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Abstract

In [2] Bounded Model Checking with the aid of satis�ability solving (SAT) was introduced as an alternative to

traditional symbolic model checking based on solving �xpoint equations with BDDs. In this paper we show how

bounded model checking can take advantage of specialized optimizations. We present a bounded version of the

cone of in
uence reduction that works very well for verifying safety properties. We have successfully applied this

idea to checking safety properties of a PowerPC microprocessor under design at Motorola's Somerset PowerPC

design center. Based on that experience, we propose a veri�cation methodology that we feel can bring model

checking into the mainstream of industrial chip design.





1 Introduction

Model checking has only been partially accepted by industry as a supplement to traditional veri�cation
techniques. The reasons are that model checking, to date, has been based on BDDs or on explicit state
graph exploration, and these have not been robust enough for industry. Very often, model checking
cannot be carried out without the aid of by hand abstractions, or special partitioning of a design, or
intuitive guesses at good BDD variable orderings. Too often, even these interventions are not suÆcient
for circuits which many designers would consider small, circuits with a few hundred latches and primary
inputs. In an industrial environment, it is usually desired that veri�cation be a \background" process,
something that can be carried out by a program or script while a busy design team attends to creating
the actual design. To date, model checking has needed too much by hand intervention for that to be
possible.

Model checking [6, 18] was �rst proposed as a veri�cation technique eighteen years ago. However,
it was not until the discovery of symbolic model checking techniques based on BDDs [5, 9, 16] around
1990 that it was taken seriously by industry. The �rst BDD based symbolic model checkers were able to
verify examples of signi�cant complexity like the Futurebus+ Cache consistency Protocol [7].

Unfortunately, BDD based model checkers have su�ered from the fact that ordered binary decision
diagrams can require exponential space. In some cases this is due to a bad choice for variable ordering,
while in others it is inevitable [4]. However, the search for a good variable ordering can be time consuming
and the results unpredictable. For industrial applications, this can make model checking somewhat
unreliable; and this has, no doubt, slowed its acceptance by industry.

Recently a new symbolic model checking technique, called bounded model checking [2], has been
proposed that uses fast satis�ability solvers instead of BDDs. The advantage of satis�ability solvers
like SATO [21], GRASP [19], and Stalmarck's algorithm [20] over BDDs is that they never require
exponential space. In [2], results were given which showed that this new model checking technique
sometimes performed much better than BDD based symbolic model checking. However, these were
academic examples, and doubt remained about whether bounded model checking would work well on
realistic examples.

In this paper we consider the performance of a bounded model checker, BMC [2], in verifying twenty
safety properties on �ve complex circuits from a current, Power PC microprocessor. By any reasonable
measure, BMC consistently outperformed the BDD based symbolic model checker, SMV [15]. SMV failed
to terminate on all but one example, and BMC was much faster on that example. In part, this perfor-
mance gain was obtained by utilizing a new bounded cone of in
uence reduction speci�cally designed for
bounded model checking. The new reduction technique eliminates unnecessary variables and clauses in
the CNF (conjunctive normal form) formula used by the satis�ability solver. In the following sections,
we explain how this new reduction technique works, and describe in detail the experimental results.
We believe that these results should go a long way towards con�rming that bounded model checking
can eÆciently handle realistic examples. Since we, ourselves, are convinced of this, we propose, here, a
methodology for using bounded model checking as a supplement to traditional validation techniques in
industry. We believe that this methodology can be introduced in a fully automated way today, with the
bounded model checking technology that is at hand. Further, we feel that this represents a signi�cant
milestone in the progress of formal veri�cation techniques.

Our paper is organized as follows: In Section 2, we describe the model of computation in use through-
out the paper, and give a brief explanation of how bounded model checking works. In Section 3 we
describe the bounded cone of in
uence reduction. Section 4 is the heart of the paper, where we discuss
the experiments we performed, using bounded model checking to check safety properties of a Power PC
microprocessor. Based on the encouraging results we obtained, we propose, in Section 5, a methodology
for fully automating this type of validation, in an industrial environment. The paper concludes in Section
6 with a brief summary and some directions for the future.

2 Preliminaries

In this section we give some basic de�nitions and brie
y recall the concepts of bounded model checking
presented in [2].
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2.1 Models, Kripke Structures and LTL

We �rst consider models that can be represented by a set of initial and next state functions, and the
Kripke structures that can be derived from them. The techniques presented in this paper, however, can
be lifted to a more general description of state transition systems, and we go on to describe one such
system, where a propositional constraint is incorporated into a Kripke structure.

De�nition 1 (Model). Let X = fx1; : : : ; xn; xn+1; : : : ; xmg be a set of m Boolean variables, and let

F = ff1; : : : ; fng be a set of n � m Boolean transition functions, each a function over variables in X.

Finally, let R = fr1; : : : ; rng be a set of initialization functions, each a function over variables in X.

Then M = (X;F;R) is called a model.

