
Distributed Control Flow

with Classical Modal Logic

Tom Murphy VII Karl Crary
Robert Harper

December 14, 2004
CMU-CS-04-177

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In previous work we presented a foundational calculus for spatially distributed computing
based on intuitionistic modal logic. Through the modalities 2 and 3 we were able to
capture two key invariants: the mobility of portable code and the locality of fixed resources.

This work investigates issues in distributed control flow through a similar propositions-
as-types interpretation of classical modal logic. The resulting programming language is
enhanced with the notion of a network-wide continuation, through which we can give com-
putational interpretation of classical theorems (such as 2A ≡ ¬3¬A). Such continuations
are also useful primitives for building higher-level constructs of distributed computing. The
resulting system is elegant, logically faithful, and computationally reasonable.

The ConCert Project is supported by the National Science Foundation under grant ITR/SY+SI 0121633:
“Language Technology for Trustless Software Dissemination”.

Keywords: distributed computing, modal logic, classical logic, continuations, program-
ming languages

1 Introduction

This paper is an exploration of distributed control flow using a propositions-as-types interpre-
tation of classical modal logic. We build on our previous intuitionistic calculus, Lambda 5 [8],
which is a simple programming language (and associated logic) for distributed computing.
Lambda 5 focuses particularly on the spatial distribution of programs, and allows the pro-
grammer to express the place in which computation occurs using modal typing judgments.
Through the modal operators 2 and 3 we are then able to express invariants about mobil-
ity and locality of resources. Our new calculus, C5, extends Lambda 5 with network-wide
first-class continuations, which arise naturally from the underlying classical logic. Network-
wide continuations create a new relationship between the modalities 2 and 3, which we see
with several examples, and serve as building-blocks for other useful primitives. Before we
introduce C5, we begin with a short reprise of Lambda 5.

1.1 Lambda 5

The Lambda 5 programming model is a network with many different places, or nodes. In
order to be faithful to this model, we use a style of logic that has the ability to reason simul-
taneously from multiple perspectives, namely, modal logic. Compared to propositional logic,
which is concerned with truth, modal logic deals with truth at different worlds. These worlds
are related by an accessibility relation, which affects the strength of the modal connectives;
different assumptions about accessibility give rise to different modal logics. For modelling
a network where the worlds are nodes, we choose Intuitionistic S5 [15], whose relation is
reflexive, symmetric, and transitive—every world is related to every other world. Therefore,
except when comparing it to other systems, we essentially dispense with the accessibility
relation altogether. This leads to a simple explanation of the judgments and connectives,
which is as follows.

A true @ω is the basic judgment, meaning that the proposition A is true at the world
ω (we abbreviate this to A@ω). There are two new proposition forms for quantifying over
worlds. 2A is the statement that A is true at every world. 3A means that A is true at some
world. Because we think of these worlds as places in the network, operationally we interpret
type 2A as representing mobile code or data of type A, and the type 3A as an address of
code or data of type A.

Propositions must be situated at a world in order to be judged true, so it is important
to distinguish between the proposition 2A and the judgment 2A@ω, the latter meaning
that A is true in every world from the perspective of ω. In S5, every world has the same
perspective with regard to statements about all or some world(s). But operationally this
will be significant, as there is no true “global” code, only mobile code that currently exists
at some world.

Though the logic distinguishes between 2A@ω and 2A@ω′, both have precisely the
same immediate consequences. The typical rule for eliminating 2, for instance as given by
Simpson [15] is

2A@ω
A@ω′

1

With this rule, it never really matters where 2A exists, since we can eliminate it instantly
to any world. However, we really do care operationally where mobile code resides, and so we
adjust the rules of Lambda 5 to reflect this bias. The logic features a novel decomposition
into locally-acting introduction and elimination rules, i.e.

2A@w
A@ω

as well as motion rules for moving between worlds, i.e.

2A@ω
2A@ω′

We argue [8] that this results in a more appropriate operational interpretation. Our classical
system also features this decomposition, and like Lambda 5, we are able to retain a crisp
connection to the underlying logic.

Although distributed computing problems are often thought of as being concurrent, both
Lambda 5 and our new calculus are sequential. We consider concurrency an orthogonal issue,
although we give remarks on how it can be accomplished in Section 6.

1.2 Classical Control Flow

The notion that control operators such as Scheme’s call/cc or Felleisen’s C can be given
logical meaning via classical logic is well known. Essentially, if we interpret the type ¬A as
a continuation expecting a value of type A, then the types of these operators are classical
tautologies. Griffin first proposed this in 1990 [5] with later refinements by (for example)
Murthy [9]. Parigot’s λµ-calculus [10] takes this idea and develops it into a full-fledged
natural deduction system for classical logic.1 It began to become clear that this was no
accident—classical logic is the logic of control flow.

Therefore, a natural next step is to look at classical S5 to see what kind of programming
language it gives us, which is the topic of this paper. We find that the notion of a network-
wide continuation arises naturally, giving a computational explanation to (intuitionistically
ridiculous) classical theorems such as 2A ≡ ¬3¬A. We also believe that such primitives
can be useful for building distributed computing mechanisms such as synchronous message
passing.

The paper proceeds as follows. We first present classical S5 judgmentally, giving a natural
deduction system and intuition for its operational behavior. We then verify that our proof
system really is faithful by establishing a correspondence with a dual sequent calculus that
admits cut. Next we give proof terms for some classical theorems, to elucidate the new
connection between 2 and 3 made possible by network-wide continuations. In order to
make these intuitions concrete, we then give an operational semantics based on an abstract
network. We follow with some ideas about concurrency and how network-wide continuations
can be used by distributed applications, and conclude with a discussion of related work.

1Our calculus is quite similar to his (extended to the modal case!), although we prefer to present it with
an emphasis on truth and falsehood judgments.

2

Γ, x:A@ω; ∆ `M : B@ω

Γ; ∆ ` λx.M : A ⊃ B@ω
⊃ I

Γ; ∆ ` N : A@ω
Γ; ∆ `M : A ⊃ B@ω

Γ; ∆ `MN : B@ω
⊃ E

ω′..
Γ; ∆ `M : A@ω′

Γ; ∆ ` box ω′.M : 2A@ω
2I

Γ; ∆ `M : 2A@ω

Γ; ∆ ` unboxM : A@ω
2E

Γ, x:A@ω,Γ′; ∆ ` x : A@ω
hyp

Γ; ∆ `M : 2A@ω′ ω′

Γ; ∆ ` get2[ω′]M : 2A@ω
2M

ω′..
Γ, x:A@ω′; ∆ ` N : B@ω
Γ; ∆ `M : 3A@ω

Γ; ∆ ` letdω′.x = M inN : B@ω
3E

Γ; ∆ `M : A@ω

Γ; ∆ ` hereM : 3A@ω
3I

Γ; ∆ `M : 3A@ω′ ω′

Γ; ∆ ` get3[ω′]M : 3A@ω
3M

Γ; ∆, u:A?ω `M : A@ω

Γ; ∆ ` letccu inM : A@ω
bc

Γ; ∆, u:A?ω `M : A@ω

Γ; ∆, u:A?ω ` throwM tou : C @ω′
#

Γ; ∆ `M : ⊥@ω′ ω′

Γ; ∆ ` rpc[ω′]M : C @ω
⊥E

Γ; ∆ `M : A@ω Γ; ∆ ` N : B@ω

Γ; ∆ ` 〈M,N〉 : A ∧B@ω
∧I Γ; ∆ `M : A1 ∧ A2 @ω

Γ; ∆ ` πiM : Ai@ω
∧Ei

Figure 1: Classical S5 natural deduction

All of the proofs in this paper have been formalized in the Twelf system [12] and verified
by its metatheorem checker [14].2

2 Classical S5

Because we wish to take a propositions-as-types interpretation of modal logic, a judgmental
proof theory for our logic is critical. In this section we give such a presentation of Classical
S5.

Because modal logic is concerned with truth relativized to worlds, our judgments must
reflect that. We have two main judgments in our proof theory. The first,

A true @ ω

simply states that the proposition A is true at the world ω. Dually, we have

A false ? ω

2They can be found at http://www.cs.cmu.edu/~concert/.

3

which says that the proposition A is false at the world ω. Although these two judgments
are dual, the natural deduction system is biased towards the first; it is primarily concerned
with deducing that propositions are true. We will only make assumptions about falsehood
for the purpose of deriving a contradiction. As is standard, we reify the hypotheses about
truth and falsehood into contexts (eliding true and false), and the central judgment of our
proof theory becomes

Γ; ∆ ` A@ω

where we deduce that A is true at world ω under truth assumptions of the form B@ω′

appearing in Γ and falsehood assumptions of the form C ?ω′′ appearing in ∆. We also have
hypotheses about the existence of worlds. It is cumbersome to write a context of world
assumptions and conditions on world existence in every judgment. Instead we use pure
hypothetical notation

ω′..
Γ; ∆ ` A@ω

to express a judgment hypothetical in the existence of world ω′ (which may be the same
as ω!). We also take the common shortcut of only permitting mention of worlds that exist.
Therefore, all judgments are hypothetical in at least some world (the world at which the
conclusion is formed), until we introduce world constants in Section 5.

Operationally, we will think of a falsehood assumption A?ω as a continuation, living at
world ω, that expects something of type A.

Our natural deduction system appears in Figure 1. These rules include proof terms,
which we will explain shortly. Aside from the falsehood context, the rules for 2, 3 and ⊃
are the same as in Lambda 5. The new connectives ⊥ (discussed below) and ∧ are treated
as they would be in the intuitionistic case. The major additions are the structural rules bc
(by contradiction) and # (contradict), which enable classical reasoning.

The bc rule is read as follows: In order to prove A@ω, we can assume that A is false at ω.
This corresponds directly to the classical axiom (¬A ⊃ A) ⊃ A. Operationally, this grabs
the current continuation and binds the falsehood variable to it. The # rule may be alarming
at first glance, because it requires the assumption A?ω to appear in the conclusion. This is
because the # rule is actually the hypothesis rule for falsehood assumptions, and will have a
corresponding substitution principle.3 The rule simply states that if we have the assumption
that A is false and are able to prove that A is true (at the same world), then we can deduce
a contradiction and thus any proposition. The # rule is realized operationally as a throw

of an expression to a matching continuation. Note that continuations are global—we can
throw from any world to a remote continuation A?ω, provided that we are able to construct
a proof of A@ω.

