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Abstract

A family of kernels for statistical learning is introduced that exploits the geometric struc-
ture of statistical models. The kernels are based on the heat equation on the Riemannian
manifold defined by the Fisher information metric associated with a statistical family, and
generalize the Gaussian kernel of Euclidean space. As an important special case, kernels
based on the geometry of multinomial families are derived, leading to kernel-based learn-
ing algorithms that apply naturally to discrete data. Bounds on covering numbers and
Rademacher averages for the kernels are proved using bounds on the eigenvalues of the
Laplacian on Riemannian manifolds. Experimental results are presented for document clas-
sification, for which the use of multinomial geometry is natural and well motivated, and
improvements are obtained over the standard use of Gaussian or linear kernels, which have
been the standard for text classification.
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1 Introduction

The use of Mercer kernels for transforming linear classification and regression schemes into
nonlinear methods is a fundamental idea, one that was recognized early in the development
of statistical learning algorithms such as the perceptron, splines, and support vector ma-
chines (Aizerman et al., 1964, Kimeldorf and Wahba, 1971, Boser et al., 1992). The recent
resurgence of activity on kernel methods in the machine learning community has led to the
further development of this important technique, demonstrating how kernels can be key
components in tools for tackling nonlinear data analysis problems, as well as for integrating
data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit representation of a
high dimensional feature space, or in terms of regularization theory and smoothing (Poggio
and Girosi, 1990). In either case, most standard Mercer kernels such as the Gaussian or
radial basis function kernel require data points to be represented as vectors in Euclidean
space. This initial processing of data as real-valued feature vectors, which is often car-
ried out in an ad hoc manner, has been called the “dirty laundry” of machine learning
(Dietterich, 2002)—while the initial Euclidean feature representation is often crucial, there
is little theoretical guidance on how it should be obtained. For example, in text classifi-
cation a standard procedure for preparing the document collection for the application of
learning algorithms such as support vector machines is to represent each document as a
vector of scores, with each dimension corresponding to a term, possibly after scaling by
an inverse document frequency weighting that takes into account the distribution of terms
in the collection (Joachims, 2000). While such a representation has proven to be effective,
the statistical justification of such a transform of categorical data into Euclidean space is
unclear.

Recent work by Kondor and Lafferty (2002) was directly motivated by this need for
kernel methods that can be applied to discrete, categorical data, in particular when the
data lies on a graph. Kondor and Lafferty (2002) propose the use of discrete diffusion
kernels and tools from spectral graph theory for data represented by graphs. In this paper,
we propose a related construction of kernels based on the heat equation. The key idea
in our approach is to begin with a statistical family that is natural for the data being
analyzed, and to represent data as points on the statistical manifold associated with the
Fisher information metric of this family. We then exploit the geometry of the statistical
family; specifically, we consider the heat equation with respect to the Riemannian structure
given by the Fisher metric, leading to a Mercer kernel defined on the appropriate function
spaces. The result is a family of kernels that generalizes the familiar Gaussian kernel
for Euclidean space, and that includes new kernels for discrete data by beginning with
statistical families such as the multinomial. Since the kernels are intimately based on
the geometry of the Fisher information metric and the heat or diffusion equation on the
associated Riemannian manifold, we refer to them here as information diffusion kernels.

One apparent limitation of the discrete diffusion kernels of Kondor and Lafferty (2002)
is the difficulty of analyzing the associated learning algorithms in the discrete setting. This
stems from the fact that general bounds on the spectra of finite or even infinite graphs are
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difficult to obtain, and research has concentrated on bounds on the first eigenvalues for
special families of graphs. In contrast, the kernels we investigate here are over continuous
parameter spaces even in the case where the underlying data is discrete, leading to more
amenable spectral analysis. We can draw on the considerable body of research in differential
geometry that studies the eigenvalues of the geometric Laplacian, and thereby apply some
of the machinery that has been developed for analyzing the generalization performance of
kernel machines in our setting.

Although the framework proposed is fairly general, in this paper we focus on the ap-
plication of these ideas to text classification, where the natural statistical family is the
multinomial. In the simplest case, the words in a document are modeled as independent
draws from a fixed multinomial; non-independent draws, corresponding to n-grams or more
complicated mixture models are also possible. For n-gram models, the maximum likelihood
multinomial model is obtained simply as normalized counts, and smoothed estimates can
be used to remove the zeros. This mapping is then used as an embedding of each document
into the statistical family, where the geometric framework applies. We remark that the
perspective of associating multinomial models with individual documents has recently been
explored in information retrieval, with promising results (Ponte and Croft, 1998, Zhai and
Lafferty, 2001).

The statistical manifold of the n-dimensional multinomial family comes from an embed-
ding of the multinomial simplex into the n-dimensional sphere which is isometric under the
the Fisher information metric. Thus, the multinomial family can be viewed as a manifold
of constant positive curvature. As discussed below, there are mathematical technicalities
due to corners and edges on the boundary of the multinomial simplex, but intuitively, the
multinomial family can be viewed in this way as a Riemannian manifold with boundary; we
address the technicalities by a “rounding” procedure on the simplex. While the heat kernel
for this manifold does not have a closed form, we can approximate the kernel in a closed
form using the leading term in the parametrix expansion, a small time asymptotic expan-
sion for the heat kernel that is of great use in differential geometry. This results in a kernel
that can be readily applied to text documents, and that is well motivated mathematically
and statistically.

We present detailed experiments for text classification, using both the WebKB and
Reuters data sets, which have become standard test collections. Our experimental results
indicate that the multinomial information diffusion kernel performs very well empirically.
This improvement can in part be attributed to the role of the Fisher information metric,
which results in points near the boundary of the simplex being given relatively more impor-
tance than in the flat Euclidean metric. Viewed differently, effects similar to those obtained
by heuristically designed term weighting schemes such as inverse document frequency are
seen to arise automatically from the geometry of the statistical manifold.

The remaining sections are organized as follows. In Section 2 we review the relevant con-
cepts that are required from Riemannian geometry and define the heat kernel for a general
Riemannian manifold, together with its parametrix expansion. In Section 3 we define the
Fisher metric associated with a statistical manifold of distributions, and examine in some
detail the special cases of the multinomial and spherical normal families; the proposed use
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of the heat kernel or its parametrix approximation on the statistical manifold is the main
contribution of the paper. Section 4 derives bounds on covering numbers and Rademacher
averages for various learning algorithms that use the new kernels, borrowing results from
differential geometry on bounds for the geometric Laplacian. Section 5 describes the results
of applying the multinomial diffusion kernels to text classification, and we conclude with a
discussion of our results in Section 6.

2 Riemannian Geometry and the Heat Kernel

We begin by briefly reviewing some of the elementary concepts from Riemannian geometry
that will be used in the construction of information diffusion kernels, since these concepts
are not widely used in machine learning. We refer to Spivak (1979) for details and further
background, or Milnor (1963) for an elegant and concise overview; however most introduc-
tory texts on differential geometry include this material. The basic properties of the heat
kernel on a Riemannian manifold are then presented in Section 2.3. An excellent intro-
ductory account of this topic is given by Rosenberg (1997), and an authoritative reference
for spectral methods in Riemannian geometry is Schoen and Yau (1994). Readers whose
differential geometry is in good repair may wish to proceed directly to Section 2.3.1 or to
Section 3.

2.1 Basic Definitions

An n-dimensional differentiable manifold M is a set of points that is locally equivalent to
Rn by smooth transformations, supporting operations such as differentiation. Formally, a
differentiable manifold is a set M together with a collection of local charts {(Ui, ϕi)}, where
Ui ⊂ M with ∪iUi = M , and ϕi : Ui ⊂ M −→ Rn is a bijection. For each pair of local
charts (Ui, ϕi) and (Uj , ϕj), it is required that ϕj(Ui ∩ Uj) is open and ϕij = ϕi ◦ ϕ−1

j is a
diffeomorphism.

The tangent space TpM ∼= Rn at p ∈ M can be be thought of as directional derivatives
operating on C∞(M), the set of real valued differentiable functions f : M → R. Equiva-
lently, the tangent space TpM can be viewed in terms of an equivalence class of curves on
M passing through p. Two curves c1 : (−ε, ε) −→ M and c2 : (−ε, ε) −→ M are equivalent
at p in case c1(0) = c2(0) = p and ϕ ◦ c1 and ϕ ◦ c2 are tangent at p for some local chart ϕ

(and therefore all charts), in the sense that their derivatives at 0 exist and are equal.
In many cases of interest, the manifold M is a submanifold of a larger manifold, often

Rm, m ≥ n. For example, the open n-dimensional simplex, defined by

Pn =
{

θ ∈ Rn+1 :
∑n+1

i=1 θi = 1, θi > 0
}

(1)

is a submanifold of Rn+1. In such a case, the tangent space of the submanifold TpM is
a subspace of TpRm, and we may represent the tangent vectors v ∈ TpM in terms of the
standard basis of the tangent space TpRm ∼= Rm, v =

∑m
i=1 vi ei. The open n-simplex is a

differential manifold with a single, global chart.
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A manifold with boundary is defined similarly, except that the local charts (U,ϕ) satisfy
ϕ(U) ⊂ Rn+, thus mapping a patch of M to the half-space Rn+ = {x ∈ Rn |xn ≥ 0}. In
general, if U and V are open sets in Rn+ in the topology induced from Rn, and f : U −→ V

is a diffeomorphism, then f induces diffeomorphisms Intf : IntU −→ IntV and ∂f : ∂U −→
∂V , where ∂A = A∪ (Rn−1×{0}) and IntA = A∪ {x ∈ Rn |xn > 0}. Thus, it makes sense
to define the interior IntM = ∪Uϕ−1(Int(ϕ(U))) and boundary ∂M = ∪Uϕ−1(∂(ϕ(U)))
of M . Since IntM is open it is an n-dimensional manifold without boundary, and ∂M is an
(n− 1)-dimensional manifold without boundary.