From a model M we can construct a Kripke structure K = (S; T; I) in the following way. The set of
states, S, is encoded in terms of the set of variables X , from the model M , i.e., S = f0; 1gm. A state,
s 2 S, then, is an assignment to the variables in X . A state may also be considered a vector of these
m variables, and we'll de�ne such a vector as �x = (x1; : : : ; xn; xn+1; : : : ; xm). Note that we use italic
identi�ers s; s0; : : : for states (elements of S = f0; 1gm) and overhead bar identi�ers �s; �s0 for vectors of
Boolean variables. We de�ne present and next state versions of the variables in X , where next state
variables are denoted by primes, e.g., x0j . We de�ne the transition relation, T � S � S and the set of
initial states I � S by way of their characteristic functions:

T (s; s0) :=
n^

j=1

x0j $ fj(x) and I(s) :=
n^

j=1

xj $ rj(x)

Here, fj and rj are the transition and initialization functions, respectively, of the jth element of the
variable vector, �x. Note that transition and initialization functions are speci�ed for only the �rst n
elements from �x. Elements n + 1 through m of �x, are meant to represent primary inputs (PIs), for
instance, primary inputs to a circuit which we might represent with a model and a Kripke structure.

In practice, we will often want to consider a set of propositional constraints imposed on a system. For
instance, in Section 5, we consider constraints on state variables representing primary inputs to a circuit.
Given a model, M = (X;F;R), a Kripke structure, K = (S; T; I), derived from M , and a constraint
function, c, over M 's set of variables, X , we can derive a constrained Kripke structure, Kc = (S; Tc; Ic),
by conjoining c with the characteristic function of the transition relation and with the initial states
predicate of K:

Tc(s; s
0) := T (s; s0) ^ c(s) ^ c(s0) and Ic(s) := I(s) ^ c(s)

It is clear that c is an invariant for Kc, since all initial states satisfy c, and all successors of all states
satisfying c satisfy c as well. It should be noted that, in general, imposing a constraint may produce
states with no valid, outgoing transitions, or may even produce an empty set of states. This is not
of major concern to us, since such conditions (a) can be easily detected, and handled as considered
appropriate and (b) are unlikely to occur using constraint functions over state variables representing
inputs to digital circuits, which is our intention. Digital hardware has the property, at the circuit level,
of always transitioning to a next state upon all input combinations. To create a \lockup" condition where
no next states are possible in digital hardware one would need to remove all input stimuli. It is unlikely
that a constraint function would be proposed, in practice, that did this.

As a speci�cation logic we use Linear Temporal Logic (LTL) with state variables as atomic proposi-
tions. Therefore we do not need to include a labeling function. In this paper we consider a subset of LTL
having only unary temporal operators: the next operator X, the eventually operator F, and the globally
operator G. Additionally, formulae are assumed to be in negation normal form (NNF), i.e., negations
appear only in front of atomic propositions.

We also adopt the usual semantics with respect to paths (see [2]): A path � = (s0; s1; : : :) in a model
M is an in�nite sequence of states in the corresponding Kripke structure K with the restriction that
T (si; si+1) holds for all i 2 IN. In addition we call � initialized if I(s0) holds. We use the abbreviation
�i := (si; si+1; : : :). It is often convenient to discuss the value of a component variable from the underlying
vector, �x, in a certain state along a path. The assignment to element xj of �x in state si along path � is
written as si(j).
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De�nition 2. For an LTL formula f and a path � in a model M we de�ne the relation � j= f by

� j= (:)xj i� s0(j) = true (false) � j= Xf i� �1 j= f

� j= f _ g i� � j= f or � j= g � j= Ff i� 9i 2 IN: �i j= f

� j= f ^ g i� � j= f and � j= g � j= Gf i� 8i 2 IN: �i j= f

We write M j= Ef i� there exists an initialized path � in M with � j= f . Determining whether M j=
Ef is called the existential model checking problem. Similarly, we write M j= Af i� for all initialized
paths � j= f and this de�nes the universal model checking problem. Note that the existential model
checking problem can be used to solve the universal model checking problem: M j= Ef i� M 6j= A:f .

2.2 Bounded Model Checking

In bounded model checking [2] the universal model checking problem is handled by checking the dual
of the formula, i.e., by solving the existential LTL model checking problem. This, in turn, is translated
into a propositional satis�ability test. EÆcient satis�ability solvers (SAT) such as [10, 20] are used to
perform the satis�ability test. In traditional symbolic model checking [5, 15] ordered binary decision
diagrams [3] are the underlying data structure.

The bounded model checking procedure of [2] works as follows. Given an LTL formula f , a model M
and a bound k 2 IN we generate a propositional formula such that every satisfying assignment of this
formula can be interpreted as a pre�x of length k of a path � that is a witness for f (� j= Ef). Let d
be the diameter of M (see below). If all such generated formulae are unsatis�able for all k � d, then we
have proven that f is not existentially valid in M (M 6j= Ef).

In generating the propositional formula we �rst introduce k + 1 vectors of state variables, each
representing a state in the pre�x of length k, �s0; : : : ; �sk. We use the notation that �si(j) denotes the copy
of the jth state variable, xj , in any such vector, �si. Then the transition relation is unrolled k times,
substituting for states the appropriately labeled state variable vectors:

[[M ]]
k
:= I( �s0) ^ T ( �s0; �s1) ^ � � � ^ T (�sk�1; �sk) (1)

An assignment to the propositional variables in (1) corresponds, then, to a pre�x of k + 1 states along
an initialized path � in K. This initialized path � can be extended to an in�nite path since our type of
models are lockup free, meaning each state has at least one successor. Every initialized path can also be
interpreted as an assignment that satis�es (1), in which case we write �([[M ]]

k
) = true.

