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Abstract

We study a calculus that supports dependent programming in the style of Xi and Pfenning’s Dependent ML.
Xi and Pfenning’s language determines equality of static data using a built-in decision procedure; ours
permits explicit, programmer-written proofs of equality. In this report, we define our calculus’ semantics
and prove type safety and decidability of type checking; we have mechanized much of these proofs using the
Twelf proof assistant. Additionally, we illustrate programming in our calculus through a series of examples.
Finally, we present a detailed comparison with other dependently typed languages, including Dependent ML,
Epigram, Cayenne, ATS,Ωmega, and RSP1.
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1 Introduction

1.1 Dependent Types

Consider the following signature for a module implementing lists ofstrings:

signature STRING LIST =
sig

type slist

val nil : slist
val cons : string× slist → slist

val append : slist× slist → slist

val nth : slist× nat → string

val map2 : (string× string → string) × slist× slist → slist

end.

While mostly self-explanatory, this signature leaves some questions unanswered. For example,nth (lst, i)
is supposed to return theith element oflst, but what does it do wheni is not smaller than the length of
the list? The functionmap2 should map the given function across the two lists, but what does it do when
the lists are of different lengths? (Ignore the remaining items in the longer list? Raise an exception?) In a
language such as Standard ML [38], these sorts of questions are usually answered in informal comments,
and violations of the answers manifest themselves as run-time faults.

In a language withdependent types[33, 34, 35]—types that contain run-time programs—programs can
be given precise enough types that these questions do not come up. Dependently typed languages generalize
the usual function type from ML to a dependent function type,Π x:A. B, where the argument to the function
is allowed to appear in the result type. For example, the above signature canbe revised to track the length
of a list in its type:

signature SLIST2 =
sig

type slist (x : nat)
val nil : slist (0)
val cons : Π x:nat. string× slist (x) → slist (1 + x)
val append : Π x:nat. Π y:nat. slist (x) × slist (y) → slist (x + y)
val nth : Π x:nat. Π i:(nat|i < x). slist (x) → string

val map2 : Π x:nat. (string× string → string) × slist (x) × slist (x) → slist (x)
end.

The first line means that the typeslist (E) is well-formed whenE is a term of typenat. We give precise
types tonil andcons: nil is a list of length zero; the result of acons has one more element than the input
list. The type ofappend propagates information in the same manner—the length of the output is is the sum
of the lengths of the input lists—and makes it more difficult for a buggy version to type check. The type
of map2 ensures that it is only called on lists of the same length, obviating our earlier questions. Similarly,
the type ofnth requires that the offseti be less than the length of the list; a primitive implementation could
now return the data at the given offset without checking at run-time that the offset is in bounds.

As this example begins to suggest, dependent types can allow interesting properties to be checked in the
type system, enable richer interfaces at module boundaries, serve as machine-checked documentation, and
obviate some dynamic checks. Proving that a program possesses a more precise type can be harder, but in
return the type tells more about the program’s behavior. Pragmatically, the programmer can use dependency
inasmuch as it seems worthwhile to capture such strong invariants.
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1.2 Dependent Types and the Phase Distinction

For the types in the above example to be useful, equality of types should includesome notion of equality for
the programs embedded in them. For example, it is desirable that a term with typeslist (1 + 1) also has
typeslist (2). In a pureλ-calculus where program equality is decidable, this is not especially problem-
atic. However, if non-terminating programs are allowed to appear in types, equality will be undecidable.1

Additionally, it is unclear what it means to allow I/O effects or mutable state in types.
Proposals for dependently typed programming languages have taken various approaches to these prob-

lems. Some allow all programs to appear in types by excluding the problematic language features. For
example, Epigram [37] insists on totality, disallowing effects and non-termination. Cayenne [4] allows non-
termination (but no other effects) by sacrificing decidable type checking;program equality is sound but
incomplete. Other proposals [62, 9, 48, 55] use aphase distinction[23] to isolate certain programs that can
appear in types; the rest of the language can then be arbitrarily effectful.

In present work, we follow these latter proposals in insisting on the phase distinction, which maintains
a clear separation between the compile-time (static) and run-time (dynamic) aspects of a program. Type
checking is defined to rely only on the compile-time aspects of a program, whichinclude the types of its
run-time parts and, to support dependent types, the data that can appear in these types. Execution is free
to rely on both the compile-time and the run-time aspects—languages with run-time type analysis [24, 15]
compute with compile-time data at run-time, for example. This methodology ensuresthat the run-time part
of the language can be chosen quite freely to have termination, or not, exceptions, or not, store effects, or not,
without interfering with type checking. Moreover, standard technology [23, 29, 52, 17, 16] equips a language
with the phase distinction with a higher-order module system that itself respectsthe phase distinction.

1.3 The Need For Proofs

The phase distinction ensures that some notion of program equality can be built into the type system, but
existing languages differ in what notion of equality they include and whetherthey automate reasoning about
other propositions. In traditional dependently typed languages such as Cayenne and Epigram, equality is
often determined by computation (for example,βη-reduction for functions); additional equalities and other
propositions are proven by the programmer using explicit proofs. In contrast, Xi and Pfenning’s Dependent
ML (DML) [62, 61, 56] is designed to permit fully automated reasoning about compile-time data. In DML,
compile-time data, calledindices, are drawn from a designatedindex domainthat is chosen by the language
designer. For example,nil would have typelist (z), wherez is a compile-time number in the index
domain of natural numbers. Operations on indices (such as+) and propositions (such as equality and<)
are also specified by the language designer. In order to provide fully-automated reasoning about indices,
the language designer also fixes a particular constraint solver capable of deciding these propositions. For
example, Xi and Pfenning’s original implementation has integer indices with a constraint solver for linear
integer inequalities [61].

While automation eases the burden on the programmer, a language that decides index propositions using
only a constraint solver fixed by the language designer is restricted in several ways:

• For type checking to be decidable, all built-in index propositions must be decidable. For example, if
decidable type checking is desired, the built-in index domain cannot even include all of arithmetic;
the original DML implementation restricted index multiplication to stay in a decidable fragment.

• The language designer can include undecidable propositions at the costof decidable type checking,
but when the decision procedure loops while proving a proposition that is true, the programmer’s

1This assumes a sufficiently rich notion of equality—for example, two programs are equal iff they reduce to the same value.
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only recourse is to write a different program. In particular, even if the programmer knows why some
proposition is true, he cannot convince the type checker.

• The language cannot allow the programmer to define new propositions about indices: the constraint
solver will not be able to solve them.

• The language cannot allow the programmer to define new index domains with interesting operations
on them. By the previous point, the programmer cannot define new propositions about these indices,
limiting their utility. Moreover, decidable notions of equality that are general to all index domains
(for example, computational principles) often do not include all desirable equalities; thus, the built-in
equality of these new indices would likely be insufficient.

However, recent studies have shown the benefits of allowing a variety ofindices, operations, and propo-
sitions. For example, static verification of array accesses [61] and many other data structure invariants [57]
are possible using DML’s integer index domain. Sometimes, this involves encoding other constraint do-
mains as integers (e.g.,{red, black} as{0, 1}); using such encodings is less clear to programmers and cre-
ates opportunities for errors. Tracking matrix sizes requires going beyond the linear fragment of arithmetic
supported by the original DML [9]. Interpreters and compiler transformations that verify object-language
typing through the meta-language type system employ representations of object-language types and envi-
ronments [8] as indices; these index domains are necessarily specific to theobject language that is being
implemented. Other interpreters use meta-language types themselves [41] as indices. XML documents can
be represented typefully and taglessly using indices that describe their structure [64]. Finally, certified type
checkers [47] can be written in a language with LF [22] terms and types as indices. The number and variety
of these examples suggest that the above restrictions are undesirable.

To support undecidable propositions and programmer-defined index domains and propositions, some
recent proposals for phase-respecting dependent types [9, 55] have shifted their focus away from constraint
solvers, returning instead to the explicit proofs common in traditional dependently-typed languages. Propo-
sitions that do not admit decidable proof search often do admit decidable proof checking. Additionally,
unlike a fixed constraint solver, explicit proofs easily extend to new propositions about programmer-defined
indices.

1.4 Contributions

We are in the process of designing an ML-like language with programmer-defined index domains; in the
previous sections, we have discussed some of the issues that set the context for our work. In particular,
to support an ML-like language with unrestricted effects and decidable compile-time type checking, we
take the phase distinction as fundamental. To support programmer-definedindex domains and unrestricted
propositions about them, we base our approach on explicit proofs rather than a constraint solver.

In this report, we lay a foundation by studying a language with the fixed indexdomain of natural num-
bers. We answer answer several questions about the design of this calculus:

1. How are indices and index operations represented as compile-time data?

2. How are indices used in the types of run-time data?

3. What notion of equality of compile-time data is built into the type system?

4. What does a programmer do when this notion of equality is insufficient? Howcan other propositions
about indices (such as the< in the type ofnth) be stated and proven?

5. What does a programmer do when there is insufficient evidence for a proposition?
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In our answers to these questions, we have attempted to cull the best features from the existing proposals for
phase-respecting languages with programmer-defined index domains. For example, likeΩmega [48, 41],
our calculus allows a programmer to define new functions on indices; like ATS[9], our calculus includes a
consistent logic in which proofs of index propositions are given. Additionally, in answering these questions
we have arrived at a need for some features not found in any existing proposal for phase-respecting depen-
dent types. Most notably, we allow run-time computation with compile-time data suchas indices and proofs.
This enables some programming techniques familiar from traditional dependently typed languages—for ex-
ample, it is sometimes useful to have run-time code dispatch on the structure of aproof.

In the remainder of this paper, we detail our calculus’s answers to these questions. In Section 2, we
describe our calculus’s answers at a high level. In Section 3, we present the syntax of our calculus. In
Section 4, we illustrate our calculus’s answers by implementing the list module fromthis introduction. In
Section 5, we present the semantics of our calculus and overview its meta-theory. We have formalized much
of the meta-theory using Twelf [44]; the theorems are presented in Appendix B. In Section 6, we contrast
our calculus’s answers with those in related work. Finally, in Section 7, we discuss some possibilities for
future work. The Twelf code implementing the examples and meta-theory is available on the Web [1].

2 Answers to the Design Questions

In this section, we discuss how our calculus answers the five design questions from Section 1.

2.1 Indices and Index Operations are Represented as Constructors

In a calculus likeFω [20], compile-time data are called(type) constructorsand classified bykinds; a partic-
ular kindTYPE classifies the types of run-time terms. We fit index domains into such a calculus following
LX [15] and Ωmega [48, 41]: an index domain is a kind (other thanTYPE) and indices are constructors of
that kind. In these languages and ours, an index domain is often an inductively-defined kind. For example,
the index domain of natural numbers could be defined by

kind NAT = z | s NAT.

Like LX and Ωmega, we support index-level operations (such as the+ used in the type ofappend) as
constructor-level functions. In our calculus, these functions can be written using the induction operators
associated with the index domains. For example, the+ operator could be defined as follows:

plus :: NAT → NAT → NAT = λc i::NAT. λc j::NAT. NATrec[u.NAT](i, j, i
′.r.s r).

TheNATrec construct allows induction over the kind of natural numbers; the equivalent definition in pattern-
matching syntax would be

plus z j = j

plus (s i′) j = s (plus i′j).

Languages such as ATS [9] and RSP1 [55] adopt a relational view of index-level operations; we discuss the
trade-offs between this approach and ours in Section 6.
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2.2 Indexed Types

Using indices in types, we revise the signatureSLIST2 from Section 1 as follows:

signature SLIST3 =
sig

type slist (u :: NAT)
val nil : slist (z)
val cons :∀ u::NAT. string× slist (u) → slist (s u)
val append :∀ u::NAT.∀ v::NAT. slist (u) × slist (v) → slist (plus u v)
val nth :∀ u::NAT.∀ v::(NAT|v < u). slist (u) → string

val map2 :∀ u::NAT. (string× string → string) × slist (u) × slist (u) → slist (u)
end.

The first line now says that the typeslist (u) is well-formed whenu haskind NAT. Because our indices
are constructors, the dependent function constructorΠ has been replaced by the more familiar∀ in the
subsequent types.

This example allows us to illustrate some terminology. In thisSLIST3 signature,slist (u :: NAT) is
a family of types indexed by the constructors of a kind. In contrast, in the original SLIST2 signature,
slist (x : nat) is a family of types indexed by the terms of a type. Because our calculus doesnot allow
run-time terms to appear in types, types canonly be indexed by a kind; consequently, byindexed type
we always mean a type that is indexed by the constructors of a kind. Correspondingly, because all data
that indexes types comes from the constructor level, we use “index” synonymously with “constructor”. In
contrast, when describing other languages, we use the phrasedependent typeto refer to a type that is indexed
by the terms of a type.2 Note that, under this definition, a traditional polymorphic list type defined by

type list (a :: TYPE) = nil[a :: TYPE] | cons[a :: TYPE] a (list a)

is also an indexed type, where the indices happen to be constructors of kind TYPE.
As a second bit of terminology, bothslist (x : nat) andslist (u :: NAT) areinductive families[19].3

Inductive families generalize ordinary ML-style datatypes in two ways;slist (u :: NAT) illustrates both.
First, the data constructors for inductive families are allowed to target only asubset of the family’s indices—
for example,nil creates only anslist (z). Second, the data constructors for one subset of the indices can
refer mutually and inductively to other subsets—for example,cons creates an inhabitant ofslist (s i)
from an inhabitant ofslist (i). For ordinary polymorphic datatypes, it is possible but tedious to define
each instance of an indexed datatype separately; this is not the case for inductive families. Dependent
inductive families have been well-studied in type theory [31] and underlie Epigram [37]; indexed inductive
families underlie DML’s datatypes and GADTs [48].

2.3 Definitional Equality

Like Fω, our calculus requires a coarser notion of type equality than syntactic equivalence. As mentioned
above, it is desirable that the typelist (plus (s z) (s z)) be equal to the typelist (s (s z)). To this end,
our type system includes a notion ofdefinitional equalityof type constructors; our definitional equality rela-
tion includesβ andη rules for constructor-level functions andβ rules for constructor-level natural numbers.

2Note that this distinction between indexed and dependent types is not always correlated with the distinction between compile-
time and run-time data. We believe that, for a programming language, type checking is fundamentally a compile-time activity;
consequently, we view any data that can appear in types as compile-time data. For example, the dependent types in Epigram [37]
and RSP1 [55] are indexed by terms that, in our view, must nonetheless be seen as compile-time data.

3More precisely,slist (u :: NAT) is a non-uniform mutually- and inductively-defined family of types indexed by constructors
of kind NAT.
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Under these rules,plus (s z) (s z) is indeed equal tos (s z). The type system permits types and kinds to
be silently interchanged with their definitional equals, so if a term has typelist (plus (s z) (s z)), it also
has typelist (s (s z)).

Unfortunately, there are some equal types that are not related by this notion of definitional equality. For
example, consider a client of aSLIST3 module implementing a function

map2App :∀ u::NAT.∀ v::NAT. (string× string → string) × slist (u) × slist (v) → slist (plus u v)

that appends the first list with the second, appends the second list with the first, and then maps the given
function over these two results. The natural implementation would be

map2App = Λ i::NAT. Λ j::NAT. λ (f, l1, l2). map2 (f, append l1 l2, append l2 l1)

but this program is not well typed. The call tomap2 requires the two lists to have the same length;
whenl1 : slist (i) andl2 : slist (j), the type ofappend gives that the first argument tomap2 has type
list (plus i j) whereas the second has typelist (plus j i). Doing theβ-reduction resulting from the
definition ofplus gives

plus i j ≡ NATrec[ .NAT](i, j, i′.r.s r)
plus j u ≡ NATrec[ .NAT](j, i, i′.r.s r).

Unfortunately, these two constructors are not definitionally equal in our calculus (intuitively, there are noβ-
redices, and we only includeβ rules forNATrec). One might hope to enrich definitional equality to include
facts like commutativity of addition, but enriching the general equality rules for inductive types to cover
such equalities amounts to asking the type checker to search for inductive proofs; thus, it quickly becomes
undecidable [26].

2.4 Propositions and Proofs

We address the limitations of definitional equality with a notion ofpropositional equalitydetermined by ex-
plicit proofs; proofs of propositional equality can be used to influence the typing of a term. For example, we
give a well-typed version ofmap2App using a proof thatplus is commutative. In our calculus, propositional
equality is represented as a kind; a proof is a constructor of that kind. More precisely, equality is represented
as the inductive family of kindsEQN(I, J); an inhabitant of a particular member of this family is a witness
to the equality ofNATsI andJ. Inductive families can be used to represent any proposition that is a relation
among indices; for example, a kindLtN(I, J) could be used to represent theu < v constraint in the type
of nth. Proofs of such propositions are just constructor-level programs. The same properties that make
definitional equality tractable—purity and termination—also make for a consistent logic, so it is reasonable
to have the constructor level serve both purposes. This avoids duplication, and it would allow types to be
indexed by proofs. However, there is nothing fundamental behind this decision: one could choose to have
two syntactic classes for compile-time data, one for types and indices and onefor proofs.

For proofs of propositional equality to be useful, they must be able to influence the typing of a term.
For example, a proof thatEQN(i, j) should imply that a term with typelist (i) also, in some sense, has
typelist (j). This could be achieved by adapting the definitions of propositional equalitythat have been
studied in intensional Martin-L̈of type theory [40, 26].4 In Martin-Löf type theory, propositional equality is
defined to be the least relation containing reflexivity, and the elimination form for equality expresses the fact

4Intensional here refers to “intensional equality”. In type theory with intensional equality, a proof must be explicitly used to
retype a term; in type theory with extensional equality, the mere provability ofa proposition induces a definitional equality, and
therefore an implicit retyping. Because it relies on provability, extensional type theory is undecidable [26]. “Intensional” and
“extensional” are used in this sense because many equalities of the extensions of terms are only true by virtue of an inductive proof.
In most type theories, definitional equality only equates terms whose intensions are the same; in extensional type theory, definitional
equality includes these extensional concepts.
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that propositional equals are really definitionally equal. Using the elimination form, it would be possible to
prove lemmas such as symmetry, transitivity, and congruence (EQN(I, J) impliesEQN(s I, s J)). To retype
terms, we could add a run-time elimination form for proofs with the following typingrule:

∆, u :: NAT ` A :: TYPE ∆ ` P :: EQN(I, J) ∆ ; Γ ` E : [I/u]A

∆ ; Γ ` subst[u.A](P, E) : [J/u]A .

This construct could transition directly toE at run-time: because all proofs are ultimately reflexivity, the type
given tosubst[u.A](P, E) would always be definitionally equal to the type ofE; therefore, these semantics
would satisfy type preservation.

This notion of propositional equality allows proofs of equality to be used to retype terms. However, it
privileges propositional equality, defined as the identity relation, as the onlyproposition whose proofs can
be eliminated at run-time. In Appendix A, we sketch a simple example that shows why one might want
a run-time elimination form for other proofs. In this example, we track the units of measure of scientific
quantities (as in Kennedy’s languages [28] and Fortress [2]) using indices. Units—meters, seconds, the
product of two units, the inverse of a unit, and scalar factors—are represented as constructors in an in-
dex domainU. An indexed typeufloat (u :: U) represents floating-point numbers tagged with a unit; for
example,quantity[met] 4.0 represents four meters and has typeufloat (met). Using these types, we
define unit-respecting arithmetic operations: addition requires two quantities of the same unit; the unit of
the multiplication of two quantities is the product of their units.

Scientific units obey certain algebraic laws; for example,ufloat (met · sec−1) should be equal to
ufloat (((met · sec−1) · sec−1) · sec)). These laws are not part of definitional equality for the index do-
main, so we axiomatize a notion of propositional equality that includes them. However, unlike the definition
of equality as the least relation containing reflexivity, retyping based on these proofs of equality requires a
run-time action: whenu andv are propositionally equal units,ufloat (u) andufloat (v) do not always
classify the same terms. Though the retyping function is the identity on the underlying floats (interchang-
ing algebraically equivalent units does not change the magnitude of the quantity), the coercion must package
the number with the new unit.

Next, we extend the example by defining a proposition relating two units of the same dimension. Two
units have the same dimension when they differ only by a factor of scale; forexample, both meters and
feet have dimension length. Retyping based on this proposition requires scaling the underlyingfloat by
the appropriate factor. To write this retyping function, it is necessary to compute with the proof that the
units have the same dimension at run-time: we case-analyze the proof of equality, extract the factor of scale,
and then do the appropriate multiplication. Run-time computation with indices and proofs is useful in other
circumstances as well; for example, Brady [6] writes a structurally recursive quicksort by induction on the
proofs of an accessibility relation.

To support examples like these, we have designed our calculus to allow run-time computation with all
compile-time data. To study run-time elimination forms for proofs in our simple calculus, we axiomatize
propositional equality for natural numbers inductively:eqn zz proves thatz is equal toz; eqn ss(I, J, P)
proves thats I is equal tos J whenP proves thatI is equal toJ. This definition is more like the propositions
on units of measure than axiomatizing equality as reflexivity is: it is inductively defined; also, it has more
than one constructor, so writing coercions will require a case-analysis with more than one branch.

2.5 Run-time Checks Produce Proofs

Sometimes, desired index relationships will not be evident. For example, a programmer might want to call
map2 on two lists with potentially different lengths. One solution is to rewrite as much of the program as
necessary to make it evident that the lists have the same length. However, propagating this information will
sometimes be difficult or impossible—for example, the lists might be read from user input. In these cases,
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Kinds
K ::= TYPE | Πk u1::K1. K2 | NAT | EQN(C1, C2)

Type Constructors

A, B, C, I, J, P ::= C1 → C2 | C1 × C2 | C1 + C2 | ∀K2 C | ∃K2 C | unit | void | nat I | list I
| u |λc u::K. C | C1 C2
| z | s I | NATrec[u.K](I, Cz, i

′.r.Cs)
| eqn zz | eqn ss(I, J, P) | EQNrec[i.j.p.K](C, Czz, i.j.p.r.Css)

Terms
E ::= x |λ x:A. E | E1 E2 | fix x:A. E

| (E1, E2) | fst E | snd E

| inl[A] E | inr[A] E | case(E, x:A.E1, y:B.E2)
| Λ u::K. E | E[C] | pack[A](C, E) | unpack[B](E1, u::K.x:(A u).E2)
| () | abort[A] E
| zero | succ[I] E | natcase[u.A](E, Ez, i

′.n′.Es)
| nil | cons[I] E1 E2 | listcase[u.A](E, En, hd.i

′.tl.Ec)
| NATcase[u.A](I, Ez, i

′.Es) | EQNcase[i.j.p.A](C, Ezz, i.j.p.Ess)

Contexts

∆ ::= · |∆, u :: K
Γ ::= · |Γ, x : A

Figure 1: Syntax

the programmer should be able to write a run-time check that, if it is true, establishes the desired property.
Then the programmer could check whether the two lists have the same length, call map2 if they do, and
handle the other case appropriately.5 However, a standard boolean-valued check such as

sameLength :∀ i::NAT.∀ j::NAT. list (i) × list (j) → bool

does not serve this purpose: this function returning true has no connection with the truth of the proposition
EQN(i, j). In our calculus, the truth of this proposition can be established by a checkthat returns a proof in
the cases where it is true. For example, a programmer could write a function

sameLength :∀ i::NAT.∀ j::NAT. list (i) × list (j) → (∃ ::EQN(i, j). unit) + unit

that, instead of just returningtrue, creates a proof that the indices are equal. This proof could then be used
to retype thelist (j) to alist (i) before callingmap2.

In general, the programmer can write and use arbitrary run-time functions tocheck the truth of propo-
sitions. In Section 4, we use a proof-producing implementation oflessThan to write a version ofnth that
works with an offset that is not necessarily in bounds, calling the statically checked version ofnth in the
case where the offset is in the correct range.

3 Syntax

We present the full syntax of our calculus in Figure 1. We use[C2/u]C, [C2/u]K, [C2/u]E, [C2/u]∆, [C2/u]Γ,

5An alternative would be to rewritemap2 with a less strict type, building in a case for lists of different lengths; then thetruth
of the proposition is irrelevant. However, this leads to unnecessary codeduplication—the originalmap2 does what the programmer
wanted when the lists do have the same length.
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and [E2/x]E for the meta-operations of capture-avoiding substitution. The innermost substitution applies
first, so[C2/u][C1/v]C is [C2/u]([C1/v]C).

Much of the kind and constructor level has been summarized above: it includes types, constructor-
level functions, the index domain of natural numbers, and the kindEQN(C1, C2) of proofs of equality of
constructors of kindNAT. However, because the proofs of equality introduce dependencies of kinds on
constructors, the usual function kind ofFω is replaced with a dependent function kind. We often abbreviate
TYPE asT, NAT asN, andΠk u::K2. K asK2 →k K whenu is not free inK. We abbreviate∀K (λc u::K. C)
and∃K (λc u::K. C) as the more familiar∀ u::K. C and∃ u::K. C. But for a few constructs, the term level is a
standard polymorphicλ-calculus. Because numbers and lists are given indexed types, there are constructors
embedded in the syntax forsucc andcons. Additionally,NATcase andEQNcase are term-level elimination
forms for the constructor-level natural numbers and proofs of their equality.

We defer presentation of the typing rules until after the examples—they are mostly familiar. One subtlety
is that thecase-like elimination forms forNAT andEQN(I, J) (both at the constructor level and at the term
level) treat these kinds as inductive families, so information about the scrutinized constructor is propagated
into thecase branches using substitution [19, 31, 37, 24, 15]. In these rules, the scrutinized constructor is
allowed to appear free in the result kind/type of each rule, and in each branch the appropriate constructor is
substituted. Consider the rule for the constructor-levelNATrec:

∆, i :: NAT ` K kind ∆ ` I :: NAT ∆ ` C1 :: [z/i]K ∆, i′ :: NAT, r :: [i′/i]K ` C2 :: [s i′/i]K

∆ ` NATrec[i.K](I, C1, i
′.r.C2) :: [I/i]K .

In thez branch, the result constructor must only have kind[z/u]K. The same device is used in theEQNrec
rule, whereI, J, and the proof itself can appear free in the result. We have also applied thisdevice to term-
levelcases, where the situation is a bit different: for example, inlistcase, the list itself cannot appear in
the result type (since terms cannot appear in types); however, its indicescan. These rules will be crucial in
the examples below.

4 Examples

Our answers to the first and second design questions in Sections 2.1 and 2.2 include some examples of rep-
resenting indices as type constructors and using indices in types. We illustrate our answers to the remaining
three questions in this section. We have implemented all of the following examples using Twelf to run the
LF encoding of the semantics as a type checker and an interpreter; the code is available on the Web [1].

We implement the signature from the introduction, tweaked slightly to reflect the fact that there are no
strings in our calculus:

signature NLIST =
sig

type bnat = ∃ u::NAT. nat (u)
type nlist (u :: NAT)
val nil : nlist (z)
val cons :∀ u::NAT. bnat× nlist (u) → nlist (s u)
val append :∀ u::NAT.∀ v::NAT. nlist (u) × nlist (v) → nlist (plus u v)
val nth :∀ u::NAT.∀ v::NAT.∀ ::LtN(v, u). nlist (u) → bnat

val map2 :∀ u::NAT. (bnat× bnat → bnat) × nlist (u) × nlist (u) → nlist (u)
val map2App :∀ u, v::NAT. (bnat× bnat → bnat) × nlist (u) × nlist (v) → nlist (plus u v)

end.

We instead work with lists whose elements are∃ u::NAT. nat (u)—“blurred” natural numbers whose sizes
are statically unknown. Just as∀ in our calculus acts as a dependent function type,∃ acts as a (weak)
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dependent pair type.6

4.1 Using Definitional Equality

Implementingnlist as thelist type of our calculus,nil is built-in, andcons is just aλ-abstraction over
the built-incons. Forappend, recall that the constructorplus of kind NAT →k NAT →k NAT is defined to
beλc i::NAT. λc j::NAT. NATrec[u.NAT](i, j, i

′.r.s r). We useplus to give a precise type forappend as
follows:

append :∀ i::NAT.∀ j::NAT. list (i) × list (j) → list (plus i j) =
fix r:∀ i::NAT.∀ j::NAT. list (i) × list (j) → list (plus i j).
Λ i, j::N. λ ls:list (i) × list (j).
listcase[i′.list (plus i′ j)](fst ls, snd ls, hd.i′.tl.cons[(plus i′ j)] hd (r[i′][j] (tl, snd ls))).

