
On Solving Boolean Combinations of Generalized 2SAT
Constraints

Sanjit A. Seshia K. Subramani Randal E. Bryant
November 2004

CMU-CS-04-179

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider the satisfiability problem for Boolean combinations of generalized 2SAT constraints, which are
linear constraints with at most two, possibly unbounded, integer variables having coefficients in

���������	�
.

We prove that if a satisfying solution exists, then there is a solution with each variable taking values in
��!
, where

�
is the number of variables, and

�"�����
is the maximum over the

absolute values of constants appearing in the constraints. This solution bound improves over previously
obtained bounds by an exponential factor. Our result enables a new enumerative approach to satisfiability
checking. An experimental evaluation demonstrates the efficiency of this approach over previous techniques.
As a corollary of our main result, we obtain a polynomial-time algorithm for approximating optima of
generalized 2SAT integer programs to within an additive factor.

This research was supported by ARO grant DAAD19-01-1-0485.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copy-

right annotation thereon. The views and conclusions contained in this document are those of the authors, and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or implied, of the Department of Defense
or the U.S. Government.

Keywords: Generalized 2SAT constraints, unit two variable per inequality constraints, Boolean satisfia-
bility, automated theorem proving, integer linear programming, decision procedures, constraint satisfaction,
verification, optimization.

1 Introduction

Generalized 2SAT constraints are a special class of linear constraints over integer variables. A generalized
2SAT (G2SAT) constraint (also called a unit two variable per inequality or UTVPI constraint) has at most
two variables, and variable coefficients are in

���������	�
. The variables are not required to have finite upper

or lower bounds. Useful optimization problems, such as the minimum vertex cover and the maximum
independent set problems, can be modeled using generalized 2SAT constraints, and several applications
of constraint logic programming and automated theorem proving also generate G2SAT constraints (e.g.,
see [14, 1]).

A G2SAT formula is a Boolean combination of G2SAT constraints. In this paper, we consider the
problem of checking the satisfiability of G2SAT formulas. It is easily seen that this problem is NP-complete.
However, the special case of checking satisfiability of a conjunction of G2SAT constraints (i.e., finding a
feasible integer point in a G2SAT polyhedron) can be solved in polynomial time; for example, a modified
version of Fourier-Motzkin elimination [8, 22] (reviewed in Section 2) runs in # �$�&%�� time.

Current approaches (e.g., [1]) to checking the satisfiability of a G2SAT formula employ a combination
of Boolean satisfiability solving and linear constraint solving. Truth values are assigned to linear constraints
so that the G2SAT formula is satisfied. Each such truth assignment corresponds to a G2SAT polyhedron. If
this polyhedron has a feasible integer point, that point satisfies the original G2SAT formula as well. If not,
another truth assignment must be found. Given a G2SAT formula ' with (constraints and

�
variables, and

assuming that integer feasibility is checked using the afore-mentioned modified Fourier-Motzkin elimination
algorithm, the current techniques have a worst-case running time of # ��)�*+��� % � .1

In this paper, we prove that a satisfying solution exists for a G2SAT formula ' if and only if there is a
solution to ' with each variable taking values in the finite range

���,�-���.�����/�0�����1�2�3���4�����5�6���!
, where�

is the number of variables in ' , and
�"�����

is the maximum over the absolute values of constant terms in
the constraints. That such a bounded solution exists is not surprising, since satisfiability solving of G2SAT
formulas is in NP. However, the previously best known solution bounds [4, 23, 15, 18] are 7 �$�&89����������������:��)	;3�

. In particular, our result eliminates the
)<;

term, thereby exponentially reducing the solution bound.
Our result can be used to check satisfiability of G2SAT formulas in worst-case time # ��) ;>=@?1ACB � whereDFE)G�.�H�������������I���

, by encoding each integer variable with JLKNM D Boolean variables. This yields a more
efficient satisfiability checker for highly over-constrained formulas, where (E 7 �$�O� JPKNM D � .2 The latter is
often the case for theorem proving applications in program analysis and hardware verification.

A key step in our proof is to show that for a G2SAT polyhedron, if a feasible integer point exists, then one
exists within a unit hypercube centered at any minimal face solution (extreme point). As a corollary of this
result, we obtain a polynomial-time algorithm for approximating optima to an additive factor in generalized
2SAT integer programs.

Our theoretical results are validated by an experimental evaluation on randomly generated G2SAT for-
mulas, which shows that a decision procedure based on our approach can greatly outperform other proce-
dures.

1.1 Related Work

There has been much previous work on integer programming with two variables per inequality (see, e.g.,
the work by Hochbaum et al. [13, 12, 11]). The main differences between this work (applied to G2SAT
constraints) and ours are threefold. First, our focus is on satisfiability solving of arbitrary G2SAT formulas

1Assuming the trivial worst-case bound of QSRUTWV:X for checking satisfiability of a Boolean formula in Y variables.
2For a conjunction of G2SAT constraints, Z is QSRP[C\]X , since one can eliminate redundant constraints. However, for an arbitrary

Boolean combination, this is not the case.

1

and not linear optimization over G2SAT polyhedra. Second, we do not require variables to be bounded.
Finally, for our approximation result, the objective function can be an arbitrary linear function, without any
restriction on the sign of cost coefficients.

Previous results on bounding solutions have been derived in the context of showing that integer linear
programming is in NP [4, 23, 15, 18]. Even when specialized for G2SAT integer programs, these bounds
are 7 �$� 8 �^���������_�`���-��) ; � . Our result is therefore an exponential reduction in the solution bound for G2SAT
integer programs, and, to the best of our knowledge, has not been obtained before.

Our results rely on the modified version of Fourier-Motzkin elimination for checking integer feasibility
of a G2SAT polyhedron; this algorithm is described by Subramani [22], and an incremental version has been
given by Harvey and Stuckey [10].

Theorem provers that can check G2SAT formulas, such as CVC-Lite [7], are essentially a combination
of a SAT solver and a solver for a system of linear constraints. In the case of CVC-Lite, this solver is
the Omega test [19], which for G2SAT constraints is identical to the modified Fourier-Motzkin elimination
algorithm referenced above.

1.2 Outline

The rest of the paper is organized as follows. We begin in Section 2 with useful background definitions and
results. Section 3 contains the main theoretical contributions of this paper. We present experimental results
in Section 4 and conclude in Section 5.

2 Background

We state here, in brief, some definitions and theorems used in the remainder of the paper. Further details
can be found in standard textbooks on polyhedral theory and integer linear programming (e.g., [17, 20]).