If the speci�cation is a simple safety propertyGp where p is a propositional formula then the negated
formula for which we search for a witness is f = Fq, where q is a propositional formula in NNF that is
equivalent to :p. A satisfying assignment to (1) can be extended to a path that is a witness for f (and a
counterexample for Gp) i� q holds at one of the k+1 states or equivalently the assignment also satis�es:

[[ f ]]
k
:= q( �s0) _ q( �s1) _ � � � q( �sk) (2)

With this notation we can formulate the following theorem. It shows that bounded model checking
is correct and complete for universal model checking of simple safety properties or equivalently for
existential model checking of simple liveness properties.

Theorem 3. Let f = Fq be an LTL formula with q a propositional formula then M j= Ef i� there

exists k 2 IN for which [[ f ]]
k
^ [[M ]]

k
has a satisfying assignment.

For general LTL formulae the translation is more involved. Particularly, back loops from the last state
to a previous state have to be considered for liveness properties [2]. We omit this discussion, since our
focus here is on safety properties.

The �nal step is to translate the generated propositional formula into CNF (conjunctive normal form)
since several SAT tools, such as [19, 21], expect their input in this format. The basic mechanism for
this translation is to introduce a new variable for each subformula and add constraints in clause form
that relate these variables. This is done such that the resulting CNF is satis�able i� the original formula
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is satis�able [1, 17]. The translation is linear in the size of the original formula. As an example, if the
generated propositional formula contains a subformula g $ g1 ^ g2 and u, u1 and u2, in that order, are
the propositional variables introduced for g, g1 and g2 then we add the constraint (u ! u1) ^ (u !
u2) ^ (u1 ^ u2 ! u) which is equivalent to (:u_ u1) ^ (:u_ u2) ^ (:u1 _:u2 _ u) in CNF. For other
boolean operators similar constraints are used.

To prove that a safety property AGp, with p a propositional formula, is valid in a model M , we have
to show that no witness for the dual formula EF:p exists for a large enough k. This k can be chosen
as the minimal number of steps in which every state can be reached. Alternatively, we can compute the
diameter of M , a hopefully small upper bound on this. The diameter is de�ned as follows. Let M be a
model such that for all reachable states s and t for which t is reachable from s there exists a path from
s to t with at most d� 1 intermediate states. Then d is called the diameter of M .

The check that a given model M has diameter d can be formulated as a validity test of a Quanti�ed

Boolean Formula (QBF). However with SAT we can only check the validity of propositional formulae.
An alternative is to prove an upper bound on the diameter which is called the recurrence diameter [2].
The recurrence diameter is de�ned as the least number r such that at most r consecutive states in a
path are di�erent. It is the least number r for which the following propositional formula is valid:

T ( �s0; �s1) ^ � � � ^ T (�sr�1; �sr) !
_

i<j

�si = �sj

Note that in this case initial state constraints on �s0 can be included as well.

3 Cone of In
uence

The Cone of In
uence Reduction is a well known technique1 that reduces the size of a model if the
propositional formulae in the speci�cation do not depend on all state variables in the structure. For
bounded model checking this technique can be specialized to the Bounded Cone of In
uence Reduction,
described below.

3.1 Classical Cone of In
uence Reduction

The basic idea of the Cone of In
uence (COI) reduction is to construct a dependency graph of the state
variables, and then traverse it starting from the variables in the speci�cation. The set of state variables
reached during this traversal is called the COI of the variables of the speci�cation. In this paper, we
call this the \classical" COI reduction, to di�erentiate it from the bounded version, which we introduce
later. The variables not in the classical COI can not in
uence the validity of the speci�cation and can
therefore be removed from the model.

Let the model M be given as in De�nition 1. Then, de�ne the immediate dependency set, dep(xj),
of a state variable xj as

dep(xj) := fxl j xl occurs in fjg

where fj is the transition function for xj . The Cone of In
uence (COI) coi(xj) of a state variable xj is
the least set of variables that contains xj and includes dep(xl) for all xl 2 coi(xj). The COI of an LTL
formula f is de�ned as coi(f) :=

S
fcoi(xj) j xj 2 var(f)g where var(f) is the set of variables that occur

in f . Obviously, coi(xj) is the solution of a least �xpoint equation. With respect to a particular LTL
formula f we de�ne a reduced model coi(M; f) as coi(M; f) := (coi(x); coi(t); coi(r)) where all the state
variables not in the COI and their corresponding transition and initialization functions are removed:

coi(x) = (x�1 ; : : : ; x��); coi(t) = (f�1 ; : : : ; f��); coi(r) = (r�1 ; : : : ; r��)

with fx�1 ; : : : ; x��g = coi(f). The following theorem, given without proof, allows us to reduce the size of
the model in model checking if the formula does not depend on all state variables:

Theorem 4. M j= f i� coi(M; f) j= f

1 Cone of in
uence reduction seems to have been discovered and utilized by a number of people, independently.

We note that it can be seen as a special case, of Kurshan's localization reduction [13].
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3.2 Bounded COI Reduction

The Bounded Cone of In
uence Reduction is based on the observation that, for any state sk along a
path, the value of an arbitrary state variable, x, in the associated state variable vector, �sk, can depend
only on state variables in state variable vector �sj , with j < k. In addition only the copies, in state
variable vector �sk�1, of the variables that are in dep(x), can directly in
uence the value of x in �sk. For
instance if x is the only state variable appearing in the speci�cation for which COI is being performed,
then all variables other than the copy of x and those in dep(x) can be removed from �sk�1. Likewise, their
corresponding transition functions in T (�sk�1; �sk) can be removed. Classical COI reduction would miss
such reduction possibilities. This argument, that the only variables in a preceding state that need to be
preserved are those in the immediate dependency set of variables in a current state, can be repeated,
working backwards, until the initial state is reached. This is the case, at least, if we are only looking for
violations of a safety property at state �sk (in which case, we'd be replacing (2) by q(sk)).