The rules for 2 and 3 are important to review. 2 elimination is the easiest to understand:
If we know that 2A is true at some world, then we know A is true at the same world. To
prove 2A, we must prove A at a hypothetical world about which nothing is known (rule
2I). Operationally, we realize 2A as a piece of suspended code, with the hypothetical world
ω′ bound within it. Introduction of 3 is simple; if we know A then we know that A is true

3A theory of hypothetical hypotheticals would be able to express this in a less awkward—but perhaps no
less alarming—way. Abel [1] for instance gives such a third-order encoding of the λµ-calculus.

4

somewhere (namely here). Operationally this will record the value in a table and return an
address that witnesses its existence. Elimination of 3 is as follows: if we know 3A, then we
know there is some world where A is true (but we don’t know anything else about it). Call
this world ω′ and assume A@ω′ in order to continue reasoning. Finally, we provide motion
rules (as per our decomposition) 2M and 3M . Both simply allow knowledge of 2A or 3A
at one world to be transported to another. Operationally these move the values between
worlds.

Bottom has no introduction form, but we allow the remote elimination of it (rule ⊥E).
This is similar to the motion rules for 2 and 3, except that nothing is ever returned, because
there is no canonical value of type ⊥. For this reason we call the proof term rpc, as it invokes
a sort of remote procedure call on the target world.4

For each kind of hypothesis we have a substitution theorem.

Theorem 1 (Truth Substitution)
If Γ; ∆ `M : A@ω
and Γ, x:A@ω; ∆ ` N : B@ω′

then Γ; ∆ ` [M/x]N : B@ω′.

Theorem 2 (Falsehood Substitution)
If ∀C, ω′′. Γ, x:A@ω; ∆ `M : C @ω′′

and Γ; ∆, u:A?ω ` N : B@ω′

then Γ; ∆ ` [[x.M/u]]N : B@ω′.

Here, truth substitution [M/x]N is defined in the standard way. Note again that a
proof of type B@ω′ can contain sub-expressions that are well-typed at other worlds! In
the operational semantics we will always ship these expressions to their home world before
evaluating them. Theorem 2, however, warrants special attention. This principle is dual to
the # rule just as Theorem 1 is dual to hyp. The # rule contradicts an A?ω with an A@ω,
so to eliminate a falsehood assumption by substitution we are able to assume A@ω and must
produce another contradiction. Reading ` as logical consequence, we have that if A false
gives B, and A true gives C (for all C), then B. This can easily be seen as a consequence of
excluded middle. We write this substitution as [[x.M/u]]N where x is a binder (with scope
through M) that stands for the value thrown to u. It is defined pointwise on N except for
a use of the # rule on u:

[[x.M/u]] throwN ′ tou
.
= [N ′/x]M

This principle is close to what Parigot calls structural substitution for the λµ-calculus.
Operationally, we see this as replacing the throw with some other handler for A. Since the
new handler must have parametric type, typically it is a throw to some other continuation,
perhaps after performing some computation on the proof of A.

Proof of Theorem 2 is by a straightforward induction on the derivation of B, appealing
to Theorem 1 in the case above. 2

4We could have equivalently had a get⊥ and a local abort, but there appears to be no practical use to
this decomposition.

5

Γ, A@ω # A?ω,∆
contra

Γ,⊥@ω # ∆
⊥T

Γ, A ⊃ B@ω,B@ω # ∆
Γ, A ⊃ B@ω # A?ω,∆

Γ, A ⊃ B@ω # ∆
⊃ T

Γ, A@ω # B?ω,A ⊃ B?ω,D

Γ # A ⊃ B?ω,D
⊃ F

Γ,2A@ω,A@ω′ # ∆

Γ,2A@ω # ∆
2T

ω′..
Γ # A?ω′,2A?ω,∆

Γ # 2A?ω,∆
2F

ω′..
Γ,3A@ω,A@ω′ # ∆

Γ,3A@ω # ∆
3T

Γ # A?ω′,3A?ω,∆

Γ # 3A?ω,∆
3F

Γ, A ∧B@ω,A@ω,B@ω # ∆

Γ, A ∧B@ω # ∆
∧T

Γ # A?ω,A ∧B?ω,∆
Γ # B?ω,A ∧B?ω,∆

Γ # A ∧B?ω,∆ ∧F

Figure 2: Classical S5 sequent calculus

We wish to know that our proof theory (specially constructed to give rise to a good oper-
ational semantics) is not simply ad hoc; that it really embodies classical S5, and is globally
sound. To do so we prove in the next section a correspondence to a straightforward sequent
formulation of classical S5 with the subformula property. We’ll use the sequent calculus as
intuition as we develop proof terms for some classically true propositions. Following that is
a discussion of the operational semantics (Section 5), which does not depend on the sequent
calculus.

3 Sequent Calculus

Our sequent calculus is motivated by simplicity and duality alone, because we will not give
it a computational interpretation. One traditional way of doing classical theorem proving is
to negate the target formula and prove a contradiction from it. We base our sequent calculus
around this view: the sequent

Γ # ∆

means that the truth assumptions in Γ and the falsehood assumptions in ∆ are mutually
contradictory.5 The calculus is given in Figure 2. We treat contexts as unordered multisets,
so the action can occur anywhere in either context.

These rules should be read bottom-up, as if during proof search. The contra rule allows
us to form a contradiction whenever a proposition is both true and false at the same world.
The 2T rule says that if we know 2A@ω, then we know A@ω′ for any ω′ that exists. On the

5Our rules are also consistent with the more typical multiple-conclusion reading, “if all of Γ are true, then
one of ∆ is true.”

6

other hand, if we know that 2A is false, then we know A is false at some world ω′. However,
we must treat this world as hypothetical and fresh since we don’t know which one it is. The
rules for 3 are perfect mirror images of the rules for 2. For implication, we use the classical
truth tables to provide rules of inference. If we know that A ⊃ B is false, then we know A
is true but B is false. If we know that A ⊃ B is true, then we know that either A is false or
B is true.

A key feature of the sequent calculus is the subformula property: every step (when read
bottom-up) proceeds by decomposing exactly one connective. This means that proofs in the
sequent calculus work by only examining the structure of the proposition at hand; this gives
us a nice orthogonality condition for the connectives in our logic.

The translation from natural deduction to the sequent calculus requires a lemma (which
should not be a rule of inference because it violates the subformula property). In an intu-
itionistic calculus this would be cut ; for the symmetric classical calculus it turns out to be
the familiar classical notion of excluded middle.

Theorem 3 (Excluded Middle)
If Γ, A@ω # ∆
and Γ # A?ω,∆
then Γ # ∆.

Proof of Theorem 3 is by lexicographic induction on the proposition A and then on the
two derivations. 2

With excluded middle, we can prove the correspondence between natural deduction and
the sequent calculus.

Theorem 4 (Equivalence)
(a) If Γ; ∆ `M : A@ω

then Γ # A?ω,∆.

(b) If Γ # ∆
then ∃M. ∀C, ω. Γ; ∆ `M : C @ω.

It is easy to see why 4(b) is the right statement. Since we think of Γ # ∆ as a proof
of contradiction, this corresponds to a derivation that proves any proposition at any world
in natural deduction. Theorem 4(a) is more subtle. We show that if A is true under
assumptions Γ and ∆, then A being false at the same world is contradictory with those
assumptions. Computationally, we can think of this as the “final continuation” to which the
result computed in natural deduction is passed. Putting these two theorems together, we have
that Γ; ∆ `M : A@ω gives Γ # A?ω,∆, which then gives ∀C, ω′. Γ; ∆, u:A?ω `M ′ : C @ω′.
In particular, we choose C = A and ω′ = ω, and then by application of bc we have the
original judgment (with perhaps a different proof term letccu inM ′). Thus ` and # are
really equivalent.

The proof of Theorem 4(a) is by straightforward induction on the derivation, using The-
orem 3 where necessary. (The structural rules bc and # just become uses of contraction and
weakening in the sequent calculus.) Proof of 4(b) is tricker. Uses of T rules are easy; they

7

correspond directly to the elimination rules6 in natural deduction. But since our natural
deduction is biased towards manipulating truth rather than falsehood, the F rules are more
difficult and make nontrivial use of the falsehood substitution theorem. For instance, in the
∧F case we have by induction:

Γ; ∆, up:A ∧B?ω, ua:A?ω ` N1 : C @ω′ (∀C, ω′)
Γ; ∆, up:A ∧B?ω, ub:B?ω ` N2 : C @ω′ (∀C, ω′)

By two applications of Theorem 2, we get that the following proof term has any type at any
world: [[

x.[[y. throw 〈x, y〉 toup/ub]]N2 /ua
]]
N1

First, we form a throw of the pair 〈x, y〉 to our pair continuation up. This has free truth
hypotheses x : A and y : B. Therefore, we can use it to substitute away the ub continuation
in N2 (any throw of M to ub becomes a throw of 〈x,M〉 to up). Finally, we can use this
new term to substitute away ua in N1, giving us a term that depends only on the pair
continuation up. This pattern of prepending work onto continuations through substitution
is characteristic of this proof, and reflects our bias towards the truth judgment in natural
deduction. As another example, in the case for the 3F rule we have by induction:

Γ; ∆, u:A?ω′, ud:3A?ω ` N : C @ω′′ (∀C, ω′′)

Our proof term in natural deduction is then:

[[x. throw(get3[ω′](herex)) toud/u]]N

Simply enough, if u is ever thrown to, then we instead take that term’s address (which lives
at ω′), move it to ω, and throw it to our 3A continuation ud.

