by defining new performance measures and clas-
sifications to study and by developing new analytic techniques. To illustrate the impact to the theoretical
community, let us consider a few examples.

Example: Studying Classifications
Following the introduction of theSMART classification at the Sigmetrics conference in 2005 [241],
many other researchers also became interested in scheduling classifications. This led to a collabora-
tion with Bert Zwart and Misja Nuyens analyzing the distribution of response times underSMART
policies in the large buffer large deviations regime (see Chapter6) [161]. In addition, it led to a
collaboration with Sanjay Shakkottai and Chang Woo Yang on the analysis ofSMART policies in
the many sources large deviations regime [248]. Further, other researchers have started to intro-
duce their own scheduling classifications. For example, thePROTECTIVE class that we discuss in
this thesis was introduced by Friedman and Hurley [79]. Further, Feng, Misra, & Rubenstein [74],
Nunez-Queija & Kherani [118], and Kherani [117] have all introduced interesting classifications of
other scheduling techniques and heuristics.
�

Example: Defining Fairness
Our initial work defining a metric for studying the fairness of scheduling policies appeared in the
Sigmetrics conference in 2003 [238], where it won the Best Student Paper Award. It has since been
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cited over 50 times, has been used for many applications outside of web servers, and has served to
jump-start a new focus on fairness in the theoretical scheduling community. Many researchers, e.g.
Rai, Biersack, et al. [179, 180], Gong & Williamson [87, 88, 86], and Brown [47], have analyzed
a wide array of policies with respect to the fairness measure we introduced. Still others, including
Friedman & Henderson [78], have invented new policies that perform well with respect to this fair-
ness measure. In addition, many researchers, such as Levy & Raz [185, 184, 20] and Sandmann
[195, 196], have developed new fairness measures for use in other applications.
�

Example: Recursive Dimensionality Reduction
In Chapter9 we provided the first near-exact analysis of multiserver priority queue using a new
technique called Recursive Dimensionality Reduction (RDR), which serves to recursively use the
solution to ann− 1 dimensional Markov chain in order to solve ann dimensional Markov chain. In
addition to its usefulness in studying multiserver systems, RDR has turned out to be useful in many
other application domains. For example, it has been applied to analyze dispatching algorithms in
multi-queue systems and affinity scheduling algorithms. In all, the technique has led to more than a
dozen papers from our research group at Carnegie Mellon, e.g. [163, 94, 165, 242, 95].
�

Example: Large deviations analysis in the GI/GI/1
In Chapter6, we provided the first GI/GI/1 large buffer, large deviations analysis of theSMART
class using a novel probabilistic approach based on an explicit random walk decomposition. Before
this work, only the M/GI/1 analysis of an individualSMART policy, SRPT, was known. Further,
the M/GI/1 analysis ofSRPT depended on an explicit characterization of the moments ofT (x), and
therefore was infeasible for use in the GI/GI/1 setting. Our new approach relies on purely probabilis-
tic analysis and thus extends easily beyondSMART policies toFB, FOOLISH policies, and beyond.
�

Again, we could go on to list many other examples, but hopefully, these examples already make the
point that the results in the thesis provide a number of new directions for theoretical scheduling research.
Specifically, these examples illustrate that the thesis has provided new models, new metrics, and new tools
that can help the theoretical scheduling research community provide results that are applicable to computer
system designs.

10.4 Further directions
The work in this thesis has begun to bridge the gaps between theoretical work on scheduling and the needs of
practitioners, however there is much work that remains on this topic. We have studied a number of common
scheduling heuristics and techniques, but there are other important heuristics to consider. We have studied
a diverse set of metrics, but there are many other performance measures that are important in computer
systems. In addition, we have studied two generalizations of the traditional M/GI/1 model, but there are
many other practical complexities that need to be studied. To end the thesis, we will summarize a few of the
open questions along each of these themes.
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New classifications
One of the key contributions of this thesis is the introduction of “scheduling classifications” as a way to
move beyond the analysis of individual, idealized policies and include the policies that are implemented
in real system designs. To that end, we have introduced scheduling classifications that cover a wide range
of common scheduling heuristics and techniques. However, there are many other interesting scheduling
heuristics and techniques that one could formalize into scheduling classifications. For example, it would be
interesting to define a scheduling classification that includePS variants such as Discriminatory Processor
Sharing (DPS) or Generalized Processor Sharing (GPS).