For instance consider the following model with �ve state variables x1; : : : ; x5 and transition functions

f1 = 1; f2 = x1; f3 = x2; f4 = x3; f5 = x4

Assume the state variables are initialized to constants:

r1 = 0; r2 = 1; r3 = 1; r4 = 1; r5 = 1

This model has only one execution sequence in which the 0 value is moved from x1 to x5 over x2, x3
and x4. After the 0 has reached x5 it vanishes in the next step and all state variables stay at 1.

01111 ! 10111 ! 11011 ! 11101 ! 11110 ! 11111 ! � � �

If the property, f , is the safety property that x4 is always true (f = Gx4), classical COI reduction
would remove just x5. Now, a counterexample for this property can be found by unrolling the transition
relation three times (k = 3). Let us assume that we only want to check for :x4 in the last state s3. To
apply bounded COI we observe that x4 in �s3 only depends on x3 in �s2 which in turn depends on x2
in �s1. The value of x2 in �s1 only depends on the initial value of x0. Therefore we can remove all other
variables and their corresponding transitions. For example, in the transition from �s1 to �s2, the variable
x1 is not pertinent, and can be eliminated.

In this example, the application of bounded COI reduction would result in the following propositional
formula:

�s0(1)$ 0 ^ �s1(2)$ �s0(1) ^ �s2(3)$ �s0(2) ^ �s3(4)$ �s0(3) ^ : �s3(4)

This formula is satis�able, and its only satisfying assignment can be extended to a counterexample which
is the only execution sequence falsifying the original formula. Without bounded COI, 12 more equalities
would have been necessary.

For a formal treatment of the bounded COI reduction we de�ne a special type of immediate depen-
dency set, bdep( �si(j)), for the components �si(j) of the state variable vectors representing a pre�x of a
path,

bdep( �si(j)) := if i = 0 then ; else f�si�1(l) j xl 2 dep(xj)g

The bounded COI bcoi(si(j)) of a component of a state variables vector, �si(j) is de�ned, recursively, as
the least set of variables that includes �si(j) and includes all elements from the immediate dependency
sets of all variables in bcoi(si(j)). Finally we de�ne the bounded COI of an LTL formula f as bcoi(f) :=S
fbcoi( �si(j)) j �si(j) 2 var([[ f ]]

k
)g. In (1) we can now remove all factors of the form �si(j)$ : : : where

�si(j) 62 bcoi(f) and derive (for simplicity, we do not remove initial state assignments):

[[M ]]
bcoi(f)

k
:= I( �s0) ^ T0( �s0; �s1) ^ � � � ^ Tk�1(�sk�1; �sk)

where
Ti�1(�si�1; �si) :=

^

�si(j)2bcoi(f)

�si(j)$ fj(�si�1) for i = 1 : : : k

The correctness of the bounded COI reduction is formulated in the following theorem (compare with
theorem 3).
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Theorem 5. Let f = Fq be an LTL formula with q a propositional formula. Then [[ f ]]
k
^ [[ M ]]

k
is

satis�able i� [[ f ]]
k
^ [[M ]]

bcoi(f)

k
is satis�able.

In the bounded model checker, BMC, we have implemented bounded COI as follows. After the
propositional formula has been generated, equalities are removed that do not contain any variable of the
bounded COI or represent an assignment of a variable not included in the bounded COI. By the latter,
we refer to the fact that all equalities in the propositional formula generated by BMC are terms of the
form �si(j)$ fj(�si�1), where fj is the transition function of �si(j). This term would be dropped if �si(j)
was not in the bounded COI. In BMC, we added an integer array of size k+1 for each variable x 2 �x. In
this array, entry i is set to 1 during the dependency analysis i� the copy of the state variable in the ith

state is in the bounded COI of the speci�cation. The dependency analysis uses the same graph structure
as classical COI to represent dependencies between variables. The information stored in the array is
generated in a depth �rst traversal through this graph while maintaining a counter that represents the
present level in the traversal.

For liveness properties a back loop from the last state, represented by �sk, to a previous state, �sl, has
to exist [2]. Thus, �sk(j) has to be included into the bounded COI i� �sl(j) is contained in the bounded
COI. Since our focus is on safety properties, we omit further discussion of bounded COI for liveness
properties.

4 Experiments

We ran experiments using the bounded model checker, BMC, to test out the ideas set forth in this
paper. BMC accepts �les in a subset of the input format used by the widely known SMV model checker
[15]. The experiments were run on subcircuits from a PowerPC microprocessor currently under design at
Motorola's Somerset design center, in Austin, Texas. We believe that the results demonstrate the utility
not only of bounded COI, but also of bounded model checking in an industrial setting.