Finally, the case for 2F is interesting because it involves a letcc.7 By induction we
have:

∀ω′. Γ; ∆, u:A?ω′, ub:2A?ω ` N : C @ω′′ (∀C, ω′′)
Then the proof term witnessing the theorem here is:

throw(box ω′. letccu inN) toub

It is not possible to use falsehood substitution on u in this case. To do so we would need to
turn a term of type A@ω′ into a 2A@ω to throw to ub. Although at a meta-level we know
that we can choose any ω′, it won’t be possible to internalize this in order to create a 2A.
Instead we must introduce a new box, and choose ω′ to be the new hypothetical world that
the 2I rule introduces. At that point we use letcc to create a real A?ω′ assumption to
discharge u. The remaining cases are similar or straightforward, and can be found in full
detail in the Twelf code, which can be found in Appendix A.8 2

6Except for implication, which is phrased differently in the sequent calculus.
7In fact, this is the only place in the proof where a letcc is necessary. This suggests a normal form for

natural deduction terms where letcc appears only once at the outermost scope and immediately inside each
box .

8The most natural LF encoding of falsehood is 3rd-order [1]; we use a 2nd-order encoding in our proofs
(proving the falsehood substitution theorem by hand) because third-order proof checking is not yet in the
distribution.

8

4 Examples

In this section we give proof terms showing the new connection between 2 and 3 made
possible by network-wide continuations. Because the examples we’ll look at involve negation
(¬A), we’ll need to briefly explain how we treat it.

4.1 Negation

Although we have not given the rules for the negation connective, it is easily added to the
system. Here we equivalently take the standard shortcut of treating ¬A as an abbreviation
for A ⊃ ⊥. We computationally read ¬A@ω as a continuation expecting A, although
this should be distinguished from primitive continuations u with type A ? ω: the former
is formed by lambda abstraction and eliminated by application, while the latter is formed
with letcc and eliminated by a throw to it. The two are related in that we can reify a
continuation assumption u:A?ω as a negated formula ¬A by lambda abstracting a throw
to it: λa. throw a tou. Likewise, we can get a falsehood assumption from a term M of type
¬A, namely M(letccu in . . .).

Finally, note that we have derived sequent calculus rules ¬T and ¬F . Each just flips
the proposition under negation to the other side of the sequent, as expected. (The reader
can verify that these are indeed the rules derived from ⊃ T and ⊃ F if the antecedent of
implication is ⊥.)

4.2 Classical Axioms

Our first example comes from the standard practice in classical modal logic of defining 2 in
terms of 3:

2A ≡ ¬3¬A
From left to right the implication is intuitionistically valid, so we’ll look at the proof of
the implication right to left. We begin with the sequent calculus proof, to show why this is
clearly true classically. We elide any residual assumptions that go unused.

−, A@ω′ # A@ω′,− contra

− # ¬A@ω′, A@ω′,− ¬F

− # 3¬A@ω,A@ω′,− 3F

− # 3¬A@ω,2A@ω 2F ω′

¬3¬A@ω # 2A@ω
¬T

¬3¬A ⊃ 2A@ω
⊃ F

Critically, we are using 2F to get the hypothetical world at which 2A is false. From there,
we can learn ¬A at the same world, which leads to a contradiction. In natural deduction,
the proof tells an interesting story:

λdc. (dc : ¬3¬A@ω)
box ω′. (need to return A)
letccu in rpc[ω] (applying dc will yield ⊥)
dc(get3[ω](here(λa. throw a tou)))

9

In each example, we’ll assume that the whole term lives at the world ω. Operationally, the
reading of ¬3¬A ⊃ 2A is that given a continuation dc (expecting the address of an A
continuation), we will return a boxed A that is well-formed anywhere. The proof term given
accomplishes this by creating a box that, when opened, grabs the current continuation u,
which has type A?ω′. With the continuation in hand, we travel back to ω (where dc lives),
and apply dc to the address of a function that throws to u. In short, at the moment the box
is opened we have a lack of an A, which we can grab with letcc and then take the address
of with here. This is enough to send to the continuation that we’re provided.

Dually we can define 3 in terms of 2. Again, one direction is intuitionistically valid.
The other,

¬2¬A ⊃ 3A

is asked to conjure up an address of an arbitrary A given a continuation. It is implemented
by the following proof term:

λbc. (bc: ¬2¬A@ω)
letccu in (u : 3A?ω)
bc(box ω′.λa. (a : A@ω′)

throw(get3[ω′](here a)) tou)

Here, we immediately do a letcc, grabbing the 3A continuation at ω. We then form a box

to pass to the continuation bc. It contains a function of type A ⊃ ⊥, which takes the address
of its argument and throws it to the saved continuation u. Thus the location of A that we
return is any world that invokes the ¬A that we’ve boxed up.

We’ve left disjunction out of our calculus. Theoretically it poses no problem, although
operationally it requires us to perform some tricks to avoid a strange “remote case analysis.”
In Section 7 however, we see that we can encode it using the de Morgan translation into ¬
and ∧. Regardless of how we implement it, disjunction is a source of a wealth of interesting
programs.

Without being as formal, let’s take a look at a program implementing the classical axiom
2A∨3¬A. We’ll assume constructors inl and inr for injecting into the disjunction. Those
familiar with the implementation of the axiom A ∨ ¬A might guess that this returns the
address of an A continuation, as in that case. Actually, this doesn’t work! We can’t build a
2A by accumulating evidence for A at different worlds. Instead, we return again a box that
does something when opened.

letccuo in (uo : 2A ∨3¬A?ω)
inl(box ω′.

letccu in
throw(inr(get3[ω′] here(λa. throw a tou)))
touo)

First we save the current continuation as uo, since we will need to “change our minds” about
which clause we return! Initially, we return a box whose body also grabs the continuation
(of type A?ω′) as u. Suppose the box is opened at the world ω′. We then throw to the

10

remote continuation uo a program that comes back to ω′, forms a term of ¬A, publishes it,
and moves it to the first world.

To summarize, when asked for 2A ∨3¬A, the program

1. initially says 2A.

2. if the box is opened, the program uses the lack of A to produce a 3¬A, time travels
back to when it was asked about the disjunction, and returns this different answer.

3. if the ¬A continuation is ever invoked, the program goes back and uses the A to fulfill
the outstanding lack of A at the world where the box was opened.

In the style of sci-fi storytelling popular when describing such things, we conclude our
examples with the following fable (with apologies to Wadler [16]):

A magician who purports to be from the future is making bold claims. Asking
for a volunteer, he offers the following prize to anyone who comes on stage:

“I’m going to hand you a box that has you inside it!”
“Either that, or I’ll give you the address of a place with a magical time

travelling portal.”
Being questionably brave, you volunteer and walk onto the stage. The magi-

cian hands you your prize—a large cardboard box. Noting your skepticism, he
adds, “You can open it anywhere, and you’ll be inside.”

You decide to take the box home. It’s much too light to have anything in it,
let alone yourself! You open the box and look inside, wondering what sort of gag
he has planned. But suddenly you find that the box has disappeared, and you’re
standing on stage waiting for him to tell you what you’ve won, again.

“The address of the time-travelling portal is,” he begins, rattling off your
home address. You are startled that he could have known your address, but when
you later arrive home, you see an open cardboard box waiting. Is this supposed
to be the portal? Knowing it to be harmless, but insisting upon proving the
magician to be a fraud, you step into it.

A hot flash of embarassment passes over you as you realize that you are now
standing in a cardboard box, in your house, as promised.

5 Type System and Operational Semantics

Our deductive proof theory begets a natural programming language whose syntax is the
proof terms from Figure 1. In order to give this language an operational interpretation, we
need to introduce a number of syntactic constructs, which are given in Figure 3.

As in Lambda 5, the behavior of a program is specified in terms of an abstract network
that steps from state to state. The network is built out of a fixed number of worlds, whose
names we write as bold w. Because we can now mention specific worlds in addition to
hypothetical worlds ω, we introduce world expressions, which are written with a Roman w.
A network state N has two parts. First is a world configurationW which identifies two tables

11

types A,B ::= A ⊃ B | 2A | 3A | A ∧B | ⊥
networks N ::= W;R
configs W ::= {w1 : 〈χ1, b1〉, · · · }
cursors R ::= w : [k ≺ v] | w : [k �M]
tables b ::= • | b, ` = v
cont tables χ ::= • | χ,k = k
config types Σ ::= {w1 : 〈X1, β1〉, · · · }
table types β ::= • | β, ` : A
ctable types X ::= • | X,k : A
world exps w ::= ω | w
world vars ω world names w
labels ` value vars x, y
cont labs k cont vars u
values v ::= λx.M | box ω.M | w.` | 〈v, v′〉
conts k ::= returnZ | finish

| abort | k � f
cont exps Z ::= w.k | u
frames f ::= ◦ N | v ◦ | here ◦ | unbox ◦

| letdω.x = ◦ inN | πn◦
| 〈◦, N〉 | 〈v, ◦〉

exps M,N ::= v | MN | x | ` | get2[w]M
| hereM | get3[w]M
| unboxM | letdω.x = M inN
| rpc[w]M | letccu inM
| throwM toZ | 〈M,N〉 | πnM

Figure 3: Syntax of type system

with each world wi present. The first table χi stores network-wide continuations by mapping
continuation labels k to literal continuations k. The second table bi maps value labels ` to
values in order to store values whose address we have published. These tables have types X
and β respectively (which map labels k and ` to types), and so we can likewise construct
the type of an entire configuration, written Σ.

Aside from the current world configuration, a network state also contains a cursor de-
noting the current focus of computation. The cursor either takes the form w : [k ≺ v]
(returning the value v to the continuation k) or w : [k �M] (evaluating the expression M in
continuation k). In either case it selects a world w where the computation is taking place.

Continuations themselves are stacks of frames (expressions with a “hole,” written ◦)
with a bottommost return, finish or abort. The finish continuation represents the end
of computation, so a network state whose cursor is returning a value to finish is called
terminal. The abort continuation will be unreachable, and return will send the received
value to a remote continuation.

12

Most of the expressions and values are straightforward. As in Lambda 5, the canoni-
cal value for 2 abstracts over the hypothetical world and leaves its argument unevaluated
(box ω′.M). The canonical form for 3 is a pair of a world name and a label w.`, which
addresses a table entry at that world. Such an address is well-formed anywhere (assuming
that w’s table has a label ` containing a value of type A) and has type 3A@w′. On the
other hand we have another sort of label, written just `, which is disembodied from its world.
These labels arise from the letd construct, which deconstructs an address w.` into its com-
ponents w and ` (see the 3E rule from Figure 1). Disembodied labels only make sense at a
single world—here ` would have type A@w.