Typing this term uses both definitional equality and the inductive-family typing rule for listcase. For
example, the branch of thelistcase for an empty first list must have typelist (plus z j), but the result
of the branch has typelist (j); fortunately, these types are definitionally equal. Similarly, in thecons

branch, the result clearly has types (plus i′ j), and definitional equality shows that it has the desired type,
plus (s i′) j.

Implementingmap2 is similar. One way to implement it is to case on each of the two lists and go into
an infinite loop (i.e., raise an exception) in the mismatched cases: because the function can only be called
on lists of the same length, these cases will never occur. It is also possible toimplement the function in a
manifestly total manner, for example by casing on the first list and then use manifestly totalhead andtail
on the other. We take this approach here, as writinghead andtail is also illustrative. A first attempt at
tail falls flat:

tail :∀ i::N. list (s i) → list i =
Λ i::N. λ l:list (s i). listcase[i′.list (i)](l, ???, hd.i′.tl.tl).

First, we have nolist (i) to return in thenil branch; second, in thecons branch, we have not established
thati′, the size of thetl list exposed by pattern matching, is the same asi. One way around these problems
is to define the truncated predecessor function for indices,

tpred :: NAT →k NAT = λc i::N. NATrec[ .NAT](i, z, i′. .i′)

and then write

tail′ :∀ i::N. list (i) → list (tpred i) =
Λ i::N. λ l:list (i). listcase[i′.list (tpred i′)](l, nil, hd.i′.tl.tl).

Then it is simple to writetail:

tail :∀ i::N. list (s i) → list (i) = Λ i::N. tail′[s i].

To write tail, we computed an index in the result type based on an input index. This devicedoes not
work for head :∀ i::N. list (s i) → bnat, as the result type of this function does not even mention the

6By “weak”, we mean that the existential has a closed-scope elimination form rather than projections. This is a simple way to
maintain the phase distinction: the first projection of an existential projects a constructor from a term; permitting this introduces
complications that we wish to avoid here.
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indexi, so we cannot vary the index in it. However, we can instead define a type (and not just the indices in
it) by case analysis on a index. For example,

hdtp = λc i::NAT. NATrec[ .TYPE](i, unit, . .bnat)
head′ :∀ i::N. list (i) → hdtp i = Λ i::N. λ l:list (i). listcase[i′.hdtp i′](l, (), hd. . .hd)
head :∀ i::N. list (s i) → bnat = Λ i::N. head′[s i].

Again, note the uses of definitional equality: when applied to alist (s I), β-reduction shows thathead′

has the desired type.
We can now definemap2 as follows:7

map2 : all i::N. (bnat * bnat -> bnat) * list(i) * list(i) -> lis t(i) =
fix r : all i::N. (bnat * bnat -> bnat) * list(i) * list(i) -> lis t(i).

Fn i::N. fn x: (bnat * bnat -> bnat) * list(i) * list(i).
(listcase[i’.list(i’) -> list(i’)]

(fst (snd x),
fn lst:list(z). lst,
hd.i’.tl.

fn l2:list(s i’).
cons((fst x) (hd, head[i’] l2),

i’,
r[i’](fst x, (tl, tail[i’] l2)))))

(snd (snd x)).

Aside from illustrating uses of definitional equality and the inductive-family typing rules, the examples
in this section (head andtail) show a technique for writing, in a manifestly total form, functions that
are only defined for some of the elements of an inductive family. The technique is this: write an auxiliary
function with a type that is defined by case analysis (or, more generally, induction) on the indices of the type
family; in the irrelevant cases, define the type to be something trivial; then, define the original function to
be the restriction of this auxiliary function to the desired indices. At the term level, one could instead fill in
the irrelevant cases with an infinite loop. However, the technique described here will also be applicable at
the constructor level, where one does not have the luxury of general recursion.

4.2 Using Propositions and Proofs

4.2.1 Proving Simple Theorems

Our kind and constructor level is a first-order intuitionistic logic: dependent functions allow quantification
over individuals such asNAT; because we have included propositions in the same syntactic category as
individuals, implication is definable using quantification. This mechanism can beused to establish some
properties of indices. For example, a simple induction over natural numbersshows that equality is reflexive:

eqn refl :: Πk i::NAT. EQN(i, i) = λc i::NAT. NATrec[u.EQN(u, u)](i, eqn zz, i′.r.eqn ss(i′, i′, r)).

The following proof of symmetry is an example of induction over proofs:

eqn sym :: Πk i::NAT. Πk j::NAT. EQN(i, j) →k EQN(j, i) =
λc i::NAT. λc j::NAT. λc p::EQN(i, j). EQNrec[i

′.j′. .EQN(j
′, i′)](p, eqn zz, i′.j′. .r.eqn ss(j′, i′, r)).

When inducting over the proof, there is no need to contradict the “off-diagonal” cases as one would have to
do in a proof by induction over the two numbers.

7In the example code, we sometimes usefn/c for λc, pi for Πk, fn for λ, Fn for Λ, all andexists for ∀ and∃, and* for
×. Additionally, we use the shorthandi,j::K2 for iterated binding forms, sopi i,j::K2.K is pi i::K2.pi j::K2.K .
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Transitivity is a little trickier. One way to do it is as follows:

eqn trans :: Πk i::NAT. Πk j::NAT. EQN(i, j) →k Πk k::NAT. EQN(j, k) →k EQN(i, k) =
λc i, j::N. λc p12::EQN(i, j).
EQNrec[i

′.j′. .Πk k::N. EQN(j
′, k) →k EQN(i

′, k)]
(p12,
λc k::N. λc p23::EQN(i, j). p23,
i′.j′.p′.r.

λc k::N. NATrec[k
′.EQN(s j

′, k′) →k EQN(s i
′, k′)]

(k,
λc p23::EQN(s j

′, z). eqn trans contra i′ j′ p23,
k′. .λc p23::EQN(s j

′, s k′). eqn ss(i′, k′, r k′ (eqn pp j′ k′ p23)))).

By induction on the proof ofEQN(i, j), we create a proof that allk equal toj′ are equal toi′. In the
eqn zz case this is easy, sincei′ andj′ are bothz. In the inductive case, we case analyzek, producing in
each case a proof that ifk is equal tos j′ then it is equal tos i′. Whenk isz, the assumption is contradictory
(zero and successor are never equal). Whenk is s k′, we can use the outer inductive hypothesisr on a proof
of EQN(j′, k′) extracted using the lemmaeqn pp, and theneqn ss gives the result. The lemmaseqn pp

andeqn trans contra are defined below. This proof requires more sophisticated uses of the induction
principles than the previous lemmas. For example, abstracting overk in each branch of theEQNrec ensures
that a strong enough inductive hypothesis is available: we appeal tor on thek′ bound in theNATrec, so
assumingEQN(j′, k) →k EQN(i

′, k) for a fixedk bound outside the loop is insufficient. Bindingp23 in each
branch of theNATrec propagates index information: in thez branch, we give it typeEQN(s j′, z), whereas
in the successor branch we give it typeEQN(s j′, s k′). This is a well-known technique [24, 15].

To discharge our first lemma, we need to prove

eqn pp :: Πk i, j::N. EQN(s i, s j) →k EQN(i, j).

The kind of this constructor is similar to the type oftail; we use the same device:

eqn pp′ :: Πk i, j::N. EQN(i, j) →k EQN(tpred i, tpred j) =
λc i, j::N. λc p::EQN(i, j). EQNrec[i

′.j′.p′.EQN(tpred i
′, tpred j′)](p, eqn zz, i′.j′.p′. .p′)

eqn pp :: Πk i, j::N. EQN(s i, s j) →k EQN(i, j) = λc i, j::N. eqn pp′ (s i) (s j).

Now, we must discharge the other assumption by writing

eqn trans contra :: Πk j, i::N. EQN(s j, z) →k EQN(s i, z).

The hypothesis, that zero is equal to the successor of some number, certainly seems contradictory, but how
can we exploit this contradiction within the language? If we had a kindVOID with the usual false elim
abortc[K] C, we could first demonstrate the contradiction and then useabortc to derive this particular
consequence. Would it be possible to write this function? Its type would be

eqn trans contra′ :: Πk j::N. EQN(s j, z) →k VOID.

To implement it, we would need to define a kind by cases on indices (this is similar to the type ofhead′,
which was also defined by cases on indices):

K(z, z) = UNIT

K(s , s ) = UNIT

K(z, s ) = VOID

K(s , z) = VOID.
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Then,λc j::N. λc p::EQN(s j, z). EQNrec[().i
′.j′.()](, p, ().i′.j′.p′. )K(i′, j′) proves the result, since the re-

sult kind isUNIT in all the cases we must consider. Unfortunately, our language does nothave the operators
needed to define thisK at the kind level (kind-levelλ andNATrec); we may add them in future work. How-
ever, we can still salvage the idea by defining theindicesof the result kind by cases on the input. While not
as general (this trick does not allow the outer “shape” of the kind to vary), it suffices for this lemma:

eqn trans contra :: Πk j, i::N. EQN(s j, z) →k EQN(s i, z) =
λc j, i::N. λc p::EQN(s j, z). EQNrec[i

′.j′. .EQN(f i i
′ j′, z)](p, eqn zz, i′.j′. . .eqn zz)

wheref is
λc i, u, v::N. NATrec[ .NAT](u, z, . .NATrec[ .NAT](v, s i, . .z)).

That is, when the second two arguments match, the value off is z, so we are provingEQN(z, z) in each
branch; when we substitute the indices ofp, it yields what we needed.

4.2.2 Retyping Based on Equality Proofs

Now, we return to themap2App example. Our purported solution was

map2App :∀ u::NAT.∀ v::NAT. (bnat× bnat → bnat) × list (u) × list (v) → bnat (plus u v) =
Λ i::NAT. Λ j::NAT. λ (f, l1, l2). map2 (f, append l1 l2, append l2 l1).

The necessary index equalities are

plus i j ≡ NATrec[ .NAT](i, j, i′.r.s r)
plus j u ≡ NATrec[ .NAT](j, i, i′.r.s r).

We observed that these two constructors are not definitionally equal; however, using the above machinery,
it is easy to prove that these two terms are equal:

plus_rhz :: pi i::N. EQN(plus i z, i) =
fn/c i::N.

NATrec [u.EQN(plus u z, u)]
(i, eqn_zz, i’.r.eqn_ss(plus i’ z, i’, r))

plus_rhs :: pi i,j::N. EQN(plus i (s j), s (plus i j)) =
fn/c i,j::N.

NATrec[u.EQN(plus u (s j), s (plus u j))]
(i, eqn-refl (s j), i’.r.eqn_ss(plus i’ (s j), s (plus i’ j), r ))

plus_commutes :: pi i,j::N. EQN(plus i j, plus j i) =
fn/c i,j::N.

NATrec[u.EQN(plus u j, plus j u)]
(u,

eqn_sym (plus j z) (plus z j) (plus-rhz j),
i’.r.

eqn_trans (s (plus i’ j))
(s (plus j i’))
(eqn_ss (plus i’ j, plus j’ i, r))
(plus j (s i’))
(eqn_sym (plus j (s i’))

(s (plus j i’))
(s (plus_rhs j i’)))).
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To finish offmap2App, we must be able to exploit aEQN(plus i j, plus j i) to retype alist (plus i j)
to alist (plus j i). Such a retyping mechanism can be defined using the term-level elimination forms for
proofs. For example,

retype/list : all i,j::N. all _::EQN(i, j). list(i) -> list( j) =
fix r::all i,j::N. all _::EQN(i, j). list(i) -> list(j).

Fn i,j::N. Fn p::EQN(i,j).
EQNcase[i’.j’._. list(i’) -> list(j’)]

(p,
fn x:list(z). x,
i’.j’.p’.

fn lst:list(s i’).
cons[j’]

(head[i’] lst)
(r[i’][j’][p’] (tail[i’] lst))).

Then, we can use this retyping function as follows:

map2App : all i,j::N. (bnat * bnat -> bnat)
* list(i) * list(j)
-> list(plus i j) =

Fn i,j::N. fn x: (bnat * bnat -> bnat) * list(i) * list(j).
map2[plus i j]

(fst x,
(append[i][j] (fst (snd x), snd (snd x)),

retype/list[plus j i][plus i j]
[plus_commutes j i]
(append[j][i](snd (snd x), fst (snd x))))).

More generally, we can write a retyping function that works for any type indexed by a natural number:

retype/NAT : all i,j::N.all _::EQN(i,j).all c::N->T.(c i) -> (c j) =
fix r : all i,j::N.all _::EQN(i,j).all c::NAT->TYPE.(c i) - > (c j).

Fn i,j::N. Fn _::EQN(i,j).
EQNcase[i’.j’._. all c::NAT->TYPE.(c i’) -> (c j’)]

(p,
Fn c::N->T. fn x:(c z). x,
Fn c::N->T. fn x:(c (s i’)).

r[i’][j’][p’][fn/c n::N. c (s n)] x).

This is possible because the inductive definition of equality that we have given ultimately amounts to reflex-
ivity.

4.2.3 Restricting the Domain of a Function

As another example, we writenth as a total function that always returns an element of the list (not an
option, as in SML). To do so,nth requires a proof that the offset into the list is in bounds. If the equivalent
operation were included as primitive, it could be implemented without a run-time bounds check [61].

In the type ofnth given in the signature above, the constraintv < u is represented by requiring a proof
of the propositionLtN(v, u). This proposition could be treated analogously toEQN(I, J), with inhabitants
lt zs I andlt ss I J P and elimination forms giving induction. However, rather than assuming a built-in
propositionLtN(I, J), we define less-than notationally asEQN(J, plus I (s K)) for someK. If our calcu-
lus were extended withΣ-kinds, we could do this properly; here, we imitate it by having the termnth

parametrized separately byK and the proof of equality:
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nth : all u,v,w::N. all _::EQN(u, plus v (s w)).list(u) -> bna t =
fix r : all u,v,w::N. all _::EQN(u, plus v (s w)).list(u) -> bn at.

Fn u,v,w::N. Fn p::EQN(u, plus v (s w)).
fn lst:list(u).

(NATcase[v’. all _::EQN(u, plus v’ (s w)). bnat]
(v,

Fn p’::EQN(u, (s w)).
head[w] (retype/list[u][(s w)][p] lst),

v’. Fn p’::EQN(u, plus (s v’) (s w)).
r[plus v’ (s w)][v’][w][(eqn-refl (plus v’ (s w)))]

tail[plus v’ (s w)]
(retype/list[u][plus (s v’) (s w)][p] lst)))

[p].

In this example, polymorphism over proof kinds plays the same role as the subset sorts [62] (and, in later
presentations, guards and asserts [9]) in DML. Additionally, this versionof nth recursively analyzes the
constructor-level numberv at run-time, illustrating run-time computation over indices. Other calculi with
indexed types [62, 9, 48] require passingnth a term-levelnat (v) for case-analysis.

4.3 Using Run-time Checks To Produce Proofs

In some cases, the size of a list will not be known statically (for example, if thenumber is the result of
run-time input). In these cases, run-time checks can be used to generate proofs. For example, we can write
lessThan as follows:

lessThan : all v,u::N. (exists w::N. exists _::EQN(u, plus v (s w)).unit) + unit =
fix r.
Fn v,u::N.

NATcase[v’. (exists w::N. exists _::EQN(u, plus v’ (s w)).u nit) + unit]
(v,

NATcase[u’. (exists w::N. exists _::EQN(u’,s w).unit) + un it]
(u,

inr[exists w::N. exists _::EQN(z, s w).unit] (),
u’. inl[unit]

(pack[fn/c w::N. exists _::EQN(s u’, s w)]
(u’,

pack[fn/c _::EQN(s u’, s u’). unit]
(eqn-refl (s u’), ())))),

v’.
NATcase[u’. (exists w::N.

exists _::EQN(u’, plus (s v’) (s w)).unit)
+ unit]

(u,
inr[(exists w::N.

exists _::EQN(z, plus (s v’) (s w)).unit)]
(),

case(r[v’][u’],
ex1 : (exists w::N. exists _::EQN(u’, plus v’ (s w)).unit).

inl[unit]
(unpack[(exists w::N.

exists _::EQN(s u’, plus (s v’) (s w)).unit)]
(ex1,

w::N.
ex2:(fn/c w::N.exists _::EQN(u’, plus v’ (s w)).unit)

u.
unpack[(exists w::N.

exists _::EQN(s u’, plus (s v’) (s w)).
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unit)]
(ex2,

p::EQN(u’, plus v’ (s w)).
_: (fn/c _::EQN(u’, plus v’ (s w)). unit)

p.
pack[fn/c w::N.

exists _::EQN(s u’, plus (s v’) (s w)).
unit]

(w,
pack[fn/c _::EQN(s u’, plus (s v’) (s w)).unit]

(eqn_ss(u’,
plus v’ (s w),
p),

()))))),
_:unit.

inr[(exists w::N.
exists _::EQN(s u’, plus (s v’) (s w)).unit)] ()))).

If our calculus hadΣ and sum kinds, it would be possible to instead write this check as a static function
whose value is case-analyzed at runtime (using the analogue ofNATcase for sum kinds).

UsinglessThan, it is easy to write a version ofnth that works for any offset:

nth/dyn-check : all u::N. bnat * list(u) -> (bnat + unit) =
Fn u::N. fn x : bnat * list(u).

unpack[bnat+unit]
(fst x,

v::NAT. _::(fn/c v::N.nat(v)) v.
case(lessThan[v][u],

y : (exists w::N. exists _::EQN(u, plus v (s w)). unit).
inl[unit]

(unpack[bnat]
(y,

w::N.
e:(fn/c w::N.

(exists _::EQN(u, plus v (s w)). unit))
w.

unpack[bnat]
(e,

p::EQN(u, plus v (s w)).
_: (fn/c _::EQN(u, plus v (s w)). unit)

p.
nth[u][v][w][p] (snd x)))),

z:unit. inr[bnat] ())).

4.4 Discussion

We now take stock of these examples. The basic approach seems reasonable, in that the code was mostly
easy to write. Sometimes, we wrote (up to type annotations) the same code that wewould have written
without the more precise types (append, map2). It is interesting to note that these cases were also ones that
made good use of definitional equality—this supports our hypothesis that including basic computation in
definitional equality is worthwhile. That said, the examples suggest variousavenues for improvement:

• In some examples (e.g,map2App), it was necessary to write proofs and retyping functions to establish
index equalities that were beyond definitional equality; these incurred run-time time and space costs.
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There are two opportunities for improvement here: first, one could hope toalleviate the run-time costs
of proofs; second, one could hope to reduce the extent to which the programmer has to write proofs.

Along the first line, Brady describes techniques [6] for the compilation of Epigram that reduce the time
and space costs of dependent programming. For example, one of his techniques identifies duplicate
data in inductive families: if the same index appears more than once, only one copy need be passed
at run-time. Another identifies redundant data tags—forlist (n), either knowing that the index is
z or s or knowing that the list isnil or cons is sufficient. A third technique identifies inductive
families whose indices completely determine their inhabitants—ourEQN(I, J) is an example—and
prevents constructing and passing such families at run-time. These techniques seem applicable to our
language: like Epigram, our constructor level is a total language with inductive families; some of the
techniques do not depend on totality and could consequently be applied to our term level as well.
Alternatively, we could potentially use proof irrelevance [43] to collapse kinds that are not used at
run-time. Ideally, we would like to support fully general indexed types without ruining the asymptotic
time and space complexity of programs.

The second opportunity, reducing the need for writing proofs, seems more ambitious. One approach
might be to reintroduce constraint solvers as entities definable in the language.

• In the presentation above, we have used a module syntax to structure the examples. In a language
like ours, we anticipate that the module system will be used not only to structurerun-time code, but
also to develop libraries of index domains and the operations on and proofsabout them. The recent
techniques for advanced module systems [23, 29, 52, 17, 16] presume that the phase distinction is
realized with constructors as compile-time data and terms as run-time data. Because our calculus
meets this requirement, it should be relatively straightforward to extend our calculus with such a
module system.

• In some examples (e.g.,eqn trans), it was necessary to be clever in handling case branches where the
indices are contradictory. Epigram’s pattern matching notation [36] addresses this problem by gener-
ating refutations of contradictory cases automatically in many situations. Because pattern matching
is elaborated to elimination rules like those in this paper, it seems likely that we will beable to adapt
their techniques to our setting. However, employing their techniques may require us to add kind-level
operators and polymorphism.

• As these examples illustrate, the syntax of our language requires many type annotations. It would be
desirable to ease this burden as part of building a practical external language on top of our calculus.
It may be possible to make some progress using established techniques suchas bidirectional type
checking as in Pierce and Turner [45], type and term inference as in Twelf [44] and Epigram [37], or
type inference for GADTs [42, 51, 46].

5 Semantics

In this section, we present the static and dynamic semantics of our calculus and discuss its meta-theory.

5.1 Static Semantics

Our static semantics comprises the following judgements, which are defined by the rules below.
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∆ ` K kind Kind formation
∆ ` K ≡ K′ kind Definitional equality of kinds
∆ ` C :: K Kinding of constructors
∆ ` C ≡ C′ :: K Definitional equality of constructors
∆ ; Γ ` E : A Typing

Both definitional equality judgements are congruent equivalence relations. Definitional equality of kinds is
simply an extension of the definitional equality of the constructors embedded inthem. Definitional equality
of constructors includesβ and extensionality rules forΠk u::K2. K andβ rules forNAT andEQN(I, J). Since
reflexivity of constructor equality is left as an admissible rule, assumptionsu :: K should be thought of as
shorthand for bothu :: K andu ≡ u :: K (see the ruledeq-cn-var below).

In the rules, we assume and maintain the invariant that all types and kinds in thecontext are well-formed
and all variables in the context are distinct. In particular, there is an implicit side condition on binding forms
that the bound variable is neither bound in the context nor free in any kind or type in it (we canα-rename it
if it is).

∆ ` K kind

∆ ` TYPE kind
wf-kd-type

∆ ` K1 kind ∆, u :: K1 ` K2 kind

∆ ` Πk u::K1. K2 kind
wf-kd-pi

∆ ` NAT kind
wf-kd-nat

∆ ` I :: N ∆ ` J :: N
∆ ` EQN(I, J) kind

wf-kd-eqn

∆ ` K1 ≡ K2 kind

∆ ` K2 ≡ K1 kind

∆ ` K1 ≡ K2 kind
deq-kd-sym

∆ ` K1 ≡ K2 kind ∆ ` K2 ≡ K3 kind

∆ ` K1 ≡ K3 kind
deq-kd-trans

∆ ` TYPE ≡ TYPE kind
deq-kd-type

∆ ` K1 ≡ K′1 kind ∆, u :: K1 ` K2 ≡ K′2 kind

∆ ` Πk u::K1. K2 ≡ Πk u::K
′

1. K
′

2 kind
deq-kd-pi

∆ ` NAT ≡ NAT kind
deq-kd-nat

∆ ` I ≡ I′ :: N ∆ ` J ≡ J′ :: N
∆ ` EQN(I, J) ≡ EQN(I

′, J′) kind
deq-kd-eqn

∆ ` C :: K

∆ ` C :: K ∆ ` K ≡ K′ kind

∆ ` C :: K′
ofkd-deq

∆, u :: K,∆′ ` u :: K
ofkd-var

∆ ` C1 :: TYPE ∆ ` C2 :: TYPE

∆ ` C1 → C2 :: TYPE
ofkd-arrow

∆ ` C1 :: TYPE ∆ ` C2 :: TYPE

∆ ` C1 × C2 :: TYPE
ofkd-prod

∆ ` C1 :: TYPE ∆ ` C2 :: TYPE

∆ ` C1 + C2 :: TYPE
ofkd-sum

∆ ` K2 kind ∆ ` C :: K2 →k TYPE

∆ ` ∀K2 C :: TYPE
ofkd-all

∆ ` K2 kind ∆ ` C :: K2 →k TYPE

∆ ` ∃K2 C :: TYPE
ofkd-exists
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∆ ` unitc :: TYPE
ofkd-unit

∆ ` voidc :: TYPE
ofkd-void

∆ ` I :: NAT
∆ ` nat I :: TYPE

ofkd-nat
∆ ` I :: NAT

∆ ` list I :: TYPE
ofkd-list

∆ ` K2 kind ∆, u :: K2 ` C :: K

∆ ` λc u::K2. C :: Πk u::K2. K
ofkd-fn

∆ ` C1 :: Πk u::K2. K ∆ ` C2 :: K2
∆ ` C1 C2 :: [C2/u]K

ofkd-app

∆ ` z :: NAT
ofkd-z

∆ ` I :: NAT
∆ ` s I :: NAT

ofkd-s

∆, i :: NAT ` K kind ∆ ` I :: NAT ∆ ` C1 :: [z/i]K ∆, i′ :: NAT, r :: [i′/i]K ` C2 :: [s i′/i]K

∆ ` NATrec[i.K](I, C1, i
′.r.C2) :: [I/i]K

ofkd-natrec

∆ ` eqn zz :: EQN(z, z)
ofkd-eqn-zz

∆ ` I :: NAT ∆ ` J :: NAT ∆ ` C :: EQN(I, J)

∆ ` eqn ss(I, J, P) :: EQN(s I, s J)
ofkd-eqn-ss

∆, i :: N, j :: N, p :: EQN(i, j) ` K kind

∆ ` C :: EQN(I, J)
∆ ` C1 :: [eqn zz/p][z/j][z/i]K

∆, i :: N, j :: N, p :: EQN(i, j), r :: K ` C2 :: [eqn ss(i, j, p)/p][s j/j][s i/i]K

∆ ` EQNrec[i.j.p.K](C, C1, i.j.p.r.C2) :: [C/p][J/j][I/i]K
ofkd-eqnrec

∆ ` C1 ≡ C2 :: K

∆ ` C2 ≡ C1 :: K

∆ ` C1 ≡ C2 :: K
deq-cn-sym

∆ ` C1 ≡ C2 :: K ∆ ` C2 ≡ C3 :: K

∆ ` C1 ≡ C3 :: K
deq-kd-trans

∆ ` C ≡ C′ :: K ∆ ` K ≡ K′ kind

∆ ` C ≡ C′ :: K′
deq-cn-deq-kd

∆, u :: K,∆′ ` u ≡ u :: K
deq-cn-var

∆ ` C1 ≡ C′1 :: TYPE ∆ ` C2 ≡ C′2 :: TYPE

∆ ` C1 → C2 ≡ C′1 → C′2 :: TYPE
deq-cn-arrow

∆ ` C1 ≡ C′1 :: TYPE ∆ ` C2 ≡ C′2 :: TYPE

∆ ` C1 × C2 ≡ C′1 × C′2 :: TYPE
deq-cn-prod

∆ ` C1 ≡ C′1 :: TYPE ∆ ` C2 ≡ C′2 :: TYPE

∆ ` C1 + C2 ≡ C′1 + C′2 :: TYPE
deq-cn-sum

∆ ` K2 ≡ K2′ kind ∆ ` C ≡ C′ :: K2 →k TYPE

∆ ` ∀K2 C ≡ ∀K2′ C
′ :: TYPE

deq-cn-all

∆ ` K2 ≡ K2′ kind ∆ ` C ≡ C′ :: K2 →k TYPE

∆ ` ∃K2 C ≡ ∃K2′ C
′ :: TYPE

deq-cn-exists
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∆ ` unitc ≡ unitc :: TYPE
deq-cn-unit

∆ ` voidc ≡ voidc :: TYPE
deq-cn-void

∆ ` I ≡ I′ :: NAT
∆ ` nat I ≡ nat I′ :: TYPE

deq-cn-nat ∆ ` I ≡ I′ :: NAT
∆ ` list I ≡ list I′ :: TYPE

deq-cn-list

∆ ` K2 ≡ K′2 kind ∆, u :: K2 ` C ≡ C′ :: K

∆ ` λc u::K2. C ≡ λc u::K
′

2. C
′ :: Πk u::K2. K

deq-cn-fn

∆ ` C1 ≡ C′1 :: Πk u::K2. K ∆ ` C2 ≡ C′2 :: K2

∆ ` C1 C2 ≡ C′1 C
′

2 :: [C2/u]K
deq-cn-app

∆, u :: K2 ` C1 ≡ C′1 :: K ∆ ` C2 ≡ C2′ :: K2

∆ ` (λc u::K2. C1) C2 ≡ [C′2/u]C
′

1 :: [C2/u]K
deq-cn-app-beta

∆ ` K2 kind ∆ ` C :: Πk u::K2. K ∆ ` C′ :: Πk u::K2. K ∆, u :: K2 ` C u ≡ C′ u :: K

