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Abstract

One of the basic problems of machine learning is deciding how to act in an
uncertain world. For example, if I want my robot to bring me a cup of co�ee, it
must be able to compute the correct sequence of electrical impulses to send to
its motors to navigate from the co�ee pot to my o�ce. In fact, since the results
of its actions are not completely predictable, it is not enough just to compute
the correct sequence; instead the robot must sense and correct for deviations
from its intended path.

In order for any machine learner to act reasonably in an uncertain environ-
ment, it must solve problems like the above one quickly and reliably. Unfortu-
nately, the world is often so complicated that it is di�cult or impossible to �nd
the optimal sequence of actions to achieve a given goal. So, in order to scale
our learners up to real-world problems, we usually must settle for approximate
solutions.

One representation for a learner's environment and goals is a Markov decision
process or MDP. MDPs allow us to represent actions that have probabilistic
outcomes, and to plan for complicated, temporally-extended goals. An MDP
consists of a set of states that the environment can be in, together with rules
for how the environment can change state and for what the learner is supposed
to do.

One way to approach a large MDP is to try to compute an approximation
to its optimal state evaluation function, the function which tells us how much
reward the learner can be expected to achieve if the world is in a particular
state. If the approximation is good enough, we can use a shallow search to �nd
a good action from most states. Researchers have tried many di�erent ways
to approximate evaluation functions. This thesis aims for a middle ground,
between algorithms that don't scale well because they use an impoverished rep-
resentation for the evaluation function and algorithms that we can't analyze
because they use too complicated a representation.
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INTRODUCTION
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One of the basic problems of machine learning is deciding how to act in an
uncertain world. For example, if I want my robot to bring me a cup of co�ee, it
must be able to compute the correct sequence of electrical impulses to send to
its motors to navigate from the co�ee pot to my o�ce. In fact, since the results
of its actions are not completely predictable, it is not enough just to compute
the correct sequence; instead the robot must sense and correct for deviations
from its intended path.

In order for any machine learner to act reasonably in an uncertain environ-
ment, it must solve problems like the above one quickly and reliably. Unfortu-
nately, the world is often so complicated that it is di�cult or impossible to �nd
the optimal sequence of actions to achieve a given goal. So, in order to scale
our learners up to real-world problems, we usually must settle for approximate
solutions.

One representation for a learner's environment and goals is a Markov decision
process or MDP. MDPs allow us to represent actions that have probabilistic
outcomes, and to plan for complicated, temporally-extended goals. An MDP
consists of a set of states that the environment can be in, together with rules
for how the environment can change state and for what the learner is supposed
to do.

Given an MDP, our learner can in principle search through all possible se-
quences of actions up to some maximum length to �nd the best one. In practice
the search will go faster if we know a good heuristic evaluation function, that is,
a function which tells us approximately how good or bad it is to be in a given
state. For small MDPs we can compute the best possible heuristic evaluation
function. With this optimal evaluation function, also called the value function,
a search to depth one is su�cient to compute the optimal action from any state.

One way to approach a large MDP is to try to compute an approximation
to its value function. If the approximation is good enough, a shallow search will
be able to �nd a good action from most states. Researchers have tried many
di�erent ways to compute value functions, ranging from simple approaches based
on dividing the states into bins and assigning the same value to all states in
each bin, to complicated approaches involving neural networks and stochastic
approximation. Unfortunately, in general the simple approaches don't scale well,
while the complicated approaches are di�cult to analyze and are not guaranteed
to reach a reasonable solution.

This thesis aims for a middle ground, between algorithms that don't scale
well because they use an impoverished representation for the value function and
algorithms that we can't analyze because they use too complicated a represen-
tation. All of the research in this thesis was motivated by the attempt to �nd
algorithms that can use a reasonably rich representation for value functions but
are still guaranteed to converge. In particular, we looked for algorithms that
can represent the value function as a linear combination of arbitrary but �xed
basis functions. While the algorithms we describe do not quite achieve this goal,
they do represent a signi�cant advance over the previous state of the art.

There are three main parts to this thesis. In Chapter 2 we will describe
an approach that lets us approximate an MDP's value function using linear in-
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terpolation, nearest-neighbor, or other similar methods. In Chapter 3 we will
step back and consider a more general problem, the problem of learning from a
sequence of training examples when we can't make distributional assumptions.
This chapter will also serve as an introduction to the theory of convex optimiza-
tion. Finally, in Chapter 4, we will apply the theory of linear programming and
convex optimization to the problem of approximating an MDP's value function.
Chapters 2 and 4 each contain experimental results from di�erent algorithms
for approximating value functions. In addition to the three groups of results
listed above, this thesis also contains references to related work (in Chapter 5)
and a concluding summary (in Chapter 6).

These three threads of research work together towards the goal of �nding
approximate value functions for Markov decision processes. The contribution of
Chapter 2 is the most direct: it enlarges the class of representations we can use
for approximate value functions to include methods such as k-nearest-neighbor,
multilinear interpolation, and kernel regression, for which there were previously
no known convergent algorithms. While Chapter 3 does not mention MDPs
directly, it treats the problem of learning without a �xed sampling distribution
or independent samples, which is one of the underlying di�culties in learning
about MDPs. Finally, Chapter 4 presents a framework for designing value
function approximating algorithms that allow even more general representations
than those of Chapter 2.

In more detail, Chapter 2 describes a class of function approximation archi-
tectures (which contains, e.g., k-nearest-neighbor and multilinear interpolation)
for which an algorithm called �tted value iteration is guaranteed to converge.
The contributions of Chapter 2 include discovering this class and deriving con-
vergence rates and error bounds for the resulting algorithms. The contributions
also include an improved theoretical understanding of �tted value iteration via a
reduction to exact value iteration, and experimental results showing that �tted
value iteration is capable of complex pattern recognition in the course of solving
an MDP.

Chapter 3 presents results about the data e�ciency of a class of learning
algorithms (which contains, e.g., linear and logistic regression and the weighted
majority algorithm) when traditional statistical assumptions do not hold. The
type of performance result we prove in Chapter 3 is called a worst-case regret
bound, because it holds for all sequences of training examples and because it
bounds the regret of the algorithm or the di�erence between its performance
and a de�ned standard of comparison. Since one of the di�culties with learning
about Markov decision processes is that the training samples are often not
independent or identically distributed, better worst-case bounds on learning
algorithms are a �rst step towards using these algorithms to learn about MDPs.
The contributions of Chapter 3 are providing a uni�ed framework for deriving
worst-case regret bounds and applying this framework to prove regret bounds
for several well-known algorithms. Some of these regret bounds were known
previously, while others are new.

Chapter 4 explores connections between the problem of solving an MDP
and the problems of convex optimization and statistical estimation. It then
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proposes algorithms motivated by these connections, and describes experiments
with one of these algorithms. While this new algorithm does not improve on
the best existing algorithms, the motivation behind it may help with the design
of other algorithms. The contributions of this chapter include bringing together
results about MDPs, convex optimization, and statistical estimation; analyzing
the shortcomings of existing value-function approximation algorithms such as
�tted value iteration and linear programming; and designing and experimenting
with new algorithms for solving MDPs.

In the remainder of this introduction we will de�ne Markov decision processes
and describe an algorithm for �nding exact solutions to small MDPs. This
algorithm, called value iteration, will be our starting point for deriving the
results of Chapter 2; and the underlying motivation for value iteration, namely
representing the value function as the solution of a set of nonlinear equations
called the Bellman equations, will provide the starting point for the results of
Chapter 4.

1.1 Markov decision processes

A Markov decision process is a representation of a planning problem. Figure 1.1
shows a simple example of an MDP. This MDP has four states: the agent starts
at the leftmost state, then has the choice of proceeding to either of the two
middle states. If it chooses the upper state it is charged a cost of 1 unit; if it
chooses the lower, it is charged a cost of 2 units. In either case the agent must
then visit the �nal state at a cost of 1 unit, after which the problem ends.

The MDP of Figure 1.1 is small and deterministic. Other MDPs may be
much larger and may have actions with stochastic outcomes. For example,
later on we will consider an MDP which has more than 1050 states. We are also
interested in MDPs with in�nitely many states, although we will usually replace
such an MDP by a �nite approximation.

More formally, a Markov decision process is a tuple (S;A; �; c; 
; S0). The set
S is the state space; the set A is the action space. At any time t, the environment
is in some state xt 2 S. The agent perceives xt, and is allowed to choose an
action at 2 A. (If jAj = 1, so that the agent has only one choice on each step,
the model is called a Markov process instead of a Markov decision process.)
More generally, the available actions may depend on xt; if this is the case the
agent's choice is restricted to some set A(xt) � A. The transition function �

(which may be probabilistic) then acts on xt and at to produce a next state
xt+1, and the process repeats. The state xt+1 may be either an element of S or
the symbol � which signi�es that the problem is over; by de�nition �(�; a) = �
for any a 2 A(�). A sequence of states and actions generated this way is called a
trajectory. S0 is a distribution on S which gives the probability of being in each
state at time 0. The cost function, c (which may be probabilistic, but must have
�nite mean and variance), measures how well the agent is doing: at each time
step t, the agent incurs a cost c(xt; at). By de�nition c(�; a) = 0 for any a. The
agent must act to minimize the expected discounted cost E(

P1
t=0 


tc(xt; at));
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Figure 1.1: A simple MDP.


 2 [0; 1] is called the discount factor.

A function � which assigns an action to every state is called a policy. Fol-
lowing the policy � means performing action �(i) when in state i. If we write
paij for the probability of reaching state j when performing action a from state
i, then we can de�ne a matrix P� whose i; jth element is p�(i);i;j . P� is called
the transition probability matrix for �.

A deterministic undiscounted MDP can be regarded as a weighted directed
graph, just like the example in Figure 1.1: each state of the MDP corresponds
to a node in the graph, while each state-action pair corresponds to a directed
edge. There is an edge from node x to node y i� there is some action a so that
�(x; a) = y; the weight of this edge is c(x; a). In Figure 1.1 we have adopted
the convention that an edge coming out of some node that points to nowhere
corresponds to a transition from that node to �.

We can represent a graph like the one in Figure 1.1 with an adjacency matrix
and a cost vector. The adjacency matrix E has one row for each edge and one
column for each node. The row for an edge (i; j) has a �1 in column i and a
+1 in column j, and all other elements 0. The cost vector c has one element for
each edge; the element for an edge (i; �(i; a)) is equal to c(i; a).

The adjacency matrix E is related to the transition probability matrices P� :
for any deterministic policy �, P��I is a submatrix of E. Similarly, c� (de�ned
to be the vector whose ith element is c(i; �(i))) is a subvector of c. In fact, if we
think of a policy as a subset of the edges containing exactly one edge leading
out of each state, then P� � I is the submatrix of E that results from deleting
all rows that correspond to edges not in �.

We can generalize the idea of an adjacency matrix to stochastic or discounted
MDPs: the idea is that 
P�� I should still always be a submatrix of E. So, we
de�ne E to be a matrix with one row for every state-action pair in the MDP.
If action a executed in state i has probability paij of moving the agent to state
j, then we de�ne the jth entry in the row of E for state i and action a to be
either 
paij (if i 6= j) or 
paij�1 (if i = j). Similarly, we can generalize the cost
vector by setting c to be the vector whose element in the row corresponding to
state i and action a is E(c(i; a)).

6



Often we will write the adjacency matrix E without the column correspond-
ing to� and without the rows corresponding to transitions out of�. This causes
no loss of information, since any missing probability mass in a transition may
be assumed to belong to �, and since the transitions out of � are determined
by the de�nition of an MDP.

1.2 MDP examples

In addition to the simple example from Figure 1.1, Markov decision processes
can represent much larger, more complicated planning problems. Some of the
MDPs that researchers have tried to solve are:

� Factory production planning. In this problem di�erent states correspond
to di�erent inventory levels of various products or di�erent arrangements
of the production lines, while actions correspond to possible rearrange-
ments of the production lines. The cost function includes money spent
on raw materials, rent paid for warehouse space, and pro�ts earned from
selling products.

� Control of a robot arm. In this problem the state encodes the position,
joint angles, and joint velocities of the arm, as well as the locations of
obstacles in the workspace. Actions specify joint torques, and the cost
function includes bonuses for bringing the arm close to its target con�gu-
ration and penalties for collisions or jerky motion.

� Elevator scheduling. The state for this problem includes such information
as the locations of the elevators and whether each call button has been
pressed. The actions are to move the elevators from 
oor to 
oor and
open and close their doors, and the cost function penalizes the learner for
making people wait too long before being picked up or let o�.

� The game of Tetris. We discuss this MDP in more detail in Chapter 4. Its
state includes the current con�guration of empty and �lled squares on the
board as well as the type of piece to be placed next. The actions specify
where to place the current piece, and the reward for each transition is
equal to the change in the player's score.

These MDPs are all too large to solve exactly; for example, the version of Tetris
we describe in Chapter 4 has more than 1050 states, while the robot arm control
problem has in�nitely many states because it includes real-valued variables such
as joint angles.

1.3 Value iteration

If our MDP is su�ciently small, we can �nd the exact optimal controller by
any of several methods, for example value iteration, policy iteration, or linear
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programming (see [Ber95]). These methods are based on computing the so-
called value, evaluation, or cost-to-go function, which is de�ned by the recursion

v(x) = min
a2A

E(c(x; a) + 
v(�(x; a)))

(If 
 = 1 we will need to specify one or more base cases such as v(�) = 0 to
de�ne a unique value function.) This recursion is called the Bellman equation.
If we know the value function, it is easy to compute an optimal action from any
state: any a which achieves the minimum in the Bellman equation will do. For
example, the value function for the MDP of Figure 1.1 is (x; y; z; g) = (2; 1; 1; 0).
The edge from x to y achieves the minimum in the Bellman equation, while the
edge from x to z does not; so, the optimal action from state x is to go to y.

Value iteration works by treating the Bellman equation as an assignment.
That is, it picks an arbitrary initial guess v(0), and on the ith step it sets

v(i+1)(x) = min
a2A

E(c(x; a) + v(i)(�(x; a))) (1.1)

for every x 2 X . For the special case of deterministic undiscounted MDPs, the
problem of �nding an optimal controller is just the single-destination minimum-
cost paths problem, and value iteration is called the Bellman-Ford algorithm.

To save writing one copy of Equation 1.1 for each state, we de�ne the vector
operator T so that

v(i+1) = T (v(i))

In other words, T performs one step of value iteration on its argument, updating
the value of every state in parallel according to the Bellman equation. A step
of value iteration is called a backup, and T is called the backup operator.

A greedy policy for a given value function is one in which, for all x, �(x)
achieves the minimum in the right-hand side of the Bellman equation. Given a
policy �, de�ne T� so that

[T�(v)]x = E(c(x; �(x)) + [v]�(x;�(x)))

where the notation [v]x stands for component x of the vector v. T� is called the
backup operator for �. If � is greedy for v, then Tv = T�v.

The operator T� is a�ne, that is, there is a matrix 
P� and a vector c� so
that T�v = 
P�v+c�. In fact, P� is the transition probability matrix for �, and
c� is the cost vector for �. That is, the elements of c� are the costs c(x; �(x))
for each state x, while the row of P� which corresponds to state x contains the
probability distribution for the state xt+1 given that xt = x and that we take
action �(x).

If 
 < 1, the operator T is a contraction in max norm. That is, if u and v

are estimates of the value function, then jjTu� Tvjj1 � 
jju� vjj1. If 
 = 1,
then under mild conditions T is a contraction in some weighted max norm. In
either case, by the contraction mapping theorem (see [BT89]), value iteration
converges to the unique solution of the Bellman equations.
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Up to this point, we have described how to �nd the exact solution to a
Markov decision process. Unfortunately, we can only �nd exact solutions for
small MDPs. For larger MDPs, we must resort to approximate solutions.

Any approximate solution must take advantage of some prior knowledge
about the MDP: in the worst case, when we don't know anything about which
states are similar to which others, we have no hope of even being able to repre-
sent a good approximate solution. Luckily, if we have to solve a large MDP in
practice, we usually know something about where it came from. For example,
an MDP with 1010+1 states is probably too large to solve exactly with current
computers; but if we know that these states are the dollar amounts in one-cent
increments between zero and a hundred million, we can take advantage of the
fact that a good action from the state $1053.76 is probably also a good action
from the state $1053.77. Similarly, we usually can't solve an MDP with in-
�nitely many states exactly, but if we know the states are the positions between
0 and 1m we can take advantage of the fact that a motion of 1nm is unlikely to
matter very much.

The simplest and oldest method for �nding approximate value functions is
to divide the states of the MDP into groups, pick a representative state from
each group, and pretend that the states in each group all have the same value
as their representative. For example, in the MDP with states between 0 and
1m, one group could be the states from 0 to 1cm with representative 0.5cm, the
next could be the states from 1cm to 2cm with representative 1.5cm, and so
forth, for a total of 100 groups. If a 1cm resolution turned out to be too coarse
in some interval, say between 33cm and 34cm, we could replace that group with
a larger number of �ner divisions, say 330mm to 331mm, 331mm to 332mm,
and so forth, giving a total of 109 groups.

Once we have divided the states into groups we can run value iteration just
as before. If we see a transition that ends in a non-representative state, say
one that takes us to the state 1.6cm, we look up the value of the appropriate
representative, in this case 1.5cm. This way we only have to store and update
the values for the representative states, which means that we only have to pay
attention to transitions that start in the representative states. So, value iteration
will run much faster than if we had to examine all of the values and all of the
transitions.

This method for �nding approximate value functions is called state aggrega-
tion. It can work well for moderate-sized MDPs, but it su�ers from a problem:
if we choose to divide each axis of a d-dimensional continuous state space into
k partitions, we will wind up with kd states in our discretization. Even if k and
d are both relatively small we can wind up with a huge number of states. For
example, if we divide each of six continuous variables into a hundred partitions
each, the result is 1012 distinct states. This problem is called the curse of di-
mensionality, since the number of states in the discretization is exponential in
d.

To avoid the curse of dimensionality, we would like to have an algorithm
that works with more 
exible representations than just state aggregation. For
example, rather than setting a state's value to that of a single representative,

11



we might prefer to interpolate linearly between a pair of neighboring represen-
tatives; or, in higher dimensions, we might want to set a state's value to the
average of the k nearest representatives. This kind of 
exibility can let us get
away with fewer representatives and so solve larger problems.

One algorithm that can take advantage of such representations is �tted value
iteration, which is the subject of this chapter. Fitted value iteration general-
izes state aggregation to handle representations like linear interpolation and
k-nearest-neighbor.

In �tted value iteration, we interleave steps of value iteration with steps of
function approximation. It will turn out that, if the function approximator sat-
is�es certain conditions, we will be able to prove convergence and error bounds
for �tted value iteration. If, in addition, the function approximator is linear in
its parameters, we will be able to show that �tted value iteration on the original
MDP is equivalent to exact value iteration on a smaller MDP embedded within
the original one.

The conditions on the function approximator allow such widely-used meth-
ods as k-nearest-neighbor, local weighted averaging, and linear and multilinear
interpolation; however, they rule out all but special cases of linear regression,
local weighted regression, and neural net �tting. In later chapters we will talk
about ways to use more general function approximators.

Most of the material in this chapter is drawn from [Gor95a] and [Gor95b].
Some of this material was discovered simultaneously and independently in [TV94].
A related algorithm which learns online (that is, by following trajectories in the
MDP and updating states only as they are visited, in contrast to the way �tted
value iteration can update states in any order) is described in [SJJ95].

2.1 Discounted processes

In this section, we will consider only discounted Markov decision processes.
Section 2.2 generalizes the results to nondiscounted processes.

Suppose that TM is the parallel value backup operator for a Markov decision
process M , as de�ned in Chapter 1. In the basic value iteration algorithm, we
start o� by setting v0 to some initial guess at M 's value function. Then we
repeatedly set vi+1 to be TM (vi) until we either run out of time or decide that
some vn is a su�ciently accurate approximation to M 's true value function v�.
Normally we would represent each vi as an array of real numbers indexed by
the states of M ; this data structure allows us to represent any possible value
function exactly.

Now suppose that we wish to represent vi, not by a lookup table, but by
some other more compact data structure such as a piecewise linear function.
We immediately run into two di�culties. First, computing TM (vi) generally
requires that we examine vi(x) for nearly every x in M 's state space; and if
M has enough states that we can't a�ord a lookup table, we probably can't
a�ord to compute vi that many times either. Second, even if we can represent
vi exactly, there is no guarantee that we can also represent TM (vi).

12



To address these di�culties, we will assume that we have a sample X0 � S of
states fromM 's state space S. X0 should be small enough that we can examine
each element repeatedly; but it should be representative enough that we can
learn something about M by examining only states in X0. Now we can de�ne
the �tted value iteration algorithm. Rather than setting vi+1 to TM (vi), we will
�rst compute (TM (vi))(x) only for x 2 X0; then we will �t our piecewise linear
function (or other approximator) to these training values and call the resulting
function vi+1.

2.1.1 Approximators as mappings

In order to reason about �tted value iteration, we will consider function approx-
imators themselves as operators on the space of value functions. By a function
approximator we mean a deterministic algorithm A which takes as input the
target values for the states in X0 and produces as output an intermediate rep-
resentation which allows us to compute the �tted value at any state x 2 S. In
this de�nition the states in the sample X0 are �xed, so changing X0 results in
a di�erent function approximator.

In order to think of the algorithm A as an operator on value functions, we
must reinterpret A's input and output as functions from S to R. By doing so,
we will de�ne a mapping associated with A, MA : (S 7! R) 7! (S 7! R); the
input toMA will be a function f that represents the training values for A, while
the output of MA will be another function f̂ =MA(f) that represents the �tted
values produced by A.

If there are m states in the sample X0, then the input to A is a vector of m
real numbers. Equivalently, the input is a function f from X0 to R: the target
value for state x is f(x). Since the sample X0 is a subset of the state space S,
we can extend f to take arguments in all of S by de�ning f(y) arbitrarily for
y 62 X0. This extended f is what MA will take as input.

With this de�nition for f , it is easy to see how to de�ne f̂ : for any x 2 S,
f̂(x) is just the �tted value at state x given the training values encoded in f .
So, MA will take the training values at states x 2 X0 as input (encoded as a
function f : S ! R as described in the previous paragraph), and produce the

approximate value function f̂ as output.

In the above de�nition, it is important to distinguish the target function f

and the learned function f̂ from the mapping MA: the former are real-valued
functions, while the latter is a function from functions to functions. It is also
important to remember that MA is a deterministic function: since X0 is �xed
and f is deterministic, there is no element of randomness in selecting A's training
data. Finally, althoughMA appears to require a large amount of information as
input and produce a large amount of information as output, this appearance is
misleading: MA ignores most of the information in its input, since MA(f) does

not depend on f(x) for x 62 X0, and most of the information in f̂ = MA(f)

is redundant, since by assumption f̂(x) can be computed for any x from the
output of algorithm A.
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Figure 2.2: Another example of the mapping for a function approximator.

as follows. Given an initial estimate v0 of the value function, we begin by
computing MA(v0), an approximate representation of v0. Then we alternately
apply TM and MA to produce the series of functions

v0;MA(v0); TM (MA(v0));MA(TM (MA(v0))); : : :

(In an actual implementation, only the functions MA(: : :) would be represented
explicitly; the functions TM (: : :) would just be sampled at the points X0.) Fi-
nally, when we satisfy some termination condition, we return one of the functions
MA(: : :).

The characteristics of the mappingMA determine how it behaves when com-
bined with value iteration. Figure 2.3 illustrates one particularly important
property. As the �gure shows, linear regression can exaggerate the di�erence
between two target functions: a small di�erence between the target functions
f and g can lead to a larger di�erence between the �tted functions f̂ and ĝ.
For example, while the two input functions in the left column of the �gure dif-
fer by at most 1 at any state, the corresponding output functions in the right
column di�er by 7

6
at x = 3. Many function approximators, such as neural

nets and local weighted regression, can exaggerate this way; others, such as
k-nearest-neighbor, can not.

This sort of exaggeration can cause instability in a �tted value iteration
algorithm. By contrast, we will show below that approximators which never
exaggerate can always be combined safely with value iteration.

More precisely, we will say that an approximator exaggerates the di�erence
between two target functions f and g if the �tted functions f̂ = MA(f) and
ĝ = MA(g) are farther apart in max norm than f and g were. Then the
approximators which never exaggerate are exactly the ones whose mappings are
nonexpansions in max norm: by de�nition, if MA is a nonexpansion in max
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Figure 2.3: Linear regression on the sample X0 = f1; 2; 3g.

norm, then for any target functions f and g and for any x we have

j f̂(x) � ĝ(x) j � j f(x)� g(x) j

Note that we do not require that f(x) and f̂(x) be particularly close to each

other, nor that f̂(x) and f̂(y) be as close to each other as f(x) and f(y).

The above discussion is summarized in the following theorem:

Theorem 2.1 Let TM be the parallel value backup operator for some Markov

decision process M with discount 
 < 1. Let A be a function approximator with

mapping MA. Suppose MA is a nonexpansion in max norm. Then MA �TM has

contraction factor 
; so the �tted value iteration algorithm based on A converges

in max norm at the rate 
 when applied to M .

Proof: We saw above that TM is a contraction in max norm with factor 
.
By assumption, MA is a nonexpansion in max norm. Therefore MA � TM is a
contraction in max norm by the factor 
. 2

One might wonder whether the converse of Theorem 2.1 is true, that is,
whether the convergence of �tted value iteration with approximator A for all
MDPs implies that MA is a max-norm nonexpansion. We do not know the
answer to this question, but if we add weak additional conditions on A we can
prove a theorem. See Section 2.7.1.

2.1.2 Averagers

Theorem 2.1 raises the question of which function approximators can exaggerate
and which can not. Unfortunately, many common approximators can. For ex-
ample, as �gure 2.3 demonstrates, linear regression can be an expansion in max
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norm; and Boyan and Moore [BM95] show that �tted value iteration with lin-
ear regression can diverge. Other methods which may diverge include standard
feedforward neural nets and local weighted regression [BM95].

On the other hand, many approximation methods are nonexpansions, in-
cluding local weighted averaging, k-nearest-neighbor, B�ezier patches, linear in-
terpolation on a mesh of simplices, and multilinear interpolation on a mesh of
hypercubes, as well as simpler methods like grids and other state aggregation.
In fact, in addition to being nonexpansions in max norm, these methods all have
two other important properties. (Not all nonexpansive function approximators
have these additional properties, but many important ones do.)

First, all of the function approximation methods listed in the previous para-
graph are linear in the sense that their mappings are linear functions. Linearity
of the approximator in this sense does not mean that the �tted function f̂ must
be linear; instead, it means that for each x, f̂(x) must be a linear function of
f(x1); f(x2); : : : for some x1; x2; : : : 2 X0.