Following standard linear programming notation, we denote the number of variables by
�

and number
of constraints by (. We assume that a linear constraint is specified in the form ab � aced �

, where ab is
a
�

-dimensional integer vector

 fhg"�if 8 �kj"j"jl�]f ; , ac is a

�
-dimensional vector of integer-valued variables
 m g �1m 8 �"j"j"j_�1m ; , and

�
is an integer. A system of constraints is specified as n � ac`d ao , where n is a (qp �

matrix with integral entries, ao is a (rp � integer vector

@�	g��4� 8 �"j"j"j_�4� * T, and ac is a

� p � vector of integer-
valued variables. We use

� �����
to denote the sut norm of ao ; i.e.,

� ����� Ewvyx	zC{3| � {]|
.

The terms feasible and satisfiable are used interchangeably, as also are lattice point and integer point.

2.1 G2SAT Formulas

Definition 2.1 A constraint ab � acId �
is said to be an absolute constraint if exactly one of the

f {�}
is non-

zero, a difference constraint if exactly two of the
f { }

are non-zero with one being
�~�

and the other
���

, and
a sum constraint if exactly two of the

f {�}
are non-zero with both

�~�
or both

���
.ab � ac2d � is said to be a G2SAT constraint if it is either an absolute, a difference, or a sum constraint.

A G2SAT formula is generated by the following grammar:'6�P� E��.�	���~|"� b��$� ��| mlg:��m 8 d � | mlg��`m 8 d � | m d � |�� ' | ' g:� ' 8 | ' g:� ' 8
Notice that a negation on a G2SAT constraint can be eliminated by rewriting the constraint. A G2SAT
constraint remains G2SAT under such rewriting. The only change is to the sign of variable coefficients, and
to the constant term, which can increase in absolute value by at most

�
.

2

Example 2.1 Consider the following G2SAT formula� � mlg���m 8 d �����H����m 8 �`m % d+� ��m�� d ���
The constraint

m�g:��m 8 d ��� is a sum constraint,
m 8 ��m % d�� is a difference constraint, and

m>� d � is an
absolute constraint. The negation can be eliminated to obtain an equivalent G2SAT formula��mlg��`m 8 d)+� � m 8 �`m % d+� ��m�� d � �
Note that the value of

�W�����
has increased from

�
to
)

after eliminating the negation.

Not all families of linear constraints are closed under eliminating negations. For example, the class of
Horn-SAT constraints, which comprises all constraints with at most one variable with a positive coefficient,
are not closed under eliminating negations.

Definition 2.2 Given a G2SAT formula ' , an enumeration bound is an integer
D

such that ' is lattice point
feasible if and only if it contains a lattice point in the

�
-dimensional hypercube � ;{L� g
�� D � D . The interval
�� D � D

is termed as an enumeration domain.

2.2 Polyhedral Theory

Definition 2.3 A minimal face of a polyhedron is a face that does not contain any other face of the polyhe-
dron. A point lying on a minimal face is called a minimal face solution (MFS).

When the minimal face is an extreme point, a MFS is a basic feasible solution.
We write

� n�� � ao � ���r� n � ao � to indicate that the polyhedral system nO� � ac`d ao � is a subsystem of the
polyhedral system n � ac`d ao . Also, for a matrix n , let � n � denote the rank of n . We have the following
characterization of a minimal face.

Theorem 2.1 ([20]) Let ¡ E � ac �¢n � ac`d ao � denote a polyhedron. A non-empty subset £ � ¡ is a mini-
mal face of ¡ , if and only if £ E � ac �¢n � � ac E ao � � , for some system n � � ac`d ao � , where

� n � � ao � �S�0� n � ao � ,
and � nF� � ao � � E � n � ao � .

Fourier-Motzkin (FM) elimination [8] is a well-known projection technique for polyhedra. Starting with
a polyhedron ¡¤�<n � ac2d ao , a variable

mC¥
is projected using FM elimination in the following steps:

1. Partition the system of constraints into three sets ¦ ¥ , § ¥ , ¨ ¥ as follows. For each constraint © , �«ª© ª (, we add it to: ¦ ¥ , if
f {$¬ ¥® � ;§ ¥ , if
f {$¬ ¥°¯ � ;¨ ¥ , otherwise.

2. Initialize the set of new constraints, ± , to ¨ ¥ .
3. For every pair of constraints (©1² , ©´³), where ©´²�µ¶¦ ¥ and ©�³�µ¶§ ¥ , add the following constraint to ± :;·¸ � g � f {P¹º¬ ¥9��f { V ¬ ¸ ��f {L¹h¬ ¸ ��f { V ¬ ¥ � �"m ¸ d � {

3

Clearly, the coefficient of
m3¥

in every constraint in ± is � . Denote the polyhedron defined by the set ± as»¡¤� »n � a»c2d a»o . It is easy to see that ¡ has a solution in ¼ ; if and only if
»¡ has a solution in ¼ ;¢½ g .

Note that if ¡ is G2SAT,
»¡ need not be G2SAT. However, it is possible to modify the basic FM elimina-

tion procedure by adding a coefficient normalization step, so that the resulting polyhedron remains G2SAT,
and moreover, is lattice point feasible iff ¡ is. Notice that the only non-G2SAT constraints in

»¡ are of the
form

)	m { d �
or
�5)	m { d �

, obtained by adding a sum constraint involving
m {

and
mC¥

with a difference
constraint involving those variables. By dividing both sides of a newly created non-G2SAT constraint by

)
,

and rounding up the RHS if it is an odd multiple of
g8 , we obtain a G2SAT constraint with the same integral

solutions as the original. In this way, we replace each non-G2SAT constraint in
»¡ with a corresponding

G2SAT constraint to obtain a G2SAT polyhedron ¡¾�º�<nF� � ac � d ao � .
We will refer to the modified FM elimination procedure as Fourier-Motzkin elimination with coefficient

normalization (FM-CN). It is easy to see that FM-CN preserves integral solutions, i.e., ¡ is lattice point
feasible iff ¡ � is. One can use FM-CN to check the feasibility of G2SAT polyhedra in time # �$� % � , by
successively eliminating variables, checking at each step that we do not generate a trivially false constraint.
At any step, we are guaranteed to have a system of no more than # �$��8�� constraints, since there are only¿ � � ; 8 � possible non-redundant G2SAT constraints on

�
variables.

3 Theoretical Results

Our theoretical results are organized as follows. We begin, in Section 3.1, by showing that if a G2SAT
polyhedron has a minimal face solution (MFS), then there exists a MFS with each component half-integral
and in

���F�"�������¢���F�"�������"
. The main theorem, presented in Section 3.3, enables us to go from bounding a

MFS to bounding integer solutions. This theorem states that if a G2SAT polyhedron is integer feasible, then
it is possible to find a integral solution within a unit box centered at any MFS; i.e., by “rounding” a MFS.
In this section, we also describe how to extend results for G2SAT polyhedra to arbitrary G2SAT formulas.
Section 3.2 presents auxiliary results on rounding that are used to prove the main theorem. Finally, in
Section 3.4, we show that the main theorem can be used to obtain an additive approximation result for
optimizing an arbitrary linear constraint over a G2SAT polyhedron.