If f : M → N is a diffeomorphism of the manifold M onto the manifold N , then f

induces a push-foward mapping f∗ of the associated tangent spaces. A vector field X ∈
TM is mapped to the push-forward f∗X ∈ TN , satisfying (f∗X)(g) = X(g ◦ f) for all
g ∈ C∞(N). Intuitively, the push-forward mapping transforms velocity vectors of curves to
velocity vectors of the corresponding curves in the new manifold. Such a mapping is of use
in transforming metrics, as described next.

2.2 The Geometric Laplacian

The construction of our kernels is based on the geometric Laplacian1. In order to define
the generalization of the familiar Laplacian ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

on Rn to manifolds,
one needs a notion of geometry, in particular a way of measuring lengths of tangent vectors.
A Riemannian manifold (M, g) is a differentiable manifold M with a family of smoothly
varying positive-definite inner products g = gp on TpM for each p ∈ M . Two Riemannian
manifolds (M, g) and (N,h) are isometric in case there is a diffeomorphism f : M −→ N

such that
gp(X, Y ) = hf(p)(f∗X, f∗Y ) (2)

for every X,Y ∈ TpM and p ∈ M . Occasionally, hard computations on one manifold can
be transformed to easier computations on an isometric manifold. Every manifold can be
given a Riemannian metric. For example, every manifold can be embedded in Rm for some
m ≥ n (the Whitney embedding theorem), and the Euclidean metric induces a metric on
the manifold under the embedding. In fact, every Riemannian metric can be obtained in
this way (the Nash embedding theorem).

In local coordinates, g can be represented as gp(v, w) =
∑

i,j gij(p) vi wj where g(p) =
[gij(p)] is a non-singular, symmetric and positive-definite matrix depending smoothly on p,
and tangent vectors v and w are represented in local coordinates at p as v =

∑n
i=1 vi ∂i|p and

w =
∑n

i=1 wi ∂i|p. As an example, consider the open n-dimensional simplex defined in (1). A
metric on Rn+1 expressed by the symmetric positive-definite matrix G = [gij ] ∈ R(n+1)×(n+1)

1As described by Nelson (1968), “The Laplace operator in its various manifestations is the most beautiful

and central object in all of mathematics. Probability theory, mathematical physics, Fourier analysis, partial

differential equations, the theory of Lie groups, and differential geometry all revolve around this sun, and

its light even penetrates such obscure regions as number theory and algebraic geometry.”
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induces a metric on Pn as

gp(v, u) = gp

(∑n+1
i=1 uiei,

∑n+1
i=1 viei

)
=

n+1∑

i=1

n+1∑

j=1

gij uivj (3)

The metric enables the definition of lengths of vectors and curves, and therefore distance
between points on the manifold. The length of a tangent vector at p ∈ M is given by
‖v‖ =

√〈v, v〉p, v ∈ TpM and the length of a curve c : [a, b] → M is then given by
L(c) =

∫ b
a ‖ċ(t)‖dt where ċ(t) is the velocity vector of the path c at time t. Using the

above definition of lengths of curves, we can define the distance d(x, y) between two points
x, y ∈ M as the length of the shortest piecewise differentiable curve connecting x and y. This
geodesic distance d turns the Riemannian manifold into a metric space, satisfying the usual
properties of positivity, symmetry and the triangle inequality. Riemannian manifolds also
support convex neighborhoods. In particular, if p ∈ M , there is an open set U containing
p such that any two points of U can be connected by a unique minimal geodesic in U .

A manifold is said to be geodesically complete in case every geodesic curve c(t), t ∈ [a, b],
can be extended to be defined for all t ∈ R. It can be shown (Milnor, 1963), that the
following are equivalent: (1) M is geodesically complete, (2) d is a complete metric on M ,
and (3) closed and bounded subsets of M are compact. In particular, compact manifolds
are geodesically complete. The Hopf-Rinow theorem (Milnor, 1963) asserts that if M is
complete, then any two points can be joined by a minimal geodesic. This minimal geodesic is
not necessarily unique, as seen by considering antipodal points on a sphere. The exponential
map expx maps a neighborhood V of 0 ∈ TxM diffeomorphically onto a neighborhood of
x ∈ M . By definition, expx v is the point γv(1) where γv is a geodesic starting at x with
initial velocity v = dγv

dt |t=0. Any such geodesic satisfies γrv(s) = γv(rs) for r > 0. This
mapping defines a local coordinate system on M called normal coordinates, under which
many computations are especially convenient.

For a function f : M −→ R, the gradient grad f is the vector field defined by

〈grad f(p), X〉 = X(f) (4)

In local coordinates, the gradient is given by

(grad f)i =
∑

j

gij ∂f

∂xj
(5)

where
[
gij(p)

]
is the inverse of [gij(p)]. The divergence operator is defined to be the adjoint

of the gradient, allowing “integration by parts” on manifolds with special structure. An
orientation of a manifold is a smooth choice of orientation for the tangent spaces, meaning
that for local charts ϕi and ϕj , the differential D(ϕj ◦ ϕi)(x) : Rn −→ Rn is orientation
preserving, so the sign of the determinant is constant. If a Riemannian manifold M is
orientable, it is possible to define a volume form µ, where if v1, v2, . . . , vn ∈ TpM (positively
oriented), then

µ(v1, . . . , vn) =
√

det〈vi, vj〉 (6)
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A volume form, in turn, enables the definition of the divergence of a vector field on the
manifold. In local coordinates, the divergence is given by

div X =
1√

det g

∑

i

∂

∂xi

(√
det g Xi

)
(7)

Finally, the Laplace-Beltrami operator on functions is defined by

∆ = div ◦ grad (8)

which in local coordinates is thus given by

∆f =
1√

det g

∑

j

∂

∂xj

(
gij

√
det g

∂f

∂xi

)
(9)

These definitions preserve the familiar intuitive interpretation of the usual operators in
Euclidean geometry; in particular, the gradient points in the direction of steepest ascent
and the divergence measures outflow minus inflow of liquid or heat.

2.3 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geometric manifold; the
flow is governed by the following second order differential equation with initial conditions

∂f

∂t
−∆f = 0 (10)

f(x, 0) = f(x) (11)

The value f(x, t) describes the heat at location x at time t, beginning from an initial
distribution of heat given by f(x) at time zero. The heat or diffusion kernel Kt(x, y) is the
solution to the heat equation f(x, t) with initial condition given by Dirac’s delta function δy.
As a consequence of the linearity of the heat equation, the heat kernel can be used to
generate the solution to the heat equation with arbitrary initial conditions, according to

f(x, t) =
∫

M
Kt(x, y) f(y) dy (12)

As a simple special case, consider heat flow on the circle, or one-dimensional sphere
M = S1. Parameterizing the manifold by angle θ, and letting f(θ, t) =

∑∞
j=0 aj(t) cos(jθ)

be the discrete cosine transform of the solution to the heat equation, with initial conditions
given by aj(0) = aj , it is seen that the heat equation leads to the equation

∞∑

j=0

(
d

dt
aj(t) + j2aj(t)

)
cos(jθ) = 0 (13)

which is easily solved to obtain aj(t) = e−j2t and therefore f(θ, t) =
∑∞

j=0 aj e−j2t cos(jθ).
As the time parameter t gets large, the solution converges to f(θ, t) −→ a0, which is the
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average value of f ; thus, the heat diffuses until the manifold is at a uniform temperature.
To express the solution in terms of an integral kernel, note that by the Fourier inversion
formula

f(θ, t) =
∞∑

j=0

〈f, eijθ〉 e−j2t eijθ (14)

=
1
2π

∫

S1

∞∑

j=0

e−j2teijθ e−ijφ f(φ) dφ (15)

thus expressing the solution as f(θ, t) =
∫
S1 Kt(θ, φ) f(φ) dφ for the heat kernel

Kt(φ, θ) =
1
2π

∞∑

j=0

e−j2t cos (j(θ − φ)) (16)

This simple example shows several properties of the general solution of the heat equation
on a (compact) Riemannian manifold; in particular, note that the eigenvalues of the kernel
scale as λj ∼ e−j2/d

where the dimension in this case is d = 1.
When M = R, the heat kernel is the familiar Gaussian kernel, so that the solution to

the heat equation is expressed as

f(x, t) =
1√
4πt

∫

R
e−

(x−y)2

4t f(y) dy (17)

and it is seen that as t −→∞, the heat diffuses out “to infinity” so that f(x, t) −→ 0.
When M is compact, the Laplacian has discrete eigenvalues 0 = µ0 < µ1 ≤ µ2 · · · with

corresponding eigenfunctions φi satisfying ∆φi = −µiφi. When the manifold has a bound-
ary, appropriate boundary conditions must be imposed in order for ∆ to be self-adjoint.
Dirichlet boundary conditions set φi|∂M = 0 and Neumann boundary conditions require
∂φi

∂ν

∣∣∣
∂M

= 0 where ν is the outer normal direction. The following theorem summarizes the

basic properties for the kernel of the heat equation on M ; we refer to Schoen and Yau (1994)
for a proof.

