
Exploring Thread-Level Speculation in Software: The
Effects of Memory Access Tracking Granularity

Spiros Papadimitriou Todd C. Mowry

July 2001
CMU-CS-01-145

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Speculative execution is often the only way to overcome dataflow-imposed limitations and exploit par-
allelism when dependences can be discovered only at run-time. It also facilitates automatic paralleliza-
tion of programs that exhibit complicated memory access patterns, which make complete compile-time
dependence analysis either impossible or extremely complicated.
A number of approaches for coarse-grained data and control speculation have been proposed, mainly
in hardware. A few software-only methods exist, but they usually rely on certain assumptions about
control flow or memory access patterns. We investigate the possibility of supporting speculation in
software, without making any such assumptions. The main motivation is the success of a number of
software DSM systems. Our approach utilizes the virtual memory hardware to track memory opera-
tions. The goal is to provide the necessary support through a software library, instead of specialized
hardware. We found that a low overhead mechanism that can track memory accesses at a small gran-
ularity is necessary, thus making the virtual memory mechanism unsuitable. In this paper we explore
the various overheads and, in particular, those related to the granularity of memory access tracking.

Keywords: thread-level speculation, virtual memory, granularity

1 Introduction

A number of hardware-based schemes [SM98, ONH+96, THA+99, SBV95] for thread-level specu-
lation (TLS) have been proposed in the past. A question that, to the best of our knowledge, has not
been explicitly investigated in the past is how much added hardware support in necessary for TLS. Our
initial goal was to essentially “simulate” our hardware-based scheme purely in software by utilizing
the existing virtual memory mechanism, rather than adding new hardware. In the course of building
our system, we gained some insight about the limitations imposed by existing hardware mechanisms,
which have been designed for different purposes, as well as characteristics of programs that are good
candidates for TLS.

After briefly explaining TLS and how it can be supported, we present the design and implemen-
tation of our system. Performance measurements are followed by the main discussion, which aims to
explain the conflict mentioned above and provide a detailed overview of related work.

1.1 What is TLS?

Thread-level speculation (TLS) allows the compiler to automatically parallelize portions of code in the
presence of statically ambiguous data dependences. This allows the dynamic extraction of parallelism
available between whatever dependences actually exist at run-time. Under TLS, a program is broken
into dynamic instruction sequences calledepochs, which the compiler believes are likely to be inde-
pendent. For example, the iterations of a loop might each be an epoch, if the compiler believes that
cross-iteration dependences are unlikely. A software-managed epoch number is associated with each
epoch. This specifies the original ordering of the epochs under sequential execution. The epochs are
executed in parallel and the epoch numbers are used to detect whether data dependences have been
violated. All speculative side-effects are buffered until they can be safely committed to memory. If
a dependence violation is detected, execution is resumed using the correct data, after the appropriate
recovery actions have been taken.

To illustrate how TLS works, consider the simple while loop in Figure 1, which accesses elements
in a hash table. This loop cannot be statically parallelized due to possible data dependences through
the hash table. While it is possible that a given iteration will depend on data produced by the preced-
ing iteration, these dependences may in fact be infrequent if the hashing function is effective. Hence,
a mechanism that could speculatively execute the loop iterations in parallel — while squashing and
re-executing any iterations which do violate dependences — could potentially speed up this loop sig-
nificantly, as illustrated above. Here, a read-after-write (RAW) data dependence violation is detected
between epochs 1 and 4. Hence epoch 4 is squashed and restarted to produce the correct result. This
example demonstrates the basic principles of TLS and can also be applied to regions of code other
than loops.

1.2 Supporting TLS

Our main target architecture in the STAMPede project is a generic single-chip multiprocessor where
each processor has its own primary data cache and all processors on the same chip physically share
a secondary cache. The instruction set is extended with new instructions which enable software to
manage TLS, to use the caches to buffer speculative state, and to extend the cache coherence scheme to
detect data dependence violations. Readers interested in a more detailed description of this architecture
can consult [SCM97, SM98, SCZM00].

1

while (continue cond) {
...
x = hash[index1];
...
hash[index2] = y;
...

}

Epoch 1 Epoch 2
Epoch 3

Epoch 4

hash[10] = hash[21] = hash[30] =
hash[25] =

= hash[3] = hash[19]
= hash[33]

= hash[10]

attempt_commit()attempt_commit()
attempt_commit()

attempt_commit()

Violation!

Redo

Processor1 Processor2 Processor3 Processor4

Epoch 4

hash[25] =

= hash[10]

attempt_commit()

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
Epoch 5

= hash[30]

...

...
Epoch 6

= hash[9]

...

... Epoch 7

= hash[27]

...

T
im

e

(a) Pseudo-Code (b) TLS Execution

Figure 1: Example of TLS execution.

Another option is to provide TLS support purely in software, without adding any new hardware
support. An essential requirement we set from the beginning was to avoid imposing any further re-
strictions and requirements upon the compiler or the programmer. In fact, it would be highly desirable
for both the hardware-based and software-only approaches to use the same high-level abstractions and
support the same (or at least very similar) APIs.

A number of systems have provided the illusion of shared memory through software. Their success
has been significant, but qualified—after all, there is still a market and active research on hardware
shared memory as well as message passing architectures.

When implemented in hardware, shared memory also involves added support at the data cache
level. The first software DSM systems exploited the virtual memory hardware and, in particular,
the memory protection features. They employed essentially the same sequential consistency pro-
tocols [Lam79] used in bus-based hardware DSMs and simulated a “cache” with page-sized lines
and latencies determined by the network used. However, the overheads were significant. In partic-
ular, because of the large block sizes,false sharingwas a problem. A number of more recent sys-
tems [KCDZ94, Kel97] resort to methods (such asdiffing and lazy-release consistency) that reduce
these overheads significantly and, in most cases, yield a respectable speedup.

There is also another class of software-based DSMs [SFL+94, SFH+98, SGT96] that instrument
all loads and stores into “shared” memory, instead of using the virtual memory hardware. Other hybrid
techniques have also been explored, such as employing custom-designed memory boards to avoid the
overhead of instrumenting memory instructions. Since designing a slightly modified memory board is
considerably simpler than designing a new processor, this approach does make sense.

The two types of software-only DSMs (virtual memory vs. code instrumentation) have comparable
performance. The main appeal of using the virtual memory mechanism is that the entire system can
be implemented simply as a library, rather than via specialized executable editing tools, compiler

2

extensions1 or operating system extensions. Since our aim was to support TLS with minor or no
modifications to the compiler infrastructure already under development for the hardware version, using
the virtual memory mechanism seemed to be the best choice.

However, for the most part, our main discussion and analysis does not depend on this choice. Our
observations are based on program behavior rather than our system’s particular behavior. A different
system architecture or different workloads only change where the trade-off points occur. We argue
that with most workloads and reasonable assumptions about system overheads, it is very difficult to
achieve performance gains.

1.3 Contributions

The contributions of this work are the following:

• We built a system for software TLS, which uses the virtual memory system. This derives from
previous, successful work in software DSMs and incorporates a number of optimizations. We
found that the virtual memory mechanism is unsuitable for speculation support, despite its suc-
cess in software DSMs.

• We examine overhead factors in detail and how each of those affects performance. We present
measurements that are derived from real programs and are largely system-independent. Based
on these observations, we characterize a number of existing approaches and systems and argue
about what is needed to successfully support TLS.

