
Building Reliable Metaclassifiers

for Text Learning

Paul N. Bennett

May 2006

CMU-CS-06-121

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Jaime Carbonell, Chair

John Lafferty, Co-chair

Tom Mitchell

Susan Dumais, Microsoft Research

Eric Horvitz, Microsoft Research

Copyright c© 2006 Paul N. Bennett

This research was sponsored by the Defense Advanced Research Agency (DARPA) under Contract No.

NBCHC030029, SRI International under Subcontract No. 55000691, the National Imagery & Mapping

Agency (NIMA) under Contract No. NMA401-02-C0033, and the National Science Foundation under Grant

Nos. IIS-9982226, IIS-9873009, and IIS-9988084. The views and conclusions contained in this document

are those of the author and should not be interpreted as representing the official policies, either express or

implied, of any sponsoring institution, the U.S. government, or any other entity.

Keywords: text classification, classifier combination, metaclassifiers, reliability indi-

cators, reliability, multiple models, locality, combining estimates, calibration

This is dedicated first to my parents whose pride in my work has been as uplifting as their

supporting words, but most importantly, this is dedicated to my loving wife, Tina. Your

support made my long nights bearable; I hope my absence didn’t make yours too

unbearable.

iv

Abstract

Appropriately combining information sources to form a more effective out-

put than any of the individual sources is a broad topic that has been researched

in many forms. It can be considered to contain sensor fusion, distributed

data-mining, regression combination, classifier combination, and even the ba-

sic classification problem. After all, the hypothesis a classifier emits is just a

specification of how the information in the basic features should be combined.

This dissertation addresses one subfield of this domain: leveraging locality

when combining classifiers for text classification. Classifier combination is

useful, in part, as an engineering aid that enables machine learning scientists

to understand the difference in base classifiers in terms of their local reliability,

dependence, and variance — much as higher-level languages are an abstraction

that improves upon assembly language without extending its computational

power. Additionally, using such abstraction, we introduce a combination model

that uses inductive transfer to extend the amount of labeled data that can be

brought to bear when building a text classifier combination model.

We begin by discussing the role calibrated probabilities play when com-

bining classifiers. After reviewing calibration, we present arguments and em-

pirical evidence that the distribution of posterior probabilities from a classifier

will give rise to asymmetry. Since the standard methods for recalibrating class-

ifiers have an underlying assumption of symmetry, we present asymmetrical

distributions that can be fit efficiently and produce recalibrated probabilities of

higher quality than the symmetrical methods. The resulting improved proba-

bilities can either be used directly for a single base classifier or used as part of

a classifier combination model.

Reflecting on the lessons learned from the study of calibration, we go on

to define local calibration, dependence, and variance and discuss the roles they

play in classifier combination. Using these insights as motivation, we introduce

a series of reliability-indicator variables which serve as an intuitive abstraction

of the input domain to capture the local context related to a classifier’s reliabil-

ity.

We then introduce the main methodology of our work, STRIVE, which

uses metaclassifiers and reliability indicators to produce improved classifi-

cation performance. A key difference from standard metaclassification ap-

proaches is that reliability indicators enable the metaclassifier to weigh each

classifier according to its local reliability in the neighborhood of the current

vi

prediction point. Furthermore, this approach empirically outperforms state-of-

the-art metaclassification approaches that do not use locality. We then analyze

the contributions of the various reliability indicators to the combination model

and suggest promising features to consider when redesigning the base class-

ifiers or new combination approaches. Additionally, we show how inductive

transfer methods can be extended to increase the amount of labeled training

data available for learning a combination model by collapsing data tradition-

ally viewed as coming from different learning tasks.

Next, we briefly review online-learning classifier combination algorithms

that have theoretical performance guarantees in the online setting and consider

adaptations of these to the batch settings as alternative metaclassifiers. We then

present empirical evidence that they are weaker in the offline setting than meth-

ods which employ standard classification algorithms as metaclassifiers, and we

suggest future improvements likely to yield more competitive algorithms.

Finally, the combination approaches discussed are broadly applicable to

classification problems other than topic classification, and we emphasize this

with experiments that demonstrate STRIVE improves performance of action-

item detectors in e-mail — a task where both the semantics and base classifier

performance are significantly different than topic classification.

Acknowledgments

First, I would like to thank the five most influential forces in my academic

life — Drs. Ron Richards, Bob Causey, Ray Mooney, Sue Dumais, and Jaime

Carbonell — for crafting my view of scientific inquiry, instilling me with com-

putational curiosity, and equipping me with the tools to apply the former to the

latter. Additionally, I wish to acknowledge the efforts of each of my commit-

tee members, Drs. Jaime Carbonell, John Lafferty, Tom Mitchell, Sue Dumais,

and Eric Horvitz, for their helpful feedback and corrections. Their contribu-

tions have been invaluable, and any remaining errors are mine alone. Finally,

I most heartily thank Francisco Pereira and Kevyn Collins-Thompson whose

ability to find spare CPU cycles is only surpassed by their friendship.

viii

Contents

1 Overview 1

1.1 Introduction . 1

1.2 Worse Performance Does Not Mean Obsolete 4

1.2.1 Examples from Synthetic Data 5

1.2.2 Diversity and Accuracy in Real Datasets 8

1.3 Thesis Statement . 9

1.4 Criteria for Evaluation . 11

1.5 Roadmap to This Document . 11

2 Related Work 13

2.1 Homogeneous Ensembles . 14

2.2 Heterogeneous Ensembles . 16

2.2.1 Other Relevant Approaches . 18

2.3 Related Work Using Locality . 20

2.4 Previous Applications to Text Problems 21

2.5 No Free Lunch and Its Implications . 22

3 Calibration 25

3.1 Calibration and Related Concepts . 25

3.2 Recalibrating Classifiers . 29

3.2.1 The Need for Calibrated Probabilities in Other Applications 29

3.2.2 Recalibration Problem Definition & Approach 31

3.2.3 Estimating the Parameters of the Asymmetric Distributions 34

ix

x CONTENTS

3.2.4 Experimental Analysis . 38

3.2.5 Related Work . 46

3.2.6 Summary of Recalibration Methods 47

4 Locality 49

4.1 “True” Posteriors, Log-odds, and Confidences 50

4.2 Calibration & Locality . 51

4.3 Dependence & Locality . 53

4.4 Variance, Sensitivity, & Locality . 55

4.5 Local Reliability, Variance, and Dependence 61

5 Reliability Indicators 67

5.1 Model-Specific Reliability Indicators . 67

5.1.1 Variables Based on the Unigram Classifier

(Multinomial naı̈ve Bayes) . 68

5.1.2 Variables Based on the naı̈ve Bayes Classifier

(Multivariate Bernoulli naı̈ve Bayes) 70

5.1.3 Variables Based on the kNN Classifier 73

5.1.4 Variables Based on the Decision Tree Classifier 78

5.1.5 Variables Based on the SVM Classifier 79

5.2 Inputs for STRIVE (Document Dependent) 86

5.2.1 Outputs of Base Classifiers . 86

5.2.2 Reliability Indicator Variables . 87

5.3 Task-Dependent Variables . 96

6 Background for Empirical Analysis 99

6.1 Classifier Performance Measures . 99

6.1.1 Classification Measures . 100

6.1.2 Probability Loss Functions . 101

6.1.3 Ranking Measures . 102

6.1.4 Summarizing Performance Scores 104

CONTENTS xi

6.2 Data . 105

6.2.1 Chronological Split vs. Cross-Validation 106

6.2.2 MSN Web Directory . 107

6.2.3 Reuters (21578) . 107

6.2.4 TREC-AP . 108

6.2.5 RCV1-v2 (Reuters 2000) . 109

6.3 Base Classifiers . 110

6.3.1 Decision Trees . 110

6.3.2 SVMs . 111

6.3.3 Naı̈ve Bayes (multivariate Bernoulli) 111

6.3.4 Unigram (multinomial naı̈ve Bayes) 112

6.3.5 k-Nearest Neighbor . 112

6.3.6 Classifier Outputs . 113

6.4 Chapter Summary . 114

7 Combining Classifiers

using Reliability Indicators 115

7.1 Introduction . 116

7.1.1 STRIVE: Metaclassifier with Reliability Indicators 120

7.2 Experimental Analysis . 122

7.2.1 Performance Measures . 125

7.2.2 Experimental Methodology . 125

7.2.3 Results . 126

7.2.4 Discussion . 129

7.3 An Analysis of Reliability Indicator Usefulness 134

7.4 RCV1-v2 . 142

7.5 Summary and Conclusions . 145

8 Inductive Transfer

for Classifier Combination 149

xii CONTENTS

8.1 Introduction . 149

8.2 Applying Inductive Transfer to Combination 150

8.2.1 STRIVE . 151

8.2.2 LABEL: Layered Abstraction-Based Ensemble Learning 151

8.3 Experimental Analysis . 153

8.3.1 Base Classifiers . 153

8.3.2 Metaclassifiers . 154

8.3.3 Data . 155

8.3.4 Performance Measures . 155

8.4 Experimental Results . 155

8.5 Summary of Basic LABEL Approach . 155

8.6 Future Work . 156

8.7 Summary . 157

9 Online Methods and Regret 159

9.1 Online Learning . 159

9.2 Regret and Combining Classifiers . 160

9.3 Combination Algorithms with Regret Guarantees 162

9.4 Empirical Analysis . 165

9.4.1 Combination Implementations . 166

9.4.2 Results and Discussion . 171

9.5 Reconciling Theory and Practice . 175

9.6 Chapter Summary . 177

10 Action-Item Detection in E-mail 179

10.1 Why Action-Item Detection? . 180

10.2 Related Work . 181

10.3 Problem Definition & Approach . 182

10.3.1 Problem Definition . 182

10.3.2 Approach . 183

CONTENTS xiii

10.4 Experimental Analysis for Action-Item Detection 186

10.4.1 The Data . 186

10.4.2 Classifiers . 189

10.4.3 Performance Measures . 190

10.4.4 Experimental Methodology . 190

10.4.5 Baseline Results for Action-Item Detection 191

10.4.6 Discussion . 194

10.5 Action-Item Detection vs. Topic Classification 195

10.6 Classifier Combination for Action-Item Detection 195

10.7 Reliability Indicators for Action-Item Detection 197

10.8 Experimental Analysis

of Combining Action-Item Detectors . 198

10.8.1 Classifiers . 198

10.8.2 Performance Measures . 198

10.8.3 Experimental Methodology . 198

10.8.4 Results for Combining Action-Item Detectors 199

10.9 Summary . 200

11 Summary and Future Work 207

11.1 Key Contributions . 210

11.2 Directions for Future Work . 211

11.3 Summary . 212

xiv CONTENTS

List of Figures

1.1 A typical text classification problem. A text classification algorithm takes as input

a set of example documents. Each document is labeled by an authority with a

set of classes (here the topics). The algorithm uses these examples to construct

a model that with high accuracy can predict the topics the authority would have

assigned to future documents. This particular type of text classification problem is

called topic classification. 2

1.2 Schematic characterization of reliability-indicator methodology. The output of the

classifiers is a graphical representation of a distribution over possible class labels. . 3

1.3 Influence diagram for classifiers built using two conditionally independent views

of the data. 5

1.4 (a) The pdf for X1 as well as the decision boundary used by optimal classifierŶ1;

(b) The pdf for X2 as well as the decision boundary used by optimal classifierŶ2. 6

1.5 The correlation of conditionally-independent classifiers is largely determined by

their error rates and the class prior. This graph is generated with two classifiers

whose error rates are equal. 7

3.1 For a well-calibrated classifier, all points in a reliability diagram fall on the di-

agonal. In the long-run 0.6 (generally πi) of the items the classifier predicts to

have 0.6 probability (generally probability πi) of belonging to the class, actually

do belong to the class. Additionally, a reliability diagram often has annotations

indicating the frequency with which a certain value is predicted. 27

3.2 We are concerned with how to perform the box highlighted in grey. The internals

are for one type of approach. 31

3.3 Typical View of Discrimination based on Gaussians 32

3.4 Gaussians vs. Asymmetric Gaussians. A Shortcoming of Symmetric Distributions

— The vertical lines show the modes as estimated nonparametrically. 33

xv

xvi LIST OF FIGURES

3.5 The empirical distribution of classifier scores for documents in the training and the

test set for class Earn in Reuters. Also shown is the fit of the asymmetric Laplace

distribution to the training score distribution. The positive class (i.e. Earn) is the

distribution on the right in each graph, and the negative class (i.e. ¬Earn) is that

on the left in each graph. 44

3.6 The fit produced by various methods compared to the empirical log-odds of the

training data for class Earn in Reuters. 45

4.1 Classifier combination can be thought of as combining estimates of each class-

ifier’s estimate of the log-odds, λ̂i, via the latent variable representing the true

log-odds, λ, to improve the prediction of the class c. That is via, p(λ̂1, . . . , λ̂n |
c) =

∫∞
−∞ p(λ̂, . . . , λ̂n | λ)p(λ | c) dλ. 52

4.2 A few examples of the distribution of p(λ̂ | c) for various choices of the prior on

the true log-odds, p(λ), when the classifier’s predictions are distributed normally

around the true log-odds, λ̂ ∼ N(λ, 1). The prior used is a single Gaussian (left),

a mixture of two Gaussians (middle), and a mixture of three Gaussians (right).

100K samples were drawn from each distribution. The asymmetry of the resulting

distributions is very reminiscent of those seen in practice as shown in Section 3.2. 53

4.3 An influence diagram for two classifiers whose optimal combination is to allow

the output of each (Ŷ1 and Ŷ2) to contribute independently to the final prediction.

The input dimensions X1, . . . , Xk are independent of dimensions Xk+1, . . . , Xn

given the class variable; though, the interactions within the two feature sets may

be arbitrarily complex (which is why they are depicted as within one box). One

classifier’s predictions (Ŷ1) depend only on the values the first feature set takes

(X1, . . . , Xk) while the other classifier ’s predictions (Ŷ2) depend only on the val-

ues the second feature set takes (Xk+1, . . . , Xn). 54

4.4 A simple example where the input space has a single dimension to illustrate the

role of the ratio of standard deviations in a = σλ
σ
λ̂
ρλ,λ̂. In the example, p(x) is

uniform over [1, 10]. In this example, the initial predictions are correct on average:

E[λ] = E
[

λ̂
]

. The predicted log-odds, λ̂, are perfectly correlated with the true log-

odds, λ. That is, ρλ,λ̂ = 1, but a = 0.5 and b = 1.5. As can be seen from the

correction using just a, the coefficient forces the variation/slope of the predictions

to behave on average like the true variation. The resulting correction by b must

take into account the compression and rotation caused by a. 58

LIST OF FIGURES xvii

4.5 The class-conditional distribution of feature values for two synthetic examples

and their estimated forms using 100 training examples. The first (left) example

constrains the class-conditional variances to be equal and uses LDA to train the

model. The second (right) example has class-specific variances and uses QDA to

train the model. 60

4.6 The posterior (left) and log-odds (right) for the example constrained to equal class-

conditional variance. 61

4.7 The coefficient a (left) and additive correction term b to perform linear correction

estimated globally and locally using hold-out data for the example constrained to

equal class-conditional variance. For this case where both the true and estimated

log-odds are linear, a single value of a and b is sufficient to perform perfect correc-

tion. The local estimation deviates from this at the edges because of data sparsity. 62

4.8 The posterior (left) and log-odds (right) for a 2-class example with class-specific

variances. 63

4.9 The coefficient a (left) and additive correction term b to perform linear correction

estimated globally and locally using hold-out data for the example with class-

specific variances. For this case, where both the true and estimated log-odds are

non-linear, a global value of a and b is not adequate to perform perfect correction. 64

4.10 The locally linear and global corrections of the log-odds for the equal class-conditional

variance example (left) and the non-equal example (right). As shown on the left,

when both the true and estimated model are linear, global weights suffice to per-

form perfect correction. However, when either the true or estimated models are

not linear, a locally linear model has the potential to perform far better correction,

as shown on the right. 65

5.1 An example in Euclidean space of the kNN shifted instances produced for a query

instance x using the other points shown as its neighborhood. The shifts are il-

lustrated using cyan lines from the original instance. The nearness of neighbor 5

prevents the shifts toward neighbors 1− 3 from being larger. In contrast, the shift

toward neighbor 4 is fully half the distance since it is away from the other neigh-

bors. Since a shift toward each neighbor is weighted equally, the net effect is that

a shift toward a dense area is more likely. 75

5.2 The SVMlight solution with default C for an almost linearly separable problem.

The decision boundary is shown with a solid line. The dashed lines show the limits

of the margin. The support vectors are highlighted in black. 81

xviii LIST OF FIGURES

5.3 The contours for the score function, f(x), of the SVMlight solution with default

C. The labels “A” and “B” fall at the same distance to the separator but would we

have equal confidence at predicting “red circle” at both points? 82

5.4 The same data as Figure 5.2 but with a large non-separable mass added. The set

of support vectors (in green) has changed but the decision boundary is close to

the same. Is it still reasonable to assume the true log-odds is a (piecewise) linear

transform of f(x)? . 83

5.5 The contour plots of meanGoodSVProximity (left) and stdDevGoodSVProximity

(right) appear to capture some of the motivating intuition. Note the negative values

in the left plot near the nonseparable mass. In the right mass we see the goodness

variance rises in the nonseparable mass as well as the regions to the side where

its unclear which mass examples belong to. Meanwhile variance in the nicely

separated region remains low and stable. 85

6.1 (a) At left an Example ROC Curve using the conditionally independent classifier

example of Section 1.2.1. (b) At right, the optimal combination of Classifier 1 and

2 dominates both. The optimal combination has an error rate approximately half

of Classifier 1 and a sixth of Classifier 2, but as the classifiers get closer to perfect

classification, the graphical difference can appear deceptively small. 103

6.2 (a) At left, the isolines (or contours) connecting equal values of the F1 score in a

Precision-Recall graph. The best performance is in the top right corner (red lines).

(b) At right, the isolines connecting equal values of F1 in an ROC graph. The ROC

graph has a free parameter of P (+) that must be specified to draw the contours.

For this graph, P (+) = 0.10. 105

6.3 The effects of varying P (+) from 0.05 to 0.40 on the isolines of F1 in ROC space. 106

6.4 The effects of varying P (+) from 0.05 to 0.40 on the isolines of Error in ROC

space. 107

6.5 The effects of varying P (+) from 0.05 to 0.40 on the isolines of Cost(FP= 10,

FN= 1) in ROC space. Note that varying the costs of a linear utility function is

exactly equivalent to varying the prior for the error scoring function. 108

6.6 The effects of varying P (+) from 0.05 to 0.40 on the isolines of Cost(FP= 1,

FN= 10) in ROC space. Note that varying the costs of a linear utility function is

exactly equivalent to varying the prior for the error scoring function. 109

LIST OF FIGURES xix

7.1 Schematic characterization of reliability-indicator methodology. The methodol-

ogy formalizes the intuition shown here that document-specific context can be

used to improve the performance of a set of base classifiers. The output of the

classifiers is a graphical representation of a distribution over possible class labels. . 116

7.2 Portion of decision tree, learned by STRIVE-D (norm) for the Business & Finance

class in the MSN Web Directory corpus, representing a combination policy at the

metalevel that considers scores output by classifiers (dark nodes) and values of

indicator variables (lighter nodes). Higher in the same path, the decision tree also

makes use of OutputOfUnigram and OutputOfSVMLight, as well as other indicator

variables. 118

7.3 Typical application of a classifier to a text problem. In traditional text classifica-

tion, a word-based representation of a document is extracted (along with the class

label during the learning phase), and the classifiers (here an SVM and Unigram

classifier) learn to output scores for the possible class labels. The shaded boxes

represent a distribution over class labels. 121

7.4 Architecture of STRIVE. In STRIVE, an additional layer of learning is added where

the metaclassifier can use the context established by the reliability indicators and

the output of the base classifiers to make an improved decision. The reliability

indicators are functions of the document and/or the output of the base classifiers. . 121

7.5 The ROC curve for the Home & Family class in the MSN Web Directory corpus

from [0, 0.2]. 130

7.6 The full ROC curve for the Home & Family class in the MSN Web Directory corpus.131

7.7 For Stack-S (norm) and STRIVE-S (norm) change relative to the best base classifier

— the SVM classifier. On the left, we show the relative change using thresholds

optimized for F1, and on the right, we show the relative change using thresholds

optimized for error. In both figures, we display the changes in the three compo-

nents that determine F1: true positives, false positives, and false negatives. Not

only does STRIVE-S (norm) achieve considerable reductions in error of 8-18%

(left) and 5-16% (right), but in all but one case, it also increases by a fair margin

the improvement attained by Stack-S (norm). 134

xx LIST OF FIGURES

7.8 Each point presents the performance for a single class in the RCV1-v2 corpus. Im-

provement in F1 over the baseline SVM is shown on the left while improvement

in error is shown on the right. As is typical, both axes are given in the log-domain.

In case of a zero denominator or numerator, the log-ratio is defined as 10/−10
respectively. On left we see that Stack-S (norm) severely decreases the F1 perfor-

mance on several classes. On right we see that (when performance differs from

the baseline) both methods show a larger increase in performance according to

error over the baseline as the class becomes more prevalent. Striving appears to

require slightly more positive examples than stacking which is expected given the

higher dimensionality. The regression fits shown are fit only to the classes where

the metaclassifier’s performance differs from the baseline. 144

7.9 For Stack-S (norm) and STRIVE-S (norm) change relative to the best base classifier

— the SVM classifier — over all the topic classification corpora. On the left, we

show the relative change using thresholds optimized for F1, and on the right, we

show the relative change using thresholds optimized for error. In both figures, we

display the changes in the three components that determine F1: true positives, false

positives, and false negatives. Not only does STRIVE-S (norm) achieve consider-

able reductions in error of 4-18% (left) and 3-16% (right), but in all but one case, it

also increases by a fair margin the improvement attained by Stack-S (norm). Fur-

thermore, STRIVE-S (norm) never hurts performance relative to the SVM on these

performance measures as Stack-S (norm) does over RCV1-v2 on the far left. . . . 144

10.1 An E-mail with emphasized Action-Item, an explicit request that requires the re-

cipient’s attention or action. 181

10.2 The Histogram (left) and Distribution (right) of Message Length. A bin size of 20

words was used. Only tokens in the body after hand-stripping were counted. After

stripping, the majority of words left are usually actual message content. 188

10.3 Both n-grams and a small prediction window lead to consistent improvements over

the standard approach. 192

10.4 Users find action-items more quickly when assisted by a classification system. . . 193

10.5 ROC curves without (left) and with (right) error bars for the action-item corpus of

two of the most competitive base classifiers versus Stacking and Striving. We see

that Striving dominates the base classifiers and only loses for a small portion of

the curve to Stacking. As expected, the variance of all of the classifiers drops as

we move to the right. However, the variance for Striving drops far quicker than the

others. Both argue that Striving presents the most robust ranking of the documents. 201

List of Tables

3.1 Displayed is an example of the output distribution of two well-calibrated classi-

fiers, π1 and π2, and some sample combination rules: normalized product (πP),

average (πA), and the optimal combination given only the predictions π∗ = P (c |
π1, π2). Although both πP and πA improve over the base classifiers, neither are

well-calibrated. 29

3.2 (a) Results for naı̈ve Bayes (left) and (b) SVM (right). The best entry for a corpus

is in bold. Entries that are statistically significantly better than all other entries are

underlined. A † denotes the method is significantly better than all other methods

except for naı̈ve Bayes. A ‡ denotes the entry is significantly better than all other

methods except for A. Gauss (and naı̈ve Bayes for the table on the left). The reason

for this distinction in significance tests is described in the text. 42

5.1 Various quantities for the example in Euclidean space illustrated in Figure 5.1. α

is the amount example d is shifted toward each neighbor to produce di. Each

row lists the Euclidean distances between the shifted point di and the original

point d as well as each neighbor nj . The nearness of neighbor n5 prevents the

shifted instances d1, d2, and d3 from shifting closer to neighbors n1, n2, and n3,

respectively. Thus α for these shifted points is less than 0.5. 76

5.2 Effect on running time of computing the kNN reliability indicators for the Reuters

21578 corpus (9603 training examples, 3299 testing examples, 900 features used).

The naı̈ve algorithm scans all training examples each time. The sparse algorithm

uses speed-ups based on sparsity and just performs basic prediction; we show one

version using the standard number of neighbors and one using twice that. The final

version also computes and writes the reliability indicators — using a neighborhood

of k = 29 for prediction but 2k to compute the reliability indicators. For these

comparisons, r-cut with r = 1 is used for prediction [Yan99]. 77

xxi

xxii LIST OF TABLES

7.1 Performance on MSN Web Directory Corpus. The best performance (omitting

the oracle BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’,

‘S’, or ‘R’ indicates a method significantly outperforms all (other) Base classifi-

ers, Default combiners, Stacking methods, or Reliability-indicator based Striving

methods at the p = 0.05 level. A blackboard (hollow) font is used to indicate

significance for the macro-sign test and micro-sign test. A normal font indicates

significance for the macro t-test. For the macro-averages (i.e., excluding micro F1)

when both tests are significant it is indicated with a bold, italicized font. 126

7.2 Performance on Reuters Corpus. The best performance (omitting the oracle BestS-

elect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates

a method significantly outperforms all (other) Base classifiers, Default combiners,

Stacking methods, or Reliability-indicator based Striving methods at the p = 0.05

level. A blackboard (hollow) font is used to indicate significance for the macro-

sign test and micro-sign test. A normal font indicates significance for the macro

t-test. For the macro-averages (i.e., excluding micro F1) when both tests are sig-

nificant it is indicated with a bold, italicized font. 127

7.3 Performance on TREC-AP Corpus. The best performance (omitting the oracle

BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’

indicates a method significantly outperforms all (other) Base classifiers, Default

combiners, Stacking methods, or Reliability-indicator based Striving methods at

the p = 0.05 level. A blackboard (hollow) font is used to indicate significance

for the macro-sign test and micro-sign test. A normal font indicates significance

for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both

tests are significant it is indicated with a bold, italicized font. 128

7.4 STRIVE-S Local (norm) uses a local product kernel of K(xi,xj) =

[〈ρ(xi), ρ(xj)〉+ 1] [〈Π(xi),Π(xj)〉+ 1] where Π(x) is the projection into the

subspace consisting of the base classifier outputs and ρ is the identity function.

The resulting kernel has a subset of the terms in a quadratic kernel. STRIVE-S

Local (norm) restricts ρ to the subset of features included in STRIVE-D (norm)

leads to substantially less overfitting and positive gains in one corpus. 132

7.5 In backward selection over the MSN Web testing set, deleting the variable that

most improved the average logscore of the model allows us to rank the variables

in rough order of impact by the average round a feature was deleted in. A higher

average rank means a feature has greater impact on the model. 137

LIST OF TABLES xxiii

7.6 In backward selection over the Reuters testing set, deleting the variable that most

improved the average logscore of the model allows us to rank the variables in

rough order of impact by the average round a feature was deleted in. A higher

average rank means a feature has greater impact on the model. 138

7.7 This table shows the average reduction in logscore across classes caused by delet-

ing each variable individually from the final models in the MSN Web testing set. A

negative score indicates that the deleting the variable negatively impacts the mod-

els, since deleting it reduces the logscore. A score of zero indicates the variable

has no impact on the models, while positive indicates the variable is included in

the models but hurts them on average . 139

7.8 This table shows the average reduction in logscore across classes caused by delet-

ing each variable individually from the final models in the Reuters testing set. A

negative score indicates that the deleting the variable negatively impacts the mod-

els, since deleting it reduces the logscore. A score of zero indicates the variable

has no impact on the models, while positive indicates the variable is included in

the models but hurts them on average . 140

7.9 This table shows the average reduction in logscore across classes caused by delet-

ing each variable individually from the final models in the TREC-AP testing set. A

negative score indicates that the deleting the variable negatively impacts the mod-

els, since deleting it reduces the logscore. A score of zero indicates the variable

has no impact on the models, while positive indicates the variable is included in

the models but hurts them on average . 141

7.10 Performance on RCV1-v2 Corpus. The best performance (omitting the oracle

BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’

indicates a method significantly outperforms all (other) Base classifiers, Default

combiners, Stacking methods, or Reliability-indicator based Striving methods at

the p = 0.05 level. A blackboard (hollow) font is used to indicate significance

for the macro-sign test and micro-sign test. A normal font indicates significance

for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both

tests are significant it is indicated with a bold, italicized font. 142

7.11 All results for the MSN Web Corpus discussed in this chapter. Ignoring BestSelect,

the overall best in each column is shown in red bold and the overall worst is shown

in blue italics. 146

xxiv LIST OF TABLES

7.12 All results for the Reuters Corpus discussed in this chapter. Ignoring BestSelect,

the overall best in each column is shown in red bold and the overall worst is shown

in blue italics. 147

7.13 All results for the TREC-AP Corpus discussed in this chapter. Ignoring BestSelect,

the overall best in each column is shown in red bold and the overall worst is shown

in blue italics. 148

7.14 All results for the RCV1-v2 Corpus discussed in this chapter. Ignoring BestSelect,

the overall best in each column is shown in red bold and the overall worst is shown

in blue italics. 148

8.1 Inductive Transfer Performance Summary over all Tasks 156

9.1 Comparison of the Online Combiners over the MSN Web Corpus. The best perfor-

mance (omitting the oracle BestSelect) in each column is given in bold. A notation

of ‘B’, ‘D’, ‘S’, ‘R’, ’O’, or ’I’ indicates a method significantly outperforms all

(other) Base classifiers, Default combiners, Stacking methods, Reliability-indicator

based Striving methods, Online basic methods, or Indicator-based online methods

at the p = 0.05 level. A blackboard (hollow) font is used to indicate significance

for the macro-sign test and micro-sign test. A normal font indicates significance

for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both

tests are significant it is indicated with a bold, italicized font. 173

9.2 Comparison of the Online Combiners over Reuters. The best performance (omit-

ting the oracle BestSelect) in each column is given in bold. A notation of ‘B’,

‘D’, ‘S’, ‘R’, ’O’, or ’I’ indicates a method significantly outperforms all (other)

Base classifiers, Default combiners, Stacking methods, Reliability-indicator based

Striving methods, Online basic methods, or Indicator-based online methods at the

p = 0.05 level. A blackboard (hollow) font is used to indicate significance for the

macro-sign test and micro-sign test. A normal font indicates significance for the

macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests

are significant it is indicated with a bold, italicized font. 174

10.1 Agreement of Human Annotators at Document Level 187

10.2 Agreement of Human Annotators at Sentence Level 188

10.3 Average Document-Detection Performance during Cross-Validation for Each Method

and the Sample Standard Deviation (Sn−1) in italics. The best performance for

each classifier is shown in bold. 202

LIST OF TABLES xxv

10.4 Significance results for n-grams versus a bag-of-words representation for docu-

ment detection using document-level and sentence-level classifiers. When the F1

result is statistically significant, it is shown in bold. When the accuracy result is

significant, it is shown with a†. This table emphasizes the hypothesis that n-grams

or a “bag of words and phrases” outperforms a simple “bag of words” does, in fact,

hold. 203

10.5 Significance results for sentence-level classifiers vs. document-level classifiers for

the document detection problem. When the result is statistically significant, it is

shown in bold. This table emphasizes the hypothesis that a sentence-level classifier

outperforms a document-level classifier does, in fact, hold. 203

10.6 Performance of the Sentence-Level Classifiers at Sentence Detection 203

10.7 Average base classifier and classifier combination performance during cross-validation

over the Action-Item Detection Corpus. The best performance (omitting the oracle

BestSelect) in each column is given in bold. The worst performance is given in ital-

ics. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a method significantly outperforms

all (other) Base classifiers, Default combiners, Stacking methods, or Reliability-

indicator based Striving methods at the p = 0.05 level using a two-tailed t-test. . . 204

10.8 Summary of performance on the action-item detection task. The columns show

the group names for which the row method is better (restricted to just those shown

here). ”Better” here means has a better average across cross-validation runs. When

statistically significantly better (by 2-sided t-test p = 0.05), results are printed in

a red bold italic font. 205

xxvi LIST OF TABLES

Notation

F The set of all features in a classification problem.

X The input domain of the training examples. Typically, X ⊆ R
|F|

Y The set of classes for a classification problem. Generally, we will refer

to binary classification tasks where Y = {0, 1} or Y = {−1, 1}.
C The set of all base classifiers.

Ci A particular classifier i.

〈xi, yi〉 A labeled example where xi ∈ X and yi ∈ Y
c(x) The class of example x where x ∈ X .

D The true distribution of examples.

P (c(x) = y | x) The “true” posterior or conditional distribution of the class of the exam-

ple, c(x), given x. This will often be abbreviated P (y | x)
p(x) The “true” density of unlabeled examples.

p(x, y) The “true” joint density of labeled examples.

P̂A, p̂A Model A’s estimate of a probability distributioin P or density p, respec-

tively.

ŷi Classifier Ci’s prediction about the class of an example where the partic-

ular example is clear in context.

πi Classifier Ci’s posterior probability distribution over the classes of an ex-

ample. That is, πi(c, x) = P̂Ci(c(x) = y | x). In the context of a binary

classification problem, we will often use πi to denote the posterior of the

positive class, i.e., P̂Ci(c(x) = 1 | x)
λi Classifier Ci’s posterior log odds of the class of an example. That is,

λi(c, x) = log
P̂Ci (c(x)=y|x)
1−P̂Ci (c(x)=y|x)

. In the context of a binary classification

problem, we will often use λi(x) or simply λi to denote the log odds of

the positive class, i.e., log
P̂Ci (c(x)=1|x)
P̂Ci (c(x)6=1|x)

xxvii

xxviii LIST OF TABLES

Other Definitions

Logit The (natural) log of a probability divided by its complement. log p
1−p

Odds The quotient of a probability of an event and its complement. p
1−p

Log Odds The log of the odds of an event. This is equivalent to the logit for

a two-class problem. log p
1−p . Also, the log of the probabilities for

two mutually exclusive events, log pi
pj

(see note below).

Odds Ratio The quotient of the odds ratios of two different events. p(1−r)
(1−p)r

Log Odds Ratio The log of an odds ratio. Sometimes called log odds when no risk of

confusion with the above definition. log p(1−r)
(1−p)r

A note on Log Odds Given n probabilities pi for n mutually exclusive and exhaustive

events such that
∑n

i=1 pi = 1, it is unclear what the established ter-

minology is for the quantity log pi
pj

. When n = 2 this is just the log

of the odds of event i, but for n > 2 this does not reduce. Some

(p. 96 [HTF01]) refer to this quantity as log odds, log odds ratios,

and logits even though it does not reduce to any of the above forms.

Furtherermore, when n = 2 many parts of the literature say “Log

Odds Ratio” when meaning “Log Odds” as defined above. We keep

with the looser terminology which is more prevalent in the literature.

When clarity is necessary, we specify the intended meaning.

Chapter 1

Overview

1.1 Introduction

A text classification algorithm uses example documents that have been tagged with classes

by an authority1 to learn a model that, with high accuracy, can automatically predict the

class the authority would have assigned to future documents. In cases like topic classifica-

tion (Figure 1.1) where each example can belong to multiple topics, the problem is usually

reduced to a series of binary classification tasks, Corporate Acquisitions vs. not Corporate

Acquisitions, Earnings vs. not Earnings, etc.

With the surge in digital text media, text classification has become increasingly impor-

tant. Text classification techniques can assist in junk e-mail detection [SDHH98], allow

medical doctors to more rapidly find relevant research [HBLH94], aid in patent searches

[Lar99], improve web searches [CD00], and serve as a backend in a multitude of other

applications. The interested reader should see Sebastiani [Seb02] for a survey of recent

applications of machine learning to text classification.

Decision Trees, kNN, SVMs, language models, and naı̈ve Bayes are a few of the class-

ification algorithms that have been developed [HMS66, Fri77, BFOS84, CH67, Vap00,

CV95, MK60, Abr63] and later used by researchers to address the problem of text classifi-

cation [LR94, ADW94b, MLW92, Joa02, MN98, Lew92b]. Each of these models generally

are designed using a different set of assumptions regarding the data. However, none of these

algorithms dominate all text classification problems.2 Furthermore, even when one class-

1It doesn’t matter for our purposes whether this “authority” is a single person, a committee, or any other

entity. The only stipulation is that the labeling is consistent in the sense that it is the same authority labeling

the training documents and future documents.
2Although SVMs show perhaps the most robust behavior across a span of text classification problems.

1

2 1.1. INTRODUCTION

Corporate Acquisitions
Earnings
Corn Futures

Fixed Topic Set:

Text Classification
Algorithm

Predicted Topics:

Earnings
Corn Futures

Example Documents Labeled with
Topics from Topic Set according
to Authority

Trained Classification
Model

Unlabeled Document

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 1.1: A typical text classification problem. A text classification algorithm takes as input a

set of example documents. Each document is labeled by an authority with a set of classes (here

the topics). The algorithm uses these examples to construct a model that with high accuracy can

predict the topics the authority would have assigned to future documents. This particular type of

text classification problem is called topic classification.

ification algorithm significantly outperforms another for a given classification problem, it

is rarely the case that the worse classifier’s errors are a superset of the better. This fact has

long motivated the desire to combine models in order to obtain better, or more robust, over-

all performance. Schemes to do this have varied widely, from simple voting to methods for

including unlabeled examples.

Appropriately combining information sources to form a more effective output than any

of the individual sources is a broad field that has been researched in many forms. It can

be considered to contain sensor fusion, distributed data-mining, regression combination,

classifier combination, and even the basic classification problem; after all, the hypothesis a

classifier emits is just a specification of how the information in the basic features should be

combined.

Problems that arise in several situations motivate combining multiple learners. For ex-

ample, it may not be possible to train using all the data because data privacy and security

concerns prevent sharing the data. However, a classifier can be trained over different data

subsets and the predictions they issue may be shared. In other cases, the computation bur-

den of the base classifier may motivate classifier combination. When a classifier with a

nonlinear training or prediction cost is used, computational gains can be realized by parti-

tioning the data and applying an instance of the classifier to each subset. In other situations,

combining classifiers can be seen as a way of extending the hypothesis space or relaxing

CHAPTER 1. OVERVIEW 3

����

Metaclassifier

Document−Specific
Context

SVM

���
�

���
�

���
�

		
		

Decision Tree

Naive Bayes

Unigram

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 1.2: Schematic characterization of reliability-indicator methodology. The output of the

classifiers is a graphical representation of a distribution over possible class labels.

the bias of the original base classifier. Boosting decision stumps [SFBL98, BK99], cascade

generalization [Gam98a, Gam98b], and stacking [Wol92] can all be seen as methods where

the hypothesis space of the combiner can fit a more general class of functions than the input

base classifiers. Finally, in many different situations, classifier combination can be used as

a way to balance the strengths and weaknesses of a set of classifiers in order to achieve

increased generalization performance.

This work approaches classifier combination with increased performance as the primary

motivation, but the same methods are applicable for any of the above purposes. In order to

do so, we attempt to exploit the fact that the models learned by different classification algo-

rithms have different error profiles. This is done by defining data-dependent characteristics

that can be tied to the likelihood a model predicts well in the context established by the cur-

rent example. We focus on the local reliability, variance, and dependence of the classifiers

as the key data-dependent characteristics for classifier combination. Therefore, this work

is similar in flavor to Kahn’s [Kah04] without making his distributional assumptions for

classifier outputs which often do not hold in practice. In order to capture these character-

istics, we define a set of reliability indicators that we argue are tied to these characteristics

for text classification problems. The general approach is depicted in Figure 1.2.

A secondary goal of this work is to provide a basis for understanding the interactions

of a set of classifiers. We argue this enables machine learning practitioners to more readily

choose between the trade-offs when choosing which methods to apply to a problem. This

abstraction is key when using classifier combination to mitigate data privacy and security

problems. Concerned parties need only to verify that they can share both the predictions

and indicators rather than the data itself.

4 1.2. WORSE PERFORMANCE DOES NOT MEAN OBSOLETE

Classifier combination is ultimately a hard problem where, as in other problems, the

optimal combination is rarely computable. Even weaker results, such as a combination

scheme that always outperforms its base input classifiers, have been shown to be theoreti-

cally unattainable [DHS01, Wol95]. Therefore, our goal will be to make substantial gains

when possible and to be within a small performance difference at other times.

Finally, our work shows that not only can these data-dependent characteristics be used

to construct a more effective classifier, but since they behave similarly across a set of related

problems, the data-scarcity problem can be somewhat alleviated during meta-learning by

sharing data via inductive transfer.

In order to situate the reader, the remainder of this chapter gives key examples to moti-

vate the gains and elucidate the challenges of classifier combination before finally making

a more formal thesis statement and stating our evaluation criteria.

1.2 Worse Performance Does Not Mean Obsolete

Although theoretical results [DHS01, Wol95] indicate there is no a priori choice of al-

gorithm which will perform the best over all problems, experience has shown that some

algorithms can dominate large classes of problems. For example, most acknowledge that

SVMs with a linear kernel will perform at least as well as and usually outperform most

known methods in topic classification. As a result, Machine Learning researchers often

attempt to understand how well an algorithm (e.g. SVM) fits a set of problems (e.g. topic

classification) by empirically evaluating algorithms.

In contrast, even when an algorithm outperforms another algorithm across a problem

set, combining the algorithms can lead to better results than either alone. Thus, while

good empirical performance gives evidence that an algorithm’s assumptions match the un-

derlying domain structure well, improvement from combination methods provides weak

evidence that the base classifiers are only capturing subdomain structure and failing to en-

tirely capture the learnable structure of the problem. There are many concrete situations

where weak classifiers can help improve the performance of a strong classifier. In the fol-

lowing, we construct several examples which illustrate the potential gains from classifier

combination.

CHAPTER 1. OVERVIEW 5

Class

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

C

Ŷ1 Ŷ2

X1, . . . , Xk
Xk+1, . . . , Xn

Figure 1.3: Influence diagram for classifiers built using two conditionally independent views of the

data.

1.2.1 Examples from Synthetic Data

First, consider the case where there are two views of the data. For example, when clas-

sifying a web page, we might represent it as the text contained on the web page itself, or

we could view it as the text on the pages linked to by the web page. In the ideal case,

these two views would be independent given the class label. Figure 1.3 shows an influence

diagram for this simplified case. The generative process for this diagram can be thought of

as follows. First, the class, c, is chosen according to some prior, P (C). Then a distribution,

V1,c, which governs the first view generates the features X1, . . . , Xk. A second distribution,

V2,c, then generates the features Xk+1, . . . , Xn. The first classifier, Ŷ1, uses only the first

feature set to make its prediction while the second classifier Ŷ2 uses the second feature set.

To make this concrete, consider a binary classification task where the classes are {−1, 1}
and we have only one feature per view. Each feature will be generated by a normal dis-

tribution. Let V1,c = N(5c, 3), V2,c = N(c, 1), Ŷ1 = argmaxc∈C P (c|X1), and Ŷ2 =

argmaxc∈C P (c|X2). Assuming that each class is equally likely, P (−1) = P (1) = 0.5.

Then the first classifier will have an error of 4.78% and the second an error of 15.87%.

Even though the first classifier far outperforms the second, it is obvious in this case that

each classifier has information which can lead to a better combined decision. Now, how

good can the combination of these classifiers be?

At this point, the astute reader will have already taken note that Ŷ1 and Ŷ2 are making

predictions in accordance with the correct posterior over their respective feature sets, but

this does not mean the classifiers have access to the actual probability functions, P (c|X1)

and P (c|X2), just that they are correct with respect to the decision threshold. Assuming

that we have two such classifiers and the combination function only has access to Ŷ1 and

Ŷ2, then it is well-known that the best we can do can be expressed as a linear combination

6 1.2. WORSE PERFORMANCE DOES NOT MEAN OBSOLETE

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X
1
 (The decision boundary at 0.0 has an error of 4.78%)

PDF for X
1

p(
X

1 |
c)

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi) −10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X
2
 (The decision boundary at 0.0 has an error of 15.87%)

PDF for X
2

p(
X

2 |
c)

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 1.4: (a) The pdf for X1 as well as the decision boundary used by optimal classifier Ŷ1; (b)

The pdf for X2 as well as the decision boundary used by optimal classifierŶ2.

of the classifier predictions3, specifically sign
(

log P (+)
P (−) +

∑

wi,ŷi ŷi

)

, where the weights

are a function of the classifiers’ prediction accuracies:

wi,ŷi =

log
P(Correct Positivei)
P(False Positivei)

+ log P (−)
P (+)

if ŷi = +1

log
P(Correct Negative

i)
P(False Negative

i)
+ log P (+)

P (−) if ŷi = −1.

(1.1)

With a class prior of 0.5, our example classifiers have a symmetric distribution of false posi-

tives and false negatives. Therefore, the best combination of these two classifiers would still

have an error rate of 4.78%, equal to that of the best classifier. While the error rate would

improve if we had more conditionally-independent classifiers, the problem here is that the

weaker classifier cannot overpower the stronger classifier because there is no information

about whether an example lies near the stronger classifier’s decision threshold.

On the other hand, if the classifiers actually issue the true probability estimates, P (c|X1)

and P (c|X2), along with their class predictions, then the optimal combination now has an

error rate of 2.63%. This gives nearly a 50% reduction in error over the best classifier

by combining it with a classifier that’s “3 times worse” according to error! The optimal

combination gains for this example in other contexts fall between these two extremes. For

example, a more reasonable case is when the classifiers produce probability estimates that

lie on the correct side of the decision threshold with respect to their feature set, but the

probabilities themselves are not correct. Of course, in the most common case in practice,

3For the two class case, it is possible to write a single weight for each classifier rather than making the

weight a function of the classifier’s prediction. The form is equivalent but more tedious to write out, and the

interpretation is less obvious.

CHAPTER 1. OVERVIEW 7

0.2
0.4

0.6
0.8

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

1

P(Class = 1)Error Rate of Single Classifier

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 1.5: The correlation of conditionally-independent classifiers is largely determined by their

error rates and the class prior. This graph is generated with two classifiers whose error rates are

equal.

the classifiers produce probabilities that are not accurate nor do they always produce a

consistent decision.

Taken together, this discussion highlights that one of the challenges in classifier combi-

nation lies in dealing with the output type of the classifier — whether they are probabilities,

scores, or predictions — as well as their quality.

Finally, it is worth noting the subtle point that analyzing the correlation alone will not

indicate whether classifiers have conditionally-independent predictions. In our particular

example, the Pearson correlation coefficient between the two classifiers’ predictions shows

a borderline strong correlation of 0.6174 simply because both classifiers are relatively accu-

rate and therefore tend to agree. If we change the accuracy of Ŷ2 by changing the standard

deviation of the second feature to 0.6, the correlation coefficient jumps to 0.8180. How-

ever, regardless of the correlation, in both cases the classifiers provide distinctly different

information because they are conditionally-independent given the class.

In these examples, it is the class prior emission probability and the error rate of the

classifiers that largely determine how strongly correlated the predictions are. To remind

the reader, the Pearson correlation coefficient is ρ(Ŷ1, Ŷ2) = Cov(Ŷ1,Ŷ2)
σ
Ŷ1
σ
Ŷ2

. Assuming the

classifiers are relatively accurate, a class prior close to 0.5 will result in the predictions

having a large standard deviation (close to the max of 1) which will require a large number

of disagreements in the classifiers’ predictions to achieve a low correlation. This is unlikely

by chance if they are both accurate. As the class prior goes to zero or one, the number of

disagreements needed to drive the correlation to zero shrinks rather rapidly. Figure 1.5 will

8 1.2. WORSE PERFORMANCE DOES NOT MEAN OBSOLETE

help the reader visualize this for the case where Ŷ1 and Ŷ2 are constrained to have the same

accuracy.

At this point, the reader should be convinced that even strongly correlated predictions

between classifiers are not sufficient to dismiss the hypothesis that a combination will out-

perform either classifier.

1.2.2 Diversity and Accuracy in Real Datasets

The idealized examples presented in section 1.2.1 highlight two necessary conditions for

benefitting from classifier combination. First, the base classifiers must be diverse in that

they give different predictions. In the idealized example, this diversity came because the

classifier predictions were conditionally-independent given the class. Second, the classi-

fiers must be fairly accurate in addition to being diverse. Clearly, diversity can be easily

obtained by random predictions unless this second constraint is enforced.

In the context of this dissertation, we use standard classification algorithms to obtain

both diversity and accuracy. These algorithms include Decision Trees, kNN, SVMs, simple

language models, and naı̈ve Bayes. These algorithms have been empirically evaluated

in a variety of text classification problems, and it is known that they are anywhere from

reasonably accurate to state-of-the-art. It is less clear that the predictions they issue should

be diverse especially when trained over the same data.

We argue that the fundamentally different assumptions underlying the algorithms give

rise to models that fit different parts of the data more or less well. Finding the conditions

under which these classifiers can be combined to obtain better performance is therefore

a precursory step to determining how and why any single classifier’s assumptions are not

sufficient to fully model the classification task at hand. We have chosen these algorithms

not only because they are known to perform well but also because they are different types of

classifiers along several different dimensions. The SVM, language model, and naı̈ve Bayes

algorithms we investigate produce a linear decision boundary where the kNN and Decision

Tree classifiers are non-linear classifiers. In contrast, the language model and naı̈ve Bayes

algorithms we employ are generative classifiers where the SVM, kNN, and Decision Tree

classifiers are discriminative.

In addition to these foundational motivations for our choice in base classifiers, empirical

evidence bears out the fact that their error profiles differ in a number of ways. When

viewed using ROC curves, there are typically cross-overs in the curve indicating that no

single model is appropriate for all cost functions. Finally, an optimistic estimate of the

CHAPTER 1. OVERVIEW 9

performance ceiling for combination, such as reducing error to only those examples where

all of the base classifiers are wrong, results in an error rate far better than the best classifier.

1.3 Thesis Statement

While classifier combination techniques comprise a broad field, this dissertation will fo-

cus solely on how context-sensitive metaclassification techniques can be used to improve

generalization performance.

An initial attempt to address this issue might start by requiring the classifiers to output a

probability distribution over possible class labels then combine them via a simple strategy,

such as a constant-weighted linear sum. While this seems like an inviting avenue to pursue,

obtaining “good” probability estimates can be problematic. We review our early investiga-

tions [Ben00, Ben02] that demonstrated how to convert a classifier’s scores to probability

estimates that are of quality better than or comparable to other methods for calibrating

classifier scores. While this is a step in the right direction, it does not address one of the

primary challenges of classifier combination — namely estimating the dependencies of the

classifier outputs. Furthermore, it fails to take advantage of the fact that the reliability of

a classifier’s predictions can vary across the input space. Additionally, the correlation be-

tween two classifiers’ predictions may vary locally as well — in some areas, showing high

dependence and in others being largely independent.

Of course, the characterization of context is the operative factor in the distinctions the

metalevel classifier can make. Other methods that have tried to leverage context have typ-

ically used only the classifier outputs or the outputs and all of the base features as context

[TW99, Gam98a, Gam98b, TT95, MP99]. In order to make finer local discriminations, we

wish to use more context than the classifier scores, but because of the high dimensionality

of text, using all the base features as a representation of context is a poor choice because

of the amount of data needed to accurately learn such a model. Following the work that

inspired this model [TH00], we introduce a set of reliability-indicator variables that are a

low-dimensional rich abstraction of the discriminatory context provided by a document for

learning.

In contrast to Toyama & Horvitz’s work [TH00], we give formal definitions for the lo-

cal dependence, reliability, and variance of a set of classifiers, and then we define indicator

variables that are either direct or indirect approximations of these statistics. Other combina-

tion work [Kah04] relates the combination weights to these quantities when the classifier’s

log-odds predictions are assumed to follow a certain generative form. Our work can be seen

10 1.3. THESIS STATEMENT

as generalizing this framework. Even when a generative form is not assumed, these quanti-

ties are at least necessary. Although, in practice, we can rarely compute them directly and

accurately. Therefore, the fundamental assumptions underlying the metaclassifier approach

are: (1) Since we know these quantities are necessary for classifier combination, we will

gain by reducing the dimension of the metaclassifier space from the original input space to

approximations of these quantities; (2) Assuming these quantities are sufficient for class-

ifier combination, it is not necessary to explicitly know the “locality”4 of an example —

documents that are similar in the metaclassifier space will have similar combination rules

since these statistics are assumed sufficient.

Furthermore, we generalize the reliability-indicator characterization of context in a way

that enables using labeled data from separate learning tasks to learn an improved combina-

tion policy across all tasks. This can be done if we treat the metaclassifier as an abstraction

from discriminating a specific topic (e.g., Corporate Acquisitions vs. not Corporate Ac-

quisitions) to the problem of discriminating topic membership in general (i.e., In-Topic vs.

Out-of-Topic). The base-level classifiers that are trained on a particular topic are used as

the representation of topic-specific knowledge, while the metaclassifier provides informa-

tion about how to leverage context across topic-classification in general. Such an extension

is only possible if we generalize the reliability indicators away from linkages to the pre-

cise words in a document. Consider when “shares” occurs in a document in the Corporate

Acquisitions discrimination task and “corn” occurs in a document in the Corn Futures dis-

crimination task; one simple task invariant representation of context at the metalevel might

transform both of these to: Is the word with maximum mutual information for the current

task present in this document? This representation enables the metaclassifier to use infor-

mation about how document-specific context influences topic discrimination across a wide

variety of text classification tasks. The success of this abstracted model depends critically

upon our ability to find a “normalized” representation that captures how topic classification

decision boundaries co-vary with the statistical properties of language. We present empir-

ical evidence that this approach can, in fact, succeed — increasing the amount of labeled

data available to build the metaclassifier by pooling it. We discuss possible issues that

might arise when conglomerating the data and offer solutions to these practical problems.

Finally, since the empirical evaluations of this model have focused primarily upon how

topic classification tasks relate to language-use distributions, we demonstrate how it can be

4We refer to a combination method as using “locality” if the algorithm can induce a model that cannot

be expressed as a constant-weighted linear combination of a classifier’s predictions, probabilities, scores, or

log odds. Thus both the representation and the algorithm determine whether an approach uses locality. For

example, a linear SVM metaclassifier applied to the log-odds of a classifier’s predictions does not use locality,

but a decision tree algorithm, which can learn a non-linear function of the classifier’s outputs, uses locality.

CHAPTER 1. OVERVIEW 11

extended to other domains of text classification as well, specifically action-item detection

in e-mail documents.

Throughout all of the work, we argue the following thesis: Context-dependent combi-

nation procedures provide an effective way of combining classifiers that are generally

superior to constant-weighted linear combinations of the classifier’s estimates of the

posterior or log-odds. Furthermore, context can be leveraged in text classifier com-

bination via an abstraction of the local reliability, dependence, and variance of the

base classifier outputs. Finally, these abstractions help identify opportunities for data

re-use that can be employed to significantly improve classification performance.

1.4 Criteria for Evaluation

As discussed earlier, it is not possible to construct a metaclassifier that always outper-

forms its base classifiers. As a demonstration of the suitability of these methods for text

classification though, we set the goal of statistically significantly outperforming the current

state-of-the-art base classification methods over several standard text classification corpora.

In addition, to prevent overtuning to specific corpora, we have chosen the corpora for their

breadth and have completely withheld performing experiments on one corpus until the final

stages of this dissertation. Furthermore, since we argue that our representation of context

is key, we will empirically demonstrate that these methods outperform simple constant-

weighted combinations of the classifier outputs in some corpora and, in the remaining ones,

achieve a statistically negligible difference.

1.5 Roadmap to This Document

The remainder of the document is laid out as follows. First, we describe related work. From

there, we discuss why obtaining quality probability estimates from a classifier based solely

on its output is problematic and introduce improved methods that rely on asymmetry. Using

the same framework of analysis, we motivate and define the local reliability, dependence,

and variance of a classifier. Based on these insights, we lay out the set of reliability indica-

tors we use, show situations where they can be helpful, and discuss the computational and

practical implications for computing them. Before delving into the key contributions of this

dissertation, we briefly review our evaluation methodology, the implementation details of

the base classifiers, and a variety of performance measures that can be used to evaluate the

12 1.5. ROADMAP TO THIS DOCUMENT

effectiveness of text classifiers. Then, we describe the STRIVE framework, which uses a

standard classifier as the metaclassifier and the reliability-indicator representation to build

a more effective classifier. We follow this with a description of how the characterization of

context used in STRIVE can be generalized to build a domain-level metaclassifier that in-

creases the pool of data that can be used for building a single model. In the next chapter we

consider alternative metaclassifiers based on online learning with performance guarantees,

conduct an empirical analysis of them, and discuss why these methods do not currently

yield performance comparable to offline metaclassification approaches. In the following

chapter, we demonstrate that these variables and representations are applicable to other text

classification problems such as e-mail action-item detection. Finally, we summarize our

contributions and highlight important directions for future work.

Chapter 2

Related Work

Appropriately combining information sources to form a more effective output than that of

any of the individual sources is a broad topic that has been researched in many forms. The

challenges of integrating information have gone under the labels of diagnosis [HBH88],

pattern recognition [DHS01], sensor fusion [Kle99], multistrategy learning [MT94], dis-

tributed data mining [KC00], and a variety of ensemble methods [Die00]. Diagnosis cen-

ters on identifying disorders from multiple pieces of evidence, such as reasoning about

probability distributions over a patient’s diseases from a set of symptoms and test results.

Pattern recognition and sensor fusion typically address challenges with integrating infor-

mation from multiple modalities (e.g., auditory and visual) while distributed data mining

addresses how results retrieved from distinct training data sets can be unified to provide one

coherent view to the user. Multistrategy learning methods have focused primarily on com-

bining methods from different paradigms (e.g., abductive and inductive methods). Ensem-

ble methods are methods that first solve a classification or regression problem by creating

multiple learners that each attempt to solve the task independently, then use a procedure

specified by the particular ensemble method for selecting or weighting the individual learn-

ers. Ensemble methods include such examples as Bayesian averaging [Lea78, HMRV98],

bagging [Bre96], boosting [Sch90, Fre95, FS97], stacking [Wol92], cascade generalization

[Gam98a, Gam98b], hierarchical mixture of experts [JJ94], and this dissertation.

This chapter presents a sampling of the key works in the literature that are related to this

work.1 First, we review the two primary types of ensemble methods: those that combine

different models obtained from the same classification algorithm (homogeneous ensem-

bles) and those that combine models obtained from different classification algorithms (het-

1Additional work that is relevant to particular sections but not to the core focus of this work is discussed

in the appropriate chapter.

13

14 2.1. HOMOGENEOUS ENSEMBLES

erogeneous ensembles). Our proposed work focuses on heterogeneous ensembles. We then

specifically highlight combination methods that have employed some notion of locality as

well as specific applications of combination methods to text problems. Since calibration is

central to our exposition of the roles of local reliability, dependence, and variance in classi-

fier combination, we also conduct a brief survey of previous attempts to improve probability

estimates or obtain calibrated estimates from a single classifier. Finally, we conclude with

a discussion of the No Free Lunch theorem — a well-known negative theoretical result

regarding classification and classifier combination.

2.1 Homogeneous Ensembles

Homogeneous ensembles are combination methods that combine different models obtained

from multiple runs of the same classification algorithm. The models may differ for a vari-

ety of reasons. For example, when combining neural networks, each model instance in the

ensemble could be the result of training after a random initialization of the model weights

[HS90]2; thus, each training run might settle on a different local error minimum. Alter-

natively, for decision trees, each tree could be obtained by training over a different sample

obtained by sampling randomly with replacement from the training data [Bre96]. Homoge-

neous ensemble methods include Bayesian averaging, bagging, boosting, and hierarchical

mixture of experts.

The primary focus of many homogeneous ensembles is to account for model parameter

uncertainty that results from noise in the data and having estimated the model parameters

with finite data. Bayesian averaging works directly with this concept and weights each hy-

pothesis (possible model) by its probability of being the correct hypothesis according to a

chosen prior distribution. While Bayesian averaging is one of the oldest developed combi-

nation methodologies [Lea78], it has only recently become computationally feasible to deal

with large or possibly infinite hypothesis spaces via sampling or other techniques. Hoeting

et al. [HMRV98] study and give a survey of recent approaches to Bayesian averaging.