Second, all of these function approximation methods are monotone in the
sense that their mappings are monotone functions. Again, there is no need
for the �tted function f̂ to be monotone; instead, this kind of monotonicity
means that increasing any of the training values cannot decrease any of the
�tted values.

We will call any function approximator that satis�es these three proper-
ties (linearity, monotonicity, and nonexpansivity) an averager. The reason for
this name is that averagers are exactly the function approximators in which
every �tted value f̂(x) is the weighted average of one or more target values
f(x1); f(x2); : : :, plus a constant o�set. (The weights and o�sets must be �xed,
that is, they cannot depend on the target values. They can, however, depend
on the choice of sample X0, as they do in for example k-nearest-neigbor.) Av-
eragers were �rst de�ned in [Gor95a]; the de�nition there is slightly less general
than the one given here, but the theorems given there still hold for the more gen-
eral de�nition. A similar class of function approximators (called interpolative
representations) was de�ned simultaneously and independently in [TV94].

More precisely, if M has n states, then specifying an averager is equivalent
to picking n real numbers ki and n

2 nonnegative real numbers �ij such that for
each i we have

Pn

j=1 �ij � 1. With these numbers, the �tted value at the ith
state is de�ned to be

ki +

nX
j=1

�ijfj

where fj is the target value at the jth state. The correspondence between
averagers and the coe�cients �ij and ki is one-to-one because, �rst, any linear
operatorMA is speci�ed by a unique matrix (�ij) and vector (ki); second, if any
�ij is negative then MA is not monotone; and third, if

Pn

j=1 �ij > 1 for any i

then increasing the target value by 1 in every state will cause the �tted value
at state i to increase by more than 1.

Most of the �ijs will generally be zero. In particular, �ij will be zero if
j 62 X0. In addition, �ij will often be zero or near zero if states i and j are far
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Figure 2.4: A nondiscounted deterministic Markov process and an averager.
The process is shown in (a); the goal is state 1, and all arc costs are 1 except
at the goal. In (b) we see the averager, represented as a Markov process: states
1 and 3 are unchanged, while v(2) is replaced by v(3). The embedded Markov
process is shown in (c); state 3 has been disconnected, so its value estimate will
diverge.

apart.

To illustrate the relationship between an averager and its coe�cients we
can look at a simple example. Consider a Markov decision process with �ve
states, labelled 1 through 5. Suppose that the sample X0 is f1; 5g, and that our
averager approximates the values of states 2 through 4 by linear interpolation.
Then the coe�cients of this averager are ki = 0 and

(�ij) =

0
BBBBBB@

1 0 0 0 0
3
4

0 0 0 1
4

1
2

0 0 0 1
2

1
4

0 0 0 3
4

0 0 0 0 1

1
CCCCCCA

The second row of this array, for example, tells us that the �tted value for state
2 is equal to three-fourths of the target value for state 1, plus one-fourth of the
target value for state 5. The fact that the middle three columns of the � matrix
are zero means that states two though four are not in the sample X0.

In this example the coe�cients �1;1 and �5;5 are both equal to 1, which
means that the �tted values at states 1 and 5 are equal to their target values.
This property is not true of all averagers; for example, in k-nearest-neighbor
with k > 1, the �tted value at a state in the sample is not equal to its target
value but to the average of k di�erent target values.

2.2 Nondiscounted processes

If 
 = 1 in our MDP M , Theorem 2.1 no longer applies: TM �MA is merely a
nonexpansion in max norm, and so is no longer guaranteed to converge. Fortu-
nately, there are averagers which we may use with nondiscounted MDPs. The
proof relies on an intriguing relationship between averagers and �tted value it-
eration: we can view any averager as a Markov process, and we can view �tted
value iteration as a way of combining two Markov decision processes.
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(a) (b) (c)

Figure 2.5: Constructing the embedded Markov process. (a) A deterministic
process: the state space is the unit triangle, and on every step the agent moves a
constant distance towards the origin. The value of each state is its distance from
the origin, so v� is nonlinear. (b) A representative transition from the embedded
process. For our averager, we used linear interpolation on the corners of the
triangle; as before, the agent moves towards the goal, but then the averager
moves it randomly to one of the corners. On average, this scattering moves the
agent back away from the goal, so steps in the embedded process don't get the
agent as far. The value function for the embedded process is x + y. (c) The
expected progress the agent makes on each step.

The Markov process associated with an averager has state space S, transition
matrix (�ij), and cost vector (ki). In other words, the state space is the same
as M 's, the probability of transitioning to state j given that the current state is
i is �ij , and the cost of leaving state i is ki. (If

Pn

j=1 �ij is less than 1, we make
up the di�erence with a transition to the terminal state �.) Since the transition
matrix is (�ij), there is a nonzero probability of going from i to j if and only if
the �tted value at state i depends on the target value at state j. (Presumably
this happens when the averager considers states i and j somehow similar.)

The reason this process is associated with the averager is that its backup
operator is MA. To see why, consider the backed up value at some state i

given the starting value function v. It is equal to the cost of leaving state i,
which is ki, plus the expected value of the next state, which is

Pn
j=1 �ijv(j);

in other words, it is equal to the ith component of MAv. Figure 2.4(b) shows
one example of a simple averager viewed as a Markov process; this averager has
�11 = �23 = �33 = 1 and all other coe�cients zero.

The simplest way to combine M with the process for the averager is to
interleave their transitions, that is, to use the next-state function from M on
odd time steps and the next-state function from the averager on even time steps.
The result is an MDP whose next-state function depends on time. To avoid this
dependence we can combine adjacent pairs of time steps, leaving an MDP whose
next-state function is essentially the composition of the original two next-state
functions. (We need to be careful about de�ning the actions of the combined
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MDP: in general a combined action needs to specify an action for the �rst step
and an entire policy for the second step. In our case, though, the second step
is the Markov process for the averager, which only has one possible action. So,
the actions for the combined MDP are the same as the actions for M .) It is not
too hard to see that the backup operator for this new MDP is TM �MA, which
is the same as a single step of the �tted value iteration algorithm.

As mentioned above, the state space for the new MDP is the same as the
state space for M . However, since �ij is zero if state j is not in the sample X0,
there will be zero probability of visiting any state outside the sample after the
�rst time step. So, we can ignore the states in S nX0. In other words, the new
MDP is embedded inside the old.

The embedded MDP is the same as the original one except that after every
step the agent gets randomly scattered (with probabilities depending on the
averager) from its current state to some nearby state in X0. So, if a transition
leads from x to y in the original MDP, and if the averager considers state
z 2 X0 similar to y, then the same transition in the embedded MDP has a
chance of moving the agent from x to z. Figure 2.4 shows a simple example of
the embedded MDP; a slightly more complicated example is in Figure 2.5. As
the following theorem shows (see Section 2.7.2 for a proof), exact value iteration
on the embedded MDP is the same as �tted value iteration on the original MDP.
A similar theorem holds for the Q-learning algorithm; see Section 2.7.4.

Theorem 2.2 (Embedded MDP) For any averager A with mapping MA,

and for any MDP M (either discounted or nondiscounted) with parallel value

backup operator TM , the function TM �MA is the parallel value backup operator

for a new Markov decision process M 0.

In general, the backup operator for the embedded MDP may not be a con-
traction in any norm. Figure 2.4 shows an example where this backup operator
diverges, since the embedded MDP has a state with in�nite cost. However, we
can often guarantee that the embedded MDP is well-behaved. For example,
if M is discounted, or if A uses weight decay (i.e., if

Pn
j=1 �ij < 1 for all i),

then TM �MA will be a max norm contraction. Other conditions for the good
behavior of the embedded MDP are discussed in [Gor95a].

2.3 Converging to what?

Until now, we have only considered the convergence or divergence of �tted dy-
namic programming algorithms. Of course we would like not only convergence,
but convergence to a reasonable approximation of the value function.

Suppose thatM is an MDP with value function v�, and let A be an averager.
What if v� is also a �xed point of MA? Then v� is a �xed point of TM �MA; so
if we can show that TM �MA converges to a unique answer, we will know that
it converges to the right answer. For example, if M is discounted, or if it has
E(c(x; a)) > 0 for all x 6= �, then TM �MA will converge to v�.
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If we are trying to solve a nondiscounted MDP and v� di�ers slightly from
the nearest �xed point of MA, arbitrarily large errors are possible. If we are
trying to solve a discounted MDP, on the other hand, we can prove a much
stronger result: if we only know that the optimal value function is near a �xed
point of our averager, we can guarantee an error bound for our learned value
function. (A bound immediately follows (see e.g. [SY94]) for the loss incurred by
following the corresponding greedy policy.) For a proof of the following theorem
see Section 2.7.3.

Theorem 2.3 Let v� be the optimal value function for a �nite Markov decision

process M with discount factor 
. Let TM be the parallel value backup operator

for M . Let MA be a nonexpansion in max norm. Let vA be any �xed point of

MA. Suppose k vA � v� k = �, where k � k denotes max norm. Then iteration of

TM �MA converges to a value function v0 so that

k v� � v0 k �
2
�

1� 


k v� �MA(v0) k � 2�+
2
�

1� 


Others have derived similar bounds for smaller classes of function approxi-
mators. For example, for a bound on the error introduced by approximating a
continuous MDP with a grid, see [CT89].

The sort of error bound which we have proved is particularly useful for ap-
proximators such as linear interpolation and grids which have many �xed points.
Because it depends on the maximum di�erence between v� and vA, the bound
is not very useful if v� may have large discontinuities at unknown locations: if
v� has a discontinuity of height d, then any averager which can't mimic the
location of this discontinuity exactly will have no representable functions (and
therefore no �xed points) within d

2
of v�.

2.4 In practice

The most common problems with approximate value iteration are oversmooth-
ing and the introduction of barriers into the embedded MDP. By the introduc-
tion of barriers, we mean that sometimes the embedded MDP can be divided
into two pieces so that the �rst piece contains the goal and the second piece
has no transitions into the �rst. In this case, the estimated values of the states
in the second piece will be in�nite. (A special case of this situation is that,
if the averager ignores the goal state, then the embedded MDP will have no
transitions into the goal.) A less drastic but similar problem occurs when the
second piece has only low-probability transitions to the �rst; in this case, the
costs for states in the second piece will not be in�nite, but will still be arti�cially
in
ated.

This sort of problem is likely to happen when the MDP has short transitions
and when there are large regions where a single state dominates the averager.
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For a particularly bad example, suppose our function approximator is 1-nearest-
neighbor. If the transitions out of a sampled state x in the original MDP are
shorter than half the distance to the nearest adjacent sampled state, then the
only transitions out of x in the embedded MDP will lead straight back to x.
So, x will have in�nite cost in the embedded MDP. Similarly, in local weighted
averaging with a narrow kernel, a short transition out of x in the original MDP
will translate to a high probability self loop in the embedded MDP, causing x
to have a �nite but very large cost. In both of these examples, we can imagine
that the averager is producing a drag on transitions out of x, so that actions
in the embedded MDP don't get the agent as far on average as they did in the
original MDP.

One way to avoid creating barriers in the embedded MDP is to make sure
that no single state has the dominant weight over a large region. The best way to
do so is to sample the state space more densely; but if we could a�ord to do that,
we wouldn't need a function approximator in the �rst place. Another way is to
increase a smoothing parameter such as kernel width or number of neighbors,
and so reduce the weight of each sample point in its immediate neighborhood.
Unfortunately, increasing the amount of smoothing risks oversmoothing.

Oversmoothing happens when a function approximator interacts with value
iteration to wash out the features of the value function that we are interested in.
In oversmoothing, the function approximator could learn a good approximation
to the value function if it were trained by supervised learning, but �tted value
iteraction still converges to a bad approximation. For example, if the agent
must follow a long, narrow path to the goal, the scattering e�ect of a wide-
kernel averager is almost certain to push it o� of the path before it reaches the
end.

Figure 2.6 demonstrates oversmoothing in a simple one-dimensional Markov
process. In this process, the state space is the interval [0; 1]. The agent moves
left a distance of .1 every time step, except when its position is already left
of .1, in which case it just moves to the origin. The state x = 0 is terminal.
The cost at state x is :1 cos(20�x), except that if x < :1 the cost is pro-rated
by the distance moved. Since the period of cos(20�x) is equal to the distance
moved on each step, the agent's cost to move a given distance remains constant
throughout each trajectory and depends only on the trajectory's starting state.

The four graphs in Figure 2.6 show the performance of �tted value iteration
with k-nearest-neighbor for k = 1; 5; 10; 15. The solid line in each graph shows
the true value function v(x) = x cos(20�x). The dashed line shows the approxi-
mation to v(x) computed by �tted value iteration with k-nearest-neighbor. For
k = 1 this approximation is good, while for larger values of k it cuts o� the
peaks of v(x). To demonstrate that this problem is not just due to the inherent
smoothing in k-nearest-neighbor, the dotted line in each graph shows the ap-
proximation to v(x) computed by supervised learning. For larger values of k it
is clear that, while some of the smoothing comes from k-nearest-neighbor itself,
combining k-nearest-neighbor with �tted value iteration ampli�es the problem.

The reason for oversmoothing is that �tted value iteration applies the func-
tion approximator MA over and over again to the candidate value function.
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Figure 2.6: Oversmoothing in k-nearest-neighbor, for k = 1; 5; 10; 15 out of a
sample of 200 states. The solid line is the true value function, the dashed line
is its approximation with �tted value iteration and k-nearest-neighbor, and the
dotted line is its approximation with supervised learning and k-nearest-neigbor.

SinceMA by de�nition loses some information, multiple applications ofMA may
lose so much information that the resulting approximation to the value function
is useless. This problem hits some function approximators harder than others:
while methods like state aggregation and linear interpolation don't usually suf-
fer too badly, methods like k-nearest neighbor with large k and local-weighted
averaging with a wide kernel can have problems.

To see why �tted value iteration behaves di�erently with k-nearest-neighbor
than with linear interpolation, consider what happens if we are lucky enough
that the function approximator can represent the true value function exactly|
that is, suppose v� = MAv for some v. (The situation will be qualitatively
similar if we can just represent something close to the true value function.) If
we're using linear interpolation, the above assumption means that v� is a �xed
point of MA, since reapplying linear interpolation to a linearly-interpolated
function doesn't change anything. So, v� will be a �xed point of the �tted value
iteration update TM�MA, and we will end up with zero error. On the other hand,
reapplying k-nearest-neighbor does change the result (that is, MAv 6=MAMAv

in general), so �tted value iteration with k-nearest-neighbor can drift away from
v� and end up somewhere else.

Both of the above problems | too much smoothing and the introduction of
barriers | can be reduced if we can alter our MDP so that the actions move
the agent farther. For example, we might look ahead two or more time steps
at each value backup. (This strategy corresponds to the dynamic programming
operator Tn

M �MA for some n > 1. Since Tn
M is the backup operator for the

MDP derived by composing n copies of M , the previous sections' convergence
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theorems also apply to Tn
M �MA.) While in general the cost of looking ahead

n steps is exponential in n, there are many circumstances where we can reduce
this cost dramatically. For instance, in a physical simulation, we can choose
a longer time increment; in a grid world, we can consider only the compound
actions which don't contain two steps in opposite directions; and in the case of
a Markov process, where there is only 1 action, the cost of lookahead is linear
rather than exponential in n. (In the last case, TD(�) [Sut88] allows us to
combine lookaheads at several depths.) If actions are selected from an interval
of R, numerical minimum-�nding algorithms such as Newton's method or golden
section search can �nd a local minimum quickly. In any case, if the depth and
branching factor are large enough, standard heuristic search techniques can at
least chip away at the base of the exponential.

2.5 Experiments

This section describes our experiments with several Markov decision problems:
two taken from [BM95], and one which shows that �tted value iteration can
learn value functions in extremely high-dimensional state spaces.

2.5.1 Puddle world

In this world, the state space is the unit square, and the goal is the upper right
corner. The agent has four actions, which move it up, left, right, or down by .1
unit per step. The cost of each action depends on the current state: for most
states, it is the distance moved, but for states within the two \puddles," the
cost is higher. See �gure 2.7.

For a function approximator, we will use bilinear interpolation, de�ned as
follows: to �nd the predicted value at a point (x; y), �rst �nd the corners (x0; y0),
(x0; y1), (x1; y0), and (x1; y1) of the grid square containing (x; y). Interpolate
along the left edge of the square between (x0; y0) and (x0; y1) to �nd the pre-
dicted value at (x0; y). Similarly, interpolate along the right edge to �nd the
predicted value at (x1; y). Now interpolate across the square between (x0; y)
and (x1; y) to �nd the predicted value at (x; y).

Figure 2.7 shows the cost function for one of the actions, the optimal value
function computed on a 100�100 grid, an estimate of the optimal value function
computed with bilinear interpolation on the corners of a 7� 7 grid (i.e., on 64
sample points), and the di�erence between the two estimates. Since the optimal
value function is nearly piecewise linear outside the puddles, but curved inside,
the interpolation performs much better outside the puddles: the root mean
squared di�erence between the two approximations is 2.27 within one step of
the puddles, and .057 elsewhere. (The lowest-resolution grid which beats bilinear
interpolation's performance away from the puddles is 20� 20; but even a 5� 5
grid can beat its performance near the puddles.)
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Figure 2.7: The puddle world. From top left: the cost of moving up, the optimal
value function as seen by a 100�100 grid, the optimal value function as seen by
bilinear interpolation on the corners of a 7�7 grid, and the second value function
minus the �rst. Some plots are intentionally cut o� at the top to preserve a
constant z scale and to show detail.
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2.5.2 Hill-car

In this world, the agent must drive a car up to the top of a steep hill. Un-
fortunately, the car's motor is weak: it can't climb the hill from a standing
start. So, the agent must back the car up and get a running start. The state
space is [�1; 1]� [�2; 2], which represents the position and velocity of the car;
there are two actions, forward and reverse. (This formulation di�ers slightly
from [BM95]: they allowed a third action, coast. We expect that the di�erence
makes the problem no more or less di�cult.) The cost function measures time
until goal.

There are several interesting features to this world. First, the value function
contains a discontinuity despite the continuous cost and transition functions:
there is a sharp transition between states where the agent has just enough
speed to get up the hill and those where it must back up and try again. Since
most function approximators have trouble representing discontinuities, it will be
instructive to examine the performance of approximate value iteration in this
situation. Second, there is a long, narrow region of state space near the goal
through which all optimal trajectories must pass (it is the region where the car
is partway up the hill and moving quickly forward). So, excessive smoothing
will cause errors over large regions of the state space. Finally, the physical
simulation uses a fairly small time step, .03 seconds, so we need �ne resolution
in our function approximator just to make sure that we don't introduce a barrier.

The results of our experiments appear in �gure 2.8. For a reference model,
we �t a 128�128 grid. While this model has 16384 parameters, it is still less than
perfect: the right end of the discontinuity is somewhat rough. (Boyan and Moore
used a 200 by 200 grid to compute their optimal value function, and it shows
no perceptible roughness at this boundary.) We also �t two smaller grids, one
64�64 and one 32�32. Finally, we �t a weighted 4-nearest neighbor model using
the 1024 centers of the cells of the 32� 32 grid as sample points, and another
using a uniform random sample of 1000 points from the state space. Note
that the nearest-neighbor methods are roughly comparable in complexity to the
32� 32 grid: each one requires us to evaluate about two thousand transitions
in the MDP for every value backup.

As the di�erence plots show, most of the error in the smaller models is
concentrated around the discontinuity in the value function. Near the disconti-
nuity, the grids perform better than the nearest-neighbor models (as we would
expect, since the nearest-neighbor models tend to smooth out discontinuities).
But away from the discontinuity, the nearest-neighbor models win. The 32� 32
nearest-neighbor model also beats the 32� 32 grid at the right end of the dis-
continuity: the car is moving slowly enough here that the grid thinks that one
of the actions keeps the car in exactly the same place. The nearest-neighbor
model, on the other hand, since it smooths more, doesn't introduce as much
drag as the grid does and so doesn't have this problem. The root mean square
error of the 64� 64 grid (not shown) from the reference model is 0:190s, and of
the 32� 32 grid is 0:336s. The RMS error of the 4-nearest-neighbor �tter with
samples at the grid points is 0:205s. The nearest-neighbor �tter with a random
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Figure 2.8: Approximations to the value function for the hill-car problem. From
the top: the reference model, a 32 � 32 grid, a k-nearest-neighbor model, the
error of the 32 � 32 grid, and the error of the k-nearest-neighbor model. In
each plot, the x axis represents the agent's position, the y axis represents its
velocity, and the z axis represents the estimated time remaining until reaching
the summit at x = :6.
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Figure 2.9: Two smaller models for the hill-car world: a divergent 12� 12 grid,
and a convergent nearest-neighbor model on the same 144 sample points.

sample (not shown) performs slightly worse, but still signi�cantly better than
the 32 � 32 grid (one-tailed t-test gives p = :971): its error, averaged over 5
runs, is 0:235s.

All of the above models are fairly large: the smallest one requires us to
evaluate 2000 transitions for every value backup. Figure 2.9 shows what happens
when we try to �t a smaller model. The 12�12 grid is shown after 60 iterations;
it is in the process of diverging, since the transitions are too short to reach the
goal from adjacent grid cells. The 4-nearest-neighbor �tter on the same 144 grid
points has converged; its RMS error from the reference model is 0:278s (better
than the 32 � 32 grid, despite needing to simulate fewer than one-seventh as
many transitions). A 4-nearest-neighbor �tter on a random sample of size 150
(not shown) also converged, with RMS error 0:423s.

2.5.3 Hill-car the hard way

In the previous section's formulation of this world the state space is [�1; 1] �
[�2; 2], representing the position and velocity of the car. As we saw, this state
space is small enough that value iteration on a reasonably-sized grid (1000 to
40000 cells, depending on the desired accuracy) can �nd the optimal value func-
tion. To test �tted value iteration, we expanded the state space's dimensionality
a thousandfold: instead of position and velocity, we represented each state with
two 32 � 32 grayscale pictures like the ones in �gure 2.10(a), making the new
state space [0; 1]2048. The top picture shows the car's current position; the bot-
tom one shows where it would be in :03s if it took no action. A simple grid on
this expanded state space is unthinkable: even if we discretized to just two gray
levels per pixel, the grid would have 22048 cells.

To approximate the value function, we took a random sample of 5000 legal
pictures and ran �tted value iteration with local weighted averaging. In local
weighted averaging, the �tted value at state x is an average of the target values
at nearby sampled states x0, weighted by a Gaussian kernel centered at x. We
used a symmetric kernel with height 1 at the center and height 1

e
when the

Euclidean distance from x0 to x was about 22. (We arrived at this kernel width
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Figure 2.10: The hill-car world.
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by a coarse search: it is the narrowest kernel width we tested for which the
embedded MDP was usually connected.) We repeated the experiment three
times and selected the run with the median RMS error.

The resulting value function is shown in �gure 2.10(b); its RMS error from
the exact value function (�gure 2.10(c)) is 0:155s. By comparison, a 70 � 71
grid on the original, two-dimensional problem has RMSE 0:186s.

2.6 Summary

In this chapter we described an algorithm called �tted value iteration, which is
a generalization of state aggregation to handle any function approximator that
is a nonexpansion in max norm. Such approximators include k-nearest-neighbor
and linear and multilinear interpolation. We proved convergence rate and error
bounds for �tted value iteration applied to a discounted Markov decision process.

To analyze �tted value iteration applied to a nondiscounted MDP, we added
the additional constraints that the function approximator be linear and mono-
tone. The resulting class of approximators, called averagers, still contains most
of the popular nonexpansive approximators. We showed that running �tted
value iteration with an averager on an MDP M is equivalent to running exact
value iteration on a new, smaller MDP embedded within M .

Finally, we ran experiments which demonstrate that the combination of �t-
ted value iteration with an averager can solve problems that require both pattern
recognition and planning. These experiments show that �tted value iteration
signi�cantly extends the range of problems that we can solve with a provably-
convergent algorithm.

2.7 Proofs

This section contains proofs that were omitted from the main text. It can be
skipped without loss of continuity.

2.7.1 Can expansive approximators work?

The following theorem is almost a converse of Theorem 2.1. Instead of showing
that nonexpansion of MA is necessary to guarantee convergence for all MDPs
(which would be equivalent to showing that the existence of two points x and
y with kMAx � MAyk1 > kx � yk1 is enough to �nd an MDP for which
�tted value iteration does not converge), it requires the additional condition
that x � y.

Theorem 2.4 Suppose that the approximator A has mapping MA, and suppose

that there are two value functions x � y such that

kMAx�MAyk1 > kx� yk1
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Then there exists a Markov process M (with a �nite value function) such that

�tted value iteration with approximator A does not converge to a unique answer

when applied to M .

Proof: Write MAx = v and MAy = w. We will construct a Markov process
M such that the backup operator TM has either TMv = x and TMw = y or
TMw = x and TMv = y. In the former case the �tted value iteration operator
TM �MA will have at least two �xed points, namely x and y, while in the latter
case TM �MA will have a limit cycle that alternates between x and y. In either
case �tted value iteration will not converge to a unique answer.

Let s be any state where v and w di�er by the maximum amount, that is,
with jv(s) � w(s)j = kv � wk1. We will de�ne the process M so that every
transition will end either in s or in the terminal state �. First suppose that
v(s) < w(s). Let i be an arbitrary state. By assumption 0 � y(i) � x(i) <
w(s)� v(s). We de�ne M 's transition function so that, if i is the current state,
the next state is s with probability

p(i) =
y(i)� x(i)

w(s) � v(s)

and � with probability 1� p(i). We de�ne M 's cost function so that the cost
of leaving state i is x(i)� p(i)v(s). With these de�nitions, we can compute

(TMv)(i) = p(i)v(s) + x(i)� p(i)v(s) = x(i)

(TMw)(i) = p(i)(w(s) � v(s)) + x(i) = y(i)

So, we have TMv = x and TMw = y.
Now suppose that w(s) < v(s). In this case 0 � y(i) � x(i) < v(s) � w(s),

so we can de�ne

p(i) =
y(i)� x(i)

v(s)� w(s)

and set the cost of leaving state i to y(i)� p(i)v(s). Then

(TMv)(i) = p(i)v(s) + y(i)� p(i)v(s) = y(i)

(TMw)(i) = p(i)(w(s) � v(s)) + y(i) = x(i)

So, TMv = y and TMw = x.
In either case, p(i) < 1 for all i, so M reaches the terminal state � with

probability 1 from any initial state. Therefore M 's value function is �nite as
required. 2

2.7.2 Nondiscounted case

This proof uses the de�nition of an averager from [Gor95a], which is slightly
less general than the one given here. The proof works with only minor changes
for the more general de�nition.
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Proof of Theorem 2.2: De�ne the embedded MDP M 0 as follows. It will
have the same state and action spaces as M , and it will also have the same
discount factor and initial distribution. We can assume without loss of generality
that state 1 of M is cost-free and absorbing: if not, we can renumber the states
of M starting at 2, add a new state 1 which satis�es this property, and make all
of its incoming transition probabilities zero. We can also assume, again without
loss of generality, that �1 = 1 and k1 = 0 (that is, that A always sets v(1) = 0)
| again, if this property does not already hold for A, we can add a new state
1.