In particular, block size (i.e., the granularity at which memory access tagging is done) is a very im-
portant factor. The random memory access patterns of good candidate applications for speculation
can easily cause false sharing problems. Besides needlessly increasing communication overheads,
false sharing also causes false violations, which result in serialized execution. When using the vir-
tual memory system, the block size is unavoidably large (equal to the size of a page). A very low
overhead mechanism that can support relatively small block sizes is necessary to successfully support
speculation. Another key issue is support for buffering and undoing memory operations. Although
alternative software-based methods could potentially be used, it is not entirely clear that these would
be sufficient. We believe that at least some minimal added hardware support for tracking and buffering
memory operations is necessary.

2 Design and Implementation

In order to facilitate speculation, we use the virtual memory hardware to track speculative reads and
writes. By setting the page protections appropriately and trapping to user-level code in response to
access violations on shared pages, it is possible to track accesses to regions of shared memory. By
exchanging messages between different threads, the local copies of the shared memory image in each
processor can be brought up-to-date.

Our goal was not to add support for shared memory on cheap platforms that lack it, such as net-
works of workstations, but rather to enable TLS on existing systems. Therefore, we chose to build our

1In order to do automatic parallelization compiler/language extensions are still necessary. However, to use software TLS
a programmer need only include the proper header files and libraries, rather than use special compiler directives or language
extensions.

3

software TLS layer on top of a hardware shared-memory multiprocessor, such as the SGI Origin. The
main advantage is the significantly reduced communication latency.

2.1 Software Interface

In this section we will give a high-level view of the abstraction that our system provides to the pro-
grammer and compiler. We will also try to justify our design choices. Table 1 defines our high-level
primitives for software TLS and Figure 2 shows how all these are put together in an actual implemen-
tation of the example in Figure 1.

During initialization, one process is spawned for each processor in the system. After allocating ini-
tial shared memory regions, each process executes the system’s main loop by callingtls_start() .
This is responsible for fetching and executing epochs.

Shared memory is managed by calls totls_mem_alloc() and tls_mem_free() , which
are the equivalents ofmalloc() and free() for shared speculative memory. We will use the
termspeculative memoryto distinguish the shared memory image provided by the software TLS layer
from the actual shared memory used in its implementation. Since the allocation of a memory block
is performed by one of the processors, some mechanism is needed to initially broadcast a pointer to
the first shared block. This can be done withtls_mem_send() and tls_mem_recv() , which
normally need to be called only once, during the initialization phase.

In order to have well-defined entry-points, the code for each epoch should be enclosed within a
procedure2. An epoch can be created withtls_epoch_new() . Each epoch is represented by an
opaque data structure and can be accessed from any processor (see section 2.2 for details). Forwarding
buffers are associated with each epoch, both for data that are forwarded during epoch creation (for-
warding frame), as well as during later stages of execution. A number of forwarding flags are also
associated with each epoch. These are used for synchronization between the sender and recipient.
All of the above need to be declared during the epoch creation stage, along with the epoch sequence
number. Sequence numbers can be obtained and reserved withtls_seq_get() .

After an epoch has been created, it can be scheduled for execution withtls_epoch_fork() .
This operation appends the epoch to the pending queue (see section 2.2).

Within each epoch procedure, all accesses to speculative memory have to be enclosed within calls
to tls_epoch_begin() and tls_epoch_end() . These should be called once per epoch and
perform the necessary initial and final work (respectively) necessary to track memory accesses. The
latter also terminates the current epoch, returning execution to the main loop of the system.

Thetls_epoch_fwd_set() andtls_epoch_fwd_signal() pair is used to forward val-
ues during epoch execution. The operationstls_epoch_fwd_get() andtls_epoch_fwd_wait()
should be used at the receiving end, respectively. Note that, in the current implementation, the latter
blocks execution until the desired value has been received.

The functions for setting violation and cancellation handlers, as well as canceling and killing an
epoch are relatively straightforward. Epochs are never pre-empted, since this would impose a large
overhead because, as we shall see, saving and restoring speculative state is very expensive. Checks for
violation or cancellation are always performed when an epoch finishes. However, an early check can be

2The use of C procedures does not preclude access to variables from enclosing scopes (e.g., variables defined outside
the body of a loop that needs to be speculatively parallelized). Data from enclosing scopes can either be copied through
forwarding buffers as explained later, or accessed through a forwarded pointers to these data items (or possibly the entire
stack frame). This will typically be handled automatically by the parallelizing compiler.

4

Operation Description

tls_init(argc, argv) Initialization of processes, shared-memory data
structures and synchronization primitives.

tls_shutdown() Cleanup
tls_start() Start main epoch execution loop
tls_mem_alloc(size) Shared memory management
tls_mem_free(ptr)
tls_mem_send(ptr, len) Initialization of pointers to shared memory
tls_mem_recv()
epoch = tls_epoch_new(seq, &proc,

fwd_frame, fwd_frame_size,
fwd_data_size, fwd_num_flags)

Creation of new epoch data structure (contains
forwarding buffers and flags).

tls_epoch_fork(epoch) Insertion of epoch into pending queue
tls_epoch_begin() Initialization of twin lists for current epoch
tls_epoch_end() Move epoch into finished queue and jump to be-

ginning of main epoch execution loop
tls_epoch_fwd_set(epoch,

ofs, data, len)
Copy data into forwarding buffer of designated
epoch

tls_epoch_fwd_get(epoch,
ofs, ptr, len)

Copy data from forwarding buffer

tls_epoch_fwd_wait(epoch, nflag) Wait for forwarding flag of designated epoch to
be set (synchronization primitive)

tls_epoch_fwd_signal(epoch, nflag) Set forwarding flag
tls_epoch_cancel(epoch) Cancel epoch (invokes cancel handler)
tls_epoch_kill(epoch) Destroy designated epoch and free all related

data structures (blocking operation)
tls_epoch_fail_handler(epoch,

&hnd, arg)
Set callback to invoke upon dependence viola-
tion

tls_epoch_cancel_handler(epoch,
&hnd, arg)

Set callback to invoke upon cancellation

tls_epoch_check_fail() Force early check for dependence violation
tls_epoch_check_cancel() Force early check for cancellation
tls_seq_get(nreserve) Sequence number management
tls_seq_next(seq)

Table 1: Software-TLS operations.

5

forced, if necessary, by callingtls_epoch_check_cancel() or tls_epoch_check_fail() .
These can be inserted by the compiler and/or programmer before starting highly time-consuming work.

2.2 Implementation

As we have already mentioned, our base platform for software TLS is a hardware shared-memory
multiprocessor. The implementation essentially employs a work-queue model and is built upon a
central data structure, which is located in shared memory.

The main component of this data structure is a set of four queues. At any point in time, all epochs
currently in the system can be found in one of these queues. The epochs in each queue are ordered by
sequence number. These queues contain epochs that are in various stages of execution:

• Pending execution:This queue contains epochs that have been scheduled for execution. Upon
completion of an epoch, each processor fetches the next available epoch from this queue and
begins executing it.

• Executing: This is simply a list of all epochs that are currently being executed by some proces-
sor in the system.

