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This dissertation makes a contribution to 1) the cognitive science of algebra learning as 
well as to 2) intelligent tutoring systems architectures.  I present a new intelligent tutoring 
system for the domain of writing expressions for algebra "story" problems.  This system 
is novel, because it is the first intelligent algebra tutor that combines a cognitive model of 
the domain with a rich pedagogical model of dialog-based tutoring.  The algebra model is 
novel because contrary to prior work that has emphasized the difficulties of using 
variables, as well as the difficulties of comprehending the text of a word problem, I 
establish the empirical result that articulating a complete expression (e.g., 800-40*3) is a 
major determinant of problem difficulty.  The tutorial model is also novel because it is 
based on the observation of an experienced human tutor and captures the rich tutorial 
strategies specific to the domain of symbolization.  The resulting system, called Ms. 
Lindquist, has been demonstrated to improve student learning.  Over 350 students have 
used the system available at www.AlgebraTutor.org. 
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Introduction and Contributions of this Dissertation 
This dissertation makes a contribution to the fields of 1) algebra learning, as well as to 2) 
intelligent tutoring systems (ITS) architectures. For the last 6 years, I have been focused on 
building a better algebra tutor.  I choose to focus on the hardest and most important topic; a task I 
call symbolization.  The symbolization task is when a student is asked to translate an algebra 
word problem statement into an algebra expression.  I have made an important contribution 
about what makes symbolization so hard for students (Contribution #1 below).  I also made a 
contribution (Contribution #2) by characterizing the tutorial strategies used by an experienced 
human tutor and have used these results, along with my results on student thinking and 
development, to create a detailed cognitive model of tutoring symbolization.    
 In addition, this dissertation makes a contribution to ITS architectures (Contributions #3 
and #4).  Model-tracing intelligent tutoring systems, which have been shown to be effective (e.g., 
Anderson et al., 1995), owe their success to doing a good job of modeling student thinking.  
However, they have largely ignored modeling tutoring itself.  Why?  The first reason is that there 
is a technical challenge to surmount that involves building systems that understand aspects of 
dialog planning and management.  But a second, and probably more important reason, is that not 
much is known about what makes for effective tutoring, in general, or for the specific domain 
that is the subject of this dissertation.  In developing a detailed model of effective tutoring of 
symbolization, I have employed two key strategies.  First, I have performed experimental studies 
to develop a rich understanding of student learning difficulties that serves as a basis for 
designing specific tutorial strategies that assist students in constructing knowledge to overcome 
these difficulties.  Second, I have performed an empirical study of an experienced human tutor 
and built a model that captures key aspects of her behavior, including specific tutorial strategies 
she used for this domain.   

Contributions 
1. Contrary to prior work that has emphasized the difficulties of using variables, as well as 

the difficulties of comprehending the text of a word problem, I establish the empirical 
result that articulating (i.e., the writing out a complete expression such as 800-40*3) is a 
major determinant of problem difficulty.  I establish that many students who can 
comprehend problems well enough to solve them, can, nevertheless, fail to be able to 
symbolize them.  I also show that, the presence of a variable is not a significant source of 
problem difficulty.  To support my hypothesis that students need to learn how to produce 
symbols, I showed that if students were given practice using the grammar of algebra 
expressions, they were able to transfer this knowledge to improve their symbolization 
skills.  I present a cognitive model of symbolization learning that captures and explains 
these distinctions as well as being consistent with the errors that students made. 

2. I present a cognitive model of tutoring based on the analysis of an experienced human 
tutor and inspired by my model of student thinking.  This model of tutoring is able to 
replicate aspects of the human tutor’s behavior, including the multi-turn tutorial strategies 
she used.  This model also replicates some of the domain independent aspects of dialog 
planning and scaffolding.  However, unlike other tutoring models that have focused on 
general pedagogical strategies, my model also incorporates domain-specific pedagogical 
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strategies that are characteristic of expert human tutors and arguably critical to optimizing 
student learning. 

3. I present the first Andersonian model-tracing tutor that has both a student model and a 
tightly integrated tutorial model.  This general architecture (and implementation) 
advances the model-tracing framework.  My system incorporates my tutorial model with 
my model of student thinking.  The student model is used to diagnose student responses.  
The tutorial model uses the results of this diagnosis to plan a multi-turn tutorial dialog to 
deal with the particular errors the student made.    The dialogs created include embedded 
feedback (both positive & negative), sub-dialogs, hints and spliced in conversational cues 
to ensure coherence.   

4. The complete working tutor, called Ms. Lindquist, is available on the world wide web 
(www.AlgebraTutor.org), has been used by over 350 students, and the web-site has been 
designated “best of the web” by at least five educational sites.  A formative evaluation of 
Ms. Lindquist demonstrates that students can learn effectively with Ms. Lindquist. 

An Outline of this Dissertation 
 In Chapter 1, I develop a theory about what makes symbolization such a difficult task.  I 
will present empirical results of students’ behavior on this task.  I will argue that contrary to prior 
research in this area, which has emphasized compression difficulties, students' symbolization 
difficulties have more to do with learning the grammar of the "foreign language" of algebra 
expressions.  I will also present an empirical result that shows that practice at using the grammar 
of algebra expressions improves students' symbolizing skills.  Then I present an analysis of the 
errors students made.  Finally, I conclude by making two instructional suggestions. 
 In Chapter 2, to build a more human-like intelligent tutoring system for this domain, I 
report on observations of an experienced human tutor.  I argue that the tutor uses what I call 
dynamic scaffolding that involves 1) diagnosing the student's answer, 2) giving positive feedback 
on portions of that answer that are correct, and 3) focusing the dialog on portions of the problem 
that the student got wrong.  I model this third step with tutorial strategies that specify a plan of 
questions to ask the student.  
 In Chapter 3, I present a general architecture that expands the existing model-tracing 
framework to allow for a more dialog-based system.  This new architecture combines the student 
model from Chapter 1 with the tutorial model from Chapter 2.  I describe this architecture with 
reference to a new tutoring system, named Ms. Lindquist, which is built using this architecture.  I 
argue that the architecture I have created is general and the implementation easily extendable. 
 In Chapter 4, I present the tutorial strategies that are incorporated into Ms. Lindquist.  I 
also compare Ms. Lindquist to the human tutor from Chapter 2, as well as comparing Ms. 
Lindquist to an existing model-tracing tutor.  Finally, I conclude by assessing how well this 
project met its design goals.  
 In Chapter 5, I present a formative analysis of Ms. Lindquist that shows that students can 
learn effectively with the system. 
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Chapter 1: An Analysis of Student Behavior  
Chapter Overview: 
After reviewing prior work, this chapter will present the design and results of two difficulty 
factor assessments (Heffernan & Koedinger, 1997, Heffernan & Koedinger, 1998).  These two 
studies will help to answer the question of what makes the task of symbolization so hard.  This 
chapter will argue that contrary to the prior research that has emphasized both comprehension 
and "understanding of variables", much of the difficulty students experience is due to their 
problems articulating algebra expressions.  This result will help to explain another empirical 
result we establish: a two-operator problem is harder than the sum of its parts.  This chapter will 
then present an analysis of the errors made on the second difficulty factor assessment; I find that 
many of the errors student made were consistent with the fact that their difficulties have more to 
do with production difficulties than comprehension difficulties.  As causal evidence for the claim 
that symbol production is a major difficulty factor in symbolization, I present a transfer study 
that shows that training on the grammar of algebra expressions can transfer to symbolization.   
Finally, this chapter will conclude with two instructional suggestions.   

The Task Domain: Symbolization 
Symbolization is a difficult task for students.  The Third International Study of Math and Science 
(Beaton, et al., 1996) presented students with the following symbolization problem that only 
49% of U.S. eighth graders we able to correctly answer. 

Juan has 5 fewer hats than Maria, and Clarissa has 3 times as many hats 
as Juan.  If Maria has n hats, which of these represents the number of 
hats that Clarissa has?  
 A: 5-3n  B: 3n   C: n-6  D: 3n-5  E: 3(n-5) 

For another example, the National Assessment of Educational Progress (Carpenter et al., 1981) 
asked 17-year-olds the following question: 

Carol earned D dollars during the week.  She spent C dollars for clothes 
and F dollars for food.  Write an expression using D, C and F that 
shows the number of dollars she has left.  

 A third of the students could not correctly answer "D-C-F".  Moreover, a quarter of students that 
had two years worth of algebra could not answer it correctly.  
 Arguably, the single most important skill students learn in an algebra class is the ability 
to translate a problem situation into an algebraic expression.  We call this skill symbolization.  If 
a student cannot translate a real-world problem situation into the language of algebra, then all the 
time spent practicing symbol manipulation skills is a waste of time (and that practice comprises 
the bulk of most algebra classes1).  Even if a student has access to a spreadsheet or graphing 
calculator, the student will still need to be able to translate a problem into the language of 
mathematics (i.e., an algebraic expression).  This thesis is not concerned with symbolic 
manipulation, but with the translation of verbal problem statements into algebraic expressions.  
Such algebraic expressions can be combined to form equations that can then be solved (or used 

                                                 
1 The National Council of the Teachers of Mathematics (2000) has not been specific on how much of an algebra 
class should be focused on symbolic manipulation.  However, a commonly used textbook (I taught from it.) shows 
the emphasis it gets in practice; Brown, Dolciani et al.’s (1990) textbook has each chapter arranged around a 
different symbolic manipulation skill.  Each chapter has on average of about 9 sections, with usually 2-3 sections 
that show how to use that skill in the context of an algebra word problem.   
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to program a spreadsheet or graphing calculator), but in this study, we focus exclusively on the 
step of generating the expressions themselves.   

Prior Work on Symbolization 
In the research reviewed below (e.g., Paige & Simon,1966), symbolization is often viewed as a 
translation process that has a comprehension component as well as a production component 
(i.e., producing symbols in the target language of algebra) as shown in this schematic: 
 

 
Most past research has focused on the comprehending and ignored the producing.  Sometimes 
"translate" and "comprehend" are used synonymously, thus diminishing the role of production.  
 In this review, I will develop three hypotheses about what makes symbolization so 
difficult.  They are: 

1. Comprehension 
2. Variables (their understanding and use, there of) 
3. Production  

Research on comprehension difficulties has a long history, and we will start with work on 
arithmetic story problems that then lead into work on comprehending algebra problems.  The 
second hypothesis is that students lack an understanding of variables.  The third hypothesis is 
that the difficulties lie mainly on the production side. 

Prior Work on Comprehending Arithmetic Word Problems 
There has been a great deal of work on arithmetic word problems (Carpenter & Moser, 1982; 
Carpenter, Moser, et al., 1982; Kintsch & Greeno, 1985; Lewis & Mayer, 1987; Riley & Greeno, 
1988; Cummins Dellarosa, 1991; Stern, 1993; Hegarty, Mayer, et al., 1995; LeBlanc & Weber-
Russell, 1996; Roth, 1996; Sakamoto, 1999; Schwarz, Nathan et al., 1996; Mwangi & Sweller, 
1998; Passolunghi, Cornoldi et al., 1999; Sakamoto, 1999).  Much of this work comes out of the 
text-comprehension tradition.  For instance, van Dijk (van Dijk 1977) is interested the process of 
story understanding, which involves, not only comprehending individual sentences, but also the 
"macro-structure" that unites the sentences together.  Van Dijk argues, "the same basic principles 
can be extended to other domains, such as … problem solving (p. 3)".  Kintsch (Kintsch 1977) 
was interested in how people comprehended short stories, and made a distinction between the 
linguistic structure and the semantic structure.  He represented the semantic structure with a list 
of propositions, which he called its text base.  Macro-operators (e.g., that generalize propositions 
or construct new propositions) can then infer other propositions, that he calls macro-
propositions.  Kintsch has a "model that likens story comprehension to a process of labeling slots 
in a previously acquired, but flexible, schema (p. 55)".   

Problem 
Statement 

Problem 
Solution 

Mental 
Representation 

Algebraic 
Expressions 

Comprehend Produce 

Translate Solve 
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 The first models of arithmetic word problem solving by Riley, Greeno and Heller (1983) 
and Briars & Larkin (1984) had no explicit language-processing component.  Instead, they dealt 
with a problem representation the researchers believed the children constructed.  In particular, 
Briar & Larkin’s model compared different problems and classified them according to the 
general schema of what happened to the quantities as sets (e.g., a part-whole schema or a more-
than schema).  Similarly, Riley, Greeno and Heller (1983) classified arithmetic word problems 
according the general schemas used, which ignored some linguistic differences.  However, 
Hudson (1983) showed, differences in the difficulty of word problems depended greatly upon 
subtle linguistic variations.  For instance, only 38% of students in his study could solve,  "Joe has 
8 Sticks.  He has 5 more sticks than Tom has.  How many sticks does Tom have?"  However, 
over 79% of children could answer, "There were 8 birds and 5 worms.  How many birds did not 
get a worm?" 
 In order to address this, Kintsch & Greeno (1985) provided a model that combined a 
model of problem solving (Riley & Greeno, 1983) with a model of text comprehension (van Dijk 
& Kintsch, 1983).  The Kintsch & Greeno model was followed by computer simulations (e.g., 
Fletcher, 1985; Dellorosa, 1986; Cummins, Kintsch, Reusser & Weimer, 1988) that were able to 
account for many of the differences in difficulty between problems types.  See Kintsch (1998) 
for a summary of his work as it relates to comprehending mathematics problems.   
 Cummins, Kintsch, Reusser, & Weimer (1988) suggest "that much of the difficulty 
children experience with word problems can be attributed to difficulty in comprehending abstract 
or ambiguous language."  Cummins et al. (1988) compared two views about what children learn 
when solving these word problems.  The first view Cummins et al. (1988) considered has its 
roots in Piaget (1970), and argues that children learn conceptual knowledge about these 
problems.  Cummins et al. (1988) contrasted this with the view that students learn the linguistic 
forms associated with these types of problems.  For instance, a student might understand the 
part-whole schema but not understand how to map "How many more Xs than Ys?" onto that 
schema.  Cummins et al. (1988) argued that the second view does a better job of explaining 
student performance.  Cummins et al. (1988) argued that the results of lesion studies on their 
model are consistent with the same types of errors that real students make.  This focus on 
comprehension led to interventions based on the suggestion that comprehension was a major 
difficulty factor; Cummins (1991) "found [student performance to] be significantly improved by 
rewording problems to avoid ambiguous linguistic forms."   
 Reusser (1989) extended the Cummins et al (1988) model by building in an explicit 
situational model.  This model sits between the text and mathematization of the problem.  The 
situational model specifies actors, actions, states and events in the problem in terms of every day 
concepts.  The situational model is used to constrain the formal problem-solving model.   
 The importance of linguistic knowledge was also emphasized by Cardelle-Elawar (1992) 
who comparing native speakers of English with students who spoke English as a second 
language.  Cardelle-Elawar found that non-native speakers had difficulties with terms (such as 
"equals") and that this often prevented them from solving problems.  
 LeBlanc & Weber-Russell (1996) also focused on the role of comprehension.  They 
presented  

"A computer simulation designed to capture the working memory 
demands required in ’bottom up’ comprehension of arithmetic word 
problems.  The simulation’s sentence-level parser and text integration 
component reflect the importance of processing the problem from its 
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original natural language presentation. …  Consistent with previous 
results, which highlighted the significance of small changes in problem 
wording, the simulation offers a process-oriented perspective as to why 
natural language presentation constrains the comprehension of 
mathematical relationships." 

 Lewis & Mayer (1987) presented "a model of word problem comprehension processes 
that [used] schemata as guides to comprehension."   
 Judd & Bilsky (1989) argued that most models of verbal arithmetic problem solving view 
the process as including problem comprehension and problem solution.  They went on to say 
that, "Available research suggests that, of the two components, comprehension is the more 
important source of problem difficulty."  This claim might well be true for arithmetic word 
problems for elementary school children, but might not be true for ninth grade algebra students, 
as we will next explore. 

Prior Work on Comprehending Algebra Word Problems 
 The work on arithmetic word problem comprehension lead naturally into work on similar 
algebraic problems (Hinsley, Hayes, & Simon, 1977; Mayer, 1982; Rapp, 1986; Reed & 
Ettinger, 1987; Hall, Kibler, Wenger & Truxaw, 1989; Bassok, 1990; Cooney & Swanson, 1990; 
Hoz & Harel, 1990; Kintsch, 1991; Nathan, Kintsch & Young, 1992; Aziz, Pain & Bna 1995).  
Not surprisingly, many researchers looked at the difficulties of the comprehension process.  For 
instance, Kintsch, who was one of the early researchers that focused on comprehension of 
arithmetic word problems, moved into research on algebra word problems.  He brought the same 
assumptions about what causes difficulties for students that had been shown to be a major 
obstacle for students working on arithmetic word problems.  Kintsch (1991) asks us to "assume 
here that the theory developed for word arithmetic problems can be analogically extended into 
the algebra domain."  Kintsch goes on to say that he will "explore which steps in the process of 
understanding a word problem are the difficult ones."  Kintsch (1991) also states the "the 
premise of [his work] is that comprehension failures are central to the difficulty of word algebra 
problems."  With these assumptions, it is not surprising that he focused on the comprehension of 
the problem text.   
  Herbert Simon and colleagues also performed important early work on algebra word 
problems solving.  Paige & Simon (1966), and Hinsley, Hayes & Simon (1977) took Bobrow's 
(1968) computer program STUDENT as a foundation for their cognitive model.  STUDENT had 
a process called direct translation.  The direct translation process was one  

in which it translates successive sentences of the problem text into 
equations and then tries to solve the equations.  The direct translation 
process involves no choice [of a schema] at the time of reading.  …  If 
the direct translation process fails to yield a solution, STUDENT will 
search its memory for relevant global knowledge.  For example, if the 
problem contains a keyword such as 'distance' or 'miles,' STUDENT 
will retrieve the equation 'distance = rate * miles' 

Paige & Simon (1966) compared symbolization to translation from English to French, which 
they said involved taking each French word, looking it up in a French to English dictionary, and 
writing down the answers with some possible changes to inflections, and rearrangements due to 
syntax rules.  Hinsley et al. (1977) observed students' performance to try to determine if students 
used either a direct translation approach or a schema approach.  They concluded that students 
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used both.  They observed the use of the direct translation approach more often on unfamiliar 
problems that did not fall easily into a familiar schema. 
 Mayer (1981) extended the study of schemata and classified a large number of story 
problems into 90 different schemata.  Mayer argued that students first identify the general class 
of a problem and then bring to bear schemata that pull out of the situation some of the numbers 
to fill-in expected slots.  He suggested teaching children to recognize schemata.  Later he studied 
older student’s comprehension of algebra story problems (Mayer, Lewis & Hegarty, 1992).  
Mayer later joined with Haggerty to study the eye movements performed as students 
comprehended text (Hegarty, Mayer & Monk, 1995)2.   
 Another researcher who studied comprehension was Rapp (1986) who built an expert 
system that comprehended word problems in a textual form.  Hall, Kibler, Wenger and Truzaw 
(1989) also focused on comprehension and found that problem solving and comprehension were 
complimentary activities that students moved back and forth between.      
 As was mentioned above in the section on arithmetic problems, Kintsch went on to 
extend his work to algebra problem solving by incorporating a situational model of (Reusser, 
1989).  This work also led to the Heron system (Reusser, 1996) that comprehended word 
problems.   
 In summary, a large amount of work has focused on problem comprehension as the major 
difficulty student face when symbolizing.  It is fitting to end this section with a quote from 
Nathan, Kintsch, & Young (1992) who "claim that [the] symbolization [process] is a highly 
reading-oriented one in which poor comprehension and an inability to access relevant long term 
knowledge leads to serious errors.’’  The general claim from much of the above literature, is that 
problem comprehension, including schema detection, are key knowledge components that cause 
difficulty for students while symbolizing.  I will refer to this as the comprehension hypothesis. 

Prior Work on the Understanding of Variables  
Kuchemann (1981) worked on large-scale evaluation of student’s mathematics performance (ages 
13-15) in Britain, and wanted to characterize the level of difficulty of the individual test items by 
using two criteria: 

1) Structural complexity (as defined by Collis (1975a, 1975b))  
2) The level of understanding of letters.3 

Here I will ignore the first criterion and instead focus on Kuchemann’s second criterion.  
Kuchemann argued that there were six cognitive levels of understanding the use of letters in the 
context of an algebra problem and is shown in Figure 1. 

                                                 
2 See also Gluck (1999) for a study of eye-movements and algebra tutoring. 
3 Kuchemann choose to use the term letter, reserving the term variable only for those students who understood at the 
deepest level. 
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Children’s Interpretations of Letters 
Letter Evaluated: This category applies to response where the letter is assigned a 

numerical value from the outset. 
Letter not used:  Here the children ignore the letter, or at best acknowledge its 

existence but without giving it a meaning. 
Letter used as an 
object: 

The letter is regard as shorthand for an object or as an object in 
its own right. 

Letter used a specific 
unknown: 

Children regard a latter as a specific unknown number, and can 
operate upon it directly. 

Letter Used as 
generalized number: 

The letter is seen as representing, or at least as being able to 
take, several values, rather then just one. 

Letter used as a 
variable:  

The letter is seen as representing a range of unspecified values, 
and a systematic relationship is seen to exist between two such 
sets of values. 

 Figure 1: The table from Kuchemann (1981) showing students level of understanding of variables. 

 
 The most proficient level was "Letter used as a variable".  Kuchemann argued that 
students in any of the first three levels are lacking any "real understanding of even the beginning 
of algebra (p. 105)".  He argued that "most" 13-15 years olds fell into these first three levels.  
The first level is when students simply replace the letter with a random number.  Kuchemann 
suggests that students at the second level might replace all the variables in the problem with the 
same number, or students might replace a variable by the number representing its place in the 
alphabet (e.g., A=1, B=2, C=3, etc).  Students at the third level were "reducing the letter’s 
meaning from something quite abstract to something far more concrete and ’real’ (p.107)".  For 
an example, consider this problem that Kuchemann analyzed:  

Blue pencils cost 5 pence each and red pencils cost 6 pence each.  I buy 
some blue and some red pencils and altogether it costs me 90 pence.  If 
b is the number of blue pencils bought, and r is the number of red 
pencils bought, what can you write down about b and r? 

Only 13% of students got it correct (i.e., b*5+r*6=90).  In addition, 17% of students gave the 
most common error of b+r=90.  Kuchemann argued that students making this error were at the 
third level because they treated the letters as objects.  Kuchemann suggests, "… the extent to 
which the letters are meaningful to children will be of vital importance in determining item 
difficulty."  I will call Kuchemann's explanation of the difficulty of algebra problems the "lack of 
understanding of variables" hypothesis (or simply the Variables Hypothesis).  Kuchemann's 
work does not address the role of comprehension of word problems.  Therefore, Kuchemann's 
work is of interests to this dissertation, not for what it establishes but for what it emphasizes as a 
source of difficulty for students.   
 Kuchemann's work influenced the National Council of Teachers of Mathematics 
(NCTM) in the United States.  The Principles and Standards for School Mathematics from the 
NCTM (NCTM, 2000) is probably the most influential book affecting the practice of the nations 
teachers and teacher educators.  In its algebra section for middle school students grades 6-8  
(most students now take algebra in eighth grade) it argues that: 

Student's understanding of variable should be far beyond simply 
recognizing that letters can be used to stand for unknown numbers … 
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Most student will need extensive experience in interpreting 
relationships among quantities in a variety of problem context before 
that can work meaningfully with variables and symbolic expressions.  
An understanding of the meaning and uses of variables develops 
gradually as students create and use symbolic expressions and relate 
them to verbal, tabular, and graphical representations.  (p. 225)  

The Principles cites four levels of understanding the use of variables that is very similar 
to Kuchemann’s level.  The Principles doesn’t specifically specify what is the most difficult 
aspect of symbolization, but we can reasonable infer that what they choose to emphasis is 
probably what they think is hard (If the NCTM believed it was easy for student’s, they probably 
wouldn’t have to emphasis it so much.)  Since the Principles argue that students should "know" 
hundreds of things, it is important to note how highly the NCTM values the "understanding of 
variables".  In the back of the Principles the NCTM breaks up algebra into 4 components 
1. Understand patterns, relations and functions. 
2. Represent and analyze mathematical situations and structures using algebraic symbols. 
3. Use mathematical models to represent and understand quantitative relationships. 
4. Analyze changes in various contexts. 

The 2nd item is the component that is of relevance to this dissertation and is further broken 
the into four "expectations", one of which is that students "develop an initial conceptual 
understanding of different uses of variables."  I argue that this emphasis certainly suggests that 
student's lack of understanding of variables could explain why symbolization is such a difficult 
task for students.  

Another piece of prior work that agrees with Kuchemann’s and the NCTM’s emphasis on 
variables was a piece of design work on the "Pattern Finder" window, which was a component of 
an algebra word problem tutor  (Koedinger, Anderson, Hadley, & Mark, 1995).  The Patten 
Finder window asked the students to articulate the arithmetic needed for 3 different values of the 
variable, before trying to use a variable.  Here is an example interaction:  

 
Ann is in a lake that is 2400 yards wide.  She starts out 800 yards from the dock.  She rows for “m” 
minutes back towards the dock at a rate of 40 yards per minute.  Write an expression for her 
distance from the dock.4 

 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 2 minutes?  
 Student:800-2*40 
 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 3 minutes? 
 Student:800-3*40  
 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 4 minutes? 
 Student:800-4*40 
 Tutor: Write an expression, which describes your calculations, using a variable.  
 Student:800-m*40 
 
The pattern finder window is based on the idea that the last step is going to be the hardest 
because it involves the use of the variable.  This seems reasonable, since algebra is often called 
the "generalization of arithmetic", so the introduction of the variable should be the hard part of 
symbolizing.  
 This completes the review of prior work supporting the Variable Hypothesis that argues 
that the use (or understanding) of a variable, per se, is what makes symbolization such a hard 
task.   

                                                 
4 This is not one of the problems used by the Carnegie Learning Tutor. 
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Prior Work that bears on Production Difficulties 
 Despite all the emphasis on comprehension and the use of variables, there is some 
research that has speculated about the potential production difficulties.  However, this research 
did not lead to a general explanatory model nor did it provide the kind of detailed experimental 
support for such a model (as is presented later in this chapter).  Clement and colleagues 
(Clement, Lochhead & Soloway (1980), Clement, 1982; Rosnick & Clement, 1982) studied 
student performance on the following problem where students are asked to write an expression 
for the following sentence "There are six times as many students as professors in the university".  
Students did very poorly at this task.  More importantly, they argued that students’ 
mistranslations (i.e., 68% of students errors were "6S=P") were often due to their not 
understanding the semantics of an equation.5   
 More recently, Koedinger & Anderson (1998) found evidence that acquiring 
comprehension skills is not sufficient for symbolization competence.  They found that on 36% of 
problems that students comprehended well enough to find a numerical answer, they nevertheless 
failed to correctly symbolize an answer.  This result suggests that, in addition to comprehension 
difficulties, students have difficulty in "symbolic production."  This suggests an analogy to 
learning a foreign language.  If you ask a student to translate an English sentence into French and 
observe that the student fails, the failure is not necessarily due to a lack of English 
comprehension skills, but, perhaps, is due to a lack of production skills for French.  Similarly, 
students may fail in word problem solving, not because they lack English comprehension skills, 
but rather because they cannot produce algebra.   
 I find theoretical support6 for this position in a study by Cedillio (2001) on using 
graphing calculators (that force the user to write expressions).  He argued that algebra teaching 
should be based on the natural language acquisition work of Bruner (1983).  Cedillio was 
interested in how students learned the grammar for algebra expression.  Unfortunately, he reports 
no results that help to distinguish between the various hypotheses I have articulated about what 
makes symbolization so difficult for students.  To review, those three hypotheses are: 

1) Comprehension  
2) Understanding of a variable 
3) Production: including knowing the grammar for algebra expressions 

The difficulty factors assessments presented next were designed to disambiguate between these 
three different hypotheses. 

Introduction to the Present Studies 
Our goal is to build a model of the skill of symbolization.  To achieve that, a better 

understanding of what factors make such problems difficult was needed.  What capabilities do 
students that are more competent have that poorer students do not?  What kinds of scaffolds 
                                                 
5 Clement et al. (1980) formulated several models to represent the way students could mistranslate these problems.  
For instance, one model was based on the student translating the keywords of the sentence in the same order as the 
sentence presents them.  This also involves the student mistranslating the word "as" to mean "equal".  This research 
led a very small prototype model (Aziz, Pain & Bna, 1995) called TAPS (for Translating Algebra Problems 
System), which tried to explain how students could mistranslate these problems but they were primarily interested in 
designing tutoring systems and how to model student’s beliefs, rather then interested in the symbolization domain 
per se.   
6 When Paige and Simon (1966) compared symbolization to translating a sentence from English to French, they did 
mention that the production side included knowing the syntax and grammar of the target language.  Symbolization 
researchers have not seriously pursued this observation. 
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might we provide to assist student learning?  To address these questions, I performed two 
difficulty factors assessments (DFA) with Koedinger (Heffernan & Koedinger, 1997; Heffernan 
& Koedinger, 1998).  In a difficulty factors assessment, we use theory and task analysis to 
generate hypotheses about the likely factors that cause student difficulties and then use these 
factors to systematically generate a pool of problems.  By assessing performance differences on 
pairs of problems that vary by only one factor, we can identify what knowledge elements are 
needed in a model in order to adequately decompose the thinking and learning processes of 
students.   

I will first report the results of the first DFA I performed on the effect of four different 
factors, and then report the second DFA that followed up on specific hypotheses that flowed 
from the first DFA.   

Difficulty Factors Assessment #1  
For the first DFA I sampled student performance on a set of 128 problems created by 
systematically modifying 8 core problem situations (Appendix A) along 4 binary factor 
dimensions.  These 4 factors represent specific hypotheses about what cause symbolization 
difficulties and how scaffolds might ease the symbolization process.  Consider the problem P0 
from Table 1.  This is a hard problem for ninth-grade, beginning algebra students.  Only 13% of 
the students in the experiment (described below) answered it correctly.  What makes this 
problem hard?  I consider four different difficulty factors.  Maybe what makes this problem hard 
is:  

1. having to compose the symbolic translation of parts of the problem into a complete 
translation of the whole problem,  

2. the presence of the distractor phrase "2400 yards wide",  
3. comprehending the text well enough to translate the phases into operators and numbers, 

as well as knowing which numbers are matched up with which operators,  
4. the presence of an algebraic variable "m" as opposed to the numeric constants students 

are already familiar with from arithmetic instruction.  
Table 1 lists alternative problem statements for each of these factors as P1, P2, P3 and P4.  In the 
following sections, I provide motivation for the consideration of each of these factors and 
illustrate them as they modify problem P0 (see Table 1). 
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P0: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the 
dock.  She then rows for "m" minutes back towards the dock.  Ann rows at a speed of 40 
yards per minute.  Write an expression for Ann’s distance from the dock.   
P1: A) Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from 
the dock.  She then rows "y" yards back towards the dock.  Write an expression for 
Ann’s distance from the dock.   
 B) Ann is in a rowboat in a lake that is 2400 yards wide.  She then rows for "m" 
minutes back towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an 
expression for the distance Ann has rowed. 
P2: Ann is in a rowboat in a lake.  She is 800 yards from the dock.  She then rows 
for "m" minutes back towards the dock.  Ann rows at a speed of 40 yards per minute.  
Write an expression for Ann’s distance from the dock.   
P3: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the 
dock.  She then rows for "m" minutes back towards the dock.  Ann rows at a speed of 40 
yards per minute.  Write an expression for Ann’s distance from the dock. 
 Hint 1:  Ann’s distance from the dock is equal to the 800 yards she started out 
from the dock minus the distance she has rowed in "m" minutes. 
 Hint 2:  The distance she has rowed in "m" minutes is equal to the 40 yards she 
rows per minute multiplied by the "m" minutes it takes her. 
P4: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the 
dock.  She then rows for 11 minutes back towards the dock.  Ann rows at a speed of 40 
yards per minute.  Write an expression for Ann’s distance from the dock.   
 

Table 1: An example (P0) and four variants that change just one factor: (P1) decomposed, (P2) without the 
distractor phase (i.e., 2400 yards wide), (P3) with comprehension hints, and (P4) a concrete instance (11 

instead of "m"). 

 

Factor One: Composed vs. Decomposed  
Singley, Anderson & Givens (1991) reported that some students fail to solve multi-step story 

problems even when they can solve the individual parts that make them up.  I desire to know 
whether or not this is simply the expected effect of having to do multiple steps each of which 
results in an accumulated chance of failure.  Alternatively, the multi-step problem may be even 
harder (or easier) than the combined probability of the correct performance of the individual 
steps separately.  Consider P1, which lists the two sub-problems of P0, which I call the 
decomposed version of P0.  Of course, I would expect that solving a single part of this problem is 
easier than solving P0.  The more interesting question is "Is solving P0 easier than solving both 
parts of P1?"  (Note, I consider P1 correct only if both portions are answered correctly.) 

Factor Two: Presence of Distractor Numbers 
As Paige & Simon observed, less-competent symbolizers appear to sometimes rely 

exclusively on direct translation and do not invoke any semantic processes to recognize, for 
instance, that a negative board length is impossible.  Tabachneck, Koedinger, & Nathan (1994) 
observed that novice symbolizers exhibit other kinds of shallow semantic processing, as well.  In 
particular, students will often produce "symbol soup" by guessing at the answer using the given 
numbers and symbols but getting position or operations wrong.  To the extent that novice 
symbolizers employ such a guessing strategy (perhaps as a fall-back when more specific 
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knowledge is lacking), we should see more errors on problems that involve an extra distractor 
quantity (such as "2400 yards wide" in P0) than on problems that do not (such as problem P2 
from Table 1). 

Factor Three: Comprehension Hints 
Given the attention past research has given to the role of comprehension in the symbolization 

process, the third factor tests a possible scaffolding technique that attempts to help students 
comprehend the problems more effectively.  The technique involves giving the student a hint that 
re-expresses the problem in a form that is more amenable to direct translation to symbols.  These 
hints are in a form that would clearly facilitate performance of a computer model such as the 
STUDENT program used by Paige & Simon.  Consider the comprehension hints given in P3.  
Notice that the hints identify what mathematical operator is to be used, while the original 
problem-statement did not.  Also note that the form of the hint is in the simple form of 
<Subject_Quantity> "is equal to" <Quantity1> <Operator> <Quantity2>, where 
<Subject_Quantity>,<Quantity1> and <Quantity2> are replaced with a verbal description of a 
quantity noun phrase, and <operator> is replaced by either "plus", "minus", "multiplied by" or 
"divided by."  This simple form makes it possible for a left-to-right scan and translation of the 
problem to work.  Also, note that these verbal recodings identify what number or variable is 
matched with each quantity.  Since these hints identify the operation to be used, they eliminate 
the need for schemata or "world" knowledge, such as having to know the distance-rate-time 
formula. 

Factor Four: Presence of Variables 
As mentioned earlier, Koedinger & Anderson (1998) found that for certain classes of 

problems, students are better at finding a numerical answer than writing a symbolic expression 
(for the same problem).  Koedinger & Anderson hypothesized that asking students to compute 
concrete instances (problems without a variable) of a general problem would facilitate 
symbolization of that problem.  To test this hypothesis, they designed a scaffolding technique 
called inductive support and implemented it as part of an intelligent tutor. 

I can illustrate the inductive support scaffolding technique with my running example P0.  The 
scaffolding involved two questions that asked students to solve the problem if the variable were 
replaced with a constant (e.g., "How far is Ann from the dock in 4 minutes?")  After answering 
these concrete arithmetic problems, students were asked to write the symbolic expression.  
Students using this inductive support tutor were shown to learn more than students using an 
alternative "textbook" tutor.  The tutor’s design was adapted based on this study so that the 
current algebra tutor (Koedinger, Anderson, Hadley, Mark, 1995) has a "Pattern Finder" 
component where, rather than just answering these concrete questions, students are also asked to 
show how to get answers for successive small values of x, namely, 2, 3, and 4.  In the example 
above, students are expected to answer "800 - 40 * 2", then "800 - 40 * 3" and "800 - 40 * 4".  
Next, they are to induce the pattern to arrive at the abstract expression "800 - 40 * x".  It has 
come as a surprise that making this last step is not at all difficult for students; in fact, it is only 
the first step (writing the expression when x is 2) that gives students any substantial difficulty.  I 
began to wonder whether this first step really is easier than the final goal of writing the abstract 
expression.  If not, the Pattern Finder may not be such a good scaffolding technique.  Thus, I 
added the presence of variable factor to this assessment to test whether writing a concrete 
expression (e.g., "800 - 40 * 11" as in P4) is in fact easier than writing an abstract expression 
(e.g., "800 - 40 * m "as in P1). 
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Procedure 

Given the four binary factors there are sixteen different possible combinations of the factors.  
These 16 different possible combinations were crossed with 8 different cover stories (i.e., problem 
situations) and distributed in a Latin square design among 16 test forms that balanced for each 
factor.  Given that students tend to perform worse on items near the end of a test, the order of 
various problems was systematically varied on each (e.g., the 8 composed, distractor, no hint, no 
variable problems were in the 8 different position on 8 different forms).  However, because the 
cover story factor was not a variable of critical interest, the 8 cover stories appeared in the same 
order on each form (to do otherwise would have required many more forms).  All eight cover 
stories had two operators implicit in the story so that the composed version required a two-
operator answer.  The decomposed version required two separate answers with each of those 
answers requiring one operator.  The subjects were 79 ninth grade students (about age 14 years of 
age) in the first month of a low-level algebra course from an affluent suburb of Pittsburgh.  Each 
student was randomly given one of the 16 different test forms and had 14 minutes to complete the 
test.  After two class periods of instruction on such problems, students were again given a random 
form as a posttest.  Since I was not interested in the experimental manipulation (it lead to a 
uninteresting null result), I report the results as if I had twice as many students, each taking this 
test.  Of course, students might have learned during the experiment, but since I am not instead in 
their learning (Instead, I am interested in their relative performance on the different types of 
problems) it is safe to ignore this.  Each test was then graded and no partial credit was given.  A 
decomposed problem was considered correct only if both parts were answered correctly.   

Results and Discussion 
To test for effects of the four factors I performed both an item analysis and a subject analysis 

as recommended by Clark (1973).  I performed an item analysis on students’ mean performance 
on the 128 different problems appearing on the pre- and post-test forms.  Separate item-means 
were computed for the pre- and post-tests.  I performed a four-factor (2*2*2*2) analysis of 
variance (ANOVA) on the item means. 

Figure 1 illustrates the relative impact of the four factors, averaged over all the students.  In 
this figure, the legend indicates the harder version for each factor first (i.e., composed problems 

are harder than decomposed, distractor present problems were harder then problems where the 
distractor was absent, problems with variable were harder then problems with concrete instances, 
and finally, problems with the hints were easier than the problems without hints.)  The effect of 
the comprehension hints appears small at best (3.1% difference in favor of hint problems) and 

Figure 1: The average percent correct for the four factors. 
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this difference is not statistically significant (F(1,238)=1.127, p<.2894).  Similarly, the presence 
of a variable is also small at best (4.5% difference in favor of no-variable problems) and not 
statistically significant (F(1,238)=1.531, p<.217).  In contrast, the distractor effect was 
considerably larger (11.8% difference in favor of no-distractor problems) and statistically 
significant (F (1,238)=8.135, p<.0047).  The composition factor had by far the largest effect 
(22% difference in favor of the decomposed problems), and was statistically significant 
(F(1,238)=37.048, p<.0001).  No statistically significant interactions were found in the full 
ANOVA model. 

To verify that these effects generalize across subjects as well as across items, I performed a 
subject analysis as well.  I performed four repeated-measure ANOVAs with each factor as a 
within-subjects variable.  Again, there were statistically significant effects for distractor 
(F(1,66)=14.018, p=.0004) and composition (F(1,66)=52.059, p=.0001) but no statistically 
significant effects of variables (F(1,66)=.739 p=.3932) or hints (F(1,66)=1.306, p=.2573). 

The Composition Effect 
These results show that a two-operator problem is harder than both of its parts presented 

together.  I call this the composition effect.  What skills are many students missing that prevent 
them from being able to deal with composed problems even though they are able to deal with the 
sub-problems individually?  I now describe two alternative hypotheses that can account for the 
composition effect.  The first is called the articulating composition hypothesis and the second is 
called the combinatorial search hypothesis. 

The Articulating Composition Hypothesis 
I hypothesize that the whole is harder than the sum of its parts because there is extra 

difficulty in putting the symbolic translations of the parts together to form a symbolic translation 
of the whole.  I hypothesize that many students start their study of algebra with knowledge 
components (e.g., ACT-R production rules (Anderson 1993)) that enable them to symbolize only 
one-operator problems because their production rules only allow for single numerals or variables 
(e.g., 40 or m) to be used as arguments to the mathematical operators, as opposed to whole 
subexpressions (e.g., 40*m or 800-x).  Such students can answer 800-x but not 800-40*m 
because 40*m is a subexpression and they do not know how to substitute a subexpression into 
another expression.     
Anecdotal Evidence in Support of Production Difficulties 

  Figure 2 shows the work of a student who appears to have correctly described the 
mathematical process needed to solve for a value if given "h", but who failed to express that 
knowledge in the correct algebraic form.  Instead of writing "500/(h-2)", the student indicated 
that first she would subtract 2 from "h" which would result in a new unknown that she again calls 
"h".  She then indicated that 500 should be divided by this new number.  She used the non-
algebraic notation for division that is taught in elementary school.  It seems likely that this 
student appears to have understood the quantitative structure of a problem (knew to subtract 2 
from h, followed by dividing 500 by the result) but not be able to symbolize.  This student’s 
failure appears to a lack of the correct knowledge for producing algebraic sentences.  For 
instance, this student might benefit from learning the correct was of expressing how to describe 
to do one step before another (instead of using an arrow sign, the student needs to wrap the first 
step with parentheses).  
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Bob drove 500 miles from Denver to Fargo to visit his 
grandmother.  Normally this trip takes him "h" hours, but on 
Tuesday, there was good weather and he saved 2 hours.  Write 
an expression for his driving speed. 

 
h - 2 --> h)500 

Figure 2: A problem and a student’s response 

 
Figure 3 provides another example where a student demonstrates comprehension and 

quantitative understanding as well as an inability to correctly generate the algebraic symbols.  
Her answer is similar to the answer in Figure 2 in that both indicate the process that should be 
used to solve for an answer yet fail to output that answer in standard algebraic form.  The use of 
the equals sign in this example appears to grow out of the way students use the equal sign as 
"gives" in elementary arithmetic where it is not uncommon to see students chain together steps 
with equal signs, as in "3*4=12-5=7" (Sfard, et al., 1993).  In Figure 3, since 72-m can not be 
simplified the student uses a new variable "n" to stand for the result and then continues. 

 
Sue made 72 dollars by washing 6 cars to buy holiday presents.  
She decided to spend "m" dollars on a present for her mom 
and then use the remainder to buy presents for each of her 4 
sisters.  She will spend the same amount on each sister.  How 
much can she spend on each sister? 

 
72 - m = n / 4= 

Figure 3: A problem and a student’s response 

 

The Combinatorial Search (CS) Hypothesis 
A second hypothesis is that the composition effect can be explained purely in terms of a 

combinatorial search model, in which a composed problem is harder because of the 
exponentially increasing number of possible sequences of arguments and operators.  The large 
effect of distractors leads us to conclude that many students engage in some form of guessing, 
particularly as a fallback strategy when having difficulty.  The difficulty of guessing grows with 
the complexity of problems, particularly as the number of possible combinations of given 
quantities and inferred operators grows.  The composed, no-distractor problems have three 
quantities to choose from whereas there are only two quantities to choose from in each of the two 
parts of the decomposed, no-distractor problems.  Thus, it may be that the composition effect is 
the result of this added complexity, and not the result of a missing or over-specialized skill as 
hypothesized in the Articulating Composition Hypothesis. 

I tried a number of ways of estimating complexity depending on different assumptions.  
However, all of them predicted, contrary to the data, that the distractor effect should be bigger 
than the composition effect.  I present one such estimation which has the following assumptions 
about how a student may guess at an answer: 1) students can pick out what numbers or variables 
are present in the problem and which operators will be used, 2) students know the general 
syntactic form of a symbolic sentence, particularly that operators need to be written between 
quantities, and 3) students will not use the same argument (variable or number) twice.  To 
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simplify the calculation, I ignore the difficulty of knowing when to add parentheses and assume 
that the operators in the problem are non-commutative so the student has to get the order of the 
arguments correct.  Essentially, this comes down to assuming that to guess correctly, students 
must pick the correct order for the arguments and operators.  I compare the probability of doing 
so for various problem types. 

Let us first calculate the probability of getting the correct order for a composed problem, 
starting with the leftmost argument and moving right.  The probability of getting the first 
argument correct is 1/3 since there are three possible numbers to put first.  Similarly, the student 
picks one of the two inferred operators for the first operator slot (1/2).  Then given our 
assumption of a non-replacement strategy, the probability of choosing the next argument correct 
is 1/2 since there are two remaining arguments.  The final operator and arguments are then 
determined.  So the combined probability of getting the correct answer is 
(1/3)(1/2)(1/2)(1/1)(1/1)=1/12.  

Next, we consider the probability of guessing the correct answer for a decomposed non-
distractor problem.  Since there are only two arguments present, the probability of selecting the 
first argument is 1/2.  The operator and the second argument are then both determined.  
Therefore, the probability of getting one part of a decomposed non-distractor problem correct is 
1/2 and to get both parts correct is (1/2)(1/2)=1/4.  Since 1/12 is less than 1/4, we see that this 
model does predict that there will be a composition effect.  However, the model does not predict 
the relative effect of distractors, as we will now show.   

Finally, consider a decomposed distractor problem.  The probability of selecting the first 
argument is 1/3, since there are now 3 arguments present in the problem statement.  The operator 
is determined, but the last operator is 1/2, which yields a total for one part of (1/3)(1/2)=1/6 and 
a total for the two parts together of  (1/6)(1/6)=1/36.   

In summary the SC model predicts that the distractor effect (1/36) will be larger than the 
predicted composition effect (1/12).  However, the data shows that the composition effect is 
larger (22%) than the distractor effect (11%). Additionally, the composition effect was found to 
be statistically different from the distractor effect when we compared the means for composed, 
non-distractor problems with decomposed, distractor problems (F (1, 238) = 5.2, p < .05).  I 
therefore favor the Articulating Composition Model. 

Comprehension Hints 
Next, we continue to discuss the results of this study, and in particular, I consider an 

explanation for the surprising absence of a statistically significant effect of the comprehension 
hints.  After all, these hints recoded the story problem into a simpler form that is more amenable 
to direct translation.  The hints also identified what the operators should be, which quantities to 
use with those operators and which order to put the operators in.  However, these results are 
consistent with the view that the comprehension of these sentences is not that large a stumbling 
block, particularly when compared with the stumbling block of learning to deal with composed 
problems.  Despite the fact that the effect of hints was not statistically significant, there is 
evidence that the hints did help for the decomposed problems.  The trend in favor of the hint 
problems was much larger (a 7% difference) on the decomposed problems than on the composed 
problems ( .01% difference) (thought this was not a statistically significant interaction).  I 
hypothesize that the students who benefited from the hints were less able students and were most 
likely not to have the skills to deal with composed problems (as outlined in the Articulating 
Composition Hypothesis).  I speculate that the hints might be more helpful if they directly 
addressed composition.  A single "composed" hint for P3 could be: 
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Hint:  Ann’s distance from the dock is equal to the 800 yards she started out from 
the dock minus the 40 yards she rows per minute multiplied by the "m" minutes it 
takes her. 

Variables vs. Constants 
Although Koedinger & Anderson (1998) had shown that solving a concrete problem for an 

unknown can be easier than doing abstract symbolization (e.g., writing "800 - 40 * x"), in this 
study I found that concrete symbolization (e.g., writing "800 - 40 * 2") is not much easier, if at 
all, than abstract symbolization (the small trend in favor of concrete symbolization was not 
statistically significant).  This result has implications for the design of the "Pattern Finder" 
component of the PAT algebra tutor (Anderson et al, 1995).  The evidence from Koedinger & 
Anderson provided some support for the hypothesis that solving concrete problems aids students 
in symbolizing.  The "Pattern Finder" is based on a further hypothesis that making this solution 
process more explicit through concrete symbolization would be an improved scaffold.  The 
results of the current study put this hypothesis into question.  At a minimum, they suggest that 
the Pattern Finder should require students to answer the concrete problem before doing the 
concrete question (e.g., first, "How far is Ann from the dock in 2 minutes?" and then "Write 
down how you got that answer.").  Alternatively, since it appears that composing rather than 
abstracting is the real crux of the symbolization problem, attention should be focused on 
developing a scaffolding technique that directly addresses composition. 

Conclusions from DFA Study 1 
The large effect of the composition factor in this study, relative to the small or absent effect 

of comprehension hints, provides a strong case against the almost exclusive emphasis in previous 
research on language comprehension as the major stumbling block for students.  A focus on 
language comprehension may be appropriate for the younger students learning arithmetic story 
problem solving.  However, to address the difficulties of older students learning the new 
language of algebra, greater focus is needed on the language production skills needed to "speak 
algebra".   

DFA #1 demonstrated a main effect of composition.  The Articulating Composition 
Hypothesis predicts that students might be lacking knowledge of how to write composed 
expressions.  To test this hypothesis I designed DFA#2. 

Difficulty Factors Assessment #2 
DFA #2 was designed to test the Articulating Composition Hypothesis that the composition 

effect was due to the fact that students have to learn how to write a composed expression.  This is 
based on the idea that students have a hard time knowing that they can treat a sub-expression the 
same way they treat a number.  Therefore, I decided to do an analysis of two factors.  The first 
factor was composed vs. decomposed (the same as in the DFA above).  The second factor 
compared symbolization with arithmetic evaluation.   

The articulating composition hypothesis suggests that there should be no composition effect 
for arithmetic problems, but a large composition effect for symbolization problems.  The 
reasoning behind this is that students know how to combine steps in an arithmetic problem, but 
they do not know how to say, in symbols, how to put two steps together.  Therefore, it predicts 
that there should be many students who know how to do both composed arithmetic problems and 
decomposed symbolization problems but fail to do composed symbolization problems.  The two 
hypotheses differ in their predictions because the articulating composition hypothesis predicts an 
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interaction between these two factors, while the generalization hypothesis does not predict an 
interaction and instead predicts one broad symbolization effect. 

Experimental Design and Predictions 
The two factors I studied were 1) arithmetic vs. symbolization (CA vs. CS and DS vs. DA) 

crossed with 2) composed vs. decomposed (CS vs. DS and CA vs. DA).  I illustrate all four cells 
of DFA#2 in Table 2. 
 Remember that the decomposed problem DS is actually one problem from the analysis 
point of view, but two separate problems from the student’s point of view.  In DFA#1 I may have 
even underestimated the size of the composition effect, because I had a few students who would 
answer “(72-m)/4” for DA2.  These students had noticed the superficial similarity of the two 
problems parts of a decomposed problem and interpreted the second one to be linked to the first.  
To avoid such misinterpretation by students I changed a few superficial aspects of the second 
part of the decomposed problems including the participant's name.  I also changed the numbers 
(making sure not to not decrease the difficulty of the arithmetic) to ensure that the results of the 
first part of a decomposed problem did not appear as a given in the second part of the problem.  
For example, DA2 was changed to “Rebecca made 81 dollars working at the grocery store.  She 
decided to give her mom 25 dollars for Mother’s Day and put the remainder in her savings 
account.  How much can she put in the savings account?”  I found this strategy worked well and 
students did not think the two problems were connected. 