Suppose that, in M , action a in state x takes us to state y with probability
paxy. Suppose that A replaces v(y) by �yky +

P
z �yzv(z). Then we will de�ne

the transition probabilities in M 0 for state x and action a to be

p0axz =
X
y

paxy�yz (z 6= 1)

p0ax1 =
X
y

paxy(�y1 + �y)

These transition probabilities make sense: since A is an averager, we know thatP
z �yz + �y is 1, soX

z

p0axz =
X
z 6=1

X
y

paxy�yz +
X
y

paxy(�y1 + �y)

=
X
y

paxy

 X
z

�yz + �y

!

=
X
y

paxy = 1

Now suppose that, in M , performing action a from state x yields expected
cost cxa. Then performing action a from state x in M 0 yields expected cost

c0xa = cxa + 

X
y0

paxy0�y0ky0

Now the parallel value backup operator TM 0 for M 0 is

v(x)  min
a

E(c0(x; a) + 
v(�0(x; a)))

= min
a

X
z

p0axz(c
0
xa + 
v(z))

= min
a

0
@X
z 6=1

 X
y

paxy�yz

!
(c0xa + 
v(z))

+

 X
y

paxy(�y1 + �y)

!
(c0xa + 
v(1))

1
A
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= min
a

X
y

paxy

0
@X
z 6=1

�yz(c
0
xa + 
v(z)) + (�y1 + �y)c

0
xa

1
A

= min
a

X
y

paxy

0
@c0xa + 


X
z 6=1

�yzv(z)

1
A

= min
a

0
@c0xa + 


X
y

paxy
X
z 6=1

�yzv(z)

1
A

= min
a

0
@cxa + 


X
y0

paxy0�y0ky0 + 

X
y

paxy
X
z 6=1

�yzv(z)

1
A

On the other hand, the parallel value backup operator for M is

v(x)  min
a

E(c(x; a) + 
v(�(x; a)))

= min
a

X
y

paxy(cxa + 
v(y))

If we replace v(y) by its approximation under A, the operator becomes TM �MA:

v(x)  min
a

X
y

paxy

 
cxa + 
(�yky +

X
z

�yzv(z))

!

= min
a

0
@cxa + 


X
y

paxy�yky + 

X
y

paxy
X
z 6=1

�yzv(z)

1
A

which is exactly the same as TM 0 above. 2

2.7.3 Error bounds

Proof of Theorem 2.3: By Theorem 2.1, TM �MA is a contraction in max
norm with factor 
, and therefore converges to some v0. Repeated application
of the triangle inequality and the de�nition of a contraction give

k v0 � TM (MA(v
�)) k = kTM(MA(v0))� TM (MA(v

�)) k

� 
k v0 � v� k

kTM (MA(v
�))� v� k = kTM(MA(v

�))� TM (v�) k

� 
kMA(v
�)� v� k

� 
kMA(v
�)� vA k+ 
k vA � v� k

= 
kMA(v
�)�MA(v

A) k+ 
k vA � v� k

� 
k v� � vA k+ 
k vA � v� k

k v0 � v� k � k v0 � TM (MA(v�)) k+ kTM (MA(v
�))� v� k
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� 
k v0 � v� k+ 2
k v� � vA k

(1� 
)k v0 � v� k � 2
k v� � vA k

k v0 � v� k �
2
�

1� 


which is what was required. 2

If we let 
 ! 0, we can make the above error bound arbitrarily small. This
result is somewhat counterintuitive, since A may not even be able to represent
v� exactly. The reason for this behavior is that the �nal step in computing v0
is to apply TM ; when 
 = 0, this step produces v� immediately.

Approximate value iteration returns MA(v0) rather than v0 itself. So, an
error bound for MA(v0) would be useful. The error bound on v0 leads directly
to a bound for MA(v0):

k v� �MA(v0) k � k v� � vA k+ k vA �MA(v0) k

= �+ kMA(v
A)�MA(v0) k

� �+ k vA � v0 k

� �+ k vA � v� k+ k v� � v0 k

� 2�+
2
�

1� 


On the other hand, usually we use MA(v0) by doing a one-step lookahead to
�nd the greedy action; since this lookahead is equivalent to applying TM again,
the error bound on v0 may be a better indicator of performance.

2.7.4 The embedded process for Q-learning

Here is the analog for Q-learning of the embedded MDP theorem. (For a de�ni-
tion of theQ-learning algorithm, see [Wat89].) The chief di�erence is that, where
the theorem for value iteration considered the combined operator TM �MA, this
version considersMA�T

Q
M where TQ

M is the parallel Q-learning backup operator.
The di�erence is necessary to keep the min operation in the Q-learning backup
from getting in the way. Of course, if we show that either TQ

M �MA or MA �T
Q
M

converges from any initial guess, then the other must also converge.
This proof uses the de�nition of an averager from [Gor95a], which is slightly

less general than the one given here. The proof works with only minor changes
for the more general de�nition.

Theorem 2.5 (Embedded MDP for Q-learning) For any averager A with

mapping MA, and for any MDP M (either discounted or nondiscounted) with

Q-learning backup operator T
Q
M , the function MA �T

Q
M is the Q-learning backup

operator for a new Markov decision process M 0.

Proof: The domain of A will now be pairs of states and actions. Write �xayb
for the coe�cient of Q(y; b) in the approximation of Q(x; a); write kxa and �xa
for the constant and its coe�cient.
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Take an initial guess Q(x; a). Write Q0 for the result of applying TQ
M to Q;

write Q00 for the result of applying MA to Q0. Then we have

Q0(x; a) = E(c(x; a) + 
min
b

Q(�(x; a); b))

= cxa + 

X
y

pxaymin
b
Q(y; b)

Q00(z; c) =
X
x

X
a

�zcxaQ
0(x; a) + �zckzc

=
X
x

X
a

�zcxa

 
cxa + 


X
y

pxaymin
b

Q(y; b)

!
+ �zckzc

=
X
x

X
a

�zcxacxa + 

X
x

X
a

�zcxa
X
y

pxaymin
b

Q(y; b) + �zckzc

=

 X
x

X
a

�zcxacxa + �zckzc

!
+



X
y

 X
x

X
a

�zcxapxay

!
min
b
Q(y; b)

We now interpret the �rst parenthesis above as the cost of taking action c

from state z in M 0; the second parenthesis is the transition probability p0zcy for
M 0. Note that the sum

P
y p

0
zcy will generally be less than 1; so we will make

up the di�erence by adding a transition in M 0 from state z with action c to
state 1 (which is assumed as before to be cost-free and absorbing and to have
v(1) � 0). 2
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Chapter 3

CONVEX ANALYSIS

AND INFERENCE
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This chapter presents a uni�ed framework for reasoning about worst-case
regret bounds for learning algorithms. This framework is based on the theory
of duality of convex functions. It brings together results from computational
learning theory and Bayesian statistics, allowing us to derive new proofs of
known theorems, new theorems about known algorithms, and new algorithms.

This chapter does not mention Markov decision processes explicitly. Instead,
its results are at a more basic level: they treat the problem of learning without
independent, identically distributed data. This problem is one of the main
reasons that learning value functions for MDPs is di�cult, but there are other
reasons as well, so in order to use this chapter's results in a value function
learning algorithm we would have to solve some additional problems.

Probably the most di�cult of these problems is to decide how to score a
hypothesized value function. An ideal scoring method should take as input
some transitions and a value function, then decide how well the value function
explains the transitions. It should take into account how likely the transitions
are to have produced the observed Bellman residuals, and also how well the
value function predicts which transitions are optimal choices from their starting
states. Also, in order to take advantage of the results of this chapter, the score
should be convex in its value-function input. This last requirement rules out
such scoring methods as squared Bellman error. Chapter 4 discusses in more
detail the problem of scoring value functions.

Some of the material from this chapter will appear in [Gor99].

3.1 The inference problem

We are interested in the following problem: on each time step t = 1 : : : T we must
choose a prediction vector wt from a set of allowable predictions W . Then the
loss function lt(w) is revealed to us, and we are penalized lt(wt). These penalties

are additive, so our overall goal is to minimize
PT

t=1 lt(wt). Our choice of wt
may depend on l1 : : : lt�1, and possibly on some additional prior information,
but it may not depend on lt : : : lT .

Many well-known inference problems, such as linear regression and estima-
tion of mixture coe�cients, are special cases of this one. To express one of these
speci�c problems as an instance of our general inference problem, we will usually
interpret the loss function lt as encoding both a training example and a criterion
to be minimized: the location of the set of minima of lt encodes the training
example, while the shape of lt encodes the cost of deviations in each direction.
This double role for lt means that the loss function will usually change from step
to step, even if we are always trying to minimize the same kind of errors. For
example, if we wanted to estimate the mean of a population of numbers from a
sample z1; z2; : : :, then lt(w) might be (w � zt)2. This choice of lt encodes both
the current training point zt and the fact that we are minimizing squared error.
(See Figure 3.1 for more detail.) Or, if we were interested in a linear regression
of yt on xt, lt(w) might be (yt � w � xt)

2. This choice encodes both the current
example (xt; yt) and the fact that we want to minimize the squared prediction
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Trial t 0 1 2 3 4

Prediction wt | 0 2 3 3

Training example zt | 4 5 3 8

Error type | Squared Squared Squared Squared

Loss function lt(w) w2 (w � 4)2 (w � 5)2 (w � 3)2 (w � 8)2

Loss of wt | 16 9 0 25

Ttl loss of w1 : : : wt 0 16 25 25 50

Best constant u 4

Loss of u 16 0 1 1 16

Ttl loss of u 16 16 17 18 34

Ttl regret -16 0 8 7 16

Figure 3.1: An example of the MAP algorithm in action, trying to minimize
sum of squared errors. The prediction at trial t is the mean of all examples up
to trial t�1, while the comparison vector is the mean of all examples up to trial
t.

error. Or, if we were trying to solve a mixture estimation problem, lt(w) might
be � ln(w � pt), where w is the vector of mixture proportions and pt;i is the
probability of the current training point under the ith model. (Here and below,
the notation pt;i stands for the ith component of the vector pt.) This choice of
loss function encodes properties of the current example as well as the fact that
we want to maximize log-likelihood.

We want to develop an algorithm for choosing a sequence of wts so as to
minimize our total loss

PT

t=1 lt(wt), even if the sequence of loss functions lt
is chosen by an adversary. Unfortunately this problem is impossible without
further assumptions: for example, the adversary could choose loss functions
with corners or discontinuities and make the losses of two predictions vt and wt
arbitrarily di�erent even if vt and wt were close together. So, we will make two
basic simpli�cations. The �rst is that we will place restrictions on the form of
the functions lt that the adversary may choose. The chief restrictions will be
that lt is convex and that a measure of the amount of information contained in
lt does not increase too quickly from trial to trial.

The second simpli�cation is that we will seek a relative loss bound rather
than an absolute one. That is, we will de�ne a comparison class U of predictions,
and we will seek to minimize our regret

PT
t=1(lt(wt) � lt(u)) versus the best

predictor u 2 U . (Often we will take U = W , so that we are comparing our
predictions to the best constant prediction. Sometimes, though, we will need to
take U � W in order to prove a bound.) Since u can be chosen post hoc, with
knowledge of the loss functions lt, such a regret bound is a strong statement.

The focus on regret instead of just loss is the chief place where our results
di�er from traditional statistical estimation theory. It is what allows us to
handle sequences of loss functions that are too di�cult to predict: our theorems
will still hold, but since there will be no comparison u that has small loss, the
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theorems will not tell us much about our total loss
PT

t=1 lt(wt).
Surprisingly, with only weak restrictions on lt and u, we will be able to

prove bounds that are similar to the best possible average-case bounds (that is,
bounds where lt is chosen by some �xed probability law). Our theorems will
unify results from classical statistics (inference in exponential families and gen-
eralized linear models) with those from computational learning theory (weighted
majority, aggregating algorithm, exponentiated gradient).

This regret bound framework has been studied before in [LW92, KW97,
KW96, Vov90, CBFH+95] among others. Also, some of our results are similar to
results from classical statistics such as the Cramer-Rao variance bound [SO91].
Our theorems are more general than each of these previous results in at least one
of the following ways. First, they apply to more general classes of convex loss
functions, including non-di�erentiable ones. Second, they apply to both online
(i.e., bounded computation per example) and o�ine (unbounded computation)
algorithms. Third, they apply to all sequences of loss functions, not just on
average. Finally, they apply at all time steps, not just asymptotically. Our
theorems are also less general than traditional statistical results in some ways.
For example, while the Cramer-Rao bound requires twice-di�erentiability of the
loss functions, it does not require global convexity, just local convexity.

All of our theorems will concern variations on the following simple and in-
tuitively appealing algorithm, which takes as input the loss functions l1 : : : lt�1
observed on previous trials plus one additional loss function l0 which encodes
our prior knowledge before the �rst trial.

MAP Algorithm: Predict any wt 2 argminw
Pt�1

i=0 li(w).

The notation argminw f(w) means the set of ws that minimize f . We assume
that the minimum is always achieved so that a legal prediction always exists.
Conditions which ensure the existence are described below. The algorithm is
called \MAP" or \maximum a posteriori" because of its Bayesian roots: if we
want to apply the MAP algorithm to the problem of estimating some population
parametersw from an independent identically distributed sample z1; z2; : : :, then
a good choice of loss function is the negative of the log likelihood lt(w) =
� ln p(ztjw). With this setting for lt the MAP algorithm always chooses the
prediction with maximal posterior probability given the available information.
Of course, we can still use the MAP algorithm when we do not have i.i.d.
samples; in this case lt will be unrelated to any likelihood, and so \maximum a
posteriori" may be a misnomer.

As the MAP algorithm is stated above it is not operational, since we may
not know how to perform the required minimization. A striking feature of the
MAP algorithm is that, despite the complicated machinery required to prove
its theoretical properties, it often has a simple and e�cient implementation.
In fact, as we will see below, many well-known inference algorithms are MAP
algorithms.

One example of a speci�c implementation of the MAP algorithm is shown
in Figure 3.1. In this example, the learner is trying to minimize the sum of
squared distances between its predictions wt and a sequence of training examples
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Figure 3.2: De�nitions for convex functions.

z1 : : : z4. For this problem the MAP algorithm will always predict wt equal to
the mean of all examples from trials 0 : : : t� 1. (By convention we set z0 = 0.)
As shown in the �gure, the best possible constant prediction is u = 4, since that
is the mean of z0 : : : z4. The total loss of u = 4 is 34, so the regret of the MAP
algorithm is the di�erence between the loss

P4
t=1 lt(wt) and 34.

The rest of the paper is organized as follows. In Section 3.2 we will review
some basic facts about convex analysis that we will need later on. In Section 3.3
we will outline our main results and the strategy that we will use to prove
them. In Sections 3.4 and 3.5 we will prove loss bounds for the Weighted
Majority algorithm, as an example of how to apply the results from Section 3.3.
Section 3.6 introduces the generalized gradient descent algorithm, which is a
special case of the MAP algorithm. Section 3.7 proves regret bounds for a
general class of MAP algorithms that includes generalized gradient descent.
Section 3.8 gives some examples of generalized gradient descent, including one
which is a version of the Exponentiated Gradient algorithm. Section 3.9 treats
inference in exponential families. Section 3.10 introduces generalized linear
regression problems and proves regret bounds for them. Finally, Section 3.11
gives some examples of generalized linear regression algorithms, and Section 3.12
concludes.

3.2 Convex duality

For the proofs below we will need some de�nitions and basic results about
convex functions. A convex function is any function f from a vector space X to
R [ f+1;�1g which satis�es

�f(x) + (1� �)f(y) � f(�x+ (1� �)y)

for all x; y 2 X and � 2 [0; 1]. A strictly convex function is one for which we
can replace � by > in the above inequality. A proper convex function is one
which is always greater than �1 and not uniformly +1. The domain of f ,
dom f , is the set of points where f is �nite. Convex functions are continuous on
int dom f , and di�erentiable on int dom f except for a set of measure zero. (The
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notation intC refers to the interior of a set C, that is, the points of C which
can be surrounded by an open set contained within C.)

Some special cases of convex functions are the linear functions, f(x) = a�x+b
for a vector a and scalar b, and the indicator functions

�(xjC) =

�
0 x 2 C
1 x 62 C

for a convex set C. (We will sometimes write a predicate instead of a set C, as
in �(xj

P
xi = 1). There should be no danger of confusion.)

A convex function f is closed if its epigraph f(x; y)jy � f(x)g is closed. The
closure of f , cl f , is the function whose epigraph is the closure of f 's epigraph.
For proper convex functions, closedness is the same as lower semicontinuity.

The convex hull of a function f , conv f , is the pointwise supremum of all of
the convex functions which are everywhere less than f . In other words, conv f
is the function whose epigraph is the convex hull of f 's epigraph. The convex
hull always exists and is convex, although it may be the constant function �1.

The subgradient of a convex function at some point, written @f(x), is the
set of vectors a such that f(y) � f(x) + (y�x) � a for all y. In other words, the
subgradient of f at x is the set of slopes of all tangent planes to f at x. We will
write dom @f for the set of x such that @f(x) is nonempty. We have

int dom f � dom @f � dom f

The subgradient of a smooth convex function f is single-valued on int dom f ,
and @f(x) = ff 0(x)g where f 0(x) stands for the usual derivative df

dx
. By a slight

abuse of notation we will write f 0 even when the subgradient is not single-
valued; in this case f 0 will mean any (�xed) function such that f 0(x) 2 @f(x).
The rules for working with subgradients are similar to the rules for working
with derivatives; in particular, @(�f)(x) = �@f(x) and @(f + g)(x) � @f(x) +
@g(x). We may replace containment by equality in the latter formula under mild
conditions, for example if relint dom f and relint dom g have a point in common.

For every function f we can de�ne a new function f�, called the dual of f ,
by the formula

f�(a) = sup
x
a � x� f(x)

The notation sup denotes the supremum or least upper bound of an expression.
The dual tells us how the optimal value of a maximization problem changes if
we add a linear function to the objective. The dual is always closed and convex,
and f�� = cl conv f . If f � g pointwise then f� � g�.

For example, the dual of exp(x) is x lnx�x. The dual of� lnx is�1�ln(�x).
The quadratic function x2=2 is self-dual. The dual of jxj is �(xj[�1; 1]).

The dual of kf(x) is kf�(x
k
). The dual of a linear function a � x + b is

�(xjfag)� b. The dual of f + g is f�2 g�, where the in�mal convolution u2 v

is de�ned as

(u2 v)(x) = inf
y
(u(x� y) + v(y))
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Figure 3.3: Generalized Bregman divergences.

A special case is that, if g = a �x+ b, then (f + g)�(x) = f�(x�a)� b. Another
special case happens when we can partition X into two subspaces Xf and Xg so
that f(x) depends only on the component of x in Xf and g(x) depends only on
the component of x in Xg . For example, if we write f(x; y) = g(x) + h(y), then
f�(x; y) = g�(x) + h�(y); so the dual of jxj+ jyj is �(xj[�1; 1]) + �(yj[�1; 1]).

The subgradients of f and f� are (almost) inverses of each other. If f
is strictly convex, then (f�)0(f 0(x)) = x for all x where f 0 is de�ned. More
generally, for any closed convex function f , a 2 @f(x) is equivalent to x 2
@f�(a).

Let f be closed and convex. From the subgradient inequality, we know that

Df (xjy)
def
= f(x)� f(y)� (x� y) � f 0(y) � 0

whenever f 0(y) is de�ned. The function Df is called a Bregman divergence.
Some examples of Bregman divergences include squared Euclidean distance
(which is Dx�x) and information divergence (which is DPxi lnxi).

Bregman divergences can be either symmetric (like squared Euclidean dis-
tance) or asymmetric (like information divergence). If f is strictly convex, then
Df (xjy) = 0 is equivalent to x = y. If g is linear, then Df+g = Df .

The Bregman distances given by f and f� are strongly related: if f is strictly
convex, then

Df (xjy) = Df�(f
0(y)jf 0(x))

If f is not strictly convex, this equality may not hold: if x is in the middle of a

at spot of f , then f 0(x) does not uniquely specify x.

This di�culty is a symptom of the more general problem which is illustrated
in Figure 3.3: if a point (y; f(y)) is at a corner of f , then there are in�nitely
many possible tangent planes to f at y. So, there are in�nitely many possible
Bregman divergences all represented by Df (zjy).

One solution is to pick a divergence arbitrarily and �x Df to mean just that
divergence. This solution is the one we have been using implicitly so far, since
we have de�ned f 0(y) to be an arbitrary but �xed element of @f(y). A better
solution is to generalize the de�nition of Bregman divergence.
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We can motivate our generalization by noticing that, while a point y does
not de�ne a unique tangent plane to f , a slope a does. There is always at most
one plane with slope a tangent to f , and if it exists it is given by the equation

f((f�)0(a)) + (x� (f�)0(a))a

There is the same ambiguity in computing (f�)0 that there was in computing f 0,
but it doesn't matter: if @f� is multivalued, then each value refers to a di�erent
point along a linear segment of f , and the tangent plane at any of these points
is the same.

So, we de�ne the generalized Bregman divergence, which measures the dis-
similarity between a point x and a slope a, to be

D f (xja)
def
= f(x) + f�(a)� x � a

This de�nition is a generalization of the original Bregman divergence since, if
a = f 0(y), then Df (xjy) = D f (xja). All of the properties of Bregman diver-
gences given above carry over straightforwardly to D f .

Generalized Bregman divergences satisfy a simple symmetry property: our
assumption that f is closed implies that

D f (xja) = D f� (ajx)

Another advantage of the new de�nition is that D f (xja) is de�ned for any x and
a (although it may be in�nite) and convex separately in x and in a (although
it may not be convex jointly in x and a). By contrast, Df (xjy) is unde�ned if
@f(y) is empty, and it may not be convex in y.

A function is called positively homogeneous if f(�x) = �f(x) for all � � 0. A
nonnegative, positively homogeneous, closed, convex function is called a gauge.
Gauges are a generalization of norms: a norm is a gauge that is symmetric
(f(x) = f(�x)) and strictly positive except at the origin (f(x) = 0 , x = 0).
The dual of a gauge is an indicator function for a convex set containing the
origin, and vice versa.

Two gauges g and g� are called polar to each other if

g�(y) = inff� � 0j(8x) x � y � �g(x)g

For example, the Lp norm on R
n is de�ned to be

jjxjjp
def
=

 
nX
i=1

xpi

! 1
p

and jj � jjp and jj � jjq are polar to each other when
1
p
+ 1

q
= 1. Polar gauges satisfy

a generalization of H�older's inequality:

x � y � g(x)g�(y)

for all x; y, with equality i� �y 2 @g(x) for some � � 0. Polarity between
gauges is related to duality between convex functions: if f(x) = 1

2
g(x)2, then

f�(x) = 1
2
g�(x)2.

For more background on convex duality, see [Roc70] or [OR70].
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3.3 Proof strategy

Our main result is a bound on the total regret of the MAP algorithm. It is stated
below as Theorem 3.1, and an important specialization is given as Theorem 3.2.
There are three basic steps in its proof and application.

Our proof is by an amortized analysis [CLR90]. So, the �rst step is to
de�ne a potential function for the MAP algorithm. This potential function will
decrease on trials where the algorithm su�ers a large regret, and increase on
trials where it su�ers a small or negative regret. That way, our analysis will be
able to handle trials with large regret by averaging them out against other trials
with smaller regret. This kind of amortized analysis is a generalization of an
idea which was introduced in [LW92] and also used in many other regret-bound
proofs.

The second step is to sum the regret over all trials. In order to perform this
step, we will introduce some constants that, roughly speaking, summarize the
amount of information available to the algorithm at the beginning of each trial.
These constants depend on the type of loss function we are interested in, so we
will leave them unspeci�ed.

The third and �nal step is to calculate the values of the constants for the
speci�c algorithms we wish to analyze. We will leave this step for subsequent
sections.

3.3.1 Existence

Before we prove any regret bounds, we will look at when the MAP algorithm
is well-de�ned, that is, when the minimum of Lt =

Pt�1
i=0 li is guaranteed to be

attained. While it is di�cult to derive necessary and su�cient conditions for
attainment of the minimum, there are some su�cient conditions which are easy
to check. Throughout this section (and the rest of the paper) we will assume
that each lt is closed and convex. Because it will avoid extra notation, we will
adopt the convention that any prediction is legal if Lt is the constant function
+1.

The simplest su�cient condition to check is whether dom l�0 is all of W ,
since this condition does not depend on lt for t � 1. Often this condition is
the only one we can check. Examples of functions that satisfy this condition
are l0(w) = w2 and l0(w) = w lnw. An example of a function that does not
satisfy this condition is l0(w) = jwj. Loosely speaking, this condition captures
functions such that the norm of l00(w) keeps increasing without bound as w
approaches the border of dom l0.

Another simple condition to check is whether lt attains its minimum for
each t. Examples of this kind of function include lt(w) = (w � z)2 and lt(p) =
Dx lnx(pjq). Linear functions (such as the loss functions used in generalized
gradient descent, described below) do not usually satisfy this condition.

If lt is linear for t � 1, say lt(w) = w � xt, then Lt will attain its minimum
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exactly when

Xt
def
=

t�1X
i=1

xt 2 � dom@l�0

since this condition is true i� there is some w so that

0 2 @Lt(w)

�Xt 2 @l0(w)

w 2 @l�0(�Xt)

We can combine and generalize these conditions into the following lemma:

Lemma 3.1 Suppose that the functions l0; l1; : : : are convex and closed. Let

m1;m2; : : : be closed convex functions, each of which attains its minimum, such

that lt �mt is convex. Suppose there is a point !t for each t so that

�
t�1X
i=1

(li �mi)
0(!t) 2 dom @l�0

Then the MAP algorithm applied to the loss functions l0; l1; : : : produces a legal

prediction at each trial t.