• Finished execution: As soon as an epoch completes execution, it is moved into this queue.
Since epochs with smaller sequence numbers may still be executing, checking for dependence
violations may not be immediately possible, hence the need for this queue. Upon completion of
an epoch and before fetching the next, each processor eagerly performs all necessary dependence
checks for as many epochs as possible from this queue. An epoch is checked if all preceding
ones have been cleared to commit. If the checks fail, the appropriate violation handler is called
and can decide whether to kill the epoch or re-schedule it for execution.

• Clear to commit: If the check for dependence violations is successful, an epoch is moved into
this queue. An epoch needs to be kept in the system until all processors have committed the
changes it has made to speculative memory. Before beginning execution of an epoch, each pro-
cessor aggressively updates its state by traversing all epochs in this queue. A quick “garbage
collection” check is executed during this traversal to destroy epochs whose state has been com-
mitted by all processors and which are no longer pointed to as “last seen” epochs, as explained
later.

The work performed on each queue comprises the main loop of the system, which is started by
tls_start() —the actual implementation uses long jumps. A global lock is used to ensure mu-
tual exclusion during accesses to the queues.

Epochs can be explicitly destroyed with kill operations. Explicit cancellation is necessary for
control speculation, as well as potentially useful for more complicated run-time optimizations. A kill
operation blocks until all processors have finished executing their current epochs. Then, the state of
each local image of the shared memory is restored to that of the epoch immediately preceding the one
being killed. Finally, all epochs with larger sequence numbers are purged from the system. We chose
this implementation for various reasons. First of all, we expect kills to be very infrequent. Also, doing
otherwise would introduce a large amount of complexity in managing the queues and especially in the
garbage collection function, which is frequently executed. Most importantly, we do not expect epochs
logically succeeding a killed one to contain enough useful work to justify the extra overhead.

6

#include <tls.h>

typedef struct {
int hash[N];

} shmemt;
shmemt *pmem;

typedef struct {
int index1, index2;

} frame t;

void f iter (void *frm, int size, bool restart)
{

frame t *frame = (frame t *)frm;
int x, y; /* Local variables */

if (!restart && continue cond) {
frame t next frame = {... };
tls epoch seq t seq = tls seq get(1);
tls epoch t next epoch = tls epoch new(seq, f iter, &next frame, sizeof(next frame), 0, 0);
tls epoch fork(next epoch);

}

tls epoch begin();...
x = pmem->hash[frame->index1];
...
pmem->hash[frame->index2] = y;
...
tls epoch end();

}

static void initialize (void)
{

pmem = (shmemt *)tls memalloc(sizeof(shmem t));
...

}

static void start (void)
{

frame t frame = {... };
tls epoch seq t seq = tls seq get(1);
tls epoch t *first epoch = tls epoch new(seq, f iter, &frame, sizeof(frame), 0, 0);
tls epoch fork(first epoch);

}

int main (int argc, char *argv[])
{

tls init(argc, argv);
if (tls pid == 0) {

initialize();
tls memsend(&pmem, sizeof(pmem));
start();

} else
tls memrecv();

tls start();

tls shutdown();
exit(0);

}

Figure 2: Putting it all together: the example in Figure 1 using our API.

7

Pend

Exec

Finish

Clear

Epoch Mgmt

Message
Queue

Messaging

Twin
Lists Table

Page Region
List

Memory

Figure 3: High-level view of software-only implementation. Shaded structures arenot located in
shared memory. The epoch management queues are lists of epoch structures, each of which points to a
“last seen” epoch (once executing) and a list of page twins (once finished execution). Each processor
maintains a private page table, which holds information about the private image of speculative mem-
ory. This information consists of read/write dirty bits and a pointer to a newly created page twin, if the
page is write-dirty. These twins are gathered into a list when execution of an epoch completes. Pages
of speculative memory are allocated in large chunks, orregions—creating a new region roughly cor-
responds to ansbrk() . The messaging subsystem is used to broadcast necessary updates, as well as
during initialization and for any other exchange of information that do not fit in central epoch queues
and linked structures. As shown in the figure, each message belongs to a number of message queues
(linked lists), one per processor.

The epoch data structure (see Figure 4) is of central importance. This is opaque to the program-
mer/compiler, it is allocated bytls_epoch_new() and contained in the queues described above.
Besides the basic information (such as sequence number, parent epoch sequence, executing processor,
pointer to epoch procedure, etc.), the following information is associated with each epoch structure:

• Forwarding frame: This is simply a buffer containing a copy of the data forwarded to the epoch
during creation; it is part of the epoch structure.

• Forwarding buffer and flags: This is space reserved for forwarding data after epoch creation.
A flag is associated with each data item in the forwarding buffer. These flags are used for
synchronization between sending and receiving epochs. All of the above are parts of the epoch
structure and need to be pre-allocated during its creation.

• Twin list: This is a pointer to a list of copies of all pages written by an epoch during its execution.
Whenever a page is first written, a clean copy of the page is stored. When an epoch finishes
execution, a copy of the final contents of each page is also made. The twin list is also allocated in
shared memory and thus accessible by all processors. All this information is used for dependence
checking, as well as updating memory state, both during committing as well as undoing an
epoch—a more detailed explanation will be provided later.

• Last seen epoch:This is simply a pointer to the epoch which was last committed on the
processor that executed this epoch. This information is used when checking for dependence
violations—only epochs after the “last seen” one need to be checked against.

8

PIDSeqNo

ParentPID ParentStackPtr

FailHndPtr FailHndArgPtr

CancelHndPtr CancelHndArgPtr

State RefCount

PrevSeenPtr

TwinListPtr

FailFlag CancelFlag KillFlag

Forwarding Flags

Forwarding Buffers

Figure 4: Epoch data structure. The first and third portions are information set by the programmer
or compiler. The latter (forwarding buffer and flags) is variable size, but the size has to be specified
at epoch creation time. The middle portion is used by by the system during various epoch execution
stages, as explained in the text.

The above discussion brings us to the memory subsystem, which is the part whose design is based
upon software-DSM systems. Each processor keeps a private copy of the shared speculative memory.
Thus, each epoch reads and modifies only the local copy of the processor upon which it executes. The
virtual memory system is used to track these accesses. Initially, each page is both read- and write-
protected. Upon the first read operation, a segmentation violation signal (SIGSEGV) occurs, which is
trapped to user-level code. The signal handler sets aread dirtybit and the read protection is removed
from the page, until the epoch completes execution. The first write operation also triggers a similar
chain of events. Thus, for each epoch, only the first read and the first write accesses will cause an
expensive signal handler invocation.