Procedure 

Given the two binary factors that were studied, there were four different problem types: composed 
symbolization, composed arithmetic, decomposed symbolization and decomposed arithmetic.  
These 4 problem types were crossed with 8 different cover stories and distributed in a Latin square 
design among 4 test forms that were balanced for each factor.  Therefore, each form had two 
problems of each type.  Given that students tend to perform worse on items near the end of a test, 
the order of various problem types was systematically varied on each form.  The cover-stories 
were not a variable of critical interest, and from my previous DFA I knew the performance on the 
cover stories would vary considerably.  I used 6 of the 8 cover stories used previously and added 
two new cover stories to replace the two easiest cover stories from the prior study.  Because I 
wanted to be able to compare the performance of students on cover-stories I made two versions of 
each form that differed only in the order of the problems.  The subjects were 76 ninth grade 

CS: Sue made 72 dollars by washing cars to buy holiday presents.  She decided to spend "m" dollars 
on a present for her mom and then use the remainder to buy presents for each of her 4 sisters.  She will 
spend the same amount on each sister.  How much can she spend on each sister? 
CA: Sue made 72 dollars by washing cars to buy holiday presents.  She decided to spend 32 dollars on 
a present for her mom and then use the remainder to buy presents for each of her 4 sisters.  She will spend 
the same amount on each sister.  How much can she spend on each sister? 
DS1: Sue made 72 dollars by washing cars to buy holiday presents for each of her "s" sisters.  She will 
spend the same amount on each sister.  How much can she spend on each sister? 
DS2: Sue made 72 dollars by washing cars to buy holiday presents.  She decided to spend "m" dollars 
on a present for her mom and then use the remainder to buy presents for her sisters.  How much can she 
spend on her sisters?   

DA1:  Sue made 72 dollars by washing cars to buy holiday presents for each of her 4 sisters.  She will 
spend the same amount on each sister.  How much can she spend on each sister? 
DA2: Sue made 72 dollars by washing cars to buy holiday presents.  She decided to spend 32 dollars on 
a present for her mom and then use the remainder to buy presents for her sisters.  How much can she spend 
on her sisters? 

Table 2: The 4 Problem Types: Composed Symbolization (CS), Composed Arithmetic (CA), Decomposed 
Symbolization (DS1 and DS2 together), and Decomposed Arithmetic (DA1 and DA2.) 
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students in the first month of a regular-level algebra course from an urban high school in 
Pittsburgh.  Two subjects were dropped for lack of participation in the test.  Each student was 
randomly given one of the 8 different test forms and enough time to complete the test (about 10-30 
minutes).  Each test was then graded and no partial credit was given.  A decomposed problem was 
considered correct only if both parts were answered correctly.  

Analysis and Results 
To test for the effect of the two factors I performed both an item analysis and a student 

analysis as recommend by Clark (1973).  I performed a subject analysis on the students mean 
score for each of the four problem types.  I performed a full two-factor (2*2) repeated-measures 
ANOVA with each factor as a within-subject variable.  I found significant effects of 
symbolization (F(1,73)=170.8, p<.0001) and of composition (F(1,73)=22.4, p<.0001.) but not the 
expected interaction (F(1,73)=1.024, p>.31).  To verify that these effects generalize across items 
as well as across subjects, I performed an item analysis on students’ mean performance on the 32 
different items (8 cover stories and 4 problem types) appearing on the test.  I performed a full 
two-factor (2*2) ANOVA on the item means.  Each factor was treated as a repeated measure.  I 
found significant effects of symbolization (F(1,28)=55.476, p<.0001) and a smaller effect of 
composition (F(1,28)=13.26, p<.0083).  Since the subject and the item analysis agree, I can be 
confident that both effects are real and generalize across the larger populations of both similar 
students and similar items.  The size of the symbolization effect was much larger than the size of 
the composition effect.  Contrary to the prediction of the articulating composition hypothesis, 
there was not a significant interaction (F(1,28)=.821, p>.395), and this will be addressed below.  
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Figure 5: Lower-performing students show a composition effect for arithmetic problems, while higher 

performing students show a composition effect for symbolization. 

 
I was initially surprised at the absence of the expected interaction, but upon investigation, I 

saw that the individual variation, as shown by the histogram in Figure 5, was very large.  Figure 
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57 shows how average student performance changes as their ability level increases.  The lower-
performing students, with total scores of 1, 2 and 3, are all at the floor for symbolization.  They 
also show a composition effect during arithmetic problems.  This is the exact opposite interaction 
I was expecting to see, but there is an explanation8 that is sensible.  Students first learn to deal 
with the easier arithmetic problems, and the lower-performing students will show competence 
only in these.  The fact that there is a composition effect among the arithmetic problems will be 
explored below.  The middle-performing group (total scores of 4) show that the composition 
effect for arithmetic problems is going away as overall performance improves and student get 
close to ceiling.  The high-performing students, with total scores of 5, 6 and 7, are doing equally 
well on both types of arithmetic problems and are improving on symbolization but primarily 
decomposed symbolization.  In other words, the high performing students show the interaction 
that the articulating composition hypothesis predicted. 

To statistically characterize the individual variation that was seen, I classified the subject 
population into a top-performing half and a bottom-performing half (using total score).  I 
performed a full three-factor (2*2*2) ANOVA on the average of students’ means, again treating 
our two difficulty factors as within-subject repeated measures, and treating the factor of “top half 
vs. bottom half” as a between subjects factor.  Again, there were highly significant effects of 
symbolization (F (1,280)=172.5, p<.0001) and composition (F(1,280)=22.1, p<.0001).  None of 
the three possible two-way interactions were close to statistical significance (P>.24 in all cases), 
but I did find a highly significant (F(1,280)=14.0, p<.0004) three-way interaction.  Again, to 
verify that these effects occurred across items as well as across subjects, I did a three-factor 
(2*2*2) ANOVA on the item means, treating all three factors as within item repeated measure 
factors.  Again, the only significant effects were the two main effects for symbolization 
(F(1,56)=50.1, p<.0002) and composition (F(1,56)=11.7, p<.012) and the three-way interaction 
(F(1,56)=9.4, p<.0183). 

I will speculate below as to whether or not the composition effects seen in arithmetic (at the 
low end) and in symbolization (at the high end) are caused by a single effect or two separate 
effects.  The articulating composition hypothesis suggests that they are different effects because 
the effect in the high end is due to students missing some knowledge of how to composed 
subexpressions together.  I will then explore the other transitions I observed, which were not the 
main focus of the experiment, but nevertheless provide us with insight into the composite skills 
for composed symbolization. 

Why are Composed Symbolization Problems Hard? 
Our articulating composition hypothesis predicted that there would be an additional cognitive 

hurdle for students to be able to solve composed symbolization problems.  When we look at the 
top-performing half of the students, we see the interaction, which suggests that composed 
symbolization problems are unduly difficult.  However, is this average performance?  Are most 

                                                 
7 To make sure the reader understand this figure, lets look at an example.  For instance, there were 3 students who 
got only one problem correct.  For those four students, the upper potion of the graph shows how those students did 
on the 4 different types of problems.  (Note the "C" and "D" on the upper x-axis, standing for "composed" and 
"decomposed", respectively.)  For instance, these four students got 0% correct of the problems composed-arithmetic 
and the decomposed arithmetic problems correct, as indicated by the rectangular boxes.  These students scored best 
(~30%) on the decomposed-arithmetic problems, and scored about 18% on the composed-arithmetic problems. 
8 There is a second explanation of this graph. In the main text, I argue that students have to learn to overcome 
composition in arithmetic problems separately from overcoming composition in symbolization problems (i.e., two 
different composition skills).  However, my data does not rule out that what is observed in Figure 5 might be two 
main effects, with the tail ends being obliterated by floor and ceiling effects (i.e., a single composition skill).  
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of these students demonstrating the same effects?  The answer is “some, but not all.”  Let us 
define the prerequisites to being able to do a composed symbolization problem the ability to do 
both decomposed symbolization and composed arithmetic problems.  Then 40% of the students 
who have met the prerequisites for composed symbolization, failed to solve a composed 
symbolization problem.  When I say a student has met the prerequisites, I mean that a student 
was able to do at least one composed arithmetic problem, as well as one decomposed 
symbolization problem.  There were 43 students who met this criterion, and 17 of them failed to 
solve a composed symbolization problem.  I think that these 17 students are missing the 
knowledge of how to compose two symbolic expressions together.   

These 17 students made a total of 34 errors on composed symbolization problems and I 
would like to see if these errors are consistent with the articulating composition hypothesis. The 
largest category of errors (done by eight students) is where the student wrote only the first step 
(e.g., one student wrote “72-m” for problem CS.)  These errors are consistent with the 
articulating composition hypothesis, because a student that does not know how to put two steps 
together might simply stop once she gets to a point where she does not know how to continue. 
There were 3 errors of missing parentheses and one student who incorrectly used parentheses. 
These errors are also consistent with what one would expect from a person who can both 
symbolize single steps and do the arithmetic for two step word problems, but doesn’t yet know 
how to put two symbolizations together. Many of the other errors are not easily categorizable and 
do not give us much insight into what the student was thinking.  About a third of the errors of 
students who appeared to be trying to overcome this hurdle are those that the articulating 
composition hypothesis would predict. 

The Symbolization Effect Among Decomposed Problems 
We now consider one of the transitions students must make before being able to deal with 

composed symbolization problems.  This transition occurs when students learn decomposed 
symbolization problems.  The evidence suggests that this transition is difficult.  Fully one-third 
of the students who demonstrated competence (at least one correct) in the decomposed arithmetic 
problems could not get any of the decomposed symbolization problems correct (let alone the 
composed one).  This is a substantial effect that results in an additional 108 errors occurring (152 
errors on decomposed symbolization problems while only 44 errors on decomposed arithmetic 
problems).  What is the explanation for this symbolization gap of 108 errors?  There were many 
more “no answers”, increasing from 12 to 57, but these “no answer” responses do not give us 
insight into what is causing the difficulty.  We now look at four different explanations that might 
account for why there are so many more errors, but cannot conclusive rule out any of them. 

1. Articulating Composition Hypothesis: Articulating is harder than computing 
2. Generalization Hypothesis: It’s the variable! 
3. Students using different mathematics operations: repeated addition instead of 

multiplication 
4. Lack of Semantic Support 

The first hypothesis to explain the symbolization effect in decomposed problems is similar to 
the articulating composition hypothesis in that it focuses on difficulties students have with 
production and not with comprehension.  I will introduce two types of errors that are analogous 
to the sorts of errors made when learning a natural language.  One such error is to say words in 
the wrong order, for instance, writing “m-72” when “72-m” is intended.  A second language 
production error is to use the wrong "verb".  For instance, writing “72+m” when “72-m” is 
intended.  However, just because a person has written “72+m” does not mean we can assume 
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they meant “72-m”; we will have to compare the error rates on symbolization problems with the 
number of analogous errors on arithmetic problems (for instance the number of people who 
added 72+32 to get 104 for problem DA2 in Table 2.)  It turns out that there are 7 errors of 
students using the wrong verb to arrive at an arithmetic answer.  In contrast, for symbolization 
problems, there are 31 such errors.  I argue that the increase in these wrong-operator errors is 
because students’ difficulties arise not so much in English comprehension but in symbolic 
production.  A similar pattern for the reversal errors was observed, with no such errors occurring 
for arithmetic problems (nobody answers “-40” for DS2) while there are 12 such errors for 
symbolization problems.  The difference in these simple articulation errors accounts for about 
40% of the symbolization gap.   

A second explanation is a possible consequence of the generalization hypothesis.  Consider 
the 6th grade student who has never seen a variable before and is suddenly confronted with a 
problem with a variable for the first time.  She would probably be very confused and be inhibited 
from using that variable in her answer.  She might be much more likely to randomly guess using 
the more familiar numbers from the problem.  Alternatively, she might answer as one student of 
ours did on several of the symbolization problems: “Not enough info”.  This leads to the 
prediction that novices are inhibited from using a variable.  Of the students who gave an answer, 
38 answers did not contain the given variable even though in a decomposed problem there are 
only two numbers.  This accounts for 35% of the symbolization gap.  However, there is a 
consistency problem with this variable inhibition hypothesis.  In the first DFA, I found that 
students’ ability to do arithmetic symbolization (e.g. answering with “72-32” rather than “40”) 
was not significantly different  (F(1,30)=.9, p>.35) than their ability to do algebraic 
symbolization (e.g. answer with “72-m”).  However, I do note that the trend in the data was 
particularly large and in the predicted direction:  for decomposed problems, the absolute 
performance rises 58% for arithmetic symbolization problems to 68% for symbolization 
problems with a variable.  Furthermore, the students in the current study were generally at a 
lower level9 of skill where variable inhibition may be greater.   

A third hypothesis is that the symbolization effect for decomposed problems is caused by the 
fact that students may be using back-up strategies (like repeated addition:  40+40+40) for the 
arithmetic problems instead of the direct arithmetic strategy (e.g. 3*40) that is necessary for 
symbolization.  I looked at all of the responses students gave to the arithmetic problems to see if 
I saw any evidence that students were using any mathematics operations other than those 
expected, and found no evidence to support this hypothesis.  At the same time, since students did 
not always show their work, I cannot rule this out. 

A fourth explanation for the presence of a symbolization effect in decomposed problems is 
what I call the semantic support hypothesis.  If a student actually has numbers to compute 
answers with, they have the advantage of being able to look at the answer in order to detect 
violations with the semantics of the problem.  I discussed above that there were no reversal 
errors on arithmetic problems but 12 on symbolization problems.  Maybe the reason reversal 
errors do not occur on decomposed problems is that if a student calculates “-40” she will quickly 
detect that a negative number of dollars to give to the sisters does not make sense.  The semantic 
support hypothesis also suggests that even without doing any of the arithmetic, it might be easier 
for a student to figure out which operator to use if they know the relative size of the numbers 
given: students seem to have heuristics such as “if one number is much larger than the other, then 

                                                 
9 On the 6 cover-stories that the two populations had in common the percentage correct, on average, for symbolized 
problems was significantly different (F(1,10)=7.292, p<.02) with this present group averaging a low 27.2% while 
the previous group averaged a higher 42.8%. 
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division is likely”, in addition to heuristics like “always subtract the smaller number from the 
larger.”  Therefore, a student might benefit more by having numbers rather than variables even 
before she actually does any mathematics.  In DFA#1 I failed to find a significant difference 
(F(1,30)=.9, p>.35) between the performance on arithmetic symbolization vs. algebraic 
symbolization problems (as mentioned in the introduction).  There was a difference a 10%  on 
the student's average percent correct (from 58% to 68% correct).  This suggests that there might 
be a role for the semantic support hypothesis that helps students use heuristics based on the size 
of numbers as well as heuristics that check the result of arithmetic computations for semantic 
violations.  Neither of these strategies is possible if the problem has a variable present.  Further 
research is needed to conclusively distinguish between the merits of these explanations. 

Composition Effect for Arithmetic Problems: 
The third developmental transition I detected was the gap shown by students who could not 

do composed arithmetic problems (which I call a "composition effect for the arithmetic 
problems").  The gap is not large; there were 42 errors on decomposed problems while composed 
problems had 52.  Again, I notice that 10 of the answers for composed problems were the result 
of doing just the first of two required steps.  These students possibly stopped early because they 
were not reading the question carefully.  There were only 5 students who were able to get a 
decomposed problem correct but failed to get any other type of problem, including composed 
arithmetic problems, correct.  There were 24 students whose performance on composed 
arithmetic problems was worse than their performance on decomposed arithmetic problems.  I 
assume that this composition effect is partly explained by reference to cognitive models such as 
LeBlanc and Russell's (1996) model that attempts to explain arithmetic word problem 
performance based on working memory load considerations.  That is, composed problems are 
somewhat harder to comprehend. 

An Analysis of the Errors Students Made on the Two DFAs 
This chapter has, so far, has focused on whether a student can get a problem correct or not.  
However, in order to build a tutoring system, we want to understand what are the common 
errors.  I performed an analysis of errors committed on the second DFA.  I was interested to see 
if the types of errors made were consistent with my hypothesis that language production on 
composed problems is a major difficulty. 

Procedure 

I looked at thee errors made on the second DFA.  Each test had 8 questions.  Because of the Latin 
Square design, half of the questions were decomposed versions that had two sub-questions.  
Therefore, each student did 12 problems on a single test.  This data was collected during an 
empirical evaluation on an unrelated instructional system.  Therefore, each student did two tests, 
with each test version randomly chosen with replacement.  Because the presence of distractors 
made for a much wider range of error types, I decided to focus on the half of the problems that did 
not have distractor numbers.  Because I was interested in the composition effect for symbolization 
problems, I excluded those problems without variables.  I was left with 136 decomposed problems 
and 139 composed problems (the numbers are not exactly equal because a few students did only 
one side of the sheet, and a few forms had errors that caused us to exclude a question).  Of these 
problems, the decomposed problems had a percentage correct of 64%(49 errors) while the 
composed problems had a percentage correct of 46%(75 errors), a difference of 17.5% (26 errors) 
representing the size of the composition effect (for problems without distractors and also that have 
variables (not arithmetic).  I analyzed the types of errors found and classified them into categories. 
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Results 
Of the 75 errors on composed problems there were 5 categories of errors that were consistent 
with the hypothesis that the student’s difficulties was one of articulation the composition of the 
two parts of the problem.  Table 3 lists these four categories.  Table 3 also lists, for reference, 
two other common categories that apply to both decomposed and composed problems.  The first 
error type is missing parentheses.  The ten students did made this sort of error could account for 
a little over a third of  the composition effect (26 problems).   

The second type of errors that is consistent with the composition effect is what I call a 
"sub" error where a student does the first step, but then stops.  This could be due to the student 
knowing how to do the first step but then not knowing how to proceed.  (It is noted that these 
sorts of errors could also be explained by fact that the student had the wrong goal in mind.)   

The third error type is the "super" error and there were two examples of this. The student 
wrote the "800-m" instead of "800-40m".  I classify this as a possible composition effect error 
because it might be that the student simply did not know how to substitute "40m" in the place 
where they put just "m".   

The fourth error type shown is what I term invented notations.  Table 3 shows the three 
examples of  errors I classify as invented notations.  In these, the student seems to understand the 
structure of the problem but did not express the answer in one correct algebraic expression. 

The fifth error type occurred for two students who used parentheses in the wrong place.  
As in the case of the missing parentheses errors, it is possible that the students had the correct 
quantitative structure in mind, but simply did not know how to expresses this correctly. 

 Number of Errors  
Error Name Decomp Comp Example 
Missing Parentheses NA 10 Wrote 550/h-2 instead of 550/(h-2). 
"Sub" NA 14 Wrote "40m" instead of "800-40m". 
"Super" NA 10 Wrote "800-m" instead of "800-40m". 
Invented Notations NA 3 Wrote "62-f=t, T+62" instead of "(62-f)+62", 

or wrote "72-m=x/4=" instead of "(72-m)/4", 
or wrote "5-7 and 5*h" instead of "5h-7". 

Wrong Parentheses NA 2 Wrote "(550/h)-2" instead of "550/(h-2)". 
Wrong Math Operator 17 17 Wrote "800-40/m" instead of "800-40m" 
Order of Arguments 8 2 Wrote "40m-800" instead of  "800-40m". 

Table 3: The five different error types that are consistent with a student having a composition difficulty, plus 
the two error types that were prominent on one-operator problems. 

Overall, the actual thirty-nine errors of the five error types of Table 3 could more than 
account for the size (29 errors) of the composition effect on symbolized problems.  These types 
of errors were those one would expect if the difficulties were a knowledge-level problem, such as 
failing to realize that a parenthesized expression could be treated the same way a number could 
be treated.  This analysis of errors shows that there were enough errors of the types that are 
consistent with the hypothesis that students were having difficulty composing the expressions 
together.    

Study to Detect The Transfer of Composition Skill 
So far, in this chapter, I have explained two difficulty factors assessments I performed.  

Those studies suggested the hard part of symbolization is when students have to compose 
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expressions together, because it requires them to be able to treat an expression like a number.  
We can thing of this concept as learning a new rule in the grammar for algebra expressions.  
Therefore, as I conjectured above, instruction focused on teaching students this grammar rule 
should improve their performance, even if divorced from practice on word problems.  Therefore, 
I designed an experiment to see if practice on algebraic-substitution problems would transfer to 
the task of symbolizing expression for word problems.  The algebraic substitution problems were 
problems such as the following:  (see Appendix B for the posttest and Appendix H for the 
classroom worksheet.) 

“Let  X= 72-m.  Let B= X/4.  Write a new expression for B that 
composes these two steps.” 

These problems had no verbal problem statements!  If students got better at symbolizing 
expressions for verbal problem statements by practicing algebraic substitution, then I can 
conclude that these two tasks tap skills that underlie both of these tasks.   

Procedure 

The subjects were 39 students in three ninth grade regular level algebra classes.  The high school 
was a suburban Pittsburgh classroom.  I gave each student a pretest (included in the Appendix B) 
that included 5 symbolization problems and 5 algebraic substitution problems on Day 1.  On Day 
2, students were then given traditional whole class instruction on this task.  The worksheet the 
students used during guided practice (i.e., teacher giving students time to do a few problems and 
then going over them) is given in Appendix H.  The total time was about 45 minutes.  On Day 3 
student were given a posttest.  The posttest was the same as the pretest.  Each test was graded and 
no partial credit was given.  The pre-post test had 5 symbolization problems as well as 5 
substitution problems. 

Results  
I performed standard repeated measures t-tests to determine if the students showed 

improvements on the two skills tested.  Not surprisingly, students had significant improvement 
on the skill they were trained on.  Those means on the algebraic substitution pretest went from an 
average of getting .64 problems correct to 2.8 problems correct on the posttest.  (p=.001, 
Sigma=2.36).  More surprising is that students showed a small but statically significant 
improvement in there ability to solve symbolization problems (Figure 6).  The average percents 
correct went from .308 to .82 problems correct (p=.0012, Sigma = .74). Since the absolute means 
on the pre/test and posttest were quite small I checked to see who were the students doing the 
learning.  Surprisingly, I did not find a statistically significant correlation between the 
symbolization gain and the substitution gain.  However, I did find that many of the students who 
learned the most substitution skills improved their symbolization performance considerably.  
Specifically, of the 19 students who gained a lot of knowledge on substitution problems (as 
measured by a gain of more than 3 problems from pretest to posttest) 8 of them improved their 
performance an average of 1.71 problems each.   
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A sub-hypothesis is that maybe the students were just learning when to put in parentheses 
and that that is the skill they transferred.  To deal with this objection, I did a second test.  This 
time I rescored the problems so that those students’ answers that had left out parentheses were 
counted as correct.  I then looked to see if there was still transfer in the way described above.  
The results were that there was still difficulty left unaccounted for (Pretest means=.513, Post 
Test means=.872,.p=046 and sigma=.45).   

Conclusion for Transfer Study 
When students practice the skill of algebraic substitution, they are practicing the skills that 
involve them treating an expression as a quantity in and of itself.  This is different than treating 
an expression as a procedure you can use to compute something. This practice transfers to the 
seemingly unrelated task of symbolization.  This shows that one component skill of efficient 
symbolizers is the ability to treat an expression the same way they treat a number.  I can state this 
same idea by saying that students need to learn the grammar of algebraic expressions, and in 
particular, that an expression can be composed of subexpressions.  This is a skill that our student 
model needs to consider as one of the subskills for symbolization.  This is possibly the strongest 
evidence I could present in favor of the articulating composition hypothesis.  This result also 
supports the more general idea that there is great difficulty on the production side (rather than the 
comprehension side of translation).  These students improved without practice reading algebra 
word problems; the only practice they had was composing expressions together. 

Knowledge-Level vs. Symbol-level Explanation 
Our articulating composition hypothesis is what Newell (1990) would have called a 

knowledge-level explanation as opposed to a symbol-level explanation.  I hypothesize that 
students are missing a certain bit of knowledge (which I model as production rules).  However, 
an alternative explanation of the additional difficulty of composed symbolization problems could 
be made at the symbol-level.  For example, maybe both symbolization problems and composed 
problems put a burden on working memory, and when these two factors combine a strong 
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interaction results.  Anderson & Jeffries (1985) explained a similar result by reference to 
working memory.  Anderson & Jeffries found that student had more difficulty time identifying 
the correct operator to choose to write a piece of LISP code, when the arguments to the function 
were more complicated.  They compared student’s performance on the following two problems 

(? ’(A) ’((B) (C) (D))) = (A (B) (C) (D)) 
(? ’((N)) ’(((O)) ((P)) ((Q)))) =   ((N) ((O)) ((P)) ((Q))) 
In both cases the student’s task was to figure out which LISP, function (to replace "?" above) 

transforms the arguments (with lists being preceded by single quotes) on the left-hand side of the 
equal sign into the result  (list structure on the right-hand side of the equal sign).  The correct 
answer is to use the function APPEND.  The only difference between the two problems was that 
in the second case there is an extra set of parentheses around each element-- e.g., (A) versus 
((N)).  Anderson and Jeffries said that the differences between the two problems is "totally 
irrelevant to determining whether append is the correct function."  Subjects got 80% correct for 
the first case and 66% for the second case.  Anderson and Jeffries proposed "the error rate was 
increased because of the burden on maintaining the extra information [about the extra 
parentheses] in working memory."   

However, a second alternative explanation for that difference might be that students needed 
to be more proficient in the grammar for LISP expressions in order to correctly interpret the extra 
parentheses.  For example, in the second case that has the extra set of parentheses students need 
to use their grammar rule more often (i.e., the rule that that allows them to parse the extra set of 
parentheses.)  Therefore, Anderson & Jeffries results could be explained by either a symbol-level 
(i.e., working memory) explanation or a knowledge-level explanation (i.e., increased practice 
with the rules of parentheses).  Anderson & Jeffries predicament is similar to the one I have in 
this work.   

One way of trying to get hold of the two types of explanation is to look at the types of error 
made.  For instance, Payne & Squibb (1990) studies the types of error students made in algebra 
question solving.  For instance, they compared the following two types of student errors: 

M + Nx          = P   �  Nx          = P + M 
M + Nx + Qx = P   �  Nx  +Qx = P + M 
Both of these involve the same error of failing to change the sign when moving a term across 

the equals sign.  Payne & Squibb found that while equations that are more complicated were 
harder to solve, there was no increase in this specific error type.  It was simply that equations that 
are more complicated offered more opportunities for errors.  When I looked at the types of errors 
students made in my task (Table 3), I reported above that students made a sizable number of 
errors consistent with their error being explained by a knowledge-level difficulty.  Additionally, 
Table 3 shows that the number of errors of using the "Wrong Math Operator" stayed constant.  
The number of errors of "Order of Arguments" actually dropped.  This result is different than 
one of Sleeman’s (1984) results.  Sleeman (1984) found that "students appear to regress under 
cognitive load (p. 403)" meaning that they might make an error on a harder problem that they 
would not make on an easier one.  Unfortunately, my data is not longitudinal, so I cannot answer 
the question of whether students would make the same types of errors on harder problems after 
having stopped make that error type on easier problems.  However, the increased frequency of 
errors on the composed vs. decomposed problems in my data, does not appear to be accounted 
for by the kind of "regression under cognitive load" phenomena observed by Sleeman.  The 
errors introduced in composed problems are in new error categories, specific to composed 
problems, not increases in errors that can also appear in decomposed problems.  

Sleeman (1984) also said "This paper claims that there are two very different types of mal-
rules at large with algebra students-namely manipulative and mis-parsing mal-rules."  The mis-
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parsing mal-rules are the sorts of errors you would expect if students were not familiar with the 
grammar of algebra expressions. 

I also considered the possibly that a working-memory explanation might apply to my task.  I 
looked for evidence by seeing if the composition effect (while doing symbolization problems) 
increased under a working memory load.  Conveniently, I have data to make this comparison, 
from DFA#1.  In this, I studied both composition while symbolizing as well as the effect of 
distractor numbers.  To illustrate, I had studied problem DS1 with and without a distractor phrase 
(I changed the problem to read “6 cars” rather than just “cars.”)  As was mentioned earlier, a 
large effect for these distractor phrases was found, and it seems reasonable to speculate that this 
might be an effect of an increased working memory load.  If the composition effect in 
symbolization problems is a working memory phenomenon we should expect to see the 
composition effect increase for distractor problems.  Unfortunately, the results, shown in Figure 
7, are inconclusive.  There was a trend towards the predicted interaction but it is not significant 
(F(1,250)=1.48, p=.23).  Therefore, we cannot conclusively rule on the question of whether the 
composition effect is a symbol level phenomenon or a knowledge level phenomenon. 
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Figure 7: The composition effect gets worse in the presence of distractors.  This suggested interaction (not 

statistically significant) is consistent with a working memory load explanation. 

 
 In a related task, Lebiere, Anderson & Reder (1994) found increased difficulty with an 
algebra symbol manipulation task as the working memory load increased, which might suggest 
the symbolization effect could be accounted for with a similar working-memory explanation.  
Anderson, Reder and Ritter (manuscript in preparation) found a similar result; students were 
more likely to make certain types of errors (such a failing to invert an operator when 
transforming an equation) if the problem involved decimals as opposed to whole numbers.  They 
explained this in terms of a working memory effect; students have a harder time remembering to 
invert an operator if they also having to deal with the increased difficulty of using the more 
complex decimals.  This task sounds similar to the one presented here, in that I showed that 
students made more symbolization errors when presented with composed as opposed to 

                                                 
10 In an unfinished manuscript. 
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decomposed problems.  The focus of their explanation is different; they proposed a working 
memory explanation (i.e., symbol-level) to explain their results.I, one the other hand, have 
emphasized a knowledge-level explanation for the results in my task. But, possibly there is also 
room to use this knowledge-level explanation (i.e., student’s don’t know the grammar of algebra 
expression) to also explain result in Anderson’s domain of symbolic manipulation.  For example, 
the following would be examples of composed and decomposed versions:  

Composed Version Decomposed Version 
17=4*x+5    17=y+5 and  

12=4*x  
 A similar composition effect might be found.  This hypothetical effect could be explained 

with knowledge-level explanations (student don’t know the grammar for algebra expression well 
and therefore mis-parse the expression which leads to them to first divide my 4 rather then 
subtracting 5 from both sides.) or symbol-level explanations (student face a higher working 
memory load on the composed version and therefore more likely to make an error.)  Teasing 
apart a knowledge-level versus a symbol-level explanation is different, and a subject for future 
research.  Possibly evidence might be found that shows clearly knowledge-level problems, such 
as students using shallow-rules that do not generalize. 

This dissertation does not prove that there is no room for a symbol-level explanation (i.e., 
working memory-based explanation); rather it simply provides some evidence that is consistent 
with a knowledge-level explanation.  This evidence is  

1. The model we presented to account for the effect of distractors as well as composition 
cannot be made to predict the fact that the distractor effect is in fact smaller then the 
composition effect. 

2. The fact that there are enough errors of the type consistent with the knowledge-level 
explanation to account for the additional number of error observed in composed problems 
than decomposed problems. 

The fact that students get better at symbolization from instruction that focuses on the 
grammar or expression.  

A Developmental Model 
Based on the results of DFA#1 and DFA#2, I have created a developmental model of how 

students learn to symbolize.  Contrary to common belief and the emphasis of prior cognitive 
science research, student’ difficulty in algebra word problem solving appears less related to 
comprehension difficulties and more related to difficulties in producing symbolic expressions, 
particularly expressions that involve more than one operator.  I will summarize three main 
transitions in this model.  At the start of the developmental progression are students (two in this 
study) who fail to get any of the problems correct; I will ignore these two students.  At the first 
non-trivial level, there are five subjects who showed competence in decomposed arithmetic 
problems (where competence is at least one of the two problems correct) but failed to show 
competence in any other problem type.  I speculated that their poorer performance on composed 
problems might be due to working memory limitations and/or related to difficulties 
comprehending more complicated composed stories.  The students at this level show evidence 
predicted by the generalization hypothesis that argued that variables make problems harder 
(students didn't get any problems correct that had variables).  In Chapter 3, I will model this with 
three skills: 1) being able to retrieve the operator, 2) being able to retrieve the numbers, and 3) 
being able to order the augments.  I have chosen not to bother modeling the additional help that 
students get by being able to refer to the semantics of the problem.  
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In going to the next level students must learn to deal with composed arithmetic problems.  
They most likely need to improve their reading skills and make sure they answer the question 
asked.  Twenty-four students had made this transition to competence in composed arithmetic 
nevertheless, failed to be successful on any symbolization problems.  In Chapter 3, I will model 
this as students learning a new skill of being able to retrieve a computed quantity. 

The next hurdle students surmount is learning how to deal with decomposed symbolization 
problems.  It is interesting to note that no student was competent in decomposed symbolization 
problems who was not also competent in composed arithmetic. This is most likely due to the fact 
that students see composed arithmetic problems in elementary school, but do not see variables 
until much later. There were 17 students at the level of showing competence (at least 1 out of 2 
correct) in both composed arithmetic and decomposed symbolization, but were not successful on 
any of the composed symbolization problems.  I presented four alternative hypotheses regarding 
what students need to learn to make this transition to competence on simple decomposed 
symbolization problems.  In Chapter 3, I will model this development by adding two new skills 
of being able to use a variable, and being able to articulate the mathematics used to compute a 
quantity. 

At the highest level, there were 25 students who were able to get one of the composed 
symbolization problems correct (only one student got both composed symbolization problems 
correct).  In making this transition to competence in composed symbolization problems, students 
learn how to combine the articulation of individual steps.  

Implications of the Developmental Model 
I will limit myself to one instructional design suggestion that can be derived from this 

developmental model.  In order to help student transition from competence at symbolizing one-
operator problems to competence at symbolizing multiple operator problems, I recommend 
practice on symbolic substitution problems.  On the face of it, such problems seem totally 
unrelated to translating word problems to symbols.  However, my cognitive analysis and 
difficulty factors assessments have identified substantial overlap in the skills required for these 
apparently unrelated tasks.  Furthermore, I have shown preliminary evidence that training on 
substitution transfers to symbolization.  I will explore such a tutorial strategy in Chapter 4 and 
will use the name "Introduced Variable" strategy.   

Chapter Conclusion 
Many researchers have focused on the problems students have comprehending algebra word 

problems.  For instance, Nathan, Kintsch, & Young (1992) "claim that symbolization is a highly 
reading-oriented one in which poor comprehension and an inability to access relevant long term 
knowledge leads to serious errors."  However, this chapter presented data that shows that many 
students can comprehend algebra word problems well enough to evaluate an answer, but 
nevertheless, will fail to be able to symbolize the exact same problem, if it involves a variable.  
Furthermore, it is not the variable, per se, that makes symbolizing hard as suggested by 
Kuchemann (1981) and others.  Rather the difficulty lies on the production side of the translation 
process; in particular, it is the articulation required when writing an expression that is hard. 

This chapter also established the "composition effect" that a two-operator word-problem is 
harder than the some of its parts.  This effect occurs in word problems that allow the student to 
compute a value.  This increased difficulty captures any increased difficulty of the problem 
presentation.  More interesting, there was a composition effect on problems that involved the use 
of a variable.  Though the actual presence of the variable did not significantly increase the 
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difficulty of the problems, I argued that the need for the student to articulate an answer lead to 
the increased difficulty. 

This chapter ends with drawing two instructional implications that will be incorporated into 
the tutoring system described in the coming chapters. 

Redesign of the Carnegie Learning Algebra Word-Problem Tutor 
The results of this chapter suggest a redesign of the scaffolding technique used in 

Carnegie Learning Inc. word-problem tutor (Koedinger, Anderson, Hadley, & Mark, 1995).  At 
the beginning of this chapter, we showed the "Pattern Finder" window used in Koedinger et al.’s 
tutor:  

 
Ann is in a lake that is 2400 yards wide.  She starts out 800 yards from the dock.  She rows for “m” 
minutes back towards the dock at a rate of 40 yards per minute.  Write an expression for her 
distance from the dock.11 

 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 2 minutes?  
 Student:800-2*40 
 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 3 minutes? 
 Student:800-3*40  
 Tutor:How would you calculate THE DISTANCE ANN IS FROM THE DOCK for 4 minutes? 
 Student:800-4*40 
 Tutor: Write an expression which describes your calculations, using a variable.  
 Student:800-m*40 

Table 4.  Pattern Finder dialog showing the student having answered the first 3 questions correctly. 

 
This "Pattern Finder" scaffolding seems reasonable because the articulation of the arithmetic 
seems like a natural intermediate step before symbolizing with a variable.  However, I showed in 
the first DFA that there is not a significant difference between arithmetic symbolization and 
algebraic symbolization so the first step of this scaffolding is as hard as the last step.  
Koedinger12 has confirmed this by analyzing the performance of students on the individual steps 
of the pattern finder and found there is little difference between students’ ability to perform any 
of the last three steps shown in Table 4. 

My suggestion, based on the articulation composition hypotheses, is that if a student is 
having difficulty, first ask him (or her) to compute a value, and then follow that up with asking 
him articulate how he got that value.  If he fails at that task, the tutor should ask him to articulate 
any decomposable elements (such as "40*3").  Once the student has articulated the part(s) then 
ask him again to articulate the whole quantity (e.g., "800-40*3").  Once that is done, then ask 
him to generalize his answer to the case without the variable.  This is illustrated in the following 
example:   
 

T1:  Tutor: Hello.  Please write an expression for the distance Anne has left to row. 
S1:  Student: Can you give me some help please! 
T2:  Tutor: Let me try to give you some help.  We will come back to the distance Anne has left to row.  Let 

me try to break this down for you.  Please compute the distance Anne has left to row if the 
number of minutes rowing was 3 minutes? 

S2:  Student: 680 
T3:  Tutor: Correct.  Using only 800, 40, and 3 write an expression for the distance Anne has left to row. 
S3:  Student: 800-120 

                                                 
11 This is not one of the problems used by the Carnegie Learning Tutor. 
12 Personal communication. 
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T4:  Tutor: No.  But that is only because you didn’t say where the 120 came from.  What math did you do to 
get the 120? 

S4:  Student: 3*40 
T5:  Tutor: Correct.  Now, lets try this question again: Using only 800, 40, and 3 write an expression for the 

distance Anne has left to row. 
S5:  Student: 800-3*40 
T6: Tutor: Correct.  Now use "m" instead of 3 to again express the distance Anne has left to row. 
S6:  Student: 800-40m 
T7: Tutor: Correct.   

Table 5: Proposed New Concrete Articulation Strategy 

 
 If articulation is hard, then we need to be ready to see errors at that step since that step is 

about as hard as having to symbolize the whole thing.  Above at line S3, the student fails to fully 
articulate out one of the components to the problem, so the tutor asks for that component in what 
I call a sub-dialog (e.g., lines T4 and S4).  Once the student answer "3*40" the tutor gets back to 
the main thread by asking the same questions over again (T3 and T5).  I will refereed to this 
whole strategy as the concrete articulation as opposed to inductive support because this new 
name emphasizes the most difficult aspect of this symbolization while the name inductive 
support emphasizes the role of inducing a pattern from multiple instances.   

A Second Instructional Scaffolding Strategy Based on my Transfer 
Study 

Another suggested scaffolding method, which I call the "introduce variable" strategy, is 
shown in the following example: 

  
Tutor1: Hello.  Please write an expression for the distance Anne has left to row. 
Student1: Can you give me some help please! 
T2: Let me try to give you some help.  We will come back to the distance Anne has left to row.  Let me try 

to break this down for you.  What is the distance rowed so far? 
S2: Can you give me some help please! 
T3: Let me try to give you some help.  Use "40" and "m" to calculate the distance rowed so far. 
S3: 40m 
T4: Correct.  If "B" were the distance rowed so far then what would be the distance Anne has left to row? 
S4: Can you give me some help please! 
T5: Let me try to give you some help.  What is the distance Anne has left to row?  Use "B" instead of 

"40*m" for the distance rowed so far.  Hint: pick one of these: 800-B, B-800, 800+B, 800*B, 
800/B, or B/800. 

S5: 800-B 
T6: Correct.  Now, lets try this question again: You are correct that "800-B" is the distance Anne has left to 

row.  Now, can you state this in terms of the numbers given in the problem? 
S6: Can you give me some help please! 
T7: Let me try to give you some help.  What is the distance Anne has left to row? Hint: You know the 

answer is "800-B" but you must substitute in the value for "B".  Replace "B" with "40*m".  Use 
parentheses if needed. 

S7: 800-40m 
T8: Correct. 

Table 6:  A suggested strategy to scaffold the composing steps together, through the use of an introduced 
variable. 

In the above example, we see that the tutor asks (T2 and T3) the student for one decomposed 
part (i.e., the 40*m) and then the second (T4 and T5) decomposed part (i.e., 800-B).  Finally, the 
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student is asked to compose the two parts together (T6 and T7).  If articulating composition is 
what is hard, as I have argued, then this might be an effective strategy.  Notice how the hint at 
line T7 explicitly instructs the student to perform the algebraic substitution of putting "40m" in 
place of B in "800-B".  This is the same skill that was practiced in the transfer study I reported in 
this chapter.  In that study, a statically significant effect, but small, effect was seen.  The 
smallness of the effect might have been due to the fact that students were not told anything about 
how to transfer the skill to symbolization problems.  This strategy can be thought of as a way of 
teaching students how do make this transfer. 

Both the concrete articulation strategy and the introduce variable strategy will be 
incorporated into a new tutoring system that will be explained in the coming chapters 
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Chapter 2: An Experienced Human Tutor that 
Motivated the Tutorial Model 

Chapter Overview: 
In this chapter, I present some generalizations from my analysis of the transcripts of an 
experienced human tutor.  I argue the human tutor’s behavior can be roughly characterized with 
two processes:  dynamical scaffolding and tutorial strategies.  Dynamic scaffolding is a three-
step process whereby the tutor 1) diagnoses the student’s response, 2) possibly gives feedback, 
and then 3) selects a domain dependent tutorial strategy to address any error the student made.  
The tutorial strategies can be modeled as multi-turn dialog plans.  

Motivation 
Before beginning this dissertation, I was an algebra teacher.  I found that my students had great  
difficulty with word-problems because they often made errors on the initial symbolization (i.e. 
translation of the problem into the language of mathematics. 
 
One of this project’s goals has been to understand how to improve the learning of algebra 
symbolization.  Testing that understanding can be done by building better software for algebra 
instruction.  There are many sources to draw on to figure out how best to accomplish this goal.  
In the last chapter, I reported on the cognitive modeling and related work (i.e. two difficulty 
factor assessments and a transfer study).  In this chapter, I draw on a different knowledge source: 
a transcript of a single experienced human tutor working with a student for an hour.   

Bloom (1984) reported that human tutors could leads to an effect-size of 2 sigma over 
ordinary classroom instruction (but this result has not been replicated).  The natural question is 
what exactly do human tutors do that lead to these large learning gains?  In this chapter, I present 
my hypotheses about what makes tutoring so effective.  Note that, others might look at this same 
protocol and make different hypotheses or they might argue that our tutor is not representative.  
That might be.  However, the ability to build a system based on one’s hypotheses, and to know 
with certainly that learning gains were made during the use of that system, must be considered 
significant.  I will look at this tutor through the lens of the cognitive scientist who has practiced 
in this domain.  In the end, I hope that the reader will be convinced that the generalizations I 
make about this protocol seem reasonable.  In addition, I hope that these generalizations will be 
considered worthy of testing to find out if they lead to gains in student learning.  

Prior Studies of Tutors 
Tutoring is reported to be a highly interactive process offering a large amount of 

confirmation (Merrill et al., 1995).  Merrill et al. argue that the main thing human tutors do is to 
keep students on track and prevent them from following “garden paths” of reasoning that are 
unproductive and unlikely to lead to learning.  Merrill et al. pointed to the large number of 
remarks made by tutors that helped keep students on track while learning Lisp programming.  
They argue that computer programming is the sort of domain that is hierarchical and can be 
broken into steps, and if one of those steps is wrong then everything else they do is going to be 
wrong.  This can waste a lot of the student's time. 

VanLehn et al. (1998b) found that tutorial intervention is effective usually only when the 
student had reached an impasse and furthermore that "different target pieces of knowledge seem 
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to require types of different tutorial explanations in order to be learned." The CIRCSIM (Cho et 
al., 2000) research project has also studied tutors and found that their tutors used a somewhat 
consistent tutorial script (they called them "protocols"). 
 An important and controversial question from the literature is on how much tutors 
diagnose student misconceptions.  Brown & Burton (1978) argue that human teachers do not do 
enough diagnosis.  Putnam (1987) reports that tutors rarely determine the exact nature of 
misconceptions, or attempt to do so by asking diagnostic questions.  Instead, Putman argues that 
tutors work off a "curriculum script" that is a structured approach that is rather insensitive to 
students’ responses, as compared to the diagnostic/remediation approach.  Chi et al. (1996) 
concur saying "tutoring effectiveness in the form of deep understanding does not seems to arise 
from tutoring skills per se, such as diagnosing misunderstanding or giving didactic 
explanations."  Graesser et al. (1999) observed untrained tutors (He cites Cohen et al. (1982) 
who claimed that untrained tutors can be effective) but found no evidence of "error diagnosis and 
remediation" or any other "sophisticated tutoring techniques" he was looking for.  Lepper, 
Aspinwall, Mumme & Chabay (1990) reported that human tutors do some diagnosis but do not 
report that diagnosis to the student; rather tutors use that diagnosis to influence what scaffolding 
strategies to use with the student. 

McArthur et al. (1990) did a sizable analysis in the algebra domain, which is particularly 
relevant to this work.  

Perhaps the most important conclusion we can draw from our analysis is that the 
reasoning involved in tutoring is subtle and sophisticated. …  First, … competent 
tutors possess extensive knowledge bases of techniques for defining and 
introducing tasks and remediating misconceptions. …  The number of rules our 
tutors posses may approach that of expert systems …such as medical diagnosis.  
…  [and] perhaps the most important dimension of expertise we have observed in 
tutoring involves planning.  Not only do tutors appear to formulate and execute 
microplans, but also their execution of a given plan may be modified and pieces 
deleted or added, depending on changing events and conditions. …  Our view of 
tutoring may be seen as a midground between a simple diagnostic-remedial 
model and a curriculum script view.  We believe tutoring is both opportunistic 
(driven by current conditions and events) and also influenced by more enduring 
decisions such as policies and microplans. 

Implicit in this statement is that tutors were diagnosing  (i.e. understanding what the student said) 
but had a great deal of variety in their responses.  Below I will report on this question of 
diagnosis.  McArthur et al.’s notion of micro-plans13 has similar analogies to what VanLehn et al. 
(1998a) calls knowledge construction dialogs and what the CIRCSIM (Cho, Michael, Rovick & 
Evens, 1996) project calls a tutoring protocol or directed line of reasoning.  

Procedure: 
The protocol I collected was an hour-long protocol of an experienced human tutor working with 
an individual student in a coached practice session.  In this case, the tutor was a female middle-
school mathematics teacher (4 years of mathematics teaching experience) who had about 2 full-

                                                 
13 A note on terminology: I will refer to what McArthur et al. called "micro-plans", as tutorial strategies.  I view a 
curriculum script as something that contains some elements of tutorial strategies but also an element of curriculum 
sequencing, which I have chosen to not define as tutorial strategy.  At the end of this chapter, I will define 
knowledge construction dialogs to be one type of tutorial strategy.  
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time person-years of one-on-one tutoring experience (through both University tutoring centers 
and through extensive private tutoring.)  This tutor charged clients 40 dollars an hour.  The tutor 
worked with one of her seventh grade students that she had not previously tutored.  The tutor was 
given a list of problems for the student to solve.  The session was recorded on video and then 
transcribed with the benefit of being able to see the piece of paper the student wrote his answer 
on.  This particular session was about one hour long and is reproduced in its entirety in Appendix 
C. 

Results 
The tutoring session was quite interactive, resulting in slightly over 400 lines.  The session 
consisted of the tutor and student working on 17 word problems.  Of these 17, 7 of them were 
done correctly on their first attempt.  The tutor did not spend much time on these correctly 
answered problem (consumed only 24 of the 400+ lines).  The remaining the10 problems 
represent the bulk of the lines in the protocol.  Since most of the time the tutor and the student 
alternated speaking, it makes for an average of about 20 turns (defined as the student and then 
the tutor speaking) per problem.  One problem took an exceptionally long time and stretched 
from line 17 to line 146.  If this long problem is excluded the average number of turns to solve a 
problem would be slightly over ten turns per problem, which is still quite substantial.  This 
finding is in agreement with the literature (Merrill et al., 1995) that suggests tutors give a great 
deal of feedback so that the student knows if he14 is right or wrong.  The tutor would give 
immediate confirmation if an answer was correct, but if it was wrong, she seldom told the 
student the answer.  Instead, the tutor would generally ask a targeted question thereby giving 
implicit15 (line 24, 28, 30, 32, 35, and 37) negative feedback.   

The Diagnosis Question Revisited 
Before I present my generalizations, I need to first address the question from the literature about 
the amount of diagnosis and remediation that tutors do.  A lot depends upon what is meant by 
diagnosis.  There is additional difficulty in that diagnosis is a mental operation.  We can judge if 
it happens only by looking at the observable actions of the tutor.  A simple definition of 
diagnosis is that the tutors can tell a correct answer from an incorrect answer.  By this definition, 
the human tutor certainly did diagnosis, for she kept asking questions until the student solved the 
problem.  When the student got the correct answer, the tutor said so and presented the next 
problem. 
 We could expand the definition of "diagnosis" to include the act of figuring out what sort 
of error the student made.  Did the experienced tutor do this?  She sometimes made statements  
(i.e. lines16 24, 151 254) that clearly indicate she recognized the student’s error.  However, more 

                                                 
14 I will use the masculine pronoun to refer to any student.  I will use the feminine pronoun to refer to the human 
tutor, and later, our computer tutor. 
15 Presumably, the absence of positive feedback was an indicator to the student that there was an error.  When you 
scan the transcript, you will see very few explicitly negative feedback messages (i.e. "No").  This is consistent with 
Lepper et al (1987) who argue that tutors were concerned about the motivational impacts on students of negative 
feedback. 
16 Line 24 indicates that the tutor knew that the answer was going to involve the fraction being multiplied by d, and 
so focused on the error that you can’t subtract just 2/3 from d.  Line 151 shows that the tutor knows that the student 
comprehended the two steps needing to be done, but the student had not expressed the answer in a correct 
expression.  Therefore, the tutor told the student that.  Line 254 is a clear example of the tutor knowing the error was 
a reversal of the order of arguments, and basically told the student that, by asking which one was larger. 
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often, her response does not explicitly mention that she performed a diagnosis.  Nevertheless, 
sometimes we can infer that she did diagnose by what she did not say.  For instance, at line 242, 
the tutor asks a question focused on one subgoal ("m/s") that the student had gotten wrong (had 
said "s/m").  The tutor ignored the portion that the student got correct  (the "+b" portion).  At line 
242, the tutor did not say, "You reversed the order of arguments for the ’s/m’."  Presumably, the 
tutor thought it was more conducive learning to do what she did instead (to be discussed below).  
This example is consistent with the hypothesis that the tutor often diagnoses to the degree that 
she determines what errors the student has made.  However, that does not necessarily mean that 
the tutor will report that diagnosis to the student.  In fact, the tutor rarely did so.   