Model uncertainty can also be thought of as the variance in the model parameters if

different training sets of the same size were drawn from the same underlying distribution an

infinite number of times. Breiman [Bre96] introduces bagging (bootstrap aggregation) from

this approach to model uncertainty. A bootstrap sample of the same size as the training set

2Merz’s [Mer98] definition of “homogeneous” and “heterogeneous” differs slightly. In his terminology

“heterogenous” refers to any difference in the learning algorithms. Thus different neural network models

obtained by different random initializations of network weights would be termed “heterogenous” by his ap-

proach.

CHAPTER 2. RELATED WORK 15

is drawn by sampling the training set with replacement. Then, the bootstrap sample is

given to the classification algorithm to obtain a model. This process is repeated N times

(for some large N) and the resulting ensemble is combined via majority vote.

Boosting, as it has typically been applied, also constructs an ensemble of models by

obtaining each model from a training run over a different distribution on the training set.

However, each model is produced sequentially and the weight each training example is

given is a function of the number of previously trained models that predicted the example’s

class incorrectly. In this way, each successive model focuses more on the “hard examples”

that earlier models mispredicted. Boosting can often be better viewed as a feature selection

method rather than a variance reduction method such as the previous two methods. The

reason for this is that the primary empirical success of boosting has been to classification

algorithms where each model does not attempt to fully solve the problem. One such exam-

ple is boosting decision stumps [SFBL98]; a decision stump is a decision tree of depth one.

In this sense, they can be seen as more of an attempt to avoid “data-fracturing” by choosing

a set of features where every example had at least some weight on the predictor chosen.

For those interested in alternative methods of using “all the data”, Domingos [Dom94] uses

a heuristically guided hill-climbing search to induce a series of classification rules over all

the data and weights the final combination of rules according to a combined measure of

coverage and precision.

Hierarchical mixture of experts (HME) [JJNH91, JJ94] has a quite different flavor from

the other homogeneous ensembles discussed. This method can be thought of as a tree

with classification models at the leaves and weighting functions at the internal nodes. The

models at the leaves make a prediction, and the predictions are “blended” by the weighting

functions, which act as gates as they propagate up the trees. The weighting functions

are functions of the input as well. Therefore, the weighting functions can provide a soft

partitioning of the input space. The authors first motivated the use of HME as another

method that avoids fracturing the data as divide-and-conquer methods do, and instead use

all of the data in combination with simple (high-bias) estimators at the leaves to strike

a more favorable bias-variance tradeoff. Because the weighting functions are functions

of the input, HME is the first method we have discussed that has a notion of locality.

The weighting functions typically used are generalized linear functions (a fixed non-linear

function of a linear transform of the weight). Typically, the model parameters and the

weighting functions are trained in conjunction. Therefore, depending on the type of experts

used at the leaves, estimating the parameters may be computationally intensive. As each

example is seen, the gating function gives increased weight to the experts that perform well

on it, and when the experts commit errors during training, they are updated according to

the amount of weight that the gating network placed on them. Therefore all experts are not

16 2.2. HETEROGENEOUS ENSEMBLES

generally trained over the same data. Thus, this approach shares similarity with boosting

in that it addresses how a complex task can be broken down into the combination of simple

classifiers trained over altered data distributions. The authors do not specifically address

how fixed models can be combined. Although the scheme could be altered to do so; in this

case, it would become an instance of local cascade generalization (discussed later) where

the gating function is essentially the metaclassifier being trained.

In contrast, our approach focuses on richer definitions of locality and uses these in

combining the outputs of models from different inductive algorithms. Thus, as opposed

to homogeneous methods where the individual models result from the same algorithm, we

seek to also draw insights into how the strengths of the various classification algorithms are

effectively employed by the combination algorithm.

2.2 Heterogeneous Ensembles

Heterogeneous ensembles are combination methods that combine different models ob-

tained from different classification algorithms. While technically a heterogeneous ensem-

ble could be applied to different models obtained from the same algorithm, they are differ-

ent in that they typically stem from one of the following two motivations: (1) if the errors

of a set of classifiers are independent,3 then the error rate of an appropriate combination of

those classifiers drops exponentially fast with the number of classifiers; [Die00] (2) each

classifier has a bias, or a restriction on the set of functions it can learn, and by combining

different classification algorithms it is possible to relax the bias and learn more expressive

models (as always at a cost in terms of variance) [Gam98a, Gam98b].

Since a classification algorithm often outputs a model that performs well but disagrees

on some examples with a model obtained from a different classification algorithm, re-

searchers have often simply assumed they provide independent sources of information and

combined them accordingly. Majority vote and constant-weighted sums of outputs have

operated under this assumption with varying empirical success; we discuss particular ap-

plications of these rules to text problems below.

An alternative to assuming the classifier outputs provide independent information about

the class is to take into account the fact that they may be partially dependent. Merz and

3At this point, a common misunderstanding most be pointed out. The phrase, often used in literature,

“errors of a set of classifiers are independent” is sometimes mistakenly confused with “the output of the

classifiers are independent”. Obviously, we do not expect the output of the classifiers to be independent —

they are learning the same function. Instead a more precise statement would refer to the classifier’s outputs

being conditionally-independent given the class label as discussed in Section 1.2.1.

CHAPTER 2. RELATED WORK 17

Pazzani [Mer98, MP99, Mer99] do this by introducing methods which use an intermedi-

ate representation obtained via singular value decomposition. They introduce a method for

combining regression estimates (PCR∗) and one for combining classifier outputs (SCANN).

The first uses principle components analysis to factor the covariance matrix of the regres-

sion estimates, followed by a validation step to determine the number of principal vectors to

retain, and then performs regression using the retained components to determine how heav-

ily to weight each method. The final form of the learned function uses a constant-weighted

linear combination and thus is not a local method in our terminology. For classification,

the class predictions of the classifiers are obtained and correspondence analysis is applied

to the prediction matrix to determine the canonical variates. Similar to the regression ap-

proach, a validation step is used to determine the number of variates to keep and the final

set of weights is determined using a nearest neighbor approach in the space of the remain-

ing variates. The final form of the learned function uses a single weight per class. Thus

the classification approach has some use of locality. Although since we decompose prob-

lems into binary prediction tasks, we can rewrite such a model for binary classification as

a model that uses a single set of weights.

Another approach to taking dependency into account is taken by those models that use

a metaclassifier (as in Figure 1.2). Two such approaches are stacking and cascade gener-

alization. Wolpert introduced stacking in [Wol92], and more recently, others have studied

its effectiveness more thoroughly [TW99]. Stacking trains a metaclassifier over the out-

puts of the lower level classifiers. Stacking can thus account for dependencies between the

classifiers by observing them in the training data for the metaclassifier model. Because

the metaclassifier can also generalize according to how close the examples are in terms

of the base classifier outputs, then stacking4 also has a sense of locality but restricted to

nearness in base classifier outputs. Cascade generalization [Gam98a] is similar to stacking,

but where stacking performs cross-validation to obtain outputs from the base classifiers to

train the metaclassifier, cascade generalization simply trains the base classifiers once and

gives the metaclassifier the base classifiers’ predictions over the training set. Thus, Gama

argues that cascade generalization is more appropriately seen as relaxing the bias (or ex-

tending the expressiveness) of the base models. Local cascade generalization [Gam98b]

also includes all of the base features of the example when training the metaclassifier. As

mentioned above, using all of the base features is often not feasible for text problems be-

cause of the high dimensionality of text. Thus, our work attempts to find a low-dimensional

representation of locality. Additionally, the representation aids in the interpretability of the

resulting models.

4Depending on which metaclassifier model is used.

18 2.2. HETEROGENEOUS ENSEMBLES

In recent work, Caruana et al. [CNM04] present a method for performing simple globa-

bly weighted combinations of classifiers. Their approach builds a large library of classifica-

tion models (several thousand) by varying the parameters of several agorithms. Then using

a simple hillclimbing approach to select with replacement a set of models to vote equally.

Correlation is an even greater challenge for their framework since the majority of models

result from varying a parameter smoothly for a base classification algorithm. Their empir-

ical investigation includes several oddities, however. They restrict the data available to the

metaclassifier by using a small validation set. Because of the highly correlated models, this

puts many of the meta-algorithms at a disadvantage. They probably would have performed

better if only given a small set of base models using default paramaters. Additionally, they

do not compare their methods to methods explicitly targeted at handling correlation such

as Merz’s work discussed above.

2.2.1 Other Relevant Approaches

Another approach sometimes termed any of “metaselection”, “metalearning”, or “meta-

classification”, attempts to pick one single (but potentially different) classifier for each

discrimination task. For example, one might learn a rule of the form, “If there are more

than 200 examples of each class, use the kNN model, else use the SVM model.” We prefer

the term “metaselection” for this approach since only one single model is actually used

for predictions. In contrast, most of the other heterogeneous methods (and ours) vote or

blend the predictions of each in some way. An example of metaselection is [LL01] where

the authors define features that they then use to choose the classifier to apply to a particular

problem. Our approach is more general than this since we can blend classifiers based on the

specific documents. For features that may be relevant to choosing a classifier for a problem

but static across all documents within that problem (e.g., number of training examples),

our work on Inductive Transfer demonstrates how to extend our combination framework to

obtain the benefits of both metaselection and combination.

Inductive Transfer is one of several methods such as multitask learning that attempt to

overcome the typical scarcity of labeled data by building predictive models using knowl-

edge transfered from another task. In multitask learning, additional information for build-

ing models comes in the form of labels for related functions which can be learned over the

same input. Although such additional labels are typically unavailable at prediction time,

results have demonstrated that generalization performance can be improved on the primary

task by learning to predict the new variables in addition to the output variable of interest.

CHAPTER 2. RELATED WORK 19

Caruana [Car97] presents an approach to and analysis of multitask learning when the

n function-approximation tasks are over the same input (i.e., a labeled example consists of

x1, . . . , xm data attributes and the values for this example of the n functions to be learned

f1(~x), . . . , fn(~x)). In this analysis, the main concern is generalization performance for

one particular fi, the primary problem. Likewise, the Curds & Whey approach proposed

by Breiman & Friedman [BF95] solves a similarly formulated problem but attempts to

minimize the squared error across all of the n functions instead of placing emphasis on one

task.

In contrast to multitask learning, we show how to leverage labeled data from related

problems over examples in different input spaces to enhance the final model used in pre-

diction. Problems related to this challenge have been termed classifier re-use [BG98] or

knowledge transfer [CK97]. We introduce a new approach to the challenge that hinges on

mapping the original feature space, targeted at predicting membership in a specific topic,

to a new feature space aimed at modeling the reliability of an ensemble of text classifiers.

Thrun & O’Sullivan [TO96] present methods for identifying related tasks and sequen-

tially transferring knowledge when using a nearest-neighbor classifier. These methods

are applicable when the input has the same representation across tasks. Both Thrun &

O’Sullivan’s and Breiman & Friedman’s work could be applied to the inductive transfer

problem we lay out after transforming the data to our representation.

Cohen & Kudenko [CK97] perform an analysis of classifier re-use and sequential knowl-

edge transfer in information filters for text documents. Their work showed that significant

improvements could be introduced when the classifiers were constructed to primarily model

features positively correlated with the topic (i.e., word presence that is positively correlated

with being In-Topic). However, the method also relies on the new task and the old task

sharing significant overlap in the underlying concept to be learned.

Finally, Bollacker & Ghosh [BG98] present a novel mechanism for classifier re-use

where a classifier is constructed for each of a set of support tasks that are later used in pre-

dictions for a primary task. The final classification is selected by predicting the same class

as the training data item (from the primary task data) that has the most similar prediction

pattern using the support classifiers. Since each support classifier is applied to examples

from every task, the input representation for each of the related tasks must be the same.

Additionally, the scheme, like error-correcting output coding [Die00], relies more on an as-

sumption that the extra-task labels will serve as a natural encoding for the data rather than

other re-use mechanisms that specifically bias models or build representations of domain

knowledge.

20 2.3. RELATED WORK USING LOCALITY

2.3 Related Work Using Locality

We refer to a combination method as using locality if the algorithm can induce a model

which cannot be expressed as a constant-weighted linear combination of a classifier’s pre-

dictions, probabilities, scores, or log odds. Thus both the representation and the algorithm

determine whether an approach uses locality. For example, a linear SVM metaclassifier

applied to the log-odds of a classifier’s predictions does not use locality, but a decision tree

algorithm, which can learn a non-linear function of the classifier’s outputs, uses locality.

Locally weighted combinations have received far less attention in the reseach commu-

nity. As we have mentioned above, some of the more prominent examples that include

some notion of locality are stacking, cascaded generalization, and HME. These methods5

use either only the classifier outputs or the classifier outputs and base features to set a local

weight. In contrast, we combine the outputs based on properties of the classifier output that

capture their local variance and accuracy.

Merz [Mer95] also uses locality in his approach to dynamic selection and combination

by using a nearest-neighbor approach where two examples are considered similar if the

base classifiers have a similar prediction pattern for both of them. In the selection case,

the classifier with the highest accuracy in the retrieved neighbors is used, and in the com-

bination approach, they are voted according to their accuracies. However, he was not able

to obtain promising results in the empirical evaluation. Woods, Kegelmeyer and Bowyer

[WJB97] present a similar method but the local accuracy of the classification methods are

estimated over a neighborhood found in the original input space. Very minor improvements

were demonstrated for several problems that had low-dimensional input spaces. Addition-

ally, while they tried different neighborhood sizes, they do not report how they decided on

the size they used in their final results.

Finally, Tresp & Taniguchi [TT95] investigate a variety of locally weighted combination

rules and apply them to a low-dimensional data set (13 features). While they do investigate

rules that take advantage of local variance, density (number of samples around the point),

and reliability, their rules are sometimes not practical for high-dimensional data. More

importantly, their approach relies on generative assumptions about the data.

Additionally, our approach allows for richer definitions of locality than simple nearness

in the (Euclidean) feature representation. For example, the reliability indicator Unigram-

Variance that we discussed briefly above and in more detail below is essentially the variance

of a unigram model’s output with the deletion of a single word occurrence in the document.

We could also consider a more expressive generalization such as the variance with deletion

5The reader is referred to Sections 2.1 and 2.2 above for more details on each of these methods.

CHAPTER 2. RELATED WORK 21

of a sentence or paragraph. Since whole contiguous sections may be deleted, this allows

the covariance of the words, as determined by the structure of language, to play a role in

how locality is effectively defined for documents.

2.4 Previous Applications to Text Problems

The combination of multiple methodologies or representations has been employed in sev-

eral text related areas outside of text classification. For example, previous research in in-

formation retrieval has demonstrated that retrieval effectiveness can be improved by using

multiple, distinct representations [BCB94, KMT+82, RC95], or by using multiple queries

or search strategies [BCCC93, SF95]. Freitag [Fre98] presents a study of combining in-

ductive learners for information extraction where several simple rules for combination are

employed after the classifier outputs are normalized.

In the realm of text classification, several researchers have achieved improvements in

classification accuracy via the combination of different classifiers [HPS96, LC96, LJ98,

YAP00]. Other investigators have reported that combined classifiers work well compared

to some particular approach [AKTV+01], but they have not reported results that compare

the accuracy of the classifier with the accuracies of the individual contributing classifi-

ers. Thus, it is difficult to draw insights from their work about how the reliabilities of the

contributing classifiers vary over the input space. Similarly, systems that seek to enhance

classification performance by applying many instances of the same classifier, such as in

boosting procedures [SS00, WAD+99], typically leverage weaker component learners that

would not be directly examined as stand-alone classifiers.

Much of the previous work on combining text classifiers has used relatively simple

policies for selecting the best classifier or for combining the output of multiple classifiers.

As some examples, Larkey and Croft [LC96] used weighted linear combinations of system

ranks or scores; Hull et al. [HPS96] used linear combinations of probabilities or log odds

scores; Yang et al. [YAP00] used a linear combination of normalized scores; and Li and

Jain [LJ98] used voting and classifier selection techniques. As discussed in detail in Section

2.2, Lam and Lai [LL01] use category-averaged features to perform metaselection. Ruiz

and Srinivasan’s [RS02] study on applying HME to hierarchical text classification is an

example of a more complicated combination rule that has been applied to text. In order

to make the approach computationally feasible, they performed significant dimensionality

reduction using feature selection. Despite this, they only obtained performance comparable

to a version of the Rocchio algorithm. In contrast, our work has demonstrated a significant

improvement over competitive text classification algorithms. This indicates that making

22 2.5. NO FREE LUNCH AND ITS IMPLICATIONS

the most effective use of locality when combining text classifiers is still an unanswered

question.

2.5 No Free Lunch and Its Implications

Finally, no discussion of work related to classifier combination would be complete without

a discussion of the No Free Lunch Theorem [DHS01, Wol95] and its implications for class-

ifier combination. Wolpert, who also introduced stacking [Wol92], derived it as a hardness

result, which in short demonstrates that there exists no classifier superior to every other

classifier unless we make assumptions about the example distribution. That is, even given

substantial training data, for any specific classifier there will always be some example dis-

tributions on which it is outperformed by another classifier.6 Additionally, there will also

exist some distributions where random guessing outperforms the classifier.

As a result, the performance of a classifier on a set of problems can be seen to be

more an issue of the appropriateness of the fit between the classifier’s assumptions and the

true underlying distribution. Since classifier combination seeks to create a more effective

classifier from the individual input classifiers, some researchers have mistakenly believed

that the No Free Lunch Theorem implies any attempt at classifier combination is futile.

However, this is clearly no more true than saying that classification is futile. Instead it

must be understood that the empirical performance of the combination method will be

dependent on the fit between the assumptions the combination method makes about the

base classifiers, the example distribution, and reality. When these assumptions are a good

fit for the problems seen in practice, the combination model will perform well. Thus, just as

some classifiers (e.g., SVMs) dominate a large number of problems (e.g., text classification)

seen in practice, the challenge is to develop a metaclassification algorithm that captures the

common interactions among base classifiers seen in practice.

In the context of this dissertation then, we will highlight the conditions under which a

particular metaclassifier will perform well (provide a good fit) based on the interaction of

the base classifiers and the training data available (characteristics of the task). For exam-

ple, when the other base classifiers do not provide additional information to that of the best

base classifier, then we might expect some algorithms will use the data more efficiently

to perform better. Whereas, when a single classifier dominates in different regions of the

input space, then another metaclassifier might outperform the previous algorithm. Like-

wise, the best choice might vary again when we consider when the optimal cases are linear

combinations. Since the No Free Lunch theorem provides us with a proof that there is no

6One common assumption that is made to prove results are that the examples are drawn i.i.d.

CHAPTER 2. RELATED WORK 23

data-independent best choice or even a choice that will always outperform random, then we

aim to elucidate through data properties and empirical evaluation the tradeoffs involved.

24 2.5. NO FREE LUNCH AND ITS IMPLICATIONS

Chapter 3

Calibration

In this chapter we first review the concept of calibration — a measure of how good a set

of probability estimates are. If we consider the extreme case of applying a metaclassifier

to the outputs of a single base classifier, then the metaclassifier is either implicitly or ex-

plicitly recalibrating the base classifier. In fact, given only the base classifier’s probability

estimates, the metaclassifier cannot improve on those estimates if they are well-calibrated.

As a result, understanding how any combination method works in the case of a single

base classifier can give important insight into its behavior — especially since it is possible

to easily examine the empirical behavior of a base classifier’s probabilities. For example,

we will show that Kahn’s [Kah04] assumption of normally distributed class-conditional

log-odds rarely empirically holds for a single base classifier, and we will provide an expla-

nation why it is unlikely to hold for accurate classifiers. Additionally, since not all classi-

fiers directly estimate probabilities, this study also aids in producing probability estimates

for combination methods that require them.

The remainder of the chapter is devoted to investigating the empirical behavior of prob-

ability estimates obtained from various classifiers, explaining this behavior, and developing

new methods to improve the calibration of probability estimates obtained from classifiers

based on their observed empirical behavior.

3.1 Calibration and Related Concepts

An obvious way to approach classifier combination is to treat each classifier, Ci, as a black

box that outputs an estimate of the probability distribution over class labels for each data-

point, P̂Ci(c | d). Then, perform the combination by simply combining these estimates with

25

26 3.1. CALIBRATION AND RELATED CONCEPTS

a linear or a weighted (normalized) multiplicative combination. A slightly more general

approach assumes each classifier outputs an unnormalized score scoreCi(d, c), which is the

score assigned to class c for document d. This score is then converted to a probability

P̂Ci(c | d) using some other method.1

However, there is no guarantee that the estimates from different classifiers adhere to

a fixed standard. That is, for one classifier, 0.8 of the items assigned 0.6 probability for

the class under consideration may actually belong to the class; while for another classifier,

0.5 of the items assigned 0.6 probability may belong to the class. In some sense then, a

prediction of 0.6 from each classifier “means” different things.

DeGroot and Fienberg [DF83] review the concept of calibration, a candidate to use as a

fixed standard that addresses such inconsistencies. We say a classifier is well-calibrated if

as the number of predictions goes to infinity, the predicted probability goes to the empirical

probability. That is, for all unique πi, such that πi = P̂Ci(c | d), the empirical relative

frequency2 equals πi, i.e. P̃ (c | πi) = πi. This can be best envisioned graphically with

the aid of a reliability diagram. Consider a two-class discrimination problem where Y =

{0, 1}. Then, we can plot the classifier’s predictions for one of the classes on the x-axis

and the empirical relative frequency on the y-axis. Figure 3.1 demonstrates this.

The above described calibration as a frequentist concept, but the reader should note that

it can also be viewed from a Bayesian viewpoint [GCSR95, GZ86]. From the Bayesian

view, an outside observer is actually stating his belief about a classifier’s behavior. The

classifier is then well-calibrated if the observer cannot improve upon the classifier’s fore-

casts given only the output of the classifier. Thus, a well-calibrated forecaster has, in a

sense, summarized all of its information in the probabilities it is emitting.

When evaluating the usefulness of predictions, we also must consider the frequency

with which a classifier outputs a particular prediction. For example, suppose for our prob-

lem the actual prior is P (c = 1) = 0.7. A classifier could simply predict P̂Ci(c = 1 |
d) = 0.7 all the time, and it would be well-calibrated. However, it is clearly less useful

than another classifier that is also well-calibrated and outputs P̂Cj(c = 1 | d) = 0.9 half the

time and P̂Cj(c = 1 | d) = 0.5 the other half of the time. DeGroot and Fienberg [DF83]

introduce the concept of refinement to compare two well-calibrated classifiers. Essentially,

one well-calibrated classifier Ci is at least refined as another Cj if the predictions of Ci can

be passed through a noisy channel to produce a well-calibrated classifier whose charac-

terization in terms of calibration (the discrete set of prediction values it outputs and their

1An assumption often made during this conversion is that P̂Ci
(c | d) is monotonic in scoreCi

(d, c).
2There is an assumption that the space of probability estimates has been discretized to form a finite set of

possible values, e.g. {0, 0.1, 0.2, . . . , 1}.

CHAPTER 3. CALIBRATION 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

An Example of a Well-Calibrated Classifier’s Reliability Diagram

Classifier Ci’s probability estimate πi = P̂Ci
(c = 1 | d)

E
m

pi
ri

ca
lR

el
at

iv
e

Fr
eq

ue
nc

y,
P̃

(c
=

1
|
π

i
)

Figure 3.1: For a well-calibrated classifier, all points in a reliability diagram fall on the diagonal. In

the long-run 0.6 (generally πi) of the items the classifier predicts to have 0.6 probability (generally

probability πi) of belonging to the class, actually do belong to the class. Additionally, a reliability

diagram often has annotations indicating the frequency with which a certain value is predicted.

frequencies) is the same as j. Formally, this holds if there exist stochastic functions (i.e.,

distributions) h such that the following equations are satisfied for all πj ∈ Π:

P (πj) =
∑

πi∈Π
h(πj | πi)P (πi) (3.1)

πjP (πj) =
∑

πi∈Π
πih(πj | πi)P (πi) (3.2)

Additionally, DeGroot and Fienberg give a simple statistical test that is necessary and suffi-

cient to determine if one classifier is more refined than another. The most refined classifier

is the one that only outputs predictions 0 and 1 and is always correct.

An implication for classifier selection is that if we must choose only one of two well-

calibrated predictors, then it is always better to use the most refined predictor regardless of

how the predictions will be used. Refinement is a partial-ordering, and thus it is possible

that neither classifier is more refined than the other. Furthermore, it is unclear what the

implication is for predictors that are not calibrated — which is the case far more often than

not in practice.

Therefore, DeGroot and Fienberg continue by generalizing the notion of refinement to

a related concept they call sufficiency, which can be used to compare any two classifiers

regardless of whether or not they are well-calibrated. A classifier Ci is sufficient for Cj
if the distribution of Cj’s predictions can be characterized as a stochastic function of Ci’s.

28 3.1. CALIBRATION AND RELATED CONCEPTS

Formally, Ci is sufficient for Cj if there exists a set of distributions h such that the following

equalities are satisfied:3

P (πj | y) =
∑

πi∈Π
h(πj | πi)P (πi | y) for all πj ∈ Π and y ∈ Y . (3.3)

Like refinement, sufficiency is a partial ordering, and if we must select only one of

two classifiers and Ci is sufficient for classifier Cj , it is always better to choose classifier

Ci. However, we must ask whether we can still gain from combining these two classifiers.

DeGroot and Fienberg demonstrate that it is possible for classifier i to be sufficient for

classifier j but information can always be gained from their combination except when

P (c | πi, πj) = P (c | πi) for all πi, πj . To rephrase, we can gain by combining the two

classifiers unless the class is independent of the output of Cj given the output of Ci.
Since this has implications for classifier combination, it is worth considering further

how even when one classifier can be characterized as a stochastic function of another,

it can sometimes be used to gain improvement in combination. The argument proving

it is constructive but not exhaustive. That is, we show one set, but not the only set, of

conditions where this holds. Suppose, we are given Ci. We can easily choose an arbitrary

set of h(πj | πi) to probabilistically generate πj from πi. Thus h, P (πj | c), and P (πi |
c) satisfy the conditions in Eq. 3.3. Now, one class-conditional valid joint is when the

classifiers are conditionally independent: P (πi, πj | c) = P (πi | c)P (πj | c). When that

distribution governs the data, then the combination of πj and πi can surpass either classifier.

In essence, even though knowing πi gives us information about what values πj takes, it is

only indirectly via the common class variable they are predicting.

Finally, we may not retain the property of calibration even when we are combining well-

calibrated classifiers with simple rules such as arithmetically averaging their predictions or

using a normalized product (naı̈ve Bayes combination). Table 3.1 shows an example where

the simple combinations improve their predictive power but fail to maintain calibration.

However, if we were to perform perfect post-processing recalibration on πP and πA, both

would perform as well as the optimal combination π∗. While recalibration plays only a

small role in our combination framework, it is sometimes necessary for methods that as-

sume their inputs are calibrated or when gauging if a combination method has been more

successful than is apparent (by recalibrating the combination method). The next section

discusses the new recalibration techniques we designed and the improvement they lead to

in practice.

3This equation does not indicate how to find such an h, however.

CHAPTER 3. CALIBRATION 29

P(x) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Class 1 0 1 0 1 0 1 0 MSE E[ln P̂]

π1 0.25 0.25 0.75 0.25 0.75 0.25 0.75 0.75 0.1875 -0.5623

π2 0.75 0.75 0.75 0.25 0.75 0.25 0.25 0.25 0.1875 -0.5623

πP 0.5 0.5 0.9 0.1 0.9 0.1 0.5 0.5 0.1300 -0.3933

πA 0.5 0.5 0.75 0.25 0.75 0.25 0.5 0.5 0.1562 -0.4904

π∗ 0.5 0.5 1 0 1 0 0.5 0.5 0.1250 -0.3466

Table 3.1: Displayed is an example of the output distribution of two well-calibrated classifiers,

π1 and π2, and some sample combination rules: normalized product (πP), average (πA), and the

optimal combination given only the predictions π∗ = P (c | π1, π2). Although both πP and πA

improve over the base classifiers, neither are well-calibrated.

3.2 Recalibrating Classifiers

As mentioned above, calibration can play a crucial role in classifier combination. While

the majority of our work has explored combination methods that implicitly account for dif-

fering levels of calibration among the classifiers, some combination algorithms rely on the

input classifiers to be calibrated in order to perform well. Therefore, this section presents

new methods we derived for recalibrating classifiers and mapping scores to probability esti-

mates. The primary contribution is the use of an asymmetric Laplace distribution to achieve

as good or better results than competing parametric models.

The connections between recalibration and combining classifiers also runs deeper. If we

consider giving a metaclassifier a single classifier as input, the metaclassifier is simply re-

calibrating the base classifier. Both the empirical methods presented in this section and the

theoretically-based arguments show that classifiers will typically demonstrate asymmetric

behavior. Therefore, we see that Kahn’s [Kah04] assumption when combining classifiers

of normally distributed class-conditional log-odds does not even hold for a single classifier.

3.2.1 The Need for Calibrated Probabilities in Other Applications

In addition to the role calibration plays in combination, recalibrating classifiers and map-

ping scores to probability estimates is an important problem in its own right. This is be-

cause text classifiers that give probability estimates are more flexible in practice than those

that give only a simple classification or even a ranking. For example, rather than choosing

one set decision threshold, they can be used in a Bayesian risk model [DHS01] to issue

30 3.2. RECALIBRATING CLASSIFIERS

a run-time decision which minimizes the expected cost of a user-specified cost function

dynamically chosen at prediction time. This can be used to minimize a linear utility cost

function for filtering tasks where pre-specified costs of relevant/irrelevant are not available

during training but are specified at prediction time. Furthermore, the costs can be changed

without retraining the model. Additionally, probability estimates are often used as the basis

of deciding which document’s label to request next during active learning [LG94, STP01].

Effective active learning can be key in many information retrieval tasks where obtaining

labeled data can be costly — severely reducing the amount of labeled data needed to reach

the same performance as when new labels are requested randomly [LG94]. Finally, they

are also amenable to making other types of cost-sensitive decisions [ZE01]. However, in

all of these tasks, the quality of the probability estimates is crucial.

Parametric models generally use assumptions that the data conform to the model to

trade-off flexibility with the ability to estimate the model parameters accurately with lit-

tle training data. Since many text classification tasks often have very little training data,

we focus on parametric methods. However, most of the existing parametric methods that

have been applied to this task have an assumption we find empirically undesirable. While

some of these methods allow the distributions of the documents relevant and irrelevant to

the topic to have different variances, they typically enforce the unnecessary constraint that

the documents are symmetrically distributed around their respective modes. We introduce

several asymmetric parametric models that allow us to relax this assumption without sig-

nificantly increasing the number of parameters and demonstrate how we can efficiently fit

the models. Additionally, these models can be interpreted as assuming the scores produced

by the text classifier have three basic types of empirical behavior — one corresponding to

each of the “extremely irrelevant”, “hard to discriminate”, and “obviously relevant” items.

First, we discuss in further detail the need for asymmetric models. After this, we de-

scribe two specific asymmetric models and, using two standard text classifiers, naı̈ve Bayes

and SVMs, demonstrate how they can be efficiently used to recalibrate poor probability

estimates or produce high quality probability estimates from raw scores. We then review

experiments using previously proposed methods and the asymmetric methods over several

text classification corpora to demonstrate the strengths and weaknesses of the various meth-

ods. Finally, we review related work on improving probability estimates and summarize our

contributions.

CHAPTER 3. CALIBRATION 31

3.2.2 Recalibration Problem Definition & Approach

Our work differs from earlier approaches primarily in two points: (1) We provide asymmet-

ric parametric models suitable for use when little training data is available; (2) We explic-

itly analyze the quality of probability estimates these and competing methods produce and

provide significance tests for these results.

Problem Definition

The general problem we are concerned with is highlighted in Figure 3.2. A text classifier

 p(s|+) p(s|−)

Bayes’ RuleP(+) P(−)

 Classifier

P(+| s(d))

Predict class, c(d)={+,−}

confidence s(d) that c(d)=+

Document, d

and give unnormalized

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 3.2: We are concerned with how to perform the box highlighted in grey. The internals are

for one type of approach.

produces a prediction about a document and gives a score s(d) indicating the strength of its

decision that the document belongs to the positive class (relevant to the topic). We assume

throughout there are only two classes: the positive and the negative (or irrelevant) class (’+’

and ’-’ respectively).

There are two general types of parametric approaches. The first of these tries to fit

the posterior function directly, i.e. there is one function estimator that performs a direct

mapping of the score s to the probability P (+|s(d)). The second type of approach breaks

the problem down as shown in the grey box of Figure 3.2. An estimator for each of the

class-conditional densities (i.e. p(s|+) and p(s|−)) is produced, then Bayes’ rule and the

class priors are used to obtain the estimate for P (+|s(d)).

32 3.2. RECALIBRATING CLASSIFIERS

Motivation for Asymmetric Distributions

Most of the previous parametric approaches to this problem either directly or indirectly

(when fitting only the posterior) correspond to fitting Gaussians to the class-conditional

densities; they differ only in the criterion used to estimate the parameters. We can visualize

this as depicted in Figure 3.3. Since increasing s usually indicates increased likelihood

of belonging to the positive class, then the rightmost distribution usually corresponds to

p(s|+).

A B

C

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

p(
s

| C
la

ss
 =

 {
+

,−
})

Unnormalized Confidence Score s

p(s | Class = +)
p(s | Class = −)

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 3.3: Typical View of Discrimination based on Gaussians

However, using standard Gaussians fails to capitalize on a basic characteristic com-

monly seen. Namely, if we have a raw output score that can be used for discrimination,

then the empirical behavior between the modes (label B in Figure 3.3) is often very dif-

ferent than that outside of the modes (labels A and C in Figure 3.3). Intuitively, the area

between the modes corresponds to the hard examples, which are difficult for this classifier

to distinguish, while the areas outside the modes are the extreme examples that are usually

easily distinguished. This suggests that we may want to uncouple the scale of the outside

and inside segments of the distribution (as depicted by the curve denoted as A-Gaussian in

Figure 3.4). As a result, an asymmetric distribution may be a more appropriate choice for

application to the raw output score of a classifier.

Ideally (i.e. perfect classification) there will exist scores θ− and θ+ such that all ex-

amples with score greater than θ+ are relevant, and all examples with scores less than θ−
are irrelevant. Furthermore, no examples fall between θ− and θ+. The distance |θ− − θ+|
corresponds to the margin in some classifiers, and an attempt is often made to maximize

this quantity. Because text classifiers have training data to use to separate the classes, the

final behavior of the score distributions is primarily a factor of the amount of training data

and the consequent separation in the classes achieved. This is in contrast to search engine

CHAPTER 3. CALIBRATION 33

retrieval where the distribution of scores is more a factor of language distribution across

documents, the similarity function, and the length and type of query.

Perfect classification corresponds to using two very asymmetric distributions, but in this

case, the probabilities are actually one and zero, and many methods will work for typical

purposes. Practically, some examples will fall between θ− and θ+, and it is often important

to estimate the probabilities of these examples well (since they correspond to the “hard”

examples). Justifications can be given for both why you may find more and less examples

between θ− and θ+ than outside of them, but there are few empirical reasons to believe that

the distributions should be symmetric.

A natural first candidate for an asymmetric distribution is a generalization of a com-

mon symmetric distribution, e.g. the Laplace or the Gaussian. An asymmetric Laplace

distribution can be achieved by placing two exponentials around the mode in the following

manner:

p(x | θ, β, γ) =

βγ
β+γ

exp [−β (θ − x)] x ≤ θ (left of mode)

(β, γ > 0)

βγ
β+γ

exp [−γ (x− θ)] x > θ (right of mode)

(3.4)

where θ, β, and γ are the model parameters. θ is the mode of the distribution, β is the

inverse scale of the exponential to the left of the mode, and γ is the inverse scale of the

exponential to the right. We will use the notation Λ(X | θ, β, γ) to refer to this distribution.

0

0.002

0.004

0.006

0.008

0.01

-300 -200 -100 0 100 200

p(
s

| C
la

ss
 =

 {
+

,-
})

Unnormalized Confidence Score s

Gaussian
A-Gaussian

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 3.4: Gaussians vs. Asymmetric Gaussians. A Shortcoming of Symmetric Distributions —

The vertical lines show the modes as estimated nonparametrically.

34 3.2. RECALIBRATING CLASSIFIERS

We can create an asymmetric Gaussian in the same manner:

p(x | θ, σl, σr) =

2√
2π(σl+σr)

exp
[

− (x−θ)2
2σ2

l

]

x ≤ θ (left of mode)

(σl, σr > 0)

2√
2π(σl+σr)

exp
[

− (x−θ)2
2σ2

r

]

x > θ (right of mode)

(3.5)

where θ, σl, and σr are the model parameters. σl and σr are the scale parameters to the

left and to the right of the mode, respectively; when σl = σr, a symmetric Gaussian with

standard deviation σl is obtained. To refer to this asymmetric Gaussian, we use the notation

Γ(X | θ, σl, σr). While these distributions are composed of “halves”, the resulting function

is a single continuous distribution.

These distributions allow us to fit our data with much greater flexibility at the cost

of only fitting six parameters. We could instead try mixture models for each component

or other extensions, but most other extensions require at least as many parameters (and

can often be more computationally expensive). In addition, the motivation above should

provide significant cause to believe the underlying distributions actually behave in this way.

Furthermore, this family of distributions can still fit a symmetric distribution, and finally, in

the empirical evaluation, evidence is presented that demonstrates this asymmetric behavior

(see Figure 3.5).

To our knowledge, neither family of distributions has been previously used in machine

learning or information retrieval. For the interested reader, statistical properties relevant to

these distributions are discussed in great detail in [KKP01].

3.2.3 Estimating the Parameters of the Asymmetric Distributions

This section develops the method for finding maximum likelihood estimates (MLE) of the

parameters for the above asymmetric distributions. In order to find the MLEs, we have two

choices: (1) use numerical estimation to estimate all three parameters at once (2) fix the

value of θ, and estimate the other two (β and γ or σl and σr) given our choice of θ, then

consider alternate values of θ. Because of the simplicity of analysis in the latter alternative,

we choose this method.

CHAPTER 3. CALIBRATION 35

Asymmetric Laplace MLEs

For D = {x1, x2, . . . , xN} where the xi are i.i.d. and X ∼ Λ(X | θ, β, γ), the likelihood

is:
N
∏

i

Λ(X | θ, β, γ). (3.6)

We desire to find the maximum likelihood estimates for β, γ and θ. To do so, we fix θ

and compute the maximum likelihood for that choice of θ. Then, we can simply consider

all choices of θ and choose the one with the maximum likelihood (or equivalently the

loglikelihood) over all choices of θ.

The loglikelihood we must compute then is:

log
N
∏

i=1

Λ(xi | θ, β, γ) =
N
∑

i=1

log Λ(xi | θ, β, γ) (3.7)

=
∑

x∈D|x≤θ
log Λ (xi | θ, β, γ) +

∑

x∈D|x>θ
log Λ (xi | θ, β, γ) (3.8)

=
∑

x∈D|x≤θ

[

log
βγ

β + γ
− β(θ − x)

]

+
∑

x∈D|x>θ

[

log
βγ

β + γ
− γ(x− θ)

]

(3.9)

= N log
βγ

β + γ
+

∑

x∈D|x≤θ
[−β(θ − x)]

+
∑

x∈D|x>θ
[−γ(x− θ)] (3.10)

Let Nl = |{x ∈D | x ≤ θ}| , Nr = |{x ∈D | x > θ}|
and Sl =

∑

x∈D|x≤θ
x, Sr =

∑

x∈D|x>θ
x

= N log
βγ

β + γ
−Nlβθ + βSl +Nrγθ − γSr (3.11)

Let Dl = Nlθ − Sl , Dr = Sr −Nrθ

= N log
βγ

β + γ
− βDl − γDr (3.12)

Note that Dl and Dr are the sum of the absolute differences between the x belonging to

the left and right halves of the distribution (respectively) and θ. The partial derivatives are:
∂β
∂l

= Nγ
β(β+γ)

−Dl and ∂γ
∂l

= Nβ
γ(β+γ)

−Dr. We can set the derivatives to zero and solve them

36 3.2. RECALIBRATING CLASSIFIERS

analytically to find that the MLEs for β and γ for a fixed θ are:

βMLE =
N

Dl +
√
DrDl

γMLE =
N

Dr +
√
DrDl

. (3.13)

These estimates are not wholly unexpected since we would obtain Nl

Dl
if we were to estimate

β independently of γ. The elegance of the formulae is that the estimates will tend to be

symmetric only insofar as the data dictate it (i.e. the closer Dl and Dr are to being equal,

the closer the resulting inverse scales).

By continuity arguments, when N = 0, we assign β = γ = ε0 where ε0 is a small

constant that acts to disperse the distribution to a uniform. Similarly, when N 6= 0 and

Dl = 0, we assign β = εinf where εinf is a very large constant that corresponds to an

extremely sharp distribution (i.e. almost all mass at θ for that half). Dr = 0 is handled

similarly.

Assuming that θ falls in some range [φ, ψ] dependent upon only the observed docu-

ments, then this alternative is also easily computable. Given Nl, Sl, Nr, Sr, we can com-

pute the posterior and the MLEs in constant time. In addition, if the scores are sorted,

then we can perform the whole process quite efficiently. Starting with the minimum θ = φ

we would like to try, we loop through the scores once and set Nl, Sl, Nr, Sr appropriately.

Then we increase θ and just step past the scores that have shifted from the right side of

the distribution to the left. Assuming the number of candidate θs are O(n), this process is

O(n), and the overall process is dominated by sorting the scores, O(n log n) (or expected

linear time).

Asymmetric Gaussian MLEs

For D = {x1, x2, . . . , xN} where the xi are i.i.d. and X ∼ Γ(X | θ, σl, σr), the likelihood

is:
N
∏

i=1

Γ(xi | θ, σl, σr) (3.14)

We desire to find the maximum likelihood estimates for σl, σr and θ. Similar to the

above, we fix θ and compute the maximum likelihood for that choice of θ. Then, we

can simply consider all choices of θ and choose the one with the maximum likelihood (or

equivalently the loglikelihood) over all choices of θ. The derivation is very similar to that

for the Asymmetric Laplace.

CHAPTER 3. CALIBRATION 37

The loglikelihood we must compute then is:

log
N
∏

i=1

Γ(xi | θ, σl, σr) =
N
∑

i=1

log Γ(xi | θ, σl, σr) (3.15)

=
∑

x∈D|x≤θ
log Γ(xi | θ, σl, σr) +

∑

x∈D|x>θ
log Γ(xi | θ, σl, σr) (3.16)

=
∑

x∈D|x≤θ

[

log
2√

2π(σl + σr)
− (x− θ)2

2σ2l

]

+
∑

x∈D|x>θ

[

log
2√

2π(σl + σr)
− (x− θ)2

2σ2r

]

(3.17)

= N log
2√

2π(σl + σr)

− 1

2σ2l

∑

x∈D|x≤θ
(x− θ)2 − 1

2σ2r

∑

x∈D|x>θ
(x− θ)2 (3.18)

Let Nl = |{x ∈D | x ≤ θ}| , Nr = |{x ∈D | x > θ}| ,
Sl =

∑

x∈D|x≤θ
x, Sr =

∑

x∈D|x>θ
x, Sl2 =

∑

x∈D|x≤θ
x2, and Sr2 =

∑

x∈D|x>θ
x2.

= N log
2√

2π(σl + σr)
− 1

2σ2l

[

Sl2 − Slθ +Nlθ
2
]

− 1

2σ2r

[

Sr2 − Srθ +Nrθ
2
]

(3.19)

Let Dl2 = Sl2 − Slθ + θ2Nl, Dr2 = Sr2 − Srθ + θ2Nr

= N log
2√

2π(σl + σr)
− 1

2σ2l
Dl2 −

1

2σ2r
Dr2 (3.20)

The partial derivatives are: ∂σl
∂l

=
D
l2

σ3
l

− N
σl+σr

and ∂σr
∂l

=
D
l2

σ3
r
− N

σl+σr
. We can set

the derivatives to zero and solve them analytically to find for a fixed θ only one feasible

solution:

σl,MLE =

√

Dl2 +D
2/3

l2 D
1/3

r2

N
(3.21)

σr,MLE =

√

Dr2 +D
2/3

r2 D
1/3

l2

N
. (3.22)

By continuity arguments, when N = 0, we assign σr = σl = εinf , and when N 6= 0 and

Dl2 = 0 (resp. Dr2 = 0), we assign σl = ε0 (resp. σr = ε0). Again, the same computational

complexity analysis applies to estimating these parameters.

38 3.2. RECALIBRATING CLASSIFIERS

3.2.4 Experimental Analysis

Methods

For each of the methods that use a class prior, we use a smoothed add-one estimate,

i.e. P (c) = |c|+1
N+2

where N is the number of documents. For methods that fit the class-

conditional densities, p(s|+) and p(s|−), the resulting densities are inverted using Bayes’

rule as described above. All of the methods below are fit using maximum likelihood esti-

mates.

For recalibrating a classifier (i.e. correcting poor probability estimates output by the

classifier), it is usual to use the log-odds of the classifier’s estimate as s(d). The log-odds

are defined to be log P (+|d)
P (−|d) . The normal decision threshold (minimizing error) in terms of

log-odds is at zero (i.e. P (+|d) = P (−|d) = 0.5).

Since it scales the outputs to a space [−∞,∞], the log-odds make normal (and similar

distributions) applicable [LTB79]. Lewis & Gale [LG94] give a more motivating viewpoint

that fitting the log-odds has a dampening effect for the inaccurate independence assumption

and a bias correction for inaccurate estimates of the priors. In general, fitting the log-odds

can serve to boost or dampen the signal from the original classifier as the data dictate.

Gaussians

A Gaussian is fit to each of the class-conditional densities, using the usual maximum

likelihood estimates. That is, for the class-conditional mean, we use µc = 1
N

∑

c(d)=c s(d),

and for the class-conditional variance4 we use σ2c = 1
N

∑

c(d)=c [s(d)− µc]
2. This method

is denoted in the tables below as Gauss.

Asymmetric Gaussians

An asymmetric Gaussian is fit to each of the class-conditional densities using the max-

imum likelihood estimation procedure described in Section 3.2.3 above. Intervals between

adjacent scores are divided into 10 pieces for testing candidate θs, i.e. Eight points between

actual scores occurring in the data set are tested. This method is denoted as A. Gauss.

Laplace Distributions

Even though Laplace distributions are not typically applied to this task, we also tried

this method to isolate why benefit is gained from the asymmetric form. The usual MLEs

4For the data we evaluated here, N was large enough that there was little difference between using the

MLE for variance given here (which is biased) or the unbiased version, which multiplies by 1
N−1 instead.

CHAPTER 3. CALIBRATION 39

were used for estimating the location and scale of a classical symmetric Laplace distribution

as described in [KKP01].

That is, let ri, i = 1, . . . , N denote the ith score after the scores have been ranked by

s(d). The location parameter, θ is essentially the median of the datapoints. For N odd,

θ = rN+1
2

, and for N even, θ = 1
2

[

rN
2
+ rN

2
+1

]

. The inverse scale parameter is given by:

β = N
∑

|s(d)−θ| . We denote this method as Laplace below.

Asymmetric Laplace Distributions

An asymmetric Laplace is fit to each of the class-conditional densities using the maxi-

mum likelihood estimation procedure described in Section 3.2.3 above. As with the asym-

metric Gaussian, intervals between adjacent scores are divided into 10 pieces for testing

candidate θs. This method is denoted as A. Laplace below.

Logistic Regression

This method is the first of two methods we evaluated that directly fit the posterior,

P (+|s(d)). Both methods restrict the set of families to a two-parameter sigmoid family;

they differ primarily in their model of class labels. As opposed to the above methods, one

can argue that an additional boon of these methods is they completely preserve the ranking

given by the classifier. When this is desired, these methods may be more appropriate.

The previous methods will mostly preserve the rankings, but they can deviate if the data

dictate it. Thus, they may model the data behavior better at the cost of departing from a

monotonicity constraint in the output of the classifier.

Lewis & Gale [LG94] use logistic regression to recalibrate naı̈ve Bayes for subsequent

use in active learning. The model they use is:

P (+|s(d)) = exp(a+ b s(d))

1 + exp(a+ b s(d))
. (3.23)

Instead of using the probabilities directly output by the classifier, they use the loglike-

lihood ratio of the probabilities, log P (d|+)
P (d|−) , as the score s(d). Instead of using this below,

we will use the log-odds ratio. This does not affect the model as it simply shifts all of the

scores by a constant determined by the priors. We refer to this method as LogReg below.

Logistic Regression with Noisy Class Labels

Platt [Pla99] proposes a framework that extends the logistic regression model above

to incorporate noisy class labels and uses it to produce probability estimates from the raw

output of an SVM.

40 3.2. RECALIBRATING CLASSIFIERS

This model differs from the LogReg model only in how the parameters are estimated.

The parameters are still fit using maximum likelihood estimation, but a model of noisy

class labels is used in addition to allow for the possibility that the class was mislabeled.

The noise is modeled by assuming there is a finite probability of mislabeling a positive

example and of mislabeling a negative example; these two noise estimates are determined

by the number of positive examples and the number of negative examples (using Bayes’

rule to infer the probability of incorrect label).

Even though the performance of this model would not be expected to deviate much from

LogReg, we evaluate it for completeness. We refer to this method below as LR+Noise.

Data

We examined several corpora, including the MSN Web Directory (13 classes), Reuters (10

classes), and TREC-AP (20 classes). More details about the data are given in Section 6.2.

Classifiers

We selected two classifiers for evaluation — a linear SVM classifier, which is a discrimina-

tive classifier that does not normally output probability values, and a naı̈ve Bayes classifier,

whose probability outputs are often poor [Ben00, DP96] but can be improved [Ben00,

ZE01, ZE02].

SVM

For linear SVMs, we use the Smox toolkit which is based on Platt’s Sequential Minimal

Optimization algorithm. The features were represented as continuous values. We used

the raw output score of the SVM as s(d) since it has been shown to be appropriate before

[Pla99]. The normal decision threshold (assuming we are seeking to minimize errors) for

this classifier is at zero.

Naı̈ve Bayes

The naı̈ve Bayes classifier model is a multinomial model [MN98]. We smoothed word

and class probabilities using a Bayesian estimate (with the word prior) and a Laplace m-

estimate, respectively. For more details, see Section 6.3.4. We use the log-odds estimated

by the classifier as s(d). The normal decision threshold is at zero.

CHAPTER 3. CALIBRATION 41

Performance Measures

We use log-loss [Goo52] and squared error [Bri50, DF86] to evaluate the quality of the

probability estimates. Both of these are proper scoring rules [DF83, DF86] in the sense

that a classifier’s view of its expected performance is maximized when the classifier actually

issues a probability of p̂ when it assesses the probability to be p̂, i.e. the classifier cannot

expect to gain from “hedging its bets”.

For a document d with class c(d) ∈ {+,−} (i.e. the data have known labels and not

probabilities), log-loss is defined as:

δ(c(d),+) logP (+|d) + δ(c(d),−) logP (−|d) (3.24)

where δ(a, b)
.
= 1 if a = b and 0 otherwise. The squared error is:

δ(c(d),+)(1− P (+|d))2 + δ(c(d),−)(1− P (−|d))2. (3.25)

When the class of a document is correctly predicted with a probability of one, log-loss is

zero and squared error is zero. When the class of a document is incorrectly predicted with

a probability of one, log-loss is −∞ and squared error is one. Thus, both measures assess

how close an estimate comes to correctly predicting the item’s class but vary in how harshly

incorrect predictions are penalized.

We report only the sum of these measures and omit the averages for space. Their

averages, average log-loss and mean squared error (MSE), can be computed from these

totals by dividing by the number of binary decisions in a corpus. Note that the log-loss

numbers given in this chapter are given as log base 2.

In addition, we also compare the error of the classifiers at their default thresholds and

with the probabilities. This evaluates how the probability estimates have improved with

respect to the decision threshold P (+|d) = 0.5. Thus, error only indicates how the methods

would perform if a false positive was penalized the same as a false negative and not the

general quality of the probability estimates. It is presented simply to provide the reader

with a more complete understanding of the empirical tendencies of the methods.

We use a standard paired micro sign test [YL99] to determine statistical significance in

the difference of all measures. Only pairs that the methods disagree on are used in the sign

test. This test compares pairs of scores from two systems with the null hypothesis that the

number of items they disagree on are binomially distributed. We use a significance level of

p = 0.01.

42 3.2. RECALIBRATING CLASSIFIERS

Naı̈ve Bayes

Log-loss Error2 Errors

MSN Web

Gauss -60656.41 10503.30 10754

A.Gauss -57262.26 8727.47 9675

Laplace -45363.84 8617.59 10927

A.Laplace -36765.88 6407.84† 8350

LogReg -36470.99 6525.47 8540

LR+Noise -36468.18 6534.61 8563

naı̈ve Bayes -1098900.83 17117.50 17834

Reuters

Gauss -5523.14 1124.17 1654

A.Gauss -4929.12 652.67 888

Laplace -5677.68 1157.33 1416

A.Laplace -3106.95‡ 554.37‡ 726

LogReg -3375.63 603.20 786

LR+Noise -3374.15 604.80 785

naı̈ve Bayes -52184.52 1969.41 2121

TREC-AP

Gauss -57872.57 8431.89 9705

A.Gauss -66009.43 7826.99 8865

Laplace -61548.42 9571.29 11442

A.Laplace -48711.55 7251.87‡ 8642

LogReg -48250.81 7540.60 8797

LR+Noise -48251.51 7544.84 8801

naı̈ve Bayes -1903487.10 41770.21 43661

SVM

Log-loss Error2 Errors

MSN Web

Gauss -54463.32 9090.57 10555

A. Gauss -44363.70 6907.79 8375

Laplace -42429.25 7669.75 10201

A. Laplace -31133.83 5003.32 6170

LogReg -30209.36 5158.74 6480

LR+Noise -30294.01 5209.80 6551

Linear SVM N/A N/A 6602

Reuters

Gauss -3955.33 589.25 735

A. Gauss -4580.46 428.21 532

Laplace -3569.36 640.19 770

A. Laplace -2599.28 412.75 505

LogReg -2575.85 407.48 509

LR+Noise -2567.68 408.82 516

Linear SVM N/A N/A 516

TREC-AP

Gauss -54620.94 6525.71 7321

A. Gauss -77729.49 6062.64 6639

Laplace -54543.19 7508.37 9033

A. Laplace -48414.39 5761.25‡ 6572‡

LogReg -48285.56 5914.04 6791

LR+Noise -48214.96 5919.25 6794

Linear SVM N/A N/A 6718

Table 3.2: (a) Results for naı̈ve Bayes (left) and (b) SVM (right). The best entry for a corpus is

in bold. Entries that are statistically significantly better than all other entries are underlined. A †
denotes the method is significantly better than all other methods except for näıve Bayes. A ‡ denotes

the entry is significantly better than all other methods except for A. Gauss (and näıve Bayes for the

table on the left). The reason for this distinction in significance tests is described in the text.

CHAPTER 3. CALIBRATION 43

Experimental Methodology

As the categories under consideration in the experiments are not mutually exclusive, the

classification was done by training n binary classifiers, where n is the number of classes.

In order to generate the scores that each method uses to fit its probability estimates, we

use five-fold cross-validation on the training data. We note that even though it is compu-

tationally efficient to perform leave-one-out cross-validation for the naı̈ve Bayes classifier,

this may not be desirable since the distribution of scores can be skewed as a result. Of

course, as with any application of n-fold cross-validation, it is also possible to bias the

results by holding n too low and underestimating the performance of the final classifier.

Results & Discussion

The results for recalibrating naı̈ve Bayes are given in Table 3.2a. Table 3.2b gives results

for producing probabilistic outputs for SVMs.

We start with general observations that result from examining the performance of these

methods over the various corpora. The first is that A. Laplace, LR+Noise, and LogReg,

quite clearly outperform the other methods. There is usually little difference between the

performance of LR+Noise and LogReg (both as shown here and on a decision by decision

basis), but this is unsurprising since LR+Noise just adds noisy class labels to the LogReg

model. With respect to the three different measures, LR+Noise and LogReg tend to perform

slightly better (but never significantly) than A. Laplace at some tasks with respect to log-

loss and squared error. However, A. Laplace always produces the least number of errors for

all of the tasks, though at times the degree of improvement is not significant.

In order to give the reader a better sense of the behavior of these methods, Figures

3.5-3.6 show the fits produced by the most competitive of these methods versus the ac-

tual data behavior (as estimated nonparametrically by binning) for class Earn in Reuters.

Figure 3.5 shows the class-conditional densities, and thus only A. Laplace is shown since

LogReg fits the posterior directly. Figure 3.6 shows the estimations of the log-odds, (i.e.

log P (Earn|s(d))
P (¬Earn|s(d))). Viewing the log-odds (rather than the posterior) usually enables errors in

estimation to be detected by the eye more easily.

We can break things down as the sign test does and just look at wins and losses on the

items that the methods disagree on. Looked at in this way only two methods (naı̈ve Bayes

and A. Gauss) ever have more pairwise wins than A. Laplace; those two sometimes have

more pairwise wins on log-loss and squared error even though the total never wins (i.e. they

are dragged down by heavy penalties).

44 3.2. RECALIBRATING CLASSIFIERS

In addition, this comparison of pairwise wins means that for those cases where LogReg

and LR+Noise have better scores than A. Laplace, it would not be deemed significant by

the sign test at any level since they do not have more wins. For example, of the 130K binary

decisions over the MSN Web dataset, A. Laplace had approximately 101K pairwise wins

versus LogReg and LR+Noise. No method ever had more pairwise wins than A. Laplace

for the error comparison nor did any method ever achieve a better total.

0

0.002

0.004

0.006

0.008

0.01

0.012

-600 -400 -200 0 200 400

p(
s(

d)
 |

C
la

ss
 =

 {
+

,-
})

s(d) = naive Bayes log-odds

Train
Test

A.Laplace

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-15 -10 -5 0 5 10 15

p(
s(

d)
 |

C
la

ss
 =

 {
+

,-
})

s(d) = linear SVM raw score

Train
Test

A.Laplace

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 3.5: The empirical distribution of classifier scores for documents in the training and the

test set for class Earn in Reuters. Also shown is the fit of the asymmetric Laplace distribution to

the training score distribution. The positive class (i.e. Earn) is the distribution on the right in each

graph, and the negative class (i.e. ¬Earn) is that on the left in each graph.

The basic observation made about naı̈ve Bayes in previous work is that it tends to pro-

duce estimates very close to zero and one [Ben00, LG94]. This means if it tends to be right

enough of the time, it will produce results that do not appear significant in a sign test that

ignores size of difference (as the one here). The totals of the squared error and log-loss

bear out the previous observation that “when it’s wrong it’s really wrong”.

There are several interesting points about the performance of the asymmetric distribu-

tions as well. First, A. Gauss performs poorly because (similar to naı̈ve Bayes) there are

some examples where it is penalized a large amount. This behavior results from a general

tendency to perform like the picture shown in Figure 3.4 (note the crossover at the tails).

While the asymmetric Gaussian tends to place the mode much more accurately than a sym-

metric Gaussian, its asymmetric flexibility combined with its distance function causes it to

distribute too much mass to the outside tails while failing to fit around the mode accurately

enough to compensate. Figure 3.4 is actually a result of fitting the two distributions to

real data. As a result, at the tails there can be a large discrepancy between the likelihood

of belonging to each class. Thus when there are no outliers A. Gauss can perform quite

CHAPTER 3. CALIBRATION 45

-6

-4

-2

0

2

4

6

8

-250 -200 -150 -100 -50 0 50 100 150

Lo
g

O
dd

s
=

 lo
g

P
(+

 |
s(

d)
)

-
lo

g
P

(-
 |

s(
d)

)

s(d) = naive Bayes log-odds

Train
Test

A.Laplace
LogReg

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

-5

0

5

10

15

-4 -2 0 2 4 6

Lo
g

O
dd

s
=

 lo
g

P
(+

 |
s(

d)
)

-
lo

g
P

(-
 |

s(
d)

)

s(d) = linear SVM raw score

Train
Test

A.Laplace
LogReg

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 3.6: The fit produced by various methods compared to the empirical log-odds of the training

data for class Earn in Reuters.

competitively, but when there is an outlier A. Gauss is penalized quite heavily. There are

enough such cases overall that it seems clearly inferior to the top three methods.