We have incorporated one more important idea from software-DSM systems. Practically all such
systems implementmultiple-writerprotocols. Whenever a page is first written, atwin is created—i.e.,
a clean copy of its initial contents. By comparing the initial and final contents of the page, we can
achieve two things. First, we can actually track writes at a word (or even byte) granularity and thus
reducefalse sharingproblems. Second, if multiple processors (in our case, epochs) have modified
a certain page, it is possible to merge these modifications. Software-DSM systems always usediffs
to exchange page modifications between processors. This has the advantage of reducing the size of
exchanged messages, and thus the communication overhead. However, since our TLS layer is built
on top of a tightly-coupled hardware multiprocessor, the overhead of computing the diffs is usually
greater than exchanging the entire “before” and “after” contents of a page through shared memory.
Therefore, we do the equivalent ofdiffing3 only when it is necessary to merge modifications, and not

3Diffing is performed at a word granularity by default. Smaller granularities impose a high overhead, mainly because

9

 0

 2

 1

 1

 0

 3

 1 2

 0

 4

 1 3

 2

 0

 4

 3

 1

 0

 2

 2

 3

 5

 4

 6

 4 5

 3 2

 6

 5

 4

 2 3

 4 6

 5

 4 5

 3

 6 7

 4

 5

 3

 6

 7

 6

 4 5

 3

 8

 6

 5

 7

 9

 8

 5 6

 7

 0

− / − 1 / − 1 / 1 2 / 1 3 / 1

4 / 2

6 / 45 / 45 / 35 / 34 / 3

3 / 1 3 / 2 4 / 2 4 / 2

 3

End 1, check against 0, OK
Check 2 against 1, OK

Execution of epoch 0
Creation of epoch 1

Creation of epoch 0 Execution of epoch 1
Creation of epoch 2

End 0, no check needed, OK
Execution of epoch 2
Creation of epoch 3

End 2, cannot check
Execution of 3
Creation of 4

Execution of 4
Creation of 5 Exection of 5

End 4, check against 3, fail
Foo

Creation of 6

Re−execution of 4 End 5, cannot check
Execution of 6

End 4, no check needed, OK
Check 5 against 4, OK

Execution of 7
Creation of 8

End 6, no check needed, OK
Execution of 8

Re−fork 4
(Traverse "clear" list)

Creation of 9

End 3, no check needed

1 2 1 1

2

12212

2 2 1 2

Figure 5: Central data structure during progress of execution, on a system with two processors. The
“last seen” pointer is shown with a dashed line. The iteration number of the main loop for each
processor is shown at the bottom right of each picture. The processor performing the actions listed
in each picture is shown on the top right. Epochs executed on the first processor are lightly shaded,
whereas epochs executed on the second processor are shaded dark.

when checking for dependence violations.
There are three possible types of dependences. Each of these poses different problems and is dealt

with as follows:

• Write-after-read (WAR): Whenever an epoch begins execution, any modifications by epochs
with larger sequence numbers are undone. This may be necessary if the epoch starting execu-
tion is one which was previously violated or canceled, since logically later epochs may, in the
meantime, have been executed on the same processor. Since each epoch accesses the local copy
of the speculative memory, WAR dependences cannot be violated.

• Write-after-write (WAW): The support for multiple-writers with on-demand diffing resolves
such dependences: we just have to apply the write updates in the order dictated by epoch se-
quence numbers.

• Read-after-write (RAW): The good news is that this is the only type of dependence that may
cause an epoch to fail. The bad news is that these dependences are difficult to identify correctly.

of inefficient memory accesses—in most modern processors, loads and stores are optimized for word-size accesses and
accessing parts of a word often requires extra instructions (bit masking and shifting). Any granularity can be chosen during
system startup.

10

Since we rely solely on the virtual memory hardware, reads can only be tracked at a page gran-
ularity. Therefore, whenever a page is both written by an epoch and read by one with a smaller
sequence number, we have to conservatively assume that there may have been a dependence
violation, even though the sets of words read and words written may be disjoint. The reason for
this is that we have no way of identifying the former. Of course, if we do not rely exclusively
on the virtual memory mechanism, we can deal with this problem of false violations (which are
caused by false sharing). For instance, Shasta [SGT96] uses compiler-inserted instructions to
tag the precise address of each read. However, this imposes a significant overhead on each read
operation, or at least those to speculative memory.

We have implemented our own equivalents ofmalloc() andfree() for managing the shared
speculative memory. The speculative memory heap consists of a list of regions. New regions are al-
located whenever necessary. A relatively simple message-passing subsystem is used for exchanging
the information necessary to coordinate these operations. The implementation is based on a shared
message queue and supports “broadcasting” (each message may belong to as many chains as the pro-
cessors in the system), message type tags and both blocking and non-blocking send/receive operations;
the design was meant to be general enough to support our system’s needs as it evolved. This message
passing subsystem is also used during initialization to broadcast any necessary information, as well
as for the implementation of thetls_mem_send() /tls_mem_recv() pair of functions. These
are normally used during the initialization phase to broadcast the address of the initial block of shared
memory.

3 Performance Evaluation

The first part of this section describes the speedups achieved with purely synthetic workloads. This
serves a dual purpose: to show that our system does indeed achieve speedups under certain conditions,
and to give a rough idea of what these conditions are. The second part describes our observations from
a real program and provides a starting point for our analysis. As we shall see, these observations paint
a very different picture.

3.1 Ideal Conditions

We performed measurements with a synthetic benchmark, to estimate performance under “ideal” con-
ditions. The benchmark consists of a simple loop that accesses an array of page-sized elements (see
Figure 6). The array has as many elements as there are CPUs available in the system and each loop
iteration modifies exactly one word in array elementi mod N (wherei is the iteration number and
N is the number of processors) and then idles for a certain amount of time.

The results from this simple benchmark are shown in Figure 7 and provide an indication about
the overheads associated with page diffing and copying in our implementation. As we see, given
sufficiently large units of work (in terms oftimerequired to complete them), we achieve good speedup.
In itself, this is a reasonable requirement. However, as we shall soon see, the overheads increase
linearly with the size of work units in terms of memoryspacethey touch. For real programs, this
linear increase involves a very large multiplicative constant. Reducing this requires some form of
added hardware support.

11

#define I DEP 1

int a[PAGE SIZE * NUM ELT];

void loop (void)
{

int i;
for (i = 0; i < NUM ITER; i++) {

int ai = i % NUM ELT;
if (ai == 0)

write a[I DEP * PAGESIZE];
read a[ai * PAGE SIZE];
busy loop ;

}
}

Figure 6: Synthetic workload.

3.2 The Real World

We use bucket sort (see Figure 8) as a starting point for our analysis of overheads incurred when
running real applications. We implemented a standard version and chose the following parameters:

• Input: an array of 512K integers
This takes takes up a total of2 Mb, or 512 pages on the Intel IA32 architecture4.

• Key-set size: the values of the integer elements were in the range of 0 to 1023.
Thus, the frequency count array fits in a single 4K page.

• Epoch size: In both counting and sorting phases each epoch goes through 2K integers.
In other words, each epoch executes 2K iterations of the counting (read input array and update
frequency counts) and sorting (write output array) loops. This amounts to unrolling 2K iterations
from each of the loops in Figure 8. Therefore, there is a total of 512 epochs, 256 for each phase.

As noted above, the frequency count array fits in a single page. This results infully serialized
execution of the counting phase, since all epochs modify the exact same page. To avoid this, we
padded each array element to an entire page. This introduces a factor of 1024 space overhead, as well
as a time overhead, since for each modified element we need to go through and copy the entire page
to other CPUs). The input and output arrays were left unpadded, since padding would introduce an
extreme overhead.

During the sorting phase, we observed that each epoch touches on average 467 pages (minimum
and maximum were 456 and 477 pages). In other words, practically all pages are touched by all epochs!
As we will see, this is because of the page-granularity limitation imposed by the virtual memory
mechanism and is not specific to the parameters or even the application. Since we need to compare
the old and new contents of each modified page in order to perform diffing, we end up going through
467×2×4 Kb ≈ 3.65 Mb per8 Kb work! This introduces a factor of 463(= 3.65 Mb/8 Kb) overhead
factor. Indeed, the actual execution times are about three orders of magnitude larger—approximately
5 minutes versus 2 seconds!

4Pages on the SGI machines are double in size, which makes things even worse.