Although the external language only allows a throw to a continuation variable, interme-
diate states of evaluation require that these be replaced with the continuation expression
w.k, which pairs a continuation label with the world at which it lives. These continuation
expressions are filled in by letcc.

Judgment Reading

Σ; Γ; ∆ `M : A@w The expression M has type A at world w
Σ ` k : A?w The continuation k expects a value of type A at

world w
Σ; ∆ ` Z : A?w The continuation expression Z is well-formed with

type A at w
Σ ` b@w The value table b is well-formed at the world

named w
Σ ` χ?w The continuation table χ is well-formed at the

world named w
Σ ` R The cursor is well-formed
Σ ` N The network is well-formed

Figure 4: Index of Judgments. In each judgment Σ is a configuration typing, Γ is a context
of truth hypotheses, and ∆ is a context of falsehood hypotheses

The type system is given in Figure 5 (we omit for space the rules that are the same as
in Figure 1 except for the configuration typing Σ). The index of judgments in Figure 4 may
be a useful reference in understanding them.

The rules addr and lab are used to type run-time artifacts of address publishing. In either
case, we look up the type in the appropriate table typing β. As mentioned, throw allows a
continuation expression Z, which must take the form of a variable (typed with hyp?, as in
the logic) or address into a continuation table.

Typing of literal continuations k is fairly unsurprising. Note that the judgment Σ ` k :
A?w means that the continuation k expects a value of type A at w. The return continuation
arises only from a get3 or get2, and so it allows only values of type 3A or 2A. We re-use
the network continuation mechanism here to refer to the outstanding get3 or get2 on the
remote machine.

For an entire network to be well-formed (rule net), all of the tables must have the type
indicated by the configuration type Σ, which means that they must have exactly the same

13

Σ(w) = 〈X, β〉 β(`) = A

Σ; Γ; ∆ ` w.` : 3A@w′
addr

Σ(w) = 〈X, β〉 β(`) = A

Σ; Γ; ∆ ` ` : A@w
lab

Σ; Γ; ∆ `M : A@w Σ; ∆ ` Z : A?w

Σ; Γ; ∆ ` throwM toZ : C @w′
throw

Σ; Γ; ∆, u : A?w `M : A@w

Σ; Γ; ∆ ` letccu inM : A@w
letcc

Σ(w) = 〈X, β〉 X(k) = A

Σ; ∆ ` w.k : A?w addr? Σ; ∆, u : A?w ` u : A?w
hyp?

Σ ` abort : ⊥?w
kabort

Σ ` finish : A?w
kfinish

A = 2A′ or 3A′ Σ; · ` Z : A?w′

Σ ` returnZ : A?w
kret

Σ ` k : 3A?w
Σ ` k � here ◦ : A?w

khere

Σ ` k : B?w Σ; ·; · ` N : A@w

Σ ` k � ◦N : A ⊃ B?w
kapp1

Σ ` k : B?w Σ; ·; · ` v : A ⊃ B@w

Σ ` k � v◦ : A?w
kapp2

Σ ` k : C ?w

ω..
Σ;x : A@ω; · ` N : C @w

Σ ` k � letdω.x = ◦ inN : 3A?w
kletd

Σ ` k : A?w
Σ ` k � unbox ◦ : 2A?w

kunbox

Σ ` k : A ∧B?w Σ; ·; · ` N : B@w

Σ ` k � 〈◦, N〉 : A?w
kpair1

Σ ` k : A ∧B?w Σ; ·; · ` v : A@w

Σ ` k � 〈v, ◦〉 : B?w
kpair2

β = (`1 : A1, . . .) Σ; ·; · ` v1 : A1 @w . . .

{· · · ,w : 〈X, β〉, · · · }︸ ︷︷ ︸
Σ

` `1 = v1, . . .︸ ︷︷ ︸
b

@w
b

X = (k1 : A1, . . .) Σ ` k1 : A1 ?w . . .

{· · · ,w : 〈X, β〉, · · · }︸ ︷︷ ︸
Σ

` k1 = k1, . . .︸ ︷︷ ︸
χ

?w
χ

w ∈ dom(Σ)
Σ; ·; · ` v : A@w Σ ` k : A?w

Σ ` w : [k ≺ v]
ret

w ∈ dom(Σ)
Σ; ·; · `M : A@w Σ ` k : A?w

Σ ` w : [k �M]
eval

Σ ` R Σ ` χi@wi . . . Σ ` bi@wi . . .

Σ ` {w1 : 〈χ1, b1〉, · · · ,wm : 〈χm, bm〉};R
net

Figure 5: Type System

labels, and the values or continuations must be well-typed at the specified types (rules b
and χ). Finally, the cursor must be well-formed: it must select a world that exists in the
network, and there must exist a type A such that its continuation and value or expression
both have type A and are closed.

Having set up the syntax and type system, we can now give the operational semantics
and type safety theorem. After the following section we remark on how the semantics can
be made concurrent, and some thoughts on applications of distributed continuations.

14

⊃e-p W; w : [k �MN] 7→ W; w : [k � ◦N �M]
⊃e-s W; w : [k � ◦N ≺ v] 7→ W; w : [k � v ◦ � N]
⊃e-r W; w : [k � (λx.M)◦ ≺ v] 7→ W; w : [k � [v/x]M]
∧i-p W; w : [k � 〈M,N〉] 7→ W; w : [k � 〈◦, N〉 �M]
∧i-s W; w : [k � 〈◦, N〉 ≺ v] 7→ W; w : [k � 〈v, ◦〉 � N]
∧i-r W; w : [k � 〈v1, ◦〉 ≺ v2] 7→ W; w : [k ≺ 〈v1, v2〉]
∧en-p W; w : [k � πnM] 7→ W; w : [k � πn◦ �M]
∧en -r W; w : [k � πn ≺ 〈v1, v2〉] 7→ W; w : [k ≺ vn]
2i-v W; w : [k � box ω.M] 7→ W; w : [k ≺ box ω.M]
3i-v W; w : [k � w′.`] 7→ W; w : [k ≺ w′.`]
⊃i-v W; w : [k � λx.M] 7→ W; w : [k ≺ λx.M]
3i-p W; w : [k � hereM] 7→ W; w : [k � here ◦ �M]
3i-r {w : 〈χ, b〉, · · · }; w : [k � here ◦ ≺ v] 7→ {w : 〈χ, (b, ` = v)〉, · · · }; w : [k ≺ w.`]

(` fresh)
`-r {w : 〈χ, b〉, · · · }; w : [k � `] 7→ {w : 〈χ, b〉, · · · }; w : [k ≺ v]

(b(`) = v)
3e-p W; w : [k � letdω.x = M inN] 7→ W; w : [k � letdω.x = ◦ inN �M]
3e-r W; w : [k � letdω.x = ◦ inN ≺ w′.`] 7→ W; w : [k � [`/x][w′/ω]N]
2e-p W; w : [k � unboxM] 7→ W; w : [k � unbox ◦ �M]
2e-r W; w : [k � unbox ◦ ≺ box ω.M] 7→ W; w : [k � [w/ω]M]
letcc {w : 〈χ, b〉, · · · }; w : [k � letccu inM] 7→ {w : 〈(χ,k = k), b〉, · · · }; w : [k � [w.k/u]M]

(k fresh)
throw {w′ : 〈χ, b〉, · · · }; w : [k � throwM tow′.k] 7→ {w′ : 〈χ, b〉, · · · }; w′ : [k′ �M]

(χ(k) = k′)
rpc W; w : [k � rpc[w′]M] 7→ W; w′ : [abort �M]

(w ∈ dom(W))
2m {w : 〈χ, b〉, · · · }; w : [k � get3[w′]M] 7→ {w : 〈(χ,k = k), b〉, · · · }; w′ : [returnw.k �M]

(k fresh)
3m {w : 〈χ, b〉, · · · }; w : [k � get2[w′]M] 7→ {w : 〈(χ,k = k), b〉, · · · }; w′ : [returnw.k �M]

(k fresh)
ret {w : 〈χ, b〉, · · · }; w′ : [returnw.k ≺ v] 7→ {w : 〈χ, b〉, · · · }; w : [k ≺ v]

(χ(k) = k)

Figure 6: Operational Semantics

5.1 Operational Semantics

The operational semantics of our language is given in Figure 6, as a binary relation 7→
between network states. The semantics evaluates programs sequentially, though we give a
concurrent semantics in Section 6.

As should be obvious, the semantics is continuation-based. At any step, the cursor is
selecting a world and continuation, with a value to return to it or an expression to evaluate.
The rules generally fall into a few categories, as exemplified by the (standard) rules for ⊃:
There are push rules, in which we begin evaluating a subexpression of some M , pushing
the context into the continuation, swap rules, where we have finished evaluating one sub-
expression and move onto the next, and reduction rules, where we have a value and actually
do something with it. Every well-typed machine state will be closed with respect to truth,
falsehood, and world hypotheses, so we don’t have rules for variables and can specialize some

15

rules.
The first interesting rule is 3i-r. It publishes the value v and returns its address by

generating a new label, mapping that label to v within its value table, and returning the
pair w.`, where w is the current world. Whenever we try to evaluate a label (rule `-r), we
look it up in the current world’s value table in order to fetch the value. A key consequence
of type safety (Theorems 5, 6) is that labels are only evaluated in the correct world. To
eliminate an address (rule 3e-r) we substitute the constituent world and label through the
body of the letd. Note that this step is slightly non-standard, because we substitute the
expression ` for a variable rather than some value. But because the variable is in general
at a different world, we are not in a position to get its value yet. We instead wait until
the expression ` is sent to its home world (perhaps as part of some larger expression) to be
looked up. The rules for 2 are much simpler: box ω.M is already a value (rule 2i-v), and
to unbox we simply substitute the current world for the hypothetical one (rule 2e-r).