Did the tutor do remediation?  That depends upon what we mean by remediation.  If 
remediation means that the tutor says things that are specifically related to the misconception that 
the student had, then there is not much evidence for that.  Only some of the various tutoring 
utterances are obviously specific to a particular error (i.e. "You did not use parentheses").  If 
"remediation" means that the tutor gave more problems similar to the one the student got wrong, 
then our tutor did not "remediate" by this definition; our tutor was given a list of problems to 
present.  But if "remediation" means that the tutor focused on an aspect of the problem that the 
student did not understand and then asked questions that would be likely to help the student 
overcome such difficulties, then my answer is that, yes, our tutor engaged in remediation.  

My overall impression of this protocol, with regard to diagnosis, is that the tutor needs to 
be able to understand what the student did so she knows what to focus on.   However, the tutor’s 
response is usually generic, rather than specific to the type of error the student made.  It is 
consistent with Merrill et al. (1995) in that tutors need to do some diagnosis.  This is also 
consistent with Lepper et al. (1990) in that the tutor did not report that diagnosis to the student, 
but instead appeared to use that diagnosis to decide what to focus the conversation on. 

Discussion of my Generalizations 
So far, I have established that our tutor was engaging in an interactive multi-turn dialog, and that 
she was doing some amount of diagnosis.  I have argued that she did not just report that 
diagnosis to the student.  I have yet to describe what she actually did.  I consider this the most 
important observations of this chapter.  I will first describe the two generalizations, and then 
illustrate them.  They are:  
1. Dynamic scaffolding  
2. Tutorial strategies 

By dynamic scaffolding I mean a three step process where the tutor would a) diagnosis what 
the student did, b) give feedback on portions that were correct, and c) most importantly, focus 
the dialog on the subgoals17 of the problem that the student got wrong. Dynamic scaffolding is a 
domain independent strategy.  For example, if a process has four steps and the tutor noticed that 
the student made an error on step 2, the tutor can give positive feedback on step 1 and the ask the 
student to do step 2 again.  Once that is correct the tutor needs to decide what to ask next.  Since 
the tutor remembers that the student could do step 3 she can skip asking for that step.  Instead, 
the tutor can ask the original question that requires all four steps at the same time.  Analogously, 
in this domain, if the student was supposed to say "z*(5+7/(30+g))" but instead said 

                                                 
17 By "subgoal", I mean a portion of the problem.  For instance, I view a problem whose answer is 800-40m as being 
composed of two subgoals.  One subgoal is to figure out the 40m portion.  The other subgoal is to figure out the 800-
X portion. Furthermore, I view each of these goals as being decomposable into subgoals to retrieve the arguments 
from the problem statement, retrieve the correct operator and finally to order the arguments correctly. 
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"z*(5+7*(30+g))" the tutor could confirm the "30+g" step, and then ask for the step that has 
7*(30+g) as an answer.  Once the student got that correct, the tutor could ask for the whole thing 
again.  This is what I mean by dynamic scaffolding. 

However, maybe just asking the student to do a step over again is not beneficial?  This gets 
us to what I call "tutorial strategies" which are domain-dependent.  These tutorial strategies are 
multi-step plans and are similar to Mc. Arthur et al.’s "microplans".   Like McArthur et al. I could 
see that our tutor had a large number of diverse actions she could possibly take.  I will now look 
at an example of one of these tutorial strategies. 

The "Concrete Articulation" Strategy 
A common strategy, which I call the concrete articulation strategy, was used in 44% of 
applicable18 problems (see lines 32, 242, 258 and 377).  In this strategy, the tutor tried to scaffold 
the problem solving by asking the student to compute a concrete example as shown below. 
240. STUD [reads problem] Cathy took a "m" mile bike ride.  She rode at a speed of "s" 

miles per hour.  She stopped for a "b" hour break.  Write an expression for how 
long the trip took? 

241. STUD uhm [ writes "s/m+b" but should be “m/s+b”]  
242. TUTOR How do you calculate the amount of time it takes you?  If your, if your, if your 

riding at, let’s make it simple.  If you are riding at 20 miles per hour, OK and 
you go 100 miles, how many hours did that take you. 

243. STUD Um  5 
244. TUTOR 5 and how did you get that 5?  How did you use the numbers 100 and  
245. STUD 100 miles divided by  miles per hour 
246. TUTOR So you took the miles and divided it by the [garbled, but possibly “speed”] 
247. STUD Miles divided by s  plus b equals time [writes m+b ] 
248. TUTOR Right.  
This dialog contains several interesting items.  In response to the student's first attempt, the tutor 
seemed to recognize that the student understood that the time the trip took was equal to the 
amount of the “b” hour break added to the time actually spent on the bikes.  Therefore, the tutor 
did not talk about the “b” hour break, but instead, focused on the “m/s” component.  This is what 
I previously termed "dynamic scaffolding".  This dynamic scaffolding included the step of doing 
the diagnosis to figure out which goals to focus on.  The second step of the dynamic scaffolding 
was to offer positive feedback, where possible, but since the amount that was correct was only 
the "+b" portion, the tutor gave no positive feedback (I speculate that the "+b" was just too small 
a portion to give positive feedback).  The third portion of the dynamic scaffolding was to focus 
the dialog on the subgoals that were not correctly addressed, which in this case was the "m/s" 
subgoal.  The tutor chose for this purpose to ask the student to compute a concrete instance (line 
242).  I call this first step the compute step.  After the student correctly answered with "5"(line 
243) the tutor asked the student to explain where the “5” came from.  The student responded that 
it was the “100 miles divided by the miles per hour.”  This is what I call the concrete articulation 
step because the student is being asked to articulate how he arrived at his answer.  Once that was 
correctly achieved, the final step is the generalization step, which prompts the student to write 
out the answer using only the variables and numbers given in the problem.  

                                                 
18 There were 10 problems the student got wrong.  One of those was not applicable for concrete articulation since 
there was no variable.  Of the reaming 9 problems, concrete articulation was used on 4 of those problems (often 
immersed with other tutorial strategies as well). 
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To recap, this example illustrates the domain-general tutorial plan I call dynamic 
scaffolding by where the tutor used its diagnosis to focus the conversation on the portions of the 
problem that the student had difficulty with.  We saw that our tutor was able to diagnosis which 
subgoal to attack.  If the student had gotten a different goal wrong, the tutor could have applied 
the same concrete articulation strategy.  For instance, if at line 241, the student has said "m/s-b" 
instead of "s/m+b" it is plausible that the tutor might have said something like "How would you 
calculate the total trip time, if the time you were on the bikes was 3 hours and the time of the 
break was 1 hour?" 

The domain-specific tutorial strategy that she chose to focus the dialog was the  concrete 
articulation strategy.  The strategy has the three steps of asking the student first to compute an 
instance (see lines 32, 242, 258 and 377), then articulate how that was arrived at (line 51, 57, 65), 
and finally, to generalize using the variables from the problem.  Another example is shown 
below. 
35. TUTOR Um.  So if instead of "d" dollars it cost ten dollars, what would the answer be?  

So if it cost 10 dollars what would the answer be?  Not ten dollars.  Ten dollars 
is bad; what if it cost 9 dollars?  What would the answer be? 

36. STUD Three.  No- it would be six dollars. 
37. TUTOR It would cost six dollars.  Is your expression gonna get that?  Really, what are 

they actually asking for? 
The tutors initially used 10 but then, presumably, realizing that would make the answer result in 
a fraction, switched to 9.  The student first answered 3, (which is the amount of the discount), but 
then switched his response to the correct answer of six, (which is the total cost of a jacket).  In 
this case the tutor did not immediately ask for the articulation of where the six came from, and 
instead asked if the student’s symbolization of "(d-33%)*4=money spent"  (line 34) would yield 
the computed value ("Is your expression gonna get that?").  This is presumably because the 
question asked for the price of one jacket, not of all four.  The student realized that the question 
is asking, "How much each jacket costs" (line 3), and so got rid of the "4" at line 42.  The tutor 
asked the articulation question at line 43 ("How would you get 6 using your expression?")  The 
student wrote "9-33%=6" and said that the "33% is three" (line 44).  So the tutor asked "how did 
you get that three? (line 45)".  This is an example of an embedded sub-dialog within a dialog 
because one the student answers this question, the tutor would have likely ask again about where 
the 6 came (i.e.  "Good.  Now, lets return to the question I was asking you before, where did you 
get the 6.  Use what you just told me about the where you got that three as part of your answer.")  
However, it turns out that student had great difficulty figuring out how to articulate that the total 
amount of the discount could be articulated as "9*1/3".  Eventually the tutor pointed out that "9-
1/3" is "8 and two thirds" (line 90).  This was an interesting feedback type.  Since the student 
already knew that his expression should yield the answer "6" this told him more than the fact that 
his answer was wrong.  Yet, it did not tell him exactly what was wrong with it.  This feedback 
seemed useful since the student realized that he needed to express the fact that "1/3" is of the 
whole number (line 93).  Later, at line 96, the student realized that multiplication was needed.  
This problem solving continued for a long time, thereafter.  In fact, the student ended up moving 
towards articulating it as "d*(2/3)=1/3d+d*1/3" (line 127).  It did not surprise us that this was 
such a hard problem as indicated by it being the longest to tutor.  The difficulty factors 
assessments (see Chapter 1) had this exact problem on it, so I knew that students found this to be 
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a hard problem19.  Many students wrongly thought the answer was "d-1/3".  The language of the 
problem used the phrases "1/3 of the usual prices."  I know from personal teaching experience 
that my students had a hard time figuring out that there is a multiplication operator needed on 
this sort of problem.   

In preparation for the coming sections, I view what we have seen in this example 
through the perspective of translating between different representations.  I think of the task of 
symbolization as a task of translating from a verbal representation (the "word-problem") to an 
algebraic representation.  

 

 
I view the concrete articulation scaffolding as inserting an intermediate representation that I will 
label as the "concrete" representation.  It might be easier for students to think through these 
problems at the concrete level that does not have any variables.  Indeed my data from the 
previous chapter suggests that the compute step is easy for student, so it make sense to first ask 
them to compute and then follow that up with the articulation step.  This is also supported by 
Gluck (1999). 

 

The "Explain in English First" and the "Translate Mathematics into 
English" Questions 
Lets look at another example that shows two different sorts of questions the tutor would ask.  In 
the long example given below the tutor asked the student at line 196 " How do you think you 
calculate the average speed?"  Presumably the tutor would have liked the student to say 
something like "Average speed is equal to the total distance traveled divided by the total time 
elapsed."  This sort of question, which I call a "Explain in English First" question, is one in 
which the tutor asked the student to work with his verbal representation of the problem.  
 

 
 At line 197, the student responded with an explanation of a procedure, "It would be ’h’ hours 
divided by 550 miles an hour."  This answer had several errors.  First, the units on 550 are 
"miles" not "miles per hour."  Secondly, the order of the arguments was reversed.  Thirdly, it was 
not a general explanation of how to calculate average speed.  The tutor dealt with the order of 
arguments error quickly by asking, "So which way do you divide?"  The student fixes the error 

                                                 
19 This cover-story was the hardest cover-story, presumably because "one third off" is a very difficult wording for 
students to symbolize.  

Verbal Algebraic 
Symbolize 

Verbal Concrete Algebraic Compute Generalize 

Articulate 

Verbal 

Explain in English 
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and the tutor seemed to ask the student to try the whole problem again.  The tutor seemed to 
suggest that maybe he is missing something, but was not specific about what was missing (i.e. 
the minus 2 hours portion).  That failed and the tutor came back to the question of how you 
calculate average speed.  Before continuing, I want to point out an observation that I will use in 
the next chapter.  This example shows that when multiple errors occur simultaneously, the tutor 
deals with each error separately and does not try to deal with them all in a single turn. 

The tutor tried to prompt for generality, in the form shown at line 202 when she asked 
the student a slightly different question but with no numbers, thereby suggesting that the student 
describe in English how to answer the question.  The student ignored this attempt so the tutor 
asked the student to translate the components into English (line 204, 210).  Line 204 was "That’s 
how you calculate average speed but what exactly is it?  550 represents what?"  I refer to these 
types (e.g. lines 24, 26, 204, 210, 212, 219, 221, 223, 225, 264) of questions as "Translate from 
Mathematics to English" questions.   

 

 
 

Eventually the student was coached to drop the specific quantities and say something more 
general at line 216.  Even though the student’s answer was not fully general, (using units (e.g. 
"hours") instead of the more descriptive and abstract phrases (e.g. "Total time")) the tutor 
restated it in its entirety at line 218. 

Verbal Algebraic 
Translate to English 
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190. STUD [reads problem]Bob left at 3 

P.M. and drove 550 miles from 
Boston to Pittsburgh to visit his 
grandmother.  Normally this trip 
takes him "h" hours, but on Tuesday 
there was little traffic and he saved 2 
hours.  What was his average driving 
speed? 

 
 

191. STUD ::::Well ::: Ah :::: so he saved 
two hours :::ahum::::::::: 

Student spends a long 
time and seems to indicate 
that he knows he needs to 
incorporate the 2 hours 
saved but does not know 
how. 

192. TUTOR Do you know how to calculate 
average driving speed? 

Tutor begins working on 
explaining how to 
calculate average speed. 

193. STUD I think, but I forget  
194. TUTOR Well average speed,  as your 

mom drove you here did she drive 
the same speed the whole time. 

Note: Interesting use of 
personalization to adapt to 
student 

195. STUD No  
196. TUTOR But she did have an average 

speed.  How do you think you 
calculate the average speed? 

 

 

197. STUD   It would be h hours divided by 
550 miles an hour. 

Student says in English a 
procedure that is not fully 
general, has arguments 
ordering wrong and has 
wrong units for 550.. 

198. TUTOR So which way is it?  It’s miles 
PER hour.  So which way do you 
divide? 

The tutor responds to the 
argument ordering error 
with a domain-specific 
response for that error 
"Which was is it?" 
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199. STUD It would be 550 divided by h  
[write 550/h=mph"]  

Student's answer has a 
wrong element (should be 
"h-2" in place of "h") 
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200.TUTOR OK so now, that's how you 
calculate miles per hour.  So now 
how about for this problem?  Read 
the problem again. Because you got 
the right idea.  You know how to 
calculate average speed.  But what 
exactly do you have to do for this trip 

Tutor prompts towards 
incorporating the "-2" 
without mentioning it 
specifically. 
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201. STUD Um. Well he saved two hours, 
but I don’t know how that is 
important 

 

202. TUTOR Well how do you calculate... Not 
for Bob but for your mom, how did 
you calculate what her average speed 
was driving to CMU this morning?  

Presumably, the tutor 
wants to ask "Is ’h’ the 
total hours?" But first has 
to establish that the 
quantity "total hours" is 
relevant so she asks the 
students to state 
something like "Average 
speed is equal to total 
distance divided by total 
time." 

 

203. STUD Ahm, I guess you would   I 
would have done it 550 divided by h 

Student does not give a 
general statement of 
average speed 

204. TUTOR Yeah  [even though the 550 is 
not for his mom?]  That’s how you 
calculate average speed but what 
exactly is it?  550 represents what? 

Asks student to translate 
from the algebraic 
representation to the 
verbal representation 

205. STUD Miles per hour  
206. TUTOR No.  
207. STUD Oh  550 miles  

55
0 
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w
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" 

 

208. TUTOR Right   

209. STUD Divided by h   
210. TUTOR Which represents? Asks student to translate 

from the algebraic 
representation to the 
verbal representation 

211. STUD Miles per hour  
212. TUTOR No what does h represent?  H

 r
ep
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s 

w
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t?
 

213. STUD Hours  
214. TUTOR Hours! So what are you getting? 

What are you dividing by what? 
 

215. STUD Oh miles divided by hours. Students gets closer to a 
generalization  

216. TUTOR Right  TOTAL miles divided by Tutor asks the student to 
fill in the blank and 
emphasize the "total" in 
miles so the student might 
see the importance of the 
"total" in "total time". 

 

 

217. STUD Total hours  
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218. TUTOR So let’s calculate it for this guy,  
That’s exactly the concept, TOTAL 
(emphasized when spoken] miles 
divided by TOTAL hours [writes 
"550/h"] 

Tutor restates the English 
explanation for the 
generalization.  Now that  
has been accomplished, 
the tutor moves to trying 
to help the student debug 
his answer. 

219. TUTOR Is that ["550/h"]what it is? Tutor knows it is wrong.  

220. STUD Yeah  
221. TUTOR Is 550 the total miles?   This is a neat combination 

of moves by the tutor to 
focus on the portion that is 
correct. F

ir
st

 

222. STUD Yes  
223. TUTOR Is h his total hours?  
224. STUD Yes  
225. TUTOR Is it??  A
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226. STUD Oh no  h-2  
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227. TUTOR OK- right this again and write it 
correctly so that order of operations 
and stuff works 

 

 228. STUD [Writes "550/(h-2)"] Solves Problem 
229. TUTOR Exactly, so where did the 2 go 

in? 
Asks about the error the 
student had made 

230. STUD The two hours he saved on 
traffic 

 

231. TUTOR To calculate the total hours, so 
good. 

 

232. TUTOR How we doing, we got lots of 
time.  All right thinking harder. 
These are pretty good. Let’s try 
number nine.  Okay 

Motivational remarks 

233. STUD Okay  Po
st
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234. TUTOR [Laughs and mentions hard 
work] 

 

 
 
What qualified as an explanation for a quantitative relation, such as "Average Speed?"  In the 
following table I detail how the tutor gradually built up to what she considered an adequate 
explanation.  The student started with less articulate answers, such as describing a procedure.  
Aleven and Koedinger (2000a) have noticed similar results.  They call it "procedural replay" 
when the student is asked to explain why something is true but the student only tells them what 
he did to get the answer.  Therefore, I conclude that what good tutors do is help the student build 
up an adequate explanation.  
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Dimensions and fully 
qualified phrases  

"total distance divided by total time." (never) 

Units and fully qualified 
phrases 

"total miles divided by total hours. (line 218) 

Just units "miles divided by hours" (line 205) 
Procedure with units  "’h’ hours divided by 550 miles per hour" (line 197) 
Procedure for an instance "550 divided by h"  (line 199) 
Algebraic symbolization  "550/h"  (line 199) 

 
This excerpt also reveals some other interesting aspects of tutoring.  From line 219-225, 

the tutor used an interesting  (some might call Socratic) technique, which can be viewed as being 
part of a more global plan.  The tutor knew that the student had written a wrong answer.  
Specifically, the tutor made what I called a "super" error type; the student’s answer was largely 
correct expect for the fact that a sub-expression (i.e. "h-2") was simplified into one of its 
components (i.e. just "h").  The tutor established that the student knew that "Average speed is 
equal to total miles divided by total hours."  Therefore, the tutor asks if the students and was 
correct, but the student doesn’t notice the contradiction, so the tutor asks about each sub-quantity, 
and again the student didn’t notice the mistake until the tutor said  "Is it?"  (line 225).    

The reader might have imagined that the tutor would first just ask a question that focused 
on the total hours (i.e. "Is "h" the total hours?") which was eventually what happened at line 223.  
Instead, the tutor first got the student to explain the top-level goal structure.  Maybe this is 
because the tutor wanted the student to realize that the "total" hours is what is needed and that 
the tutor wanted the student to realize that the "total" is the key idea to getting a correct solution.  
I could model this behavior with the following rule.  If a student makes an error of type super, 
we first ask the student to explain how to achieve the top-level goal in English, and then follow 
that up by asking if each part (like 221,223) of the students answer meets the criterion that the 
student had previously explained.  

 This suggest a slightly different sort of dynamic scaffolding strategy when the student 
has made a certain type of domain specific reasoning since the scaffold depends upon this sort of 
error arising.  On the other hand, it might have been better if the tutor had simply asked, "Is ’h’ 
the total hours?" at line 200.   

An important point to make is that it is easier to see what the tutor said, then why she said 
it.  A case in point occurs after line 197, discussed above.  There were any errors with this 
answer and there were also many things the tutor could have done (i.e. use the concrete 
articulation strategy as we saw in line 240-248 on a similar case where the student reversed the 
order of arguments on a division problem).  But instead the tutor opted to ask "So which way is 
it?"(line 198). A natural question, is how are these two situation different?  McArthur et al. 
pointed out that tutors "are capable of taking a variety of different events and conditions into 
account when selecting from their diverse array of techniques.  … The antecedent conditions of 
[their] 'if-then' rules are often nontrivial."  It could be that because the student made more then 
one error (as in this case line 197) the tutor thought it was helpful to quickly eliminate some of 
the errors, and thus chose the simpler pedagogical move.  Alternatively, it could have been that 
the tutor used the concrete articulation strategy on the later problem because it was the second 
time this sort of error appeared.  On the other hand, it could have been that the tutor was 
purposely choosing to vary the tutorial strategy picked for variety sake.  Then again, maybe the 
decision was random?  Because of this ambiguity, my model will have an easier time modeling 
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the actions of the tutor, but less accuracy in modeling the conditions that determine which 
actions to take. 

Another interesting example of the use of the "Explain in English" strategy occurs on a 
later problem that also involves calculating speed.  The student has written "(10+A)*600" (line 
305) when it should have been "600/(10+A)".  The tutor again asked the student to define 
average speed (line 306, 308) and then at 310 give the hint "It has to do with total.  The word 
total has to there."  The tutor then referred the student back to the previous problem, which 
appeared to be quite successful.  Yet another example of the "Explain in English" strategy 
appeared on line 384 when the tutor asked the student "How is rate defined?" 

The "Introduce a Variable" Strategy  
Another common occurrence (4 times on 44% of the applicable problems) was for the student to 
introduce a variable to stand for a quantity.  Variables were introduced at lines 158, 174, 178, 
300,and 335.  In all of these cases, the tutor did not prompt this but the tutor did work with the 
student’s introduced variable.  
 The first time a variable was introduced was on a problem where the student was 
supposed to say "(72-32)/s".  The student was told that he was not supposed to do any arithmetic 
and instead articulate out the mathematics that he would do.  Nevertheless, the student writes 
"72-32=40".  The student then made a classic "production" error by continuing to add onto the 
expression until it stated "72-32=40/s".  Of course, it was easy for the tutor to see what was 
meant, but this was a miss use of the equal sign because 72-32 does not equal 40/s.  In 
elementary school, this sort of notation never caused any trouble, because it was understood that 
the "equals" symbol simply meant "results in" (Sfard and Linchevski, 1993).  However, with 
algebra the equals sign has a great deal more meaning.  The student made this sort of error on 
line 158 and 160.  Interestingly, at line 158 the student introduced the variable "a" to stand for 
the "40".  The tutor said " Right, instead of 'a', let’s just use this.  Pretend".  This is speculation, 
but I presume the tutor thought:  

"Okay, if he wants to use 'a' for that quantity, that is fine.  Lets get him 
to say that the amount he can spend on each sister is 'a/s' and then 
afterward I can tutor him on substituting back in the expression of 'a' 
with '72-32'"  

 
Interestingly, the student appeared to get more adept at the introduction and use of a variable and 
did so three more time.  I now look at those instances. 
 The next opportunity where the student used an introduced variable was on line 174; the 
student introduced 'a' to stand for '972/5'.  Next, the student did the separate subgoal of b/5.  
Then the student mistakenly set them equals.  After much thought he eventually expressed the 
third step with 'a+c' where it is reasonable to assume that he was thinking that 'c' would stand for 
'b/5.'  The student lacked confidence ("I don't understand this one part") presumably with the 
addition operation.  

The next two examples show the student successfully introducing a variable to stand for 
subexpressions.  In both cases the student followed by using them to express the problem's goal.  
Once, that was done the tutor prompted for the student to do the substitution step.  The student 
seemed to be getting more proficient at doing this.   

At line 300, the student introduced the variable "a" to stand for a "300/20" which 
represented "the time it takes to get to Grandmother's house when going 20 miles an hour".  He 
then went on to use "a" to express the final goal at line 319, at which point the tutor prompted 
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him for the substitution step.  Interestingly, this problem also shows another parallel use of place 
holding: using a concrete instance to hold a place.  In this same problem, the student used 10 to 
stand for "the time it takes going 30 miles an hour."  The introduced variable and the "10" served 
the same roles.  They both allowed the student to forget about the internal workings of that 
subgoal and concentrate on how that particular part was used in the rest of the problem.  This 
might be one reason why the concrete articulation strategy, discuss above, is successful.  
Reducing the working memory load seems like a useful tactic.  Another reason it might help to 
introduce a variable or to compute a concrete instance, is that it encourages coming up with a 
name for that portion of the problem, and doing so might strengthen the mental picture that 
allows the student to see the hierarchical nature of a problem.  This might be an important 
cognitive step in building up the quantitative structure in ones head.    

At line 303, the student continued to use "A" while struggling to figure out which 
operator to use to calculate average speed.  Using the introduce variable made it easier for the 
tutor to ignore the low level details and conduct this "sub-dialog"(lines 303-318) on what was the 
correct mathematics operation to use (I use the term sub-dialog to refer to a point where the tutor 
seemed to have a productive digression.  Usually it involved the tutor focusing on a subgoal that 
needed to be solved.  In this case, it was focusing on the mathematics operator needed.  Once 
that was cleared up, the tutor could get back to the bigger picture.  I think that a hierarchical view 
of this dialog is a good first approximation to what humans do.  This will get more attention in 
the coming chapters.) 
 So far, we have seen three problems with introduced variables.  In the first example, we 
saw a variable was used to represent a concrete instance that had already been computed.  The 
next two examples had introduced variable that stood for a one-operator quantity that had not 
been computed.  Now, we look at a fourth instance and this time the variable was used to stand 
for an expression, which was, itself, hierarchical (i.e. had two operators).  This might indicate the 
student was getting more comfortable with this technique of problem simplification.  Consider 
the strategy that is used between lines 327 to 351.  The student initially expressed confusion 
about a particular quantity (line 327, "What’s her commission?").  The tutor let him know that 
this is a subgoal ("That’s a good question?").  (Notice how the tutor was encouraging the student 
to work on this problem in a bottom-up fashion, a point I will come back to.)  So the student 
proceeded to calculate the commission and then introduced a new variable, "c", to stand for the 
calculated commission (line 333 "c=(200-x)/4)").  The tutor confirms that that was correct (line 
334).  Then the student used that variable to express the goal of the problem  (line 336 
"200+c*4") but made a small error by saying "4" instead of "h".  The tutor prompts with "This 
month?" which causes a small sub-dialog focused on the subgoal of determining what represents 
the number of cars sold this month.  After that short sub-dialog was the prompt for doing the 
substitution (line 345 and 347).  
 I must digress for a moment to reinforce a running theme.  The tutor’s utterance of "This 
month?" is an excellent example of what I have been talking about.  The tutor diagnoses the 
problem (i.e. used ""4" instead of "h") but did not tell him that explicitly (i.e. did not tell him  
"Use ’h’ instead of ’4’").  Instead, the tutor gave a short prompt on that particular subgoal.  This 
let the student focus on one particular aspect of the problem, while not telling the student what to 
do to fix the problem.  This tutor engaged in these important steps: 1) diagnosis to determine 
what goal was not achieved, and 2) scaffold the problem by 3) asking a question related to that 
goal by asking a targeted question directing attention towards a subgoal. 
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A general observation to make of these examples is that knowing how to do the 
substitution step is not always easy.  The student certainly seems to have the hang of it by the 
end, but this is a hard skill to get good at.  This is the skill my transfer study taught students.  I 
encountered an interesting example a student who introduced variables correctly but then did not 
know how to put them together.  I collected this example while I was tutoring a student over a 
teletype in real time.  It is reproduced verbatim in the Appendix E.  The student was supposed to 
answer 5g+7(30-g).  Instead, the student said 

 "30 - b = n     n * 7 = m     b * 5 = o     m + o = y" 
The point is that the student initially knew how to express a complicated four-operator problem 
as four decomposed problems, which amazed me.  I thought it would be easy to proceeded from 
there.  However, I was wrong.  Only with much prompting, lasting over 20 minutes was I able to 
get the student to correctly compose them all together.  This demonstrates that there is a lot of 
difficulty hidden inside of what I have called "production" skills. 

The Reflective Follow-up Questions and Generalization  
Our tutor also encouraged the student to sometimes generalize and reflect at the end of a 
problem.  In line 246 when the tutor restates the student correct answer but does so in general 
terms is an example of this.  We have already seen an example above where the tutor got the 
student to learn the general procedure for calculating elapsed time, by coaching the student to 
generalize from a single calculation of a particular elapsed time.  Another example of 
generalizations was on line 401 when the tutor confirmed an answer and stated it in general 
terms.  Another example of post-problem reflection occurred on line 229 when the student gave a 
correct answer but the tutor encouraged him to reflect on it by challenging his answer.  A very 
similar situation occurred on lines 252-268 when the tutor got the student to write the correct 
answer but spent a long time afterwards making sure the student understood why.  

Where do these Strategies come from?  
An important question is "Where do these scripts come from?"  They could come from general 
tutorial strategies such as those outlined by VanMarcke and Vedelaar (1995) (see also 
VanMarcke, 1998).  Alternatively, they could come from an analysis of the domain.  I 
hypothesize that a good tutor is not just one who is an expert in the domain and also knows some 
general tutorial strategies.  I think that a good tutor probably needs extensive experience tutoring 
that particular domain to come up with what Shulman (1986) calls "pedagogical content 
knowledge."  This sort of knowledge includes good questions to ask, as well as an understanding 
of common errors students make. 

Who has the Initiative? 
 Is it the student or the tutor that takes most of the initiative?  This is of particular interest 
because I desire to build a system capable of having a dialog with students; I must understand 
what student behavior are likely.  If a primary characteristic of tutoring in my domain is that 
students need to ask many questions of the tutor, then I need to build a system that can respond.  
However, if my observations of tutoring in this domain reveal that the tutor has the initiative 
most of the time, then I need to build a system that is able to simulate that behavior.   

Most work in tutoring has generally found that the tutor is taking the initiative most of the 
time.  Research shows that tutors typically set most of the agenda, introduce 95% of the new 
topics and ask 80% of the questions (Graesser and Person, 1999).  Our tutoring protocol was also 
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mostly tutor-initiated.  Most things our tutor said were questions, which is consistent with Lepper 
et al. ’s (1990) finding that 80-90% of tutors’ remarks were questions.  For instance, lines 20-35 
show our tutor just asking a series of questions of the student.  Not only did our tutor ask a great 
deal of questions, but the student did not ask many questions and the few he asked were shallow 
and arguably not what I think of as initiatives.  For instance, if we look at just the first 100 lines 
there were only three instances of the student asking the tutor a question.  The first on line 18 
was asking a clarification about the problem statement.  The second and third instances (line 85 
"This way?" and line 98 "I think.  Would it be that way?")  were both examples where the 
student was simply asking the tutor for feedback and expressing doubt.    

Although it might be nice if students were more active in their own learning, my goal was 
to build a system that could respond to students the way they usually behave, which is, 
unfortunately, quite passive.  I felt that I would get the biggest returns from my investment by 
largely ignoring the problem of student initiative.  I feel that a reasonable first step was to build a 
tutor-initiated system. 

Motivation 
 Next, I consider if Lepper et al.’s (1997) claim that tutors pay attention to motivational 
goals was supported by the evidence.  An inspection of the transcript reveals that very few 
comments seem to relate to motivation.  The few comments seem to be at the beginning or end 
of a problem like when our tutor said (line 11) that she was looking for a harder problem since 
the student got the first three problems correct.  Also at line 403 our tutor said "I can see you are 
getting tired. This is our last problem."  Nevertheless, in general, our tutor did not do much in the 
way of explicit motivational remarks.  Even when the student dropped his pencil (in 
exasperation?) and holds his head (line 116), our tutor makes no "motivational" remarks.  
Nevertheless, our tutor indicated after the session that motivational concerns were important, so 
possibly her implicit theory was that the student’s awareness of his own learning was what will 
lead to motivational gains.  Lepper et al. also reported that when instructional goals come in 
conflict with goals to increase student motivation, the goals related to motivation take 
precedence.  This protocol showed little evidence of explicit concern for the motivation state of 
the student.  However, the fact that the tutor so rarely gave explicitly negative feedback and 
instead relied on implicit negative feedback might be because the tutor was concerned about the 
student's motivation.  

Categorization of Tutorial Utterances: The List of Operators from the 
Thesis Proposal 
I chose to model the tutorial utterances at a high level.  Appendix D shows the categorization I 
had of the tutor's utterance.  I refer to these categories as the tutorial “operators” as they represent 
the major choices that the tutor had to choose between when deciding how to assist a student.  In 
Appendix D I give each operator a name and number (in no particular order) of the form Opx, a 
brief description, and point out some real examples and cite them by line number as they appear 
in Appendix C.  In Appendix D, for illustrative purposes, I offer an invented canonical example 
using the same sample problems.  These categories for tutorial utterances were viewed as design 
goals for the system I built.  In Chapter 4 I will come back to these design goals and see which 
one were met.  In the next section, I will discuss my generalizations 
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Chapter Conclusion 
 I hypothesize two types of tutorial interaction will be particularly effective and correlated 
with learning.  These two hypotheses all fall under the single hypothesis that good tutors “ask 
more and tell less” (the phase “ask more and tell less” is from the CIRCLE Center's grant 
proposal by VanLehn et al., 1998b).  Specifically, I need dynamic scaffolding and tutorial 
strategies. 

By "dynamic scaffolding", I refer to three steps.  The first is to diagnosis that last 
students answer.  Secondly, try to give useful feedback.  Thirdly, for the portions of the answer 
that are wrong, focus the dialog on those portions using what I call tutorial strategies.  Just using 
dynamic scaffolding would mean that you would simply ask for any subgoal that the student got 
wrong (For instance, our tutor could have asked "Write an expression for the time actually on 
bikes?" at line 242, rather then use the concrete articulation strategy.  This would meet my 
criterion of dynamically scaffolding the portions the student got wrong.)  However, there is more 
to tutoring then just dynamic scaffolding; good tutoring includes pedagogical content knowledge 
including multiple-step tutorial strategies. 

One strategy is the "Concrete Articulation" strategy that is composed of three steps.  
There is also the "Explain in English" strategy that asks the student to first explain a quantitative 
relation and then follow that up by writing the algebra expression for the that goal.  Another 
strategy is the "Translate the Mathematics to English" strategy.  A final strategy "Introduce 
Variable" was that a variable could be introduced to scaffold the writing of an expression into 
two steps: first write an expression using the variable, and then to substitution in what the 
variable was standing for.  I refer to these as my four general strategies. 

Four General Tutorial 
Strategies or Knowledge 

Construction Dialogs 
Concrete Articulation 

Explain in English 
Translate Mathematics into 

English 
Introduce a Variable 

One thing the four strategies have in common is that they are general, in the sense that they can 
be used to respond to any type of error.  On the other hand, a KRD is specific to a particular class 
of errors (e.g., a parenthesis error).  

Error Type What the Tutor Said Line 
"Super" Error like 
550/h instead of 

550/(h-2) 

"Explain in English" "how do you calculate average 
speed?" 

200 

Wrong Operator "Explain in English" "What is the definition of average 
speed?" 

306 

Super Error like d-
33% instead of d-

1/3*d 

Concrete Articulation 35 

Arg. Order for 
Division 

Concrete Articulation 242 
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Therefore, I refer those four strategies as "general" strategies, for the tutor can use any of them in 
response to any type of error.  To emphasize that these strategies can help in a variety of 
different circumstances, I will follow VanLehn et al. (1998b) and call my specific models of 
these strategies Knowledge Construction Dialogs (KCDs).  The next chapter will show 
specifically how I modeled these strategies as KCDs. 

As opposed to general strategies, sometimes our tutor responded in a way that is very 
specifically connected to the type of error committed.  The following table shows 4 different 
examples, each of which you can almost tell what type error was made just from what the tutor 
said.  This was not you case in your general strategies.  These responses are "tactical" in that the 
tutor only used them in response to certain specific situations.  To distinguish these different 
types of strategies from the 4 KCDs, I will call these responses Knowledge Remediation Dialogs 
(KCDs).  This name highlights that the tutor is responding with a specific remediation strategy to 
a specific error type.  

 
Error Type What the Tutor Said Line 

Arg. Order for 
Division 

"So which way is it?" 198 

Arg. Order for 
subtraction 

"So which is larger?" 252,374 

Parentheses 
error 

"What is being divided by ’s’? Because order of 
operation says you divide before you subtract." 

161 

Parenthesis 
error 

"You are just multiplying "A" times 600 but I 
suspect you want to do the whole thing?" 

306 

I suggest one heuristic to use in a model of tutoring: the tutor should select KRDs in favor of 
KCD, because the first has a more specific fit to the student’s problem.  In the next chapter, I will 
show how I have turned these observations of our tutor into a system that models some of the 
aspects I have highlighted in this chapter.  It should be said that our model is a simplification of 
the experienced tutor’s behavior.  The two key components I use are dynamic scaffolding and 
tutorial strategies (including both KCDs and KRDs).  I will also use the heuristic to favor KRDs 
over KCDs.  Given that I do not know which KCDs are most appropriate (or effective) for a 
given situation, our model will pick arbitrarily from the 4 KCDs I have modeled. 
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Chapter 3: The Architecture of Ms. Lindquist 
Chapter Overview 
This chapter will examine the general architecture we have designed that is an enhancement to 
model-tracing tutors.  We will illustrate this architecture with specific reference to "Ms. 
Lindquist", a system we have built inside of this architectural framework.  This chapter will 
focus on the architecture (i.e., domain independent aspect), while the next chapter will discuss 
more details about Ms. Lindquist and her behavior (i.e., specific to the symbolization domain).  
This chapter is divided into two sections: the student model and tutorial model.   

The Need for Change 
McArthur et al. (1990) criticized Anderson’s et al. (1985) model-tracing ITS and model-tracing 
in general "because each incorrect rule is paired with a particular tutorial action (typically a 
stored message), every student who takes a given step gets the same message, regardless of how 
many times the same error has been made or how many other errors have been made. … 
Anderson’s tutor is tactical, driven by local student errors (p. 200)."  They go on to argue for the 
need for a more strategic tutor.   Ohlsson (1986) agreed and said that in model-tracing ITS "there 
is no adaptation to the current cognitive state of the learner other than the classification of his last 
step as an instance of a particular type of error.”  The system described in this chapter address 
these criticisms and we will come back to them at the end of this chapter. 

Architecture Overview 
Ms. Lindquist is a coached practice system that has a curriculum broken into sections of similar 
difficulty problems as shown below. 

Section 
Description 

Example Problem 

1) One-Operator 
Problems. 

The carnival committee is dividing up the whole field for carnival booths. If there 
are "x" booths and the area of the field is 400 square yards, write an expression for 
the area each booth gets. 

2) One-Operator  
involving distance, 
rate and time. 

Rose Mary needed to drive to Houston, Texas that was "x" miles away.  If she 
planned on driving 55 miles per hour, how long is the ride going to take her? 

3) Two-Operator 
linear forms. 

Anne is rowing a boat in a lake and is 800 yards from the dock from which she 
started.  She rows back towards the dock at 40 yards per minute for "m" minutes 
and stops to rest.  How far is she from the dock now? 

4) Two-Operator with 
some involving 
division and 
parenthesis. 

You go on a bike ride.  You ride at a speed of "s" miles per hour.  You bike "m" 
miles.  You take a "h" hour break.  Write an expression for how long the trip took. 

5) Three and Four 
Operator Problems 

Debbie has two jobs over the summer.  At one job, she bags groceries at Giant 
Eagle and gets paid 5 dollars an hour.  At the other job she delivers newspapers 
and gets paid 7 dollars an hour.  She works a total of 30 Hours a week.  She works 
"g" hours bagging groceries.  Write an expression for the total amount she earns a 
week. 

 
A student is presented with a problem that they are asked to symbolize as an algebra expression 
for a given quantity expressed as an English phrase (i.e., "Write an expression for the distance 
Ann rowed.").  If a student gets the problem correct, the system checks to see if the student has 
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reached the mastery criterion for that section.  We have used a simple mastery criterion of 
getting some fixed number of problems correct (on their first attempt) in a row.  Depending upon 
the section, the number of problems the student needs to get correct is 3, 4 or 5.  If the student 
does not get the problem correct Ms. Lindquist engages them in a dialog that is designed to try to 
help them learn the skills needed to be successful.  Once that dialog is complete, the students are 
given a new problem.  If they have done every problem in a section but have not reached 
mastery, then this is noted by the system and the student is pushed onto the next section.  Next, 
we will explore the student model. 

Separation of Student Model from Tutorial Model 
In the previous chapter, I argued that the first thing the tutor needs to be able to do is to diagnose 
a student’s utterance.  This is handled by the student model.  Then the tutorial model is used to 
decide what you do next (ask a new question, give a hint, confirm an answer, etc.).  Once the 
tutorial model has responded, the student’s response is solicited.  Figure 1 shows this 
schematically.  We will discuss each element below starting with the student model. 
 

The Architecture of the Student Model 
Anderson & Pelletier (1991) defined the model-tracing approach to building intelligent tutoring 
systems.  The new architecture presented in this dissertation does not modify the way a student 
model20 (i.e. the cognitive model) is implemented.  We use the same production system as 

                                                 
20 I use the term student model to refer to what is sometimes called either a cognitive, domain or expert model.  
Some others use the term student model to refer to just the set of probabilities representing the systems belief that a 
student knows a particular skill, (this is sometimes called the overlay model).  I use them term student model to 
differentiate it from the tutorial model.  The tutorial model is concerned with modeling the behavior of the human 
tutor (i.e., what to say to the student) while the student model is concerned with modeling student thinking, which 
includes both the cognitive model as well as the overlay model. However, it should be noted that this thesis is not 

ITS Tutorial Model 

Student 
Model 

Tutorial 
Reasoning 

Tutorial 
Strategies 

Diagnosis 

Agenda 

 Tutor  
 Response 

 Student  
 Input 

Figure 1: The student model and the tutorial model are separate. 
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Anderson & Pelletier, called Tertl.  It is a simplification of the ACT (Anderson, 1993) theory of 
cognition.  The Tertl production system is written in lisp.  A production system is a group of if-
then rules operating on a set of what are called working memory elements (wmes).  We use these 
rules to model the cognitive steps a student could use to solve a problem.  Our student model has 
68 production rules21.  We will now move onto how the working memory elements are initially 
configured for each problem. 

Simple Problem Encoding Representing Initial Working Memory 
In Chapter 1, we showed that the main difficulty students face is not comprehension of the word 
problem.  Therefore, we are not modeling the comprehension process.  Instead, we assume that a 
quantitative network is in place as a result of comprehension.  We will now describe how that 
quantitative network is represented.  To tutor on a new problem, the system author has to encode 
the relevant information.  Consider the following problem.   

Anne is rowing a boat in a lake and is 800 yards from the dock from which she 
started.  She rows back towards the dock at 40 yards per minute for "m" minutes 
and stops to rest.  How far is she from the dock now? 

Note that our system does not parse this text.  Instead, the problem author must encode the 
essential information.  The author must specify an English phrase for each quantity (e.g., "the 
distance rowed so far"), the units of that quantity (e.g.,  "yards")", the dimension of that quantity 
(e.g., "distance"), and the algebraic expression for that quantity (e.g., "40*m").  Additionally, for 
each quantity that is a variable, the author must specify a good concrete instance to use in the 
place of that variable.  This number (e.g., "3" for "m") is used for the concrete articulation 
strategy (see previous chapter).  For the above problem, here is the information that is encoded in 
a problem file. 
Verbal Phrase Dimension Units Symbolizati

on 
Concrete 
Instance 

The distance Anne has left to row Distance Yards 800-40m  
The distance rowed so far Distance Yards 40*m  
Her speed rowing Speed Yards per 

minute 
40  

The number of minutes rowing Time Minutes m 3 
The distance she started from the 
dock 

Distance Yards 800  

Table 1: An example of the information needed to encode a problem. 

Each row in the table represents a quantity in the problem.  The problem author needs to encode 
a verbal phrase, dimension, units and symbolization.  We see that the quantity represented by 
"The number of minutes rowing" has two symbolizations (i.e., "m" and "40").  The first is the 
variable presented in the problem statement.  The second is a good number to use as a concrete 
instance as part of the concrete articulation strategy.  A good concrete instance is usually a small 
number, but it must also be reasonable.  For instance, "3" is not a reasonable number for the 

                                                                                                                                                             
concerned with the overlay model.  In fact, we have not even turned on this feature in the system we have built.  
Nevertheless, this architecture allows for the tutorial model to use the information from an overlay model (e.g., 
decide which tutorial strategy to use based upon the system’s belief they know something.)  
21 A production rule can make calls our to lisp functions, so the complexity of a system is not well judged by a count 
of the number of rules.  
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speed of a jet in miles per hour since jets fly much faster.  A good instance is a number that 
makes the rest of the mathematics easy, which includes avoiding fractions in the answer.  
Finally, a good instance is one that will not be result in confusion of any of the other quantities.  
We try to have each quantity represented by a unique concrete value.  For instance, we would not 
use "20" for "m" as both "the distance rowed so far" and "the distance Ann has left to row" 
would have the same value of 800. 
 The units and dimension information listed in the above table are not used in the student 
model.  This information is used only in the tutorial model so that the tutor speaks coherently 
(e.g., refers for "7 miles per hour" instead of simply "7").   

All of this information is encoded into working memory elements as shown by the 
following graphic in what I refer to as a quantitative network (see Tabachneck, Koedinger and 
Nathan, 1995, and Hall, Kibler, Wenger and Truzaw, 1989). 

OPERATOR: Minus

TEXT: "The distance rowed so
far"
UNITS: yards
VALUE: unknown

TEXT: "The distance she started
from the dock"
UNITS: yards
VALUE: 800

TEXT: "The distance Anne has
left to row"
UNITS: yards
VALUE: goal

OPERATOR: Times

TEXT: "The number of minutes
rowing"
UNITS: minutes
VALUE: m

TEXT: "Her speed rowing"
UNITS: yard per minute
VALUE: 40

Key

Quantity Elements=

Relation Elelemtns=

SLOT-NAME : slot-vlaue

 
Figure 2: A graphical depiction of working memory 

 
 
This quantitative network shows an example involving 5 quantity working memory elements and 
2 relation working memory elements.  Each wme has a type that defines a list slot names (e.g., 
"TEXT", "UNITS", and  "VALUE").  In Figure 2, we see two different types of working 
memory elements (e.g., quantities and relations).  Ms. Lindquist uses this set of working memory 
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elements to be able to understand a student’s attempt at the problem.  For instance, we can see in 
Figure 1, that Ms. Lindquist "knows" that the quantity for the "distance rowed so far" has an 
unknown value and is involved in two relations that could possibly be used to find the value for 
that quantity.  As it turn out, Ms. Lindquist can figure out that the "distance rowed so far" can be 
computed by using the operator "times" and the two quantities whose text are "speed of rowing" 
and the "time rowing."  This knowledge is represented in production rules. 

Production rules 
In the ACT-R Theory of Cognition (Anderson, 1993), a production rule is used to represent a 
cognitive step.  For example, if your problem domain was mutli-step column arithmetic your 
cognitive model to solve such a problems could include productions that 1) choose a column to 
work on, 2) process a column, and 3) write out answers depending upon whether a carry is 
needed or not.  Production rules are written in the TERT1 production system as IF-THEN rules.  
The productions can have variables so that their can be many different ways a production can 
apply.  More information on productions, including examples of production rules, can be found 
in Anderson (1993). 

Ms. Lindquist Production Rules 
Ms. Lindquist’s has about 70 production rules for representing how students solve symbolization 
and related problems.  These productions can be placed into a few categories: 
1) Productions that do a goal-directed search of the working memory.  These productions operate 
on the quantitative network.   
2) Productions about symbolizing numbers, literals and subexpressions.  Once the model knows 
a relation it wants to use, it needs to pull out of the associated quantities the actual numbers, 
variables or subexpressions (i.e., "40*m").  
3) Productions that determine the operator to use for a subexpression. 
4) Productions that determine the order to express the arguments in. 
5) Productions that put parentheses around an expression. 
6) Productions that compute an answer, or articulate the mathematics used to compute an answer.  
These productions get "chained" together to mimic correct, or incorrect, problem-solving steps.    

An Example of a Production Rule 
We will take as an example how our model knows when to add parentheses around an 
expression22.  This following production rule is used to add parentheses around an expression if 
it is the second argument (e.g., "7*(30-g)").  There is a separate rule for adding parentheses if the 
subexpression is one the right (e.g., "(30-g)*7").  Here is the rule with the variables Q, Q2, Op1, 
Op2, A1,A2,A3 and A4 as variables. 

 

                                                 
22 For efficiency and software engineering purposes our model actually accomplishes the same thing but with a 
series of productions.  However, for purposes of elucidating what a production rule does, we have chosen to abstract 
out the essentials. 
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If goal is to express Q in algebra 
 And Q is found by Q1 Op1 Q2 
 And Q1 is expressed as A1 
 And Q2 is expressed as A2 
 And A2 is found my A3 Op2 A4 
 And Op1 has higher precedence then Op2 
Then 
 Set a goal to write A1 

And write Op1 
And write "(" 
And set goal to write A2 
And write ")" 

 
So if we were solving the following problem, 

Debbie has two jobs over the summer.  At one job, she bags groceries 
at Giant Eagle and is paid 5 dollars an hour.  At the other job, she 
delivers newspapers and is paid 7 dollars an hour.  She works a total of 
30 Hours a week.  She works "g" hours bagging groceries.  Write an 
expression for the total amount she earns a week. 

we could instantiate this rule with the following variables. 
Q ="the pay from the newspaper" 
Q1="the pay rate for delivering papers" 
A1=7 
Op1="*" 
Q2="the hours delivering newspapers" 
A2=30-g 
A3="30" 
Op2= "-" 
A4="g" 

This production would generate "7*(30-g)". 

Model-tracing 
The production system has rules that operate on wmes like these and can be used to understand a 
student’s input using an algorithm called "Model-tracing" (Corbett, Koedinger and Pelletier, 
1995).  Model-tracing is a plan recognition technique.  The model-tracing algorithm is given 
three inputs; 

1. The state of working memory: represented by a group of working memory elements. 
2. A set of productions.  Each production represents a cognitive step, which may, or may 

not, have observable actions. 
3. The student’s input that we wish to "trace". 

The first two inputs are collectively referred to as the student model.  The model-tracing 
algorithm has two outputs. 

• A Boolean value indicating if the student’s input was "traced". 
• If the input was traced, the algorithms output is a set of interpretations.  Each 

interpretation is a list of productions that are chained together.  Each production 
represents a different set of steps that could have resulted in the student’s action. 
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If the model-tracing algorithm finds such a sequence, we can say that the system "traced" or 
understood the student’s input.  For instance, supposed we wanted to trace a student 
symbolization a word-problem that had the answer of "(72-m)/4" it would take 33 productions.  
To trace a correct answer of "5g+7(30-g)" requires 65 productions.  Traces for both of these are 
given in Appendix F.  