12

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

�

of iterations

2 CPUs
4 CPUs

(a) Speedup vs. running time

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
pe

ed
up

�

Work size (sec)

2 CPUs
4 CPUs

(b) Speedup vs. work size

Figure 7: Speedups achieved with synthetic loads.

Because of all the page copies maintained, memory utilization becomes a problem: although the
dataset size is2 Mb as noted above, the actual address space for each process was about21 Mb. This
degrades the memory system’s performance and is a significant problem.

4 Overhead Analysis

In this section, we will describe all sources of overhead we observed, and discuss their causes. From
these follow potential remedies, most of which have already been attempted, at least in some form.
Thus, we will also try to place existing work on software TLS in this context.

4.1 False Sharing

One problem that hurts performance isfalse sharing. This generally occurs because certain infor-
mation about memory accesses is typically not kept at the finest granularity (i.e., per byte or word).
Usually such information is kept for eachblock (e.g., cache line or virtual memory page). Therefore,
accesses to different elements of a block cannot be distinguished and this may lead to detection of false
dependences. The problem of false sharing is aggravated by large block sizes. The graphs in Figure 9
and Figure 10 show exactly how the increase in block size leads to an increase in false conflicts.

In our case, diffing solves the problem for write accesses on the same page. In theory, we can
obtain information about writes on a page at whatever granularity is desirable (although comparisons
of quantities smaller than a word incur a significant performance penalty). This information, however,
comes at a price. We will explain this in greater detail later, but the main issue is that, sooner or later,
we need to go through theentireold and new images of the page and compare every single word. The
sorting phase graphs (right column) in Figure 9 and Figure 10 show how often the diffing mechanism
is triggered as block sizes increase. These graphs show what fraction of epochs suffer a WAW conflict
with a previous one during the sorting phase. The actual number of conflicts is slightly higher if we

13

int a[NUM ELT]; /* Input array */
int as[NUM ELT]; /* Output, sorted array */
int f[NUM KEYS]; /* Key count array */

void sort (void)
{

int i;

/* Counting phase */
bzero(f, sizeof(f));
for (i = 0; i < NUM ELT; i++) /* Loop 1 */

++f[a[i]];
/* Accumulation -- part of last counting epoch */
for (i = 1; i < NUM KEYS; i++)

f[i] += f[i-1];

/* Sorting phase */
for (i = 0; i < NUM ELT; i++) { /* Loop 2 */

--f[a[i]];
as[f[a[i]] = a[i];

}
}

Figure 8: Bucket sort.

also take into account WAR violations.

4.2 False Violations

Besides the added overhead of performing costlydiffingoperations, false sharing leads to another very
serious problem, that offalse violations. In traditional DSM systems, false sharing hurts performance
by unnecessarily increasing data movement overheads. However, when we add speculation support, it
may also hurt parallelism by causing false violations, which occur when twospeculativelyexecuting
epochs touch different words within the same block.

In the case of reads, if we rely on the virtual memory mechanism, we really cannot obtain infor-
mation at a finer granularity than an entire page. Thus, we have to assume a violation has occurred.
The counting phase graphs (left column) in Figure 9 and Figure 10 show how often epochs have to be
canceled because of false WAR conflicts.

Even if it were possible to unprotect a page just for a single read to go through (which is not
possible, at least with user-level code), invoking a signal handler upon every read entails enormous
overheads. An alternative would be to instrument all read instructions [SGT96, SFL+94]. However,
in this case we have to give up the idea of avoiding compiler extensions,5 special executable-editing
tools or, possibly, specialized hardware such as the custom memory boards in [SFL+94] for enhanced
performance.

5Modifications to the compiler are necessary for automatic parallelization. However, compiler extensions for load/store
annotation may have to be placed in the code-generation phase if we want them to be highly efficient. Furthermore, some
extensions (either to the language or as pragmas) will have to be present for a programmer to use the system directly. Always
requiring the presence of modified compiler in every platform in this way may be somewhat burdensome.

14

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 256, K = 256, m = 4)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Sort phase (N = 256, K = 256, m = 4)

2CPU
4CPU
8CPU

(a) Initial parameters

0%

20%

40%

60%

80%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 256, K = 256K, m = 4)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s
�

Block size (bytes)

Sort phase (N = 256, K = 256K, m = 4)

2CPU
4CPU
8CPU

(b) Increased key set size

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 256, K = 256, m = 8)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Sort phase (N = 256, K = 256, m = 8)

2CPU
4CPU
8CPU

(c) Increased epoch size (unrolling)

Figure 9: Epoch conflicts versus block size for varying array sizes (N), key set sizes (K) and epoch
sizes (unroll factoru), as well as dependence window sizesw (which correspond to number of CPUs
with round-robin execution). We only consider RAW and WAW dependences, not WAR. In the count-
ing phase, all dependences occur through the key count array. Each element is read, incremented and
written, thus all dependences are WAR and lead to epoch cancellation. For the sorting phase, we show
only conflicts that arise through the sorted array, not the key count array. The sorted array is only
written, thus all dependences are WAW and trigger the diffing mechanism. The vertical axis shows the
percentage of epochs that have a RAW or WAW conflict with any of thew − 1 previous epochs.

15

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 1024, K = 8, m = 16)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096

C
on

fli
ct

s

�

Block size (bytes)

Sort phase (N = 1024, K = 8, m = 16)

2CPU
4CPU
8CPU

(a) Relative parameters closer to our software TLS requirements

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 256, K = 1G, m = 4)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

C
on

fli
ct

s

�

Block size (bytes)

Sort phase (N = 256, K = 1G, m = 4)

2CPU
4CPU
8CPU

(b) Key set size much larger than number of elements

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

C
on

fli
ct

s

�

Block size (bytes)

Count phase (N = 256K, K = 256K, m = 4)

2CPU
4CPU
8CPU

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

C
on

fli
ct

s

�

Block size (bytes)

Sort phase (N = 256K, K = 256K, m = 4)

2CPU
4CPU
8CPU

(c) Much smaller unrolling with respect to number of elements

Figure 10: Epoch conflicts versus block size with realistic and extreme choices of parameters. Once
again, we consider only WAR and WAW conflicts and show only conflicts through the sorted output
array in the sorting phase. For (b), we had to use a sparse representation for the key count array, but
we show what the behavior would be if it were not (i.e., was implemented using a 4Gb array). The
parameters in (a) were chosen based on the observation that the software TLS system needs a large
unrolling factor (to cover the epoch setup overhead) and, consequently, a large array—necessarily
much larger than the key set size.

16

One might argue that the problems caused by false sharing could be alleviated by developing smart
memory placement algorithms in the compiler. However, the main goal of TLS is to enable automatic
parallelization of programs for which data dependence analysis and, consequently, data partitioning to
avoid them is very difficult or impossible to do at compile-time.

As mentioned before, in our bucket sorting benchmark, the key-count array for 1024 keys fits
entirely in one page. Thus, the execution of all epochs in the key counting phase is fully serialized. A
simple and straightforward way to avoid this is to pad each array element to occupy an entire page. This
is wasteful in terms of memory usage and may cause further performance degradation due to cache
misses and conflicts that would otherwise not occur. It also creates an artificial overhead. Whenever a
single array element is modified, we need to examine the entire page to determine what was changed,
or at best copy the entire page to each of the other processors. We will further discuss the problem of
copying in the next section.