3.1 Minimal Face Solutions of G2SAT Polyhedra

We begin with a useful lemma.

Lemma 3.1 Let ¡¤�<n � ac2d ao represent a system of (difference constraints on
�

variables. Then, ¡ has
a feasible integer solution if and only if it has an integer solution in the hypercube � ;{L� g
 � ���$�k�����>�^�������" .
Proof: Consider the dual constraint graph as outlined by Cormen et al. [5]. A solution to the system is
obtained by assigning to each variable, the shortest path from the source. The length of any shortest path is
bounded by

�$�H�À���:�.�^�����
. The result follows. Á

The following lemma considers bounding a MFS of a G2SAT polyhedron in the non-negative orthant.

Lemma 3.2 Let ¡¤�<n � ac2d ao � ac`d aÂ denote an arbitrary G2SAT polyhedron in the non-negative orthant
with (constraints and

�
variables. Then, if a MFS exists, then there is a MFS with each component

half-integral and at most
�O�	�W�����

.

Proof: Suppose polyhedron ¡ has a minimal face solution. Hochbaum et al. [13] have shown that this MFS
must be half-integral. We focus here on showing the

�O�.�������
bound.

4

By definition, the minimal face corresponding to this MFS satisfies a system n � � ac E ao � , where� nF� ao � �u�0� n ao � , and � nF� � E � n � E�Ã
for some

��ª Ã ª��
(assuming, w.l.o.g., that (ª��

). Ac-
cordingly, there are

Ã
independent variables and

�,� Ã
dependent variables in the system; without loss of

generality, we assume that the first
Ã

variables are independent and set the dependent variables to � . This
results in a system ¡yÄ®��nk� � � ac � � E ao � � � ac � � d aÂ , where the components of ao �@� are also components of ao , andac � � E
 mlg"�1m 8 �"j"j"j��1m ¸ PÅ .

The system ¡ Ä contains Æ types of constraints (equations), viz., absolute, difference and sum. We
consider each of these types in turn:

1. An absolute constraint is of the form
m { E �

. Since ac � � d aÂ , the value of
m {

must be in

 � �4�^������ .

2. A sum constraint can be written in the form
m { �Çm�¥ E �

, where
� dw� . Since ac � � d aÂ , it follows that� ªÀm { �1m�¥®ªÈ�5ªÈ������� .

3. From the two cases above, we conclude that the value of any variable appearing in an absolute or sum
constraint must lie in

 � �4�W������ (and moreover, there exists such a half-integral value).

W.l.o.g, let
m�g"�1m 8 �"j"j"jl�1mhÉ , Ê ª Ã

, be variables appearing in the absolute and sum constraints, and
let
mºË g �1mhË8 �"j"j"j_�1mºËÉ be the corresponding half-integral values in

 � �4� ����� satisfying these constraints.
Substituting these values into the difference constraints might create new absolute constraints, but no
new difference or sum constraints. The constant term in new absolute constraints generated thus is
half-integral and of absolute value at most

)N�������
. The substitution process can be iterated at mostÃ �w�

times leading to absolute constraints with half-integral constant terms at most
Ã ���������

. Thus,
a variable appearing in any of the absolute constraints generated in this iterative process takes half-
integral values in

 � � Ã ���W������ .
When the above iterative substitution process terminates, the only constraints possibly left are some
of the original difference constraints, each with an integral constant term of absolute value at most�������

. Since these constraints are satisfiable, we can apply Lemma 3.1 to conclude that there exists a
solution to these constraints with each variable taking integral values in

 � ��� Ã �����Ì��� ����� (since at
most

Ã
variables appear in these constraints).

Since
Ã ª+�

, we conclude that there exists a solution to ¡ Ä with each component at most
�O�.�W�����

. Á
We now generalize the result to an arbitrary G2SAT polyhedron.

Theorem 3.1 Let ¡Í�<n � ac2d ao denote an arbitrary G2SAT polyhedron with (constraints and
�

variables.
If a MFS exists, there exists a MFS with each component half-integral and in the interval

���Ì�Î�����������Ì�Î�4�����"
.

Proof: Suppose ac Ë is a MFS of ¡ . Let Ï g�� Ï 8 �"j"j"j_� Ï ¸ be the set of all column indices,
�Gª Ï g�� Ï 8 �"j"j"j_� Ï ¸ ª+� ,

such that
mºË¥�Ð ¯ � for all Ê , �Gª Ê ª Ã . Construct a matrix nO� by multiplying the Ï É th column of n by

���
for

all Ê , leaving other columns unchanged. We observe that:
1. The polyhedron ¡ � �¢n � � ac2d ao � ac2d aÂ is also G2SAT.

2. If we construct ac � Ë from ac Ë by negating
m Ë¥�Ð

for all Ê , �°ª Ê ª Ã , ac � Ë satisfies ¡ � . Moreover, we argue that
it is a MFS of ¡�� as follows:
Let

� »n � a»o �¶�Ñ� n � ao � be the constraints satisfied with equality at ac Ë , and
� »n � � a»o � �¶�Ñ� nk� � ao � � be the

constraints satisfied with equality at ac � Ë . Then, � »n � E � »n � � , since
»n and

»n � correspond to the same

rows (of n and n � respectively). Also, note that � n � E � n � � . Finally, since
� »n � a»o � define a minimal

face of ¡ , � »n � E � n � [20].
Thus, � »n � � E � nF� � , and so ac � Ë is a MFS of ¡®� .

5

Using an identical argument, we conclude that, from a MFS of ¡ � , we can construct a MFS of ¡ by negating
values to

m-¥]ÒW�1m�¥ \ �"j"j"j_�1mC¥ÔÓ .
Since ¡ � has a MFS, by Lemma (3.2) it must have a MFS with each component half-integral and in
 � �1���^�������" . It follows that ¡ has a MFS with each component half-integral and in

����k�^�.�������Ì�k�^�������"
. Á

3.2 Rounding and Semi-Rounding

Definition 3.1 A rational number
m

is said to be odd half-integral if it is an odd multiple of
g8 .

Definition 3.2 A vector aÕ is said to be a rounding of a vector ac if aÕ is integral and
|P| aÕ � ac |P| t ª g8 .