Proof: Fix a trial t and write xi = (li � mi)
0(!t) for 1 � i < t. The func-

tion M(w) = l0(w) + w �
Pt�1

i=1 xi achieves its minimum, since it is closed

and convex and since the condition 0 2 @l0(w) +
Pt�1

i=1 xi is equivalent to

w 2 @l�0(�
Pt�1

i=1 xi).
The functions li(w) � mi(w) � w � xi also achieve their minima, since 0 2

@(li�mi)(!t)�xi. But Lt is the sum ofM , li(w)�mi(w)�w �xi, and mi(w) for
i = 1 : : : t� 1. So, since the sum of closed convex minimum-achieving functions
is also a closed convex minimum-achieving function, Lt achieves its minimum.
2

3.3.2 One-step regret

Our potential function will be a generalized Bregman divergence involving the
comparison vector u, the loss functions lt, and the MAP algorithm's current
prediction wt. The reason we use a divergence involving u and wt is that we
want to prove that, on trials where the MAP algorithm su�ers a large regret
compared to u, it will move its next prediction closer to u. That way, we can
conclude that if it sees the same loss function again, it will incur a smaller regret.

Let Lt =
Pt�1

i=0 li, so that the wt chosen by the MAP algorithm will be
argminw Lt(w). We de�ne our potential function to be D Lt (uj0). The potential
change on each time step is given by the following lemma.

Lemma 3.2 On trial t, the change in potential is

D Lt+1 (uj0)� D Lt (uj0) = lt(u)� L�t (0) + L�t+1(0)
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Proof: The potential on step t is

D Lt (uj0) = Lt(u) + L�t (0)

So, the di�erence in potential from trial t to t+ 1 is

(Lt+1 � Lt)(u) + L�t+1(0)� L�t (0)

But Lt+1 � Lt is just lt, so the result follows. 2

The function L�t is important, since it encodes both the best possible loss so
far and the MAP algorithm's next prediction: Theorem 27.1 in [Roc70] states
that L�t (0) = �Lt(wt) and wt 2 @L�t (0). Most of the work in applying The-
orem 3.1 to speci�c problems will come in analyzing L�t . For example, in the
Weighted Majority proof below, L�t (0) will be the log of the sum of the unnor-
malized weights, and the main part of the proof will be to connect the change
in this quantity to the algorithm's loss.

3.3.3 Amortized analysis

In order to complete the proof of our bound, we need to relate the quantity
L�t (0)�L

�
t+1(0) to the loss of the MAP algorithm. Since the relationship depends

on the type of loss function we are using, for now we will just assume that there
are constants c1 � c2 � : : : > 0 so that

ct(L
�
t (0)� L�t+1(0)) � ~lt(wt) (3.1)

Here ~lt is some function related to lt. Often we will just use ~lt = lt, but we
will sometimes need the extra generality. The smaller we take ct, the better our
bounds will be.

We can think of 1=ct as a lower bound on how much information is available
to the algorithm at the beginning of trial t. The best allowable value of ct will
depend on how convex Lt is when compared to lt. For example, if every lt is
quadratic with the same second derivative, we will show below that we can take
1=ct proportional to the sample size t.

With the assumption (3.1), Lemma 3.2 becomes

D Lt (uj0)� D Lt+1 (uj0) �
1

ct
~lt(wt)� lt(u)

or
~lt(wt) � ctlt(u) + ctD Lt (uj0)� ctD Lt+1 (uj0) (3.2)

If we now apply lemma 3.2 to trial t+ 1, we get

~lt+1(wt+1) � ct+1lt+1(u) + ct+1D Lt+1 (uj0)� ct+1D Lt+2 (uj0) (3.3)

Notice that D Lt+1 (uj0) appears both in Equation 3.2 and in Equation 3.3, once
with coe�cient �ct and once with coe�cient ct+1. Since ct+1 � ct and since
Bregman divergences are nonnegative, the two terms together are less than or
equal to zero; so, we can drop them from our bound on total regret.

But now we have proven
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Theorem 3.1 Let l0; l1; : : : satisfy the assumptions of Lemma 3.1, so that the

MAP algorithm produces a prediction wt at trial t. De�ne Lt =
Pt�1

i=1 lt. Let

the constants ct and the functions ~lt be such that ct(L
�
t (0)� L�t+1(0)) �

~lt(wt).
Then the for all u total regret of the MAP algorithm is bounded by

TX
t=1

~lt(wt) �
TX
t=1

ctlt(u) + c1D l0 (uj0)

Proof: Sum lemma 3.2 over all trials, then cancel terms as described above.
Finally, ignore the term containing the ending potential D LT+1

(uj0). 2

3.3.4 Speci�c bounds

All that remains is to evaluate the constants ct for speci�c types of loss functions.
In the following sections we will do just that. The next two sections analyze the
Weighted Majority algorithm. Theorem 3.2, proved in Section 3.7, covers cases
in which the one-step losses can be represented as Bregman divergences. In
particular, Sections 3.6 and 3.8 cover generalized gradient descent algorithms,
Section 3.9 covers inference in exponential families, and Sections 3.10 and 3.11
cover generalized linear regression algorithms including linear regression and
exponentiated gradient.

3.4 Weighted Majority

One of the simplest MAP algorithms is Weighted Majority, described in [LW92].
Here we will analyze the versions which are called WMR (for randomized) and
WMC (for continuous) in that paper.

WM is designed for a problem called \learning from expert advice." In this
problem, the learner must choose one of N alternatives on each trial|say, which
of N football games to bet a predetermined amount on. We will represent this
decision with a vector wt in the unit simplex P = fw 2 R

N jw � 0^
P

i wi = 1g.
Picking one of the corners of the simplex means betting on the corresponding
game. Picking a vector in the middle means either choosing a game to bet
on at random (with probabilities wt) or splitting the bet among the games
(with proportions wt). These two interpretations yield the WMR and WMC
algorithms respectively. Since this is the only di�erence between WMR and
WMC, we will analyze both algorithms together and use WM to refer to either
one.

In either WMR or WMC, the learner then �nds out which bets paid o� and
receives a loss of wt � xt, where xt;i is the loss for betting on the ith game. (In
WMC, the loss is deterministic, while in WMR, wt �xt is the expected loss. The
expectation is over the learner's randomization.) For notational convenience,
we will assume that 0 � xt;i � 1. We assume that the learner has no outside
information beyond the history of losses.
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The above description of the expert advice problem is a little more general
than the version in [LW92]. That paper assumes that the learner is trying to
solve a classi�cation problem. There are N experts who claim to know the
answer. The ith decision corresponds to agreeing with the ith expert, and xt;i
is the prediction error of the ith expert. This version of learning from expert
advice is a simple example of a regression problem (see below).

To solve the expert advice problem, WM follows a simple strategy. Whenever
an expert makes a mistake (i.e., has a loss of 1), WM reduces that expert's
weight by a constant factor � 2 (0; 1), then renormalizes to keep the sum of
the weights equal to 1. Experts with losses less than 1 have their weights
reduced less. More speci�cally, de�ne Xt =

Pt�1
i=1 xt. Write vt;i = �Xt;i . Let

Zt = 1=
P

i vt;i. Then WM predicts wt = Ztvt. (Actually, [LW92] allows some

exibility in choosing Xt, but this is one of the allowed choices.)

To design a MAP algorithm for learning from expert advice, we just need
to pick a prior loss function l0, since we already know lt(w) = w � xt for t � 1.
In order to make sure that our predictions are always in the unit simplex P ,
we will set l0(w) = 1 for w 62 P . A reasonable choice of l0 for w 2 P is some
multiple of the entropy function, making

l0(w) / H(w)

H(w)
def
= �(wjP ) +

X
i

wi lnwi (3.4)

It is easy to verify that

H�(x) = ln
X
i

exp(xi)

d

dxi
H�(x) = exp(xi)=

X
j

exp(xj)

To duplicate WM, we will pick l0 = 1
� ln�

H(w). (This choice of l0 means
that w1 will be at the center of P ; it is easy to accomodate other starting vectors
by adding a linear function to l0 to move its minimum to the desired w1.) Then

l�0(x) =
1

� ln�
H�(�x ln�)

(l�0)
0(x) = (H�)0(�x ln�)

Furthermore, since Lt(w) = l0(w) +Xt � w, we have L
�
t (x) = l�0(x �Xt). That

means that our prediction on step t will be wt = (l�0)
0(�Xt) = (H�)0(Xt ln�),

or

wt;i = vt;i=
X
j

vt;j

vt;i = �Xt;i

which is identical to the prediction of WM.
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Now that we have expressed WM as a MAP algorithm, we can analyze it
by applying Theorem 3.1. To do so, we must compute the constants ct. It is
easy to see that taking ct = � ln�=(1� �) for all t satis�es the assumptions of
Theorem 3.1, since we can write

�(L�t+1(0)� L�t (0)) ln � = H�(Xt+1 ln�)�H�(Xt ln�)

= ln

P
i �

Xt;i+xt;iP
i �

Xt;i

= ln
X
i

�xt;iwt;i

� ln
X
i

(1� (1� �)xt;i)wt;i

= ln(1� (1� �)xt � wt)

� �(1� �)xt � wt

The �rst inequality holds because �x � 1 � (1 � �)x for � > 0 and x 2 [0; 1],
while the second holds because ln(1� x) � �x. So now we have proven

Corollary 3.1 The loss of WM with parameter � is bounded by

TX
t=1

xt � wt �
� ln�

1� �

TX
t=1

xt � u+
1

1� �
DH (uj0)

Proof: Apply Theorem 3.1 with ~lt = lt and ct = � ln�=(1� �). Then replace
l0 by

1
� ln�

H . 2

If we now note that DH (uj0) � lnN for all u 2 P , the above result is
identical to Corollary 6.1 in [LW92].

3.5 Log loss

In step t of Weighted Majority the learner is charged the loss xt �wt, where xt;i is
the loss of the ith expert. For some problems it may be more appropriate to use
the loss function lt(w) = � ln(yt � w) for some vector yt instead. Two examples
are the portfolio selection problem and the mixture estimation problem.

In the portfolio selection problem, the learner is presented with N invest-
ments on each time step. After the learner chooses what fraction of its fortune
to invest in each alternative, investment i grows by a factor of yt;i. So, if the
learner puts a fraction wt;i in each investment, its total wealth grows by a factor
of wt � yt. Since, in our framework, we combine losses from di�erent trials by
adding them, we need to take the log of the wealth changes. That way the total
of the log wealth changes will be the log of the total wealth change. Since losses
are the negative of gains that leaves us with the penalty � ln(wt � yt).

In the mixture estimation problem, the learner must discover the coe�cients
in a mixture of N probability distributions. After choosing mixture coe�cients
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wt, the learner receives a new training example and computes the probability
yt;i assigned by the ith probability distribution to the new example. Since we
want to maximize likelihood, or equivalently minimize negative log likelihood,
we charge the learner a loss of � ln(wt � yt).

If we write xt;i = � ln yt;i we can run WM with the vectors xt. In other
words, we can compute wt according to the equations

wt;i = vt;i=
X
j

vt;j

vt;i = �Xt;i

Xt =

t�1X
i=1

xt

We will call the resulting algorithm WM-log, even though it has the exact same
series of computational steps asWM, to emphasize that we want to prove bounds
on its log loss

P
t ln(wt � yt). Just as before, we will assume that xt;i 2 [0; 1]

for notational convenience. It turns out that WM-log is a special case of the
Aggregating Algorithm of [Vov90].

The WM-log update has a particularly simple interpretation in the portfolio
selection problem. If we let � = 1 (so that � = 1=e), then the fraction of
money in the ith investment at step t is exp(�Xt;i)=

P
i exp(�Xt;i). The rate

of growth on step t is wt �yt =
P

i exp(�Xt+1;i)=
P

i exp(�Xt;i), so we can prove
by induction that a fortune of $N on step 1 grows to a fortune of

P
i exp(�Xt;i)

dollars on step t. So, the amount of money in the ith investment on step t is
just exp(�Xt;i) =

Q
t yt;i dollars. But this is exactly the amount which would

be in the ith investment if we had just invested $1 in each investment on step 1
and let it sit. And, in fact, the bound which we will prove below is equivalent
to the obvious observation that investing $1 in each investment earns at least
1=N times as much as investing $N in the best investment.

To analyze the WM-log algorithm we will compare our performance, not
to the best vector u 2 P , but only to the best individual expert (i.e., the best
corner of P ). Write ~P for the set of corners of P . Then if we writemt(w) = w�xt,

lt(w) � lt(u) � mt(w)�mt(u) 8u 2 ~P;8w 2 P

since mt touches lt at each corner of P but lies above lt elsewhere in P .

If we now run the MAP algorithm with loss functions H;m1;m2; : : :, then
the analysis of the Section 3.4 shows that our predictions will be identical to
WM-log with learning rate � = 1. Furthermore, with Lt = H +

Pt�1
i=1 mt, we

have

L�t+1(0)� L�t (0) = ln
X
i

exp(�xt;i)wt;i = ln yt � wt = �lt(wt)
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So, we can apply Theorem 3.1 to the loss functions H;m1;m2; : : : with ct = 1
and ~lt = lt. The result is that

TX
t=1

mt(wt) �
TX
t=1

lt(u) + DH (uj0) 8u 2 ~P

With the substitutions mt(wt) = lt(wt) and DH (uj0) = lnN , this becomes

TX
t=1

lt(wt) �
TX
t=1

lt(u) + lnN 8u 2 ~P

This bound is equivalent to Equation (3.4) in [HKW98]. (That equation refers
to a constant cL, which plays the same role there that 1=� does here, and which
is set to 1 for the analysis of the WM-log algorithm.)

So, for the WM and WM-log algorithms, our regret bounds are the same
as the bounds previously obtained in the literature. As we would hope for a
general framework for regret bounds, once we set up WM and WM-log as MAP
algorithms, their proofs are similar: we evaluate the constant c = ct and apply
Theorem 3.1. We can follow a similar strategy for the other MAP algorithms
described below. Since some of these proofs are more complicated, we will collect
some of the overlap into Theorems 3.2 and 3.3.

3.6 Generalized gradient descent

In the previous two sections we analyzed simple MAP algorithms in which all
of the loss functions except the prior were linear. In the �rst, the loss functions
started out linear, while in the second, we bounded the true loss functions by
a linear approximation. Because of the linearity of the loss functions, it was
easy to compute the prediction wt on each time step: the update rules for WM
and WM-log are both of the form wt = f(��Xt), where Xt is the sum of the
gradients of the previous loss functions and f is a function that we can compute
e�ciently.

We would like to be able to play the same trick for an arbitrary convex loss
function lt. That is, we would like to bound lt by a linear function mt, then
apply the MAP algorithm to the functions mt instead of lt so that it will run
more e�ciently. Of course, the predictions will be di�erent if we use mt in place
of lt, and so the regret may be larger. But, we may have to do signi�cantly less
work per trial, and we will still be able to bound the regret.

The key inequalities which allowed us to replace lt by mt in the previous
section were

lt(wt) � mt(wt)

lt(u) � mt(u) 8u 2 U
(3.5)

If U =W then these inequalities forcemt to be tangent to lt at wt; if U � W then
mt may be a secant to lt that passes above (wt; lt(wt)). Subtracting the second
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Name Link (l�0)
0 Loss l0

Identity a 1
2
w2

Logistic 1
1+exp(�a)

w lnw + (1� w) ln(1� w)

Inverse logistic ln a
1�a

ln(1 + exp(w))

Exponential exp a w lnw � w

Logarithmic ln a expw

Normalized
exponential

exp aiP
i
expai

P
i wi lnwi � 1 + �(wj

P
i wi = 1)

Figure 3.4: Some examples of link functions.

inequality from the �rst gives lt(wt)� lt(u) � mt(wt)�mt(u) for all u 2 U , so
that when we apply Theorem 3.1 to bound the di�erence mt(wt) � mt(u) we
also get a bound on the regret lt(wt)� lt(u).

In the previous section we achieved Equation 3.5 by restricting U to the
corners of the unit simplex, even though wt was allowed to range over the entire
simplex. In general we want to set U to the range of wt, and in this case the
only suitable linear functions mt are those which are tangent to lt at wt.

If we set mt to be a tangent to lt at wt, mt(w) = lt(wt)+(w�wt)�l0t(wt), and
then feed the sequence of loss functions l0;m1;m2; : : : to the MAP algorithm,
the result is an algorithm called generalized gradient descent or GGD. It is
\generalized" because, when l0 is quadratic, the update rule reduces to ordinary
gradient descent. We can write the GGD update rule as follows:

GGD Algorithm: Predict wt 2 argminw
h
l0(w) + w �

Pt�1
i=1 l

0
i(wi)

i
.

The GGD algorithm is often written in an additive form that looks di�erent
from its statement above. If we write Xt =

Pt�1
i=1 l

0
i(wi) then the additive form

of the GGD prediction rule is wt = f(��Xt). Here � is a learning rate and
f is a function from R

n to R
n satisfying appropriate conditions. For example,

choosing f to be the identity yields ordinary gradient descent. The advantage
of this form of the prediction rule comes from the fact it may be di�cult to
compute l0 from f , while it is often easier to compute f from l0; so, if we are
given f , we can use the additive form of the GGD rule without needing to
compute l0.

We can prove that the two forms of the GGD algorithm are equivalent: if
� = 1, then we can set f = (l�0)

0. For di�erent learning rates we can just multiply
l0 by a constant, since ( 1

�
l0)

�(x) = 1
�
l�0(�x) and so (( 1

�
l0)

�)0(x) = (l�0)
0(�x).

The function f(x) (or equivalently (l�0)
0(x
�
)) is called a link function. Fig-

ure 3.4 shows some useful link functions and their corresponding loss functions.
The one-dimensional link functions in Figure 3.4 can easily be generalized to
multiple dimensions by applying them separately to each coordinate.

Some examples of GGD algorithms are ordinary gradient descent, the per-
ceptron learning rule, and the Exponentiated Gradient algorithm of [KW97].
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We will examine some of these algorithms in more detail below. But �rst, we
will prove regret bounds for a class of algorithms that includes GGD.

3.7 General regret bounds

3.7.1 Preliminaries

In many common MAP algorithms, each individual loss function can be written
as a Bregman divergence. For example, in linear regression, the loss functions
are of the form (yt � wt � xt)2, which we may think of as a scaled Euclidean
distance between wt and any of the in�nitely many perfect predictions w sat-
isfying yt = w � xt. (The scaling is such that all directions perpendicular to
xt have weight zero.) For a more general example, in GGD, if we adopt the
convention that infw lt(w) = 0, then the loss mt(wt) is lt(wt) = D lt (wtj0). Or,
for another example, in inference of the natural parameter in an exponential
family, we will see below that the appropriate loss function is D l (wtjat) for a
�xed l. In this section we will derive regret bounds that hold when the loss
functions are divergences.

To that end, assume that we are running the MAP algorithm with loss
functions l0;m1;m2; : : :, and that mt(wt) = D lt (wtjat). Also assume mt(w) �
D lt (wjat) for all w. (These inequalities are a tangency condition similar to (3.5).)

Write Lt = l0 +
Pt�1

i=1 mt. This notation is similar to the notation from the
section on GGD, but in this section we are not assuming that the functions mt

are linear. In particular, we may take mt = lt.
In order to bound the loss of the MAP algorithm, we have to make sure that

the prior loss Lt before each trial t is su�ciently convex. To see why, consider
what would happen if we took l0 = L1 to be 1

�
�(wj[0; 1]). With this choice of

prior loss, our predicted w can change discontinuously from 0 to 1 even when
the one-step loss has only a small gradient. So, for example, if we see m1 = w=2
and then m2;m3; : : : = (1� w); w; (1� w); w; : : :, our predictions will alternate
between 0 and 1 no matter how small � is. In fact, we will always choose the
worst possible w, and so our loss will be twice that of the comparison vector
u = :5.

We also have to make sure that the one-step divergence functions lt for
t � 1 are not too convex. If they are, we can cause the MAP algorithm to
su�er an arbitrarily large regret per trial: the more convex lt is as compared to
Lt, the more of an advantage it is to pick the comparison vector after knowing
mt. For example, if l0(w) = w2 (so that w1 = 0), then the loss function
m1(w) = 106(w � 1)2 will cause the MAP algorithm a loss of 106, while the
optimal comparison vector 1

1+10�6
will su�er a loss of approximately 10�6 even

though its l0-divergence from w1 is less than 1.
So, to ensure that Lt is su�ciently convex, we will pick a gauge g and

constants �t 2 (0; 1) and require that

�tD Lt (vja) �
1

2
(g(v � w))2
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for all v and w and a 2 @Lt(w). And, to ensure that lt is not too convex, we
will require that

D l�
t
(atjw) �

1

2
(g�(at � a))2

for all w and a 2 @lt(w).
A consequence of the �rst assumption is that

Lt(w)� Lt(wt) �
1

2
(g(w � wt))

2

since the LHS is equal to D Lt (wj0) and 0 2 @Lt(wt). A consequence of the
second assumption is that

mt(wt) �
1

2
(g�(�m0

t(wt)))
2

as long as @mt(wt) is nonempty, since

mt(wt) = lt(wt)

= D lt (wtjat)

�
1

2
(g�(at � a))2

for any a 2 @lt(wt), and since @lt(wt)� at � @mt(wt).
Scaling the gauge g will scale �t inversely. So, in order to make the constant

�t as small as possible in the �rst assumption, it is important to take g to be as
shallow as possible while still satisfying the second assumption.

3.7.2 Examples

To interpret our assumptions, it will help to compute the best gauge g and learn-
ing rate � for some examples. First suppose that Lt and lt are both quadratic,
say Lt(w) =

k
2
wTMw and lt(w) =

1
2
wTMw for some symmetric positive de�-

nite matrix M . (This choice of lt means that mt(wt) =
1
2
(wt� zt)TM(wt� zt),

where zt =M�1at.) Then we can choose �t =
1
k
and g(w) =

p
wTMw, since

1

k
D Lt (vja) =

1

2
(v � w)TM(v � w) =

1

2
g(v � w)2

where w = (kM)�1a, and

D l�
t
(atjw) =

1

2
aTt M

�1at +
1

2
wTMw � at � w =

1

2
g�(at � a)2

where a =Mw.
Or suppose that lt is quadratic but Lt is proportional to the entropy function

H de�ned in Equation 3.4. In particular, let

lt(w) =
1

2
jjwjj22
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Lt(w) = kDH (wj0)

It is well known that DH(vjw) � 2jjv � wjj22 for any v; w. So, 1
4k
DLt(vjw) �

1
2
jjv � wjj22. And just as in the previous example D l�

t
(atjw) �

1
2
jjat � wjj22. So,

we can choose g to be Euclidean distance and let �t =
1
4k
.

These two examples show that g and � together provide a global analog to
the Fisher information matrix. When the Fisher information L00t (w) is constant
over all possible parameter values w, as it is in the �rst example, the local and
global information measures are the same. On the other hand, when the Fisher
information varies, as it does in the second example, the global measure may
be much more conservative. This conservatism is necessary: in the average case
we can count on having our estimates stay near the optimal value, while in the
worst case our opponent can cause our estimates to wander into a region with
lower information.

Finally, suppose that lt(w) =
1
2
(yt�w �xt)2, and let at = 0 so that mt(wt) =

lt(wt). This choice of loss function is appropriate for linear regression problems.
It depends on w only through w � xt, so any change in w perpendicular to
xt leaves lt constant. That means that we can represent l�t as the sum of two
components, one of which depends only on w �xt and the other of which depends

only on w n xt
def
= w � w�xt

xt�xt
xt. A little algebra shows

l�t (x) = �(xjx n xt = 0) +
x � xt
xt � xt

y +
1

2

�
x � xt
xt � xt

�2

In other words, l�t is in�nite everywhere except along the line through xt, and
along that line it is quadratic. The quadratic term (the last term in the expres-
sion above) is scaled so that it is equal to 1

2
at xt and �xt. So, to bound l�t , we

will need to make some assumption about xt.

If we suppose that the gauge g is symmetric and scaled so that g�(xt) � 1,
then it is not hard to see that D l�

t
(0jw) = lt(w) �

1
2
(g�(x))2, since the latter

expression is also quadratic along the line through xt and scaled so that it is no
larger than 1

2
at �xt. So, for example, if jjxtjj1 � X , we can take g(w) to be

X jjwjj1.
Now, since jjwjj1 � jjwjj2, we have DH(vjw) � 2jjv � wjj21. So, if Lt(w) =

kDH (wj0), we can take �t =
X2

4k
.

3.7.3 The bound

We will now prove our regret bound.

Theorem 3.2 Suppose that the loss functions l0;m1;m2; : : : satisfy the con-

ditions of Lemma 3.1, so that the MAP algorithm applied to these loss func-

tions always produces a prediction wt at each trial. Suppose that for all t,

@mt(wt) is nonempty, mt(wt) = D lt (wtjat), and mt(w) � D lt (wjat) for all w.

Write Lt = l0 +
Pt�1

i=1 mt. Suppose that there exists a gauge g and constants
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1 > �1 � �2 � : : : > 0 so that for all t we have

�tD Lt (vja) �
1

2
(g(v � w))2

for all v and w and a 2 @Lt(w) and

D l�
t
(atjw) �

1

2
(g�(at � a))2

for all w and a 2 @lt(w). Then the loss of the MAP algorithm is bounded by

TX
t=1

mt(wt) �
TX
t=1

1

1� �t
mt(u) +

1

1� �1
D l0 (uj0)

Proof: We have

Lt(w) �
1

2�t
(g(w � wt))

2 + Lt(wt)

mt(w) � mt(wt) + (w � wt) �m
0
t(wt)

Lt+1(w) �
1

2�t
(g(w � wt))

2 + (w � wt) �m
0
t(wt) + Lt(wt) +mt(wt)

L�t+1(x) �
1

2�t
(g�(�t(x�m0

t(wt))))
2 + x � wt � Lt(wt)�mt(wt)

L�t+1(0)� L�t (0) �
1

2�t
(g�(��tm

0
t(wt)))

2 �mt(wt)

� (�t � 1)mt(wt)

The fourth line above is true because the dual of af(w � c) + b � (w � c) is
af�((x� b)=a) + x � c. The �fth is true because L�t (0) = �Lt(wt). The last line
is true because g�(��tm0

t(wt))
2 = �2t g

�(�m0
t(wt))

2.
The desired result now follows by applying Theorem 3.1 to the loss functions

l0;m1;m2; : : :, taking ~lt = mt and ct =
1

1��t
. 2

The way it is stated, this theorem bounds the loss in terms of the functions
mt; it is just as easy to give a bound in terms of lt by substituting mt(wt) =
D lt (wtjat) and mt(u) � D lt (ujat).