When encountering a letcc, we grab the current continuation k. Because the continu-
ation may be referred to from elsewhere in the network, we publish it in a table and form
a global address for it (of the form w.k), just as we did for 3 addresses. This value is sub-
stituted for the falsehood variable u using standard substitution—not the special falsehood
substitition we used in Section 2. The latter was a proof-theoretic notion used to eliminate
uses of the hypothesis; here we want the use of the hypothesis (throw) to have run-time
significance. A point of comparison is the above paragraph, where we substituted the ex-
pression ` for a variable because we wanted to delay the operation until the time the variable
is “looked up.”

Throwing to a continuation (rule throw) is handled straightforwardly. The continuation
expression will be closed, and therefore of the form w′.k. We look up the label k in w′—or
rather, cause w′ to look it up—and pass the expression M to it. Note that we do not evaluate
the argument before throwing it to the remote continuation. In general we can not evaluate
it, because it is only well-typed at the remote world, which may be different from the world
we’re in.

Finally, we have the rules that move between worlds. The rule for rpc is easiest; since the
target world expression must be closed it will be a world constant in the domain of W. We
simply move the cursor to that world (destroying the current continuation, which can never
be reached), and begin evaluating the expression M under the unreachable continuation
abort. The rules for get3 and get2 work similarly, but they need to save the current
continuation since they will be returned to! These steps push a return frame, which reduces
like throw. In contrast, however, the argument (of type 2A or 3A) will be eagerly evaluated,
because such values are portable. (After all, the whole point is to create the box at one world
and then move it to another.)

In order for our language to make sense it must be type safe; any well-typed program
must have a well-defined meaning as a sequence of steps in the abstract network. Type safety
is stated as usual in terms of progress and preservation:

Theorem 5 (Progress)
If Σ ` N
then either N is terminal or ∃N′.N 7→ N

′.

16

Theorem 6 (Preservation)
If Σ ` N and N 7→ N

′

then ∃Σ′. Σ′ ⊇ Σ and Σ′ ` N′.

Progress says that any well-formed network state can take another step, or is done.
(Recall a terminal network is one where the cursor is returning a value to a finish con-
tinuation.) Preservation says that any well-typed network state that takes a step results in
another well-typed state (perhaps in an extended configuration typing Σ′9). By iterating
alternate applications of these theorems we see that any well-typed program is able to step
repeatedly and remain well-formed, or else eventually comes to rest in a terminal state.

6 Concurrency and Communication

Many distributed computing problems benefit from concurrency, with one or more processes
running on each node in the network. This section gives some brief thoughts on concurrency
in our classical calculus.

First-class continuations are often used in the implementation of coroutines. With prim-
itives for recursion and state we could also implement coroutines in C5, however, such an
implementation is silly because it would require the implementation of a global scheduler,
and would anyway defeat the purpose of concurrency on multiple nodes—only one coroutine
would be running at any given time!

Fortunately, our operational semantics admits ad hoc concurrency easily. If we simply
replace the cursor R in our network state “W;R” with a multiset of cursors <, then we can
permit a step on any one of these cursors essentially according to the old rules. Formally,

W;< 7→c
W
′;<′

iff < = R] <rest
and W;R 7→W

′;R′

and <′ = R′] <rest

We can then add primitives as desired to spawn new cursors. A very simple one evaluates
M and N in parallel and returns each one to the same continuation.

Γ; ∆ `M : A@w Γ; ∆ ` N : A@w

Γ; ∆ `M |N : A@w
par

W;<]w:[k �M |N] 7→c
W;<]w:[k �M]]w:[k � N]

A suitable extension of type safety holds for 7→c.
With concurrency in place we can implement CML-style channels [13] with the help of

continuations (and a few other features for developing mutable recursive structures). The
type of a channel carrying values of type A could be:

A chan
.
= 3(A queue ∧ (¬A) queue)

9Σ′ ⊇ Σ iff Σ′ and Σ each describe the same set of worlds, and for each world, if X ′(k) = A then
X(k) = A, and likewise for β′ and β.

17

Here a channel is represented as the address of a pair of queues. In order to send to this
channel, the sender must be able to bring a value of type A to the world where the channel
lives, so it must be a box or diamond type itself (or see Section 8 for more options). The first
queue holds the values that have been sent on the channel and not yet received, the second
holds the continuations of outstanding recvs. To implement recv (assuming no values are
waiting in the first queue), we grab the current continuation, enqueue it, and abort.

This is a standard technique; the point here is to emphasize the utility of continuations
as primitives for implementing useful distributed computing features.

7 Disjunction

To add disjunction to C5, we need to use the following elimination form in order to preserve
the correspondence with classical S5:

Γ; ∆ `M : A ∨B@ω′

Γ, x:A@ω′; ∆ ` N1 : C @ω
Γ, x:B@ω′; ∆ ` N2 : C @ω

Γ; ∆ `
caseM of

inlx⇒ N1

| inrx⇒ N2

: C @ω

∨E

This rule is completely unsurprising except that the case object M is at a different world,
ω′. In our logic we’ve tried hard to avoid this sort of action-at-a-distance, instead preferring
to have our introduction and elimination rules compute locally. However, a motion rule
for disjunction is out of the question, because it is unsound: it is not the case that if
Γ; ∆ ` A ∨ B@ω then necessarily Γ; ∆ ` A ∨ B@ω′. In our previous paper we speculated
that this rule could be implemented nonetheless by sending back merely a bit telling the case-
analyzing world which branch it should enter, but this requires some suspicious operational
machinery. The same is true in the classical case, which is why we have avoided treating
disjunction so far.

The problem with a local rule (where all four worlds are the same) comes when translating
the sequent calculus rule

Γ, A ∨B@ω,A@ω # ∆
Γ, A ∨B@ω,B@ω # ∆

Γ, A ∨B@ω # ∆
∨T

into natural deduction for Theorem 4(b). We have by induction

Γ, x:A ∨B@ω, a:A@ω; ∆ ` N1 : C @ω′ (∀C, ω′)
Γ, x:A ∨B@ω, b:B@ω; ∆ ` N2 : C @ω′ (∀C, ω′)

and a derivation of Γ, x:A ∨ B@ω; ∆ ` x : A ∨ B@ω by the hyp rule. However, we cannot
apply a local ∨-elimination rule, because it would require its object x to be at the same
world as its conclusion. Thus we are able to prove C at ω, but not at all worlds.

18

As it turns out, support for disjunction and remote disjunction elimination is already
present in C5, thanks to one of de Morgan’s laws. Suppose that we define A ∨B as follows

A ∨B .
= ¬(¬A ∧ ¬B)

That is, A∨B becomes a continuation that takes two continuations: one if the disjunct is A,
and one if the disjunct is B. This technique is well-known for CPS conversion, and first-class
continuations let us do it without having to CPS-convert the entire program. Encoding the
injections is easy:

inlM
.
= λab.(π1ab)M

inrM
.
= λab.(π2ab)M

Encoding local case analysis is standard:

caseM of

inlx⇒ N1

| inrx⇒ N2

.
=

letccu
inM〈λx. throwN1 tou,

λx. throwN2 tou〉

Finally, because we have locally CPS-converted, we can do the case analysis remotely, and
rely on throw to get us back:

caseM of

inlx⇒ N1

| inrx⇒ N2

.
=

letccu
in rpc[ω′]M〈λx. throwN1 tou,

λx. throwN2 tou〉

This has exactly the same typing conditions as the remote rule above; x is bound to the
remote type A@ω′, even though the expression N1 is evaluated at ω.

Classical logic is ripe with possibilities for definition. It is interesting to consider their
implications. Recall that in Section 4 we proved 3A equivalent to ¬2¬A. This means that,
as classicists typically do, we could then just consider 3A as a derived form. This would
amount to a roundabout way of using the continuation table to publish values rather than
the value table. Clearly, we could also take the even stranger route of defining 2A in terms
of 3, which gives us a mobile code “server” that sends code to our continuation whenever
we like.

8 Generalizing get

The typing rules and operational semantics for get3 and get2 are almost identical, sug-
gesting the possibility of factoring out the common functionality into a single construct. In
fact, when we add base types to C5 the desire for such a general get mechanism becomes
clear—the calculus does not currently support a way to directly retrieve simple data like in-
tegers, so the programmer is required to implement this mobility himself by deconstructing
the value at the source world and reintroducing it at the destination.

19

Not all types support this kind of mobility. Therefore, we create a judgment Amobile,
and only allow get on types that satisfy it.

Γ; ∆ `M : A@ω′ Amobile

Γ; ∆ ` get[ω′]M : A@ω
get

The mobile judgment is defined inductively:

2Amobile 3Amobile

Amobile B mobile
A ∧B mobile intmobile

⊥mobile

Note that 2A is always mobile, whereas A∧B is only mobile if both of its constituent types
are also mobile. We have also left out implication entirely. The general principle that decides
mobility for a type is as follows: Type A can be considered mobile if whenever Γ; ∆ ` A@ω,
then Γ; ∆ ` A@ω′ for any ω′. This tells us when we can logically introduce a get at A
without getting in trouble. However, because get is only required for completeness at 2 and
3 types (since we have otherwise reduced their strength), we have significant flexibility in
what other types we allow to be mobile. This is largely an operational concern, the question
being: Can we provide a more efficient implementation than the one that the user would
otherwise have to write? Sometimes the answer is clearly yes, as in the case of integers. For
other types the answer is probably no; although if A and B are mobile then A ⊃ B satisfies
the principle above, implementing get primitively for functions seems to require building a
proxy for the function, which is what a programmer would do to implement this mobility
himself.

9 Conclusions

9.1 Related Work

Parigot’s λµ-calculus has inspired many computational proof systems for classical logic,
including Wadler’s dual calculus [16]. The calculus is sequent-oriented and contains cut as
a computational primitive, emphasizing the duality of computing with values and covalues
(continuations). For programming in C5, we choose a natural deduction system which is
deliberately non-dual. We bias the logic towards truth, which corresponds to computing
mainly with values (as is typical) rather than covalues. Nevertheless, we expect that a dual
version of classical S5 could be easily made to work, perhaps starting from the sequent
calculus presented in Section 3.

Recently, others have used modal logic to describe distributed tasks or as the basis for
programming languages, although we know of no modal systems that feature distributed
continuations.