Definition 3.3 A vector aÕ is said to be a semi-rounding of a vector ac if all of the following conditions hold:
(1)

|P| aÕ � ac |P| t ª g8 ; (2) all components of aÕ are half-integral; and (3) if a component of ac is integral, so is
the corresponding component of aÕ .
Lemma 3.3 Let ab � ac2d � be a G2SAT constraint. Let ac Ë be a half-integral vector such that ab � ac Ë � , and
let aÖ Ë be an arbitrary semi-rounding of ac Ë . Then, ab � aÖ Ë d � .
Proof: The proof proceeds by case splitting on the number of variables in the constraint.

1. Suppose the constraint involves only one variable. Then, it is either of the form
m { d � or

�m { d � .
Correspondingly, we either have

m Ë{ � or
�m Ë{ � . Since

m Ë{ is half-integral, in both cases the LHS
exceeds

�
by at least

g8 . Thus, any semi-rounding × Ë{ of
mºË{ satisfies the constraint.

2. Suppose the constraint has two variables,
m {

and
mC¥

. Then, since
mºË{ and

mhË¥
are both half-integral, one

of the following two cases must hold:

(a) The LHS is integral, and exceeds
�

by at least
�
. But any semi-rounding of

m Ë{ and
m Ë¥

can
decrease the LHS by at most

�
, and hence satisfies the constraint.

(b) The LHS is odd half-integral, i.e., one of
m�Ë{ and

mhË¥
is integral and the other odd half-integral.

Thus, the LHS exceeds
�

by at least
g8 . In this case, any semi-rounding of

m_Ë{ and
mhË¥

can decrease
the LHS by at most

g8 , and will satisfy the constraint.Á
Since every rounding aÕ of ac Ë is also a semi-rounding of ac Ë , we obtain the following corollary:

Corollary 3.1 Let ab � acÀd � be a G2SAT constraint. Let ac Ë be a half-integral vector such that ab � ac Ë � ,
and let aÕ be an arbitrary rounding of ac Ë . Then, ab � aÕ�d � .

We now state a useful property of Fourier-Motzkin elimination with coefficient normalization.

Proposition 3.1 Let ¡¤�<n � ac`d ao denote a G2SAT polyhedron in ¼ ;NØ g and ac Ë E �$m Ë g �1m Ë8 �"j"j"j_�1m Ë;NØ g �
denote a half-integral feasible solution to ¡ . Further, suppose that ¡ is lattice point feasible.

Let ¡ � �¢n � � ac � d ao � be obtained from ¡ by projecting out variable
m ;NØ g using Fourier-Motzkin elimi-

nation with coefficient normalization and denote
�$m�Ë g �1mhË8 �"j"j"j_�1mhË; � by ac � Ë . Then, there exists a semi-roundingaÖ � Ë of ac � Ë such that aÖ � Ë is a solution to ¡�� .

Proof: First, note that since ¡ is lattice point feasible, so is ¡~� .
If ac � Ë is already a solution to ¡ � then the theorem holds trivially.
So suppose that ac � Ë does not satisfy ¡ � . The only reason this occurs is because ac � Ë is cut off by coefficient

normalization, i.e., due to the presence of one or both of the following situations:

6

1. There exists at least one variable
m {

, ©ÌµHÙ , such that ¡ has constraints of the form:m { �Úm ;NØ g d � {
(1)m { �Ûm ;NØ g d � �{ (2)

which result in the following constraint in ¡¾� :m { dÝÜ � { �Ç� �{) Þ (3)

where,
� { �À� �{ is odd.

Since ac � Ë does not satisfy ¡®� , the following equality also holds:m Ë{ E � { �Û� �{) (4)

2. There exists at least one variable
m3¥

, Ïyµ2ß , such that ¡ has constraints of the form:�m�¥Ì�Ûm ;NØ g d �Ô¥
(5)�m�¥S�Úm ;NØ g d � �¥ (6)

which result in the following constraint in ¡ � :m ¥ ªÝà �/��¥9��� �¥) á (7)

where,
�1¥&�Û� �¥ is odd.

Since ac � Ë does not satisfy ¡®� , the following equality also holds:m Ë¥ E �5�Ô¥9��� �¥) (8)

Note that for some ©�µ¶Ù , and Ïkµ2ß , if © E Ï , then we must have â�ã Ø â�äã8 E ½ âLå ½ â�äå8 . But that would mean that¡G� is infeasible, since constraints (3) and (7) would contradict each other. Hence, we can assume hereafter
that the two index sets Ù and ß are disjoint.

We now give a rounding algorithm that generates a semi-rounding aÖ � Ë of ac � Ë that satisfies ¡ � . The
rounding algorithm is as follows:

1. Initialize the set of variables to be rounded up, æ , to be
��m { | ©~µIÙ � . Similarly, initialize the set of

variables to be rounded down, ç as
��m3¥ | ÏFµèß � .

2. æ&é°� E æ , ç®é°� E ç , êu� E � .
3. Compute æÌë Ø g and çGë Ø g as follows. For every

m { µkæ�ë and
mC¥ µHçGë ,

(a) Include in æÌë Ø g any variable
m ¸

such that the following constraints in ¡¾� , which are valid for ¡ ,
hold with equality at ac � Ë : m ¸ �`m { d � ¸ {

(9)mC¥&��m ¸ d � ¥ ¸
(10)

7

(b) Include in ç�ë Ø g any variable
m ¸

such that the following constraints in ¡ � , which are valid for ¡ ,
hold with equality at ac � Ë : �m ¸ �`m { d � � ¸ { (11)mC¥9�`m ¸ d � �¥ ¸ (12)

4. If æÌë Ø gS� æ and çGë Ø g� ç , stop.

Otherwise, perform the assignments æì� E æÈí~æSë Ø g , çî� E ç�í�çGë Ø g , êu� E ê �w� , and go to step (3).

It is easy to prove by induction on ê , that for any
m ¸ µ�æ ,

ÃÚïµ�Ù , there either exists ©&µèÙ and an integer
� ¸ {

such that m Ë¸ �`m Ë{ E � ¸ { (13)

or a Ï�µ`ß and an integer
� ¥ ¸

such that m Ë¥ ��m Ë¸ E � ¥ ¸
(14)

Similarly, for each
m ¸ µHç ,

Ã,ïµ2ß , there either exists ©Ìµ¶Ù and an integer
� � ¸ { such that�m Ë¸ �`m Ë{ E � � ¸ { (15)

or a Ï�µ`ß and an integer
� �¥ ¸ such that m Ë¥ �`m Ë¸ E � �¥ ¸ (16)

Suppose the two sets æ and ç are disjoint. Then, to obtain a semi-rounding aÖ � Ë of ac � Ë , we round up
every variable in æ and round down every variable in ç .