∆ ` C ≡ C′ :: Πk u::K2. K
deq-cn-fn-ext

∆ ` z ≡ z :: NAT
deq-cn-z

∆ ` I ≡ I′ :: NAT
∆ ` s I ≡ s I′ :: NAT

deq-cn-s

∆, u :: NAT ` K ≡ K′ kind

∆ ` I ≡ I′ :: NAT
∆ ` Cz ≡ C′z :: [z/u]K

∆, i′ :: N, r :: [i′/u]K ` Cs ≡ C′s :: [s I′/u]K

∆ ` NATrec[u.K](I, Cz, i
′.r.Cs) ≡ NATrec[u.K′](I′, C′z, i

′.r.C′s) :: [I/u]K
deq-cn-natrec

∆, u :: N ` K kind ∆ ` Cz ≡ C′z :: [z/u]K ∆, i′ :: N, r :: [i′/u]K ` Cs :: [s I′/u]K

∆ ` NATrec[u.K](z, Cz, i
′.r.Cs) ≡ C′z :: [z/u]K

deq-cn-natrec-beta-z

∆, u :: N ` K ≡ K′ kind

∆ ` I ≡ I′ :: NAT
∆ ` Cz ≡ C′z :: [z/u]K

∆, i′ :: N, r :: [i′/u]K ` Cs ≡ C′s :: [s i′/u]K

∆ ` NATrec[u.K](s I, Cz, i
′.r.Cs) ≡ [NATrec[u.K′](I′, C′z, i

′.r.C′s)/r][I
′/i′]C′s :: [s I/u]K

deq-cn-natrec-beta-s

∆ ` eqn zz ≡ eqn zz :: EQN(z, z)
deq-cn-eq-zz

∆ ` I ≡ I′ :: NAT ∆ ` J ≡ J′ :: NAT ∆ ` P ≡ P′ :: EQN(I, J)

∆ ` eqn ss(I, J, P) ≡ eqn ss(I′, J′, P′) :: EQN(s I, s J)
deq-cn-eq-ss

∆, i :: N, j :: N, p :: EQN(i, j) ` K ≡ K′ kind

∆ ` C ≡ C′ :: EQN(I, J)
∆ ` Czz ≡ C′zz :: [eqn zz/p][z/j][z/i]K

∆, i :: N, j :: N, p :: EQN(i, j), r :: K ` Css ≡ C′ss :: [eqn ss(i, j, p)/p][s j/j][s i/i]K

∆ ` EQNrec[i.j.p.K](C, Czz, i.j.p.r.Css) ≡ EQNrec[i.j.p.K
′](C′, C′zz, i.j.p.r.C

′

ss) :: [C/p][J/j][I/i]K
deq-cn-eqnrec
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∆, i :: N, j :: N, p :: EQN(i, j) ` K kind

∆ ` Czz ≡ C′zz :: [eqn zz/p][z/j][z/i]K
∆, i :: N, j :: N, p :: EQN(i, j), r :: K ` Css :: [eqn ss(i, j, p)/p][s j/j][s i/i]K

∆ ` EQNrec[i.j.p.K](C, Czz, i.j.p.r.Css) ≡ C′zz :: [eqn zz/p][z/j][z/i]K
deq-cn-eqnrec-beta-zz

deq-cn-eqnrec-beta-ss :

∆, i :: N, j :: N, p :: EQN(i, j) ` K ≡ K′ kind

∆ ` Czz ≡ C′zz :: [eqn zz/p][z/j][z/i]K

∆, i :: N, j :: N, p :: EQN(i, j), r :: K ` Css ≡ C′ss :: [eqn ss(i, j, p)/p][s j/j][s i/i]K

∆ ` P ≡ P′ :: EQN(I, J)

∆ ` J ≡ J′ :: NAT
∆ ` I ≡ I′ :: NAT

∆ ` EQNrec[i.j.p.K](eqn ss(I, J, P), Czz, i.j.p.r.Css) ≡ [EQNrec[i.j.p.K
′](P, C′zz, i.j.p.r.C

′

ss)/r][P
′/p][J′/j][I′/i]Css :: [C/p][J/j][I/i]K

∆; Γ ` E : A

∆; Γ ` E : A ∆ ` A ≡ A′ :: TYPE

∆; Γ ` E : A′
oftp-deq

∆; Γ, x : A,Γ′ ` x : A
oftp-var

∆ ` A2 :: TYPE ∆; Γ, x : A2 ` E : A

∆; Γ ` λ x:A2. E : A2 → A
oftp-fn

∆; Γ ` E1 : A2 → A ∆; Γ ` E2 : A2
∆; Γ ` E1 E2 : A

oftp-app

∆ ` A :: TYPE ∆; Γ, x : A ` E : A

∆; Γ ` fix x:A. E : A
oftp-fix

∆; Γ ` E1 : A1 ∆; Γ ` E2 : A2
∆; Γ ` (E1, E2) : A1 × A2

oftp-pair

∆; Γ ` E : A1 × A2

∆; Γ ` fst E : A1
oftp-fst

∆; Γ ` E : A1 × A2

∆; Γ ` snd E : A2
oftp-snd

∆ ` A2 :: TYPE ∆; Γ ` E : A1
∆; Γ ` inl[A2] E : A1 + A2

oftp-inl
∆ ` A1 :: TYPE ∆; Γ ` E : A2

∆; Γ ` inr[A1] E : A1 + A2
oftp-inr

∆; Γ ` E : A1 + A2 ∆; Γ, x1 : A1 ` E1 : A ∆; Γ, x2 : A2 ` E2 : A

∆; Γ ` case(E, x1:A1.E1, x2:A2.E2) : A
oftp-case

∆ ` ∀K A :: TYPE ∆, u :: K ; Γ ` E : A

∆; Γ ` Λ u::K. E :∀K (λc u::K. A)
oftp-Fn

∆; Γ ` E : ∀K B ∆ ` C :: K

∆; Γ ` E[C] : B C
oftp-App

∆ ` C :: K ∆; Γ ` E : A C ∆ ` A :: K →k TYPE

∆; Γ ` pack[A](C, E) :∃K A
oftp-pack

∆; Γ ` E1 :∃ u::K. A ∆, u :: K ; Γ, x : A u ` E2 : B ∆ ` B :: TYPE

∆; Γ ` unpack[B](E1, u::K.x:(A u).E2) : B
oftp-unpack

∆; Γ ` () : unit
oftp-empty-tuple

∆; Γ ` E : void

∆; Γ ` abort[A] E : A
oftp-abort

∆; Γ ` zero : nat (z)
oftp-zero

∆; Γ ` E : nat (I)

∆ ; Γ ` succ[I] E : nat (s I)
oftp-succ
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∆, i :: NAT ` A type ∆; Γ ` E : nat (I)
∆ ; Γ ` E1 : [z/i]A

∆, i′ :: NAT ; Γ, n′ : nat (i′) ` E2 : [s i′/i]A

∆ ` natcase[i.A](E, E1, i
′.n′.E2) :: [I/i]A

oftp-natcase

∆; Γ ` nil : list (z)
oftp-nil

∆; Γ ` E1 :∃ n::N. nat (n) ∆ ; Γ ` E2 : list (I)

∆ ; Γ ` cons[I] E1 E2 : list (s I)
oftp-cons

∆, i :: NAT ` A type ∆; Γ ` E : list (I) ∆ ; Γ ` E1 : [z/i]A
∆, i′ :: NAT ; Γ, hd :∃ u::N. nat (u), tl : nat (i′) ` E2 : [s i′/i]A

∆; Γ ` listcase[i.A](E, E1, hd.tl.i
′.E2) : [I/i]A

oftp-listcase

∆, i :: NAT ` A type ∆ ` I :: NAT ∆; Γ ` E1 : [z/i]A ∆, i′ :: NAT ; Γ ` E2 : [s i′/i]A

∆; Γ ` NATcase[i.A](I, E1, i
′.E2) : [I/i]A

oftp-NATcase

∆, i :: N, j :: N, p :: EQN(i, j) ` A :: TYPE
∆ ` C :: EQN(I, J)

∆ ; Γ ` E1 : [eqn zz/p][z/j][z/i]A
∆, i :: N, j :: N, p :: EQN(i, j) ; Γ ` E2 : [eqn ss(i, j, p)/p][s j/j][s i/i]A

∆ ` EQNcase[i.j.p.A](C, E1, i.j.p.E2) :: [C/p][J/j][I/i]A
oftp-EQNcase

5.2 Dynamic Semantics

The dynamic semantics are mostly standard. The elimination forms for constructors rely on a notion of
weak head reduction to reduce the scrutinized constructor to an introduction form.

C
whr
−→ C′

C1
whr
−→ C′1

C1 C2
whr
−→ C′1 C2

whr-app-1
(λc u::K2. C) C2

whr
−→ [C2/u]C

whr-app-beta

I
whr
−→ I′

NATrec[u.K](I, Cz, i
′.r.Cs)

whr
−→ NATrec[u.K](I′, Cz, i

′.r.Cs)
whr-natrec-num

NATrec[u.K](z, Cz, i
′.r.Cs)

whr
−→ Cz

whr-natrec-beta-z

NATrec[u.K](s I, Cz, i
′.r.Cs)

whr
−→ [NATrec[u.K](I, Cz, i

′.r.Cs)/r][I/i
′]Cs

whr-natrec-beta-s

P
whr
−→ P′

EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css)
whr
−→ EQNrec[i.j.p.K](P

′, Czz, i.j.p.r.Css)
whr-eqnrec-proof
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EQNrec[i.j.p.K](eqn zz, Czz, i.j.p.r.Css)
whr
−→ Czz

whr-eqnrec-beta-zz

EQNrec[i.j.p.K](eqn ss(I, J, P), Czz, i.j.p.r.Css)
whr
−→ [EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css)/r][P/p][J/j][I/i]Css

whr-eqnrec-beta-ss

E value

The value judgement is defined by a subsyntax (that is,E value is derivable ifE is also produced by the
following grammar). In the grammar, the metavariableE still refers to arbitrary terms.

V ::= λ x:A. E | | (V1, V2) | inl[A] V | inr[A] V | Λ u::K. E | pack[A](C, V) | ()
| zero | succ[I] V | nil | cons[I] V1 V2

E 7→ E′

Reference to a term produced byV is shorthand for an extra premise ofV value.

E1 7→ E′1

E1 E2 7→ E′1 E2
step-app-1

E2 7→ E′2

V1 E2 7→ V1 E
′

2

step-app-2

(λ x:A. E) V2 7→ [V2/x]E
step-app-beta

fix x:A. E 7→ [fix x:A. E/x]E
step-fix

E1 7→ E′1

(E1, E2) 7→ (E′1, E2)
step-pair-1

E2 7→ E′2

(V1, E2) 7→ (V1, E
′

2)
step-pair-2

E 7→ E′

fst E 7→ fst E′
step-fst

fst (V1, V2) 7→ V1
step-fst-beta

E 7→ E′

snd E 7→ snd E′
step-snd

snd (V1, V2) 7→ V2
step-snd-beta

E 7→ E′

inl[A] E 7→ inl[A] E′
step-inl E 7→ E′

inr[A] E 7→ inr[A] E′
step-inr

E 7→ E′

case(E, x:A.El, y:B.Er) 7→ case(E′, x:A.El, y:B.Er)
step-case

case(inl[V] , x:A.El, y:B.Er) 7→ [V/x]El
step-case-beta-l

case(inr[V] , x:A.El, y:B.Er) 7→ [V/y]Er
step-case-beta-r

E1 7→ E′1

E1[C] 7→ E′1[C]
step-st-app

(Λ u::K. E) C 7→ [C/u]E
step-st-app-beta

E 7→ E′

pack[A](C, E) 7→ pack[A](C, E′)
step-pack

E1 7→ E′1

unpack[B](E1, u::K.x:(A u).E2) 7→ unpack[B](E′1, u::K.x:(A u).E2)
step-unpack
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unpack[B](pack[A1](C, V), u::K.x:(A2 u).E2) 7→ [V/x][C/u]E2
step-unpack-beta

E 7→ E′

abort[A] E 7→ abort[A] E′
step-abort E 7→ E′

succ[I] E 7→ succ[I] E′
step-succ

E 7→ E′

natcase[i.A](E, E1, i
′.n′.E2) 7→ natcase[i.A](E′, E1, i

′.n′.E2)
step-natcase

natcase[i.A](zero, E1, i
′.n′.E2) 7→ E1

step-natcase-beta-z

natcase[i.A](succ[I] V, E1, i
′.n′.E2) 7→ [V/n][I/i′]E2

step-natcase-beta-s

E1 7→ E′1

cons[I] E1 E2 7→ cons[I] E′1 E2
step-cons-1

E2 7→ E′2

cons[I] V1 E2 7→ cons[I] V1 E
′

2

step-cons-2

E 7→ E′

listcase[i.A](E, E1, h.i.tl.E2) 7→ listcase[i.A](E, E1, h.i.tl.E2)
step-listcase

listcase[i.A](nil, E1, h.i.tl.E2) 7→ E1
step-listcase-beta-nil

listcase[i.A](cons[I] V1 V2, E1, h.i.t.E2) 7→ [V2/t][I/i][V1/h]E2
step-listcase-beta-cons

C
whr
−→ C′

NATcase[i.A](C, E1, i
′.E2) 7→ NATcase[i.A](C′, E1, i

′.E2)
step-NATcase

NATcase[i.A](z, E1, i
′.E2) 7→ E1

step-NATcase-beta-z

NATcase[i.A](s I, E1, i
′.E2) 7→ [I/i′]E2

step-NATcase-beta-s

C
whr
−→ C′

EQNcase[i.j.p.A](C, E1, i.j.p.E2) 7→ EQNcase[i.j.p.A](C
′, E1, i.j.p.E2)

step-EQNcase

EQNcase[i.j.p.A](eqn zz, E1, i.j.p.E2) 7→ E1
step-EQNcase-beta-zz

EQNcase[i.j.p.A](eqn ss(I, J, P), E1, i.j.p.E2) 7→ [P/p][J/j][I/i]E2
step-EQNcase-beta-ss
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5.3 Discussion of the Meta-theory

We have proved that our calculus is type safe and that it admits decidable type checking. Because our
language has a complex notion of definitional equality, a direct proof of progress and preservation for the
declarative rules presented above runs into trouble in a couple of places. In thestep-app-beta case of
preservation, inversions give∆ ` A2 → A ≡ B2 → B :: TYPE, and from this it is necessary to conclude
that ∆ ` A ≡ B :: TYPE. In the presence of transitivity of constructor equality (deq-cn-trans ) and
β-reduction for constructor-level functions (deq-cn-app-beta ), this entailment is not obvious. The
canonical forms lemmas necessary for progress also depend on analyzing definitional equality, as the type
conversion rule (oftp-deq ) is not syntax-directed: for example, depending on what definitional equality
is, any value—not just pairs—could have typeA1 × A2.

To circumvent these difficulties, we have specified an independent algorithmic formulation of equality
and typing and shown that it is equivalent to the declarative version. Thisyields not only the lemmas
necessary for type safety, but also an effective algorithm for type checking. Indeed, because the algorithmic
rules are well-moded, Twelf’s logic programming operational semantics can run them effectively. Since our
kind and constructor level is an extension of the types and objects of LF, itis not surprising that we were able
to follow the algorithmic equality technique pioneered by Harper and Pfenning[25] rather closely. Their
work gives an algorithm for decidingβη-equality of functions; in the present work, we have extended their
technique to an algorithm for decidingβ-only equality forNAT andEQN(I, J).

We have formalized much of the meta-theory of our language using Twelf’s meta-theorem checker. Un-
fortunately, Twelf’s meta-theorem apparatus does not currently support logical relations directly; thus, while
we have formalized many of the lemmas leading up to it, the logical relations argument for completeness
of algorithmic equality is on paper. Porting lemmas between paper and Twelf is justified by theadequacy
theorems of the LF methodology, which establish a bijection between object-language syntax/judgements
and canonical terms of particular types in LF. The full meta-theory is presented in Appendix B.

6 Related Work

In the following section, we compare other languages’ mechanisms for defining, computing with, and rea-
soning about indices with ours; we do not discuss other novel featuresor interesting applications of these
existing languages here. Many of these languages automate reasoning about indices, which we leave to
future work.

Constructive Type Theory The concept of a dependent type is rooted in constructive type theory,a foun-
dational framework for constructive mathematics that makes explicit the computational content of proofs.
The principal influences on the present work are deBruijn’s AUTOMATH project [39], which called atten-
tion to the central role of dependent types for formalized reasoning; Martin-Löf’s seminal work on construc-
tive type theory [33, 34, 35], which presented the first comprehensive type theory adequate for constructive
mathematics; the NuPRL Project [12], which built the first implementation of a tactic-based interactive
proof development system for type theory; and the Calculus of Constructions [14, 30], which explored an
impredicative type theory extending higher-order logic.

Epigram Altenkirch, McBride, and McKinna’s Epigram [36, 37, 3] is an impressive attempt to integrate
dependent types into a practical programming language. Their design is based closely on the foundational
constructive type theories (notably Luo’s UTT framework [31]). Rather than employing a phase distinction,
Epigram insists that all well-typed programs terminate and disallows computational effects (though the
authors speculate on using a subsyntax or a monad to allow them [3]). The insistence on termination is

25



sharply at odds with most other functional languages, which permit unbounded recursion. Our approach,
in contrast, is designed at the outset to accommodate non-termination and othereffects. The Epigram
group has developed several techniques for practical dependent programming. For example, McBride’s
techniques [36] elaborate a concise pattern matching notation [13] to eliminationforms like those we have
used in this paper. In Section 4.4, we described Brady’s compilation techniques that mitigate the run-time
costs of dependent programming [6]. We may be able to apply these techniques to our language.

Cayenne Augustsson’s Cayenne [4] is another recent proposal to integrate dependent types into a practical
programming language. Like Epigram, Cayenne permits types to contain all programs, imposing no phase
distinction. However, because Cayenne allows general recursion (but no other effects) and, moreover, allows
non-terminating terms to appear in types, type checking is undecidable. Theirapproach is simply to ensure
soundness of any equational reasoning (so, for example, a divergent expression cannot be deemed equal to a
convergent expression) and permit the type checker to fail in cases where equations cannot be resolved after
a certain number of reductions. Such an approach to type checking can be unpredictable: the programmer
has to guess when an equality will be evident in few enough steps. Restricting the compile-time data to a
language where equality is decidable avoids this problem.

λML
i Harper and Morissett’sλML

i [24] supports intensional type analysis using two elimination forms for
the constructors of kindTYPE: the constructor-levelTyperec and the term-leveltypecase. OurNATrec,
EQNrec, NATcase, andEQNcase are analogues of these constructs for other kinds. For example, defining a
type by induction on indices is analogous to the uses ofTyperec in Harper and Morissett’s work. Unlike
λML

i , our calculus does not include an elimination form for the kindTYPE itself.

LX Thetypecase construct ofλML
i allows run-time analysis of a language’s types. However, when a

compiler is translating aλML
i program into an intermediate language that supports only analysis of its own

types, the program must be rewritten to instead case-analyze the types of the intermediate language. Unfor-
tunately, it is often difficult and sometimes impossible to rewrite the program in such a manner. LX [15]
was designed to support run-time analysis of the original source language types in the compiler’s interme-
diate languages. In the paper, inductive kinds are used to define (whatwe would call) the index domain of
source language types; these inductive kinds could also be used to define index domains such asNAT. LX
supports run-time case analysis of constructor-level sums via a construct calledccase; our NATcase and
EQNcase are analogous. However, whereas our constructor-level is dependently typed, LX’s constructor
level is simply-typed, so one cannot use inductive families of kinds (for example, ourEQN(I, J)) to represent
propositions.

DML, Zenger’s Indexed Types, and Extensions In DML [62, 56] and some extensions thereof (for
example, Xi’s ATS [59] extends DML with some imperative [65] and object-oriented [7] features; Dunfield
and Pfenning combine DML-style dependent types withdatasort refinements [18]), equality of indices
is decided by a constraint solver. As we discussed in Section 1, this does not scale to programmer-defined
index domains without some additional mechanism. Zenger’s indexed types [63] are similar to DML—a
language designer fixes the index domains and a decision procedure forthem.

Programming with Proofs in ATS Chen and Xi have recently extended ATS to address some of the lim-
itations of the DML-style framework [9]. On the surface, their work appears very similar to ours: their
indices are represented as compile-time data; one reasons about indices using compile-time inductive fam-
ilies as propositions inhabited by explicit proofs. However, there are significant differences between their
proposal and ours. First, their calculus does not admit index-level functions or elimination forms for indices
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and proofs (e.g., ourNATrec andEQNrec). Instead, a programmer must use the proposition mechanism
to represent these functions relationally. For example, where in our calculus a programmer defines the
index-level functionplus by induction, in theirs he would inductively define a propositionPlus (i, j, k)
that relates two natural numbers to their sum. Instead of the typelist (plus i j), he would havelist (k)
such thatPlus (i, j, k) is true. Second, their calculus does not admit run-time computation with indices and
proofs.

Our resulting languages are quite different, and there are trade-offs between our approaches. On the one
hand, because Chen and Xi’s calculus does not allow inductive functions on indices, there is less need for a
mechanism for retyping terms based on proofs of index equality. For example, to handle the commutativity
of addition example in their calculus, it suffices to give the proof thatPlus (i, j, k) impliesPlus (j, i, k);
the actual index in the typelist (k) remains unchanged. Also, because their calculus does not allow run-
time computation with static data, it is possible to give a complete erasure of indices and proofs.

On the other hand, the constructor- and term-level elimination forms for indices and proofs in our cal-
culus are general and useful:

• By representing index-level operations as inductive functions whose computational behavior is part
of definitional equality, our calculus automates some reasoning about indices. Moreover, unlike a
constraint solver treating certain index operations specially,β-equality for induction operators scales
to any index domain defined using an inductive kind. In contrast, defining functions relationally using
the proposition mechanism forces a programmer to explicitly prove these equalities. For example,
contrast our implementation ofappend in Section 4 with Chen and Xi’sconcat in their Figure 11:
in ours, there is no need for proofs, as the index reasoning is handled entirely by definitional equality.
There is a syntactic cost to manipulating proofs, especially because working with existential packages
of proofs and terms requires let-binding each intermediate step of the computation.

• The constructor-level elimination operators for indices and proofs allow aprogrammer to define a type
by induction on indices or proofs. Doing so is useful, for example, for exploiting index information to
write functions in a manifestly total manner (recall the definition ofhead above). Because Chen and
Xi’s calculus does not allow elimination forms, defining a type by induction on indices is impossible.

• Run-time elimination forms allow proofs to be used to retype terms. While the lack of index-level
elimination forms in Chen and Xi’s calculus obviates many uses of retyping, it does not eliminate them
all. When functions are represented relationally, one must sometimes provideseparate evidence that
they are in fact functions. For example, givenPlus (i, j, k) andPlus (i, j, k′), it requires a separate
proof to know thatk andk′ are actually equal. Unfortunately, because Chen and Xi’s calculus does
not allow run-time elimination forms for proofs, it is unclear how such a proofcould be used to retype
alist (k) to alist (k′). One solution might be to build in a notion of propositional equality whose
only proof is reflexivity, as described in Section 2; because reflexivityneeds no run-time action, the
elimination construct for this proof might still be compatible erasing all compile-time data.

• Run-time computation over indices prevents a a programmer from having to thread both constructor-
level and term-level copies of the same data through the program. For example, in Chen and Xi’s
calculus,nth must be abstracted over both aNAT and anat (i), whereas in our calculus the function
can be written by case-analyzing theNAT directly. Altenkirch et al. [3] described this problem while
comparing indexed types to Epigram’s dependent types; our calculus shows that it is not a fundamental
limitation of types indexed by compile-time data.

Moreover, as we mentioned in Section 4.4, there is hope for supporting these constructs with reasonable
run-time costs without adhering to a complete erasure of indices.
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Another contrast between our calculus and Chen and Xi’s presentation of ATS is that much of their
language does not seem to be formally defined and studied. First, while theyuse index-level functions
whose equality must at least includeβ for their examples to type check, their core calculus does not include
them. Second, they do not show how to compile programmer-defined index domains to their calculus—
though, since they do not provide elimination constructs for indices, it should be possible to represent them
simply as additional constants. Most significantly, they do not show how to support the inductive families
that they use as propositions. While their examples seem to require typing rules for case that propagate
index information, their core calculus does not treatcase. Similarly, it is unclear how their calculus ensures
exhaustiveness of pattern matching in proof-level functions.

Explicit proofs of type equality in Haskell Several papers have explored applications of using values as
proofs of type equality in Haskell. This idea was pioneered by Weirich [53,54], who defined the type of
proofs that typeA equals typeB as

EQTYPE(A, B) = ∀ f::TYPE → TYPE. f A → f B.

In Haskell, onlyEQTYPE(A, A) is inhabited by a terminating term, and then the only member is the identity
function. To cast a term using a proof, the programmer instantiates the polymorphic function and applies it.
This notion of an equality proof has been used to implement a type-safecast and typedynamic [53, 54,
10, 5] as well as polytypic programming [10]. However, it is problematic in twoways. First and foremost,
Haskell is not a consistent logic—the purported proof might not terminate. In an ML-like language, we
would have to contend with “proofs” that employ other effects such as mutation and I/O. Second, since the
only terminating proof is the identity function, there is no observable effect of executing the casts at run-time;
but since there is no way to guarantee that a proof terminates, it must be run. Retyping in our framework
has a run-time action because the “equalities” witnessed by the coercions mightnot be the identity.

First-class phantom types and guarded recursive datatypesFirst-class phantom types [11] build the
sort of type equality reasoning enabled by the explicit Haskell proofs mentioned above into the type checker.
In particular, when specifying data constructors in adata declaration, the programmer can list type equali-
ties that are necessary for an application of that constructor to be well-typed; when a term that was created
with such a constructor iscase-analyzed, the truth of its equations is assumed in typing the corresponding
case arm; the type system uses congruence closure to determine whether the assumed facts imply that a
necessary equation is true. Xi et al. [60] proposed a similar construct, guarded recursive datatypes, as an
extension to SML. Because some method for deciding equations is baked into the system, it suffers from the
limitations of constraint-solver-based approaches described in Section 1.

Ωmega Pasalic and Sheard’s languageΩmega [41, 48] extends Haskell with first-class phantom types,
programmer-defined type-level functions, and extensible kinds. As in our calculus, but in contrast to ATS,
Ωmega supports index-level functions directly rather than relationally. However, while the authors discuss
the need for restrictions [48],Ωmega currently does not enforce the totality and termination of type-level
functions; consequently, type checking is undecidable [49]. We have restricted our type-level functions to
primitive recursion to avoid this problem. Along the same lines, it is unclear if newkinds must be inductive
or if arbitrary recursive kinds are allowed; in the latter case, similar problems with termination of type
checking will arise.

Propositions about indices are handled in several ways inΩmega, but none of them are quite satisfactory.
First, index and type equality inΩmega are built into the type checker using first-class phantom types.
This mechanism is of course limited by whatever decision procedure is built intothe language. Because
Ωmega supports index-level functions, the need for additional propositional equalities that can be used to
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retype terms is more acute than in ATS; indeed, the authors observe the problem with commutativity of
addition [49] but do not propose a solution. As a supplemental mechanism, itseems possible to prove
equalities inductively by reflecting indices as run-time terms (using a form of singleton type); however, this
approach admits non-terminating “proofs”. In contrast, our calculus supports propositional equality as an
indexedkind, and thus its proofs are necessarily normalizing. Finally, a recent extension toΩmega suggests
a mechanism whereby the phantom type decision procedure can be told to treat arbitrary indexed datatypes
as propositions [50]. Using this mechanism, a programmer can write a term-level program whose type is
then treated as a new proof rule by the internal decision procedure. However, it is unclear how the totality of
such programs is ascertained and under what circumstances the decisionprocedure will successfully use a
new rule. In our calculus, proofs inhabit a compile-time level that is restricted to terminating functions and
exhaustive case-analyses; additionally, proofs are fully explicit and therefore predictable.