4.3 Maintaining Local Images

The main overhead of our system is in maintaining local images of the shared memory that may be
speculatively accessed (which we call “shared speculative memory”). It is interesting to note here that
the few software-only systems that support at least some form of speculation try to avoid privatization
as much as possible.

As we have already described, each processor uses a local copy for all memory accesses. This
copy must be updated on each processor. Interesting candidate applications for TLS typically exhibit
a pattern of memory accesses that are not localized. Programs with localized memory access patterns
can often be parallelized either at compile time or by using simpler techniques.

In the following paragraphs we will describe the two main aspects of the problem. It is important
to note that this is not specific to the virtual memory approach, although large block sizes make things
much worse.

4.3.1 Effects of Large Block Sizes

During program execution, information about memory accesses is kept on a per-block basis. When
using the virtual memory system, blocks are entire pages. Whenever a single memory location within
a block is accessed,all the locations in the same block are “tainted.” If multiple processors have
accessed the same block, then we must perform an expensivediffing operation. Otherwise, we can at
best copy the entire block verbatim into each processor’s local image. In both cases, however, we have
a high overhead factor.

More precisely, if the block size isNblk bytes and, on average,Nacc out of these are accessed by
an epoch, then theoverhead factoris at leastfmin = Nblk/Nacc .

Let us assume a page size6 Nblk = 4096. For instance, during the key counting phase of bucket
sort, we haveNacc = 4 because of the padding to avoid false sharing. Thus, the overhead factor is
fmin = 1024. During the sorting phase,Nacc = 17.6 in our setup andfmin ≈ 233. However, the
actual factor is closer tof = 463 (i.e., about2fmin), because of the expensivediffingoperation.

Also, a large block size significantly increases the chance that the same block will be modified by
more than one processor. The first option is to conservatively assume that there has been a dependence

6This is the page size that Linux/i386 uses, which is relatively small. Irix on the SGI Origin uses a page size of16 Kb,
which makes things much worse.

17

violation, but this results in serialized execution of most epochs. If we want to avoid this, we have to
compute diffs and pay a large performance penalty.

The above behavior is indeed exhibited by bucket sort. In fact, in the sorting phase the situation is
even worse. Not only is each block touched by more than one processor, but each processor by itself
practically accesses all the blocks in shared speculative memory! Figure 11 shows in detail how the
fraction of total blocks touched by each epoch increases with block sizes.

Aside from the copying/diffing overhead that this entails, it also makes things even worse because
it causes too many protection faults per epoch. It also makes a “lazy diffing” (i.e., postpone diffing
until the block is actually accessed by another processor) approach infeasible, since almost all blocks
are always needed by each epoch. It is important to note that this is not a characteristic of the chosen
parameters (see Figure 9 and 11) or even, to a large extent, of the chosen benchmark (see Figure 12).
A smaller block size would reduce or even eliminate7 this problem.

One solution might be to try making the overhead factorf ≈ 1. One approach would be to pick
a small enough (i.e.,Nblk ≈ Nacc), fixedblock size. However, if we want to use the virtual memory
mechanism, then it is impossible in practice to reduce the block size, as explained in section 4.1
and 4.2. An alternative is to modify memory instructions. Software DSMs such as Blizzard [SFL+94]
and Shasta [SGT96] employ executable editing to instrument loads and stores. However, this still
incurs a penalty foreachread and write to shared memory. Blizzard also resorted to custom memory
boards to improve performance.

Clearly, the optimal approach would be to use a variable “block” size, always equal to each object.
This technique was essentially used in Orca [BKT92], which is a parallel, object-oriented program-
ming language. The compiler and runtime environment keep track of accesses to each object on each
processor in the system. In general, each memory object must be identified at the proper granularity
and have read/write dirty bits that are properly updated whenever it is accessed. In software TLS sys-
tems this technique is not used; thread pipelining [TY96] is probably the one that comes closest (see
also section 5.1).

4.3.2 Copying Overhead

Even if we reduce the overhead factor tof = 1, this does not mean that the overhead has been
eliminated, but rather that it has been limited. When an epoch is committed, we eventually must
perform intra-processor copying in order to update each local image of shared memory. Iff = 1, then
we are copying exactly the words that have been modified and no more.

As a side note, it is not clear how to do fast (i.e., essentially constant-time, if this scheme is to
succeed) random tagging of a block (as read and/or write dirty), while also being able to retrieve the
list of tagged blocks in time proportional to the size of this list and not the size of the shared region.

It would be desirable to avoid copying altogether, by using actual shared memory. However,
threads running speculatively should not modify the same data without some control. One approach
would be to use wait/wakeup synchronization flags, rather than read/write-dirty bits per block or ob-
ject. This is a method forruntime serializationof potentiallydependent memory accesses, rather than
speculation. Such an approach is used in thread pipelining [KL98], which is further explained in sec-
tion 5.1. The compiler muststaticallyidentify where dependences may occur and insert the appropriate
instructions to tag store addresses at runtime and perform the necessary checks and synchronization
between threads. Addresses are tagged in a stage separate from the main thread body. Thus, execution

7For instance, if blocks were 4 bytes large, i.e. exactly the size of a single array element.

18

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Count phase (N = 256, K = 256, m = 4)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Sort phase (N = 256, K = 256, m = 4)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Count phase (N = 256, K = 256K, m = 4)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Sort phase (N = 256, K = 256K, m = 4)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Count phase (N = 256, K = 256, m = 8)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Sort phase (N = 256, K = 256, m = 8)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Count phase (N = 1024, K = 8, m = 16)

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096

B
lo

ck
s

to
uc

he
d

�

Block size (bytes)

Sort phase (N = 1024, K = 8, m = 16)

Figure 11: Fraction of blocks touched per epoch for various block sizes. We show he average over all
epochs and the standard error. Once again, for the sorting phase we consider only the sorted output
array, not the key count array.

19

0%

20%

40%

60%

80%

100%

4 32 64 128 256 1K 4K 8K 16K 32K 64K

C
on

fli
ct

s

�

Block size (bytes)

Conflicts vs. block size

ijpeg
perl

bzip2
mcf
vpr

twolf
vortex

Figure 12: Conflicts versus block size for certain SPECint95 and SPEC CINT2000 benchmarks. If
we make the simple and optimistic assumption of linear speedup in proportion to the conflicts (i.e.,
tpar = ctser + (1 − c)tser/NCPU), then an increase in conflicts from 2%–4% to 30%–40% results
in a factor of 1.8–2 slowdown with 4 CPUs. The results were obtained using the benchmarks and
dependence model from [SCZM00]. Although the our software TLS system was designed for different
applications with coarser-grain epochs in mind, these data provide further evidence about the behavior
of programs from standard benchmarks that have been shown to benefit from TLS.

may be serialized, even when dependences do not actually exist at runtime. Also, tagging and tag
checking must occur at a granularity greater than per-word, in order to limit overheads.

5 Related Work

In the past there has been a significant amount of work on TLS (although the term is not consistently
used), both in hardware as well as software. The main focus has been on hardware-based schemes, but
a few software schemes have been developed. However, the latter have not been shown to be generally
applicable and effective. In the next sections we provide an overview of various systems.