More metrics
In this thesis we have gone beyond mean response time to study fairness and the distribution of response
time, but there are obviously many other performance measures that are important to study. Even among the
two metrics that we studied, there is much more interesting research to perform.

In particular, we studied one particular scaling of the distribution of response time, the large buffer large
deviations scaling, but there are many other ways to study the distribution of response time. For example,
as we described in Section6.4, it is also interesting to study the distribution of response time in the many
sources large deviations regime. Further, it would be interesting to understand more about the contrast of
higher moments of response time, such as variance, across scheduling policies.

The story is similar with fairness. We introduced a number of new measures characterizing the fairness
of scheduling policies, but fairness is such an amorphous concept that there are many other interesting
aspects of fairness that are important to study. In fact, following our work on fairness a number of researchers
have gone on to introduce other definitions of fairness, many of which we discuss in Section7.6. But, it
remains to find useful metrics for studying fairness of scheduling policies beyond the single server setting.

Beyond other measures of fairness and the distribution of response time, there are a wide variety of
weighted response time measures that are important in practice, e.g. slowdown. Under these weighted
response time measures many results about scheduling policies start to change. For instance,SRPT is
not optimal for mean slowdown, though it is still within a factor of two of optimal [83]. As a result of
these differences, much is left to understand about the performance of scheduling policies under weighted
response time measures.

Other models
In this thesis we focused on two generalizations of the M/GI/1 queue – interactive users and multiserver
systems – but there are many other important generalizations to consider. Let us highlight two others that
are of particular interest: user impatience and stochastic service rates.

User impatience is an issue that affects almost every computer system. When users become frustrated by
delay they tend to abandon their requests, e.g. hitting the refresh button in their browser or killing the process
that is hanging. This abandonment can be a major design issue. For example, nearly 20% of internet traffic
due to aborted service requests [251]. This high level of user abandonment has a large, negative impact on
the behavior of the time-sharing policies likePS that are used in many computer systems because resources
are wasted on users that later abandon due to impatience. However, since users with small requests tend
to become impatient quickly while users with large requests tend to be more patient, it seems that applying
the heuristic of prioritizing small jobs may limit the amount of wasted service. But, the benefits of such an
approach are not understood.
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Stochastic service rates are of fundamental importance for studying wireless networks and when study-
ing power management. In wireless networks, channel conditions change over time, and thus the bandwidth
available is stochastic. In such settings, scheduling policies that ignore the changes in service rates can pay a
significant price in terms of throughput. Thus, scheduling policies need to be opportunistic and choose jobs
that have high service rates when possible. Opportunistic scheduling is commonplace in wireless networks
[102, 136], but the analysis of such policies is almost non-existent in the scheduling literature. In power
management, the issue is not that the environment affects the service rate. Instead, the goal is to adjust the
service rate in a way that conserves power. In particular, by scaling down or turning off the processor during
periods of light load, the system can achieve significant power savings. Such techniques are increasingly
important in CPU scheduling, data centers, and mobile devices [46, 152, 226], but there is very little analytic
work studying these techniques.
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Afterward

I joined the Computer Science Department Ph.D. program at Carnegie Mellon University in the fall of 2001
and almost immediately began working with my advisor Mor Harchol-Balter.