3.8 GGD examples

Perhaps the simplest use of GGD is to approximate the mean of a population of
vectors by looking at a sample z1; z2; : : :. This application of GGD corresponds
to the prior loss l0(w) = kjjwjj2 and the one-step losses lt(w) = jjw�ztjj2. With
these loss functions, GGD will predict wt+1 = wt +

1
k
(zt � wt). We saw above

that we can take g to be Euclidean distance and � = 1
k
; so Theorem 3.2 tells us

that our loss is bounded by

TX
t=1

jjwt � ztjj
2 �

1

1� 1
k

TX
t=1

jjzt � �zjj2 +
k

1� 1
k

jj�zjj2
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where �z = 1
T+k

PT

t=1 zt is the optimal constant prediction.
The �rst term on the right-hand side of the above inequality depends on the

training examples zt only through their variance; the second depends on the
examples only through their mean. So, the inequality tells us that even if the
training examples are chosen by an adversary, as long as they have bounded
mean and variance, we can still achieve bounded average regret per trial. More
speci�cally, suppose that as T !1 the mean of z1 : : : zT approaches � and the
covariance approaches �2I . Then for large enough T the second term becomes

negligible, and our average loss per trial will approach �2

1��
. So, our average

regret per trial will approach �2�
1��

.
By way of comparison, we can compute the asymptotic average case regret

per trial for this variant of GGD: suppose that the training examples zt are
independent indentically distributed random variables that follow a normal dis-
tribution with mean � and covariance �2I . Then the optimal prediction will ap-
proach � for su�ciently large T , and its expected loss on each trial will approach
�2. On the other hand, by solving the recurrences Ewt+1 = (1� �)Ewt + �Ezt
and Varwt+1 = (1 � �)2 Varwt + �2Var zt, we can see that Ewt ! � and
Varwt !

�
2��

�2I . So, the expected loss per trial of the GGD algorithm ap-
proaches

Ekzt � �k22 +Ek�� wtk
2
2 ! �2(1 +

�

2� �
) =

�2

1� �
2

and the average regret per trial approaches �2�
2��

. That means that as � ! 0
there is a di�erence of approximately a factor of two between the worst-case
and average-case regret for this algorithm. This gap appears to be necessary:
at least for small learning rates, the sequence z1; z2; : : : = 1;�1; 1;�1; : : : forces
nearly as much regret as our bound.

For another example, take l0 to be a multiple of the entropy function on
the unit simplex. That is, suppose l0(w) = kDH(wj0), with H de�ned in
Equation 3.4. The resulting update is

wt+1;i =
wt;i exp(�xt;i=k)PN

i=1 wt;i exp(�xt;i=k)

where xt = l0t(wt). This is the Exponentiated Gradient algorithm of [KW97].
(If the loss functions lt for t � 1 are linear, it is also the same as the WMC
algorithm.)

If now lt(w) =
1
2
(w � zt)

2 for t � 1, we saw above that we can take � = 1
4k
.

So Theorem 3.2 tells us that our loss is bounded by

TX
t=1

jjwt � ztjj
2 �

1

1� 1
4k

TX
t=1

jju� ztjj
2 +

k

1� 1
4k

DH (uj0)

for any u. This bound is not the same as any bound in [KW97] or [KW96],
since those papers consider only regression problems; so, we defer a comparison
until Section 3.11 below.
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3.9 Inference in exponential families

The MAP algorithm requires solving a minimization problem to �nd each pre-
diction wt. If the loss functions are arbitrary, the minimization problem may be
di�cult. Suppose, though, that lt has the same functional form for each t|say,
lt(w) = D l (wjat) for some �xed strictly convex function l. (By convention we
take l so that a0 = 0.) Then, as we will show shortly, we will always be able to
put the optimization problem into a simple form.

One situation where this kind of prediction problem might arise is when
the vectors at are samples from some target distribution. Our goal in this
case is to predict wt so that l0(wt) is as close as possible to the center of the
distribution, where centrality is de�ned by the divergence D l . As we will see
in Section 3.9.2, this de�nition of centrality is a good one if we are trying to
infer the natural parameter in an exponential family of distributions (hence the
title of this section). Unlike the standard statistical approach, though, we are
making no distributional assumptions about the vectors at: they need not be
identically distributed, independent, or even random.

In more detail, our optimization problem at step t is to �nd

argmin
w

t�1X
i=0

li(w)

De�ne Lt =
Pt�1

i=0 li, so that our problem is to minimize Lt. Then the prediction
of the MAP algorithm will be

argmin
w

Lt(w) = argmin
w

t�1X
i=0

[l(w) + l�(ai)� w � ai]

= argmin
w

"
tl(w) � w �

t�1X
i=0

ai

#

= argmin
w

"
l(w) � w �

1

t

t�1X
i=0

ai

#

w 2 @l�(�at)

where we have de�ned �at to be the mean of a0 : : : at�1. In other words, the MAP
algorithm has a simple implementation: to make our prediction, we compute
the average of all the samples at seen so far, then apply (l�)0 to this average.

The implementation is almost the same if we take l0 = n0D l (wja0) for some
multiplier n0. In that case, the prediction is a weighted average of a0 : : : at�1 in
which a0 gets n0 times as much weight as any of the other ais.

3.9.1 Regret bounds

In our current inference problem, Lt and lt each di�er from a multiple of l by
a linear function. So, in order to apply Theorem 3.2, we must show that l is
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neither too convex nor too shallow. In other words, we must �nd a gauge g and
constant k so that

kD l (vja) �
1

2
(g(v � w))2

for all v and w and a 2 k@l(w) and

D l� (atjw) �
1

2
(g�(at � a))2

for all w and a 2 @l(w).
Under these assumptions, we can apply Theorem 3.2 with l0 = n0D l (wj0),

lt(w) = mt(w) = D l (wjat) for t � 1, and �t =
k

n0+t�1
. (To make sure that

�t < 1 we must take n0 > k.) The result is that

TX
t=1

D l (wtjat) �
TX
t=1

1

1� �t
D l (ujat) +

n0

1� �1
D l (uj0)

If lt(u) is bounded for t larger than some t0, then the �rst term on the right
hand side is O(t+ ln t) as t!1. This is the same asymptotic behavior as the
average-case regret, although the constant in front of ln t will usually be smaller
for average- than for worst-case bounds.

The constant k will be equal to 1 only if l is quadratic. However, if the
predictions wt remain in some region W for su�ciently large t, for those t

we can take g and k as bounds on the convexity of l just within W instead
of globally. This trick may result in better asymptotic bounds in some cases.
Even with this trick the bounds may not be very tight: for example, it does not
appear to be possible to prove bounds of the form obtained in [Fre96] using this
strategy.

3.9.2 A Bayesian interpretation

We have just proved worst-case regret bounds for a special case of the MAP
algorithm. Interestingly, we can also justify the same algorithm with an average-
case argument. (For background see [BN78].) Suppose, just as before, that our
loss on step t is lt(w) = D l (wjat). Suppose now, though, that each at is an
independent sample from some known distribution. To ensure that the loss is
�nite, we will require at to be in dom l� w.p.1.

In particular, suppose that the distribution of at has the form

�(aj�) = exp(� � a� �(�)� �(a))

for some parameter vector � and �xed functions � and �. (Such a set of distri-
butions is called an exponential family, and � is called its natural parameter.)
Suppose also that our prior distribution for � has the form

�(�j�0; n0) = exp(�0 � � � n0�(�)� �(�0; n0))
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for parameters �0 and n0, where the function � is determined by the requirement
that the density must integrate to 1. (This distribution is called the conjugate
prior for �, and it is also an exponential family.) We will see below that choos-
ing � = l has an intuitive interpretation, but other choices of � may also be
reasonable.

Then the log posterior likelihood after seeing t samples will be

� � �� n�(�)

where � = �0 +
Pt

i=1 ai and n = n0 + t. We can �nd the posterior distribution
for � by normalizing the posterior likelihood so it integrates to 1. In fact, by
the de�nition of �, the normalization factor is exp(��(�; n)). So, the posterior
for � is �(�j�; n).

Notice that the posterior distribution of � depends on the observed samples
zt only through

P
i ai. This sum is called a su�cient statistic for inference

about �, since once we know it we need no other information about the zts to
compute the posterior distribution for �.

Now that we have the posterior distribution for �, we can compute the best
prediction w. First suppose that we knew � exactly. Then the expected loss on
each step would be

E�(l(w) + l�(a)� w � a)

where we have written E� as shorthand for E(�ja � �(aj�)). Since we don't
know � exactly, we must take the expectation of the above expression under our
posterior distribution for �. That yields an expected loss of

l(w) +E�;n(E�(l
�(a)))� w � E�;n(E�(a))

Since l is convex, we can �nd the w which minimizes expected loss by di�eren-
tiating and setting to zero:

0 2 @l(w)�E�;n(E�(a))

So, we can pick any w in @l�(E�;n(E�(a))).
Technically, we need to worry that there might be no w that achieves the

minimum. In that case the above equation would have no solution. But our
reasoning below will provide conditions which guarantee that the expected value
is always in int dom l�. So, under those conditions a solution must exist.

Under some regularity conditions on �, we can compute the expected value
of a. First, we can prove by di�erentiating the identity

R
�(aj�)da = 1 that

E�(a) = �0(�)

(see for example equation 2.2 (i) of [DY79]). For this reason, �0(�) is called
the expectation parameter of the distribution �. Next, by applying Theorem 2
of [DY79], we �nd that

E�;n(�
0(�)) =

�

n
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Link name Distribution Conjugate prior

Identity Normal Normal

Logistic Beta Binomial

Inverse logistic Binomial Beta

Exponential Poisson Gamma

Logarithmic Gamma Poisson

Normalized exponential Dirichlet Multinomial

Figure 3.5: Links and their associated distributions.

So, as long as �=n is in int dom l�, there will be a legal prediction w. But �=n
will be in int dom l� as long as �0=n0 is, since it's the average of a bunch of
quantities in dom l� at least one of which is in int dom l�.

But now we have arrived back at our original algorithm: to �nd the pre-
diction wt, just average together a0 : : : at and then apply (l�)0. Interestingly,
this conclusion doesn't depend on which exponential family we choose as the
distribution for at. Instead, any exponential family which is contained in dom l�

results in the same optimal prediction. However, if we choose the exponential
family so that � = l, then we can interpret w as the inferred value of the natural
parameter.

The mapping (l�)0 which takes us from the observed average to the natural
parameter is called a link function, just as it was for generalized gradient descent.
Figure 3.4 above shows some useful link functions. Figure 3.5 shows which link
functions correspond to which exponential families if we choose � = l.

3.10 Regression problems

A common type of prediction problem is generalized linear regression [MN83,
LW92, KW97], which includes linear regression, logistic regression, other gener-
alized linear models, perceptron learning, and many other problems. In general-
ized linear regression, on each time step t we must predict a vector of regression
coe�cients wt. We are then given an input vector xt, from which we form a
prediction ŷt = f(xt �wt). The monotone function f is called the prediction link
function, since it provides a link between the coe�cients wt and the prediction
ŷt. Finally, we �nd out the desired output yt and receive a loss lt(w) = l(ŷt; yt).
Regression problems are a special case of our general prediction problem, since
they di�er only in that we have speci�ed a particular form for the loss function lt:
for example, the loss functions for linear regression are of the form (yt�w �xt)2.

We should not confuse the prediction link function, which is a mapping from
R to R that connects w�xt with the prediction ŷ, with the link function described
earlier, which is a function from W to W that connects the natural parameters
with the expectation parameters. In designing an algorithm, we can choose the
two kinds of link functions separately. When there is a danger of confusion,
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Name Link Function f Corresponding F

Step

�
�1 p < 0
1 p � 0

jpj

�-insensitive

8<
:
�1 p < ��
0 �� � p � �

1 p > �

max(jpj � �; 0)

Huber

8<
:
�1 p < ��
p=� �� � p � �

1 p > �

8<
:
�p� �=2 p < ��
p2=2� �� � p � �

p� �=2 p > �

Figure 3.6: Some examples of prediction link functions.

we will call the latter the parameter link function. All of the one-dimensional
parameter link functions in Figure 3.4 are also possible choices for the prediction
link function; Figure 3.6 shows some additional possible choices.

3.10.1 Matching loss functions

In order to apply our theory, we need the one-step losses lt(w) to be convex.
This is a condition on the relationship between the prediction link function f

and the loss function l(ŷ; y). It turns out that, given a monotone link function,
we can always de�ne a matching loss function so that lt(w) is convex. If f is
invertible, we follow [AHW96] and de�ne its matching loss function to be

l(ŷ; y) = DF�(yjŷ)

where F is any convex function with f = F 0.
If f is not invertible (that is, if F has a linear segment, so that F � has

a corner) then the above de�nition no longer works. Intuitively, the problem
is that our predictions get \stuck" as they cross the corner in F �: there is a
whole range of p with the same f(p) and therefore the same loss, producing an
extraneous 
at spot in lt.

We can �x the problem by allowing lt(w) to depend on pt = xt � w di-
rectly, rather than just on f(pt). More speci�cally, we generalize the de�nition
of [AHW96] and set

m(p; y) = D F� (yjp) = D F (pjy) = F (p) + F �(y)� y � p

With this de�nition, it is easy to see that m(p; y) is convex as a function of p,
so lt(w) = m(xt � w; yt) is convex in w. Intuitively, what we have done is allow
ourselves to specify not just which y will give us zero loss, but also what the
derivative of F � is at that point. When F � is smooth, there is only one possible
choice of derivative for each prediction, so we have not changed anything; but
when our prediction is at a corner of F � we can choose from a range of possible
derivatives.
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We will use the derivative of the loss function below. It turns out that the
prediction error is a derivative of m with respect to p:

f(p)� y 2 @F (p)� y = @pm(p; y)

So, a derivative of lt(w) is (f(xt � w)� yt)xt.

3.10.2 Regret bounds

In order to bound the regret of the MAP algorithm for regression problems, we
need to �nd a gauge g so that lt(w) �

1
2
(g�(�l0t(w)))

2. We have already done
so for the special case of the identity link with squared loss: in section 3.7.2,
we showed that the allowable choices for g are the symmetric gauges such that
g�(xt) � 1 for all t. (Symmetric gauges are also called seminorms.)

The situation is similar for general link functions and their matching loss
functions. In this case, though, we must make one additional assumption: we
must bound how quickly the prediction ŷt changes when we change the raw
prediction pt.

So, we will assume that D F (pjy) �
�2

2
(y � f(p))2 for some � > 0. (This is

essentially a Lipschitz condition on f .) With this assumption, we can write

lt(w) = D F (xt � wjyt)

�
�2

2
(yt � f(xt � w))

2

But we saw above that l0t(w) = (f(xt �w)� yt)xt. So, if g is a symmetric gauge
such that �g�(xt) � 1, then

(yt � f(xt � w))
2 �

1

�2
g�(l0t(w))

2

lt(w) �
1

2
g�(l0t(w))

2

But now we have proven

Theorem 3.3 Let F be a closed convex function with D F (pjy) �
�2

2
(y�f(p))2.

Suppose that the functions l1; l2; : : : are of the form lt(w) = D F (ytjw � xt) for
given vectors xt and scalars yt. Pick a prior loss l0 and functions m1;m2; : : :,

and suppose that l0;m1;m2; : : : satisfy the conditions of Lemma 3.1, so that the

MAP algorithm applied to these loss functions always produces a prediction wt
at each trial. Suppose that for all t, @mt(wt) is nonempty, mt(wt) = lt(wt), and

mt(w) � lt(w) for all w. Write Lt = l0 +
Pt�1

i=1 mt. Let the symmetric gauge g

be so that �g�(xt) � 1 for all t. Finally, let the constants 1 � �1 � �2 � : : : > 0
be such that

�tD Lt (vja) �
1

2
(g(v � w))2

for all v and w and a 2 @Lt(w). Then

TX
t=1

lt(wt) �
TX
t=1

1

1� �t
lt(u) +

1

1� �1
D l0 (uj0)
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for all u.

Proof: Apply Theorem 3.2 to the functions l0; l1; : : : ;m1;m2; : : :, with at = 0,
using the gauge g and the learning rates �t. 2

While the size of the input vectors xt doesn't appear explicitly in this bound,
it a�ects the choice of g and therefore the allowed values of �t. For example,
depending on the size of the input vectors, we might need to set g(w) to either
jjwjj1 or 10jjwjj1. At the cost of introducing an extra parameter, we could have
written the theorem to allow us to set g(w) = jjwjj1 no matter the scale of the
input vectors. For examples of the application of this theorem, see Section 3.11.

3.10.3 Multidimensional outputs

So far in our regression problems we have assumed that the target yt is one-
dimensional. Our proofs work equally well, though, if yt is selected from an
arbitrary vector space Y . In that case, the parameter matrix wt will be a
linear mapping that takes xt to pt 2 Y . The prediction link function f will be
the derivative of some convex function F on Y , and the matching loss will be
D F (ptjyt), so the derivative of lt(w) will be (f(wxt)� yt)x

T
t .

The only part of the proof that requires some modi�cation is the de�nition
of the gauge g. Since w is a matrix and xt and yt are vectors of possibly di�erent
lengths, we need di�erent gauges to measure the size of each one. (Previously
we had used g for w, g� for xt, and j � j for yt.) So, we will assume that we
have symmetric gauges r and s so that r�(xt) � 1 and D F (pjy) �

1
2
s(y�f(p))2.

Then we will de�ne g by the relation

g(w) = sup
fujr(u)�1g

s(wu)

This g is called the matrix gauge for r and s. Since r and s are symmetric, so
is g. Also, if x and y are vectors with r�(x) = 1 and s(y) = 1, then g(yxT) = 1,
since s(yxTu) = s(y)xTu � s(y)r�(x)r(u), with equality for an appropriately
chosen u.

With this choice of g, we have

1

2
g(l0t(w))

2 =
1

2
g((f(wxt)� yt)x

T
t )

2

= r�(xt)
2 1

2
s(f(wxt)� yt)

2

� D F (wxtjyt)

= lt(w)

so Theorem 3.3 applies with � = 1. (To achieve the e�ect of varying � we can
simply rescale the gauge s.)

For example, if f is the identity prediction link (so that F (y) = 1
2
yTy and

we can take s to be Euclidean distance) and jjxtjj2 � 1 (so that we can take r
to be Euclidean distance also), then g(w) will be the matrix 2-norm jjwjj2. If

66



we now take l0(w) =
k
2

P
i;j w

2
ij , then

1
k
Dl0(vjw) �

1
2
g(v � w)2, so we can take

�1 =
1
k
.

Often we will take each coordinate of f to be one of the one-dimensional link
functions described above. This kind of link function decomposes the multiple-
output prediction problem into several single-output problems which share a
parameter vector. On the other hand, sometimes we may know about depen-
dencies among the components of the output vector. In this case we can take
advantage of our knowledge by picking a prediction link function that encodes
these dependencies. For example, if we have reason to believe that the output
vector has covariance matrix �, we can select the link ŷ = �p with its matching
loss 1

2
ŷT��1ŷ � ŷTp+ 1

2
pT�p.

3.11 Linear regression algorithms

In this section we will analyze several gradient-descent-like algorithms for lin-
ear regression: standard gradient descent and two exponentiated gradient algo-
rithms from [KW97] called EG and EG�. These algorithms are all generalized
linear regression algorithms, and therefore MAP algorithms.

In linear regression problems, the loss on trial t � 1 is lt(w) = D lt (wj0) =
1
2
(yt�xt �w)2. This is the loss function for a generalized linear regression model

using the identity prediction link with its matching loss function, the squared
error. The algorithms di�er only in their choice of prior loss l0.

We will bound the regret of each algorithm by applying Theorem 3.3. Be-
cause lt for t � 1 always has the form given above, we can take � = 1 in
Theorem 3.3; so the main part of the analysis of each algorithm will be to �nd
appropriate seminorms g and g� with which to measure the parameter vectors
wt and the input vectors xt.

First consider the gradient descent algorithm for linear regression, de�ned
by the update

wt+1 = wt + �(yt � wt � xt)xt

Gradient descent is a GGD algorithm, given by the choice l0(w) =
1
2�
jjwjj22 (or

l0 =
1
2�
jjw�w1jj22 if we want a starting weight vector w1 6= 0). We showed above

that if jjxtjj2 � X for all t then we can take g�(x) = 1
X
jjxjj2 and �t = X2� in

Theorem 3.3. The result is that

TX
t=1

lt(wt) �
1

1�X2�

TX
t=1

lt(u) +
1

2�(1�X2�)
jjujj22

Next consider the exponentiated gradient algorithm. EG is a GGD algorithm
given by the choice l0(w) =

1
�
H(w), so its update is

vt+1;i = wt;i exp(�(y � wt � xt)xt;i)

wt+1;i =
vt+1;iP
j vt+1;j
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To analyze EG, we will set X to be the maximum span of any of the input
vectors, that is, jjxtjjsp � X where

jjxjjsp = max
i

xi �min
i
xi

It is easy to check that jj � jjsp is a seminorm. We can bound the polar of
the span seminorm by splitting its argument vector into components parallel
and perpendicular to e = (1; 1; : : : ; 1)T. We have jjejjsp = 0, so jjejj�sp = 1.
On the other hand, if x has no component along e, then jjxjjsp � jjxjj1, so
jjxjj�sp � jjxjj1 � jjxjj2. That means that, for any v and w and a 2 @H(w),

DH (vja) � 2(jjv � wjj�sp)
2

To see why, remember that by assumption @H(w) is nonempty, so w must be in
the unit simplex. So, depending on whether v is in the plane containing the unit
simplex, either v � w has a nonzero component along e, in which case DH (vja)
is in�nite, or v � w is perpendicular to e, in which case DH � 2jjv � wjj22. In
either case the result follows. So, we can take g�(x) = 1

X
jjxjjsp and �t =

1
4
X2�

in Theorem 3.3 and conclude that

TX
t=1

lt(wt) �
1

1� 1
4
X2�

TX
t=1

lt(u) +
1

�(1� 1
4
X2�)

H(u)

The above results can be compared to to Lemmas 5.2 (for GD) and 5.9
(for EG) in [KW97]. Unfortunately, our bounds here are slightly weaker than
the ones in [KW97]. We do not believe that this is due to a weakness in our
framework; instead we believe that with some additional work our theorems
could be sharpened so that they are a strict generalization of the known results
for linear regression with GD and EG.

After deriving the results mentioned above, the authors of [KW97] perform
an additional step: they adjust the learning rate � so that the two terms in the
regret bound have comparable coe�cients. We have not taken this step.

Finally consider the EG� algorithm. Just as in [KW97], we could prove
bounds on EG� by reducing it to EG. Instead, we will sketch how to �nd the
prior l0 that yields the EG� algorithm. Finding this prior is important both
because it increases our understanding of EG� and because it is a good �rst
step towards a direct proof of the regret bound for EG�.

The EG� algorithm can be de�ned by its parameter link function, which is
(up to scaling) given by the mapping w = f(x) de�ned as

wi =
exp(xi)� exp(�xi)P
j(exp(xj) + exp(�xj))

The prior loss function l0 for EG�, and its convex dual l�0 , are determined up
to scaling by this link function. We can �nd l�0(x) by integrating f along any
path from the origin to x.
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To perform the integral, we will choose a path with n axis-parallel segments:
one which increases the �rst coordinate of x from 0 to its �nal value x1, then
another which increases the second coordinate from 0 to its �nal value x2, and
so forth. The integral along the ith segment (which varies the ith coordinate of
x) is Z xi

0

exp(t)� exp(�t)

exp(t) + exp(�t) + ki
dt

where the constant

ki =

i�1X
j=1

(exp(xj) + exp(�xj))

is determined by the (constant) values of the other n� 1 coordinates of x along
the ith segment. The result of this integral is

�xi � ln(2 + ki) + ln(1 + exp(2xi) + ki exp(xi))

Summing this expression over all n path segments gives

l�0(x) =

nX
i=1

(�xi � ln(2 + ki) + ln(1 + exp(2xi) + ki exp(xi)))

For example, if n = 2,

l�0(x) = �x1 � x2 � ln 4 + ln(1 + exp(2x2) + (exp(x1) + exp(�x1)) exp(x2))

� ln(2 + exp(x1) + exp(�x1)) + ln(1 + 2 exp(x1) + exp(2x1))

A plot of this function is in the left panel of Figure 3.7; it looks like a rounded-
o� version of the L1 norm. The right panel of Figure 3.7 shows a plot of the
three-dimensional version of l�0 , made by holding one argument constant at 7
while varying the other two in [�10; 10]. In other words, we have plotted l0 on
a two-dimensional slice of R3 . This plot looks like a rounded-o� version of the
same slice of the L1 norm on R

3 . The characterization of l�0 as a rounded-o�
version of the L1 norm makes sense, since EG� restricts wt to have bounded
L1 norm and the dual of �(x j jjxjj1 � 1) is the L1 norm.

3.12 Discussion

We have presented a uni�ed framework for deriving worst-case regret bounds for
a wide class of learning algorithms. These algorithms include weighted majority;
gradient descent and generalizations of gradient descent such as exponentiated
gradient; linear and logistic regression; and inference of the natural parameter in
an exponential family. Because we have wherever possible avoided assumptions
such as di�erentiability of the loss functions, our framework also includes a wide
variety of new algorithms which we have not fully explored.

Our uni�ed treatment sheds light on the relationships among these methods,
and it provides a recipe for designing and studying new learning algorithms. For
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Figure 3.7: The dual of the potential function for EG�.

example, we showed that both the gradient descent and exponentiated gradi-
ent algorithms for linear regression are MAP algorithms. By casting them in
this common framework, we revealed that the only di�erence between these two
algorithms is their choice of prior loss function. In addition to allowing a com-
mon proof of the regret bounds for these algorithms, this analysis suggests that
we can design new linear regression algorithms simply by picking new priors.
These priors can express known bounds on the parameter vector (for example,
the prior kw2+�(wjC) yields the gradient projection algorithm with domain C)
or preferences for particular kinds of parameter vectors (for example, the prior
of the EG� algorithm prefers vectors with low L1 norm).

Our results also suggest new applications for old algorithms. By avoiding
assumptions such as independence of training examples, we have justi�ed the
use of these algorithms in situations where they might not have been considered
before.
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Chapter 4

CONVEX ANALYSIS

AND MDPS
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In this chapter we will apply the ideas of convex analysis and statistical in-
ference to the problem of approximating the value function of a Markov decision
process. In Sections 4.1 through 4.4, we will show how to represent an MDP as
a convex program. This transformation will allow us to apply the well-known
theory of convex programming to the problem of �nding its value function. In
Section 4.5 we will show how to represent an MDP as either a maximum like-
lihood or a maximum entropy problem. This transformation will allow us to
apply the well-known theory of statistical inference to the problem of �nding
its value function. In Section 4.6, we will describe several ways we have tried to
introduce approximations of the value function into these two representations
of an MDP. In Section 4.7 we will describe an implementation of one of these
algorithms. Finally, in Section 4.8, we will describe some experiments we have
done with this implementation. While the experiments show that this particular
algorithm does not improve on the best existing ones, we hope that the ideas of
this chapter can be incorporated into other algorithms.