5.1 Software Approaches

The earliest work on software-based speculation involves run-time parallelization of loops that iterate
over arrays (i.e., fixed-size, discrete sets of variables). These techniques are helpful when the array
access pattern does not allow compile-time parallelization. Essentially all techniques in this class
involve first doing a “quick” execution of the loop, in order to compute the array access pattern by
performing the least possible work. This requires some extra storage space, whose size is of the same
order as the array size. The basic idea is to keep track at which iteration each array element is accessed.

20

Based on the access pattern, there are several possible actions [RP95]. The simplest technique is to
simply execute the iterations in parallel, if and only if there are no cross-iteration dependences at
all. This can be improved upon by usingprivatizationto eliminate certain dependences. For instance,
write-after-read dependences can be handled by writing first into private storage and copying the values
into the actual array after parallel execution has finished8.

The above techniques have also been extended to exploit any available parallelism. Based on the
access pattern, it is possible to discover which iterations are mutually independent of each other. All
mutually independentconsecutiveiterations are grouped together. All iterations in the same group (or
wavefront) are executed in the same parallel phase.

The main disadvantage of the above class of techniques is that they are applicable only to arrays.
They cannot be extended to more complicated, pointer-based structures, which are the most common
ones in non-scientific applications.

A more recent approach is that ofthread pipelining[KL98]. It is inspired by the superthreaded
architecture [THA+99] (see also section 5.2). Each thread (roughly corresponding to epochs in our
scheme) is divided into a number of pipeline stages:

• Continuation stage: This computes all variables necessary to fork the next thread.

• Target-store address generation (TSAG) stage: Computes the addresses of write operations upon
which other threadsmaybe data dependent. These addresses are forwarded to memory buffers
of successor threads.

• Computation stage: This performs the main bulk of the work. Any reads from target store
addresses of previous threads are synchronized via a flag allocated for each such address.

• Write-back stage: During this stage, the thread writes any privatized data back into the shared
memory.

The above mechanism is used to support data speculation. Control speculation can be supported by
speculatively forking threads. These threads write in private memory and transfer the results into
shared memory only when they complete and speculation has proved successful.

By limiting privatization as much as possible, the overhead is small enough to achieve speedups.
This approach relies on the compiler to identify potential sources of dependences and insert the ap-
propriate instructions in the TSAG and computation stages. Thread pipelining is has been proven
successful in a number of benchmarks and is an interesting approach. However, its performance when
there is significant imbalance among the various stages or when there is a large number of potential
dependence sources has not been thoroughly investigated.

Finally, recent work [Dev00] explores ways to exploitstride predictability. The main idea of this
approach is to detect at runtime if memory accesses indeed follow a predictable pattern, by executing
the first few iterations and examining the addresses of memory instructions. If the addresses differ by
a constant amount, thenall future accesses are assumed to be stride-predictable. If the initial addresses
and strides are such that there are no conflicts9, then the code is executed in parallel. This approach
supportsdataspeculation. One of its main strengths is that it completely avoids privatization (although
some copying needs to be done to restore original values upon failed speculation). However, as the

8Only those array locations that are the source of such dependences need to be privatized.
9This requires computing the GCD of the strides. Even this turns out to be an expensive operation to performat runtime

and often eliminates any performance gains. Thus, an approximate solution is used in practice.

21

authors admit, in many cases results at least as good can be obtained by compile-time parallelization
methods. There is no conclusive proof yet whether this approach is useful in speculation on arbitrary
pointer-based structures in real applications.

5.2 Hardware Approaches

The Multiscalar architecture [SBV95] was the first complete work in supporting fine-grained thread-
level parallelism. The compiler partitions the program intotasks, each task being a partial walk of the
control-flow graph (e.g., a complete loop iteration). Each task is assigned to one of multiple processing
units. The assignment is done in a cyclical queue fashion and tasks are retired in order. Processing
units communicate via a ring, in order to detect data dependence violations in registers and/or memory,
as well as forward values to tasks later in the queue.

Our group’s STAMPede project has been developing hardware support for TLS [SCM97, SM98,
SCZM00]. This work was the main source of inspiration for our software-based approach. The main
focus has been on a generic single-chip multiprocessor, where each processor has its own primary data
cache and all processors on the same chip physically share a secondary cache. We have extended the
instruction set to provide new instructions which enable software to manage TLS, to use the caches to
buffer speculative state, and to extend the cache coherence scheme to detect data dependence viola-
tions. This approach has been successful in a wide variety of applications; a more detailed description
can be found in [SM98].

The Hydra [HWO98, ONH+96] single-chip multiprocessor uses an approach that is very similar
to ours. The main difference is that it relies on more support from the hardware. This achieves lower
software overheads, at the expense of more hardware. It is not clear that the chosen trade-off provides
any significant performance benefits.

Recently, the Multiscalar group has introduced thespeculative versioning cache[GVSS98]. This
design is also based on a modified cache coherence scheme, similar to snooping bus-based cache
protocols.

The superthreaded architecture [THA+99] is also another design for thread-level speculation. This
was the inspiration for the thread-pipelining model (described in section 5.1), which employs essen-
tially the same approach.

5.3 Hybrid Approaches

It is not entirely clear what “hybrid” means, since most systems need some form of software support.
We use the term to signify systems that relyequallyon software and at least some special hardware.
For instance, an incarnation of Blizzard [SFL+94] (see also section 5.4) which uses custom memory
boards instead of code instrumentation may be considered a hybrid system.

Among systems for thread-level speculation, the one that probably best fits this category is the one
described in [ZRT98]. This is essentially an extension of the work in [RP95]. However, instead of
checking whether speculation was successful in software after the entire loop has been executed, this
system relies on extensions to the cache coherence scheme to detect violations as early as possible.
If there is a dependence violation, then software restores memory contents and re-executes the loop
sequentially. The scope of this system is relatively more limited than other hardware approaches,
although the original design has been recently extended [ZRT99].

22

5.4 Software DSMs

One of the first successful software DSM systems is Treadmarks [KCDZ94]—and its offspring, CVM [Kel97].
Treadmarks uses the virtual memory hardware mechanism and employs a lazy release consistency
model as well as a multiple-writer protocol with diffing to achieve good performance. Shasta [SGT96]
and Blizzard [SFL+94] were developed later. They rely on code instrumentation instead of the vir-
tual memory hardware. Sirocco [SFH+98] investigates the potential of using cheap hardware shared-
memory nodes (typically bus-based, with 2-4 CPUs each) in order to build a larger scale software
DSM.

6 Discussion

We have described our approach for supporting thread-level speculation (TLS) purely in software,
using the virtual memory mechanism. This work derives from previous, successful work in software
DSM systems. However, we found that this success does not translate to software TLS.

The unavoidably large block sizes cause most serious problems. When using the virtual memory
mechanism, the block size is equal to the size of a page. Typical page sizes are 4–16 Kb, although
permissible ranges are usually 4–64Kb and pages larger than16 Kb are becoming more common with
newer, 64-bit architectures (for instance, Intel IA64 and AMD x86-64) and larger address spaces. This
poses no problems to the primary goal of virtual memory, particularly since the availability of large
physical memories reduces the impact of internal fragmentation problems. However, such large page
sizes have very serious consequences for speculation support.

The random memory access patterns of good candidate applications for speculation can easily
cause false sharing problems. Besides needlessly increasing communication overheads, false sharing
also causes false violations, which result in serialized execution.

Besides the overheads related to block size, the need for privatization is the other factor that sig-
nificantly affects performance. In fact, speculation support also requires the need to keep multiple
versions of memory contents, in order to undo writes when speculation fails. This can be avoided to
some extent inspecialforms of speculation. However, some form of buffering of memory operations
has to be done eventually, since we may have to undo them.