While a processor is under design at Somerset, designers insert assertions into the RTL simulation
model. These Boolean expressions are important safety properties, i.e., they should hold at all time
points. If an assertion is ever false during simulation, an immediate error is 
agged. In our experiments,
we checked, with BMC, 20 assertions chosen from 5 di�erent processor design blocks. We turned each
into an AGp property, where p was the original assertion. For each of these, we:

1. Checked whether p was a tautology.
2. Checked whether p was otherwise an invariant.
3. Checked whether AGp held for various time bounds, k, from 0 to 20.

The gate level netlist for each of the 5 design blocks was translated into an SMV �le, with each
latch represented by a state variable having individual next state and initial state assignments. For the
latter, we assigned the 0 or 1 values we knew the latches would have after a designated power-on-reset
sequence2 Primary inputs to design blocks were modeled as unconstrained state variables, i.e., having
neither next state nor initial state assignments.

For combinational tautology checking we eliminated all initialization statements and ran BMC with
a bound of k = 0, checking the inner, propositional formula, p, from each of the AGp speci�cations.
Under these conditions, the speci�cation could hold only if p was true for all assignments to the state
variables in its support.

Invariance checking entails checking whether a propositional formula holds in all initial states and is
preserved by the transition relation. We ran BMC on input �les with all initialization assignments intact,
for each design block and each p in each AGp speci�cation, with a time bound of k = 0. This determined
whether each formula, p, held in the single, valid initial state of each design. We then ran BMC in a mode
in which, for each design block and each AGp speci�cation, all initialization assignments were removed
from the input �le, and, instead, an initial states predicate was added that indicated the initial states
should be all those states satisfying p. Note that, we did really believe the initial states actually were

2 Microprocessors are generally designed with speci�ed reset sequences. In PowerPC designs, the resulting values

on each latch are known to the designers, and this is the appropriate initial state for model checking.
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those satisfying p. Rather, we knew each design block had only a single, valid initial state, which may
or may not satisfy p. This technique was simply a way of getting the BMC tool to check all successors
of all states satisfying p, in one time step. The time bound, k, was set to 1, and the AGp speci�cation
was checked. If the speci�cation held, this showed p was preserved by the transition relation, since AGp

could only hold, under these circumstances, if the successors of every state satisfying p, also satis�ed
p. Note that AGp not holding under these conditions could possibly be due exclusively to behaviors in
unreachable states. For instance, if an unreachable state, s, existed which either did not satisfy p or had
a successor, s0, which did not, then the check would fail. Therefore, this technique can only show that
p is an invariant, but cannot show that it is not. However, we found this type of invariant checking to
be very inexpensive with bounded model checking, and, therefore, very valuable. In fact, we made it a
cornerstone of the methodology we recommend in Section 5.

The output of BMC is a Boolean formula in CNF (conjunctive normal form) that is given to a
satis�ability solver. In these experiments, we used both the GRASP [19] and SATO [21] satis�ability
solvers. When giving results, we do not indicate from which solver they came, rather, we just show the
best results from the two.

The SMV input �les were given to a recent version of the SMV model checker, in order to compare to
BDD based model checking. We did 20 SMV runs, checking each of the AGp speci�cations, separately.
When running SMV, we used command line options that enabled the early detection, during reachability
analysis, of false AGp properties. Note that the veri�er did not need, under these conditions, to compute
a �xpoint if a counterexample existed. This made the comparison to BMC more appropriate. We also
enabled dynamic variable ordering when running SMV.

All experiments were run with wall clock time limits. The satis�ability solvers were given 15 minutes
wall clock time, maximum, to complete each run, while SMV was given an hour for each of its runs.
BMC, itself, was never timed, as its task of translating the design description and the speci�cation is
usually done quite quickly. The satis�ability solving and SMV runs were done on RS6000 model 390
workstations, having 256 Megabytes of local memory.

4.1 Environment Modeling

A typical PowerPC microprocessor simulation model can have hundreds or even thousands of assertions.
We wanted to demonstrate that bounded model checking could quickly prove that some of these held,
eliminating the need to check them during simulation. Additionally, for assertions that did not hold, we
wanted to demonstrate that useful information on possible failure modes could be generated.

We did not model the interfaces between the subcircuits on which we ran our experiments and the rest
of the microprocessor or the external computer system in which the processor would eventually be placed.
This is commonly referred to as \environment modeling". One would ideally like to do environment
modeling on subcircuits such as we experimented on, since these are not closed systems. Rather, they
depend for their correct functioning upon input constraints, i.e., certain input combinations or sequences
not occurring. The rest of the system must guarantee this [12]. However, if a safety property holds with
a totally unconstrained environment, then it holds in the real environment. Given Kripke structures M 0

and M , M 0 representing a design block with an unconstrained environment and M the same block with
its real, constrained environment, it is obvious that M 0 simulates M , i.e. M � M 0 in the simulation
preorder. It has been shown in [8, 11] that if f is an ACTL formula, as are all the properties in these
experiments, then M 0 j= f implies M j= f .