Theorem 1 Let M be a complete Riemannian manifold. Then there exists a function
K ∈ C∞(R+ ×M ×M), called the heat kernel, which satisfies the following properties for
all x, y ∈ M , with Kt(·, ·) = K(t, ·, ·)

1. Kt(x, y) = Kt(y, x)

2. limt→0 Kt(x, y) = δx(y)

3.
(
∆− ∂

∂t

)
Kt(x, y) = 0

4. Kt(x, y) =
∫
M Kt−s(x, z)Ks(z, y) dz for any s > 0

If in addition M is compact, then Kt can be expressed in terms of the eigenvalues and
eigenfunctions of the Laplacian as Kt(x, y) =

∑∞
i=0 e−µitφi(x) φi(y).
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Properties 2 and 3 imply that Kt(x, y) solves the heat equation in x, starting from a
point heat source at y. It follows that et∆f(x) = f(x, t) =

∫
M Kt(x, y) f(y) dy solves the

heat equation with initial conditions f(x, 0) = f(x), since

∂f(x, t)
∂t

=
∫

M

∂Kt(x, y)
∂t

f(y) dy (18)

=
∫

M
∆Kt(x, y) f(y) dy (19)

= ∆
∫

M
Kt(x, y) f(y) dy (20)

= ∆f(x) (21)

and limt→0 f(x, t) =
∫
M limt→0 Kt(x, y) dy = f(x). Property 4 implies that et∆es∆ =

e(t+s)∆, which has the physically intuitive interpretation that heat diffusion for time t is the
composition of heat diffusion up to time s with heat diffusion for an additional time t− s.
Since et∆ is a positive operator,∫

M

∫

M
Kt(x, y)f(x)f(y) dx dy =

∫

M
f(x) et∆f(x) dx (22)

= 〈f, et∆f〉 ≥ 0 (23)

Thus Kt(x, y) is positive-definite. In the compact case, positive-definiteness follows directly
from the expansion Kt(x, y) =

∑∞
i=0 e−µitφi(x) φi(y), which shows that the eigenvalues of

Kt as an integral operator are e−µit. Together, these properties show that Kt defines a
Mercer kernel.

The heat kernel Kt(x, y) is a natural candidate for measuring the similarity between
points between x, y ∈ M , while respecting the geometry encoded in the metric g. Further-
more it is, unlike the geodesic distance, a Mercer kernel—a fact that enables its use in statis-
tical kernel machines. When this kernel is used for classification, as in our text classification
experiments presented in Section 5, the discriminant function yt(x) =

∑
i αiyiKt(x, xi) can

be interpreted as the solution to the heat equation with initial temperature y0(xi) = αi yi

on labeled data points xi, and initial temperature y0(x) = 0 elsewhere.

2.3.1 The parametrix expansion

For most geometries, there is no closed form solution for the heat kernel. However, the
short time behavior of the solutions can be studied using an asymptotic expansion called
the parametrix expansion. In fact, the existence of the heat kernel, as asserted in the above
theorem, is most directly proven by first showing the existence of the parametrix expansion.
Although it is local, the parametrix expansion contains a wealth of geometric information,
and indeed much of modern differential geometry, notably index theory, is based upon this
expansion and its generalizations. In Section 5 we will employ the first-order parametrix
expansion for text classification.

Recall that the heat kernel on flat n-dimensional Euclidean space is given by

KEuclid
t (x, y) = (4πt)−

n
2 exp

(
−‖x− y‖2

4t

)
(24)
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where ‖x− y‖2 =
∑n

i=1 |xi − yi|2 is the squared Euclidean distance between x and y. The
parametrix expansion approximates the heat kernel locally as a correction to this Euclidean
heat kernel. To begin the definition of the parametrix, let

P
(m)
t (x, y) = (4πt)−

n
2 exp

(
−d2(x, y)

4t

)
(ψ0(x, y) + ψ1(x, y)t + · · ·+ ψm(x, y)tm) (25)

for currently unspecified functions ψk(x, y), but where d2(x, y) now denotes the square of
the geodesic distance on the manifold. The idea is to obtain ψk recursively by solving the
heat equation approximately to order tm, for small diffusion time t.

Let r = d(x, y) denote the length of the radial geodesic from x to y ∈ Vx in the normal
coordinates defined by the exponential map. For any functions f(r) and h(r) of r, it can
be shown that

∆f =
d2f

dr2
+

d
(
log

√
det g

)

dr

df

dr
(26)

∆(fh) = f∆h + h∆f + 2
df

dr

dh

dr
(27)

Starting from these basic relations, some calculus shows that
(

∆− ∂

∂t

)
P

(m)
t = (tm ∆ψm) (4πt)−

n
2 exp

(
−r2

4t

)
(28)

when ψk are defined recursively as

ψ0 =
(√

det g

rn−1

)− 1
2

(29)

ψk = r−kψ0

∫ r

0
ψ−1

0 (∆φk−1) sk−1ds for k > 0 (30)

With this recursive definition of the functions ψk, the expansion (25), which is defined only
locally, is then extended to all of M ×M by smoothing with a “cut-off function” η, with
the specification that η : R+ −→ [0, 1] is C∞ and

η(r) =

{
0 r ≥ 1

1 r ≤ c
(31)

for some constant 0 < c < 1. Thus, the order-m parametrix is defined as

K
(m)
t (x, y) = η(d(x, y))P

(m)
t (x, y) (32)

As suggested by equation (28), K
(m)
t is an approximate solution to the heat equation,

and satisfies Kt(x, y) = K
(m)
t (x, y) + O(tm) for x and y sufficiently close; in particular, the

parametrix is not unique. For further details we refer to (Schoen and Yau, 1994, Rosenberg,
1997).

While the parametrix K
(m)
t is not in general positive-definite, and therefore does not

define a Mercer kernel, it is positive-definite for t sufficiently small. In particular, define
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f(t) = min spec (Km
t ), where min spec denotes the smallest eigenvalue. Then f is a contin-

uous function with f(0) = 1 since K
(m)
0 = I. Thus, there is some time interval [0, ε) for

which K
(m)
t is positive-definite in case t ∈ [0, ε). This fact will be used when we employ the

parametrix approximation to the heat kernel for statistical learning.

3 Diffusion Kernels on Statistical Manifolds

We now proceed to the main contribution of the paper, which is the application of the heat
kernel constructions reviewed in the previous section to the geometry of statistical families,
in order to obtain kernels for statistical learning.

Under some mild regularity conditions, general parametric statistical families come
equipped with a canonical geometry based on the Fisher information metric. This geometry
has long been recognized (Rao, 1945), and there is a rich line of research in statistics, with
threads in machine learning, that has sought to exploit this geometry in statistical analysis;
see Kass (1989) for a survey and discussion, or the monographs by Kass and Vos (1997)
and Amari and Nagaoka (2000) for more extensive treatments.

We remark that in spite of the fundamental nature of the geometric perspective in
statistics, many researchers have concluded that while it occasionally provides an interesting
alternative interpretation, it has not contributed new results or methods that cannot be
obtained through more conventional analysis. However in the present work, the kernel
methods we propose can, arguably, be motivated and derived only through the geometry of
statistical manifolds.2

3.1 Geometry of Statistical Families

Let F = {p(· | θ)}θ∈Θ be an n-dimensional regular statistical family on a set X . Thus, we
assume that Θ ⊂ Rn is open, and that there is a σ-finite measure µ on X , such that for
each θ ∈ Θ, p(· | θ) is a density with respect to µ, so that

∫
X p(x | θ) dµ(x) = 1. We identify

the manifold M with Θ by assuming that for each x ∈ X the mapping θ 7→ p(x | θ) is C∞.
Below, we will discuss cases where Θ is closed, leading to a manifold M with boundary.

Let ∂i denote ∂/∂θi, and `θ(x) = log p(x | θ). The Fisher information metric at θ ∈ Θ
is defined in terms of the matrix g(θ) ∈ Rn×n given by

gij(θ) = Eθ [∂i`θ ∂j`θ] =
∫

X
p(x | θ)∂i log p(x | θ) ∂j log p(x | θ) dµ(x) (33)

Since the score si(θ) = ∂i`θ has mean zero, gij(θ) can be seen as the variance of si(θ), and is
therefore positive-definite. By assumption, it is smoothly varying in θ, and therefore defines
a Riemannian metric on Θ = M .