If the model-tracing algorithm fails to find a sequence of productions that could have 
generated the student’s response, we say that the student’s response was uninterpretable.  If a 
response is understood that means that, the model-tracing algorithm found a list of productions 
that could generate the student’s response. If the algorithm reports multiple different 
interpretations to a student’s action, one of them is picked arbitrarily, which appears to work fine 
for this domain as I do not know of any responses by students that generate more then one 
reasonable interpretation.  Other research systems have focused work on this problem.  There is 
one additional caveat, which is that the system will favor interpretations that have no buggy 
rules.  The next section will explain what buggy rules are. 

Buggy Rules  
We model the common errors that students make with a set of “buggy” productions.  For 
example, it is a common error for a student to forgot parenthesis.  We showed above an example 
of a rule that knows when to put parentheses in.  Our model also has a buggy rule that leaves 
them out.  The following is an example. 

 
If goal is to express Q in algebra 
 And Q is found by Q1 Op1 Q2 
 And Q1 is expressed as A1 
 And Q2 is expressed as A2 
 And A2 is found my A3 Op2 A4 
 And Op1 has higher precedence then Op2 
Then 
 Set a goal to write A1 

And write Op1 
And set goal to write A2 

 
This rule could be used to model the student that simply ignores operator precedence and 

does not use parentheses.   
From our data, we compiled a list of student errors and analyzed what were the common 

errors.  In Chapter 1, I represented data showing that these error categories could be used to give 
an interpretation for over 75% of the errors that students made.  We illustrate the error categories 
with an example error, in the context of a problem that has a correct answer of “5g+7(30-g)”.  

• Missing parentheses  (e.g.,  “5g+7*30-g”) 
• Wrong operator (e.g., “5g-7(30-g)”) 
• Wrong order of arguments  (e.g., “5g+7(g-30)”) 
• Missing a component  (e.g.,  “5g+7g” or “g+7(30-g)” or “5g+30-g”) 
• Omission: correct for a sub-expression (e.g., “7(30-g)” or “5g”) 

These “buggy” productions are used to allow us to make sense of a student’s input even if she 
has made several incorrect steps.  We do not want a computer system that cannot understand a 
student if he gives an answer that has parts that are completely correct and parts that are wrong.  



 60 

We want the system to be able to understand as much as possible of what a student says and be 
able to give positive feedback even when the overall answer to a question might be incorrect. 
 There are many things that Ms. Lindquist does not "understand" (or "trace").  Examples 
include (again in the context of the tutor asking the student to symbolize a problem whose 
answer is "5g+7(30-g)"): 
• Using numbers not in the problem (e.g., "656") 
• Confusing quantities (e.g., “7g+5(30-g)”) 
• Writing an equation instead of an expression (e.g., "7*(30-g)=210-7g") 
• Writing an English sentence ("I don't understand- help me.") 
Currently, any answer that is not "traced" is considered uninterpretable and the Tutorial Model is 
informed of that and acts accordingly (see below).  Note that some of these errors might be worth 
getting Ms. Lindquist to be able to understand.  For instance, the bug about "Confusing 
quantities" is a likely candidate.  If we decided that this error was common enough for use to 
trace, we could add a "buggy" production to the student model.   
 So far, we have been talking about having the student model "trace" certain errors and 
that can be useful to error localization so that the tutor could focus on what is causing the 
difficulty and not on the stuff that the student's already knows how to do.  For instance, if the 
student says "5g+7(g-30)" instead of "5g+7(30-g)" we would like a system that understands the 
parts that are correct  (e.g., everything but the "30-g") and give positive feedback on the correct 
portions and then focuses only on the incorrect portion.  This brings us to the question of how the 
feedback is generated  

Traditional Model-Tracing Feedback 
There are two ways traditional model-tracing tutors give feedback;  

1. Buggy feedback based on a diagnoses error 
2. Hints toward a correct action.   

First, we look at buggy feedback.  Each rule in the student model that represents a common error 
is marked as a "buggy" rule and contains a template used to generate a feedback message.  
Consider the example of the buggy production we showed above that neglected to add 
parenthesis when needed.  A traditional model-tracing tutor could have the following buggy 
template on the right hand side of the production rule: 

 
Buggy Template: "Around the ’A2’ you should put parentheses." 
 

Remember that A2 is a variable in the production rule that represents an expression. So if the 
student was suppose to say "5g+7*(30-g)" but instead said "5g+7*30-g", this buggy rule would 
generate the following buggy feedback "Around the '30-g' you should put parentheses." 
 The second form of feedback from a model-tracing tutor are hints.  Hints are usually only 
given when requested by the student.  When a student asks for a hint on a given question, the 
tutor runs the production system to generate a correct answer. The result of this is a list 
(sometimes called a "chain") of productions that represents the cognitive step the student should 
take to arrive at the next step.  This chain is used to generate text for the series of hints the tutor 
will offer the student.  Specifically, each production in the chain can have a text template it uses 
to generate its portion of a hint message.  More specifically, the hint messages of each 
production in the chain are concatenated to form each hint. 
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To illustrate this let us suppose our model what just two productions as shown below.  
We show the hint text that is attached to each production. 
 

Production Step1-choose-object 
 Hint text ( "What quantity should you start with?" 

"" 
"Select <object>") 

Production Step2-choose-operation 
 Hint text ( "" 
   "What operation should you do to that quantity?" 
   "and then do the <operation> to it.") 

 
These two productions would generate the following hint chain, and they would be displayed one 
at a time.  Notice how the text is concatenated together to form each hint.  

A Chain of Hints 
" What quantity should you start with?" 

"What operation should you do to that quantity?" 
"Select 2*(4-x) and then do the distribute operation to it.") 

There are several disadvantages to generating feedback, (both hints and buggy feedback) in this 
way.  First and foremost, is that we would rather ask a question than tell the student something 
whenever possible.  We note that two of the hints above are phased as question, and that is 
typical of other model-tracing tutors.  The system asks this question of the student but does not 
allow the student to answer it. We hypothesize, but will not prove in this thesis, that student 
learning will be enhanced by having the computer ask new questions, rather than just tell the 
student information.  We therefore propose that whenever the student is having difficulty, the 
tutor should try to break down the problem and ask the student questions about the goals that the 
student did not accomplish correctly.  .  

Additionally, from a software engineering point of view, generating feedback in this way 
makes it very hard to separate tutoring reasoning from the diagnosis provided by the student 
model.  Moore (1996) has also makes objections to the feedback generated from model tracing 
tutors.  

The Problem of Multiple Errors on the Same Turn 
Intelligent tutors have always had to deal with the problem of what to say in response to a 
student making several errors, all at the same time. For instance, the work of Moore et al. (1993, 
1996), was an attempt to make a system more coherent when trying to communicate multiple 
different ideas. The PROUST and CHIRON systems (Sack & Soloway, 1992) were intelligent 
tutoring systems that detected multiple errors in Pascal programs, but Sack & Soloway 
recognized that the system could be confusing when spitting out what amounted to separate error 
messages.  

Traditional model-tracing tutors have not been able to model-trace an input that involves 
the use of more than one buggy rule.  This means that if the student makes more than one error23 
the system would not understand your answer.  Because I wanted to be able to identify multiple 

                                                 
23 This assumes that each buggy rule is written for a single error.  However, it would be possible to add a different 
buggy rule for each different student input you wanted to have a buggy feedback message for.  This would easily 
result in an exponential explosion in the number of rules you need to write.   
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errors occurring at the same time, I have modified the traditional model-tracing approach.  
Specifically, I first run the model-tracing algorithm but allow no buggy productions.  If that 
succeeds, we know the answer was totally correct.  If that fails, I run the model-tracing algorithm 
again but this time allow one buggy rule to be used.  If that succeeds, we know there is only one 
error.  If that fails, we run the algorithm again but this time allowing two buggy rules.  We can 
continue this pattern until it takes too long to trace the input.  For our system, we use a cut off of 
allowing 3 buggy rules.  We then pass the last interpretation, (or lack of an interpretation) to the 
tutorial model to determine what to say next (which will be subject of the next section).  This 
approach guarantees that we will find an interpretation of the student’s answer using the least 
number of buggy rules possible. 

Keep in mind that if a student has made errors on two subgoals, we need to generate a plan 
that deals with each of the errors separately.  This is what the human tutor did in Chapter 2 (as 
shown after line 197).  These questions and others will be addressed in the upcoming section 
describing the tutorial model. 

The Architecture of the Tutorial Model 
Up to this point, we have described how the student model is used to provide a diagnosis for 
each student utterance.  That diagnosis is fed, as input, into the tutorial model.  The tutorial 
model that we will now describe, was designed to be able to: 
• Carry on a coherent dialog, which entails being able to have sub-dialogs that ask new 

questions rather then simply giving hints. 
• Recognize pieces of a correct answer and give positive feedback on those portions while at 

the same time plan how to tutor the incorrect pieces. 
• Support multiple different multi-step tutorial strategies.  
• Have feedback that is sometimes specific to a type of error if we have a good pedagogical 

response (i.e., KRD), otherwise, use more general strategies (i.e., KCD). 
• Give reflective follow-up questions, particularly after evidence of weak understanding by the 

student. 

The Behavior of the Tutorial Model 
Ms. Lindquist usually behaves as follows.  She starts each problem by asking the student to 
answer the problem. Thereafter, the student model will diagnose the latest student response, and 
pass that diagnosis over to the tutorial model to plan what action to take.  The tutorial model has 
what we call an agenda.  The agenda is used to store the current tutorial plan.  The agenda 
always starts out with one question.  That question is always a symbolization question.  At 
various points, the tutor might decide to ask a new question. We will now take a look at an 
example, but first, a caveat; this chapter is meant to discuss the architecture in general.  The next 
chapter is meant to discuss an example of this architecture (i.e., the Ms. Lindquist tutor).  
Therefore, you will find fuller information on all the question types and strategies that the Ms. 
Lindquist tutor uses in Chapter 4.  Nevertheless, its very hard to talk about an architecture 
without being able to refer to an example, so I will give several example, but the reader is asked 
to hold question about the particular questions and strategies until the next chapter.   

An Example to illustrate how the agenda works 
We will illustrate the agenda mechanism with the following dialog taken from a log file of a high 
school student who was tutored by Ms. Lindquist under the conditions described in Chapter 5.  In 
keeping with the last chapter, we will always refer to a student with the masculine pronoun and 
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the tutor with the feminine pronoun.  This example took about 5 minutes.  Each entry in the log 
is date and time-stamped and also gives the elapsed time in the last set of square brackets; for 
instance at line 2 the computer took zero seconds to generate the question, while at line 3 the 
student took 76 seconds to generate "(y*3)".  Each question then gives the question’s type 
(indicated with "qtype=").  For this example, the question types are either QSYMB for 
symbolization, QCOMPUTE for arithmetic, QEXPLAIN for the articulation step, or 
QGENERALIZE for the generalization question (see Chapter 4 for details on these questions).  
Additionally, each question is tagged with a “goal” that gives one of the possible correct ways to 
answer the question (e.g., at line 2 the correct answer is an expression that is equivalent to 
"y+3*y"). The student's responses are listed in bold.  
 

1. <Problem_Statement>You are mixing paint.  You start with "y" liters of yellow paint and then you must add 3 times as 
much red as you did yellow. Write an expression for the amount of paint you used.</Problem_Statement> 

2. <Tutor time="[7/24/2000][19:1:42][0]" qtype="QSYMB" goal="y+3*y">Hello.  Please write an expression for the total 
amount of paint you used. </Tutor> 

3. <Student time="[7/24/2000][19:2:58][76]">(y*3)</Student> 
4. <Tutor time="[7/24/2000][19:2:59][0]" qtype="QCOMPUTE" goal="20"> Hmm.  No.    We will come back to the total 

amount of paint you used.  Let me try to break this down for you. Please compute the total amount of paint you used if the 
amount of yellow paint was 5 liters? </Tutor> 

5. <Student time="[7/24/2000][19:3:24][26]">5*3</Student> 
6. <Tutor time="[7/24/2000][19:3:24][0]" qtype="QCOMPUTE" goal="15"> Hmm.  No.  Let me ask you a different question. 

Please compute the amount of red paint you used if the amount of yellow paint was 5 liters? </Tutor> 
7. <Student time="[7/24/2000][19:3:47][22]">15</Student> 
8. <Tutor time="[7/24/2000][19:3:47][0]" qtype="QCOMPUTE" goal="20">Correct.  Now, lets try this question again:  

Please compute the total amount of paint you used if the amount of yellow paint was 5 liters? </Tutor> 
9. <Student time="[7/24/2000][19:4:3][16]">15</Student> 
10. <Tutor time="[7/24/2000][19:4:3][0]" qtype="QCOMPUTE" goal="20"> Hmm.  No.  Try again please. If the amount of 

yellow paint was 5 liters instead of "y" what would the total amount of paint you used be?</Tutor> 
11. <Student time="[7/24/2000][19:4:34][31]">20</Student> 
12. <Tutor time="[7/24/2000][19:4:34][0]" qtype="QEXPLAIN" goal="5+3*5">Correct. Using only 3, and 5 write an 

expression for the total amount of paint you used.</Tutor> 
13. <Student time="[7/24/2000][19:5:19][45]">(3*5)+5</Student> 
14. <Tutor time="[7/24/2000][19:5:19][0]" qtype="QGENERALIZE " goal="y+3*y">Correct. Now use "y" instead of 5 to 

again express the total amount of paint you used.</Tutor> 
15. <Student time="[7/24/2000][19:6:3][44]">(3*y)+5</Student> 
16. <Tutor time="[7/24/2000][19:6:3][0]" qtype="QGENERALIZE " goal="y+3*y">It looks like you didn’t understand what I 

was asking you.  You should use the variables from the problem.  For instance, use y instead of 5.  Try this question again: 
Now use "y" instead of 5 to again express the total amount of paint you used.</Tutor> 

17. <Student time="[7/24/2000][19:6:36][34]">(3*y)+Y</Student> 
18. <Tutor time="[7/24/2000][19:6:36][0]" qtype="NIL" goal="NIL">Correct. A new problem is needed </Tutor> 

  
We will use this example to give a quick overview of the system focusing on the tutorial agenda 
structure.  We then will come back in subsequent sections to explore the system in more detail.  
In the above dialog, we see that the student initially said "(3*y)".  The tutor chose to use the 
concrete articulation strategy arbitrarily among its four KCDs.  This strategy involves three steps  

Qcompute: Total Paint: 20 
QExplain: Total Paint: 5+3*5  
QGeneralize: Total Paint: y+3*y 

The questions on top are asked before the questions on the bottom.  The student went on to 
answer the question at line 5 incorrectly with "5*3".  Because the tutor knew how to break down 
that question, it did so.  This involved adding an extra computational question to the stack so that 
the agenda looked like the following. 
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Qcompute:  Red Paint: 15 
Qcompute: Total Paint: 20 
QExplain: Total Paint: 5+3*5 
QGeneralize: Total Paint: y+3*y 

At line 7, the student got the top-level question correct so the tutor popped that question off of 
the top of the agenda.  The student is presented again with the same question from line 4.  The 
agenda looks like the following.  

Qcompute: Total Paint: 20 
QExplain: Total Paint: 5+3*5 
QGeneralize: Total Paint: y+3*y 

At line 9, the student gets the question wrong, but since we have already done one KCD on this 
step, the tutor instead gives a hint.  A hint only changes how the top-level question is phrased. It 
is not viewed as a new question. In this case, the first level hint simply asks the student to try 
again. If the student had made another error, the hint message would get more explicit about 
what the student should do. However, it turns out that this hint is enough to get the student to 
answer the question correctly at line 11.  Then the tutor presents the articulation question.  The 
agenda looks like the following. 

QExplain: Total Paint: 5+3*5 
QGeneralize: Total Paint: y+3*y 

The student gets the next two questions correct (line 13 and 15) and each time they are popped 
off the agenda.  After line 17, the tutor’s agenda is empty and a completely new problem is 
selected.   
 We now explore the algorithm’s behavior more generally.   The following is a picture 
(Figure 3) depicting the behavior of the algorithm. 
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Consider other errors.

Is this a correct answer for the question at the top of the
agenda?

Assume student’s answer is to top level question and say "No"

Is there some portion we can give postive feedback for?

Do nothing.

Is there a KRD available for this specfic error type?

Is there a subgoal that had an error that we have not addressed
yet?

Is there another hint available for the question that was just
asked?

Have we already used a KCD on this goal?

Is there buggy feedback available for this specific error type?

Pose the question at top of agenda

Get Student Answer.

Is this a correct answer to a broader question revealing more
knowledge than was asked for?

Pop the question off the agenda.

Add postive feedback.

Insert into the agenda a reflective dialog
below this top question.

Add KRD’s steps to the agenda.

Change the surface-level form of top
question to next hint.

Add KCD’s steps to the agenda

Change the surface-level form of top
question to buggy message.

Is the agenda empty?

Pop all items between the top and this
question.

Yes

No

Begin

Yes

No

Yes

Yes

Yes

Yes
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No
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No

No

Yes

No

No

No
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Done

 
Figure 3: A flow diagram depiction the normal behavior. 

 
In order to provide an overview, I will briefly describe the steps shown in the figure.  The next 
sections will go into greater detail.  First, the tutor presents a new problem and asks the student 
the first question.  The system then diagnoses if the student has correctly answered more than he 
was asked for.  Assuming that is not the case, the system then determines if the answer is correct 
or not.  Assuming it is incorrect, the system tries to give positive feedback. Next, the system 
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must decide what to do for each subgoal that was diagnosed as having an error.  The system first 
considers using a knowledge remediation dialog specific to the error type encountered.  Next, the 
system considers responding with buggy feedback, which changes the form of the question, 
without changing what is asked for.  Following that, the system checks to see if the question can 
be broken down by using a knowledge construction dialog.  If that also is not applicable, we give 
the next available hint.  Note that a hint simply changes the surface-level form of the question 
asked but does not change what is being asked for.  If none of these conditions apply we repeat 
the last question asked, which will be the most explicitly hint message.  If the system gets to its 
bottom-out hint, there is a good chance the student does not have a good understanding.  
Therefore, the system can ask a reflective follow-up question 

Types of Diagnosis 
As described above in the student model section, the diagnosis will fall into one of three 
categories. 
1) Correct for the question the tutor just asked.  
2) The students answer appears to be an answer to a previous question- This is a special case 

and will dealt with below. 
3) Wrong answer: This has two sub-categories 

a) We trace the input which means we know which buggy productions were used to trace 
the student’s input 

b) Uninterpretable 

The Tutorial Model tries to find the most precise pedagogical response to 
the student model’s diagnosis 
So how does the tutor respond to the diagnosis?  The easiest case is if the student says something 
correct in which case the tutor confirms the answer and asks the next question on the agenda or 
goes on to the next problem if the agenda is empty.  We will now deal with the case in which the 
student said something wrong but nevertheless we could trace the input.  There are four possible 
responses.  

1. Use a Knowledge Remediation Dialog (KRD) 
2. Give Buggy Feedback  
3. Use a Knowledge Construction Dialog (KCD) 
4. Give a Hint 

The first two types are responses that apply only if the student made a certain type of error.  The 
following table gives an example of each.  One of the KRDs we have operating happens if the 
student commits an error of omission.  An error of omission is defined to be the student correctly 
symbolizing only a piece of the problem.  For example, suppose the student was supposed to say 
“800-40m” but instead said “40*m” the tutor would use the one step KRD that ask the student to 
identify what the “40*m” represents.  Note, that a KCD is a multi-step plan that can be used to 
tutor any sub-expression that has at least one operator and they will each be described in a 
section below.  Finally, our system will give a hint if the other three possibilities have been 
exhausted.  These four types of response are summarized in the following table.  The first 
column contains responses that simply tell the students some information, without changing the 
question.  The first row in the table has tutorial responses that always apply, while the responses 
in the second row apply only in response to certain conditions.   
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 Two types of Tutor Reponses 
 Tell the student something Ask a New Question(s) 
Always 
Applies 

Model-tracing Hint at the expression 
level. "You need to use 40 and ’m’ to 
find the distance rowed." 

Use one of the four KCDs such as the 
three-step Concrete Articulation 
Strategy 

Applies 
selectively 

Buggy Feedback in Model-tracing 
e.g., You are missing parentheses 
around the “30-g”. 

Use a KRD such as "Your answer of 
’40m’ is part of the answer.  What 
does ’40m’ represent in English?" 

In summary, a guiding principle in this tutor's architecture is that when deciding between 
alternative possible responses, the tutor will choose to say the response that matches the 
student’s response most specifically.    

What to do if the student model cannot interpret the student’s answer? 
Most of the time, if the student says something that is uninterpretable, we treat that as if the 
student made an error on each subgoal. There is one exception to this rule and it only applies to 
using the concrete articulation strategies, which will be addressed in the next section.   

We have Four General Pedagogical Responses (KCDs) That Always Apply  
The four general strategies we have implemented are listed below. Each of them involves asking 
a series of questions.  Examples of each will be provided in the follow chapter. 
1) Concrete Articulation: Scaffold from a concrete instance by asking three questions 

a) Compute for a concrete instance. 
b) Articulate the mathematics operations needed to do that computation. 
c) Generalize that articulation to the case when a variable is present. 

2) Explain Verbal: Proceed in a bottom-up manner asking students to 
a) Identify a sub-goal to achieve24 
b) Explain in English (using a pull down menu) how they would achieve the goal 
c) Follow that up by symbolizing that subgoal 

3) Worked Example: Tell the student the answer.  Then, in a bottom-up manner,  ask the 
following questions to see if they understand the example. 
a) Explain the components of each sub-expression. 
b) Explain what each subgoal represents 

4) Decomposition & Substitution: For a one-operator expression, simply ask the student to 
symbolize it.  For expression with more than one operator, introduce a variable to stand for 
any subexpression and ask the student: 
a) To symbolize the expression with the introduced variables 
b) Then re-express the same quantity, but substituting in the correct expression of the 

introduced variable. 
 
All of these strategies attack the incorrect goals in a bottom-up fashion, meaning they deal with 
the subexpression (e.g., "40*m") before dealing with the expressions containing them (e.g., "800-
40*m").  For example, suppose the goal it to symbolize "5g+7*(30-g)" and the student answered 
with "5g+7/(30-g)", the tutor would confirm the completely correct portions (i.e., the "5*g" and 
                                                 
24 I initially implemented this step, but we turned it off before our controlled experiment, thinking this step might not 
be worthwhile.  I now speculate that we should have left it on because there might be benefits to letting students 
pick the subgoal to address rather then letting the tutor pick.  This is a question for future work.  All the examples 
for the rest of this dissertation omit this step and instead the tutor picks a subgoal to ask students to explain. 



 68 

the "30-g") and push onto the agenda goals to deal with the "7*(30-g)" subexpression.  Since the 
top-level subexpression was done correctly (i.e., the adding the portions representing both the 
"5g" and the "7*(30-g)" together), the system would not add goals to the agenda for the top-level 
subexpression (i.e., "5*g+7*(30-g)").  If, on the other hand, the answer had been "5*g-7/(30-g)" 
(i.e., two errors) then the tutor would also add goals to deal with the top-level subexpression. To 
summarize, the system generally addresses subexpressions that the student made an error on.  In 
addition, the system addresses the errors by dealing with sub-expression before dealing with 
containing expressions (i.e., bottom-up). 
 There is one exception to dealing with the goals in a bottom-up manner and it applies 
only when the system is using the concrete articulation strategy.  If the concrete articulation 
strategy is used on a problem, and also the student’s answer is uninterruptible, the tutor will act 
as if the only goal that was not achieved was the top-level goal.  This means that the system will 
push compute, articulate and generalization questions for the top-level goal only.  If the student 
has trouble, the tutor can further break down those goals.  This allows the tutor to "dive-down" 
on a sub-expression as needed25.  

How do we pick which tutorial response to use? 
Each of these four strategies can be generally applied to any subexpression the student did not 
get correct.  Currently, one of these general strategies is arbitrarily (at random) set by the system 
ahead of time.  We imagine in the future we might have learned good meta-tutorial rules that 
suggest which strategy to use, on which problems, or in response to what types of errors were 
made.  In fact, Arroyo et al. (2000) have started to develop this sort of valuable knowledge.  One 
could even imagine learning what types of students, with what types of errors, learn fastest when 
presented with different sorts of scaffolding strategies.  Learning this is beyond the scope of this 
thesis as it requires a great deal of data and is left as a goal of future work. 

Issues Relevant to Building A Dialog System: Lower Level Issues of Text 
Generation: 
So far, we have been primarily concerned with figuring out how to break problems down for 
students, but there are also other important issues that have to be dealt with if a dialog system is 
going to be effective.  We illustrate some of the issues with an example from the experiment we 
describe in a coming chapter.  The example also illustrates a danger inherent to systems that ask 
new questions; sometime the student might misunderstand what a question is asking for.  The 
system designer needs to try to get the system to recognize such misunderstanding and respond 
appropriately.  
 
1. <Problem_Statement>Latisha, Kendra and Tonya worked all summer mowing lawns.  Tonya made "t" 

dollars and Latisha made twice as much as Tonya.   Kendra worked the hardest and made three 
times as much as both of the other girls combined. Write an expression for the amount of 
money Kendra made mowing lawns.</Problem_Statement> 

2. <Tutor time="[7/24/2000][18:54:53][1]" qtype="QSYMB" goal="(t*2+t)*3">Hello.  Please write an 
expression for the amount Kendra made. </Tutor> 

3. <Student time="[7/24/2000][18:56:23][90]">t*2*3</Student> 
4. <Tutor time="[7/24/2000][18:56:23][0]" qtype="QCOMPUTE" goal="24"> No. But, "t*2" is correct 

for the amount Latisha made.  We will come back to the amount Kendra made.  Let me try to 
break this down for you. Please compute the combined amount of Latisha and Tonya if the 
amount Tonya made was 8 dollars? </Tutor> 

5. <Student time="[7/24/2000][18:57:25][62]">24</Student> 
6. <Tutor time="[7/24/2000][18:57:25][0]" qtype="QEXPLAIN" goal="8*2+8">Correct. Using only 2, 

and 8 write an expression for the combined amount of Latisha and Tonya.</Tutor> 
7. <Student time="[7/24/2000][18:58:9][45]">t*2*8</Student> 

                                                 
25 See lines 4 and 6 from the most recent example presented for an example of this "diving-down" behavior. 
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8. <Tutor time="[7/24/2000][18:58:10][0]" qtype="QEXPLAIN" goal="8*2+8">It looks like you didn’t 
understand what I was asking you.  For this question, you should not use variables: For 
instance, use 8 here instead of "t".  Try this question again: Using only 2, and 8 write an 
expression for the combined amount of Latisha and Tonya.</Tutor> 

9. <Student time="[7/24/2000][18:58:33][23]">2*8</Student> 
10. <Tutor time="[7/24/2000][18:58:33][0]" qtype="QEXPLAIN" goal="8*2+8"> No.[sic programming 

error results in saying ’No. No.’] No. Your answer of "2*8" equals "16", but you wanted to 
write an expression that equaled "24".  Using only 2, and 8 write an expression for the 
combined amount of Latisha and Tonya. Hint: Use 8*2 for the amount Latisha made and 8 for the 
amount Tonya made. </Tutor> 

11. <Student time="[7/24/2000][18:59:16][43]">8*2+8</Student> 
12. <Tutor time="[7/24/2000][18:59:16][0]" qtype="QGENERALIZE" goal="t*2+t">Correct. Now use "t" 

instead of 8 to again express the combined amount of Latisha and Tonya.</Tutor> 
13. <Student time="[7/24/2000][18:59:39][23]">t*2+8</Student> 
14. <Tutor time="[7/24/2000][18:59:39][0]" qtype="QGENERALIZE" goal="t*2+t">It looks like you 

didn’t understand what I was asking you.  You should use the variables from the problem.  For 
instance, use t instead of 8.  Try this question again: Now use "t" instead of 8 to again 
express the combined amount of Latisha and Tonya.</Tutor> 

15. <Student time="[7/24/2000][19:0:10][32]">t*2+8</Student> 
16. <Tutor time="[7/24/2000][19:0:10][0]" qtype="QGENERALIZE " goal="t*2+t">It looks like you 

didn’t understand what I was asking you.  You should use the variables from the problem.  For 
instance, use t instead of 8.  Try this question again: Now use "t" instead of 8 to again 
express the combined amount of Latisha and Tonya.</Tutor> 

17. <Student time="[7/24/2000][19:0:22][13]">t*2+t</Student> 
18. <Tutor time="[7/24/2000][19:0:22][0]" qtype="QSYMBWRAPUP" goal="(t*2+t)*3">Correct.  Now, 

lets try this question again:  Please write an expression for the amount Kendra made. 
</Tutor> 

19. <Student time="[7/24/2000][19:1:1][38]">t*2+t*3</Student> 
20. <Tutor time="[7/24/2000][19:1:1][0]" qtype="QSYMBWRAPUP" goal="(t*2+t)*3"> No. You need to 

put parentheses around the "t*2+t".  Try again. Please write an expression for the amount 
Kendra made. </Tutor> 

21. <Student time="[7/24/2000][19:1:42][41]">(t*2+t)*3</Student> 
22. <Tutor time="[7/24/2000][19:1:42][0]" qtype="NIL" goal="NIL">Correct. A new problem is needed 

</Tutor> 

 
This example illustrates positive feedback, dialog coherence moves, dealing with 
misunderstanding of the questions, and negative feedback that does not just tell the student the 
answer.  We now point out each of these. 
 The first is positive feedback.  The first response the tutor makes shows the tutor saying 
that the answer is wrong, but providing positive feedback for a portion of the answer.  Ms. 
Lindquist also interpreted the "*3" as correct, but being applied to "2t" instead of the quantity 
"t+2t", which is what Ms. Lindquist was expecting.  Therefore, Ms. Lindquist chose to scaffold 
the goal of "the combined amount of Latisha and Tonya."  Remember that Ms. 
Lindquist has four strategies at her disposal she can use to scaffold any subexpression.  She 
arbitrarily picked to use the concrete articulation strategy on this subgoal.  The concrete 
articulation strategy involves adding to the tutorial agenda three questions, on top of the question 
that is already on the agenda.  The agenda now looks like this: 
 

QCOMPUTE: with t=8 to get an answer of 24 
QEXPLAIN: 8+2*8 
QGENERALIZE:  t+2*t 
QSYMB: (t+2t)*3 

 
 Second, our early user testing revealed that we had to pay attention to the fact that 
students needed cues to realize that the tutor was asking a different question. Our system uses 
phrases like "Let me try to break this down for you"(line 4) and "Lets try this question 
again"(line 18) as appropriate to maintain overall coherence of the dialog.  An example of this is 
shown (at line 4) by the tutor, when Ms. Lindquist says, "We will come back to the 
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amount Kendra made.  Let me try to break this down for you."  Ms. 
Lindquist is warning the student that a new question is coming.  How does Ms. Lindquist know 
when to put in a cue?  She can tell, by observing the structure of the dialog.  Therefore, if she just 
decided to add a new sub-dialog, she can be sure to add the appropriate conversational cues.  
These bits of text and generated from templates.  As we said above, Ms. Lindquist chose to ask a 
compute question. The student answers the question correctly with "24".  But the next question 
asks the student to articulate the mathematics that was used to get that "24", and the student does 
not understand that so Ms. Lindquist said (line 8) "It looks like you didn’t 
understand what I was asking you.  For this question, you should 
not use variables: For instance, use 8 here instead of "t".  The 
student followed the direction of the tutor not to use a variable in his answer, but still was unable 
to explain how he got the 24.  This is not very surprising given the results we saw from the DFAs 
that showed that articulation is substantially harder than arithmetic.   
 Next (at line 10), Ms Lindquist gave constructive negative feedback with "No.  Your 
answer of "2*8" equals "16", but you wanted to write an 
expression that equaled "24".  Ms. Lindquist also followed that with a hint.  The 
student was then able to get the correct answer and was then asked to generalize the answer, but 
this time the student didn’t understand and used the concrete number that introduced to help in 
the compute question, so Ms. Lindquist says (line 14) " It looks like you didn’t 
understand what I was asking you.  You should use the variables 
from the problem.  For instance, use t instead of 8."  This 
misunderstanding took two attempts before it was cleared up. 
 This example ends with the student making an error of not using parentheses. Remember, 
our heuristic is that the tutor chooses the response that has the most precise pedagogical fit.  In 
this case there is a pedagogical response to this precise error and Ms. Lindquist says (line 20) 
"You need to put parenthesis around the ’t*2+t’". This example has 
shown several examples of the behavior of Ms. Lindquist that have to do with lower-level issues 
of text generation to maintain dialog coherence. 

Examples of noticing the student appeared to answer a question other than 
the top question on the agenda 
Above we mentioned that sometimes the tutorial model’s diagnosis would be that the student’s 
answer appears to be answering a different question, or possibly answering in a way that reveals 
more knowledge than he was asked to provide.  Our goal is that the tutor should not be pedantic.  
If the student’s answer reveals more knowledge than was asked, we should confirm the student’s 
response and move on to the next question.  For instance, in the following problem the student 
appears not to notice that at line 4 a new question was asked.  The student quick response time 
also seems to indicate that the student was trying to quickly correct his answer, not realizing the 
system asked a new question.  The student did not get the top level-question correct, so the 
system did not give him credit, but on line 7 the student does, and the system gives him credit.  
 
1. <Problem_Statement>A plumber not only charges $30 per hour but she also charges $15 

just to come to your house.  Write an expression for how much you have to pay if 
this plumber works for "h" hours.</Problem_Statement> 

2. <Tutor time="[7/18/2000][8:48:19][0]" qtype="QSYMB" goal="15+30*h">Hello.  Please 
write an expression for the total you pay the plumber. </Tutor> 

3. <Student time="[7/18/2000][8:49:0][41]">30+15*h</Student> 
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4. <Tutor time="[7/18/2000][8:49:0][0]" qtype="QSUB_QUAN_STRICTLY" goal="30*h"> Hmm.  
No.    We will come back to the total you pay the plumber.  Let me try to break 
this down for you. What is the amount she makes without the house call 
charge?</Tutor> 

5. <Student time="[7/18/2000][8:49:10][10]">30+15/h</Student> 
6. <Tutor time="[7/18/2000][8:49:11][0]" qtype="QSUB_QUAN_STRICTLY" goal="30*h"> Hmm.  

No.  Use "30" and "h" to calculate the amount she makes without the house call 
charge.</Tutor> 

7. <Student time="[7/18/2000][8:49:31][21]">30*h+15</Student> 
8. <Tutor time="[7/18/2000][8:49:31][0]" qtype="NIL" goal="NIL">Correct. A new problem 

is needed </Tutor> 
9.  

Though it is true that the student can always move on if he can type the answer to the very first 
symbolization question, the algorithm is more subtle than that.  Consider the following 
example26. 
 
1. <Problem_Statement>Debbie has two jobs over the summer.  At one job she bags groceries at 

Giant Eagle and gets paid 5 dollars an hour. At the other job she delivers newspapers and 
gets paid 7 dollars an hour.  She works a total of 30 Hours a week.  She works "g" hours 
bagging groceries.  Write an expression for the total amount she earns a 
week.</Problem_Statement> 

2. <Tutor time="[10/10/2000][18:29:55][0]" qtype="QSYMB" goal="5*g+7*(30-g)">Hello.  Please 
write an expression for the total pay per week. </Tutor> 

3. <Student time="[10/10/2000][18:35:37][343]">(30-g*7)+(g*5)</Student> 
4. <Tutor time="[10/10/2000][18:35:38][0]" qtype="QSUB_QUAN_NOT_STRICTLY" goal="7*B"> No. But, 

"30-g" is correct for the hours delivering newspapers, and "g*5" is correct for the pay from 
the grocery.  We will come back to the total pay per week.  Let me try to break this down for 
you.  If "B" was the hours delivering newspapers then what would be the pay from the 
newspaper? </Tutor> 

5. <Student time="[10/10/2000][18:37:25][108]">30-g(*7)</Student> 
6. <Tutor time="[10/10/2000][18:37:25][0]" qtype="QSUB_QUAN_NOT_STRICTLY" goal="7*B">It looks 

like you didn’t understand what I was asking you.  That is not a valid math expression.  Try 
this question again: If "B" was the hours delivering newspapers then what would be the pay 
from the newspaper? </Tutor> 

7. <Student time="[10/10/2000][18:37:58][33]">7*(30-g)</Student> 
8. <Tutor time="[10/10/2000][18:37:58][0]" qtype="QSYMBWRAPUP" goal="5*g+7*(30-g)">Correct.  

Now, lets try this question again: Please write an expression for the total pay per week. 
</Tutor> 

9. <Student time="[10/10/2000][18:38:20][21]">7*(30-g)+(g5)</Student> 
10. <Tutor time="[10/10/2000][18:38:20][0]" qtype="NIL" goal="NIL">Correct. A new problem is 

needed </Tutor> 

 
Notice the positive feedback (line 4) that is part of our dynamic scaffolding.  The student has an 
error only of forgetting parentheses around the "30-g".  So the tutor adds two questions to the 
agenda making the agenda look like the following. 

QSUB_QUAN_NOT_STRICTLY:  7*b 
QSUBSTITUTE:  7*(30-g) 
QSYMB: 5*g+7*(30-g) 

The student then hits a buggy rule by type "30-g(*7)" (line 5) and it told his answer is not a valid 
mathematics expression.  We can see that this answer is trying to skip over (consciously or 
unconsciously) the question asking for "7*b". At line 7, the student answers and the system 
registers that the student answered a question lower down on the agenda, gives credit, and pops 
two questions off the agenda. 

                                                 
26 This example is from a student using our web site. 
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How Can The Tutorial Model be Extended? 
One goal of mine was to have an architecture that could easily be extended.  I believe I have 
accomplished that.  Generally speaking, adding a new KRD (or KCD) means that you need to do 
the following four steps: 

1)Write the tutorial rule that adds the new question(s). 
2)Write the student model rule(s) that allow you to trace this answer for each new 

question asked. 
3)Write a tutorial rule that generates the response for each question type added. 
4)If you are interested in tracing certain types of errors, you need to add buggy rules 

to the student model to generate those error types.  
These four steps are illustrated in Appendix J by showing the few rules needed a simple KRD. 

Discussion: Distinctions between Problem Solving Goals and Tutorial 
Pedagogical Goals. 
There is an important distinction between the subgoal that the student model uses to model 
problem solving actions and the sorts of goals (i.e., related to questions) that the tutorial model 
uses.  The tutorial model will sometimes ask questions that look just like they are problem-
solving goals (i.e., "Write an expression for the distance rowed").  However, often the questions 
the tutorial model asks are not necessarily steps along the problem solving solution path (i.e., 
"Explain how to calculate average speed."), but nevertheless the tutor asks them because the 
tutor’s goal is future performance and not current performance.   If the tutor’s goal was just to 
assist current performance then the tutor could just tell the student the answer, which would 
certainly speed things up.  But, of course, the tutors goal is to do what is possible to encourage 
learning and sometime that involves discussing something that might seem like a diversion.  
 Consider the example of asking the student to "Explain how to find average speed in 
English?"  This is not strictly on the solution path.  In one sense, the student has to figure this out 
in order to do the mathematics.  But, in fact, we have reason to believe that this task is harder 
than the original mathematics question. (See Chapter 2 where the student had great difficulty 
when this was asked on lines 202 and 306 and also Aleven and Koedinger (2000a) that show that 
asking the student for an explanation is often harder than doing the mathematics.)  This is why 
we say that there is a difference between problem solving goals and tutorial goals.   
 We can also view this in terms of the tutorial model, which has what Shulman (1986) 
called pedagogical content knowledge.  Our tutoring system has both a student (i.e., "domain") 
model that provides for problem solving expertise, as well as a tutorial model that has some 
general tutorial strategies (i.e., dynamic scaffolding), but a crucial element is also pedagogical 
content knowledge, encapsulated in our knowledge construction dialogs.   
 Are these strategies just problems solving goals at a finer grain size?  No.  If we look at 
the compute question used in the concrete articulation strategy, we see that to answer that 
question requires students to use their procedures for arithmetic facts, (e.g., 5+2=7) but you do 
not have to know your arithmetic facts to symbolize a problem.  Therefore, these strategies can 
involve elements that are not part of the problem solving process. 
 What is the theory as to why these strategies might be effective?   Our answer is twofold.  
Having students construct knowledge probably plays a part. In addition, students can learn by the 
transfer of the underlying similar skills.  Doing a computation problem practices some 
underlying skills that are the same in our student model as those for doing a symbolization 
problem.  Therefore, the theory is that these strategies can help by allowing students to practice 
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the same skills on easier problems.  One possible reason these questions are easier is that they 
may be more amenable to errors-checking strategies.  One reason symbolization is harder than 
computing is that it involves two new skills.   

Chapter Conclusions 
Our goals in designing the tutorial model that was more like human tutors were the following. 
We wanted a new system that could incorporate the advances of model-tracing tutors but that 
was also able to  

1. Carry on a coherent dialog, which entails being able to have sub-dialogs where we ask 
new questions and don’t just give hints. 

2. Recognize pieces of a correct answer and give positive feedback on those portions while 
at the same time tutor the student on the incorrect pieces of their answer. 

3. Support multiple different multi-step tutorial strategies.  
4. Have feedback that is sometimes specific to a type of error if we have a good pedagogical 

response, otherwise, use strategies that are more general. 
5. Give reflective follow up questions, particularly after evidence of weak understanding by 

the student.27 
At the beginning of this chapter, we stated some criticisms of model-tracing tutors that I would 
like to repeat and revisit.  McArthur et al. (1990) criticized Anderson’s et al. (1985) model-
tracing ITS and model-tracing in general "because each incorrect rule is paired with a particular 
tutorial action (typically a stored message), every student who takes a given step gets the same 
message, regardless of how many times the same error has been made or how many other errors 
have been made. … Anderson’s tutor is tactical, driven by local student errors (p. 200)." They go 
on to argue for the need for a more strategic tutor.    

Ms. Lindquist addresses this criticism.  Ms. Lindquist’s model of tutorial reasoning is 
both strategic (i.e., has general multi-step plans that can be used to breakdown problems) and 
tactical (i.e., can recognize and respond to "teachable moments.")  The use of the agenda data 
structure to provide for the dialog management, gives Ms. Lindquist a strategic character.  If the 
student makes a mistake, she can have a sub-dialog to deal with that mistake.  If Ms. Lindquist 
can come up with a tutorial strategy (either a knowledge remediation dialog or buggy feedback) 
specific to the error the student made it do so.  Otherwise, she will try to respond with a 
knowledge construction dialog. 

Ms Lindquist also address the criticism form Ohlsson who said that in model-tracing ITS 
"there is no adaptation to the current cognitive state of the learner other than the classification of 
his last step as an instance of a particular type of error.”  Ms. Lindquist's responds differently 
according to what has previous happened in the dialog.  The first time the student makes an error 
on a given question, the student will usually get some sort of tutorial plan.  After that plan has 
been executed (or as part of that plan) the tutor will come back to the same question, but now the 
question might be phrased differently (e.g., consider the difference between  "Please write an 
expression for the total amount of paint you used"  vs. "Now use 'y' instead of 5 to again express 

                                                 
27 I have not discussed reflective follow-up questions because I disabled them for the experiment in Chapter 5.  The 
idea is a straightforward one.  The if the students shows poor understanding the system can add a reflective question 
underneath the current question on the agenda.  For example, once the student has received the most specific hint, 
the system can add a question that once the students complete the current question (i.e., guesses the correct answer 
or types in the answer presented in the hint) he will be asked. 
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the total amount of paint you used." The second response occurs after the student has already 
computed a concrete value and also articulated the arithmetic.)  

I argue that Ms. Lindquist is more like a human tutor as defined by Merrill et al. (1995) 
who said "student-tutor dialogues were centered much more around student-initiated events, as 
they attempted to actively understand new instructional material and solve problems, [rather] 
than around tutorial presentation of material and subsequent querying of student understanding."  
Merrill et al. went on to say that "microanalysis of student-tutorial interactions in problem-
solving situations suggests that tutors do more than simply re-teach a correct procedure 
component when students encounter impasses or errors. Our tutors focused on guiding the error 
repair process rather than communicating their guesses about what student’s misconception." 
Ms. Lindquist meets these criticisms as well by having dialogs focus on the student errors.  She 
also does not reteach a procedure; rather she tries to have the students construct the knowledge 
form himself.   

In the next chapter, we will explore more of the behavior of this system and see how it 
compares to the experienced human tutor we observed.  In addition, we will compare it to other 
existing system. 
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Chapter 4: Ms. Lindquist’s Tutorial Strategies and 
Comparisons 

Chapter Overview 
In the previous chapter we focused on the general architecture that Ms. Lindquist is built on and 
only briefly mentioned the specific dialogs (KCDs and KRDs) that she can use with students.  
This chapter focuses on the domain specific aspects of Ms. Lindquist, while the previous chapter 
focused on the domain independent aspects.  This chapter provides a detailed description of the 
behavior of Ms. Lindquist and a qualitative evaluation of the system as a model of human 
tutoring.  This qualitative evaluation comes in the form of a case-by-case review of the tutorial 
strategies exhibited by Ms. Lindquist and how these strategies are exhibited by the experienced 
human tutor.  In my thesis proposal, I extracted 26 different tutorial operators that the 
experienced human tutor used and here I discuss which are modeled in Ms. Lindquist and which 
are not.  This chapter also compares Ms. Lindquist’s tutorial dialog architecture with the 
traditional model tracing architecture. 

Prior Work 
 The title of this dissertation refers to the fact that model-tracing tutors have "forgotten the 
tutor".  Model-tracing tutors have largely ignored modeling the tutor.  However, other intelligent 
tutoring system, prior to model-tracing, had "forgotten the student", to the degree that they were 
lacking rich and accurate models of student behavior.  The approach of Ms. Lindquist is to 
capture effective aspects of both..  By Ms Lindquist is not just a combination of a tutorial model 
with a student model.  Ms. Lindquist’s tutorial model contained many aspect of PCK (i.e., 
tutorial strategies).  I will argue that no other exiting systems provide the level of  integration 
between the student model and tutorial model. 
 In reviewing the literature, I will point out how well other systems have met the 
following criterion. 

1. Being a dialog-based tutor. 
2. More then a demo system, but actually used by students. 
3. Is a systems that have a rich domain-specific model of student thinking and development 

that underlies tutorial decision making. 
This third criterion is often associated with model-tracing tutors (Anderson, Boyle & Reiser, 
1985, see also Wolfe, 1988 and Shute, 1995 for reviews). I will point out these  aspects in  
systems, where appropriate.  There have been no systems  
 In reviewing the literature leading up to Ms. Lindquist, I will first discuss those systems 
that are in the algebra symbolization (as opposed to algebra symbol-manipulation) domain. 

Prior Work on Algebra Symbolization 
 There have been no systems focused on algebra symbolization that have met all three of 
these criterions.  The ANIMATE system (Nathan, Kintsch, & Young, 1992) came out of the out 
of Kintsch and colleague’s research on comprehending word problems described in Chapter 1.  
ANIMATE was a tool students could use to describe equations for word problems, which could 
then be "animated."  The system did not tell the students when they made a mistake; instead, the 
student observed the behavior of the animation to figure what was wrong.  The system was not 
dialog-based tutor. 
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 Sleeman (1982) studied student’s errors in the realm of algebra equation solving and then 
produced a tutoring system based on this analysis.  He observed that "when the problem is ’hard’, 
the student makes error with rules that he previously succeeded (p. 198)." This is similar to the 
composition effect we explored in Chapter 1.  However, Sleeman’s system did not have a tutorial 
model, nor was it for the domain of symbolization.    
 Aziz, Pain & Brna (1995) built a "prototype" system called TAPS (Translating Algebra 
Problems System) that looked a how students would mistranslate the "student/professors" 
problem that Clement et al. (1980) studied.  The researchers were particularly interested in 
modeling student’s persistence in maintaining their beliefs even when presented evidence to the 
contrary.  TAPS was neither a dialog-based nor a model-tracing tutor.  
 The tutor produced at Carnegie Mellon University is important to this dissertation and 
will be addressed in its own section. 

The Carnegie Learning Tutor 
Researchers at Carnegie Mellon University (Koedinger, Anderson, Hadley & Mark, 1995; 
Anderson, Corbett, Koedinger & Pelletier, 1995) have built the most widely used algebra 
tutoring system.  In fact, it is the most widely used intelligent tutor, with over 50,000 students 
using it this year.  Koedinger and his colleagues have spent over 7 years building and then 
refining their algebra word problem tutor, which is now marketed under the name "Cognitive 
Tutor".  It also has a rich model of student thinking.  The software teaches various skills in 
algebra that Ms. Lindquist does not address (i.e., graphing and equation solving).  The two most 
relevant windows related to symbolizations are shown in Figure 1 and Figure 2.  Figure 1 is a 
statement of a word problem, which poses multiple questions for the student to answer in the 
worksheet window (Figure 2). 
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Figure 1: The Problem Statement window from the Carnegie Learning Tutor. 
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We can see that the system reifies many of the steps of the problem including identifying the 
names for the quantities, identifying units, defining a variable, computing a few instances and 
symbolizing an expression.  The portion of the interface that Ms. Lindquist is concerned with is 
the formula row.  Figure 2 shows that the student is in the middle of attempting to answer this 
cell and has typed in "100-4*h" but has not yet hit return.  The correct answer is 100+4*h.  This 
is composed of the "bonus" (i.e., 100 dollars) plus the normal pay (i.e., "the money earned in 
your current job").  When the student hits return, he will get the a buggy message (see the first 
row in Table 1.)   

Figure 2: The worksheet window from the Carnegie Learning tutor. The student has already filled in 
the column headings and the units, and is working on the formula row.  The student has just entered 

"100-4h" but has not yet hit the return key. 



 79 

 Error 
Types 

The buggy message generated in 
response to those errors 

Made-up possible 
response by the student. 

1 100-4*h Does the money earned in your 
current job increase for decrease as 
the number of hours worked 
increases? 

It increases. 

2 4*h 
10+4*h 

How many dollars do you start with 
when you calculate the money 
earned in your current job? 

100 dollars 

3 100-h 
100+h 

100+3*h 

How much does the money earned in 
your current job change for each 
hour worked? 

Goes up 4 dollars for every 
hour 

4 4+100*h Which number should be the slope 
and which number should be the 
intercept in your formula? 

The 4 dollars an hour 
would be the slope. 

5 100/(4*h) 
4-100*h 
100+4+h 
100+4/h 

Try using the pattern finder.  

Table 1: A list of the buggy messages generated for 5 different types of wrong answers.  The first 4 error 
types ask questions that it would be nice if the student were allowed to answer.  The fifth error type is a 

catchall error category. 

Notice how the first four buggy messages are asking questions of the student.  They seem like 
very reasonable questions that a tutor would ask a student.  The last column in Table 1 shows 
responses that the questions seem to be asking for.  Unfortunately, those are only rhetorical 
questions, for the student is not allowed to answer them, as such, and is only allowed to try to 
answer the original question again.  (This is a problem the Ms. Lindquist architecture solves by 
asking embedding such questions into a dialog.)  
 When the system does not understand a student’s response, the then system suggests that 
the student switch to a different tool, called the pattern finder (which was shown in Table 2 at the 
end of Chapter 1).  Examples of errors that generate this response are shown in the last row of 
Table 1.  Table 2 shows the hint sequence for this same symbolization question.  
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Text of Hint Comment 

Enter an expression to calculate the money earned in your 
current job using the hours worked.  