Borghuis and Feijs give an early computational interpretation of modal logic in their in-
tuitionistic Modal Type System for Networks [2]. Their calculus and logic describe programs

20

on a network with stationary services (e.g., printers, file converters) and mobile data (e.g.,
documents). They use 2, annotated with a location, to represent services. For example,
2o(A ⊃ B) means a function from A to B at the location o. However, the calculus has
no way of internalizing mobility as a proposition, so mobile data is limited to base types.
Services are similarly restricted to depth-one arrow types. By using 2 for mobile code and 3

for stationary resources, we believe our resulting calculus is both simpler and more general.
Moody [7] gives a system based on the constructive modal logic S4 due to Pfenning and

Davies [11]. This language is based on judgments A true (here), A poss (somewhere), and
A valid (everywhere) rather than the “explicit worlds” formulation of Lambda 5 and C5. The
operational semantics of his system takes the form of a process calculus with nondetermin-
ism, concurrency and synchronization; a significantly different approach from our sequential
abstract machine. Interpreted in the Kripke model, S4’s accessibility relation satisfies only
reflexivity and transitivity, not symmetry. Moody uses the limited accessibility to express
process interdependence rather than—as we do—connections between actual network loca-
tions. Programs are therefore somewhat higher-level and express potential mobility instead
of explicit code motion as in our mobility rules. In particular, due to the lack of symmetry it
is not possible to return to world after a remote procedure call from it, except by returning
a value.

Jia and Walker [6] give a judgmental account of an S5-like system based on intuitionistic
hybrid logic. Hybrid logics internalize worlds inside propositions by including a proposition
that a value of type A resides at world ω, “A atω.” This leads to a technically different logic
and language although they give a similar interpretation to the modalities. Their rules for
2 and 3 are non-local, which means that they rely heavily on global actions. Like Moody,
they give their network semantics as a process calculus with passive synchronization across
processes as a primitive notion.

9.2 Future Work

Our language now has a full arsenal of connectives and control operators, each connected
to logic. Much work remains before C5 can be a practical programming language rather
than exploratory calculus. Some are routine—adding extra-logical primitives like recursion
and references—and some are difficult—compilation of mobile code fragments, distributed
garbage collection, failure recovery, and certification.

Although we believe that C5 accomodates concurrency easily, it would be nice to have a
logically-inspired account of it. Some other directions remain open to try. Proof search in
linear logic sequent calculus [4] is known to admit an interpretation as concurrent computa-
tion [3]. Perhaps linear S5 in sequent style would be able to elegantly express both spatial
properties and concurrency in logic?

We have presented a proof theory and corresponding programming language, C5, based
on the classical modal logic S5. By exploiting the modalities we are able to give a logical ac-
count of mobility and locality, and thus an expressive programming language for distributed
computing. From the logic’s classical nature we derive the mechanism of distributed con-
tinuations, which creates a new connection between the 2 and 3 connectives, and forms a
basis for the implementation of distributed computing primitives.

21

Acknowledgements

Thanks to Jason Reed and Frank Pfenning for their suggestions and expertise with LF
encodings.

References

[1] Andreas Abel. A third-order representation of the λµ-Calculus. In S.J. Ambler, R.L. Crole,
and A. Momigliano, editors, Electronic Notes in Theoretical Computer Science, volume 58.
Elsevier, 2001.

[2] Tijn Borghuis and Loe M. G. Feijs. A constructive logic for services and information flow in
computer networks. The Computer Journal, 43(4):274–289, 2000.

[3] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92:69–108.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, January 1987.

[5] Timothy G. Griffin. The formulae-as-types notion of control. In Conf. Record 17th Annual
ACM Symp. on Principles of Programming Languages, POPL’90, San Francisco, CA, USA,
17–19 Jan 1990, pages 47–57. ACM Press, New York, 1990.

[6] Limin Jia and David Walker. Modal proofs as distributed programs. 13th European Symposium
on Programming, pages 219–223, March 2004.

[7] Jonathan Moody. Modal logic as a basis for distributed computation. Technical Report CMU-
CS-03-194, Carnegie Mellon University, Oct 2003.

[8] Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal
lambda calculus for distributed computing. In Proceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS 2004). IEEE Press, July 2004.

[9] Chetan Murthy. Classical proofs as programs: How, what and why. Technical Report TR91-
1215, Cornell University, 1991.

[10] Michel Parigot. λµ-Calculus: An algorithmic interpretation of classical natural deduction. In
Andrei Voronkov, editor, Logic Programming and Automated Reasoning, International Con-
ference LPAR’92, St. Petersburg, Russia, July 15-20, 1992, Proceedings, volume 624 of Lecture
Notes in Computer Science. Springer, 1992.

[11] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001. Notes to an invited talk at the Workshop
on Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[12] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-logical framework
for deductive systems. In Harald Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction, pages 202–206, Trento, Italy, July 1999. Springer-Verlag.
LNAI 1632.

[13] John H. Reppy. Concurrent Programming in ML. Cambridge University Press, Cambridge,
England, 1999.

22

[14] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF. In D. Basin
and B. Wolff, editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2003), pages 120–135, Rome, Italy, September 2003. Springer-
Verlag LNCS 2758.

[15] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1994.

[16] Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the 8th International
Conference on Functional Programming (ICFP). ACM Press, August 2003.

APPENDIX

A Mechanized Proofs

This appendix contains Twelf [12] code for the substitutions (which are free in LF except for
falsehood) and Theorems 3 (excluded middle) and 4 (equivalence). The proof of type safety
is considerably longer and less nice, because it must deal with stores and store types, which
must be implemented manually in LF. It is omitted from this report for space, but can be
found online at http://www.cs.cmu.edu/~concert/.

%% Classical Judgmental S5

%% Tom Murphy VII

%% Thanks: Frank Pfenning and Jason Reed

%% 8 Apr 2004

world : type. %name world W w.

prop : type. %name prop A.

%%% Natural deduction

% truth assumptions and conclusions

@ : prop -> world -> type. %name @ N.

%infix none 1 @.

% falsehood (continuation) assumptions

* : prop -> world -> type. %name * X.

%infix none 1 *.

% Implication

=> : prop -> prop -> prop.

%infix right 8 =>.

=>I : (A @ W -> B @ W) -> (A => B @ W).

=>E : (A => B @ W) -> A @ W -> B @ W.

% Necessity

2 : prop -> prop.

%prefix 9 2.

2I : (o:world A @ o) -> 2 A @ W.

2E : 2 A @ W -> A @ W.

2G : 2 A @ W’ -> 2 A @ W.

23

% Possibility

3 : prop -> prop.

%prefix 9 3.

3I : A @ W -> 3 A @ W.

3E : 3 A @ W -> (o:world A @ o -> C @ W) -> C @ W.

3G : 3 A @ W’ -> 3 A @ W.

% Conjunction

& : prop -> prop -> prop.

%infix none 9 &.

&I : A @ W -> B @ W -> (A & B @ W).

&E1 : (A & B @ W) -> A @ W.

&E2 : (A & B @ W) -> B @ W.

% Falsehood

⊥ : prop.

⊥E : ⊥ @ W -> C @ W’.

% Structural Rules

letcc : (A * W -> A @ W) ->

A @ W.

throw : A @ W ->

(A * W -> C @ W’).

%%% Sequent calculus

true : prop -> world -> type. %name true T t.

false : prop -> world -> type. %name false F f.

: type.

% judgmental

contra : true A W -> false A W -> #.

% arrow

=>T :

(false A W -> #) -> (true B W -> #) ->

(true (A => B) W -> #).

=>F :

(true A W -> false B W -> #) ->

(false (A => B) W -> #).

24

% box

2T :

(true A W’ -> #) ->

(true (2 A) W -> #).

2F :

(w:world false A w -> #) ->

(false (2 A) W -> #).

% dia

3T :

(w:world true A w -> #) ->

(true (3 A) W -> #).

3F :

(false A W’ -> #) ->

(false (3 A) W -> #).

% conjunction

&T :

(true A W -> true B W -> #) ->

(true (A & B) W -> #).

&F :

(false A W -> #) -> (false B W -> #) ->

(false (A & B) W -> #).

% falsehood

⊥T : true ⊥ W -> #.

% admissibility of excluded middle (cut)

xm : A:prop W:world (true A W -> #) -> (false A W -> #) -> # -> type.

%mode xm +A +W +D +E -F.

% initial cuts

xt_init : xm A W ([xt] contra xt D) ([xf] E xf) (E D).

xf_init : xm A W ([xt] D xt) ([xf] contra E xf) (D E).

% unused assumptions

xt_unused : xm A W ([x1] contra DT DF) E (contra DT DF).

xf_unused : xm A W D ([x1] contra ET EF) (contra ET EF).

% falsehood. actually falsehood is trivial because a principal

% cut is impossible, and the "commutative" cases aren’t even inductive.

xd_ct⊥ : xm A W ([at] ⊥T DD) _ (⊥T DD).

xe_ct⊥ : xm A W _ ([af] ⊥T EE) (⊥T EE).

25

% commutative cases.

% note that we need to consider each rule in both D and E, so

% there are four cases for each connective.

% implication

xd_ct=> : xm A W ([at : true A W] =>T

([cf : false C W’] D1 at cf)

([dt : true D W’] D2 at dt) DD) ([af] E af)

(=>T ([cf : false C W’] F1 cf) ([dt : true D W’] F2 dt) DD)

<- (cf : false C W’ xm A W ([at] D1 at cf) E (F1 cf))

<- (dt : true D W’ xm A W ([at] D2 at dt) E (F2 dt)).

xe_ct=> : xm A W ([at] DD at) ([af : false A W] =>T

([cf : false C W’] E1 af cf)

([dt : true D W’] E2 af dt) EE)

(=>T ([cf] F1 cf) ([dt] F2 dt) EE)

<- (cf : false C W’ xm A W DD ([af] E1 af cf) (F1 cf))

<- (dt : true D W’ xm A W DD ([af] E2 af dt) (F2 dt)).

xd_cf=> : xm A W ([at : true A W] =>F

([ct : true C W’] [df : false D W’] D’ at ct df) DD)

([af : false A W] E af)

(=>F ([ct : true C W’][df : false D W’] F ct df) DD)

<- (ct : true C W’ df : false D W’

xm A W ([at] D’ at ct df) E (F ct df)).

xe_cf=> : xm A W ([at : true A W] DD at)

([af : false A W] =>F

([ct : true C W’] [df : false D W’] E’ af ct df) EE)

(=>F ([ct : true C W’][df : false D W’] F ct df) EE)

<- (ct : true C W’ df : false D W’

xm A W DD ([af] E’ af ct df) (F ct df)).