To complete the proof, the following two sub-goals remain to be established:

1. æÈð«ç EIñ .
2. aÖ � Ë satisfies ¡®� .
Assuming the first sub-goal, consider the second sub-goal first. We observe that:ò By Lemma 3.3, any constraints in ¡¾� that are not satisfied with equality at ac � Ë will continue to be

satisfied by aÖ � Ë .ò From Equations (13)–(16), we note that for all
m ¸ µÀæ0íèç ,

mhË¸
is odd half-integral, since it is an

integral offset from
m Ë{ or

m Ë¥
for some ©Ìµ¶Ù or Ïyµ`ß .

Thus, for all
m ¸ µOæIí«ç , there cannot be any absolute constraint involving

m ¸
in ¡ � that holds with

equality at ac � Ë . Thus, by Lemma 3.3, the semi-rounding produced by the above algorithm satisfies
these absolute constraints.ò Steps 3(a) and 3(b) of the rounding algorithm ensure that all two-variable constraints of ¡k� satisfied
with equality at ac � Ë continue to be satisfied by the generated semi-rounding. For example, if

m ¸ �¾m { d� ¸ {
is satisfied with equality at ac � Ë , and

m Ë{ is rounded up, so is
m Ë¸

, so the constraint continues to be
satisfied.

8

Thus, if the two sets æ and ç are disjoint, we can conclude that aÖ � Ë satisfies ¡®� . We will now show that
the former is indeed the case.

The proof is by contradiction. Suppose æ�ðHç ïE�ñ
. Let

m ¸
be a variable present in both sets. As we

noted before, for any ©&µèÙ and Ï�µ`ß , © ïE Ï , so we can assume that
Ã

is neither in Ù nor in ß . We have the
following cases, each of which leads to a contradiction:

1. Equations (13) and (16) hold. Then, for some integer
��¥ {

, we havem Ë¥ �`m Ë{ E � ¥ { (17)

The above equation corresponds to the following inequality derived by adding Inequalities (9) and (12),
which is valid for both ¡ and ¡i� : m�¥9�Úm { d �Ô¥ { (18)

Further, from Equation (17) and Inequalities (1), (2), (5), and (6), we can conclude that�5�Ô¥ { E m Ë{ �`m Ë¥ d � { �Ç�Ô¥
(19)�5�Ô¥ { E m Ë{ �`m Ë¥ d � �{ �Ç� �¥ (20)

Also from Equations (4) and (8), we know that�5�Ô¥ { E m Ë{ �`m Ë¥ E � { �Ç�Ô¥&�Û� �{ �Ç� �¥) (21)

From (19), (20), and (21) above, we infer that
� { �Ç�Ô¥ E � �{ �Ç� �¥ E �5�Ô¥ { .

Thus, the inequalities in (19) and (20) hold with equality. Also, from Inequalities (1) and (5),
m { �/m ¥ d� { �I�Ô¥

is valid for ¡ . Thus, we can conclude that Inequality (18) holds with equality for ¡ . This
further implies that Inequalities (1), (2), (5), and (6) hold with equality for ¡ .

Since there is a unique solution to Constraints (1), (2), (5), (6) and (18) that satisfies them with equal-
ity, in every feasible solution of ¡ ,

m { E m Ë{ , mC¥ E m Ë¥ , and
m ;�Ø g E m Ë;�Ø g . Since at least one of

m Ë{ andmºË¥
is odd half-integral, this contradicts the premise that ¡ has a lattice point solution.

2. Equations (14) and (15) hold. This case is identical to Case (1) above.

3. Equations (14) and (16) hold. Then, we havem Ë¥ E � ¥ ¸ �Û� �¥ ¸) (22)

This implies that â å Ó Ø â äå Ó8 E ½ âLå ½ â äå8 .

Further, Equation (22) corresponds to the following valid cut for ¡ � (i.e., it preserves lattice point
solutions), obtained by adding (10) and (12):m ¥ d Ü � ¥ ¸ �Ç� �¥ ¸) Þ (23)

However, Constraints (7) and (23) contradict each other, implying that ¡ � is not lattice point feasible,
which contradicts the theorem’s premise.

4. Equations (13) and (15) hold. This case is identical to Case (3) above.

Thus, æ�ðFç EIñ
and we obtain a semi-rounding aÖ � Ë of ac � Ë as required. This completes the proof.Á

9

3.3 Main Theorems

We now arrive at the key result of this paper.

Theorem 3.2 Let ¡¤�¢n � ac`d ao denote a G2SAT polyhedron and ac Ë denote a half-integral MFS. If ¡ is
lattice point feasible, then it contains a lattice point aÕ such that

|P| aÕ � ac Ë |P| t ª g8 , i.e., aÕ is a rounding of ac Ë .
Proof: We prove the theorem by induction on the length of ac .
Base Case: Let ac E m µ�¼ . If

mºË
is a MFS, there exists a constraint

m d � that holds with equality form Ë
. Thus, the theorem holds trivially for aÕ E m Ë .

Induction Step: Let us assume that the theorem holds for all vectors ac of length up to
�

.
Consider the case when ac µ¶¼ ;NØ g . Since ¡ has a MFS, by Theorem (3.1), it has one with half-integral

entries. Let ac Ë E �$mhË g �1mºË8 �"j"j"j_�1mhË;NØ g � be one such MFS of ¡ . If ac Ë is integral, we set aÕ to ac Ë and we are
done. So, let us assume that ac Ë has some odd half-integral entries. Note that if two variables

m {
and

mC¥
appear together in a constraint of ¡ that holds with equality, either both

móË{ and
mºË¥

are integral or both are
odd half-integral.

Project variable
m ;NØ g out of ¡ using Fourier-Motzkin elimination with coefficient normalization (FM-

CN). Let ¡®�º�<nF� � ac � d ao � be the resulting system, where ac � µH¼ ; .
Suppose there exists a lattice point solution aô E �$õCg"�1õ 8 �"j"j"jl�1õ ;NØ g^� of ¡ . Thus, aô � E �$õCg��1õ 8 �"j"j"j��1õ ; �

is a lattice point solution of ¡i� .
Consider ac � Ë E �$m Ë g �1m Ë8 �"j"j"j��1m Ë; � . We will show that there exists a rounding aÕ � E ��öNg��]ö 8 �"j"j"j_�]ö ; � ofac � Ë which satisfies ¡®� . We consider the following three cases:

Case 1: ac � Ë is in the interior of ¡�� , i.e., none of the constraints in nO� � ac � d ao � hold with equality. By Corol-
lary 3.1, any rounding of ac � Ë yields a lattice point solution aÕ � of ¡ � .