Finally,Ωmega does not allow computation over indices at run-time. Consequently, as inATS, functions
must be abstracted over both compile-time and run-time copies of their arguments(e.g.,nth must take both
aNAT and anat (i)).

RSP1 RSP1 [55] supports both traditional dependent types (types contain elements of the syntactic class
of run-time programs) and imperative features (in particular, hash tables); it does this by defining syntactic
criteria for those terms that can appear in types. Whereas our calculus realizes the phase distinction as a
separation between type constructors on the one hand and terms on the other, RSP1 erects a phase distinc-
tion between type constructors and pure on terms on the one hand and effectful terms on the other. Both
of these formulations prevent effectful terms from appearing in types and both admit run-time computation
with indices. However, our style of presenting the phase distinction is arguably cleaner: our typesA → B

and∀ u::K. B are collapsed into RSP1’s singleΠ x:A. B, but the distinction between the two is still present in
their two typing rules for function application, which distinguish between applications to pure and impure
arguments. Additionally, as we noted in Section 4.4, our presentation is compatible with the existing tech-
niques for advanced module systems, which assume that the phase distinctionis realized as a split between
type constructors and terms.

In addition to this difference, RSP1 suffers from some of the of the same problems as other approaches.
First, because proofs are represented as arbitrary terms of indexed datatypes, they may be effectful or non-
terminating. Second, because RSP1 does not allow functions to appear in types, a programmer must adopt
a relational approach to index functions that is similar to Chen and Xi’s [9]; the same criticisms of the
relational approach apply. Moreover, because index terms are also computed with at run-time, RSP1 does
not provide a complete erasure of indices and proofs; this was the central benefit derived from representing
functions as relations in Chen and Xi’s work.

7 Conclusion

In this report, we have presented a language with types indexed by the index domain of natural numbers
and rigorously developed its meta-theory. Our calculus maintains a phase distinction between compile-time
data and run-time data; it treats index equalities using explicit proofs. Much of the language design is a
consequence of the following decisions:

1. Indices are type constructors in anFω-like calculus. Index operations are represented directly as
index-level functions that can be written using the inductive elimination forms for indices.

2. Inductive families of types are indexed by this compile-time data.

3. βη-equality functions andβ-equality for inductive families of kinds are built into a notion of defini-
tional equality that automates some reasoning about indices.
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4. When these equalities are insufficient, a programmer can use explicit proofs of equality to establish
properties of indices. Run-time elimination forms allow a programmer to write coercions that retype
a term based on an equality proof. Other propositions could be represented as other inductive families
of kinds.

Instead of providing a run-time elimination form only for the identity proposition,we have chosen
to permit run-time computation with all compile-time inductive families. This allows programs to be
written by analyzing indices and proofs of arbitrary propositions; for example, in Section 4, we wrote
nth by analyzing a compile-time number; in Appendix A, we sketch how run-time elimination forms
for proofs allow retyping terms based on coarser notions of equality than syntactic identity.

5. When there is insufficient evidence for a proposition, run-time checkscan be used to create proofs.

Our calculus enables programming in the style of Dependent ML [62] or languages with GADTs [48] using
the standard constructs of dependent type theory. When indices are constructors, dependent function and
pair types are simply standard universal and existential polymorphism. When proofs are explicit, DML’s
subset sorts (and, in later presentations, guard and assert types) are just quantification over proofs. The
constraints generated by DML’s pattern matching are accounted for usingthe standard elimination rules for
inductive families of types.

There is much left to be done:

• In Section 4.4, we discussed several opportunities for improvement suggested by the examples.

• We must extend our language to support arbitrary inductive families of indexed types and kinds,
following Dybjer’s inductive families [19] and their implementation in Epigram [37].

• The standard restriction on mutable state—that the data in aref cannot change type—does not make
sense in our setting: alist (6) ref is not very interesting, as it can only be mutated to lists with the
same length. Xi [58], Westbrook et al. [55], and Mandlebaum et al. [32] provide starting points for
circumventing this restriction.
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A Units of Measure and Run-time Elimination Forms for Proofs

In this section, we sketch an approach for tracking units of measure in types (as in Kennedy’s languages [28]
and Fortress [2]). This example should be programmable in a language with programmer-defined index do-
mains and propositions. In particular, it illustrates why such a language should support run-time elimination
forms for proofs.

First, we define an index domain representing units:

kind U = met | sec | U1 · U2 | U
−1 | scalar (i :: NAT).

The possible units are meters, seconds, the product of two units, the inverse of a unit, or a dimensionless
scalar. Then, we define a type of floating-point numbers indexed by units:

type ufloat (u :: U) = quantity[u :: U] float : ufloat (u).

Then, for example,quantity[met] 4.0 represents four meters and has typeufloat met. Now, we define
operations that obey unit constraints; for example, addition is only definedfor quantities with the same unit,
and the unit of a multiplication is the product of the units:

uplus :∀ u::U. ufloat u× ufloat u → ufloat (u)
umult :∀ u, v::U. ufloat u× ufloat v → ufloat (u · v).

These functions can be implemented by extracting the underlyingfloats, performing the equivalent op-
eration, and then packaging the result with the correct unit. If we then madeufloat abstract, exposing a
way to create aufloat from afloat and the primitive arithmetic operation but not a way to project out
the underlyingfloat, then the programmer would have no choice but to useufloats in a unit-respecting
manner (as defined by the primitives).

So far, we have said nothing about the algebraic properties of units. Thisis problematic: for ex-
ample, a programmer cannot add a velocity of typeufloat (met · sec−1) with another velocity, of type
ufloat (met · sec−1 · sec−1 · sec), computed from an acceleration and a time. To allow such computa-
tion, we can define a notion of propositional equality that includes these algebraic laws:

kind EQU(u :: U, v :: U) = refl u :: EQU(u, u)
| sym u v (p :: EQU(u, v)) :: EQU(v, u)
| trans u v w (p12 :: EQU(u, v)) (p23 :: EQU(v, w)) :: EQU(u, w)
| assoc u v w :: EQU(u · (v · w), (u · v) · w)
| ident u :: EQU(scalar(s z) · u, u)
| inv u :: EQU(u · u

−1, scalar (s z))
| comm u v :: EQU(u · v, v · u)
| multCong u1 v1 u2 v2 (pu :: EQU(u1, u2)) (pv :: EQU(v1, v2)) :: EQU(u1 · v1, u2 · v2)
| invCong u v (p :: EQU(u, v)) :: EQU(u

−1, v−1).
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We could then proveEQU(met · sec−1, met · sec−1 · sec−1 · sec) as follows:

p1 :: EQU(met · sec
−1, met · sec−1) = refl (met · sec−1)

p2 :: EQU(sec · sec
−1, scalar(s z)) = inv sec

p3 :: EQU(scalar(s z), sec
−1 · sec) = sym (trans (comm sec−1 sec) p2)

p4 :: EQU(met · sec
−1 · scalar(s z), met · sec−1 · sec−1 · sec) = multCong p1 p3

p5 :: EQU(scalar(s z) · (met · sec
−1), met · sec−1) = ident (met · sec−1)

p6 :: EQU(met · sec
−1, ((met · sec−1) · scalar(s z))) = trans (sym p5) (comm (scalar(s z)) (met · sec−1))

p7 :: EQU(met · sec
−1, met · sec−1 · sec−1 · sec) = trans p6 p4.

But, if we wish to calluplus on terms with these types, the proof is not enough: we need to use the proof
to retype one of the terms. Unfortunately, it would not be type safe to adopta run-time elimination form
like subst in Section 2 that has no run-time action—whenEQU(u, v) is true,ufloat (u) andufloat (v)
do not always classify the same terms. The retyping forEQU(u, v) must have a run-time action that coerces
a ufloat (u) to aufloat (v). In this case, the equalities that we have postulated are not the identity on
ufloat (u), but they are the identity on the underlyingfloat: replacing algebraically equal units does not
change the magnitude of a quantity. Consequently, the correct proof action in this case does not depend on
how the particular equality proof was constructed:

retype/U ::∀ u, v::U.∀ ::EQU(u, v). ufloat(u) → ufloat(v)
retype/U u v (quantity[u] x) = quantity[v] x

This notion of equality captures the algebraic properties of units. However, we might want a yet coarser
“equality” that relates all units of the same dimension. For example, both meters and feet represent quan-
tities of the same dimension, length, but they differ by a factor of scale; in this case, we could define feet
notationally as3048 · 10000−1 · met. We can define a proposition that relates units of the same dimension:

kind SAMEDIM (u :: U, v :: U) = sameUnit u v (p :: EQU(u, v)) :: SAMEDIM (u, v)
| scale u v n (p :: EQU(u, scalar(n) · v)) :: SAMEDIM (u, v).

However, as NASA so infamously discovered [27], the coercions for retyping based on this proposition
are not the identity on the quantity. A correct coercion must act differentlyfor different proofs; it can be
defined using run-time analysis of proofs:

NATtoFloat :∀ n::N. float
NATtoFloat z = 0.0
NATtoFloat (s i) = 1.0 + (NATtoFloat i)

scaleFactor :∀ n::N. ufloat((scalar n)−1) = quantity[(scalar n)−1](NATtoFloat n)
P :: Πk n::N. Πk v::U. EQU((scalar n)

−1 · ((scalar n) · v), v) = ...

retype/SAMEDIM :∀ u, v::U.∀ ::SAMEDIM(u, v). ufloat(u) → ufloat(v)
retype/SAMEDIM u v (sameUnit u v p) = retype/U[u][v][p]
retype/SAMEDIM u v (scale u v n p) =
fn x : ufloat(u) =>
let x′ : ufloat(scalar(n) · v) = retype/U[u][scalar(n) · v][p] x in
let x′′ : ufloat((scalar n)−1 · ((scalar n) · v)) = umult[(scalar n)−1][(scalar n) · v] (scaleFactor[n]) x′ in
retype/U [(scalar n)−1 · ((scalar n) · v)][v][P n v] x′′.

In addition to case-analyzing the proof, this example requires run-time analysis of an index to compute the
scale factor.8

8We definedSAMEDIM with two constructors for illustrative purposes, but justscale would have sufficed because one can
always applyident to showEQU(scalar(s z) · u, u). With this alternate definition, the retyping function would have only one
case, but it would still be necessary to deconstruct the given proof to extract the scale factor and the proof of unit equality.

35



In this example, we have defined propositions representing coarser equivalence relations than syntactic
identity, and we have shown how the actions of these equivalences on run-time terms can be defined by case-
analyzing indices and proof at run-time. Of course, it is still the programmer’s responsibility to ensure that
the proposition adequately represents the notion of equality that he has in hishead and that the coercions
correctly witness that equality. However, once he has done so, the programmer can work at the level of
abstraction afforded by the proposition. In this example, instead of manuallychaining together arbitrary
arithmetic operations to change units, the programmer will give the proof that the units are equivalent, the
type system will check that the proof correctly mediates the units in question, and then the correct coercions
for that proof can be applied.

B Full Meta-theory

B.1 Outline

In this section, we prove type safety and decidability of type checking for the declarative presentation of our
language in Section 5. To do so, we first give an equivalent algorithmic formulation of the language; then,
we prove type safety and decidability of type checking for the algorithmic formulation. The algorithm is
based on Harper and Pfenning’s treatment of LF [25], and our development follows theirs closely. In this
method, definitional equality is decided by two judgements,Ψ ` C ⇐⇒ C′ :: K̂ andΨ ` C ←→ C′ :: K̂.
The first judgement is kind-directed; the second is structural. The kind-directed part relies on the weak
head reduction judgement presented in Section 5 to reduce constructors toweak head normal form. Both
judgements operate over kinds with dependencies erased; this greatly simplifies showing transitivity of the
algorithm.

In the present work, we have extended this technique to an algorithm for decidingβ-only equality for
NAT andEQN(I, J). There was one trick required in adapting the algorithm to inductive kinds. The judgement
Ψ ` C ⇐⇒ C′ :: K̂ is kind-directed, so there must be only one rule for each kind (exempting theweak head
reduction rules). For example, at function kinds, the algorithm applies extensionality of functions. It is easy
to see that this works for kinds like functions or pairs with only one introduction form; however, it was
not immediately obvious how to apply it to kinds likeNAT that have constructors of more than one shape.
Our solution is as follows: the single kind-directed equality forNAT simply refers to a mutually-defined
judgement,Ψ ` C ⇐⇒NAT C′, that handles the structural comparison of the various intro forms of kind
NAT. That is, equality at kindNAT is defined by a separate “horizontal” judgement that complements usual
“vertical” induction over kinds that defines the algorithm. The logical relations argument used to show
completeness of the algorithm must account for this fact. In our proof, thelogical relations in general are
defined by induction over the classifying kind; in addition, the logical relationat NAT is itself inductively
defined by a separate rule induction. This technique is an adaption of the strong normalization proofs of
Gödel’s T (see Girard et al. for a presentation [21]) to our setting.

The proof is organized as follows. In Section B.2, we establish some basic lemmas about the declarative
presentation. In Section B.3, we give an algorithmic version of equality and show that it is equivalent the
declarative specification of definitional equality. In Section B.4, we give algorithmic versions of kinding and
typing and show them equivalent to the declarative definitions. In Section B.5, we prove type safety. Finally,
in Section B.6, we prove decidability of type checking. All Twelf proofs referenced here are available on
the Web [1].

B.2 Basic Properties of the Declarative System

We tacitly assume that all contexts appearing in the premises of the following theorem statements are well-
formed according to the definition in Section 5.
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THEOREM B.1: ADEQUACY. These lemmas refer to the LF signature that is available in the companion
Twelf code [1]. An encoding function iscompositionalif it commutes with substitution.

1. There are compositional bijections between the following.

Syntactic Category Canonical LF Terms of Type in LF contexts
K with FV inu1. . .un kd u1 : cn . . .
C with FV inu1. . .un cn u1 : cn . . .

E with FV inu1. . .un,x1. . .xn tm u1 : cn . . . ,x1 : tm. . .

We usep·q and x·y to refer to the functions witnessing any of these bijections.

2. There are bijections between the following.

Derivations of Canon. LF Terms of Type in LF contexts
u1 :: K1 . . . ` K kind wf kd pKq u1 : cn, du1 : ofkd u1 pK1q , dequ1 : deq cn u1 u1 pK1q . . .

u1 :: K1 . . . ` K ≡ K′ kind deq kd pKq pK′q u1 : cn, du1 : ofkd u1 pK1q , dequ1 : deq cn u1 u1 pK1q . . .
u1 :: K1 . . . ` C :: K ofkd pCq pKq u1 : cn, du1 : ofkd u1 pK1q , dequ1 : deq cn u1 u1 pK1q . . .

u1 :: K1 . . . ` C ≡ C′ :: K deq cn pCq pC′q pKq u1 : cn, du1 : ofkd u1 pK1q , dequ1 : deq cn u1 u1 pK1q . . .
ui :: Ki ; xj : Aj ` E : A oftp pEq pAq ui : cn, dui : ofkd ui pKiq , dequi : deq cn ui ui pKiq ,

xj : tm, dxj : oftp xj pAjq

C
whr
−→ C′, FV in u1. . . whr pCq pC′q u1 : cn. . .

C
whr

−→∗ C′, FV in u1. . . whrrt pCq pC′q u1 : cn. . .
E value, FV in u1. . . ,x1. . . value pEq u1 : cn. . . ,x1 : tm. . .
E 7→ E′, FV in u1. . . ,x1. . . step pEq pE′q u1 : cn. . . ,x1 : tm. . .

Proof. The encodings we use follow standard techniques [22]: the syntax encodings use higher-order
abstract syntax, representing object-language variables with meta-language variables; the derivations and
judgements are encoded using the judgements-as-types methodology. Consequently, the proofs of adequacy
are also by standard means; Harper, Honsell, and Plotkin present some examples [22].

LEMMA B.2: SUBSTITUTION INTO A SUBSTITUTION.
If v is not free inC2 then[C2/u][C1/v]C is [[C2/u]C1/v][C2/u]C. Under the same restrictions,[C2/u][C1/v]K
is [[C2/u]C1/v][C2/u]K. Note: when used in this sense,“is” means syntactic identity up toα-conversion.

Proof. By mutual induction on the structure ofC andK. In some cases, we replace equals for equals until
the two sides are identical; then the equality is given by reflexivity. Reading this backward would show how
to construct a derivation of equality.

• To show:
[C2/u][C1/v]u is [[C2/u]C1/v][C2/u]u.

The LHS reduces to[C2/u]u becauseu andv are different and then toC2 becauseu andu are the
same. The RHS reduces to[[C2/u]C1/v]C2 becauseu andu are the same and then toC2 becausev is
not free inC2.

• To show:
[C2/u][C1/v]v is [[C2/u]C1/v][C2/u]v.

The LHS reduces to[C2/u]C1 becausev andv are the same; the RHS reduces to[[C2/u]C1/v]v because
u andv are different and then to[C2/u]C1 becausev andv are the same.
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• To show:
[C2/u][C1/v]w is [[C2/u]C1/v][C2/u]w.

Both sides reduce tow because the variables are different.

• To show:
[C2/u][C1/v]unit is [[C2/u]C1/v][C2/u]unit.

Both sides reduce tounit because substitution into it is a no-op.

• To show:
[C2/u][C1/v](A → B) is [[C2/u]C1/v][C2/u](A → B).

By induction,
[C2/u][C1/v]A is [[C2/u]C1/v][C2/u]A
[C2/u][C1/v]B is [[C2/u]C1/v][C2/u]B.

By congruence of identity,

[C2/u][C1/v]A → [C2/u][C1/v]B is [[C2/u]C1/v][C2/u]A → [[C2/u]C1/v][C2/u]B

Then the definition of substitution for→ allows the substitution to be pulled outside on each side.

• To show:
[C2/u][C1/v](λc w::K. C) is [[C2/u]C1/v][C2/u](λc w::K. C).

By induction,
[C2/u][C1/v]K is [[C2/u]C1/v][C2/u]K
[C2/u][C1/v]C is [[C2/u]C1/v][C2/u]C.

In order to apply the definition of substitution forλ, we must know thatw is distinct fromu andv and
thatw is not free in any of the substituted terms. Fortunately, this can be achieved by α-renaming the
bound variablew to something fresh.

• All other cases are similar to the previous three. When there are no subexpressions, substitution is a
no-op. Otherwise, apply induction, congruence, and the definition of substitution; in binding forms,
α-renaming the bound variable to something fresh ensures that the definition can be applied.

LEMMA B.3: WEAKENING. If ∆, ∆′ ` J and∆, u :: K, ∆′ is well-formed then∆, u :: K, ∆′ ` J.

Proof. By induction over the given derivation. Alternatively, this statement of weakening is true in LF [25],
so this follows from THEOREM B.1.

LEMMA B.4: SUBSTITUTION.

1. If ∆, u :: K, ∆′ ` J and∆ ` C :: K then∆, [C/u]∆′ ` [C/u]J.

2. If ∆, u :: K, ∆′; Γ ` J and∆ ` C :: K then∆, [C/u]∆′; [C/u]Γ ` [C/u]J.

3. If ∆; Γ, x : A, Γ′ ` J and∆ ` E :: A then∆; Γ, Γ′ ` [E/x]J.

Proof. By induction over the given derivation. Alternatively, this statement of substitution is true in LF [25],
so this follows from THEOREM B.1.
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Using this lemma, we can show that the context in its result,∆, [C2/u]∆
′, is well-formed.

LEMMA B.5: REFLEXIVITY OF DEFINITIONAL EQUALITY.

1. If ∆ ` K kind then∆ ` K ≡ K kind.

2. If ∆ ` C :: K then∆ ` C ≡ C :: K.

Proof. In Twelf.

Two inversion lemmas are necessary for functionality; fortunately, they can be proven first:

LEMMA B.6: INVERIONS, PART 1.

1. If ∆ ` s I :: K then∆ ` I :: K′ and∆ ` K′ ≡ K kind.

2. If ∆ ` s I :: NAT then∆ ` I :: NAT.

Proof. In Twelf.

LEMMA B.7: FUNCTIONALITY OF SUBSTITUTION INTO IDENTICALS. Assume∆ ` C2 ≡ C′2 :: K2,
∆ ` C2 :: K2, ∆ ` C′2 :: K2, and∆ ` K2 kind.

1. If ∆, u :: K2, ∆
′ ` K kind then∆, [C2/u]∆

′ ` [C2/u]K ≡ [C′2/u]K kind.

2. If ∆, u :: K2, ∆
′ ` C :: K then∆, [C2/u]∆

′ ` [C2/u]C ≡ [C′2/u]C :: [C2/u]K.

Proof. The proof proceeds by a simple mutual induction on the given derivations,but even stating this
theorem in Twelf requires some tricks because of the substitution into the context. Thus, it is on paper for
now. In the cases we claim are analogous to a previous case, observe that substitution into the constructors
and kind in question is always defined analogously to substitution into those in the previous case.

1. The proof is by induction on the derivation of∆, u :: K2, ∆
′ ` K kind.

• Case forwf-kd-type . By the definition of substitution,[C/u]TYPE isTYPE, anddeq-kd-type
gives that∆, [C2/u]∆

′ ` TYPE ≡ TYPE kind (the context in the conclusion of the rule is arbi-
trary).

• Case forwf-kd-nat . Analogous to the above, except we usedeq-kd-nat .

• Case for

D1

∆, u :: K2, ∆
′ ` Kf kind

D2

∆, u :: K2, ∆
′, v :: Kf ` Kt kind

∆, u :: K2, ∆
′ ` Πk u::Kf. Kt kind

wf-kd-pi
.

By the IH onD1, ∆, [C2/u]∆
′ ` [C2/u]Kf ≡ [C′2/u]Kf kind. By the IH onD2,

∆, [C2/u](∆
′, v :: Kf) ` [C2/u]Kt ≡ [C′2/u]Kt kind. The the definition of substitution gives

that∆, [C2/u]∆
′, v :: [C2/u]Kf ` [C2/u]Kt ≡ [C′2/u]Kt kind, so bydeq-kd-pi and the defi-

nition of substitution we get the result.

• Case forwf-kd-eqn . By the IH,∆, [C2/u]∆
′ ` [C2/u]I ≡ [C′2/u]I :: [C2/u]NAT and

∆, [C2/u]∆
′ ` [C2/u]J ≡ [C′2/u]J :: [C2/u]NAT. [C2/u]NAT isNAT, so we can applydeq-kd-eqn ;

then, the definition of substitution gives the result.

2. The proof is by induction on the derivation of∆, u :: K2, ∆
′ ` C :: K.
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• Case for
∆, u :: K2, ∆

′ ` C :: K ∆, u :: K2, ∆
′ ` K ≡ K′ kind

∆, u :: K2, ∆
′ ` C :: K′

ofkd-deq
.

By the IH, ∆, [C2/u]∆
′ ` [C2/u]C ≡ [C′2/u]C :: [C2/u]K. By substitution (LEMMA B.4)

applied to the second premise derivation,∆, [C2/u]∆
′ ` [C2/u]K ≡ [C2/u]K

′ kind. Then
deq-cn-deq-kd gives the result.

• Case forofkd-var . We distinguish two subcases, based on whether the variable in question is
the one we are substituting for in the theorem statement or not:

– Case for
∆, u :: K2, ∆

′ ` u :: K2
ofkd-var

.

By the definition of substitution,[C2/u]u is C2 and[C′2/u]u is C′2. By assumption,
∆ ` C2 ≡ C′2 :: K2, and, sinceu is not free inK2 (by well-formedness of the context), this
derivation has the necessary kind. Then, the result is true by weakening (LEMMA B.3).

– Case for
(v :: K in ∆ or ∆′)

∆, u :: K2, ∆
′ ` v :: K

ofkd-var
.

By the definition of substitution,[X/u]v is v. If v :: K is in ∆, then by definition of substitu-
tion,v :: K is in∆, [C2/u]∆

′, so we can obtain∆, [C2/u]∆
′ ` v ≡ v :: K by deq-cn-var .

Becauseu is not free inK, this is what we need. If on the other handv :: K is in ∆′, then by
the definition of substitutionv :: [C2/u]K is in [C2/u]∆

′, so bydeq-cn-var
∆, [C2/u]∆

′ ` v ≡ v :: [C2/u]K.

• Case for

∆, u :: K2, ∆
′ ` Cf :: TYPE ∆, u :: K2, ∆

′ ` Ct :: TYPE

∆, u :: K2, ∆
′ ` Cf → Ct :: TYPE

ofkd-arrow
.

Applying the IH to each premise derivation gives that∆, [C2/u]∆
′ ` [C2/u]Cf ≡ [C′2/u]Cf :: TYPE

and∆, [C2/u]∆
′ ` [C2/u]Ct ≡ [C′2/u]Ct :: TYPE (by the definition of substitution,[C2/u]TYPE

is TYPE). Thendeq-cn-arrow and the definition of substitution (to pull the substitution out-
side the→, and to give the substitution intoTYPE) give the result.

• Case forofkd-prod . This case is analogous toofkd-arrow , usingdeq-cn-prod .

• Case forofkd-sum . This case is analogous toofkd-arrow , usingdeq-cn-sum .

• Case for

∆, u :: K2, ∆
′ ` K kind ∆, u :: K2, ∆

′ ` C :: Πk ::K. TYPE

∆, u :: K2, ∆
′ ` ∀K C :: TYPE

ofkd-all
.

By the IH,∆, [C2/u]∆
′ ` [C2/u]K ≡ [C′2/u]K kind and

∆, [C2/u]∆
′ ` [C2/u]C ≡ [C′2/u]C :: [C2/u]Πk ::K. TYPE. By the definition of substitution, we

can push the substitution inside theΠ to getΠk ::[C2/u]K. TYPE (since substitution intoTYPE is
a no-op). Then, we can applydeq-cn-all and use the definition of substitution to get the
result.

• Case forofkd-exists . This case is analogous toofkd-all , usingdeq-cn-exists .

• Case forofkd-unit . By deq-cn-unit , ∆, [C2/u]∆
′ ` unit ≡ unit :: TYPE. Then, by

the definition of substitution,[X/u]unit is unit and[X/u]TYPE is TYPE, so we have the result.
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• Case forofkd-void . This case is analogous toofkd-unit , usingdeq-cn-void .

• Case for
∆, u :: K2, ∆

′ ` I :: NAT

∆, u :: K2, ∆
′ ` nat I :: TYPE

ofkd-nat
.

By the IH, ∆, [C2/u]∆
′ ` [C2/u]I ≡ [C′2/u]I :: NAT (using the definition of substitution into

NAT). Thendeq-cn-nat and the definition of substitution give the result.

• Case forofkd-list . This case is analogous toofkd-nat , usingdeq-cn-list .

• Case for
∆, u :: K2, ∆

′ ` Kf kind ∆, u :: K2, ∆
′, v :: Kf ` C :: Kt

∆, u :: K2, ∆
′ ` λc v::Kf. C :: Πk v::Kf. Kt

ofkd-fn
.

By the IH applied to the premise derivations (and using the definition of substitution),
∆, [C2/u]∆

′ ` [C2/u]Kf ≡ [C′2/u]Kf kind and
∆, [C2/u]∆

′, v :: [C2/u]Kf ` [C2/u]C ≡ [C′2/u]C :: [C2/u]Kt. Then, bydeq-cn-fn ,
∆, [C2/u]∆

′ ` λc v::[C2/u]Kf. [C2/u]C ≡ λc v::[C
′

2/u]Kf. [C
′

2/u]C :: (Πk v::[C2/u]Kf. [C2/u]Kt),
so the definition of substitution gives the result (the bound variable is chosen so it does not
interfere).

• Case for

∆, u :: K2, ∆
′ ` Cf :: Πk v::Ka. K ∆, u :: K2, ∆

′ ` Ca :: Ka
∆, u :: K2, ∆

′ ` Cf Ca :: [Ca/v]K
ofkd-app

.

Apply the IH to each premise, using the definition of substitution to push the substitution inside
theΠk; then usedeq-cn-app . This gives
∆, [C2/u]∆

′ ` [C2/u]Cf [C2/u]Ca ≡ [C′2/u]Cf [C′2/u]Ca :: [[C2/u]Ca/v][C2/u]K. This result
kind is equal to[C2/u][Ca/v]K by LEMMA B.2 (the bound variablev can be chosen fresh, so
it will not be free inC2) and the definition of substitution lets us pull the substitution outside the
application on each side. This gives the result.