However, the asymmetric Laplace places much more emphasis around the mode (Figure

3.5) because of the different distance function (think of the “sharp peak” of an exponential).

As a result most of the mass stays centered around the mode, while the asymmetric param-

eters still allow more flexibility than the standard Laplace. Since the standard Laplace also

corresponds to a piecewise fit in the log-odds space, this highlights that part of the power of

the asymmetric methods is their sensitivity in placing the knots at the actual modes — rather

than the symmetric assumption that the means correspond to the modes. Additionally, the

asymmetric methods have greater flexibility in fitting the slopes of the line segments as

well. Even in cases where the test distribution differs from the training distribution (Figure

3.5), A. Laplace still yields a solution that gives a better fit than LogReg (Figure 3.6), the

next best competitor.

Finally, we can make a few observations about the usefulness of the various perfor-

mance metrics. First, log-loss only awards a finite amount of credit as the degree to which

something is correct improves (i.e. there are diminishing returns as it approaches zero), but

it can infinitely penalize for a wrong estimate. Thus, it is possible for one outlier to skew

the totals, but misclassifying this example may not matter for any but a handful of actual

utility functions used in practice. Secondly, squared error has a weakness in the other di-

rection. That is, its penalty and reward are bounded in [0, 1], but if the number of errors

is small enough, it is possible for a method to appear better when it is producing what we

generally consider unhelpful probability estimates. For example, consider a method that

only estimates probabilities as zero or one (which naı̈ve Bayes tends toward but doesn’t

46 3.2. RECALIBRATING CLASSIFIERS

quite reach if you use smoothing). This method could win according to squared error, but

with just one error it would never perform better on log-loss than any method that assigns

some non-zero probability to each outcome. For these reasons, we recommend that neither

of these are used in isolation as they each give slightly different insights to the quality of

the estimates produced. These observations are straightforward from the definitions but are

underscored by the evaluation.

3.2.5 Related Work

Parametric models have been employed to obtain probability estimates in several areas

relevant to text classification. Lewis & Gale [LG94] use logistic regression to recalibrate

naı̈ve Bayes though the quality of the probability estimates are not directly evaluated; it is

simply performed as an intermediate step in active learning. Manmatha et al. [MRF01]

introduced appropriate models for producing probability estimates from relevance scores

returned from search engines and demonstrated how the resulting probability estimates

could be subsequently employed to combine the outputs of several search engines. They

use a different parametric distribution for the relevant and irrelevant classes but do not

pursue two-sided asymmetric distributions for a single class, as described here. They also

survey the long history of modeling the relevance scores of search engines. Our work is

similar in flavor to these previous attempts to model search engine scores, but we target text

classifier outputs which we have found demonstrate a different type of score distribution

behavior because of the role of training data.

Zadrozny & Elkan [ZE01] provide what can be thought of as a type of pruning tar-

geted at improving the reliability of probability estimates obtained from decision trees

(termed curtailment) and a non-parametric method for recalibrating naı̈ve Bayes. In more

recent work [ZE02], they investigate using a semi-parametric method that uses a monotonic

piecewise-constant fit to the data and apply the method to naı̈ve Bayes and a linear SVM.

While they compared their methods to other parametric methods based on symmetry, they

fail to provide significance test results. Our work provides asymmetric parametric methods

that complement the non-parametric and semi-parametric methods they propose when data

scarcity is an issue. In addition, their methods reduce the resolution of the scores output by

the classifier (the number of distinct values output), but the methods here do not have such

a weakness since they are continuous functions.

Just as logistic regression allows the log-odds of the posterior distribution to be fit

directly with a line, we could directly fit the log-odds of the posterior with a piecewise

linear function (a spline) instead of indirectly doing the same thing by fitting the asymmetric

CHAPTER 3. CALIBRATION 47

Laplace. In a follow-up to our work, Zhang and Yang [ZY04] did just that and obtained an

approach with even more power while retaining asymmetry.

There is a variety of other work that this section of the dissertation extends. Platt [Pla99]

uses a logistic regression framework that models noisy class labels to produce probabilities

from the raw output of an SVM. His work showed that this post-processing method not only

can produce probability estimates of similar quality to SVMs directly trained to produce

probabilities (regularized likelihood kernel methods), but it also tends to produce sparser

kernels (which generalize better). Finally, recalibrating poorly calibrated classifiers is not

a new problem. Lindley et al. [LTB79] first proposed the idea of recalibrating classifiers,

and DeGroot & Fienberg [DF83, DF86] gave the now accepted standard formalization for

the problem of assessing calibration initiated by others [Bri50, Win69].

3.2.6 Summary of Recalibration Methods

We have reviewed a wide variety of parametric methods for producing probability estimates

from the raw scores of a discriminative classifier and for recalibrating an uncalibrated prob-

abilistic classifier. In addition, we have introduced two new families that attempt to capital-

ize on the asymmetric behavior that tends to arise from learning a discrimination function.

We have given an efficient way to estimate the parameters of these distributions.

While these distributions attempt to strike a balance between the generalization power

of parametric distributions and the flexibility that the added asymmetric parameters give,

the asymmetric Gaussian appears to have too great of an emphasis away from the modes.

In striking contrast, the asymmetric Laplace distribution appears to be preferable over sev-

eral large text domains and a variety of performance measures to the primary competing

parametric methods, though comparable performance is sometimes achieved with one of

two varieties of logistic regression.

Given the ease of estimating the parameters of this distribution, it is a good first choice

for producing quality probability estimates when training data is scarce. When training

data is plentiful, isotonic regression methods [ZE02] may yield better results. These es-

timates can then be used as input to a classifier combination algorithm. Additionally, the

work in this section has demonstrated both empirically and from a theoretical standpoint,

that classifiers tend to yield asymmetric score distributions and are unlikely to give rise to

normal distributions as assumed in combination work by Kahn [Kah04].

48 3.2. RECALIBRATING CLASSIFIERS

Chapter 4

Locality

We remind the reader that our goal is ultimately to outperform a global linear combination

of classifier log-odds, probabilities, or scores. Thus a simple definition of locality is any

combination function where the weight on such classifier outputs cannot be expressed as a

global weight. However, this section seeks to motivate why we may want to vary the weight

we place on a classifier, the implications this carries, and, in the ideal case, what statistics

should be most influential in determining the weight.

To accomplish this, we approach the problem from a series of simplified views. For

example, we can consider when there is a single base classifier, when the base classifiers

are both calibrated and conditionally independent given the class, when the base classifiers

are uncalibrated but remain conditionally independent, and finally when the base classifiers

are neither calibrated nor conditionally independent. Likewise, we can also simplify the

formulation by considering the form the solution would take for a particular combination

model if we were given not only the class labels for each training example, but the “true”

posterior P(c | x) as well. Examining the combination from these simplified viewpoints

will allow us to separate what terms are hard to estimate, due to sparse data or missing

information, and how the information should be used.

To enable clarity in the rest of the chapter, we start by discussing the interpretation

of the “true” posterior for classification. Following this, we briefly return to calibration,

and demonstrate that while it is a key characteristic as discussed in Chapter 3, it does not

address one of the primary challenges of classifier combination — namely estimating the

dependencies of the classifier outputs.

Furthermore, it does not fully take advantage of the fact that the reliability of a classi-

fier’s predictions can vary across the input space. In this chapter, we argue that considering

the locally changing interactions among classifiers is key to improving classifier combi-

49

50 4.1. “TRUE” POSTERIORS, LOG-ODDS, AND CONFIDENCES

nation performance. Therefore, we turn our focus on these issues by motivating and then

defining the concepts of local dependence, reliability, and variance.

4.1 “True” Posteriors, Log-odds, and Confidences

For clarity, we can use a common situation researchers encounter to discuss concepts key

to the rest of this chapter in a simplified manner. Consider the following tasks often faced

during peer review1:

• “Make a recommendation accept/reject.”

• “Rate this paper from 0 to 5, where 0 is definitely reject and 5 is definitely accept.”

• “State your confidence on a 0 to 5 scale in your review.”

When a reviewer answers the first question, she is making a classification prediction

regarding the paper. The answer to the second question is the posterior probability after

reading the paper that the reviewer assesses regarding “Accept/Reject”. In fact, if we were

to center the 0 to 5 scales on 0 so that they run from −2.5 to 2.5, then the score would be

similar to log-odds. A negative value would indicate that “Reject” has a higher posterior

probability and a positive value would indicate that “Accept” has a higher posterior prob-

ability. Presumably, if the reviewer is acting consistently her recommendation will behave

similarly.

Next, the reviewer states her confidence — which intuitively is a self-assessment of her

expertise and mathematically is a statement about how strongly she believes the posterior

she gave is correct. In other words it is a second-order summary of the uncertainty the

reviewer has about her classification. Consider if instead of making the reviewer specify her

uncertainty, we allowed her to specify an entire distribution expressing her belief p(P(c |
x) = z | x). Then when she is first forced to summarize her uncertainty via the rating,

the typical and self-consistent approach is to predict the expected value of the distribution:

P̂(c | x) =
∫

z p(P(c | x) = z | x) dz. However, as the reader is well aware, the mean of a

distribution does not fully summarize the distribution. Presumably, as the reviewer receives

more information or perceives she has all necessary information because of her expertise,

her confidence that the expected value fully summarizes her uncertainty will become quite

high. Therefore a reasonable measure for confidence is to treat it as an (inverse) measure

1We assume that the reviewer assigns these outcomes conditionally on the paper reviewed but independent

of the content of other papers.

CHAPTER 4. LOCALITY 51

of the variance of p(P(c | x) = z | x) — or the spread of the distribution from its mean

value.

While researchers commonly perform peer reviews and understand the intuitive notions

it involves, they are often perplexed when trying to mechanically produce such estimates

from a classifier. This occurs for many reasons — some of which can be highlighted in the

same example. What does it mean to say a paper has a “true class” of “Reject”? Further-

more, what would it mean to say that the probability of reject after reading the paper is 0.8.

In part, the confusion results from confusing a Bayesian notion of subjective probabilities

with a frequentist notion of empirical probabilities. In the Bayesian scheme (including the

preceding paragraph), probability theory is simply a useful tool to convey uncertainty in a

manner that follows certain rules of self-coherence.

Whereas, in the frequentist notion, we must have at least an imaginary concept of a

repeatable experiment. How would one sample “similar” papers? A slightly more ten-

able viewpoint would be to sample reject/accept opinions from “similar” people. In our

example, “similar” people would amount to something like “people with expertise like

those on the editorial board”. In this view the P (accept | paper) is the empirical fre-

quency as we sample more opinions , i.e. limN→∞
|Ri=accept|

N
and the belief distribution

p(P(c | x) = z | x) is an estimate of the probability the limit will take on each of these val-

ues given the evidence. In other words, a statement that P̂ (accept | paper) = 0.80 means

that the estimator believes 80% of a “similar” population would decide to accept this paper.

The frequentist explanation is not necessary, but it makes it easier to conceive of the

type of uncertainty we may want to capture. For our applications, the task is often to

predict topic and the population being sampled can be thought of as all potential users of

the application. Some documents are less clearly on one topic, and therefore, there will

be higher disagreement on those documents. Thus documents will rarely ever have a true

posterior of 1 or 0. It is simply often treated as such because our training data typically

only consists of a single class label for each point.

4.2 Calibration & Locality

Similar to other works, we assume we can obtain from each classifier Ci a conditional

probability estimate, π̂i(c) = P̂Ci(c|x), and a log-odds like score, λ̂i(c) = log π̂i(c)
1−π̂i(c) , either

directly or by postprocessing as discussed in Section 3.2. Thus, our approach can either be

viewed as a method of combining probability forecasters or as combining classifiers where

52 4.2. CALIBRATION & LOCALITY

we make assumptions that allow us to model the “internal probabilities” the classifiers are

implicitly utilizing in making their decisions.

Viewing this as a problem of combining log-odds, the problem is equivalent to per-

forming inference in the model depicted in Figure 4.1. Here we have simply replaced the

difficult problem of estimating p(λ̂1, . . . , λ̂n | c) by what seems to be the equally hard

problem of estimating p(λ̂1, . . . , λ̂n | λ).2 However, when we start to make simplifying

assumptions, the difference becomes more obvious. As we noted, Kahn [Kah04] worked

with a model where the class-conditional classifier outputs were assumed to be Gaussian,

but even in the case of a single classifier this model cannot support the type of asymmetric

behavior that we see in practice as shown in Section 3.2.

As mentioned in Chapter 3, if we restrict the number of base classifiers to a single

classifier, the problem becomes equivalent to recalibrating that classifier. Let’s assume we

have a single classifier whose log-odds estimates, λ̂, are distributed normally around the

true log-odds, λ̂ ∼ N(λ, 1). As shown in the left of Figure 4.2, even when we assume the

prior on the true log-odds is a simple Gaussian, the resulting class-conditional distribution

p(λ̂ | c) has asymmetric properties similar to what is seen in practice (see Chapter 3).

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

λ̂1 λ̂n. . .

λ

c

Figure 4.1: Classifier combination can be thought of as combining estimates of each classifier’s

estimate of the log-odds, λ̂i, via the latent variable representing the true log-odds, λ, to improve the

prediction of the class c. That is via, p(λ̂1, . . . , λ̂n | c) =
∫∞
−∞ p(λ̂, . . . , λ̂n | λ)p(λ | c) dλ.

If we were to continue to work with this formal model, different formulations would

focus on different characteristics. For example, the classifier’s predictions may not be

centered on the true log-odds, but instead the predictions may show a bias to the left or

right. Thus we could easily include a factor that allowed us to model a systematic shift

in each classifier indicating overconfidence or underconfidence. Likewise, where we used

λ̂ ∼ N(λ, 1) in the example above, we might instead choose to use a different standard

2Note that by definition P (c|λ) = (1 + exp{−cλ})−1 and we can use Bayes’ rule to invert it.

CHAPTER 4. LOCALITY 53

deviation in various parts of the space. For example, areas where we have large amounts of

training data could use a small standard deviation as we achieve a tighter confidence around

our prediction. Note that this approach implies that the calibration of the classifier varies

locally according to the estimated confidence bound on the true log-odds.

−100 −50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

λ̂

p(
λ̂
|c
)

−200 −150 −100 −50 0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

λ̂

p(
λ̂
|c
)

−150 −100 −50 0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

λ̂

p(
λ̂
|c
)

Figure 4.2: A few examples of the distribution of p(λ̂ | c) for various choices of the prior on the

true log-odds, p(λ), when the classifier’s predictions are distributed normally around the true log-

odds, λ̂ ∼ N(λ, 1). The prior used is a single Gaussian (left), a mixture of two Gaussians (middle),

and a mixture of three Gaussians (right). 100K samples were drawn from each distribution. The

asymmetry of the resulting distributions is very reminiscent of those seen in practice as shown in

Section 3.2.

We do not directly work with such a graphical model, but instead use it to point out the

recurring themes that we incorporate into our work. These properties can be formulated in

terms of the probability estimates the classifiers emit or in terms of the log-odds. Readers

interested in pursuing this model may also wish to consider implications discussed later in

this chapter. For example, a simplified version of this model would assume the classifiers’

log-odds estimates are independent given the true log-odds. Finally, rather than use such an

independence assumption globally, we could posit that there exists a mixture of different

regions where the parameters are specific to the region.

4.3 Dependence & Locality

Returning to our example (see Section 1.2.1) of a feature space where two mutually exclu-

sive and exhaustive subsets are independent given the class, consider if we now have one

classifier based on each subset and each outputs the log-odds using the true posterior based

only on its subset (i.e., P (c | xi,1, . . . , xi,k) and P (c | xi,k+1, . . . , xi,n)). It can easily be

shown by factorizing the joint that the optimal combination of these classifiers log-odds is

54 4.3. DEPENDENCE & LOCALITY

Class

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Ŷ1 Ŷ2

X1, . . . , Xk
Xk+1, . . . , Xn

Figure 4.3: An influence diagram for two classifiers whose optimal combination is to allow the

output of each (Ŷ1 and Ŷ2) to contribute independently to the final prediction. The input dimensions

X1, . . . , Xk are independent of dimensions Xk+1, . . . , Xn given the class variable; though, the

interactions within the two feature sets may be arbitrarily complex (which is why they are depicted

as within one box). One classifier’s predictions (Ŷ1) depend only on the values the first feature

set takes (X1, . . . , Xk) while the other classifier ’s predictions (Ŷ2) depend only on the values the

second feature set takes (Xk+1, . . . , Xn).

simply their sum with the extra prior removed.3 This situation is depicted with an influ-

ence diagram in Figure 4.3. However, if the first classifier additionally modeled one of the

attributes from the second subset, P (c | xi,1, . . . , xi,k+1), this is no longer the optimal com-

bination. The reason for this is the well-known fact that their common dependence must

be factored out. In general then, we will have to consider the dependence of the outputs.

This is not surprising given the theoretical proof of improvement reviewed in Section 3.1

required we estimate the joint distribution, and it is necessary to consider dependence when

estimating the joint.

We can make this more explicit by considering a case when the features are partitioned

into 3 subsets: X1, X2, and S. Assume Classifier 1 uses X1 and S and outputs an uncali-

brated estimate based on these variables of the form: λ̂1 = a1 log
P (+|x1,s)
P (−|x1,s)

+ b1. Likewise

Classifier 2 outputs λ̂2 = a2 log
P (+|x2,s)
P (−|x2,s)

+ b2. Consider the optimal combination of these

two classifiers. Given the prior log-ratio ρ = log P (+)
P (−) and the measure of the shared in-

formation λS = log P (+|s)
P (−|s) , the optimal combination can be written as a linear combination

with a non-constant bias term dependent only on the shared information:

3If given probability estimates, it is the normalized product.

CHAPTER 4. LOCALITY 55

λ(x) = a−11

[

λ̂1(x)− b1
]

+ a−12

[

λ̂2(x)− b2
]

− λS(x)− ρ (4.1)

= w1λ̂1 + w2λ̂2 + b∗(x) (4.2)

where w1 = a−11 , w2 = a−12 , b∗(x) = −λS(x)− ρ−
b1
a1
− b2
a2
. (4.3)

Notice that the non-constant part of the bias term will correct the sign of the combined

decision whenever the amount of double-counted information swamps that presented by the

conditionally independent information each classifier contributes. This example illustrates

that, rather than trying to directly estimate terms such as λS , we can simply combine the

log-odds with a linear combination where all the weights except the bias are constant.

Then the weights can be interpreted as implicitly representing these interactions. Thus by

introducing non-constant weights we can capture a range of dependency interactions.

4.4 Variance, Sensitivity, & Locality

Now we turn to the issue of variance. As this section will demonstrate, the variance of

several quantities will be of interest to us. These will be the sensitivity of the model,

the covariance of the model’s estimates with the true outputs, and the variance in error

prediction. In brief, we will have to consider the sensitivity or variance in the model’s

output when considering how to normalize the current outputs, the covariance with the true

outputs to determine how to rescale the normalized estimates, and the variance in error

prediction both as a term to minimize and through its connection to the other two via the

variance of the true outputs. We will elaborate on these more as we proceed to ease the task

of the reader.

We start off by considering what would happen if our classifier had total information.

In this case, all of the predictions would be based on the true posterior, and the classifier

would suffer only the Bayes error. This notion of variance then is the generalization of

refinement from the calibration literature. This is essentially a measure of the amount of

information on average that was lacking to fully explain the deterministic portion of the

output value. How might we extend this to be a reasonable definition of variance around a

point in the reliability diagram?

From our discussion of the model incorporating the latent variable of the true log-odds

in Figure 4.1, it is obvious. The prediction error variance is the spread around the average

deviation from the true log-odds. For some simulated data, this term is computable. For

real data, however, we must simply base our estimates on whether the example was labeled

56 4.4. VARIANCE, SENSITIVITY, & LOCALITY

as belonging to the class or not. This has led some authors to claim that variance is not well-

defined for classification, but it would be more appropriate to say it is not computable. If

we work with a formal probabilistic model then clearly our assumptions about the variance

in the model can have an impact via inference over the latent true log-odds. Additionally,

we can attempt to model this factor by assuming that if the estimates of the classifiers are

changing rapidly with small changes in the input data (sensitivity) then most likely the true

log-odds are not changing rapidly in a like fashion, and therefore the variance in prediction

error is high.

To clarify this further, consider the following setup. We are given a single base classi-

fier’s predictions, λ̂, and we would like to find parameters a and b for a linear transformation

such that λ̂∗ = a λ̂ + b minimizes the expected squared error with the true log-odds. That

is argmina,b = E

[

(

a λ̂(x) + b− λ(x)
)2
]

. Note that there is no assumption that the base

classifier or the true log-odds are linear — simply that we want the best linear transforma-

tion. If the base classifier outputs non-linear predictions then after the transformation the

transformed outputs will also be non-linear. We can solve this following the solution for

the standard regression problem.

E

[

(

λ̂∗(x)− λ(x)
)2
]

=

∫

p(x)
[

λ̂∗(x)− λ(x)
]2

dx (4.4)

=

∫

p(x)
[

a λ̂(x) + b− λ(x)
]2

dx (4.5)

= a2
∫

p(x)λ̂2(x) dx+ b2
∫

p(x) dx+

∫

p(x)λ2(x) dx

+2ab

∫

p(x)λ̂(x) dx− 2a

∫

p(x)λ̂(x)λ(x) dx

−2b
∫

p(x)λ(x) dx (4.6)

By replacement and since

∫

p(x) dx = 1

= a2E
[

λ̂2(x)
]

+ b2 + E
[

λ2(x)
]

+2abE
[

λ̂(x)
]

− 2aE
[

λ̂(x)λ(x)
]

− 2bE[λ(x)] (4.7)

Which yields

∂E

[

(

λ̂∗(x)− λ(x)
)2
]

∂a
= 2aE

[

λ̂2(x)
]

+ 2bE
[

λ̂(x)
]

− 2E
[

λ̂(x)λ(x)
]

(4.8)

∂E

[

(

λ̂∗(x)− λ(x)
)2
]

∂b
= 2b+ 2aE

[

λ̂(x)
]

− 2E[λ(x)] (4.9)

CHAPTER 4. LOCALITY 57

Setting to zero and rearranging terms assuming E
[

λ̂2(x)
]

6= 0 gives the system

a =
E
[

λ̂(x)λ(x)
]

− bE
[

λ̂(x)
]

E
[

λ̂2(x)
] (4.10)

b = E[λ(x)]− aE
[

λ̂(x)
]

(4.11)

Assuming VAR
[

λ̂(x)
]

6= 0 and solving gives

a =
E
[

λ̂(x)λ(x)
]

− E
[

λ̂(x)
]

E[λ(x)]

VAR
[

λ̂(x)
] (4.12)

=
COV

[

λ̂(x), λ(x)
]

VAR
[

λ̂(x)
] (4.13)

b = E[λ(x)]−
COV

[

λ̂(x), λ(x)
]

VAR
[

λ̂(x)
] E

[

λ̂(x)
]

(4.14)

We can rewrite the final solution in a variety of forms to gain insight. For example,

we can rewrite the solutions using the correlation coefficient between the true log-odds and

estimated log-odds, ρλ,λ̂, to write: a = σλ
σ
λ̂

ρλ,λ̂, b = E[λ(x)] − aE
[

λ̂(x)
]

. As can be

seen from the example in Figure 4.4, the coefficient a corrects the predictions to be both

correlated with and have a variance similar to the correct log-odds. Since the expected value

of the corrected predictions will be E
[

aλ̂+ b
]

= aE
[

λ̂
]

+ b = aE
[

λ̂
]

+E[λ]−aE
[

λ̂
]

=

E[λ], the additive term b ensures the new predictions are weakly calibrated on average4 —

the average difference is zero but that does not imply E
[

λ̂− λ | λ̂
]

= 0 for all λ̂. Also,

note that if the predictions are independent of the true log-odds then ρλ,λ̂ = 0 and therefore

a = 0, and the only correction that can be made is by predicting b = E[λ] at all points.

Continuing in this vein, there are a variety of other facts that can be demonstrated. For

example, the squared error of the corrected predictions is E

[

(

λ̂∗ − λ
)2
]

= VAR[λ] (1 −
ρ2
λ,λ̂

) which is 0 iff ρλ,λ̂ = ±1, and therefore, the squared error of the corrected predictions

goes to zero as the magnitude of the correlation between the original predictions and the

true log-odds approaches 1.

However, rather than continuing along this line, we would like to examine the quantities

used in deriving the solutions. As we have already mentioned b is related to a measure

of calibration weighted by a. Now, we turn to a =
COV[λ,λ̂]
VAR[λ̂]

. First, we note that the

4By linearity of expectation, we have E
[

λ̂∗ − λ
]

= E
[

aλ̂+ b
]

− E[λ] = E[λ]− E[λ] = 0.

58 4.4. VARIANCE, SENSITIVITY, & LOCALITY

1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

40

50

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

λ

λ̂
aλ̂

x

L
og

-O
dd

s

Figure 4.4: A simple example where the input space has a single dimension to illustrate the role of

the ratio of standard deviations in a = σλ
σ
λ̂
ρλ,λ̂. In the example, p(x) is uniform over [1, 10]. In this

example, the initial predictions are correct on average: E[λ] = E
[

λ̂
]

. The predicted log-odds, λ̂, are

perfectly correlated with the true log-odds, λ. That is, ρλ,λ̂ = 1, but a = 0.5 and b = 1.5. As can be

seen from the correction using just a, the coefficient forces the variation/slope of the predictions to

behave on average like the true variation. The resulting correction by b must take into account the

compression and rotation caused by a.

denominator, VAR
[

λ̂
]

, is a measure of the sensitivity of the model. That is, it captures how

widely the estimates of the model vary regardless of the value of the true log-odds. Thus,

given that model sensitivity is important for even this subcase of the combination problem,

we expect it will play a role in the larger combination problem. Next, the covariance,

COV
[

λ, λ̂
]

, captures whether the predictions vary in the same way as the true log-odds.

The covariance is related to the spread around the average deviation by VAR
[

λ̂− λ
]

=

VAR
[

λ̂
]

+VAR[λ]−2COV
[

λ, λ̂
]

. Thus, although the covariance is related to the variance

of the error in prediction, it is unclear whether more can be gained in general in combination

schemes from attempting to directly estimate the variance in error or the covariance.5

Next, as mentioned above the average difference is only a weak measure of calibration

in that E
[

λ̂− λ
]

= 0 does not imply E
[

λ̂− λ | λ̂
]

= 0, whereas the second condition is

typically what is meant by well-calibrated as discussed earlier. However, we can consider

5As the reader is no doubt aware the expected squared error can be broken down into the variance in

error and the square of the expected error as: E

[

(

λ̂− λ
)2
]

= VAR
[

λ̂− λ
]

+E2
[

λ̂− λ
]

. Therefore, even

though the variance in error and average error determine the squared error, they are only indirectly related to

the parameter values for a linear correction.

CHAPTER 4. LOCALITY 59

more local measures of calibration. In particular, we can consider using a linear correc-

tion when the parameters are determined locally. In order to do so, we need only define a

distribution over the domain conditional on the current prediction point, x0. If we denote

the locality or the neighborhood of the prediction point as N(x0), we can denote the local

distribution as p(x | x ∈ N(x0)). Since this distribution integrates to unity, the derivation

for the weights of the linear correction remain the same — the expectations, variance, and

covariance are now computed using the local distribution. Likewise the parameters are now

locally determined. It is up to the modeler how to represent locality. For example, if we

define locality as a small window around the predicted value, λ̂, then a locally linear correc-

tion will now be well-calibrated since each local correction will ensure E
[

λ̂− λ | λ̂
]

= 0.

Applying the linear correction method locally can be demonstrated concretely by gen-

erating some simple examples. We will consider an input space of one dimension where

p(x | c) is Gaussian and P (c) is fixed. To draw points, we draw its class with probability

P (c) and then draw from the class-conditional distributions. 100 training points and 10000

hold-out points are drawn. We then fit a prediction model over the training data using either

linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA) and add-one-

estimates for the priors [HTF01]. Locality is defined in these cases by choosing a fixed

width window around each prediction point in the feature space. Finally, the hold-out data

is used to estimate the correction factors globally or locally.

The first example generates the data with the same class-conditional variance and with

P (+) = 0.5. The means were chosen randomly to obtain p(x|−) ∼ N(−0.4854, 1.6068)
and p(x|+) ∼ N(0.3306, 1.6068). Using LDA the parameters are estimated to be P̂ (+) =

0.4804, p̂(x|−) ∼ N(−0.2375, 1.7941), and p̂(x|+) ∼ N(0.5184, 1.7941). We can visual-

ize the true and estimated distributions as shown in Figure 4.5(a). The true and estimated

posterior and log-odds are given in Figure 4.6.6 Using a single global correction, we find

that a = 0.8295 and b = 0.1296. In Figure 4.7, we see that local-estimation finds the same

correction factors except at the edges where the holdout data is sparse. However, since

the factors compensate for each other, even in this case the poor estimation does not hurt

local correction (Figure 4.10a). Note that this also demonstrates how density in an area is

inversely related to variance. Tresp & Taniguchi [TT95] exploit this fact when combining

classifiers.

The second example generates the data with different class-conditional variances and

with P (+) = 0.5. The means and variances were chosen randomly to obtain

6The reader can note from this example that by working with log-odds instead of in probability space, a

global linear correction can capture far more of the typical behavior seen than in probability space where the

functions are non-linear.

60 4.4. VARIANCE, SENSITIVITY, & LOCALITY

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p
(x
|
c
)

p(x|+)
p(x|−)

p̂(x|+)
p̂(x|−)

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p
(x
|
c
)

p(x|+)
p(x|−)

p̂(x|+)
p̂(x|−)

Figure 4.5: The class-conditional distribution of feature values for two synthetic examples and

their estimated forms using 100 training examples. The first (left) example constrains the class-

conditional variances to be equal and uses LDA to train the model. The second (right) example has

class-specific variances and uses QDA to train the model.

p(x|−) ∼ N(−1.0912, 2.3114) and p(x|+) ∼ N(1.4935, 2.0829). Using QDA the param-

eters are estimated to be P̂ (+) = 0.5000, p̂(x|−) ∼ N(−1.1280, 2.1314), and p̂(x|+) ∼
N(1.5791, 2.8136) (see Figure 4.5(b)). The true and estimated posterior and log-odds

are given in Figure 4.8. Using a single global correction, we find that a = 1.0430 and

b = −0.2412. In Figure 4.10(b), we see that global correction is not in general sufficient

when either the true or estimated model is non-linear.7 In contrast, the locally linear model

performs quite well.

In practical terms, what does this mean for us since we never have the true log-odds?

Quite clearly, the direct generalization of this is logistic regression which calculates the

weights directly. Therefore, it does not require we specify intermediate distributions to

calculate expectations needed for the parameters. Similarly other linear combination mod-

els have similar interpretations of the weights even when they do not explicitly introduce

distributional assumptions. Likewise locality can be introduced into these models by intro-

ducing approximations to the weight factors as part of the input to the combination model

— depending on the form of the combination model these approximations could then either

be used as non-constant bias correction factors, as coefficients, or implicitly by changing

the combination function based on the values they take.

7The globally corrected model has corrected the high-density area of examples rather than the low-density

edges.

CHAPTER 4. LOCALITY 61

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P
(+
|
x
)

True
Estimate

Log-Odds
−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True
Estimate

L
og

-O
dd

s

Figure 4.6: The posterior (left) and log-odds (right) for the example constrained to equal class-

conditional variance.

In cases where we would like to work with generative models though, simplifications

are sometimes possible. For example Kahn [Kah04] works with a generative model where

p(λ̂ | c) is assumed to be Gaussian with equal class-conditional covariance. The resulting

combination is a linear combination of the log-odds. The benefit of the model is a clean

form of dealing with classifier interactions, but as we have pointed out in several places,

the empirical behavior demonstrated by even a single base classifier is typically piecewise

linear and not globally.

More importantly, these examples have helped highlight the important quantities and

what their roles would be in a locally linear correction. The next section summarizes the

properties discussed throughout the chapter and lays the remaining foundation for our ap-

proach which will implicitly capture behavior by creating combination rules that use ap-

proximations to these quantities.

4.5 Local Reliability, Variance, and Dependence

This section summarizes and collects the observations made in this chapter. Throughout

the chapter, we offered arguments about the importance of various quantities and why they

could also be characterized in terms of locality. Locality is roughly defined as nearness as

a function of the example. One simple definition would be to characterize input nearness

in terms of having a similar base classifier prediction value. Although it is clear from

62 4.5. LOCAL RELIABILITY, VARIANCE, AND DEPENDENCE

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True

Estimate

Log-Odds

Global
LocalLog-Odds b correction factor

L
og

-O
dd

s
a

co
rr

ec
tio

n
fa

ct
or

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True

Estimate

Log-Odds

Global
Local

L
og

-O
dd

s
b

co
rr

ec
tio

n
fa

ct
or

Log-Odds a correction factor

Figure 4.7: The coefficient a (left) and additive correction term b to perform linear correction

estimated globally and locally using hold-out data for the example constrained to equal class-

conditional variance. For this case where both the true and estimated log-odds are linear, a single

value of a and b is sufficient to perform perfect correction. The local estimation deviates from this

at the edges because of data sparsity.

the above that the prediction error variance around a log-odds prediction of −10 may be

different than that around a prediction of 0, it is sometimes advantageous to consider other

functions of the input features in addition to focusing on the classifier outputs.

A classifier may use data in different parts of the input space differently. Therefore, the

reliability, variance, and dependence may vary locally depending on how well sampled the

region of the input space is, the number of features that are locally relevant (i.e., basically

the complexity of the decision surface locally versus globally), and how the classifiers

employ the data. Many combination schemes fail to account for locality and place only

global weights on the classifier outputs. This reduces the ultimate expressive power of any

combination method.

Any discussion of “local” implies that for each datapoint, x0, there is some neighbor-

hood, N(x0), that defines what is local to that point. In simple cases, such as defining

locality only in terms of the classifier estimates, then the neighborhoods may be explicitly

definable by binning around estimated log-odds values. In other cases, the neighborhoods

are implicit and purely motivational. For the application of these concepts globally, it can

just be assumed that the neighborhood covers the entire domain. Therefore, to make all of

the above issues concrete, we need only give a mathematical definition for the local version

assuming that we have some definition of neighborhood. Since the work in this disserta-

CHAPTER 4. LOCALITY 63

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P
(+
|
x
)

True
Estimate

Log-Odds
−6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

6

8

10

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True
Estimate

L
og

-O
dd

s

Figure 4.8: The posterior (left) and log-odds (right) for a 2-class example with class-specific vari-

ances.

tion uses a binary classification approach, we typically only need to estimate the quantities

below for y = + but we give a formulation for the multiclass problem. We now summarize

the above issues as the following eight points and give mathematical definitions for those

involving locality in terms of both log-odds and probability estimates:

1. Calibration or reliability of classifier outputs;8

2. Variance of estimate with available (or total) information — That is the variance of

the error in prediction;

3. Dependence of classifier outputs;

4. Local reliability of classifier outputs;

The average of predictions from a reliable classifier would equal the average actual

value (in all neighborhoods):

∀yEp(x|x∈N(x0))[P (c(x) = y | x)] = Ep(x|x∈N(x0))[P̂Ci(c(x) = y | x)],
or ∀yEp(x|x∈N(x0))[λ(y)] = Ep(x|x∈N(x0))[λ̂(y)].

Therefore a reasonable measure of deviance from reliability within a region would

be a measure of deviance from this, such as
∑

y

[

Ep(x|x∈N(x0))[P (c(x) = y | x)]− Ep(x|x∈N(x0))[P̂Ci(c(x) = y | x)]
]2

8In the remainder of this work, we use “reliability” loosely to mean either the items explicitly discussed

as reliability here or possibly touching on issues related to any of the types of variance discussed here. When

it is necessary to make the distinction explicit, we do so.

64 4.5. LOCAL RELIABILITY, VARIANCE, AND DEPENDENCE

−8 −6 −4 −2 0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True

Estimate

Log-Odds

Global
Local

Log-Odds b correction factor

L
og

-O
dd

s
a

co
rr

ec
tio

n
fa

ct
or

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

14

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True

Estimate

Log-Odds

Global
Local

L
og

-O
dd

s
b

co
rr

ec
tio

n
fa

ct
or

Log-Odds a correction factor

Figure 4.9: The coefficient a (left) and additive correction term b to perform linear correction

estimated globally and locally using hold-out data for the example with class-specific variances.

For this case, where both the true and estimated log-odds are non-linear, a global value of a and b is

not adequate to perform perfect correction.

=
∑

y E
2
p(x|x∈N(x0))

[P (c(x) = y | x)− P̂Ci(c(x) = y | x)],
or
∑

y

[

Ep(x|x∈N(x0))[λ(y)]− Ep(x|x∈N(x0))[λ̂i(c)]
]2

=
∑

y E
2
p(x|x∈N(x0))

[λ(y)− λ̂i(y)].

5. Local variance of estimate with total information;

A classifier that acted with total information would, of course, always predict the

posterior. Within a region, the prediction error variance is then:
∑

y VARp(x|x∈N(x0))

[

P (c(x) = y | x)− P̂Ci(c(x) = y | x)
]

,

or
∑

y VARp(x|x∈N(x0))

[

λ(y)− λ̂i(y)
]

.

6. Local dependence of classifier outputs;

The ideal situation would be when the classifiers are independent given the class of

the data they are predicting upon (as in Figure 4.3 above). If this were true, then

the ideal would maintain that the joint distribution over the n classifier predictions

(denoted as ŷ1, . . . , ŷn here) could be factored into their separate predictions:

∀yP (ŷ1, . . . , ŷn | c(x) = y,x ∈ N(x0)) =
∏

ŷi
P (ŷi | c(x) = y,x ∈ N(x0)).

Therefore, a reasonable measure of deviance from independence would be the KL-

divergence of the left distribution from the right distribution.

CHAPTER 4. LOCALITY 65

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

Locally Corrected
Globally Corrected

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True
Estimate

L
og

-O
dd

s

Global

Local

Log-Odds b correction factor

Log-Odds a correction factor
−8 −6 −4 −2 0 2 4 6 8

−15

−10

−5

0

5

10

Locally Corrected
Globally Corrected

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

X

p(x |c)

p(x|+)

p(x|−)

p̂(x|+)

p̂(x|−)

P (+ |x)

True
Estimate

L
og

-O
dd

s

Global

Local

Log-Odds b correction factor

Log-Odds a correction factor

Figure 4.10: The locally linear and global corrections of the log-odds for the equal class-

conditional variance example (left) and the non-equal example (right). As shown on the left, when

both the true and estimated model are linear, global weights suffice to perform perfect correction.

However, when either the true or estimated models are not linear, a locally linear model has the

potential to perform far better correction, as shown on the right.

7. Noise sensitivity of a method;

This is just a measure of variation with the region for a specified model (i.e., deviance

of the estimates for other datapoints belonging to the neighborhood from the mean

estimate of the neighborhood). This term is:
∑

y VARp(x|x∈N(x0))

[

P̂Ci(c(x) = y | x)
]

,

or
∑

y VARp(x|x∈N(x0))

[

λ̂i(y|x)
]

. It can be expedient though to consider a related

term which is deviation from the query point, x0, instead of the mean prediction.

This would be:
∑

y VARp(x|x∈N(x0))

[

P̂Ci(c(x0) = y | x0)− P̂Ci(c(x) = y | x)
]

,

or
∑

y VARp(x|x∈N(x0))

[

λ̂i(y|x0)− λ̂i(y|x)
]

.

8. Covariance of a method with complete information;

Given the connection between error prediction variance, noise sensitivity, and vari-

ance via VAR[X − Y] = VAR[X]+VAR[Y]−2COV[X,Y], it is unclear if covari-

ance need be separately estimated. However, we list it for completeness.
∑

y COVp(x|x∈N(x0))

[

P̂Ci(c(x) = y | x), PCi(c(x) = y | x)
]

,

or
∑

y COVp(x|x∈N(x0))

[

λ̂i, λi

]

.

Given these quantities of interest, Chapter 5 motivates and defines variables that are

specific approximations to these quantities or variables intuitively tied to the neighborhood

66 4.5. LOCAL RELIABILITY, VARIANCE, AND DEPENDENCE

around a prediction point for the domain. These are then used in methods which can either

directly use the approximated variables or use the neighborhood characterizations to define

weights and combination functions dependent on the neighborhood.

Chapter 5

Reliability Indicators

This chapter describes the reliability indicators in detail. There are a number of reliability

indicators that arise out of the internal workings of the models themselves. Since these

variables play a more central role, we devote a significant portion of the chapter to their

motivation and formulation. The remainder of the variables focus primarily on the differ-

ence between the original representation of the document and the represention after feature

selection. These latter variables are presented with a brief motivation and description at the

end of the chapter.

The reader should note that identifying and defining variables tied to the reliability of

classifiers is both challenging and an open research problem. Even though we have made

considerable progress in this arena, it remains an attractive area of future research.

5.1 Model-Specific Reliability Indicators

This section motivates a series of indicators based on the inner workings of each classifica-

tion model. The variables all share a commonality in that they are related to the shift in the

model’s output relative to a slight shift in the input. Additionally, the computational com-

plexity of producing each statistic relative to producing a single test prediction is analyzed.

67

68 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

5.1.1 Variables Based on the Unigram Classifier

(Multinomial naı̈ve Bayes)

For a two-class problem of discriminating class c from ¬c, the log-odds of the unigram

classifier can be written as:

log
P̂ (c | d)
P̂ (¬c | d)

= log
P̂ (c)

P̂ (¬c)
+
∑

w∈d

[

#(w, d) log
P̂ (w | c)
P̂ (w | ¬c)

]

(5.1)

where #(w, d) denotes the number of times word w occurs in document d. Therefore,

each occurrence of a word w contributes log P̂ (w|c)
P̂ (w|¬c) = log P̂ (w | c) − log P̂ (w | ¬c) to

the overall classification. Furthermore, if this quantity is positive, the word occurrence

moves the decision toward the positive class c, and if this quantity is negative, the word

occurrence moves the decision toward the negative class¬c. In light of this, it seems natural

to consider possible interpretations of functions of the log-likelihood ratio with respect tow,

log P̂ (w|c)
P̂ (w|¬c) , and the log-likelihood with respect to w, log P̂ (w | C), as indicator variables.

First, consider the mean per-word log-likelihood ratio: 1
|d|
∑

w∈d#(w, d) log P̂ (w|c)
P̂ (w|¬c) .

Why we may want to concern ourselves with this quantity can be motivated from several

viewpoints. For example, consider how the output of the unigram classifier would change if

we changed the document by (uniformly) randomly choosing a word in the document and

eliminating it. More formally, let wi refer to the ith unique vocabulary word that occurs

in the bag-of-words representation of the document d and let d−i denote the document

obtained by removing a single occurrence of wi from d. Let ∆ denote a distribution over

these altered documents such that the probability of generating d−i is #(w,d)
|d| where |d|

denotes the total number of words in the document. Let λ̂U(d) denote the log odds of the

unigram model. Then we wish to know how much it will change our estimate if we remove

a single word, or E∆[λ̂U(d)− λ̂U(d−i)] where d−i ∼ ∆.

This expectation reduces to the average per-word log-likelihood ratio:

E∆[λ̂U(d)− λ̂U(d−i)] = (5.2)

=
∑

d−i

[

#(wi, d)

|d|
(

λ̂U(d)− λ̂U(d−i)
)

]

(5.3)

=
∑

d−i

[

#(wi, d)

|d| log
P̂ (wi | c)
P̂ (wi | ¬c)

]

(5.4)

CHAPTER 5. RELIABILITY INDICATORS 69

=
1

|d|
∑

d−i

[

#(wi, d) log
P̂ (wi | c)
P̂ (wi | ¬c)

]

(5.5)

=
1

|d|
∑

w∈d

[

#(w, d) log
P̂ (w | c)
P̂ (w | ¬c)

]

. (5.6)

By inspection of the formula, it is also obvious that this quantity is tied to the prediction of

the unigram classifier itself being equal to the prediction minus the log priors and divided by

the document length. At the same time, it is a measure of the change around the prediction

with a slight shift.

Continuing along the same vein, it is natural to consider the variance of the statistic:

VAR∆[λ̂U(d)− λ̂U(d−i)] = E∆[
(

λ̂U(d)− λ̂U(d−i)
)2

]− E2∆[λ̂U(d)− λ̂U(d−i)].
Following a derivation similar to the above we can show that:

E∆[
(

λ̂U(d)− λ̂U(d−i)
)2

] =
1

|d|
∑

w∈d
#(w, d)

[

log
P̂ (w | c)
P̂ (w | ¬c)

]2

. (5.7)

From these two terms, we can then compute the variance. Note that the variance will be

near zero when all the words are pointing with approximately the same strength at the

same class. As the variance increases, then the disagreement among the individual words

is higher. Thus, regardless of the conditional independence assumption the model makes,

we would expect that the predictions will be more reliable when the variance is low than

when it is high.1

The previous two statistics were motivated in terms of the decision boundary of the

unigram classifier, but it seems prudent to also consider statistics of the primary compo-

nents of the classifier. That is we can also consider the mean per-word log-likelihood, i.e.
1
|d|
∑

w∈d

[

#(w, d) log P̂ (w|c)
]

and 1
|d|
∑

w∈d

[

#(w, d) log P̂ (w|¬c)
]

. Similarly, we can

consider the variance of the per-word log-likelihood. Now, these statistics will measure the

average strength for each class and the spread of how strongly each word is voting.2

Finally, note that computing each of these statistics requires the same run-time as mak-

ing the original prediction, O(|d|). Therefore, computing these statistics does not signifi-

cantly impact our computational burden.

1To apply this to polychotomous learning problems, we believe it would be most beneficial to have one

value per class and consider statistics based on either log P̂ (w|c)

1−P̂ (w|c)
or log P̂ (w|c)

max
c′ 6=c

P̂ (w|c′)
. Alternatively one

could consider all class pairs.
2An interesting future direction is to consider similar statistics that do not weigh each word equally but

instead use the model’s estimate of the word’s probability, P̂ (w).

70 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

5.1.2 Variables Based on the naı̈ve Bayes Classifier

(Multivariate Bernoulli naı̈ve Bayes)

The variables motivated by the naı̈ve Bayes Classifier are directly analogous to those dis-

cussed above for the unigram classifier — as would be expected since the models are highly

related. However, the difference in the event space employed by each model dictates subtle

changes that we need to address.

First, note the difference between these two models’ event spaces. The unigram prob-

ability model can be thought of generatively as drawing a class according to a class prior,

then drawing a document length, and finally drawing the words according to the class-

conditional word distribution. In contrast, the naı̈ve Bayes model draws a class according

to a class prior and then for each word in the vocabulary draws whether or not the word

occurs in the document according to a class-conditional distribution. Thus, the multivariate

Bernoulli naı̈ve Bayes classifier models a binary (Bernoulli) variable of whether or not a

word occurs conditioned on the class for every word in the vocabulary. Let V − d denote

the set of features that do not take a value of “present” or 1 in d. Then, for a two-class

problem of discriminating class c from ¬c, the log-odds of the naı̈ve Bayes classifier can

be written as:

log
P̂ (c | d)
P̂ (¬c | d)

= log
P̂ (c)

P̂ (¬c)
(5.8)

+
∑

w∈d

[

log
P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

]

+
∑

w∈V−d

[

log
P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

]

= log
P̂ (c)

P̂ (¬c)
+
∑

w∈V

[

log
P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

]

. (5.9)

−
∑

w∈d

[

log
P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

]

+
∑

w∈d

[

log
P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

]

The log odds are often formulated as given in Line 5.9 for efficiency. The priors together

with the first summation in the line is often termed the log odds of the null document since

it is the log odds of a document that contains no word occurrences. This term is costly

to compute since it includes every word in the (typically large) vocabulary. Let |d| denote

the number of “present” words in the document. Then, the costly summation must only be

computed once during training, and at test time, each document’s prediction can be made

in O(|d|) time instead of O(|V |) by subtracting off the “absent” contributions of the words

that are present and adding in their “present” contributions.

CHAPTER 5. RELIABILITY INDICATORS 71

Now, instead of restricting our set of slight changes to the input to only the words

present in the document, we will continue in the style of the model and consider how

its output would change if we altered a single feature value for all possible values in the

domain. Now, we will let d−i denote the document identical to d except that feature i has

been “flipped” and ∆ is now the distribution over documents such that P∆(d−i) = 1
|V | for

i = 1... |V |. Let λ̂B(d) be the estimate of the multivariate Bernoulli naı̈ve Bayes model for

document d. We desire to determine the shift in the model output caused by changing a bit.

E∆[λ̂B(d)− λ̂B(d−i)] where d−i ∼ ∆.

Let wi(d) denote the presence/absence value word i takes in document d, and let w ′i(d)

denote its complement. It is quite easy to see that this expectation reduces as follows:

E∆[λ̂B(d)− λ̂B(d−i)] = (5.10)

=
1

|V |
∑

d−i

[(

λ̂B(d)− λ̂B(d−i)
)]

(5.11)

=
1

|V |
∑

d−i

log

[

P̂ (wi(d) | c)
P̂ (wi(d) | ¬c)

P̂ (w′i(d) | ¬c)
P̂ (w′i(d) | c)

]

(5.12)

=
1

|V |
∑

w∈d
log

[

P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

P̂ (w = 0 | ¬c)
P̂ (w = 0 | c)

]

(5.13)

+
1

|V |
∑

w∈V−d
log

[

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

]

=
1

|V |
∑

w∈V
log

[

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

]

(5.14)

+
1

|V |
∑

w∈d
log

[

P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

P̂ (w = 0 | ¬c)
P̂ (w = 0 | c)

]

− 1

|V |
∑

w∈d
log

[

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

]

.

=
1

|V |
∑

w∈V
log

[

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

]

(5.15)

+
2

|V |
∑

w∈d
log

[

P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

P̂ (w = 0 | ¬c)
P̂ (w = 0 | c)

]

.

Again, the formulation given in Line 5.14 allows this statistic to be efficiently computed

in O(|d|) time during prediction by computing the first summation at training time. In

the unigram model, each word present in the document contributed according to the log-

likelihood with respect to it and the corresponding statistic was the mean over those terms.

Likewise, in the multivariate Bernoulli model, each word in the vocabulary contributes

72 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

according to the log odds ratio of the likelihoods, and the resulting statistic is the mean

over the per feature contributions.

The derivation for the variance, VAR∆[λ̂B(d)−λ̂B(d−i)] = E∆[
(

λ̂B(d)− λ̂B(d−i)
)2

]−
E2∆[λ̂B(d)− λ̂B(d−i)],
follows similar lines. To compute the first term, following the pattern above, we can easily

derive:

E∆[
(

λ̂B(d)− λ̂B(d−i)
)2

] =
1

|V |
∑

w∈V

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

(5.16)

+
1

|V |
∑

w∈d

[

log

(

P̂ (w = 1 | c)
P̂ (w = 1 | ¬c)

P̂ (w = 0 | ¬c)
P̂ (w = 0 | c)

)]2

− 1

|V |
∑

w∈d

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

.

=
1

|V |
∑

w∈V

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

(5.17)

+
1

|V |
∑

w∈d

[

− log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

− 1

|V |
∑

w∈d

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

.

=
1

|V |
∑

w∈V

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

(5.18)

+
1

|V |
∑

w∈d

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

− 1

|V |
∑

w∈d

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

.

=
1

|V |
∑

w∈V

[

log

(

P̂ (w = 0 | c)
P̂ (w = 0 | ¬c)

P̂ (w = 1 | ¬c)
P̂ (w = 1 | c)

)]2

.(5.19)

This term need only be computed during training and is then used in combination with

the previous statistic to compute the variance in O(|d|) time. Finally, as for the unigram

classifier, we also consider the mean and variance of the class-strength of each feature. That

is the mean and variance of log P̂ (w(d)|c)
P̂ (w′(d)|c) and log P̂ (w(d)|¬c)

P̂ (w′(d)|¬c) .

CHAPTER 5. RELIABILITY INDICATORS 73

5.1.3 Variables Based on the kNN Classifier

The variables based on the kNN classifier stem from two basic motivations: (1) the long-

standing intuition that the proximity of the neighbors has an impact on the classifier’s reli-

ability; (2) measuring sensitivity to a change in the input in a way that is connected to the

internal mechanisms of the classifier.

The kNN classifier is one of the oldest classification algorithms and many variants have

been employed [CH67, Yan99]. In its most basic version, the nearest neighbor classifier, a

similarity measure is specified by the user and a test or query point is classified by finding

the most similar training point and using the class label of that point to predict for the

test point. The natural generalization is to find the k most similar or closest neighbors in

the training set and take the majority vote of their class labels. A further generalization

that has been shown to be quite competitive for text classification is to use some form of

distance-weighted voting [Yan99] in order to allow closer neighbors to carry more weight.

While the following variables can be derived in any kNN framework, it is necessary

to understand the role of the reliability indicators within our particular kNN classifier

implementation. In our implementation, k is set to be 2(dlog2Ne) + 1 where N is the

number of training instances. This rule for choosing k is theoretically motivated by re-

sults which show such a rule converges to the optimal classifier as the number of training

points increases [DGL96]. In practice, we have also found it to be a computational con-

venience that frequently leads to comparable results with numerically optimizing k via a

cross-validation procedure. As is quite common in text classification, we use the cosine

similarity, cos(~x1, ~x2), with higher values indicating greater similarity (closer neighbors).

For those less familiar with the cosine of two vectors3, it is equivalent to the inner product

of two vectors if all of the vectors have been normalized to the unit N -sphere. The score

used for a class y is:

s~x(y) =
∑

~n∈kNN (~x)|c(~n)=y
cos(~x, ~n) −

∑

~n∈kNN (~x)|c(~n)6=y
cos(~x, ~n) (5.20)

The class with the highest score is predicted as the class of the example. Since we apply

the classifiers as binary classifiers, there are only two classes and s~x(−) is the additive

inverse of s~x(+). Note that we can treat s~x(+) as an approximation for the log-odds of an

example, λ̂kNN (~x); like log-odds, by default we predict the sign of the score function as the

sign of the classifier and increasing magnitude indicates increased confidence. Finally, we

3We also use a tfidf weighting where the tf factor is the standard term frequency and the idf factor is

log2(N/df).

74 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

apply a threshold method referred to as s-cut in [Yan99] where instead of using the default

threshold of 0, we learn a threshold by cross-validation over the training set.4

Some forms of distance-weighted voting include a decay factor on the distance between

the query point and the neighbor such that for some values of the decay factor, the nearest

neighbor will dominate the overall vote. While we could choose other forms of distance-

weighted voting, they all attempt to balance issues like how much the absolute distance of

the nearest neighbor influences the final prediction versus how much the relative difference

in neighbors determines the prediction. Instead, we take the approach of choosing the

common score function given in Eq. 5.20 and taking other factors into account through our

definition and use of reliability indicators.

The first such issue is that not all areas of the input space are well-sampled. The con-

vergence theorem cited above and other guarantees regarding kNN’s performance [DHS01]

essentially rely on the fact that, as long as the test distribution is the same as the training

distribution, we are likely to have training examples near where testing examples are likely

to occur. Therefore, if the decision function is smooth, we will get good estimates quickly.

If it is not smooth, convergence still occurs but is slower. The simplest of the reliability

indicators try to detect when an area is not well-sampled by introducing functions of the

distances of neighbors. NeighborhoodRadius is simply the distance from the query point to

the farthest neighbor included in the neighborhood. Thus, we would expect a small radius

when the area is well-sampled and large when it is not. The next two reliability indicators,

MeanNeighborDistance and SigmaNeighborDistance, take into account the distribution of

neighbors by computing the mean and standard deviation of the distance from the query

point to a neighbor. Thus, a low mean could indicate that the neighborhood is consistently

well-sampled even though the farthest neighbor might be distant. Likewise, a high variance

could indicate that the sampling quality is not as consistent since the neighbors are at very

different distances.

Next, we consider how we might detect when the decision function is not smooth in a

neighborhood. If the decision function is not smooth, then we would also expect that as we

move out from the query point in different directions, the overall prevalence of a class in

the training set would also change. Thus, we can also introduce a sensitivity based variable

that computes how much the output would change as we change the query point slightly.

Since we are concerned with how the decision function would change as we move toward

our neighbor, then it is natural to consider a set of shifts defined in terms of the neighbors.

In particular, let di denote the document that has been shifted by a factor α toward the ith

4Similar to the recalibration techniques discussed in Section 3.2, this essentially acts as a recalibration

device where the estimated log-odds are shifted by the learned threshold.

CHAPTER 5. RELIABILITY INDICATORS 75

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

1

2 3

4

5

6

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

d

Figure 5.1: An example in Euclidean space of the kNN shifted instances produced for a query

instance x using the other points shown as its neighborhood. The shifts are illustrated using cyan

lines from the original instance. The nearness of neighbor 5 prevents the shifts toward neighbors

1 − 3 from being larger. In contrast, the shift toward neighbor 4 is fully half the distance since it

is away from the other neighbors. Since a shift toward each neighbor is weighted equally, the net

effect is that a shift toward a dense area is more likely.

neighbor, i.e. di = d + α(ni − d). To determine α we choose the largest α such that the

closest neighbor to the new point is the original document. Clearly, α will not exceed 0.5,

and we can find it very efficiently using a simple bisection algorithm. Let ∆ be the uniform

distribution over the shifted points. That is, if di ∼ ∆, then P∆(di) = 1
k
.5 Likewise,

∆′ will indicate the uniform distribution over all k shifted points and the original query.

Figure 5.1 illustrates these shifts graphically for an example in Euclidean space and Table

5.1 gives the corresponding values of α for the shift toward each neighbor.

If the neighborhood is not smooth, then we would also expect to see that the class pre-

diction is not constant across the shifts. To measure this, we compute the average prediction

E∆′ [sd̂(+) ≥ 0] where d̂ ∼ ∆′ and denote it kNNShiftMeanPred. However, in addition

to computing how rapidly the prediction is changing, we can also measure how much the

confidence score differs from the prediction for the query. Therefore, we also compute

E∆[sdi(+)− sd(+)] and Var
1/2
∆ [sdi(+)− sd(+)] and denote them as kNNShiftMeanConf-

Diff and kNNShiftStdDevConfDiff.

5Notice that ∆ implicitly weights shifts toward more common changes in the document since more com-

mon change vectors will also have more neighbors on that side.

76 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

Shifted Point α d n1 n2 n3 n4 n5 n6

d1 0.27 0.36 0.97 1.46 1.51 1.73 0.36 0.91

d2 0.19 0.35 0.99 1.48 1.52 1.71 0.35 0.91

d3 0.20 0.38 0.96 1.45 1.49 1.75 0.38 0.91

d4 0.50 0.71 1.97 2.44 2.51 0.71 1.03 0.90

d5 0.50 0.28 1.13 1.61 1.67 1.53 0.28 0.92

d6 0.50 0.32 1.55 2.05 2.07 1.42 0.87 0.32

Table 5.1: Various quantities for the example in Euclidean space illustrated in Figure 5.1. α is

the amount example d is shifted toward each neighbor to produce di. Each row lists the Euclidean

distances between the shifted point di and the original point d as well as each neighbor nj . The

nearness of neighbor n5 prevents the shifted instances d1, d2, and d3 from shifting closer to neigh-

bors n1, n2, and n3, respectively. Thus α for these shifted points is less than 0.5.