4.1 The Bellman equations

We saw in Chapter 1 that the value function for an MDP is the unique solution
to the Bellman equations

v(x) = min
a2A

E(c(x; a) + 
v(�(x; a)))

(base cases such as v(�) = 0 may be necessary if 
 = 1). As pointed out in for
example [Ros83, p40] or [Ber76, p248], we can rewrite the Bellman equations as
a linear program by noticing:

� If there's a deterministic action a that takes the agent from state x to
state y with cost c(x; a), then v(x) � 
v(y) + c(x; a).

� Similarly, if there's a stochastic action a that takes the agent from state
x to a probability distribution p over the state space, then v(x) � 
p � v+
c(x; a). The notation p � v means

P
y v(y)p(y); in other words, p � v is the

expectation of the value of the next state.

� The value function is the pointwise largest function v satisfying these
constraints along with any base cases.

The resulting linear program is

maximize sTv

subject to Ev + c � 0

where E is the edge adjacency matrix for our MDP (de�ned in Chapter 1), c
is the cost vector, and s is any vector with all components positive. For this
section we will assume that s has all components equal to 1; in Section 4.2.3 we
will attach a meaning to the choice of objective vector.
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Figure 4.1: How to turn an MDP into an LP.

Figure 4.1 shows an example of translating a simple MDP to a linear pro-
gram. (To avoid clutter we have adopted the shorthand of writing just x instead
of v(x) to mean the value of state x.) This MDP happens to be undiscounted and
deterministic, but the translation works just as well for discounted or stochas-
tic MDPs. There is one constraint in the program (that is, one row of E) for
each edge or state-action pair in the MDP. There is one variable in the program
(that is, one column of E) for each state in the MDP. For example, the row
�x+ y + 1 � 0 corresponds to the edge from state x to state y with cost 1. If
there were a unit-cost action that moved the agent from state x to state y with
probability :7, and from state x to state z with probability :3, the corresponding
constraint would be �x+ :7y + :3z + 1 � 0.

The optimal solution to this MDP is (x; y; z; g) = (2; 1; 1; 0). In linear pro-
gramming terminology, the elements of the vector Ev + c = (0; 1; 0; 0; 0)T are
called slacks; in dynamic programming terminology, they are called advantages
or Bellman residuals. In either case, the edges in the optimal policy are the
ones whose slack is 0. That means that an optimal policy for the MDP is the
same as an optimal basis for the linear program. (This is a consequence of the
property called complementary slackness.)

4.2 The dual of the Bellman equations

4.2.1 Linear programming duality

Every linear program can be paired with another linear program called its dual.
The original (or primal) and dual programs are di�erent views of the same
problem: the optimal values of their objective functions are the same, and
knowing a solution to one makes it much easier to �nd a solution to the other.

We can derive linear programming duality by appealing to duality between
convex functions. Consider the linear program

minimize cTx subject to Ax+ b = 0; x � 0
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We can eliminate the equality constraints by adding a vector y of Lagrange
multipliers. So, solving the linear program is equivalent to �nding

min
x

max
y

([cTx+ yT(Ax + b)] + �(xjx � 0)) (4.1)

The notation �(xjx � 0) is de�ned in Chapter 3; it stands for the function which
is zero if x � 0 and 1 otherwise. The expression in square brackets is called
the Lagrangian of the linear program. If the program has a �nite solution, then
we may interchange the order of minimization and maximization to get

max
y

min
x
([cTx+ yT(Ax+ b)] + �(xjx � 0))

= �min
y

max
x

[�cTx� yTAx� yTb� �(xjx � 0)]

= �min
y

h
�yTb+max

x
[�xT(ATy + c)� �(xjx � 0)]

i
= �min

y
[�yTb+ (�(xjx � 0))�(�(ATy + c))

= max
y

[yTb� �(yjATy + c � 0)]

In other words, we may �nd the optimal objective value for our original linear
program by solving the new linear program

maximize bTy subject to ATy + c � 0

We de�ne this new linear program to be the dual of our original program. If we
replace ATy + c � 0 by ATy + c = z; z � 0 and then apply the same sequence
of transformations, it is easy to verify that the result is equivalent to the primal
program.

4.2.2 LPs and convex duality

When thinking about duality between linear programs, it is often useful to re-
member the specialization of the theory of convex duality to indicator functions.
As de�ned in Section 3.2, the indicator function for a convex set C is

�(xjC) =

�
0 x 2 C
1 x 62 C

This function is zero inside of C and in�nite outside of C, so if we want to
constrain the variable x in a minimization problem to be in the set C we can
add �(xjC) to the function to be minimized.

The simplest convex sets C are the cones. A cone is the set of all positive
linear combinations of a set of vectors gi called its generators. If we write G for
the matrix with columns gi, then C = fG�j� � 0g. Some examples of cones are
the origin (generated by the empty set of generators), any linear subspace, and
the two cones shown in Figure 4.2. If the set of generators is �nite, then C is a
closed convex set.
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Figure 4.2: Two cones. Heavy lines show a set of generators for one of the cones.

The polar of a cone C, written C�, is the set of vectors which make either a
right or an obtuse angle with every vector in C. That is,

C� = fxj(8y 2 C) x � y � 0g

The polar is always a closed cone. For closed cones, the operation of taking the
polar is its own inverse: the polar of the polar of a closed cone is the cone itself.
The two cones in Figure 4.2 are polar to each other. As the �gure shows, the
extreme vectors of a cone are the face normals of its polar. Polarity between
cones is an example of duality between convex functions: if C is a cone, then
the dual of the indicator function �(xjC) is �(xjC�).

We can represent an arbitrary convex set in R
n as the intersection of a cone

in R
n+1 with a �xed plane. For example, Figure 4.3 shows the representation

of a triangle in R
2 as the intersection of a cone and a plane in R

3 . Usually
we will use the same coordinate system for Rn+1 as we did for R

n , with the
addition of one extra coordinate (call it t). We can then identify R

n with the
plane t = 1 in R

n+1 , so that we can represent the convex set C by the cone
f(tx; t)jt � 0; x 2 Cg. This cone is called the homogeneous representation
of C. If C is an a�ne set, then we can use either the regular homogeneous
representation or the set f(tx; t)jt 2 R; x 2 Cg called the a�ne homogenous
representation of C.

We can now see that the familiar notion of geometric duality is a consequence
of polarity between convex cones. Two a�ne subspaces C and D are de�ned to
be geometrically dual if x � y = 1 for all x 2 C and y 2 D, while two arbitrary
convex sets are de�ned to be geometrically dual if x �y � 1 for x 2 C and y 2 D.
For example, the line a � x = 1 and the point a are dual a�ne subspaces in R

2 ,
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Figure 4.3: Homogeneous representation of a triangle.

while the unit cube and the unit octahedron are dual convex sets in R
3 . If C

and D are geometrically dual convex sets, then the homogeneous representation
of C is the polar of the homogeneous representation of D, re
ected along the t
axis. If C and D are geometrically dual a�ne sets, then the a�ne homogeneous
representation of C is the polar of the a�ne homogeneous representation of D,
re
ected along the t axis.

We can take advantage of the connection between convex duality and cone
polarity to analyze how operations on a cone change its polar. For example,
intersection of two cones corresponds to addition of their indicator functions.
The dual operation for addition is in�mal convolution, de�ned as

(f 2 g)(x) = infff(a) + g(b)ja+ b = xg

If f and g are indicator functions for the convex cones C and D, then f(a)+g(b)
will be zero if a 2 C and b 2 D, and in�nite otherwise. So, (f 2 g)(x) will be
zero i� x 2 C + D. That means that the polar of C� \ D� (corresponding to
f� + g�) is C + D (corresponding to f 2 g); in other words, the operations of
intersection and set sum are polar to each other.

For another example, if C and D are the homogeneous representations of
convex sets, then we can write the intersection of C�+D� with the plane t = �1
as the union of

�(C� \ (t = �1)) + (1� �)(D� \ (t = �1))

for � 2 [0; 1]. In other words, the geometric dual of the intersection of two
convex sets is the convex hull of the geometric duals of the sets.
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The connection between a cone and its polar can help us understand the
connection between a linear program and its dual. The relationship between a
linear program and its dual is clearest for the degenerate linear program

�nd x 6= 0 such that x � 0; Ax = 0 (4.2)

This problem, called the homogeneous linear inequality problem, can be thought
of as a linear program whose constant vectors are both zero. It is equivalent to
asking whether there is an x 6= 0 for which the convex function

�(xjQ) + �(xjAx = 0) (4.3)

is zero, where Q is the nonnegative orthant. The dual problem to (4.2) is

�nd x 6= 0; y such that x � 0; x = ATy

which corresponds to the question of whether there is an x 6= 0 for which the
convex function

�(xj �Q) + �(xjx = ATy) (4.4)

vanishes.
The expressions (4.3) and (4.4) are almost, but not quite, convex duals of

each other. The dual of �(xjQ) is �(xj � Q), while the dual of �(xjAx = 0) is
�(xjx = ATy). But the dual operation to addition is in�mal convolution, so the
convex dual of (4.3) is

�(xj �Q)2 �(xjx = ATy)

which is the indicator function of the set �Q+ fxjx = ATyg. In other words,
there are four di�erent convex sets associated with the system of inequali-
ties (4.2): the intersection of the positive orthant with the linear constraint
set, the sum of the positive orthant and the constraint set, the intersection of
the dual of the positive orthant with the dual of the constraint set, and the sum
of the dual of the positive orthant and the dual of the constraint set. Two of
these four sets are the feasible regions for (4.2) and its dual, while the other two
are the polars of the feasible regions.

For general linear programs the situation is similar: the di�erence is that
instead of the indicator �(xjAx = 0) we have the function �(xjAx+b = 0)+cTx,
which is not an indicator function. (It is called a partial a�ne function, since
its domain is an a�ne space and it is a linear function on its domain.) Still,
we can construct four di�erent convex functions by applying either addition or
in�mal convolution to either the indicators of Q and the partial a�ne function
or their duals. Two of these functions represent the feasible region and objective
function for the linear program and its dual.

4.2.3 The dual Bellman equations

The dual of the Bellman equation linear program is

minimize cTf
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minimize fxy + 2fxz + fyg + fzg subject to

�fxy �fxz +1 = 0
fxy �fyg +1 = 0

fxz �fzg +1 = 0
fyg +fzg �fg +1 = 0

fxy; fxz; fyg; fzg; fg � 0

Figure 4.4: The dual of the Bellman program.

subject to ETf + s = 0

f � 0

This linear program has one equality constraint (that is, one row of ET) for
each state of our MDP, and one variable (that is, one column of ET) for each
edge or state-action pair of our MDP. The equality constraint for state y is

X
x;a

paxyfxa + 1 =
X
a

fya

We can interpret fxa as the expected number of times we visit the edge (x; a) if
we follow one trajectory starting from each state. (If there is a discount factor,
then fxa is the expected discounted frequency.) We will call fxa the 
ow along
edge (x; a). Under this interpretation, the equality constraint for state y tells
us that we must enter y exactly as often as we leave it. Since the objective
function fTc is equal to the expected cost of visiting the edge (x; a) a total of
fxa times, the dual Bellman program tells us to minimize the total expected
cost of following one trajectory starting from each state.

Clearly it is not necessary to start exactly once in each state. If s is a vector
of positive starting frequencies, so that we start sx > 0 times in state x, then
the equality constraint for state y becomes

X
x;a

paxyfxa + sy =
X
a

fya

The optimal vector of 
ows may be di�erent for di�erent choices of s, but the
linear program will be feasible for any choice of s > 0. The fact that any positive
vector of starting frequencies produces a feasible dual program is equivalent to
the fact that any positive objective vector produces a bounded primal program.

Figure 4.4 shows the dual Bellman equation program for our example MDP
from Figure 4.1. The optimal solution to this program is (fxy; fxz; fyg; fzg; fg) =
(1; 0; 2; 1; 4). Just as with the primal program, if we know the optimal f we can
�nd the best edge out of any state: any edge with positive 
ow will do.
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4.3 Incremental computation

The previous sections describe how to convert a Markov decision process to a
linear program. This transformation provides a simple algorithm for �nding the
value function of a known MDP: convert it to a linear program, then solve the
linear program with, say, simplex or a logarithmic-barrier method. For some
benchmarks of this algorithm versus value iteration, see [TZ93, TZ95, TZ97].

Often, though, we don't know the entire MDP in advance; or, even if we do
know it, it is so large that we can't a�ord to examine every state even once. In
either of these cases, we need an incremental version of the above algorithm.
That is, we need to be able to convert a partly-knownMDP into a linear program
in such a way that when we solve the LP we end up with something close to the
correct value function.

Incremental computation often goes hand in hand with approximation: if our
MDP is so large that we need to look at it bit by bit, then we will often also need
to use a compact representation for its value function. For this section, though,
we will just worry about incremental computation, and leave approximation for
Section 4.6. In other words, we will suppose that our MDP is small enough that
we could solve it exactly if we knew it, but that we are �nding out about it bit
by bit.

There are at least two natural orders in which to reveal an MDP one piece
at a time: edge by edge or state by state. Since every edge corresponds to a row
of the adjacency matrix E, and since every state corresponds to a column of E,
these two orders correspond to revealing E row by row or column by column.

We can represent either of these two orders, and many more, by writing Et,
ct, and st for our best approximations to E, c, and s at time t. For example,
if we are �nding out about our MDP edge by edge, then Et+1 � Et will have
nonzero entries in exactly one row.

With this notation, it is natural to suppose that the sequences ft and vt
de�ned by the linear programs

minimize cTt ft subject to E
T
t ft + st = 0; ft � 0

maximize sTt vt subject to Etvt + ct � 0

might be good approximations to the optimal 
ows and values f and v respec-
tively. Unfortunately, ft and vt do not necessarily converge to f and v even if
Et ! E, ct ! c, and st ! s. For example, a small change in ct can cause a
discontinuous jump in ft if it causes the solution of the 
ow program to move
from one corner of the feasible region to an adjacent one.

There are, however, some convergence results that do hold under mild con-
ditions if Et ! E, ct ! c, and st ! s as t ! 1. For example, if the primal
and dual feasible regions are bounded and the primal and dual optima are not
degenerate, then ft ! f and vt ! v.
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c(1)

c(2)
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Figure 4.5: A Markov decision process with just one state.

4.4 Soft constraints

Consider the MDP shown in Figure 4.5. It has just one state; from this state
the agent may choose any of k actions, with costs c(1) : : : c(k), each of which
end the trajectory. The primal and dual linear programs for this MDP are

maximize v subject to v � c(1); v � c(2); : : : ; v � c(k)

minimize cTf subject to
X
i

fi = 1; f � 0

where c is the vector with elements c(1) : : : c(k). If c(i) is the smallest element
of c, then the solution to the value program is v = c(i), while the solution to
the 
ow program is a vector f with a 1 in the ith position and zeros elsewhere.

Let c1; c2; : : : be a sequence of vectors converging to c, and let vt and ft be
the solutions to the linear programs that result from replacing c with ct in the
value and 
ow programs above. Then vt will converge to v, and ft will converge
to f as long as there is a unique smallest element of c.

Unfortunately, though, vt may not be the best estimate of v given ct. As
pointed out in [TS93], if the elements of ct � c are random variables with zero
mean, then vt will tend to underestimate v. The reason for this behavior is that
the errors in the components of ct can cause the smallest element of ct to have
a di�erent index than the smallest element of c. The underestimation will be
most pronounced if there are several elements of c that have almost the same
value as the smallest element.

We can at least partially �x this problem by \softening" the inequality con-
straints in the value program, so that vt is allowed to be slightly larger than the
smallest component of ct. To do so, we will pick a penalty function l and scaling
factor � > 0 and replace the constraint vt � ct;i by the penalty �l(

vt�ct;i
�

). The

idea is that l(x) should be small for negative values of x and large for positive
values of x, so that there is a penalty for making vt too much larger than the
smallest component of ct. The scaling factor lets us specify how much uncer-
tainty there is in the components of ct: the smaller � is, the faster the penalty
grows as vt increases.
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More precisely, let l be any convex function with l0(x)! 0 as x! �1 and
l0(x) ! 1 as x ! 1. As in the last chapter, l0 stands for any subgradient of
l. If dom@l is not all of R, then we extend l0 to R by taking l0(x) = �1 for x
to the left of dom@l and l0(x) = +1 for x to the right of dom @l. Given such
a penalty function l, we de�ne the soft value program with parameter � > 0 to
be

maximize v � �
X
i

l

�
v � c(i)

�

�

If we take l(x) to be �(xjx � 0) then the soft value program is identical to the
value program for any �. Usually, though, we will take l(x) to be a function
that approaches its limits more gradually, say l(x) = ex. In this case the value
of � controls how hard or soft the constraints are: smaller values of � result in
harder constraints. In fact, under mild conditions the solution to the soft value
program will approach the solution to the original value program as �! 0.

The dual of the soft value program is the soft 
ow program

minimize cTf + �
X
i

l�(fi) subject to
X
i

fi = 1

The terms l�(fi) serve as barriers to push the elements of f away from zero,
so the constraint f � 0 is no longer necessary. (Because of this fact, � is
usually called the barrier parameter.) For example, if l(x) = �(xjx � 0) then
l�(x) = �(xjx � 0); or if l(x) = ex then l�(x) = x lnx�x. More generally, since
l0(x) ! 0 as x! �1, l�(x) will be equal to 1 for x < 0, and since l0(x)!1
as x!1, l�(x) will be �nite for any positive x.

The barrier terms tend to push the components of f away from zero, while
positive components of c tend to push the corresponding components of f to-
wards zero. So, the largest component of f will correspond to the smallest
component of c. The larger � is, the closer f will be to the uniform distribu-
tion, and the smaller � is, the more f will concentrate its weight on the smallest
components of c. In fact, just as with the soft value program, under mild con-
ditions the solution to the soft 
ow program approaches the solution to the
original 
ow program as �! 0.

Just as in the previous section, if c1; c2; : : : is a sequence of vectors converging
to c, then we can de�ne an incremental algorithm for computing f or v by
substituting ct for c in the 
ow or value programs. (Because we have assumed
a particular form for the edge matrix we do not need to reveal it incrementally,
and because there is only one state we do not need to reveal the vector of
starting frequencies incrementally.) We do have to make one additional choice,
though: we must choose a sequence of barrier parameters �t converging to �.
(In particular, to solve the original linear program with hard constraints, we
should have �t ! 0.) Then we can write the incremental soft 
ow program as

minimize cTt ft + �t
X
i

l�(ft;i) subject to
X
i

ft;i = 1

where ft;i is the ith component of ft. The incremental soft value program can
be written similarly.
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We have been using a simple linear program as an example, but we can
soften the constraints of an arbitrary linear program in the same way. To the
linear program

minimize cTf subject to ETf + s = 0; f � 0 (4.5)

corresponds the softened program

minimize cTf + �
X
i

l�(fi) subject to E
Tf + s = 0 (4.6)

with its dual

maximize sTv � �
X
i

l

�
Ev + c

�

�

Linear programs are invariant to scaling; that is, for any k > 0 the program

minimize kcTf subject to kETf + ks = 0; f � 0

has the same primal and dual solutions as (4.5). In order to make the soft
programs invariant to scaling, we must scale � as well; the program

minimize kcTf + k�
X
i

l�(fi) subject to kE
Tf + ks = 0

has the same primal and dual solutions as (4.6).

4.5 A statistical interpretation

While there are many possible choices for the penalty function l in the soft
value and 
ow programs, picking l(x) = ex for the MDP of Figure 4.5 results
in a familiar algorithm. Since l�(x) = x ln x � x, the soft 
ow program can be
written

minimize cTf + �H(f)

H(f)
def
=
X
i

fi ln fi + �

 
f j
X
i

fi = 1

!

This minimization problem is almost the same as the one that yields the WM
algorithm from the previous chapter. To complete the analogy, write xt for the

vector of expert losses on trial t and let ct =
1
t
Xt

def
= 1

t

Pt�1
i=1 xt. Then if we set

�t =
�
t
, we have

ft = argmin
f
(cTt f + �tH(f)) = argmin

f
(H(f) + �Xt)

so the incremental 
ow programs produce the same series of predictions as the
WM algorithm.
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These predictions also have a simple Bayesian interpretation. Let us suppose
that the experts are predicting a sequence of binary random variables yt. Sup-
pose also that there is a single best expert, so that the true outcome is always
equal to the best expert's prediction plus some random noise. Our task is then
to distinguish between the n statistical models \expert i is best." Write p1;i for
the prior probability that expert i is best, and pt;i for the posterior after seeing
the �rst t�1 examples. Write p(yjŷ) for the probability of outcome y given that
the best expert predicts ŷ. Then we can compute the posterior probabilities of
our models with Bayes' rule:

pt+1;i / pt;ip(ytjŷt;i)

So, if we initialize X0;i = � ln p0;i and update

Xt+1;i = Xt;i + xt;i

where xt;i = � ln p(ytjŷt;i), then the posterior probabilities at each time step
are just pt;i = exp(Xt;i)=

P
j exp(Xt;j), which are the same as the predictions

of the WM algorithm with learning rate � = 1.
More generally, we can interpret the soft value and 
ow programs for arbi-

trary Markov decision processes (or in fact any primal and dual pair of softened
linear programs) as statistical estimation problems. The remainder of this sec-
tion explores this connection in more detail.

4.5.1 Maximum Likelihood in Exponential Families

One of the simplest statistical inference methods is maximum likelihood: given a
family of probability distributions, pick the one which maximizes the probability
of an observed sample. More formally, suppose we have a set X of possible
outcomes. (We will assume X is �nite, but much of the following carries over
to in�nite sets of outcomes.) Write �fx for the normalized frequency of outcome
x 2 X in the observed sample. Suppose that our family of distributions is
indexed by a parameter vector �, and write fx(�) for the predicted probability
of outcome x given �. Then the maximum likelihood problem is to �nd

argmax
�

X
x2X

�fx ln fx(�) (4.7)

that is, to �nd the � which maximizes the log-likelihood of the observed sample.

Often the distributions fx(�) will form an exponential family, that is, a set
of distributions for which we can write

fx(�) = exp(tTx � + hx + g(�)) (4.8)

Many well-known sets of distributions are exponential families, for example the
normal, gamma, exponential, chi-squared, Dirichlet, multinomial, and Poisson
families.
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In Equation 4.8 the vectors tx and scalars hx, one for each possible outcome
x 2 X , together de�ne the exponential family. The function g(�) is called the
cumulant generating function, and it is determined by the requirement

(8�)
X
x2X

fx(�) = 1 (4.9)

We can interpret each component of tx as a relevant feature or statistic about
outcome x. For example, if X is a set of real numbers, we can associate the
features x and x2 with outcome x. Then we can set hx = 0, and the result will
be a family of discrete normal distributions. The constants hx allow us to de�ne
subfamilies: for example, we can de�ne a family with �xed variance by setting
hx to a multiple of x2 and using just the single feature x.

One reason exponential families are important is that their maximum like-
lihood problems can be written as convex programs. By substituting (4.8) into
(4.7) and using (4.9) to constrain g to be equal to g(�), we can see that the
maximum likelihood problem for an exponential family is

argmax
�;g

X
x2X

�fx(t
T
x � + g) subject to

X
x2X

exp(tTx � + hx + g) = 1

The above is not a convex program, since the equality constraint does not in
general de�ne a convex set. However, it is equivalent to the convex program

argmax
�;g

X
x2X

�fx(t
T
x � + g)�

X
x2X

exp(tTx � + hx + g)

To see why, we can explicitly perform the maximization with respect to g by
di�erentiating and setting to 0:

0 =
X
x2X

�fx �
X
x2X

exp(tTx � + hx + g)

1 =
X
x2X

exp(tTx � + hx + g)

This expression is exactly the equality constraint from the maximum likelihood
problem, and substituting it back into the maximization gives us the correct
objective function.

4.5.2 Maximum Entropy and Duality

We can gain some insight into the maximum likelihood problem for exponential
families by noticing that it is the convex dual to another problem, called linearly
constrained maximum entropy. As mentioned earlier, the maximum likelihood
problem for exponential families is to �nd

argmax
�;g

X
x2X

�fx(t
T
x � + g)�

X
x2X

exp(tTx � + hx + g)
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We can write this problem more compactly by making two slight modi�cations.
First, if we rede�ne tx by adding an extra component at the end which is
always 1, then we can represent g as the last component of � instead of writing
it separately. Second, if we de�ne a matrix T whose rows are the feature vectors
tx, we can write the problem in matrix notation. With these two modi�cations
the problem becomes

argmax
�

�fTT� �
X

exp(T� + h)

where for any vector x the notation exp(x) means the vector whose components
are exp(xi) and

P
x means

P
i xi.

The constrained maximum entropy problem makes no reference to � or the
exponential family. Instead it is de�ned over all probability distributions which
agree with �f on the expected value of each feature. Subject to these linear
constraints, we wish to �nd the distribution which maximizes entropy with
respect to some known distribution q. In other words, we want

argmin
f�0

X
x2X

fx ln fx �
X
x2X

fx ln qx subject to TTf = TT �f (4.10)

Since �f is normalized, and since we added an extra column of 1s to T , one of
the equality constraints in (4.10) forces f to be a probability distribution.

To convert maximum entropy into maximum likelihood, we need to use a
vector of Lagrange multipliers (call it �) to eliminate the equality constraints:

argmin
f�0

max
�

X
x2X

fx ln fx �
X
x2X

fx ln qx + �T(TT �f � TTf)

Then we can dualize by interchanging the order of minimization and maximiza-
tion and performing the minimization explicitly. Since the minimum must occur
at an interior point of the region f � 0, we can �nd it by setting derivatives to
zero:

0 =
@

@fx

"X
x2X

fx ln fx �
X
x2X

fx ln qx + �T(TT �f � TTf)

#

= 1+ ln fx � ln qx � �Ttx

fx = exp(�Ttx + ln qx � 1)

Substituting this value of f back into the optimization problem and cancelling
terms gives (note that we have performed the substitution in two stages to make
the cancellations clearer):

argmax
�

X
x2X

�
fx(�

Ttx + ln qx � 1)� fx ln qx + �Ttx( �fx � fx)
�

= argmax
�

X
x2X

�
�fx + �Ttx �fx

�

= argmax
�

"
�
X
x2X

exp(T�+ ln q � 1) + �fTT�

#
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Finally, putting hx = ln qx � 1 and � = � completes the transformation from
maximum entropy to maximum likelihood.

4.5.3 Relationship to linear programming and MDPs

We can interpret the constrained maximum entropy problem (4.10) as a linear
program plus an entropy barrier term. In fact, the only di�erences between
Equation 4.6 with l�(x) = x ln x and Equation 4.10 are that the barrier term in
Equation 4.10 has a �xed weight, the matrix T in Equation 4.10 is required to
have a column of all ones, and the vector �f is required to sum to 1. The �rst
di�erence is not a loss of generality, since we can always rescale any soft linear
program so that the barrier term has weight 1.