Case 2: Suppose that ac � Ë is a solution of ¡ � that satisfies some constraints with equality. Suppose that for
some

� n �@� � ao �@� �u�0� n � � ao � � , n �@� � ac � Ë E ao � � , and the remaining constraints are strict, i.e., not satisfied
with equality. Since ac � Ë is a MFS of n � � � ac � d ao � � , by the induction hypothesis, we can conclude that
there exists a lattice point rounding aÕ � of ac � Ë , such that aÕ � is a solution of n�� � � ac � d ao �@� . Since, by
Corollary 3.1, any rounding of ac � Ë satisfies the strict constraints, aÕ � is also a lattice point solution of¡®� .

Case 3: It is possible that after coefficient normalization, ac � Ë does not satisfy ¡�� . By Proposition 3.1, there
exists a semi-rounding aÖ � Ë of ac � Ë that satisfies ¡ � . Thus, either Case (1) or Case (2) applies with ac � Ë
replaced by aÖ � Ë , and we can obtain a rounding aÕ � of aÖ � Ë that is a lattice point solution of ¡ � . Finally,
note that a rounding of aÖ � Ë is also a rounding of ac � Ë , since integral components of ac � Ë are preserved
in aÖ � Ë . This completes Case (3).

Thus, we can obtain a lattice point solution aÕ � of ¡ � that is a rounding of ac � Ë .
Since ¡ is G2SAT, and ¡�� is obtained from ¡ using FM-CN, a lattice point solution of ¡~� can be

extended to one of ¡ . Thus, there exists an integral
ö ;NØ g such that aÕ E ��ö g �]ö 8 �"j"j"j_�]ö ; �]ö ;NØ g � is a solution

of ¡ .
To complete the proof, we show that there exists such an integral

ö ;�Ø g that is moreover a rounding ofmhË;NØ g . Since ac Ë is a MFS of ¡ , there exists a subset of constraints
� »n � a»o � of

� n � ao � that hold with equality
at ac Ë . The value of

m ;NØ g is constrained only by the values of other variables
m�¥

such that there exists an

equation in
»n ac E a»o in which

m ;NØ g and
m ¥

appear together. Let ß be the index set of all such variables
m ¥

.

We now show that there exists a rounding
ö ;�Ø g of

mºË;NØ g that satisfies ¡ Ä � »nÇac`d a»o . There are two cases:

10

1. If
m Ë;�Ø g is integral, so is

m Ë¥
for all Ïyµ2ß . Thus,

ö ;�Ø g E m Ë;NØ g satisfies ¡ Ä , and we are done.

2. If
mºË;�Ø g is odd half-integral, so is

mlË¥
for all Ïkµ`ß . In this case, we claim that there exists a consistent

way to round
m Ë;�Ø g , either up or down, so that the result satisfies ¡ Ä . Suppose not, i.e., there exists

constraints that force
m>Ë;NØ g to be rounded up as well as down. There are four instances in which this

might occur:

(a) There exist constraints
m ;�Ø g&��m { d � and

mC¥/��m ;�Ø g d � � in ¡ that hold with equality at ac Ë ;
furthermore,

ö ¥ Er÷ mhË¥	ø
and

ö {_Eeù mhË{Wú . Thus, we have
mºË¥ �°mhË{ E �	�i� � , but

ö ¥ �Gö { ¯È�	�i� � . SincemC¥9�`m { d �ó�À� � is a valid inequality for ¡ , this means that aÕ does not lie in ¡ , a contradiction.

(b) There exist constraints
�m ;NØ g��`m { d � and

mC¥&��m ;�Ø g d � � in ¡ that hold with equality at ac Ë ;
furthermore,

öW¥ Ee÷ mºË¥	ø
and

ö { Erù mhË{Wú . This case is identical to Case (2a) above.

(c) There exist constraints
m ¥ ��m ;NØ g d � and

m ¥ �Çm ;�Ø g d � � in ¡ that hold with equality at ac Ë ,
with

ö^¥ Ee÷ m Ë¥ ø
. Thus,

)	m Ë¥ E ����� � . Since,
m Ë¥

is odd half-integral,
���¶� � must be an odd integer.

Moreover,
)�ö^¥®¯È�_�`� � . However, since

)	m-¥ d �l�Ú� � is a valid inequality for ¡ , this means thataÕ does not lie in ¡ , a contradiction.

(d) There exist constraints
m ;NØ g �`m { d � and

�m ;�Ø g �Úm { d � � in ¡ that hold with equality at ac Ë ,
with

ö { Erù m Ë{ ú . This case is identical to Case (2c) above.

Thus, there exists a consistent way to round
m_Ë;NØ g either up or down and satisfy every constraint in¡ Ä . Let

ö ;NØ g be this rounding.

Applying Corollary 3.1, any rounding of
m Ë

satisfies the constraints in
� n � ao �lû°� »n � a»o � .

Thus, we can obtain a rounding aÕ of ac Ë that is a lattice point solution of ¡ .Á
From Theorem (3.1) and Theorem (3.2), we can conclude the following theorem.

Theorem 3.3 Let ¡¤�<n � ac2d ao denote a G2SAT polyhedron with (constraints and
�

variables. Then, ¡
has enumeration bound

�O���W�����
.

The above result is easily generalized for arbitrary G2SAT formulas.

Theorem 3.4 Let ' denote a G2SAT formula with (constraints,
�

variables, and let
�	�����

be the maximum
over the absolute values of constant terms appearing in ' . Then, ' has enumeration bound

�«�<���	�����9�����
.

Proof: If ' has a satisfying integer solution, that solution must satisfy one of the terms in the disjunc-
tive normal form (DNF) of ' . Each term in the DNF representation of ' is a G2SAT polyhedron in
which the constant term in any constraint has absolute value at most

�.�����/�6�
(we use

�������/�6�
in place

of
� �����

to account for eliminating negations on constraints). It follows that there is a solution to ' in
���O�<���������S�w�����&�«�¢���������S�w���!
. Á

3.4 Approximation Results for Optimization

Consider the problem of optimizing an arbitrary linear function over a G2SAT polyhedron ¡ . This problem
is NP-hard (minimum vertex cover is a special case). As a corollary of Theorem (3.2), we obtain the
following theorem showing that one can approximate the optimal value to within an additive factor.

11

Theorem 3.5 Let ¡ E � ac �¢n � ac`d ao � denote a G2SAT polyhedron that contains a lattice point. Let the
integer linear program be

vkx	z � aü � ac ��ac µ�¡ � .
If the optimum value is finite, solving the LP-relaxation and rounding the solution can yield a feasible

lattice point that approximates the optimum to within an additive factor of ý`þ¾ÿå�� Ò � � å �8 . If the LP-relaxation
is unbounded, so is the integer program.