It is likely that an industrial design team would �rst check safety properties with unconstrained
environments, since careful environment modeling can be time consuming. They would then decide, on
an individual basis, what to do about properties that failed: invest in the environment modeling for
more accurate model checking, or hope that simulation will �nd any real violations that are possible.
Importantly, the model checker's counterexamples could provide hints as to which simulations, on the
complete design not just the subcircuit, may need to be run. For instance, the counterexample may indi-
cate that certain instructions need to be in execution, certain exceptions, e.g., a page fault, outstanding,
and so on.
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4.2 Experimental Results

As mentioned, we checked 20 safety properties, distributed across 5 design blocks from a single PowerPC
microprocessor. These were all control circuits, having little or no datapath elements. Their sizes were
as follows:

Circuit Latches PIs Gates

bbc 209 479 4852
ccc 371 336 4529
cdc 278 319 5474
dlc 282 297 2205
sdc 265 199 2544

Before COI

Circuit Spec Latches PIs

bbc 1 - 4 150 242
ccc 1 - 2 77 207
cdc 1 - 4 119 190
dlc 1 - 6 119 170
dlc 7 119 153
sdc 1 - 2 113 121
sdc 3 23 15

After (classical) COI

In the right table we report the sizes of the circuits after classical COI reduction has been applied.
Each AGp speci�cation is given an arbitrary numeric label, on each circuit. These do not relate speci�-
cations on di�erent design blocks, e.g., speci�cation 2 of dlc is in no way related to speci�cation 2 of sdc.
Many properties involved much the same cone of circuitry on a design block, as can be seen by the large
number of speci�cations having cones of in
uence with the same number of latches and PIs. However,
these reduced circuits were not identical, from one speci�cation to another, though they shared much
circuitry.

The e�ectiveness of bounded COI can best be measured by looking at the CNF output of BMC. We
ran BMC for values of k of 0; 1; 2; 3; 4; 5; 10; 15 and 20, on each speci�cation. For each of these, we had
BMC create CNF �les having no COI reduction, having only classical COI, and having both classical
and bounded COI.

In the table labeled \Average Bounded COI Reduction", we give average sizes of all these CNF �les,
for each value of k. We summed the number of literals and clauses in all the CNF �les for each k, for
all speci�cation for all design blocks for that k, and divided by the total number of such �les. While
averaging can sometimes obscure the common occurrence of a phenomenon, we performed a by hand
inspection to verify this would not be the case. In the table, we give the average number of literals to
the left of a slash, and the average number of clauses to the right. It can be seen that the advantage of
bounded COI decreases with increasing k. Intuitively, this is due to the fact that, as we extend further
in time, we eventually compute valuations for all the state variables in the classical cone of in
uence.
However, at values of k up to around 10, bounded COI gives distinct bene�t. Since we expect bounded
model checking to be most e�ective at �nding short counterexamples, and, since tautology and invariance
checking are run at low k, we feel bounded COI is helping augment the system's strengths.

The table labeled \Tautology and Invariance Checking" gives the results of these types of checks
for each p from each AGp speci�cation. These runs were done with bounded COI enabled. There are
columns for tautology checking, for preservation by the transition relation and for preservation in initial
states. The last two must both hold for a Boolean formula to be an invariant. A\Y" in the leftmost part
of a column indicates the condition holding, an \N" that it does not, The center and rightmost parts of
a column give time and memory usage, respectively. These are recorded only for times � 1 second, and
memory usage � 5 megabytes, otherwise a \-" appears for insigni�cant time and memory. As can be
seen, tautology and invariance checking can be remarkably inexpensive. This is an extremely important
�nding, as these can be quite costly with BDD based methods, and are at the heart of the veri�cation
methodology we propose in Section 5.

The result on bbc speci�cation 2 is interesting. This property is preserved by the transition relation|
but does not hold in the initial state! Separating the check on initial states from the check on the
transition relation enabled us to quickly see this. We were somewhat surprised by the small number of
assertions that were tautologies. We had expected that designers would try to insure safety properties
held by relying on combinational, as opposed to sequential circuitry. However, the real environment may,
in fact, constrain inputs to design blocks combinationally such that these are tautologies. See Section 5
for a discussion of this.
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k Bounded COI Classic COI No COI

0 137 / 449 234 / 546 376 / 688
1 1023 / 3762 1801 / 6790 3402 / 12749
2 2330 / 8946 3367 / 13025 6426 / 24801
3 3755 / 14631 4931 / 19259 9450 / 36851
4 5259 / 20608 6496 / 25492 12473 / 48901
5 6820 / 26821 8060 / 31725 15496 / 60951
10 14643 / 57987 15883 / 62891 30613 / 121202
15 22466 / 89153 23706 / 94057 45730 / 181452
20 30288 / 120319 31529 / 125223 60846 / 241702

Average Bounded COI Reduction

Circuit Spec Tautology Tran Rel'n Init State

bbc 1 N - - N - - Y - -
bbc 2 N - - Y - - N - -
bbc 3 N - - N - - Y - -
bbc 4 N - - N - - Y - -
ccc 1 N - - N - - Y - -
ccc 2 N - - N - - Y - -
cdc 1 N - - N - - Y - -
cdc 2 Y - - Y - - Y - -
cdc 3 Y - - Y - - Y - -
cdc 4 Y - - Y - - Y - -
dlc 1 N - - N - - Y - -
dlc 2 N - - N - - Y - -
dlc 3 N - - N - - Y - -
dlc 4 N - - N - - Y - -
dlc 5 N - - N - - Y - -
dlc 6 N - - N - - Y - -
dlc 7 N - - N - - Y - -
sdc 1 N - - Y / 15 / 5 Y - -
sdc 2 N - - N / 60 / 6.5 Y - -
sdc 3 N - - N 15 - N - -