The required column of ones in T and the normalization of �f are a loss
of generality compared to Equation 4.6, but we can remove these restrictions
from Equation 4.10 without damaging its statistical interpretation. Allowing
an arbitrary �f > 0 just means that f no longer has to sum to 1; we can
interpret such an f as encoding both a probability distribution and a sample
size. The constant column in T serves to make the sample size of f match
the observed sample size from �f , just as any other column of T serves to make
some other feature of f match its observed value from �f . So, a matrix T

without a constant column corresponds to a statistical estimation problem in
which we have not observed the sample size. While such statistical estimation
problems are unusual, they do exist. In fact, Markov decision processes are
a good example: in an MDP we observe how often trajectories start at each
state, but we do not observe how often we should visit each transition, since the
latter depends on which policy we follow. So, the sample size (that is, the total
number of transitions we visit while following an optimal policy) is just another
parameter that we can estimate from the observed data. Trying to constrain
the sample size of f to match that of �f would be a mistake: for example, in a
shortest-paths MDP this constraint would prevent us from considering exactly
the policies that we want to consider, the ones that visit fewer states than our
sample trajectories do.

4.6 Introducing approximation

Section 4.4 discussed how we can soften the constraints in the linear program
representation of a Markov decision process. This softening combats the sys-
tematic errors introduced by random 
uctuations in our estimates of the coe�-
cients. The amount of softness is controlled by the barrier parameter �. As we
get better estimates of the coe�cients, our goal is to reduce � to zero.

In this section we will discuss how to introduce an approximate representa-
tion of the value function into the linear program for a Markov decision process.
These two modi�cations, softening and approximation, are complementary: ap-
proximation introduces errors into the coe�cients, and we can minimize the
e�ects of these errors by a process related to softening.
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maximize v(4)

subject to

v(0) � 0

v(1)� v(0) � 1

v(2)� v(1) � 2

v(3)� v(2) � �1

v(4)� v(3) � 2

1 2 3 4

-2

-1

1

2

3

4

Figure 4.6: A linear program with its true solution and two approximate solu-
tions.

4.6.1 A �rst try

Suppose that we have decided on a particular approximate representation for
our value function, say v = Aw. Here w is a vector of adjustable parameters and
A is a matrix whose columns are a set of basis vectors for representing v. The
matrix A will have one row for each state in our MDP and one column for each
basis vector. This notation encompasses any representation for v that is linear
in its parameters, including linear or polynomial regression, splines, wavelets,
CMACs, and many others.

The simplest way to introduce this approximate representation into our lin-
ear program is just to substitute Aw for v everywhere. Doing so yields the
following modi�cation of the value program

maximize sTAw subject to EAw + c � 0 (4.11)

with the dual

minimize cTf subject to AT(ETf + s) = 0; f � 0

The solution to Equation 4.11 can be a good approximation to the true value
function v, particularly if the span of our basis function matrix A contains a low-
error approximation to v. For examples of some MDPs for which this approach
works well, see [TZ93, TZ95, TZ97].

On the other hand, if the best representations in the span of A have moderate
error, then the quality of the solution we �nd with Equation 4.11 can degrade
rapidly. For example, Figure 4.6 shows the linear program corresponding to a
simple MDP, along with two approximate solutions. The true solution is shown
as a solid line. If we substitute in the representation v(x) = w1x + w0 we
might hope to get the approximate solution shown in long dashes. But instead,
Equation 4.11 yields the solution shown in short dashes. The reason is that
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the inequality v(3) � v(2) � �1 constrains the slope w1 to be no greater than
�1. The solution in long dashes violates this constraint (its Bellman residual
along this edge is negative) and so is not feasible. More generally, if our basis
matrix A has k columns, the solution to Equation 4.11 will satisfy the k most
restrictive constraints exactly and leave the others slack. If our approximate
representation for v is in
exible enough, it is even possible that Equation 4.11
will have no solutions.

To see what the problem is with Equation 4.11, we can turn to the interpre-
tation of a linear program as a game. As Equation 4.1 shows, a linear program
is a minimax problem for a bilinear form called the Lagrangian. If the linear
program is

minimize cTf subject to ETf + s = 0; f � 0

then the minimizing player must choose a vector s and a nonnegative vector f ,
while the maximizing player simultaneously chooses a vector v; then the payo�
to the maximizing player is the value of the Lagrangian

L(f; v) = cTf + vT(ETf + s)

If we now substitute the approximate representation v = Aw into this game, we
have restricted the actions of the maximizing player while leaving the minimizing
player untouched. In doing so we have given the minimizing player an advantage.

4.6.2 Approximating 
ows as well as values

To restore balance to the game, we must somehow restrict the minimizing player.
We will do so by adding a penalty term l(f) to the Lagrangian. The resulting
penalized Lagrangian is

Lp(f; v) = cTf + vT(ETf + s) + l(f)

Just as before, the minimizing player wants to choose f � 0 to make Lp(f; v)
as small as possible, while the maximizing player simultaneously chooses v to
make Lp(f; v) as large as possible. There are many di�erent possible penalty
terms, each leading to a di�erent algorithm. Depending on how we choose the
penalty, the resulting game may favor the minimizing player, the maximizing
player, or neither. We have already seen one example of a possible penalty, the
barrier term in the soft 
ow program. A disadvantage of using the barrier term
as our only penalty is that it is not clear how to choose the barrier parameter
� to exactly cancel the advantage we have given to the minimizing player.

For the remainder of this chapter we will examine a di�erent kind of penalty
term: we will restrict the minimizing player's choice of f to lie in a linear
subspace. If the subspace is given as the span of the columns of the matrix
B, then restricting f to lie in spanB is equivalent to using the penalty term
�(f j spanB).

The advantage of this type of penalty term is that there is a simple way
to maintain balance between the two players. If our MDP has n states and m
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edges, and if the matrix A we are using to approximate the value function has
rank k, then we can choose B to have rank m�n+ k. That way we have taken
n � k degrees of freedom away from each player. Di�erent choices for B will
result in di�erent algorithms.

Choosing the penalty �(f j spanB) to compensate for the approximate rep-
resentation v = Aw results in the problem

min
f�0

max
v

�
cTf + (Aw)T(ETf + s) + �(f j spanB)

�
which we can also express as the linear program

minimize cTf subject to AT(ETf + s) = 0; f � 0; f = Bg (4.12)

We will discuss algorithms for solving such a linear program in Section 4.7.

4.6.3 An analogy

It is instructive to consider an analogy to the problem of solving an overdeter-
mined system of linear equations. Suppose we have an n� n square matrix M
and an n-vector b and we want to �nd an x so that Mx = b. Suppose also that
M is so large that we need to use the approximate representation x = Ay, where
A is an n� k matrix of basis vectors. The system MAy = b is overdetermined,
and so in general will have no solutions.

To �nd a reasonable value for y, we can write the system of equations as a
minimax problem:

max
x

min
p

pT(Mx� b)

Since we have restricted the actions of the maximizing player by requiring x =
Ay, we need to de�ne a penalty function l(p) that restricts the actions of the
minimizing player. One common choice for l(p) is the squared Euclidean length
of p. This choice of penalty results in the algorithm called least squares or linear
regression: since 1

2
jj � jj22 is a self-dual function,

min
p

�
pT(MAy � b) +

1

2
jjpjj22

�
= �

1

2
jjb�MAyjj22

Another choice of penalty is the indicator function �(pj spanB) for some n� k

matrix B. A little algebra shows that the solution to the resulting minimax
problem satis�es the system of equations

BTMAy = BTb (4.13)

Equation 4.13 shows why the appropriate dimensions for B are n � k: if we
don't take the same number of degrees of freedom away from the minimizing
and maximizing players, Equation 4.13 will be either over- or underdetermined.

If we choose B = MA, then the equations in (4.13) are called the normal
equations. The solution to the normal equations is the same as the solution to
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the least squares problem. The fact that we can represent linear regression in
these two di�erent ways is a consequence of the fact that the derivative of 1

2
jjpjj22

is the identity function; this connection is similar to the idea of a link function
described in Sections 3.6 and 3.10.

Other possible choices for B include setting B = DA for some diagonal
matrix of nonnegative weights D, and setting each column of B to be a di�erent
one of the n unit vectors in R

n . The choice B = DA is not used very often,
since it is not usually any easier to implement than linear regression. Setting
B to a collection of unit vectors is the same as picking k of the n equations in
MAy = b to solve and throwing the others away. This algorithm is useful since
it requires much less computation than linear regression, although the quality
of the resulting solution may not be as good.

When our Markov decision process is a Markov process, the linear program
for �nding the value function reduces to a set of linear equations. So, we can
use any of the above approximate linear equation solving algorithms to �nd an
approximation to the value function of a Markov process. Chapter 5, including
Sections 5.3.4, 5.3.5, and 5.4.1, contains a more detailed comparison of these
algorithms.

4.6.4 Open problems

The choice of �(f j spanB) as a penalty term is not perfect. Its largest problem
is that the linear program (4.12) does not necessarily have a solution: it is
possible that restricting f to be in the span of B makes (4.12) infeasible, and it
is possible that restricting v to be in the span of A makes (4.12) unbounded.

If we know a vector f0 � 0 which is either feasible or approximately feasible,
there is a simple trick to make sure that Equation 4.12 has a solution. If f0
is exactly feasible we can replace whatever B we were going to use by DB,
where D is the diagonal matrix with entries f0. Then, as long as the original B
could represent the vector of all ones, DB can represent f0. If we now ensure
that (4.12) is bounded, for example by requiring that the cost vector is positive
(c � 0), then there will be a �nite optimal solution. If, on the other hand, f0 is
only approximately feasible, we can replace the starting frequencies s by �ETf0.
If f0 were exactly feasible then this replacement would not change the starting
frequencies, since feasibility implies �ETf0 = s. Since f0 is not feasible, the
replacement will change s so that f0 is feasible in the modi�ed program. Then
we can set D to the diagonal matrix with entries f0 and proceed as before.

Even if we do ensure feasibility this way, though, there is no guarantee that
any vector other than f0 is feasible. In other words, it may not be possible to
evaluate any policy other than the one which generated our training data.

Another di�culty is that, while the most pleasing approximations to the
value function have approximately equal total Bellman error in the positive
and negative directions, the performance of the greedy policy is a�ected in an
inherently asymmetric way by Bellman errors of opposite sign. Positive residuals
correspond to states whose estimated cost is too low, and such states tend to
attract 
ow, while negative residuals correspond to states whose estimated cost
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is too high, and such states tend to repel 
ow. So, in the worst case, a single
large positive error could cause the greedy policy to spend all of its time in one
state, while a single large negative error can only cause the greedy policy to
avoid one state (plus any states which are only reachable through that state).

Besides the restricting the minimizing player to a linear subspace, there are
many other ways to choose a penalty function. For example, we could restrict
the minimizing player to a convex set such as a cube or a simplex instead of to a
subspace. Or, we could remove some restrictions on the minimizing player while
adding others: for example, while we have restricted the minimizing player to
the intersection of the positive orthant with the span of B, we could equally
well have restricted to the projection of the positive orthant onto the span of
B. Finally, at the cost of giving up convexity, we could restrict the minimizing
player to a nonlinear subspace. We experimented brie
y with these and other
approaches, but the version of the algorithm given here is the one that seemed
to work best.

Yet another approach is suggested by the correspondence between the soft
penalty term introduced in Section 4.4 and maximum likelihood estimation.
Negative Bellman residuals in an MDP program with a soft penalty term cor-
respond to samples in a maximum likelihood problem that have low probability
under the best model. Such samples are often called outliers, under the as-
sumption that they were generated by some process that we cannot model. In
maximum likelihood estimation, two possible responses to outliers are to dis-
card them or to add additional representational power to the model. We could
apply these same principles to solving MDPs by either discarding transitions
with large negative residuals or adding representational power to our model of
the value function.

4.7 Implementation

The previous section outlined at a high level the choices involved in designing
an algorithm to approximate the Bellman linear program for a Markov decision
process. This section describes in more detail the implementation we used to
perform our experiments.

4.7.1 Overview

There are several design decisions that we had to make for our algorithm. The
�rst is how to represent our knowledge about the Markov decision process,
including its dynamics, its goals, and its starting state frequencies. We chose
to represent the MDP's dynamics and goals with a list of the transitions we
have sampled; so, for each transition, we store its one-step cost and the feature
vectors for its starting and ending states. To represent the starting frequencies,
we store our estimate of the expected feature vector for a state chosen from the
starting distribution.
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The second decision is what representation to use for the 
ows. As discussed
in Section 4.6.2, we want to restrict the minimizing player to a subspace of the
possible 
ow vectors in order to counterbalance the fact that we have restricted
the maximizing player to a subspace of the possible value functions. We can
represent the allowable subspace of 
ow vectors as the span of a matrix B.

In our implementation we use the following choice for B. There is one row
for each transition we have observed. The �rst k columns of the row contain
the feature vector for the starting state of the transition. That means that the
�rst k columns of B are a copy of A with some rows duplicated. The remaining
m � n columns of each row contain either one or two nonzero elements, and
are used to chain together all of the actions that have the same starting state.
If rows i1 < i2 < : : : < ij all start from the same state, there will be a 1 in
position (k + i1; i1), a �1 in position (k + i1; i2), a 1 in position (k + i2; i2), a
�1 in position (k + i2; i3), and so on until a �1 in position (k + ij�1; ij). This
pattern of 1s and �1s for a single starting state takes up one fewer column than
it does rows, and so for n states it will take up n fewer columns than rows.

To understand this choice of B, consider the example of an MDP with exactly
three actions from each state. If we sort the transitions by action, then by state
within action, B will have the block representation0

@ A I 0
A �I I

A 0 �I

1
A (4.14)

In this example, as in general, if we write f = Bg then the �rst k components
of g assign 
ow equally to all actions with the same starting state, while the
remaining m � n components of g move 
ow around between actions with the
same starting state. As we can see from the example in (4.14), the last m� n

columns of B are very sparse; so, since an m� (m � n) matrix is expensive to
represent we will store only the nonzero components of these columns of B.

The �nal decision is whether to apply the trick described in Section 4.6.4 to
make sure that the linear program is feasible. We decided not to do so, since we
wanted to include information about transitions that we did not follow. Under
the scheme of Section 4.6.4, such transitions would receive zero weight and so
would convey no information. We did not observe any problems with infeasibil-
ity, but it could still be that reweighting in this way would have improved our
learning performance.

The next section describes our implementation in more detail.

4.7.2 Details

The input to our program is a description of the transitions we have sampled
from the Markov decision process and the features we plan to use to approximate
the value function. More speci�cally, if we have seen m transitions from n states
and we have k features, the input will comprise the following objects (described
in more detail below):
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� An n� k dense matrix A.

� An m� k dense matrix EA.

� An (m� n+ k)�m sparse matrix B.

� An m-vector c.

� A k-vector ATs.

By a dense matrix we mean one where we represent every element explicity,
while by a sparse matrix we mean one where we represent only the nonzero
elements to save space. The output of our program is a vector of parameters w
representing our learned value function.

The columns of the matrix A are the basis functions we intend to use to
represent the value function. In other words, at the end of the algorithm, Aw is
our best estimate of the true value function. To save space, we do not represent
the rows of A that correspond to states which we have not visited. Each row of
A contains the values of our k features or basis functions at a single state. For
example, if our observed states were the real numbers x1; x2; : : : and we wanted
a quadratic approximation to the value function, then the rows of A would be
(1; x1; x

2
1); (1; x2; x

2
2); : : :.

The matrix EA is our best estimate of the product of the edge matrix E with
the basis matrix A. To save space, we remove from E the columns corresponding
to states we have not visited and the rows corresponding to transitions we
have not visited. So, each row of E corresponds to a single transition we have
observed: if we observe a transition from state i to state j then the corresponding
row of E will have a �1 in the ith column and a 
 in the jth column. If we
know not just a single destination state but a probability distribution p with
nonzero mass on several destination states, then the corresponding row of E will
be equal to 
p except that 1 will be subtracted from the ith column. So, each
row of EA contains a di�erence between feature vectors along a transition: if
we observe a transition from state i to state j, and if state i has feature vector
ai and state j has feature vector aj , then the corresponding row of E will be

aj � ai. If we know the probability distribution p over possible destination
states then we can replace 
aj by its expectation under p.

The matrix B plays the role described above: we restrict the minimizing or

ow player to choose a vector in the span of B. Since the �rst k columns of each
row of B are duplicated from A, we store the indices into A instead of these
columns; and since the remaining m�n columns of B are sparse, we store these
columns as a list of their nonzero entries.

The vector c contains the cost of each transition. The vector ATs is the
product of our basis matrix A with the vector of starting frequencies s. We
can compute �ATs as a weighted sum of the rows of EA, with the weight of
each row equal to the number of times we have traversed the corresponding
transition.
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Once we have these inputs, the simplest way to �nd the coe�cients of the
approximate value function is to construct the linear program

minimize cTf subject to ATETf +ATs = 0; f = Bg; f � 0 (4.15)

and pass it to a prepackaged linear program solver. The estimated coe�cients
of the value function are then the dual variables for the equality constraints
ATETf +ATs = 0 (possibly negated, depending on how the prepackaged solver
de�nes the dual variables). This approach works well if the prepackaged solver
is set up so that it does not cause too much �ll-in in matrix products involving
B.

To take better advantage of the sparseness in B we have implemented an
interior-point barrier method linear program solver customized for linear pro-
grams of the type (4.15). Like other logarithmic barrier methods (for example
[AGMX96, Van94] and many others), our implementation approximately solves
a sequence of convex programs

minimize cTf � �
X
i

ln fi subject to A
TETf + ATs = 0; f = Bg (4.16)

for decreasing values of the barrier parameter �. The barrier parameter serves a
similar purpose here to the one it served in Section 4.4: it softens the constraints
and makes the convex program smoother. Whereas in Section 4.4 we wanted to
smooth the constraints because of uncertainty in the coe�cients of the linear
program, here we just want to smooth out the constraints to make the program
easier to solve. So, we will start with a large value of �, then try to track the
solution to (4.16) as we decrease � towards zero.

The set of solutions to (4.16) for all values of � is called the central path.
Figure 4.7 shows a fragment of the central path for the simple linear program

minimize x+ y subject to x � 0; y � 0; x+ 2y � 1

As the �gure shows, the central path starts out far from any of the constraint
lines, then moves smoothly towards the optimal solution.

The Lagrangian for Equation 4.16 is

cTf � �
X
i

ln fi + wTAT(ETf + s) + zT(f �Bg)

To �nd the saddle point of the Lagrangian we can set its derivatives with respect
to f , g, w, and z to zero. The resulting nonlinear equations are

0 = c� �
1

f
+EAw + z

0 = BTz

0 = AT(ETf + s)

0 = f �Bg
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Figure 4.7: The central path for a linear program.

where 1
f
means the vector whose components are the inverses of the components

of f . The only nonlinearity above is in the �rst equation. To make the math
more symmetric, we will declare a new m-vector x and replace the �rst equation
with

x = c+EAw + z

� = fixi (8i)

If we have initial guesses for the variables f , g, w, z, and x, we can use
Newton's method to �nd an update direction which brings them closer to solving
Equation 4.16. That is, we can linearize the equations around our current values
for the variables and solve the linearized equations for the update direction. We
will require that our initial guesses for f and x are strictly positive; the updates
we describe below will preserve this property.

We will linearize the equation � = fixi by replacing fi with fi+�fi and xi
with xi +�xi, then treating fi and xi as constants. The result is

� = fixi + fi�xi + xi�fi + hi

where hi is the remaining higher-order term that depends on both �xi and
�fi. By using the shorthand that F and X stand for the diagonal matrices
with elements f and x, and that e stands for the vector of all ones, we can write
the linearized equations as

�e� h� Fx = F�x+X�f

The remaining equations are already linear, but to keep the notation consis-
tent we will replace g, w, and z by g+�g, w+�w, and z+�z and treat g, w,

96



and z as constants. Now we can collect all of the equations into one big array:0
BBBB@

0 EA I �I 0
ATET 0 0 0 0
I 0 0 0 �B
�I 0 0 �X�1F 0
0 0 �BT 0 0

1
CCCCA

0
BBBB@

�f
�w
�z
�x
�g

1
CCCCA = : : : (4.17)

We have avoided writing the constant on the right hand side because it would
be a complicated expression and its exact form does not a�ect the following
discussion. The matrix in (4.17) is symmetric and quaside�nite, which means
that we can factor it by an algorithm similar to Cholesky decomposition; the
only di�erence is that some of the pivots during the decomposition will be
negative, so we will represent our factorization as LDLT (where L is a lower
triangular matrix and D is a diagonal matrix) instead of incorporating

p
D into

L.
Since the matrix in (4.17) is very sparse (many of its blocks are identically

zero, others are diagonal, and the matrix B is sparse) we need to take care when
factoring it not to introduce too much �ll-in. So we will factor it partway by
hand before giving it to our LDLT factorizer. First we can use the fourth block
row of the matrix to eliminate the fourth block column, leaving the equations0

BB@
F�1X EA I 0
ATET 0 0 0
I 0 0 �B
0 0 �BT 0

1
CCA
0
BB@

�f
�w
�z
�g

1
CCA = : : :

This step causes no o�-diagonal �ll-in. Next we can eliminate the �rst block
row and column, leaving0

@ �ATETX�1FEA �ATETX�1F 0
�X�1FEA �X�1F �B

0 �BT 0

1
A
0
@ �w

�z
�g

1
A = : : :

This step causes some �ll-in, but since EA is tall and narrow and X�1F is
diagonal the required computation is not large. Next we will eliminate the
second block row and column, leaving�

0 ATETB

BTEA BTF�1XB

��
�w
�g

�
= : : :

Since B is sparse, we have to worry about whether this step causes �ll-in. The
matrix BTEA is smaller than EA, so we don't need to worry about �ll-in in
this block. To analyze the block BTF�1XB, �rst suppose that B has the form
given in Equation 4.14. Then if we divide F�1X into a three by three block
matrix with diagonal blocks D1, D2, and D3, B

TF�1XB is equal to0
@ AT(D1 +D2 +D3)A AT(D1 �D2) AT(D2 �D3)

(D1 �D2)A D1 +D2 �D2

(D2 �D3)A �D2 D2 +D3

1
A
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More generally, we can divide B into k dense columns andm�n sparse columns,
so BTF�1XB is of the form�

small and dense (narrow and dense)T

narrow and dense large and sparse

�

The dot product between two di�erent sparse columns is nonzero only if the
two columns correspond to adjacent transitions from the same state, so each
column of the large, sparse block has at most one nonzero element above the
diagonal and at most one below. That means that we still have not caused any
unacceptable �ll-in.

Finally, for our last step before passing the matrix to the LDLT factorizer,
we can pivot along the diagonal of the large sparse block of BTF�1XB. The
result is a completely dense symmetric matrix with four k � k blocks. Since
k, the number of basis vectors, is small, we can factorize this matrix cheaply.
Using this factorization we can compute �w and the �rst k components of �g;
then we can substitute backwards, undoing each of the eliminations described
above, to compute the remaining components of the update direction.

Once we have the update direction vector, telling us how to change our
estimates of f , g, w, z, and x to move closer to a solution of Equation 4.16, we
need to decide how far to move our estimates in this direction. In other words,
we need to compute a step length � 2 [0; 1] which tells us what fraction of the
computed update vector to add to our estimates. Usually a step length of � = 1
is too long, since it will cause some components of f or x to become zero or
negative. So, we compute the longest step �0 which keeps f and x positive;
then we use a step length which is the smaller of 1 and

:666�0 + (� � :666)�20 (4.18)

The parameter � 2 (0; 1) controls how aggressively we try to approach the
boundary; we use � = :99995. The motivation for (4.18) is that the true solution
has f and x nonnegative, so the farther past the constraints f � 0 and x � 0
the update vector tries to take us, the less we should believe it. Equation 4.18
produces a conservative steplength near :666 if the update vector would drive f
or x far past their constraints, while it produces an aggressive steplength of � if
the update direction vector brings f or x exactly to the border of the positive
orthant.

The foregoing discussion describes how to update f , g, w, z, and x if we
know the value of the barrier parameter � and the higher-order term h. To
estimate � and h we use a second-order predictor-corrector method. We start
by computing the update and step length for � = 0 and h = 0. (This update is
called the predictor step.) Then we estimate the higher order term by

hi = �fi�xi

where �f and �x are the predictor updates to f and x. Next we compute a
target � by a heuristic called Mehrotra's rule. Mehrotra's rule is based on the
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observation that in the optimal solution to Equation 4.16 we have fTx = m�.

So, we can use fTx
m

as an estimate of the barrier parameter � that produced our
current values for f and x. We always want to try to lower �; to determine how
much to lower it we compute

�0 =
fTx

m

�1 =
(f + ��f)T(x+ ��x)

m
where � is the step length from the predictor step and �f and �x are the
predictor updates to f and x. The values �0 and �1 are the estimated barrier
parameters before and after the predictor step. Then we set the target barrier
to be

� = �1

�
�1

�0

�2

This choice of target tries to lower � somewhat more than the predictor step
alone would have. Finally we use these values for � and h as our estimates of the
barrier parameter and higher order term to compute the actual update vector
and step length. (The change between the predictor step and the actual update
vector is called the corrector step.) In order to use a second-order strategy like
this one we have to solve the system of equations (4.17) twice with di�erent
right-hand sides; this does not cause too much extra work since we can save the
factorization from the �rst time and reuse it the second.

In order to completely specify our algorithm, we need to pick initial estimates
for f , g, w, z, and x. We choose the very simple initialization fi = xi = 1 and
g = 0, w = 0, z = 0.

4.8 Experiments

This section describes three experiments with the algorithm of Section 4.7. The
�rst experiment is very simple and is just intended as a sanity check; the other
two are with larger and more interesting MDPs.

4.8.1 Tiny MDP

The MDP for this experiment consists of 50 states in a line. The actions are to
go one state left or right. Moving o� the end of the line ends the process. The
cost of each action is randomly selected before the beginning of the experiment
from a normal distribution with mean 1 and variance .3, and remains �xed and
deterministic thereafter.

Figure 4.8 shows the exact value function (large dots) and a quadratic ap-
proximation to it (solid line). The quadratic approximation was computed by
the algorithm of Section 4.7. For comparison, Figure 4.8 also shows (dashed line)
the least-squares �t to the exact value function. As we expect, the least squares
�t is nearer to the exact value function than the solution from the algorithm of
Section 4.7, but not by much.
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Figure 4.8: Value functions for MDP with 50 states in a line.