2By a statistical manifold we mean simply a manifold of densities together with the metric induced by

the Fisher information matrix, rather than the more general notion of a Riemannian manifold together with

a (possibly non-metric) connection, as defined by Lauritzen (1987).
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An equivalent and sometimes more suggestive form of the Fisher information matrix, as
will be seen below for the case of the multinomial, is

gij(θ) = 4
∫

X
∂i

√
p(x | θ) ∂j

√
p(x | θ) dµ(x) (34)

Yet another equivalent form is gij(θ) = −Eθ[∂j∂i`θ]. To see this, note that

Eθ[∂j∂i`θ] =
∫

X
p(x | θ)∂j∂i log p(x | θ) dµ(x) (35)

= −
∫

X
p(x | θ)∂jp(x | θ)

p(x | θ)2 ∂ip(x | θ) dµ(x)−
∫

X
∂j∂ip(x | θ) dµ(x) (36)

= −
∫

X
p(x | θ)∂jp(x | θ)

p(x | θ)
∂ip(x | θ)
p(x | θ) dµ(x)− ∂j∂i

∫

X
p(x | θ) dµ(x) (37)

= −
∫

X
p(x | θ)∂j log p(x | θ)∂i log p(x | θ) dµ(x) (38)

= −gij(θ) (39)

Since there are many possible choices of metric on a given differentiable manifold, it
is important to consider the motivating properties of the Fisher information metric. In-
tuitively, the Fisher information may be thought of as the amount of information a single
data point supplies with respect to the problem of estimating the parameter θ. This in-
terpretation can be justified in several ways, notably through the efficiency of estimators.
In particular, the asymptotic variance of the maximum likelihood estimator θ̂ obtained
using a sample of size n is (ng(θ))−1. Since the MLE is asymptotically unbiased, the in-
verse Fisher information represents the asymptotic fluctuations of the MLE around the true
value. Moreover, by the Cramér-Rao lower bound, the variance of any unbiased estimator is
bounded from below by (ng(θ))−1. Additional motivation for the Fisher information metric
is provided by the results of Čencov (1982), which characterize it as the only metric (up
to multiplication by a constant) that is invariant with respect to certain probabilistically
meaningful transformations called congruent embeddings.

The connection with another familiar similarity measure is worth noting here. If p and q

are two densities on X with respect to µ, the Kullback-Leibler divergence D(p, q) is defined
by

D(p, q) =
∫

X
p(x) log

p(x)
q(x)

dµ(x) (40)

The Kullback-Leibler divergence behaves at nearby points like the square of the information
distance. More precisely, it can be shown that

lim
q→p

d2(p, q)
2D(p, q)

= 1 (41)

where the convergence is uniform as d(p, q) → 0. As we comment below, this relationship
may be of use in approximating information diffusion kernels for complex models.

The following two basic examples illustrate the geometry of the Fisher information met-
ric and the associated diffusion kernel it induces on a statistical manifold. The spherical

11



normal family corresponds to a manifold of constant negative curvature, and the multino-
mial corresponds to a manifold of constant positive curvature. The multinomial will be the
most important example that we develop, and we report extensive experiments with the
resulting kernels in Section 5.

3.2 Diffusion Kernels for Gaussian Geometry

Consider the statistical family given by F = {p(· | θ)}θ∈Θ where θ = (µ, σ) and p(· | (µ, σ)) =
N (µ, σIn−1), the Gaussian having mean µ ∈ Rn−1 and variance σIn−1, with σ > 0. Thus,
Θ = Rn−1 × R+.

To compute the Fisher information metric for this family, it is convenient to use the
general expression given by equation (39). Let ∂i = ∂/∂µi for i = 1 . . . n−1, and ∂n = ∂/∂σ.
Then simple calculations yield, for 1 ≤ i, j ≤ n− 1

gij(θ) = −
∫

Rn−1

∂i∂j

(
−

n−1∑

k=1

(xk − µk)2

2σ2

)
p(x | θ) dx (42)

=
1
σ2

δij (43)

gni(θ) = −
∫

Rn−1

∂n∂i

(
−

n−1∑

k=1

(xk − µk)2

2σ2

)
p(x | θ) dx (44)

=
2
σ3

∫

Rn−1

(xi − µi) p(x | θ) dx (45)

= 0 (46)

gnn(θ) = −
∫

Rn−1

∂n∂n

(
−

n−1∑

k=1

(xk − µk)2

2σ2
− (n− 1) log σ

)
p(x | θ) dx (47)

=
3
σ4

∫

Rn−1

n−1∑

k=1

(xk − µk)2 p(x | θ) dx− n− 1
σ2

(48)

=
2(n− 1)

σ2
(49)

Letting θ′ be new coordinates defined by θ′i = µi for 1 ≤ i ≤ n−1 and θ′n =
√

2(n− 1)σ,
we see that the Fisher information matrix is given by

gij(θ′) =
1
σ2

δij (50)

Thus, the Fisher information metric gives Θ = Rn−1 × R+ the structure of the upper half
plane in hyperbolic space. The distance minimizing or geodesic curves in hyperbolic space
are straight lines or circles orthogonal to the mean subspace.

In particular, the univariate normal density has hyperbolic geometry. As a generalization
in this 2-dimensional case, any location-scale family of densities is seen to have hyperbolic
geometry (Kass and Vos, 1997). Such families have densities of the form

p(x | (µ, σ)) =
1
σ

f

(
x− µ

σ

)
(51)
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Figure 1: Example decision boundaries for a kernel-based classifier using information diffu-
sion kernels for spherical normal geometry with d = 2 (right), which has constant negative
curvature, compared with the standard Gaussian kernel for flat Euclidean space (left). Two
data points are used, simply to contrast the underlying geometries. The curved decision
boundary for the diffusion kernel can be interpreted statistically by noting that as the
variance decreases the mean is known with increasing certainty.

where (µ, σ) ∈ R× R+ and f : R→ R.
The heat kernel on the hyperbolic space Hn has the following explicit form (Grigor’yan

and Noguchi, 1998). For odd n = 2m + 1 it is given by

Kt(x, x′) =
(−1)m

2mπm

1√
4πt

(
1

sinh r

∂

∂r

)m

exp
(
−m2t− r2

4t

)
(52)

and for even n = 2m + 2 it is given by

Kt(x, x′) =
(−1)m

2mπm

√
2√

4πt
3

(
1

sinh r

∂

∂r

)m ∫ ∞

r

s exp
(
− (2m+1)2t

4 − s2

4t

)
√

cosh s− cosh r
ds (53)

where r = d(x, x′) is the geodesic distance between the two points in Hn. If only the mean
θ = µ is unspecified, then the associated kernel is the standard Gaussian RBF kernel.

A possible use for this kernel in statistical learning is where data points are naturally
represented as sets. That is, suppose that each data point is of the form x = {x1, x2, . . . xm}
where xi ∈ Rn−1. Then the data can be represented according to the mapping which sends
each group of points to the corresponding Gaussian under the MLE: x 7→ (µ̂(x), σ̂(x)) where
µ̂(x) = 1

m

∑
i xi and σ̂(x)2 = 1

m

∑
i (xi − µ̂(x))2.

In Figure 3.2 the diffusion kernel for hyperbolic space H2 is compared with the Euclidean
space Gaussian kernel. The curved decision boundary for the diffusion kernel makes intuitive
sense, since as the variance decreases the mean is known with increasing certainty.

Note that we can, in fact, consider M as a manifold with boundary by allowing σ ≥ 0
to be non-negative rather than strictly positive σ > 0. In this case, the densities on the
boundary become singular, as point masses at the mean; the boundary is simply given by
∂M ∼= Rn−1, which is a manifold without boundary, as required.
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3.3 Diffusion Kernels for Multinomial Geometry

We now consider the statistical family of the multinomial over n + 1 outcomes, given by
F = {p(· | θ)}θ∈Θ where θ = (θ1, θ2, . . . , θn) with θi ∈ (0, 1) and

∑n
i=1 θi < 1. The parameter

space Θ is the open n-simplex Pn defined in equation (1), a submanifold of Rn+1.
To compute the metric, let x = (x1, x2, . . . , xn+1) denote one draw from the multinomial,

so that xi ∈ {0, 1} and
∑

i xi = 1. The log-likelihood and its derivatives are then given by

log p(x | θ) =
n+1∑

i=1

xi log θi (54)

∂ log p(x | θ)
∂θi

=
xi

θi
(55)

∂2 log p(x | θ)
∂θi∂θj

= −xi

θ2
i

δij (56)

Since Pn is an n-dimensional submanifold of Rn+1, we can express u, v ∈ TθM as (n + 1)-
dimensional vectors in TθRn+1 ∼= Rn+1; thus, u =

∑n+1
i=1 uiei, v =

∑n+1
i=1 viei. Note that due

to the constraint
∑n+1

i=1 θi = 1, the sum of the n + 1 components of a tangent vector must
be zero. A basis for TθM is

{
e1 = (1, 0, . . . , 0,−1)>, e2 = (0, 1, 0, . . . , 0,−1)>, . . . , en = (0, 0, . . . , 0, 1,−1)>

}
(57)

Using the definition of the Fisher information metric in equation (35) we then compute

〈u, v〉θ = −
n+1∑

i=1

n+1∑

j=1

uivjEθ

[
∂2 log p(x | θ)

∂θi∂θj

]
(58)

= −
n+1∑

i=1

uiviE
{−xi/θ2

i

}
(59)

=
n+1∑

i=1

uivi

θi
(60)

While geodesic distances are difficult to compute in general, in the case of the multi-
nomial information geometry we can easily compute the geodesics by observing that the
standard Euclidean metric on the surface of the positive n-sphere is the pull-back of the
Fisher information metric on the simplex. This relationship is suggested by the form of the
Fisher information given in equation (34).

To be concrete, the transformation F (θ1, . . . , θn+1) = (2
√

θ1, . . . , 2
√

θn+1) is a diffeo-
morphism of the n-simplex Pn onto the positive portion of the n-sphere of radius 2; denote
this portion of the sphere as S+

n =
{

θ ∈ Rn+1 :
∑n+1

i=1 θ2
i = 2, θi > 0

}
. Given tangent vec-

tors u =
∑n+1

i=1 uiei, v =
∑n+1

i=1 viei, the pull-back of the Fisher information metric through
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Figure 2: Equal distance contours on P2 from the upper right edge (left column), the center
(center column), and lower right corner (right column). The distances are computed using
the Fisher information metric g (top row) or the Euclidean metric (bottom row).