General goal 
orientation 

First, consider the initial value of the money earned in your 
current job.  Next, consider how the money earned in your 
current job will change for each hour. 

Consider the initial 
and the change 

Write an expression that means the same thing as the value 
of the money earned in your current job plus the change in 
the money earned in your current job for each hour times the 
hours worked. 

Word equation 

Write an expression that means the same thing as 100+4 
times the number of hours worked. 

Partial Hint 

Enter 4.00H + 100.00. Bottom Out Hint 

Table 2: The list of hints provide to students upon request. 

 The first hint (in Table 2) is to state the question the student is supposed to be answering.  
The second hint suggests that the student first figure out the initial (i.e., 100 dollars) value and 
then figure out the amount of change (i.e., 4 dollars) per hour (i.e., ’h’ hours).  The subsequent 
hints get increasingly explicit about what the student is supposed to do.   
 In conclusion, I believe that the Carnegie Tutor could be improved by replacing rhetorical 
questions with a dialog component.  A second way the system could be improved would be if 
there were more than one tutorial strategy available.  A third improvement would be if the 
scaffolding was more dynamic, so that a student did not always have to fill out a complete 
worksheet for every problem.  Next, I review the relevant prior work on intelligent tutoring 
systems. 

Prior Work on Intelligent Tutors 
 As an early intelligent tutoring system, Carbonell’s (1970) SCHOLAR pointed the way to 
building Socratic dialog systems, but it was not was not tested in classrooms.  SCHOLAR’s 
ability to plan multi-turn dialog acts was limited. 
 Clancy’s GUIDON (1983) was an early ITS that had both domain rules and tutoring rules 
but was not a model-tracing ITS.  It is also not clear how accurately GUIDON’s model is to 
approximating real students and tutors.  GUIDON seems to have been closer to the 
"demonstration" category of systems, then the sort of system actually used by real students. 
 The CIRCSIM-Tutor project (see Cho, Michael, Rovick, and Evens, 2000, and Freedman 
& Evens, 1996) has done a great deal of research in building dialog based intelligent tutors 
systems.  Their tutoring system, while not a model-tracing tutor, engages the student in multi-
step dialogs based upon two experienced tutors.  In CIRCSIM-Tutor, the dialog planning was 
done within the APE framework (Freedman, 2000).  Freedman’s approach, while developed 
independently, is quite similar to my approach in that is a production system that is focused on 
having a hierarchal view of the dialog.  Dialog systems can have natural language generation and 
understanding components, as well as dialog planning components.  The CIRCSIM-Tutor project 
has investigated several aspects of natural language understanding, including dealing with 
student initiatives.  The Ms. Lindquist project is more focused on dialog planning and generally 
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ignores the natural language understanding and generation problems that have occupied the 
CIRSCIM-Tutor project.    
 Freedman’s APE framework is now incorporated into the Atlas-Andes (VanLehn, et al., 
2000) project, which attempts to augment a traditional model-tracing tutor with knowledge 
construction dialogs.  VanLehn et al. (2000) say that Atlas-Andes uses natural-language 
generation technology originally developed for the CIRCSIM tutor (Freedman & Evans, 1996), 
the LC-FLEX parser (Rose & Lavie, in press) and the COCONUT model of collaborative dialog 
(DiEugenio, Jordan, Thomas & Moore, in press).  While working on problem solving, if a 
student is having difficulty with a particular principle, Atlas-Andes can select a KCD for the 
student to work on.  These KCDs set-up a new situation (i.e., asking you to suppose that you 
were traveling in an elevator, or holding a rock in your hand, when the original situation was 
about a block on an inclined plane).  This highlights one difference between Andes and Ms. 
Lindquist; Ms Lindquist’s dialogs are all embedded within the problem-solving context the 
student is currently working on.  The risk is that dialogs that set up a new context might be 
viewed as extra work, when in reality, the dialogs are selected to deal with the particular needs of 
the student.   Another difference is that Ms. Lindquist model-traces all the answers given by 
students whereas Atlas-Andes does not. 
 Auto-tutor (Graesser et al., 1999) is a system that has a "talking head" that is connected to 
text-to-speech system.  Auto-tutor asks students questions about computer hardware and the 
student types a sentence in reply.  Auto-tutor uses latent semantic analysis to determine if a 
student’s utterance is correct.  That makes for a much different sort of student modeling, then 
model-tracing tutors.  The most impressive aspects of Auto-tutor are its talking head and natural 
language understanding components.  The Auto-tutor developers (Graesser et al.,1999) de-
emphasize dialog planning based on the claim that novice human tutors do not use sophisticated 
strategies, but nevertheless, can be effective.  Auto-tutor does have multiple tutorial strategies 
(i.e., "Ask a fill-in-the-blank question" or  "Give negative feedback."), but these strategies are not 
multi-step plans.  However, work is being done on a new "Dialogue Advancer Network" (Person  
& Graesser 1999) to increase the sophisticated of its dialog planning.  Auto-tutor’s tutorial 
strategies incorporate general pedagogical knowledge, but are lacking in more specific and 
powerful pedagogical content knowledge that is critical to more effective instruction. 
 Core, Moore, and Zinn (2000) propose a model that incorporates both student modeling 
and tutorial modeling in the context of a reactive planner but that system is in the planning 
stages.  
 Aleven and Koedinger (2000a & 2000b) have built a geometry tutor in the traditional 
model-tracing framework but have added a requirement for students to explain each of their 
problem-solving steps.  An enhanced version allows natural language understanding of these 
explanations (Popescu & Koedinger, 2000).  The new system uses the same parser (Rose & 
Lavie, in press) as the Atlas systems described above.  Its uses Loom (MacGregor, 1991) for 
knowledge representation.  The system's goal is to use traditional buggy feedback to help 
students refine their explanations.  Many of the hints and buggy messages ask new questions, but 
they are only rhetorical.  Unlike Ms. Lindquist, the system is not prepared to accept a student 
answer to such questions and then engage in further dialog to help students reason about how this 
answer helps them with the problem-solving step they are stuck on.   I believe such dialog 
enhances student learning.  
 An important issue that all intelligent tutoring systems have faced is what to do if the 
student makes more then one error at a time.  Many systems treat multiple errors as part of a 
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generic “anything else” category but some systems have attacked this difficult diagnosis problem 
and provide can assistance specific to different kinds of multiple error situations.  For another 
example, the PROUST and CHIRON systems (Sack & Soloway, 1992) were intelligent tutoring 
systems that detected multiple errors in Pascal programs, but Sack & Soloway recognized that 
the system could be confusing when displaying for students, what amounted to, separate error 
messages. 
 The MENO-TUTOR (Woolf & McDonald, 1984) attempted to model the discourse 
strategies of human tutors.  It included modeling tutorial tactics, strategies and more general 
pedagogical states.  The MENO-TUTOR is one of the few intelligent tutoring systems to include 
a significant pedagogical component, but unlike Ms. Lindquist, it did not emphasize, nor model, 
pedagogical content knowledge. 
 The Generic Tutoring Environment (GTE) is an authoring environment by Van Marcke  
(1998).  Murray (1998) has said few researchers in intelligent tutoring systems have modeled 
complex tutorial strategies in such depth as Van Marcke.  Murray adds that "Van Marcke 
describes both a formalism for representing instructional expertise, and a large database of 
encoded instructional knowledge."  Unfortunately, GTE is not a model-tracing tutor, nor does it 
shows how a model-tracing component could be integrated into his architecture.  Van Marcke 
emphasis on domain independence completely ignores the importance of pedagogical content 
knowledge.  
 The 4 demonstrations systems built by Rickel, Ganeshan, Lesh, Rich & Sidner, (2000) 
are interesting due to the incorporation of an explicit theory of dialog (Grosz & Sidner, 1986) but 
their pedagogical content knowledge is very weak.   
 There has also been relevant prior work on comparing human tutors and intelligent 
tutoring systems.  Merrill, Reiser, Ranney and Trafton (1992) argued that human tutors were 
more subtle and flexible then model-tracing tutors, but nevertheless, the two were more similar 
than normally thought. However, they argued that one area for improvement was in how the 
computer assisted the error recovery process. They said "In general, human tutors manage to 
assist student while having them do more of the error recovery process" as compared to model -
tracing tutors.  Ms. Lindquist's dialogs are designed to do that by allowing the student to do more 
of the error repair themselves, by asking students targeted questions. 

Prior Work Relevant to the Particular Strategies and Dialog 
Capabilities of Ms. Lindquist 
 Ms. Lindquist has four different tutorial strategies, two of which are direct implications 
of my own work and two others that are also supported by other research. 

1. The "Concrete Articulation" Strategy:  This strategy grew out of our difficulty factors 
assessment (DFA) research presented in Chapter 1. 

2. The "Explain in English First" Strategy:  This strategy, inspired by our experienced 
human tutor, finds theoretical support in the work on subgoal-reification by Corbett & 
Anderson (1995).  They provide evidence that a tutor enhanced to first ask students to 
state their goals before pursing them improves student learning beyond a tutor that does 
not.  Others have recommended or experimented with subgoal reification within tutoring 
systems or in instruction more generally (e.g., Collins & Brown, 1985; Catrambone, 
1998). 

3. The "Introduce Variable" Strategy: I invented this strategy based on the results of our 
DFA work.  I then also found that this strategy appeared spontaneously in tutorial 
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dialogs, though was generated by the students rather than encouraged by the tutor (as was 
discussed in the "Introduced Variable" section of  Chapter 2).  

4. The "Convert the problem into an Example to Explain" strategy: This strategy was not 
based on either the DFA work or the experienced tutor.  Instead, this strategy was 
inspired by the prior work of others.  For instance, Zhu & Simon (1987) suggest a similar 
strategy of presenting students with worked out examples.  See also Renkl (1997), 
VanLehn (1998), Sweller & Cooper (1985) for related studies of student use of worked 
examples.  Catrambone’s (1986) also suggests that learning from examples can be 
improved by asking questions that focus on the goal structures of the domain.  Also, to 
the degree that this strategy focuses on asking students to explain the quantitative 
structure in English  (though using a structured editor), rather then simply focusing on 
problem solving, the literature related to self-explanation is also relevant.  For instance, 
Chi (1996), Conati et al. (1997), Mwangi & Sweller’s (1998), and Aleven, Koedinger, & 
Cross (1999) have both proposed and in some cases demonstrated that asking students to 
explain can be beneficial.  Most concretely of all, this strategy also gets at the goal of 
practicing translation from the algebraic representation to the verbal representation, 
which Corbett et al. (2000) has shown to be effective for learning symbolization.  

 
Before we compare Ms. Lindquist’s individual strategies with those of the experienced human 
tutor, we will review Ms. Lindquist's ability to dynamically scaffold a problem. 

Dynamic Scaffolding without any Tutorial Strategies 
In chapter 2, I argued that our experienced human tutor used dynamic scaffolding and tutorial 
strategies.  What if we built a system that used jut dynamic scaffolding?  What would that look 
like?  I defined dynamic scaffolding as a three step process that: 

1. Diagnosed the student's response 
2. Gave positive feedback on the correct portions 
3. Focused the dialog on the portions that were incorrect 

Normally, the third step was implanted with tutorial strategies, but if we got rid of those, then the 
system would ask questions for each of the subexpression that the student did incorrectly.  Here 
is a made up example: 

Tutor: Hello.  Please write an expression for the total pay per week. 
Student: 5g+7/(30-g) 
Tutor: No.  But, "5*g" is correct for the pay from the grocery, and "30-

g" is correct for the hours delivering newspapers.  We will come 
back to the total pay per week.  Let me try to break this down for 
you.  Write an expression for the pay from the newspaper? 

Student:7*(30-g) 
Tutor: Correct.  Now, lets try this question again: Please write an 

expression for the total pay per week. 
The important thing to note is that the tutor focused on the 7*(30-g) subexpression, because that 
was done incorrectly.  If the tutor also used a tutorial strategy, the tutor would have added the 2 
or 3 steps of that tutorial strategy (e.g., the compute, articulate and generalize steps).  Next, we 
examine the tutorial strategies Ms. Lindquist uses. 
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Dynamic Scaffolding with Tutorial Strategies 
We start by reviewing the four general tutorial strategies (KCDs) that Ms. Lindquist is capable of 
using.  Ms Lindquist’s behavior is quite rich and cannot be fully explained by a single example.  
For each strategy, I will show other examples to demonstrate the particular features of Ms. 
Lindquist, such as sub-dialogs, positive feedback, negative feedback, buggy messages, etc.  In 
order to prevent the reader from too much context switching, the first example in each section 
will be with the same "bike-trip" problem.  For each example, I will illustrate what the crucial 
agenda data structure looks like at important moments.  Each section will close by showing the 
hint messages Ms. Lindquist uses for each question used in the strategy. 

Strategy 1: "Concrete Articulation" 
We now look back to an example from the experienced tutor’s protocol discussed in Chapter 2 
and compare the behavior of Ms. Lindquist on a similar set of simulated student inputs.   

Experienced Human Tutor  
Exact Transcript 

The Ms. Lindquist Tutor 
Similar simulated input. 

240. Student: [reads the "bike-trip" 
problem] Cathy took a "m" mile bike ride. 
She rode at a speed of "s" miles per hour. 
She stopped for a "b" hour break. Write an 
expression for how long the trip took. 

T1: [The "bike-trip" problem was been 
presented] Please write an expression 
for the total time the trip took.  

241. S: uhm [Writes "s/m+b"]   S1: s/m+b 

242. Tutor: How do you calculate the 
amount of time it takes you? If you’re, if 
you’re, if you’re riding at, let’s make it 
simple. If you are riding at 20 miles per 
hour, OK, and you go 100 miles, how 
many hours did that take you?  

T2: No. Let me ask you an easier 
question. Please compute the time 
actually on the bikes if the speed was 
20 miles per hour, and the distance 
ridden was 100 miles?  

243. S: Umh 5 S2: 5 

244. T: 5. And how did you get that 5? 
How did you use the numbers 100 and 
?[trails off]  

T3: Correct. What math did you do to 
get that five?   

245. S: 100 miles divided by miles per 
hour.   

S3: 100/20   

246. T: So you took the miles and divided 
it by the [garbled, but probably "speed"] 

T4: Correct. Now write your answer of 
100/20 using the variables given in the 
problem (i.e., put in ’m’ and ’s’)?  

247. S: Miles divided by ’s’ plus ’b’ equals 
time [writes m/s+b] 

S4: b+m/s 

248. T: Right. T5: Correct.  

Table 3: An experienced tutor’s transcript and Ms. Lindquist’s attempt to model it. 

 
The similarities are strong and are found at two important levels. The first similarity is that they 
both engage in what we have called "dynamic scaffolding" by diagnosing where the student 
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made an error and then asking questions focused on that goal.  Both the human and the computer 
ignore the portion that was done correctly (i.e., the adding of the "b" hour break to the time 
actually on the bikes) and instead focuses on the subgoal that were not done correctly (i.e., the 
"s/m" portion that should have been "m/s".)  The second similarity is that both tutors used what 
we have called the concrete articulation strategy.  This strategy involves three steps that ask the 
student 1) to compute a value for a concrete instance, then 2) to articulate what mathematics they 
did, and then finally 3) to generalize that using the variables from the problem.  Notice that the 
question at T4 is looking for the student to say "m/s" but since the student’s answer reveals more 
knowledge than was expected, the system responds intelligently (popping multiple goals from 
the agenda).  Overall, there is a good match between Ms. Lindquist and the experienced human 
tutor. 
 Ms Lindquist can do much more then just replicating this dialog.  Next, we will look at 3 
examples of Ms. Lindquist working with real students.  The first example shows the same bike-
ride problem but with different student input.  The second example shows that, not only, can Ms. 
Lindquist break down the initial symbolization question, but she can also break down the new 
questions she asks students.  This second example also shows embedded negative feedback as 
well as a hint.  The third example is the longest and shows three embedded sub-dialogs, 
including ways to break down a QCOMPUTE question.  This last example also shows a more 
extensive use of the agenda data structure as well as an example of how Ms Lindquist can 
gracefully deal with a student who did not understand what he was being asked to do. Given that 
human tutors are often unsure of what the student is saying, its important to have a system robust 
enough that is can say something intelligent and useful; the last two examples show that Ms. 
Lindquist can be helpful even if the tutor doesn’t initially understand the student’s answer (their 
because the student asks for help or because the student says something un-interpretable).   
 Here is the first example, showing a real student28 working on the same problem29, but 
with different student inputs. 

1. <Problem_Statement>You go on a bike ride.  You ride at a speed of "s" miles per 
hour.  You bike "m" miles.  You take a "h" hour break.  Write an expression for 
how long the trip took. </Problem_Statement> 

2. <Tutor time="[12/7/2000][19:32:20][0]" qtype="QSYMB" goal="h+m/s">Hello.  
Please write an expression for the total time the trip took. </Tutor> 

3. <Student time="[12/7/2000][19:33:20][60]">s*m+h</Student> 
4. <Tutor time="[12/7/2000][19:33:20][0]" qtype="QCOMPUTE" goal="5"> No.   We will 

come back to the total time the trip took.  Let me try to break this down for 
you. Please compute the time actually on bikes if  the speed ridden was "20" 
miles per hour,  and "the distance ridden" was "100" miles?  </Tutor> 

5. <Student time="[12/7/2000][19:33:37][17]">5</Student> 
6. <Tutor time="[12/7/2000][19:33:37][0]" qtype="QEXPLAIN" goal="100/20">Correct. 

Using only 100, and 20 write an expression for the time actually on 
bikes.</Tutor> 

7. <Student time="[12/7/2000][19:33:49][12]">100/20</Student> 
8. <Tutor time="[12/7/2000][19:33:49][0]" qtype="QGENERALIZE" goal="m/s">Correct. 

Now, say that again but this time use the variables from the problem. </Tutor> 
9. <Student time="[12/7/2000][19:34:3][14]">m/s</Student> 
10. <Tutor time="[12/7/2000][19:34:3][0]" qtype="QSYMBWRAPUP" goal="h+m/s">Correct.  

Now, lets try this question again:  Please write an expression for the total 
time the trip took. </Tutor> 

11. <Student time="[12/7/2000][19:34:15][12]">m/s+h</Student> 

                                                 
28 This is from a real student using Ms. Lindquist on the web site.  This student identified herself as a seventh-grader 
taking pre-algebra and that, "My math teacher told my class that this would be a good site to help us." 
29 You can notice slight wording differences from the previous example including the use of "h" instead of "b" for 
the time of the break.  This is due to minor changes in the version of the software. 
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12. <Tutor time="[12/7/2000][19:34:15][0]" qtype="NIL" goal="NIL">Correct. A new 
problem is needed </Tutor> 

This student had a similar difficulty in trying to figure out how to calculate the time actually on 
bikes, so Ms. Lindquist again focused on that portion.  In this example, we see that the student 
succeeded in doing the compute (line 5), articulate (which the log files record as "QEXPLAIN" 
question types as in line 7) and generalize (line 9) questions correctly. 
 In this second real example, we will see Ms Lindquist working with a student30 on a 
different problem.  Note the embedded sub-dialog (line 10), as well as the embedded negative 
feedback (line 8) and the hints at the end of lines 8 and 12.   
 

1. <Problem_Statement>Jane is "j" years old. Peg is "p" years old.  Mary is Peg’s 
age minus Tom’s age.  Tom is 3 years younger than Jane.  Peg is "x" years older 
than Mark. Write an expression for Mary’s age.  </Problem_Statement> 

2. <Tutor time="[7/18/2000][9:22:58][0]" qtype="QSYMB" goal="p-(j-3)">Hello.  
Please write an expression for Mary’s age. </Tutor> 

3. <Student time="[7/18/2000][9:25:21][143]"> Can you give me some help 
please!31</Student>[This means the student hit the help button.] 

4. <Tutor time="[7/18/2000][9:25:21][0]" qtype="QCOMPUTE" goal="23"> Let me try to 
give you some help.  We will come back to Mary’s age.  Let me try to break this 
down for you. Please compute Mary’s age if  Jane’s age was "20" years,  and 
"Peg’s age" was "40" years?  </Tutor> 

5. <Student time="[7/18/2000][9:28:10][169]">23</Student> 
6. <Tutor time="[7/18/2000][9:28:10][0]" qtype="QEXPLAIN" goal="40-(20-

3)">Correct. Using only 40, 20, and 3 write an expression for Mary’s 
age.</Tutor> 

7. <Student time="[7/18/2000][9:30:16][126]">(20-3)-40</Student> 
8. <Tutor time="[7/18/2000][9:30:16][0]" qtype="QEXPLAIN" goal="40-(20-3)"> No.  

Your answer of "(20-3)-40" equals "-23", but you wanted to write an expression 
that equaled "23".  Using only 40, 20, and 3 write an expression for Mary’s 
age. Hint: Use 40 for Peg’s age and 20-3 for Tom’s age. </Tutor> 

9. <Student time="[7/18/2000][9:31:4][47]">(40-20)+3</Student> 
10. <Tutor time="[7/18/2000][9:31:4][0]" qtype="QEXPLAIN" goal="20-3"> Hmm.  No.   

Let me ask you a different question. Using only 20, and 3 write an expression 
for Tom’s age.</Tutor> 

11. <Student time="[7/18/2000][9:31:19][15]">20-3</Student> 
12. <Tutor time="[7/18/2000][9:31:19][0]" qtype="QEXPLAIN" goal="40-(20-

3)">Correct.  Now, lets try this question again:  Using only 40, 20, and 3 
write an expression for Mary’s age. Hint: Use 40 for Peg’s age and 20-3 for 
Tom’s age. </Tutor> 

13. <Student time="[7/18/2000][9:33:36][138]">40-(20-3) </Student> 
14. <Tutor time="[7/18/2000][9:33:37][0]" qtype="QGENERALIZE " goal="p-(j-

3)">Correct. Now, say that again but this time use the varaibles from the 
problem. </Tutor> 

15. <Student time="[7/18/2000][9:34:2][25]">p-(j-3)</Student> 
16. <Tutor time="[7/18/2000][9:34:2][0]" qtype="NIL" goal="NIL">Correct. A new 

problem is needed </Tutor> 

 In this example, the student knows how to compute a concrete instance (line 5), but has 
trouble articulating a correct answer on lines 7.  Even though the answer was wrong, the system 
understood32 it.  Therefore, the system gave a specific type of buggy feedback that is particular to 
an articulation question (i.e., "Your answer of ’(20-3)-40’ equals ’-23’, but you wanted to write an 

                                                 
30 This dialog was collected as part of the experiment described in Chapter 5. 
31 When a student hits the "help" button, they get virtually the same thing they would have gotten as if they had said 
something uninterpretable.  The one difference is that the tutor does not say "No" and instead says, "Let me try to 
give you some help."  Therefore, this help button is there mainly to not make the student feel bad if they need help. 
32 The system prefixes any response with "Hmm" to indicate it did not understand (i.e., model-trace) the input.  In 
this case I mean that the system knew that the student got the "20-3" portion correct.   
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expression that equaled ’23’".)  The student tried again at line 9 but again showed articulation 
difficulties, and this time in a way the tutor could not trace (as indicated by the "Hmm") so there 
was no specific response possible to this specific answer; therefore, the system broke down this 
step of the KCD and asked the student to explain how to get Tom’s age.  Once this question was 
asked the student got the rest of the question on the agenda correct (line 11, 13 and 15). 
 In this third and final example, 33 we see a new type of sub-dialog.  The last example 
showed that Ms Lindquist could break down a QEXPLAIN question with a sub-dialog.  This 
example shows two instances of the tutor breaking down a QCOMPUTE question (lines 6 and 
12).  Line 8 also shows an interesting example of the tutor realizing that the student did not 
understand the directions well enough (to write a concrete instance as opposed to using 
variables), and therefore told the student and aspect that made his answer wrong. Also note the 
way the system inserts text to ensure dialog coherence.  She marks when a new question is being 
asked (line 4, 6 and 12), as well as when the student is going to be asked a question for a second 
time, but there has been an intervene dialog that could cause the student to forget that he has 
already seen this question (lines 10 and 14).  

1. <Problem_Statement>Michael Jordan was checking to see how fast he could run.  
Michael checked his time running the "x" meters down the length of a basketball 
court and found that it took him 5 seconds. The then checked his time running 
around the bases of a baseball diamond, that has a total distance of "y" meters 
and it took him 30 seconds.  He knew he was slower running around the bases 
because he had to turn corners and he just wasn’t having as much fun as on the 
basketball court! Write an expression to tell Michael how much slower he is 
running around the bases then on the basketball court in meters per 
second.</Problem_Statement> 

2. <Tutor time="[7/24/2000][19:29:43][1]" qtype="QSYMB" goal="x/5-y/30">Hello.  
Please write an expression for how much slower he is on the baseball diamond. 
</Tutor> 

3. <Student time="[7/24/2000][19:30:42][60]">[Student hit return]</Student> 
4. <Tutor time="[7/24/2000][19:30:43][0]" qtype="QCOMPUTE" goal="3"> Hmm.  No.    

We will come back to how much slower he is on the baseball diamond.  Let me try 
to break this down for you. Please compute how much slower he is on the 
baseball diamond if the distance around a baseball diamond was "120" meters,  
and "the length of a basketball court" was "35" meters?  </Tutor> 

5. <Student time="[7/24/2000][19:30:44][2]">[Student Hit return again]</Student> 
6. <Tutor time="[7/24/2000][19:30:44][0]" qtype="QCOMPUTE" goal="7"> Hmm.  No.  

Let me ask you a different question. Please compute his speed running on the 
basketball court if the length of a basketball court was 35 meters? </Tutor> 

7. <Student time="[7/24/2000][19:31:28][43]">x+y [supposed to be 35/5=7] 
</Student> 

8. <Tutor time="[7/24/2000][19:31:28][0]" qtype="QCOMPUTE" goal="35/5">It looks 
like you didn’t understand what I was asking you.  For this question, you 
should not use variables: For instance, use 120 here instead of "y".  Try this 
question again: Please compute his speed running on the basketball court if the 
length of a basketball court was 35 meters? </Tutor> 

9. <Student time="[7/24/2000][19:32:56][88]">7</Student> 
10. <Tutor time="[7/24/2000][19:32:56][0]" qtype="QCOMPUTE" goal="3">Correct.  Now, 

lets try this question again:  Please compute how much slower he is on the 
baseball diamond if  the distance around a baseball diamond was "120" meters,  
and "the length of a basketball court" was "35" meters?  </Tutor> 

11. <Student time="[7/24/2000][19:33:32][37]">120/35</Student> 
12. <Tutor time="[7/24/2000][19:33:32][0]" qtype="QCOMPUTE" goal="120/30"> Hmm.  

No.  Let me ask you a different question. Please compute his speed running 
around the baseball diamond if the distance around a baseball diamond was 120 
meters? </Tutor> 

13. <Student time="[7/24/2000][19:37:11][218]">4</Student> 

                                                 
33 Collected under the conditions described in Chapter 5. 
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14. <Tutor time="[7/24/2000][19:37:11][0]" qtype="QCOMPUTE" goal="3">Correct.  Now, 
lets try this question again:  Please compute how much slower he is on the 
baseball diamond if  the distance around a baseball diamond was "120" meters,  
and "the length of a basketball court" was "35" meters?  </Tutor> 

15. <Student time="[7/24/2000][19:37:30][19]">3</Student> 
16. <Tutor time="[7/24/2000][19:37:30][0]" qtype="QEXPLAIN" goal="35/5-

120/30">Correct. Using only 35, 5, 120, and 30 write an expression for how much 
slower he is on the baseball diamond.</Tutor> 

17. <Student time="[7/24/2000][19:38:14][43]">35/5-120/30</Student> 
18. <Tutor time="[7/24/2000][19:38:14][0]" qtype="QGENERALIZE " goal="x/5-

y/30">Correct. Now, say that again but this time use the variables from the 
problem. </Tutor> 

19. <Student time="[7/24/2000][19:38:53][39]">x/5-y/30</Student> 
20. <Tutor time="[7/24/2000][19:38:53][0]" qtype="NIL" goal="NIL">Correct. A new 

problem is needed </Tutor> 

In this example, the student hits the return key and Ms Lindquist breaks the problem down using 
the concrete articulation strategy.  The student thinks for 60 seconds and then hits return.  
Because Ms. Lindquist was not sure what portion of the problem is causing the difficulty she 
decided to focus on the top-level goal and changes the agenda to look like the following: (We 
use "How much slower he is" as shorthand for "the differences in speed between the basketball 
court and the baseball diamond.")  
QCOMPUTE: Quantity= "How much slower he is":  Correct Answer="3" 
QEXPLAIN: Quantity="How much slower he is":  Correct Answer="35/5-120/30" 
QGENEALIZE: Quantity="How much slower he is": Correct answer="x/5-y/30" 
But, the student immediately makes another "error" (this time the student hits the return key after 
just 2 seconds) when asked to compute a concrete instance.  Since Ms. Lindquist knows how to 
break down this step, she does so (line 6) by asking the student to compute one of the sub-
quantities (i.e.,  the speed on the basketball court).  At this point, she could have also pushed 
onto the agenda the question to ask about the speed on the baseball diamonds as well, but we 
made the design choice not to do this; instead, Ms. Lindquist holds in reserve this question and 
can still use it if she needs to later.  The agenda now looks like this: 
QCOMPUTE: Quantity= "Speed on the basketball court":  Correct Answer="7"(i.e., 35/5) 
QCOMPUTE: Quantity= "How much slower he is":  Correct Answer="3" 
QEXPLAIN: Quantity="How much slower he is":  Correct Answer="35/5-120/30" 
QGENEALIZE: Quantity="How much slower he is": Correct answer="x/5-y/30" 
The student answers with "x+y", but the system knows that he should be using numbers and not 
variables to answer this question.  This is an example of buggy feedback since the agenda was 
unchanged but the student was told something about his answer.  At line 9, the student correctly 
figures out his speed on the basketball court so the system pops the top question off of the 
agenda and gives the student another chance to state the difference in his speeds.  To this the 
student says ’120/35’, which is wrong.  The question that we said the tutor held in reserve is now 
added to the agenda, and the student must compute his speed on the baseball diamond. The 
agenda now looks like this: 
QCOMPUTE: Quantity= "Speed on the baseball diamond":  Correct Answer="4"(i.e., 120/30) 
QCOMPUTE: Quantity= "How much slower he is":  Correct Answer="3" 
QEXPLAIN: Quantity="How much slower he is":  Correct Answer="35/5-120/30" 
QGENEALIZE: Quantity="How much slower he is": Correct answer="x/5-y/30" 
From here on out the student does well and answers each of the remaining questions correctly, 
and the system pops each one off the agenda. 
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 To summarize, we see that the system is capable of combining buggy feedback (line 8) 
with KCDs to provide embedded sub-dialogs (lines 4, 6 and 12). I argue that these embedded 
sub-dialogs are similar to the way the experienced human tutor would break problems down 
when the student was having trouble.   
 The final aspect of the concrete articulation strategy that we have not discussed is the 
hints given.  Through out this chapter we will present the hints instantiated with the problem we 
first started with.  The following are the hints for the three steps in the concrete articulation 
strategy.  We present two versions, one for each of the main quantities to be computed.  Notice 
that the first hint is the initial representation of the question.  The last hint needs to make sure it 
gives enough information to make sure the student will not be stuck.  We have decided to use a 
multiple-choice question as our last hint to try to deter students from being lazy.  You can notice 
that the hints are written with knowledge of the fact that Ms. Lindquist will try to break down 
problems if possible.  This is demonstrated by the fact that the 3rd hint for the "total time the trip 
took" refers to the fact that the time actually on bikes is 5 hours.  It is guaranteed that the student 
will already have figured out that the hint can confidently state that to be the case. 
 Also notice that the generalization hints are written to make them appear more like 
natural dialog with the use of the pronoun "that" (i.e., "Say that again …") to refer to an 
expression that the system just told the student were correct (because a Generalization question 
always follows after a student correctly articulated an answer).  
 



 90 

Compute Question 
The time actually on bikes The total time the trip took 

Please compute the time actually on bikes if the 
speed ridden was "20" miles per hour, and "the 
distance ridden" was "100" miles? 

Please compute the total time the trip took if the 
speed ridden was "20" miles per hour, the distance 
ridden was "100" miles, and "the hours for break" 
was "2" hours? 

<Repeat question and add> Hint: Use the fact that the 
distance ridden is 100 miles and the speed ridden is 
20 miles per hour. 

If the speed ridden was "20" miles per hour instead of 
"s", the distance ridden was "100" miles instead of 
"m", and the hours for break was "2" hours instead of 
"h" what would the total time the trip took be? 

<Repeat question and add>Hint: It is one of these 6 
choices: "100-20", "20-100", "100+20", "100*20", 
"100/20", or 
"20/100". 

<Repeat question and add> Hint: Use the fact that the 
hours for break is 2 hours and the time actually on 
bikes is 100/20=5 hours. 

 <Repeat question and add> Hint: It is one of these 6 
choices: "2-5", "5-2", "2+5", "2*5", "2/5", or "5/2". 

Explain (or Articulation) Question 
The time actually on bikes The total time the trip took 

Using only 100, and 20 write an expression for the 
time actually on bikes. 

Using only 2, 100, and 20 write an expression for the 
total time the trip took. 

<Repeat question and add>Hint: Use 100 for the 
distance ridden and 20 for the speed ridden. 

 Hint: Use 2 for the hours for break and 100/20 for 
the time actually on bikes. 

<Repeat question and add>Pick one of these 6 
choices: "100-20", "20-100", "100+20", "100*20", 
"100/20", or "20/100" 

<Repeat Question and add> Hint: Use 2 for the hours 
for break and 100/20 for the time actually on bikes.  
Pick one of these 6 choices: "2-100/20", "100/20-2", 
"2+100/20", "2*100/20", "2/(100/20)", or "100/20/2" 

Generalize Question 
The time actually on bikes The total time the trip took 

Now, say that again but this time use the variables 
from the problem. 

Now, say that again but this time use the variables 
from the problem. 

 Rewrite 100/20 but in place of 20 put in "s", and in 
place of 100 put in "m"? 

 Rewrite 2+100/20 but in place of 20 put in "s", in 
place of 100 put in "m", and in place of 2 put in 
"h"?[sic] 

 
    In this section, we saw some rich tutoring behavior that we have argued maps well to the 
concrete articulation strategy that our experience human tutor used.  That includes both dynamic 
scaffolding, hinting, positive and negative feedback, and embedded sub-dialogs.  We will now 
look at some of the other tutorial strategies.    

Strategy 2: "Explain in English First"  
The "Explain in English First" strategy has two steps.  

• First explain in English (using pull down menus) how they would achieve the goal 
• Follow that up by symbolizing that subgoal 

We use dynamic scaffolding to identify which of the goals need assistance, and then ask the two 
questions for each sub-goal.  When there is more than one error, we have chosen to proceed in a 
bottom up manner.   
 This first example shows how this strategy plays out on the familiar bike-trip problem.  
We will follow that with a second example that also shows a related knowledge remediation 
strategy for a particular error type. 
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 This first example34 shows an instance of a student making an error only at the top-level 
goal (i.e., using "-" instead of "+"). 
1) <Problem_Statement> You go on a bike ride.  You ride at a speed of "s" miles per 

hour.  You bike "m" miles.  You take a "h" hour break.  Write an expression for how 
long the trip took. </Problem_Statement> 

2) <Tutor time="[12/5/2000][8:10:13][13]" qtype="QSYMB" goal="h+m/s">Hello.  Please 
write an expression for the total time the trip took. </Tutor> 

3) <Student time="[12/5/2000][8:11:18][65]">m/s-h</Student> 
4) <Tutor time="[12/5/2000][8:11:18][0]" qtype="QEXPLAIN_VERBAL" goal="h+m/s"> No. 

But, "m/s" is correct for the time actually on bikes.  We will come back to the 
total time the trip took.  Let me try to break this down for you. Can you explain 
how you would find the total time the trip took?</Tutor> 

5) <Student time="[12/5/2000][8:13:9][111]">the total time the trip took is equal to 
the time actually on bikes plus the hours for break.</Student> 

6) <Tutor time="[12/5/2000][8:13:9][0]" qtype="Q_SYMB_AFTER_VERBAL" 
goal="h+m/s">Correct.  Now, follow that up by writing an expression for the total 
time the trip took</Tutor> 

7) <Student time="[12/5/2000][8:13:28][19]">m/s+h</Student> 
8) <Tutor time="[12/5/2000][8:13:28][0]" qtype="NIL" goal="NIL">Correct. A new problem 

is needed </Tutor> 

We see at line 3 the student correctly symbolize the time actually on bikes but added the hours 
for the break.  Ms. Lindquist responds by confirming the portion that was done correct and then 
asking the student to explain in English the top-level goal (i.e., the total time the trip took.)  For 
this purpose, the student is presented with a fill-in-the-blank question that begins "The total time 
the trip took is equal to".  This question is followed by three choice-menus.  The first and second 
choice menus contained the five phases describing quantities from the problem, as listed here: 

The phrases in the 1st and 3rd Menus 
The actual time on bikes 

The distance ridden 
The hours for break 

The time actually on bikes 
The total time the trip took 

The second choice menu contained these operation descriptors.  
The phrases in the 2nd menu 

Plus 
Minus 
Times 

Divided by 
At line 5 we see that the student correctly explained how to compute the total time, so Ms. 
Lindquist then asked him to say the same thing but in symbols, which the student did correctly. 

Here is a second example35 of the "Explain in English" KCD that also shows a KRD (line 
4) triggered by a certain type of error. 
1) <Problem_Statement>Michael starts a business selling lemonade.  He spent 35 dollars 

buying supplies like lemons, pitchers, and cups.  He sells a 16 ounce glass of 
lemonade for 2 dollars.  If he sells "g" glasses of lemonade, how much profit will 
he end up making?</Problem_Statement> 

2) <Tutor time="[7/18/2000][9:13:53][0]" qtype="QSYMB" goal="2*g-35">Hello.  Please 
write an expression for the profit he makes. </Tutor> 

3) <Student time="[7/18/2000][9:14:37][44]">2*g</Student> 

                                                 
34 This example is with a student who said he (or she) was a sixth grader who learned about Ms. Lindquist from "A 
Google search".   
35 Collected under the conditions described in Chapter 5. 
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4) <Tutor time="[7/18/2000][9:14:37][0]" qtype="QREPRESENT" goal="the amount of money 
he collects"> No. That is part of the answer. Tell me this about your answer. What 
does 2*g represent in words?</Tutor> 

5) <Student time="[7/18/2000][9:15:7][30]">the amount of money he collects</Student> 
6) <Tutor time="[7/18/2000][9:15:7][0]" qtype="QSYMB" goal="2*g-35">Correct.  Now, 

lets try this question again:  Please write an expression for the profit he makes. 
</Tutor> 

7) <Student time="[7/18/2000][9:15:22][15]">2*g+g</Student> 
8) <Tutor time="[7/18/2000][9:15:22][0]" qtype="QEXPLAIN_VERBAL" goal="2*g"> Hmm.  No.    

We will come back to the profit he makes.  Let me try to break this down for you. 
Can you explain how you would find the amount of money he collects?</Tutor> 

9) <Student time="[7/18/2000][9:17:2][100]">the amount of money he collects is equal 
to the price for a glass of lemonade times the number of glasses he 
sells.</Student> 

10) <Tutor time="[7/18/2000][9:17:2][0]" qtype="Q_SYMB_AFTER_VERBAL" 
goal="2*g">Correct. Now, follow that up by writing an expression for the amount of 
money he collects</Tutor> 

11) <Student time="[7/18/2000][9:17:25][23]">g*2-35</Student> 
12) <Tutor time="[7/18/2000][9:17:25][0]" qtype="NIL" goal="NIL">Correct. A new problem 

is needed </Tutor> 

 
The student starts out with a typical production error (that we called a "Sub" error type in 
Chapter 1) common for students who do not have much practice at writing composed expression.  
However, it is also possible that the student simply failed to understand that his goal was to 
determine the total profit.  Therefore, Ms. Lindquist used a knowledge remediation dialog that is 
specific to this type of error.  Specifically, Ms. Lindquist asked "That is part of the answer. 
Tell me this about your answer. What does 2*g represent in words?"  This is similar to the 
occasions when the experienced tutor asked the student to translate from the algebra back into 
English (lines 24,26, 204, 210, 212, 264).  The student is presented with a choice menu to select 
the appropriate noun phase from a list of 5 noun phases that are occur in that problem.  The 
student correctly chooses "the amount of money he collects." Then the student is asked to 
retry the original problem but fails. Ms. Lindquist does not understand (as indicated by first 
saying "Hmm") the student’s response of "2g+g" and therefore, next asks the student to explain 
in English how to achieve both subgoals.  First, Ms. Lindquist asks the student to explain in 
English how to compute the "the amount of money he collects".   This is very similar to what the 
experienced human does at line 196, asking the student to explain how to find average speed. 
Ms. Lindquist presents the student with a sentence and the three multiple choices slots.  Ms. 
Lindquist’s agenda now (i.e., at line 8) looks like the following: 
Qexplain: answer=" the amount of money he collects is equal to the price for a glass 
of lemonade times the number of glasses he sells." 

Qsymbolize: answer="2g" 
Qexplain: answer=" The profit he makes is equal to the amount of money he collects 
minus the amount he spends on supplies." 

Qsymbolize: answer="2g-35" 
The student then explains (line 9), on his first attempt, how to find "The amount of money he 
collects".  The student is then presented with a prompt that asks the student to write an 
algebraic expression for the amount of money collected.  Instead of writing the correct answer of 
"2g", the student writes "2g-35".  Since this answer is correct, Ms. Lindquist removes the 
intervening questions she was planning to ask next (explain "the profit he makes").  She then 
confirms the answer and then, realizing there are no other questions on the agenda, moves onto 
the next problem. 
 The final aspects to discuss for this strategy are the hints for these two questions. 
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"Explain in English First" Question 
The time actually on bikes The total time the trip took 

Can you explain how you would find the time 
actually on bikes?. 

Can you explain how you would find the total time 
the trip took? 

Figure out some way of using both the distance 
ridden and the speed ridden. 

 Figure out some way of using both the hours for 
break and the time actually on bikes. 

The answer is that the time actually on bikes is equal 
to the distance ridden divided by the speed ridden. 

The answer is that the total time the trip took is equal 
to the hours for break plus the time actually on bikes. 

Q_SYMB_AFTER_VERBAL Symbolize after an "Explain In English First" Question 
The time actually on bikes The total time the trip took 

Now, follow that up by writing an expression for the 
time actually on bikes  

Now, follow that up by writing an expression for the 
total time the trip took 

You already told me that the time actually on bikes is 
equal to the distance ridden divided by the speed 
ridden.  Can you say that using the symbols from the 
problem statement? 

You already told me that the total time the trip took is 
equal to the hours for break plus the time actually on 
bikes.  Can you say that using the symbols from the 
problem statement? 

One answer is m/s.  Type that.  One answer is h+m/s.  Type that. 
 

Strategy 3: "Introduce a New Variable" 
A third strategy that Ms. Lindquist uses also appears to match rather well what the experienced 
human tutor protocol shows.  We again will start with an example36 of a student doing the same 
bike-trip problem.   
 
1) <Problem_Statement>You go on a bike ride.  You ride at a speed of "s" miles per 

hour.  You bike "m" miles.  You take a "h" hour break.  Write an expression for how 
long the trip took. </Problem_Statement> 

2) <Tutor time="[12/6/2000][4:43:8][1]" qtype="QSYMB" goal="h+m/s">Hello.  Please 
write an expression for the total time the trip took. </Tutor> 

3) <Student time="[12/6/2000][4:45:10][122]">m/(s+h)</Student> 
4) <Tutor time="[12/6/2000][4:45:10][0]" qtype="QSUB_QUAN_STRICTLY" goal="m/s"> Hmm.  

No.    We will come back to the total time the trip took.  Let me try to break this 
down for you. What is the time actually on bikes?37</Tutor> 

5) <Student time="[12/6/2000][4:46:15][65]">m/s</Student> 
6) <Tutor time="[12/6/2000][4:46:15][0]" qtype="QSUB_QUAN_NOT_STRICTLY" 

goal="h+B">Correct.  If "B" was the time actually on bikes then what would be the 
total time the trip took? </Tutor> 

7) <Student time="[12/6/2000][4:46:53][38]">B+h</Student> 
8) <Tutor time="[12/6/2000][4:46:53][0]" qtype="QSUBSTITUTE" goal="h+m/s">Correct.  

Now, lets try this question again:  You are correct that "h+B" is the total time 
the trip took.  Now, can you state this in terms of the numbers given in the 
problem?</Tutor> 

9) <Student time="[12/6/2000][4:47:37][44]">m/s+h</Student> 
10) <Tutor time="[12/6/2000][4:47:37][0]" qtype="NIL" goal="NIL">Correct. A new problem 

is needed </Tutor> 

 
The idea behind this strategy is that if you want a student to symbolize an expression (i.e., 
"m/s+h") and that expression involves more than one operation (Since "m/s+h" has both division 
and addition) you can break these down into two steps.  However, before the first step, you need 

                                                 
36 This example comes from the web site. The student identified himself or herself as being in sixth grade and who 
heard about Ms. Lindquist through the "Netscape search engine." 
37 Notice that this question generated using just dynamic scaffolding and has no tutorial strategy associated with this.  
An object of future work will be to figure out the best way of combine these strategies.  One idea is to use "Concrete 
Articulation" strategy for expression that involves just one operator, and to use the "Introduced Variable" strategy 
for all large (one than one operator) expression components. 
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to make sure that the components  (i.e., "m/s" and "h") have been symbolized (we could ask the 
student "What represents the time of the break?" but we don’t bother asking of expressions that 
have just one literal).  The two steps are then as follows. 
3. Introduce variables to stand for any components (line 6) 
4. Then ask the student to do the symbolic substitution to remove the introduced variables (line 

8) 
 This procedure is similar to what your experienced human tutor did as we argued in 
Chapter 2. Consider the following fragment from the experienced human protocol.   
 
327. STUD [reads problem] A car salesperson is paid a base salary of $200 per month plus the additional amount of money in 

commissions for each car she sells.  She sold four cars last month and received "x" dollars that month.  If she sells "h" 
cars this month, write an expression showing how much she earns this month.  
What’s her commission? 

328. TUTOR Good question. 
329. STUD Oh I have to find this out don’t I 
330. TUTOR I think so 
331. STUD Um   x [minus] that  
332. STUD It doesn’t say how many cars.  Ah 4 cars last month so it would be x-200 divided by 4 
333. [he puts in the parenthesis only after writing "x-200/4"] 
334. TUTOR OK 
335. [he has written (x-200)/4 = commissions" and then adds a "c" before the commission apparently to indicate that commission’s will have the 

variable "c" stand for it] 
336. STUD Equals commissions or "c".  So this month would be 200+c*4  = salary 
337. [writes 200+c*4=salary] 
338. TUTOR This month? 
339. STUD Yeah 
340. TUTOR Read it again. 
341. STUD This month,  or she sold h cars 
342. [scratches out the 4 and replace it by "h"] 
343. TUTOR You want to skip a line so you aren’t messy 
344. [starts writing "200+c*h" and tutor interrupts after the "c" to say  
345. TUTOR OK now is C something that was given to you? 
346. STUD No 
347. TUTOR Where did it come from?  What numbers 
348. STUD So have to do this  [scratches out the "200+c*h" he just wrote] 
349. TUTOR You have to rewrite the WHOLE expression. 
350. [writes 200+(x-200)/4*h=salary] 
351. TUTOR Good 

 
The student, without any prompting, introduces a variable ("c") to stand for the commission.  He 
writes "c=(x-200)/4" which is correct.  The student then says that the final answer is "200+c*4" 
but the correct answer would be "200+c*h".  The tutor prompts the student with, "This month?" 
and then tells him to read the problem again. The tutor’s comments indicate that the tutor 
understood and followed the student’s use of this variable since the tutor knew how to debug the 
student error by asking "this month?" that focused on the one error in the expression.  The 
student attempts it again and gets it correct with "200+c*h".  The tutor then prompts for the 
substitution step (line 345) by reminding the student that the "C" was a variable he introduced.   
 
 Our final example is of a real student from our experiment reported in Chapter 5.  Take 
note to the dynamic scaffolding and the positive feedback at line 4, followed by the second step 
in the strategy at line 6. 

1.<Problem_Statement>Adam, Stan and Doug spent the day picking strawberries.  Adam 
picked twice as much as Stan and Doug picked 7 more kilograms than Adam. 
Suppose Stan picked "s" kilograms of strawberries.   Stan and Doug cooperated 
to make a pie.  How many kilograms of strawberries did Stan and Doug have 
together?</Problem_Statement> 
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2.<Tutor time="[7/20/2000][9:16:5][0]" qtype="QSYMB" goal="s+(2s+7)">Hello.  Please 
write an expression for the combined number of kilograms for Stan and Doug. 
</Tutor> 

3.<Student time="[7/20/2000][9:19:25][201]">7+(2*s)</Student> 
4.<Tutor time="[7/20/2000][9:19:25][0]" qtype="QSUB_QUAN_NOT_STRICTLY" goal="s+C"> 

No. But, "7+(2*s)" is correct for the number of kilograms Doug picked.  We will 
come back to the combined number of kilograms for Stan and Doug.  Let me try to 
break this down for you.  If "C" was the number of kilograms Doug picked then 
what would be the combined number of kilograms for Stan and Doug? </Tutor> 

5.<Student time="[7/20/2000][9:20:42][77]">c+s</Student> 
6.<Tutor time="[7/20/2000][9:20:42][0]" qtype="QSUBSTITUTE" 

goal="s+(2s+7)">Correct.  Now, lets try this question again:  You are correct 
that "s+C" is the combined number of kilograms for Stan and Doug.  Now, can you 
state this in terms of the numbers given in the problem?</Tutor> 

7.<Student time="[7/20/2000][9:21:26][44]">7+(2*s)+s</Student> 
8.<Tutor time="[7/20/2000][9:21:26][0]" qtype="NIL" goal="NIL">Correct. A new 

problem is needed </Tutor> 

 
 The hints for first step in this strategy are as follows.   

Introduce a variable to stand for a sub-quantity 
The time actually on bikes The total time the trip took 

<This step does not apply to one-operator problems 
since there are no variables to introduce> 

If "B" was the time actually on bikes then what 
would be the total time the trip took? 

 What is the total time the trip took? Use "B" instead 
of "m/s" for the time actually on bikes.  Hint: pick 
one of these: h-B, B-h, h+B, h*B, h/B, or B/h. 

The 2nd Step in Introduce Variable Strategy 
The time actually on bikes The total time the trip took 

Use "m" and "s" to calculate the time actually on 
bikes. 

Now, lets try this question again: You are correct that 
"h+B" is the total time the trip took.  Now, can you 
state this in terms of the numbers given in the 
problem? 

What is the time actually on bikes? Hint: pick one of 
these: m-s, s-m, m+s, m*s, m/s, or s/m. 

What is the total time the trip took? Hint: You know 
the answer is "h+B" but you must substitute in the 
value for "B".  Replace "B" with "m/s".  Use 
parentheses if needed. 

 Type h+m/s. 