Analyzing the run-time of the kNN algorithm is rather tricky. The naı̈ve implemen-

tation would scan all N training points every time a new query is seen. Let l denote the

average number of non-zero features, then on average computing the cosine similarity be-

tween two points will be O(l). Thus, if we are classifying M points total, the classification

computation cost is O(M [Nl + k log k]) for a naı̈ve implementation of kNN.6 Since we

are applying the classifier to text documents, a typical speed-up exploits the fact that each

document has very few non-zero features. We build an inverted table that indexes the train-

ing set by feature — for each feature, storing a list of the training documents that have a

non-zero value. When we receive a new document, we sort the non-zero features in the

document by their tfidf score and then proceed through each inverted list. After every fea-

ture’s inverted list, we can bound the theoretically closest possible neighbor that we have

not examined yet. When the bound gets tighter than the distance to the farthest point in the

neighborhood, we can terminate early. Because we proceed through the features in tfidf

order, we tend to find the closest neighbors right away and the majority of time is spent en-

suring there are no closer neighbors.7 Since we are interested in performing exact kNN, our

performance gain is less than what it could be. Examining Table 5.2, we see for one small

dataset that we have to examine less than half as many points on average with the sparse

6The k log k factors comes from tracking the top neighbors. Technically, this is u log k where u is the

number of (update) times we find a neighbor closer than the worst, but u empirically tends to be polynomial

in k.
7For the “Sparse (K)” entry in Table 5.2, we had to examine the inverted lists of 2.06 features on average

to reach all the neighbors, but we had to examine 13.16 features on average to be sure there were no closer

neighbors. Thus an approximation algorithm that halts after a preset number of features can be accurate and

efficient. Additionally feature selection methods that favor rare features can introduce even more speed-ups.

CHAPTER 5. RELIABILITY INDICATORS 77

Method
Avg # Dist Ops to

Find Neighbors

Ratio to

Baseline

Total Run

Time (s)

Ratio to

Baseline

Naı̈ve (k) 9603 2.39 285.38 4.13

Sparse (k) 4016.40 1 69.1 1

Sparse (2k) 4698.15 1.17 80.07 1.16

Sparse w/RIVS (2k) 4698.15 1.17 196.37 2.84

Table 5.2: Effect on running time of computing the kNN reliability indicators for the Reuters 21578

corpus (9603 training examples, 3299 testing examples, 900 features used). The naı̈ve algorithm

scans all training examples each time. The sparse algorithm uses speed-ups based on sparsity and

just performs basic prediction; we show one version using the standard number of neighbors and

one using twice that. The final version also computes and writes the reliability indicators — using

a neighborhood of k = 29 for prediction but 2k to compute the reliability indicators. For these

comparisons, r-cut with r = 1 is used for prediction [Yan99].

algorithm and have a run time that is a quarter of the time used by the naı̈ve approach. The

exact speed-up depends on characteristics of the dataset, but achieving at least a factor of 4

seems to be common.

To compute the reliability indicators, it is clear that some of the variables can be com-

puted with essentially no extra cost while performing the prediction including: Neighborhood-

Radius, MeanNeighborDistance, Mean{Class}NeighborDistance, SigmaNeighborDistance,

and Sigma{Class}NeighborDistance. These simply require updating a corresponding vari-

able’s state as each neighbor is found and voted toward the final classification. The primary

difficulty comes in computing the variables that involve shifting the query point and clas-

sifying the shifted point. If we treated each shifted point as a query, the run-time becomes

quite unreasonable. Instead, we take an approximation approach for these variables. In-

stead of finding the closest k neighbors we find the closest 2k neighbors. We still classify

the query using its closest k neighbors and created a shifted query for each neighbor, but

we find the k closest points to each shifted query among only the 2k points. Thus we avoid

the cost of finding the actual neighborhood to the shifted point by using an approximation.

For each test example, we have to perform an extra O(lk2 log k) operations to evaluate the

predictions for the shifted point. Table 5.2 shows that finding the larger neighborhood only

penalizes us 16% in run time (“Sparse (K)” vs. “Sparse (2K)”), but that the extra overhead

for computing the reliability indicators surrenders half of the speed-up we gained over the

naı̈ve algorithm (“Sparse w/RIVS (2k)”).8

8Some of this is I/O overhead and could be optimized to be closer to the performance of “Sparse (2K) ”.

78 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

5.1.4 Variables Based on the Decision Tree Classifier

It is well-known that a standard decision tree corresponds to regions of hyper-rectangles in

the R
D space and that two problems which occur frequently in practice are oversplitting and

boundary sensitivity. The first results in using the estimate at a child node when a parent

node would have been a better estimate. The second results in grossly misestimating the

value to predict for examples that fall near the edges of the hyper-rectangles. Thus when

considering how to capture the sensitivity of a decision tree model, we would like to favor

shifts in the input to nearby leaves or to branches with similar values to an example.

Following the pattern set forth for the other classifiers, we again consider shifting the

input toward other examples. However, in this case, the shift is somewhat more implicit.

Assume we are given a document d, and the path of nodes the document follows down the

decision tree, n0, n1, ..., nl where n0 is the root node, n1 is the child of the root node, and

nl is the leaf node where document d ended up. Let n(j)i denote the jth left branch in the

ith node that was not taken. For a binary tree, there will be exactly one, but for a multi-way

tree there can be many. Let B denote this set of B “local untaken” branches that lie along

the path of the document through the decision tree. We will denote by di a document just

like d except that it has been altered to go down branch i of B. Note it would be possible to

obtain such a document by changing only one feature. However, to reflect that we are more

likely to end up in nearby leaves and examples close to the boundary are more likely to

shift, we will use the distance (after normalizing to the unit sphere) between the document

d and the centroid of documents at the node, d̄(nbi), where nbi denotes the node reached

by taking the untaken branch bi.

Since each step lower in the decision tree implies the examples have more features

in common, then this distance will naturally be lower for nodes that are close together

in the tree. Likewise, if an example is near the decision boundary then this will nat-

urally account for it as well. Let ε be the minimum distance to an untaken centroid,

ε = minbi∈B ‖d̄(nbi)−d‖. Then we set the probability of drawing such a similar document

di ∼ ∆′ to be P∆′(di) ∝ exp(−‖d̄(nbi)− d‖+ ε) such that
∑

bi∈B P∆′(di) = 1. Once we

have taken a branch we will assume that the probabilities of ending up in some particular

terminal leaf descendant of i, tij , is determined by the relative frequencies in the training set,
c(tij)

c(nbi)
, where c(·) gives the training count at a node. Finally, every terminal leaf except the

one that classified d in the tree is a descendant of some untaken branch. Let λ̂D(t) denote

the decision tree’s estimate of the log-odds of the positive class at a leaf t. Let ∆ denote the

distribution such that the P∆(tij) =
c(tij)

c(nbi)
P∆′(di). Then, we compute the mean change in

CHAPTER 5. RELIABILITY INDICATORS 79

output E∆[λ̂D(tij)− λ̂D(nl)] and the standard deviation Var
1/2
∆ [λ̂D(t

i
j)− λ̂D(nl)]. We refer

to these variables as DTreeShiftMeanConfDiff and DTreeShiftStdDevConfDiff respectively.

As far as the running time is concerned, we can precompute the centroids to store at all

intermediate leaves of the tree during training. Likewise, since the mass below an untaken

branch is proportioned according to the relative frequencies, we can store the intermediate

sums and multiply them by the untaken branch probabilities determined at prediction time.

Thus we only need to make three passes along the prediction path: (1) find the closest

untaken branch centroid; (2) compute the probability normalization factor; (3) sum the

intermediate sums stored at the highest untaken branch nodes. Therefore, computing these

variables has an expected running time of E[ml], where m is the average path length to the

leaf of a tree and l is the average length of a document.

5.1.5 Variables Based on the SVM Classifier

Similar to the other classifiers, the variables motivated by the SVM classifier try to capture

the sensitivity of the model to changes in the input and intuitive notions of when an example

falls into an area where the SVM solution is less reliable.

Overview of SVMs

There are two ideas key to the SVM classifier: the kernel and maximizing the margin. The

easiest way to think of a kernel is as a special type of similarity function between two

examples. The special stipulations a function must meet to be a kernel can be phrased in

many ways, but the basic definition follows [CST00]. A function K(x,y) : X × X 7→ R

is a kernel iff there exists a function φ which maps an example x from the input space X
to a feature space F such that the for any two examples the kernel is the inner product of

the transformed examples, K(x,y) = 〈φ(x) · φ(y)〉. With respect to the kernel and the

transformed feature space, the SVM classifier outputs a linear separator although it may

be nonlinear with respect to the original input space. Kernel based methods have gained

popularity for many reasons. Among these reasons are: (1) generalization results can be

obtained without reference to the dimensionality of the feature space; (2) since only the

kernel output value is needed, it is possible to work in intractably large feature spaces

when the result of the inner product can still be efficiently computed directly; (3) it is not

necessary to explicitly define the feature space since any symmetric positive semi-definite

matrix M defines a valid kernel whereMij = K(xi,xj); (4) simple algorithms can easily be

adapted to a new task by choosing an appropriate kernel; (5) it is easier to prove things about

simple algorithms. Since we only apply a linear kernel to the text classification problem, we

80 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

derive results in the standard Euclidean space. As mentioned above, if the examples have

been normalized to the unit sphere (L2-norm) then the inner product between two examples

is equivalent to the cosine similarity function. By defining what it means to project from

one example to another through the kernel space, all of the following variables could be

adapted to any kernel.

Given a set of training data D = {x1, . . . ,xN} which have corresponding class labels

yi ∈ {−1,+1}, the score function f(q) for an SVM can be written in one of two equivalent

ways. In terms of the training examples or in terms of the feature space. The first is written

as:

f(q) =
N
∑

i=1

αiyiK(xi,q) + b. (5.21)

The second can be written as:

f(q) = 〈w · φ(q)〉+ b where w =
N
∑

i=1

αiyiφ(xi). (5.22)

The decision rule is then simply sign(f(q)). Only the points that have non-zero αi values

change the scoring function and are therefore termed support vectors. When the feature

space is tractable, such as in the linear case, the second formula gives a way of computing

the normal to the separating hyperplane during training and quickly classifying examples at

test time. When dealing with the feature space is not tractable (e.g., high-order polynomial

kernels), the first formula gives a way of classifying examples only in terms of the kernel

values using a total of V kernel evaluations where V is the number of support vectors.

Likewise the problem of training an SVM can be formulated as solving for the α’s and b or

as solving for a w and b.

In looking at how this solution is chosen, we come upon the second key concept for

SVMs — choosing the maximum margin solution. When there is a perfect separator, this

simply says choose the separator that has the largest minimum distance to any of the train-

ing points. When there is no perfect separator, the conditions must be generalized. Con-

ceptually, we can think of the amount we must move each point to be on the correct side

of the boundary. Additionally, we may want to penalize points that are on the correct side

but too close to the boundary. Then a reasonable solution would be to choose the separator

that minimizes the sum of these terms. The formulation implemented in SVMlight that

incorporates these ideas is the 1-norm soft margin SVM [Joa02, CST00]:

minimizeξ,w,b
1

2
〈w ·w〉+ C

N
∑

i=1

ξi (5.23)

subject to yi(〈w · xi〉+ b) ≥ 1− ξi, i = 1, . . . , N (5.24)

ξi ≥ 0 i = 1, . . . , N. (5.25)

CHAPTER 5. RELIABILITY INDICATORS 81

−6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

8

10

12

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

1
‖w‖ 2

‖w‖

f(x) =
1f(x) =

0
f(x) =

−
1

Figure 5.2: The SVMlight solution with default C for an almost linearly separable problem. The

decision boundary is shown with a solid line. The dashed lines show the limits of the margin. The

support vectors are highlighted in black.

Figure 5.2 illustrates the solution for a nearly separable dataset. When the dataset has

a perfect separator the only support vectors will lie at the boundaries of the margin on the

f(x) = 1 and f(x) = −1 lines. In the general case, the support vectors will include all

training points xi such that yif(xi) ≤ 1, i.e. all points within the margin and all of the

points on the “wrong side” of the hyperplane. It can also be seen from one of the KKT

conditions that the optimal solution must satisfy, ∀Ni=1 ξi(αi − C) = 0 [CST00] (p. 107).

The ξi are referred to as slack variables since by the condition in 5.24 together with the

minimization, they are the amount that a point falls on the wrong side of the margin. Thus

the sum
∑N

i=1 ξi is the total distance points must be moved in order to be left with a margin

free of training points. As labeled in Figure 5.2, the margin has a width of 2
‖w‖ ; thus the

optimization problem of Eq. 5.23 is a tradeoff between the margin size and the total slack

controlled by the parameter C. Referring back to the KKT condition mentioned above

and since 0 ≤ αi ≤ C, one can easily see that any training point that has non-zero slack

will have an alpha of C and for those training points that fall on the margin boundary and

thus have a slack of zero, their respective α’s may range subject to other conditions not

discussed here. We have only touched on an understanding of SVMs necessary to motivate

the following discussion. The interested reader should see [Joa02, CST00] for much more

detailed information related to the theory and implementation of SVMs.

82 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

A

B

Figure 5.3: The contours for the score function, f(x), of the SVMlight solution with default C.

The labels “A” and “B” fall at the same distance to the separator but would we have equal confidence

at predicting “red circle” at both points?

Motivating SVM Failure Modes

As we mentioned in Section 3.2 the SVM’s score function f(q) has empirically proven

to behave like a linear transform of the log-odds of an example. Figure 5.3 shows that

this function takes equal values parallel to the decision boundary. This seems generally

acceptable for cases where there is good separation except that when comparing the points

labeled “A” and “B”, most people find they are more uncertain about the label of “B” than

“A”. How should this be quantified? Intuitively, we are not more certain that point “B” is a

“blue cross”. Instead, we simply have less certainty about our probability, or in other words

our estimate of variance is higher. Thus, we would like a reliability indicator that captures

this intuitive observation mechanically.

We can easily construct an example that has the same decision boundary but is less

good by increasing the nonseparability of the data. Figure 5.4 shows an extreme of one

such nonseparable case. While the decision boundary is still about the best we can do for a

linear separator, it seems clear that we actually want to decrease our estimate of relevance

near the nonseparable mass; as we move further away along the isolines, it becomes in-

creasingly unclear which class is best to predict. In practice, if the SVM solution has good

generalization we will not find large clumps such as this, but we may find scattered points.

We would like to define reliability indicators that will assist us in automatically detecting

such behavior.

CHAPTER 5. RELIABILITY INDICATORS 83

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi) −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 5.4: The same data as Figure 5.2 but with a large non-separable mass added. The set of

support vectors (in green) has changed but the decision boundary is close to the same. Is it still

reasonable to assume the true log-odds is a (piecewise) linear transform of f(x)?

SVM Variable Details

Now, similar to how we proceeded for the other classification algorithms, we will define a

small set of shifts to the input example and measure statistics of the resulting change in the

model’s score function. In the derivation, we hope to both develop a reasonable estimate of

the model’s sensitivity and automatically capture the types of failure modes we discussed

above.

Since we derive these for the linear kernel only, φ(·) is the identity function and we

drop it. Given a SVM model f(x) and a set of data D, let V = {xi ∈ D | yif(x) ≤ 1}.
As discussed previously if D is the training data, then for the SVM optimization problem

above, V is the set of support vectors. We may also choose to estimate these variables based

on some other set of data D. Let V = |V|. Now, we will consider shifting the document d

toward each of the elements of V .

In particular, let di denote the document that has been shifted by a factor βi toward the

ith element of V , i.e. di = d+ βi(vi − d). Similar to the derivation for the kNN classifier,

to determine βi we define it in terms of the closest point in V to d. Let ε be half the distance

to the nearest point in V , i.e. ε = 1
2
minv∈V ‖v − d‖. Then βi = ε

‖vi−d‖ .9 Thus the shift

vectors are all rescaled to have the same length. Now, we must define a probability for the

shift. We use a simple exponential based on the relative distance from the document to the

point and the closest point in V . Let di ∼ ∆ where P∆(di) ∝ exp(−‖vi − d‖ + 2ε) and

9We assume that the minimum distance is not zero. If it is zero, then we return zero for all of the variables.

84 5.1. MODEL-SPECIFIC RELIABILITY INDICATORS

∑V
i=1 P∆(di) = 1.10 Our first two variables areE∆[f(di)−f(d)] and Var

1/2
∆ [f(di)−f(d)]

and denote them as SVMShiftMeanConfDiff and SVMShiftStdDevConfDiff. Note that to

compute the first of these, we can rewrite it as:

V
∑

i=1

P (di) [f(di)− f(d)] (5.26)

=
V
∑

i=1

P (di) [〈w · di〉+ b− f(d)] (5.27)

=
V
∑

i=1

P (di) [〈w · [d+ βi(vi − d)]〉+ b− f(d)] (5.28)

=
V
∑

i=1

P (di) [〈w · d〉+ 〈w · βi(vi − d)〉+ b− f(d)] (5.29)

=
V
∑

i=1

P (di) [〈w · βi(vi − d)〉] (5.30)

=
V
∑

i=1

P (di) [βi〈w · vi〉 − βi〈w · d〉] (5.31)

=
V
∑

i=1

P (di)βi [〈w · vi〉 − 〈w · d〉] (5.32)

=
V
∑

i=1

P (di)βi [〈w · vi〉+ b− 〈w · d〉 − b] (5.33)

=
V
∑

i=1

P (di)βi [f(vi)− f(d)] (5.34)

Similarly to compute SVMShiftStdDevConfDiff, we can use
√

√

√

√

V
∑

i=1

P (di)β2i [f(vi)− f(d)]2 −
[

V
∑

i=1

P (di)βi [f(vi)− f(d)]
]2

(5.35)

Since the scores for each of the vectors vi can be computed during training, we do not incur

any additional time to compute those at test time. Instead, we have one pass over the V

vectors to find the nearest neighbor, one pass to compute the probability function, and a

final pass to compute the sum. Therefore, we can compute the variables in 3V or O(V)

time.
10As is standard to handle different document lengths, we take the distance between documents after they

have been normalized to the unit sphere. This is not the case for the example figures with generated data we

present here.

CHAPTER 5. RELIABILITY INDICATORS 85

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

−1.5945

−1.5945

−1.5945

−1.3927

−1.3927

−1.3927

−1.191

−1.191

−1
.1

91

−1.191

−0.98925

−0.98925

−0
.9

89
25

−0.98925

−0.7875

−0
.7

87
5−0.7875

−0.7875

−0.7875

−0.58576

−0.58576

−0.58576

−0.58576

−0.58576

−0.38401

−0.38401

−0.38401

−0
.3

84
01

−0.18227

−0.18227

−0.18227

0.019473

0.019473

0.019473

0.22122

0.22122

0.22122

0.22122

0.22122

0.22122

0.22122

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi) −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 5.5: The contour plots of meanGoodSVProximity (left) and stdDevGoodSVProximity (right)

appear to capture some of the motivating intuition. Note the negative values in the left plot near the

nonseparable mass. In the right mass we see the goodness variance rises in the nonseparable mass

as well as the regions to the side where its unclear which mass examples belong to. Meanwhile

variance in the nicely separated region remains low and stable.

Inspired by the final form in Eq. 5.34 and by the idea that the total slack is the amount

required to move all the points to the right side of the margin, we considered E∆[G(di)]

and Var
1/2
∆ [G(di)] where G(di) = yiβif(vi). The idea is that G(·) is a “goodness” func-

tion. Note that G(di) will be positive when vi is a support vector on the correct side of

the hyperplane, and it will be negative when vi is a support vector on the wrong side of

the hyperplane. We receive a credit proportional to how far the support vector is on the

correct side and the size of the shift we defined earlier. Thus if the expectation is posi-

tive, it means that, on average, the document is closer to “good” support vectors than to

“bad” ones. Likewise, the variance captures the fact that there is high fluctuation among

nearness to good and bad support vectors. We call these variables meanGoodSVProximity

and stdDevGoodSVProximity. Figure 5.5 shows an example of the values they take on and

demonstrates that they capture our intuition to a certain extent. Like the variables above

they are also O(V) to compute.

Finally, we argued that distance to known points is intuitively important as in Figure

5.3. Since we already find the nearest support vector to the document for the other vari-

ables, then we also output a signed distance-weighted function to the nearest support vector,

specifically yn exp(−‖vn−d‖) where vn = minv∈V ‖v−d‖. We call this variable signed-

NNSV.

86 5.2. INPUTS FOR STRIVE (DOCUMENT DEPENDENT)

5.2 Inputs for STRIVE (Document Dependent)

The remainder of this chapter summarizes all of the inputs to the metaclassifiers — includ-

ing the base classifier outputs and all the reliability-indicator variables. A brief motivation

is provided for each reliability indicator that has not been previously discussed. As was

the case with the earlier variables these variables do not exhaustively define the space of

reliability indicators nor are they always crucial. Instead they simply attempt to mathemat-

ically capture the intuitions discussed through any or all of the following: approximations,

convenient modeling choices, and algorithm-specific key quantities.

5.2.1 Outputs of Base Classifiers

We considered the outputs of five base classifiers as inputs to STRIVE.

• OutputOfDnet

This is the output of the decision tree built using the Dnet classifier (available as

the WinMine toolkit [Mic01]. Its value is the smoothed log-odds of the estimated

posterior probability at the leaf node of belonging to the class.

• OutputOfSVMLight

This is the output of a Linear SVM model built using the SVMlight package [Joa99].

It is often termed the margin score or distance to the normal. If K is the kernel

function, αi is the non-negative weight that the SVM places on each training example

(i.e., support vectors have non-zero weight), and β is the bias or threshold, then this

score is β +
∑

αiyiK(~xi, ~x).

• OutputOfNaı̈veBayes

This is the output of the naı̈ve Bayes model built using a multivariate Bernoulli rep-

resentation (i.e. only feature presence/absence in an example is modeled) [MN98]. It

is the log-odds (or logistic) of the model’s probability estimate of class membership,

i.e. log P (c|d)
1−P (c|d) . Because of machine floating-point precision issues, it is necessary

that the implementation compute the log-odds directly.

• OutputOfUnigram

This is the output of the unigram model (also referred to as a multinomial model

[MN98]). It is the log-odds (or logistic) of the model’s probability estimate of class

membership, i.e. log P (c|d)
1−P (c|d) . Because of machine floating-point precision issues, it

is necessary that the implementation compute the log-odds directly.

CHAPTER 5. RELIABILITY INDICATORS 87

• OutputOfkNN

This is the output of the kNN classifier using distance-weighted voting [Yan99]. Un-

less otherwise mentioned, the value of k is set to be 2(dlog2Ne) + 1 where N is

the number of training points. This rule for choosing k is theoretically motivated by

results which show such a rule converges to the optimal classifier as the number of

training points increases [DGL96]. In practice, we have also found it to be a com-

putational convenience that frequently leads to comparable results with numerically

optimizing k via a cross-validation procedure. As a distance-measure for neighbors,

we use cos(~x1, ~x2) with higher values indicating greater similarity (closer neighbors).

The score used for a class y is:

s(y) =
∑

~n∈kNN (~x)|c(~n)=y
cos(~x, ~n) −

∑

~n∈kNN (~x)|c(~n)6=y
cos(~x, ~n) (5.36)

5.2.2 Reliability Indicator Variables

Indicator variables are currently roughly broken into one of four types:

• Amount of information present in the original document;

• Information loss or mismatch between representations;

• Sensitivity of the decision to evidence shift;

• Basic voting statistics.

We group the reliability indicators into their primary type based on the main reasons

why we would expect to see a link to classifier reliability. We note that this is only a soft

clustering; some reliability indicators provide context information in more than one way.

Several of the variables listed below have an instantiation for each class in a learning

problem. The variable counts we report tally each instance separately. For the variables

below we list only one entry and use “{Class}” in the name of the variable to denote that

this variable has one instantiation per class. Since our methodology built a binary classifier

for each topic, then our experiments have a Positive and a Negative class version. In a two-

class problem, the values of the two instantiations may be redundant. We have, however,

retained each since in polychotomous (3 or more classes) discrimination they are more

distinct.

After each bullet below, a number is given in parentheses, indicating the number of

variables that this description includes. There are currently 70 document-dependent relia-

88 5.2. INPUTS FOR STRIVE (DOCUMENT DEPENDENT)

bility indicators. After we discuss how to use these indicators, we conduct an analysis of

the empirical impact of each indicator in Section 7.3.

Type 1: Amount of information present in the original document

• (1) DocumentLength

The number of words in a document before feature selection. Presumably longer

documents provide more information to base a decision upon. Therefore, longer

documents will lead to more reliable decisions when DocumentLength is correctly

modeled. Alternatively, models that do not correctly normalize for document length

may be less reliable for extreme lengths (short or long) of documents.

• (1) EffectiveDocumentLength

DocumentLength minus the number of out-of-vocabulary words in the document.

Since a model cannot generalize strongly, other than by smoothing, for features that

were not seen in the training set, this variable may be a better indicator of information

present in the document than DocumentLength.

• (1) NumUniqueWords

Number of distinct tokens in a document, i.e. |{w|w ∈ document}|, as opposed

to length which counts repeats of a token in a document. The motivation is similar

to DocumentLength, but here the variable is only counting each new word as an

indicator of new information.

• (1) EffectiveUniqueWords

NumUniqueWords minus the number of unique out-of-vocabulary words. This is the

analogue of EffectiveDocumentLength and is included for similar reasons.

• (1) PercentUnique

This is a measure of the variety in word choice in a document. It is equal to Num-

UniqueWords / DocumentLength. This can also be seen as 1 / average number of

times a word is repeated in a document. Close to 1 means very few words (if any)

are repeated in the document; close to 0 means the documents consists of very few

unique words (possibly repeated many times). This is essentially a normalized ver-

sion of NumUniqueWords; this variable will show high variance for short documents

however. The intuition here is that more complex documents, while providing more

information, also might be more difficult to classify since they may have many fea-

tures, each carrying some small weight.

CHAPTER 5. RELIABILITY INDICATORS 89

• (1) PercentOOV

The percentage of the words in a document which weren’t seen in the training set.

It is equal to the number of out-of-vocabulary words divided by DocumentLength.

Similar to PercentUnique, this variable can show high variance for short values. The

intuition here is that the more novel words a document contains the more likely a

classifier is to incorrectly classify the document into the a priori prevalent class. Typ-

ically unseen words slightly favor minority classes, since we have less samples from

them. This is a variable that essentially allows a global smoothing model to be in-

duced and its range is [0, 1]. Therefore, as it approaches 1, we would expect minority

classes to be more likely than our base models might estimate.

• (1) PercentUniqueOOV

The percentage of the words in a document, not counting duplicates, which weren’t

seen in the training set. This is the distinct token analogue for PercentOOV. Again,

the motivations are similar to just using a different information model.

• (2) PercentIn{Class}BeforeFS

Of all words occurring in the training set (i.e. out-of-vocabulary words are ignored),

the percentage of words in a document that occurred at least once in examples be-

longing to the class. It is equal to the number of words that occurred in the class

before feature selection divided by EffectiveDocumentLength. Similar to Percent-

OOV, this can be used to inductively learn smoothing behavior. The assumption is

that if this variable is high, predictions that the example belongs to the class are more

reliable. For the binary case with a negative class that effectively groups many classes

together, this isn’t quite expected with respect to PercentInNegBeforeFS (since pre-

dictions of “negative” would almost always expected to be more reliable under that

assumption).

• (2) UpercentIn{Class}BeforeFS

Of all words occurring in the training set (i.e. out-of-vocabulary words are ignored),

the percentage of unique words in a document that occurred at least once in exam-

ples belonging to the class. This is the analogue to PercentIn{Class}BeforeFS using

unique tokens as the basis for the information model.

• (2) %Favoring{Class}BeforeFS

Of all words occurring in the training set, the percentage of words in a document that

occurred more times in examples belonging to the class than in examples not belong-

ing to the class. This is essentially a rough statistic for an unnormalized unigram

90 5.2. INPUTS FOR STRIVE (DOCUMENT DEPENDENT)

model (tied slightly into the smoothing related variables discussed above) that gives

a very rough sense of the evidential weight of the original document.

• (2) U%Favoring{Class}BeforeFS

Of all words occurring in the training set, the percentage of unique words in a docu-

ment that occurred more times in examples belonging to the class than in examples

not belonging to the class. This is the analogue to %Favoring{Class}BeforeFS.

Type 2: Information loss or mismatch between representations

While each of these variables are a measure of loss of information, they all generally have

a paired variable of Type 1 that together give a more direct measure of information loss.

• (1) DocumentLengthAfterFS

The number of words in a document after out-of-vocabulary words have been re-

moved and feature selection was performed. Similar to DocumentLength, this is the

measure of information that the classifier actually sees with respect to this document.

• (1) UniqueAfterFS

The number of unique words remaining in a document after out-of-vocabulary words

have been removed and feature selection was performed. This is the distinct token

analogue of DocumentLengthAfterFS and is similarly expected to be used in con-

junction with NumUniqueWords as a gauge of information loss.

• (1) PercentRemoved

The percentage of a document that was discarded because it was out-of-vocabulary

or removed by feature selection. It can have high variance for short documents. The

intuition is that reliability of a classifier is higher for low values of PercentRemoved.

• (1) UniquePercentRemoved

The percentage of unique words in a document that were discarded because they

were out-of-vocabulary or removed by feature selection. The distinct token analogue

of PercentRemoved where the information model is unique words.

• (2) PercentIn{Class}AfterFS

Of all words occurring in the training set, the percentage of words remaining in a

document after feature selection that occurred at least once in examples in the class.

Together with PercentIn{Class}BeforeFS, this allows the model to represent shift in

information content because of feature selection.

CHAPTER 5. RELIABILITY INDICATORS 91

• (2) UpercentIn{Class}AfterFS

Of all words occurring in the training set, the percentage of unique words remaining

in a document (after feature selection) that occurred at least once in the class. Again,

this is expected to be used in conjunction with UpercentIn{Class}BeforeFS to model

information loss.

• (2) %Favoring{Class}AfterFS

Of all words occurring in the training set, the percentage of words remaining in a

document (after feature selection) that occurred more times in examples in the class

than in examples not in the class. Like its BeforeFS counterpart, it is essentially like

an unnormalized unigram model. We expect that it can be used in conjunction with

%Favoring{Class}BeforeFS to measure how a feature selection method may have

biased the information for a given document toward a particular class.

• (2) U%Favoring{Class}AfterFS

Of all words occurring in the training set, the percentage of distinct words remaining

in a document after feature selection that occurred more times in examples in the

class than examples not in the class.

• (12) FSInformationChange

The change in information according to some measure of information. There is one

instantiation per measure of information and per measure of class. The difference

produces a variable related to information loss due to feature selection. We would

expect a large negative difference might give rise to false positives while a large

positive difference might give rise to false negatives with respect to the class. The

following are grouped under this heading:

(1) NumWordsDiscarded

= DocumentLength - DocumentLengthAfterFS

(1) NumTrainingWordsDiscarded

= EffectiveDocumentLength - DocumentLengthAfterFS

(1) NumFeaturesDiscarded

= NumUniqueWords - UniqueAfterFS

(1) NumTrainingFeaturesDiscarded

= EffectiveUniqueWords - UniqueAfterFS

(2) WordsSeenIn{Class}Delta

= PercentIn{Class}BeforeFS - PercentIn{Class}AfterFS

(2) FeaturesSeenIn{Class}Delta

= UpercentIn{Class}BeforeFS - UpercentIn{Class}AfterFS

92 5.2. INPUTS FOR STRIVE (DOCUMENT DEPENDENT)

(2) PercentWordsPointingTo{Class}Delta

= %Favoring{Class}BeforeFS - %Favoring{Class}AfterFS

(2) UPercentWordsPointingTo{Class}Delta

= U%Favoring{Class}BeforeFS - U%Favoring{Class}AfterFS

Type 3: Sensitivity of the decision to evidence shift

• (2) UnigramStdDeviation, Naı̈veBayesStdDeviation

In a binary class problem, the weight each word contributes to the unigram model’s

decision is log P (w|c)
P (w|¬c) . Similarly, each word’s presence/absence contributes a weight

of log
[

P (w(d)={present,absent}|c)
P (w(d)={present,absent}|¬c)

1−P (w(d)|¬c)
1−P (w(d)|c)

]

to the naı̈ve Bayes model. If this term is

greater than 0, the word gives evidence to the positive class (c), and if it is less than

zero, the word gives evidence to the negative class (¬c). The reliability indicators

are the standard deviation of these weights for the feature values (word occurrences

or presence/absence) in a specific document. If the variance is close to zero, that

means all of the words tended to point toward one class. As the variance increases,

this means there was a large skew in the amount of evidence presented by the various

words (possibly strong words pulling toward two classes). The intuition is that the

reliability of naı̈ve Bayes related classifiers will tend to decrease as this variable

increases. The motivation behind these variables are described more fully in Sections

5.1.1 and 5.1.2.

• (4) UnigramMeanLogOfStrengthGiven{Class},
Naı̈veBayesMeanLogOfStrengthGiven{Class}
These variables represent the mean of the conditional contributions of a word given

a class. For example UnigramMeanLogOfStrengthGivenPositive is the mean of

logP (w|Class = Positive) over the words in the document and Naı̈veBayesMean-

LogOfStrengthGivenPositive is the mean of log P (w(d)|Class=Positive)
P (w′(d)|Class=Positive)

over the words

in the vocabulary. The motivation behind these variables are described more fully in

Sections 5.1.1 and 5.1.2.

• (4) UnigramStdDeviationLogOfStrengthGiven{Class},
Naı̈veBayesStdDeviationLogOfStrengthGiven{Class}
These variables represent the standard deviation of the conditional contributions of a

word given a class. For example UnigramStdDeviationLogOfStrengthGiven{Positive}
is the standard deviation of logP (w|Class = Positive) over the words in the docu-

CHAPTER 5. RELIABILITY INDICATORS 93

ment and Naı̈veBayesStdDeviationLogOfStrengthGiven{Positive} is the standard de-

viation of log P (w(d)|Class=Positive)
P (w′(d)|Class=Positive)

over the words in the vocabulary. The motivation

behind these variables are described more fully in Sections 5.1.1 and 5.1.2.

• (2) UnigramMeanShift, Naı̈veBayesMeanShift

In a binary class problem, the weight each word contributes to the unigram model’s

decision is log P (w|c)
P (w|¬c) . Similarly, each word’s presence/absence contributes a weight

of log
[

P (w(d)={present,absent}|c)
P (w(d)={present,absent}|¬c)

1−P (w(d)|¬c)
1−P (w(d)|c)

]

to the naı̈ve Bayes model. If this term

is greater than 0, the word gives evidence to the positive class (c), and if it is less

than zero, the word gives evidence to the negative class (¬c). The reliability in-

dicators are the mean of these weights for the feature values (word occurrences or

presence/absence) in a specific document. As discussed in Sections 5.1.1 and 5.1.2

this quantity is the mean change in the model’s output if we uniformly randomly

chose one word to delete (for the unigram classifier) or uniformly randomly chose

one feature’s value to change (for the naı̈ve Bayes classifier).

• (1) NeighborhoodRadius

The radius required to include all k points in the neighborhood for the kNN classifier.

The radius is the Euclidean distance between the query point and its neighbors after

the points are normalized to the unit sphere. If the radius around a point is compar-

atively small then the implication is that this portion of the space is extremely well

sampled comparatively, and higher reliability is expected there.

• (3 = 1 [overall] + 2 [one per class]) MeanNeighborDistance

Mean{Class}NeighborDistance

The mean distance of the points in the neighborhood from the kNN classifier. The

distance used is Euclidean distance between the query point and its neighbors af-

ter the points are normalized to the unit sphere. This has a similar motivation to

NeighborhoodRadius — a smaller neighborhood implies better sampling in the area

and higher reliability. Depending on the particular type of distance weighting used

in the kNN classifier this variable may play a more or less important role. There is

one instantiation that averages over all neighbors and then one per class that is the

average of points belonging to that class.

• (3 = 1 [overall] + 2 [one per class]) SigmaNeighborDistance

Sigma{Class}NeighborDistance

The standard deviation of the distance of the points in the neighborhood from the

kNN classifier. The distance used is Euclidean distance between the query point and

its neighbors after the points are normalized to the unit sphere. The assumption is that

94 5.2. INPUTS FOR STRIVE (DOCUMENT DEPENDENT)

query points that fall in neighborhoods with high variance in neighbor distance will

be less reliable than those with a similar mean in distance but less variance. There

is one instantiation that measures variance over all neighbors and then one per class

that is based on points belonging to that class.

• (1) kNNShiftMeanPred

Similar to variables related to other classifiers, this variable considers how the output

of the kNN classifier changes with slight changes to the prediction point. Since the

kNN classifier uses a neighborhood for prediction, we also use it to define the nature

of the perturbations to the input. k new queries are created by shifting the document

as far toward each neighbor as it can go while the original document remains its

own closest neighbor. This variable is the average class prediction over the original

document and the k new queries. If the neighborhood is smooth we expect to see

values near 0 and 1. The motivation for this variable as well as the computational ap-

proximations used to compute it more efficiently are described more fully in Section

5.1.3.

• (1) kNNShiftMeanConfDiff

Using the k new queries defined for kNNShiftMeanPred, this variable measures the

average change in the kNN classifier’s confidence score from the confidence assigned

to the original prediction. A value near zero indicates that the query falls into a

neighborhood that is, on average, smooth with respect to the confidence function.

The motivation for this variable as well as the computational approximations used to

compute it more efficiently are described more fully in Section 5.1.3.

• (1) kNNShiftStdDevConfDiff

Using the k new queries defined for kNNShiftMeanPred, this variable measures the

standard deviation of the difference between the kNN classifier’s confidence score for

the new query and the confidence assigned to the original prediction. A low variance

indicates that the neighborhood is smooth with respect to the confidence function.

The motivation for this variable as well as the computational approximations used to

compute it more efficiently are described more fully in Section 5.1.3.

• (1) SVMShiftMeanConfDiff Similar to variables related to other classifiers, this vari-

able considers how the output of the SVM classifier changes with slight changes to

the prediction point. Since the SVM classifier can be seen as a function of the support

vectors, we use the support vectors to define the nature of the perturbations to the in-

put. Let v be the number of support vectors. Then, v new documents d′ are created

by shifting the document toward each support vector for a total distance equal to that

CHAPTER 5. RELIABILITY INDICATORS 95

of half the distance to the nearest support vector. A probability distribution ∆ over

shifts is then defined based on the distance to the support vector. Finally, this variable

is the expected difference between the new output and the original output according

to the probability function, E∆ [f(d′)− f(d)]. The motivation for this variable and

the mathematical details are described more fully in Section 5.1.5.

• (1) SVMShiftStdDevConfDiff This variable is just like SVMShiftMeanConfDiff ex-

cept that it is the standard deviation of the statistic Var
1/2
∆ [f(d′)− f(d)]. Again

more details are in Section 5.1.5.

• (1) meanGoodSVProximity This variable uses the shifts defined for SVMShiftMean-

ConfDiff, but instead computes the expectationE∆ [yiβif(vi)] where vi is the support

vector that we are shifting toward. Thus, the variable will take an overall positive

value if more “good” support vectors (on correct side of margin) are closer to the

document than “bad” support vectors. See Section 5.1.5 for more details.

• (1) stdDevGoodSVProximity This variable is just like meanGoodSVProximity except

that it is the standard deviation of the statistic Var
1/2
∆ [yiβif(vi)]. See Section 5.1.5

for more details.

• (1) signedNNSV For documents that are farther from any data seen during training,

we intuitively have less certainty about their class labels. This variable attempts to

capture that by computing a simple signed function of the nearest support vector

yn exp(−‖vn − d‖) where vn = minv∈V ‖v − d‖.

• (1) DTreeShiftMeanConfDiff

This is a sensitivity variable related to the decision tree model. Assume that there is

a probability for drawing a document similar to the current one but different enough

to branch down an alternate branch along the path. This variable defines a model

for such a deviation and then captures the expected change in the model’s log-odds

output. See Section 5.1.4 for more details.

• (1) DTreeShiftStdDevConfDiff

This variable is identical to DTreeShiftMeanConfDiff except that it captures the vari-

ance in the model’s log-odds output according to the probability model over similar

documents. Again see Section 5.1.4 for more details.

96 5.3. TASK-DEPENDENT VARIABLES

Type 4: Basic voting statistics

There are 2 reliability indicator variables whose primary type is considered to be this type.

Both of these were introduced mainly to reduce the data required to learn m-of-n rules in

the decision tree metaclassifier.

• (1) PercentPredictingPositive

We refer to this in the main text as NumVotingForClass. This variable is the per-

centage of base classifiers (out of all base classifiers) that vote for membership in the

class. In our experimental evaluation, we only used one instantiation of this variable.

This was added to help the search space since learning thism-of-n type of feature can

require significant data for a decision tree learning algorithm (unless it is specifically

altered for this).

• (1) PercentAgreeWBest

This variable is referred to as PercentAgreement in the main text. For polychotomous

problems, PercentAgreement can be used to indicate among how many classes the

classifiers fracture their votes. Since there are only two classes here, we altered

it to indicate the percent agreement with the best base classifier (the classifier that

performed best over the training data).

5.3 Task-Dependent Variables

Here are a few examples of variables which could be included in the models that are pooled

across tasks. These are variables that do not vary from document to document within a

collection or classification problem but vary across them.

After each bullet below, a number is given in parentheses, indicating the number of

variables that this description includes.

• (1) NumTrainingPoints

Different learning algorithms often have learning curves. Including this variable al-

lows the metaclassifier to inductively learn about crossovers in the learning curves of

the models.

• (1) %TrainingPointsIn{Positive}
This has the same motivation as NumTrainingPoints except since the number of pos-

itives in text are rare, there is reason to suspect the learning curve might be more

closely correlated with the number of positive training points.

CHAPTER 5. RELIABILITY INDICATORS 97

• (1) NumberOfSupportVectors

The generalization bounds for an SVM are tied to the number of support vectors in

the solution. Therefore, this is an obvious candidate for predicting the usefulness of,

at least, the SVM model.

98 5.3. TASK-DEPENDENT VARIABLES

Chapter 6

Background for Empirical Analysis

Most of the remaining chapters contain an accompanying empirical analysis for the ap-

proaches they discuss. This chapter collects many of the common key elements to these

experiments and presents them together for the ease of the reader. We start with a descrip-

tion of the various performance measures used to evaluate the quality of a classification

model. In addition, we present the motivation behind each measure, a description of why it

is relevant to the task, and discuss the implications improvement according to a particular

measure has beyond the obvious. Next, we give an overview of the primary text collec-

tions used throughout the dissertation and describe common processing steps that influence

the learned models, e.g. feature selection. Finally, we present implementation details of

the base classifiers and document particular parameter settings that influence the learned

models.

6.1 Classifier Performance Measures

When selecting among classifier performance measures which have previously been used,

we are faced with choosing from rank-based measures, probability loss functions, and func-

tions such as accuracy that simply measure the membership predictions without regard to

the classifier’s confidence score. A variety of researchers have used rank-based [LC96]

measures of performance because they were interested in interactive systems in which a

rank list of codes for each document would be displayed to users. Many other applica-

tions such as automatic routing or tagging require that binary class membership decisions

be made for each document as it is processed. When binary decisions must be made, the

nature of the application often requires a different penalty for false positives than false

negatives. In order to perform well for a particular cost function, one approach ranks the

99

100 6.1. CLASSIFIER PERFORMANCE MEASURES

documents according to a classification confidence score and then optimizes a score thresh-

old for the particular cost function. A classifier that effectively ranks examples can thus be

used for a range of different cost functions. Additionally, producing a stable and accurate

ranking is sufficient to show the existence of a monotone transformation of the classifier’s

scores to accurate probability estimates [LZ05]. However, producing good rankings does

not ensure that the optimal threshold can be optimally selected during training nor does

it guarantee we will choose the best transformation to probability spaces. For example,

Hull et al. [HPS96] found that, although combination techniques were able to improve

document ranking, they did considerably less well at estimating probabilities.

Therefore, at various points in this dissertation, we examine ranking, probability loss

functions, and common classification measures in order to obtain a holistic picture of the

performance trade-offs involved for a particular learning approach.

6.1.1 Classification Measures

The Fβ measure, and particularly F1 [vR79, YL99], is one of the more commonly used

ways to assess text classifier performance. This measure attempts to balance a classifier’s

precision and recall. Precision measures the ability of a classifier to accurately find items

that belong in a class:

Precision =
Correct Positives

Predicted Positives
. (6.1)

Therefore a classifier that has low precision tends to produce false positives. Recall mea-

sures the ability of a classifier to accurately find all the items belonging in the class:

Recall =
Correct Positives

Actual Positives
. (6.2)

A classifier with low recall tends to produce false negatives — not correctly finding all

of the actual positives. Depending on the nature of the task, precision and recall can have

varying roles. For example, if we are building classifiers that will automatically sort a user’s

e-mail into subject-oriented folders then errors in precision would route a message to the

wrong folder whereas an error in recall would leave the message in the catch-all INBOX

folder. Errors in recall may produce lower savings for a user, since now the user must sort

the remaining items, but is unlikely to cause errors such as not responding to an important

mail that has been misfiled. The Fβ measure is a weighted harmonic mean of precision and

recall.

Fβ =
(β + 1) ∗ Precision ∗ Recall

β ∗ Precision + Recall
. (6.3)

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 101

The most common choice of β, 1, weights precision and recall equally and yields the

F1:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (6.4)

Generally, the optimal F1 is obtained where precision equals recall, but as in other threshold

optimization, finding this trade-off point may be difficult in practice.

Occasionally, the user of a system can specify at training time an actual cost associated

with a false positive, FP , and a false negative, FN . When this is possible, we can write the

expected cost (or utility) of a classification algorithm as a linear utility function,

C(FP ,FN) = FP ∗ P (FalsePositive) + FN ∗ P (FalseNegative) (6.5)

where P (FalsePositive) and P (FalseNegative) is the probability under the underlying dis-

tribution1 that the classifier emits a false positive/negative. The most commonly used func-

tion in the literature is the error rate which is FP = FN = 1. However, the importance

of varying cost functions has been recognized by many researchers because applications

rarely have equal costs for different types of errors [PF01]. The text classification commu-

nity has been particularly aware of their importance and has included linear utility functions

for some time in such evaluations as TREC (the text retrieval conference) [HR99, RH00].

From a decision theory point of view [DHS01], it is only the ratio of costs that influ-

ences a decision and not the strict numbers. So, a decision-maker would make the same

policy decisions for C(10, 1) and C(100, 10). More precisely, if we are given probability

estimates P̂ (+|x) and P̂ (−|x), then the optimal decision [DHS01] is to predict positive

whenever:
P̂ (+|x)
P̂ (−|x)

≥ FP

FN
. (6.6)

For log-odds, the optimal decision is calculated by taking the log of both sides in whatever

base desired. In order to assess how sensitive performance is to the utility measure in a

typical range of cost ratios, we explicitly consider results for C(10, 1), C(1, 10), and the

error function.

6.1.2 Probability Loss Functions

Often the costs of a false positive/negative are not known during training time or may be

dynamic — changing according to a user-specified setting. In this case, if we assume all

linear utility cost functions are equally likely during prediction, then an effective classifier

is equivalent to accurately assessing the probability of each example. Given a probability

1Or in sample when estimating

102 6.1. CLASSIFIER PERFORMANCE MEASURES

estimate, it is straightforward to make a hard-classification based on dynamic costs by

applying standard Bayesian decision theory:

Ŷ (X) =

+ if P̂ (+ | X) ∗ FN ≥ P̂ (− | X) ∗ FP

− o.w.
(6.7)

Therefore, the question becomes one of obtaining high-quality probability estimates from

a classifier. We discuss how such estimates can be obtained in Chapter 3. Here we turn

to the question of what loss functions are appropriate for judging the quality of probability

estimates.

Two standard scoring functions for probabilities are log-loss and squared error. Both

of these are proper scoring rules [DF83, DF86] in the sense that a classifier’s view of

its expected performance is maximized when the classifier actually issues a probability of

p̂ when it assesses the probability to be p̂, i.e., the classifier cannot expect to gain from

“hedging its bets”. Log-loss is defined as:

Log-loss(x, c(x)) = log P̂ (c(x) | x). (6.8)

Unless specified, we will report base e or the natural logarithm. Thus log-loss falls in

[−∞, 0] and penalizes heavily when the classifier assigns low probability to the true class.

When given in this form, the desire is to maximize the log-loss. When minimization is

more convenient, one simply works with the negative of this quantity.

Squared error is defined as:

Error2(x, c(x)) = [1− P̂ (c(x) | x)]2. (6.9)

Unlike log-loss, squared error falls in a bounded interval, [0, 1], and the aim is to mini-

mize this quantity. Both scoring measures have their strengths and weaknesses. The large

penalties that can be inflicted by log-loss sometimes leads to solutions that can overfit a

single outlier simply to avoid an infinite penalty, whereas under decision theory seeing a

cost-ratio that inflicts unbounded penalties is unlikely. On the other hand, since squared

error is bounded by one, minimizing it can lead to making predictions that appear confident

but in actuality are very wrong. Our use of these measures is primarily restricted to when

we are explicitly concerned with the calibration of the systems in question.

6.1.3 Ranking Measures

In addition to the performance scoring measures discussed, we can also examine the ben-

efits that a classifier has to offer over a range of cost functions by examining receiver-

operating characteristic (ROC) curves. An ROC curve plots true positive rate versus false

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 103

positive rate for a classifier. If a classifier generates a score that can be used to rank the test

set, then an ROC curve is produced by setting a classification threshold between pairs of

adjacent examples that have distinguishable scores and then plotting a point corresponding

to the false positive and true positive rate that are obtained using that threshold. For a given

classifier, Ci, the true positive rate and false positive rate are P (Ci(x) = + | c(x) = +)

and P (Ci(x) = + | c(x) = −).
Figure 6.1a highlights several aspects of ROC curves using our earlier example of two

class-conditionally independent classifiers where Classifier 1 was based on feature X1 and

Classifier 2 was based on feature X2. Recall that if each classifier perfectly predicts the

posterior conditioned only on its respective feature, then Classifier 1 does far better than

Classifier 2. By choosing the standard threshold of 0.5, we obtain a single true positive and

false positive rate for each classifier; these are shown by the single points in the graph. By

varying the thresholds θ1 and θ2 that the posterior must exceed in order to predict positive,

a range of different true positive and false positive rates are produced.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Example ROC Curve

Random

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

P (+ | X1) ≥ 0.5
P (+ | X2) ≥ 0.5

P (+ | X1) ≥ θ1
P (+ | X2) ≥ θ2

P (+|X1, X2)≥ 0.5

P (+|X1, X2)≥ θ3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Optimal Combination vs. Base Classifiers

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

P (+ | X1) ≥ 0.5
P (+ | X2) ≥ 0.5

P (+ | X1) ≥ θ1
P (+ | X2) ≥ θ2

P (+|X1, X2)≥ 0.5

P (+|X1, X2)≥ θ3

Figure 6.1: (a) At left an Example ROC Curve using the conditionally independent classifier ex-

ample of Section 1.2.1. (b) At right, the optimal combination of Classifier 1 and 2 dominates both.

The optimal combination has an error rate approximately half of Classifier 1 and a sixth of Class-

ifier 2, but as the classifiers get closer to perfect classification, the graphical difference can appear

deceptively small.

Perfect classification corresponds to a point in the top left (northwest) corner of the

graph. Random performance falls on the y = x line, and therefore anything above it per-

104 6.1. CLASSIFIER PERFORMANCE MEASURES

forms better than the random baseline. As we know from the discussion above, the partic-

ular threshold that is optimal for a linear utility function depends on the relative weight of

false positive to false negative. The ROC curve actually presents a summary of each class-

ifier’s performance under any linear utility function. For a given linear utility function, the

error weights2 define the slope of isolines that connect points in the graph with equal per-

formance under that utility function (see Figures 6.4-6.6). Conceptually if a line with that

slope is moved down in a parallel fashion from the northwest corner, then the first curve

that touches a line is the optimal point for that linear utility function [PF01]. Therefore, for

a set of classifiers, the optimal performance is defined by the convex hull of their curves.

In cases like this example, where one curve is above all the others, that classifier is said to

dominate the other classifiers, and if we are limited to selecting a single classifier to use for

each linear utility function, the best choice is to always use the dominating classifier.

Of course, since we are interested in combining and not simply selecting, the opti-

mal combination improves over both classifiers despite the fact that Classifier 1 dominates

Classifier 2. This can be seen in Figure 6.1b. The optimal combination of Classifier 1 and 2

dominates both. The optimal combination has an error rate approximately half of Classifier

1 and a sixth of Classifier 2, but as the classifiers get closer to perfect classification, the

graphical difference can appear deceptively small.

We can also visualize other metrics in ROC space [Fla03]. For example, Figure 6.2 con-

trasts the isolines of F1 in a precision-recall graph versus an ROC curve. In the precision-

recall graph, the isolines do not change when the class prior is changed; however, as demon-

strated by Figure 6.3, when positives become rare, F1 is extremely sensitive to any change

in the upper left part of the ROC curve. In contrast, the isolines for error and linear utility

functions are evenly spaced (Figures 6.4-6.6). These figures also demonstrate how varying

the class prior is equivalent to varying the costs of a false positive/negative.

By examining the whole space of linear utility functions, we seek to understand how

robust (in terms of sensitivity to the specific cost function) a combination method is. In

order to attempt to summarize the the linear utility space of functions as a single scalar, we

use area under the ROC curve.3

6.1.4 Summarizing Performance Scores

For each performance measure, we can either macro-average or micro-average. In macro-

averaging, the score is computed separately for each class and then arithmetically averaged.

2Different class priors can actually be equivalently treated as a change in error weight ratio.
3Noting that the area under the curve is not a precise summary of the linear utility space.

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Pr
ec

is
io

n

Recall

True Positive Rate

False Positive Rate

Isolines for F1 in Precision/Recall Space

Isolines of F1 in ROC space with P (+) = 0.10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate
Isolines for F1 in Precision/Recall Space

Isolines of F1 in ROC space with P (+) = 0.10

Figure 6.2: (a) At left, the isolines (or contours) connecting equal values of the F1 score in a

Precision-Recall graph. The best performance is in the top right corner (red lines). (b) At right, the

isolines connecting equal values of F1 in an ROC graph. The ROC graph has a free parameter of

P (+) that must be specified to draw the contours. For this graph, P (+) = 0.10.

Although the classes are weighted equally in the macro-average, for some performance

measures, in particular F1, predictions on instances of rare classes effectively carry more

weight since the scores for rare classes are more sensitive to the changes of a few predic-

tions over the positive instances; the net effect is that improvement in prediction over the

rare classes tends to influence the macro-F1 score more than improving over the common

classes. Micro-averaged values are computed directly from the binary decisions over all

classes; since all instances are given equal weight, this places more weight on the common

classes. For precision, recall, and F1 where micro-averaging is well-defined, we generally

report both types of averages. For the other measures, there is no accepted definition of

micro-averaging and some definitions (e.g., linear utility functions) lead to identical macro

and micro-averages. Therefore, for the other measures, we typically only report macro-

averages.

6.2 Data

Here we briefly review the characteristics of the primary corpora we use for empirical

evaluation throughout the dissertation. For other corpora and synthetic data only used in

specific experiments, we describe them in the relevant section. Our primary empirical

focus deals with several topic-classification corpora including: the MSN Web Directory;

106 6.2. DATA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Isolines for F1 in Precision/Recall Space

Isolines of F1 in ROC space with P (+) = 0.10

Isolines of F1 in ROC space with P (+) = 0.05

Isolines of F1 in ROC space with P (+) = 0.40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Isolines for F1 in Precision/Recall Space

Isolines of F1 in ROC space with P (+) = 0.10

Isolines of F1 in ROC space with P (+) = 0.05

Isolines of F1 in ROC space with P (+) = 0.40

Figure 6.3: The effects of varying P (+) from 0.05 to 0.40 on the isolines of F1 in ROC space.

two corpora drawn from the Reuters newswire; and the TREC-AP corpus. We have selected

these corpora because they offer a wide array of topic classification problems from very

broad topics over web pages to very narrow topics over financial news stories.

6.2.1 Chronological Split vs. Cross-Validation

Most text classification corpora are drawn from a source that has a natural time ordering.

For example, every news story is published at a specific time (though we may only know

the day), each e-mail is received at a given time, and a newsgroup posting happens at some

specific instant. Because of this, text corpora can sometimes exhibit topic drift where the

nature of the discussion or news events shift focus, and therefore the associated language

distribution also shifts. As a result, many text classification researchers are proponents of

splitting a corpus into a single training and test set chronologically [Lew92b]. This allows

one to test a text classifier in a similar way to how it will be used. In many applications

a chronological split — train on past, predict the future — is the only possible one even if

there is a gradual shift in the underlying sampling distribution.

On the other hand, machine-learning researchers typically use cross-validation for eval-

uation because it allows one to average out the variance introduced by a single “unlucky/

lucky” split. In general, we follow the use of standard chronological splits in empirical eval-

uation in order to compare with other researchers for datasets where there is an established

standard split and use appropriate statistical significance tests. For other datasets (e.g., the

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Isolines of Error in ROC space with P (+) = 0.05

Isolines of Error in ROC space with P (+) = 0.40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate
Isolines of Error in ROC space with P (+) = 0.05

Isolines of Error in ROC space with P (+) = 0.40

Figure 6.4: The effects of varying P (+) from 0.05 to 0.40 on the isolines of Error in ROC space.

action-item corpus in Chapter 10), we use cross-validation techniques which allow us to

make judgments of statistical significance with less training data.

6.2.2 MSN Web Directory

The MSN Web Directory is a large collection of heterogeneous web pages (from a May

1999 web snapshot) that have been hierarchically classified. We use the same chronological

train/test split of 50078/10024 documents as that reported in [DC00].

The MSN Web hierarchy is a seven-level hierarchy; we use all 13 of the top-level cate-

gories. The class proportions in the training set vary from 1.15% to 22.29%. In the testing

set, they range from 1.14% to 21.54%. The classes are general subject categories such

as Health & Fitness and Travel & Vacation. Human indexers have assigned the documents

to zero or more categories. Approximately 195K words appear in at least three training

documents.

6.2.3 Reuters (21578)

The Reuters 21578 corpus [Lew97] contains Reuters news articles from 1987. For this data

set, we use the ModApte standard chronological train/test split of 9603/3299 documents

(8676 unused documents). The classes are economic subjects (e.g., “acq” for acquisitions,

“earn” for earnings, etc.) that human taggers applied to the document; a document may

have multiple subjects. There are actually 135 classes in this domain (only 90 of which oc-

108 6.2. DATA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Isolines of Cost(FP= 10, FN= 1) in ROC space with P (+) = 0.05

Isolines of Cost(FP= 10, FN= 1) in ROC space with P (+) = 0.40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate
Isolines of Cost(FP= 10, FN= 1) in ROC space with P (+) = 0.05

Isolines of Cost(FP= 10, FN= 1) in ROC space with P (+) = 0.40

Figure 6.5: The effects of varying P (+) from 0.05 to 0.40 on the isolines of Cost(FP= 10, FN= 1)

in ROC space. Note that varying the costs of a linear utility function is exactly equivalent to varying

the prior for the error scoring function.

cur in the training and testing set); however, we have only examined the ten most frequent

classes since small numbers of testing examples makes estimating some performance mea-

sures unreliable due to high variance.4 Limiting the topic set to the ten largest classes allows

us to compare our results to previously published results [DPHS98, Joa98, MN98, Pla99].

The class proportions in the training set vary from 1.88% to 29.96%. In the testing

set, they range from 1.7% to 32.95%. Approximately 15K words appear in at least three

training documents.

6.2.4 TREC-AP

The TREC-AP corpus is a collection of AP news stories from 1988 to 1990. We use the

same chronological train/test split of 142791/66992 documents that was used in [LSCP96].

As described in [LG94] (see also [Lew95]), the categories are defined by keywords in a

keyword field. The title and body fields are used in the experiments below. There are

twenty categories in total.

The frequencies of the twenty classes are the same as those reported in [LSCP96]. The

class proportions in the training set vary from 0.06% to 2.03%. In the testing set, they range

from 0.03% to 4.32%. Approximately 123K words appear in at least 3 training documents.

4Primarily area under the ROC curve.

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Isolines of Cost(FP= 1, FN= 10) in ROC space with P (+) = 0.05

Isolines of Cost(FP= 1, FN= 10) in ROC space with P (+) = 0.40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Precision

Recall

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate
Isolines of Cost(FP= 1, FN= 10) in ROC space with P (+) = 0.05

Isolines of Cost(FP= 1, FN= 10) in ROC space with P (+) = 0.40

Figure 6.6: The effects of varying P (+) from 0.05 to 0.40 on the isolines of Cost(FP= 1, FN= 10)

in ROC space. Note that varying the costs of a linear utility function is exactly equivalent to varying

the prior for the error scoring function.