The issues raised above (i.e., false sharing/violations, privatization and undo) are the two main
reasons that the techniques from software DSMs are not as successful in software TLS. As we have
already mentioned, the main goal of TLS is to enable automatic parallelization of programs for which
data dependence analysis and, consequently, data partitioning is very difficult or impossible to do at
compile-time. Therefore, applications that can benefit from TLS typically exhibit random memory
access patterns. In parallel applications that run on DSMs, a significant effort has been already placed
in partitioning the data among processors. This results in better locality. Furthermore, software DSMs
do not have to deal with buffering multiple versions of memory contents and undos.

There are alternative approaches that do not rely on the virtual memory system. We must clarify
that we are mostly concerned with general support for TLS and not other limited forms of speculation.
There is significant evidence that such support provides large benefits, especially for non-scientific
applications [SM98, HWO98] that use irregular, pointer-based structures.

The most promising alternative seems to be based on instrumenting memory instructions. This
technique can support relatively small block sizes, in the range of 128–256bytes. These may be
sufficient for some applications, but for others smaller block sizes may be necessary (see Figure 12).

23

However, there is a trade-off between small block sizes and fast tagging. Ideally, we would like
tagging to cost only a few instructions, while lookup of dirty block sets take time directly proportional
to the size of the sets and not to the size of speculative shared memory. This is a difficult goal to
achieve. Furthermore, this approach still does not solve the problem of maintaining local images.
Thus, even though instrumentation-based approaches have a much better chance to succeed than VM-
based approaches, it is not entirely clear that they would be sufficient.

Finally, there is the option of added hardware support. There is already evidence that such an
approach works well. Based on our observations, the minimum necessary extra support should allow
tracking memory references at a small granularity and also allow fast retrieval of dirty sets. Further-
more, maintenance of multiple versions of memory location contents and fast undo of write operations
can be done efficiently in hardware. This is necessary to avoid the problems associated with privatiza-
tion. The most natural location for adding this support is the cache subsystem. In fact, most current
approaches rely on modified cache coherence protocols. Of course, these approaches are sensitive to
cache line size, but the effects are much less pronounced at those block size ranges. Unlike increasing
page size, increasing cache line size also has negative effects on overall performance due to an increase
in conflict misses. Therefore, there isn’t much reason to question the survival of hardware-based TLS
mechanisms in the future.

Acknowledgments

We would like to thank J. Gregory Steffan for his detailed feedback during the preparation of this
manuscript, Chris Colohan for all his help with the simulation tools and Christos Faloutsos for his
suggestions about the presentation of the material.

References

[BKT92] Henry E. Bal, M. Frans Kaashoek, and Andrew S. Tannenbaum. Orca: A language for par-
allel programming on distributed systems.IEEE Transactions on Software Engineering,
18(3):190–205, March 1992.

[Dev00] Srikrishna Devabhaktuni. Softspec: Software-based speculative parallelism via stride pre-
diction. Master’s thesis, MIT/LCS, April 2000.

[GVSS98] Sridhar Gopal, T. N. Vijaykumar, James E. Smith, and Gurindar S. Sohi. Speculative ver-
sioning cache. InProceedings of the 4th International Symposium on High-Performance
Computer Architecture, pages 195–205, February 1998.

[HWO98] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a
chip multiprocessor. InProceedings of the 8th Conference on Architectural Support for
Programming Languages and Operating Systems, pages 58–69, October 1998.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. TreadMarks:
Distributed shared memory on standard workstations and operating systems. InThe 1994
Winter USENIX Conference, 1994.

24

[Kel97] Pete Keleher. CVM: The Coherent Virtual Machine. Technical report, Department of
Computer Science, University of Maryland, November 1997.

[KL98] Iffat H. Kazi and David J. Lija. Coarse-grained speculative execution in shared-memory
multiprocesors. InProceedings of the International Confenrece on Supercomputing, pages
93–100, July 1998.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs.IEEE Computer, 28(9):690–691, September 1979.

[ONH+96] Kunle Olukotun, Basem Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.
The case for a single-chip multiprocessor. InProceedings of the 7th Conference on Archi-
tectural Support for Programming Languages and Operating Systems, October 1996.

[RP95] Laurence Rauchwerger and David Padua. The LRPD test: Speculative run-time paral-
lelization of loops with privatization and reduction parallelization. InProceedings of
the SIGPLAN 1995 Conference on Programming Language Design and Implementation,
pages 218–232, June 1995.

[SBV95] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. InPro-
ceedings of the 21st Annual International Symposium on Computer Architecture, pages
414–425, June 1995.

[SCM97] J. Gregory Steffan, Christopher B. Colohan, and Todd C. Mowry. Architectural support
for thread-level data speculation. Technical Report CMU-CS-97-188, School of Computer
Science, Carnegie Mellon University, November 1997.

[SCZM00] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scalable
approach to thread-level speculation. InProceedings of the 27th International Symposium
on Computer Architecture, pages 1–12, June 2000.

[SFH+98] Ioannis Schoinas, Babak Falsafi, Mark D. Hill, James R. Larus, and David A. Wood.
Sirocco: Cost-effective fine-grain distributed shared memory. InInternational Conference
on Parallel Architectures and Compilation Techniques, pages 40–49, October 1998.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus,
and David A. Wood. Fine-grain access control for distributed shared memory. InPro-
ceedings of the 6th Conference on Architectural Support for Programming Languages
and Operating Systems, pages 297–306, October 1994.

[SGT96] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta: A
low overhead, software-only approach for supporting fine-grain shared memory. InPro-
ceedings of the 7th Conference on Architectural Support for Programming Languages and
Operating Systems, pages 245–252, October 1996.

[SM98] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data spec-
ulation to facilitate automatic parallelization. InProceedings of the 4th International
Symposium on High-Performance Computer Architecture, February 1998.

25

[THA+99] Jenn-Yuan Tsai, Jian Huang, Christoffer Amlo, David J. Lilja, and Pen-Chung Yew. The
Superthreaded processor architecture.IEEE Transactions on Computers, 48(9), Septem-
ber 1999. Special Issue on Multithreaded Architectures.

[TY96] Jenn-Yuan Tsai and Pen-Chung Yew. The Superthreaded architecture: Thread pipelining
with run-time data dependence checking and control speculation. InProceedings of the
1996 Conference on Parallel Architectures and Compilation Techniques, pages 35–46,
October 1996.

[ZRT98] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for speculative run-
time parallelization in distributed shared-memory multiprocessors. InProceedings of
the 4th International Symposium on High-Performance Computer Architecture, February
1998.

[ZRT99] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for speculative re-
duction parallelization and optimization in DSM multiprocessors. InProceedings of the
1st Workshop on Parallel Computing for Irregular Applications, January 1999. Held in
conjunction with HPCA-5.

26

	Introduction
	What is TLS?
	Supporting TLS
	Contributions

	Design and Implementation
	Software Interface
	Implementation

	Performance Evaluation
	Ideal Conditions
	The Real World

	Overhead Analysis
	False Sharing
	False Violations
	Maintaining Local Images
	Effects of Large Block Sizes
	Copying Overhead

	Related Work
	Software Approaches
	Hardware Approaches
	Hybrid Approaches
	Software DSMs

	Discussion