F−1 is

hθ(u, v) = gθ2/4

(
F−1
∗

n+1∑

k=1

ukek, F
−1
∗

n+1∑

l=1

vlel

)
(61)

=
n+1∑

k=1

n+1∑

l=1

ukvl gθ2/4(F
−1
∗ ek, F

−1
∗ el) (62)

=
n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4
θ2
i

(F−1
∗ ek)i (F−1

∗ el)i (63)

=
n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4
θ2
i

θkδki

2
θlδli

2
(64)

=
n+1∑

i=1

uivi (65)

Since the transformation F : (Pn, g) → (S+
n , h) is an isometry, the geodesic distance

d(θ, θ′) on Pn may be computed as the shortest curve on S+
n connecting F (θ) and F (θ′).

These shortest curves are portions of great circles—the intersection of a two dimensional
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plane and S+
n —and their length is given by

d(θ, θ′) = 2 arccos

(
n+1∑

i=1

√
θi θ′i

)
(66)

In Section 3.1 we noted the connection between the Kullback-Leibler divergence and the
information distance. In the case of the multinomial family, there is also a close relationship
with the Hellinger distance. In particular, it can be easily shown that the Hellinger distance

dH(θ, θ′) =

√√√√∑

i

(√
θi −

√
θ′i

)2

(67)

is related to d(θ, θ′) by
dH(θ, θ′) = 2 sin

(
d(θ, θ′)/4

)
(68)

Thus, as θ′ → θ, dH agrees with 1
2d to second order:

dH(θ, θ′) =
1
2
d(θ, θ′) + O(d3(θ, θ′)) (69)

The Fisher information metric places greater emphasis on points near the boundary,
which is expected to be important for text problems, which typically have sparse statistics.
Figure 2 shows equal distance contours on P2 using the Fisher information and the Euclidean
metrics.

While the spherical geometry has been derived for a finite multinomial, the same geom-
etry can be used non-parametrically for an arbitrary subset of probability measures, leading
to spherical geometry in a Hilbert space (Dawid, 1977).

3.3.1 The Multinomial Diffusion Kernel

Unlike the explicit expression for the Gaussian geometry discussed above, there is not an
explicit form for the heat kernel on the sphere, nor on the positive orthant of the sphere.
We will therefore resort to the parametrix expansion to derive an approximate heat kernel
for the multinomial.

Recall from Section 2.3.1 that the parametrix is obtained according to the local expan-
sion given in equation (25), and then extending this smoothly to zero outside a neighborhood
of the diagonal, as defined by the exponential map. As we have just derived, this results in
the following parametrix for the multinomial family:

P
(m)
t (θ, θ′) = (4πt)−

n
2 exp

(
−arccos2(

√
θ ·
√

θ′)
t

)
(
ψ0(θ, θ′) + · · ·+ ψm(θ, θ′)tm

)
(70)

The first-order expansion is thus obtained as

K
(0)
t (θ, θ′) = η(d(θ, θ′)) P

(0)
t (θ, θ′) (71)
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Figure 3: Example decision boundaries using support vector machines with information
diffusion kernels for trinomial geometry on the 2-simplex (top right) compared with the
standard Gaussian kernel (left).

Now, for the n-sphere it can be shown that the function ψ0 of (29), which is the leading
order correction of the Gaussian kernel under the Fisher information metric, is given by

ψ0(r) =
(√

det g

rn−1

)− 1
2

(72)

=
(

sin r

r

)− (n−1)
2

(73)

= 1 +
(n− 1)

12
r2 +

(n− 1)(5n− 1)
1440

r4 + O(r6) (74)

(Berger et al., 1971). Thus, the leading order parametrix for the multinomial diffusion
kernel is

P
(0)
t (θ, θ′) = (4πt)−

n
2 exp

(
− 1

4t
d2(θ, θ′)

)(
sin d(θ, θ′)

d(θ, θ′)

)− (n−1)
2

(75)

In our experiments we approximate this kernel further as

P
(0)
t (θ, θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·
√

θ′)
)

(76)

by appealing to the asymptotic expansion in (74); note that (sin r/r)−n blows up for large r.
In Figure 3 the kernel (76) is compared with the standard Euclidean space Gaussian kernel
for the case of the trinomial model, d = 2, using an SVM classifier.

3.3.2 Rounding the Simplex

The case of multinomial geometry poses some technical complications for the analysis of
diffusion kernels, due to the fact that the open simplex is not complete, and moreover, its
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Figure 4: Rounding the simplex. Since the closed simplex is not a manifold with boundary,
we carry out a “rounding” procedure to remove edges and corners. The ε-rounded simplex
is the closure of the union of all ε-balls lying within the open simplex.

closure is not a differentiable manifold with boundary. Thus, it is technically not possible
to apply several results from differential geometry, such as bounds on the spectrum of the
Laplacian, as adopted in Section 4. We now briefly describe a technical “patch” that allows
us to derive all of the needed analytical results, without sacrificing in practice any of the
methodology that has been derived so far.

Let ∆n = Pn denote the closure of the open simplex; thus ∆n is the usual probability
simplex which allows zero probability for some items. However, it does not form a compact
manifold with boundary since the boundary has edges and corners. In other words, local
charts ϕ : U → Rn+ cannot be defined to be differentiable. To adjust for this, the idea is to
“round the edges” of ∆n to obtain a subset that forms a compact manifold with boundary,
and that closely approximates the original simplex.

For ε > 0, let Bε(x) = {y | ‖x − y‖ < ε} denote the open Euclidean ball of radius ε

centered at x. Denote by Cε(Pn) the ε-ball centers of Pn, the points of the simplex whose
ε-balls lie completely within the simplex:

Cε(Pn) = {x ∈ Pn : Bε(x) ⊂ Pn} (77)

Finally, let Pε
n denote the ε-interior of Pn, which we define as the union of all ε-balls

contained in Pn:
Pε

n =
⋃

x∈Cε(Pn)

Bε(x) (78)

The ε-rounded simplex ∆ε
n is then defined as the closure ∆ε

n = Pε
n.

The rounding procedure that yields ∆ε
2 is suggested by Figure 4. Note that in general the

ε-rounded simplex ∆ε
n will contain points with a single, but not more than one component

having zero probability. The set ∆ε
n forms a compact manifold with boundary, and its image

under the isometry F : (Pn, g) → (S+
n , h) is a compact submanifold with boundary of the

n-sphere.
Whenever appealing to results for compact manifolds with boundary in the following,

it will be tacitly assumed that the above rounding procedure has been carried out in the
case of the multinomial.
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4 Spectral Bounds on Covering Numbers and Rademacher

Averages

We now turn to establishing bounds on the generalization performance of kernel machines
that use information diffusion kernels. We begin by adopting the approach of Guo et al.
(2002), estimating covering numbers by making use of bounds on the spectrum of the Lapla-
cian on a Riemannian manifold, rather than on VC dimension techniques; these bounds in
turn yield bounds on the expected risk of the learning algorithms. Our calculations give
an indication of how the underlying geometry influences the entropy numbers, which are
inverse to the covering numbers. We then show how bounds on Rademacher averages may
be obtained by plugging in the spectral bounds from differential geometry. The primary
conclusion that is drawn from these analyses is that from the point of view of generalization
error bounds, diffusion kernels behave essentially the same as the standard Gaussian kernel.

4.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying their notation slightly
to conform with ours. Let M ⊂ Rd be a compact subset of d-dimensional Euclidean space,
and suppose that K : M × M −→ R is a Mercer kernel. Denote by λ1 ≥ λ2 ≥ · · · ≥ 0
the eigenvalues of K, i.e., of the mapping f 7→ ∫

M K(·, y) f(y) dy, and let ψj(·) denote the
corresponding eigenfunctions. We assume that CK

def= supj ‖ψj‖∞ < ∞.
Given m points xi ∈ M , the kernel hypothesis class for x = {xi} with weight vector

bounded by R is defined as the collection of functions on x given by

FR(x) = {f : f(xi) = 〈w, Φ(xi)〉 for some ‖w‖ ≤ R} (79)

where Φ(·) is the mapping from M to feature space defined by the Mercer kernel, and 〈·, ·〉
and ‖·‖ denote the corresponding Hilbert space inner product and norm. It is of interest
to obtain uniform bounds on the covering numbers N (ε,FR(x)), defined as the size of the
smallest ε-cover of FR(x) in the metric induced by the norm ‖f‖∞,x = maxi=1,...,m |f(xi)|.
The following is the main result of Guo et al. (2002).

Theorem 2 Given an integer n ∈ N, let j∗n denote the smallest integer j for which

λj+1 <

(
λ1 · · ·λj

n2

)1
j

(80)

and define

ε∗n = 6CKR

√√√√√j∗n

(
λ1 · · ·λj∗n

n2

) 1
j∗n

+
∞∑

i=j∗n

λi (81)

Then sup{xi}∈Mm N (ε∗n,FR(x)) ≤ n.
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To apply this result, we will obtain bounds on the indices j∗n using spectral theory in
Riemannian geometry. The following bounds on the eigenvalues of the Laplacian are due
to Li and Yau (1980).

Theorem 3 Let M be a compact Riemannian manifold of dimension d with non-negative
Ricci curvature, and let 0 < µ1 ≤ µ2 ≤ · · · denote the eigenvalues of the Laplacian with
Dirichlet boundary conditions. Then

c1(d)
(

j

V

) 2
d

≤ µj ≤ c2(d)
(

j + 1
V

) 2
d

(82)

where V is the volume of M and c1 and c2 are constants depending only on the dimension.