6.2.5 RCV1-v2 (Reuters 2000)

To demonstrate we have not overfit our methods to the primary corpora used throughout the

course of this research, in addition to the diversity of the granularity and type of documents

among the corpora, we have included this corpus only after all of the combination meth-

ods and reliability indicators were fully developed. The Reuters Corpus Volume 1 contains

Reuters news articles from 1996-1997 which were released as a corpus by Reuters, Ltd. in

2000 for research purposes [RSW02]. RCV1-v2 is a modified version of the corpus which

was extensively documented by [LYRL04] after they corrected various inconsistencies in

the original corpus. We use the same chronological train/test split of 23149/781265 docu-

ments that was used in [LYRL04]. Unlike other large corpora, note that the training set is

kept relatively small. There are several different types of codes that RCV1-v2 documents

are labeled with (regions, industries, topics). We use only topics and restrict our attention to

the 101 topics that have at least one labeled document in the training set. These topics are

hierarchically organized and vary in their granularity. Topics dealing with financial aspects

tend to be very fine grained while those such as politics are coarse grained. Further details

of the semantics are available in [LYRL04].

To ensure comparability with other published results, we have started with the version

of the documents provided in Appendix 12 of [LYRL04]. These documents have already

been stemmed, stopworded, and tokenized. We treat these tokenized documents as if they

were the original documents.

110 6.3. BASE CLASSIFIERS

The frequencies of the 101 classes are the same as those reported in [LYRL04]. The

class proportions in the training set vary from 2 documents (0.0086%) to 10786 documents

(46.59%) with a median of 233 documents (1.007%). In the testing set, they range from 38

documents (0.0049%) to 370541 documents (47.43%) with a median of 8266 documents

(1.058%). Approximately 21K words appear in at least 3 training documents.

6.3 Base Classifiers

We have selected five classifiers traditionally used for text classification for examination:

decision trees, linear SVMs, naı̈ve Bayes, a unigram classifier, and a kNN classifier. We

have chosen these algorithms not only because they are known to perform well but also

because they are different types of classifiers along several different dimensions. The SVM,

unigram, and naı̈ve Bayes algorithms we investigate produce a linear decision boundary

where the kNN and Decision Tree classifiers are non-linear classifiers. In contrast, while

the unigram and naı̈ve Bayes algorithms we employ are generative classifiers and similar

to each other, they differ from the SVM, kNN, and Decision Tree which are discriminative

classifiers.

6.3.1 Decision Trees

For the decision-tree implementation, we have employed the WinMine5 decision networks

toolkit and refer to this as Dnet below [Mic01]. Dnet builds decision trees using a Bayesian

machine learning algorithm [CHM97, HCM+00]. While this toolkit is targeted primarily

at building models to provide probability estimates, we found that Dnet models usually

perform acceptably for the goal of minimizing error rate. However, we found that the

performance of Dnet with regard to other measures is sometimes poor.

The probability that the model predicts is a Laplace correction of the empirical proba-

bility at a leaf node (see Eq. 6.10). As noted in [PD03], using a Laplace correction is often

critical when a high quality probability-based ranking is desired. We have not observed

any of the other problems noted in [PD03] with regard to obtaining probability estimates.

This is likely because the Dnet algorithm attempts to optimize a likelihood based criterion

instead of accuracy. As pointed out by Provost & Domingos [PD03], optimizing accuracy

can lead to early stopping or overly aggressive pruning that harms probability estimates.

The interested reader applying an alternate decision tree algorithm should consult [PD03]

for more information.
5We thank Max Chickering and Robert Rounthwaite for their special support of the WinMine toolkit.

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 111

6.3.2 SVMs

For SVMs, we have used a linear kernel as implemented in the SVMlightpackage v6.01.

Unless otherwise noted, we used a linear kernel and default settings for all other parameters.

A more thorough discussion of SVMs is included in Section 5.1.5.

6.3.3 Naı̈ve Bayes (multivariate Bernoulli)

The naı̈ve Bayes classifier has also been referred to as a multivariate Bernoulli model

[MN98]. As has been noted elsewhere, the probability estimates used by the classifier

must be smoothed to avoid zero probability estimates [Mit97].

The simplest smoothing method which has been called any of “add-one”, Laplace cor-

rection, or standard Laplace correction [Sim95, KBS97] is:

P̂ (C = c | z) = nc + 1

n+ |C| . (6.10)

Here n is the number of observations for which condition z holds and nc is the number of

observations for which both z holds and variable C takes value c.

Kohavi, Becker, and Sommerfeld [KBS97] characterize as Laplace approaches any

method which uses:

P̂ (C = c | z) = nc + f

n+ |C|f (6.11)

where f > 0 is a parameter. They also introduce the Laplace m-estimate which sets f = 1
N

whereN is the total number of observations and not just those matching condition z.6 Thus

the effect of smoothing decreases as the total number of observations goes to infinity.

Finally, a more general method sometimes referred to as a Bayesian estimate or Bayesian

m-estimate [Mit97] is:

P̂ (C = c | z) = nc +mpc
n+m

(6.12)

where pc is a user-specified prior on class c (where
∑

c pc = 1) and m is the “effective

sample size” or the weight the prior will carry as measured in number of observations.

The Laplace m-estimate is a special case of the Bayesian m-estimate where p = 1
|C| and

m = |C|
N

. In many applications, z is the null condition and N = n.

In using the multivariate Bernoulli classifier, the conditional word probabilities use a

Bayesian estimate with an effective sample size of 1 and the empirical word frequency (i.e.

6They use m instead of N to refer to the total number of observations. We reserve m to refer to effective

sample size as in the Bayesian estimate.

112 6.3. BASE CLASSIFIERS

p = P̃ (w) and m = 1). The class estimates are smoothed using a Laplace m-estimate.

Thus, we have:

P̂ (w = {present, absent} | c) =
nc,w + nw

N

nc + 1
(6.13)

P̂ (c) =
nc +

1
N

N + |C|
N

. (6.14)

nw is the number of documents with the word present / absent, nc,w is the number of doc-

uments in class c with the word present / absent, nc is the number of documents in class c,

and N is the total number of documents. Words that did not occur in the training set are

ignored.

6.3.4 Unigram (multinomial naı̈ve Bayes)

The unigram classifier uses probability estimates from a unigram language model [MN98].

This classifier has also been referred to as a multinomial naı̈ve Bayes classifier. Probability

estimates are smoothed in a similar fashion to smoothing in the naı̈ve Bayes classifier. The

resulting estimates are:

P̂ (w | c) =
nc,w + nw

N

nc + 1
(6.15)

P̂ (c) =
nc +

1
N

N + |C|
N

. (6.16)

nw is the number of times word w occurred, nc,w is the number of times word w occurred

in documents in class c, nc is the total number of word occurrences in class c, and N is

the total number of word occurrences. As a reminder to the reader, the multinomial model

counts repetitions of the same word in the document. Words that did not occur in the

training set are ignored.

6.3.5 k-Nearest Neighbor

We employ a standard variant of the k-nearest neighbor algorithm used in text classification,

kNN with s-cut score thresholding [Yan99]. We use a tfidf-weighting of the terms with a

distance-weighted vote of the neighbors to compute the score before thresholding it. The

score used for a class y for example x is:

sx(y) =
∑

n∈kNN (x)|c(n)=y
cos(x,n) −

∑

n∈kNN (x)|c(n)6=y
cos(x,n). (6.17)

CHAPTER 6. BACKGROUND FOR EMPIRICAL ANALYSIS 113

In order to choose the threshold value for s, we perform cross-validation over the training

set. Unless noted elsewhere, the value of k is set to be 2(dlog2Ne+1) whereN is the num-

ber of training points. This rule for choosing k is theoretically motivated by results which

show such a rule converges to the optimal classifier as the number of training points in-

creases [DGL96]. In practice, we have also found it to be a computational convenience that

frequently leads to comparable results with numerically optimizing k via a cross-validation

procedure.

6.3.6 Classifier Outputs

Finally, we must address the question of what kind of outputs we expect from the classifiers.

Again, recalling our example of class-conditionally independent classifiers from Section

1.2.1, if our combination procedure simply uses the class prediction of the base classifiers,

then we often cannot improve or can only improve slightly even when the classifiers are

based on distinct information sources. Additionally, experiments with stacking [Wol92,

TW99] have shown using some kind of partially-ordered score leads to significantly better

results. Therefore, we desire that the classifier outputs a confidence of some kind such that

greater values of the score implies a greater confidence that the example belongs to the

positive class.

However, working with arbitrary scores can be problematic since the inputs can be

on vastly different scales. One alternative is to actually require probabilities. We can

either produce probabilities from a score as described in Chapter 3 or use techniques as

described in [LZ05] that produce probability estimates from models which only predict

class membership.

Consider our idealized example again. If we are given completely correct posterior

estimates by class-conditionally independent classifiers (Figure 4.3 and Section 1.2.1), the

optimal combination is obtained by multiplying the probabilities and renormalizing. Since

multiplicative models are sometimes more difficult to work with, we will prefer additive

models and therefore work with the log-odds from the classifiers. In fact, because we will

use a bias term in our additive models, we often can work with a score that’s “similar

to log-odds” but not scaled correctly — allowing our bias term to implicitly correct the

misestimation of the base models.

114 6.4. CHAPTER SUMMARY

6.4 Chapter Summary

This chapter presented an overview of the various performance measures used to compare

the effectiveness of a combined model with that of the base classifiers or alternative models.

In the remainder of the dissertation, we will focus on F1, linear utilitiy functions, and

area under the ROC curve when evaluating the classification methods. In addition, this

chapter presented the characteristics of the key datasets to be used in experimentation and

the implementation details of the classifiers.

Chapter 7

Combining Classifiers

using Reliability Indicators

From Chapter 3, we know that a classifier can improve a combination of classifiers as long

as the class is not independent of the output of that classifier given the output of the other

classifiers. This is the motivation behind stacking classifiers. However, we would like to

account for more locality1 than stacking allows — which can only use functions of the

classifier outputs to set non-constant weights on the classifiers. Most other methods (e.g.,

local cascade generalization which additionally uses all of the original features as well) are

not suited for high-dimensional problems such as text. This part takes the insights gained

from our work on calibration and introduces a new combination model for text classifica-

tion that uses reliability indicator variables to create a low-dimensional abstraction of the

properties likely to influence the local reliability, dependence, and variance of the classifier

outputs. Since we then build a classifier using this representation, we are implicitly using

the joint distribution over this space to combine the classifiers.

Our work is distinguished from earlier combination approaches for text classification

by (1) the use of expressive probabilistic dependency models to combine lower-level class-

ifiers, leveraging special signaling variables, referred to as reliability indicators, and (2) a

focus on measures of classification performance rather than the more common considera-

tion of ranking.

1See Chapter 4 for more on locality.

115

116 7.1. INTRODUCTION

����

Metaclassifier

Document−Specific
Context

SVM

���
�

���
�

���
�

		
		

Decision Tree

Naive Bayes

Unigram

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 7.1: Schematic characterization of reliability-indicator methodology. The methodology

formalizes the intuition shown here that document-specific context can be used to improve the per-

formance of a set of base classifiers. The output of the classifiers is a graphical representation of a

distribution over possible class labels.

7.1 Introduction

Previous approaches to classifier combination have typically limited the information con-

sidered at the metalevel to the output of the classifiers [TW99] and/or the original feature

space [Gam98a]. Since a classifier rarely is the best choice across a whole domain, an

intuitive alternative is to identify the document-specific context that differentiates between

regions where a base classifier has higher or lower reliability.

Returning to the example from Chapter 1, Figure 7.1 shows an example using four base

classifiers: decision tree, SVM, naı̈ve Bayes, and unigram. When given a test document

as input, each of the four base classifiers outputs a probability distribution over possible

class labels (depicted graphically as a histogram in the figure). The metaclassifier uses this

information along with document context (to be described in more detail) to produce a final

classification of the document.

We address the challenge of learning about the reliability of different classifiers in dif-

ferent neighborhoods of the classification domain by introducing variables referred to as

reliability indicators which represent the analytic “context” of a specific document. A re-

liability indicator is an evidential distinction with states that are linked probabilistically to

regions of a classification problem where a classifier performs relatively strongly or poorly.

The reliability-indicator methodology was introduced by Toyama and Horvitz [TH00]

and applied initially to the task of combining, in a probabilistically coherent manner, sev-

eral distinct machine-vision analyses in a system for tracking the head and pose of com-

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 117

puter users. The researchers found that different visual processing modalities had distinct

context-sensitive reliabilities that depended on dynamically changing details of lighting,

color, and the overall configuration of the visual scene. The authors introduced reliability

indicators to capture properties of the vision analyses, and of the scenes being analyzed, that

provided probabilistic indications of the reliability of the output of each of the modalities.

To learn probabilistic models for combining the multiple modalities, data were collected

about ground truth, the observed states of indicator variables, and the outputs from the con-

current vision analyses. The data was used to construct a Bayesian network model with the

ability to appropriately integrate the outputs from each of the visual modalities in real time,

providing an overall higher-accuracy composite visual analysis.

The value of the indicator-variable methodology in machine vision stimulated us to ex-

plore the approach for representing and learning about reliability-dependent contexts in text

classification problems. For the task of combining classifiers, we formulate and include sets

of variables that hold promise as being related to the performance of the underlying class-

ifiers. We consider the states of reliability indicators and the scores of classifiers directly

and, thus, bypass the need to make ad hoc modifications to the base classifiers. This allows

the metaclassifier to harness the reliability variables if they contain useful discriminatory

information and, if they do not, to fall back in a graceful manner to using the output of the

base classifiers.

As an example, consider three types of documents where: (1) the words in the document

are either uninformative or strongly associated with one class; (2) the words in the docu-

ment are weakly associated with several disjoint classes; or (3) the words in the document

are strongly associated with several disjoint classes. Classifiers (e.g., a unigram model) will

sometimes demonstrate different patterns of error on these different document types. If we

can characterize a document as belonging to one of these model-specific failure types, then

we can assign the appropriate weight to the classifier’s output for this kind of document. We

have pursued the formulation of reliability indicators that capture different association pat-

terns among words in documents and the structure of classes under consideration. We seek

indicator variables that would allow us to learn context-sensitive reliabilities of classifiers,

conditioned on the observed states of the variable in different settings.

To highlight the approach with a concrete example, Figure 7.2 shows a portion of the

type of combination function we can capture with the reliability-indicator methodology.

The nodes on different branches of a decision tree include the values output by base class-

ifiers, as well as the values of reliability indicators for the document being classified. The

decision tree provides a probabilistic, context-sensitive combination rule indicated by the

particular relevant branching of values of classifier scores and indicator variables. In this

118 7.1. INTRODUCTION

OutputOfkNN

OutputOfkNN
> 0.655 (65)

< 0.576 (647)

< 0.0487 (1592) < 0.655 (1527)

> 0.0487 (680)

> 0.576 (33) > 0.134 (115)

< 0.134 (532)

UnigramStdDeviationLogOfStrengthGivenNeg

PercentInPosBeforeFS

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

Figure 7.2: Portion of decision tree, learned by STRIVE-D (norm) for the Business & Finance class

in the MSN Web Directory corpus, representing a combination policy at the metalevel that considers

scores output by classifiers (dark nodes) and values of indicator variables (lighter nodes). Higher

in the same path, the decision tree also makes use of OutputOfUnigram and OutputOfSVMLight, as

well as other indicator variables.

case, the portion of the tree displayed shows a classifier-combination function that con-

siders thresholds on scores provided by a kNN classifier (OutputOfkNN) in conjunction

with the context established by reliability-indicator variables (PercentInPosBeforeFS and

UnigramStdDeviationLogOfStrengthGivenNeg) to make a final decision about a classifica-

tion. Higher in the path to these nodes, the decision tree has also made use of the outputs

of an SVM classifier and a unigram classifier as well as other indicator variables. The an-

notations in the figure show the threshold tests that are being performed, the number of

examples in the training set that satisfy the test, and a graphical representation of the prob-

ability distribution at the leaves. The likelihood of class membership is indicated by the

length of the bars at the leaves of the tree.

The variable UnigramStdDeviationLogOfStrengthGivenNeg represents the variance of

unigram class-conditional weights for the negative class for words present in the current

document. The intuition behind the formulation of this reliability-indicator variable is that

examples are more likely to be negative when there is low variance in weights. The variable

PercentInPosBeforeFS is the percentage of words in the document that occurred in a posi-

tive training example before feature selection. This can indicate an example is likely to be

positive and can help mitigate overly aggressive feature selection by considering the state

before feature selection. Notice that examples with the highest kNN scores (lowest leaf)

are actually given a lower posterior probability of membership than those with lower kNN

scores (highest leaf) because of the context established by the indicators and other classifier

outputs. Chapter 5 gives further details about the motivation, derivation, and computation

of reliability indicators used in these experiments.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 119

The indicator variables used in our studies represent an attempt to formulate states that

capture influential contexts. We constructed variables to represent a variety of contexts that

held promise as being predictive of accuracy. These include such variables as the number

of features present in a document before and after feature selection, the distribution of

features across the positive vs. negative classes, and the mean and variance of classifier-

specific weights.

We can broadly group reliability-indicator variables into one of four types, including

variables that measure (1) the amount of information present in the original document, (2)

the information loss or mismatch between the representation used by a classifier and the

original document, (3) the sensitivity of the decision to evidence shift, and (4) some basic

voting statistics.

DocumentLength is an example of a reliability-indicator variable of type 1. The perfor-

mance of classifiers is sometimes correlated with document length, because longer docu-

ments give more information to use in making a classification. DocumentLength can also

be informative because some classifiers will perform poorly over longer documents as they

do not model the influence of document length on classification performance (e.g., they

double count evidence and longer documents are more likely to deviate from a correct

determination).

PercentRemoved serves as an example of type 2. This variable represents the percent

of features removed in the process of feature selection. If most of the document was not

represented by the feature set employed by a classifier, then some classifiers may be unre-

liable. Other classifiers (e.g., decision trees that model missing attributes) may continue to

be reliable. When the base classifiers are allowed to use different representations, type 2

features can play an even more important role.

An example of type 3 is the UnigramStdDeviation variable. In a binary class prob-

lem, the weight each word contributes to the unigram model’s decision is log P (w|c)
P (w|¬c) . This

is the standard deviation of the weight each word contributes over the words in the doc-

ument. Low variance means the decision of the classifier is unlikely to change with a

small change in the document content; high variance increases the chances that the deci-

sion would change with only a small change in the document.

Finally, NumVotingForClass or PercentAgreement are examples of type 4 reliability

indicators. These simple voting statistics improve the metaclassifier search space since the

metaclassifier is given the base classifier decisions as input as well. For a two-class case the

PercentAgreement variable may provide little extra information but for greater number of

classes it can be used to determine if the base classifiers have fractured their votes among

120 7.1. INTRODUCTION

a small number of classes or across a wide array. At the end of this chapter, we discuss

which reliability indicators were most useful in the final combination scheme.

Beyond the key difference in the semantics of their usage, reliability-indicator variables

differ qualitatively from variables representing the output of classifiers in several ways. For

one, we do not assume that the reliability indicators have some threshold point that classifies

the examples better than random. We also do not assume that classification confidence

shows monotonicity trends as in classifiers.

7.1.1 STRIVE: Metaclassifier with Reliability Indicators

We refer to our classifier combination learning and inference framework as STRIVE for

Stacked Reliability Indicator Variable Ensemble. We select this name because the ap-

proach can be viewed as essentially extending the stacking framework by introducing relia-

bility indicators at the metalevel. The STRIVE architecture is depicted graphically in Figure

7.4.

Our methodology maps the original classification task into a new learning problem.

In the original learning problem (Figure 7.3), the base classifiers simply predict the class

from a word-based representation of the document, or more generally, each base classifier

outputs a distribution (possibly unnormalized) over class labels. STRIVE adds another layer

of learning to the base problem. A set of reliability-indicator functions use the words in

the document and the classifier outputs to generate the reliability indicator values, ri, for

a particular document. This process can be viewed as yielding a new representation of

the document that consists of the values of the reliability indicators, as well as the outputs

of the base classifiers. The metaclassifier uses this new representation for learning and

classification. This enables the metaclassifier to employ a model that uses the output of the

base classifiers as well as the context established by the reliability indicators to make a final

classification.

We require the outputs of the base classifiers to train the metaclassifier. Thus, we per-

form cross-validation over the training data and use the resulting base classifier predictions,

obtained when an example serves as a validation item, as training inputs for the metaclass-

ifier. We note that, in the case where the set of reliability indicators are restricted to be the

identity function over the original data, the resulting scheme can be viewed as a variant of

cascade generalization [Gam98a].

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 121

class

Unigram

SVM
���
���
���
���

���
���
���
���

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

w1
w2
w3

wn

· · ·
r1

r2

r3

rn

Figure 7.3: Typical application of a classifier to a text problem. In traditional text classification, a

word-based representation of a document is extracted (along with the class label during the learning

phase), and the classifiers (here an SVM and Unigram classifier) learn to output scores for the

possible class labels. The shaded boxes represent a distribution over class labels.

class class

�������
�

���	

�
�

Metaclassifier

Reliability
Indicators

SVM

Unigram

��

���
�

PSfrag replacements

E

X

E1

E2

E3

Ei

EM

Êi

E = (X, f(X))

Ĉ1 = (f̂1(X), s1(E1))

Ĉ2 = (f̂2(X), s2(E2))

Ĉ3 = (f̂3(X), s3(E3))

Ĉi = (f̂i(X), si(Ei))

f(X)

f̂M(X)

p1(E)

p2(E)

p3(E)

pM(E)

p(E1 |E)

p(E2 |E)

p(E3 |E)

p(EM |E)

p(Êi |E)

p(Ei | Êi)

w1
w2
w3

wn

· · · · · ·

r1
r2

r3 rn

Figure 7.4: Architecture of STRIVE. In STRIVE, an additional layer of learning is added where the

metaclassifier can use the context established by the reliability indicators and the output of the base

classifiers to make an improved decision. The reliability indicators are functions of the document

and/or the output of the base classifiers.

122 7.2. EXPERIMENTAL ANALYSIS

7.2 Experimental Analysis

We performed a large number of experiments to test the value of probabilistic classifier

combination with reliability-indicator variables. For the experiments below, we used only

the top 1000 words with highest mutual information for the MSN Web Directory and

TREC-AP corpus and top 300 words for Reuters for all base classifiers except the kNN

classifier. Note that performance of the base classifiers using feature selection is generally

as good if not better than performance using all of the features. Since the kNN classifier is

computationally expensive, we desired to use the same feature representation across binary

classification tasks within a corpus. Once neighbors are retrieved, the kNN classifier can

make all class decisions quickly. As is commonly done (e.g. [LYRL04]), for each word

we assigned a score of the max of the mutual information scores across binary tasks. The

top features were then taken across these max scores. Since the same feature set was being

used for all classes within a corpus, we used 3× the number of features — 3000 words for

MSN Web and TREC-AP and 900 for Reuters. For the reliability indicators that compare

representations before and after feature selection, we only added instantiations for the non-

kNN representation. The corpora are described in further detail in Section 6.2. We now

describe the methodology and results.

Base Classifiers

In an attempt to isolate the benefits gained from the probabilistic combination of classifiers

with reliability indicators, we worked to keep the representations for the base classifiers in

our experiments nearly identical. We would expect that varying the representations (i.e.,

using different feature-selection methods or document representations) would only improve

the performance as this would likely decorrelate the performance of the base classifiers.

One notable deviation is that a tfidf representation was used for the kNN classifier since

that is standard in the text classification literature. As described in more detail in Section

6.3 we selected five classifiers as base classifiers: kNN, decision trees, linear SVMs, naı̈ve

Bayes, and a unigram classifier. We denote these below as kNN, Dnet, SVM, naı̈ve Bayes,

and Unigram.

Basic Combination Methods

We perform experiments to explore a variety of classifier-combination methods and con-

sider several different combination procedures. The first combination method is based on

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 123

selecting one classifier for each binary class problem, based on the one that performed best

for a validation set. We refer to this method as the Best By Class method.

Another combination method centers on taking a majority vote of the base classifiers.

This approach is perhaps the most popular methodology used for the combination of text

classifiers. Because we have five base classifiers, we do not have to address the issue of

breaking ties.2 We refer to this method as the Majority method.

Hierarchical Combination Methods

Stacking

Finally, we investigate several variants of the hierarchical models described earlier. As

mentioned above, omitting the reliability-indicator variables transforms STRIVE to a stack-

ing methodology [TW99, Wol92]. We refer to these classifiers below as Stack-X where X is

replaced by the first letter of the classifier that is performing the metaclassification. There-

fore, Stack-D uses a decision tree as the metaclassifier, and Stack-S uses a linear SVM as

the metaclassifier. We note that Stack-S is also a weighted linear combination method since

it is based on a linear SVM and uses only the classifier outputs. Therefore, demonstrat-

ing that STRIVE either outperforms Stack-S variants or is not statistically different is a key

challenge of this dissertation.

We found it was difficult to learn the weights for an SVM when the inputs have vastly

different scales. At times, it is not possible to identify good weights. To address the problem

of handling inputs with greatly varying scales, we use an input normalization procedure:

We normalize the inputs to the metaclassifiers to have zero mean and reduce the scale of

the standard deviation.3 In order to perform consistent comparisons, we perform the same

2When performing a majority vote, ties can be broken in a variety of ways (e.g., breaking ties by always

voting for in class). In earlier work [BDH02, BDH05], we experimented with several variants of these

methods. The most successful broke ties by voting with the Best By Class classifier.
3Our original intention was to normalize the inputs to zero mean and unit standard deviation. However, we

found slightly before press a line of code was commented out in our normalization code. The end result was

that instead of using the normalization that produces zero mean and standard deviation, f ′ = f−E[f]√
E[f2]−E2[f]

,

we instead used f ′ = f−E[f]√
E[f2]

. The resulting f ′ has zero mean and a standard deviation of σf ′ =
√

1− E2[f]
E[f2] .

Since E[f2] ≥ E2[f] then σf ′ ≤ 1, and σf ′ = 1 when E2[f]
E[f2] = 0. Thus, the scale of the feature variance

has been reduced. Furthermore since the classifier outputs are similar to log-odds, then for stacking E2[f]

and more importantly E2[f]
E[f2] tend toward zero, and thus the resulting normaliztion differs little from standard

normalization. We are primarily concerned with whether standard normalization would improve stacking

further (if standard normalization hurts striving then we could use this normalization instead). Because the

use of log-odds drives this normalization to behave similar to standard normalization for stacking and since we

124 7.2. EXPERIMENTAL ANALYSIS

alteration for the metaclassifiers using Dnet. Furthermore, as we will see in Chapter 8, this

normalization is useful for additional reasons.

As might be expected the impact of normalization for decision-tree learners is relatively

minimal and has both positive and negative influences. Because of this, we present only the

version using normalized inputs in the main text, the non-normalized versions are available

in a complete listing in Tables 7.11-7.13 at the end of the chapter. To denote the meta-

classifiers whose inputs have been normalized in this manner, we append “(norm)” to their

names.

STRIVE

Similar to the notation described above, we add a letter to STRIVE to denote the particular

metaclassifier method being used. So, STRIVE-D is the STRIVE framework using Dnet as a

metaclassifier. For comparison to the stacking methods, we evaluate STRIVE-D and STRIVE-

S. Normalization, as above, is again noted by appending “(norm)” to the system names.

The experiments reported here use a total of 70 reliability indicators, including those

specific examples given in Section 7.1. The full list of reliability indicators and the mo-

tivation for each is discussed in full in Chapter 5. These reliability indicators were for-

mulated by hand as an attempt at representing potentially valuable contexts. Identifying

new reliability indicators remains an open and challenging research problem both for this

methodology and in general.

BestSelect Classifier

To study the effectiveness of the STRIVE methodology, we formulated a simple optimal

combination approach as a point of reference. Such an upper bound can be useful as a

benchmark in experiments with classifier combination procedures. This bound follows

quite naturally when classifier combination is formulated as the process of selecting the

best base classifier, on a per-example basis.

To classify a given document, if any of the classifiers correctly predict that document’s

class, the best combination would select any of the correct classifiers. Thus, such a class-

ification combination errs only when all of the base classifiers are incorrect. We refer to

also compare to non-normalized metaclassifier inputs, the expected result is a negligible difference. Finally,

in a small sample of experiments, this normalization in fact had negligible impact on the stacking methods

compared to normalizing to unit standard deviation. Thus, while not the normalization we intended to use,

this does not change the conclusions drawn from our experiments.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 125

this classifier as the BestSelect classifier. If all of the base classifiers are better than ran-

dom, the BestSelect is the theoretical upper-bound on performance when combining a set

of classifiers in a selection framework.

We note that we are not using a pure selection approach, as our framework allows the

possibility of choosing a class that none of the base classifiers predicted. In cases where the

classifiers are not better than random (or are logically dependent), such an upper bound may

be uninformatively loose. Even though we are not working in a pure selection framework,

we found it is rarely the case the metaclassifier outputs a prediction which none of the

base classifiers made. Therefore, we have employed this BestSelect bound to assist with

understanding the performance of STRIVE.

7.2.1 Performance Measures

To compare the performance of the classification methods we look at a set of standard

performance measures: the macro-averaged F1, micro-averaged F1, error, two linear utility

functions — C(10, 1) and C(1, 10) — and area under the ROC curve. In addition, we

computed and displayed a receiver-operating characteristic (ROC) curve, which represents

the performance of a classifier under any linear utility function [PF01]. These measures are

described in more detail in Section 6.1.

7.2.2 Experimental Methodology

As the categories under consideration in the experiments are not mutually exclusive, the

classification was carried out by training n binary classifiers, where n is the number of

classes. Decision thresholds for each classifier were set by optimizing them for each per-

formance measure over the validation data. That is, a classifier could have different decision

thresholds for each of the separate performance measures (and for each class). This ensures

that the base classifiers are as competitive as possible across the various measures. For the

micro performance measures, obtaining truly optimal performance requires optimizing all

the thresholds in a corpus in conjunction; we have taken the more computationally efficient

approach of using the macro-optimized thresholds (i.e., the threshold for each class is set

independently from the thresholds for the other classes).

To generate the data for training the metaclassifier, (i.e., reliability indicators, classifier

outputs, and class labels), we used five-fold cross-validation on the training data from each

of the corpora. The data set obtained through this process was then used to train the me-

taclassifiers. Similar to the base classifiers, cross-validation over the meta-training set was

126 7.2. EXPERIMENTAL ANALYSIS

used to set thresholds for each performance measure. Finally, the resulting metaclassifiers

were applied to the separate testing data described above.

7.2.3 Results

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Dnet 0.5477 0.5813 0.0584 0.3012 0.0772 0.8802

Unigram 0.5982 0.6116 0.0594 0.2589 0.0812 0.9003

naı̈ve Bayes 0.5527 0.5619 0.0649 0.2853 0.0798 0.8915

SVM 0.6727B 0.7016B 0.0455 0.2250B 0.0794 0.9123

kNN 0.6480 0.6866 0.0464 0.2524 0.0733 0.8873

Best By Class 0.6727 D 0.7016 0.0452 D 0.2235 0.0729 D N/A

Majority 0.6643 0.6902 0.0479 0.2133BD 0.0765 N/A

Stack-D (norm) 0.6924BD 0.7233BD 0.0423BD 0.1950BD 0.0708 D 0.9361BS

Stack-S (norm) 0.6939BD 0.7250BD 0.0423BD 0.1971BD 0.0705 D 0.9334B

STRIVE-D (norm) 0.6988BD 0.7327BD

S
0.0413BD 0.1846BD

S 0.0697 D 0.9454B
SD

STRIVE-S (norm) 0.7173BD
SR

0.7437BD

SR
0.0392BD

SR 0.1835BD
S 0.0682 0.9260B

BestSelect 0.8719 0.8924 0.0223 0.0642 0.0565 N/A

Table 7.1: Performance on MSN Web Directory Corpus. The best performance (omitting the

oracle BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a

method significantly outperforms all (other) Base classifiers, Default combiners, Stacking methods,

or Reliability-indicator based Striving methods at the p = 0.05 level. A blackboard (hollow) font

is used to indicate significance for the macro-sign test and micro-sign test. A normal font indicates

significance for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests

are significant it is indicated with a bold, italicized font.

Tables 7.1, 7.2, and 7.3, present the main performance results over the three corpora.

In terms of the various performance measures, better performance is indicated by larger

F1 or ROC area values or by smaller C(FP, FN) values. The best performance (ignoring

BestSelect) in each column is given in bold.

To determine statistical significance for the macro-averaged measures, a one-sided macro

sign test and two-sided macro t-test were performed [YL99]. For micro-F1, a two-sided

micro sign test was performed [YL99]. Differences with a p-level above 0.05 were not

considered statistically significant. The macro sign test uses the null hypothesis that the

number of classes in which we improve versus the number in which we decrease is ran-

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 127

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Dnet 0.7846 0.8541 0.0242 0.0799 0.0537 0.9804

Unigram 0.7645 0.8674 0.0234 0.0713 0.0476 0.9877

naı̈ve Bayes 0.6574 0.7908 0.0320 0.1423 0.0527 0.9703

SVM 0.8545B 0.9122B 0.0145B 0.0499 0.0389 0.9893

kNN 0.8097 0.8963 0.0170 0.0737 0.0336 0.9803

Best By Class 0.8608 D 0.9149 0.0144 0.0496 0.0342 N/A

Majority 0.8498 0.9102 0.0155 0.0438 0.0437 N/A

Stack-D (norm) 0.8680 0.9197B 0.0136 0.0410 0.0366 0.9912

Stack-S (norm) 0.8908BDS 0.9307BD

S
0.0125BD 0.0372BD 0.0331S 0.9956B

S

STRIVE-D (norm) 0.8555 0.9172 0.0144 0.0488 0.0364 0.9913

STRIVE-S (norm) 0.8835BDR 0.9287BD

R
0.0121BDR 0.0352BD 0.0343 0.9948B

R

BestSelect 0.9611 0.9789 0.0036 0.0073 0.0173 N/A

Table 7.2: Performance on Reuters Corpus. The best performance (omitting the oracle BestSelect)

in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a method signifi-

cantly outperforms all (other) Base classifiers, Default combiners, Stacking methods, or Reliability-

indicator based Striving methods at the p = 0.05 level. A blackboard (hollow) font is used to

indicate significance for the macro-sign test and micro-sign test. A normal font indicates signifi-

cance for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests are

significant it is indicated with a bold, italicized font.

domly distributed binomially with probability one half. The macro t-test compares whether

the average difference across classes can be explained by the variance of drawing two sam-

ples from a t-distribution. Thus, the macro-sign test can detect when we are very likely to

improve in an extremely high proportion of classes while the macro t-test detects when the

amount of difference cannot be explained by random variation. Viewing the results of both

tests generally indicate whether we can always expect to gain and how much.

The micro sign test is similar to the macro sign test but compares the decisions at an

example-level instead of the performance at a class-level. The null hypothesis is that over

the examples where two methods make different classification decisions the distribution of

right/wrong can be explained by a binomial distribution with probability one half. Thus,

the micro sign test indicates whether a method makes significantly different decisions than

another method cumulatively across all classes.

A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a method significantly outperforms all

(other) Base classifiers, Default combiners, Stacking methods, or Reliability-indicator based

128 7.2. EXPERIMENTAL ANALYSIS

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Dnet 0.6007 0.5706 0.0064 0.0346 0.0081 0.9767

Unigram 0.6001 0.5695 0.0064 0.0347 0.0079 0.9819

naı̈ve Bayes 0.5676 0.5349 0.0065 0.0455 0.0078 0.9755

SVM 0.7361B 0.6926B 0.0049B 0.0282B 0.0077 0.9715

kNN 0.6793 0.6533 0.0053 0.0371 0.0074 0.9238

Best By Class 0.7356 D 0.6925 D 0.0049D 0.0302 0.0073 N/A

Majority 0.7031 0.6534 0.0056 0.0307 0.0075 N/A

Stack-D (norm) 0.7331 0.7007BD 0.0050 0.0251 0.0073 0.9886

Stack-S (norm) 0.7486BD 0.7011BD 0.0048BD
S 0.0263BD 0.0072 0.9834B

STRIVE-D (norm) 0.7246 0.6991BD 0.0051 0.0268 0.0073 0.9870

STRIVE-S (norm) 0.7532BD
R 0.7148BD

SR
0.0047BD

SR 0.0277 D 0.0071 0.9771

BestSelect 0.8986 0.8356 0.0031 0.0133 0.0058 N/A

Table 7.3: Performance on TREC-AP Corpus. The best performance (omitting the oracle BestSe-

lect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a method signifi-

cantly outperforms all (other) Base classifiers, Default combiners, Stacking methods, or Reliability-

indicator based Striving methods at the p = 0.05 level. A blackboard (hollow) font is used to

indicate significance for the macro-sign test and micro-sign test. A normal font indicates signifi-

cance for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests are

significant it is indicated with a bold, italicized font.

Striving methods at the p = 0.05 level. A blackboard (hollow) font is used to indicate sig-

nificance for the macro-sign test and micro-sign test. A normal font indicates significance

for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests are

significant it is indicated with a bold, italicized font. When a method is part of a group, the

letter of that group indicates the method beats all other methods in that group significant.

For example, a B attached to the SVM classifier’s macro F1 would indicate that the SVM

classifier significantly outperforms on macro F1 all other base classifiers according to the

macro sign test.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 129

7.2.4 Discussion

First, we note that the base classifiers are competitive and consistent with the previously

reported results over these corpora [ZO01, DC00, DPHS98, Joa98, Lew95, LG94, MN98].4

Furthermore, the fact that the linear SVM tends to be the best base classifier is consistent

with the literature [DPHS98, Joa98, YL99].

MSN Web Directory

Examining the main results for the MSN Web Directory corpus in Table 7.1 highlights

several points. First, the basic combiners have only one significant win over the base class-

ifiers, C(1,10) for the Majority vote approach. The results directly support the idea that

the performance of a very good learner (SVM) tends to be diminished when combined via

a majority vote scheme with weak learners; in addition, the win most likely results from

the fact that the base learners (other than SVM) have a tendency to predict positively for a

class. When false negatives are weighed more heavily, the shift toward predicting positive

helps reduce the number of false negatives.

Both variants of Stacking and Striving often outperform the base classifiers, and with

few exceptions, Stack-S (norm) and STRIVE-S (norm) outperform the base classifiers on

nearly all the performance measures, often significantly. In fact this remains true in all

of the corpora. The only consistent exception is the C(10, 1) performance measure. This

measure places a much higher penalty on false positives; therefore methods are pushed to-

ward achieving correct negatives. Given the small number of positives in text classification

corpora, achieving any gains is very challenging.

Both STRIVE-D (norm) and STRIVE-S (norm) show advantages that are robust across a

variety of performance measures. Each shows a consistent improvement across a variety of

performance measures over the state-of-the-art SVM classifier. For the thresholds optimized

for error, Stack-S (norm) achieves a relative reduction in error over the SVM of 7% while

STRIVE-S (norm) further improves to achieve a relative reduction in error of 14% over the

SVM — twice the improvement that stacking yields (see Figure 7.7). When compared to

the best theoretical performance that could be achieved by a per-example selection model

using these base classifiers (as established by the BestSelect model), the error reduction

4While the results reported for Reuters are not directly comparable to those reported by Yang & Liu

[YL99] as these investigators report results over all 90 classes and do not give a breakdown for the ten most

frequent categories, others [ZO01, DPHS98, Joa98, MN98, Pla99] provide published baselines over the ten

largest classes.

130 7.2. EXPERIMENTAL ANALYSIS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

STRIVE-D (norm)
 STRIVE-S (norm)

 SVM
 Dnet

 Unigram
 naive Bayes

 kNN

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

Figure 7.5: The ROC curve for the Home & Family class in the MSN Web Directory corpus from

[0, 0.2].

provided by the STRIVE combination methods is an even greater portion of the total possible

reduction.

As can be inferred from the sign tests, these results are very consistent across classes.

For example, by the ROC area measure of performance, STRIVE-D (norm) beats the base

classifiers on 13/13 classes. The notable exception is the performance of STRIVE-S (norm)

on ROC area; graphical inspection of the ROC curves suggests this result arises because

the STRIVE-S (norm) places emphasis on the classifier that performs well in the early part

of the curve.

Often, there is a crossover in the ROC curve between two of the base classifiers further

out on the false-positives axis. Most utility measures in practice correspond to the early

part of the curve (this depends on the particular features of the given curve). The SVM

metaclassifier sometimes seems to lock onto the classifier that is strong in the early portion

of the curve and loses out on the later part of the curve. Since the latter portion of the

curve rarely matters, one could consider using an abbreviated version of curve area to

assess systems. In tables 7.11-7.13, we present an additional measure of ROC area that

only measures the area under the curve for the portion of the x-axis from [0, 0.1]. By this

measure, it is possible to see that STRIVE-S (norm)’s performance is markedly better in the

early part of the ROC curve.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

STRIVE-D (norm)
 STRIVE-S (norm)

 SVM
 Dnet

 Unigram
 naive Bayes

 kNN

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

Figure 7.6: The full ROC curve for the Home & Family class in the MSN Web Directory corpus.

In Figures 7.6 and 7.5, we can see that the two STRIVE variants dominate the five base

classifiers over much of the ROC space. In fact, STRIVE-D dominates (i.e., its quality is

greater than any other curve at every point) most of the MSN Web Directory corpus. We

also can see (note the truncated scale) the base classifiers catching up with STRIVE-S (norm)

on the right side of the curve. The base classifiers, in fact, do surpass STRIVE-S (norm)

at points. As a result, STRIVE-D may be a more appropriate choice if the utility function

penalizes false negatives significantly more heavily than false positives. However, as shown

by its performance on the C(1, 10) measure, STRIVE-S (norm) retains some robustness in

this dimension due to its superior performance early in the curve.

In some cases, we can develop an understanding of why the decision tree is more ap-

propriate for tracking crossovers. In the case portrayed in Figure 7.2, it appears that the tree

establishes two separate score regions for kNN where the reliability indicators give further

information about how to classify an example. Since a linear SVM is a weighted sum over

the inputs, it cannot represent crossovers that are dependent on breaking a single variable

into multiple regions (such as this one); it has to use the information present in other vari-

ables to try to distinguish these regions. Higher-order polynomial kernels are one way to

allow an SVM to represent this type of information.

132 7.2. EXPERIMENTAL ANALYSIS

We attempted to do so, but the SVM had difficulty converging using a quadratic kernel.

We then chose an alternate localized kernel. In Table 7.4, STRIVE-S Local (norm) uses a

local product kernel of K(xi,xj) = [〈ρ(xi), ρ(xj)〉+ 1] [〈Π(xi),Π(xj)〉+ 1] where Π(x)

is the projection into the subspace consisting of the base classifier outputs and ρ is the

identity function. The resulting kernel has a subset of the terms in a quadratic kernel (which

would use ρ in both cases). While the results are advantageous for the MSN Web corpus, it

seems to lead to overfitting on the other two corpora. Nor does it achieve exactly the merger

we desire by the ROC area performance measure. In order to prevent overfitting, we then

attempted to merge the models by introducing STRIVE-S Local (norm). This model restricts

ρ to the subset of features included in the model learned by STRIVE-D (norm). While this

leads to substantially less overfitting while retaining some positive gains in MSN Web, its

overall change does not seem to make it preferable to STRIVE-S (norm).

MSN WEB

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Stack-S (norm) 0.6939 0.7250 0.0423 0.1971 0.0705 0.9334

STRIVE-S (norm) 0.7173 0.7437 0.0392 0.1835 0.0682 0.9260

STRIVE-S Local (norm) 0.7251 0.7530 0.0386 0.1810 0.0656 0.9150

STRIVE-S LSelect (norm) 0.7197 0.7496 0.0388 0.1860 0.0664 0.9097

Reuters

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Stack-S (norm) 0.8908 0.9307 0.0125 0.0372 0.0331 0.9956

STRIVE-S (norm) 0.8835 0.9287 0.0121 0.0352 0.0343 0.9948

STRIVE-S Local (norm) 0.8751 0.9261 0.0125 0.0382 0.0344 0.9890

STRIVE-S LSelect (norm) 0.8825 0.9280 0.0128 0.0389 0.0341 0.9921

TREC-AP

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area

Stack-S (norm) 0.7486 0.7011 0.0048 0.0263 0.0072 0.9834

STRIVE-S (norm) 0.7532 0.7148 0.0047 0.0277 0.0071 0.9771

STRIVE-S Local (norm) 0.7439 0.7084 0.0048 0.0231 0.0071 0.9725

STRIVE-S LSelect (norm) 0.7507 0.7104 0.0047 0.0273 0.0071 0.9731

Table 7.4: STRIVE-S Local (norm) uses a local product kernel of K(xi,xj) =

[〈ρ(xi), ρ(xj)〉+ 1] [〈Π(xi),Π(xj)〉+ 1] where Π(x) is the projection into the subspace consist-

ing of the base classifier outputs and ρ is the identity function. The resulting kernel has a subset of

the terms in a quadratic kernel. STRIVE-S Local (norm) restricts ρ to the subset of features included

in STRIVE-D (norm) leads to substantially less overfitting and positive gains in one corpus.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 133

Note that in earlier work [BDH05], Stack-S (norm) did not consistently outperform the

base classifiers. Two changes were key to achieving this change. First, we added another

strong base classifier, kNN. Secondly, in the earlier work, the outputs of some classifiers

were probabilities while others were log-odds. In the current form, all outputs are either

log-odds or scores that demonstrate behavior similar to log-odds. As discussed in Chapter

4, a linear combination of log-odds can capture many desirable types of combination and

recalibration interactions that are not attainable through a a linear combination of probabil-

ities. However, even with the increase in Stack-S (norm)’s performance STRIVE-S (norm)

improves enough beyond it to be statistically significant. In fact, across most measures

STRIVE-S (norm) is now clearly the superior choice to STRIVE-D (norm).

Reuters and TREC-AP

The results for Reuters and TREC-AP in Tables 7.2 and 7.3 are consistent with the above

analysis. We note that the level of improvement over stacking (particularly in Reuters) is

less pronounced for these corpora.

The decision tree meta-models show less consistency than the SVM meta-models. This

is due in part to the nature of the models. While the SVM model cannot threshold regions

of the space well, it can smoothly combine the various model outputs, whereas the decision

tree meta-model fractures the data as it does so and cannot place weights on the outputs.

This further emphasizes the need for a meta-model that provides the advantages of both

models.

In both of these corpora STRIVE-S (norm) continues to outperform the base classifiers.

In the TREC-AP corpus STRIVE-S (norm) also outperforms the stacking methods signifi-

cantly on several measures. In the Reuters corpus, however, STRIVE-S (norm) is slightly

outperformed by its counterpart Stack-S (norm) although not significantly. Returning to the

central claim of this thesis that, since a linear combination is sometimes optimal, we aim

to sometimes significantly outperform it and, in the remaining cases, achieve near the same

performance. This empirical behavior upholds this central claim.

In Figure 7.7, we display the performance changes for Stack-S (norm) and STRIVE-S

(norm) relative to the best base classifier — SVM classifier. Since F1 can also be com-

puted as 2∗TruePos
2∗TruePos+FalsePos+FalseNeg

, we display the changes in the three components that

determine F1: true positives, false positives, and false negatives. Not only does STRIVE-S

(norm) achieve considerable reductions in error of 8-18% (using F1 optimized thresholds)

and 5-16% (using error optimized thresholds), but in all but one case, it also increases by

a fair margin the improvement attained by Stack-S (norm). Furthermore, since STRIVE-S

134 7.3. AN ANALYSIS OF RELIABILITY INDICATOR USEFULNESS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)
 FalsePos
 FalseNeg
 TruePos

MSN Web Reuters TREC-AP

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

S

T
R

IV
E

-S

 S

ta
ck

-S

 S
V

M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)

 FalsePos
 FalseNeg
 TruePos

MSN Web Reuters TREC-AP

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))

Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))

Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))

Ĉ
i
=

(f̂
i (X

),s
i (E

i))

f
(X

)

f̂
M
(X

)

p
1 (E

)

p
2 (E

)

p
3 (E

)

p
M
(E

)

p(E
1 |E

)

p(E
2 |E

)

p(E
3 |E

)

p(E
M
|E

)

p(Ê
i |E

)

p(E
i |Ê

i)

Figure 7.7: For Stack-S (norm) and STRIVE-S (norm) change relative to the best base classifier —

the SVM classifier. On the left, we show the relative change using thresholds optimized for F1, and

on the right, we show the relative change using thresholds optimized for error. In both figures, we

display the changes in the three components that determine F1: true positives, false positives, and

false negatives. Not only does STRIVE-S (norm) achieve considerable reductions in error of 8-18%

(left) and 5-16% (right), but in all but one case, it also increases by a fair margin the improvement

attained by Stack-S (norm).

(norm) increases the number of true positives while decreasing both components of error,

STRIVE-S (norm) improves both precision and recall.

Additional Experiments

In earlier work, we investigated whether the reliability indicators could be directly incor-

porated into the base classifiers. That is, we wanted to understand to what extent their

information can be directly used to improve classification and to what extent it is condi-

tional on the presence of classifier outputs. To examine these issues, we performed an

experiment where we added all of the reliability indicators to the standard document rep-

resentation and built a model using Dnet. Because the current work uses an expanded set

of reliability-indicators, we do not directly include those tables here. However, the reader

should note that, while including the reliability-indicators directly at the base level led to

improvements over the base model, the STRIVE method was still superior.

7.3 An Analysis of Reliability Indicator Usefulness

In order to determine which variables show the most promise for future investigation, we

would like to measure to what extent each reliability indicator contributes to the final model.

CHAPTER 7. COMBINING CLASSIFIERS

USING RELIABILITY INDICATORS 135

Since we do not want the analysis to be sensitive to linear relationships, we use the STRIVE-

D (norm) model for analysis. We start with the final model and perform backward selection

over the testing set by deleting the variable that results in the greatest increase in average

logscore and retraining a new model. The average logscore for model M is:

LS(M) = N−1
N
∑

i=1

log P̂M(c(xi)|xi). (7.1)

The increase in average logscore for variable v is: LS(M − v)− LS(M). Thus, if this

quantity is negative, the variable must have participated in the model, and its deletion lead

to a degradation in model quality. If the change is zero, then the variable either contributed

no predictive power to the model or (more likely) did not participate in the model. This

could either be because the variable was correlated with another variable present or was

judged to have too little predictive power. In either case, it is not a good candidate for

future study. Finally, if the change is positive, it means the variable must have participated

in the model and deleting the variable resulted in an improvement in model quality.

Backward selection continued until each of the 70 reliability indicators were removed

from the model. Thus the last variable deleted is the one that contributed the most to the

model. The classifier outputs were always available to be included in the model. If multiple

variables tied in a round to be deleted, then all tied variables were deleted. Each variable

was assigned a rank from 1 to 70 according to the number of variables deleted previously

plus one. Thus, if 1 variable was deleted in the first seven rounds and then 5 tied variables

were deleted in round 8, the variable deleted in the next round would be assigned a 13.

The final ranking roughly indicates the importance of the variables with 70 being best.

Since a binary model is built for each class, this procedure was repeated for each binary

classification model in a corpus.

Tables 7.5-7.6 present the average ranking of variables across classes in the MSN Web

and Reuters corpus, respectively. Unfortunately, this procedure is too computationally in-

tensive to perform for the TREC-AP corpus.5 We also present the average across binary

class models for all three corpora for the first round in Tables 7.7-7.9

We note that interpreting the average logscores in Tables 7.7-7.9 directly as importance

can be misleading. For example, note that SigmaPositiveNeighborDistance is worst ac-

cording to average change in logscore in Table 7.7 but best according to average ranking

in Table 7.5. This variable often contributes to the models but by average logscore its

effect is overall negative in the first round of backward selection. The reason for this is

twofold. First, a negative score for deleting an important variable is often (artificially) near

5One round for 70 variables times 20 classes takes approximately four days.

136 7.3. AN ANALYSIS OF RELIABILITY INDICATOR USEFULNESS

zero initially, because many other variables provide some amount of redundant informa-

tion. Secondly, the initial negative impact on the model can be a result of how the variable

is used in conjunction with another variable. In fact, when another variable or two has been

deleted, this variable’s score often turns positive.

Thus, we believe the rankings presented 7.7-7.9 present a more accurate picture of vari-

able importance. The logscores provide a valuable sign that addressing this behavior may

improve how effectively the variables are used and bears further investigation. Additionally,

when a variable’s average logscore in the first round is zero, it is fairly safe to assume that

the variable can be ignored because it is correlated with another variable or truly provides

no information.

Interestingly the Unigram-based variables do not heavily influence the models accord-

ing to either rankings or the logscores (where they often have zero). This was not the case

in our earlier work [BDH02, BDH05], and it was in fact the success of these variables that

prompted the creation of the other classifier-based variables. This suggests that either the

inclusion of the other variables have made the Unigram-based variables obsolete, or more

likely, the inclusion of the kNN classifier has decreased the importance of the Unigram

classifier and the variables that are indicative of its performance.

Next we note that for the Reuters corpus, most of the variables in Table 7.6 have a

ranking of at most 4. Given the small size of the corpus, this and the numerous zero scores

in Table 7.7 indicate that there simply is not enough training data in the Reuters corpus to

make effective use of many reliability indicators.

Comparing the remaining highly ranked variables in the Reuters corpus with the MSN

Web ranking, we see many similarities. The classifier-vote based variable PercentPredicting-

Positive is, unsurprisingly, very high in both. More interestingly, many of the kNN (e.g.

SigmaPositiveNeighborDistance, kNNShiftMeanPred), decision tree (e.g., DtreeShiftStd-

ConfDiff), and SVM (e.g. signedNNSV, SVMShiftMeanConfDiff) based variables are ranked

highly in both corpora. This verifies the importance of these variables and justifies continu-

ing development of them. Given the strong ties of these variables to particular classification

models, they are the best candidates for understanding how the information in these vari-

ables could be more directly integrated into the model during training.

Additionally, we see that many of the feature selection variables are also present. Though

primarily it is the “before” variants or the “delta” variants that show up. Indicating that

these variables are useful primarily as an indication of the information that has been lost.

In addition to providing a starting point for future analysis, we feel the similarities across

these corpora provide hope for models that can use the training data in conjunction to come

up with models which effectively leverage information across the corpora.

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 137

SigmaPositiveNeighborDistance 57.31 UPercentInPosBeforeFS 18.77
MeanPositiveNeighborDistance 53.08 NB MeanLogOfStrengthGivenNeg 18.54
PercentPredictingPositive 48.38 FeaturesSeenInNegDelta 18.31
U%FavoringNegBeforeFS 43.08 NumFeaturesDiscarded 18.15
%FavoringNegBeforeFS 41.38 NB StdDeviation 18.00
WordsSeenInPosDelta 39.62 MeanNeighborDistance 17.92
U%FavoringPosBeforeFS 39.23 NumUniqueWords 17.77
%FavoringPosBeforeFS 38.15 NB StdDevLogOfStrengthGivenNeg 17.69
SigmaNegativeNeighborDistance 37.31 NumWordsDiscarded 17.31
kNNShiftMeanConfDiff 36.54 PercentOOV 17.00
UpercentInNegativeBeforeFS 36.31 NeighborhoodRadius 17.00
signedNNSV 35.23 PercentRemoved 16.15
PercentInNegativeBeforeFS 33.92 U%FavoringPosAfterFS 15.62
kNNShiftMeanPred 33.15 %FavoringNegAfterFS 15.31
PercentInPosBeforeFS 31.85 NB MeanShift 15.23
FeaturesSeenInPosDelta 31.31 UniqueAfterFS 15.00
PercentWordsPointingToPosDelta 30.31 UPercentWordsPointingToPosDelta 14.92
kNNShiftStdDevConfDiff 28.15 DocumentLengthAfterFS 14.62
UPercentWordsPointingToNegDelta 27.38 EffectiveDocumentLength 14.62
SVMShiftMeanConfDiff 26.31 stdDevGoodSVProximity 13.46
SVMShiftStdDevConfDiff 25.23 PercentAgreeWBest 13.15
PercentUnique 25.08 U%FavoringNegAfterFS 11.85
WordsSeenInNegDelta 24.46 UnigramStdDeviation 11.85
SigmaNeighborDistance 23.00 PercentInNegAfterFS 11.85
DtreeShiftStdDevConfDiff 22.46 UPercentInPosAfterFS 11.85
DtreeShiftMeanConfDiff 21.62 UniStdDevLogOfStrengthGivenNeg 11.85
NumTrainingWordsDiscarded 21.31 UPercentInNegAfterFS 11.85
meanGoodSVProximity 21.31 UniMeanLogOfStrengthGivenNeg 11.85
UniquePercentRemoved 21.15 UnigramMeanShift 11.85
PercentWordsPointingToNegDelta 21.15 UniStdDevLogOfStrengthGivenPos 11.85
EffectiveUniqueWords 20.77 PercentInPosAfterFS 11.85
PercentUniqueOOV 20.54 UniMeanLogOfStrengthGivenPos 11.85
NumTrainingFeaturesDiscarded 19.23 %FavoringPosAfterFS 11.77
NB MeanLogOfStrengthGivenPos 19.00 NB StdDevLogOfStrengthGivenPos 10.92
MeanNegativeNeighborDistance 18.85 DocumentLength 10.46

Table 7.5: In backward selection over the MSN Web testing set, deleting the variable that most
improved the average logscore of the model allows us to rank the variables in rough order of impact
by the average round a feature was deleted in. A higher average rank means a feature has greater
impact on the model.

138 7.3. AN ANALYSIS OF RELIABILITY INDICATOR USEFULNESS

UPercentInPosBeforeFS 29.20 stdDevGoodSVProximity 4.00
PercentPredictingPositive 29.10 PercentUniqueOOV 4.00
SigmaPositiveNeighborDistance 23.00 UniStdDevLogOfStrengthGivenNeg 4.00
kNNShiftMeanPred 22.90 PercentRemoved 4.00
U%FavoringPosBeforeFS 22.30 FeaturesSeenInNegDelta 4.00
%FavoringPosBeforeFS 22.20 NumFeaturesDiscarded 4.00
PercentInPosBeforeFS 16.00 UniqueAfterFS 4.00
DtreeShiftStdDevConfDiff 15.70 UPercentInNegAfterFS 4.00
SVMShiftMeanConfDiff 15.50 MeanNegativeNeighborDistance 4.00
signedNNSV 10.80 UniMeanLogOfStrengthGivenNeg 4.00
NumTrainingFeaturesDiscarded 10.70 NB MeanLogOfStrengthGivenNeg 4.00
PercentInNegAfterFS 10.60 NeighborhoodRadius 4.00
%FavoringPosAfterFS 10.50 EffectiveUniqueWords 4.00
PercentAgreeWBest 10.20 NB StdDevLogOfStrengthGivenPos 4.00
PercentInNegativeBeforeFS 10.10 UnigramMeanShift 4.00
WordsSeenInPosDelta 9.90 NumUniqueWords 4.00
PercentUnique 9.80 DtreeShiftMeanConfDiff 4.00
MeanPositiveNeighborDistance 9.80 UniStdDevLogOfStrengthGivenPos 4.00
FeaturesSeenInPosDelta 9.70 UPercentWordsPointingToPosDelta 4.00
PercentOOV 9.60 DocumentLengthAfterFS 4.00
UPercentWordsPointingToNegDelta 9.60 PercentInPosAfterFS 4.00
%FavoringNegBeforeFS 9.30 kNNShiftStdDevConfDiff 4.00
SigmaNegativeNeighborDistance 8.90 UniMeanLogOfStrengthGivenPos 4.00
U%FavoringPosAfterFS 4.00 EffectiveDocumentLength 4.00
U%FavoringNegAfterFS 4.00 NumWordsDiscarded 3.90
UnigramStdDeviation 4.00 NB StdDeviation 3.90
NB MeanShift 4.00 NB MeanLogOfStrengthGivenPos 3.90
DocumentLength 4.00 SigmaNeighborDistance 3.90
kNNShiftMeanConfDiff 4.00 UpercentInNegativeBeforeFS 3.90
NB StdDevLogOfStrengthGivenNeg 4.00 MeanNeighborDistance 3.80
NumTrainingWordsDiscarded 4.00 SVMShiftStdDevConfDiff 3.70
UniquePercentRemoved 4.00 WordsSeenInNegDelta 3.60
meanGoodSVProximity 4.00 PercentWordsPointingToPosDelta 3.60
UPercentInPosAfterFS 4.00 U%FavoringNegBeforeFS 3.50
%FavoringNegAfterFS 4.00 PercentWordsPointingToNegDelta 3.50

Table 7.6: In backward selection over the Reuters testing set, deleting the variable that most im-
proved the average logscore of the model allows us to rank the variables in rough order of impact
by the average round a feature was deleted in. A higher average rank means a feature has greater
impact on the model.