Tautology and Invariance Checking

circuit spec long k vars clauses time mem holds fail k

bbc 1 4 7873 30174 35.4 NR Y
bbc 2 15 34585 93922 5.5 84 N 0
bbc 3 10 16814 63300 58 NR Y
bbc 4 5 9487 35658 18 NR Y
ccc 1 5 9396 40450 1.3 36 N 1
ccc 2 5 9148 38841 1.4 39 N 1
cdc 1 20 49167 207764 128 77 N 2
cdc 2 20 50825 213137 4.7 NR Y
cdc 3 20 50571 213614 4.7 NR Y
cdc 4 20 50491 212406 4.8 NR Y
dlc 1 20 18378 71291 2.9 64 N 2
dlc 2 20 18024 69830 2,8 63 N 2
dlc 3 20 17603 68333 2.6 60 N 2
dlc 4 20 18085 69942 2.73 61 N 1
dlc 5 20 18378 71291 2.9 60 N 2
dlc 6 20 17712 68714 2.7 NR N 2
dlc 7 20 16217 63781 2.4 64 N 0
sdc 1 4 5554 20893 72 14 Y
sdc 2 4 5545 20841 548 21 Y
sdc 3 20 4119 15168 - 3 N 0

Highest k Values
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The table labeled \Highest k Values" shows the results of increasing the time bound, k. These runs,
again, were with bounded COI. We ran to large k even after �nding counterexamples, or �nding that the
properties were invariants, at lower k. We did so simply to get statistics on runs with large k values. We
found that the satis�ability solving went quickly at high values of k if counterexamples existed at low
values of k or if the property was an invariant. While these are quite di�erent outcomes, we surmised
that, in both cases, checking satis�ability might be much easier.

In the table for the di�erent k runs, NR means not recorded (data lost). It was sometimes diÆcult
to obtain memory usage statistics during satis�ability solving; but, it should be kept in mind this often
does not exceed that needed to store the CNF formula. Time is given in seconds, memory usage in
megabytes, with dashes appearing where these were insigni�cant. The \vars" and \clauses" columns
give the number of literals and clauses in the CNF �le for the highest value of k on which satis�ability
solving completed, the k in the \long k" column. The time and memory usage lisings are for satis�ability
solving on the CNF �le for this, particular k value. A \Y" in the \holds" column indicates the property
held through all values of k tested, and an \N" indicates a counterexample was found. Counterexamples
were found for 12 of the 20 properties. When these were found, the \fail k" column gives the the �rst
k at which a counterexample appeared. Time and memory consumption are not listed for the runs
giving counterexamples, because the satis�ability solving took less than a second, and no more than 5
megabytes of memory, in each case!

Lastly, the results of BDD-based model checking are that SMV was given each of the 20 properties
separately, but completed only one of the these veri�cations. The 19 others all timed out at one hour of
wall clock time, and, in each of these cases, SMV could not build the BDDs for the transition relation
in the alloted time. SMV was run when the Somerset computer network allowed it unimpeded access to
the CPU it was running on; and still, under these circumstances, SMV was only able to complete the
veri�cation of sdc, speci�cation 3. Classical COI for this speci�cation gave a very small circuit, having
only 23 latches and 15 PIs. SMV found the speci�cation false in the initial state, in approximately 2
minutes. Even this, however, can be contrasted to BMC needing 2 seconds to translate the speci�cation
to CNF, and the satis�ability solver needing less than 1 second to check it!

5 A Veri�cation Methodology

The experimental results of Section 4.2 lead us to believe that the checking of safety properties, an
extremely important class of properties, can be eÆciently automated for industrial chip designs. In what
follows, we assume a design divided up into separate blocks, as is the norm with hierarchical VLSI
designs. A methodology we would recommend, and which can be implemented with existing technology,
is as follows.

{ Annotate each design block with Boolean formulae that should hold at all time points. Call these
the block's inner assertions.

{ Annotate each design block with Boolean formulae describing constraints which inputs to that block
must obey. Call these the block's input constraints.

{ Use the procedure outlined in Section 5.2 to check each block's inner assertions under its input
constraints, using bounded model checking with satis�ability solving. Implement this as a program
that runs as a background job.

The goal is to determine whether, for each block, each inner assertion, p, is an invariant.

The input constraints would be written in terms of conditions that should always hold. For instance,
if circuit inputs a and b should never be true at the same time, the constraint would be written as
:(a ^ b). Ideally, we would like to have design teams notate sequential input constraints as well, which
could be handled as LTL formulae. But, there are limitations as to which properties bounded model
checking can currently check, and we focus here on what can be implemented, today.