The first piece of this thesis was actually the result of work from the winter of my first year. Together
with Mor and Karl Sigman, we proved that all common preemptive policies are “fair” to large job sizes and,
in fact, large job sizes are treated equivalently under most common scheduling policies (see Section7.2).
This work appeared as a short abstract at the MAMA workshop in the summer of 2002 [99] and then as
a full paper at the IFIP Performance conference in 2002 [98], where I gave my first conference talk. This
paper served as the starting point for an extended look at the fairness of scheduling policies that has lasted
the rest of my graduate career resulting in papers with Mor at Sigmetrics both in 2003 [238] (see Section
7.1), which won the best paper award, and in 2005 [240] (see Section7.3and7.4). Recently, I was invited
to put together a survey of these, and other, recent papers studying fairness [236].

In addition to studying the fairness of scheduling policies, the paper at Sigmetrics in 2003 also began
another branch of this thesis: the study of classifications. In the Sigmetrics 2003 paper we introduced the
technique-based classifications from Chapter5. Building from there, I developed and analyzed theSMART
classification with Mor and Takayuki Osogami (see Section4.1). TheSMART classification first appeared
as an extended abstract at the MAMA workshop in the summer of 2004 [239] and then as a full paper at
Sigmetrics 2005 [241]. In the following year, I generalized theSMART classification to obtain theSMARTε

classification (see Section4.2). This work has so far only appeared in the MAMA workshop as an extended
abstract [235], but a full version of the paper is under preparation.

TheSMART classification has spurred collaborations with a number of fellow researchers. In particular,
it served as the beginning of my collaboration with the researchers at the EURANDOM institute in the
Netherlands. With Bert Zwart and Misja Nuyens, we were able to derive a number of results about the
response time distribution underSMART policies (see Section6.3). Our collaboration also extended to a
study of theFB policy. Many of these results are still forthcoming, but one paper has already been accepted
to Operations Research [161] and another has been accepted to Performance Evaluation [160]. In addition
to collaborations with Misja and Bert, theSMART classification also led to a collaboration with Chang-
Woo Yang and Sanjay Shakkottai where we analyzed the distribution of response time in the many sources
regime. This work appeared in Sigmetrics 2006 [248].

In parallel with work on theSMART classification, I was working with Mor, Takayuki, and Alan
Scheller-Wolf to develop techniques for analyzing priority scheduling in multiserver systems (Chapter9).
This collaboration was extremely fruitful and resulted in a paper at the MAMA workshop [166] and two
very interesting journal papers that have appeared in QUESTA [95] and Performance Evaluation [242].
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Finally, over the last year I have worked with Mor and Bianca Schroeder to characterize the impact of
interactive users on the effectiveness of scheduling (Chapter8). This is an interesting case of “theory meets
practice,” and it resulted in the most applied piece of the thesis – a publication at NSDI 2006 [206].

Though many of the pieces of the thesis have appeared already as workshop, conference, or journal
publications, a number of sections in the thesis include results that have not appeared outside of the thesis.
In particular, theFOOLISH classification is new to this thesis (Section4.3). In addition, the results charac-
terizing the tail behavior of response time underPROTECTIVE policies are new to this thesis (Sections6.3
and7.2). Further, the notion of “politeness” introduced in Section7.5 and the analysis of this quantity are
new to this thesis.

Apart from my thesis work, I also had the opportunity to take part in a number of other research projects
during my graduate career. While the majority of my graduate studies were devoted to analytic work, I also
spent some time on performance modeling for specific application domains, e.g. studying TCP dynamics
[244, 243] and database scheduling [204, 205]. Also, there were a number of other more theoretical side
projects that I worked on, including extending work from my undergrad years on graph pebbling [245] and
comparingFB andPS [27, 237]. In addition, over the last year I have spent time visiting the EURANDOM
institute and become in involved with a number of projects there. One project with Onno Boxma and Erik
Winands has already led to a paper studying the effect of scheduling in polling systems [246], and a other
collaborations with Ivo Adan, Marcel van Vuuren, Pascal Etman, and Ad Kock are also proving to be quite
interesting.
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