Note that the manifold of the multinomial model satisfies the conditions of this theo-
rem. Using these results we can establish the following bounds on covering numbers for
information diffusion kernels. We assume Dirichlet boundary conditions; a similar result
can be proven for Neumann boundary conditions. We include the constant V = vol(M)
and diffusion coefficient t in order to indicate how the bounds depend on the geometry.

Theorem 4 Let M be a compact Riemannian manifold, with volume V , satisfying the
conditions of Theorem 3. Then the covering numbers for the Dirichlet heat kernel Kt on M

satisfy

logN (ε,FR(x)) = O

((
V

t
d
2

)
log

d+2
2

(
1
ε

))
(83)

Proof By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heat kernel

Kt(x, y), which are given by λj = e−tµj , satisfy log λj ≤ −tc1(d)
(

j
V

) 2
d . Thus,

−1
j

log
(

λ1 · · ·λj

n2

)
≥ tc1

j

j∑

i=1

(
i

V

)2
d

+
2
j

log n ≥ tc1
d

d + 2

(
j

V

)2
d

+
2
j

log n (84)

where the second inequality comes from
∑j

i=1 ip ≥ ∫ j
0 xp dx = jp+1

p+1 . Now using the upper
bound of Theorem 3, the inequality j∗n ≤ j will hold if

tc2

(
j + 2

V

)2
d ≥ − log λj+1 ≥ tc1

d

d + 2

(
j

V

)2
d

+
2
j

log n (85)

or equivalently
tc2

V
2
d

(
j(j + 2)

2
d − c1

c2

d

d + 2
j

d+2
d

)
≥ 2 log n (86)

The above inequality will hold in case

j ≥




(
2V

2
d

t(c2 − c1
d

d+2)
log n

) d
d+2



≥




(
V

2
d (d + 2)

tc1
log n

) d
d+2




(87)
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since we may assume that c2 ≥ c1; thus, j∗n ≤
⌈
c1

(
V

2
d

t log n

) d
d+2

⌉
for a new constant c1(d).

Plugging this bound on j∗n into the expression for ε∗n in Theorem 2 and using

∞∑

i=j∗n

e−i
2
d = O

(
e−j∗n

2
d

)
(88)

we have after some algebra that

log
(

1
εn

)
= Ω

((
t

V
2
d

) d
d+2

log
2

d+2 n

)
(89)

Inverting the above expression in log n gives equation (83).

We note that Theorem 4 of Guo et al. (2002) can be used to show that this bound does not,
in fact, depend on m and x. Thus, for fixed t the covering numbers scale as logN (ε,F) =
O

(
log

d+2
2

(
1
ε

))
, and for fixed ε they scale as logN (ε,F) = O

(
t−

d
2

)
in the diffusion time t.

4.2 Rademacher Averages

We now describe a different family of generalization error bounds that can be derived using
the machinery of Rademacher averages (Bartlett and Mendelson, 2002, Bartlett et al., 2003).
The bounds fall out directly from the work of Mendelson (2003) on computing local averages
for kernel-based function classes, after plugging in the eigenvalue bounds of Theorem 3.

As seen above, covering number bounds are related to a complexity term of the form

C(n) =

√√√√√j∗n

(
λ1 · · ·λj∗n

n2

) 1
j∗n

+
∞∑

i=j∗n

λi (90)

In the case of Rademacher complexities, risk bounds are instead controlled by a similar, yet
simpler expression of the form

C(r) =

√√√√j∗r r +
∞∑

i=j∗r

λi (91)

where now j∗r is the smallest integer j for which λj < r (Mendelson, 2003), with r acting as
a parameter bounding the error of the family of functions. To place this into some context,
we quote the following results from Bartlett et al. (2003) and Mendelson (2003), which
apply to a family of loss functions that includes the quadratic loss; we refer to Bartlett
et al. (2003) for details on the technical conditions.

Let (X1, Y1), (X2, Y2) . . . , (Xn, Yn) be an independent sample from an unknown distri-
bution P on X × Y, where Y ⊂ R. For a given loss function ` : Y × Y → R, and a
family F of measurable functions f : X → Y, the objective is to minimize the expected
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loss E[`(f(X), Y )]. Let E`f∗ = inff∈F E`f , where `f (X, Y ) = `(f(X), Y ), and let f̂ be
any member of F for which En`f̂ = inff∈F En`f where En denotes the empirical expecta-
tion. The Rademacher average of a family of functions G = {g : X → R} is defined as the
expectation ERnG = E

[
supg∈G Rng

]
with Rng = 1

n

∑n
i=1 σi g(Xi), where σ1, . . . , σn are

independent Rademacher random variables; that is, p(σi = 1) = p(σi = −1) = 1
2 .

Theorem 5 Let F be a convex class of functions and define ψ by

ψ(r) = aERn

{
f ∈ F : E(f − f∗)2 ≤ r

}
+

b x

n
(92)

where a and b are constants that depend on the loss function `. Then when r ≥ ψ(r),

E
(
`f̂ − `f∗

)
≤ c r +

d x

n
(93)

with probability at least 1− e−x, where c and d are additional constants.
Moreover, suppose that K is a Mercer kernel and F = {f ∈ HK : ‖f‖K ≤ 1} is the unit

ball in the reproducing kernel Hilbert space associated with K. Then

ψ(r) ≤ a

√√√√ 2
n

∞∑

j=1

min{r, λj}+
bx

n
(94)

Thus, to bound the excess risk for kernel machines in this framework it suffices to bound
the term

ψ̃(r) =

√√√√
∞∑

j=1

min{r, λj} (95)

=

√√√√j∗r r +
∞∑

i=j∗r

λi (96)

involving the spectrum. Given bounds on the eigenvalues, this is typically easy to do.

Theorem 6 Let M be a compact Riemannian manifold, satisfying the conditions of Theo-
rem 3. Then the Rademacher term ψ̃ for the Dirichlet heat kernel Kt on M satisfies

ψ̃(r) ≤ C

√(
r

t
d
2

)
log

d
2

(
1
r

)
(97)

for some constant C depending on the geometry of M .
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Proof We have that

ψ̃2(r) =
∞∑

j=1

min{r, λj} (98)

= j∗r r +
∞∑

j=j∗r

e−tµj (99)

≤ j∗r r +
∞∑

j=j∗r

e−tc1j
2
d (100)

≤ j∗r r + Ce−tc1j∗r
2
d (101)

for some constant C, where the first inequality follows from the lower bound in Theorem 3.
But j∗r ≤ j in case log λj+1 > r, or, again from Theorem 3, if

t c2(j + 1)
2
d ≤ − log λj < log

1
r

(102)

or equivalently,

j∗r ≤
C ′

t
d
2

log
d
2

(
1
r

)
(103)

It follows that

ψ̃2(r) ≤ C ′′
(

r

t
d
2

)
log

d
2

(
1
r

)
(104)

for some new constant C ′′.

From this bound, it can be shown that, with high probability,

E
(
`f̂ − `f∗

)
= O

(
log

d
2 n

n

)
(105)

which is the behavior expected of the Gaussian kernel for Euclidean space.
Thus, for both covering numbers and Rademacher averages, the resulting bounds are

essentially the same as those that would be obtained for the Gaussian kernel on the flat
d-dimensional torus, which is the standard way of “compactifying” Euclidean space to get a
Laplacian having only discrete spectrum; the results of Guo et al. (2002) are formulated for
the case d = 1, corresponding to the circle S1. While the bounds for diffusion kernels were
derived for the case of positive curvature, which apply to the special case of the multinomial,
similar bounds for general manifolds with curvature bounded below by a negative constant
should also be attainable.

5 Multinomial Diffusion Kernels and Text Classification

In this section we present the application of multinomial diffusion kernels to the problem of
text classification. Text processing can be subject to some of the “dirty laundry” referred to
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in the introduction—documents are cast as Euclidean space vectors with special weighting
schemes that have been empirically honed through applications in information retrieval,
rather than inspired from first principles. However for text, the use of multinomial geometry
is natural and well motivated; our experimental results offer some insight into how useful
this geometry may be for classification.