The methodology we outline here should be compared to that proposed in [12], where input con-
straints were considered in the context of BDD based model checking.
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5.1 Modeling Constrained Systems

Let us assume we have translated the description of a design block, into a Kripke structure, K. In the
presence of propositional input constraints, c, we need to check whether an inner block assertion, p, is an
invariant of the constrained Kripke structure, Kc, derived from K as described in Section 2.1. However,
for bounded model checking, we need not form Kc directly, and can work with the unconstrained Kripke
structure, K. Note that unrolling the transition relation of the constrained structure, Kc, as per formula
(1) of Section 2.2, is entirely equivalent to unrolling the transition relation of the unconstrained structure,
K, and conjoining each term with the constraint function, c, at each time step:

[[M ]]
k
:= I( �s0) ^ c( �s0) ^ T ( �s0; �s1) ^ c( �s1) ^ � � � ^ T (�sk�1; �sk) ^ c( �sk) (3)

Being able to work with the unconstrained system makes the implementation simple.
There are potential limitations to COI reductions on constrained systems. The constraint function,

c, may depend upon variables not in the classical COI of the speci�cation, p. Likewise, when applying
bounded COI, the constraint function, at a given time step, may depend upon variables not in the
bounded COI, at that time step. So, it may be that variables get reintroduced, via the constraint
function, that COI reductions, classical or bounded, would have removed. However, we do not expect
this to be a major problem. We expect most constraints to be given as individual Boolean formulae to
be conjoined together, and thus, unneeded variables may often be eliminated by dropping one or more
conjuncts which contain only those.

5.2 Safety Property Checking Procedure

Let c be the block input constraints, for some design block, D, let p be an inner block assertion for
D, let K be D's unconstrained Kripke structure, and let Kc be its constrained Kripke structure. When
checking a speci�cation over Kc, assume the transition relation of K will be unrolled as per formula (3),
directly above; and, when we checking a speci�cation over K, assume the transition relation of K will
be unrolled as per formula (1) of Section 2.2. The steps for checking whether p is an invariant under the
block input constraints, c, are outlined, below.

1. Check whether p is a combinational tautology in K. If it is, then p holds regardless of c, and we do
not need to check further.

2. Check whether p is otherwise an invariant for K. If it is, p is an invariant regardless of c, and we
need not check further.

3. Check whether p is a combinational tautology in the constrained Kripke structure, Kc. If it is, go to
step 6 to check c.

4. Check whether p is otherwise an invariant for Kc. It it is, go to step 6 to check c.
5. Check if a bounded length counterexample exists to AGp in Kc. If one is found, there is no need

to examine c, since the counterexample would exist without input constraints3. If a counterexample
is not found, we do need to check c (i.e., go to step 6). The input constraints may need to be
reformulated and the check on p in Kc repeated, i.e., this procedure repreated, starting at step 3.

6. Check the input constraints, c, for being an invariant of design blocks pertinent to it (explained
below).

Inputs that are constrained in one design block, A, will, in general, be outputs of another design block,
B. To check A's input constraints, we turn them into inner assertions for design block B, and use the
procedure outlined above to check them. One must take precautions, here, against circular reasoning.
Eventually, a chain of assumptions must be guaranteed by discharging the last unconditionally. The
detection of circular reasoning is possible to automate, however, and so should not be a barrier to using
this methodology.

There are two reasons to check both the unconstrained and constrained systems, as we do above:

1. It may not be necessary to check c, if all of a block's inner assertions, p, pass on step 1 or 2.

3 This is implied by the theorems for ACTL formulae in [8, 11], which we refered to in Section 4.1

11



2. It may be useful to know which inner assertions are invariants regardless of c.

Regarding the last point, it is comforting to know that a design block's correctness is independent of
behaviors at its inputs. In fact, such independence may even be required for some design blocks.

In the experiments of Section 4.2, we could not follow the above procedure, as we did not have a
list of input constraints. But, the ease with which we carried out tautology and invariance checking
indicates that the above is entirely feasible. It should be noted that bounded COI is most e�ective at
low k values, and so steps 1 through 4, above, bene�t a great deal from this optimization. This would be
important when hundreds of safety properties need to be checked at frequent intervals. Searching for a
counterexample, step 5, may become CPU and memory intensive at high k values; however, this can be
arbitrarily limited, in order to check a large number of properties. For instance, we set wall clock time
limits in our experiments. It is expected that design teams would operate in this manner, i.e., give a
percentage of limited resources to formal veri�cation, and then hope that simulation would complement
this e�ort with the remainder of available resources.

6 Conclusion

In this paper, we have outlined a specialized version of cone of in
uence reduction for bounded model
checking. The concept of bounded model checking is just beginning to be explored, and we expect other
reduction techniques will be found. In our future research, we will seek these out.

We were fortunate to have had access to a large and complex PowerPC microprocessor design for our
experiments. Previous experiments with bounded model checking using satis�ability solving had been
con�ned to academic examples, and could possibly have been dismissed as unrealistic. The present set
of experimental results, however, are compelling. They tell us that, for some types of properties, these
new techniques have increased the eÆciency of model checking by orders of magnitude, with respect to
time and memory usage. Our results using BDD based model checking, in which the SMV model checker
failed to complete on all but one of 20 examples, accentuate this di�erence. We still expect, however, that
BDD-based model checking methods will have a place in the overall veri�cation \arsenal". Certainly,
they seem to be the only techniques that can presently �nd long counterexamples, though, of course,
they can only do so on designs that fall within their capacity limitations.

Lastly, our experiments lead us to believe that new and newly appropriate veri�cation methodologies
can be introduced in industry, to take advantage of these new eÆciencies. In this paper, we have outlined
one such procedure for checking safety properties. Our hope is that once such methodologies are accepted,
the widespread use of model checking will illuminate further possibilities for optimization.
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