• Case forofkd-z . This case is analogous toofkd-unit , usingdeq-cn-z .

• Case forofkd-s . This case is analogous toofkd-nat , usingdeq-cn-s .

• Case forofkd-natrec . By the IH applied to the premise derivations (and using the definition
of substitution),

∆, [C2/u]∆
′, i :: NAT ` [C2/u]K ≡ [C′2/u]K kind

∆, [C2/u]∆
′ ` [C2/u]I ≡ [C′2/u]I :: NAT

∆, [C2/u]∆
′ ` [C2/u]Cz ≡ [C′2/u]Cz :: [C2/u][z/i]K

∆, [C2/u]∆
′, i′ :: NAT, r :: [C2/u][i

′/i]K ` [C2/u]Cs ≡ [C′2/u]Cs :: [C2/u][s i
′/i]K

.

The bound variablei can be chosen fresh; then it is not identical tou and not free inC2 (sinceC2
is well-typed without it in the context). Then by LEMMA B.2 and the definition of substitution
(into z, s, andi, where by above we know thati is distinct fromu), we can commute the
substitutions intoK in the last two lines; then we can applydeq-cn-natrec and use the
definition of substitution to get the result.

• Case forokfd-eqn-zz . By deq-cn-eqn-zz , ∆, [C2/u]∆
′ ` eqn zz ≡ eqn zz :: EQN(z, z),

since the context in the conclusion of the rule is arbitrary. By the definition ofsubstitution,
[C2/u]eqn zz is eqn zz and[C2/u]EQN(z, z) is EQN(z, z), so we have the result.
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• Case forofkd-eqn-ss . By the IH,

∆, [C2/u]∆
′ ` [C2/u]I ≡ [C′2/u]I :: [C2/u]NAT

∆, [C2/u]∆
′ ` [C2/u]J ≡ [C′2/u]J :: [C2/u]NAT

∆, [C2/u]∆
′ ` [C2/u]P ≡ [C′2/u]P :: [C2/u]EQN(I, J)

Then, by the definition of substitution[C2/u]NAT isNAT and[C2/u]EQN(I, J) isEQN([C2/u]I, [C2/u]J),
so we can applydeq-cn-eqn-ss and then use the definition of substitution to pull the sub-
stitution outside eacheqn ss and the result kind.

• Case forofkd-eqn-rec . By the IH,

∆, [C2/u](∆
′, i :: N, j :: N, p :: EQN(i, j)) ` [C2/u]K ≡ [C′2/u]K

′ kind

∆, [C2/u]∆
′ ` [C2/u]C ≡ [C′2/u]C

′ :: [C2/u]EQN(I, J)
∆, [C2/u]∆

′ ` [C2/u]Czz ≡ [C′2/u]C
′

zz :: [C2/u][eqn zz/p][z/j][z/i]K
∆, [C2/u](∆

′, i :: N, j :: N, p :: EQN(i, j), r :: K) ` [C2/u]Css ≡ [C′2/u]C
′

ss :: [C2/u][eqn ss(i, j, p)/p][s j/j][s i/i]K.

Recall that all context variables are assumed to be distinct. Then, observe that

– in the first line,[C2/u](∆′, i :: N, j :: N, p :: EQN(i, j)) is [C2/u]∆
′, i :: N,j :: N,p :: EQN(i, j)

by the definitions of substitution into contexts,N, EQN(C1, C2), and variables.

– In the second line,[C2/u]EQN(I, J) is EQN([C2/u]I, [C2/u]J).

– In the third line,[C2/u][eqn zz/p][z/j][z/i]K is [eqn zz/p][z/j][z/i][C2/u]K by LEMMA

B.2 and the definition of substitution forz andeqn zz (we can choose fresh bound variables
to satisfy the premises of the lemma).

– Similarly, in the fourth line,[C2/u][eqn ss(i, j, p)/p][s j/j][s i/i]K is
[eqn ss(i, j, p)/p][s j/j][s i/i][C2/u]K Also, the substitution into the context,
[C2/u](∆

′, i :: N, j :: N, p :: EQN(i, j), r :: K), is ∆′,i :: N,j :: N,p :: EQN(i, j),[C2/u]r :: K.

Applying these syntactic equalities of meta-operations to the above derivations puts them in a
form where we can applydeq-cn-eqn-rec , and then we can use the definition of substitution
to pull the substitutions outside each side and the result kind.

LEMMA B.8: FUNCTIONALITY OF SUBSTITUTION INTO DEFINITIONAL EQUALS. Assume
∆ ` C2 ≡ C′2 :: K2, ∆ ` C2 :: K2, ∆ ` C′2 :: K2, and∆ ` K2 kind.

1. If ∆, u :: K2, ∆
′ ` K ≡ K′ kind, ∆, u :: K2, ∆

′ ` K kind, and ∆, u :: K2, ∆
′ ` K′ kind then

∆, [C2/u]∆
′ ` [C2/u]K ≡ [C′2/u]K

′ kind.

2. If ∆, u :: K2, ∆
′ ` C ≡ C′ :: K and∆, u :: K2, ∆

′ ` K kind then
∆, [C2/u]∆

′ ` [C2/u]C ≡ [C′2/u]C
′ :: [C2/u]K.

Proof. In Twelf. These are immediate consequences of LEMMA B.7 and LEMMA B.5. The extra well-
formedness premises are necessary because we have not yet shownregularity; once we do, they will be
redundant.

LEMMA B.9: REGULARITY.

1. If ∆ ` K ≡ K′ kind then∆ ` K kind and∆ ` K′ kind.

2. If ∆ ` C :: K then∆ ` K kind

3. If ∆ ` C ≡ C′ :: K then∆ ` C :: K, ∆ ` C′ :: K, and∆ ` K kind.
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4. If ∆ ; Γ ` E : A then∆ ` A :: TYPE.

Proof. In Twelf.

LEMMA B.10: INVERSION.

1. Inversion of kind equality:

• If ∆ ` Πk u::K2. K ≡ L kind thenL is Πk u::K′2. K
′ where∆ ` K2 ≡ K′2 kind and

∆, u :: K2 ` K ≡ K′ kind.

• If ∆ ` L ≡ Πk u::K2. K kind thenL is Πk u::K′2. K
′ where∆ ` K2 ≡ K′2 kind and

∆, u :: K2 ` K ≡ K′ kind.

• If ∆ ` Πk u::K2. K ≡ Πk u::K
′

2. K
′ kind then∆ ` K2 ≡ K′2 kind and

∆, u :: K2 ` K ≡ K′ kind.

• If ∆ ` EQN(I, J) ≡ L kind thenL is EQN(I′, J′) where∆ ` I ≡ I′ :: N and∆ ` J ≡ J′ :: N.

• If ∆ ` L ≡ EQN(I, J) kind thenL is EQN(I′, J′) where∆ ` I ≡ I′ :: N and∆ ` J ≡ J′ :: N.

• If ∆ ` EQN(I, J) ≡ EQN(I
′, J′) kind then∆ ` I ≡ I′ :: N and∆ ` J ≡ J′ :: N.

2. Inversion of kinding:

• If ∆ ` C1 → C2 :: K then∆ ` K ≡ TYPE kind and∆ ` C1 :: TYPE and∆ ` C2 :: TYPE. The
analogous statement holds forC1 × C2 andC1 + C2.

• If ∆ ` ∀K2 C :: K then∆ ` K ≡ TYPE kind and ∆ ` C :: Πk u::K2. TYPE. The analogous
statement holds for∃K2 C.

• If ∆ ` nat I :: K then∆ ` K ≡ TYPE kind and∆ ` I :: NAT. The analogous statement holds
for list I.

• If ∆ ` λc u::K2. C :: Kr then∆, u :: K2 ` C :: K and∆ ` Kr ≡ Πk u::K2. K kind.

• If ∆ ` C C2 :: Kr then∆ ` C :: Πk u::K2. K and∆ ` C2 :: K2 and∆ ` Kr ≡ [C2/u]K kind.

• If ∆ ` z :: K then∆ ` K ≡ NAT kind.

• If ∆ ` NATrec[u.K](I, Cz, i
′.r.Cs) :: Kr then∆, u :: NAT ` K kind,

∆ ` I :: NAT, ∆ ` Cz :: [z/u]K, ∆, i′ :: NAT, r :: [i′/u]K ` Cs :: [s i′/u]K, and
∆ ` Kr ≡ [I/u]K kind.

• If ∆ ` eqn zz :: K then∆ ` K ≡ EQN(z, z) kind.

• If ∆ ` eqn ss(I, J, P) :: K then∆ ` P :: EQN(I, J) and∆ ` K ≡ EQN(s I, s J) kind.

• If ∆ ` EQNrec[i.j.p.K](C, C1, i.j.p.r.C2) :: Kr then
∆, i :: N, j :: N, p :: EQN(i, j), r :: K ` C2 :: [eqn ss(i, j, p)/p][s j/j][s i/i]K,
∆ ` C1 :: [eqn zz/p][z/j][z/i]K, ∆ ` C :: EQN(I, J), ∆, i :: N, j :: N, p :: EQN(i, j) ` K kind,
and∆ ` Kr ≡ [C/p][J/j][I/i]K kind.

3. Inversion of constructor equality:

• If ∆ ` s I ≡ s I′ :: NAT then∆ ` I ≡ I′ :: NAT.

Proof. In Twelf. The lemmas in the first two categories follow from straightforward induction. For the third
category, general inversion properties of constructor equality are not easily provable at this point (intuitively,
because of theβ rules and transitivity). Indeed, these properties are one of the principlemotivations for the
algorithmic formulation of definitional equality that we will soon develop. However, because we need this
last lemma in developing algorithmic equality, we prove it now; fortunately, it is derivable usingNATrec to
take the predecessor of each side.
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B.3 Deciding Constructor Equality

B.3.1 Algorithmic Equality

Erased kinds Algorithmic equality is directed by approximate kinds, where all dependenciesare erased.
The erased kinds are

K̂ ::= T̂YPE | K̂1→̂kK̂2 | N̂AT | ÊQN.

A new form of context maps constructor variables to erased kinds:

Ψ ::= · |Ψ, u :: K̂.

All syntactically correct erased kinds are well-formed, so the only condition on a well-formedΨ is that no
variable occurs more than once.

The erasure function(·)− from kinds to erased kinds is defined as follows:

(TYPE)− = T̂YPE

(Πk u::K2. K)
− = (K2)

−→̂k(K)
−

(NAT)− = N̂AT

(EQN(C1, C2))
− = ÊQN.

We extend this function pointwise to contexts, denoted by(∆)−. Because a well-formed∆ binds each
variable once,(∆)− is well-formed when∆ is.

LEMMA B.11: ERASUREPROPERTIES.

1. For all kindsK, (K)− exists.

2. If (K)− = K̂ and(K)− = K̂′ thenK̂ is K̂′.

3. If ∆ ` K ≡ K′ kind then(K)− is (K′)−.

4. If u is potentially free inK, then([C/u]K)− is (K)−.

Proof. In Twelf.

The first two parts of this lemma justify using function notation for(·)−.

Definition of Algorithmic Equality

Ψ ` K ⇐⇒ K′ kind

Ψ ` TYPE ⇐⇒ TYPE kind
norm-eq-kd-type

Ψ ` K1 ⇐⇒ K′1 kind Ψ, u :: (K1)
− ` K2 ⇐⇒ K′2 kind

Ψ ` Πk u::K1. K2 ⇐⇒ Πk u::K
′

1. K
′

2 kind
norm-eq-kd-pi

Ψ ` NAT ⇐⇒ NAT kind
norm-eq-kd-nat

Ψ ` I ⇐⇒ I′ :: N̂AT Ψ ` J ⇐⇒ J′ :: N̂AT
Ψ ` EQN(I, J) ⇐⇒ EQN(I

′, J′) kind
norm-eq-kd-eqn
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K̂ base

T̂YPE base
base-kd-type

N̂AT base
base-kd-nat

ÊQN base
base-kd-eqn

Ψ ` C ⇐⇒ C′ :: K̂

K̂ base C1
whr
−→ C′1 Ψ ` C′1 ⇐⇒ C2 :: K̂

Ψ ` C1 ⇐⇒ C2 :: K̂
norm-eq-cn-whr-left

K̂ base C2
whr
−→ C′2 Ψ ` C1 ⇐⇒ C′2 :: K̂

Ψ ` C1 ⇐⇒ C2 :: K̂
norm-eq-cn-whr-right

Ψ ` C1 ⇐⇒TYPE C2

Ψ ` C1 ⇐⇒ C2 :: T̂YPE
norm-eq-cn-type

Ψ, u :: K̂2 ` C u ⇐⇒ C′ u :: K̂

Ψ ` C ⇐⇒ C′ :: K̂2→̂kK̂
norm-eq-cn-arrow

Ψ ` C ⇐⇒NAT C′

Ψ ` C ⇐⇒ C′ :: N̂AT
norm-eq-cn-nat

Ψ ` C ⇐⇒EQN C′

Ψ ` C ⇐⇒ C′ ::̂ EQN
norm-eq-cn-eqn

Ψ ` C ⇐⇒TYPE C′

Ψ ` C ←→ C′ :: T̂YPE
Ψ ` C ⇐⇒TYPE C′

norm-eq-cn/type-neut-eq

Ψ ` C1 ⇐⇒ C′1 :: T̂YPE Ψ ` C2 ⇐⇒ C′2 :: T̂YPE

Ψ ` C1 → C2 ⇐⇒TYPE C′1 → C′2
norm-eq-cn/type-arrow

Ψ ` C1 ⇐⇒ C′1 :: T̂YPE Ψ ` C2 ⇐⇒ C′2 :: T̂YPE

Ψ ` C1 × C2 ⇐⇒TYPE C′1 × C′2
norm-eq-cn/type-prod

Ψ ` C1 ⇐⇒ C′1 :: T̂YPE Ψ ` C2 ⇐⇒ C′2 :: T̂YPE

Ψ ` C1 + C2 ⇐⇒TYPE C′1 + C′2
norm-eq-cn/type-sum

Ψ ` K2 ⇐⇒ K′2 kind Ψ ` C ⇐⇒ C′ :: (K2)
−→̂kT̂YPE

Ψ ` ∀K2 C ⇐⇒TYPE ∀K′2 C
′

norm-eq-cn/type-all

Ψ ` K2 ⇐⇒ K′2 kind Ψ ` C ⇐⇒ C′ :: (K2)
−→̂kT̂YPE

Ψ ` ∃K2 C ⇐⇒TYPE ∃K′2 C
′

norm-eq-cn/type-exists

Ψ ` unit ⇐⇒TYPE unit
norm-eq-cn/type-unit

Ψ ` void ⇐⇒TYPE void
norm-eq-cn/type-void
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Ψ ` C ⇐⇒ C′ :: N̂AT
Ψ ` nat C ⇐⇒TYPE nat C′

norm-eq-cn/type-nat

Ψ ` C ⇐⇒ C′ :: N̂AT
Ψ ` list C ⇐⇒TYPE list C′

norm-eq-cn/type-list

Ψ ` C ⇐⇒NAT C′

Ψ ` C ←→ C′ :: N̂AT
Ψ ` C ⇐⇒NAT C′

norm-eq-cn/nat-neut-eq

Ψ ` z ⇐⇒NAT z
norm-eq-cn/nat-z

Ψ ` C ⇐⇒ C′ :: N̂AT
Ψ ` s C ⇐⇒NAT s C′

norm-eq-cn/nat-s

Ψ ` C ⇐⇒EQN C′

Ψ ` C ←→ C′ :: ÊQN
Ψ ` C ⇐⇒EQN C′

norm-eq-cn/eqn-neut-eq

Ψ ` eqn zz ⇐⇒EQN eqn zz
norm-eq-cn/eqn-zz

Ψ ` I ⇐⇒ I′ :: N̂AT Ψ ` J ⇐⇒ J′ :: N̂AT Ψ ` P ⇐⇒ P′ :: ÊQN
Ψ ` eqn ss(I, J, P) ⇐⇒EQN eqn ss(I′, J′, P′)

norm-eq-cn/eqn-ss

Ψ ` C ←→ C′ :: K̂

Ψ, u :: K̂,Ψ′ ` u ←→ u :: K̂
neut-eq-cn-var

Ψ ` C1 ←→ C′1 :: K̂2→̂kK̂ Ψ ` C2 ⇐⇒ C′2 :: K̂2

Ψ ` C1 C2 ←→ C′1 C
′

2 :: K̂
neut-eq-cn-app

Ψ, u :: N̂AT ` K ⇐⇒ K′ kind (K)− is K̂ Ψ ` I ←→ I′ :: N̂AT

Ψ ` Cz ⇐⇒ C′z :: K̂

Ψ, i′ :: N̂AT, r :: K̂ ` Cs ⇐⇒ C′s :: K̂

Ψ ` NATrec[u.K](I, Cz, i
′.r.Cs) ←→ NATrec[u.K′](I′, C′z, i

′.r.C′s) :: K̂
neut-eq-cn-natrec

Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN ` K ⇐⇒ K′ kind (K)− is K̂ Ψ ` P ←→ P′ ::̂ EQN
Ψ ` Czz ⇐⇒ C′zz :: K̂

Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: K̂ ` Css ⇐⇒ C′ss :: K̂

Ψ ` EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css) ←→ EQNrec[i.j.p.K
′](P′, C′zz, i.j.p.r.C

′

ss) :: K̂
neut-eq-cn-eqnrec

C
whr

−→∗ C′

Weak head reduction,C
whr
−→ C′, was defined in Section 5.

C
whr

−→∗ C′
whrrt-refl

C1
whr
−→ C′1 C′1

whr

−→∗ C2

C1
whr

−→∗ C2

whrrt-whr
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C whnorm andC whneut
These judgements can be given by a subsyntax; the meta-variables not being defined here still refer to any
constructor:

R whneut ::= u | R C2 | | NATrec[u.K](R, Cz, i
′.r.Cs) | EQNrec[i.j.p.K](R, Czz, i.j.p.r.Css)

N whnorm ::= R | C1 → C2 | C1 × C2 | C1 + C2 | ∀K2 C | ∃K2 C | unit | void | nat I | list I
|λc u::K. C | z | s I | eqn zz | eqn ss(I, J, P)

Discussion of Algorithmic Equality We refer toΨ ` C ⇐⇒ C′ :: K̂ and its auxiliary judgements (Ψ `
C ⇐⇒TYPE C′, Ψ ` C ⇐⇒NAT C′, andΨ ` C ⇐⇒EQN C′) as normal equality(or, more precisely,
normalizing equality) because these judgements determine equality by normalizing constructors. We refer to
Ψ ` C ←→ C′ :: K̂ asneutral equalitybecause this judgements determines equality of neutral constructors.
The rules for these judgements are well-moded. Operationally, the erased kind in Ψ ` C ←→ C′ :: K̂ and

the right-hand constructor inC
whr
−→ C′ andC

whr
−→∗ C′are outputs; all other meta-variables appearing in the

judgements are inputs.

Properties of Algorithmic Equality

LEMMA B.12: ADEQUACY OF ALGORITHMIC EQUALITY ENCODING. These lemmas refer to the LF
signature that is available in the companion Twelf code [1].

1. There is a bijection between the following.

Syntactic Category Canonical LF Terms of Type in LF contexts
K̂ kd̂ ·

2. There are bijections between the following.

Derivations of Canon. LF Terms of Type in LF contexts
K̂ base, FV in u1. . . base kd̂ pK̂q u1 : cn

(K)− = K̂, FV in u1. . . ed/kd pKq pK̂q u1 : cn
C whnorm, FV in u1. . . whnorm pCq u1 : cn
C whneut, FV in u1. . . whneut pCq u1 : cn

u1 :: K̂1 . . . ` K ⇐⇒ K′ kind norm eq kd pKq pK′q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .
u1 :: K̂1 . . . ` C ⇐⇒ C′ :: K̂ norm eq cn pCq pC′q pK̂q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .
u1 :: K̂1 . . . ` C ⇐⇒TYPE C′ norm eq cn/type pCq pC′q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .
u1 :: K̂1 . . . ` C ⇐⇒NAT C′ norm eq cn/nat pCq pC′q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .
u1 :: K̂1 . . . ` C ⇐⇒EQN C′ norm eq cn/eqn pCq pC′q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .
u1 :: K̂1 . . . ` C ←→ C′ :: K̂ neut eq cn pCq pC′q pK̂q u1 : cn, nequ1 : neut eq cn u1 u1 pK̂1q . . .

Proof. Again, the proofs of adequacy follow standard techniques [22].

LEMMA B.13: ERASURES OFALGORITHMIC EQUALS ARE IDENTICAL .
If Ψ ` K ⇐⇒ K′ kind then(K)− is (K′)−.

Proof. In Twelf.

LEMMA B.14: WEAKENING OF ALGORITHMIC EQUALITY.
For algorithmic equality judgements J, ifΨ, Ψ′ ` J andΨ, u :: K̂, Ψ′ is well-formed thenΨ, u :: K̂, Ψ′ ` J.

Proof. By induction over the given derivation. Alternatively, weakening is true inLF, so this follows from
LEMMA B.12.
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LEMMA B.15: DETERMINACY OF WEAK HEAD REDUCTION.
If C

whr
−→ C′ andC

whr
−→ C′′ thenC′ is C′′.

Proof. In Twelf.

LEMMA B.16: CONSTRUCTORS ARENEUTRALLY EQUAL AT A UNIQUE K IND .
If Ψ ` C1 ←→ C2 :: K̂ andΨ ` C2 ←→ C3 :: K̂′ thenK̂ is K̂′.

Proof. In Twelf.

LEMMA B.17: SUBJECTS OFAUXILLARY JUDGEMENTS AREWEAK HEAD NORMAL .

1. If Ψ ` C1 ←→ C2 :: K̂ thenC1 whneut andC2 whneut

2. If Ψ ` C ⇐⇒TYPE C′ thenC whnorm andC′ whnorm

3. If Ψ ` C ⇐⇒NAT C′ thenC whnorm andC′ whnorm

4. If Ψ ` C ⇐⇒EQN C′ thenC whnorm andC′ whnorm

Proof. In Twelf.

LEMMA B.18: WEAK HEAD NORMAL CONSTRUCTORS ARENOT WEAK HEAD REDUCIBLE.

1. C whneut andC
whr
−→ C′ imply a contradiction.

2. C whnorm andC
whr
−→ C′ imply a contradiction.

Proof. In Twelf.

LEMMA B.19: SYMMETRY OF ALGORITHMIC EQUALITY.

1. If Ψ ` K1 ⇐⇒ K2 kind thenΨ ` K2 ⇐⇒ K1 kind.

2. If Ψ ` C1 ⇐⇒ C2 :: K̂ thenΨ ` C2 ⇐⇒ C1 :: K̂.

3. If Ψ ` C1 ⇐⇒TYPE C2 thenΨ ` C2 ⇐⇒TYPE C1.

4. If Ψ ` C1 ⇐⇒NAT C2 thenΨ ` C2 ⇐⇒NAT C1.

5. If Ψ ` C1 ⇐⇒EQN C2 thenΨ ` C2 ⇐⇒NAT C1.

6. If Ψ ` C1 ←→ C2 :: K̂ thenΨ ` C2 ←→ C1 :: K̂.

Proof. In Twelf.

LEMMA B.20: TRANSITIVITY OF ALGORITHMIC EQUALITY.

1. If Ψ ` K1 ⇐⇒ K2 kind andΨ ` K2 ⇐⇒ K3 kind thenΨ ` K1 ⇐⇒ K3 kind.

2. If Ψ ` C1 ⇐⇒ C2 :: K̂ andΨ ` C2 ⇐⇒ C3 :: K̂ thenΨ ` C1 ⇐⇒ C3 :: K̂.

3. If Ψ ` C1 ⇐⇒TYPE C2 andΨ ` C2 ⇐⇒TYPE C3 thenΨ ` C1 ⇐⇒TYPE C3.

4. If Ψ ` C1 ⇐⇒NAT C2 andΨ ` C2 ⇐⇒NAT C3 thenΨ ` C1 ⇐⇒NAT C3.

5. If Ψ ` C1 ⇐⇒EQN C2 andΨ ` C2 ⇐⇒EQN C3 thenΨ ` C1 ⇐⇒EQN C3.

6. If Ψ ` C1 ←→ C2 :: K̂ andΨ ` C2 ←→ C3 :: K̂ thenΨ ` C1 ←→ C3 :: K̂.

Proof. In Twelf.
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B.3.2 Soundness of Algorithmic Equality

The algorithm is only sound when its subjects are well-formed, so these havetyping premises.

LEMMA B.21: SOUNDNESS OFWEAK HEAD REDUCTION.
If ∆ ` C :: K andC

whr
−→ C′, then∆ ` C ≡ C′ :: K.

Proof. In Twelf.

THEOREM B.22: SOUNDNESS OFALGORITHMIC EQUALITY.

1. If ∆ ` K kind, ∆ ` K′ kind, and(∆)− ` K ⇐⇒ K′ kind, then∆ ` K ≡ K′ kind.

2. If ∆ ` C :: K, ∆ ` C′ :: K, and(∆)− ` C ⇐⇒ C′ :: (K)−, then∆ ` C ≡ C′ :: K.

3. If ∆ ` C :: K, ∆ ` C′ :: K, and(∆)− ` C ⇐⇒TYPE C′, then∆ ` C ≡ C′ :: K.

4. If ∆ ` C :: K, ∆ ` C′ :: K, and(∆)− ` C ⇐⇒NAT C′, then∆ ` C ≡ C′ :: K.

5. If ∆ ` C :: K, ∆ ` C′ :: K, and(∆)− ` C ⇐⇒EQN C′, then∆ ` C ≡ C′ :: K.

6. If ∆ ` C :: K, ∆ ` C′ :: K′, and(∆)− ` C ←→ C′ :: L̂, then∆ ` C ≡ C′ :: K, ∆ ` K ≡ K′ kind,
and(K)− is (K′)− is L̂.

Proof. In Twelf.

B.3.3 Completeness of Algorithmic Equality

Supporting Concepts

DEFINITION B.23: CONTEXT EXTENSION. A contextΨ′ extends a contextΨ, written Ψ′ ≥ Ψ, iff Ψ′

contains all declarations inΨ and possibly more.

LEMMA B.24: ALGORITHMIC EQUALITY IS CLOSED UNDERCONTEXT EXTENSION.
For all algorithmic equality judgements J, ifΨ ` J andΨ+ ≥ Ψ thenΨ+ ` J.

Proof. Apply LEMMA B.14 repeatedly; this will terminate because all contexts are finite.

DEFINITION B.25: SIMULTANEOUS SUBSTITUTIONS. Simultaneous substitutions are defined by the fol-
lowing grammar:

σ ::= · |σ, C/u

Application of these substitutions is written on the right asC[σ] andK[s] to distinguish it from the previously-
defined notion of substitution. Substitution application is defined by mutual induction on kinds and construc-
tors. We maintain the invariant that all variables in the domain of a substitution aredistinct; binding forms
are tacitlyα-renamed if necessary when we writeσ, u/u for a bound variableu. Additionally, we only apply
a substitutionσ to an expression whenσ substitutes for all free variables in the expression. Finally, we
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tacitly assume the usual side conditions that ensure capture-avoidance.

(TYPE)[σ] = TYPE

(Πk u::K2. K)[σ] = Πk u::K2[σ]. K[σ, u/u]
(NAT)[σ] = NAT

(EQN(I, J))[σ] = EQN(I[σ], J[σ])

(C1 → C2)[σ] = C1[σ] → C2[σ]
(C1 × C2)[σ] = C1[σ] × C2[σ]
(C1 + C2)[σ] = C1[σ] + C2[σ]

(∀K2 C)[σ] = ∀K2[σ] C[σ]
(∃K2 C)[σ] = ∃K2[σ] C[σ]
(unit)[σ] = unit

(void)[σ] = void

(nat I)[σ] = nat I[σ]
(u)[σ, C2/u, σ

′] = C2
(λc u::K. C)[σ] = λc u::K2[σ]. C[σ, u/u]

(C1 C2)[σ] = C1[σ] C2[σ]
(z)[σ] = z

(s I)[σ] = s I[σ]
(NATrec[u.K](I, Cz, i

′.r.Cs))[σ] = NATrec[u.K[σ, u/u]](I[σ], Cz[σ], i′.r.Cs[σ, i′/i′, r/r])
(eqn zz)[σ] = eqn zz

(eqn ss(I, J, P))[σ] = eqn ss(I[σ], J[σ], P[σ])
(EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css))[σ] = EQNrec[i.j.p.K[σ, i/i, j/j, p/p]](P[σ], Czz[σ], i.j.p.r.Css[σ, i/i, j/j, p/p, r/r])

This definition gives substitutions that are simultaneous in the sense thatu[σ, C/u, σ′] is C; the substitutions
in σ andσ′ are not applied toC.