% box

xd_ct2 : xm A W ([at : true A W] 2T ([bt : true B W’] D1 at bt) DD)

([af] E af)

(2T ([bt : true B W’] F1 bt) DD)

<- (bt : true B W’ xm A W ([at] D1 at bt) E (F1 bt)).

xe_ct2 : xm A W ([at] D at)

([af : false A W] 2T ([bt : true B W’] E1 af bt) EE)

(2T ([bt : true B W’] F1 bt) EE)

<- (bt : true B W’ xm A W D ([af] E1 af bt) (F1 bt)).

26

xd_cf2 : xm A W ([at : true A W] 2F ([w][bf : false B w] D1 at w bf) DD)

([af] E af)

(2F ([w][bf] F1 w bf) DD)

<- (w : worldbf : false B w

xm A W ([at] D1 at w bf) E (F1 w bf)).

xe_cf2 : xm A W ([at] D at)

([af] 2F ([w][bf : false B w] E1 af w bf) EE)

(2F ([w][bf] F1 w bf) EE)

<- (wbf xm A W D ([af] E1 af w bf) (F1 w bf)).

% dia

xd_ct3 : xm A W ([at : true A W] 3T ([w][bt] D1 at w bt) DD)

([af] E af)

(3T ([w][bt] F1 w bt) DD)

<- (wbt xm A W ([at] D1 at w bt) ([af] E af) (F1 w bt)).

xe_ct3 : xm A W ([at] D at)

([af] 3T ([w][bt] E1 af w bt) EE)

(3T ([w][bt] F1 w bt) EE)

<- (wbt xm A W ([at] D at) ([af] E1 af w bt) (F1 w bt)).

xd_cf3 : xm A W ([at] 3F ([bf : false B W’] D1 at bf) DD)

([af] E af)

(3F ([bf] F1 bf) DD)

<- (bf xm A W ([at] D1 at bf) ([af] E af) (F1 bf)).

xe_cf3 : xm A W ([at] D at)

([af] 3F ([bf : false B W’] E1 af bf) EE)

(3F ([bf] F1 bf) EE)

<- (bf xm A W ([at] D at) ([af] E1 af bf) (F1 bf)).

% conjunction

xd_ct& : xm A W ([at] &T ([ct][dt] D1 at ct dt) DD)

([af] E af)

(&T ([ct][dt] F1 ct dt) DD)

<- (ctdt xm A W ([at] D1 at ct dt) ([af] E af) (F1 ct dt)).

xe_ct& : xm A W ([at] D at)

([af] &T ([ct][dt] E1 af ct dt) EE)

(&T ([ct][dt] F1 ct dt) EE)

<- (ctdt xm A W ([at] D at) ([af] E1 af ct dt) (F1 ct dt)).

xd_cf& : xm A W ([at] &F ([cf] D1 at cf) ([df] D2 at df) DD)

([af] E af)

(&F ([cf] F1 cf) ([df] F2 df) DD)

<- (cf xm A W ([at] D1 at cf) ([af] E af) (F1 cf))

<- (df xm A W ([at] D2 at df) ([af] E af) (F2 df)).

27

xe_cf& : xm A W ([at] D at)

([af] &F ([cf] E1 af cf) ([df] E2 af df) EE)

(&F ([cf] F1 cf) ([df] F2 df) EE)

<- (cf xm A W ([at] D at) ([af] E1 af cf) (F1 cf))

<- (df xm A W ([at] D at) ([af] E2 af df) (F2 df)).

% principal cuts. there is one case for each connective;

% a use of the true rule on A in D, and

% a use of the false rule on A in E.

% implication

x_=> : xm (A => B) W

([it : true (A => B) W] =>T ([af : false A W] D1 it af)

([bt : true B W] D2 it bt) it)

([if : false (A => B) W] =>F ([at : true A W]

[bf : false B W] E1 if at bf) if)

F

<- (at : true A W bf : false B W

xm (A => B) W ([it] =>T ([af : false A W] D1 it af)

([bt] D2 it bt) it)

([if] E1 if at bf) (E1’ at bf))

<- (af : false A W

xm (A => B) W ([it] D1 it af)

([if] =>F ([at][bf] E1 if at bf) if) (D1’ af))

<- (bt : true B W

xm (A => B) W ([it] D2 it bt)

([if] =>F ([at][bf] E1 if at bf) if) (D2’ bt))

<- (bf : false B W

xm A W ([at : true A W] E1’ at bf)

([af : false A W] D1’ af) (F’ bf))

<- xm B W ([bt] D2’ bt) ([bf] F’ bf) F.

% box

x_2 : xm (2 A) W ([nt] 2T ([at : true A W’] D1 nt at) nt)

([nf] 2F ([w][af : false A w] E1 nf w af) nf)

F

<- (w : worldaf : false A w

xm (2 A) W ([nt] 2T ([at] D1 nt at) nt)

([nf] E1 nf w af) (E1’ w af))

<- (at : true A W’

xm (2 A) W ([nt] D1 nt at)

([nf] 2F ([w][af] E1 nf w af) nf) (D1’ at))

<- xm A W’ ([at : true A W’] D1’ at)

([af : false A W’] E1’ W’ af) F.

% dia

28

x_3 : xm (3 A) W ([nt] 3T ([w][at] D1 nt w at) nt)

([nf] 3F ([af] E1 nf af) nf)

F

<- (w : worldat : true A w

xm (3 A) W ([nt] D1 nt w at)

([nf] 3F ([af] E1 nf af) nf) (D1’ w at))

<- (af : false A W’

xm (3 A) W ([nt] 3T ([w][at] D1 nt w at) nt)

([nf] E1 nf af) (E1’ af))

<- xm A W’ ([at : true A W’] D1’ W’ at) ([af] E1’ af) F.

% conjunction

x_& : xm (A & B) W ([&t] &T ([at][bt] D1 &t at bt) &t)

([&f] &F ([af] E1 &f af) ([bf] E2 &f bf) &f)

F

<- (atbt xm (A & B) W ([&t] D1 &t at bt)

([&f] &F ([af] E1 &f af)

([bf] E2 &f bf) &f)

(D1’ at bt))

<- (af xm (A & B) W ([&t] &T ([at][bt] D1 &t at bt) &t)

([&f] E1 &f af)

(E1’ af))

<- (bf xm (A & B) W ([&t] &T ([at][bt] D1 &t at bt) &t)

([&f] E2 &f bf)

(E2’ bf))

<- (bt xm A W ([at] D1’ at bt) ([af] E1’ af) (D1’’ bt))

<- (xm B W ([bt] D1’’ bt) ([bf] E2’ bf) F).

%block blockw : block w : world.

%block blockt : some A : prop W : world block tt : true A W.

%block blockf : some A : prop W : world block ff : false A W.

%worlds (blockw | blockt | blockf) (xm A W D E F).

%total A [D E] (xm A W D E F).

%%% Translation from natural deduction to sequent calculus.

% G;D |- A @ W then G # D,A

ndseq : A @ W -> (false A W -> #) -> type.

%mode ndseq +D -F.

% conjunction

29

ns-&I : ndseq (&I D1 D2) (&F F1 F2)

<- ndseq D1 F1

<- ndseq D2 F2.

ns-&E1 : ndseq (&E1 (D1 : A & B @ W))

([af] F af)

<- ndseq D1 ([&f] F2 &f)

<- (af xm (A & B) W ([&t] &T ([at][bt] contra at af) &t)

([&f] F2 &f) (F af)).

ns-&E2 : ndseq (&E2 (D1 : A & B @ W))

([bf] F bf)

<- ndseq D1 ([&f] F2 &f)

<- (bf xm (A & B) W ([&t] &T ([at][bt] contra bt bf) &t)

([&f] F2 &f) (F bf)).

% falsehood

ns-⊥E : ndseq (⊥E (D1 : ⊥ @ W))

([af] F af)

<- ndseq D1 ([⊥f] F2 ⊥f)
<- (af xm (⊥) W ([⊥t] ⊥T ⊥t)

([⊥f] F2 ⊥f) (F af)).

% implication

ns-=>I : ndseq (=>I ([a : A @ W] D a))

([=>f : false (A => B) W]

=>F ([at : true A W][bf : false B W] F at bf) =>f)

<- (a : A @ Wat : true A W

% here’s our block

% think of this as the base case for the

% assumption we’re making.

ndseq a ([af] contra at af) ->

ndseq (D a) ([bf] F at bf)).

ns-=>E : ndseq (=>E D1 D2)

([bf] F bf)

<- ndseq D1 ([if] F1 if)

<- ndseq D2 ([af] F2 af)

<- (bf xm (A => B) W

([it] =>T ([af] F2 af) ([bt] contra bt bf) it)

([if] F1 if) (F bf)).

% box

30

ns-2I : ndseq (2I [w] D1 w) (2F [w][af : false A w] F w af)

<- (w ndseq (D1 w) (F w)).

ns-2E : ndseq (2E D1) ([af] F af)

<- ndseq D1 ([2f] F1 2f)

<- (af xm (2 A) W ([2t] 2T ([at] contra at af) 2t)

([2f] F1 2f) (F af)).

ns-2G : ndseq (2G D1) ([2f] F 2f)

<- ndseq D1 ([2f’] F1 2f’)

<- (2f xm (2 A) W’

([2t’ : true (2 A) W’]

2F ([w’’ : world][af’’ : false A w’’]

(2T ([at’’ : true A w’’] contra at’’ af’’) 2t’)) 2f)

([2f’ : false (2 A) W’] F1 2f’)

(F 2f)).