5.1 Representing Documents

Assuming a vocabulary V of size n + 1, a document may be represented as a sequence
of words over the alphabet V . For many classification tasks it is not unreasonable to
discard word order; indeed, humans can typically easily understand the high level topic of a
document by inspecting its contents as a mixed up “bag of words.” Let xv denote the number
of times term v appears in a document. Then {xv}v∈V is the sample space of the multinomial
distribution, with a document modeled as independent draws from a fixed model, which may
change from document to document. It is natural to embed documents in the multinomial
simplex using an embedding function θ̂ : Zn+1

+ → Pn. We consider several embeddings
θ̂ that correspond to well known feature representations in text classification (Joachims,
2000). The term frequency (tf) representation uses normalized counts; the corresponding
embedding is the maximum likelihood estimator for the multinomial distribution

θ̂tf(x) =
(

x1∑
i xi

, . . . ,
xn+1∑

i xi

)
. (106)

Another common representation is based on term frequency, inverse document frequency
(tfidf). This representation uses the distribution of terms across documents to discount
common terms; the document frequency dfv of term v is defined as the number of documents
in which term v appears. Although many variants have been proposed, one of the simplest
and most commonly used embeddings is

θ̂tfidf(x) =
(

x1 log(D/df1)∑
i xi log(D/dfi)

, . . . ,
xn+1 log(D/dfn+1)∑

i xi log(D/dfi)

)
(107)

where D is the number of documents in the corpus.
We note that in text classification applications the tf and tfidf representations are typi-

cally normalized to unit length in the L2 norm rather than the L1 norm, as above (Joachims,
2000). For example, the tf representation with L2 normalization is given by

x 7→
(

x1∑
i x

2
i

, . . . ,
xn+1∑

i x
2
i

)
(108)

and similarly for tfidf. When used in support vector machines with linear or Gaussian ker-
nels, L2-normalized tf and tfidf achieve higher accuracies than their L1-normalized coun-
terparts. However, for the diffusion kernels, L1 normalization is necessary to obtain an
embedding into the simplex. These different embeddings or feature representations are
compared in the experimental results reported below.
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To be clear, we list the three kernels we compare. First, the linear kernel is given by

KLin(θ, θ′) = θ · θ′ =
n+1∑

v=1

θv θ′v (109)

The Gaussian kernel is given by

KGauss
σ (θ′, θ′) = (2πσ)−

n+1
2 exp

(
−‖θ − θ′‖2

2σ2

)
(110)

where ‖θ − θ′‖2 =
∑n+1

v=1 |θv − θ′v|2 is the squared Euclidean distance. The multinomial
diffusion kernel is given by

KMult
t (θ, θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·
√

θ′)
)

(111)

as derived in Section 3.

5.2 Experimental Results

In our experiments, the multinomial diffusion kernel using the tf embedding was compared
to the linear or Gaussian (RBF) kernel with tf and tfidf embeddings using a support vector
machine classifier on the WebKB and Reuters-21578 collections, which are standard data
sets for text classification.

Figure 5 shows the test set error rate for the WebKB data, for a representative instance
of the one-versus-all classification task; the designated class was course. The results for
the other choices of positive class were qualitatively very similar; all of the results are
summarized in Table 1. Similarly, Figure 7 shows the test set error rates for two of the
one-versus-all experiments on the Reuters data, where the designated classes were chosen
to be acq and moneyFx. All of the results for Reuters one-versus-all tasks are shown in
Table 3.

The WebKb dataset contains web pages found on the sites of four universities (Craven
et al., 2000). The pages were classified according to whether they were student, faculty,
course, project or staff pages; these categories contain 1641, 1124, 929, 504 and 137 in-
stances, respectively. Since only the student, faculty, course and project classes contain
more than 500 documents each, we restricted our attention to these classes. The Reuters-
21578 dataset is a collection of newswire articles classified according to news topic (Lewis
and Ringuette, 1994). Although there are more than 135 topics, most of the topics have
fewer than 100 documents; for this reason, we restricted our attention to the following five
most frequent classes: earn, acq, moneyFx, grain and crude, of sizes 3964, 2369, 717, 582
and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of binary classification
tasks. In the first task we designate a specific class, label each document in the class as
a “positive” example, and label each document on any of the other topics as a “negative”
example. In the second task we designate a class as the positive class, and choose the
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Figure 5: Experimental results on the WebKB corpus, using SVMs for linear (dotted) and
Gaussian (dash-dotted) kernels, compared with the diffusion kernel for the multinomial
(solid). Classification error for the task of labeling course vs. either faculty, project, or
student is shown in these plots, as a function of training set size. The left plot uses tf repre-
sentation and the right plot uses tfidf representation. The curves shown are the error rates
averaged over 20-fold cross validation, with error bars representing one standard deviation.
The results for the other “1 vs. all” labeling tasks are qualitatively similar, and are therefore
not shown.

40 80 120 200 400 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

40 80 120 200 400 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6: Results on the WebKB corpus, using SVMs for linear (dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel (solid). The course pages are
labeled positive and the student pages are labeled negative; results for other label pairs
are qualitatively similar. The left plot uses tf representation and the right plot uses tfidf
representation.
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Figure 7: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and
Gaussian (dash-dotted) kernels, compared with the diffusion kernel (solid). The classes acq
(top), and moneyFx (bottom) are shown; the other classes are qualitatively similar. The
left column uses tf representation and the right column uses tfidf. The curves shown are the
error rates averaged over 20-fold cross validation, with error bars representing one standard
deviation.
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Figure 8: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and
Gaussian (dash-dotted) kernels, compared with the diffusion (solid). The classes moneyFx
(top) and grain (bottom) are labeled as positive, and the class earn is labeled negative. The
left column uses tf representation and the right column uses tfidf representation.
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1225 0.1196 0.0646 0.0761 0.0726 0.0514
80 0.0809 0.0805 0.0469 0.0569 0.0564 0.0357

course vs. all 120 0.0675 0.0670 0.0383 0.0473 0.0469 0.0291
200 0.0539 0.0532 0.0315 0.0385 0.0380 0.0238
400 0.0412 0.0406 0.0241 0.0304 0.0300 0.0182
600 0.0362 0.0355 0.0213 0.0267 0.0265 0.0162

40 0.2336 0.2303 0.1859 0.2493 0.2469 0.1947
80 0.1947 0.1928 0.1558 0.2048 0.2043 0.1562

faculty vs. all 120 0.1836 0.1823 0.1440 0.1921 0.1913 0.1420
200 0.1641 0.1634 0.1258 0.1748 0.1742 0.1269
400 0.1438 0.1428 0.1061 0.1508 0.1503 0.1054
600 0.1308 0.1297 0.0931 0.1372 0.1364 0.0933

40 0.1827 0.1793 0.1306 0.1831 0.1805 0.1333
80 0.1426 0.1416 0.0978 0.1378 0.1367 0.0982

project vs. all 120 0.1213 0.1209 0.0834 0.1169 0.1163 0.0834
200 0.1053 0.1043 0.0709 0.1007 0.0999 0.0706
400 0.0785 0.0766 0.0537 0.0802 0.0790 0.0574
600 0.0702 0.0680 0.0449 0.0719 0.0708 0.0504

40 0.2417 0.2411 0.1834 0.2100 0.2086 0.1740
80 0.1900 0.1899 0.1454 0.1681 0.1672 0.1358

student vs. all 120 0.1696 0.1693 0.1291 0.1531 0.1523 0.1204
200 0.1539 0.1539 0.1134 0.1349 0.1344 0.1043
400 0.1310 0.1308 0.0935 0.1147 0.1144 0.0874
600 0.1173 0.1169 0.0818 0.1063 0.1059 0.0802

Table 1: Experimental results on the WebKB corpus, using SVMs for linear, Gaussian, and
multinomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set size L is shown in boldface. All
differences are statistically significant according to the paired t test at the 0.05 level.

negative class to be the most frequent remaining class (student for WebKB and earn for
Reuters). In both cases, the size of the training set is varied while keeping the proportion
of positive and negative documents constant in both the training and test set.

Figure 6 and Figure 8 show representative results for the second type of classification
task, where the goal is to discriminate between two specific classes. In the case of the
WebKB data the results are shown for course vs. student. In the case of the Reuters data
the results are shown for moneyFx vs. earn and grain vs. earn. Again, the results for the
other classes are qualitatively similar; the numerical results are summarized in Tables 2
and 4.
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.0808 0.0802 0.0391 0.0580 0.0572 0.0363
80 0.0505 0.0504 0.0266 0.0409 0.0406 0.0251

course vs. student 120 0.0419 0.0409 0.0231 0.0361 0.0359 0.0225
200 0.0333 0.0328 0.0184 0.0310 0.0308 0.0201
400 0.0263 0.0259 0.0135 0.0234 0.0232 0.0159
600 0.0228 0.0221 0.0117 0.0207 0.0202 0.0141

40 0.2106 0.2102 0.1624 0.2053 0.2026 0.1663
80 0.1766 0.1764 0.1357 0.1729 0.1718 0.1335

faculty vs. student 120 0.1624 0.1618 0.1198 0.1578 0.1573 0.1187
200 0.1405 0.1405 0.0992 0.1420 0.1418 0.1026
400 0.1160 0.1158 0.0759 0.1166 0.1165 0.0781
600 0.1050 0.1046 0.0656 0.1050 0.1048 0.0692

40 0.1434 0.1430 0.0908 0.1304 0.1279 0.0863
80 0.1139 0.1133 0.0725 0.0982 0.0970 0.0634

project vs. student 120 0.0958 0.0957 0.0613 0.0870 0.0866 0.0559
200 0.0781 0.0775 0.0514 0.0729 0.0722 0.0472
400 0.0590 0.0579 0.0405 0.0629 0.0622 0.0397
600 0.0515 0.0500 0.0325 0.0551 0.0539 0.0358

Table 2: Experimental results on the WebKB corpus, using SVMs for linear, Gaussian, and
multinomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set size L is shown in boldface. All
differences are statistically significant according to the paired t test at the 0.05 level.