LEMMA B.26: SUBSTITUTION AND SIMULTANEOUS SUBSTITUTION.

1. If u is not free inC thenC[σ, C2/u, σ
′] is C[σ, σ′]. If u is not free inK thenK[σ, C2/u, σ

′] is K[σ, σ′].

2. For all σ andσ′ such thatu is not free,C[σ, C2/u, σ
′] is [C2/u](C[σ, u/u, σ′]). For all σ andσ′ where

u is not free,K[σ, C2/u, σ
′] is [C2/u](K[σ, u/u, σ′]).

3. C[σ, C2[σ, σ′]/u, σ′] is ([C2/u]C)[σ, σ′]. K[σ, C2[σ, σ′]/u, σ′] is ([K/u]C1)[σ, σ′].

Proof. Each part is by mutual induction onC andK. The third uses the first.

Logical Relations A straightforward inductive proof of completeness breaks down because it is not ob-
vious that algorithmic equality is a congruence for the elimination forms. Our solution is to use logical
relations. The first relation, between two constructors, is defined by induction on erased kinds.

DEFINITION B.27: LOGICALLY RELATED CONSTRUCTORS.

1. Ψ ` C = C′ ∈ [[T̂YPE]] iff Ψ ` C ⇐⇒ C′ :: T̂YPE.

2. Ψ ` C = C′ ∈ [[K̂2→̂kK̂]] iff for all Ψ+ ≥ Ψ and allC2 andC′2 such thatΨ+ is well-formed and
Ψ+ ` C2 = C′2 ∈ [[K̂2]], Ψ+ ` C C2 = C′ C′2 ∈ [[K̂]].

3. Ψ ` C = C′ ∈ [[̂NAT]] is defined inductively as the least relation closed under the following inference
rules:

C1
whr
−→ C′1 Ψ ` C′1 = C2 ∈ [[̂NAT]]

Ψ ` C1 = C2 ∈ [[̂NAT]]
lr-nat-whr-left
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C2
whr
−→ C′2 Ψ ` C1 = C′2 ∈ [[̂NAT]]

Ψ ` C1 = C2 ∈ [[̂NAT]]
lr-nat-whr-right

Ψ ` C ←→ C′ :: N̂AT

Ψ ` C = C′ ∈ [[̂NAT]]
lr-nat-neut-eq

Ψ ` z = z ∈ [[̂NAT]]
lr-nat-z

Ψ ` I = I′ ∈ [[̂NAT]]

Ψ ` s I = s I′ ∈ [[̂NAT]]
lr-nat-s

Because the logical relation at kind̂NAT is defined inductively, rule induction can be used to reason
from the knowledge thatΨ ` C = C′ ∈ [[̂NAT]].

4. Ψ ` C = C′ ∈ [[̂EQN]] is defined inductively as the least relation closed under the following inference
rules:

C1
whr
−→ C′1 Ψ ` C′1 = C2 ∈ [[̂EQN]]

Ψ ` C1 = C2 ∈ [[̂EQN]]
lr-eqn-whr-left

C2
whr
−→ C′2 Ψ ` C1 = C′2 ∈ [[̂EQN]]

Ψ ` C1 = C2 ∈ [[̂EQN]]
lr-eqn-whr-right

Ψ ` C ←→ C′ :: ÊQN

Ψ ` C = C′ ∈ [[̂EQN]]
lr-eqn-neut-eq

Ψ ` eqn zz = eqn zz ∈ [[̂EQN]]
lr-eqn-zz

Ψ ` I = I′ ∈ [[̂NAT]] Ψ ` J = J′ ∈ [[̂NAT]] Ψ ` P = P′ ∈ [[̂EQN]]

Ψ ` eqn ss(I, J, P) = eqn ss(I′, J′, P′) ∈ [[̂EQN]]
lr-eqn-ss

Next, we extend this to a relation between two substitutions; here, the logical relation is defined by induction
on the structure of erased contexts.

DEFINITION B.28: LOGICALLY RELATED SUBSTITUTIONS.

1. Ψ ` σ = σ′ ∈ [[·]] iff σ is · andσ′ is ·

2. Ψ ` σ = σ′ ∈ [[Θ, u :: K̂]] iff σ is σ1,C/u andσ′ is σ′

1,C′/u, whereΨ ` σ1 = σ′

1 ∈ [[Θ]] and
Ψ ` C = C′ ∈ [[K̂]].
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Logically Related Constructors are Algorithmically Equal

LEMMA B.29: LOGICALLY RELATED CONSTRUCTORS AREALGORITHMICALLY EQUAL .

1. If Ψ ` C = C′ ∈ [[̂NAT]] thenΨ ` C ⇐⇒ C′ :: N̂AT.

2. If Ψ ` C = C′ ∈ [[̂EQN]] thenΨ ` C ⇐⇒ C′ :: ÊQN.

3. If Ψ ` C = C′ ∈ [[K̂]] thenΨ ` C ⇐⇒ C′ :: K̂.

4. If Ψ ` C ←→ C′ :: K̂ thenΨ ` C = C′ ∈ [[K̂]].

Proof. We prove the first part independently by rule induction on the assumed derivation. The second part
is then proven by rule induction using the first. Then, the last two parts are proven by mutual induction on
the classifying erased kind̂K.

1. • Case forlr-nat-whr-left .
By the IH, Ψ ` C′1 ⇐⇒ C2 :: N̂AT, so applyingnorm-eq-cn-whr-left to this and the
premise reduction derivation (observe that̂NAT is a base kind) gives the result.

• Case forlr-nat-whr-right .
By the IH, Ψ ` C1 ⇐⇒ C′2 :: N̂AT, so applyingnorm-eq-cn-whr-right to this and the
premise reduction derivation (observe that̂NAT is a base kind) gives the result.

• Case forlr-nat-neut-eq . By norm-eq-cn/nat-neut-eq applied to the premise equal-
ity derivation,Ψ ` C ⇐⇒NAT C′, sonorm-eq-cn-nat gives the result.

• Case forlr-nat-z . By norm-eq-cn/nat-z , Ψ ` z ⇐⇒NAT z, sonorm-eq-cn-nat
gives the result.

• Case forlr-nat-s . By the IH,Ψ ` I ⇐⇒ I′ :: N̂AT. By norm-eq-cn/nat-s ,
Ψ ` s I ⇐⇒NAT s I′, sonorm-eq-cn-nat gives the result.

2. • Case forlr-eqn-whr-left .
By the IH, Ψ ` C′1 ⇐⇒ C2 :: ÊQN, so applyingnorm-eq-cn-whr-left to this and the
premise reduction derivation (observe that̂EQN is a base kind) gives the result.

• Case forlr-eqn-whr-right .
By the IH, Ψ ` C1 ⇐⇒ C′2 :: ÊQN, so applyingnorm-eq-cn-whr-right to this and the
premise reduction derivation (observe that̂EQN is a base kind) gives the result.

• Case forlr-eqn-neut-eq . By norm-eq-cn/eqn-neut-eq applied to the premise equal-
ity derivation,Ψ ` C ⇐⇒EQN C′, sonorm-eq-cn-eqn gives the result.

• Case forlr-eqn-zz . By norm-eq-cn/eqn-zz , Ψ ` eqn zz ⇐⇒EQN eqn zz, so
norm-eq-cn-eqn gives the result.

• Case forlr-nat-s . By the previous part,Ψ ` I ⇐⇒ I′ :: N̂AT andΨ ` J ⇐⇒ J′ :: N̂AT.
By the IH,Ψ ` P ⇐⇒ P′ :: ÊQN. Thennorm-eq-cn/eqn-ss andnorm-eq-cn-eqn give
the result.

3. • Case forT̂YPE. Direct from the definition of the LR.

52



• Case for̂K2→̂kK̂.
Ψ, u :: K̂2 ` u ←→ u :: K̂2 neut-eq-cn-var
K̂2 is a subexpression of̂K2→̂kK̂ Def subexpr
Ψ, u :: K̂2 ` u = u ∈ [[K̂2]] IH (4) on K̂2

Ψ ` C = C′ ∈ [[K̂2→̂kK̂]] Assumption
Ψ, u :: K̂ ≥ Ψ Def≥
Ψ, u :: K̂2 ` C u = C′ u ∈ [[K̂]] Def LR for [[K̂2→̂kK̂]]

K̂is a subexpression of̂K2→̂kK̂ Def subexpr
Ψ, u :: K̂2 ` C u ⇐⇒ C′ u :: K̂ IH (3) on K̂
Ψ ` C ⇐⇒ C′ :: K̂2→̂kK̂ norm-eq-cn-fn-ext .

• Case for̂NAT. Apply Part 1.

• Case for̂EQN. Apply Part 2.

4. • Case forT̂YPE. By norm-eq-cn/type-neut-eq andnorm-eq-cn-type applied to the
assumption, the constructors are normally equal; then the definition of[[T̂YPE]] gives the result.

• Case for̂K2→̂kK̂.
By assumption,Ψ ` C ←→ C′ :: K̂2→̂kK̂. We are going to use the definition of the logical
relation forK̂2→̂kK̂, so assume for the “for all” arbitraryΨ+ ≥ Ψ, C2 andC′2 such that
Ψ+ ` C2 = C′2 ∈ [[K̂2]]. Then
Ψ+ ` C2 ⇐⇒ C′2 :: K̂2 IH(3) applied tôK2 and this assumption
Ψ+ ` C ←→ C′ :: K̂2→̂kK̂ LEMMA B.24
Ψ+ ` C C2 ←→ C′ C2 :: K̂ neut-eq-cn-app
Ψ+ ` C C2 = C′ C2 ∈ [[K̂]] IH (4) applied tôK

This satisfies the “for all”, so the result is true by the definition of the logical relation.

• Case for̂NAT. lr-nat-neut-eq applied to the assumption gives the result.

• Case for̂EQN. lr-eqn-neut-eq applied to the assumption gives the result.

Definitionally Equal Constructors are Logically Related

LEMMA B.30: WEAKENING OF THE LOGICAL RELATIONS. AssumeΨ, u :: K̂2, Ψ
′ is a well-formed con-

text.

1. If Ψ, Ψ′ ` C = C′ ∈ [[̂NAT]] thenΨ, u :: K̂2, Ψ
′ ` C = C′ ∈ [[̂NAT]].

2. If Ψ, Ψ′ ` C = C′ ∈ [[̂EQN]] thenΨ, u :: K̂2, Ψ
′ ` C = C′ ∈ [[̂EQN]].

3. If Ψ, Ψ′ ` C = C′ ∈ [[K̂]] thenΨ, u :: K̂2, Ψ
′ ` C = C′ ∈ [[K̂]].

4. If Ψ, Ψ′ ` σ = σ′ ∈ [[Θ]] thenΨ, u :: K̂2, Ψ
′ ` σ = σ′ ∈ [[Θ]].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by rule induction using Part 1. Next,
we prove Part 3 by induction on the erased kind; finally, we prove Part 4by induction on the erased context.

1. • Case forlr-nat-whr-left . By the IH, we can weaken the premise LR derivation, and then
applyinglr-nat-whr-left to this and the premise reduction derivation gives the result.

• Case forlr-nat-whr-right . By the IH, we can weaken the premise LR derivation, and then
applyinglr-nat-whr-right to this and the premise reduction derivation gives the result.
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• Case forlr-nat-neut-eq . By LEMMA B.14 we can weaken the premise derivation; then
applyinglr-nat-neut-eq gives the result.

• Case forlr-nat-z . This case is immediate bylr-nat-z because the context in the result is
arbitrary.

• Case forlr-nat-s . By the IH, we can weaken the derivation ofΨ, Ψ′ ` I = I′ ∈ [[̂NAT]],
and then applyinglr-nat-s to this gives the result.

2. • Case forlr-eqn-whr-left . By the IH, we can weaken the premise LR derivation, and then
applyinglr-eqn-whr-left to this and the premise reduction derivation gives the result.

• Case forlr-eqn-whr-right . By the IH, we can weaken the premise LR derivation, and then
applyinglr-eqn-whr-right to this and the premise reduction derivation gives the result.

• Case forlr-eqn-neut-eq . By LEMMA B.14 we can weaken the premise derivation; then
applyinglr-eqn-neut-eq gives the result.

• Case forlr-eqn-zz . This case is immediate bylr-eqn-zz because the context in the result
is arbitrary.

• Case forlr-eqn-ss . By the previous part, we can weaken the derivations of
Ψ, Ψ′ ` I = I′ ∈ [[̂NAT]] andΨ, Ψ′ ` J = J′ ∈ [[̂NAT]]. By the IH, we can weaken the
derivation ofΨ, Ψ′ ` P = P′ ∈ [[̂EQN]]. Then applyinglr-eqn-ss gives the result.

3. • Case forT̂YPE. By definition of [[T̂YPE]], Ψ, Ψ′ ` C ⇐⇒ C′ :: T̂YPE, so by LEMMA B.14
Ψ, u :: K̂2, Ψ

′ ` C ⇐⇒ C′ :: T̂YPE; then the definition of[[T̂YPE]] gives the result.

• Case forK̂f→̂kK̂t. We are going to use the definition of[[K̂2→̂kK̂]], so assume for arbitrary
Ψ+ ≥ Ψ, u :: K̂2, Ψ

′ andCf, C′f thatΨ+ ` Cf = C′f ∈ [[K̂f]]. Observe thatΨ, u :: K̂2, Ψ
′ extends

Ψ, Ψ′, so by transitivity of extensionΨ+ ≥ Ψ, Ψ′. Then, by our assumption,
Ψ, Ψ′ ` C = C′ ∈ [[K̂f→̂kK̂t]], so, by the definition of the LR,Ψ+ ` C Cf = C′ C′f ∈ [[K̂t]].
By the definition of[[K̂f→̂kK̂t]] (recall that we assumed an arbitraryΨ+ extendingΨ, u :: K̂2, Ψ

′)
we have the result.

• Case for̂NAT. Apply Part 1.

• Case for̂EQN. Apply Part 2.

4. • Case for·. Immediate by the definition of[[·]], as the context in the definition is arbitrary.

• Case for[[Θ, u :: K̂]]. By assumptionΨ, Ψ′ ` σ = σ ∈ [[Θ, u :: K̂]], so by the definition of the
LR σ is σ1,C/u andσ′ is σ′

1,C′/u whereΨ, Ψ′ ` σ1 = σ′

1 ∈ [[Θ]] andΨ, Ψ′ ` C = C′ ∈ [[K̂]].
By the IHΨ, u :: K̂2, Ψ

′ ` σ1 = σ′

1 ∈ [[Θ]] and by Part 3
Ψ, u :: K̂2, Ψ

′ ` C = C′ ∈ [[K̂]], so the definition of[[Θ, u :: K̂]] gives the result.

LEMMA B.31: CLOSURE OF THELOGICAL RELATIONS UNDER CONTEXT EXTENSION.

1. If Ψ ` C = C′ ∈ [[K̂]] andΨ+ ≥ Ψ thenΨ+ ` C = C′ ∈ [[K̂]].

2. If Ψ ` σ = σ′ ∈ [[Θ]] andΨ+ ≥ Ψ thenΨ+ ` σ = σ′ ∈ [[Θ]].

Proof. Apply weakening repeatedly.

LEMMA B.32: SYMMETRY OF THE LOGICAL RELATIONS.

1. If Ψ ` C = C′ ∈ [[̂NAT]] thenΨ ` C′ = C ∈ [[̂NAT]].
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2. If Ψ ` C = C′ ∈ [[̂EQN]] thenΨ ` C′ = C ∈ [[̂EQN]].

3. If Ψ ` C = C′ ∈ [[K̂]] thenΨ ` C′ = C ∈ [[K̂]].

4. If Ψ ` σ = σ′ ∈ [[Θ]] thenΨ ` σ′ = σ ∈ [[Θ]].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by rule induction using Part 1. Next,
we prove Part 3 by induction on the erased kind; finally, we prove Part 4by induction on the erased context.

1. • Case forlr-nat-whr-left .
By the IH,Ψ ` C2 = C′1 ∈ [[̂NAT]], and thenlr-nat-whr-right applied to this derivation
and the premise reduction derivation gives the result.

• Case forlr-nat-whr-right .
By the IH,Ψ ` C′2 = C1 ∈ [[̂NAT]], and thenlr-nat-whr-left applied to this derivation
and the premise reduction derivation gives the result.

• Case forlr-nat-neut-eq .
By symmetry of algorithmic equality (LEMMA B.19), we get the symmetric structural equality
derivation, and then we applylr-nat-neut-eq to get the result.

• Case forlr-nat-z . Return the given derivation.

• Case forlr-nat-s . By the IH, we get the symmetric premise derivation, and then we apply
lr-nat-s to get the result.

2. • Case forlr-eqn-whr-left .
By the IH,Ψ ` C2 = C′1 ∈ [[̂EQN]], and thenlr-eqn-whr-right applied to this derivation
and the premise reduction derivation gives the result.

• Case forlr-eqn-whr-right .
By the IH,Ψ ` C′2 = C1 ∈ [[̂EQN]], and thenlr-eqn-whr-left applied to this derivation
and the premise reduction derivation gives the result.

• Case forlr-eqn-neut-eq . By symmetry of algorithmic equality (LEMMA B.19), we get the
symmetric neutral equality derivation, and then we applylr-eqn-neut-eq to get the result.

• Case forlr-eqn-zz . Return the given derivation.

• Case forlr-eqn-ss . By the previous part, we compute the symmetric derivations for̂NAT.
By the IH, we get the symmetric premise derivation for̂EQN. Then we applylr-nat-s to get
the result.

3. • Case forT̂YPE. By assumption in this case,Ψ ` C = C′ ∈ [[T̂YPE]], so by the definition
of [[T̂YPE]], Ψ ` C ⇐⇒ C′ :: T̂YPE. By symmetry of algorithmic equality (LEMMA B.19),
Ψ ` C′ ⇐⇒ C :: T̂YPE, and then the definition of[[T̂YPE]] gives the result.

• Case for̂K2→̂kK̂. We are going to use the definition of[[K̂2→̂kK̂]], so assume for the “for all” that
for arbitraryΨ+ ≥ Ψ, C2, andC′2, Ψ+ ` C2 = C′2 ∈ [[K̂2]]. We must show that
Ψ+ ` C′ C2 = C C′2 ∈ [[K̂]] so that the definition of the LR will give the result. By the IH
applied toK̂2 and the assumption above,Ψ+ ` C′2 = C2 ∈ [[K̂2]]. By assumption in this case,
Ψ ` C = C′ ∈ [[K̂2→̂kK̂]], so by the definition of the logical relation,
Ψ+ ` C C′2 = C′ C2 ∈ [[K̂]]. Then the IH on̂K gives what we needed to show.

• Case for̂NAT. Apply Part 1.

• Case for̂EQN. Apply Part 2.
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4. • Case for·. By assumption,Ψ ` σ = σ′ ∈ [[·]], so by the definition of the LR,σ is · andσ′ is ·.
Then the definition of the LR gives the result.

• Case forΘ, u :: K̂. By the definition of the LRσ is σ1,C/u andσ′ is σ′

1,C′/u where
Ψ ` σ1 = σ′

1 ∈ [[Θ]] andΨ ` C = C′ ∈ [[K̂]]. By inductionΨ ` σ′

1 = σ1 ∈ [[Θ]] and by
Part 3Ψ ` C′ = C ∈ [[K̂]], so the definition of the LR gives the result.

LEMMA B.33: TRANSITIVITY OF THE LOGICAL RELATIONS.

1. If Ψ ` C1 = C2 ∈ [[̂NAT]] andΨ ` C2 = C3 ∈ [[̂NAT]] thenΨ ` C1 = C3 ∈ [[̂NAT]].

2. If Ψ ` C1 = C2 ∈ [[̂EQN]] andΨ ` C2 = C3 ∈ [[̂EQN]] thenΨ ` C1 = C3 ∈ [[̂EQN]].

3. If Ψ ` C1 = C2 ∈ [[K̂]] andΨ ` C2 = C3 ∈ [[K̂]] thenΨ ` C1 = C3 ∈ [[K̂]].

4. If Ψ ` σ1 = σ2 ∈ [[Θ]] andΨ ` σ2 = σ3 ∈ [[Θ]] thenΨ ` σ1 = σ3 ∈ [[Θ]].

Proof. First we prove Part 1 by rule induction; then, we prove Part 2 by rule induction using Part 1, Next,
we prove Part 3 by induction on the erased kind; finally, we prove Part 4by induction on the erased context.

1. The proof is by mutual lexicographic induction on the derivations ofΨ ` C1 = C2 ∈ [[̂NAT]] and
Ψ ` C2 = C3 ∈ [[̂NAT]].

• Case for

C1
whr
−→ C′1 Ψ ` C′1 = C2 ∈ [[̂NAT]]

Ψ ` C1 = C2 ∈ [[̂NAT]]
lr-nat-whr-left

D2 arbitrary.

By the IH applied to the premise derivation ofΨ ` C′1 = C2 ∈ [[̂NAT]] andD2 (note that one
is smaller while the other is the same),Ψ ` C′1 = C3 ∈ [[̂NAT]]. Thenlr-nat-whr-left
applied to this and the premise reduction derivation gives the result.

• Case for

D1 arbitrary

C3
whr
−→ C′3 Ψ ` C2 = C′3 ∈ [[̂NAT]]

Ψ ` C2 = C3 ∈ [[̂NAT]]
lr-nat-whr-right

.

By the IH applied to the premise derivation ofΨ ` C2 = C′3 ∈ [[̂NAT]] andD1 (note that one
is smaller while the other is the same),Ψ ` C1 = C′3 ∈ [[̂NAT]]. Thenlr-nat-whr-right
applied to this and the premise reduction derivation gives the result.

• Case for
C2

whr
−→ C′2 Ψ ` C1 = C′2 ∈ [[̂NAT]]

Ψ ` C1 = C2 ∈ [[̂NAT]]
lr-nat-whr-right

C2
whr
−→ C′′2 Ψ ` C′′2 = C3 ∈ [[̂NAT]]

Ψ ` C2 = C3 ∈ [[̂NAT]]
lr-nat-whr-left

.

By determinacy of weak head reduction (LEMMA B.15), C′2 is C′′2, so the RHS premise really
derivesΨ ` C′2 = C3 ∈ [[̂NAT]]. Then the IH on the two premise derivations (note that both are
smaller) gives the result.
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• Case for
Ψ ` C1 ←→ C2 :: N̂AT

Ψ ` C1 = C2 ∈ [[̂NAT]]
lr-nat-neut-eq

Ψ ` C2 ←→ C3 :: N̂AT

Ψ ` C2 = C3 ∈ [[̂NAT]]
lr-nat-neut-eq

.

Transitivity of algorithmic equality (LEMMA B.20) applied to the premises gives
Ψ ` C1 ←→ C3 :: N̂AT, so we can applylr-nat-neut-eq to this derivation to get the result.

• Case when both premises were derived using an application oflr-nat-z as the final rule.
Apply lr-nat-z .

• Case for

Ψ ` I1 = I2 ∈ [[̂NAT]]

Ψ ` s I1 = s I2 ∈ [[̂NAT]]
lr-nat-s

Ψ ` I2 = I3 ∈ [[̂NAT]]

Ψ ` s I2 = s I3 ∈ [[̂NAT]]
lr-nat-s

.

By the IH on the premises (note that both are smaller),Ψ ` I1 = I3 ∈ [[̂NAT]], solr-nat-s
gives the result.

• All other cases are contradictory. So far, we have covered

LHS RHS
---------------------------------
lr-nat-whr-left _

_ lr-nat-whr-right
lr-nat-whr-right lr-nat-whr-left
lr-nat-neut-eq lr-nat-neut-eq
lr-nat-z lr-nat-z
lr-nat-s lr-nat-s

We derive contradictions in each remaining case as follows:

lr-whr-nat-right vs. lr-nat-z , -s , or -neut-eq : The premise of the LHS deriva-

tion is thatC2
whr
−→ C′2. When the RHS derivation islr-nat-z , C2 is z; this is contradictory

by inversion because no rule derives head reduction for the syntactic form z. When the RHS
derivation islr-nat-s , we similarly get a contradiction by inversion because this head reduc-
tion derivation is impossible. For-neut-eq , by LEMMA B.17 and LEMMA B.18 we get a
contradiction.

lr-nat-z , -s , or -neut vs. lr-nat-left : The premise of the RHS derivation is that

C2
whr
−→ C′2, so we get the same contradictions as in the above cases.

This leaves the off-diagonals of-z , -s , and-neut-eq . For -z vs. -s and-s vs. -z , we get
a contradiction becauseC2 cannot syntactically be bothz ands I2. For -z or -s vs. -neut
and the symmetric case, we get a contradiction by inversion becauseC2 is z or s I2, so we have
a derivation of neutral equality where one side isC2 is z or s I2, but no inference rule for neutral
equality derives these conclusions.

Thus, we get the result vacuously in each of these cases.

2. The proof is by mutual lexicographic induction on the derivations ofΨ ` C1 = C2 ∈ [[̂EQN]] and
Ψ ` C2 = C3 ∈ [[̂EQN]].

57



• Case for

C1
whr
−→ C′1 Ψ ` C′1 = C2 ∈ [[̂EQN]]

Ψ ` C1 = C2 ∈ [[̂EQN]]
lr-eqn-whr-left

D2 arbitrary.

By the IH applied to the premise derivation ofΨ ` C′1 = C2 ∈ [[̂EQN]] andD2 (note that one
is smaller while the other is the same),Ψ ` C′1 = C3 ∈ [[̂EQN]]. Thenlr-eqn-whr-left
applied to this and the premise reduction derivation gives the result.

• Case for

D1 arbitrary

C3
whr
−→ C′3 Ψ ` C2 = C′3 ∈ [[̂EQN]]

Ψ ` C2 = C3 ∈ [[̂EQN]]
lr-eqn-whr-right

.

By the IH applied to the premise derivation ofΨ ` C2 = C′3 ∈ [[̂EQN]] andD1 (note that one
is smaller while the other is the same),Ψ ` C1 = C′3 ∈ [[̂EQN]]. Thenlr-eqn-whr-right
applied to this and the premise reduction derivation gives the result.

• Case for
C2

whr
−→ C′2 Ψ ` C1 = C′2 ∈ [[̂EQN]]

Ψ ` C1 = C2 ∈ [[̂EQN]]
lr-eqn-whr-right

C2
whr
−→ C′′2 Ψ ` C′′2 = C3 ∈ [[̂EQN]]

Ψ ` C2 = C3 ∈ [[̂EQN]]
lr-eqn-whr-left

.

By determinacy of weak head reduction (LEMMA B.15), C′2 is C′′2, so the RHS premise really
derivesΨ ` C′2 = C3 ∈ [[̂EQN]]. Then the IH on the two premise derivations (note that both are
smaller) gives the result.

• Case for
Ψ ` C1 ←→ C2 :: ÊQN

Ψ ` C1 = C2 ∈ [[̂EQN]]
lr-nat-neut-eq

Ψ ` C2 ←→ C3 :: ÊQN

Ψ ` C2 = C3 ∈ [[̂EQN]]
lr-nat-neut-eq

.

Transitivity of algorithmic equality (LEMMA B.20) applied to the premises gives
Ψ ` C1 ←→ C3 :: ÊQN, so we can applylr-eqn-neut-eq to this derivation to get the result.

• Case when both premises were derived using an application oflr-eqn-zz as the final rule.
Apply lr-eqn-zz .