Strategy 4: "Convert the Problem into an Example to Explain"  
The strategy we are now about to present did not follow from either our cognitive studies or from 
the experienced human tutor, but rather from the prior work of other researchers.  Zhu and Simon 
(1987) have argued that a good way to teach a problem-solving skill is through looking at an 
example integrated with problem-solving.  This suggests that if a student is having difficulty, we 
can turn the problem into an example by telling the student the answer and then asking him to 
explain the steps. We have taken Catrambone’s (1986) suggestion that learning from examples 
can be improved by asking questions that focus on the goal structures of the domain (see also 
Renkl (1997) for using worked example.)  Chi (1996) and Conati et al. (1997) have both 
proposed asking students to explain is beneficial.  This strategy also gets at the goal of practicing 
translation from the algebraic representation to the verbal representation, which Corbett et al. 
(2000) have shown to be effective for learning symbolization.  The following is an example with 
a simulated student.  

1) <Problem_Statement>You go on a bike ride.  You ride at a speed of "s" miles 
per hour.  You bike "m" miles.  You take a "h" hour break.  Write an 
expression for how long the trip took. </Problem_Statement> 
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2) <Tutor time="[12/14/2000][14:20:38][1]" qtype="QSYMB" goal="h+m/s">Hello.  
Please write an expression for the total time the trip took. </Tutor> 

3) <Student time="[12/14/2000][14:20:52][14]">m*s-b</Student> 
4) <Tutor time="[12/14/2000][14:20:52][0]" qtype="QEXAMPLE_EXPLAIN" goal="m/s"> 

Hmm.  No.    The answer is actually h+m/s.  Let me ask you some questions to 
help you understand it. Can you explain where the m/s came from?</Tutor> 

5) <Student time="[12/14/2000][14:21:8][16]">m/s is equal to the distance 
ridden divided by the speed ridden.</Student> 

6) <Tutor time="[12/14/2000][14:21:8][0]" qtype="Q_WORKED_REPRESENT" goal="the 
time actually on bikes">Correct. What does m/s represent?</Tutor> 

7) <Student time="[12/14/2000][14:21:18][10]">the time actually on 
bikes</Student> 

8) <Tutor time="[12/14/2000][14:21:46][0]" qtype="QEXAMPLE_EXPLAIN" 
goal="h+m/s"> Hmm.  No.  Can you explain where the h+m/s came from? Hint: 
You need to use the hours for break and the time actually on bikes.</Tutor> 

9) <Student time="[12/14/2000][14:22:4][18]">h+m/s is equal to the hours for 
break plus the time actually on bikes.</Student> 

10) <Tutor time="[12/14/2000][14:22:4][0]" qtype="Q_WORKED_REPRESENT" goal="the 
total time the trip took">Correct. What does h+m/s represent?</Tutor> 

11) <Student time="[12/14/2000][14:22:17][13]">the total time the trip took 
</Student> 

12) <Tutor time="[12/14/2000][14:22:17][0]" qtype="NIL" goal="NIL">Correct. A 
new problem is needed </Tutor> 

 
 The reader might be asking if the experienced tutor we observed used this strategy.  If 
you look at the human tutor at one level the answer is "no" since the tutor never told the student 
what the correct answer was.  However, on another level, the tutor did use some similar types of 
questions as the example above used.  In particular, the experienced tutor would ask the student 
to translate his answers into English (i.e., line 204 "550 represent what?")   
 The hints for this strategy are as follows: 

Translate a mathematics relation to English 
The time actually on bikes The total time the trip took 

Can you explain where the m/s came from? Can you explain where the h+m/s came from? 
<repeat question  and add> Hint: You need to use the 
distance ridden and the speed ridden. 

<repeat question  and add> Hint: You need to use the 
hours for break and the time actually on bikes. 

The answer is the distance ridden divided by the 
speed ridden. 

The answer is the hours for break plus the time 
actually on bikes. 

Translate a mathematics quantity  
The time actually on bikes The total time the trip took 

What does m/s represent? What does h+m/s represent? 
<There are no hints since there are usually only a few choice to pick from.> 

 
While implementing this strategy, we learned that it is very easy to add strategies (or at least this 
one) to Ms. Lindquist.  In fact, it took only about 2-3 hours to add all the productions needed to 
implements this strategy (See Appendix J for more information).  We look forward to testing the 
extensibility of this architecture by attempting to add other strategies that might be further away 
in the design space. 

Strategy 5: "Cut to the Chase"  
Ms. Lindquist is also capable of using what we call the cut-to-the-chase strategy.  It is, maybe, a 
corruption of the word "strategy" since this strategy is simply to tell the student the answer.  Not 
surprisingly, our human tutor never did this.  This strategy has the one advantage that it takes 
less time and thus frees students to do other problems. 
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 Next, I will discuss the 26 different tutorial operators that the experienced human tutor 
used from my thesis proposal. 

Modeling the Tutorial Operators of the Experienced Human 
Tutor  
After I transcribed the protocol of the experienced human tutor, I created a list of "operators" (or 
tutorial moves) that the human tutor used.  These 26 operators were generalizations of the 
behavior we observed that our experienced tutor used.  I took this list of operators as design 
goals for the building of a system that was capable of using similar "moves".  I presented these 
design goals at my thesis proposal in April 1998.  Appendix D shows that exact same list.   

Fourteen of these goals I have achieved (Table 4).  Six of them I have not (Table 6). An 
addition, six of them (Table 5) I have made possible, but I have not implemented them. The 
groups of operators that have been achieved are mainly focused on the tutorial strategies that I 
have implemented, as well as implementing what I now call dynamic scaffolding.  The six 
operators that were not achieved have different reasons for their failures, and are given in Table 
6.  The six operators that were made possible, but not implemented, are what I now call 
knowledge remediation dialogs, because they focused on a particular type of error the student 
could make.  I gave such operators lower priority, as they do not occur as often knowledge 
construction dialogs.  

In summary, a substantial number of the operators I identified from my human tutor were 
achieved.  Next, I will present a comparison between Ms. Lindquist and traditional model tracing 
tutors. 
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Operators that were achieved. 
Op1: Concrete Instantiation Analogy 
Op3: Encourage the student to generalize. 
Op4: Reflection after the correct answer. 
Op5: Reflection on, or challenge of, a correct answer if the tutor suspects guessing. 
Op7: Requesting that the student recall information by either questioning and or 
hinting.38 
Op9: Ask the student to identify the name of a quantity represented by a symbol (or 
expression).  Include follow up clarification if the student is not specific enough. 39 
Op10: Ask a student to identify the symbol (or expression) that represents a quantity.40 
Op12: Stating the general quantitative relationships in words.  This is like generalization, 
but can occur anywhere in the problem.41 
Op13: If the student might have forgotten what work he has already accomplished then 
remind the student what steps they have already completed.42 
Op14: Positive Feedback on parts that are correct. 
Op15: Simple Feedback on an identifiable bug category. 
Op16: Ask the student to figure out what sub-goal to set.43 
Op24: Levels of Specificity 
Op25: Be able to differentiate a close answer from a very wrong answer, from an 
unintelligible one.44 

Table 4: Operators that were achieved. 

 
Operators that were made possible, but not implemented 

Op11: Correct a bug by referring to the implicit semantics about the relative size of 
numbers. 
Op17: Socratic Technique showing a contradiction from a student’s error. 
Op18: Order of Operations Sub-Dialogue 
Op19: Teach students how to do unit analysis. 
Op20: Coach the student to realize distractor numbers are not needed. 
Op21: Slips and other mistakes that tutors do not dwell on. 

Table 5: Operators that were made possible but not implemented. 

                                                 
38 Ms. Lindquist asks questions like this, but it should be noted that we do not model the retrieval of definitions any 
differently then the way we model the execution of any skill. 
39 This is the KRD for error of omission 
40 This is used in the "Explain in English" strategy as well as the "Worked example" strategy.   
41 This is used in the "Explain in English". 
42 Several of our hints do this.   
43 We can do this but chose not to as explained in the "Explain in English" section. 
44 Right now, we differentiate between an unintelligible response and a wrong response.  We indicate this difference 
with the use of "hmm" for unintelligible response.  It is a small change to expand this to include saying something 
different according the number of errors detected (i.e., "No, But that is close. You have made one mistake.") 
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Operator Comments 
Op2: Tutor makes 
reference to dialogue 
history. 

Ms. Lindquist does not keep around a great deal of context, 
so it cannot pull out of memory a similar example that the 
student did and make reference to that.  However, Ms. 
Lindquist does pay attention to dialogue coherence.  She uses 
phrases like "No, lets try this question again." 

Op6: "Feedforward" 
(given before the 
student makes an 
anticipated mistake)  

What would it take to generate such a move?  We could be 
keeping track of the probability that a student will answer a 
question correctly, and if that is very low then we could use 
"feedforward".  We have not done so because we have not 
bothered to keep track of probabilities of correctness for each 
skill.  Ms. Lindquist’s architecture does not prevent this at all; 
we just have chosen to focus on aspects that we thought 
would provide a bigger pedagogical benefit. 

Op8: Challenge the 
student’s answer 

It would be interesting and possibly to use the probability 
that the student guesses as way to determining when to 
challenge the student doing so even sometimes when it is 
correct. 

Op22: Tutor focuses 
attention on a 
previous answer that 
was more correct 

We do not model the repair process of how a student takes a 
wrong answer and changes it to try to repair it.  
Consequently, our tutor does not say anything like "Getting 
closer".  Since our system already does count the number of 
errors in an answer, it would be possible to add a tutorial rule 
that would provide this sort of feedback. 

Op23: Tutor 
comments on the 
repair the student 
attempted 

See above Op 22. A full treatment of this type of feedback 
would really require us to model the repair process itself.  At 
present each time the student give an answer we assume that 
the student did all the processes again to get that answer, but 
it seems reasonable that when a student is told something is 
wrong they hypothesize what aspect is wrong, and if we were 
to detect the change they made we might come up with a 
good pedagogical response.  

Op26: Engage the 
student to try to 
diagnosis what the 
student was thinking 

We do not ask such opened questions that are very difficult 
to understand.  We are thinking of adding such natural 
language understanding capabilities but that will be a very 
big project.  Consequently we try to achieve some of the 
same objectives with more targeted questions but it might be 
that such opened questions are a key way that human tutors 
differ from computer tutors and thus a possible reasons why 
they are so much more effective. 

Table 6: Operators that were not achieved, and the reason for each. 
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Comparison of Ms. Lindquist Architecture and the Traditional 
Model Tracing Architecture 
Similarities 
Ms. Lindquist’s architecture is an extension of the traditional Andersonian model-tracing 
architecture and, therefore, has many things in common with it.  Both architectures are designed 
for coached problem-solving; they are both based on the learning theory that student learn how 
to solve problems by doing.  These systems invite a student to solve a problem and progress 
through a curriculum using masterly learning.  Both architectures are based around a cognitive 
model of student thinking, using production to model cognitive steps.  Both architectures use the 
model-tracing algorithm to perform plan-recognition on the student’s answer.  Both systems use 
buggy rules to model misconnections and common errors.  Both architectures use the idea of 
providing a series of hints. 

Differences  
However, the two architectures are quite different.  The architectures of both are quite different.  
Figure 3 is a depiction of the model-tracing architecture that the reader can compare to the 
depiction of Ms. Lindquist’s architecture (also shown in Figure 2 of Chapter 3).  Probably the 
most important additions of the Ms. Lindquist architecture are the tutorial strategies (i.e., the 
KCDs and KRDs).  This and other differences are summarized in Table 8, and each will be 
explored in more detail. 
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 Traditional Model Tracing 
Architecture 

Ms. Lindquist’s Architecture 

1 Provide buggy-feedback or hints to a 
step. 

If the step can be broken down, choose a 
KCD to scaffold that step. Uses hints 
only if it is not possible to break down a 
step.   

2 Only one strategy made explicit by 
the reified interface. 

Allows multiple different strategies.  
Also allows for those strategies to be 
multi-step. 

3 Allows only one error in an input. Deals with inputs with multiple errors. 
4 Student needs to learn a new 

interface. 
Tutor asks questions in natural language. 

5 An all-or nothing scaffolding 
technique. 

Just-in-time scaffolding.  First, ask the 
"main" question, followed by provided 
scaffolding on just the goals missed. 

6 No model of dialog: ignores all 
context (or nearly so). 

Has an agenda that holds context 
information. 

Table 8: A comparison of differences between the traditional model-tracing architecture, and Ms. Lindquist’s 
architecture. 

 The first difference in Table 8, is that Ms. Lindquist has what I have termed dynamic 
scaffolding. This means that the tutor diagnosis the student’s answers and gives positive feedback 
on the correct steps, followed by focusing the dialog on the steps that had errors.  "Focusing the 
dialog on a step" could mean something as simple as just asking a single question about a 
particular step, but a potentially better approach is to have what we have called knowledge 
construction dialogs (KCD).  These KCDs are multi-step plans to help students.  These plans are 
stored on the tutorial agenda, which has no analog in the traditional model tracing architecture.  
The individual steps of a KCD can themselves lead to sub-dialogs.  However, traditional model-
tracing tutors do not have an ability to ask a new question; instead, they must rely on giving a 
buggy-feedback messages or letting the student ask for a hint.  Therefore, a major difference is 
that Ms. Lindquist’s architecture allows for a much more sophisticated dialog between the 
student and the tutor (One can plausibly argue that model tracing tutors do not really have a 
dialog with student since the tutor never asks the student a new question.)  
 The second difference in Table 8 is that model-tracing tutors make only one strategy 
explicit by reifying certain aspect in the interface.  VanLehn, Freedman & et al. (2000) say that 
"Model-tracing tutors are sometimes criticized for allowing only one problem solving strategy." 
VanLehn et al. cites Reiser, Kimberg, Lovett, & Ranney’s (1992) criticism of Anderson and 
Corbett’s lisp tutor because it forced students to enter code top-down.  Another example of a 
single scaffolding strategy is the interface of the Carnegie Learning tutor.  That tutor was 
designed to scaffold problem solving by first doing several concrete instances, but there are other 
ways to scaffold symbolization.  For instance, Ms Lindquist provides the "Explain in English" 
strategy as well as the concrete articulation strategy (the later is more like the Carnegie Learning 
tutor.)  These two strategies are quite different, yet Ms. Lindquist’s architecture makes it easy to 
have different tutorial strategies, and to uses them at any time.  In contrast, model-tracing tutors 
have a single strategy, and are tough to change because the pedagogical responses are embedded 
inside of the student model. 
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 The third difference has to do with how the system deals with more then one buggy rule 
applying at a time.  All systems built at Carnegie Mellon University have only been able to 
interpret a student’s incorrect answer if their response could be matched to a single buggy 
feedback rule.  I viewed this a serious limitation, and therefore designed Ms. Lindquist ’s 
architecture so that she can handle responses by students that requires multiple different buggy 
rules in order to trace them.  This seems more important for problems that are more complicated, 
such as the ones Ms. Lindquist was designed for  (e.g., four operator problems with answers like 
"5*g+7*(30-g)").  Being able to deal with multiple errors not only involves changes in the 
student model and model tracing, but also in the tutorial model, since the tutorial model needs to 
be able to respond intelligently to more then one error occurring at a time.  
 The fourth difference is that Ms. Lindquist is designed with natural language dialog in 
mind, while traditional model-tracing systems encourage the author to use graphical user-
interface elements to force the student to display most of their reasoning.  For instance, the 
student might be asked to define variables (Gertner & VanLehn, 2000), label columns 
(Koedinger et al., 1995), or specify a goal tree (Koedinger & Anderson, 1993; Singley, 1990; 
Reiser, Beekelaar, Tyle, & Merrill, 1991).  Many ITS designers claim that asking students for 
this information increases student learning; some have found evidence to support this (e.g., 
Merrill & Reiser, 1994; Singley, 1990).  However, one reason to think there might be an 
advantage to natural language is that students already understand language.  Therefore, students 
do not have to learn a new-user interface for each strategy that the tutoring system employs45.  
 The fifth difference is that Ms. Lindquist’s architecture can be used to provide for a more 
natural fading technique, since the tutor starts out by asking for the top-level question.  If we 
compare Ms. Lindquist with the Carnegie Learning tutor, we notice that that system asks a 
student to fill in many questions per problem (For the worksheet shown in Figure 2, there are 21 
questions in 3 columns with 7 questions per column, resulting in 21 questions.)  It might be a 
poor use of student’s time to ask this many questions per problem.  It might be better to use Ms. 
Lindquist to first let the student try to answer the problem without assistance.  If the student fails, 
then ask just a few questions focused on the aspects the student got wrong.  Ms. Lindquist’s 
ability to engage in sub-dialogs means that the author of the intelligent tutoring system, doesn’t 
have to ask the student a bunch of preliminarily questions and instead can choose to ask those 
questions, only if the student is having trouble.  This might make better use of student’s time. 
 The sixth difference is that traditional model-tracing tutors tend to respond to the same 
errors in the same manner, regardless of the state of the dialog.  This is due to the fact that 
model-tracing tutors do not model dialog at all.  On the other hand, Ms. Lindquist has an agenda 
that keeps dialog information around, so that the system responds differently depending upon 
that context.  For instance, the first time the student makes an error on a particular question he 
might get a KCD.  Suppose that when that KCD is finished the student is asked the question 
again but fails; the student will get a hint rather then do the KCD over again.     
 It is worth noting that these innovations, listed above, are not random improvements; they 
are related to one another.  For instance, once you decided that you want a system that can detect 
multiple errors simultaneously, then it makes sense to design a way to give feedback for different 
errors in some way (i.e., a dialog system that can ask about the first error followed by asking 

                                                 
45 However, it should be noted that since natural language is intractable, in the general case, Ms. Lindquist gets 
around many of the difficult questions (e.g., uses pull-down menus).  Even so, I still say evidence that students had 
to learn this new interface, but the hope is that it is easier to learn the way the system asks questions, then a 
complicated graphical-user interface. 
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about the second error).  In addition, once you have decided that you want a system that can ask 
new questions, you need a system that can deal with dialog intelligently.  That, also, naturally 
leads to asking a series of questions that are all related to a single goal (i.e., a KCD). 

Chapter Conclusions 
In this chapter, we have seen that Ms. Lindquist’s behavior maps well onto some of the features 
we observed in our human tutor.  For instance, we saw the concrete articulation strategy mapped 
quite well.  We also compared Ms. Lindquist to a traditional model-tracing tutor and noted 
salient point where Ms. Lindquist has improved upon traditional model-tracing tutors.  In the 
next chapter, I will present an empirical evaluation of Ms. Lindquist. 
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Chapter 5: A Formative Analysis Comparing Ms. 
Lindquist with a Computer Aided Instruction 

Control 
Chapter Overview 
In this chapter, I report on a formative evaluation of Ms. Lindquist, a computer tutor 
designed to be more like a human tutor by engaging the student in a dialog.  Our goal in 
this study was to detect any benefits of Ms. Lindquist’s dialogs as compared to a control 
condition, representing a classical Computer Aided Instructional (CAI) approach.  This 
study answers the question "If you keep the number of problems fixed, do students learn 
more by going though a dialog with Ms. Lindquist."  This study does not answer the 
question "It is worth the extra time it takes?"  

Independent Variable: Type of feedback after student 
errors 
Control Condition: A traditional Computer-Aide Instructional (CAI) approach: Let the 
student try to answer the problem on his or her own.  If he or she answers incorrectly 
provide the student with the correct answer and then move to the next problem.   
 
Experimental Condition: A dialog-enabled Intelligent Tutoring System approach: This 
system had the following salient features (described in the previous chapters): 

• Dynamic subgoal scaffolding used to break problems down into steps the 
student answered incorrectly, while also providing positive feedback on the 
subgoals that the student accomplished correctly.  The scaffolding depends 
upon the student model diagnosis of the student’s previous answer. 

• For the subgoals that need scaffolding, the tutor provides multi-step tutorial 
strategies including: 1) Concrete Articulation, 2) Explain in English First, 3) 
Introduce a Variable to represent a quantity, and 4) Tell the student the answer 
and then ask them to explain why it is correct. 

 

Dependent Variables: Learning Measure 
The outcome measure of interest was student learning as measured by a posttest.46  

                                                 
46 I was also interested in how long it took students to reach mastery, measured both in terms of total time 
and the number of problems it took.  Unfortunately, most of my students did all of the problems in a section 
before reaching mastery, which basically turned the experiment into one where the number of problems 
was controlled.  Not surprisingly, students took two to three times longer if you engaged them in a dialog, 
than if you just simply told them the answer.  Therefore, I will not be able to compare the conditions in 
terms of the amount time needed to reach mastery.  I am still able to compare the conditions to see which 
did better when the number of problems completed is held constant (The average number of problems done 
by the two groups was equal.)  Consequently, the conclusions from this study will be formative in nature. 
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Procedure 
I conducted a randomized controlled experiment to compare my two conditions.  Twenty 
high-school students participated.  These students were participating in a full-day, month 
long summer enrichment program at a nearby university.  They used the software as part 
of their regular mathematics classroom time.  There were seven students going into the 
tenth grade, eleven students going into the eleventh grade, and two students going into 
the twelfth grade.  

Students were given two paper-and-pencil assessments during their normal 
classroom period that took approximately 40 minutes to complete.  I used the assessments 
to block the subjects into two groups of equal ability level.  The first assessment was an 
eleven-item assessment on symbolization (see Appendix G.)  I gave this same assessment 
at the post-test.  The second assessment was a 21-item measure of general mathematical 
knowledge.  This assessment was used only as a pretest.  It was given to help block the 
students into two groups with more precision.  When creating the two blocked groups, I 
blocked first by using the more heavily weighted symbolization assessment.  I used the 
general mathematics knowledge assessments as a secondary sorting key. Three students 
who were not present the day of the assessments were randomly assigned to a condition 
(two in one condition, one to the other). 

In order to occupy my students’ time roughly equally, I decided that all of them 
would see both conditions. The curriculum was split roughly in half.  Half of the students 
were to proceed through the curriculum in the control condition, while the other half were 
in the experimental condition.  After completing a six-item, embedded (the student did it 
on the computer) mid-test, the students switched to the other condition.  Both the 
curriculum and the mastery-learning algorithm used to proceed through the curriculum 
were the same for both conditions.  While in the computer lab, students worked 
independently.  Two mathematics teachers (including myself) were present to help 
students but the teachers sat idle most of the time. 

Students used the software during five class periods each lasting about 45 
minutes.  Students were given additional time if needed to finish the curriculum.  All but 
4 students finished the curriculum.  

As described in the previous chapters, the particular strategy Ms. Lindquist uses 
to tutor a subgoal is chosen in advance from among the 4 strategies.  I decided not to 
switch the strategy a student was receiving while in the middle on a section.  I did this 
because I wanted the students to become familiar enough with a strategy so that they 
could begin learning from its use.  The following table illustrates how I made those 
assignments across the 20 subjects.  Each column represents a student and  indicates the 
type of interaction the system provided.   
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 Students broken into two groups 

 Exp-Con Con-Exp 
Section 1 1 1 1 1 1 1 1 1 1 1 c c c c c c c c c c 
Section 2 1 1 1 1 1 1 1 1 1 1 c c c c c c c c c c 
Section 3 4 4 4 2 2 2 3 3 3 3 c c c c c c c c c c 

 Six Item Mid-Test 
Section 4 c c c c c c c c c c 3 3 3 4 4 2 2 1 1 1 
Section 5 c c c c c c c c c c 2 1 4 1 3 1 3 2 3 4 

 A Different Six-Item Post-Test 

Key: 1) Concrete Articulation, 2) Explain in English First, 3) Introduce a Variable to 
stand for a quantity, and 4) Tell the student the answer and then ask them to explain why 

it is correct.  The control condition is indicated by "c".  
 

Of the two equal ability groups I called one the "Exp-Con" group since they 
received the experimental condition on the first half of the curriculum, (section 1-3) and 
the control condition on the second half (sections 4-5).  The "Con-Exp" group 
experienced the conditions in the opposite order. 
 The first ten students listed (i.e. the first ten columns) received the concrete 
articulation strategy (indicated by the "1") on the first two sections of the curriculum.  I 
did this because I thought this strategy probably worked better then any of the other 
strategies on one-operator problems.  Then for the third section, each of these ten students 
received one to the three remaining strategies.  Finally, all ten of these students were in 
the control ("c") condition for the last two sections.  The other ten students received the 
control condition first and then some combination of the experimental conditions. 

The curriculum I used was divided up into the five sections (see the first figure in 
chapter three).  Each section had a different number of problems and its own mastery 
criterion.  The sections that had more problems had a higher mastery criterion. 

 
Section Description Number of 

Problems 
Mastery 
Criterion 

1) One-Operator Problems. 9 4 
2) One-Operator involving distance, rate and time. 12 4 
3) Two-Operator linear forms. 16 5 
4) Two-Operator with some involving division and 
parenthesis. 

13 4 

5) Three and Four Operator Problems 17 5 
 
Within a section, the problems were randomly ordered to prevent students moving in 
synch with the student sitting next to them.  Above I mentioned the six-item mid-test 
between section 3 and 4.  For those problems, students received the control condition 
feedback.  All the students were given those six problems in the same order, to better 
insure reliability across subjects.  At the end of section 5, the students received a different 
six-item test on the computer.  Finally, the students completed the same 11-item 
symbolization test, on paper, that had been administered to check for overall learning.  
Note, because 4 students did not finish the curriculum and thereby did not get to the six-
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item post-test given on the computer, I added these same six-items to the student’s paper 
and pencil post test.47 

Results 
As I mentioned above, students took 2-3 times longer in the experimental 

condition (First half of the curriculm:91 minutes vs. 43 minutes, Second half: 2 hours 29 
minutes vs.  37 minutes).  The first result I report is that students demonstrated learning, 
regardless of condition.   

First, I report a sanity check that, overall, students learned something.  To check 
for overall learning I compared the performance of students on the paper-and-pencil 
eleven-item test that was given at the start and the end of the study.  I did a repeated 
measures analysis of variance  (F(1,16)=2.195,p=.16). The three subjects with no pre-test 
were thrown out for this analysis.  Overall, students gained by about one-half of a 
problem  (pre=1.9,post=2.5). 

  
 

To test for differential learning rates by condition, I performed a 2 factor ANOVA 
on the students’ test scores.  One factor of the model was taking into account whether the 
student received the experimental or the control condition on the sections directly 
preceding the test.  The second factor was the test (the mid-test after section 3 vs. the 
posttest after section 5). I found that there was a statistically significant difference  
(F(1,37)=3.4,p=.07) between the number of problems correct on the  mid-test (1.7) and 
the posttest (.95).  Since the post-test items were harder, this is not surprising.  I found a 
close to marginally statistically significant difference (F(1,37)=2.6,p=.12) in the number 

                                                 
47 All four of those students completed the fourth section and got partially through the 5th section.  In 
particular, the four students got to problems 3, 6, 6 and 14 respectively. 
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Figure 1: Overall, students improved their symbolization abilities (by close to 
one problem) as measured by the number of problems they got correct on the 

repeated 11-item symbolization paper-and-pencil test. 
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of problems correct between the experimental and the control conditions.  The 
experimental condition averaged 1.65 problems correct per test, while the control group 
averaged only one problem correct.  Taking the standard deviation into account, I found a 
respectable effect size of .76 between the experimental and the control conditions (see 
Appendix I for a discussion of how to interpret effect size measures.)   

The following figure shows that the group "Exp-Con" did better on the mid-test 
than compared to the "Con-Exp" group.  However, after the subjects completed the mid-
test and were switched to the second condition, a reversal happened and the "Con-Exp" 
group did better.  This argues that the experimental condition (i.e., Ms Lindquist) was 
more effective at promoting learning.  Note, that this experimental design probably 
underestimated the impact of Ms. Lindquist, since the students who were performing 
worse at the mid-test were able to overcome this deficit to do better then the other group.   
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Figure 2: Student did better on the embedded tests, after having just received the experimental 
treatment.  

When is the Learning Happening? 
Since mastery-learning was used this means that some students would graduate from a 
section before doing every problem.  However, since these problems were hard and the 
mastery criterion was high, (4 or 5 correct in a row, depending upon the section) most 
students did not graduate ("graduate" means reach the mastery criterion before running 
out of problems in that section) from most of the sections.  This is evidenced by the fact 
that on average, student did 34.5 of the 37 problems in the first half of the curriculum.  
This average of 34.5 was the exact same for the two groups.  Therefore, we do not see 
any evidence of the experimental group being promoted to the next section any faster.  
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On average, the students were getting slightly over 13 problems correct on the problems 
they did.  I found no evidence that students were getting more problems correct in either 
condition (F(1,18)=.236, p=.63, experimental=13.2, control =14.0).  This was similar in 
the second half of the curriculum. 

Discussion 
What accounts for the fact that the dialogs that Ms. Lindquist had with students lead to 
more learning?  We take an in-depth look at a single student to see what is going on in 
these dialogs.  

A Extended Look at the Performance of a Single Student 
I shall refer to this student with the masculine pronoun.  This particular student received 
the experimental condition on the first three sections and the control condition on the last 
two sections.  In particular, as part of the experimental condition he received concrete 
articulation scaffolding on first two sections of the curriculum.  Here is an example form 
the first section showing the concrete articulation strategy doing what it was designed to 
do.  The student initially fails to do a correct symbolization, but does the arithmetic step 
correctly.  Nevertheless, and consistent with our theory, getting the articulation correct 
takes three attempts for the student.  The generalization step then takes one attempt and is 
easy once the articulation has been accomplished. 
 

1. <Problem_Statement>Mary goes to store with "m" dollars.  She spent all 
her money to buy 5 bottles of her favorite soda.  Write an expression for 
how much each bottle costs.</Problem_Statement> 

 
2. <Tutor time="[7/11/2000][9:26:50][0]" qtype="QSYMB" goal="m/5">Hello.  

Please write an expression for the price of one bottle. </Tutor> 
3. <Student time="[7/11/2000][9:28:28][98]">m-5</Student> 

 
4. <Tutor time="[7/11/2000][9:28:29][0]" qtype="QCOMPUTE" goal="20"> No.   

We will come back to the price of one bottle.  Let me try to break this 
down for you. Please compute the price of one bottle if the amount of 
money she went to the store with was 100 dollars? </Tutor> 

5. <Student time="[7/11/2000][9:28:48][19]">20</Student> 
 

6. <Tutor time="[7/11/2000][9:28:48][0]" qtype="QEXPLAIN" 
goal="100/5">Correct. Using only 100, and 5 write an expression for the 
price of one bottle.</Tutor> 

7. <Student time="[7/11/2000][9:29:0][12]">100-5</Student> 
 

8. <Tutor time="[7/11/2000][9:29:1][0]" qtype="QEXPLAIN" goal="100/5"> No. 
No.  Your answer of "100-5" equals "95", but you wanted to write an 
expression that equaled "20".  Using only 100, and 5 write an expression 
for the price of one bottle. Hint: Use 100 for the amount of money she 
went to the store with and 5 for the number of bottles. </Tutor> 

9. <Student time="[7/11/2000][9:29:30][29]">100*5</Student> 
 

10. <Tutor time="[7/11/2000][9:29:30][0]" qtype="QEXPLAIN" goal="100/5"> No. 
No.  Your answer of "100*5" equals "500", but you wanted to write an 
expression that equaled "20".  Using only 100, and 5 write an expression 
for the price of one bottle. Hint: Use 100 for the amount of money she 
went to the store with and 5 for the number of bottles.  Pick one of 
these 6 choices : "100-5",  "5-100",  "100+5",  "100*5",  "100/5",  or 
"5/100" </Tutor> 

11. <Student time="[7/11/2000][9:30:11][41]">100/5</Student> 
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12. <Tutor time="[7/11/2000][9:30:11][0]" qtype="QGENERALIZE " 
goal="m/5">Correct. Now use "m" instead of 100 to again express the price 
of one bottle.</Tutor> 

13. <Student time="[7/11/2000][9:30:19][8]">m/5</Student> 
 

14. <Tutor time="[7/11/2000][9:30:19][0]" qtype="NIL" goal="NIL">Correct. A 
new problem is needed </Tutor> 

 
 The first section had nine problems.  The student did all nine, getting only two correct, 
and consequently, failed to reach the mastery criterion of four correct in a row, before 
running out of problems.  Remember that the concrete articulation strategy has only three 
steps; arithmetic, articulation and generalization.  Both our experimental DFA results and 
our theory suggest that arithmetic steps should be easier then the student’s initial attempts 
at the problems.  I looked for evidence of this but it was complicated since the student 
might jump to the articulation step.  I found that of the seven times he was asked an 
arithmetic question, he twice answered with articulations, getting only one of them 
correct.  Consistent with our hypothesis, he had an easy time with the arithmetic 
problems getting all five correct.  Articulations were also harder, as predicted.  He got 
three of seven articulations correct (this number includes the two, aforementioned, times 
he tried to articulate without first answering the arithmetic question).  The example dialog 
presented above is an example in which the student initially used the wrong operator (i.e. 
"m-5"), then correctly got the computation question (i.e. "20").  However, when asked to 
articulate the answer, he used the same wrong operator he used initially (i.e. the 
subtraction in place of division in his answer of "100-5").  This exact pattern appeared on 
the next problem as well.  Finally, agreeing with theory, the generalization step was 
easier than the articulation step, with only one error out of seven attempts.  

When I looked at the sorts of errors that were made I found that, overwhelmingly, 
the errors were of using the wrong operator.  Of the twelve errors that occurred on all of 
the questions in this section combined, nine of them were due to the student using the 
wrong operator48.  This should not be that surprising since the word problems in this 
section are simple and give only two quantities to use, so it is not very surprising that the 
main difficulty is knowing which operator to use.  This is consistent with the error 
analysis I presented from our DFA data where I found that student made many errors due 
to picking the wrong operator.  Unfortunately, this student did not reach mastery and was 
pushed onto the next section. 
 I then looked at how he did on the second section and I found similar results.  
The second section was composed of more one-operator problems, all of which were 
about calculating distance, speed or elapsed time. This is a notoriously difficult task for 
students.  This student got four correct out of twelve, including the last two in the section, 
possibly suggesting evidence of learning.  In this section, the student was much more 

                                                 
48 Also consistent with my DFA data but in no way statistically reliable were the types of operators they 
confused.  In particular, getting division problems were the hardest.  The wrong operations were misused as 
follows: when the student was supposed to use division, he used subtraction three times and multiplication 
twice.  When the student was supposed to use multiplication, he used addition once and division twice.  
Finally, when the student was supposed to use subtraction, he used multiplication once.  Note that of the 
nine problems in the section, one was an addition problem, three were subtraction problems, two were 
multiplication problems, and two were division problems. Also, note that the student could make more then 
one error on a problem.  The two division problems appeared to be the hardest accounting for five of the 
nine errors. 
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likely to try to answer the arithmetic scaffolding question with an articulation; only three 
of eight gave an arithmetic value as expected when asked to compute a value.  Of those 
three, only one of them was done correctly.  This speaks to the increased difficulty of 
these problems.  

The following example is from this second section and is a problem on which the 
student struggled quite a bit.  

1. <Problem_Statement>Amy walks at "s" miles per hour.  This weekend she 
took a 12 mile walk.  Write an expression for how long the walk 
lasted.</Problem_Statement> 

 
2. <Tutor time="[7/12/2000][9:31:54][0]" qtype="QSYMB" goal="12/s">Hello.  

Please write an expression for the amount of time her walk lasted. 
</Tutor> 

3. <Student time="[7/12/2000][9:32:8][14]">s*12</Student> 
 

4. <Tutor time="[7/12/2000][9:32:8][0]" qtype="QCOMPUTE" goal="3"> No.   We 
will come back to the amount of time her walk lasted.  Let me try to 
break this down for you. Please compute the amount of time her walk 
lasted if Amy’s walking speed was 4 miles per hour? </Tutor> 

5. <Student time="[7/12/2000][9:33:20][72]">4</Student> 
 

6. <Tutor time="[7/12/2000][9:33:21][0]" qtype="QCOMPUTE" goal="3"> Hmm.  
No.  Try again please. Please compute the amount of time her walk lasted 
if Amy’s walking speed was 4 miles per hour? Hint:  Use the fact that the 
distance Amy walks is 12 miles and Amy’s walking speed is 4 miles per 
hour. </Tutor> 

7. <Student time="[7/12/2000][9:33:44][24]">4/12</Student> 
 

8. <Tutor time="[7/12/2000][9:33:44][0]" qtype="QCOMPUTE" goal="3"> Hmm.  
No.  Try again please. Please compute the amount of time her walk lasted 
if Amy’s walking speed was 4 miles per hour?  Hint: It is one of these 6 
choices: "12-4",  "4-12",  "12+4",  "12*4",  "12/4",  or "4/12".</Tutor> 

9. <Student time="[7/12/2000][9:33:53][9]">4/12</Student> 
10. <Tutor time="[7/12/2000][9:33:44][0]" qtype="QCOMPUTE" goal="3"> Hmm.  

No.  Try again please. Please compute the amount of time her walk lasted 
if Amy’s walking speed was 4 miles per hour?  Hint: It is one of these 6 
choices: "12-4",  "4-12",  "12+4",  "12*4",  "12/4",  or "4/12".</Tutor> 

11. (Since Ms. Lindquist repeats her self until the student guess correctly. 
We omit her text.) 

12. <Student time="[7/12/2000][9:34:2][9]">12*4</Student> 
13. <Student time="[7/12/2000][9:34:11][8]">12-4</Student> 
14. <Student time="[7/12/2000][9:34:19][9]">12+4</Student> 
15. <Student time="[7/12/2000][9:34:26][7]">4-12</Student> 
16. <Student time="[7/12/2000][9:34:41][15]">12-4</Student> 
17. <Student time="[7/12/2000][9:34:49][7]">4-12</Student> 
18. <Student time="[7/12/2000][9:34:55][6]">12*4</Student> 
19. <Student time="[7/12/2000][9:35:5][10]">12+4</Student> 
20. <Student time="[7/12/2000][9:35:16][11]">12/4</Student> 

 
21. <Tutor time="[7/12/2000][9:35:16][0]" qtype="QGENERALIZE " 

goal="12/s">Correct. Now use "s" instead of 4 to again express the amount 
of time her walk lasted.</Tutor> 

22. <Student time="[7/12/2000][9:35:27][11]">s/4</Student> 
 

23. <Tutor time="[7/12/2000][9:35:27][0]" qtype="QGENERALIZE " goal="12/s">It 
looks like you didn’t understand what I was asking you.  You should use 
the variables from the problem.  For instance, use s instead of 4.  Try 
this question again: Now use "s" instead of 4 to again express the amount 
of time her walk lasted.</Tutor> 
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The students initial attempt at the arithmetic step was simply to answer with "4" to which 
Ms. Lindquist gave the hint "Use the fact that the distance Amy walks is 12 miles 
and Amy’s walking speed is 4 miles per hour."  This seems to have gotten the student 
to get closer for then the next student utterance was ’4/12’ but this is wrong due to the 
wrong order of the arguments.  If the student had done the division, he might have 
noticed his error since he might know that his answer should be larger then one hour.  
However, he does not and the tutor gives the student the most explicitly hint that presents 
the problem as a multiple-choice problem.  Thereafter the student guesses answers, each 
time guessing articulations (and presumably not doing the arithmetic to check to see if the 
numbers make sense).  Eventually, persistence pays off and the student guesses the 
correct answer.  Since Ms. Lindquist had reflective follow-up questions turned off for this 
data collection, the student did not get any such questions, but this presumably would 
have been a moment where such questions might have been effective.  Note, those four 
reflective follow-up questions were triggered because the student reaching the last hint in 
a sequence.  Once the student guesses correctly, Ms. Lindquist could have followed that 
up with  "Let me check your understanding.  What does your answer represent in 
words?" whereupon the student would be presented with the same interface used in the 
Explain strategy with the three pull down menus.  Having such reflection questions 
would be consistent with what our experienced tutor did (line 169-170, 189, 229-234, 
254-268, and 324).  Sometimes the human tutor would ask the student questions even 
after they got the answer correct.  Using such a reflective follow-up question might have 
made it more likely for this student to understand that you calculate elapsed time by 
dividing the distance by the speed.  As it turns out the students does not finish that 
problem that day because the class period ends.  Because the student did not finish the 
problem that day, he got a chance to start over.  However, he failed to remember how to 
correctly solve the problem and it took him four more attempts as shown below.  It is 
probably no coincidence that this same student had difficulty doing the, normally easy, 
generalization question.  Clearly, this is an important area for future improvements. 

1. <Problem_Statement>Amy walks at "s" miles per hour.  This weekend she 
took a 12 mile walk.   Write an expression for how long the walk 
lasted.</Problem_Statement> 

 
2. <Tutor time="[7/13/2000][8:34:40][0]" qtype="QSYMB" goal="12/s">Hello.  

Please write an expression for the amount of time her walk lasted. 
</Tutor> 

3. <Student time="[7/13/2000][8:48:0][800]">s*12</Student> 
 

4. <Tutor time="[7/13/2000][8:48:0][0]" qtype="QCOMPUTE" goal="3"> No.   We 
will come back to the amount of time her walk lasted.  Let me try to 
break this down for you. Please compute the amount of time her walk 
lasted if Amy’s walking speed was 4 miles per hour? </Tutor> 

5. <Student time="[7/13/2000][8:49:19][78]">8</Student> 
 

6. <Tutor time="[7/13/2000][8:49:19][0]" qtype="QCOMPUTE" goal="3"> Hmm.  
No.  Try again please. Please compute the amount of time her walk lasted 
if Amy’s walking speed was 4 miles per hour? Hint:  Use the fact that the 
distance Amy walks is 12 miles and Amy’s walking speed is 4 miles per 
hour. </Tutor> 

7. <Student time="[7/13/2000][8:51:3][105]">4/12</Student> 
 

8. <Tutor time="[7/13/2000][8:51:3][0]" qtype="QCOMPUTE" goal="3"> Hmm.  No.  
Try again please. Please compute the amount of time her walk lasted if 
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Amy’s walking speed was 4 miles per hour?  Hint: It is one of these 6 
choices: "12-4",  "4-12",  "12+4",  "12*4",  "12/4",  or "4/12".</Tutor> 

9. <Student time="[7/13/2000][8:51:15][12]">12/4</Student> 
 

10. <Tutor time="[7/13/2000][8:51:15][0]" qtype="QGENERALIZE " 
goal="12/s">Correct. Now use "s" instead of 4 to again express the amount 
of time her walk lasted.</Tutor> 

11. <Student time="[7/13/2000][8:51:32][17]">s/12</Student> 
 

12. <Tutor time="[7/13/2000][8:51:32][0]" qtype="QGENERALIZE " goal="12/s"> 
No. Rewrite 12/4 but in place of "4" put s. </Tutor> 

13. <Student time="[7/13/2000][8:51:45][13]">12/s</Student> 
 

14. <Tutor time="[7/13/2000][8:51:45][0]" qtype="NIL" goal="NIL">Correct. A 
new problem is needed </Tutor> 

  
 

We now get back to our reporting on how this student did on this second section.  
When I looked at the first time the student gave an articulation, I found that he got two of 
eight correct (The eight include some instances where he did not first correctly compute 
an answer).  Given that I found that it was easier to start with the arithmetic step first, it 
was unfortunate that the student did not do so, since he might have been more successful. 
Finally, I looked again at the generalization success rate. This student’s results were 
similar to my DFA results and the results for this student on the first section: 
generalization is easy (six of eight correct) once you have gotten the articulation correct.  

I then looked at the sort of errors being made on the student’s first attempt at a 
problem.  I found, once again, many errors involving the wrong operator (6 on 8) and all 
of these confused multiplication with division or vice versa.  Only one of the eight errors 
was due to the wrong order of the arguments. 
 The third section introduced two-operator problems (none of which required 
parentheses).  There were 16 problems and the student only got four correct.  This 
demonstrates how hard it is for student to symbolize even simple linear form equations.  
This topic consumes a large proportion of typical algebra classes and still the TIMSS 
results show that on a similar problem, 8th grade students get only 50% correct.  The 
errors that the student made are not so easy to categorize.  The only error types from our 
categorization that appeared more then once were "sub" errors and those appeared only 
three times.  The rest of the attempts had more then one error.  Of those 11 other errors, 
nine of them involved at least one wrong operator error.  I think it is reasonable to assume 
that these sorts of errors often are the result of student’s having no good idea about how to 
proceed.  Instead, the student might apply an approach I call "quantity and operator 
soup", which is simply to randomly put quantities together with operators (see also 
Tabachneck, Koedinger, & Nathan, 1994).  
 This student received the introduced variable strategy for this section.  This next 
passage is a look at the last problem the student did in this section: 

1. <Problem_Statement>Amy wanted to try parachuting.  She jumped out of a 
plane at 5,000 feet.  She did a free-fall for "s" seconds at an average 
speed of 214 feet per second before pulling the cord to open her 
parachute.    How far was Amy from the ground when she pulled the 
cord?</Problem_Statement> 

 
2. <Tutor time="[7/19/2000][9:3:59][0]" qtype="QSYMB" goal="5000-

214*s">Hello.  Please write an expression for the distance Amy is from 
the ground. </Tutor> 
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3. <Student time="[7/19/2000][9:5:54][116]">5000-s-214</Student> 
 

4. <Tutor time="[7/19/2000][9:5:54][0]" qtype="QSUB_QUAN_STRICTLY" 
goal="214*s"> No.   We will come back to the distance Amy is from the 
ground.  Let me try to break this down for you. What is the distance of 
Amy’s free-fall?</Tutor> 

5. <Student time="[7/19/2000][9:6:19][24]">214-s</Student> 
 

6. <Tutor time="[7/19/2000][9:6:19][0]" qtype="QSUB_QUAN_STRICTLY" 
goal="214*s"> No. Use "214" and "s" to calculate the distance of Amy’s 
free-fall.</Tutor> 

7. <Student time="[7/19/2000][9:6:31][12]">214*s</Student> 
 

8. <Tutor time="[7/19/2000][9:6:31][0]" qtype="QSUB_QUAN_NOT_STRICTLY" 
goal="5000-B">Correct.  If "B" was the distance of Amy’s free-fall then 
what would be the distance Amy is from the ground? </Tutor> 

9. <Student time="[7/19/2000][9:6:46][14]">b/5000</Student> 
 

10. <Tutor time="[7/19/2000][9:6:46][0]" qtype="QSUB_QUAN_NOT_STRICTLY" 
goal="5000-B"> Hmm.  No.  What is the distance Amy is from the ground? 
Use "B" instead of "214*s" for the distance of Amy’s free-fall. Hint: 
pick one of these: 5000-B, B-5000, 5000+B, 5000*B, 5000/B, or 
B/5000.</Tutor> 

11. <Student time="[7/19/2000][9:6:54][8]">5000/b</Student> 
 

12. <Tutor time="[7/19/2000][9:6:54][0]" qtype="QSUB_QUAN_NOT_STRICTLY" 
goal="5000-B"> Hmm.  No.  What is the distance Amy is from the ground? 
Use "B" instead of "214*s" for the distance of Amy’s free-fall. Hint: 
pick one of these: 5000-B, B-5000, 5000+B, 5000*B, 5000/B, or 
B/5000.</Tutor> 

13. <Student time="[7/19/2000][9:7:2][8]">5000*b</Student> 
 

14. <Tutor time="[7/19/2000][9:7:2][0]" qtype="QSUB_QUAN_NOT_STRICTLY" 
goal="5000-B"> Hmm.  No.  What is the distance Amy is from the ground? 
Use "B" instead of "214*s" for the distance of Amy’s free-fall. Hint: 
pick one of these: 5000-B, B-5000, 5000+B, 5000*B, 5000/B, or 
B/5000.</Tutor> 

15. <Student time="[7/19/2000][9:7:8][6]">5000-b</Student> 
 

16. <Tutor time="[7/19/2000][9:7:8][0]" qtype="QSUBSTITUTE" goal="5000-
214*s">Correct.  Now, lets try this question again:  You are correct that 
"5000-B" is the distance Amy is from the ground.  Now, can you state this 
in terms of the numbers given in the problem?</Tutor> 

17. <Student time="[7/19/2000][9:7:39][30]">5000-214*s</Student> 
 

18. <Tutor time="[7/19/2000][9:7:39][0]" qtype="NIL" goal="NIL">Correct. A 
new problem is needed </Tutor>  

 
In this dialog Ms. Lindquist interpreted the student’s first answer as having a "wrong 
operator" error because the student used subtraction instead of multiplication to connect 
the "s" and the "214".  Ms. Lindquist decided to scaffold this problem by first focusing on 
the embedded subexpression and therefore asked the student to try to answer just that 
portion.  The student answer of "214-s" was also wrong.   

This sort of error is representative of this student’s work in this section. 
Remember that there were 16 problems of which the student got 4 correct on the first 
attempt.  Ms. Lindquist scaffolded the embedded subexpression on nine different 
problems including the one shown.  Of those nine times, only twice did the student 
correctly symbolize the embedded subexpression immediately.  Of the other seven 
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problems, there were three types of errors that occurred.  There were two instances when 
the student’s only error was using the wrong operator (as was done on this problem).  
There were three instances when the student answered with just the y-intercept value, 
(which is all three cases was a concrete value as opposed to a variable).  Finally, twice 
the student used the correct operator as well as one of the correct arguments but used the 
wrong concrete value (in both cases it was the y-intercept instead of the slope;  e.g.  
"800m" instead of "40m" and "2h" instead of "3h"). 

To continue with the example dialog, the student was given another chance to 
symbolize the embedded expression and this time succeeded in getting it correct, so Ms. 
Lindquist asked the next question which was "If "B" was the distance of Amy’s free-
fall then what would be the distance Amy is from the ground?"  

 The student took several turns before answering this correctly with "5000-b".  
This student then put it all together on the first try.  One might think that once being told 
that both "5000-b" is correct and that "b" was equal to "214*s" it would be easy to say 
that the answer was "5000-214*s."  However, the student was only able to get this sort of 
question correct (on the first attempt) three out of the nine times this situation arose.  This 
result is consistent with our claim that a major difficulty students have with composed 
symbolization problems can be explained with our "foreign language" hypothesis.  Even 
when they have gotten the two steps of an algebra problem solved separately, putting the 
two steps together is a difficult step.  This suggest that this strategy would be more 
productive if students first had practice with some decontextualized symbolic substitution 
problems like what I had students do in the transfer study reported in Chapter 1.  

To continue the reporting of this student’s progress, the student next did the 6-
item mid-test which he got all six items incorrect. 

After the mid-test, the subject switched from the experimental to the control 
condition and was given cut-to-the-chase on the remaining problems.  Unsurprisingly, 
since the student did not do very well in the previous sections, during the next two 
sections, this student got only one of problem correct.  Perhaps most surprising of all was 
that this student did not give up and take the easy way out by hitting return and seeing 
what the answer was.  As I reported above, the cut to the chase group still took as long to 
read the problems and make their first attempt as the experimental group.  This student 
was no exception, often spending minutes to read the problems and make an attempt.  
Often times his attempts were quite close. 

Finally, this student took the six-item computer posttest.  This student got one 
correct.  On another item, he only forgot parenthesis.  On a third item, he made a 
relatively simple error of confusing two quantities (said "2m+3s" instead of  "3*m+2*s").  

Chapter Conclusion  
This chapter has shown evidence if you control for the number of problems, the 

dialogs that Ms. Lindquist has with student, can lead to increases in student learning as 
measured by a post-test.  