Proof: If the optimum value �
Ë

of the LP-relaxation is finite, it is attained at a MFS ac Ë . Since ¡ is lattice
point feasible, by Theorem 3.2, there exists a lattice point aÕ in ¡ such that such that

|P| aÕ � ac Ë |P| t ª g8 . It

follows that aü � aÕ is within ý þ ÿå�� Ò � � å �8 of �
Ë
, and hence of the integer optimum.

If the LP-relaxation is unbounded, so must the integer program, since ¡ is lattice point feasible [17]. Á
Moreover, an approximate solution can be obtained in polynomial time in the following three steps:

1. Check whether ¡ is lattice point feasible using Fourier-Motzkin elimination with coefficient normaliza-
tion. If ¡ is lattice point infeasible, stop.

2. If ¡ is lattice point feasible, solve its LP-relaxation. If it is unbounded, we conclude that the original IP
is also unbounded. Otherwise, the optimum is attained at a MFS ac Ë .

3. Round ac Ë to obtain an integer solution that is within ý,þ¾ÿå�� Ò � � å �8 of the optimum. The rounding is per-
formed as follows. For each variable

m {
that has an odd half-integral value

m Ë{ , we check whether adding
the constraint

m { E ù mºË{"ú to ¡ preserves lattice point feasibility. If not, we set
m {

to
÷ mhË{ ø and iterate,

picking another variable to round, until we have obtained a feasible integer solution.

It is easy to see that each step can be performed in polynomial time. Notice that if lattice point feasibility
is preserved by setting

m {
either to

ù mºË{ ú or to
÷ mºË{ ø , the direction of rounding can be chosen heuristically to

obtain a tighter approximation.
Our approximation theorem is general, in that it applies to any generalized 2SAT integer program, in-

cluding non � - � programs with arbitrary coefficients in the objective function. However, the approximation
factor is additive, and the result is more likely to be useful for non � - � programs. In contrast, the results of
Hochbaum et al. [13] guarantee a

)
-approximation for G2SAT integer programs expressed as a minimization

problem where the objective function is required to have non-negative coefficients.

4 Experimental Evaluation

We now present experimental results demonstrating that a decision procedure based on the solution bound
derived in this paper can outperform other state-of-the-art procedures.

4.1 Implementation

We implemented a decision procedure that operates in three steps. First, given a G2SAT formula ' , it
computes the enumeration bound

�®�����"�����>�`���
. Second, it translates the input G2SAT formula to a Boolean

formula by replacing each integer variable by a finite-precision, signed bit-vector that can take any value in
the range

����������^�������H�������5�����������-�¶���!
. Arithmetic and relational operators are then encoded as arithmetic

circuits and comparators. Let ' â���� É denote the resulting Boolean formula. Clearly, ' â���� É is satisfiable if and
only if ' is satisfiable. Thus, the final step consists of invoking a Boolean satisfiability (SAT) solver on' â���� É . Notice that the translation to SAT takes polynomial time and that the size of ' â���� É is polynomial in
that of ' .

12

The main reason for using a translation to SAT, as opposed to a non-SAT-based procedure, is that our
benchmarks possess a non-trivial Boolean structure. Also, by this approach, we can leverage the recent ad-
vances in SAT solving (e.g., [16, 9]). For our experiments, we employed the zChaff satisfiability solver [16];
however, note that any alternative SAT solver can be employed just as easily.

4.2 Setup

A set of randomly generated G2SAT formulas was used for the experimental evaluation. A G2SAT formula
can be viewed as a Boolean circuit where the inputs to the circuit are G2SAT constraints rather than being
Boolean variables. Each formula was generated based on Æ parameters: the maximum number of variables,
an upper bound on the size of the constant term, and the maximum depth of the circuit. We varied the
maximum number of variables over the set

� ¿ � �
	 � ����� � � Æ) � �
� ¿ � � , the constant term upper bound over the
set
�<�����4)����� ¿ ��� ���
��� Æ ����� � ¿ 	������� , and the maximum circuit depth over

�������¢�
	�� � ��� � � . For each choice
of these three parameters, we generated a formula using one of three different random seeds; the seed was
used in generating, at each level in the circuit, either a randomly chosen Boolean operator or a G2SAT
constraint. The variables and constant term in each G2SAT constraint were randomly generated as well.
Finally, the resulting G2SAT formula was conjoined with a set of upper and lower bound constraints on each
variable, where the bounds were randomly selected to be between � and the upper bound on the constant
term. This last operation was performed in order to generate a mix of both satisfiable and unsatisfiable
formulas. Thus, in total, the benchmark suite comprises Æ �� formulas, of which

) �) are unsatisfiable.
We compared our procedure against two other decision procedures. Both are based on a combination

of a SAT solver with a solver for a system of integer linear constraints. The first is a publicly available
theorem prover called CVC-Lite [7] (the version available as of December 2004). CVC-Lite uses a SAT
solver for finding Boolean assignments to the formula, treating G2SAT constraints as Boolean literals. For
every such assignment, it decides the feasibility of the corresponding conjunction of G2SAT constraints by
using the FM-CN procedure (it actually uses the Omega test [19], which specializes to FM-CN for G2SAT
constraints). Details about CVC-Lite’s operation can be found in the papers by Barrett et al. and Ganesh
et al. [2, 3]. The SAT solver used by CVC-Lite is a modified version of the zChaff solver used by our
procedure. The second decision procedure, written by Daniel Kroening (currently at ETH Zürich), works on
similar principles to CVC-Lite, except that it uses the CPLEX commercial optimization software [6] (version
9.0) instead of the FM-CN procedure. This procedure also uses the zChaff solver as its SAT solving engine.

Experiments were run on a Linux workstation with a
)

GHz Pentium 4 processor and
�

GB of RAM. Our
decision procedure, called UCLID, is written mostly in Moscow ML, a dialect of Standard ML. A timeout
of

� �N� seconds was imposed on each run.

4.3 Comparison

Figures 1 and 2 compare UCLID’s total time (time for both encoding and SAT solving) to that taken by
CVC-Lite and the CPLEX-based solver respectively. In each plot, the y-coordinate of a point is the time
taken by UCLID, and the x-coordinate is the time taken by the decision procedure we compare it against.
UCLID’s total time is dominated by the SAT solving time. Note that the X and Y axes are on different
scales. This is because UCLID finishes within Æ � seconds on all benchmarks whereas the run-times for the
other solvers are spread out over the entire range

 � �
� �N� .3

First, consider the comparison with CVC-Lite. We observe from Figure 1 that CVC-Lite performs worse
than UCLID overall, timing out on � of the Æ �� benchmarks. However, note that there are

�����
benchmarks

3Details of experimental results described in this section are available at http://www.cs.cmu.edu/˜uclid/2sat.