• Case for

Ψ ` I1 = I2 ∈ [[̂NAT]] Ψ ` J1 = J2 ∈ [[̂NAT]] Ψ ` P1 = P2 ∈ [[̂EQN]]

Ψ ` eqn ss(I1, J1, P1) = eqn ss(I2, J2, P2) ∈ [[̂EQN]]
lr-eqn-ss

Ψ ` I2 = I3 ∈ [[̂NAT]] Ψ ` J2 = J3 ∈ [[̂NAT]] Ψ ` P2 = P3 ∈ [[̂EQN]]

Ψ ` eqn ss(I2, J2, P2) = eqn ss(I3, J3, P3) ∈ [[̂EQN]]
lr-eqn-ss

.

By the previous part,Ψ ` I1 = I3 ∈ [[̂NAT]] andΨ ` J1 = J3 ∈ [[̂NAT]]. By the IH on the
premises (note that both are smaller),Ψ ` P1 = P3 ∈ [[̂EQN]], solr-eqn-ss gives the result.
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• All other cases are contradictory. We derive contradictions in each remaining case as follows:

lr-eqn-whr-right vs. lr-eqn-zz , -s , or -neut-eq : The premise of the LHS deriva-

tion is thatC2
whr
−→ C′2. When the RHS derivation islr-eqn-zz , C2 is eqn zz; this is contra-

dictory by inversion because no rule derives head reduction for the syntactic form. When the
RHS derivation islr-eqn-ss , we similarly get a contradiction by inversion because this head
reduction derivation is impossible. For-neut-eq , by LEMMA B.17 and LEMMA B.18 we get
a contradiction.

lr-eqn-zz , -ss , or -neut vs. lr-eqn-whr-left : The premise of the RHS derivation

is thatC2
whr
−→ C′2, so we get the same contradictions as in the above case.

This leaves the off-diagonals of-zz , -ss , and-neut-eq . For-zz vs. -ss and-ss vs. -zz ,
we get a contradiction becauseC2 cannot syntactically be botheqn zz andeqn ss(X, Y, Z). For
-zz or -ss vs. -neut and the symmetric case, we get a contradiction by inversion becauseC2

is eqn zz or eqn ss(X, Y, Z), so we have a derivation of neutral equality where one side isC2 is
eqn zzor eqn ss(X, Y, Z), but no inference rule for neutral equality derives these conclusions.

Thus, we get the result vacuously in each of these cases.

3. • Case forT̂YPE. By the definition of[[T̂YPE]] on both of the assumptions, we get the two algorith-
mic equalities. Then transitivity of algorithmic equality (LEMMA B.20) gives
Ψ ` C1 = C3 ∈ [[T̂YPE]], so the definition of[[T̂YPE]] produces the result.

• Case for̂Kf→̂kK̂t. Assume for “for all” that for arbitraryΨ+ ≥ Ψ andCf, C′f,
Ψ+ ` Cf = C′f ∈ [[K̂f]]. We must show thatΨ+ ` C1 Cf = C3 C

′

f ∈ [[K̂t]] to get the result
by the definition of the LR. By our first assumption,Ψ ` C1 = C2 ∈ [[K̂f→̂kK̂t]], so by the
definition of the logical relation applied to this,Ψ+ ` C1 Cf = C2 C

′

f ∈ [[K̂t]]. By symmetry
(LEMMA B.32),Ψ+ ` C′f = Cf ∈ [[K̂f]], and then by induction applied tôKf and these two
symmetric statements,Ψ+ ` C′f = C′f ∈ [[K̂f]]. But then by the definition of the LR applied to
the other assumption,Ψ+ ` C2 C

′

f = C3 C
′

f ∈ [[K̂t]]. Then induction applied tôKt lets us put
these together into what we needed to show.

• Case for̂NAT. Apply Part 1.

• Case for̂EQN. Apply Part 2.

4. • Case for·. By assumption,Ψ ` σ1 = σ2 ∈ [[·]] andΨ ` σ2 = σ3 ∈ [[·]]. By definition of the
LR applied to the first premise,C1 is ·; by the definition of the LR applied to the second premise,
C3 is ·. The definition of the LR applied to these two facts gives the result.

• Case forΘ, u :: K̂. By assumption,Ψ ` σ1 = σ2 ∈ [[Θ, u :: K̂]] and
Ψ ` σ2 = σ3 ∈ [[Θ, u :: K̂]]. By the definition of the LR,σ1 is σ′

1,C1/u andσ2 is σ′

2,C2/u
whereΨ ` σ′

1 = σ′

2 ∈ [[Θ]] andΨ ` C1 = C2 ∈ [[K̂]]; σ2 is σ′′

2 ,C′2/u andσ3 is σ′

3,C3/u where
Ψ ` σ′′

2 = σ′

3 ∈ [[Θ]] andΨ ` C′2 = C3 ∈ [[K̂]]. But σ′

2, C2/u is σ2 is σ′′

2 , C′2/u, so,σ′

2 is σ′′

2

andC2 is C′2. Thus, we can apply the IH toΨ ` σ′

1 = σ′

2 ∈ [[Θ]] andΨ ` σ′

2 = σ′

3 ∈ [[Θ]] to
getΨ ` σ′

1 = σ′

3 ∈ [[Θ]] and use Part 3 onΨ ` C1 = C2 ∈ [[K̂]] andΨ ` C2 = C3 ∈ [[K̂]]
to getΨ ` C1 = C3 ∈ [[K̂]]. Then the definition of[[Θ, u :: K̂]] gives the result.

LEMMA B.34: LOGICAL RELATION IS CLOSED UNDERHEAD EXPANSION.

1. If Ψ ` C′1 = C2 ∈ [[K̂]] andC1
whr
−→ C′1 thenΨ ` C1 = C2 ∈ [[K̂]].

2. If Ψ ` C1 = C′2 ∈ [[K̂]] andC2
whr
−→ C′2 thenΨ ` C1 = C2 ∈ [[K̂]].
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Proof. The proof in each case is by induction on the classifying erased kind. We first prove Part 1 and then
Part 2.

1. • Case forT̂YPE. By assumption,Ψ ` C′1 = C2 ∈ [[T̂YPE]], so by the definition of the LR,
Ψ ` C′1 ⇐⇒ C2 :: T̂YPE. By norm-eq-cn-whr-left applied to this and the head reduction
derivation (observe that̂TYPE is a base kind), we get algorithmic equality; then the definition of
[[T̂YPE]] gives the result.

• Case for̂Kf→̂kK̂t. We are going to showΨ ` C1 = C2 ∈ [[K̂f→̂kK̂t]] using the definition of the
LR, so assume for the “for all” arbitraryΨ+ ≥ Ψ, Cf andC′f such thatΨ+ ` Cf = C′f ∈ [[K̂f]].
By assumption,Ψ ` C′1 = C2 ∈ [[K̂f→̂kK̂t]], so by the definition of the LR applied to this,

Ψ+ ` C′1 Cf = C2 C
′

f ∈ [[K̂t]]. By our other assumption,C1
whr
−→ C′1, so bywhr-app-1

applied to this derivationC1 Cf
whr
−→ C′1 Cf. Then by the IH applied tôKt, this fact, and

Ψ+ ` C′1 Cf = C2 C
′

f ∈ [[K̂t]], we get thatΨ+ ` C1 Cf = C2 C
′

f ∈ [[K̂t]]. This is what we
needed to show to satisfy the “for all”, so the definition of the LR gives the result.

• Case for̂NAT. The assumptions are exactly the premises oflr-nat-whr-left , which then
derives the conclusion.

• Case for̂EQN. The assumptions are exactly the premises oflr-eqn-whr-left , which then
derives the conclusion.

2. This is mostly the same as the previous part.

• Case forT̂YPE. By assumption,Ψ ` C1 = C′2 ∈ [[T̂YPE]], so by the definition of the LR,Ψ `
C1 ⇐⇒ C′2 :: T̂YPE. By norm-eq-cn-whr-right applied to this and the head reduction
derivation (observe that̂TYPEis a base kind), we get algorithmic equality; then the definition of
[[T̂YPE]] gives the result.

• Case for̂Kf→̂kK̂t. We are going to showΨ ` C1 = C2 ∈ [[K̂f→̂kK̂t]] using the definition of the
LR, so assume for the “for all” arbitraryΨ+ ≥ Ψ, Cf andC′f such thatΨ+ ` Cf = C′f ∈ [[K̂f]].
By assumption,Ψ ` C1 = C′2 ∈ [[K̂f→̂kK̂t]], so by the definition of the LR applied to this,

Ψ+ ` C1 Cf = C′2 C
′

f ∈ [[K̂t]]. By our other assumption,C2
whr
−→ C′2, so bywhr-app-1

applied to this derivationC2 C′f
whr
−→ C′2 C

′

f. Then by the IH applied tôKt, this fact, and
Ψ+ ` C1 Cf = C′2 C

′

f ∈ [[K̂t]], we get thatΨ+ ` C1 Cf = C2 C
′

f ∈ [[K̂t]]. This is what we
needed to show to satisfy the “for all”, so the definition of the LR gives the result.

• Case for̂NAT. The assumptions are exactly the premises oflr-nat-whr-right , which then
derives the conclusion.

• Case for̂EQN. The assumptions are exactly the premises oflr-eqn-whr-right , which then
derives the conclusion.

One of the primary difficulties in the completeness proof is that the algorithm is not obviously a con-
gruence on the elim forms; the logical relation is designed to give strong enough assumptions to show that
it indeed is. Here, we show that this is the case for the inductive kinds.

LEMMA B.35: LOGICAL RELATION IS A CONGRUENCE FORELIMS .

1. If

(a) Ψ, u :: N̂AT ` K ⇐⇒ K′ kind
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(b) Ψ ` I = I′ ∈ [[̂NAT]],

(c) Ψ ` Cz = C′z ∈ [[(K)−]]

(d) for all Ψ′ ≥ Ψ, J, J′, R, andR′ such thatΨ′ ` J = J′ ∈ [[̂NAT]] andΨ′ ` R = R′ ∈ [[(K)−]],
Ψ′ ` [R/r][J/i′]Cs = [R′/r][J′/i′]Cs

′ ∈ [[(K)−]]

thenΨ ` NATrec[u.K](I, Cz, i
′.r.Cs) = NATrec[u.K](I′, C′z, i

′.r.C′s) ∈ [[(K)−]].

2. If

(a) Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN ` K ⇐⇒ K′ kind

(b) Ψ ` Pf = Pf′ ∈ [[̂EQN]]

(c) Ψ ` Czz = C′zz ∈ [[(K)−]]

(d) for all Ψ′ ≥ Ψ, I, I′, J, J′, P, P′, R, andR′ such thatΨ′ ` I = I′ ∈ [[̂NAT]],
Ψ′ ` J = J′ ∈ [[̂NAT]], Ψ′ ` P = P′ ∈ [[̂EQN]], andΨ′ ` R = R′ ∈ [[(K)−]],
Ψ′ ` [R/r][P/p][J/j][I/i]Css = [R′/r][P′/p][J′/j][I′/i]C′ss ∈ [[(K)−]]

thenΨ ` EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css) = EQNrec[i.j.p.K
′](P′, C′zz, i.j.p.r.C

′

ss) ∈ [[K̂]].

Proof. 1. This part is proven by induction on the derivation ofΨ ` I = I′ ∈ [[̂NAT]].

• Case for
I

whr
−→ I′′ Ψ ` I′′ = I′ ∈ [[̂NAT]]

Ψ ` I = I′ ∈ [[̂NAT]]
lr-nat-whr-left

.

By the IH applied to the premise derivation and assumptions (a), (c), and (d),
Ψ ` NATrec[u.K](I′′, Cz, i

′.r.Cs) = NATrec[u.K](I′, C′z, i
′.r.C′s) ∈ [[(K)−]].

By whr-natrec-num applied to the premise head reduction derivation,

NATrec[u.K](I, Cz, i
′.r.Cs)

whr
−→ NATrec[u.K](I′′, Cz, i

′.r.Cs), so closure under head expansion
(LEMMA B.34) gives the result.

• Case for
I′

whr
−→ I′′ Ψ ` I = I′′ ∈ [[̂NAT]]

Ψ ` I = I′ ∈ [[̂NAT]]
lr-nat-whr-right

.

By the IH applied to the premise derivation and assumptions (a), (c), and (d),
Ψ ` NATrec[u.K](I, Cz, i

′.r.Cs) = NATrec[u.K](I′′, C′z, i
′.r.C′s) ∈ [[(K)−]].

By whr-natrec-num applied to the premise head reduction derivation,

NATrec[u.K](I′, Cz, i
′.r.Cs)

whr
−→ NATrec[u.K](I′′, Cz, i

′.r.Cs), so closure under head expansion
(LEMMA B.34) gives the result.

• Case for
Ψ ` I ←→ I′ :: N̂AT

Ψ ` I = I′ ∈ [[̂NAT]]
lr-nat-neut-eq

.

First, by LEMMA B.29 applied to premise (c),Ψ ` Cz ⇐⇒ C′z :: (K)−. Second, observe that
the contextΨ, i′ :: N̂AT, r :: (K)− extendsΨ. By neut-eq-cn-var ,
Ψ, i′ :: N̂AT, r :: (K)− ` i′ ←→ i′ :: N̂AT, so by LEMMA B.29
Ψ, i′ :: N̂AT, r :: (K)− ` i′ = i′ ∈ [[̂NAT]]; similarly,
Ψ, i′ :: N̂AT, r :: (K)− ` r = r ∈ [[(K)−]]. Thus, by premise (d),
Ψ, i′ :: N̂AT, r :: (K)− ` [r/r][i′/i′]Cs = [r/r][i′/i′]C′s ∈ [[(K)−]], so again by LEMMA B.29,
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Ψ, i′ :: N̂AT, r :: (K)− ` Cs ⇐⇒ C′s :: (K)− (where we have dropped the identity substitu-
tions according to the definition of substitution). Then, byneut-eq-cn-natrec applied
to premise (a), the premise of the rule, and these two facts,
Ψ ` NATrec[u.K](I, Cz, i

′.r.Cs) ←→ NATrec[u.K′](I′, C′z, i
′.r.C′s) :: (K)−. Applying LEMMA

B.29 to this gives the result.

• Case for

Ψ ` z = z ∈ [[̂NAT]]
lr-nat-z

.

By premise (c),Ψ ` Cz = C′z ∈ [[(K)−]]. By closure under head expansion (LEMMA B.34)
applied twice andwhr-natrec-beta-z ,
Ψ ` NATrec[u.K](z, Cz, i

′.r.Cs) = NATrec[u.K′](z, C′z, i
′.r.C′s) ∈ [[(K)−]].

• Case for
Ψ ` I = I′ ∈ [[̂NAT]]

Ψ ` s I = s I′ ∈ [[̂NAT]]
lr-nat-s

.

By the IH applied to premises (a), (c), and (d) and the premise of the rule,
Ψ ` NATrec[u.K](I, Cz, i

′.r.Cs) = NATrec[u.K′](I′, C′z, i
′.r.C′s) ∈ [[(K)−]]. Thus, we can

apply premise (d) to show that
Ψ ` [NATrec[u.K](I, Cz, i

′.r.Cs)/r][I/i
′]Cs = [NATrec[u.K′](I′, C′z, i

′.r.C′s)/r][I
′/i′]C′s ∈ [[(K)−]].

We can now apply LEMMA B.34 towhr-natrec-beta-s twice to prove that
Ψ ` NATrec[u.K](s I, Cz, i

′.r.Cs) = NATrec[u.K′](s I′, C′z, i
′.r.C′s) ∈ [[(K)−]].

2. This part is proven by induction on the derivation ofΨ ` Pf = Pf′ ∈ [[̂EQN]].

• Case for
Pf

whr
−→ Pf′′ Ψ ` Pf′′ = Pf′ ∈ [[̂NAT]]

Ψ ` Pf = Pf′ ∈ [[̂NAT]]
lr-eqn-whr-left

.

By the IH applied to the premise derivation and assumptions (a), (c), and (d),
Ψ ` EQNrec[i.j.p.K](Pf

′′, Czz, i.j.p.r.Css) = EQNrec[i.j.p.K
′](Pf′, C′zz, i.j.p.r.C

′

ss) ∈ [[(K)−]].
By whr-eqn-rec-proof applied to the premise head reduction derivation,

EQNrec[i.j.p.K](Pf, Czz, i.j.p.r.Css)
whr
−→ EQNrec[i.j.p.K](Pf

′′, Czz, i.j.p.r.Css), so closure
under head expansion (LEMMA B.34) gives the result.

• Case forlr-eqn-whr-right . This case is analogous to the above case.

• Case forlr-eqn-neut-eq . By assumption,

Ψ ` Pf ←→ Pf′ :: ÊQN

Ψ ` Pf = Pf′ ∈ [[̂EQN]]
lr-eqn-neut-eq

First, by LEMMA B.29 applied to premise (c),Ψ ` Czz ⇐⇒ C′zz :: (K)−. Second, observe
that the contextΨ, i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: (K)− extendsΨ. By neut-eq-cn-var and
LEMMA B.29,i, j, p, andr are logically related to themselves in this extended context. Thus,
by premise (d),
Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: (K)− ` [r/r][p/p][j/j][i/i]Css = [r/r][p/p][j/j][i/i]C′ss ∈ [[(K)−]].
Again by LEMMA B.29,Ψ, , i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: (K)− ` Css ⇐⇒ C′ss :: (K)− (where
we have dropped the identity substitutions according to the definition of substitution). Then, by
neut-eq-cn-natrec applied to premise (a), the premise of the rule, and these two facts, we
get neutral equality of theEQNrecs, and then LEMMA B.29 gives the result.
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• Case forlr-eqn-zz

Ψ ` eqn zz = eqn zz ∈ [[̂EQN]]
lr-eqn-zz

.

By premise (c),Ψ ` Czz = C′zz ∈ [[(K)−]]. By closure under head expansion (applied twice)
(LEMMA B.34) andwhr-eqnrec-beta-zz , we get the result.

• Case for

Ψ ` I = I′ ∈ [[̂NAT]] Ψ ` J = J′ ∈ [[̂NAT]] Ψ ` P = P′ ∈ [[̂EQN]]

Ψ ` eqn ss(I, J, P) = eqn ss(I′, J′, P′) ∈ [[̂EQN]]
lr-eqn-ss

.

By the IH applied to premises (a), (c), and (d) and thêEQNpremise of the rule,
Ψ ` EQNrec[i.j.p.K](P, Czz, i.j.p.r.Css) = EQNrec[i.j.p.K

′](P′, C′zz, i.j.p.r.C
′

ss) ∈ [[(K)−]].
Thus, we can apply premise (d) to show logical relatedness of the substitutions intoCss andC′ss.
Then we can apply LEMMA B.34 withwhr-eqnrec-beta-ss to get the result.

LEMMA B.36: DEFINITIONAL EQUALS ARE LOGICALLY RELATED.

1. If ∆ ` C ≡ C′ :: K andΨ ` σ = σ′ ∈ [[(∆)−]] thenΨ ` C[σ] = C′[σ′] ∈ [[(K)−]].

2. If ∆ ` K ≡ K′ kind andΨ ` σ = σ′ ∈ [[(∆)−]] thenΨ ` K[σ] ⇐⇒ K′[σ′] kind.

Proof. By mutual induction on the definitional equality derivations. We sometimes silently apply the defini-
tions of erasure and substitution.9 Note that this theorem statement meets our invariant about only applying
substitutions that substitute for all variables in a constructor: whenΨ ` σ = σ′ ∈ [[(∆)−]], σ andσ′

substitute for all variables in∆.

1. • Case for
∆ ` C2 ≡ C1 :: K
∆ ` C1 ≡ C2 :: K

deq-cn-sym
.

By symmetry of the logical relations (LEMMA B.32), Ψ ` σ′ = σ ∈ [[(∆)−]]. By the IH,
Ψ ` C2[σ

′] = C1[σ] ∈ [[(K)−]], so by symmetry of the logical relations,
Ψ ` C1[σ] = C2[σ

′] ∈ [[(K)−]].

• Case for
∆ ` C1 ≡ C2 :: K ∆ ` C2 ≡ C3 :: K

∆ ` C1 ≡ C3 :: K
deq-kd-trans

.

By the IH applied to the first premise,Ψ ` C1[σ] = C2[σ
′] ∈ [[(K)−]]. By symmetry and

transitivity of the LR (LEMMA B.32, LEMMA B.33),Ψ ` σ′ = σ′ ∈ [[(∆)−]], so by the IH
applied to the second premise,Ψ ` C2[σ

′] = C3[σ
′] ∈ [[(K)−]]. Then transitivity of the logical

relations gives the result.

• Case for
∆ ` C ≡ C′ :: K ∆ ` K ≡ K′ kind

∆ ` C ≡ C′ :: K′
deq-cn-deq-kd

.

By the IH applied to the first premise,Ψ ` C[σ] = C′[σ′] ∈ [[(K)−]]. By LEMMA B.11 applied
to the second premise,(K)− is (K′)−, so replacing syntactic equals gives the result.

9Derivations respect the definitions of meta-operations such as substitution and erasure: we are just rewriting their subjects
according to the definitions of the meta-operations defining them.
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•

∆, u :: K, ∆′ ` u ≡ u :: K
deq-cn-var

.

By the definition of erasure,(∆)− containsu :: (K)−. Thus, by the definition of the logical
relations,C/u is in σ andC′/u is in σ′, whereΨ ` C = C′ ∈ [[(K)−]]. By the definition of
substitution,u[σ] is C andu[σ′] is C′, so this is the result.

• Case for
D1

∆ ` C1 ≡ C′1 :: TYPE
D2

∆ ` C2 ≡ C′2 :: TYPE

∆ ` C1 → C2 ≡ C′1 → C′2 :: TYPE
deq-cn-arrow

.

By the IH applied to each premise derivation,Ψ ` C1[σ] = C′1[σ
′] ∈ [[T̂YPE]] and

Ψ ` C2[σ] = C′2[σ
′] ∈ [[T̂YPE]]. By LEMMA B.29, Ψ ` C1[σ] ⇐⇒ C′1[σ

′] :: T̂YPE and
Ψ ` C2[σ] ⇐⇒ C′2[σ

′] :: T̂YPE. Then we can applynorm-eq-cn/type-arrow to these
two derivations to getΨ ` C1[σ] → C2[σ] ⇐⇒TYPE C′1[σ

′] → C′2[σ
′], to which we can apply

norm-eq-cn-type to get normal equality. Then the definition of substitution lets us pull the
substitution outside of thearrow on each side, and finally the definition of[[T̂YPE]] gives the
result.

• Case fordeq-cn-prod . This case is just like the above, except we usenorm-eq-cn/type-prod .

• Case fordeq-cn-sum . This case is just like the above, except we usenorm-eq-cn/type-sum .

• Case for

D1

∆ ` K2 ≡ K2′ kind

D2

∆ ` C ≡ C′ :: Πk ::K2. TYPE

∆ ` ∀K2 C ≡ ∀K2′ C
′ :: TYPE

deq-cn-all
.

By IH(2) applied toD1,
Ψ ` K2[σ] ⇐⇒ K′2[σ

′] kind. By IH(1) applied toD2, Ψ ` C[σ] = C′[σ′] ∈ [[(Πk ::K2. TYPE)−]],
so by the definition of erasure and LEMMA B.29,Ψ ` C[σ] ⇐⇒ C′[σ′] :: (K2)−→̂kT̂YPE. Then
we can usenorm-eq-cn/type-all on these derivations to derive
Ψ ` ∀K2[σ] C[σ] ⇐⇒TYPE ∀K′2[σ′] C

′[σ′], andnorm-eq-cn-type to get normal equality on
that derivation to get normal equality. The definition of substitution lets us pullthe substitution
outside on each side, and then the definition of the LR gives the result.

• Case fordeq-cn-exists . This case is just like the above, except we usenorm-eq-cn-exists .

• Case fordeq-cn-unit . By norm-eq-cn/type-unit , Ψ ` unit ⇐⇒TYPE unit, and
thennorm-eq-cn-type gives normal equality. Then the definition of[[T̂YPE]] and substitution
gives the result.

• Case fordeq-cn-void . This case is just like the above, except we usenorm-eq-cn/type-void .

• Case for
D

∆ ` I ≡ I′ :: NAT
∆ ` nat I ≡ nat I′ :: TYPE

deq-cn-nat
.

By IH applied toD, Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]], so by LEMMA B.29 these are algorithmi-
cally equal. Then we applynorm-eq-cn/type-nat andnorm-eq-cn-type and use the
definitions of substitution and[[T̂YPE]] to get the result.

• Case fordeq-cn-list . This case is just like the above, except we usenorm-eq-cn/type-list .
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• Case for
∆ ` K2 ≡ K′2 kind ∆, u :: K2 ` C ≡ C′ :: K

∆ ` λc u::K2. C ≡ λc u::K
′

2. C
′ :: Πk u::K2. K

deq-cn-fn
.

We are going to use the definition of the LR for(Πk u::K2. K)
− = (K2)

−→̂k(K)
−, so assume for

the “for all” that for arbitraryC2, C′2, andΨ+ ≥ Ψ, Ψ+ ` C2 = C′2 ∈ [[(K2)
−]]. By LEMMA

B.31,Ψ+ ` σ = σ′ ∈ [[(∆)−]], so by the definition of the LR,
Ψ+ ` σ, C2/u = σ′, C′2/u ∈ [[(∆)−, u :: (K2)

−]]. By the definition of erasure, this context
is (∆, u :: K2)

−. Thus, by the IH,Ψ+ ` C[σ, C2/u] = C′[σ′, C′2/u] ∈ [[(K)−]]. By LEMMA

B.26,C[σ, C2/u] is [C2/u]C[σ, u/u] andC′[σ, C′2/u] is [C′2/u]C
′[σ′, u/u]. By whr-app-beta ,

(λc u::K2[σ]. C[σ, u/u]) C2
whr
−→ [C2/u](C[σ, u/u]) and

(λc u::K
′

2[σ
′]. C′[σ′, u/u]) C′2

whr
−→ [C′2/u](C

′[σ′, u/u]). Thus, by closure under head expansion
(LEMMA B.34) applied once to each side,
Ψ+ ` (λc u::K2[σ]. C[σ, u/u]) C2 = (λc u::K

′

2[σ
′]. C′[σ′, u/u]) C′2 ∈ [[(K)−]]. We can pull the

substitution outside theλ on each side by the definition of substitution; then the definition of the
LR for (K2)

−→̂k(K)
− gives the result.

• Case for
∆ ` C1 ≡ C′1 :: Πk u::K2. K ∆ ` C2 ≡ C′2 :: K2

∆ ` C1 C2 ≡ C′1 C
′

2 :: [C2/u]K
deq-cn-app

.

By the IH, Ψ ` C1[σ] = C′1[σ
′] ∈ [[(Πk u::K2. K)

−]] andΨ ` C2[σ] = C′2[σ
′] ∈ [[(K2)

−]].
By the definition of erasure,(Πk u::K2. K)− is (K2)

−→̂k(K)
−. Thus, by the definition of the LR,

Ψ ` C1[σ] C2[σ] = C′1[σ
′] C′2[σ

′] ∈ [[(K)−]]. Then, by the definition of substitution, we can pull
the substitution outside the application on both sides, and, by LEMMA B.11,(K)− is ([C2/u]K)

−,
so this is the result.

• Case for

∆, u :: K2 ` C1 ≡ C′1 :: K ∆ ` C2 ≡ C′2 :: K2

∆ ` (λc u::K2. C1) C2 ≡ [C′2/u]C
′

1 :: [C2/u]K
deq-cn-app-beta

.

By induction,Ψ ` C2[σ] = C′2[σ
′] ∈ [[(K2)

−]]. By the definition of the LR,
Ψ ` σ, C2/u = σ′, C′2/u ∈ [[(∆)−, u :: (K2)

−]], and by the definition of erasure, this context is
(∆, u :: K2)

−. Thus, by the IH,Ψ ` C1[σ, C2[σ]/u] = C′1[σ
′, C′2[σ

′]/u] ∈ [[(K)−]]. By LEMMA

B.26,C1[σ, C2[σ]/u] is [C2[σ]/u]C1[σ, u/u]. By whr-app-beta ,

(λc u::K2[σ]. C1[σ, u/u]) C2[σ]
whr
−→ [C2[σ]/u](C1[σ, u/u]), so by closure under head expansion

(LEMMA B.34), Ψ ` (λc u::K2[σ]. C1[σ, u/u]) C2[σ] = C′1[σ
′, C′2[σ

′]/u] ∈ [[(K)−]]. On the
left, the definition of substitution allows us to pull the substitution outside theλ and then the ap-
plication, givingΨ ` ((λc u::K2. C1) C2)[σ] = C′1[σ

′, C′2[σ
′]/u] ∈ [[(K)−]]. Then, by LEMMA

B.26, we can rewrite the right-hand side as([C′2/u]C
′

1)[σ
′]. Finally, LEMMA B.11 shows that

([C2/u]K)
− is (K)−, so we have the result.