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 139

PercentPredictingPositive -0.00062201 UniStdDevLogOfStrengthGivenPos 0

kNNShiftMeanPred -0.00042239 PercentInPosAfterFS 0

MeanPositiveNeighborDistance -0.00026129 UniMeanLogOfStrengthGivenPos 0

PercentInNegativeBeforeFS -0.00018542 SigmaNeighborDistance 0.00000242

signedNNSV -0.00015635 DocumentLength 0.00000354

NumTrainingFeaturesDiscarded -0.00009238 EffectiveDocumentLength 0.00000425

NB MeanLogOfStrengthGivenPos -0.00007011 NumFeaturesDiscarded 0.00001003

UniquePercentRemoved -0.00006485 PercentUnique 0.00001192

PercentWordsPointingToPosDelta -0.00006022 WordsSeenInPosDelta 0.00001328

NB MeanShift -0.00005192 UPercentWordsPointingToNegDelta 0.00001446

FeaturesSeenInPosDelta -0.00004302 DocumentLengthAfterFS 0.00001699

UniqueAfterFS -0.00004212 SigmaNegativeNeighborDistance 0.00002219

NumUniqueWords -0.00002368 DtreeShiftMeanConfDiff 0.00003575

MeanNeighborDistance -0.00001981 FeaturesSeenInNegDelta 0.00003596

%FavoringPosAfterFS -0.00001544 PercentOOV 0.00004415

WordsSeenInNegDelta -0.00001418 stdDevGoodSVProximity 0.00005600

U%FavoringPosAfterFS -0.00001300 PercentWordsPointingToNegDelta 0.00007022

MeanNegativeNeighborDistance -0.00001187 NB StdDevLogOfStrengthGivenNeg 0.00007023

EffectiveUniqueWords -0.00001042 UPercentWordsPointingToPosDelta 0.00007758

SVMShiftStdDevConfDiff -0.00000790 kNNShiftStdDevConfDiff 0.00008055

%FavoringNegAfterFS -0.00000621 U%FavoringPosBeforeFS 0.00008772

NumTrainingWordsDiscarded -0.00000546 PercentInPosBeforeFS 0.00008842

meanGoodSVProximity -0.00000530 kNNShiftMeanConfDiff 0.00009565

PercentUniqueOOV -0.00000423 UpercentInNegativeBeforeFS 0.00010505

NumWordsDiscarded -0.00000116 PercentRemoved 0.00011062

U%FavoringNegAfterFS 0 PercentAgreeWBest 0.00011245

UnigramStdDeviation 0 SVMShiftMeanConfDiff 0.00011400

PercentInNegAfterFS 0 DtreeShiftStdDevConfDiff 0.00011990

UPercentInPosAfterFS 0 U%FavoringNegBeforeFS 0.00013617

NB StdDeviation 0 NeighborhoodRadius 0.00014646

UniStdDevLogOfStrengthGivenNeg 0 UPercentInPosBeforeFS 0.00016584

UPercentInNegAfterFS 0 %FavoringPosBeforeFS 0.00019315

UniMeanLogOfStrengthGivenNeg 0 NB MeanLogOfStrengthGivenNeg 0.00020146

NB StdDevLogOfStrengthGivenPos 0 %FavoringNegBeforeFS 0.00020262

UnigramMeanShift 0 SigmaPositiveNeighborDistance 0.00040607

Table 7.7: This table shows the average reduction in logscore across classes caused by deleting
each variable individually from the final models in the MSN Web testing set. A negative score
indicates that the deleting the variable negatively impacts the models, since deleting it reduces the
logscore. A score of zero indicates the variable has no impact on the models, while positive indicates
the variable is included in the models but hurts them on average

140 7.3. AN ANALYSIS OF RELIABILITY INDICATOR USEFULNESS

PercentPredictingPositive -0.00145601 UniqueAfterFS 0

SigmaPositiveNeighborDistance -0.00052718 NumFeaturesDiscarded 0

PercentInPosBeforeFS -0.00040701 UPercentInNegAfterFS 0

UPercentInPosBeforeFS -0.00022327 UniMeanLogOfStrengthGivenNeg 0

U%FavoringPosBeforeFS -0.00020924 PercentInNegativeBeforeFS 0

PercentUnique -0.00016828 NB MeanLogOfStrengthGivenNeg 0

DtreeShiftStdDevConfDiff -0.00014711 EffectiveUniqueWords 0

%FavoringPosBeforeFS -0.00014086 NB StdDevLogOfStrengthGivenPos 0

U%FavoringNegBeforeFS -0.00014017 PercentAgreeWBest 0

kNNShiftMeanPred -0.00012356 UnigramMeanShift 0

SVMShiftStdDevConfDiff -0.00009941 NumUniqueWords 0

WordsSeenInPosDelta -0.00006886 UniStdDevLogOfStrengthGivenPos 0

%FavoringPosAfterFS -0.00005240 UPercentWordsPointingToPosDelta 0

MeanNeighborDistance -0.00004794 PercentInPosAfterFS 0

DocumentLengthAfterFS -0.00002364 kNNShiftStdDevConfDiff 0

meanGoodSVProximity -0.00001837 EffectiveDocumentLength 0

NumWordsDiscarded -0.00001776 UniMeanLogOfStrengthGivenPos 0

U%FavoringPosAfterFS 0 WordsSeenInNegDelta 0.00001705

U%FavoringNegAfterFS 0 NumTrainingWordsDiscarded 0.00001747

PercentOOV 0 NeighborhoodRadius 0.00001917

UnigramStdDeviation 0 NB StdDeviation 0.00002063

NB MeanShift 0 PercentWordsPointingToNegDelta 0.00003801

DocumentLength 0 %FavoringNegBeforeFS 0.00004508

PercentInNegAfterFS 0 SigmaNegativeNeighborDistance 0.00005758

NB StdDevLogOfStrengthGivenNeg 0 FeaturesSeenInPosDelta 0.00005871

UniquePercentRemoved 0 PercentUniqueOOV 0.00005899

UPercentInPosAfterFS 0 MeanNegativeNeighborDistance 0.00005920

%FavoringNegAfterFS 0 UpercentInNegativeBeforeFS 0.00006334

stdDevGoodSVProximity 0 SVMShiftMeanConfDiff 0.00007120

NumTrainingFeaturesDiscarded 0 kNNShiftMeanConfDiff 0.00007483

SigmaNeighborDistance 0 MeanPositiveNeighborDistance 0.00008386

UPercentWordsPointingToNegDelta 0 PercentWordsPointingToPosDelta 0.00009385

UniStdDevLogOfStrengthGivenNeg 0 NB MeanLogOfStrengthGivenPos 0.00012559

PercentRemoved 0 signedNNSV 0.00018006

FeaturesSeenInNegDelta 0 DtreeShiftMeanConfDiff 0.00043114

Table 7.8: This table shows the average reduction in logscore across classes caused by deleting each
variable individually from the final models in the Reuters testing set. A negative score indicates that
the deleting the variable negatively impacts the models, since deleting it reduces the logscore. A
score of zero indicates the variable has no impact on the models, while positive indicates the variable
is included in the models but hurts them on average

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 141

%FavoringPosBeforeFS -0.00059795 PercentUniqueOOV 0

SigmaPositiveNeighborDistance -0.00047683 UniStdDevLogOfStrengthGivenNeg 0

kNNShiftStdDevConfDiff -0.00025752 FeaturesSeenInNegDelta 0

SVMShiftMeanConfDiff -0.00011884 UPercentInNegAfterFS 0

NB MeanShift -0.00004756 UniMeanLogOfStrengthGivenNeg 0

SigmaNegativeNeighborDistance -0.00003388 %FavoringPosAfterFS 0

MeanNegativeNeighborDistance -0.00001862 NeighborhoodRadius 0

SigmaNeighborDistance -0.00001632 PercentAgreeWBest 0

%FavoringNegBeforeFS -0.00001630 UnigramMeanShift 0

NumFeaturesDiscarded -0.00001608 UniStdDevLogOfStrengthGivenPos 0

PercentUnique -0.00001241 PercentInPosAfterFS 0

stdDevGoodSVProximity -0.00000973 EffectiveUniqueWords 0.00000010

MeanPositiveNeighborDistance -0.00000893 NumTrainingFeaturesDiscarded 0.00000020

PercentInNegativeBeforeFS -0.00000813 WordsSeenInNegDelta 0.00000045

PercentWordsPointingToNegDelta -0.00000577 NumUniqueWords 0.00000066

U%FavoringPosBeforeFS -0.00000517 PercentRemoved 0.00000072

DtreeShiftStdDevConfDiff -0.00000219 PercentInNegAfterFS 0.00000136

DocumentLengthAfterFS -0.00000196 PercentWordsPointingToPosDelta 0.00000145

UniMeanLogOfStrengthGivenPos -0.00000185 EffectiveDocumentLength 0.00000179

%FavoringNegAfterFS -0.00000175 NB MeanLogOfStrengthGivenNeg 0.00000198

NumWordsDiscarded -0.00000155 NB StdDevLogOfStrengthGivenPos 0.00000233

MeanNeighborDistance -0.00000126 kNNShiftMeanConfDiff 0.00000421

FeaturesSeenInPosDelta -0.00000119 UPercentInPosBeforeFS 0.00000447

PercentOOV -0.00000095 meanGoodSVProximity 0.00000448

UPercentWordsPointingToPosDelta -0.00000083 NumTrainingWordsDiscarded 0.00000449

DocumentLength -0.00000076 UpercentInNegativeBeforeFS 0.00000641

UniqueAfterFS -0.00000060 DtreeShiftMeanConfDiff 0.00000821

UPercentWordsPointingToNegDelta -0.00000050 kNNShiftMeanPred 0.00001059

U%FavoringPosAfterFS 0 SVMShiftStdDevConfDiff 0.00001137

U%FavoringNegAfterFS 0 U%FavoringNegBeforeFS 0.00001328

UnigramStdDeviation 0 WordsSeenInPosDelta 0.00002368

NB StdDevLogOfStrengthGivenNeg 0 UniquePercentRemoved 0.00002740

NB StdDeviation 0 PercentInPosBeforeFS 0.00004043

UPercentInPosAfterFS 0 PercentPredictingPositive 0.00009150

NB MeanLogOfStrengthGivenPos 0 signedNNSV 0.00026558

Table 7.9: This table shows the average reduction in logscore across classes caused by deleting each
variable individually from the final models in the TREC-AP testing set. A negative score indicates
that the deleting the variable negatively impacts the models, since deleting it reduces the logscore.
A score of zero indicates the variable has no impact on the models, while positive indicates the
variable is included in the models but hurts them on average

142 7.4. RCV1-V2

7.4 RCV1-v2

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area
Dnet 0.3999 0.6516 0.0185 0.0900 0.0282 0.8983
Unigram 0.4651 0.7119 0.0170 0.0714 0.0267 0.9055
naı̈ve Bayes 0.4255 0.6641 0.0185 0.0857 0.0250 0.9343
SVM 0.6213B

S 0.8170B

S
0.0109B 0.0496BD 0.0194BD 0.9703BD

SR

kNN 0.5024 0.7496 0.0143 0.0817 0.0224 0.8828

Best By Class 0.6187 D
S 0.8170

S
0.0109 D 0.0499 D 0.0197 D N/A

Majority 0.5429 0.7910 0.0131 0.0555 0.0219 N/A

Stack-D (norm) 0.6064 0.8135
S

0.0109 0.0491 0.0195 0.9350
Stack-S (norm) 0.5952 0.7354 0.0105BD

SR
0.0525 0.0185BD

S 0.9229

STRIVE-D (norm) 0.5953 0.8128 0.0112 0.0501 0.0195 0.9332
STRIVE-S (norm) 0.6111 R 0.8235BD

SR
0.0106BDR 0.0485 D

R 0.0184BD
R 0.9473

R

BestSelect 0.8193 0.9389 0.0054 0.0138 0.0127 N/A

Table 7.10: Performance on RCV1-v2 Corpus. The best performance (omitting the oracle BestSe-
lect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, or ‘R’ indicates a method signifi-
cantly outperforms all (other) Base classifiers, Default combiners, Stacking methods, or Reliability-
indicator based Striving methods at the p = 0.05 level. A blackboard (hollow) font is used to
indicate significance for the macro-sign test and micro-sign test. A normal font indicates signifi-
cance for the macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests are
significant it is indicated with a bold, italicized font.

As discussed in Section 6.2.5, we performed experiments with the RCV1-v2 corpus

after all methods were fully developed to demonstrate we had not overtuned these results

on the earlier corpora. As discussed earlier, the standard chronological split used has 23149

training documents and 781265 testing documents with 101 topics that have at least one

training document.

For all base classifiers except for the SVM, the top 1000 features by mutual information

were used on a per class basis. All base classifiers except for the SVM used the same

representation and settings as for the other experiments. In order to reproduce the settings

given for the baseline in [LYRL04], the SVM used a normed tfidf representation with all

features that occurred in at least 3 training documents.

Table 7.10 presents the summary for the primary methods discussed in this chapter. The

results for STRIVE-S (norm) are generally consistent with the results presented earlier. The

only notable exception is that neither STRIVE-S (norm) nor any other combination method

is able to outperform the base SVM on MacroF1. However, according to every other per-

formance measure except ROC area, STRIVE-S (norm) outperforms all the base classifiers

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 143

— usually with statistical significance. In fact, on those same measures STRIVE-S (norm)

outperforms all other methods except for Stack-S (norm) on error. The mean difference in

error is not significantly different from Stack-S (norm) as shown by the macro t-test, how-

ever, as demonstrated by the macro sign-test, it is outperformed on a statistically significant

number of the classes.

Making a closer examination of the results for Stack-S (norm) shows that while it

slightly outperforms STRIVE-S (norm) on error, Stack-S (norm) decreases performance on

MacroF1 and greatly decreases performance on MicroF1. This appears to be in large part

because of several classes where Stack-S (norm) greatly decreases F1 performance. Appar-

ently, the linear combination of classifier outputs is much more sensitive to the particular

threshold than the corresponding strive model. While there is a chance that this could be

due to topic drift which occurs after the chronological split, Strive and the meta-classifiers

using decision trees appear to be able to mitigate such effects.

Figure 7.8 presents a by-class analysis of the change in F1 and error for STRIVE-S (norm)

and Stack-S (norm). The lines shown are the least-squares fit where each topic receives the

same weight. These figures clearly show how the stacking method severely hurts perfor-

mance on several classes and drags down F1 performance while the striving method has

little impact on macroF1 even on a per-class basis. In terms of error, we see that both

methods perform worse over smaller topics but gain enough over larger topics to create

a net positive effect. Striving seems to have less negative effects on a per-class basis but

also requires slightly more positive examples to consistently boost baseline performance.

Because of the smaller number of topics in the other corpora, it is difficult to tell whether

these trends exist on a per-topic basis in those corpora as well.

To give a sense of the improvement when using the thresholded predictions for microF1,

STRIVE-S (norm) commits 501400 false negative predictions versus the SVM’s 513511 false

negatives and 369291 false positive predictions versus the SVM’s 391038. In total, STRIVE-

S (norm) commits 12111 less false negatives, 21747 less false positives, and 33858 less

errors in prediction than the SVM. To put this in context, Figure 7.9 again displays the

changes in performance relative to the SVM classifier.

In summary, key lessons from the RCV1-v2 corpus are that while striving may not

always increase F1 performance on a per-class basis, the net reduction in total number of

errors causes both a significant increase in microF1 performance and overall error. Also,

we note that in comparison to the other corpora, the SVM dominates the base classifiers

more here. By optimizing k using cross-validation we expect the performance of kNN will

increase to be closer to the SVM and thus increase the potential for classifier combination.

Additionally, both striving and stacking seem to require between 64 and 256 (26 to 28)

144 7.4. RCV1-V2

0 2 4 6 8 10 12 14

−10

−5

0

5

STRIVE−S (norm)
STRIVE−S (norm) Fit
Stack−S (norm)
Stack−S (norm) Fit

PSfrag replacements

E
X
E1
E2
E3
Ei

EM

Êi

E = (X, f(X))
Ĉ1 = (f̂1(X), s1(E1))
Ĉ2 = (f̂2(X), s2(E2))
Ĉ3 = (f̂3(X), s3(E3))
Ĉi = (f̂i(X), si(Ei))

f(X)
f̂M(X)
p1(E)
p2(E)
p3(E)
pM(E)

p(E1 |E)
p(E2 |E)
p(E3 |E)
p(EM |E)
p(Êi |E)
p(Ei | Êi)

log2(Num Positives in Training)

lo
g
2

M
e
t
h
o
d

F
1

B
a
s
e
S
V

M
F
1

log2
Base SVM Error
Method Error

0 2 4 6 8 10 12 14

−1

−0.5

0

0.5

STRIVE−S (norm)
STRIVE−S (norm) Fit
Stack−S (norm)
Stack−S (norm) Fit

PSfrag replacements

E
X
E1
E2
E3
Ei

EM

Êi

E = (X, f(X))
Ĉ1 = (f̂1(X), s1(E1))
Ĉ2 = (f̂2(X), s2(E2))
Ĉ3 = (f̂3(X), s3(E3))
Ĉi = (f̂i(X), si(Ei))

f(X)
f̂M(X)
p1(E)
p2(E)
p3(E)
pM(E)

p(E1 |E)
p(E2 |E)
p(E3 |E)
p(EM |E)
p(Êi |E)
p(Ei | Êi)

log2(Num Positives in Training)

log2
Method F1

Base SVM F1

lo
g
2

B
a
s
e
S
V

M
E
r
r
o
r

M
e
t
h
o
d

E
r
r
o
r

Figure 7.8: Each point presents the performance for a single class in the RCV1-v2 corpus. Im-
provement in F1 over the baseline SVM is shown on the left while improvement in error is shown
on the right. As is typical, both axes are given in the log-domain. In case of a zero denominator
or numerator, the log-ratio is defined as 10/−10 respectively. On left we see that Stack-S (norm)
severely decreases the F1 performance on several classes. On right we see that (when performance
differs from the baseline) both methods show a larger increase in performance according to error
over the baseline as the class becomes more prevalent. Striving appears to require slightly more pos-
itive examples than stacking which is expected given the higher dimensionality. The regression fits
shown are fit only to the classes where the metaclassifier’s performance differs from the baseline.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)

 FalsePos
 FalseNeg
 TruePos

RCV1-v2 MSN Web Reuters TREC-AP

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)

 FalsePos
 FalseNeg
 TruePos

RCV1-v2 MSN Web Reuters TREC-AP

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

Figure 7.9: For Stack-S (norm) and STRIVE-S (norm) change relative to the best base classifier
— the SVM classifier — over all the topic classification corpora. On the left, we show the relative
change using thresholds optimized for F1, and on the right, we show the relative change using
thresholds optimized for error. In both figures, we display the changes in the three components that
determine F1: true positives, false positives, and false negatives. Not only does STRIVE-S (norm)
achieve considerable reductions in error of 4-18% (left) and 3-16% (right), but in all but one case, it
also increases by a fair margin the improvement attained by Stack-S (norm). Furthermore, STRIVE-
S (norm) never hurts performance relative to the SVM on these performance measures as Stack-S
(norm) does over RCV1-v2 on the far left.

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 145

positive examples to begin to have a net effect over baseline performance in error and are

thus more effective for larger classes than smaller. In all, STRIVE-S (norm) continues to be

the superior choice having less negative impact on macroF1 than stacking and increasing

performance over the baseline according to microF1 and all of the linear utility performance

measures.

7.5 Summary and Conclusions

In this chapter, we reviewed a methodology for building a metaclassifier for text docu-

ments that centers on combining multiple distinct classifiers with probabilistic learning and

inference that leverages reliability-indicator variables. Reliability indicators provide infor-

mation about the context-sensitive nature of classifier reliability, informing a metaclassifier

about the best way to integrate the outputs from base-level classifiers. We introduced the

STRIVE methodology that uses reliability indicators in a hierarchical combination model

and reviewed comparative studies comparing STRIVE with other combination mechanisms.

We conducted experimental evaluations over four text-classification corpora (MSN Web,

Reuters 21578, TREC-AP, and RCV1-v2) with a variety of performance measures. These

measures were selected to determine the robustness of the classification procedures un-

der different misclassification penalties. The empirical evaluations support the conclusion

that a simple majority vote in situations where one of the classifiers performs strongly can

weaken the best classifier’s performance. In contrast, in all of these corpora across all

measures, the STRIVE methodology was competitive. STRIVE using a SVM metaclassi-

fier produced the top performer in nearly every category except ROC area and, outside of

that, was never beaten statistically significantly. Furthermore, on a class-by-class basis, the

STRIVE methodology using a meta-decision tree produced receiver-operating characteristic

curves that dominated the other classifiers in nearly every class of the MSN Web corpus,

which demonstrates that it provides the best choice for any possible linear utility function

in this corpus.

In conclusion, the experiments show that stacking and STRIVE provide robust combi-

nation schemes across a variety of performance measures. In addition, the experiments

show the central claim of this thesis that context-depended combination (STRIVE-S (norm))

procedures provide an effective way of combining classifiers that are generally superior to

constant-weighted linear combinations of the classifier’s estimates of the posterior or log-

odds (Stack-S (norm)). In the remaining chapters, we turn to issues of how we can alleviate

the need for training data and applying combination outside of topic classification.

146 7.5. SUMMARY AND CONCLUSIONS

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area ROC[0,0.1]

Dnet 0.5477 0.5813 0.0584 0.3012 0.0772 0.8802 0.5638
Unigram 0.5982 0.6116 0.0594 0.2589 0.0812 0.9003 0.6114
naı̈ve Bayes 0.5527 0.5619 0.0649 0.2853 0.0798 0.8915 0.5516
SVM 0.6727 0.7016 0.0455 0.2250 0.0794 0.9123 0.6960
kNN 0.6480 0.6866 0.0464 0.2524 0.0733 0.8873 0.6541

Best By Class 0.6727 0.7016 0.0452 0.2235 0.0729 N/A N/A
Majority 0.6643 0.6902 0.0479 0.2133 0.0765 N/A N/A

Stack-D 0.6924 0.7233 0.0423 0.1950 0.0708 0.9361 0.7356
Stack-S 0.6801 0.7118 0.0438 0.2076 0.0701 0.9286 0.7196
Stack-D (norm) 0.6924 0.7233 0.0423 0.1950 0.0708 0.9361 0.7356
Stack-S (norm) 0.6939 0.7250 0.0423 0.1971 0.0705 0.9334 0.7349

STRIVE-D 0.6975 0.7304 0.0413 0.1863 0.0703 0.9459 0.7460
STRIVE-S 0.6527 0.6767 0.0498 0.2251 0.0800 0.9159 0.6819
STRIVE-D (norm) 0.6988 0.7327 0.0413 0.1846 0.0697 0.9454 0.7457
STRIVE-S (norm) 0.7173 0.7437 0.0392 0.1835 0.0682 0.9260 0.7547
STRIVE-S Local (norm) 0.7251 0.7530 0.0386 0.1810 0.0656 0.9150 0.7600
STRIVE-S LSelect (norm) 0.7197 0.7496 0.0388 0.1860 0.0664 0.9097 0.7529

BestSelect 0.8719 0.8924 0.0223 0.0642 0.0565 N/A N/A

Table 7.11: All results for the MSN Web Corpus discussed in this chapter. Ignoring BestSelect, the
overall best in each column is shown in red bold and the overall worst is shown in blue italics.

CHAPTER 7. COMBINING CLASSIFIERS
USING RELIABILITY INDICATORS 147

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area ROC[0,0.1]

Dnet 0.7846 0.8541 0.0242 0.0799 0.0537 0.9804 0.8844
Unigram 0.7645 0.8674 0.0234 0.0713 0.0476 0.9877 0.9086
naı̈ve Bayes 0.6574 0.7908 0.0320 0.1423 0.0527 0.9703 0.7841
SVM 0.8545 0.9122 0.0145 0.0499 0.0389 0.9893 0.9429
kNN 0.8097 0.8963 0.0170 0.0737 0.0336 0.9803 0.9043

Best By Class 0.8608 0.9149 0.0144 0.0496 0.0342 N/A N/A
Majority 0.8498 0.9102 0.0155 0.0438 0.0437 N/A N/A

Stack-D 0.8680 0.9197 0.0136 0.0410 0.0366 0.9912 0.9453
Stack-S 0.8611 0.9174 0.0141 0.0398 0.0362 0.9952 0.9576
Stack-D (norm) 0.8680 0.9197 0.0136 0.0410 0.0366 0.9912 0.9453
Stack-S (norm) 0.8908 0.9307 0.0125 0.0372 0.0331 0.9956 0.9628

STRIVE-D 0.8551 0.9162 0.0141 0.0461 0.0364 0.9913 0.9509
STRIVE-S 0.8289 0.9061 0.0161 0.0515 0.0420 0.9908 0.9332
STRIVE-D (norm) 0.8555 0.9172 0.0144 0.0488 0.0364 0.9913 0.9507
STRIVE-S (norm) 0.8835 0.9287 0.0121 0.0352 0.0343 0.9948 0.9616
STRIVE-S Local (norm) 0.8751 0.9261 0.0125 0.0382 0.0344 0.9890 0.9534
STRIVE-S LSelect (norm) 0.8825 0.9280 0.0128 0.0389 0.0341 0.9921 0.9553

BestSelect 0.9611 0.9789 0.0036 0.0073 0.0173 N/A N/A

Table 7.12: All results for the Reuters Corpus discussed in this chapter. Ignoring BestSelect, the
overall best in each column is shown in red bold and the overall worst is shown in blue italics.

148 7.5. SUMMARY AND CONCLUSIONS

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area ROC[0,0.1]

Dnet 0.6007 0.5706 0.0064 0.0346 0.0081 0.9767 0.9086
Unigram 0.6001 0.5695 0.0064 0.0347 0.0079 0.9819 0.9034
naı̈ve Bayes 0.5676 0.5349 0.0065 0.0455 0.0078 0.9755 0.8454
SVM 0.7361 0.6926 0.0049 0.0282 0.0077 0.9715 0.9143
kNN 0.6793 0.6533 0.0053 0.0371 0.0074 0.9238 0.8088

Best By Class 0.7356 0.6925 0.0049 0.0302 0.0073 N/A N/A
Majority 0.7031 0.6534 0.0056 0.0307 0.0075 N/A N/A

Stack-D 0.7331 0.7007 0.0050 0.0251 0.0073 0.9886 0.9565
Stack-S 0.7213 0.6796 0.0051 0.0280 0.0073 0.9834 0.9304
Stack-D (norm) 0.7331 0.7007 0.0050 0.0251 0.0073 0.9886 0.9565
Stack-S (norm) 0.7486 0.7011 0.0048 0.0263 0.0072 0.9834 0.9411

STRIVE-D 0.7283 0.6958 0.0051 0.0267 0.0073 0.9870 0.9512
STRIVE-S 0.7075 0.6718 0.0052 0.0310 0.0073 0.9742 0.8959
STRIVE-D (norm) 0.7246 0.6991 0.0051 0.0268 0.0073 0.9870 0.9515
STRIVE-S (norm) 0.7532 0.7148 0.0047 0.0277 0.0071 0.9771 0.9239
STRIVE-S Local (norm) 0.7439 0.7084 0.0048 0.0231 0.0071 0.9725 0.9285
STRIVE-S LSelect (norm) 0.7507 0.7104 0.0047 0.0273 0.0071 0.9731 0.9150

BestSelect 0.8986 0.8356 0.0031 0.0133 0.0058 N/A N/A

Table 7.13: All results for the TREC-AP Corpus discussed in this chapter. Ignoring BestSelect, the
overall best in each column is shown in red bold and the overall worst is shown in blue italics.

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC Area ROC[0,0.1]

Dnet 0.3999 0.6516 0.0185 0.0900 0.0282 0.8983 0.6691
Unigram 0.4651 0.7119 0.0170 0.0714 0.0267 0.9055 0.6880
naı̈ve Bayes 0.4255 0.6641 0.0185 0.0857 0.0250 0.9343 0.7094
SVM 0.6213 0.8170 0.0109 0.0496 0.0194 0.9703 0.8538
kNN 0.5024 0.7496 0.0143 0.0817 0.0224 0.8828 0.6154

Best By Class 0.6187 0.8170 0.0109 0.0499 0.0197 N/A N/A
Majority 0.5429 0.7910 0.0131 0.0555 0.0219 N/A N/A

Stack-D (norm) 0.6064 0.8135 0.0109 0.0491 0.0195 0.9350 0.8078
Stack-S (norm) 0.5952 0.7354 0.0105 0.0525 0.0185 0.9229 0.7976

STRIVE-D (norm) 0.5953 0.8128 0.0112 0.0501 0.0195 0.9332 0.8033
STRIVE-S (norm) 0.6111 0.8235 0.0106 0.0485 0.0184 0.9473 0.8131

BestSelect 0.8193 0.9389 0.0054 0.0138 0.0127 N/A N/A

Table 7.14: All results for the RCV1-v2 Corpus discussed in this chapter. Ignoring BestSelect, the
overall best in each column is shown in red bold and the overall worst is shown in blue italics.

Chapter 8

Inductive Transfer
for Classifier Combination

From Chapter 7, we have seen that STRIVE can use a set of reliability indicators in con-

junction with the outputs of various heterogeneous classifiers to produce a combination

model that consistently outperforms a linear combination of classifier outputs. However,

we also saw in Section 7.4 that, while the overall combination is successful, both STRIVE

and stacking seem to be less successful and sometimes hurt performance versus the best

base classifier on classes with few positive examples.

In this chapter, we turn our attention to the problem of scarce data. We introduce a

generalization of STRIVE, called LABEL (Layered Abstraction-Based Ensemble Learning),

that shows how data from one dataset can be used with that from other datasets to build an

inductive model of classifier combination that transfers across all the datasets and improves

performance in conjunction across the tasks. In addition to the general framework, we

demonstrate empirically how this approach can be used in conjunction with a decision

tree to increase the average performance for STRIVE-D (norm). Finally, we summarize the

interesting directions for future work in the same vein.

8.1 Introduction

Given the typical scarcity of labeled data for building predictive models, the Machine

Learning community has pursued methods which make use of information sources be-

yond the labeled data associated with a pure supervised-learning framework. An example

of research in this arena is multitask learning [Car97]. In multitask learning, additional

information for building models comes in the form of labels for related functions which

can be learned over the same input. Although such additional labels are typically unavail-

149

150 8.2. APPLYING INDUCTIVE TRANSFER TO COMBINATION

able at prediction time, results have demonstrated that generalization performance can be

improved on the primary task by learning to predict the new variables in addition to the

output variable of interest.

We are interested in improving the performance of predictive models for cases where

we have inadequate amounts of labeled training data. In contrast to multitask learning, we

seek to leverage labeled data from related problems over different examples to enhance

the final model used in prediction. Problems related to this challenge have been termed

classifier re-use [BG98] or knowledge transfer [CK97]. We introduce a new approach

to the challenge that hinges on mapping the original feature space, targeted at predicting

membership in a specific topic, to a new feature space aimed at modeling the reliability of

an ensemble of text classifiers.

The approach, which we call Layered Abstraction-Based Ensemble Learning (LABEL),

has two subcomponents. First, a set of classifiers is trained on each task according to

the standard supervised learning framework; a problem or task consists of determining

binary membership in a specific topic. Then, we build a context-sensitive ensemble model

using these classifier outputs and a set of reliability indicators (see Chapter 7) that provide

an abstraction of discriminatory context appropriate for modeling classifier reliability. We

thus abstract away the problem of predicting specific class membership to that of predicting

the reliability of a set of classifiers for a given class. As a result, both the input features

and their relationship to the class variable are the same at the metalevel; this enables the

simultaneous use of all the data as a model bias across the entire set of tasks.

For a review of related work, the reader should consult Section 2.2.1. First, we describe

in detail how the LABEL methodology generalizes the STRIVE model by providing a means

for using data across tasks. Then, we present an empirical analysis of this methodology

applied to text classification and summarize the strengths and weaknesses of the approach.

Finally, we discuss promising paths for future work.

8.2 Applying Inductive Transfer to Combination

In distinction to prior efforts, we introduce a representation that is semantically coherent

across tasks. Such semantic coherence facilitates the use of standard methods of inductive

transfer.

We note that the experiments in this chapter use 49 reliability indicators, a subset of

the variables used in Chapter 7. See Bennett, Dumais, & Horvitz [BDH02, BDH05] for

additional discussion of these reliability-indicators.

CHAPTER 8. INDUCTIVE TRANSFER
FOR CLASSIFIER COMBINATION 151

8.2.1 STRIVE

As discussed more extensively in Chapter 7, the STRIVE methodology transforms the origi-

nal learning problem into a new learning problem. In the initial problem, the base classifiers

simply predict the class from a word-based representation of the document. More generally,

in the original problem, each base classifier outputs a distribution (possibly unnormalized)

over class labels. STRIVE adds another layer of learning to the base problem. Reliability-

indicator functions consider the words in the document and the classifier outputs to generate

the reliability indicator values, ri, for a particular document. This approach yields a new

representation of the document that consists of the values of the reliability indicators, as

well as the outputs of the base classifiers. The metaclassifier exploits this new representa-

tion for learning and classification. This enables the metaclassifier to employ a model that

uses the output of the base classifiers as well as the context established by the reliability

indicators to make a final classification.

8.2.2 LABEL: Layered Abstraction-Based Ensemble Learning

Intuitively, regardless of the particular topic or source (e.g., news feed, web page, etc.),

topic discrimination tasks share some common structure. For example, longer documents

tend to provide more information for identifying topics. Furthermore, documents contain-

ing words strongly correlated with a single topic are more likely to belong to that topic than

documents containing words strongly correlated with several topics. Additionally, these

conditions may interact with each other based on their particular values. Researchers in the

field may often make similar observations after studying multiple classification problems.

We seek to design a system capable of both inducing such generalizations automatically

and applying them to improve the predictive performance of models.

A training corpus in text classification consists of a set of example documents labeled

with each of their proper topics from a prespecified corpus-specific topic list (a document

may have more than one topic). When the same representation is used for each of the bi-

nary discrimination tasks in a corpus, standard multitask learning can be used to perform

classification for all of the topics in the corpus’ topic list. However, standard multitask

learning cannot leverage information across corpora since it would typically require know-

ing whether a document belongs to each of the topics from all of the corpora (where we

only have in-corpus information). Additionally, the basic feature space is quite different in

documents from different corpora as particular language usage varies widely. Therefore,

we desire a standard representation that has the same semantics across separate tasks from

both the same and different corpora.

152 8.2. APPLYING INDUCTIVE TRANSFER TO COMBINATION

Although STRIVE uses data from each task separately to build a metaclassifier for that

specific task, it is straightforward to extend it to make use of labeled data across tasks. The

key point is that the reliability-indicators we chose carefully abstracted away from a docu-

ment’s task-specific statistical regularities of word usage while maintaining the discrimina-

tory relationship of the document’s context to the task. For example, documents that come

from a general topic corpus where we are trying to distinguish Health & Fitness from not

Health & Fitness tend to behave very differently at the word usage distribution level than

documents from a narrow financial corpus where we are trying to distinguish Corporate

Acquisitions from not Corporate Acquisitions. However, in terms of the abstraction that

the reliability-indicator UnigramStdDeviation provides, we expect a unigram classifier to

show poor reliability for a particular document from either task when UnigramStdDeviation

is high.

With this approach, we treat the metaclassifier as an abstraction, moving the focus

of the analysis from discriminating a specific topic (e.g., Corporate Acquisitions vs. not

Corporate Acquisitions) to the problem of discriminating topic membership (i.e., In-Topic

vs. Out-of-Topic). The base-level classifiers trained on a particular topic are used as the

representation of topic-specific knowledge, while the metaclassifier provides information

about how to leverage context across topic-classification in general.

Therefore, LABEL, like STRIVE, constructs models with the same type of combination

rules as that shown in Figure 7.2. The differences from STRIVE are in the model construc-

tion procedure. After generating the metalevel data, the metafeatures are normalized to

have zero mean and a reduced standard deviation scale within their particular task.1 At this

point STRIVE would use data from each task to separately build a metaclassifier for each

task. LABEL departs from this by pooling all of the data together and building a single

metaclassifier (with the class variable taking the value 1 if the document is In-Topic for the

particular task and -1 otherwise).

We now give a more formal definition of the problem. For our purposes, a task is the

approximation of a single binary function, fi(Xi) ∈ {−1, 1}. The input domain of each

of these tasks may differ; thus, Xi denotes an input example from the ith task’s domain.

The labeled data for each task, Li, consists of a set of tuples 〈~xi,j, fi(~xi,j)〉 (where j =

1, . . . , |Li|). Given N tasks and a performance measure perf, we would like an inductive

learning procedure, Train(i, L1, . . . , LN), that produces a model to generate predictions for

the ith task. Furthermore, we desire that our performance using all the data exceeds the per-

formance using the data for each task separately:
∑N

i=1EPi [perf(Train(i, L1, . . . , LN))] >

1This is not necessary for STRIVE-D, but for LABEL this helps to deal with spurious statistical variance
that arises from the tasks having different numbers of training examples. Also see the Footnote 3 on Page
123 regarding feature normalization.

CHAPTER 8. INDUCTIVE TRANSFER
FOR CLASSIFIER COMBINATION 153

∑N
i=1EPi [perf(Train(i, Li))] where Pi is the probability distribution on the ith task. To be

of practical use, the performance achieved using only labeled data from the task

EPi [perf(Train(i, Li))] should be competitive with the best base classifiers for this task,

otherwise the solution is trivial (simply ensure the models using only labeled data from the

task perform as poorly as possible).

Before applying the resulting model for prediction, it is desirable to specialize this sin-

gle metaclassifier for each task in two ways. First, each task may have different priors;

so these priors should be taken into account at prediction time. This can be directly ac-

complished by obtaining probability predictions from the metaclassifier or simply setting

a different threshold for each classification task. Secondly, tasks may diverge from the av-

erage case in different ways. Thus, we may want to only retain part of the general model.

The best way to address this question depends, in part, upon the choice of classification

algorithm for the metaclassifier. We discuss our particular choices in Section 8.3.2 below.

8.3 Experimental Analysis

We performed an empirical analysis over standard text classification corpora to explore the

effectiveness of LABEL. We also performed ablation experiments to elucidate how LABEL

achieves an improvement in generalization performance. Each of the classification models

use a decision threshold specific to each task. The threshold for each model and task was

empirically determined over the training data.

8.3.1 Base Classifiers

We selected for our experiments four classifiers that have been used traditionally for text

classification: decision trees, linear SVMs, naı̈ve Bayes, and a unigram classifier. Note that

this is a subset of the classifiers used in Chapter 7. In particular, we did not make use of the

kNN classifier in these experiments.

For each base classifier, the settings and implementations are the same as discussed

in Section 6.3. The exception is that for an implementation of linear SVMs, we used the

Smox toolkit which is based on Platt’s Sequential Minimal Optimization algorithm [Pla98].

Since Smox is the best base classifier in the experiments below, it is the only base classifier

we report in summarizing our experimental results.

154 8.3. EXPERIMENTAL ANALYSIS

8.3.2 Metaclassifiers

As mentioned above, the inputs to the metaclassifiers are normalized to zero mean and

a reduced standard deviation scale (as estimated during the training phase).2 The experi-

ments reported here use a total of 49 reliability indicators which were formulated by hand

in an attempt to represent potentially valuable contexts (additional detail can be found in

[BDH02, BDH05]).

For these experiments, we used only a decision-tree algorithm (using Dnet) as a meta-

classifier. For this reason, we refer to the primary metaclassifier implementations below as

STRIVE-D and LABEL-D. Since both systems use normalized inputs, we drop the “(norm)”

at the end of the system names used in Chapter 7. We note that by comparing these two

systems directly, we see the effects of separately building a metaclassifier per task versus

building them in conjunction.

Here, we introduce one way to specialize the single metaclassifier model learned by

LABEL-D for decision trees. Given a single metaclassifier decision tree model, instead of

using the prediction at each leaf node as the aggregate distribution across tasks of In-Topic

vs. Out-of-Topic, when predicting for task T , we use the estimate:

P (In-Topici| leaf = l)=
In-Topici,l +mpl

m+In-Topici,l+Out-of-Topici,l
. (8.1)

For the particular binary classification task i, In-Topici,l and Out-of-Topici,l are the num-

ber in and out of topic of those training examples that fall in the leaf node, respectively. pl
is the prior at the leaf node of In-Topic obtained from using all of the data across tasks.

m is the effective sample size which determines how much evidential weight, measured in

“number of observed datapoints”, the prior carries.

We sampled the two extremes of this spectrum, m = 0 and m = ∞. By choosing

m = 0, we specialize the LABEL model to a particular task by placing all of the weight

on the task-specific data. This allows some leaves to effectively have no data in them; for

those leaves, we use the overall prior of in-topic according to the task-specific data. We

refer to this system as LABEL-D (repop) since this acts as if we completely repopulated the

decision tree with task-specific data.

We also present the results obtained by making the prediction at a leaf node using all

of the data across tasks equally (i.e., m = ∞ and the right side of Equation 8.1 simply

becomes pl). We refer to this as LABEL-D (general) since the metaclassifier is not special-

ized for each task other than the decision threshold. Comparing these specific instantiations

2See the Footnote 3 on Page 123 regarding feature normalization.

CHAPTER 8. INDUCTIVE TRANSFER
FOR CLASSIFIER COMBINATION 155

allows us to determine if we are simply coincidentally finding a better tree structure using

all the data or if the actual predictions based on all the data aids us as well.

8.3.3 Data

For the experiments, we again use the MSN Web Directory (13 classes), the Reuters 21578

corpus (10 classes), and the TREC-AP corpus (20 classes). For a detailed description of

the corpora, see Section 6.2.

8.3.4 Performance Measures

To compare the performance of the classification methods we look at a set of standard

accuracy measures. The F1 measure [vR79, YL99] is the harmonic mean of precision and

recall where Precision = Correct Positives
Predicted Positives

and Recall = Correct Positives
Actual Positives

. Additionally,

we report error, emphasizing the normalized error score. Normalized error divides the

error in each task by the error that would have been achieved by random guessing (the a

priori prevalent class). A normalized error less than one indicates the method outperforms

random guessing. The scores reported here are the arithmetic averages of the values across

all tasks (for F1 this is termed macroF1 in the text classification literature).

8.4 Experimental Results

Table 8.1 summarizes the performance of the systems over all 43 classification tasks. Better

performance is indicated by larger F1 and by smaller error or normalized error values. The

best performance in each column is given bold. To determine statistical significance for

the macro-averaged measures, a one-sided macro sign test was performed [YL99]. When

comparing system A and system B, the null hypothesis is that system A performs better on

approximately half the tasks for which they differ in performance. The results for LABEL-

D (general) are significantly better than the other systems at the p = 0.01 level with the

exception of the difference between the error metrics of LABEL-D (general) and STRIVE-D

which are significant at the p = 0.05 level.

8.5 Summary of Basic LABEL Approach

First, we note that the base classifiers are competitive and more particularly the results

for Smox are consistent with the best reported results over these corpora [DC00, DPHS98,

Joa98]. Thus, we are challenged with an extremely competitive baseline.

156 8.6. FUTURE WORK

Method Macro F1 Error norm Error

Smox 0.7411 0.0197 0.4789
STRIVE-D 0.7457 0.0191 0.4716
LABEL-D (repop) 0.7431 0.0188 0.4758
LABEL-D (general) 0.7545 0.0181 0.4512

Table 8.1: Inductive Transfer Performance Summary over all Tasks

In spite of this, LABEL-D (general) shows dominance for each of the performance mea-

sures. Additionally, comparing it directly to the most comparable version of STRIVE-D

reported in Bennett, Dumais, & Horvitz [BDH02, BDH05], we see improvement over the

same system that uses data from each task in isolation. Additionally, by comparing LABEL-

D (general) to LABEL-D (repop), we see that it is not simply the structure of the resulting

decision trees, but that the predicted probabilities induced across the entire set of tasks are

key to improving generalization performance. While the percentage improvement is small,

we believe these results are very encouraging for the future use of inductive transfer to

improve models of classifier reliability.

Similar results are observed for each corpus individually but are more pronounced in

the Reuters corpus (which has the classes with the fewest number of positive examples)

than the MSN Web or TREC-AP corpora.

8.6 Future Work

There are several interesting avenues for future work. First, one could conduct experiments

which explore parametric variations of m to control how much weight task-specific data is

given versus the weight given to data from across all tasks. Secondly, while we have only

empirically investigated the decision-tree metaclassifier, one could pursue other classifiers

as a metaclassifier. For example using an SVM as done for STRIVE would be of consid-

erable interest. The analogy for m for an SVM would be the c parameter which controls

the amount of regularization for a problem. In fact, we hypothesize that not only would c

play an important role in specializing the metaclassifier for a task, but that setting c while

building the general model will be crucial because of how c acts as a regularizer. For im-

plementations like SVMLight that have methods for automatically setting c given a set of

data, then a rule for setting c for the general model can be determined in terms of the c that

would be used for each individual dataset (e.g., the sum of the auto-determined c’s for the

individual problems).

CHAPTER 8. INDUCTIVE TRANSFER
FOR CLASSIFIER COMBINATION 157

While we have demonstrated here that data can be used in conjunction across all tasks

to improve average performance, another interesting question is whether data can be used

in isolation to improve performance on a separate class. That is, if we left one corpus out

and trained a general model on the remaining corpora to test on the left-out corpus, how

effectively would that model transfer compared to the one trained in conjunction?

Finally, a potentially promising area to pursue is the inclusion of task-dependent reliability-

indicator variables while building the general model. We discuss a few examples in Section

5.3 including: NumTrainingPoints, %TrainingPointsIn{Positive}, and NumberOfSupport-

Vectors. In addition, we can include task identifiers with each example. Together these

variables can allow the general model to both model a task separately if it improves model

fit as well as model behavior that varies across tasks — such as how likely a given base

classifier is to perform well given a certain number of positive training examples.

8.7 Summary

In this chapter, we demonstrated how Layered Abstraction-Based Ensemble Learning can

be used to reduce the demand for training data by using data in conjunction across tasks.

Furthermore, we conducted a small empirical analysis to demonstrate the validity of the

approach. In particular, we demonstrated how we could improve upon a STRIVE model

using a decision-tree metaclassifier by using all the data across the tasks. Finally, this area

contains many interesting directions for future work, and we provided the reader with a

discussion of some of the more interesting avenues.

158 8.7. SUMMARY

Chapter 9

Online Methods and Regret

Researchers have been able to prove a variety of performance guarantees for online predic-

tion methods. While our primary concern is offline or batch prediction, a natural question

is whether these online methods can also achieve good empirical performance on batch

prediction with little modification.

This chapter presents a brief overview of key existing theoretical results for combining

classifiers in an online framework while maintaining (regret) performance guarantees. In

this chapter, we evaluate the empirical performance of several of these online algorithms in

a batch setting and consider whether they are an attractive alternative to the metaclassifiers

we have already discussed. Finally, in light of our empirical results, we also analyze what

types of regret guarantees are most desirable to yield a combination that performs well in

practice.

9.1 Online Learning

In the batch setting, there is a training phase over a set of (labeled) training examples and

then a testing phase where the learner receives no further feedback about the label of the

examples. In contrast, an online learner receives constant feedback after every example.

This feedback can either provide full-information about the cost of all alternatives not ac-

tually explored or partial-information by specifying only the loss of the action the learner

took.

For classification where a loss function is specified, giving the learner the true class

label is an example of the full-information model. In a multiclass problem or for example-

specific cost-sensitive learning, specifying the loss of the predicted class but not specifying

what the loss would have been for predicting the other class labels is an example of the

159

160 9.2. REGRET AND COMBINING CLASSIFIERS

partial-information model. We will assume we are operating in the full-information model

with a specified loss function and that our feedback comes as the true class label. Thus,

at each timepoint, an example is presented to the learner for prediction, after the learner

receives the true label of the example, it incurs some loss, and updates its model.

More formally for each timestep t = 1, . . . , T , the learning algorithm, A receives an

example xt. Then, the learner makes a prediction, ŷA,t. After predicting, the learner is

notified of the correct class yt and suffers loss L(ŷA,t, yt) for some specified loss function

L. When the particular learning algorithm is clear in context we will use ŷt instead of ŷA,t.

The cumulative loss the algorithm suffers is
∑T

t=1 L(ŷt, yt), and we will be concerned with

particular algorithms that can bound the cumulative loss relative to some other algorithm.

The simplicity of the online learning framework has allowed results to be derived in simple

cases where the sequence of examples is assumed to be i.i.d. from a fixed distribution as

well as when they are chosen from a non-fixed distribution by an adversary. Given the

strength of these results, it is tempting to see how well they fare in the context of our

problem.

9.2 Regret and Combining Classifiers

In addition to the focus of empirically-based researchers, the problem of combining expert

advice or predictions has long drawn the attention of the theoretical part of the machine

learning community. Quite often, combination algorithms can be theoretically justified

with loss bounds, and furthermore include in their design indicator variables which signal

a particular expert is abstaining or lacking confidence in some way. However, with few

exceptions [FMS04], they seldom address when a classifier should abstain in practice. A

simple lack of confidence is not sufficient since that classifier may still provide more infor-

mation than any other classifier. Instead, it is preferable for the metaclassifier or decision

maker to determine on an example-by-example basis how strongly each base classifier will

contribute to the final decision. In this view, the decision maker simply treats each indicator

variable as a possibly noisy hint to use a different combination function than what may be

best overall, but she is free to ignore the indicator variable if it appears to be of little value.

As a result, there is often a gap between methods that have theoretical guarantees and

methods that perform the best in practice. In this section, we review some of the more

relevant and common combination algorithms that have performance guarantees. We use

the discussion to motivate important criteria to consider when employing a combination

algorithm, and discuss why the presented algorithms often underperform traditional meta-

classifier approaches such as stacking.

CHAPTER 9. ONLINE METHODS AND REGRET 161

Two basic questions commonly drive the design of a metaclassification algorithm: (1)

Can the combiner ever win big? (2) Can we prevent the combiner from hurting performance

too badly on any single problem?

An affirmative answer to the first question ensures that some users of the algorithm will

gain far more by using our algorithm instead of simply using a base classifier, while an

affirmative answer for the second question ensures that those who do use our algorithm

will not regret it too much. Bounds for regret are formalized mathematically relative to a

specific class of alternative algorithms. External regret compares performance to a fixed

policy that is not dependent on the choices the combiner makes while internal regret con-

siders alternatives that may be slight modifications of the combiner’s choices [BM05]. For

example, typical external regret bounds limit the combiner’s loss relative to the loss when

using the single best expert to predict. A tight external regret bound guarantees the user

of the algorithm that even though the best base classifier cannot always be determined re-

liably, the user cannot have a performance much worse than if she would have known the

base classifier performance a priori. Internal regret bounds guarantee small loss relative to

simple changes to the algorithm, for example: “When the distance to the SVM’s normal

was less than 1, I should have placed the weight I placed on the SVM on the Decision Tree

classifier instead.”.

Our desire to examine regret stems from two basic types of practical combination prob-

lems. In the first, as has been the case throughout this dissertation, a machine learning

practitioner has models from different learning algorithms (e.g., Decision Trees, SVMs,

kNN), and while aware of their relative performance, he is unsure whether they offer dis-

tinct information that can be effectively combined by a metaclassifier into a model which

outperforms the base components. Furthermore, the practitioner has a set of candidate in-

dicator variables such as the size of the neighborhood around the prediction point for kNN

or the variance in naı̈ve Bayes confidence that may indicate when classifiers are more or

less reliable. In this case, it is possible many of the indicators are not actually tied to the

base classifier’s performance and the metaclassifier should generalize appropriately.

In the second motivating application, the classifiers are trained over disjoint training

sets1 that cannot be shared because of proprietary or data-privacy concerns, but the pre-

dictions of all the classifiers can be obtained for a common validation and test set. The

indicators in this case may capture properties such as the similarity score of the most simi-

lar in example in each training set. A good bound with respect to the weighted combination

1These training sets might be drawn from different distributions, but we assume the labeling is consistent.
That is, p(x, y) may vary according to training set, but presumably P (y | x) does not.

162 9.3. COMBINATION ALGORITHMS WITH REGRET GUARANTEES

of these classifiers is equivalent to saying we are taking effective advantage of the informa-

tion in the proprietary data while maintaining the privacy constraints.

In both cases, we would like to have some guarantee that the classifiers are being com-

bined well and that the indicators are being effectively used. It is with these goals in mind

that we turn to a discussion of a few key algorithms with performance guarantees.

9.3 Combination Algorithms with Regret Guarantees

The majority of algorithms with performance guarantees have been developed in an on-

line setting but can also be applied in a batch setting. Although the guarantees may not

directly apply in the batch setting they form a foundation for understanding the impact of

the algorithms.

One of the oldest algorithms in this category is the Weighted Majority Algorithm (WMA).

Littlestone and Warmuth [LW94] present several variants and theoretical results for them.

WMA is related to the halving algorithm which at every point throws out half of the re-

maining consistent hypotheses based on which half errs on the current example, but instead

of requiring an expert or hypothesis to be perfect, WMA maintains a weight on each expert

that is modified based on its performance. In its most basic form, the weight on each expert

is initialized to 1. To update the weights, whenever the WMA algorithm makes a mistake,

the experts that were incorrect have their weights multiplied by β where β is a parameter

such that 0 < β < 1. Let εH be the number of errors committed by WMA so far, εi be the

number of errors by expert i, and n the number of experts. Then for an online prediction

setting, it can be shown [LW94]:

εH ≤
log n+ εi log

1
β

log 2
1+β

(9.1)

For a value of β = 0.5, this yields εH ≤ 2.41(εi + lg n). In other words, the combiner is

within a small factor of the best expert and a logarithmic factor of the number of experts.

A very closely related algorithm to WMA is the Winnow algorithm. The Winnow al-

gorithm [Lit88] is one of the most well-known algorithms for learning a threshold function

of boolean inputs and mistake bounds have been derived for several variants of it. Blum

[Blu97] introduced a variant of the algorithm, Winnow-Specialists, specifically designed

for combining experts. Instead of requiring an expert to always make a prediction, experts

are allowed to abstain or “sleep”. The algorithm predicts using a weighted combination of

the experts that do not abstain. When updating the weights, only the weight of the experts

CHAPTER 9. ONLINE METHODS AND REGRET 163

that did not abstain are changed. When the combiner is incorrect2, the classifier increases

the weight on the experts voting correctly by 3
2

and decreases the weight on the incorrect

experts by 1
2
. If the n experts contain a subset of r infallible experts where at least one (pos-

sibly different) does not abstain on every example, then the online combiner’s mistakes are

limited as:

εH ≤ 2r log 3
2
3n. (9.2)

The key difference of the sleeping experts formulation is that experts are not penalized if

they know they are unsure and can abstain. Likewise, it makes working with an extremely

large number of experts computationally efficient as long as only a small subset are awake

for any particular example. Cohen & Singer [CS99] exploited this when they applied the

algorithm as a base classifier to topic classification where each expert was a word or phrase;

thus there were a large number of experts but only a small number (those present in the

document) made predictions for any given document. Additionally, Blum performs an

empirical evaluation using variants of WMA and Winnow-Specialist.

Freund et al. [FSSW97] introduce a generalization of the sleeping experts framework

that demonstrates how to convert an expert combination algorithm which uses all awake

experts to a sleeping expert combination that allows abstaining. The results they derive

remove the restrictions that a subset of the n experts be infallible, and they derive a variety

of theoretical results for various algorithms. We note this only to point out that the specialist

algorithms are more robust than what might seem from the conditions on Blum’s result.

Of course, returning to our motivation for this problem, our problem is that we don’t

know when we should put our experts to “sleep”. We have predictions over all examples

and we have indicators that we suspect might indicate a different weight on the experts

is preferable. Thus, an algorithm that specifies how to use indicator variables would be

preferable. Blum & Mansour [BM05] introduce such an algorithm for the case where the

indicators are in [0, 1] that generalizes the sleeping expert setting. The essential idea is that

an indicator value of zero indicates abstaining and a value of one indicates fully voting. It

is then up to the algorithm to learn which experts are best when a given indicator is on.

First, we present the basic framework. Let I be the set of indicators and I ∈ I be a

particular indicator. Again, working in an online adversarial setting, I(t) will denote the

value that an indicator I takes at time t. Let lte be the loss of expert e at time t where

lte ∈ [0, 1]. The combiner H will operate by specifying a probability distribution at time

t, pt, over the experts, and the combiner suffers a loss equal to the expected loss: ltH =
∑n

e=1 p
t
el
t
e.

2Blum points out it is possible to penalize the ones that are incorrect when the combiner is correct, but
that for the proof to go through they can only be rewarded when the combiner is wrong.

164 9.3. COMBINATION ALGORITHMS WITH REGRET GUARANTEES

Their algorithm is based on the idea that we keep a weight for each indicator/base

classifier pair, and then compute the combiner’s probability vector over experts by nor-

malizing the linear combination of these weights and the indicator variables. First, each

indicator-expert pair weight is initialized to one, wt=1
e,I = 1. Then to compute the weight

given to each expert, we compute the linear combination of the current weights according

to how “on” each indicator is: wt
e =

∑

I∈I I(t)w
t
e,I . Next, we compute a normalizing

term, W t =
∑n

e=1 w
t
e, and produce a probability vector over the experts by normalizing the

weight distribution, pte = wte
W t . Prediction can either be performed by randomly choosing

an expert according to the distribution pte or by mixing the experts’ predictions using this

probability vector.3 To update the weights we perform a multiplicative update based on

how much better the expert was than the combiner and how “on” the particular indicator is

wt+1
e,I = wt

e,Iβ
I(t)(lte−βltH), where β ∈ (0, 1) is a parameter of the algorithm.

If we define the cumulative loss of an algorithm a under an indicator I as
∑T

t=1 I(t)La,

then this algorithm achieves good external regret bounds with respect to all of the indica-

tors. In particular, where m is the number of indicator variables :

LH,I ≤
Le,I + (log nm)/ log(1/β)

β
(9.3)

Note that by substituting in an “always on” indicator, typical regret bounds are achieved for

the best expert problem.

Since this seems a promising comparison point, we examine this algorithm to determine

its empirical performance and appropriateness for use throughout the rest of the disserta-

tion. We refer to this algorithm as BMX since Blum & Mansour introduce it and prove

external regret bounds using it. They also introduce a general method for converting exter-

nal regret guarantees to internal regret guarantees and present a particular algorithm with

internal regret guarantees [BM05]. We note this for the interested reader but do not present

these as comparisons because we feel they still do not address the issues most pertinent to

us.

For classification, the experts can give us estimates of the posterior probabilities or

class predictions. We will use πt,e to denote expert e’s vector of posterior probability

estimates over classes at time t. Likewise, we will use Πt to denote the matrix composed

of all the expert’s probability vectors πt,e. Finally, ŷt,e is the class prediction of expert e

at time t. When a class prediction is taken from a posterior estimate, we assume ŷt,e =

argmaxc πt,e[c].

3Blum & Mansour’s analysis proceeds by randomly choosing an expert according to the vector since this
allows for application to problems outside of classification. For our purposes, either can be done and a further
discussion of this issue is below.