In these figures, the leftmost plots show the performance of tf features while the right-
most plots show the performance of tfidf features. As mentioned above, in the case of the
diffusion kernel we use L1 normalization to give a valid embedding into the probability
simplex, while for the linear and Gaussian kernels we use L2 normalization, which works
better empirically than L1 for these kernels. The curves show the test set error rates aver-
aged over 20 iterations of cross validation as a function of the training set size. The error
bars represent one standard deviation. For both the Gaussian and diffusion kernels, we test
scale parameters (

√
2σ for the Gaussian kernel and 2t1/2 for the diffusion kernel) in the set

{0.5, 1, 2, 3, 4, 5, 7, 10}. The results reported are for the best parameter value in that range.
We also performed experiments with the popular Mod-Apte train and test split for the

top 10 categories of the Reuters collection. For this split, the training set has about 7000
documents and is highly biased towards negative documents. We report in Table 5 the
test set accuracies for the tf representation. For the tfidf representation, the difference
between the different kernels is not statistically significant for this amount of training and
test data. The provided train set is more than enough to achieve outstanding performance
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
80 0.1107 0.1106 0.0971 0.0823 0.0827 0.0762

120 0.0988 0.0990 0.0853 0.0710 0.0715 0.0646
earn vs. all 200 0.0808 0.0810 0.0660 0.0535 0.0538 0.0480

400 0.0578 0.0578 0.0456 0.0404 0.0408 0.0358
600 0.0465 0.0464 0.0367 0.0323 0.0325 0.0290

80 0.1126 0.1125 0.0846 0.0788 0.0785 0.0667
120 0.0886 0.0885 0.0697 0.0632 0.0632 0.0534

acq vs. all 200 0.0678 0.0676 0.0562 0.0499 0.0500 0.0441
400 0.0506 0.0503 0.0419 0.0370 0.0369 0.0335
600 0.0439 0.0435 0.0363 0.0318 0.0316 0.0301

80 0.1201 0.1198 0.0758 0.0676 0.0669 0.0647∗

120 0.0986 0.0979 0.0639 0.0557 0.0545 0.0531∗

moneyFx vs. all 200 0.0814 0.0811 0.0544 0.0485 0.0472 0.0438
400 0.0578 0.0567 0.0416 0.0427 0.0418 0.0392
600 0.0478 0.0467 0.0375 0.0391 0.0385 0.0369∗

80 0.1443 0.1440 0.0925 0.0536 0.0518∗ 0.0595
120 0.1101 0.1097 0.0717 0.0476 0.0467∗ 0.0494

grain vs. all 200 0.0793 0.0786 0.0576 0.0430 0.0420∗ 0.0440
400 0.0590 0.0573 0.0450 0.0349 0.0340∗ 0.0365
600 0.0517 0.0497 0.0401 0.0290 0.0284∗ 0.0306

80 0.1396 0.1396 0.0865 0.0502 0.0485∗ 0.0524
120 0.0961 0.0953 0.0542 0.0446 0.0425∗ 0.0428

crude vs. all 200 0.0624 0.0613 0.0414 0.0388 0.0373 0.0345∗

400 0.0409 0.0403 0.0325 0.0345 0.0337 0.0297
600 0.0379 0.0362 0.0299 0.0292 0.0284 0.0264∗

Table 3: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian,
and multinomial diffusion kernels. The left columns use tf representation and the right
columns use tfidf representation. The error rates shown are averages obtained using 20-fold
cross validation. The best performance for each training set size L is shown in boldface.
An asterisk (*) indicates that the difference is not statistically significant according to the
paired t test at the 0.05 level.

with all kernels used, and the absence of cross validation data makes the results too noisy
for interpretation.

Our results are consistent with previous experiments in text classification using SVMs,
which have observed that the linear and Gaussian kernels result in very similar performance
(Joachims et al., 2001). However the multinomial diffusion kernel significantly outperforms
the linear and Gaussian kernels for the tf representation, achieving significantly lower error
rate than the other kernels. For the tfidf representation, the diffusion kernel consistently
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1043 0.1043 0.1021∗ 0.0829 0.0831 0.0814∗

80 0.0902 0.0902 0.0856∗ 0.0764 0.0767 0.0730∗

acq vs. earn 120 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562
200 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431
400 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 0.0759 0.0758 0.0474 0.0451 0.0451 0.0372∗

80 0.0442 0.0443 0.0238 0.0246 0.0246 0.0177
moneyFx vs. earn 120 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120

200 0.0244 0.0237 0.0118 0.0113 0.0113 0.0080
400 0.0144 0.0142 0.0079 0.0080 0.0079 0.0062

40 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336∗

80 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201∗

grain vs. earn 120 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114∗

200 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069∗

400 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037∗

40 0.1108 0.1107 0.0950 0.0583∗ 0.0586 0.0590
80 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366∗

crude vs. earn 120 0.0608 0.0607 0.0415 0.0276 0.0276∗ 0.0284
200 0.0410 0.0411 0.0267 0.0218∗ 0.0218 0.0225
400 0.0261 0.0257 0.0194 0.0176 0.0171∗ 0.0181

Table 4: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian,
and multinomial diffusion kernels. The left columns use tf representation and the right
columns use tfidf representation. The error rates shown are averages obtained using 20-fold
cross validation. The best performance for each training set size L is shown in boldface.
An asterisk (*) indicates that the difference is not statistically significant according to the
paired t test at the 0.05 level.

outperforms the other kernels for the WebKb data and usually outperforms the linear and
Gaussian kernels for the Reuters data. The Reuters data is a much larger collection than
WebKB, and the document frequency statistics, which are the basis for the inverse document
frequency weighting in the tfidf representation, are evidently much more effective on this
collection. It is notable, however, that the multinomial information diffusion kernel achieves
at least as high an accuracy without the use of any heuristic term weighting scheme. These
results offer evidence that the use of multinomial geometry is both theoretically motivated
and practically effective for document classification.
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Category Linear RBF Diffusion

earn 0.01159 0.01159 0.01026
acq 0.01854 0.01854 0.01788
money-fx 0.02418 0.02451 0.02219
grain 0.01391 0.01391 0.01060
crude 0.01755 0.01656 0.01490
trade 0.01722 0.01656 0.01689
interest 0.01854 0.01854 0.01689
ship 0.01324 0.01324 0.01225
wheat 0.00894 0.00794 0.00629
corn 0.00794 0.00794 0.00563

Table 5: Test set error rates for the Reuters top 10 classes using tf features. The train and
test sets were created using the Mod-Apte split.

6 Discussion and Conclusion

This paper has introduced a family of kernels that is intimately based on the geometry of
the Riemannian manifold associated with a statistical family through the Fisher information
metric. The metric is canonical in the sense that it is uniquely determined by requirements
of invariance (Čencov, 1982), and moreover, the choice of the heat kernel is natural because
it effectively encodes a great deal of geometric information about the manifold. While the
geometric perspective in statistics has most often led to reformulations of results that can
be viewed more traditionally, the kernel methods developed here clearly depend crucially
on the geometry of statistical families.

The main application of these ideas has been to develop the multinomial diffusion kernel.
A related use of spherical geometry for the multinomial has been developed by Gous (1998).
Our experimental results indicate that the resulting diffusion kernel is indeed effective for
text classification using support vector machine classifiers, and can lead to significant im-
provements in accuracy compared with the use of linear or Gaussian kernels, which have
been the standard for this application. The results of Section 5 are notable since accuracies
better or comparable to those obtained using heuristic weighting schemes such as tfidf are
achieved directly through the geometric approach. In part, this can be attributed to the
role of the Fisher information metric; because of the square root in the embedding into the
sphere, terms that are infrequent in a document are effectively up-weighted, and such terms
are typically rare in the document collection overall. The primary degree of freedom in the
use of information diffusion kernels lies in the specification of the mapping of data to model
parameters. For the multinomial, we have used the maximum likelihood mapping. The use
of other model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make distributional as-
sumptions about the data that the learning algorithm is applied to, statistical models offer
many advantages, and thus it is attractive to explore methods that combine data models
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and purely discriminative methods. Our approach combines parametric statistical modeling
with non-parametric discriminative learning, guided by geometric considerations. In these
aspects it is related to the methods proposed by Jaakkola and Haussler (1998). However, the
kernels proposed in the current paper differ significantly from the Fisher kernel of Jaakkola
and Haussler (1998). In particular, the latter is based on the score ∇θ log p(X | θ̂) at a sin-
gle point θ̂ in parameter space. In the case of an exponential family model it is given by a
covariance KF (x, x′) =

∑
i

(
xi −Eθ̂[Xi]

) (
x′i − Eθ̂[Xi]

)
; this covariance is then heuristically

exponentiated. In contrast, information diffusion kernels are based on the full geometry of
the statistical family, and yet are also invariant under reparameterization of the family. In
other conceptually related work, Belkin and Niyogi (2003) suggest measuring distances on
the data graph to approximate the underlying manifold structure of the data. In this case
the underlying geometry is inherited from the embedding Euclidean space rather than the
Fisher geometry.

While information diffusion kernels are very general, they will be difficult to compute in
many cases—explicit formulas such as equations (52–53) for hyperbolic space are rare. To
approximate an information diffusion kernel it may be attractive to use the parametrices
and geodesic distance between points, as we have done for the multinomial. In cases where
the distance itself is difficult to compute exactly, a compromise may be to approximate the
distance between nearby points in terms of the Kullback-Leibler divergence, using the rela-
tion with the Fisher information that was noted in Section 3.1. In effect, this approximation
is already incorporated into the kernels recently proposed by Moreno et al. (2004) for mul-
timedia applications, which have the form K(θ, θ′) ∝ exp(−αD(θ, θ′)) ≈ exp(−2αd2(θ, θ′)),
and so can be viewed in terms of the leading order approximation to the heat kernel. The
results of Moreno et al. (2004) are suggestive that diffusion kernels may be attractive not
only for multinomial geometry, but also for much more complex statistical families.
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