• Case fordeq-cn-fn-ext :

∆ ` K2 kind ∆ ` C :: Πk u::K2. K ∆ ` C′ :: Πk u::K2. K ∆, u :: K2 ` C u ≡ C′ u :: K

∆ ` C ≡ C′ :: Πk u::K2. K .

We are going to use the definition of the LR for(Πk u::K2. K)
− = (K2)

−→̂k(K)
−, so assume for

the “for all” that for arbitraryC2, C′2, andΨ+ ≥ Ψ, Ψ+ ` C2 = C′2 ∈ [[(K2)
−]]. By LEMMA

B.31,Ψ+ ` σ = σ′ ∈ [[(∆)−]], so by the definition of the LR,
Ψ+ ` σ, C2/u = σ′, C′2/u ∈ [[(∆)−, u :: (K2)

−]]. By the definition of erasure, this context is
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(∆, u :: K2)
−. Then, by induction,Ψ+ ` (C u)[σ, C2/u] = (C′ u)[σ′, C′2/u] ∈ [[(K)−]]. The

bound variableu is chosen fresh and it is not free inC or C′; consequently, rewriting using the
definition of substitution gives thatΨ+ ` C[σ] C2 = C′[σ′] C′2 ∈ [[(K)−]]. Then the definition
of the LR for(K2)−→̂k(K)

− gives the result.

• Case fordeq-cn-z . Note thatz[σ] is justz, solr-nat-z gives the result.

• Case for
D

∆ ` I ≡ I′ :: NAT
∆ ` s I ≡ s I′ :: NAT

deq-cn-s
.

By induction,Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]]. Thus, we can applylr-nat-s and then use the
definition of substitution to move the substitutions outside thes on both sides, which gives the
result.

• Case for

D1

∆, i :: N ` K ≡ K′ kind
D2

∆ ` I ≡ I′ :: NAT
D3

∆ ` Cz ≡ C′z :: [z/i]K
D4

∆, i′ :: N, r :: [i′/i]K ` Cs ≡ C′s :: [s I′/i]K

∆ ` NATrec[i.K](I, C1, i
′.r.C2) ≡ NATrec[i.K′](I′, C′1, i

′.r.C′2) :: [I/i]K
deq-cn-natrec

.

Note that by LEMMA B.11, the erasure of any substitution intoK is still (K)− without the sub-
stitution; we use this fact silently below.

We are going to use LEMMA B.35, so we must satisfy its assumptions.

(a) By LEMMA B.29,Ψ, u :: N̂AT ` u = u ∈ [[̂NAT]]; thus by LEMMA B.30 and the definition
of the LR Ψ, u :: K̂ ` σ, u/u = σ′, u/u ∈ [[(∆)−, u :: K̂]]. By the IH(2) applied toD1,
Ψ, u :: N̂AT ` K[σ, u/u] ⇐⇒ K′[σ′, u/u] kind.

(b) By the IH(1) applied toD2, Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]]

(c) By the IH(1) applied toD3, Ψ ` Cz[σ] = C′z[σ
′] ∈ [[K̂]].

(d) Assume for the “for all” arbitraryΨ+ ≥ Ψ andJ, J′, R, andR′ such that
Ψ+ ` J = J′ ∈ [[̂NAT]] andΨ+ ` R = R′ ∈ [[(K)−]]. By closure of the LR under context
extension (LEMMA B.31),Ψ+ ` σ = σ′ ∈ [[(∆)−]]. Applying the definition of logically
related substitutions once givesΨ+ ` σ, J/i′ = σ′, J/i′ ∈ [[∆, i′ :: N̂AT]], and applying
it givesΨ+ ` σ, J/i′, R/r = σ′, J/i′, R′/r ∈ [[∆, i′ :: N̂AT, r :: (K)−]]. We can then apply
the IH toD4 and these substitutions to get that
Ψ+ ` Cs[σ, J/i′, R/r] = C′s[σ

′, J′/i′, R′/r] ∈ [[(K)−]]. Then LEMMA B.26 gives that
Cs[σ, J/i′, R/r] is [R/r][J/i′](Cs[σ, i′/i′, r/r]) and the analogous statement for the right-
hand side.

Now we can use the fact that the LR is a congruence for the elimination forms (LEMMA B.35)
on these facts to show that
Ψ ` NATrec[u.K[σ, u/u]](I[σ], Cz[σ], i′.r.Cs[σ, i′/i′, r/r]) =
NATrec[u.K′[σ′, u/u]](I′[σ′], C′z[σ

′], i′.r.C′s[σ
′, i′/i′, r/r]) ∈ [[(K)−]]. Then by the definition of

substitution we can pull the substitutions outside theNATrec on both sides, and we are done.
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• Case fordeq-cn-natrec-beta-z :

∆, u :: N ` K kind ∆ ` Cz ≡ C′z :: [z/i]K ∆, i′ :: N, r :: [i′/i]K ` Cs :: [s I′/i]K

∆ ` NATrec[u.K](z, Cz, i
′.r.Cs) ≡ C′z :: [z/i]K .

By the IH,Ψ ` Cz[σ] = C′z[σ
′] ∈ [[(K)−]]. By whr-natrec-beta-z ,

NATrec[u.K[σ, u/u]](z, Cz[σ], i′.r.Cs[σ, i′/i′, r/r])
whr
−→ Cz[σ]. Then by LEMMA B.34 on the

left side,Ψ ` NATrec[u.K[σ, u/u]](z, Cz[σ], i′.r.Cs[σ, i′/i′, r/r]) = C′z[σ
′] ∈ [[(K)−]]. By

the definition of substitution,z is the same asz[σ] and we can pull the substitution outside the
NATrec to get the result.

• Case fordeq-cn-natrec-beta-s :

∆, u :: N ` K ≡ K′ kind

∆ ` I ≡ I′ :: NAT
∆ ` Cz ≡ C′z :: [z/u]K

∆, i′ :: N, r :: [i′/u]K ` Cs ≡ C′s :: [s I′/u]K

∆ ` NATrec[u.K](s I, Cz, i
′.r.Cs) ≡ [NATrec[u.K′](I′, C′z, i

′.r.C′s)/r][I
′/i′]C′s :: [s I/u]K.

Note that the premises are the same as those ofdeq-cn-natrec , so by the same reasoning
as in the first paragraph of that case, we can use the IH to satisfy all of the premises of LEMMA

B.35, and then applying the lemma gives
Ψ ` NATrec[u.K[σ, u/u]](I[σ], Cz[σ], i′.r.Cs[σ, i′/i′, r/r]) =
NATrec[u.K′[σ′, u/u]](I′[σ′], C′z[σ

′], i′.r.C′s[σ
′, i′/i′, r/r]) ∈ [[(K)−]]. Call the left-hand con-

structorR and the right-hand oneR′. Then by the definition of the LR applied twice,
Ψ ` σ, I[σ]/i′, R/r = σ, I′[σ′]/i′, R′/r ∈ [[(∆)−, i′ :: N̂AT, r :: (K)−]]. By the definition of
erasure, this matches the context in the final premise, so by the IH
Ψ ` Cs[σ, I[σ]/i′, R/r] = Cs[σ

′, I′[σ′]/i′, R/r] ∈ [[(K)−]]. By whr-natrec-beta-s ,

NATrec[u.K[σ, u/u]](s (I[σ]), Cz[σ], i′.r.Cs[σ, i′/i′, r/r])
whr
−→ [R/r][I[σ]/i′](Cs[σ, i′/i′, r/r]),

so by closure under head expansion (LEMMA B.34) and LEMMA B.26,
Ψ ` NATrec[u.K[σ, u/u]](s (I[σ]), Cz[σ], i′.r.Cs[σ, i′/i′, r/r]) = Cs[σ

′, I′[σ′]/i′, R′/r] ∈ [[(K)−]].
The definition of substitution gives that the left-hand side isNATrec[u.K](s I, Cz, i

′.r.Cs)[σ]
and thatR′ is NATrec[u.K′](s I′, C′z, i

′.r.C′s)[σ
′] Finally, by LEMMA B.26, the right-hand side

is ([NATrec[u.K′](I′, C′z, i
′.r.C′s)/r][I

′/i′]Cs)[σ
′].

• Case fordeq-cn-eqn-zz . eqn zz[σ] is justeqn zz, solr-eqn-zz gives the result.

• Case fordeq-cn-eqn-ss . By the IH,

Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]]

Ψ ` J[σ] = J′[σ′] ∈ [[̂NAT]]

Ψ ` Pf[σ] = Pf′[σ′] ∈ [[̂EQN]].

Thuslr-eqn-ss and the definition of substitution give the result.

• Case fordeq-cn-eqn-rec .

We are going to use LEMMA B.35, so we must satisfy its premises.

(a) By LEMMA B.29, LEMMA B.30 and the definition of the LR,
Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN ` σ, i/i, j/j, p/p = σ′, i/i, j/j, p/p ∈ [[(∆)−, i :: N̂AT, j :: N̂AT, p :: ÊQN]].
Thus, the IH gives that
Ψ, i :: N̂AT, j :: N̂AT, p :: ÊQN ` K[σ, i/i, j/j, p/p] ⇐⇒ K′[σ′, i/i, j/j, p/p] kind

(b) By the IH applied to the premise of the rule,Ψ ` Pf[σ] = Pf′[σ′] ∈ [[̂EQN]].
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(c) By the IH applied to the premise of the rule,Ψ ` Czz[σ] = C′zz[σ
′] ∈ [[(K)−]].

(d) Assume for the “for all”Ψ′ ≥ Ψ, I, I′, J, J′, P, P′, R, andR′ such that
Ψ′ ` I = I′ ∈ [[̂NAT]], Ψ′ ` J = J′ ∈ [[̂NAT]], Ψ′ ` P = P′ ∈ [[̂EQN]], and
Ψ′ ` R = R′ ∈ [[(K)−]]. By closure under context extension,
Ψ′ ` σ = σ′ ∈ [[(∆)−]]. Then, by the definition of the LR for substitutions,
Ψ ` σ, I/i, J/j, P/p, R/r = σ′, I′/i, J′/j, P′/p, R′/r ∈ [[(∆)−, i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: (K)−]].
Because this context matches the erasure of the context in the fourth premise of the rule, we
can apply the IH to get
Ψ+ ` Css[σ, I/i, J/j, P/p, R/r] = C′ss[σ

′, I′/i, J′/j, P′/p, R′/r] ∈ [[(K)−]]. Then
LEMMA B.26 shows that
Css[σ, I/i, J/j, P/p, R/r] is [R/r][P/p][J/j][I/i](Css[σ, i/i, j/j, p/p, r/r]) and the anal-
ogous fact for the right-hand side. Applying these equalities proves the result.

Then the lemma and the definition of substitution give the result.

• Case fordeq-cn-eqn-rec-beta-zz . By the IH,Ψ ` Czz[σ] = C′zz[σ
′] ∈ [[(K)−]]. Then

closure under head expansion (LEMMA B.34) withwhr-eqn-rec-beta-zz on the left-hand
side and the definition of substitution give the result.

• Case fordeq-cn-eqn-rec-beta-ss .
Observe that the premises here contain all the premises of the congruencerule, so we can satisfy
the assumptions of LEMMA B.35 in the same way. This gives that
Ψ ` EQNrec[i.j.p.K[σ, i/i, j/j, p/p]](P[σ], Czz[σ], i.j.p.r.Css[σ, i/i, j/j, p/p, r/r]) =
EQNrec[i.j.p.K

′[σ′, i/i, j/j, p/p]](P′[σ′], C′zz[σ
′], i.j.p.r.C′ss[σ

′, i/i, j/j, p/p, r/r]) ∈ [[(K)−]].
Call the left-hand constructorR and the right-handR′. By the IH,Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]],
Ψ ` J[σ] = J′[σ′] ∈ [[̂NAT]], andΨ ` P[σ] = P′[σ′] ∈ [[̂EQN]]. Then, by the definition of the
LR for substitutions
Ψ ` σ, I[σ]/i, J[σ]/j, P[σ]/p, R/r =
σ, I′[σ′]/i, J′[σ′]/j, P′[σ′]/p, R/r ∈ [[(∆)−, i :: N̂AT, j :: N̂AT, p :: ÊQN, r :: (K)−]]. Since this matches
the context in theCss equality premise, we can apply the IH to get
Ψ ` Css[σ, I[σ]/i, J[σ]/j, P[σ]/p, R/r] = C′ss[σ

′, I′[σ′]/i, J′[σ′]/j, P′[σ′]/p, R′/r] ∈ [[(K)−]].
On the left, we then usewhr-eqn-rec-beta-ss , LEMMA B.26, closure under head expan-
sion (LEMMA B.34), and the definition of substitution to get what we need. On the right, we
use the definition of substitution and LEMMA B.26 to give the result.

2. • Case for
∆ ` K2 ≡ K1 kind

∆ ` K1 ≡ K2 kind
deq-kd-sym

.

By symmetry of the LR,Ψ ` σ′ = σ ∈ [[(∆)−]]. By the IH,Ψ ` K2[σ
′] ⇐⇒ K1[σ] kind.

Then LEMMA B.19 gives the result.

• Case for
∆ ` K1 ≡ K2 kind ∆ ` K2 ≡ K3 kind

∆ ` K1 ≡ K3 kind
deq-kd-trans

.

By the IH,Ψ ` K1[σ] ⇐⇒ K2[σ
′] kind. By symmetry (LEMMA B.32),

Ψ ` σ′ = σ ∈ [[(∆)−]], so by transitivity (LEMMA B.33)Ψ ` σ′ = σ′ ∈ [[(∆)−]]. Then
we can apply the IH to the second premise with these substitutions to show
Ψ ` K′2[σ] ⇐⇒ K3[σ

′] kind . Then LEMMA B.20 gives the result.

• Case for
∆ ` TYPE ≡ TYPE kind

deq-kd-type
.

Apply norm-eq-kd-type , and then use the definition of substitution to get the result.
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• Case for
∆ ` K1 ≡ K′1 kind ∆, u :: K1 ` K2 ≡ K′2 kind

∆ ` Πk u::K1. K2 ≡ Πk u::K
′

1. K
′

2 kind
deq-kd-pi

.

By the IH applied to the first premise derivation,Ψ ` K1[σ] ⇐⇒ K′1[σ
′] kind. By rule,

Ψ, u :: (K1)
− ` u ←→ u :: (K1)

−, so by LEMMA B.29,Ψ, u :: (K1)
− ` u = u ∈ [[(K1)

−]]. By
weakening (LEMMA B.30),Ψ, u :: (K1)

− ` σ = σ′ ∈ [[(∆)−]], so by the definition of the LR,
Ψ, u :: (K1)

− ` σ, u/u = σ′, u/u ∈ [[(∆)−, u :: (K1)
−]]. By the definition of context erasure,

Ψ, u :: (K1)
− ` σ, u/u = σ′, u/u ∈ [[(∆, u :: K1)

−]]. Since this matches the context in the sec-
ond premise, we can apply the IH to get thatΨ, u :: (K1)

− ` K2[σ, u/u] ⇐⇒ K′2[σ
′, u/u] kind.

By LEMMA B.11, (K)− is (K[σ])−. Thusnorm-eq-kd-pi and the definition of substitution
(to pull the substitution outside theΠ on each side) give the result.

• Case for
∆ ` NAT ≡ NAT kind

deq-kd-nat
.

Apply norm-eq-kd-nat , and then use the definition of substitution to get the result.

3. Case fordeq-kd-eqn . By the IH,Ψ ` I[σ] = I′[σ′] ∈ [[̂NAT]] and
Ψ ` J[σ] = J′[σ′] ∈ [[̂NAT]]. By LEMMA B.29, these are algorithmically equal. Thenaeq-kd-eqn
and the definition of substitution give the result.

DEFINITION B.37: IDENTITY SUBSTITUTIONS. idΨ,u ::bK
is idΨ,u/u, andid· is ·.

LEMMA B.38: IDENTITY SUBSTITUTIONS ARELOGICALLY RELATED. Ψ ` idΨ = idΨ ∈ [[Ψ]].

Proof. By induction on the classifying context. The result is immediate by the definition when the context
is empty. In the inductive case forΨ, u :: K̂, by neut-eq-cn-var Ψ ` u ←→ u :: K̂, and then LEMMA

B.29 gives logical relatedness. This combined with the inductive result gives the result.

THEOREM B.39: COMPLETENESS OFALGORITHMIC EQUALITY.

1. If ∆ ` C ≡ C′ :: K then(∆)− ` C ⇐⇒ C′ :: (K)−.

2. If ∆ ` K ≡ K′ kind then(∆)− ` K ⇐⇒ K′ kind.

Proof. Each part is immediate using LEMMA B.38, LEMMA B.39, LEMMA B.29, and the definition of
identity substitutions.

B.4 Algorithmic Kinding and Typing

Using algorithmic equality, we give a syntax-directed version of the kinding and typing rules. The single
kind/type-conversion rule in the declarative judgement is replaced by equality premises on many rules.

Algorithmic kinding and typing are given by three judgements:

• Υ ` K
→

kind Operational interpretation: in the given context, check ifK is a well-formed kind.

• Υ ` C
→

:: K Operational interpretation: in the given context, synthesize a kind forC or fail.

• Υ; Ξ ` E
→

: A Operational interpretation: in the given contexts, synthesize a type forE or fail.
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Ξ stands for a context containing algorithmic typing (x
→

: A) assumptions;Υ stands for a context containing
algorithmic kinding (u

→

:: K) assumptions.(Γ)+ and (∆)+ are the obvious function from declarative
contexts to algorithmic typing ones.(Υ)− translates algorithmic typing contexts to algorithmic equality
ones, so its range is aΨ. Well-formedness of these new contexts is defined in the usual manner. Because all
erased kinds are well-formed,(Υ)− is well-formed whenΥ is.

Soundness and completeness are stated as follows:

THEOREM B.40: SOUNDNESS OFALGORITHMIC TYPING AND K INDING . Assume∆ andΓ are well-
formed.

1. If (∆)+ ` K
→

kind then∆ ` K kind.

2. If (∆)+ ` C
→

:: K then∆ ` C :: K.

3. If (∆)+; (Γ)+ ` E
→

: A then∆ ; Γ ` E : A.

Proof. In Twelf.

THEOREM B.41: COMPLETENESS OFALGORITHMIC TYPING AND K INDING .

1. If ∆ ` K kind then(∆)+ ` K
→

kind.

2. If ∆ ` C :: K then(∆)+ ` C
→

:: K′ for someK′ such that∆ ` K′ ≡ K kind.

3. If ∆ ; Γ ` E : A then(∆)+; (Γ)+ ` E
→

: A′ for someA′ such that∆ ` A′ ≡ A :: TYPE

Proof. In Twelf.

Note that in completeness, we only require that the algorithm synthesize some type in the equivalence class;
indeed, LEMMA B.47 shows that our algorithmic judgements synthesize a unique type for a term. Using
these theorems, we can show that(·)+ preserves well-formedness of its arguments.

B.5 Type Safety

THEOREM B.42: TYPE SAFETY FOR ALGORITHMIC TYPING. Assume∆ and Γ are well-formed. If
(∆)+; (Γ)+ ` E

→

: A then for allE′ such thatE 7→∗ E′

• (∆)+; (Γ)+ ` E′
→

: A′ where∆ ` A′ ≡ A :: TYPE

• and eitherE′ value or E′ 7→ E′′.

Proof. In Twelf. The proof is by the standard progress and preservation lemmas. The only slightly unusual
part is that, for expedience, we show preservation only up to definitionalequality; this allows us to prove
the necessary substitution lemma directly as a consequence of substitution forthe declarative system and
equivalence of the algorithmic and declarative presentations. The algorithmic judgements make showing
type safety easier in several ways:

• Because all the rules are syntax-directed, the inversion lemmas are proven by inspection; no induction
is necessary.

• It is easy to show that equality of types implies equality of subcomponents. Showing this property
directly for the declarative system would likely require a logical relations argument.
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• In the case of progress forNATcase, it necessary to show that the scrutinized constructor is either
weak head reducible,z, or s I. Because the constructor is well-typed, it is algorithmically equal
to itself, so the definition of algorithmic equality gives the result (because progress only considers
closed terms, the constructor in question cannot be neutral). Establishing this property directly for the
declarative presentation would be more difficult. Similar reasoning is used for EQNcase.

THEOREM B.43: TYPE SAFETY FOR DECLARATIVE TYPING. If ∆ ; Γ ` E : A then, for allE′ such that
E 7→∗ E′, ∆ ; Γ ` E′ : A and eitherE′ value or there exists anE′′ such thatE′ 7→ E′′.

Proof. In Twelf. Type safety is direct using soundness (THEOREM B.40) and completeness (THEOREM

B.41) of algorithmic typing and type safety for algorithmic typing (THEOREM B.42).

B.6 Decidability

LEMMA B.44: DECIDABILITY OF ALGORITHMIC EQUALITY FOR NORMALIZING CONSTRUCTORS

AND K INDS. By “not X”, we mean “X implies a contradiction”.

1. If Ψ ` K ⇐⇒ K′ kind andΨ ` L ⇐⇒ L′ kind then either
Ψ ` K ⇐⇒ L kind or notΨ ` K ⇐⇒ L kind.

2. If Ψ ` C1 ⇐⇒ C′1 :: K̂ andΨ ` C2 ⇐⇒ C′2 :: K̂ then either
Ψ ` C1 ⇐⇒ C2 :: K̂ or notΨ ` C1 ⇐⇒ C2 :: K̂.

3. If Ψ ` C1 ⇐⇒NAT C′1 andΨ ` C2 ⇐⇒NAT C′2 then either
Ψ ` C1 ⇐⇒NAT C2 or notΨ ` C1 ⇐⇒NAT C2.

4. If Ψ ` C1 ⇐⇒EQN C′1 andΨ ` C2 ⇐⇒EQN C′2 then either
Ψ ` C1 ⇐⇒EQN C2 or notΨ ` C1 ⇐⇒EQN C2.

5. If Ψ ` C1 ⇐⇒TYPE C′1 andΨ ` C2 ⇐⇒TYPE C′2 then either
Ψ ` C1 ⇐⇒TYPE C2 or notΨ ` C1 ⇐⇒TYPE C2.

6. If Ψ ` C1 ←→ C′1 :: K̂ andΨ ` C2 ←→ C′2 :: K̂′ then either
Ψ ` C1 ←→ C2 :: K̂′′ for somêK′′ or not.

Proof. The proof is by mutual lexicographic induction on the given derivations. It uses LEMMA B.13,
LEMMA B.17, LEMMA B.15, LEMMA B.16, LEMMA B.19, and LEMMA B.20.

THEOREM B.45: DECIDABILITY OF ALGORITHMIC EQUALITY.

1. If ∆ ` Kkind and∆ ` K′kind then either(∆)− ` K ⇐⇒ K′ kind or not(∆)− ` K ⇐⇒ K kind.

2. If ∆ ` C :: K and∆ ` C′ :: K then either(∆)− ` C ⇐⇒ C′ :: (K)− or not (∆)− ` C ⇐⇒ C′ :: (K)−.

Proof. In each part, reflexivity (LEMMA B.5), completeness of algorithmic equality (THEOREM B.39), and
decidability for normalizing kinds (LEMMA B.44) give the result.

LEMMA B.46: CONSTRUCTORSHAVE UNIQUE WEAK HEAD NORMAL FORMS. If C
whr
−→∗ C′ and

C
whr
−→∗ C′′ whereC′ whnorm andC′′ whnorm thenC′ is C′′.
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Proof. By induction on the first derivation. When one side ends inwhrrt-whr and the other inwhrrt-refl ,

eitherC′ or C′′ is C, so the premise derivation ofC
whr
−→ X combined with the derivation ofC whnorm give a

contradiction by LEMMA B.18; then we get the result vacuously. When both derivations arewhrrt-refl ,
bothC′ andC′′ areC. When bother derivations end inwhrrt-whr , determinacy of weak head reduction
(LEMMA B.15) and the IH give the result.

LEMMA B.47: ALGORITHMS SYNTHESIZE UNIQUE K INDS AND TYPES.

1. If Υ ` C
→

:: K andΥ ` C
→

:: K′ thenK is K′.

2. If Υ; Ξ ` E
→

: A andΥ; Ξ ` E
→

: A′ thenA is A′.

Proof. The algorithmic typing and kinding rules are syntax-directed, so in each case the final rules of both
derivations must be the same. Then, in each case, the result follows fromthe available inductive hypotheses,
using LEMMA B.46 and simple properties of syntactic equality (reflexivity, symmetry, transitivity, congru-
ence, and equality of subcomponents).

LEMMA B.48: SOUNDNESS OFMANY-STEP WEAK HEAD REDUCTION.

If ∆ ` C :: K andC
whr
−→∗ C′, then∆ ` C ≡ C′ :: K.

Proof. In Twelf.

LEMMA B.49: NORMALIZING TERMS OFK IND T̂YPE HAVE WEAK HEAD NORMAL FORMS.

If Ψ ` C1 ⇐⇒ C2 :: T̂YPE then there exists aC3 such thatC3 whnorm andC1
whr
−→∗ C3.

Proof. By induction on the given derivation. In the case fornorm-eq-cn-whr-left , the IH gives

that there exists aC3 such thatC′1
whr
−→∗ C3, and by premiseC1

whr
−→ C′1, so whrrt-whr gives the re-

sult. In the case fornorm-eq-cn-whr-right , the result is immediate by the IH. In the case for
norm-eq-cn-type , LEMMA B.17 applied to the premise andwhrrt-refl give the result. No other
rules derive a conclusion with the correct kind.

THEOREM B.50: DECIDABILITY OF ALGORITHMIC TYPING AND K INDING .

1. Given a contextΥ and a kindK, eitherΥ ` K
→

kind or notΥ ` K
→

kind.

2. Given a contextΥ and a constructorC, eitherΥ ` C
→

:: K for someK or not.

3. Given contextsΥ andΞ and a termE, eitherΥ; Ξ ` E
→

: A for someA or not.

Proof. The first two parts are by mutual induction over the given kind and constructor; the third is by
induction on the given term. The proof uses LEMMA B.47, LEMMA B.40, LEMMA B.4, LEMMA B.9,
LEMMA B.10, LEMMA B.48, LEMMA B.46, and LEMMA B.49.

THEOREM B.51: DECIDABILITY OF DECLARITIVE JUDGEMENTS.

1. Given∆ andK, either∆ ` K kind or not∆ ` K kind.

2. Given∆, K, andK′, either∆ ` K ≡ K′ kind or not∆ ` K ≡ K′ kind.

3. Given∆, C, andK, either∆ ` C :: K or not∆ ` C :: K.

4. Given∆, C, C′, andK, either∆ ` C ≡ C′ :: K or not∆ ` C ≡ C′ :: K.
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5. Given∆, Γ, E, andA, either∆ ; Γ ` E : A or not∆ ; Γ ` E : A.

Proof. The proof of each part is direct using various lemmas and the previous parts.

1. This part uses decidability, soundness, and completeness of algorithmicequality (THEOREM B.50,
THEOREM B.40, and THEOREM B.41).

2. This part uses the previous part to establish well-formedness of the kinds in question, as the algorithm
is only sound for well-formed kinds. It also uses regularity (LEMMA B.9) and decidability, soundness,
and completeness for algorithmic kinding (THEOREM B.45, THEOREM B.22, and THEOREM B.39).

3. This part uses the previous part and synthesis of unique kinds (LEMMA B.47), as well as decidabil-
ity, soundness, and completeness of algorithmic equality (THEOREM B.50, THEOREM B.40, and
THEOREM B.41).

4. This part uses the previous part to establish well-kindness of the constructors in question. It also uses
uses regularity (LEMMA B.9) and decidability, soundness, and completeness for algorithmic kinding
(THEOREM B.45, THEOREM B.22, and THEOREM B.39).

5. This part uses the previous part and synthesis of unique kinds (LEMMA B.47), as well as decidabil-
ity, soundness, and completeness of algorithmic equality (THEOREM B.50, THEOREM B.40, and
THEOREM B.41).
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