CHAPTER 9. ONLINE METHODS AND REGRET 165

9.4 Empirical Analysis

As done throughout this dissertation and described in more detail in Sections 6.3 and 7.2 we

selected five classifiers as base classifiers or input experts for the combination algorithms:

kNN, decision trees, linear SVMs, naı̈ve Bayes, and a unigram classifier. We denote these

below as kNN, Dnet, SVM, naı̈ve Bayes, and Unigram.

We require the outputs of the base classifiers to train the metaclassifiers. Thus, we

perform cross-validation over the training data and use the resulting base classifier pre-

dictions, obtained when an example serves as a validation item, as training inputs for the

metaclassifier. As described in Section 6.3, each of the classifiers outputs a score that can

be interpreted as an estimate of the log-odds for the example. We convert these scores to a

probability by treating them as if they were the log-odds.

We present results here for the algorithms applied to two corpora, the Reuters corpus

and the MSN Web Directory. As a reminder from Chapter 7, the Reuters corpus yielded

less improvement for the combiners than was achieved in the MSN Web corpus. Thus, in

judging whether these online algorithms are indeed attractive alternatives to using a linear

SVM as a metaclassifier, these corpora form two useful sample points. We present only the

results for Stack-S (norm) and STRIVE-S (norm) here for comparison since those were the

most competitive.4

As done in the earlier experiments, for the experiments below, we used only the top

1000 words with highest mutual information for the MSN Web Directory and the top 300

words for Reuters for all base classifiers except the kNN classifier. Since the kNN classifier

is computationally expensive, we desired to use the same feature representation across

binary classification tasks within a corpus. Once neighbors are retrieved, the kNN classifier

can make all class decisions quickly. As is commonly done (e.g. [LYRL04]), for each word

we assigned a score of the maximum of the mutual information scores across binary tasks.

The top features were then taken across these maximum scores. Since the same feature

set was being used for all classes within a corpus, we used 3× the number of features —

3000 words for MSN Web and 900 for Reuters. These settings are exactly as in our earlier

experiments to perform a fair comparison. The corpora are described in further detail in

Section 6.2.

To compare the performance of the classification methods we look at a set of standard

performance measures: the macro-averaged F1, micro-averaged F1, error, two linear utility

4Although we note that for some of the ROC measures STRIVE-D variants were the most competitive.
Since it is not pertinent to this discussion, we omit it here for brevity and refer the reader back to Chapter 7 if
they have further interest.

166 9.4. EMPIRICAL ANALYSIS

functions — C(10, 1) and C(1, 10), the area under the ROC curve, as well as the abbrevi-

ated area under the ROC curve. These measures are described in more detail in Section 6.1

and in Chapter 7.

9.4.1 Combination Implementations

For most of the online algorithms, there are several common variants — both in the online

learning case and when applied for batch learning. In addition, each algorithms has several

parameters. In order to enable reproducibility, we give pseudocode for each algorithm and

specify what parameter settings we use.

One common variant for converting an online algorithm to a batch setting is to make

multiple passes through the training data and relax the award/penalty parameter β after each

pass by driving the value of β toward 1. We perform this relaxation for all of the algorithms

and present results for a single pass through the data and 10 passes through the data.

WMA

The implementation of WMA we use is essentially the WMG variant from Littlestone

& Warmuth 1994 [LW94] but we use squared-difference in posterior probability for the

weight updates instead of absolute difference. As done in [Blu97], we use β = 0.5. Blum

notes that the algorithm showed little empirical sensitivity to the particular value of β. For

those runs using more than one iteration over the training set, we use η = 0.25. It is com-

mon to include |C| − 1 experts that predict class c with probability 1 to allow the algorithm

to automatically adjust a threshold. In addition to the base classifiers, we include these

“constant experts” as well. Pseudocode for the prediction and training algorithms are given

in Algorithms 9.4.1 and 9.4.2.

Algorithm 9.4.1: WMA predict(n,w,Π)

// Preconditions: πe[c] ∈ [0, 1]. 1 =
∑

c πe[c]. For some e, we 6= 0.

pe =
we

∑n
e=1 we

// weight combiner places on e

πH =
∑n

e=1 peπe

ŷH = argmaxc πH [c]

output (πH , ŷH)

CHAPTER 9. ONLINE METHODS AND REGRET 167

Algorithm 9.4.2: batch train WMA(R, n, 〈〈Π1, y1〉, . . . , 〈ΠT , yT 〉〉, η, β)

// Preconditions: πt,e[c] ∈ [0, 1]. 1 =
∑

c πt,e[c]. β, η ∈ (0, 1).

w← ~1n

for r ← 1 to R

do

for t← 1 to T

do

πt,H , ŷt,H ←WMA predict(n,w,Πt)

P (c = yt | xt)← 1

P (c 6= yt | xt)← 0

we ← weβ
(πe[yt]−P (yt|xt))2

// Relax β by driving it toward 1.

β ← β + η(1− β)
output (w)

Winnow

The implementation of Winnow we use is essentially the same as that empirically explored

by Blum [Blu97] in his variant of the original Winnow2 algorithm [LW94] for sleeping-

experts. Since by default all of the experts are awake for our problem, the main differences

from WMA are that Winnow only updates the weights on the experts when the combination

algorithm makes a mistake and that the amount of weight change is based on 0/1 loss.

Two minor differences from Blum’s implementation is that Blum promotes by (1 + β)

instead of β−1 for theoretical reasons but notes that empirical results show no significant

impact from this change. Second, Blum’s original formulation did not change the weights

on the sleeping experts, but also did not ensure that the probability placed on those experts

did not change as required in [FSSW97]. The formulation we give follows [FSSW97] in

that the sum of the weights on the awake specialists is constant before and after an update.

Since we only apply this when all experts are awake, it does not change our results. We

simply note this for the reader interested in reapplying the algorithm.

Finally, as done in [Blu97], we use β = 0.5. Again, Blum notes that little empirical

sensitivity was shown to the particular value of β. For those runs using more than one

iteration over the training set, we use η = 0.25. We predict the most likely class instead of

using a threshold parameter and again include the use of a set of |C| − 1 constant experts.

Since we apply this for binary classification, this means we use a single constant always-

awake expert that predicts class 1.

Pseudocode for the prediction and training algorithms for an implementation that per-

forms n-way classification are given in Algorithms 9.4.3 and 9.4.4.

168 9.4. EMPIRICAL ANALYSIS

Algorithm 9.4.3: Winnow Specialists predict(n,w,Π,A)

// Preconditions: Ae ∈ {0, 1}. For some e, Ae 6= 0 and we 6= 0. πe[c] ∈ [0, 1]. 1 =
∑

c πe[c].

pe =
Aewe

∑n
e=1 Aewe

// weight combiner places on e

πH =
∑n

e=1 peπe

ŷH = argmaxc πH [c]

output (πH , ŷH)

Algorithm 9.4.4: batch train Winnow Specialists(R, n, 〈〈Π1, y1〉, . . . , 〈ΠT , yT 〉〉, η, β)

// Preconditions: πt,e[c] ∈ [0, 1], 1 =
∑

c πt,e[c]. β, η ∈ (0, 1).

w← ~1n

for r ← 1 to R

do

for t← 1 to T

do

A← ~0n

if (e is awake) then

Ae ← 1

πt,H , ŷt,H ←Winnow Specialists predict(n,w,Πt,A)

if (yt 6= ŷt,H) then

if (e is awake) then
{

we ← weβ
2∗11 (ŷt,e 6=yt)−1

∑

e Aewe
∑

e Aeweβ
2∗11 (ŷt,e 6=yt)−1

// Relax β by driving it toward 1.

β ← β + η(1− β)
output (w)

BMX

For the BMX algorithm, we need indicators in the [0, 1] interval to use. For this purpose,

we use the set of reliability indicators described in Chapter 5. To map these indicators to

the zero-one interval, we range-normalize each reliability indicator. That is, features that

take a value less than the minimum (mini for feature i) observed value in the training set are

mapped to zero. Those greater than the maximum are mapped to one (maxi for feature i).

For each remaining feature i a value vi is mapped to vi−mini
maxi−mini . Additionally, we include

the probabilities of “in-class” from the classifiers as indicators.

Our implementation of the BMX algorithm is exactly as that described in [BM05] ex-

cept for one change in prediction. In the original, BMX uses pe to randomly draw an expert

and predicts with that expert’s prediction. We use pe to mix the posterior probabilities of

CHAPTER 9. ONLINE METHODS AND REGRET 169

the experts. This does not affect the training of the model. It only alters the predictions over

the test set. In our experience, this always was a better alternative to randomly drawing an

example.

For comparability to the other algorithms, we use β = 0.5. For those runs using more

than one iteration over the training set, we use η = 0.25. As a loss function, we use

squared error. We predict the most likely class instead of using a threshold parameter

and again include the use of a set of |C| − 1 constant experts. Since we apply this for

binary classification, this means we use a single constant expert that predicts class 1 with

probability 1.

Since we are primarily interested in the suitability of the BMX algorithm as an alter-

native to other approaches to using reliability indicators, we provide greater detail in the

pseudocode than for the other algorithms. Pseudocode for the prediction and training al-

gorithms for an implementation that performs n-way classification are given in Algorithms

9.4.5-9.4.7.

We also present results for a modified version of the BMX algorithm which we refer to

as BMXmod and differs in two points from BMX. We observed over holdout data that the

indicators in BMX can occasionally act more like “importance functions” than “reliability

indicators”. For example, when the sum across all of the indicators is high, that training

example can cause a very large shift in the weights while another example that has a low

sum causes very little change. To help prevent this, BMXmod (L1) normalizes the sum

of the indicator variables to be 1. Second, the BMX algorithm computes the loss of the

combination algorithm as the weighted combination (using pe) of the loss of the experts.

BMXmod directly computes the loss of the combiner by setting it to be the squared error

of the combiner. Because of this change, using pe to mix the expert’s estimates instead of

randomly drawing an expert also affects the training of the model in BMXmod as well as

the prediction.

Finally, the BMX algorithm updates the weights for nearly every training example. An

alternative approach to consider is, like Winnow, to only update the weights if the combiner

makes an error in prediction. To do so, we introduce a variant of BMX and BMXmod which

we refer to as WinBMX and WinBMXmod, respectively. These algorithms only update the

weights if the combiner’s log-odds of the correct class is less than one. Thus, this acts as a

margin and for examples that are only slightly correct, we continue to update the weights.

170 9.4. EMPIRICAL ANALYSIS

Algorithm 9.4.5: BMX predict(n,w, I,Π)

// Preconditions: I ∈ [0, 1]. we,I ≥ 0. For some (I, e), I 6= 0 and we,I 6= 0.

// πe[c] ∈ [0, 1]. 1 =
∑

c πe[c].

w′ ← ~0n

W ← 0

for I ∈ I
do for e← 1 to n

do

{

w′e ← I ∗ we,I + w′e
W ← W + w′e

for e← 1 to n

do pe =
w′e
W

// weight combiner places on e

πH =
∑n

e=1 peπe

ŷH = argmaxc πH [c]

output (πH , ŷH ,p)

Algorithm 9.4.6: BMX update weights(n,w, I,L, LH , norm)

// Preconditions: I ∈ [0, 1]. we,I ≥ 0. L,LH ∈ [0, 1]. norm ∈ {0, 1}.
c← 1

if (norm) then

old ← 0

new ← 0

for e← 1 to n

do for I ∈ I
do if (I 6= 0) then
{

old ← old + we,I

new ← new + we,Iβ
I(Le−βLH)

if (old 6= 0) then

c← old
new

for e← 1 to n

do for I ∈ I
do if (I 6= 0) then

we,I ← we,Icβ
I(Le−βLH)

output (w′)

CHAPTER 9. ONLINE METHODS AND REGRET 171

Algorithm 9.4.7: batch train BMX (R, n,L, 〈〈Π1, I1, y1〉, . . . , 〈ΠT , IT , yT 〉〉, η, β)

// Preconditions: πt,e[c], It ∈ [0, 1], 1 =
∑

c πt,e[c]. β, η ∈ (0, 1).

// L : R
n × R

n × Y × Y → [0, 1].

w← ~1n ×~1|I|
for r ← 1 to R

do

for t← 1 to T

do

πt,H , ŷt,H ,p← BMX predict(n,w,Πt)

P (c = yt | xt)← 1

P (c 6= yt | xt)← 0

Lt ← ~0n

Lt,H ← 0

for e← 1 to n

do

{

Lt,e ← L(P(c | xt),Πt,e, yt, ŷt,e) // get loss of expert

Lt,H ← Lt,H + peLt,e // Combiner’s loss depends on e’s weight

// Relax β by driving it toward 1.

β ← β + η(1− β)
output (w)

9.4.2 Results and Discussion

The results for the MSN Web corpus are presented in Table 9.1. The results for the Reuters

corpus are presented in Table 9.2. We note that the Winnow and WMA variants use only

the classifier outputs, and thus we are interested in them as an alternative metaclassifier in

stacking to Stack-S (norm). In contrast, the BMX variants use the indicators, and thus we

are interested in them as an alternative metaclassifier in the striving framework to STRIVE-S

(norm).

First, we note that unlike Stack-S (norm), WMA and Winnow often do not outperform

even the base classifiers and rarely significantly. Of these options the clear best choice in

both corpora is Winnow (R = 10) — Winnow using a relaxed β over multiple iterations. We

also note that relaxation with multiple passes is clearly important to the implementation of

Winnow here. There are two possible reasons why Winnow requires multiple passes. The

first is since updates are only performed when the combiner makes a mistake, convergence

to an optimal weight set is slow. The second possibility is that the convergence is slow as a

result of the update for Winnow being based on 0/1 loss instead of squared loss. However,

comparing Winnow (R = 10) to Stack-S (norm) over both corpora, even this variant is not

a superior or even comparable alternative to Stack-S (norm).

172 9.4. EMPIRICAL ANALYSIS

In contrast, the indicator-based online methods, in particular the WinBMX variants,

often outperform the base classifiers. The WinBMX variants outperform the base classifiers

relatively frequently in the Reuters corpus and very often in the MSN Web corpus. The

relaxation with multiple iterations does not seem to be critical to any of the indicator-based

online methods. Since WinBMX uses the same weight update (i.e., squared-loss based),

this makes it more likely that the slow convergence observed above for Winnow was a

result of the update weight and not the number of updates.

Next, while each WinBMX variant does not always beat its BMX pairing, each does so

consistently enough that WinBMX is clearly the superior choice to BMX. While the modi-

fication in the mod variants have some impact, this impact does not appear to be consistent

across all performance measures, and thus these modifications are probably not desirable

in all cases.

In comparing the indicator-based online alternatives to STRIVE-S (norm), we see that

WinBMX stays competitive with STRIVE-S (norm) in Reuters where striving does not yield

as large of an improvement. However, in the MSN Web Corpus where striving obtains

a much larger improvement, WinBMX and all of the indicator-based online methods are

significantly beaten by STRIVE-S (norm) according to nearly every performance measure.

Thus, it seems that indicator-based online methods are not able to utilize the indicators as

effectively.

However, comparing the indicator-based online methods and in particular WinBMX to

the basic methods, we see that the indicator-based methods do generally improve over the

basic online methods. Thus, even among these methods that do not improve as much rela-

tive to the base classifiers as is desirable, the reliability indicators have an impact. Also, we

note that interestingly BMXMod achieves the highest ROC area in the MSN Web corpus,

although looking at the abbreviated area it does much worse. The fact that these methods

are using the indicators, but not as well as desired, leaves some hope for future modifica-

tions. In the next section, we discuss those modifications we believe most likely to have an

impact.

Finally, for the reader considering using the online methods, compared to the BMX

variants, the WinBMX variants can be significantly more computationally efficient since

the number of examples having weight updates is extremely small. Since every example

for BMX has a prediction and update of roughly the same complexity, the Winnow variants

experience at least a 2× speed-up.

CHAPTER 9. ONLINE METHODS AND REGRET 173

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC
Area

ROC
[0,0.1]

Dnet 0.5477 0.5813 0.0584 0.3012 0.0772 0.8802 0.5638
Unigram 0.5982 0.6116 0.0594 0.2589 0.0812 0.9003 0.6114
naı̈ve Bayes 0.5527 0.5619 0.0649 0.2853 0.0798 0.8915 0.5516
SVM 0.6727B 0.7016B 0.0455 0.2250B 0.0794 0.9123 0.6960B

kNN 0.6480 0.6866 0.0464 0.2524 0.0733 0.8873 0.6541

Best By Class 0.6727D 0.7016 0.0452D 0.2235 0.0729D N/A N/A
Majority 0.6643 0.6902 0.0479 0.2133BDO 0.0765 N/A N/A

WMA 0.6324 0.6756 0.0472 0.2560 0.0746 0.8884 0.6465
WMA

(R = 10)
0.6317 0.6757 0.0472 0.2563 0.0746 0.8865 0.6461

Winnow 0.5918 0.6369 0.0479 0.3109 0.0724 0.9303B
O 0.7204B

O

Winnow

(R = 10)
0.6668

O
0.7033BD

O
0.0453 0.2439

O
0.0780 0.9166B 0.7068B

BMX 0.6657 0.7069BD

O
0.0440BDO 0.2194O 0.0731 0.9287B 0.7053

BMX

(R = 10)
0.6603 0.6993BD 0.0453 0.2351 0.0743 0.9227B 0.7038

BMXmod 0.6727 0.7031 0.0435BD
O 0.2158B

O 0.0717 0.9355B
O 0.7122B

BMXmod

(R = 10)
0.6710 0.7049BD 0.0436BD

O 0.2125B
O 0.0717 0.9347B

O
0.7115B

WinBMX 0.6811BD
O 0.7115BD

O
0.0428BD

O 0.2084B
O 0.0729 0.9304B 0.7195B

WinBMX

(R = 10)
0.6841BDO 0.7114BD

O
0.0434BD

O 0.2088B
O 0.0754 0.9267B 0.7223B

WinBMXmod 0.6810BD
O 0.7082 0.0434BD

O 0.2111B
O 0.0725 0.9348B

O 0.7190B

WinBMXmod

(R = 10)
0.6827BD

O 0.7103BD 0.0432BD
O 0.2082B

O 0.0731 0.9324B
O

0.7201B

Stack-S

(norm)
0.6939BD

O 0.7250BD

OI
0.0423BD

O 0.1971BD
OI 0.0705D 0.9334B 0.7349B

OI

STRIVE-S

(norm)
0.7173BDS

OI 0.7437BDS

OI
0.0392BDS

OI 0.1835BDS
OI 0.0682 0.9260B 0.7547BS

OI

BestSelect 0.8719 0.8924 0.0223 0.0642 0.0565 N/A N/A

Table 9.1: Comparison of the Online Combiners over the MSN Web Corpus. The best performance
(omitting the oracle BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, ‘R’,
’O’, or ’I’ indicates a method significantly outperforms all (other) Base classifiers, Default com-
biners, Stacking methods, Reliability-indicator based Striving methods, Online basic methods, or
Indicator-based online methods at the p = 0.05 level. A blackboard (hollow) font is used to indicate
significance for the macro-sign test and micro-sign test. A normal font indicates significance for the
macro t-test. For the macro-averages (i.e., excluding micro F1) when both tests are significant it is
indicated with a bold, italicized font.

174 9.4. EMPIRICAL ANALYSIS

MacroF1 MicroF1 Error C(1,10) C(10,1) ROC
Area

ROC
[0,0.1]

Dnet 0.7846 0.8541 0.0242 0.0799 0.0537 0.9804 0.8844
Unigram 0.7645 0.8674 0.0234 0.0713 0.0476 0.9877 0.9086
naı̈ve Bayes 0.6574 0.7908 0.0320 0.1423 0.0527 0.9703 0.7841
SVM 0.8545B 0.9122B 0.0145B 0.0499 0.0389 0.9893 0.9429B

kNN 0.8097 0.8963 0.0170 0.0737 0.0336 0.9803 0.9043

Best By Class 0.8608 0.9149 0.0144 0.0496 0.0342 N/A N/A
Majority 0.8498 0.9102 0.0155 0.0438 0.0437 N/A N/A

WMA 0.8432 0.9064 0.0155 0.0595 0.0376 0.9890 0.9370
WMA

(R = 10)
0.8443 0.9056 0.0154 0.0618 0.0365 0.9846 0.9235

Winnow 0.8398 0.9074 0.0158 0.0698 0.0405 0.9946B 0.9549B

Winnow

(R = 10)
0.8727B 0.9208BD

O
0.0141 0.0439B

O 0.0339 0.9937B 0.9537B

BMX 0.8640 0.9132 0.0144 0.0553 0.0365 0.9941 0.9487
BMX

(R = 10)
0.8581 0.9109 0.0146 0.0576 0.0403 0.9928 0.9408

BMXmod 0.8616 0.9166 0.0141 0.0402B 0.0334 0.9952B 0.9562B

BMXmod

(R = 10)
0.8643 0.9166 0.0140 0.0403B 0.0324 0.9951B 0.9565B

WinBMX 0.8843BD 0.9232BD 0.0134BD 0.0426B 0.0363 0.9933B 0.9545B

WinBMX

(R = 10)
0.8606 0.9122 0.0147 0.0467B 0.0379 0.9896 0.9453

WinBMXmod 0.8691 0.9225BD 0.0132BD 0.0386BD
O 0.0318 0.9955B 0.9598B

WinBMXmod

(R = 10)
0.8747 0.9232BD 0.0125BD 0.0388B 0.0332 0.9955B

O
0.9612B

O

Stack-S

(norm)
0.8908BD 0.9307BD

OI
0.0125BD 0.0372BD

O 0.0331 0.9956B
O

0.9628B

STRIVE-S

(norm)
0.8835BD 0.9287BD

O
0.0121BD 0.0352BD

O 0.0343 0.9948B 0.9616B

BestSelect 0.9611 0.9789 0.0036 0.0073 0.0173 N/A N/A

Table 9.2: Comparison of the Online Combiners over Reuters. The best performance (omitting the
oracle BestSelect) in each column is given in bold. A notation of ‘B’, ‘D’, ‘S’, ‘R’, ’O’, or ’I’ in-
dicates a method significantly outperforms all (other) Base classifiers, Default combiners, Stacking
methods, Reliability-indicator based Striving methods, Online basic methods, or Indicator-based
online methods at the p = 0.05 level. A blackboard (hollow) font is used to indicate significance for
the macro-sign test and micro-sign test. A normal font indicates significance for the macro t-test.
For the macro-averages (i.e., excluding micro F1) when both tests are significant it is indicated with
a bold, italicized font.

CHAPTER 9. ONLINE METHODS AND REGRET 175

9.5 Reconciling Theory and Practice

While the preceding online algorithms are well-motivated and have attractive theoretical

guarantees, in practice their performance was somewhat disappointing. From the practical

standpoint, perhaps a guarantee relative to the best base classifier or the best base classifier

weighted by indicator is too weak. One way of addressing this might be to broaden the

class of regret alternatives to those that have internal regret guarantees.

While this is a step in the correct direction, we can gain insight from examining how

metaclassification algorithms have actually gained in practice when applied to base class-

ifiers — in contrast to combining human experts. The majority of schemes can be viewed

as a weighted combination of classifier predictions or as selecting the best classifier in a

context.

We will focus on the weighted combination scheme and then turn to selecting the best

classifier. Continuing with online notation, consider when we have a two class problem

where the class yt ∈ {−1, 1}. Suppose base classifier e has a confidence score π̂t,e ∈ [0, 1]

and predicts the class ŷt,e = sign(π̂t,e − 0.5). Then, as reviewed in Section 3.2, it is quite

common in practice to have a machine learning classification model rank the examples well

when sorted by π̂t,e but whose classification decisions ŷt,e are not optimal. Essentially, the

model has not learned the correct threshold or bias term — instead of predicting sign(π̂t,e−
0.5) it should output sign(π̂t,e− b) where b is a constant in [0, 1]. A natural way to consider

such a classifier in the combination framework is to combine it with a classifier that always

outputs π̂t,e = 1 and learn a set of combination weights over the π̂t,e (recasting the sign

issue if necessary). Essentially, we want to learn a set of weights whose loss is close to

the loss of the best averaged prediction. In contrast, most regret guarantees would give us

bounds with respect to the expected loss of selecting an expert. In this case, the default

classifier performs no better than the prior and the poor threshold of the best classifier is

exactly what we would like to fix. Thus, performing as well as the best expected loss is not

a great gain. While this is an exaggerated case, it is easy to construct real situations where

these methods will not give enough weight to the default classifier and generalize worse

than models without explicit guarantees.

If we now consider weighted averages of multiple classifiers, the optimal weight vector

can be seen as trading off the accuracy of the classifiers, their co-dependencies, and a

cumulative noise or bias term (when a constant prediction is included). By considering

methods that apply well to this class, we may achieve looser or no explicit bounds but

because the model has more flexibility we can achieve better generalization with sufficient

training data.

176 9.5. RECONCILING THEORY AND PRACTICE

The majority of bounds are with respect to expected loss; for example, see the definition

of ltH in the BMX algorithm above. As pointed out in [FSSW97] achieving a bound with

respect to averaged prediction is typically harder, and since most loss functions are convex,

a tight bound on averaged prediction loss implies a tight bound on expected loss. Since

seeing why we do not obtain a good bound in the opposite direction is a key point, it is

worth going through in detail.

Let’s deal with an online algorithm and restrict our attention to convex linear combina-

tions of the n experts, i.e. C = {u | u ∈ R
n,
∑

ui = 1, ui ≥ 0}. Let, ŝt ∈ R
n be the

output of the experts, which may be log-odds, probabilities, or binary classes.

A good algorithm with respect to expected loss would output wt such that

T
∑

t=1

wt · L(̂st, yt) ≤ inf
u∈C

T
∑

t=1

u · L(̂st, yt) + ZI (9.4)

where ZI is an appropriately defined “small” term (typically relative to T , number of ex-

perts, and the infimum).

A good algorithm with respect to the loss of an averaged prediction would output ωt

such that:
T
∑

t=1

L(ωt · ŝt, yt) ≤ inf
u∈C

T
∑

t=1

L(u · ŝt, yt) + ZII . (9.5)

Assuming, we have a good algorithm with respect to the second of these, averaged

prediction loss, we can easily derive a good bound for expected loss. In the following, let

w = argmin
u∈C

∑T
t=1 u · L(̂st, yt).5

T
∑

t=1

L(ωt · ŝt, yt) ≤ inf
u∈C

T
∑

t=1

L(u · ŝt, yt) + ZII (9.6)

By definition of inf

≤
T
∑

t=1

L(w · ŝt, yt) + ZII (9.7)

By Jensen′s inequality

≤
T
∑

t=1

w · L(̂st, yt) + ZII (9.8)

By definition of w

≤ inf
u∈C

T
∑

t=1

u · L(̂st, yt) + ZII (9.9)

5In the case where the minimum is not well-defined, the infimum will be defined and we are still guaran-
teed the result of the derivation since the inequality holds for all w. We omit the details of this.

CHAPTER 9. ONLINE METHODS AND REGRET 177

Finally, because ZII is guaranteed to be small relative to the smaller term of averaged

prediction loss, it will also be sufficiently small for averaged loss.

Now, what about reversing the result? Let ω = argmin
u∈C

∑T
t=1 L(u · ŝt, yt)

T
∑

t=1

wt · L(̂st, yt) ≤ inf
u∈C

T
∑

t=1

u · L(̂st, yt) + ZI (9.10)

≤
T
∑

t=1

ω · L(̂st, yt) + ZI (9.11)

Now we′re stuck

From Jensen’s inequality, we obviously have
∑T

t=1 L(ω · ŝt, yt) ≤
∑T

t=1ω ·L(̂st, yt)+ZI ,

but what we want is to say that the combiner’s loss is close to
∑T

t=1 L(ω · ŝt, yt) which

would require Jensen’s inequality to be flipped to continue the derivation.

From a graphical point of view, choosing a solution with a loss close to the minimum of

expected loss does not mean that using that same vector will be close to the minimum of the

averaged prediction loss. Some vectors may have a large divergence in the two measures.

We still have a loss bound on what our loss can be if we use the average loss solution,

wt, to average the predictions but we are not guaranteed to be in the neighborhood of the

minimum for average prediction loss. That is, the bound may be extremely loose with

respect to the minimum.

Because of this and the closely related issues when combining automatically produced

experts, metaclassifiers without explicit guarantees (e.g., SVMs) may generalize better

since their models allow for the expressivity to optimize for averaged prediction loss. While

we do not pursue such a vein here, the interested reader may be able to construct algorithms

with guarantees and that work well for combination by generalizing some of the basic com-

bination results with averaged prediction guarantees (e.g., exponentiated gradient methods

[FSSW97]) along the indicator variable lines presented in [BM05].

9.6 Chapter Summary

In this chapter, we provided an overview of some key approaches to combining classifiers in

an online classification framework and empirically analyzed their suitability for application

to our batch prediction framework. While the methods did not suffer any large losses as

guaranteed, our empirical analysis highlighted the lack of significant wins relative to using

a linear SVM as a batch metaclassifier as explored earlier. In our analysis, we discussed

how guarantees with respect to average loss of the experts is far weaker than the type of

178 9.6. CHAPTER SUMMARY

guarantee with respect to loss of averaged prediction that is needed. Finally, we suggested

literature of interest and future directions that the interested reader can pursue to continue

this line of research in a way that is likely to show higher empirical performance as well as

theoretical guarantees.

Chapter 10

Action-Item Detection in E-mail

In this chapter, we demonstrate that classifier combination methods are applicable to text

combination approaches outside of topic classification. In doing so, the aim is to demon-

strate the flexibility and applicability of these methods to a range of problems. As such, we

have chosen a problem, action-item detection in e-mail documents, that not only presents

different challenges as a learning problem than those present in topic classification but is

also focused on a different performance goal — improving the ranking of e-mails.

E-mail users have an increasingly difficult time managing their inboxes in the face of

challenges that result from rising e-mail usage. This includes prioritizing e-mails over a

range of sources from business partners to family members, filtering and reducing junk

e-mail, and quickly managing requests that demand the receiver’s attention or action. Au-

tomated action-item detection targets the third of these problems by attempting to detect

which e-mails require an action or response with information, and within those e-mails,

attempting to highlight the sentence or passage containing the action request.

Such a detection system can be used as one part of an e-mail agent which would assist a

user in processing important e-mails more quickly than would have been possible without

the agent. We view action-item detection as one necessary component of a successful e-

mail agent which would perform spam detection, action-item detection, topic classification

and priority ranking, among other functions. The utility of such a detector can manifest as

a method of prioritizing e-mails according to task-oriented criteria other than the standard

ones of topic and sender or as a means of ensuring that the email user hasn’t dropped the

proverbial ball by forgetting to address an action request.

In the context of this dissertation, action-item detection forms a very different type of

text classification problem for empirical study than topic classification. In particular, while

the cues indicating topic are spread throughout a document, the action-item(s) in an e-mail

are typically localized, often in the context of a single sentence. Thus, the intuition is that

179

180 10.1. WHY ACTION-ITEM DETECTION?

the class of the document will interact differently with the document feature representation

than in topic classification. Therefore, the natural question is whether this changes either

the effectiveness of the base classifiers or the combination approaches.

Secondly, while it can be challenging to identify exactly which portions of a docu-

ment make it about a specific topic during topic classification, identifying the sentences

that determine the action-item status of an e-mail is relatively straightforward. Given such

information, we would like to know whether it can be used effectively in the basic classi-

fication task, and if so, how we can incorporate this information into a reliability indicator

based approach during classifier combination.

We first continue to layout and describe the basic problem of action-item detection.

Then, we review related work for similar text classification problems such as e-mail pri-

ority ranking and speech act identification. Next we more formally define the action-item

detection problem, discuss the aspects that distinguish it from more common problems like

topic classification, and highlight the challenges in constructing systems that can perform

well at the sentence and document level. From there, we move to a discussion of feature

representation and selection techniques appropriate for this problem and how standard text

classification approaches can be adapted to move smoothly from the sentence-level detec-

tion problem to the document-level classification problem. We then conduct an empirical

analysis that helps us determine the effectiveness of our feature extraction procedures as

well as establish baselines for a number of classification algorithms on this task. Next, we

turn to the question of how we can combine a set of action-item detection systems and how

both sentence-level and document-level classifiers can be combined. Finally, we summa-

rize the implications for applying classifier combination techniques to other domains.

10.1 Why Action-Item Detection?

Action-item detection differs from standard text classification in two important ways. First,

the user is interested both in detecting whether an email contains action items and in lo-

cating exactly where these action item requests are contained within the email body. In

contrast, standard text categorization merely assigns a topic label to each text, whether that

label corresponds to an e-mail folder or a controlled indexing vocabulary [Lar99, YZCJ02,

LYJC04]. Second, action-item detection attempts to recover the email sender’s intent —

whether she means to elicit response or action on the part of the receiver; note that for

this task, classifiers using only a bag-of-words representation do not perform optimally, as

evidenced in our results below. Instead we find that we need more information-laden fea-

tures such as higher-order n-grams. Text categorization by topic, on the other hand, works

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 181

From: Henry Hutchins <hhutchins@innovative.company.com>
To: Sara Smith; Joe Johnson; William Woolings
Subject: meeting with prospective customers
Sent: Fri 12/10/2005 8:08 AM

Hi All,
I’d like to remind all of you that the group from GRTY will be visiting
us next Friday at 4:30 p.m. The current schedule looks like this:
+ 9:30 a.m. Informal Breakfast and Discussion in Cafeteria
+ 10:30 a.m. Company Overview
+ 11:00 a.m. Individual Meetings (Continue Over Lunch)
+ 2:00 p.m. Tour of Facilities
+ 3:00 p.m. Sales Pitch
In order to have this go off smoothly, I would like to practice the
presentation well in advance. As a result, I will need each of your
parts by Wednesday.
Keep up the good work!
–Henry

Figure 10.1: An E-mail with emphasized Action-Item, an explicit request that requires the recipi-
ent’s attention or action.

very well using just individual words as features[Lew92a, ADW94a, DPHS98, Seb02]. In

fact, genre-classification, which one would think may require more than a bag-of-words

approach, also works quite well using just unigram features[LCJ03]. Topic detection and

tracking (TDT), also works well with unigram feature sets [YCB+99, ACD+98]. We be-

lieve that action-item detection is one of the first clear instances of a text classification

related task where we must move beyond bag-of-words to achieve high performance, albeit

not too far, as bag-of-n-grams seem to suffice, given state-of-the-art classifiers.

10.2 Related Work

Several other researchers have considered very similar text classification tasks. Cohen et al.

[CCM04] describe an ontology of “speech acts”, such as “Propose a Meeting”, and attempt

to predict when an e-mail contains one of these speech acts. While their ontology mostly

focused on types of speech acts that are specific kinds of action-item requests, we consider

action-items in general to be an important specific type of speech act that falls within a

much broader ontology of speech acts. Furthermore, while they provide results for several

classification methods, their methods only make use of human judgments at the document-

level. In contrast, we consider whether accuracy can be increased by using finer-grained

human judgments that mark the specific sentences and phrases of interest.

182 10.3. PROBLEM DEFINITION & APPROACH

Corston-Oliver et al. [CORGC04] consider detecting items in e-mail to “Put on a To-Do

List”. This classification task is very similar to ours except they do not consider “simple

factual questions” to belong to this category. We include questions, but note that not all

questions are action-items — some are rhetorical or simply social convention, e.g., “How

are you?”. From a learning perspective, while they make use of judgments at the sentence-

level, they do not explicitly compare what, if any, benefits finer-grained judgments offer.

Additionally, they do not study alternative choices or approaches to the classification task.

Instead, they simply apply a standard SVM at the sentence-level and focus primarily on

a linguistic analysis of how the sentence can be logically reformulated before adding it to

the task list. In this study, we examine several alternative classification methods, compare

document-level and sentence-level approaches and analyze the machine learning issues

implicit in these problems. We are also the first to examine in detail the gains from classifier

combination in this problem.

For those that wish to purse further reading on this topic, a variety of learning tasks

related to e-mail has been rapidly growing in the recent literature. For example, in a forum

dedicated to e-mail learning tasks, Culotta et al. [CBM04] presented methods for learning

social networks from e-mail. We do not use peer relationship information in building our

classifiers; however, such methods could complement those here since peer relationships

often influence word choice when requesting an action.

10.3 Problem Definition & Approach

In contrast to previous work, we explicitly focus on the benefits that finer-grained, more

costly, sentence-level human judgments offer over coarse-grained document-level judg-

ments. Additionally, we consider multiple standard text classification approaches and an-

alyze both the quantitative and qualitative differences that arise from taking a document-

level vs. a sentence-level approach to classification. We also focus on the representation

necessary to achieve the most competitive performance. Finally, after demonstrating the

difference in document-level and sentence-level approaches to the document classification

task, we examine what can be gained from classifier combination in this problem.

10.3.1 Problem Definition

In order to provide the most benefit to the user, a system would not only detect the doc-

ument, but it would also indicate the specific sentences in the e-mail which contain the

action-items. Therefore, there are three basic action-item detection problems:

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 183

1. Document detection: Classify a document as to whether or not it contains an action-

item.

2. Document ranking: Rank the documents such that all documents containing action-

items occur as high as possible in the ranking.

3. Sentence detection: Classify each sentence in a document as to whether or not it is

an action-item.

As in most Information Retrieval tasks, the weight the evaluation metric should give

to precision and recall depends on the nature of the application. In situations where a user

will eventually read all received messages, ranking (e.g., via precision at recall of 1) may be

most important since this will help encourage shorter delays in communications between

users. In contrast, high-precision detection at low recall will be of increasing importance

when the user is under severe time-pressure and therefore will likely not read all mail. This

can be the case for crisis managers during disaster management. Finally, sentence detection

plays a role in both time-pressure situations and simply to alleviate the user’s required time

to gist the message. In the first part of this chapter, we focus on standard performance

measures such as F1 and accuracy. Then, as we return to classifier combination, we will

discuss ranking measures such as ROC curves and area under the curve.

10.3.2 Approach

As mentioned above, the labeled data can come in one of two forms: a document-labeling

provides a yes/no label for each document as to whether it contains an action-item; a

phrase-labeling provides only a yes label for the specific items of interest. We term the

human judgments a phrase-labeling since the user’s view of the action-item may not cor-

respond with actual sentence boundaries or predicted sentence boundaries. Obviously, it

is straightforward to generate a document-labeling consistent with a phrase-labeling by

labeling a document “yes” if and only if it contains at least one phrase labeled “yes”.

To train classifiers for this task, we can take several viewpoints related to both the basic

problems we have enumerated and the form of the labeled data. The document-level view

treats each e-mail as a learning instance with an associated class-label. Then, the document

can be converted to a feature-value vector and learning progresses as usual. Applying a

document-level classifier to document detection and ranking is straightforward. In order

to apply it to sentence detection, one must make additional steps. For example, if the

classifier predicts a document contains an action-item, then areas of the document that

contain a high concentration of words which the model weights heavily in favor of action-

184 10.3. PROBLEM DEFINITION & APPROACH

items can be indicated. The obvious benefit of the document-level approach is that training

set collection costs are lower since the user only has to specify whether or not an e-mail

contains an action-item and not the specific sentences.

In the sentence-level view, each e-mail is automatically segmented into sentences, and

each sentence is treated as a learning instance with an associated class-label. Since the

phrase-labeling provided by the user may not coincide with the automatic segmentation,

we must determine what label to assign a partially overlapping sentence when converting

it to a learning instance. Once trained, applying the resulting classifiers to sentence de-

tection is now straightforward, but in order to apply the classifiers to document detection

and document ranking, the individual predictions over each sentence must be aggregated in

order to make a document-level prediction. This approach has the potential to benefit from

more-specific labels that enable the learner to focus attention on the key sentences, instead

of having to learn based on data for which the majority of the words in the e-mail provide

no or little information about class membership.

Features

Consider some of the phrases that might constitute part of an action item: “would like to

know”, “let me know”, “as soon as possible”, “have you”. Each of these phrases consists

of common words that occur in many e-mails. However, when they occur as a phrase in

the same sentence, they are far more indicative of an action-item. Additionally, order can

be important: consider “have you” versus “you have”. Because of this, we posit that n-

grams play a larger role in this problem than is typical of problems like topic classification.

Therefore, we consider all n-grams up to size 4. Thus, we compare using a “bag of phrases

and words” to simply using a “bag of words”.

When using n-grams, if we find an n-gram of size 4 in a segment of text, we can

represent the text as just one occurrence of the n-gram or as one occurrence of the n-

gram and an occurrence of each smaller n-gram contained by it. We choose the second of

these alternatives since this will allow the algorithm itself to smoothly back-off in terms

of recall. Methods such as naı̈ve Bayes may be hurt by such a representation because of

double-counting.

Since sentence-ending punctuation can provide information, we retain the terminating

punctuation token when it is identifiable. Additionally, we add a beginning-of-sentence and

end-of-sentence token in order to capture patterns that are often indicators at the beginning

or end of a sentence. Assuming proper punctuation, these extra tokens are unnecessary,

but often e-mail lacks proper punctuation. In addition, for the sentence-level classifiers

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 185

that use n-grams, we additionally code for each sentence a binary encoding of the position

of the sentence relative to the document. This encoding has eight associated features that

represent which octile (the first eighth, second eighth, etc.) contains the sentence.

Implementation Details

In order to compare the document-level to the sentence-level approach, we compare pre-

dictions at the document-level. We do not address how to use a document-level classifier

to make predictions at the sentence-level.

In order to automatically segment the text of the e-mail, we use the RASP statistical

parser [Car02]. Since the automatically segmented sentences may not correspond directly

with the phrase-level boundaries, we treat any sentence that contains at least 30% of a

marked action-item segment as an action-item. When evaluating sentence-detection for

the sentence-level system, we use these class labels as ground truth. Since we are not

evaluating multiple segmentation approaches, this does not bias any of the methods. If

multiple segmentation systems were under evaluation, one would need to use a metric that

matched predicted positive sentences to phrases labeled positive. The metric would need

to punish overly long true predictions as well as too-short predictions. Our criteria for

converting to labeled instances implicitly includes both criteria. Since the segmentation is

fixed, an overly long prediction would be predicting “yes” for many “no” instances since

presumably the extra length corresponds to additional segmented sentences all of which

do not contain 30% of an action-item. Likewise, a too short prediction must correspond

to a small sentence included in the action-item but not constituting all of the action-item.

Therefore, in order to consider the prediction to be too short, there will be an additional

preceding/following sentence that is an action-item where we incorrectly predicted “no”.

Once a sentence-level classifier has made a prediction for each sentence, we must com-

bine these predictions to make both a document-level prediction and a document-level

score.1 We use the simple policy of predicting positive when any of the sentences is pre-

dicted positive. In order to produce a document score for ranking, the confidence that the

document contains an action-item is:

ψ(d) =

1
n(d)

∑

s∈d|π(s)=1 ψ(s) if for any s ∈ d, π(s) = 1

1
n(d)

maxs∈d ψ(s) o.w.

where s is a sentence in document d, π is the classifier’s 1/0 prediction, ψ is the score the

classifier assigns as its confidence that π(s) = 1, and n(d) is the greater of 1 and the number
1This combination problem differs in nature from those discovered previously in this dissertation. In this

problem the set of experts (sentences) changes from document to document. We go further into detail on this
point later in the chapter.

186 10.4. EXPERIMENTAL ANALYSIS FOR ACTION-ITEM DETECTION

of (unigram) tokens in the document. In other words, when any sentence is predicted

positive, the document score is the length normalized sum of the sentence scores above

threshold. When no sentence is predicted positive, the document score is the maximum

sentence score normalized by length. As in other text problems, we are more likely to emit

false positives for documents with more words or sentences. Thus we include a length

normalization factor.

10.4 Experimental Analysis for Action-Item Detection

10.4.1 The Data

Our corpus consists of e-mails obtained from volunteers at Carnegie Mellon University and

cover subjects such as: organizing a research workshop, arranging for job-candidate inter-

views, publishing proceedings, and talk announcements. The messages were anonymized

by replacing the names of each individual and institution with a pseudonym. After attempt-

ing to identify and eliminate duplicate e-mails, the corpus contains 744 e-mail messages.

After identity anonymization, the corpora has three basic versions. Quoted material

refers to the text of a previous e-mail that an author often leaves in an e-mail message when

responding to the e-mail. Quoted material can act as noise when learning since it may

include action-items from previous messages that are no longer relevant. To isolate the

effects of quoted material, we have three versions of the corpora. The raw form contains

the basic messages. The auto-stripped version contains the messages after quoted material

has been automatically removed. The hand-stripped version contains the messages after

quoted material has been removed by a human. Additionally, the hand-stripped version has

had any xml content and e-mail signatures removed — leaving only the essential content of

the message. The studies reported here are performed with the hand-stripped version. This

allows us to balance the cognitive load in terms of number of tokens that must be read in the

user-studies we report — including quoted material would complicate the user studies since

some users might skip the material while others read it. Additionally, ensuring all quoted

material is removed prevents tainting the cross-validation since otherwise a test item could

occur as quoted material in a training document.

Data Labeling

Two human annotators labeled each message as to whether or not it contained an action-

item. In addition, they identified each segment of the e-mail which contained an action-

item. A segment is a contiguous section of text selected by the human annotators and may

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 187

span several sentences or a complete phrase contained in a sentence. They were instructed

that an action item is “an explicit request for information that requires the recipient’s atten-

tion or a required action” and told to “highlight the phrases or sentences that make up the

request”.

Annotator 1
No Yes

Annotator 2
No 391 26
Yes 29 298

Table 10.1: Agreement of Human Annotators at Document Level

Annotator One labeled 324 messages as containing action items. Annotator Two labeled

327 messages as containing action items. The agreement of the human annotators is shown

in Tables 10.1 and 10.2. The annotators are said to agree at the document-level when

both marked the same document as containing no action-items or both marked at least one

action-item regardless of whether the text segments were the same. At the document-level,

the annotators agreed 93% of the time. The kappa statistic [Car96, CCM04] is often used

to evaluate inter-annotator agreement:

κ =
A−R
1−R

A is the empirical estimate of the probability of agreement. R is the empirical estimate of

the probability of random agreement given the empirical class priors. A value close to −1
implies the annotators agree far less often than would be expected randomly, while a value

close to 1 means they agree more often than randomly expected.

At the document-level, the kappa statistic for inter-annotator agreement is 0.85. This

value is both strong enough to expect the problem to be learnable and is comparable with

results for similar tasks [CCM04, CORGC04].

In order to determine the sentence-level agreement, we use each judgment to create a

sentence-corpus with labels as described in Section 10.3.2, then consider the agreement

over these sentences. This allows us to compare agreement over “no judgments”. We

perform this comparison over the hand-stripped corpus since that eliminates spurious “no”

judgments that would come from including quoted material, etc. Both annotators were free

to label the subject as an action-item, but since neither did, we omit the subject line of

the message as well. This only reduces the number of “no” agreements. This leaves 6301

automatically segmented sentences. At the sentence-level, the annotators agreed 98% of

the time, and the kappa statistic for inter-annotator agreement is 0.82.

188 10.4. EXPERIMENTAL ANALYSIS FOR ACTION-ITEM DETECTION

Annotator 1
No Yes

Annotator 2
No 5810 65
Yes 74 352

Table 10.2: Agreement of Human Annotators at Sentence Level

In order to produce one single set of judgments, the human annotators went through

each annotation where there was disagreement and came to a consensus opinion. The

annotators did not collect statistics during this process but anecdotally reported that the

majority of disagreements were either cases of clear annotator oversight or different in-

terpretations of conditional statements. For example, “If you would like to keep your job,

come to tomorrow’s meeting” implies a required action where “If you would like to join

the football betting pool, come to tomorrow’s meeting” does not. The first would be an

action-item in most contexts while the second would not. Of course, many conditional

statements are not so clearly interpretable. After reconciling the judgments there are 416

e-mails with no action-items and 328 e-mails containing action-items. Of the 328 e-mails

containing action-items, 259 messages have one action-item segment; 55 messages have

two action-item segments; 11 messages have three action-item segments. Two messages

have four action-item segments, and one message has six action-item segments. Computing

the sentence-level agreement using the reconciled “gold standard” judgments with each of

the annotators’ individual judgments gives a kappa of 0.89 for Annotator One and a kappa

of 0.92 for Annotator Two.

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 M

es
sa

ge
s

Number of Tokens

All Messages
Action-Item Messages

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000 1200 1400

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Number of Tokens

All Messages
Action-Item Messages

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

Figure 10.2: The Histogram (left) and Distribution (right) of Message Length. A bin size of 20
words was used. Only tokens in the body after hand-stripping were counted. After stripping, the
majority of words left are usually actual message content.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 189

In terms of message characteristics, there were on average 132 content tokens in the

body after stripping. For action-item messages, there were 115. However, by examining

Figure 10.2 we see the length distributions are nearly identical. As would be expected for

e-mail, it is a long-tailed distribution with about half the messages having more than 60

tokens in the body (this paragraph has 65 tokens).

10.4.2 Classifiers

In order to establish baselines, we have selected a variety of standard text classification

algorithms. Later in this chapter, we return to exactly the same set of base classifiers used

throughout the dissertation, but because action-item detection is relatively unstudied, in this

section we choose a slightly different set of algorithms to study the features of action-item

detection as a learning problem. In selecting algorithms, we have chosen algorithms that

are not only known to work well but which differ along such lines as discriminative vs.

generative and lazy vs. eager. We have done this in order to provide both a competitive and

thorough sampling of learning methods for the task at hand. This is important since it is

easy to improve a strawman classifier by introducing a new representation. By thoroughly

sampling alternative classifier choices we demonstrate that representation improvements

over bag-of-words are not due to using the information in the bag-of-words poorly.

kNN

As done throughout the dissertation, we employ a standard variant of the k-nearest neighbor

algorithm used in text classification, kNN with s-cut score thresholding [Yan99]. We use

a tfidf-weighting of the terms with a distance-weighted vote of the neighbors to compute

the score before thresholding it. In order to choose the value of s for thresholding, we

perform leave-one-out cross-validation over the training set. The value of k is set to be

2(dlog2Ne + 1) where N is the number of training points. This rule for choosing k is

theoretically motivated by results which show such a rule converges to the optimal classifier

as the number of training points increases [DGL96]. In practice, we have also found it to be

a computational convenience that frequently leads to comparable results with numerically

optimizing k via a cross-validation procedure.

Unigram (multinomial Naı̈ve Bayes)

We use a standard multinomial naı̈ve Bayes classifier [MN98]. As done throughout the dis-

sertation, in using this classifier, we smoothed word and class probabilities using a Bayesian

190 10.4. EXPERIMENTAL ANALYSIS FOR ACTION-ITEM DETECTION

estimate (with the word prior) and a Laplace m-estimate, respectively. To use terminol-

ogy consistent with the rest of the dissertation, this classifier is referred to as a Unigram

classifier. Note that this is distinct from a unigram or bag-of-words representation as also

discussed here.

SVM

We have used a linear SVM with a tfidf feature representation and L2-norm as implemented

in the SVMlight package v6.01 [Joa99]. All default settings were used.

Voted Perceptron

Like the SVM, the Voted Perceptron is a kernel-based learning method. We use the same

feature representation and kernel as we have for the SVM, a linear kernel with tfidf-

weighting and an L2-norm. The voted perceptron is an online-learning method that keeps

a history of past perceptrons used, as well as a weight signifying how often that perceptron

was correct. With each new training example, a correct classification increases the weight

on the current perceptron and an incorrect classification updates the perceptron. The output

of the classifier uses the weights on the perceptra to make a final “voted” classification.

When used in an offline-manner, multiple passes can be made through the training data.

Furthermore, it is well-known that the Voted Perceptron increases the margin of the solu-

tion after each pass through the training data [FS99]. Since Cohen et al. [CCM04] obtain

worse results using an SVM than a Voted Perceptron with one training iteration, they con-

clude that the best solution for detecting speech acts may not lie in an area with a large

margin. Because their tasks are highly similar to ours, we employ both classifiers to en-

sure we are not overlooking a competitive alternative classifier to the SVM for the basic

bag-of-words representation.

10.4.3 Performance Measures

To compare the performance of the classification methods for this task, we look at two

standard performance measures, F1 and accuracy.

10.4.4 Experimental Methodology

We perform standard 10-fold cross-validation on the set of documents. For the sentence-

level approach, all sentences in a document are either entirely in the training set or entirely

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 191

in the test set for each fold. For significance tests, we use a two-tailed t-test [YL99] to

compare the values obtained during each cross-validation fold with a p-value of 0.05.

Feature selection was performed using the chi-squared statistic. Different levels of fea-

ture selection were considered for each classifier. Each of the following number of features

was tried: 10, 25, 50, 100, 250, 750, 1000, 2000, 4000. There are approximately 4700 uni-

gram tokens without feature selection. In order to choose the number of features to use for

each classifier, we perform nested cross-validation and choose the settings that yield the

optimal document-level F1 for that classifier. For this study, only the body of each e-mail

message was used. Feature selection is always applied to all candidate features. That is, for

the n-gram representation, the n-grams and position features are also subject to removal by

the feature selection method.

The document-level classifiers below that use a bag-of-words representation use all

unigram tokens as the feature pool including sentence-ending markers and punctuation

such as “.”, “!”, and “?”. These classifiers are denoted as Document BoW. A second set

of document-level classifiers that also include n-grams in the feature pool are denoted as

Document Ngram. The sentence-level classifiers that use a bag-of-words representation

also use all unigram tokens in the feature pool including the sentence-ending punctuation.

These classifiers are denoted as Sentence BoW. Finally, the sentence-level classifiers de-

noted as Sentence Ngram additionally include n-grams and the encoding of the position of

the sentence within the document in the feature pool.

10.4.5 Baseline Results for Action-Item Detection

The results for document-level classification are given in Table 10.3. The primary hypoth-

esis we are concerned with is that n-grams are critical for this task; if this is true, we expect

to see a significant gap in performance between the document-level classifiers that use

n-grams (Document Ngram) and those using the bag-of-words representation (Document

BoW). Examining Table 10.3, we observe that this is indeed the case for every classifier

except the Unigram classifier. This difference in performance produced by the n-gram rep-

resentation is statistically significant for each classifier except for the Unigram classifier

and the accuracy metric for kNN (see Table 10.4). The Unigram classifier’s poor perfor-

mance with the n-gram representation is not surprising since the bag-of-n-grams causes

excessive double-counting as mentioned in Section 10.3.2; however, the Unigram classifier

is not hurt at the sentence-level because the sparse examples provide few chances for ag-

glomerative effects of double counting. In either case, when a language-modeling approach

is desired, modeling the n-grams directly may be preferable to using a multinomial naı̈ve

192 10.4. EXPERIMENTAL ANALYSIS FOR ACTION-ITEM DETECTION

Bayes model. More importantly for the n-gram hypothesis, the n-grams lead to the best

document-level classifier performance as well.

As would be expected, the difference between the sentence-level n-gram representation

and bag-of-words representation is small. This is because the window of text is so small

that the bag-of-words representation, when done at the sentence-level, implicitly picks up

on the power of the n-grams. Further improvement would signify that the order of the

words matter even when only considering a small sentence-size window. Therefore, the

finer-grained sentence-level judgments allows a bag-of-words representation to succeed

but only when performed in a small window — behaving as an n-gram representation for

all practical purposes.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Action-Item Detection SVM Performance (Post Model Selection)

Document Unigram
Sentence Ngram

PSfrag replacements

E
X
E1
E2
E3
Ei

EM

Êi

E = (X, f(X))
Ĉ1 = (f̂1(X), s1(E1))
Ĉ2 = (f̂2(X), s2(E2))
Ĉ3 = (f̂3(X), s3(E3))
Ĉi = (f̂i(X), si(Ei))

f(X)
f̂M(X)
p1(E)
p2(E)
p3(E)
pM(E)

p(E1 |E)
p(E2 |E)
p(E3 |E)
p(EM |E)
p(Êi |E)
p(Ei | Êi)

Figure 10.3: Both n-grams and a small prediction window lead to consistent improvements over
the standard approach.

Further highlighting the improvement from finer-grained judgments and n-grams, Fig-

ure 10.3 graphically depicts the edge the SVM sentence-level classifier has over the stan-

dard bag-of-words approach with a precision-recall curve. In the high precision area of the

graph, the consistent edge of the sentence-level classifier is rather impressive — continuing

at precision 1 out to 0.1 recall. This would mean that a tenth of the user’s action-items

would be placed at the top of their action-item sorted inbox. Additionally, the large sep-

aration at the top right of the curves corresponds to the area where the optimal F1 occurs

for each classifier, agreeing with the large improvement from 0.6904 to 0.7682 in F1 score.

Considering the relatively unexplored nature of classification at the sentence-level, this

gives great hope for further increases in performance.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 193

Although Cohen et al. [CCM04] observed that the Voted Perceptron with a single

training iteration outperformed SVM in a set of similar tasks, we see no such behavior

here. This further strengthens the evidence that an alternate classifier with the bag-of-

words representation could not reach the same level of performance. The Voted Perceptron

classifier does improve when the number of training iterations are increased, but it is still

lower than the SVM classifier.

Sentence detection results are presented in Table 10.6. With regard to the sentence

detection problem, we note that the F1 measure gives a better feel for the remaining room

for improvement in this difficult problem. That is, unlike document detection where action-

item documents are fairly common, action-item sentences are very rare. Thus, as in other

text problems, the accuracy numbers are deceptively high solely because of the default

accuracy attainable by always predicting “no”. Although, the results here are significantly

above-random, it is unclear what level of performance is necessary for sentence detection to

be useful in and of itself and not simply as a means to document ranking and classification.

PSfrag replacements

E
X
E1
E2
E3
Ei

EM

Êi

E = (X, f(X))
Ĉ1 = (f̂1(X), s1(E1))
Ĉ2 = (f̂2(X), s2(E2))
Ĉ3 = (f̂3(X), s3(E3))
Ĉi = (f̂i(X), si(Ei))

f(X)
f̂M(X)
p1(E)
p2(E)
p3(E)
pM(E)

p(E1 |E)
p(E2 |E)
p(E3 |E)
p(EM |E)
p(Êi |E)
p(Ei | Êi)

Figure 10.4: Users find action-items more quickly when assisted by a classification system.

Finally, when considering a new type of classification task, one of the most basic ques-

tions is whether an accurate classifier built for the task can have an impact on the end-user.

In order to demonstrate the impact this task can have on e-mail users, we conducted a user

study using an earlier less-accurate version of the sentence classifier — where instead of

using just a single sentence, a three-sentence windowed-approach was used. There were

three distinct sets of e-mail in which users had to find action-items. These sets were either

presented in a random order (Unordered), ordered by the classifier (Ordered), or ordered

by the classifier and with the center sentence in the highest confidence window highlighted

(Order+help). In order to perform fair comparisons between conditions, the overall number

of tokens in each message set should be approximately equal; that is, the cognitive read-

ing load should be approximately the same before the classifier’s reordering. Additionally,

users typically show “practice effects” by improving at the overall task and thus performing

194 10.4. EXPERIMENTAL ANALYSIS FOR ACTION-ITEM DETECTION

better at later message sets. This is typically handled by varying the ordering of the sets

across users so that the means are comparable. While omitting further detail, we note the

sets were balanced for the total number of tokens and a latin square design was used to

balance practice effects.

Figure 10.4 shows that at intervals of 5, 10, and 15 minutes, users consistently found

significantly more action-items when assisted by the classifier, but were most critically

aided in the first five minutes. Although, the classifier consistently aids the users, we did

not gain an additional end-user impact by highlighting. As mentioned above, this might

be a result of the large room for improvement that still exists for sentence detection, but

anecdotal evidence suggests this might also be a result of how the information is presented

to the user rather than the accuracy of sentence detection. For example, highlighting the

wrong sentence near an actual action-item hurts the user’s trust, but if a vague indicator

(e.g., an arrow) points to the approximate area the user is not aware of the near-miss. Since

the user studies used a three sentence window, we believe this played a role as well as

sentence detection accuracy.