 



 119

Chapter 6: Conclusions and Future Work 
 I will end this dissertation by summarizing the components that are clearly 
articulated in Ms. Lindquist’s architecture so we can view them in terms of the future 
work that this dissertation enables. 
 Ms Lindquist has multiple enhancements to traditional model tracing tutors (see 
Figure 1) including being able to deal with more then one error at a time, dialog 
coherence "moves" and embedded feedback.  However, the two aspects that are likely to 
provide the biggest learning gains are what I have called dynamic scaffolding and tutorial 
strategies.  These tutorial strategies come in two forms: knowledge construction dialogs 
(KCDs) and knowledge remediation dialogs (KRDs).  Ms. Lindquist has only one KRD 
implemented, but I identified several other KRDs that the experienced human tutor used 
that could be added in the future.  I will first discuss dynamic scaffolding, since the 
knowledge construction dialogs are layered on top of dynamic scaffolding. 
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Dynamic Scaffolding 
Ms. Lindquist has what I have termed dynamic scaffolding.  I have been using the term 
dynamic scaffolding to encompass two aspects.  The first aspect is that the scaffolding 
appears only after an error, rather than "pre" scaffolding that the student is presented with 
ahead of time.  A second aspect is that scaffolding is context sensitive to the step the 
student made an error on.  I will illustrate each of these aspects in the 3 types of 
scaffolding listed below: 

1. Static & Pre-Scaffolding 
2. Static & Post-Scaffolding 
3. Dynamic Scaffolding 

I will now discuss each one in turn and provide an example. 

Static & Pre-Scaffolding 
Figure 2 shows the Carnegie Learning Inc. tutor (Koedinger & Anderson, 1998), which is 
an example of scaffolding that is both "pre" and static.  First, it is "pre"-scaffolding, 
because students are expected to do the scaffolding steps, (e.g., labeling the columns, 
identifying units, and computing instances) before attempting to write the expression in 
the bottom, right hand corner.  It is "static" in that there are fixed elements that are 
always asked regardless of whether the systems believes that the student needs such 
assistance.  Next, I present an example that has scaffolding that is still static, but that 
appears after the student has made an error (thus "post" as opposed to "pre"). 
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Figure 2: The Carnegie Learning tutor that is an example of scaffolding that is both static and done 
ahead of time (i.e., "pre").  The student needs to do nine scaffolding steps before writing the final 

expression. 

 

Static & Post-Scaffolding 
An example of scaffolding that occurs after an error is shown in Figure 3.  This is a 
screen shot of the PACT Geometry Tutor (Koedinger, Snyder & Aleven, 1998), and it 
shows an example of a student attempting to calculate the area of the shaded region 
shown in the figure.  The student types in  "25-2*2.125" when the correct answer is "25-
2*(π*1.252)". The student made two errors, leaving out the squaring of the radius (1.25) 
as well as leaving out the π (i.e., used the radius instead of the area of a circle).  Because 
two errors were made, the system failed to "trace" the student’s answer, resulting in no 
buggy messages being available.  When the student asked for a hint, the first hint the 
student received is shown in Figure 3.  The hint told the student to calculate the area of 
the shaded region by subtracting the area of the unshaded region from the area of the 
square.  This message was not helpful, since the student’s answer already revealed that he 
knew how to do that.  
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 Therefore, the student asked for a second hint.  The second hint read  "You can add two 
columns from the table menu to compute the Area of the square ABCD and the Area of the 
unshaded region first."  The student then used a menu to add two columns to the table, as shown 
in Figure 4. (The student decided add a column for the area of the circle as well as the area of the 
square, which was slightly different then what the hint suggested.)  This suggestion to add 
columns is a type of scaffolding, which occurs after the student makes an error.  However, the 
scaffolding in still not what I term dynamic because the student was presented with questions 
that were not sensitive to the error the student made.  For instance, it suggested to the student to 
calculate the area of the square, when the student had already done that correctly.  I will use the 
term error localization for behavior that is sensitive to where an error is made.  The example just 

presented is an example of a system that did not do error localization.  
 If this system had asked the student to add a column only for the portion(s) that the 
student made an error on (i.e., the area of the circle) then I would call it dynamic scaffolding.  
The next section will present such an example. 

Dynamic Scaffolding 
What I term dynamic scaffolding has two important elements.  Its occurs after an error has been 
made (i.e., "post".)  Additionally, it does error localization in that it focuses the dialog only on 
the portions of the problem that the student did not do correctly.  An example Ms. Lindquist 
doing dynamic scaffolding is shown below: 
.�

1. Tutor: Debbie has two jobs over the summer.  At one job, she bags groceries at Giant 
Eagle and gets paid 5 dollars an hour. At the other job she delivers newspapers and gets 
paid 7 dollars an hour.  She works a total of 30 Hours a week.  She works "g" hours 
bagging groceries.  Write an expression for the total amount she earns a week.  

2. Student: (30-g*7)+(g*5)  [Should have been "(30-g)*7+g*5"  ]  
3. Tutor: No. But, "30-g" is correct for the hours delivering newspapers, and "g*5" is 

correct for the pay from the grocery.  We will come back to the total pay per week.  Let 
me try to break this down for you.  What is the pay from the newspaper?  

Figure 4: The table shown in Figure 3, after the student has added two columns. 
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In this example of dynamic scaffolding, the key elements are that the tutor breaks down the 
problem after the student has made an error, as well as the fact that the system did the error 
localization by asking a question focused on the subgoal that was done incorrectly (i.e. the pay 
from the newspaper, which is (30-g)*7.)49  Additionally, the positive feedback on the correct 
portions (i.e., "g*5" and "30-g") can be thought of as more error localization, which focused the 
student on the error, by telling him what portions do not contain the error.  

Using a Tutorial Strategy 
I now consider the two different types of tutorial strategies that can be combined with dynamic 
scaffolding.  Future work is needed to determine the relative benefits of these two different 
dialog types. 

Dynamic Scaffolding with a Knowledge Construction Dialog 
The previous example we saw that dynamic scaffolding involved asking a new question focused 
on a subgoal that the student made an error on.  In this next example, I will show that you can 
combine dynamic scaffolding with a knowledge construction dialog, that instead of asking a 
single question (related to a subgoal) the tutor uses a two-step plan (related to the same subgoal) 
to scaffold the student’s rectifying of the error. 

1. Tutor: Debbie has two jobs over the summer.  At one job, she bags groceries at Giant 
Eagle and gets paid 5 dollars an hour. At the other job, she delivers newspapers and gets 
paid 7 dollars an hour.  She works a total of 30 Hours a week.  She works "g" hours 
bagging groceries.  Write an expression for the total amount she earns a week.  

2. Student: (30-g*7)+(g*5)  [Should have been "(30-g)*7+g*5"] 
3. Tutor: No. But, "30-g" is correct for the hours delivering newspapers, and "g*5" is 

correct for the pay from the grocery.  We will come back to the total pay per week.  Let 
me try to break this down for you.  If "B" was the hours delivering newspapers then what 
would be the pay from the newspaper?  

4. Student: B*7 
��� Tutor: Correct.  Now, lets try this question again:  You are correct that "B*7 " is the pay 

from the newspapers.  Now, can you state this in terms of the numbers given in the 
problem?�

��� Student:(30-g)*7�
7. Tutor:  Correct.  Now, lets try this question again:  Write an expression for the total 

amount she earns in a week 
This example shows that the tutor attacked the subgoal that the student made an error on with a 
two-step (lines 3 and 5) strategy ( the "Introduce a Variable" strategy discussed in Chapter 4.) 

Dynamic Scaffolding with a Knowledge Remediation Dialog 
The only difference between a construction dialog and a remediation dialog is that a remediation 
dialog is used for a particular sort of error type.  I will now present an example of a remediation 
dialog (not actually implemented by Ms. Lindquist). I will do so using the same problem and the 
same error we have just seen. 

1. Tutor: Debbie has two jobs … (the same as line 1 above) 
2. Student: (30-g*7)+(g*5)  [Should have been "(30-g)*7+g*5"] 

                                                 
49 Note, that in this example the tutor assumes that the student made an error of leaving out parentheses, rather than 
of thinking that "g" should be multiplied by 7 before subtracting the resulting quantity from 30. 
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3. Tutor: No. But, "30-g" is correct for the hours delivering newspapers, and "g*5" is 
correct for the pay from the grocery.  We will come back to the total pay per week.  Let 
me try to break this down for you.  In your answer, what is the 7 dollars an hours being 
multiplied by?  The number of hours bagging groceries or the number of hours delivering 
newspapers?  

4. Student: the hours delivering newspapers 
��� Tutor: Correct.  Now consider the order of operations.  Which do you do first, 

multiplication or subtraction?�
��� Student: multiplication�
��� Tutor:  Correct. Now use that information to state the pay from the newspaper.�
��� Student: (30-g)*7�
9. Tutor:  Correct.  Now, lets try this question again:  Write an expression for the pay from 

the  
Notice that in this example, the questions the tutor asks are appropriate for a missing parentheses 
error.  This example combines the error localization of dynamic scaffolding with the additional 
context-sensitive aspect of responding to the particular error type the student committed.  Ms 
Lindquist does not currently have many remediation dialogs.  The other remediation dialogs, 
outlined in the Chapter 4, point to other remediation dialogs that could be implemented.  

Discussion:  
Now that I have summarized some of the main features of Ms. Lindquist, I propose a few 
"lesion" studies as the subject of future work.  Because intelligent tutoring systems are so costly 
to produce, it is important for intelligent tutoring system designers to know where the "biggest 
bang for the buck" is in order to decide what aspects to build into intelligent tutoring systems. 
  The first revolves around the question of when is it better to present students with 
scaffolding before they make an error, and when is it better to present them with dynamic 
scaffolding (after they make an error).  Dynamic scaffolding can potentially save time for the 
student if they would get the problem correct without the scaffolding.  On the other hand, if you 
know that student will make an error, it might be better to present them with the scaffolding 
ahead of time.  Ms. Lindquist can be used to easily study this question, by creating a static 
scaffolding version to compare the to the current version that has dynamic scaffolding.  Ms. 
Lindquist’s architecture allows for a clear study of this use.  Presumably, when students are first 
gaining competence in a skill, they could use static scaffolding, and as they start gaining 
competence, this scaffolding should be dynamic (i.e. it fades away).  
 A second issue is "How important is error localization in tutoring?"  Maybe error 
localization is what is important in tutoring, and researchers should not waste too much time on 
building sophisticated dialog systems when all that is needed is error localization.  More likely, it 
is that error localization is one of the key components, but is not sufficient by itself. Again, Ms. 
Lindquist can be used to study this by lesioning the components that allows Ms. Lindquist to ask 
questions focused on individual subgoals. 
 A third issue is "How important is being able to ask new questions of students?"  
Traditional model tracing tutors ask only rhetorical questions.  A system that has just dynamic 
scaffolding will ask a new question for each subgoal that is done incorrectly.  A system that has 
knowledge construction (or remediation) dialogs will ask 2-3 questions for each step.  Again, a 
lesion study could be done by comparing just dynamic scaffolding with dynamic scaffolding 
combined with knowledge construction dialogs.  Where is the biggest "bang for the buck"?   
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 A forth issue is "How important are tutoring responses that are sensitive to not only 
where the error was made (i.e., error localization) but also the type of error made?"  This is what 
knowledge remediation dialogs do.  Because Ms. Lindquist currently has only has knowledge 
remediation dialog currently implemented, it could be that that it is missing the most useful 
benefit of being able to engage the students in a dialog.  This thesis did show several other 
knowledge remediation dialogs that could be implemented, as well as showing how easy it is to 
do so.  Future work could investigate the impact of such strategies on student learning.    

Other Future Work 
An object of future work is to run a study similar to the one presented in Chapter 5, but 

which controls for time.  Since Ms. Lindquist’s dialogs take additional time, I would expect the 
control condition to do more problems.  Such a study would determine if the benefits of Ms. 
Lindquist are worth the additional time it takes.  
 Another aspect of future work is to compare Ms. Lindquist to the existing model tracing 
sold by Carnegie Learning, which has already been shown to be effective.  However, there are 
multiple differences between the two systems, and not all of those differences are scientifically 
interesting.50 

Another object of future study is how best to combine the tutorial strategies.  It might be 
that some strategies are better as some times of problems compared to other strategies.  For 
instance, maybe the "introduce variable" strategy works well on large problems and the "concrete 
articulation" strategy works well on small problems.  One idea would be to use the "concrete 
articulation" strategy on one-operator sub-expression, and use the "introduce variable" strategy 
on sub-expression that contain more then one operator. 

Future Work on the "Explain First" Strategy 
Future work could also be done to provide more ways of breaking down problems.  Consider that 
if a student makes an error on a symbolization question, the system has ways of breaking those 
problems down into simpler steps.  In addition, with regards to the concrete articulation strategy, 
the system knows how to break down the QCOMPUTE and QEXPLAIN questions.   Similarly, 
it would be nice to have ways to assists students on the explain question used in the "Explain in 
English" strategy.  Given that this dissertation argues that, we should "ask rather then tell", I 
would like to be able to breakdown these questions further.  There are several ways we could 
break these questions up into simple questions.  For instance, we could do what our experienced 
human tutor did and get the student to first articulate the answer using just units (i.e., "Average 
speed is equal to miles divided by hours") and then --only after that was done-- get them to use 
the full noun phrases.  This proposal seems to take us in the direction of adding natural language 
understanding, which would be a large project.  However, there are also some approaches that 
we could use to avoid this hard problem.  For instance, another idea is to ask for one piece at a 
time as in the following: 

1."What is one of the quantities you need to use to explain X"  
2."What is another quantity you need to use?"  
3."How can you combine these quantities together to find X".    

Because Ms. Lindquist’s architecture is easily extendable, these strategies would be easy to add.  

                                                 
50 For example, the Carnegie Learning tutor helps students with solving equations, and graphing, none of which is 
covered by Ms. Lindquist.  Additionally, Ms. Lindquist’s curriculum has problems that are more complicated, and 
those are the same problems where dynamic scaffolding might prove to be most effective at saving time. 
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Dissertation Conclusion 
 I would like to end with a brief review of this dissertation’s contributions.  In Chapter 1, I 

argued that contrary to prior research, the main difficulty of symbolizing is not comprehension, 
or the presence of variables, but instead is due to the difficulty of producing symbols in the 
language of algebra.  I hypothesized that symbolizing is like learning a foreign language where 
the difficulty is in learning how to produce symbols in the new language (i.e., algebra).  This 
hypothesis was supported with two difficulty factors assessments, an analysis of the errors 
students made, and a successful transfer study.  The transfer study showed that students could get 
better at symbolizing by practicing algebraic substitution.  I argued that this result could be 
explained by realizing that these two skills were both using the grammar for algebraic 
expressions.  In particular students were learning that you could treat an expression that same 
where you treated a number.   

The cognitive science research of Chapter 1, was used in several ways in designing the 
Ms. Lindquist tutoring system.  First, there is the incorporation of the decomposition & 
substitution tutorial strategy that is based on the transfer study in Chapter 1. This study argued 
that one reason students do poorly at symbolization is that they do not know the grammar for 
expressions, particularly when it comes to composing expressions together.  The decomposition 
& substitution tutorial isolates the composition step (i.e., the substitution step) in the hope of 
improving student learning.  

 Interestingly, this grammar explanation can also be used unify a prior result by 
Koedinger & Nathan’s (in peer review).   This dissertation argued that students need to know the 
grammar of expressions in order to produce in the language of algebra, but student also need to 
know the grammar of expressions in order to comprehend expressions, as shown by Koedinger 
& Nathan.  They compared a student’s ability to do  the problems shown in Table 1.   Student did 
much better on both story problems and "word equations" than compared to equations.  At least a 
portion of student’s difficulties can be explained by the hypothesis that students did not know 
well the grammar for algebra expressions.  Evidence in support of this is found in two places.  
First, students had a much harder time even getting started on the equation problems.  There 
were three times as many students who left the equation problems blank as on the other two 
problem types.  I take this as evidence that students had a harder time beginning the equation 
problems because they did not understand how to parse the equations.  Secondly, this 
explanation is supported by the fact that there were many order of operation errors on the 
equation problems, but no such errors on the other two problems types, presumably because 
students were better at understanding the grammar (i.e. English grammar as opposed to the 
grammar for algebra expressions) in which the other problems were written in. 
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Problem Types Example Problem 
Story Problem When Ted got home from his waiter job, he took the $81.90 he 

earned that day and subtracted the $66 he received in tips. Then he 
divided the remaining money by the 6 hours he worked and found 
When Ted got home from his waiter job, he took the $81.90 he 
earned that day and subtracted the $66 he received in tips. Then he 
divided the remaining money by the 6 hours he worked and found 
his hourly wage. How much per hour does Ted make? 

"Word equation" Starting with 81.90, if I subtract 66 and then divide by 6, I get a 
number. What is it? 

Equation Solve for x: (81.90 – 66) / 6 = x 

Table 1: Koedinger and Nathan’s Problem Types 

 
A second way in which the cognitive science work influenced the tutoring system is in 

the "Convert the Problem into an Example to Explain" Strategy.  This strategy is partially based 
on Corbett, McLaughlin, Scarpinatto, & Hadley (2000) counter-intuitive result that students can 
learn to symbolize by practicing translating algebraic expressions back into a verbal 
representation, as shown in Table 2.  I argue that students improved at symbolizing when 
students had to interpret a component of an expression, because they are practicing the grammar 
rules for algebra expressions. 

 
Suppose you have $10 to spend on refreshments at a 
movie theater. A box of popcorn costs $2.00 at the snack 
bar and a beverage costs $1.50.  You can use the 
following inequality to represents the different snack 
combinations you can afford. 

2x+1.5y<=10 
 
An example question: What does the term 2x represent in 
the situation? 
Example answer: The total you spend on popcorn. 

Table 2: A problem (Corbett et al., 2000) where students practice how to translate expressions back into 
English. 

 
A final way in which the cognitive science work influenced the tutoring system is in 

relation to the concrete articulation strategy.  Since I showed that a major difficulty students 
have with symbolization problems is in articulating the steps they used to compute a quantity, 
this tutorial strategy isolates that step so that it can be addressed in more detail. 

The insights from Chapter 1 were also helpful in Chapter 2, where I presented a model of 
tutoring, including dynamic scaffolding and tutorial strategies.  This model was implemented in 
architecture, described in Chapter 3, which expanded the model-tracing paradigm by adding a 
tutorial model.  In Chapter 4, I showed that this model was able to produce some of the features 
we observed in an experienced human tutor. Finally, in Chapter 5, I showed that this model 
could lead to increases in student learning. 
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Appendices 

Appendix A:  The Cover Stories (Problem Situations) For 
DFA #1 
John and his wife Beth have been saving for 7 months to give the 5 children presents for 
the Holidays.  John has saved 972 dollars for presents and Beth has saved "b" dollars. 
They give each child the same amount. Write an expression for how much each child 
gets. 
 
Ms. Lindquist, a math teacher, teaches 5 classes.  Ms. Lindquist teaches 62 girls.  Ms. 
Lindquist teaches "f" fewer boys than girls.  Write an expression for how many students 
Ms. Lindquist teaches. 
 
Sue made 72 dollars by washing 6 cars to buy Holiday presents.  She decided to spend 
"m" dollars on a present for her Mom and then use the remainder to buy presents for each 
of her 4 sisters.  She will spend the same amount on each sister.  How much can she 
spend on each sister? 
 
Mary opened a new music store.  She got CDs delivered on her first day. She got 5 truck 
loads of CDs delivered.  Each truck that arrived dropped off 12 boxes.  Each box she 
received had "c" CDs.   She sold CDs for 12 dollars each.  How many CD were delivered 
that first day? 
 
Bob left at 3 P.M. and drove 550 miles from Boston to Pittsburgh to visit his 
grandmother.  Normally this trip takes him "h" hours, but on Tuesday there was little 
traffic and he saved 2 hours.  What was his average driving speed? 
 
Ann is in a rowboat in a lake.  She is 800 yards from the dock.  She then rows for "m" 
minutes back towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an 
expression for Ann’s distance from the dock.   
 
Mike starts a job at McDonald’s that will pay him 5 dollars an hour.  Mike gets dropped 
of by his parents at the start of his shift but he takes a 10 minute taxi ride home that costs 
him 7 dollars.  Mike works a "h" hour shift.  After taking into account his taxi ride, write 
an expression for how much he makes in one night? 
 
Mark went to the store to buy 4 jackets that cost "d" dollars each.  When he got there the 
store was having a sale of 1/3 off the usual prices.  How much did each jacket cost him? 
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Appendix B:  Test for Transfer Study 
 
Name: ____________________      Teacher :____________________ 
Period :____________ 
 
Your answer will be answer expression like “4+3x”, not a number like “15”. Put a circle around your 
answer. 
 
1) Ann is in a rowboat in a lake.  She starts out 800 yards from the dock.  She then rows part of the way 
back toward the dock for "m" minutes at a speed of 40 yards per minute.  She then rests.  How far is Ann 
from the dock now? 
 
 
2) Ms. Lindquist is a math teacher.  Ms. Lindquist teaches 62 girls. Ms. Lindquist teaches "f" fewer boys 
than girls.  Write an expression for how many students Ms. Lindquist teaches.  
 

3) John is a shopkeeper and this week he sold 12 oranges and “a” apples.  John also has many children that 
come to his store to buy candy and he sold 3 times as many Snickers bars as he sold pieces of fruit.   How 
many Snickers bars did he sell? 

4) Sue made 72 dollars by washing cars to buy Holiday presents.  She decided to spend "m" dollars on a 
present for her Mom and then use the remainder to buy presents for each of her 4 sisters.  She will spend 
the same amount on each sister.  How much can she spend on each sister? 
 

5) Debbie has two jobs over the summer.  At one job she bags groceries at Giant Eagle and gets paid 5 
dollars an hour.  At the other job she delivers newspapers and gets paid 7 dollars an hour.  She works a total 
of 30 hours a week.  She works "b" hours bagging groceries. Write an expression for the total amount she 
earns in a week. 
 
Composing Skill: 
Example 
   Step 1:   21 - 6 = 15 
 Step 2: 15 / 3  = 5 
 Write the composed expression   __________. 
 When you put the two steps together you get that the answer is 
(21-6)/3 
 
1)   Step 1:   10 - 3 = 7 
 Step 2: 4 * 7  = 28 
 Write the composed expression   ___________ 
 Hint: Show how to get 28 from the numbers 10, 3 and 4. 
 
2)   Step 1:   x + 3 = A 
 Step 2: 5 / A  
 Write the composed expression   ___________ 
 
3)   Step 1:   f - g = X 
 Step 2: X / X  
 Write the composed expression   ___________ 
 
4)   Step 1:   5 * 3   = X 
 Step 2: 3 * 4   = Y 
 Step 3: X + Y   = 27 
 Write the composed expression   ___________ 
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5)   Step 1:   x + y  = A 
 Step 2: 5 / A  = B 
 Step 3: A - B  
 Write the composed expression   ___________ 
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Appendix C: A Protocol of an Experienced Tutor 
In the following transcription the student’s written remarks are indicted in brackets.   The tutor is an experienced current 
middle school mathematics teacher.  The student is a seventh grade male student who is a student in the tutor’s classroom.  
The student had a list of problems in front of him and each problem’s text is reprinted (underlined) when the student reads 
the problem.  The student had a blank sheet of paper on which he wrote his answers.  Generally, his paper included only 
attempts at symbolization with a few accompanying words possibly indicating the units.  The session lasted approximately 
one hour.  The session consisted of 17 problems, 8 of which the student answered correctly on the first try. This 
transcription was made from a video tape of the session.  Pauses are indicated with colons and one colon indicates about 
one half of a second pause.  

 
2. TUTOR [Opening remarks and asks student to read out aloud and begin] 
3. STUD [Reads problem] Mike starts a job at McDonald's that will pay him 5 dollars an hour. Mike gets dropped off 

by his parents at the start of his shift.  Mike works a "h" hour shift.  Write an expression for how much he 
makes in one night? 

4. [writes “h*5=how much he makes”] 
5. TUTOR That’s' right number. #2 
 
6. STUD [reads problem] Mary opened a new music store.  She got CDs delivered on her first day. She got 5 truck 

loads of CDs delivered.  Each truck that arrived dropped off 12 boxes.  Each box she received had "c" CDs.  
She sold CDs for 11 dollars each.  How many CDs were delivered that first day? 

7. [writes “5*12*c=# of CD’s”] 
8. TUTOR  OK 
 
9. STUD [reads problem] Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She 

then rows for "m" minutes back towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an 
expression for Ann's distance from the dock. 

10. [writes “800-11*40”] 
11. TUTOR OK I know there are some harder ones in here. ::::: 
12. TUTOR Read out aloud so we know what's wrong. 
 
14. STUD [reads problem] Ms. Lindquist is a math teacher.  Ms. Lindquist teaches 62 girls.  Ms. Lindquist teaches "f" 

fewer boys than girls.  Write an expression for how many students Ms. Lindquist teaches. 
15. [writes  “62+(62-f)= # of students”] 
16. TUTOR Good. All right.  Number of students.  Cruising! 
 
17. STUD [reads problem] Mark went to the store to buy 4 jackets that cost "d" dollars each.  When he got there the 

store was having a sale of 1/3 off the usual prices.  How much did each jacket cost him?:::::: 
18. STUD Are the jackets all the same price? 
19. TUTOR Yup.  Each.::::: 
[writes "(d-2/3)*4="]:::::::::::: 
20. TUTOR What's that?[points at the subtraction sign]  Is that a subtraction? 
21. STUD That's two thirds 
22. TUTOR You mean that subtraction? 
23. STUD Yeah, that’s a subtraction of two thirds. 
24. TUTOR OK.  Can you..   Is two thirds..  What does two-thirds represent? 
25. STUD 33 percent 
26. TUTOR Right.. Or..   I mean.  Not, Not, what is it in percent but what does it represent? 
27. STUD 2/3 of the whole price. 
28. TUTOR Is that what you are subtracting? 
29. STUD Yeah 
30. TUTOR Are you subtracting two thirds of the whole price? 
31. STUD Yes 
32. TUTOR What if.. What if the jacket  costs 9 dollars, How much would you be subtracting? 
33. STUD Wait hold on  ::: Oh that would be wrong.  
34. [crosses out previous line and writes "(d-33%)*4 = money spent"]::::::::::::::::::::::::::::::: 
35. TUTOR Um.  So if instead of "d" dollars it cost ten dollars, what would the answer be? So if it cost 10 dollars what 

would the answer be? Not ten dollars.  Ten dollars  is bad; what if it cost 9 dollars? What would the answer 
be. 

36. STUD Three.  No- it would be six dollars. 
37. TUTOR It would cost six dollars.  Is your expression gonna get that?  Really, what are they actually asking for? 
38. STUD Um..  How much did each jacket cost? 
39. TUTOR Right. 
40. STUD Then this would be...   
41. TUTOR That's not necessary [ Tutor points to the "4"].  So would your expression work? 
42. STUD [crosses out the incorrect “4” from his answer of “(d-33%)*4” ] Yeah, I think so 
43. TUTOR Try it.  How would you get 6 using your expression.  Because your expression should give me that answer 

that you know it’s right. 



 144

44. STUD It would be nine minus 33% equals ::::[writes "9-33%=6"]::::  33% is three, yeah, so the number would be 
6. 

45. TUTOR So how did you get that three? 
46. STUD Well one third of nine is three. 
47. TUTOR Right.  You have to tell your reader that.  That's what your expression is all about.  It’s telling the person to 

do that.  You haven't told the person to do that.  That you..   You know instinctively to do it but you haven't 
told the person to do that 

48. STUD So I should right 33% percent as one third? [writes "33%=1/3"] 
49. TUTOR Well.. But are you just gonna subtract one third or are you gonna subtract.33333   Is that what you are 

subtracting? 
50. STUD Well I am only subtracting like :::  
51. TUTOR Yeah! No! - so what are you really subtracting.  How did you calculate that? 
52. STUD Well. :::::::::::::::::::: Well if the whole thing is nine. 
53. TUTOR Ah uhm 
54. STUD And making 33% plus 33% ,33%, equal 100% 
55. TUTOR Equals one hundred PERCENT 
56. STUD Uhm. Yeah, 33% could equal three 
57. TUTOR How did you calculate that? :::  Just doing that little piece, what would you do to get that three.  What did 

you do in your head? 
58. STUD I transfer 33 to 1/3 and 
59. TUTOR [interrupts ] Right- oh- you could have.  And you never really needed the 33, you could have just used the 

third. 
60. STUD [continuing]  and divided nine by three which equals three,  
61. TUTOR Which equals three. 
62. STUD But I am not using one I am using two 
63. TUTOR Right 
64. STUD equals 6 [wrote 9/3=3*2=6] 
65. TUTOR So, So you could..  So you did.  Is that how you got your six?   Oh did you get your six this[points to the 

expression "9-33%"] way.  This is different.  Here you are using subtraction and here you multiplied  by 
two. So you need to pick one way or the other and write a complete expression 

66. STUD OK. 
67. TUTOR Because either way is fine 
68. TUTOR We could even right both.  Let’s write both.  Let’s write an expression this way [points at “9/3=3*2=6”]  

and write an expression this way[points at “9-33%”]. 
69. STUD OK. 
70. TUTOR But you have got to tell your reader to do this thing [points at “9/3=3*2=6”], because that's the thing you 

forgot to tell your reader. 
71. STUD OK.  :::: 
72. TUTOR The person who is gonna use your formula, because you are making a formula. 
73. TUTOR Because if somebody else came along, and used this they would go nine- minus 33%, or nine minus point 

333. What is nine minus 1/3? 
74. STUD Nine minus one third is 2/3 
75. TUTOR No. Nine minus one third is eight and two thirds. Right? 
76. STUD Well, one third.... So I have to mention that minus, Um, one third, of whole number 
77. TUTOR Of what whole number 
79. STUD Of the whole  
80. TUTOR Right which is? 
81. STUD [wrote "9-1/3 of whole=2/3"] 
82. TUTOR Yeah,  exactly, which is nine.   Which actually is what in the original problem? 
83. STUD Um, "D" 
84. TUTOR "D",  So how would we write the expression this way? 
85. STUD This way? 
86. TUTOR Yup, so skip a line...with using d.  now write the expression 
87. STUD Minus ::::::::[wrote “d-1/3=2/3="]:: equal :::2/3 :::which equals :::I don't know 
88. TUTOR Nine minus one third.  Does that give you the answer 
89. STUD well  no 
90. TUTOR No, because that gives you eight and two thirds 
91. STUD Yeah 
92. TUTOR What do you have to do.  Because if you have to do it you have to right it down for your expression? 
93. STUD Say, it’s of the whole number 
94. TUTOR of the whole number.  You need to write that.  Let’s get rid of that by rewriting d minus :::::: and of ::: and 

of means what 
95. [writes "d-1/3 of whole number"] 
96. STUD Times 
97. TUTOR Times!  So you can use one of your minus, plus [operators I guess]:::: So now let’s rewrite this one.  This 

one looks great, but let’s rewrite it using just letters and times symbols instead of the words.  "D minus" 
98. STUD I think it.. Would it be that way? 
99. [writes "d-1/3"] 
100. TUTOR Ahhum, But don't forget the,   That's only this part.  That's one third of the whole number.  And then you 

got to go.  Don't forget this part [points at the "d-" I assume]  "d" minus 
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101. STUD Where does that go in? [that I presume refers to the "d-"] 
102. TUTOR Where do you think it goes in? 
103. STUD I would just disregard that part 
104. TUTOR Well what is this gonna give you[points at d*1/3 I think]  Let’s say d is nine, what's this gonna give you 
105. STUD Um.  6 
106. TUTOR One third of nine? 
107. STUD No, it’s gonna give me three 
108. TUTOR It’s gonna give you three, Which you know is not the right answer.  Right? What do you want to do with 

that three? 
109. STUD Times the other two 
110. TUTOR Oh- OK 
111. STUD I means d times 2 equals 6 [writes =d*2=6] 
112. TUTOR Well what's d?  D is nine. 
113. STUD Oh yeah 
114. TUTOR You don't want to multiple d times two, what do you want to multiple by times two 
115. STUD Nine...if you are using... 
116. [drops pencil in exasperation and holds head] 
117. TUTOR Well let’s go back to the third.  This third, When you right 33% that's just the percent, that's not the 

quantity.  You want to subtract the quantity, not the percent, or the fraction.  You don't want to subtract a 
third you want to subtract a third of the whole number, or a third times the whole number, SO instead of 
writing just 33% or just one third, you want to right THAT[ points at 1/3d], because that's the quantity not 
just the fraction, because the fraction just tells you what part, it doesn't tell you exactly how much.  A third 
could be a third of two thousand,  it could be a third of seven.  So let try. So you want to take your number 
and subtract 33% but not 33%, you want to subtract 33% OF[emphasized] the whole number. So how 
would you write that.   

118. TUTOR That's the 
119. STUD Yeah 
120. TUTOR You did this 
121. TUTOR That's 33% percent.  This is a good part of your expression.  So how would we write the whole expression?  

there are two different ways.  And you have played around with both of them. Let’s stick with this one for 
now.  This one you take d, your whole amount, and what do you want to subtract.  What exactly do you 
want to subtract? 

122. STUD I want to subtract,  Actually I want to add one third to it 
123. TUTOR You want to add one third?  Oh,  You want to take a third and then another third.  and add the two together, 

or multiple by two 
124. STUD Add one third of the whole number 
125. TUTOR OK- So write that down.  So you want to take 
126. STUD I want to take the 1/3 of d.  
127. [writes 1*3d +1/3d "]  
128. TUTOR Ahhum.  Good.  And you got the one third of d not just one 
129. STUD Times, I mean plus, another third of d 
130. TUTOR Good, and that's one way to right the expression 
131. STUD which equals two-thirds 
132. [ adds "2/3d=?" to the line with 1/3d+1/3d ] 
133. TUTOR Right 
134. STUD times d 
135. TUTOR Right 
136. STUD equals 
137. TUTOR Good, and that is one way to write the expression and that's a perfectly good way.  If you know a third is 

coming off, you know two thirds is left. 
138. STUD Yeah 
139. TUTOR You could have also used this way, which you originally started.  You could have done "D" minus a third of 

d, because that also gives you two-thirds of d.  But you can't do, You would have to say "d minus 1/3 of 3, 
you can't just say d minus a third because you can't just subtract a third.  A third of what?  So you have to 
have the "of what" part.  Either of those expressions are great!  [tutor writes "d-1/3d"] 

140. TUTOR See it? 
141. STUD Yeah 
142. TUTOR This[points at d-1/3 presumably] is where you fell apart, because you wanted to subtract a third, but you 

just can't subtract a third but you can't just subtract a third of something, you have to subtract a third OF 
something, and that “of” triggers multiplication.  See it 

143. STUD Yeah, that's how I would have done it in mind, because I understand what I mean 
144. TUTOR Right, Exactly, but when you are writing an expression you are writing it for any old person who comes and 

uses that formula.  Right?  Or , more specifically, but in your case, you will probably be writing this for a 
computer.  If you are writing this for a computer your computer has to.. you have to be VERY specific for 
your computer, or it’s not gonna do what you want it to do.  Right?  

145. STUD Yeah 
 
 
146. TUTOR OK, let’s try number 6 
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147. STUD [reads problem] Sue made 72 dollars by washing 6 cars to buy holiday presents.  She decided to spend 32 
dollars on a present for her Mom and then use the remainder to buy presents for each of her s sisters.  She 
will spend the same amount on each sister.  How much can she spend on each sister? 

148. STUD Now uhm ::::::: times thirty two  equals  :::::: 40  writes "72-32=40 "] 
149. TUTOR Remember that we are trying to write an expression, we are not trying to do any work. 
150. STUD Yeah,  divided by  “s” equals money spent on my sisters  [continues on writing a single line by adding the  

“/s” onto the line above to get "72-32=40/s=money spent  on sisters”] 
151. TUTOR Now write one big expression that shows everything, without having , without having done any work 
152. STUD Can I just use like numbers or letters,  
153. TUTOR Yeah,  WELL use the numbers, but here.  You actually..  Remember how I talk about all the time, this[?] is 

not really equal to this.  Are these two things really equal? [points to the “72-32” and the “40/s”] 
154. STUD Ah NO 
155. TUTOR [repeats his no] Kind of yucky, so let’s down here right one expression, without doing any math.  Pretend 

you forgot how to subtract.  Can you right an expression with doing any of the subtraction, division, or 
multiplying? 

156. STUD Yeah, I think so 
157. TUTOR That shows the whole thing? 
158. STUD :::::::[writes 72-32=a/Stud] :::::: 
159. TUTOR Right, instead of 'a', let’s just use this.  Pretend 
160. STUD Oh I get it :::: it will be 72 minus 32 equals something minus thirty two divided by s. 
[writes 72-32=72-32/s = money spent"] 
161. TUTOR so really you don't want to put the equal sign, you just want to write that Now!, What is being divided by 

's'? because order of operation says you divide before you subtract.  So what is really being divided by 's'? 
162. STUD Ah  [writes parenthesis] 
163. TUTOR right, now you wanted to write this equals, because you want to go one step at a time.  Bad habit, because 

then you get equal signs between things that aren't equal. So here 
164. STUD So here I really don't need this [??] 
165. TUTOR Right.  You really want this [??], and then we do...then we work down, to show that everything above it is 

equal to [inaudible] 
166. STUD It’s just because I can't write on this [student crosses out "72-32=" that was part of the "72-32=72-32/4" 
167. TUTOR So you see what I mean? 
168. STUD Yeah 
169. TUTOR [talks over the student] Yeah, that's like forgetting to capitalize at the beginning of the sentence.  It’s just 

yucky.  OK  Laughs 
170. TUTOR What if someone said it wasn't thirty-two dollars,  this doesn't give me the right answer.  I want to spend 30 

dollars on my mother.  Now you can change it easily.  Here, it not as easy to change, because you don't 
know where the 40 came from.   OK, number 7what does number 7 says 

 
171. STUD [reads problem] John and his wife Beth have been saving to give the 5 children presents for the holidays.  

John has saved 972 dollars for presents and Beth has saved "b" dollars. They give each child the same 
amount. Write an expression for how much each child gets. 

172. STUD The same amount between them, or the each amount between just one person.   
173. TUTOR It doesn’t matter which way.. If each person gives them the same amount, there gonna get the same amount 

at the end, right? 
174. STUD Ah, yes.  So it would be 972 divided by 5 equals = a [wrote "972/5”] 
175. TUTOR Just leave, because well make one big expression.::::: 
176. STUD "b divided by 5"   wrote onto 972/5  =  b/5" 
177. TUTOR So how much does each kid get? 
178. STUD Ah.  :::::::They get :::::::They get a+c?  I don't understand this one part 
179. TUTOR Hoe much are they gonna take in? 
180. STUD They are gonna take in this divided by 5 and this divided by 5 
181. TUTOR AND [Emphasis apparent in the audio presumably is signal the addition operation] 
182. STUD Ah Plus,  So it would be :::::::::writes "(972/5)+(b/5)::: 
183. TUTOR Next one.  Do you need those parenthesis there? 
184. STUD Not really 
185. TUTOR Why not?  
186. STUD Ah, because division get done first left to right 
187. TUTOR Right so those aren't necessary  [(b/5)+(972/5)]this one here, those were.  You need to tell your person you 

got  
188. STUD Because you have to minus the two numbers first 
189. TUTOR right, you got to do the subtraction first 
 
190. STUD [reads problem]Bob left at 3 P.M. and drove 550 miles from Boston to Pittsburgh to visit his grandmother.  

Normally this trip takes him "h" hours, but on Tuesday there was little traffic and he saved 2 hours.  What 
was his average driving speed? 

191. STUD ::::Well ::: Ah :::: so he saved two hours :::ahum::::::::: 
192. TUTOR Do you know how to calculate average driving speed? 
193. STUD I think, but I forget 
194. TUTOR Well average speed,  as your mom drove you here did she drive the same speed the whole time. 
195. STUD No 



 147

196. TUTOR But she did have an average speed.  How do you think you calculate the average speed? 
197. STUD It would be h hours divided by 550 miles an hour. 
198. TUTOR So which way is it?  It’s miles PER hour.  So which way do you divide? 
199. STUD It would be 550 divided by h   
200. [write 550/h=mph"]  TUTOR OK so now, that's how you calculate miles per hour.  So now how about for this 

problem?  Read the problem again. Because you got the right idea.  You know how to calculate average 
speed.  But what exactly do you have to do for this trip 

201. STUD Um. Well he saved two hours, but I don't know how that is important 
202. TUTOR Well how do you calculate... Not for Bob but for your mom, how did you calculate what her average speed 

was driving to CMU this morning?  
203. STUD Ahm, I guess you would   I would have done it 550 divided by h 
204. TUTOR yeah  [even though the 550 is not for his mom?]  That's how you calculate average speed but what exactly is 

it?  550 represents what? 
205. STUD Miles per hour 
206. TUTOR No. 
207. STUD Oh  550 miles 
208. TUTOR Right 
209. STUD Divided by h  
210. TUTOR Which represents? 
211. STUD Miles per hour 
212. TUTOR No what does h represent? 
213. STUD Hours 
214. TUTOR Hours! So what are you getting? What are you dividing by what? 
215. STUD Oh miles divided by hours. 
216. TUTOR Right  TOTAL miles divided by 
217. STUD Total hours 
218. TUTOR So let’s calculate it for this guy,  That's exactly the concept, TOTAL miles divided by TOTAL hours 

[writes "550/h"] 
219. TUTOR Is that what it is? 
220. STUD Yeah 
221. TUTOR Is 550 the total miles?  [neat!] 
222. STUD Yes 
223. TUTOR Is h his total hours? 
224. STUD Yes 
225. TUTOR Is it?? 
226. STUD Oh no  h-2 
227. TUTOR OK- right this again and write it correctly so that order of operations and stuff works 
228. STUD [Writes "550/(h-2)"] 
229. TUTOR Exactly, so where did the 2 go in? 
230. STUD The two hours he saved on traffic 
231. TUTOR To calculate the total hours, so good. 
232. TUTOR How we doing, we got lots of time.  All right thinking harder. These are pretty good. Let’s try number nine.  

Okay 
233. STUD Okay 
234. TUTOR [Laughs and mentions hard work] 
 
 
235. STUD [read problem]Julie was trying to raise money to help fight Cancer.  She got 7students to each donate "s" 

dollars and "t" teachers to each donate 10dollars.  Write an expression for how much she collected? 
236. TUTOR Number 10, or no number 9 
237. STUD [writes 7*s +t*10=money to fight cancer"] 
239. TUTOR Good. Next problem 
 
 
240. STUD [reads problem] Cathy took a "m" mile bike ride.  She rode at a speed of "s" miles per hour.  She stopped 

for a "b" hour break.  Write an expression for how long the trip took? 
241. STUD uhm :::::::::::::::::::::: writes "s/m+b":::::::::::::::::::::::::::::::::: 
242. TUTOR How do you calculate the amount of time it takes you?  If your, if your, if your riding at, let’s make it 

simple.  If you are riding at 20 miles per hour, OK and you go 100 miles, how many hours did that take 
you? 

243. STUD Um  5 
244. TUTOR 5 and how did you get that 5?  How did you use the numbers 100 and  
245. STUD 100 miles divided by  miles per hour 
246. TUTOR So you took the miles and divided it by the [garbeled, probably “speed”] 
247. STUD Miles divided by s  plus b equals time [writes m/b+t ] 
248. TUTOR Right, OK, whenever I get these.. did you see how I had to stop and think?  I have stop and think for these 

to?  so I always remember to stop and think, which way do I have to divide, because I know I have to 
divide, which way?  OK?  So you have to figure out which that is?  OK number 11 
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249. STUD [reads problem] Debbie has two jobs over the summer.  At one job she bags groceries at Giant Eagle and 
gets paid 5 dollars an hour.  At the other job she delivers newspapers and gets paid 7 dollars an hour.  She 
works a total of 30 hours a week.  She works "b" hours bagging groceries. Write an expression for the total 
amount she earns a week. 

250. STUD ::::::::::::::::::::::::::::::::::writes b*5+(30-b)*7:::::::::::::::::::::::::::::::::::::: 
251. TUTOR Beautiful, excellent, good work  That one was tough 
 
252. STUD [reads problem]Michael starts a business selling lemonade.  He buys 35 dollars worth of supplies including 

lemons, pitchers, cups and advertising.  He sells a 16 ounce glass of lemonade for 2 dollars.  If he sells "g" 
glass of lemonade, how much profit will he end up making 

253. STUD ::::: 2 dollars for each cup:::35::: minus 2 * g  [writes "35-2*g"] 
254. TUTOR Which number do you want to be bigger?  Which number is gonna be bigger?  35 or 2*g? 
255. STUD Ah.. :::  well let’s see what it’s gonna be  Else he loses money and [writes "2g-35"] 
256. TUTOR So this would calculate how much money he lost? Now if you do this, will this calculate how much money 

he lost?  
257. STUD No 
258. TUTOR What if he sold 5 glasses  what's the answer gonna be.   
259. STUD Ten 
260. TUTOR That would be ten.  What's ten minus 35? 
261. STUD Oh I got it., money made,  then 35 
262. TUTOR No let look at this  I think you can.  This should work for both,  because what's the answer?  If he sold 5 

glass what would the answer be? 
263. STUD Um - minus 
264. TUTOR What does that represent? 
265. STUD Well you could just take off the minus and it would be how much money he lost 
266. TUTOR Exactly.  So that minus just represents "lost".  So this works for both of them 
267. [writes 10-35=  -25"] 
268. TUTOR So the math even at negative number,  those negative numbers allow it to tell us all the answer, even with 

one expression, that's why those negative numbers are so cool. 
 
269. STUD [reads next problem] A jacket that normally cost d dollar goes on sale for 2/3 of its original price.  How 

much does the jacket cost on sale? 
270. STUD We already did this, but ::  two  thirds time d 
271. [writes 2/3*d] 
272. TUTOR And the only thing I am gonna tell you is that when you write it like that you have to put parenthesis, 

because otherwise it looks like 3 times d or you could write it like this  
273. STUD Actually I think... 
274. TUTOR which is the same thing 
275. TUTOR point 66666 which is 66%, but this way is always better. 
 
276. STUD [reads problem] Rebecca makes a "h" hour car trip.  For 3 of those hours it was raining and Rebecca drives 

at 40 miles per hour.  The rest of the time it was sunny and she drove 55 miles per hour.  Write an 
expression for the total distance Rebecca drives. 

277. STUD h-3  times 55 :::: would be  ::::: plus :::::::::  3 times 40   [writes "(h-3)*55mph + 3*40mph"]  
278. TUTOR Right and usually with the expression we don't put the units in 
 
279. STUD [reads problem] John drove 300 miles to grandmother's at 30 miles per hour.  He drove back at 20 miles per 

hour.  He drove a total of 600 miles.  What was his average speed? 
280. STUD 600-30+20 divided by :::::::::::::: two :::::::: no  this parts wrong ::: writes 600-[(30+20)/2] and then 

scratches out the 600-" 
281. TUTOR Right 
282. TUTOR That [points at (30+20)/2"]  looks great but it doesn't work. OK You would think it would, you are just 

averaging, but it doesn't work.  What did we define average speed as earlier? 
283. STUD Um 
284. TUTOR Had the words total in it.  Had to do with totals. 
285. STUD Ah total :  Ah  total miles plus 50, plus total miles per hour 
286. TUTOR No, no. To calculate miles per hour what do we need? 
287. STUD Miles and hours 
288. TUTOR Miles and hours.  We need TOTAL miles and what else? 
289. STUD Total hours 
290. TUTOR Exactly 
291. STUD So::: 
292. TUTOR So for his complete trip 
293. STUD So seeing it’s 600, it has to be half,  300 miles could be the first half  
294. [writes "300"] 
295. TUTOR You have to deal with this idea of total 
296. STUD I am gonna figure out the hours for each half of the trip and then add them together. 
297. TUTOR Exactly 
298. STUD Uhm :::::::::::::::::::: 
299. TUTOR You can, pick an easy problem and figure it out 
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300. STUD :::::::::"writes divided by 30=10 hours 300/20=A":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
301. TUTOR Remember that you don’t need to do the calculations because I am gonna ask you at the very end to actually 

just write the expression without doing the math.  OK. 
302. STUD So it would be 10 plus A?  mumbles  
303. [writes "10+A" and then adds in front of it "600*"] Is that how you calculate miles per hour 
304. STUD Ah no 
305. STUD Mumbles 
306. TUTOR That is just the exact same thing you had before, except you are that you are just multiplying "A" times 600 

but I suspect you want to do the whole thing? [Student writes "(10+A) * 600"]  How did we calculate.  
Once again what is the definition of average speed?  Average miles per hour? 

307. STUD Um 
308. TUTOR Tell me out loud.  Definition of average speed 
309. STUD ::: 
310. TUTOR It has to do with total.  The word total has to be there. 
311. STUD ::: 
312. TUTOR How did we do it over here?[points to previous problem where speed was calculated] 
313. STUD 550 total miles per hour total? 
314. STUD Ah, total miles 
315. TUTOR OK 
316. STUD Then h-2 total hours 
317. TUTOR Right, so we took, total miles and did what? 
318. STUD Divided  Ah   
319. TUTOR Divided it by total hours writes ["600/(10+A)"]OK beautiful.  You weren’t given 10 or given 'A.'.  What 

were you given?  So the person that is reading this doesn’t have any arithmetic already done. 
320. STUD 600 divided by 30,  no  it’s 300 divided by 30..write 300/30 
321. TUTOR Good that's the tens; plus three hundred divided by 20 adds "+300/20" 
322. TUTOR OK 
323. STUD ::::600 divided by that then divides by putting the 600/ in front of it. for a final expression of 

"600/(300/30+300/20)" 
324. TUTOR Yup, and after next year you won't right it with that division 
326. TUTOR OK the next one is a good one. 
 
327. STUD [reads problem] A car salesperson is paid a base salary of $200 per month plus the additional amount of 

money in commissions for each car she sells.  She sold four cars last month and received "x" dollars that 
month.  If she sells "h" cars this month, write an expression showing how much she earns this month.  
What's her commission? 

328. TUTOR Good question. 
329. STUD Oh I have to find this out don't I 
330. TUTOR I think so 
331. STUD Um   x [minus] that  
332. STUD It doesn't say how many cars.  Ah 4 cars last month so it would be x-200 divided by 4 
333. [he puts in the parenthesis only after writing "x-200/4"] 
334. TUTOR OK 
335. [he has written (x-200)/4 = commissions" and then adds a “c” before the commission apparently to indicate that commission’s 

will have the variable "c" stand for it] 
336. STUD Equals commissions  or “c”.  So this month would be 200+c*4  = salary 
337. [writes 200+c*4=salary] 
338. TUTOR This month? 
339. STUD Yeah 
340. TUTOR Read it again. 
341. STUD This month,  or she sold h cars 
342. [scratches out the 4 and replace it by "h"] 
343. TUTOR You want to skip a line so you aren’t messy 
344. [starts writing "200+c*h" and tutor interrupts after the "c" to say  
345. TUTOR OK now  is C something that was given to you? 
346. STUD No 
347. TUTOR Where did it come from?  What numbers 
348. STUD So have to do this  [scratches out the "200+c*h" he just wrote] 
349. TUTOR You have to rewrite the WHOLE expression. 
350. [writes 200+(x-200)/4*h=salary] 
351. TUTOR Good 
352. TUTOR Let’s see if that last problem is any harder 
 
353. STUD [read problem] A candle that has been burning for 2 minutes is 8 inches long.  Three minutes later the 

candle is "x" inches long.  Assume that the candle will burn at this same rate.  Write an expression for the 
height of the candle after the candle has been burning for "m" minutes. 