% dia

ns-3I : ndseq (3I D) ([3f] 3F ([af] F af) 3f)

<- ndseq D ([af] F af).

ns-3E : ndseq (3E D1 ([w : world][a : A @ w] D2 w a))

([cf : false C W] F cf)

<- ndseq D1 ([3f] F1 3f)

<- (w’ : worlda : A @ w’at : true A w’

% another use of our block

ndseq a ([af] contra at af) ->

ndseq (D2 w’ a) ([cf] F2 w’ at cf))

<- (cf : false C W

xm (3 A) W ([3t] 3T ([w][a] F2 w a cf) 3t)

([3f] F1 3f) (F cf)).

ns-3G : ndseq (3G D) ([3f : false (3 A) W] F 3f)

<- ndseq D ([3f’ : false (3 A) W’] F1 3f’)

<- (3f : false (3 A) W

xm (3 A) W’

([3t’] 3T ([w’’][at’’] 3F ([af’’] contra at’’ af’’) 3f) 3t’)

([3f’] F1 3f’)

(F 3f)).

% we need a way of connecting nd continuation assumptions

% with sequent false assumptions

contfalse : A * W -> false A W -> type.

%mode contfalse +D -F.

31

% note contraction: F in output uses af twice

ns-letcc : ndseq (letcc ([ac] D ac)) ([af] F af af)

<- (ac : A * W af : false A W

contfalse ac af ->

ndseq (D ac) (F af)).

% note weakening: [cf’] is unused.

ns-throw : ndseq (throw D K) ([cf’] F AF)

<- ndseq D ([af] F af)

<- contfalse K AF.

%block blockh : some A:prop W:world

block a : A @ W at : true A W

_ : ndseq a ([af] contra at af).

%block block* : some A:prop W:world

block ac : A * W af : false A W _ : contfalse ac af.

%worlds (blockw | blockh | block*) (contfalse D F).

%worlds (blockw | blockh | block*) (ndseq D F).

%total D (contfalse D F).

%total D (ndseq D F).

%% Continuation Substitution (excluded middle) for natural deduction

%% This is the price we pay for using A * W instead of hoas for conts

% if G,x:A@W; D |- M : *

% and G; D,u:A@W |- N : B

% then G; D |- [[x.M/u]] N : B

xs : (cw A @ W -> c @ w) ->

(A * W -> B @ W’) ->

(B @ W’) -> type. %name xs U.

%mode xs +D +E -F.

% special: for any term closed wrt the continuation assumption,

% substitution is the identity. This keeps us from having to

% treat the case of @ variables, since they are always closed

% wrt * variables. Without this trick, world subsumption forces

% cases of xs to infect any later theorem that uses it!

xs-closed : xs D ([a*] E) E.

% falsehood

32

xs-⊥E : xs D ([u] ⊥E (EE u)) (⊥E EE’)

<- xs D EE EE’.

% conjunction

xs-&I : xs D ([u] &I (EA u) (EB u)) (&I F1 F2)

<- xs D EA F1

<- xs D EB F2.

xs-&E1 : xs D ([u] &E1 (E u)) (&E1 F)

<- xs D E F.

xs-&E2 : xs D ([u] &E2 (E u)) (&E2 F)

<- xs D E F.

% implication

xs-=>I : xs D ([u] =>I ([aw : A @ W] E aw u)) (=>I ([aw] F aw))

<- (aw : A @ W xs D (E aw) (F aw)).

xs-=>E : xs D ([u] =>E (DF u) (DA u)) (=>E FF FA)

<- xs D DF FF

<- xs D DA FA.

% box

xs-2I : xs D ([u : A * W] 2I ([w] E u w)) (2I ([w] F w))

<- (w : world xs D ([u] E u w) (F w)).

xs-2G : xs D ([u] 2G (E u)) (2G F)

<- xs D E F.

xs-2E : xs D ([u] 2E (E u)) (2E F)

<- xs D E F.

% possibility

xs-3E : xs D ([u] (3E (E1 u) ([w][a] E2 w a u))) (3E F1 ([w][a] F2 w a))

<- xs D E1 F1

<- (w:worldaw: A @ w

xs D (E2 w aw) (F2 w aw)).

xs-3I : xs D ([u] 3I (E u)) (3I F)

<- xs D E F.

xs-3G : xs D ([u] 3G (E u)) (3G F)

<- xs D E F.

33

xs-letcc : xs D ([u] letcc ([v] E v u)) (letcc ([v] F v))

<- (v : B * W’ xs D (E v) (F v)).

% throw to different cont

xs-throwmiss : xs D ([u] throw (E u) V) (throw F V)

<- xs D E F.

% when reaching the throw, pass the term we’re throwing

% to D instead.

xs-throwhit : xs D ([u] throw (E u) u) (D B W’ F)

<- xs D E F.

% world and totality decls come after seqnd, which uses xs.

% they infect each other somewhat, but the worlds decls for

% xs are not substantially different than if it is checked

% alone (there are just some extra unrelated additions)

%%% Translation from Sequent Calculus to Natural Deduction

% G # D then G ; D |- M : *

seqnd : # -> (aw a @ w) -> type. %name seqnd S.

truend : true A W -> A @ W -> type. %name truend T t.

falsend : false A W -> A * W -> type. %name falsend F f.

%mode seqnd +D -F.

%mode truend +D -F.

%mode falsend +D -F.

% judgmental

sn-contra : seqnd (contra AT AF) ([c : prop][w : world] throw A AC)

<- truend AT A

<- falsend AF AC.

% For each connective, the T side is easy -- it just corresponds to

% the elimination rule. The F side requires the "excluded substitution"

% theorem above, and is often quite tricky.

% falsehood

sn-⊥T : seqnd (⊥T FT) ([c][w] ⊥E FT’) <- truend FT FT’.

% conjunction

34

sn-&T : seqnd (&T ([at][bt] D at bt) T&) ([c][w] F (&E1 N&) (&E2 N&) c w)

<- (ata

truend at a ->

btb

truend bt b ->

seqnd (D at bt) ([c][w] F a b c w))

<- truend T& N&.

sn-&F : seqnd (&F ([af] D1 af) ([bf] D2 bf) (F& : false (A & B) W))

FF

<- falsend F& N&

<- (afa* falsend af a* ->

seqnd (D1 af) ([c][w] F1 a* c w))

<- (bfb* falsend bf b* ->

seqnd (D2 bf) ([c][w] F2 b* c w))

<- (ccwwb : B @ W

xs ([c][w] [a] throw (&I a b) N&)

([a*] F1 a* cc ww)

(F1’ b cc ww))

<- (cc : propww

xs ([c][w] [b] F1’ b c w)

([b*] F2 b* cc ww)

(FF cc ww)).

% implication

% actually, implication is not just the elim rule, because

% classical implication is phrased differently.

sn-=>T : seqnd (=>T ([af : false A W] D1 af) ([bt] D2 bt)

(T=> : true (A => B) W))

FF

<- truend T=> N=>

<- (afa* falsend af a* ->

seqnd (D1 af) ([c][w] F1 a* c w))

<- (btb

truend bt b ->

seqnd (D2 bt) ([c][w] F2 b c w))

<- (ccww

xs ([c][w] [a] (F2 (=>E N=> a) c w))

([a*] F1 a* cc ww)

(FF cc ww)).

35

% letcc-free version

sn-=>F : seqnd (=>F ([at : true A W][bf : false B W] D at bf) F=>)

([c][w] throw (=>I [a] FZ a B W) N=>)

<- falsend F=> N=>

<- (ata

truend at a ->

bfb* falsend bf b* ->

seqnd (D at bf) ([c][w] F1 a b* c w))

<- (a : A @ W

ccww

xs ([c][w] [b] throw (=>I [a-unused : A @ W] b) N=>)

([b*] F1 a b* cc ww)

(FZ a cc ww)).

% also include simpler letcc version

% u : A=>B |- throw (\x:A . letcc v : b* in (IH) end) to u

sn-=>F-letcc :

seqnd (=>F ([at : true A W][bf : false B W] D at bf) F=>)

([c][w] throw (=>I [a] letcc [b*] F1 a b* B W) N=>)

<- falsend F=> N=>

<- (ata

truend at a ->

bfb* falsend bf b* ->

seqnd (D at bf) ([c][w] F1 a b* c w)).

% box

sn-2T : seqnd (2T ([at’ : true A W’] D at’) T2)

([c][w] F (2E (2G N2)) c w)

<- (at’a’

truend at’ a’ ->

seqnd (D at’) ([c][w] F a’ c w))

<- truend T2 N2.

% this is the only necessary letcc in the proof

% u : []A * w |- throw (box w’. letcc v:A*w’ in (IH) end) to u

sn-2F : seqnd (2F ([w’ : world][af : false A w’] D w’ af) F2)

([c][w] (throw (2I [w’] letcc ([a*’] F w’ a*’ A w’)) N2))

<- falsend F2 N2

<- (w’ : worldaf’ : false A w’a*’ : A * w’

falsend af’ a*’ ->

seqnd (D w’ af’) ([c][w] F w’ a*’ c w)).

% dia

36

% x : 3A@w |- let dia <y,w’> = get<w>x in IH end

sn-3T : seqnd (3T ([w’][at] D w’ at) T3)

([c][w] 3E (3G N3) ([w’][a’] F w’ a’ c w))

<- truend T3 N3

<- (w’at : true A w’a’ : A @ w’

truend at a’ ->

seqnd (D w’ at) ([c][w] F w’ a’ c w)).

sn-3F : seqnd (3F ([af’] D af’) F3)

FF

<- falsend F3 N3

<- (af’ : false A W’a*’ : A * W’

falsend af’ a*’ ->

seqnd (D af’) ([c][w] F1 a*’ c w))

<- (ccww

xs ([c][w] [a’] (throw (3G (3I a’)) N3))

([a*’] F1 a*’ cc ww)

(FF cc ww)).

% finally, world and totality verification for our theorems.

% for xs

%block blocku : some A : prop W : world

block u : A * W.

%block blocka : some A : prop W : world

block u : A @ W.

% for seqnd

%block blocknt : some A:prop W:world

block at:true A W a:A @ W

t:truend at a.

%block blocknf : some A:prop W:world

block af:false A W a:A * W t:falsend af a.

%block blockp : block a:prop.

%worlds (blockw | blocka | blocknt | blocknf | blocku | blockp)

(xs D E F) (seqnd D F) (truend D F) (falsend D F).

%total E (xs D E F).

%total (D T F) (seqnd D FF) (truend T N) (falsend F M).

37