10.4.6 Discussion

In contrast to problems where n-grams have yielded little difference, we believe their power

here stems from the fact that many of the meaningful n-grams for action-items consist of

common words, e.g., “let me know”. Therefore, the document-level bag-of-words repre-

sentation cannot gain much leverage, even when modeling their joint probability correctly,

since these words will often co-occur in the document but not necessarily in a phrase. Addi-

tionally, action-item detection is distinct from many text classification tasks in that a single

sentence can change the class label of the document. As a result, good classifiers can-

not rely on aggregating evidence from a large number of weak indicators across the entire

document.

Even though we discarded the header information, examining the top-ranked features at

the document-level reveals that many of the features are names or parts of e-mail addresses

that occurred in the body and are highly associated with e-mails that tend to contain many

or no action-items. A few examples are terms such as “org”, “bob”, and “gov”. We note

that these features will be sensitive to the particular distribution (senders/receivers) and thus

the document-level approach may produce classifiers that transfer less readily to alternate

contexts and users at different institutions. This points out that part of the problem of

going beyond bag-of-words may be the methodology, and investigating such properties as

learning curves and how well a model transfers may highlight differences in models which

appear to have similar performance when tested on the distributions they were trained on.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 195

Finally, the effectiveness of sentence-level detection argues that labeling at the sentence-

level provides significant value. Further experiments would be required to see how this

interacts with the amount of training data available. Sentence detection that is then ag-

glomerated to document-level detection works surprisingly well given the low recall that

would be expected with sentence-level items.

The baseline results have established how action-items can be effectively detected in

e-mails. Our empirical analysis has demonstrated that in contrast to topic classification

n-grams are of key importance to making the most of document-level judgments. When

finer-grained judgments are available, then standard bag-of-words approaches using a small

(sentence) window size can produce results almost as good as the n-gram based approaches.

10.5 Action-Item Detection vs. Topic Classification

Before we return to classifier combination, we highlight the differences that make action-

item detection a different type of task than topic classification and thus suitable for demon-

strating the applicability of our combination algorithms to other types of problems.

First, where topic classification has topical cues spread throughout the document, action-

item detection often has a single sentence of interest and thus detecting that sentence is of

critical importance. While we have seen that this can be exploited using sentence-level

classifiers, it is of interest to see how these sentence-level classifiers can be integrated in a

reliability-indicator framework.

From a machine learning perspective, the action-item corpus also has an entirely dif-

ferent balance of positives and negatives than typically seen for topic classification. In the

corpus, action-item e-mails constitute 44% of the corpus. Thus, while striving may some-

times demand more positive training examples to work well (see Section 7.4), the more

balanced nature of this problem may reduce the demand for training data.

Next, unlike topic-classification we also have classifiers built from different “views” —

the document-level and the sentence-level. The next natural question is whether classifier

combination can make use of the different information that the document-models and the

sentence-models provide. We now turn to examine these issues of classifier combination.

10.6 Classifier Combination for Action-Item Detection

When considering classifier combination for action-item detection, there are several dif-

ferent challenges that present themselves. Key questions are how sentence-level classi-

196 10.6. CLASSIFIER COMBINATION FOR ACTION-ITEM DETECTION

fier judgments can be combined into document-level judgments, how document-level and

sentence-level models can be combined, whether gains can be achieved from combining

different classification algorithms, and whether any changes to the reliability-indicators

used for topic classification are necessary in the strive methodology.

Combining sentence-level judgments into document-level judgments provides a unique

challenge distinct from the primary combination problem discussed in this dissertation.

When we combine the models from different classification algorithms, we obtain a pre-

diction from each model for every example we are considering. This is analogous to con-

sulting an expert panel consisting of a fixed set of experts for each example. However,

when combining the sentence predictions to make a document-level prediction, there is no

consistency from document to document. The prediction on the first sentence in the first

document is generally not related to the prediction on any sentence in the second document.

The analogy here is that we consult a different set of experts for each example. This prob-

lem is beyond the scope of this dissertation, and we do not directly study the issue related

to alternative methods for combining sentence predictions into a document prediction. In-

stead, we will continue to use the default method of combining sentence-level predictions

to obtain a document-level prediction given in Equation 10.3.2. Our focus in this section

will be solely on how we can combine the document predictions from the document-level

and sentence-level models to yield a more reliable document ranking and what reliability-

indicator changes are necessary for this task.

In particular, since a typical user will eventually process all received mail, we assume

that producing a quality ranking will more directly measure the impact on the user than

accuracy or F1. Therefore, in the remainder of the chapter our focus will be on ROC

curves and area under the curve since both reflect the quality of the ranking produced.

Additionally, while the previous section provided many different options in terms of rep-

resentation and base classifiers, a typical question that comes up in classifier combination

is how well a combination method deals with a large set of classifiers. Therefore, rather

than pre-selecting among the best models for action-item detection, we will simply use all

five base classifiers we used in Chapter 7 with both the bag-of-words and bag-of-n-grams

representations at both the sentence-level and the document-level. This gives us a total of

20 different base classifiers. With only 744 e-mails in the action-item detection corpus,

we are interested in seeing whether Strive can not only improve but also avoid harming

performance because of correlated inputs. Furthermore, since it was STRIVE-S (norm) that

was the primary competitor, we are primarily interested in investigating the behavior of this

variant although we also provide results for the decision-tree metaclassifier for complete-

ness. Finally, part of the value in any method is how much it must be tuned to the problem

at hand. Therefore, our focus is not only on applying Strive but doing so in as much of an

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 197

“out-of-the-box” manner as possible. To this end, we next address modifications needed for

the reliability indicators before presenting and analyzing results for classifier combination

for action-item detection.

10.7 Reliability Indicators for Action-Item Detection

First, for each of the document-level base classifiers, we can clearly still use the classifier-

based reliability indicators introduced in Chapter 5. There were 6 unigram-model based

variables, 6 naı̈ve Bayes variables, 10 kNN variables, 5 SVM variables, and 2 decision-tree

variables. Since we are constructing base classifiers for both the bag-of-words and bag-of-

n-grams representations, this gives 58 reliability indicators (58 = 2 representations ∗ [6 +
6 + 10 + 5 + 2]).

Although the classifier-based reliability indicators are defined for each sentence predic-

tion, in order to use them at the document-level we must somehow combine the reliability

indicators over each sentence. The simplest method would be to take the average over each

classifier-based indicator across the sentences in the document. We do so and thus obtain

another 58 reliability indicators.

While combining the sentence-level predictions into a document-level prediction is out-

side the scope of our model, our model can benefit from some of the structure a sentence-

level classifier offers when combining document predictions. Analogous to considering

the variance of feature weights in the naı̈ve Bayes model, we can consider such indica-

tors as the mean and standard deviation of the classifier confidences over each sentence

within the document. For each sentence-level base classifier, these then become two more

indicators (mean and standard deviation) which we can benefit from when combining doc-

ument predictions. Since we are using the same set of 5 base classifiers as elsewhere in

the Strive experiments and we have base classifiers for the sentence-level bag-of-words

and sentence-level bag-of-n-grams, this introduces 20 variables (20 = 2 representations ∗
2(mean, stdev) ∗ 5 base classifiers).

Next, we could also extrapolate the feature-selection-based reliability indicators dis-

cussed in Chapter 5 to this problem. However, we do not for two reasons. First, while the

feature selection variables are easily defined for this problem, they are more problematic to

extrapolate to non-text classification problems since they generally rely on the sparse nature

of text. Thus, it is of interest to see how well the combination methods will perform using

only the classifier-based variables, which easily extrapolate to any classification problem.

Secondly, the dimensionality of the meta-problem is already quite high and given the small

198
10.8. EXPERIMENTAL ANALYSIS

OF COMBINING ACTION-ITEM DETECTORS

amount of training data we have available, we seek to keep the dimensionality somewhat

manageable at the meta-level.

Finally, we include the same 2 basic voting statistics reliability-indicators (Percent-

PredictingPositive and PercentAgreeWBest) as discussed in Chapter 5. For the action-item

problem, this yields a total of 138 reliability-indicators (138 = 58+ 20+ 58+ 2). With the

20 base classifier outputs, there are a total of 158 features for the Strive combiner to handle.

10.8 Experimental Analysis
of Combining Action-Item Detectors

10.8.1 Classifiers

As mentioned above, the base classifiers use the same set of 5 classification algorithms used

for the main Strive experiments in Chapter 7 and discussed in detail in Section 6.3. Namely,

we use a decision-tree via a dependency network implementation, a unigram (multinomial

naı̈ve Bayes) classifier, a naı̈ve Bayes (multivariate Bernoulli) classifier, a kNN classifier,

and a linear SVM classifier. As done with the earlier action-item detection experiments,

the kNN and SVM classifier use a normed tfidf representation. Since we apply the classi-

fiers at both the sentence-level and document-level to a bag-of-words and bag-of-n-grams

representation, we have a total of 20 base classifiers.

Also as done in Chapter 7, we try variants of both stacking and Striving using a linear

SVM and a decision tree. We also present the results of the oracle BestSelect classifier.

10.8.2 Performance Measures

As mentioned above, the primary performance measure we are concerned with is area under

the ROC curve as a measure of ranking performance. However, we present all of the

performance measures used in Chapter 7 to give a complete picture.

10.8.3 Experimental Methodology

As done in Section 10.4, we perform standard 10-fold cross-validation on the set of docu-

ments. We note that the 10 folds are a new random draw and not identical to the experiments

above. For the sentence-level approach, all sentences in a document are either entirely in

the training set or entirely in the test set for each fold. For significance tests, we use a

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 199

two-tailed t-test [YL99] to compare the values obtained during each cross-validation fold

with a p-value of 0.05.

While the experiments in Section 10.4 performed nested cross-validation to automati-

cally select the number of features used for each classification model, we instead simply

choose to use the top 300 features by the chi-squared statistic at both the document-level

and sentence-level for both the bag-of-words and bag-of-n-grams representation. Since

there are approximately 4700 unigram tokens in total, this is roughly in-line with the level

of feature reduction performed for the topic classification corpora in Chapter 7.

10.8.4 Results for Combining Action-Item Detectors

Table 10.7 presents the main summary of results. With regard to the earlier set of action-

item detection experiments, several observations are worth noting. First, the Unigram class-

ifier results are much higher for document-level n-gram than the earlier experiments. The

reason is that the results for Section 10.7 used nested cross-validation to automatically

select the number of features. In those experiments, the number of features selected for

n-grams is much higher (average 1360 with some folds as low as 25 and some as high

as 4000). In this situation, nested selection over the number of n-grams has much higher

variance with regard to the Unigram model, and in earlier experiments, it often incorrectly

overpicks the number of features. This allowed for more opportunities for double-counting

evidence by the Unigram model (thus depressing performance).

In contrast, many of the results for kNN are much lower here than the earlier experi-

ments. The reason again is in the feature selection. In the earlier experiments, the nested

cross-validation correctly selected an appropriate number of features and helped kNN attain

peak performance. The remaining models perform as would be expected from the earlier

experiments. Altogether, the overall maximum performance of the base classifiers is still in

line with the earlier experiments. Thus, we are still comparing to overall peak performance.

Now, we turn to the primary concern of whether Striving, and in particular, STRIVE-S

(norm) can improve the ranking of the documents. Examining the results in Table 10.7, we

see that STRIVE-S (norm) statistically significantly beats every other classifier according to

ROC area. If we restrict our attention to just the early part of the curve, we see that STRIVE-

S (norm) still wins but no long significantly over all the stacking models and base classifiers.

This behavior in the early part of the curve is why Stack-S (norm) attains better performance

than Strive-S (norm) over the linear utility functions although not significantly.

Furthermore, we can see that no method significantly beats the striving methods accord-

ing to any measure. We can see this more clearly in Table 10.8 by restricting our attention

200 10.9. SUMMARY

to the most competitive base classifiers (the sentence-level n-gram), the default combiners,

Stack-S (norm), and STRIVE-S (norm). While the success of the default combiners on error

and F1 suggests we might be able to further exploit the potential of the underlying base

models for combination, STRIVE-S (norm) still remains the clear best choice for ranking.

While the different balance in positive/negatives appears to allow STRIVE-S (norm) to give

more acceptable ROC performance than in topic classification, we see that the ROC area

performance of STRIVE-D (norm) is relatively lower. This is primarily because the decision-

tree method stops too early in building the decision tree because of the small number of

training examples. As a result, the overall ranking has too coarse of a granularity and poor

performance.

Finally, we graphically compare the ROC performance of STRIVE-S (norm), Stack-S

(norm), and two of the most competitive base classifiers in Figure 10.5. We see that STRIVE-

S (norm) loses by a very slight amount to Stack-S (norm) for the very early part of the curve

but still beats the base classifiers. Later in the curve, it dominates all the classifiers. If we

examine the curves using error bars (standard-deviation across cross-validation runs), we

also see that the variance of STRIVE-S (norm) drops much faster than the other classifiers

as we move to the right of the curve. Thus, across the runs STRIVE-S (norm) is achieving a

much more consistent quality ranking than the other classifiers.

10.9 Summary

In this chapter, we first established the action-item detection problem as a text classification

problem that is different from topic classification from both a semantic point of view and

a machine learning perspective. We conducted experiments to demonstrate competitive

baselines and to demonstrate how both n-grams and differing sentence-level and document-

level views could be used to build more effective classifiers.

Next, we demonstrated that the Strive classifier combination approach is applicable to

text classifier combination approaches outside of topic classification by combining the var-

ious base action-item detectors. We demonstrated Strive’s flexibility and applicability to

a range of problems by using it in a very “out-of-the-box” manner that required nearly

no changes from early experiments. Furthermore, rather than pre-selecting the competi-

tive base classifiers, we allowed the combination algorithm to automatically determine the

weights. STRIVE-S (norm) generated document rankings with a higher ROC area and with

less variation across folds than the other classifiers and combination methods.

Finally, since all of the reliability-indicators in this section are defined in terms of the

base classification models, we have demonstrated that the Strive methodology is readily

applicable to classification problems outside of text.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 201

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

naı̈ve Bayes (sent,ngram)
SVM (sent,ngram)

Stack-S (norm)
STRIVE-S (norm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

False Positive Rate

PSfrag
replacem

entsEXE
1

E
2

E
3

E
i

E
MÊ
i

E
=

(X
,f

(X
))

Ĉ
1
=

(f̂
1 (X

),s
1 (E

1))
Ĉ
2
=

(f̂
2 (X

),s
2 (E

2))
Ĉ
3
=

(f̂
3 (X

),s
3 (E

3))
Ĉ
i
=

(f̂
i (X

),s
i (E

i))
f
(X

)
f̂
M
(X

)
p
1 (E

)
p
2 (E

)
p
3 (E

)
p
M
(E

)
p(E

1 |E
)

p(E
2 |E

)
p(E

3 |E
)

p(E
M
|E

)
p(Ê

i |E
)

p(E
i |Ê

i)

naı̈ve Bayes (sent,ngram)
SVM (sent,ngram)

Stack-S (norm)
STRIVE-S (norm)

Figure 10.5: ROC curves without (left) and with (right) error bars for the action-item corpus of two
of the most competitive base classifiers versus Stacking and Striving. We see that Striving dominates
the base classifiers and only loses for a small portion of the curve to Stacking. As expected, the
variance of all of the classifiers drops as we move to the right. However, the variance for Striving
drops far quicker than the others. Both argue that Striving presents the most robust ranking of the
documents.

Acknowledgments

The material in this chapter is based upon work supported by the Defense Advanced Re-

search Projects Agency (DARPA) under Contract No. NBCHD030010. Any opinions,

findings and conclusions or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of the Defense Advanced Research Projects

Agency (DARPA), or the Department of Interior-National Business Center (DOI-NBC).

We would like to extend our sincerest thanks to Jill Lehman whose efforts in data col-

lection were essential in constructing the corpus, and both Jill and Aaron Steinfeld for

their direction of the HCI experiments. We would also like to thank Django Wexler for

constructing and supporting the corpus labeling tools and Curtis Huttenhower’s support of

the text preprocessing package. Finally, we gratefully acknowledge Scott Fahlman for his

encouragement and useful discussions on this topic.

20
2

10
.9

.
SU

M
M

A
R

Y

Classifiers Document BoW Document Ngram Sentence BoW Sentence Ngram

F1

kNN 0.6670 ± 0.0288 0.7108 ± 0.0699 0.7615 ± 0.0504 0.7790 ± 0.0460
Unigram 0.6572 ± 0.0749 0.6484 ± 0.0513 0.7715 ± 0.0597 0.7777 ± 0.0426
SVM 0.6904 ± 0.0347 0.7428 ± 0.0422 0.7282 ± 0.0698 0.7682 ± 0.0451
Voted Perceptron 0.6288 ± 0.0395 0.6774 ± 0.0422 0.6511 ± 0.0506 0.6798 ± 0.0913

Accuracy

kNN 0.7029 ± 0.0659 0.7486 ± 0.0505 0.7972 ± 0.0435 0.8092 ± 0.0352
Unigram 0.6074 ± 0.0651 0.5816 ± 0.1075 0.7863 ± 0.0553 0.8145 ± 0.0268
SVM 0.7595 ± 0.0309 0.7904 ± 0.0349 0.7958 ± 0.0551 0.8173 ± 0.0258
Voted Perceptron 0.6531 ± 0.0390 0.7164 ± 0.0376 0.6413 ± 0.0833 0.7082 ± 0.1032

Table 10.3: Average Document-Detection Performance during Cross-Validation for Each Method and the Sample Standard Deviation (Sn−1) in
italics. The best performance for each classifier is shown in bold.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 203

Document Winner Sentence Winner
kNN Ngram Ngram
Unigram Classifier BoW Ngram
SVM Ngram† Ngram
Voted Perceptron Ngram† Ngram

Table 10.4: Significance results for n-grams versus a bag-of-words representation for document
detection using document-level and sentence-level classifiers. When the F1 result is statistically
significant, it is shown in bold. When the accuracy result is significant, it is shown with a†. This
table emphasizes the hypothesis that n-grams or a “bag of words and phrases” outperforms a simple
“bag of words” does, in fact, hold.

F1 Winner Accuracy Winner
kNN Sentence Sentence
Unigram Classifier Sentence Sentence
SVM Sentence Sentence
Voted Perceptron Sentence Document

Table 10.5: Significance results for sentence-level classifiers vs. document-level classifiers for
the document detection problem. When the result is statistically significant, it is shown in bold.
This table emphasizes the hypothesis that a sentence-level classifier outperforms a document-level
classifier does, in fact, hold.

Accuracy F1
BoW Ngram BoW Ngram

kNN 0.9519 0.9536 0.6540 0.6686
Unigram Classifier 0.9419 0.9550 0.6176 0.6676
SVM 0.9559 0.9579 0.6271 0.6672
Voted Perceptron 0.8895 0.9247 0.3744 0.5164

Table 10.6: Performance of the Sentence-Level Classifiers at Sentence Detection

204 10.9. SUMMARY

F1 Error C(1,10) C(10,1) ROC Area ROC Area
[0,0.1]

Document-Level, Bag-of-Words Representation
Dnet 0.7398 0.2244 0.5593 0.3856 0.8423 0.4974
Unigram 0.6905 0.3091 0.5513 0.4300 0.7537 0.1729
naı̈ve Bayes 0.6729 0.2688 0.5432 0.4692 0.7745 0.2773
SVM 0.6918 0.2472 0.5392 0.3507 0.8367 0.4959
kNN 0.6695 0.3467 0.5660 0.4166 0.7669 0.2822

Document-Level, Ngram Representation
Dnet 0.7412 0.2110 0.6228 0.4005 0.8473 0.5458
Unigram 0.7361 0.2729 0.5581 0.4719 0.8114 0.2787
naı̈ve Bayes 0.7534 0.1896 0.5405 0.4424 0.8537 0.5069
SVM 0.7392 0.2124 0.5780 0.3361 0.8640 0.5503
kNN 0.7021 0.2539 0.5251 0.4452 0.8244 0.4607

Sentence-Level, Bag-of-Words Representation
Dnet 0.7793 0.1894 0.5227 0.3308 0.8885 0.6164
Unigram 0.7731 0.2136 0.5815 0.4746 0.8645 0.4637
naı̈ve Bayes 0.7888 0.1893 0.5653 0.4353 0.8699 0.4869
SVM 0.6985 0.1988 0.5496 0.4031 0.8548 0.5822
kNN 0.6328 0.3803 0.5629 0.4098 0.6823 0.2065

Sentence-Level, Ngram Representation
Dnet 0.7521 0.1841 0.5335 0.3577 0.8723 0.5974
Unigram 0.8012 0.1868 0.6126 0.4503 0.8723 0.5362
naı̈ve Bayes 0.8010 0.1747 0.5857 0.4018 0.8777 0.5413
SVM 0.7842 0.1693 0.5768 0.4073 0.8620 0.5963
kNN 0.6811 0.2647 0.5615 0.3872 0.8078 0.4424

Default Combiners
Majority BBC 0.8038 0.1761 0.5511 0.3844 N/A N/A
Best By Class 0.8006 0.1734 0.6235 0.3535 N/A N/A

Stacking
Stack-D (norm) 0.7885 0.1828 0.6046 0.3644 0.8752 0.5444
Stack-S (norm) 0.7765 0.1814 0.4797S 0.2970 0.8996S 0.6400S

Striving
STRIVE-D (norm) 0.7718 0.1949 0.5512 0.3724 0.8724 0.5333
STRIVE-S (norm) 0.7813 0.1868 0.5056 0.3134 0.9145BSR 0.6436 R

Oracle
BestSelect 0.9894 0.0134 0.2486 0.1411 N/A N/A

Table 10.7: Average base classifier and classifier combination performance during cross-validation
over the Action-Item Detection Corpus. The best performance (omitting the oracle BestSelect) in
each column is given in bold. The worst performance is given in italics. A notation of ‘B’, ‘D’, ‘S’,
or ‘R’ indicates a method significantly outperforms all (other) Base classifiers, Default combiners,
Stacking methods, or Reliability-indicator based Striving methods at the p = 0.05 level using a
two-tailed t-test.

CHAPTER 10. ACTION-ITEM DETECTION IN E-MAIL 205

F1 Error C(1,10) C(10,1) ROC Area ROC Area
[0,0.1]

B: Dnet (sent,ngram) R B,D B B
B: Unigram (sent,ngram) B,R,S
B: naı̈ve Bayes (sent,ngram) R,S R,S B
B: SVM (sent,ngram) R,S B,D,R,S
B: kNN (sent,ngram)

D: Majority B,D,R,S R,S D N/A N/A
D: Best By Class R,S D,R,S B,D N/A N/A

S: Stack-S (norm) R B,D,R B,D,R B B

R: STRIVE-S (norm) S B,D B,D B,R,S B,S

Table 10.8: Summary of performance on the action-item detection task. The columns show the
group names for which the row method is better (restricted to just those shown here). ”Better” here
means has a better average across cross-validation runs. When statistically significantly better (by
2-sided t-test p = 0.05), results are printed in a red bold italic font.

206 10.9. SUMMARY

Chapter 11

Summary and Future Work

A classification algorithm uses datapoints that have been labeled with classes by an author-

ity or human to learn a model that, with high accuracy, can automatically predict the class

the authority would have assigned to future instances. For example, the datapoint might

be a particular stock and its class either “up” or “down” depending on how its value will

change over the next 24 hours, or the datapoint might be a particular e-mail whose class

could be the folder in which the receiver will place that e-mail. In the first case, we would

like to predict which way a stock will move before it occurs, while in the second our goal

is to automatically sort emails to save the user time. In both cases, these challenges can be

approached by using machine learning algorithms to build a statistical model which will

predict the class of an example based on past observations.

Decision trees, kNN, SVMs, language models, and naı̈ve Bayes are a few of the classifi-

cation algorithms that have been developed over the years. Generally, each of these models

are designed using a different set of assumptions regarding the data. For example, they

can be dichotomized as to whether they are linear vs. non-linear models, generative vs.

discriminative, or high-bias vs. low-bias. While some classification algorithms often work

well, none of these algorithms dominate all classification problems. Furthermore, even

when one classification algorithm significantly outperforms another for a given classifica-

tion problem, it is rarely the case that the worse classifier’s errors are a superset of the better.

This fact has long motivated the desire to combine models in order to obtain better, or more

robust, overall performance. Schemes to do this have varied widely from simple voting

to metaclassifiers that model how the base classifiers interact. However, we are also faced

with the result that obtaining an optimal combination or meta-algorithm over all problems

is not possible [Wol95]. As a result, the key is to construct a combination algorithm that

performs well with respect to many of the commonly observed behaviors within a domain.

207

208

In this dissertation, we focused on text classification, which plays a key role in a variety

of applications. Furthermore, with the surge in digital text media, text classification has

become increasingly important. Text classification techniques can assist in junk e-mail de-

tection [SDHH98], allow medical doctors to more rapidly find relevant research [HBLH94],

aid in patent searches [Lar99], improve web searches [CD00], and serve as a backend in

a multitude of other applications. In order to effectively combine predictions within this

domain, it is necessary to first understand the typical behavior of classification methods

within the domain.

Therefore, in Chapter 3 we demonstrated that when recalibrating the probabilities or

log-odds estimates of classification systems, an asymmetric or piecewise linear model is

preferable to Gaussian or linear systems. Furthermore, we showed why recalibration is

necessary for specific classifiers as well as why classifiers can be expected to behave asym-

metrically in general. Finally, we demonstrated how an appropriate statistical family of

asymmetric distributions could be efficiently fit to the data to yield improved probability

estimates. Recalibration is an important subcase of combination, because, in addition to

helping understand the nature of the classifier outputs, a metaclassifier applied to a single

input base classifier is equivalent in many senses to recalibrating the base classifier.

In Chapter 4 we expanded upon the view of a metaclassifier applied to a single base

classifier as recalibration. Extending this analysis to a series of canonical examples, we

showed how calibration, dependence, and variance play a role in classifier combination. We

formalized these concepts and extended them to both global and local settings. We further

emphasized through synthesized data how these quantities can be precisely computed and

how to make use of them in classifier combination.

Because these values cannot be computed without the true-class and posterior infor-

mation, in Chapter 5 we motivated and developed a series of reliability-indicators whose

goal is to capture quantities related to the local reliability, dependence, and variance of

the classifiers. For example kNNShiftStdDevConfDiff captures how much the output of the

kNN score function varies as the example being classified moves toward each of its neigh-

bors. We go on to define 70 such variables tied to feature selection and various aspects of

classification models, such as when decision trees and linear SVMs are unlikely to work

well for a particular example.

We then delved into the key contribution of this dissertation in Chapter 7 where we

demonstrated a metaclassifier approach, STRIVE, which builds a stacked reliability-indicator

variable based ensemble using the classifier outputs and reliability indicators. The resulting

model performs combination based on the characteristics of the particular example, and be-

cause of the reliability indicators, the model can take into account the local behavior of the

CHAPTER 11. SUMMARY AND FUTURE WORK 209

base classifiers when weighting their combination. STRIVE both extends the known ceiling

of performance by 3-18% across various performance measures in a variety of text classifi-

cation corpora and also outperforms standard approaches such as a constant-weighted linear

combination of the classifier outputs. In addition to improving prediction performance, this

work also points the way for how the base classifiers can be changed to directly account for

these instabilities. Furthermore, since the majority of these variables are defined in terms

of model properties instead of domain properties, the approach is reusable outside of text

classification.

Since many of the reliability-indicators interact with the classifier outputs in similar

ways across different text classification problems, a natural question is whether the STRIVE

combination model from one dataset can be transferred to another. Since labeled training

data is at a premium and even more crucial for meta-models, such work can alleviate the

need for training data. Using LABEL (Layered Abstraction-Based Ensemble Learning) in

Chapter 8, we show how to do just that, and the resulting model further improves perfor-

mance.

In Chapter 9, we considered adapting online methods to the problem of classifier com-

bination. While the methods did not suffer any large losses as guaranteed, our empirical

analysis highlighted the lack of competitiveness compared to the use of standard batch

classification algorithms as metaclassifiers. In our analysis, we also discussed how regret

guarantees with respect to average loss of the experts is far weaker than the type of guaran-

tee with respect to loss of averaged prediction that is needed.

Since the majority of the corpora used for experimentation have been topic classifica-

tion datasets, in Chapter 10 we turned to less standard text classification problems such

as finding e-mails containing “action-items” and identifying the particular sentences of in-

terest within them. We demonstrated how labeled data at the sentence-level can be used

to create sentence-level classifiers that are combined into more effective document-level

classifiers, how feature representation trade-offs differ in this task from topic classification,

and how users aided by an action-item detection system find action-items more quickly. We

then applied STRIVE to this problem in an out-of-the-box manner and also achieved perfor-

mance gains for this task. The resulting combination consistently led to improved rankings

with less performance variance over the training splits than the alternative measures; this

provided evidence that the STRIVE system is a widely applicable approach.

Consider our thesis statement:

Context-dependent combination procedures provide an effective way of com-

bining classifiers that are generally superior to constant-weighted linear combi-

nations of the classifiers’ estimates of the posterior or log-odds. Furthermore,

210 11.1. KEY CONTRIBUTIONS

context can be leveraged in text classifier combination via an abstraction of the

local reliability, dependence, and variance of the base classifier outputs. Fi-

nally, these abstractions help identify opportunities for data re-use that can be

employed to significantly improve classification performance.

and our primary criteria for evaluation:

As a demonstration of the suitability of these methods for text classification

though, we set the goal of statistically significantly outperforming the current

state-of-the-art base classification methods over several standard text classifi-

cation corpora. Furthermore, since we argue that our representation of context

is key, we will empirically demonstrate that these methods outperform simple

constant-weighted combinations of the classifier outputs in some corpora and,

in the remaining ones, achieve a statistically negligible difference.

We have clearly established that STRIVE, a context-dependent combination approach,

provides an effective way of combining classifiers that is generally superior to constant-

weighted linear combinations of the classifier’s estimates. We also showed that it signif-

icantly outperforms the base classifiers in a variety of corpora and usually significantly

outperforms linear combinations of the classifier outputs. Besides presenting arguments of

the importance of the local reliability, dependence, and variance of the base classifier out-

puts, we also introduced reliability-indicators that capture aspects of these quantities. With

our introduction of the LABEL extension of STRIVE to an inductive transfer framework,

we showed how these abstractions help identify opportunities for data re-use and further

improve performance. Thus, we have achieved all aspects of our key claims.

11.1 Key Contributions

Other combination approaches have used some form of non-constant weights on the class-

ifiers — such as local cascade generalization [Gam98a, Gam98b], hierarchical mixture

of experts [JJNH91, JJ94], and stacking using an appropriate non-linear metaclassifier

[Wol92]. In contrast to these methods, our work makes two key contributions. First, we

demonstrate improvement relative to state-of-the-art base classifiers that have been tuned to

be as competitive as possible and not simple strawmen. Second, our approach focused on

richer definitions of locality. This can be crucial since using all of the base features within

the metaclassifier is often not feasible for text problems because of the high dimensionality

of text. Furthermore, the low-dimensional representation of locality enables us to begin

CHAPTER 11. SUMMARY AND FUTURE WORK 211

to understand why the classifiers fail in addition to benefitting in performance from de-

tecting such failures. Additionally, in contrast to using the base features at the meta-level,

the reliability indicators provide a representation which enable us to extend the methods of

inductive transfer to classifier combination.

Many previous combination approaches (e.g. metaselection [LL01]) define features

related to classifier performance, but then use those features only to select a single classifier

to apply to the problem. In contrast, our approach gives a more general way to blend

classifiers based on the specific documents. For features that may be relevant to choosing

a classifier for a problem but static across all documents within that problem (e.g., number

of training examples), our work on Inductive Transfer demonstrates how to extend our

combination framework to obtain the benefits of both metaselection and combination.

Typical multitask learning and inductive transfer approaches rely on the input space

being the same [TO96, CK97, Car97]. We have identified how classifier combination can

be transformed to be within this framework and demonstrated that it leads to performance

gains when using data in conjunction across corpora. This helps alleviate the need for

training data when training metaclassification models. More finely tuned inductive transfer

methods may be able to offer even more improvement.

In addition to these key contributions there are a variety of other contributions through-

out the dissertation. Of those, some of the more important ones follow. To our knowledge,

we were the first to show the empirical asymmetry of classifier probability estimates, ex-

plain why these tend to occur, and develop parametric recalibration methods that can ex-

ploit this fact. Also, in establishing the differences between action-item detection and topic

classification, we were the first to analyze in detail the trade-off between sentence-level

and document-level judgments as well as analyze the types of models that result. Finally,

integrating sentence-level and document-level judgments in the STRIVE framework is also

one of the first examples of a combination of sentence-level and document-level models.

11.2 Directions for Future Work

There is the potential for many immediate directions for future work that are discussed

throughout the dissertation. In this section, we highlight the more promising and larger

scope problems.

An interesting problem is to generalize the recalibration framework discussed in Chap-

ter 3 to include abstaining. That is, the goal would be to recalibrate a classifier’s probability

estimates so that the post-processing either issues an improved estimate or “abstains”. Such

212 11.3. SUMMARY

a system would be of use in a variety of contexts — including being more readily applicable

to online frameworks like sleeping experts and BMX discussed in Chapter 9. One obvious

path to pursue would be to use a parametric model where points can be omitted during the

training phrase according to a penalty function that increases according to the number of

points omitted. Thus, learning the model would be a trade-off in the fit of the model and

the omission penalty. Additionally, it could include the fit of the model that predicts when

to omit if the rule for omission is data-driven.

A second promising area related to recalibration is deriving a graphical model similar

to the simple model given in Figure 4.1 that treats the true log-odds as a latent variable. Be-

cause even straightforward parameterizations for this simple framework lead to the type of

asymmetry seen in practice (Figure 4.2), we are hopeful that a similar graphical model will

also better capture the recalibration process. After finding a formulation that is successful

for recalibration, it could be extended to combination by replicating the model.

A challenging but potentially very rewarding problem is to study how the base classifier

algorithms can be directly modified to capture the information some of the more useful reli-

ability indicators are currently capturing. In particular, in Tables 7.5 and 7.6, we see that the

kNN based variables and, to a lesser extent, the SVM variables seem to play an important

role. If the classifiers can be directly modified, it may directly provide for more reliable

predictions. Depending on what modifications are necessary, there is also a potential for a

reduction in the computational cost of estimating these and training the metaclassification

models.

While we have demonstrated that inductive transfer can be successfully applied to class-

ifier combination, we have merely scratched the surface of how much further improvement

can be gained via inductive transfer. Investigating whether new inductive transfer methods

([Zha05]) are applicable and can lead to further improvements in this area is a problem with

large potential.

Finally, continuing to identify and define reliability-indicator variables tied to the relia-

bility of classifiers is both challenging and an open research problem. While much of our

attention has been focused on the development of these variables, it remains an attractive

area of future research.

11.3 Summary

This dissertation focused on developing a metaclassification scheme, STRIVE, which used

the outputs of classifiers (decision trees, kNN, linear SVMs, and two variants of naı̈ve

CHAPTER 11. SUMMARY AND FUTURE WORK 213

Bayes) in conjunction with a set of reliability-indicators we defined. The resulting model

used the training data to automatically detect regions of poor classifier reliability and gen-

erate a more reliable combined prediction. STRIVE extended the known ceiling of per-

formance over state-of-the-art classifiers by 3-18% across various performance measures

in a variety of text classification corpora. More importantly, we achieved our key goal of

empirically validating the thesis that locality-based metaclassifiers generally outperform

constant-weighted linear combinations of classifier outputs. Furthermore, we improved

over alternative approaches such as stacking using decision trees. In addition, since labeled

training data is at a premium, we demonstrated how labeled data from one problem can be

inductively transferred to improve the combination model used for another problem. Fi-

nally, after illustrating how text classification tasks such as finding “action-items” in e-mail

differ from more common text classification tasks like topic classification, we developed

methods to effectively classify such e-mails. Using these methods as base classifiers, we

then applied STRIVE in an out-of-the-box fashion to improve overall performance on this

task as well. In conclusion, the STRIVE system is a widely applicable approach that has

already yielded the best known performance in a number of problems and holds promise

for others.

214 11.3. SUMMARY

Bibliography

[Abr63] Norman Abramson. Information Theory and Coding. McGraw-Hill, New

York, 1963.

[ACD+98] James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron, and

Yiming Yang. Topic detection and tracking pilot study: Final report. In Pro-

ceedings of the DARPA Broadcast News Transcription and Understanding

Workshop, Washington, D.C., 1998.

[ADW94a] Chidanand Apte, Fred Damerau, and Sholom M. Weiss. Automated learning

of decision rules for text categorization. ACM Transactions on Information

Systems, 12(3):233–251, July 1994.

[ADW94b] Chidanand Apte, Fred Damerau, and Sholom M. Weiss. Towards language

independent automated learning of text categorization models. In SIGIR ’94,

pages 23–30, 1994.

[AKTV+01] Khalid Al-Kofahi, Alex Tyrrell, Arun Vacher, Tim Travers, and Peter Jack-

son. Combining multiple classifiers for text categorization. In CIKM ’01,

Proceedings of the 10th ACM Conference on Information and Knowledge

Management, pages 97–104, November 2001.

[BCB94] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic

combination of multiple ranked retrieval systems. In SIGIR ’94, Proceedings

of the 17th Annual International ACM Conference on Research and Develop-

ment in Information Retrieval, pages 173–181, 1994.

[BCCC93] N. Belkin, C. Cool, W.B. Croft, and J.P. Callan. The effect of multiple query

representations on information retrieval system performance. In SIGIR ’93,

Proceedings of the 16th Annual International ACM Conference on Research

and Development in Information Retrieval, pages 339–346, 1993.

215

216 BIBLIOGRAPHY

[BDH02] Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. Probabilistic combi-

nation of text classifiers using reliability indicators: Models and results. In

SIGIR ’02, Proceedings of the 25th Annual International ACM Conference on

Research and Development in Information Retrieval, pages 207–214, August

2002.

[BDH05] Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. The combination of

text classifiers using reliability indicators. Information Retrieval, 8:67–100,

2005.

[Ben00] Paul N. Bennett. Assessing the calibration of naive bayes’ posterior estimates.

Technical Report CMU-CS-00-155, Carnegie Mellon, School of Computer

Science, 2000.

[Ben02] Paul N. Bennett. Using asymmetric distributions to improve classifier prob-

abilities: A comparison of new and standard parametric methods. Techni-

cal Report CMU-CS-02-126, Carnegie Mellon, School of Computer Science,

2002.

[BF95] Leo Breiman and Jerome H. Friedman. Predicting multivariate responses

in multiple linear regression. Technical report, November 1995. ftp://-

ftp.stat.berkeley.edu/pub/users/breiman/curds-whey-all.ps.Z.

[BFOS84] L. Breiman, J.H. Friedman, R.A. Olshen, and P.J. Stone. Classification and

Regression Trees. Wadsworth International Group, Belmont, CA:, 1984.

[BG98] Kurt D. Bollacker and Joydeep Ghosh. A supra-classifier architecture for

scalable knowledge reuse. In ICML ’98, pages 64–72, 1998.

[BK99] Eric Bauer and Ron Kohavi. An empirical comparison of voting classifica-

tion algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-

2):105–139, July 1999.

[Blu97] Avrim Blum. Empirical support for winnow and weighted-majority al-

gorithms: Results on a calendar scheduling domain. Machine Learning,

26(1):5–23, 1997.

[BM05] Avrim Blum and Yishay Mansour. From external to internal regret. In Con-

ference on Computational Learning Theory, 2005.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

BIBLIOGRAPHY 217

[Bri50] G.W. Brier. Verification of forecasts expressed in terms of probability.

Monthly Weather Review, 78:1–3, 1950.

[Car96] Jean Carletta. Assessing agreement on classification tasks: The kappa statis-

tic. Computational Linguistics, 22(2):249–254, 1996.

[Car97] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July

1997.

[Car02] John Carroll. High precision extraction of grammatical relations. In Pro-

ceedings of the 19th International Conference on Computational Linguistics

(COLING), pages 134–140, 2002.

[CBM04] Aron Culotta, Ron Bekkerman, and Andrew McCallum. Extracting social

networks and contact information from email and the web. In CEAS-2004

(Conference on Email and Anti-Spam), Mountain View, CA, July 2004.

[CCM04] William W. Cohen, Vitor R. Carvalho, and Tom M. Mitchell. Learning to

classify email into “speech acts”. In EMNLP-2004 (Conference on Empirical

Methods in Natural Language Processing), pages 309–316, 2004.

[CD00] Hao Chen and Susan T. Dumais. Bringing order to the web: Automatically

categorizing search results. In CHI ’00, pages 145–152, 2000.

[CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transac-

tions on Information Theory, 13:21–27, 1967.

[CHM97] D.M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to

learning Bayesian networks with local structure. In UAI ’97, Proceedings of

the 13th Conference on Uncertainty in Artificial Intelligence, pages 80–89,

1997.

[CK97] William W. Cohen and Daniel Kudenko. Transferring and retraining learned

information filters. In AAAI ’97, pages 583–590, 1997.

[CNM04] Rich Caruana and Alexandru Niculsecu-Mizil. Ensemble selection from li-

braries of models. In International Conference on Machine Learning (ICML

2004), 2004.

[CORGC04] Simon Corston-Oliver, Eric Ringger, Michael Gamon, and Richard Camp-

bell. Task-focused summarization of email. In Text Summarization Branches

Out: Proceedings of the ACL-04 Workshop, pages 43–50, 2004.

218 BIBLIOGRAPHY

[CS99] William W. Cohen and Yoram Singer. Context-sensitive learning methods for

text categorization. ACM Transactions on Information Systems, 17(2):141–

173, 1999.

[CST00] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector

Machines and other kernel-based learning methods. Cambridge University

Press, Cambridge, UK, 2000.

[CV95] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20:273–297, November 1995.

[DC00] Susan T. Dumais and Hao Chen. Hierarchical classification of web content. In

SIGIR ’00, Proceedings of the 23rd Annual International ACM Conference on

Research and Development in Information Retrieval, pages 256–263, 2000.

[DF83] Morris H. DeGroot and Stephen E. Fienberg. The comparison and evaluation

of forecasters. Statistician, 32:12–22, 1983.

[DF86] Morris H. DeGroot and Stephen E. Fienberg. Comparing probability fore-

casters: Basic binary concepts and multivariate extensions. In P. Goel and

A. Zellner, editors, Bayesian Inference and Decision Techniques. Elsevier

Science Publishers B.V., 1986.

[DGL96] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of

Pattern Recognition. Springer-Verlag, New York, NY, 1996.

[DHS01] Richard Duda, Peter Hart, and David Stork. Pattern Classification. John

Wiley & Sons, Inc., New York, NY, 2001.

[Die00] Thomas Dietterich. Ensemble methods. In Josef Kittler and Fabio Roli,

editors, MCS ’00, Proceedings of the 1st International Workshop on Multi-

ple Classifier Systems, number 1857 in Lecture Notes in Computer Science,

pages 1–15. Springer, 2000.

[Dom94] Pedro Domingos. The RISE system: Conquering without separating. In Pro-

ceedings of the Sixth IEEE International Conference on Tools with Artificial

Intelligence, pages 704–707. IEEE Computer Society Press, 1994.

[DP96] Pedros Domingos and Michael Pazzani. Beyond independence: Conditions

for the optimality of the simple bayesian classifier. In ICML ’96, 1996.

BIBLIOGRAPHY 219

[DPHS98] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning

algorithms and representations for text categorization. In CIKM ’98, Pro-

ceedings of the 7th ACM Conference on Information and Knowledge Man-

agement, pages 148–155, 1998.

[Fla03] Peter Flach. The geometry of ROC space: Understanding machine learning

metrics through ROC isometrics. In ICML ’03, pages 194–2001, 2003.

[FMS04] Yoav Freund, Yishay Mansour, and Robert E. Schapire. Generalization

bounds for averaged classifiers (how to be a Bayesian without believing).

The Annals of Statistics, 32(4):1698–1722, August 2004.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Information

and Computation, 121(2):256–285, 1995.

[Fre98] Dayne Freitag. Multistrategy learning for information extraction. In ICML

’98, 1998.

[Fri77] J.H. Friedman. A recursive partitioning decision rule for non-parametric

classification. IEEE Transactions on Computers, pages 404–408, 1977.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of Computer and

System Sciences, 55(1):119–139, August 1997.

[FS99] Yoav Freund and Robert Schapire. Large margin classification using the per-

ceptron algorithm. Machine Learning, 37(3):277–296, 1999.

[FSSW97] Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth.

Using and combining predictors that specialize. In STOC ’97, Proceedings

of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,

pages 334–343, 1997.

[Gam98a] João Gama. Combining classifiers by constructive induction. In ECML ’98,

Proceedings of the 10th European Conference on Machine Learning, pages

178–189, 1998.

[Gam98b] João Gama. Local cascade generalization. In ICML ’98, Proceedings of the

15th International Conference on Machine Learning, pages 206–214, 1998.

[GCSR95] Andrew B. Gelman, John S. Carlin, Hal S. Stern, and Donald B. Rubin.

Bayesian Data Analysis. Chapman & Hall/CRC, 1995.

220 BIBLIOGRAPHY

[Goo52] I.J. Good. Rational decisions. Journal of the Royal Statistical Society, Series

B, 1952.

[GZ86] Prem K. Goel and Arnold Zellner, editors. Bayesian Inference and Decision

Techniques: Essays in Honor Of Bruno De Finetti. Elsevier, 1986.

[HBH88] E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert systems

and artificial intelligence. International Journal of Approximate Reasoning,

Special Issue on Uncertain Reasoning, 2:247–302, 1988.

[HBLH94] W. Hersh, C. Buckley, T. Leone, and D. Hickam. OHSUMED: An interactive

retrieval evaluation and new large test collection for research. In SIGIR ’94,

Proceedings of the 17th Annual International ACM Conference on Research

and Development in Information Retrieval, pages 192–201, 1994.

[HCM+00] D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.

Dependency networks for inference, collaborative filtering, and data visual-

ization. Journal of Machine Learning Research, 1:49–75, 2000.

[HMRV98] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volin-

sky. Bayesian model averaging. Technical Report 9814, Department of Statis-

tics, Colorado State University, May 1998.

[HMS66] E.B. Hunt, J. Marin, and P.J. Stone. Experiments in Induction. Academic

Press, New York, 1966.

[HPS96] David Hull, Jan Pedersen, and Hinrich Schuetze. Method combination for

document filtering. In SIGIR ’96, Proceedings of the 19th Annual Interna-

tional ACM Conference on Research and Development in Information Re-

trieval, pages 279–287, 1996.

[HR99] David A. Hull and Stephen Robertson. The trec-8 filtering track final re-

port. In E. M. Voorhees and D. K. Harman, editors, NIST Special Publica-

tion 500-246: The Ninth Text REtrieval Conference (TREC-8), pages 35–56.

Department of Commerce, National Institute of Standards and Technology,

1999.

[HS90] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 12(10):993–1001, Oc-

tober 1990.

BIBLIOGRAPHY 221

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag,

2001.

[JJ94] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and

the EM algorithm. Neural Computation, 6:181–214, 1994.

[JJNH91] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hin-

ton. Adaptive mixtures of local experts. Neural Computation, 3:79–87, 1991.

[Joa98] Thorsten Joachims. Text categorization with support vector machines: Learn-

ing with many relevant features. In ECML ’98, Proceedings of the 10th Eu-

ropean Conference on Machine Learning, pages 137–142, 1998.

[Joa99] Thorsten Joachims. Making large-scale svm learning practical. In Bernhard

Schölkopf, Christopher J. Burges, and Alexander J. Smola, editors, Advances

in Kernel Methods - Support Vector Learning, pages 41–56. MIT Press, 1999.

[Joa02] Thorsten Joachims. Learning to Classify Text Using Support Vector Ma-

chines: Methods, Theory, and Algorithms. Kluwer, 2002.

[Kah04] Joseph M. Kahn. Bayesian Aggregation of Probability Forecasts on Cate-

gorical Events. PhD thesis, Stanford University, June 2004. Department of

Engineering-Economic Systems.

[KBS97] Ron Kohavi, Barry Becker, and Dan Sommerfield. Improving simple bayes.

In ECML ’97 (poster), Proceedings of the 10th European Conference on Ma-

chine Learning, pages 78–87, 1997.

[KC00] Hillol Kargupta and Philip Chan, editors. Advances in Distributed and

Parallel Knowledge Discovery. AAAI Press/MIT Press, Cambridge, Mas-

sachusetts, 2000.

[KKP01] Samuel Kotz, Tomasz J. Kozubowski, and Krzysztof Podgorski. The Laplace

Distribution and Generalizations: A Revisit with Applications to Communi-

cations, Economics, Engineering, and Finance. Birkhäuser, 2001.

[Kle99] Lawrence A. Klein. Sensor and Data Fusion Concepts and Applications.

Society of Photo-optical Instrumentation Engineers, 2nd edition, 1999.

[KMT+82] J. Katzer, M. McGill, J. Tessier, W. Frakes, and P. DasGupta. A study of the

overlap among document representations. Information Technology: Research

and Development, 1:261–274, 1982.

222 BIBLIOGRAPHY

[Lar99] Leah S. Larkey. A patent search and classification system. In Proceedings of

the Fourth ACM Conference on Digital Libraries, pages 179 – 187, 1999.

[LC96] Leah S. Larkey and W. Bruce Croft. Combining classifiers in text catego-

rization. In SIGIR ’96, Proceedings of the 19th Annual International ACM

Conference on Research and Development in Information Retrieval, pages

289–297, 1996.

[LCJ03] Yan Liu, Jaime Carbonell, and Rong Jin. A pairwise ensemble approach for

accurate genre classification. In Proceedings of the European Conference on

Machine Learning (ICML), 2003.

[Lea78] Edward E. Leamer. Specification Searches: Ad Hoc Inference with Nonex-

perimental Data. John Wiley & Sons, USA, 1978.

[Lew92a] David D. Lewis. An evaluation of phrasal and clustered representations on

a text categorization task. In SIGIR ’92, Proceedings of the 15th Annual

International ACM Conference on Research and Development in Information

Retrieval, pages 37–50, 1992.

[Lew92b] David D. Lewis. Representation and Learning in Information Retrieval. PhD

thesis, University of Massachusetts, February 1992. COINS TR 91-93.

[Lew95] David D. Lewis. A sequential algorithm for training text classifiers: Corri-

gendum and additional data. ACM SIGIR Forum, 29(2):13–19, Fall 1995.

[Lew97] David D. Lewis. Reuters-21578, distribution 1.0.

http://www.daviddlewis.com/resources/testcollections/reuters21578, January

1997.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for training text

classifiers. In SIGIR ’94, Proceedings of the 17th Annual International ACM

Conference on Research and Development in Information Retrieval, pages

3–12, 1994.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[LJ98] Y.H. Li and A.K. Jain. Classification of text documents. The Computer

Journal, 41(8):537–546, 1998.

BIBLIOGRAPHY 223

[LL01] Wai Lam and Kwok-Yin Lai. A meta-learning approach for text categoriza-

tion. In SIGIR ’01, Proceedings of the 24th Annual International ACM Con-

ference on Research and Development in Information Retrieval, pages 303–

309, 2001.

[LR94] David D. Lewis and M. Ringuette. Comparison of two learning algorithms

for text categorization. In Proceedings of the Third Annual Symposium on

Document Analysis and Information Retrieval, 1994.

[LSCP96] David D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka. Train-

ing algorithms for linear text classifiers. In SIGIR ’96, Proceedings of the

19th Annual International ACM Conference on Research and Development

in Information Retrieval, pages 298–306, 1996.

[LTB79] D.V. Lindley, A. Tversky, and R.V. Brown. On the reconciliation of proba-

bility assessments. Journal of the Royal Statistical Society, 142(2):146–180,

1979.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.

Information and Computation, 108(2):212–261, 1994.

[LYJC04] Y. Liu, R. Yan, R. Jin, and J. Carbonell. A comparison study of kernels for

multi-label text classification using category association. In The Twenty-first

International Conference on Machine Learning (ICML), 2004.

[LYRL04] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new

benchmark collection for text categorization research. Journal of Machine

Learning Research, 5:361–397, 2004.

http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf.

[LZ05] John Langford and Bianca Zadrozny. Estimating class membership probabil-

ities using classifier learners. In AI & Statistics, 2005.

[Mer95] Christopher J. Merz. Dynamical selection of learning algorithms. In D. Fisher

and H. Lenz, editors, Learning from Data: Artificial Intelligence and Statis-

tics, 5. Springer-Verlag, 1995.

[Mer98] Christoper J. Merz. Classification and Regression by Combining Models.

PhD thesis, University California Irvine, Information and Computer Science,

1998. http://www.ics.uci.edu/˜pazzani/merz.ps.

224 BIBLIOGRAPHY

[Mer99] Christopher J. Merz. Using correspondence analysis to combine classifiers.

Machine Learning, 36(1-2):33–58, July 1999.

[Mic01] Microsoft Corporation. WinMine Toolkit v1.0.

http://research.microsoft.com/˜dmax/WinMine/ContactInfo.html, 2001.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill Companies, Inc., 1997.

[MK60] M.E. Maron and J.L. Kuhns. On relevance, probabilistic indexing, and infor-

mation retrieval. Journal of the ACM, 7(3):216–244, July 1960.

[MLW92] Brij Masand, Gordon Linoff, and David Waltz. Classifying news stories using

memory based reasoning. In SIGIR ’92, pages 59–65, 1992.

[MN98] Andrew McCallum and Kamal Nigam. A comparison of event models for

naive bayes text classification. In Working Notes of AAAI ’98 (The 15th Na-

tional Conference on Artificial Intelligence), Workshop on Learning for Text

Categorization, pages 41–48, 1998. TR WS-98-05.

[MP99] Christopher J. Merz and Michael J. Pazzani. A principal components ap-

proach to combining regression estimates. Machine Learning, 36(1-2):9–32,

July 1999.

[MRF01] R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for com-

bining the outputs of search engines. In Sigir ’01, 2001.

[MT94] Ryszard Michalski and Gheorghe Tecuci, editors. Machine Learning: A Mul-

tistrategy Approach, volume IV. Morgan Kaufmann Publishers, Inc., 1994.

[PD03] Foster Provost and Pedros Domingos. Tree induction for probability-based

rankings. Machine Learning, 52(3):199 – 215, September 2003.

[PF01] Foster Provost and T. Fawcett. Robust classification for imprecise environ-

ments. Machine Learning, 42:203–231, 2001.

[Pla98] John C. Platt. Fast training of support vector machines using sequential min-

imal optimization. In Bernhard Schölkopf, Christopher J.C. Burges, and

Alexander J. Smola, editors, Advances in Kernel Methods – Support Vector

Learning. MIT Press, 1998.

[Pla99] John C. Platt. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. In Alexander J. Smola, Peter

BIBLIOGRAPHY 225

Bartlett, Bernhard Scholkopf, and Dale Schuurmans, editors, Advances in

Large Margin Classifiers, pages 61–74. MIT Press, 1999.

[RC95] T.B. Rajashekar and W.B. Croft. Combining automatic and manual index

representations in probabilistic retrieval. Journal of the American Society for

Information Science, 6(4):272–283, 1995.

[RH00] Stephen Robertson and David A. Hull. The trec-9 filtering track final re-

port. In E. M. Voorhees and D. K. Harman, editors, NIST Special Publica-

tion 500-249: The Ninth Text REtrieval Conference (TREC-9), pages 25–40.

Department of Commerce, National Institute of Standards and Technology,

2000.

[RS02] Miguel E. Ruiz and Padmini Srinivasan. Hierarchical text categorization us-

ing neural networks. Information Retrieval, 5(1):87–118, 2002.

[RSW02] T. Rose, M. Stevenson, and M. Whitehead. The Reuters Corpus Volume

1 – from Yesterday’s News to Tomorrow’s Language Resources. In Pro-

ceedings of the Third International Conference on Language Resources and

Evaluation, 2002. http://about.reuters.com/researchandstandards/corpus/-

LREC camera ready.pdf.

[Sch90] Robert Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, 1990.

[SDHH98] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A

bayesian approach to filtering junk e-mail. In Working Notes of AAAI ’98 (The

15th National Conference on Artificial Intelligence), Workshop on Learning

for Text Categorization, pages 55–62, 1998. TR WS-98-05.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

Computing Surveys, 34(1):1–47, March 2002.

[SF95] J.A. Shaw and E.A. Fox. Combination of multiple searches. In D. K. Harman,

editor, TREC-3, Proceedings of the 3rd Text REtrieval Conference, number

500-225 in NIST Special Publication, pages 105–108, 1995.

[SFBL98] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting

the margin: A new explanation for the effectiveness of voting methods. The

Annals of Statistics, 26(5):1651–1686, 1998.

226 BIBLIOGRAPHY

[Sim95] Jeffrey S. Simonoff. Smoothing categorical data. Journal of Statistical Plan-

ning and Inference, 47(1-2):41–69, 1995.

[SS00] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system

for text categorization. Machine Learning, 39:135–168, 2000.

[STP01] Maytal Saar-Tsechansky and Foster Provost. Active learning for class prob-

ability estimation and ranking. In IJCAI ’01, 2001.

[TH00] Kentaro Toyama and Eric Horvitz. Bayesian modality fusion: Probabilistic

integration of multiple vision algorithms for head tracking. In ACCV 2000,

Proceedings of the 4th Asian Conference on Computer Vision, 2000.

[TO96] Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple

learning tasks: The tc algorithm. In ICML ’96, pages 489–497, 1996.

[TT95] Volker Tresp and Michiaki Taniguchi. Combining estimators using non-

constant weighting functions. In NIPS ’94, 1995.

[TW99] K.M. Ting and I.H. Witten. Issues in stacked generalization. Journal of

Artificial Intelligence Research, 10:271–289, 1999.

[Vap00] Vladimir Vapnik. The Nature of Statistical Learning. Springer, New York,

2nd edition, 2000.

[vR79] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

[WAD+99] Sholom Weiss, Chidanand Apte, Fred Damerau, David Johnson, Frank Oles,

Thilo Goetz, and Thomas Hampp. Maximizing text-mining performance.

IEEE Intelligent Systems, 14(4):63–69, 1999.

[Win69] Robert L. Winkler. Scoring rules and the evaluation of probability assessors.

Journal of the American Statistical Association, 1969.

[WJB97] Kevin Woods, W. Philip Kegelmeyer Jr., and Keven Bowyer. Combination

of multiple classifiers using local accuracy estimates. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19(4):405–410, 1997.

[Wol92] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259,

1992.

[Wol95] David H. Wolpert. The relationship between PAC, the statistical physics

framework, the bayesian framework, and the VC framework. In David H.

BIBLIOGRAPHY 227

Wolpert, editor, The Mathematics of Generalization, pages 117–214.

Addison-Wesley, Reading, MA, 1995.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text categorization.

Information Retrieval, 1(1/2):67–88, 1999.

[YAP00] Yiming Yang, Thomas Ault, and Thomas Pierce. Combining multiple learn-

ing strategies for effective cross validation. In ICML ’00, Proceedings of

the 17th International Conference on Machine Learning, pages 1167–1182,

2000.

[YCB+99] Y. Yang, J.G. Carbonell, R. Brown, Thomas Pierce, Brian T. Archibald, and

Xin Liu. Learning approaches to topic detection and tracking. IEEE EXPERT,

Special Issue on Applications of Intelligent Information Retrieval, 1999.

[YL99] Yiming Yang and Xin Liu. A re-examination of text categorization methods.

In SIGIR ’99, Proceedings of the 22nd Annual International ACM Conference

on Research and Development in Information Retrieval, pages 42–49, 1999.

[YZCJ02] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty de-

tection. In Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, July 2002.

[ZE01] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability esti-

mates from decision trees and naive bayesian classifiers. In ICML ’01, 2001.

[ZE02] Bianca Zadrozny and Charles Elkan. Reducing multiclass to binary by cou-

pling probability estimates. In KDD ’02, 2002.

[Zha05] Jian Zhang. Sparsity models for multi-task learning. In NIPS ’05, 2005.

[ZO01] Tong Zhang and Frank J. Oles. Text categorization based on regularized

linear classification methods. Information Retrieval, 4:5–31, 2001.

[ZY04] Jian Zhang and Yiming Yang. Probabilistic score estimation with piecewise

logistic regression. In International Conference on Machine Learning (ICML

2004), 2004.