13

1
2

5

10

15

20

25

30

1 25 50 100 200 300 400 500 timeout

 T
ot

al
 ti

m
e

fo
r U

C
LI

D
 (s

ec
.)

 Total time for CVC-Lite (sec.)

Figure 1: Experimental comparison of UCLID versus CVC-Lite for G2SAT formulas. Note that the
scale on the Y-axis is about

) � times that of the X-axis.

on which CVC-Lite outperforms UCLID. UCLID completes within
��

seconds on all of these benchmarks,
and within

seconds on all but

)N)
of them.

The comparison with the CPLEX-based solver yields similar results, as one can observe in Figure 2. In
fact, the CPLEX-based solver even performs worse than CVC-Lite, timing out on

) ¿ �
of the Æ �� bench-

marks. UCLID is outperformed on only
���

benchmarks, on all of which it terminates within
�

seconds.

1
2

5

10

15

20

25

30

1 25 50 100 200 300 400 500 timeout

 T
ot

al
 T

im
e

fo
r U

C
LI

D
 (s

ec
.)

 Total Time for CPLEX-based solver (sec.)

Figure 2: Experimental comparison of UCLID versus CPLEX-based solver for G2SAT formulas. Note
that the scale on the Y-axis is about

) � times that of the X-axis.

We further analyzed our results by dividing the benchmarks into
¿

categories, with each category com-
prising benchmarks on which UCLID’s time falls within a certain range. For each category, we computed
the percentage of benchmarks on which UCLID outperforms the other two solvers. This data is displayed
in Table 1. We note that the benchmarks on which UCLID is outperformed are those on which both it and

14

the competing solver finish within a few seconds. Note also that UCLID finishes within

seconds on over	 ��� of the benchmarks.

UCLID time range Number of % of benchmarks on which UCLID runs faster
(time in seconds) benchmarks CVC-Lite prover CPLEX-based solver

[0, 5] Æ �� N)Cj Æ 	 � Cj) ¿
(5, 10]

¿) ¿ j���� � ��j��N)
(10, 20]

�� 	 � j �N� � �N� j �N�
(20, 30) Æ � �N� j �N� � �N� j �N�

Table 1: Comparing UCLID with other solvers using a time-wise break-up of benchmarks. The second
column indicates the number of benchmarks on which UCLID’s run-time is within the indicated range.

Thus, we can conclude that the enumerative approach presented in this paper can greatly outperform a
more traditional approach based on combining a SAT solver with a constraint solver. The main reason for
this seems to be that solvers based on the latter approach enumerate several SAT assignments that, while
satisfying the Boolean skeleton of the formula, correspond to infeasible systems of G2SAT constraints. On
the other hand, UCLID’s encoding adds in all the “G2SAT information” necessary for the SAT solver to
significantly prune its search space.

5 Conclusion

We have proposed a new approach to deciding the satisfiability of Boolean combinations of generalized
2SAT constraints. The central insight is that it is sufficient to search for bounded solutions, where each
variable is restricted within the finite range

�����l���������i�î���������l���4�����i�î���!
. The solution bound we

derive improves over previous results by an exponential factor. The key step in our derivation is a novel
result for G2SAT polyhedra on finding integer solutions by rounding minimal face solutions. Experiments
demonstrate the efficacy of a SAT-based decision procedure based on our theoretical results.

It would be interesting to extend our results to Boolean combinations of linear constraints that comprise
mostly of G2SAT constraints. Previous work [21] has shown that, for Boolean combinations of mostly dif-
ference constraints, the exponential term in the solution bound depends only on the number and coefficients
of the non-difference constraints. It is still open as to whether a similar result can also be obtained for
formulas of mostly G2SAT constraints.

References

[1] T. Ball, B. Cook, S. Lahiri, and L. Zhang. Zapato: Automatic theorem proving for predicate abstraction
refinement. In Proc. Computer-Aided Verification (CAV), volume 3114 of Lecture Notes in Computer
Science, pages 457–461, 2004.

[2] C. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental
translation to SAT. In E. Brinksma and K. G. Larsen, editors, Proc. 14th Intl. Conference on Computer-
Aided Verification (CAV’02), LNCS 2404, pages 236–249. Springer-Verlag, July 2002.

[3] S. Berezin, V. Ganesh, and D. L. Dill. An online proof-producing decision procedure for mixed-
integer linear arithmetic. In Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), LNCS 2619, pages 521–536, April 2003.

15

[4] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear Diophantine equations.
Proceedings of the American Mathematical Society, 55(2):299–304, March 1976.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, chapter 24. MIT Press, second edition, 2001.

[6] CPLEX Optimization Tool. Available from ILOG.http://www.ilog.com/products/cplex/.

[7] CVC-Lite: Cooperating Validity Checker. Available at http://verify.stanford.edu/CVCL/.

[8] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial
Theory A, 14:288–297, 1973.

[9] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Design Automation and Test
in Europe (DATE) 2002, pages 142–149, 2002.

[10] Warwick Harvey and Peter J. Stuckey. A unit two variable per inequality integer constraint solver
for constraint logic programming. In Proceedings of the Twentieth Australasian Computer Science
Conference, pages 102–111, 1997.

[11] D. Hochbaum. Approximation Algorithms for NP-Hard Problems, chapter 3. PWS Publishing Com-
pany, 1995.

[12] D. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two
variables per inequality. SIAM Journal on Computing, 23(6):1179–1192, 1994.

[13] Dorit Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms
for integer programs with two variables per inequality. Mathematical Programming, 62:63–92, 1993.

[14] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H. C. Yap. Beyond finite domains. In 2nd
International Workshop on Principles and Practice of Constraint Programming (PPCP’94), volume
874 of Lecture Notes in Computer Science, pages 86–94, 1994.

[15] R. Kannan and C. L. Monma. On the computational complexity of integer programming problems. In
Optimisation and Operations Research, volume 157 of Lecture Notes in Economics and Mathematical
Systems, pages 161–172. Springer-Verlag, 1978.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT
solver. In 38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[17] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization, chapter I.4: Polyhedral The-
ory. Wiley-Interscience, New York, 1988.

[18] Christos H. Papadimitriou. On the complexity of integer programming. Journal of the ACM,
28(4):765–768, 1981.

[19] William Pugh. The omega test: A fast and practical integer programming algorithm for dependence
analysis. In Supercomputing, pages 4–13, 1991.

[20] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1986.

[21] Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free Presburger formulas using parameter-
ized solution bounds. In 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
100–109, July 2004.

16

[22] K. Subramani. On deciding the non-emptiness of 2SAT polytopes with respect to first order queries.
Mathematical Logic Quarterly, 50(3):281–292, 2004.

[23] J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities and inequalities.
Proceedings of the American Mathematical Society, 72(1):155–158, October 1978.

17