354. STUD So assuming that for each minute it’s x inches long  it’s a little tricky 
355. TUTOR Ahum 
356. STUD :::::::: x inches  divided by 8inches equals  
357. [writes "xinches/8 inches=rate of burning " {does this quantity name the rate or the amount burnt?}] 
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358. STUD rate   no   it would be minus,  [changes the minus 8 to divided by 8"]  inches is rate of burning 
359. TUTOR Inches minus inches is gonna give you answer in what units? 
360. STUD Inches 
361. TUTOR Inches,  is that a rate unit? 
362. STUD It would be one inch per minute 
363. TUTOR Yes, that’s what you want.  so the per stands for what operation? 
364. STUD divided by.  so I was right! 
365. [starts to change the minus back to a dividing sign] 
366. TUTOR No, no, no, but wait a second,  you want inches divided by inches? 
367. STUD No 
368. TUTOR That's gonna give you 
369. STUD  
370. TUTOR You are on the right track because you want inches per [[left a sentence completion] 
371. STUD Yes, I was think If I divided by minus x inches by minus 8 inches it would be the inches per minute 
372. TUTOR No. what does that give you? 
373. STUD That would be x-8 
374. TUTOR Which is longer, x or 8? 
375. STUD x 
376. TUTOR [Read the problem again] 
377. STUD "assuming the candle has been burning for 2 minutes is eight inches long.  Three minutes later the candle is 

x inches long." 
378. STUD Oh three minutes later.   so it would be five minutes  "Assume that the candle will burn at the same rate.  

Write an expression for the height of the candle after the candle has been burning for "m" minutes. " ::::: 
379. TUTOR Now you got a good start.  I like what you did but what does it give you? 
380. STUD It give me  uh  um the number of inches the candle has burned in the time of three minutes 
381. TUTOR Right!  So will that help you find a rate? 
382. [To the line that now reads "8 inches-x inches=rate of burning" he adds "in 3 minutes" which is improper]  
383. STUD Yeah 
384. TUTOR Yeah because rate is what?  How is rate defined? 
385. STUD Its’ :::  I don't know   
386. TUTOR You just told me 
387. STUD It’s the time or something like that 
388. TUTOR It’s got a "per" in it 
389. STUD Yeah 
390. TUTOR So what is it for this situation? 
391. STUD The amount of candle that has burned in so many minutes 
392. TUTOR Right.  So and candle burned is measured in what in this problem? 
393. STUD Inches 
394. TUTOR Inches.  it could be measured in grams of wax or something.  But in this problem it is measured in inches.  

So we want our rate to be what?  Inches [left time for completion] 
395. STUD um.  wait,  if it’s going less it will go x 
397. TUTOR Yeah-- that you can go ahead and fix, so that's gonna give you inches.  How are we gonna have to fix that to 

give us the rate? 
398. STUD And we can divide eight minus 8 by three to give us one minute 
399. TUTOR That’s gonna give us the rate.  Exactly! 
400. STUD Eight 
401. TUTOR The unit rate! 
402. STUD Eight divided by oh eight.  [on a new line he writes 8inches/" and stops ] I mean to say x times 8.[ changes 

the line to say "x*8inches/"]  Oh that's wrong. 
403. TUTOR I can see you are getting tired, this is our last problem. 
404. STUD Eight minus x   inches :: divided by   [writes (8-x inches)/3=rate in 1 minute of burning"] 
405. TUTOR Right 
406. STUD Three equals rate for one minute  mumbles 
407. TUTOR OK so what's the actual question? 
408. STUD m times (8-x) inches divided by three [writes "m*(8-x)/3"] 
409. [Note: this is the amount that has burned not the end height of the candle but the tutor accepted the student’s answer.] 
410. TUTOR Because rate times time gives you inches,  
411. TUTOR Beautiful!  Those are hard.  Those are good ones. 
 
End of transcript  
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Appendix D: A list of Observed Tutorial Operators 
What follows is a list of tutorial operators that might be incorporated into the model of 
tutorial reasoning I propose to build.  I have attempted to define types of tutorial 
interaction.  I note any use of these operators in Appendix C and cite them by line 
number. The categories are not mutually exclusive. To make this list easier to browse I 
have provided an idealized example in the context of the following problem: 

Ann is in a lake that is 2400 yards wide.  She starts out 800 yards from the dock.  She rows for 
“m” back towards the dock at a rate of 40 yards per minute.  Write an expression for her distance 
from the dock. 

 
Op1: Concrete Instantiation Analogy   

The first step is an instantiation request and is found in lines 32, 104, and 258.  The second 
and third steps are both requests for the student to articulate how they got an answer.  An 
example where that was tough for the student is at lines 45, 51, 56, and 65.  The last step is a 
request to show the two evaluation steps in a single expression and is found in lines 70, 82 
and 151. 

 Tutor:That is not right.  Let me ask you an easier question.  Suppose the number of minutes she 
had been rowing was “3” instead of “m”.  What would the distance to the dock be? 

 Student:680 
 Tutor:Correct.  Can you show the math for how you got that? 
 Student:800-120 
 Tutor:That is partially correct.  How did you get the 120? 
 Student40*3 
 Tutor: Good. Now write how you got the 680 again, but this time use 40*3 in place of 120. 
 
 
Op2: Tutor makes reference to dialogue history   

On line 282 the tutor asks the student to recall a fact that they used several problems 
previously on line 216. Line 306 shows the tutor using “Once again, what is...” (Moore 
(1996) addresses issues related to generating natural language with the natural human 
quality of being sensitive to what has been previously said in the dialog.) On line 312 the 
tutor points to a previous problem to encourage the student to use that as an example. 

 Tutor:You have made the mistake of calculating speed using multiplication several times today; 
try to remember how you calculated speed on that problem about the Indy 500. 

Op3: Encourage the student to generalize  
On line 183 the tutor challenges the correct but unnecessary use of parentheses. Line 401 
shows the tutor confirm a correct response and at the same time trying to introduce 
vocabulary.  Line 246 is an example where, after the student states how to compute an 
instance, the tutor states the procedure in general terms.  Line 170 is an example where the 
tutor suggests that a generalization is possible but doesn’t ask the student to do the 
generalization. 

 Tutor:Good. Now what if the speed wasn’t  40 but was “s.”  What’s the answer now? 
Op4: Reflection after the correct answer   

On line 229 the student is challenged on how he used one of the numbers given in the 
problem, which he had mentioned he did not know how to use (earlier on  line 201) so the 
tutor came back to reinforce.  On line 169-170 the tutor adds additional comments after the 
student has already arrived at the correct answer. 

 Tutor:Good.  You didn’t make the mistake of using division for the fractional relation as you 
have a few times today.  Try to remember that on future problems. 
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Op5: Reflection on, or Challenge of, a correct answer if the tutor suspects guessing  
On line 253 and 255 the student quickly corrects his initial wrong answer with the other easy 
to guess alternative, so the tutor spends considerable time (lines 255-268) challenging his 
understanding of that answer, presumably due to a suspicion that he doesn’t understand why 
his answer is correct. 

 Tutor:How do you know the answer is 800-40*m and not 800+40*m? 
 
Op6: Feedforward (given before the student makes an anticipated mistake)  

On line 227 the tutor anticipates a missing parentheses mistake and possibly chooses to help 
the student avoid that problem because of the rather lengthy dialog the tutor and tutee are 
engaged in.  

 Tutor:Now, during the last few problems you have made several mistakes on problems that ask 
you to figure out the amount of a fractional discount.  This upcoming problem is another of that 
type.  Try to remember what operator you needed on problems like this (like the problem about 
selling T-shirts). 

Op7: Requesting that the student recall information by either questioning and/or hinting  
Line 306-310 shows the tutor asking the student to recall a definition, and then when the 
student fails, switching to hinting by providing part of the definition “The word total has to 
be there?”  Line 384 & 282 are recall requests both followed by line 388 and 284 which are 
hints towards that information. Line 192 is a similar request for recall. 

 Tutor:How do you calculate distance traveled when given a speed and time?(question form) 
 Tutor:How do you calculate distance.  Remember d=r*t.  (hint form) 
 
Op8: Challenge the student’s answer   

Line 219, 221, 223 and 225 challenge parts of the students answer, rather than say it is 
wrong.  Line 221 even challenges part that is correct.  Line 75 and 106 are other examples of 
this very general style of delivering what is usually negative feedback.  Line 242 begins with 
a rhetorical question about the procedure a student uses, that is presumably asked to focus 
the student’s attention on the part of the answer that is wrong, and not to actually elicit a 
response as shown by the fact the tutor immediately asks a follow up question. 

 Tutor:Are you sure about that plus? 
 
Op9: Ask the student to identify the name of a quantity represented by a symbol (or expression).  
Include follow up clarification if the student is not specific enough.  

Line 210 and 212 are examples.  This does not just apply to numbers given in the problem.  
On line 24-27 the student has apparently used “2/3” to stand for “two-thirds of the cost of a 
shirt” and the tutor asks the student  to identify what the “2/3” represents? 

 Tutor:Your answer of 2400+40*m is not correct.  But the 40*m is part of the answer. Before we 
go on, can you please tell me in words what the 40*m represents? 

 Student:The start distance 
 Tutor:From where? 
 Student:the dock 
 Tutor: Good.   
 
Op10: Ask a student to identify the symbol(or expression) that represents a quantity (vice versa of 
above)  

On line 82 the tutor asks the student to recall from the problem statement the symbol used to 
represent a quantity. 

 Tutor:What is the speed of the rowing?   
or 
 Tutor:In your expression “800+40*m” what part represents the distance rowed after “m” 

minutes? 
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Op11: Correct a bug by referring to the implicit semantics about the relative size of numbers  

Line 374 and 252 both show this technique of correcting a bug for the wrong ordering of 
subtraction arguments by asking “Which is larger?” 

 Tutor:Your answer of 40m-800 is wrong.  Which one is supposed to be larger? 
 
Op12: Stating the general quantitative relationships in words.  This is like generalization, but can 
occur anywhere in the problem 

Line 216-218 and 246 are examples and line 282 is a request for such a statement. 
 Tutor:So the distance she has left to row is equal to the distance she starts from the dock minus 

the distance she has rowed back towards the dock.  Now that we have that figured out, Let’s go 
back to the original question of how far she has left to row 

 
Op13: If the student might have forgotten what work he has already accomplished then remind the 
student what steps they have already completed 

Line 407 is an example of the student having completed a subgoal of finding the slope and 
then being reminded to think about what the original question asked for. 

 Tutor:Good.  You now have told me that the amount she made at bagging groceries was 5*h 
and the amount she made delivering newspapers was (30-h)*7.  What is the total amount she 
earned at both jobs? 

 
Op14: Positive Feedback on parts that are correct 

Lines 315, 334 and 326 are just a few of the many examples explicit positive feedback in the 
form of “OK”.  Lepper et al. (1997) argued that a primary characteristic of good tutors was 
their indirect style including negative feedback and positive feedback.  The implicit positive 
feedback on line 183 is an example where the positive feedback for the answer was simply in 
the form of indicating the student should move on to the next problem.  Line 362 seems to 
show an extreme example where the tutor gave positive feedback for just a small kernel of a 
correct response. 

 Tutor:Good.  You now have told me that the amount she made at bagging groceries was 5*h 
and the amount she made delivering newspapers was (30-h)*7.  What is the total amount she 
earned at both jobs? 

 
Op15: Simple Feedback on an identifiable bug category 
 Tutor:Your answer is missing parenthesis 
or 
 Tutor:You reversed the order of the subtraction sign.  
or 
 tutor:You calculated the amount she rowed, not the distance she has left to the dock 
 
Op16: Ask the student to figure out what sub-goal to set   

An example where the tutor asks the student what information is needed  for a sub-goal is at 
line 286 See  Catrombone, (1996) for an argument that helping the students see the sub-goal 
structure is of crucial importance. Line 37 contains an instance of the student having set too 
large a goal (trying to find the cost of all 4 jackets), and the tutor points this out by asking 
the student what the goal for the problem is (cost of a single jacket). 

 Tutor:That is not right.  Let me get you to simplify the problem for yourself.  In order to figure 
out the distance she has left to the dock, what quantity do you have to first figure out? (Answer:  
“the distance Ann has rowed after “m” minutes.”) 

 
Op17: Socratic Technique showing a contradiction from a student’s error 

Line 32 is an example showing a successful use of a Socratic technique that makes the 
student aware of an error in his answer by asking him to evaluate an expression.  Line 260 is 
another example of the tutor showing the student that his symbolization does not agree with 
his arithmetic computation.  Line 359 is an example where the tutor points out a conflict to 
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the student in that their expression does not give an answer in the units the student was 
expecting.   

 Tutor:Let’s take a look at your answer of 800-m. What does your answer predict the distance 
Ann is from the dock will be after 3 minutes? 

 Student:800-3=797. 
 Tutor:OK good.  I agree that that is what your answer predicts.  But let me ask you to now 

consider how far Ann rows in 3 minutes when she is going 40 yards per minute? 
 Student:120 yards 
 Tutor:So what does that predict should be Ann’s distance from the dock after 3 minutes? 
 Student:680. 
 Tutor:Good.  That is correct.  You now see that your answer of “800-m” could not be correct, 

since it predicts she will be 797 yards form the dock after 3 minutes, which is not correct.  
Please take another guess as to what you think her distance from the dock is after “m” minutes. 

 
Op18: Order of Operations Sub-Dialogue 

Line 161 is an example of the tutor engaging the missing parenthesis errors possibly on 
problems that require parenthesis. 

 Tutor:Your answer of “70-m/4 “is wrong because it is missing parenthesis.  Try to fix 
it.[correct answer is (70-m)/4] 

 Student:70-(m/4) 
 Tutor:Suppose you knew what value “m” had.  What  is the first math operation you would 

perform in your head? (subtract or divide) 
 Student:subtract 
 Tutor:Correct.  But the answer you wrote above “70-(m/4)” would have which math operation 

done first? 
 Student:subtract 
 Tutor:No.  Remember that what is inside parenthesis is done first.  Try again.  What math 

operation would be done first in your answer 70-(m/4)? 
 Student:divide 
 Tutor:Correct.  Now see if you can put parenthesis around  70-m/4 to make the subtraction 

happen first. 
 Student:(70-m)/4 
 
Op19: Teach students how to do unit analysis 

On line 359-361 the tutor attempts to use unit analysis to convince the student that his 
answer must not be correct.    

 Tutor:Your answer of 800-40/m has a problem.  Let’s look at the 40/m that you probably mean 
to be the distance she has rowed so far.  What are the units on the 40? 

 Student:yards per minute 
 Tutor:Good.  What is the unit on the “m”? 
 Student:minutes 
 Tutor:If you divide yards per minute by minute what do you get? 
 Student:yards per minute squared 
 Tutor:Correct.  So you see your answer of “40/m” couldn’t possible be correct because it gives 

a number in the wrong units.  You want an answer in yards.  Try again at what you think  is the 
correct expression for Ann’s distance form the dock. 

 
Op20: Coach the student to realize distractor numbers are not needed  

The student only made one error involving a distractor number, and the tutor early on 
coached the student to realize this error in lines 37-41. 

 Tutor:In your answer 2400-40*m you used a number that is not needed. Which number do you 
think is not needed? 

 Student:2400 
 Tutor:Good- Now that you have identified that 2400 is not needed, take another guess at the 

distance she is from the dock. 
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Op21: Slips and other mistakes that tutors don’t dwell on 

Line 278 is an example where the student wrote the expression with the units in the 
expression and the tutor did not dwell on the error and simply told the student to leave off the 
units inside expressions.  Possibly, some errors would be explored with tutoring if a novice 
made them but those same errors might be interpreted as slips if a more advanced student 
made them. 

 Tutor:Your answer of 80-40*m looks like it might be right but you used  80 instead of 800. 
Please fix your answer. 

 
Op22: Tutor focuses attention on a previous answer that was more correct 

This appears to happen on the many different answers the student gave between 17 and 145, 
but is hard to identify. 

 Tutor:Your answer of 800+40m is close.  Try again. 
 Student:2400+40*m. 
 Tutor:No- you are getting colder.  Let us go back to your first answer of “800+40*m” and work 

from there. Now what is... 
 
Op23: Tutor comments on the repair the student attempted  

The lines 174-182 show a student who was able to get the two separate parts, and then got 
tutored simply on the repair to combine the two expressions together.  In general, this 
requires additions to student model to model the process of creating new answers by 
modification of existing answers. 

 Student:-800-40*m 
 Tutor:No, that is not correct. See if you can see for yourself what is wrong and  try again 
 Student:-800+40*m 
 Tutor:No.  You changed the expression to be an expression that gets larger as “m” gets larger, 

but in fact the distance to the dock should decrease as the number of minutes she rows 
increases. 

 
Op24: Levels of Specificity 

This operator is orthogonal to the above operators, since all the tutors remarks can be more 
or less specific. 

 Tutor:1) Your answer has 2 errors 
  2) You are missing parentheses 
 3) You need parentheses around the 30-b. 
 4) Your answer should be 5*b + 7*(30-b) 
 
Op25: Be able to differentiate a close answer from a very wrong answer, from an unintelligible one 

This operator is also orthogonal to the above operators.  Presumably, most of the above 
operators can be made more or less helpful in the degree that they get more specific in 
hinting as to what the student should do. 

Tutor: No, but that is close. I can see you only made one mistake. 
versus Tutor:No that is not correct.  Let me help you... 
versus Tutor:I am sorry, but I can’t understand what you wrote. ... 
 
Op26: Engage the student to try to diagnosis what the student was thinking 

Line 20 and 24 are both examples where the tutor asks the student first for simple 
clarification, and then for an explanation as to how the student arrived at a part of the 
answer. 

 Tutor:Why do you say 40/m? 
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Appendix E: An Transcript Showing a Student with a 
Composition Difficulty  
This is a verbatim transcript of a tutorial dialog I had with an advanced seventh grade 
student over a teletype. It is included to show that students can sometimes be able to do 
decomposed problems separately, but experience great difficulty when they try to put it 
all together.  The time is indicated in square brackets.  Each line was sent once the 
participant hit the return key. Typos have been left as they appeared to the student. 
 
Tutor:: [12:08:00]  
Good 
Debbie has two jobs over the summer.  At one job she bags groceries at 
Giant Eagle and gets paid 5 dollars an hour.  At the other job she 
delivers newspapers and gets paid 7 dollars an hour.  She works a 
total of 30 hours a week.  She works "b" hours bagging groceries. 
Write an expression for the total amount she earns a week. 
Student:: 
30 - b = n   n * 7 = m   b * 5 = o   m + o = y 
Tutor:: [12:11:55] 
Ok Good- That is a good first step.   
Now let me ask you what is "y" interms of the numbers given in the problem? 
Studnet:: 
y is the amount of money she earns in a week 
Tutor:: [12:13:08] 
That is true but was not what I meant to ask.  I meant to ask can you tell me what y is  
me what Y"" is only mentioning the numbers in the problem?  (Like is it "5*7/30+b"? 
Student:: 
it is the money she makes from both jobs ( m and o) added together 
Tutor:: [12:14:57] 
again that is correct but not what I was looking for.  Let me ask you something different.  Can you tell me  
how much money she makes baggin groceireis? 
Student::  she makes 5 * b bagging groceries 
Tutor:: [12:16:22] good. 
Now can you give me the expression for how much she made deliveirng newspapers? 
Student::  7 * (30 - 5 * b) 
Tutor:: [12:18:07]  No.  It is 7 dollars times the number of hours she worked, but that is not  
(30 -5 *b).  Can you give me the expression for the number of hours she worked? 
Student::  i’m stuck 
Tutor:: [12:20:37] Ok- I will help 
The expressions you wrote before wehere correct when you said 
the stuff at the begining  
Ok.  Let me ask you hour many hours she worked deliveing newspapers if instead of "b" it said 20? 
Student:: 30 - 20 = 10 
Tutor:: [12:21:32] Good.  So now how many hours delivierng nespapers if it really was "b"? 
Student:: 30 - b = c 
Tutor:: [12:22:02] 
Good.  Now haw much does she make from deliveirng newspapers? 
Student:: 7 * c 
Tutor:: [12:22:58] 
Ok-   
Now combine that  
7*c  
30-b=c 
into one expression which tells us how much she made baggin groceriies 
Student:: 
(30 - c) * 5 = y 
Tutor:: [12:24:55] 
no- 
It shoudl be (30-b)*7 
Do you see how you can get this from the two things you wrote? 
You had said 
7*c  and 30-b=c 
do you see how these two can be put together to get 
(30-b)*7 
? 
Student:: you said bagging groceries, not delivering newspapers.  She makes $5 
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an hour bagging groceries. 
Tutor:: [12:27:26] Opps you are correct that I made a mistake.  But you also made a mistake.   
so lets talk about magging groceires for a minutes and rmemebr that she makes 
(30-b)*7  at the newspapers.   
So now bagging grocieres.  Can you state agin how much she makes at that job? 
Student:: (30 - c) * 5 
Tutor:: [12:28:42] Ok the 5 is correct.  But she only works b bours bagging rocieris, not the (30-c) you have said. 
So let me ask you to give a shot at the fianl answer for the total she makes 
Student:: b * 5 + 7* c 
Tutor:: [12:30:01] That is close to correct.  Now rewrite that showing what c is. (You see that c is not givne in the problem so you 
final answer should only have numbers form the problem   (5,7,30 and b)) 
Student:: 5 * b + (30 - b) * 7 
Tutor:: [12:30:51]  Yes! 
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Appendix F: Production Model-Traces for the student 
model 
These are the 33 productions that fire when the student correctly symbolizes "(x-20)/4". 
! Firing: (READ_SYMB_QUESTION SET_BEGIN_MODEL_WITH_QUES) 
!! Firing: (SET_CURRENT_INPUTS SET_SET_CURRENT_INPUTS) 
!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!!!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!! Firing: (SELECT_ORDER_NON_COM_CORRECT SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!! Firing: (SYMB_FILL_IN_VALUE_OF_SUB_EXPRESSION SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER 
SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_ORDER_NON_COM_CORRECT SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (LEFT_QUAN SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (LEFT_GOODUSE SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PUT_IN_PARENLEFT SET_PUT_IN_PAREN) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RECOGINZE_SYMB_DONE SET_TRAVESE_QUAN_NET)the number of bugs =0 
 
 
This is the list of 65 productions to trace 5g+7(30-g)  
! Firing: (READ_SYMB_QUESTION SET_BEGIN_MODEL_WITH_QUES) 
!! Firing: (SET_CURRENT_INPUTS SET_SET_CURRENT_INPUTS) 
!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!!!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!! Firing: (SELECT_THIS_ORDER_COMMUNTIVE SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!!!!!!!!!!!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED 
SET_MARK_EXPR_WITH_REALTION_USED) 
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!!!!!!!!!!!!!!!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED 
SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PICK_RELATION_THAT_HAS_GOAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PROD_HELP_FINISH_PICK_REALTION SET_FINISH_PICK_REALTION) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED 
SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (MARK_MENTAL_EXPR_WITH_REALTION_USED 
SET_MARK_EXPR_WITH_REALTION_USED) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (FILL_IN_LITERAL SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (FILL_IN_LITERAL_SECOND_TIME_IN_PROBLEM SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER 
SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_ORDER_NON_COM_CORRECT SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SYMB_FILL_IN_VALUE_OF_SUB_EXPRESSION SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER 
SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_THIS_ORDER_COMMUNTIVE 
SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PARENS_NOT_NEEDED_AND_NOT_USED_FOR_LITERALS 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RIGHT_QUAN SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RIGHT_GOODUSE SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (PUT_IN_PARENRIGHT SET_PUT_IN_PAREN) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SYMB_FILL_IN_VALUE_OF_SUB_EXPRESSION 
SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SYMB_FILL_IN_VALUE_OF_SUB_EXPRESSION 
SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (GET_OPERATOR_AND_FINISH SET_TRAVESE_QUAN_NET) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SETUP_OP_AND_ARG_FOR_OUPUT SET_RETRIVE_OP_AND_ORDER) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_OPERATOR_CORRECT SET_SELECT_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (IF_OPERATOR_DONE_CORRECT_SELECT_ORDER 
SET_CHECK_TO_SEE_IF_BUGGY_OPERATOR) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (SELECT_THIS_ORDER_COMMUNTIVE 
SET_SELECT_ORDER_IF_OP_CORRECT) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (LEFT_QUAN SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (LEFT_DONT_NEED_AND_DIDNT_USE 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (DONT_PUT_IN_PARENLEFT SET_DONT_PUT_IN_PARENS) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RIGHT_QUAN SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RIGHT_DONT_NEED_AND_DIDNT_USE 
SET_PARENTHESES_POTENTIAL) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (DONT_PUT_IN_PARENRIGHT SET_DONT_PUT_IN_PARENS) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (ALGEBRA_SYMBOLIZE 
SET_COMPUTE_OR_SYMBOLIZATION) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Firing: (RECOGINZE_SYMB_DONE SET_TRAVESE_QUAN_NET)the 
number of bugs =0 
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Appendix G:  The 11-item posttest given in the Ms. 
Lindquist Controlled Experiment 
Name: __________________________    Date: ________________ 
Answer the Following Problems.  Some questions ask for an equation while other only 
ask for an expression.  Remember that an equation always has an equal sign, while an 
expression does not.  
 
For each problem you will also be asked to rate your confidence in that answer.  Use 10 
to indicate that you are sure the answer is correct, and use 1 to indicate that you think the 
answer is probably wrong and just a guess. 
 
Remember that an equation has an "=" sign but an expression does not. Examples of an 
expression are "3x+7", and "4*5-18*2".  Examples of equations are "3x-5=2y" and 
"4*5=4*9-10."  
 
1) Joelyn has decided to save $12 a week to buy a stereo system costing $125.  Write an expression which 
shows how much money she will still have to save after "n" weeks. 
 
2) For lunchtime exercise Rachel runs laps around a track.  It takes her an average of 7 minutes to run 
around the track once, and it takes her an 4 minutes to change clothes afterward.  Which equation could be 
used to find "m", the number of minutes it takes for Rachel to job 5 laps and change clothes afterwards. 
A) m=(7 * 5) + 4 
B) m=(7 * 4) + 5 
C) m=(7 * 4) * 5 
D) 5 = (m +4) * 7 
E) m = 7 * (5 +  4) 
 
3) Juan has 5 fewer hats than Maria, and Clarissa has 3 times as many hats as Juan.  If Maria has "n" hats, 
which of these represents the number of hats that Clarissa has? 
a) 5-3n 
b)  3n 
c) n-5 
d)  3n-5 
e) 3(n-5) 
 
4) You go on a bike ride.  You ride at a speed of "s" miles per hour. You bike "m" miles.  You take a "h" 
hour break.  Write an expression for how long the trip took. 
 
 
5) Tom is exactly one year younger than Bill.  Write an equation that precisely shows the relationship 
between Tom’s age and Bill’s age.  Use "T" for Tom’s age and "B" for Bill’s age. 
 
 
Answer:  ___________________    Confidence:  _____________ 
 
6) Penny is eager to drive a car but must wait until she is 16 to apply for a driver’s license.  Write an 
equation that relates "n" and "p", where "n" is the number of years Penny must wait to apply for her license 
and "p" is her present age. 
 
 
Answer:  ___________________    Confidence:  _____________ 
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7) Michael is doing his federal income taxes.  He comes across a receipt for the cost of 
the moving van he rented for $900 which included sales tax.  The federal government 
allows to declare your moving expenses and thus to reduce the amount of tax you have to 
pay, but you can not count the amount you pay in sales tax. Therefore Michael needs to 
figure out what portion of the $900 dollars was sales tax and what portion was the 
expense for the moving van. The sales tax rate where Michael is from is 5%.  Show you 
work and put your final answers in the blanks given below. 
 
 
 
 
 
Cost paid in sales tax:_________  Cost paid for the van:__________ Confidence:  _____ 
 
 
 
8)A grocer noticed that a farmer delivered twice as many brown eggs as white eggs.  If 
there are 144 eggs in the delivery, how many of them are brown?  Write an equation you 
could use to solve this problem. 
 
 
 
 
Answer:  ___________________    Confidence:  _____________ 
 
9) The total cost of a stereo is $230.  Jaime put "z" dollars down on the stereo and will 
pay the rest in 3 equal payments.  If "x" is the amount of each payment, write an equation 
for this problem that you could then use to find the amount of each payment. 
 
 
 
 
Answer:  ___________________    Confidence:  _____________ 
 
10)A factory makes two types of TVs, called Vegas and Romys.  The assemble line 
always  produces 200 TV each day but they can be of any type. A Vega TV sells for 100 
dollars and a Romy TV sells for 300 dollars.  If they make "v" Vegas TVs one day what 
is the total retail value of all the TV’s make that day? 
 
 
 
Answer:  ___________________    Confidence:  _____________ 
 



 163

Name:___________________________ 
 
 
 
11) Mary starts a car washing business.  She spends 15 dollars on supplies.  She charges 5 dollar per car.  
On her first day of business she washes "w" cars.   Please write an expression for the profit she makes.  
 
 
 
 
 
12) John and his wife Peg have been saving for 7 months to give the 5 children presents for the holidays.  
John has saved 972 dollars for presents and Peg has saved "p" dollars. They give each child the same 
amount. Write an expression for how much each child gets.   
 
 
 
 
 
13) Bob left at 3 P.M. and drove 550 miles from Boston to Pittsburgh to visit his grandmother.  Normally 
this trip takes him "h" hours, but on Tuesday there was little traffic and he saved 2 hours.  What was his 
average driving speed? 
 
 
 
 
 
 
14)  A ice cream truck sells ice cream cones in two sizes, small and medium.  The price of a medium cone 
is 3 dollars and a small costs 2 dollars.  Today the truck sold "s" small and "m" medium ice cream cones.  
Write an expression for the amount for the total amount of money the truck took in today. 
 
 
 
 
15)  Rebecca makes a "h" hour car trip.  For 3 of those hours it was raining and Rebecca drives at 40 miles 
per hour.  The rest of the time it was sunny and she drove 55 miles per hour.  Write an expression for total 
distance Rebecca drives. 
 
 
 
 
 
16)  Jaime drove to the library which is "x" miles away at a speed of 30 miles an hour.  Then he drove to 
his friend’s house which is "y" miles away at a speed of 40 miles per hour.  Write an expression for how 
long a period of time Jaime spent driving. 
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11)Ms. Hart puts a math problem in each square of a 3x3 grid.  Each problem solved 
correctly is one point, with an additional point for every three correct in a row (including 
up and down, left to right, and diagonal.)  The highest score for a 3x3 grid would be 17 
points. 
 
Sometimes she uses a 4 x 4 grid, where the students need to now get 4 in a row to get the 
additional point.   Sometimes the grid that is a 5 x 5, 6 x 6, etc.  Find a pattern to 
determine the highest score possible no matter what size the square grid Ms. Hart uses.  
Write this rule as an expression using "n" to stand for the width of the grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  ___________________    Confidence:  _____________ 
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Appendix H: Worksheet used during the in classroom 
teaching portion of the transfer study. 
Name: _____________ 
Teacher: _______________ 
Period : _______________ 
 
To The Student:  The objective of this lesson is to help you learn how to compose  multiple steps into a 
single expression. 
 
Here is a problem 

Start with 10 and add 3.  Multiply the result by two.  
 
Write the two steps out.  Then write one single expression. 

 
Here are the two steps 

 
 10+3=13 
 13*2=26 
 

You will be tested to combine the arithmetic steps into a single expression.  This is often a stumbling block 
for many students.  But the idea is that you just substitute one expression into the correct place in the 
following step. And remember to put parenthesis around the expression that you are substituting in since 
parenthesis tell you what to do first. 

10 + 3 = 13

13 * 2 = 26

To get  (10+3) * 2 = 26

 
 
 
Student Practice: 
1)   Step 1:   10 + 5   = 15 
 Step 2: 30 / 15  = 2 
 Write the composed expression   ___________ 
 
2)   Step 1:   20 - 7 = 13 
 Step 2: 2 * 13 = 26 
 Write the composed expression   ___________ 
 
3)   Step 1:   5 * 4  = 20 
 Step 2: 20 / 2 = 10 
 Write the composed expression   ___________ 
 
4)   Step 1:   4 + 3  = 7 
 Step 2: 7 * 2  = 14 
 Write the composed expression   ___________ 
 
5)   Step 1:   10 - 2  = 8 
 Step 2: 32 / 8  = 4 
 Write the composed expression   ___________ 
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Three Steps 
 

5*4=20 3*2=6

Step 1 Step 2

20+6=26

Step 3

 
All three steps combined  = ________________ 
 
6)   Step 1:   5 * 4  = 20 
 Step 2: 3 * 2  = 6 
 Step 3: 20 + 6 = 26 
 Write the composed expression   ___________ 
 
 
7)   Step 1:   6 * 3  = 18 
 Step 2: 10 - 3 = 7 
 Step 3: 18 - 7 = 11 
 Write the composed expression   ___________ 
 
8)   Step 1:   5 - 3 = 2 
 Step 2: 7 + 1 = 8 
 Step 3: 8 / 2 = 4 
 Write the composed expression   ___________ 
 
 

Variables for Intermediate Quantities 
 

9)   Step 1:   173 * 241  = ? _____________   
 Step 2: ? / 5      =  something new 
 Write the composed expression   ___________ 
 
10)   Step 1:   151 + 24     = something 
 Step 2: 10 - something = answer 
 Write the composed expression for the answer  ___________ 
 
11)   Step 1:   3 - 2  = X 
 Step 2: X / 4  = 10 
 Write the composed expression   ___________ 
 
12)   Step 1:   4 * 3   = A 
 Step 2: 17 - A  = 5 
 Write the composed expression   ___________ 
 
13)   Step 1:   14 - 11  = W 
 Step 2: 45 / W  = 15 
 Write the composed expression   ___________ 
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Variables for Intermediate Quantities and Three Steps 
 
14)   Step 1:   5 - 3 = A 
 Step 2: 7 + 1 = B 
 Step 3: A / B = 2 
 Write the composed expression   ___________ 
 
15)   Step 1:   3  + 4 = A 
 Step 2: 10 - 2 = B 
 Step 3: B * A = 56 
 Write the composed expression   ___________ 
 
 

 With Variables as Givens 
 
16)   Step 1:   10 - x = 7 
 Step 2: 7 * 2 = 14 
 Write the composed expression   ___________ 
 
17)   Step 1:   8 - 2 = 6 
 Step 2: 6 * a  
 Write the composed expression   ___________ 
 
18)   Step 1:   a + b = 10 
 Step 2: 20 / 10 = 2 
 Write the composed expression   ___________ 
 

With Variables as Givens and Intermediate Quantities 
19)   Step 1:   x + 3 = A 
 Step 2: 5 / A  
 Write the composed expression   ___________ 
 
20)   Step 1:   a - b = X 
 Step 2: 5 / X  
 Write the composed expression   ___________ 
 
21)   Step 1:   a - b = X 
 Step 2: f * X  
 Write the composed expression   ___________ 
 

More Complicated Patterns : Intermediate Quantities being used twice 
 
You can do more complicated substitutions 
22)   Step 1:   a + b = X 
 Step 2: X * X  
 Write the composed expression   ___________ 
 
23 ) Step 1:   a + b + c = X 
 Step 2: X * 2  
 Write the composed expression   ___________ 
 
24 ) Step 1:   a + b + c = X 
 Step 2: X * X  
 Write the composed expression   ___________ 
 
25)   Step 1:   (7+a)*3 = W 
 Step 2: 4 / W + 57 * W 
 Write the composed expression   ___________ 
 
26)   Step 1:   (7+a)*3 = W 
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 Step 2: 4 / W + 57 * W 
 Write the composed expression   ___________ 
 
 
 
Three Steps Chained together 
 
 

3*7=21

18/2=6

Step 1

Step 2

21-3=18

Step 3

Step 1 and 2 Combined___________

All three combined _______________

 
27)   Step 1:   9 - 3 = 6 
 Step 2: 6 * 3 = 18 
 Step 3: 20 - 18 = 2 
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
 
28)   Step 1:   8 - 3  = 5 
 Step 2: 10 / 5 = 2 
 Step 3: 2 + 7  = 9 
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
 
29)   Step 1:   17 * 33  = A 
 Step 2: 567 / A  = B 
 Step 3: 1254 - B  
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
 
30)   Step 1:   5 - f   = A 
 Step 2: 10 / A   = B 
 Step 3: 13 - B  
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
 
31)   Step 1:   9 + 6   = X 
 Step 2: X * X   = B 
 Step 3: 17 - B  
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
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32)   Step 1:   a + b  = X 
 Step 2: a / X  = Y 
 Step 3: X + Y  
 Combine steps 1 & 2     _______________  
 Now combine your answer with step 3  ________________ 
 
Mixed Review 
 
33)   Step 1:   10 - a = X 
 Step 2: X  * 2 
 Write the composed expression   ___________ 
 
34)   Step 1:   5 - 3 = A 
 Step 2: 7 + 1 = B 
 Step 3: A / B = 2 
 Write the composed expression   ___________ 
 
35)   Step 1:   5 - 3 = A 
 Step 2: 7 + 1 = B 
 Step 3: A / B = 2 
 Write the composed expression   ___________ 
 
36)   Step 1:   5 - f   = A 
 Step 2: 10 / A   = B 
 Step 3: 13 - B  
 Write the composed expression   ___________ 
 
Transfer 
1) Take 50 and subtract “x”.  Then subtract the result from 100. 
 Step 1  Let A = ____________  
 Step 2  ______________ 
 Composed expression  __________________ 
  
 
2) First multiply “x” and “y”.  Then add that to 10 
 Step 1  Let A = ____________  
 Step 2  ______________ 
3) Multiply 5 by “g”.  Then divide 20 by “f”.  Add these two results 
together. 
 Step 1  Let A = ____________  
 Step 2  Let B = ____________  
 Step 3  ______________ 
 Composed expression  __________________ 
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Appendix I: Effect Size and P-values 
In chapter 5 we report tests of significance (p-values) as well as effective size (sigma). 
The test of significance determines what is the probability that the two groups were 
drawn from the same mean given the differences between the two groups averages and 
the variance between the groups. Unlike significance tests, effect size indices are 
independent of sample size. The effect size is a way to compare the size of effects across 
different experiments.  The effect size measurement compares the difference in the means 
between two conditions and compares that to the size of the variation found in the control 
group.  Specifically, the effect size is calculated by taking the difference in the means 
between the two groups and dividing by the standard deviation found in the control 
group.  Effect size has units in terms of the standard deviation. Effect size of .5 sigma is 
respectable.  For example, an effect size of 0.8 means that the score of the average person 
in the experimental group exceeds the scores of 79% of the control group.  Here are a few 
more pairs to give readers an idea of how to interpret an effect size number. 
 

Effect Size 0 .1 .2 .3 .4. .5 .6 .7 .8 .9 
Percentile 50% 54% 58% 62% 66% 69% 73% 76% 79% .82 

 
For one final example, the often reported result by Bloom (1984) is that tutors are better 
then classroom instruction with an effect size of  two sigma effect size.  This means that 
98% of the control group would perform below the average of the experimental group 
(i.e. human tutors). 
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Appendix J: How Can You Extend the Tutorial Model? 
Generally speaking, adding a new KRD (or KCD) means that you need to do the 
following four steps: 

5)Write the tutorial rule that adds the new question(s). 
6)Write the student model rule(s) that allow you to trace this answer for each 

new question asked. 
7)Write a tutorial rule that generates the response for each question type 

added. 
8)If you are interested in tracing certain types of errors, you need to add 

buggy rules to the student model to generate those error types.  
 
Note that, adding a KCD is even easier then a KRD since you do not have to define a 
specific condition in which it applies (e.g., parentheses error).  We will consider each of 
the four steps in order.  We will also illustrate each of these steps with the "error of 
omission" KCD.  An example of an error of omission is when a student is supposed to 
symbolize a quantity, but instead the student symbolizes only a portion, and that portion 
represents an answer but for a different quantity.  Consider the following problem: 

Anne is rowing a boat in a lake and is 800 yards from the dock 
from which she started.  She rows back towards the dock at 40 
yards per minute for "m" minutes and stops to rest.  How far is 
she from the dock now? 

If the student says "40*m" instead of "800-40*m" they have committed an error of 
omission.  The tutor then says "That is part of the answer. Tell me this about your 
answer.  What does 40*m represent in words?"  The student is given a menu to choose 
from51.  The tutor is hoping the student will answer correctly that the "40*m" represents " 
the distance rowed so far".  If the student fails, we want to give the hint "Try again.  You 
can do it!  What does 40m represent in words?"52 
 Now we are ready to look at each of the 4 steps for adding the "error of omission" 
KCD.  The first step is to add a tutorial rule that adds the new questions. In this case, 
there is only one new question to add. 

Step 1: Write the tutorial rule that represents the strategy 
The tutorial rule we have in the model is the following (Given in pseudocode) 
 
 If the student’s answer is correct for some other quantity in the problem 

 Then  
  Create the text of the question (i.e. "That is part of the answer.  What does 

’40m’ represent in words?") 
  Create the text for the hints and add those to the question 
  Create a new question (of type QREPRESENT) 

                                                 
51  The productions given ignore the fact that this particular question actually involves the displaying to the 
used a menu to choice choices from.  As far as the tutorial model is concerned, the student’s answer is 
treated as if it had been typed in like by the user.  The actual generation of the choices of the pull down 
menu and the display of the actual, user interface elements are not done with production rules.  Once the 
student selects a menu item its selection is turned into text and fed into the system as if the student typed it.  
52 In the actual Ms. Lindquist system, there is no hint, but for illustrative purposes we will added this. 



 174

  Add that to the Agenda 
 

Now we look at the same rule encoded in a TERT1 production.  I provide some 
comments and refer the reader to the TERT1 documentation for the details of TERT1. 
.
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; ;If we are in a state such that our focus of attention is on the variable =tutor_context 
(defproduction error_of_omission SETt_error_of_omission (=tutor_context) 
!eval! (not (my_string= "cut" *strat_slctd*));Don’t use with Cut to the chase strategy 
!eval! (not (my_string= "worked" *strat_slctd*)); don’t use with worked example strategy 
 
 =tutor_context>    ;and that variable   
    isa tutor_context    ;is of type tutor_context( The wme just happens to 

;have the same name as the the wme type ) 
    current_problem =first_prob    ;This tutor_context has a current problem we will call =first_prob 
    tutors_question_stack ($begin =ques $other) ;And this tutor_context has The AGENDA(i.e stack)  

;and that stack has a variable (we label "=ques") 
 =ques>    ;And That question(i.e., "Please symbolize the distance left to row"  

;that has an answer of "800-40*m") 
   isa Question_wme 
   goal_slot =goal   ;has a goal (which we will refer to as =goal) (i.e."The distance left to row") 
   Q_type =Q_type   ;and has a question type (which we will refer to as =Q_type) (i.e. Qsymb) 
 =goal>       
   isa genrl_goal   ;And that =goal (i.e. the goal for "the distance left to row") 
   mental_expr =mental_expr  ;has a mental-expression (where we store student thinking) 
=mental_expr> 
   isa mental_expression 
    symbolic_string =symbolic_string ;This it the expression the student typed  

;(i.e. "40*m" but it should have been "800-40m") 
 
;;The next two lines are to find a quantity that has an equivalent symbolic representation.  If this fails, this production won’t 
fire 
  =first_prob>    ;And that =first_prob 
   isa problem    ; is  of type "problem" 
   LIST_OF_INST_QUANTITIES ($ =quan $) ;And there is a quantity (=quan) in this problem  
 
  =quan> 
   isa quan_instance    ;This is the other quantity  
   a_correct_symb =a_correct_symb  ;that has a symbolization (i.e. "m*40") (we don’t yet know it’s the same) 
   LABEL_OPTIONS (=the_answer)  ;(i.e. "The distance rowed") 
   MENTAL_LIST (=mental) 
   - SUB_QUAN_AND_SYMB_LIST nil  ;this is to make sure we don’t ask this sort of question if the  

;student types just "m", "40" or "800"  
   - correct_p ($ Qrepresent $)   ;and we haven’t already done this once 
 

;The next line makes some calls to Lisp that runs some function  
;  that see if the text string evaluates to same sort of answer (i.e.  "m*40 " is the same as "40*m") 

 ;!eval! makes a call out to lisp 
!eval! (question_correctp =symbolic_string =Q_type =a_correct_symb);is the student’s answer correct for some quantity? 
 
==>  ;everything above this line is the "if"  part; everything below this is the "then" part  
 
!eval! =ques_text_stored(format nil "What does ~a represent in words?" =symbolic_string)  

;this makes a call to Lisp that creates the actual text of the question and is then stored in 
; the variable named "=ques_text_stored" 

 
!eval! =hint1(format nil "Try again.  You can do it!  What does ~a represent in words?" =symbolic_string)  

;This is the first hint 
!eval! =hint2(format nil "The answer is that ~a is ~a.  Select ~a from the pull-down menu." =symbolic_string  =the_answer  
=the_answer) ;second hint tells then what to do 
 
 
  =new_goal>     ;not important- book keeping but this is creating a new genrl_goal 
    isa genrl_goal   ; 
    quantity_of_interest =quan 
    MENTAL_EXPR =mental 
 
 =new_ques_represent>  ;This is important;  it create a new Question_wme the the follwing slots: 
   isa Question_wme 
   goal_slot =new_goal 
   Q_type Qrepresent  ;we call this new question type "Qrepresent" 
   ques_text =ques_text_stored ;store the text of the question 
   hint_list_available (=hint1 =hint2) ;store the hints in order 
   back_pointer_q =ques   ;complicated so we ignore 
   a_correct_answer =the_answer ;Store the answer to this question so as to make it easy 
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; for the student model to trace this question  
 
 =tutor_context> 
    tutors_question_stack ($begin =ques =new_ques_represent $other)  ;Add that question to the agenda!!!! 
 
  !chain! SETt_utter (=tutor_context  "That is part of the answer. Tell me this about your answer. " ) 
 ;This line causes the text to be output to the user.  
);done 
 

 
We also have to add one control productions that says for what sort of question this KCD 
can be used.  Since we only want this KCD to be applicable for the first symbolization 
question, the production applies only when the Q_TYPE is Q_SYMB.   
 
 
(defproduction no_and_pos_feed_SYMB_with_only_SUPRABUGs SETt_no_and_pos_feed (=tutor_context 
=last_question =q_type =wrong_or_uninter) 
=last_question>   ;t 
   isa Question_wme 
   Q_TYPE Qsymb  ;This means that an error of omission KCD is possible for question of the type Qsymb 
==> 
!chain! SETt_error_of_omission (=tutor_context) ;should only succeeded if true 
) 

 
If one also wanted this KRD to be applicable on a symbolize question (i.e. 
Q_SYMB_AFTER_VERBAL) right after a student is asked an explain question (i.e. 
QEXPLAIN_VERBAL that is part of the "Explain in English" strategy) we could change 
the production to the following. 
 
(defproduction no_and_pos_feed_SYMB_with_only_SUPRABUGs SETt_no_and_pos_feed (=tutor_context 
=last_question =q_type =wrong_or_uninter) 
=last_question>   ;t 
   isa Question_wme 
   Q_TYPE =x  
!eval! (or (string= =x "Qsymb") 
 (string= =x " Q_SYMB_AFTER_VERBAL")) ;this means we can have this KCD for either question type 
==> 
!chain! SETt_error_of_omission (=tutor_context)  
) 
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Step 2: Write the student model rule(s) that allow you to trace 
this answer  
Then the student model must be able to answer the question.  For many simple questions, 
the answer can already be specified by the tutorial rule, so that the student model can use 
a single simple rule that tests to see if the answer is correct.  Sometimes the questions are 
more complex, particularly if they are allowing the student to answer with a complete 
algebraic expression.  We have already built a large number of rules that deal with 
interpreting algebraic expressions and sometimes they can be used.  The general idea is 
that for each new question that the tutorial model asks often, only a small number of rules 
(usually two) need to be added to the student model. 
 
(defproduction read_REPRESENT_question SET_begin_model_with_ques (=problem ) 
 
 =problem>   ;if there is a problem 
    isa problem 
    the_stack ($ =Question_wme  ) ;and there is question at the top of the stack =Question_wme> 
    isa Question_wme  
    goal_slot  =goal 
    Q_type Qrepresent  ;and it’s a Qrepresent 
    a_correct_answer =the_answer ;and this is its answer 
 
!eval! (my_string= (string *current-input*) =the_answer);here is where we compare the student's input 

; with the correct answer stored in the 
variable"=the_answer") 
;if it is not true this production will not fire and the  

;student's answer will be considered wrong and un-
interpretable  

==> 
    !chain! SET_set_current_inputs (=problem) 
  ) 

 

Step 3: Write a tutorial rule that generates the responses to each 
question type added  
So far we have described how the system generates the new question(step 1)  as well as 
how the student model is used to determine if the student’s response is correct (step2).  
No additional rules need to be written for the case that the student’s response is correct.  
But, if the student’s response to the new questions is wrong, we need to specify in the 
tutorial model how the system should respond.  Usually the system simply gives the next 
hint.  
 
 If the student answered a question of type Qrepresent incorrectly 
 Then Give them the next hint. 
 
This is shown by the following rule 
 
 (defproduction no_and_pos_feed_Qrepresent SETt_no_and_pos_feed (=tutor_context =last_question Qrepresent 
=wrong_or_uninter) 
==> 
!chain! SETt_stay_on_question (=tutor_context =last_question);this means give the next hint if there is one 
) 

 
The important point is that for each new question type, we need to specify how the 
system responses to a wrong answer.  This example shows that you can do this very 
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simply with one short rule, if all you want to happen is giving the next hint.  If we had 
wanted the system to give a response like "No, the speed rowing is 40 " we could have 
made that happen in this rule.     

Step 4: If you are interested in tracing certain types of errors, 
you need to add buggy rules to the student model to generate 
those error types. 

Since this KCD doesn’t have any special responses like asking new question if we 
get some particular response, we don’t need to add anything . 

We have now shown all the code associated with the error of omission KCD.  
However, this is a very simple KCD.  It have one new question, plus the responses of the 
tutor to unexpected errors is very the same ("It says ’no"").    And it is also true that this 
KCD does not have an embedded sub-dialogs possible as says does the concrete 
articulation strategy.  Nevertheless, we have shown that it is easy to add a KRD, and not 
that much harder to add a more complicated KRD.  The "Convert The Problem into an 
Example to Explain" Strategy has just a few additional rules to deal with the three 
questions it is concerned with.  I added that strategy in about one hour and had it fully 
debugged within another hour.  One of the reasons it was easy to do this is that the 
dynamic scaffolding has been abstracted out so it was easy to change the tutorial 
questions without having to redo the dynamic scaffolding.   
However, this architecture does have its drawback.  Coding production rules is hard 
because it is easy to forget how changes in one area will affect another area.  
Unfortunately, I have had no time to look at making it easier for non-programmers.  
Nevertheless, I think the architecture and the system I have built it in are good enough 
that I plan to continue to build onto this system so that we can experiment and learn more 
about what makes for good tutorial dialog. 
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