4.8.2 Tetris

The game of Tetris, shown in Figure 4.9, is played on a board 10 squares wide
and h squares tall (we used h = 16). Each square of the board is either empty
or full. In the space above the board the player is given one new piece at a
time. Each piece consists of four �lled squares arranged in one of the seven
possible tetrominos (L, backwards L, S, Z, T, I, and square). Depending on
which type of piece is showing, the player has up to 34 possible actions: each
action consists of placing the piece in a particular orientation and horizontal
position and dropping it. The edges of the piece are not allowed to extend
beyond the left or right boundaries of the board. Once dropped, the piece falls
straight downwards until its path is blocked by a �lled square, at which point
it stops moving and a new piece appears above the board. If the piece cannot
move downward so that it is contained entirely within the board, the game is
over. If at any point an entire row of the board is �lled (that is, if there are ten
horizontally adjacent �lled squares) then that row disappears, the rows above it
move down, and a new empty row appears at the top of the board to keep the
height constant. The player scores one point for every row removed this way.

Tetris is a Markov decision process: the state consists of the arrangement
of empty and �lled squares (210h possibilities) and the type of piece showing
(7 possibilities). The actions from each state are the possible positions and
orientations from which to drop the piece. The actions have stochastic outcomes:
while the motion of the piece and the scoring are deterministic, the type of the
next piece is chosen uniformly at random from the possible types. We chose a
discount factor of 
 = :99.

The human version of Tetris has several di�erences. First, there are more
states but fewer actions: the piece is shown moving down the board one row
at a time, with enough time between downward motions to allow for several
actions. The actions are to move the piece left or right one square, to turn it
90� counterclockwise, or to do nothing. Second, the human version has h = 20
instead of h = 16. Finally, the scoring for the human version is more com-
plicated, containing bonuses for achievements such as placing pieces quickly or
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Figure 4.9: The game of Tetris.

removing several rows of �lled squares at once. We chose the nonhuman version
of Tetris for several reasons: except for di�erences in h it is the same version
used in previous research [TV94, BI96]; it takes less computation per trial so
our experiments can run faster; the lower height causes lower scores which also
lets our experiments run faster; and it appears to be easier for the computer to
learn.

We chose a very simple representation for Tetris's value function, a linear
combination of just �ve features. All features were set to zero for game over,
thus �xing the value of an ended game at zero. For a game in progress, the
features were:

Constant Always equal to 1.

Average height The average height of the highest �lled block in each of the
ten columns.

Maximum height The maximum height of any �lled block.

Airspace The total number of empty blocks that appear anywhere below a
�lled block in the same column.

Bumpiness The sum of the nine absolute di�erences between the heights of
adjacent columns.

These features span a subspace of the features used in [BI96]. Although this
representation is simple, it contains value functions whose greedy policies are
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good Tetris players: the best learned players below scored hundreds of rows in
an average game.

One possible source of confusion about this representation is that it does
not encode the type of the currently falling piece. This fact does not prevent
a greedy policy from taking the current piece into account when it chooses an
action: since the greedy policy is the result of a one-step lookahead, the current
piece type a�ects the choice of action by determining the set of possible next
states for the lookahead.

We compared the performance of two algorithms on this task. Both algo-
rithms used the representation described above for the value function. The
�rst algorithm was an approximate variant of policy iteration. We chose this
algorithm because we believe that most researchers would accept it as a rea-
sonable standard of comparison. In the approximate policy iteration algorithm,
we played groups of �ve games using the same policy. After each group we ran
the LS-TD(0) algorithm (described in Section 5.3.4) on that group's training
examples to learn an approximate value function for the corresponding policy.
After learning we switched to a new policy and threw away all previous training
examples. To determine what policy to follow, we kept a running average of all
of the value functions computed so far, and always acted greedily with respect
to that average value function.

The second algorithm was the one described in Section 4.7. To make the
comparison between the two algorithms as easy as possible, we kept as many
algorithmic details as possible the same. So, we played groups of �ve games
using the same policy, we threw away all training data every time we switched
to a new policy, and we always acted greedily according to the average of all
value functions computed so far. Instead of using LS-TD(0) to compute the
value function after each group of games, though, we solved a linear program as
described in Section 4.7. Because we kept so many algorithmic details the same
for the two algorithms, we could switch between them by changing only a few
lines of code.

To evaluate the performance of each algorithm we simply started it playing
Tetris and recorded its scores. Figure 4.10 shows a plot of each algorithm's score
as a function of how many groups of �ve games it had played. The plot is the
average of �ve runs for each algorithm, and each point in a run is the average
of the scores for the �ve games in a single group. This type of plot tends to
accentuate di�erences between algorithms, since better algorithms will achieve
longer games sooner and so will have access to more training data.

As Figure 4.10 shows, the linear programming algorithm manages to learn
a decent Tetris player, but it does not achieve the performance of approximate
policy iteration. Section 4.8.3 explores some possible reasons for this behavior.

We examined the weight vectors learned by the two algorithms, and they
were substantially di�erent. To check whether the di�erence might have been
caused by slow convergence or local optima, we started the linear program-
ming algorithm from the weight vector learned by approximate policy iteration.
Within a few groups of games, the linear programming algorithm had moved
away from its starting vector and back towards the answer it had converged to
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Figure 4.10: Performance of two algorithms for playing Tetris. Heavy line:
linear programming. Light line: policy iteration.

from the original starting point.

4.8.3 Hill-car

We hypothesized that the linear programming algorithm's di�culty in learning
Tetris was caused by trying to reason about transitions that led to states we had
never visited. Since the learner has no direct constraints on the values of these
states, and since their representations may be outside the convex hull of the
representations of the visited states, we thought that trying to infer the values
of these states might cause instability. Unfortunately, in a typical application,
there is no way to avoid reasoning about unvisited states: the learner simply
does not have time to explore every transition, so if we discard transitions that
we have not followed, we will be reduced to a single transition out of most states.

In a small MDP, though, it is possible to visit every state. So to verify our
hypothesis, we performed an experiment on a much simpler MDP. We expected
that, if the unvisited states were causing our problems, the learning performance
would start out poor (worse than could be explained just by lack of data), then
improve rapidly as our sample size increased, and �nally become acceptable
once we had visited most or all of the states in the state space.

For this experiment we took the hill-car problem from Section 2.5.2, changed
the time increment to :1s, and reduced the state space to [�1; :7] � [�2; 2]
(corresponding to position�velocity). Then we discretized the state space to
a 20� 20 grid using bilinear interpolation. The result is a 400-state, 800-edge
discrete MDP. Each row of the edge matrix for this MDP has up to �ve nonzero
entries: one negative entry for the state at time t, and up to four positive entries
for the possible states at time t+ 1.

We collected data by following a �xed policy: always thrust right. Since the
goal is to get to any position greater than :6, this policy is optimal from any
state where the car has su�cient momentum to reach the top of the hill, but
will never terminate if the car does not start out with enough momentum. To
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Figure 4.11: The exact value function for the hill-car MDP and a spline approx-
imation to it.

avoid in�nite trajectories, we terminated a trajectory with probability :01 on
each time step, corresponding to a discount factor of 
 = :99.

We represented the value function by storing the estimated values at 49
states on a 7� 7 grid, then interpolating in each direction with a cubic spline.
In other words, we used 49 basis functions, each of which was the product of a
cubic spline depending only on position with a cubic spline depending only on
velocity.

In each run of our experiment we collected seven trajectories at a time,
then fed all of the trajectories so far to our learning algorithm. During each
trajectory we recorded all available actions from each state we visited. We never
changed policies, and we never threw away any data. After each invocation of
the learning algorithm, we recorded both whether it converged and what weight
vector it converged to. We collected twenty groups of trajectories, for a total of
140 trajectories per run.

We ran the experiment �ve times. Each time, after we had collected all 140
trajectories, the learning algorithm was able to �nd a good approximation to
the true value function. Figure 4.11 shows the true value function and a typical
approximation to it.

In three of the �ve runs, though, the linear programming algorithm did
not converge within 75 iterations of the interior-point method when given data
from only the �rst group of seven trajectories. In one of these three, it also did
not converge when given data from the �rst two groups. In fact, on all runs,
the linear program shows signs of ill-conditioning when data are scarce, either
by lack of convergence or by convergence to an answer with a large 2-norm.
Figure 4.12 shows a typical example of the latter. The value function shown
in the �gure is based on data from three groups of trajectories; notice that
the estimated values are o� of the plot scale at two corners of the state space,
(:6;�2) and (�1; 2), where the data are particularly sparse. The full range of
this learned value function is [�52:23; 15:22].

On the other hand, all runs converged consistently to value functions with
about the right two-norm after they had seen at least �fteen groups of seven tra-
jectories. We believe that this behavior supports our hypothesis that transitions
ending in unvisited states tend to cause instability.

104



-0.5

0

0.5

-1
0

1

-1
0
1
2
3
4

Figure 4.12: A value function learned from sparse data.

4.9 Discussion

In this chapter we have examined the connections among Markov decision pro-
cesses, linear and convex programming, and maximum likelihood. Based on
our analysis we have recommended a method for designing value-function ap-
proximating algorithms: substitute an approximate representation for the value
function into the Bellman linear program, then add a penalty term to the dual
of the Bellman program. We have coded a fast implementation of one such
algorithm, and experimented with this implementation. While the learning
performance of this algorithm does not improve on the best prior algorithms,
we hope that the intuition and design methodology of this chapter can aid in
the design of other algorithms for solving MDPs.
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This chapter is a brief summary of related reading on Markov decision pro-
cesses. It starts by considering methods for solving small MDPs exactly, such
as value iteration, policy iteration, and linear programming. Next it discusses
exact methods for solving special cases of MDPs like linear-quadratic-Gaussian
processes and continuous-time problems that are linear in their controls. Then
it considers a variety of methods for approximating value functions. These
methods range from simple interpolation on a regular grid to neural networks
trained by gradient descent. Finally it describes incremental algorithms for
solving MDPs.

5.1 Discrete problems

One of the �rst algorithms for solving Markov decision process was the Bellman-
Ford single-destination shortest paths algorithm [Bel58, FF62], which learns
paths in a graph (i.e., a deterministic undiscounted MDP) by repeatedly up-
dating the estimated distance-to-goal for each node based on the distances for
its neighbors. The Bellman-Ford algorithm is a special case of value iteration,
which is de�ned in Chapter 1. For other early work on similar algorithms
see [Bel61, Bla65].

Besides value iteration, another good way to solve small MDPs is policy
iteration. Policy iteration maintains a current policy �(i) on each step i. It
solves the equation

v = T�(i)v

on each step, setting v(i+1) to be the solution, and then computes �(i+1) to be
the greedy policy for v(i+1). Policy iteration often takes many fewer steps to
converge than value iteration, but each step requires more work. For a proof of
the convergence of policy iteration see [BT89].

Midway between value iteration and policy iteration lies modi�ed policy
iteration. In MPI we store both a current value function v(i) and a current
policy �(i). On each step we compute the next value function v(i+1) from v(i)

by the backup operator for the current policy, v(i+1) = T�(i)vi. On some steps
we set �(i+1) to be the greedy policy for v(i+1), as value iteration does, but
on other steps we just keep �(i+1) = �(i). The relative frequency of these two
types of step is a parameter of the algorithm: if we always choose the greedy
policy, MPI reduces to value iteration, while if we usually keep the policy from
the previous step, MPI behaves more like policy iteration.

Even more generally, we could store separately a value and an action for
each state, and on each step improve some of the values (by setting them to
the result of the value backup operator for the current policy) and some of the
actions (by setting them to the action for the greedy policy). By choosing an
order of updates we can produce the value iteration algorithm, the modi�ed
policy iteration algorithm, and other algorithms in between. As long as we
update all actions and values often enough, the resulting algorithm converges
(see [BT89]).
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Finally, we can solve small MDPs by converting them to linear programs as
described in Chapter 4, then solving the linear programs with simplex, barrier
methods, or other linear programming algorithms [Ber76, p248] [Ros83, p40].
An MDP which takes a long time to solve by value iteration can sometimes take
much less time to solve by linear programming, and vice versa. See [TZ93, TZ95,
TZ97] for some comparisons between linear programming and value iteration.

5.2 Continuous problems

In the previous section we described several ways to �nd the exact value function
for a su�ciently small, discrete MDP. None of the methods of the previous
section is appropriate for solving MDPs with continuous state spaces. To solve
such an MDP, we must turn either to special cases or to approximate methods.

Approximate methods for solving continuous MDPs are similar to approx-
imate methods for solving large, discrete MDPs, so we will put o� discussing
them until Section 5.3. The rest of this section describes some special cases of
MDPs with continuous state spaces that we know how to solve exactly.

5.2.1 Linear-Quadratic-Gaussian MDPs

One well-studied special case of continuous Markov decision processes is the
linear-quadratic-Gaussian problem, where the transition function is linear in
the states and controls, the cost function is quadratic, and all noise is Gaussian
additive. The value function for an LQG problem is always quadratic, with
coe�cients given by a set of linear equations called the Ricatti equations; so,
we can solve even high-dimensional LQG problems easily. (In fact, hidden state
makes LQG problems only slightly more di�cult.)

Even if a problem does not appear linear at �rst glance, it is sometimes
possible to make it linear by a transformation of the state and control variables.
Problems which may be so transformed are called feedback linearizable (see
[SL91] for more detail). One important example of a feedback-linearizable model
is an idealized multi-link robot arm; for this model, feedback linearization is
often called the \method of computed torques." Of course, if the original model
contains errors (for example, friction or backlash in the robot arm), so will the
linearized model. In fact, the errors in the linearized model can be worse, since
the computed control input may need to be very large to cancel the original
model's nonlinearities. Another possible source of problems is that quadratic
costs and Gaussian errors may no longer be quadratic and Gaussian after the
transformation.

5.2.2 Continuous time

Many MDPs with continuous state spaces evolve in continuous time rather than
in discrete steps. For such an MDP it is natural to write the value function as the
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solution to a di�erential equation. To do so, we must make some assumptions,
the most important of which is that the MDP is deterministic.

If the state x(t) of an MDP evolves according to

dx

dt
= f(x; u)

where u(t) is the control input, and if the cost of a path x(t) under control u(t)
is
R
c(x(t); u(t))dt, then the value function satis�es the di�erential equation

min
u

��
d

dx
v(x)

�
� f(x; u) + c(x; u)

�
= 0 (5.1)

Equation 5.1 is called the steady-state Hamilton-Jacobi-Bellman or HJB equa-
tion [Ber95]. To ensure that the HJB equation has a unique solution, we must
specify su�ciently many boundary conditions.

For some MDPs we may be able to solve the HJB equations analytically. It
is easiest to solve the HJB equations analytically for Markov processes: since
Markov processes allow only one choice of control u, the minimization over u is
unnecessary and so the HJB equations are linear.

The paper [MM98] describes how to use a subset of averagers called barycen-
tric interpolators to solve continuous-time Markov decision processes. The es-
sential feature is that the authors add a requirement to the averager which
ensures that, as the representational power of the averager grows, the �xed
point of �tted value iteration converges to the true value function.

The following section describes a di�erent approach to �nding the best con-
trol for a continuous-time MDP.

5.2.3 Linearity in controls

Consider the single-input, single-output, nth order system�
d

dt

�n
x = a(~x) + b(~x)u

where ~x is a vector whose components are x and its time derivatives up to order
n� 1, a and b are (possibly nonlinear) functions of ~x, and b(~x) is bounded away
from zero. (For a generalization of the contents of this section to systems with
k inputs and k independent outputs, see for example [SL91].)

Our goal in this section will be to supply an input u(t) so that the output
x(t) tracks a given reference signal xd(t) as closely as possible. This goal is
less general than controlling an arbitrary MDP in four important ways: �rst,
we have replaced a general cost function by the simpler objective of tracking
a known reference signal. Second, we have assumed that the system to be
controlled is deterministic. Third, we have assumed that the system is linear
in the control. Fourth, we have assumed that the number of control inputs
is equal to the number of independent outputs. The last two assumptions in
particular are often unrealistic, since they allow us to cancel an arbitrary drift by
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choosing a su�ciently large control input. For example, the third assumption
is violated by a robot whose actuators can only exert a bounded amount of
force (but see [YSS97] for a treatment of linear systems with bounded controls);
the fourth is violated by the well-known cart-pole problem, which is to control
the angle of a pole and the position of its base (two independent outputs) by
exerting a horizontal force at the base (one input).

One bene�t of making these simplifying assumptions is that we will be able
to derive a controller which succeeds even if we replace a and b by estimates â
and b̂ with bounded error. (Such a controller is called robust.) These estimates
might come, for example, from a supervised learner trained on observed system
trajectories.

Before we consider robust control, we will derive a controller for use when
we know a and b exactly. To that end, write e = x � xd for our tracking error,
and let

s =

�
d

dt
+ !

�n�1
e

where ! is a positive constant. The combined error measure s is a linear combi-
nation of our tracking error and its derivatives; its importance is that, if we man-
age to achieve s = 0, the tracking error e must converge exponentially to zero.
To see why, consider the solutions of the di�erential equation ( d

dt
+!)n�1e = 0.

The polynomial (x + !)n�1 has all of its roots at �!. So, the norm of any

solution (e; de
dt
; : : : ; d

n�1e
dtn�1

) must behave like exp(�!t). Since ! > 0, this means
that the solutions all decay to zero with time constant 1

!
.

If we de�ne r so that s = dn�1e
dtn�1

+ r, we can solve for u in terms of ds
dt

and
known quantities:

ds

dt
=

�
d

dt

�n
(x� xd) +

dr

dt

= a(~x) + b(~x)u�

�
d

dt

�n
xd +

dr

dt

u =
1

b(~x)

��
d

dt

�n
xd �

dr

dt
+
ds

dt
� a(~x)

�

If we start out with the combined error measure s at zero, we can �nd the u
which maintains s = 0 by setting ds

dt
= 0 in the above equation. More generally,

if s 6= 0, we can use a simple PD controller to reduce s by setting ds
dt

= �ks for
some positive constant k. The resulting u will cause s to decay exponentially
to zero.

For example, suppose we want to control the system �x = cos(expx) to track
sin t starting from x = _x = 0. If we choose ! = 1, the combined error measure
is s = _e + e = ( _x � cos t) + (x � sin t), and the recommended control input is
� sin t� ( _x� cos t)� ks� cos(expx). If we choose k = 1, we get

u = 2 cos t� 2 _x� x� cos(expx)
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Figure 5.1: Tracking performance. The two curves are x(t) and xd(t) = sin t.

Figure 5.1 shows the resulting tracking performance. Increasing either k or !
would cause faster tracking convergence at the cost of increased control activity.

The recommended control u depends on xd and its derivatives as well as x
and its derivatives. We assume that x and its derivatives can be either directly
observed or computed. If the derivatives of xd are not available (as might be
the case for example if the desired trajectory were speci�ed by a user with a
joystick), a possible �x is model-reference control. In model-reference control,
the object is to track not xd but a �ltered version of xd. The �lter is called a
reference model, and its purpose is twofold: �rst to ensure that su�ciently many
derivatives of the �ltered xd are available, and second to ensure that the �ltered
xd is smooth enough that it can be tracked without unduly large control inputs.
One common choice of reference model is a low-pass �lter. More generally, the
reference model might take some input other than xd (for example derivatives
of xd) to produce the �ltered xd.

Now suppose that, instead of the exact model a and b, we have â and b̂

instead, with �� � a� â � � and 1
�
� b̂

b
� �. (The uncertainty bounds � > 0

and � > 1 might in general depend on ~x and t.) Notice that this model of
uncertainty assumes that the sign of b is known, which might not be a plausible
assumption in some domains.

With an uncertain model, the PD controller ds
dt

= �ks may no longer work.

So, we will use instead the bang-bang control law ds
dt

= �k sgn(s). The resulting
choice of u is called a sliding mode control. If we choose k large enough, we can
guarantee that the sliding mode controller will cause s to converge to zero even
without knowing the exact a and b. (With a small amount of algebra, we can
show that k = �(�+�)+(��1)ju0j is large enough, where � is a small positive
number and u0 is the control that would result from setting ds

dt
to zero.) Better

approximations for a and b will allow us to reduce k and use a smaller bang-bang
term.

Because of the bang-bang term �k sgn(s), the sliding mode control is dis-
continuous in ~x across the surface s = 0. In fact, once the state hits s = 0, the
recommended control u(t) will generally have in�nitely many discontinuities in
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any �nite-length time interval. Such a control is usually physically impossible
to implement; so, in practice, one would generally interpolate u(~x) across a thin
boundary layer �� � s � �.

5.3 Approximation

All of the above methods are designed to �nd exact solutions to Markov deci-
sion processes. Because of this fact, they are usually limited to solving small or
special-case MDPs. On the other hand, it is perfectly possible to run similar
algorithms on an approximate representation of the solution to a decision prob-
lem. For example, Bellman discusses �nding approximate value functions by
quantization and low-order polynomial interpolation in [Bel61], and decompo-
sition by orthogonal functions in [BD59, BKK63]. These approximate methods
are not covered by the convergence proofs for the exact methods. But, if they
do converge, they can allow us to �nd numerical solutions to problems which
would otherwise be too large to solve.

Researchers have experimented with a number of approximate algorithms for
�nding value functions. Results have been mixed: there have been notable suc-
cesses, including Samuels' checkers player [Sam59] and Tesauro's backgammon
player [Tes90]. But these algorithms are notoriously unstable; Boyan and Moore
list several embarrassingly simple situations where popular algorithms fail miser-
ably [BM95]. Some possible reasons for these failures are given in [TS93, Sab93].

The remainder of this section discusses approximate algorithms for solving
MDPs. Many of these algorithms are modi�cations of the exact algorithms
described in Section 5.1.

5.3.1 State aggregation

The most straightforward way to approximate a continuous MDP, and one of
the best-known, is to discretize the state space into a grid and assign the same
value to every state in a given cell. Similarly, to approximate a large discrete
MDP, we can divide the states into bins and assign the same value to every state
in a given bin. For either a continuous or a discrete MDP we can then pick one
sample state from each bin and run value iteration as if our samples were the
entire state space. This algorithm is a special case of �tted value iteration, and
so has convergence and error guarantees (see Chapter 2). State aggregation has
been in use at least since the 1950s [Bel61, p86]. It is still in use today, often
in combination with adaptive methods for determining how �nely to discretize
the state space [CT89, Moo94].

If we choose to divide each axis of a d-dimensional continuous state space into
k partitions, we will wind up with kd states in our discretization. Unfortunately,
even if we choose a smallish value for k we can wind up with a huge number of
states: for example, if we choose k = 100, a six-dimensional continuous MDP
will translate into a 1012-state discrete MDP. This problem is called the curse
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of dimensionality, since the number of states in the discretization is exponential
in d.

5.3.2 Interpolated value iteration

Another important special case of �tted value iteration, dating back at least to
Bellman's work in the 1950s [Bel61, p86], is the class of interpolating methods.
These methods store the value function only at a predetermined set of states;
when the value of some other point is needed for a backup, it is estimated by
some kind of interpolation scheme. The most common schemes are to store the
values of states at the vertices of a regular grid and approximate the values of
other states with either constant interpolation (in which the value over an entire
grid cell is the same) or multilinear interpolation. Higher-order polynomial
interpolation is also possible, but can result in divergence.

For a long time, grid-based methods with constant interpolation were the
only approximate variant of value iteration that was known to converge. The
papers [Gor95a, TV94] were, as far as we know, the �rst to extend the proofs
to cover even multilinear interpolation, an important extension since better
interpolation methods allow us to use coarser grids and so solve larger problems.
(Davies gives a two-dimensional example where piecewise constant interpolation
needs about 3012 = 90601 cells to achieve the same level of performance as
bilinear interpolation with 112 = 121 cells [Dav96].)

5.3.3 Linear programming

The most straightforward way to introduce approximation into the linear pro-
gram representation of the Bellman equations is simply to substitute in an ap-
proximate representation for the value function. This approach can work well,
particularly if we can represent a low-error approximation of the value function.
For examples of MDPs that we can solve this way see [TZ93, TZ95, TZ97].

This approach has one important disadvantage. Because we cannot repre-
sent the true value function exactly, we will not be able to satisfy the Bellman
equations exactly. So, we will have to settle for some errors, that is, states whose
assigned values are not equal to the backed up values from their neighbors. But,
because linear programs do not allow their constraints to be violated, all of the
errors in the linear-programming version of the Bellman equations will have the
same sign. To put it another way, the best approximation to v� will trade infea-
sibility against suboptimality, while the de�nition of linear programming treats
feasibility and optimality asymmetrically.

Chapter 4 discusses in more detail the problem of �nding an approximate
value function by linear programming.

5.3.4 Least squares

For a Markov process, the Bellman equations reduce to

Ev + c = 0
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where E and c are the edge adjacency matrix and cost vector for our process.
E is equal to P � I where P is the transition probability matrix for our process.
See Chapter 1 for more detail.

We can replace v in the Bellman equations by an approximate representation,
say v = Aw. Here A is a matrix whose columns are basis vectors for representing
v, and w is a vector of adjustable parameters. If there are n states in our Markov
process and we use k basis vectors to represent v, then A will be n � k. With
this substitution, the Bellman equations become EAw+ c = 0. This is a system
of n equations in k variables. Since in general k < n (that is, since in general
we use fewer basis vectors to represent v than there are states in our Markov
process), these equations are overdetermined; so, they usually do not have a
solution.

There are several ways to �nd a reasonable coe�cient vector w in this sit-
uation. The simplest is to pick k of the n equations and throw away the rest.
The next simplest is to choose w as the least-squares solution, that is,

(EA)TEAw + (EA)Tc = 0

The vector EAw+ c is called the Bellman error or residual, so the least-squares
solution is the one that minimizes sum of squared Bellman errors. Finally and
most generally we might pick an arbitrary n� k matrix B and set

BTEAw +BTc = 0 (5.2)

If we pick B = EA, this method reduces to least squares; or, we can de�ne
a B that keeps k of the n equations and throws away the rest by making the
columns of B be k of the n unit vectors in R

n .
One other choice for B that seems to work well is B = DA for some diagonal

matrix of nonnegative weights D. In particular we can set the diagonal elements
of D to be the state visitation frequencies f given by

ETf + s = 0

where s is the vector of frequencies of starting in each state. The resulting
equations are

AT Diag(f)[EA+ c] = 0 (5.3)

This choice of B was popularized by the TD(0) algorithm described below in
Section 5.4.1; as is explained in more detail there, TD(0) uses this choice for
B because it is possible to compute an unbiased estimate of the coe�cients of
Equation 5.3 by sampling trajectories from the Markov process.

TD(0) never represents Equation 5.3 explicitly, but instead solves it by
stochastic gradient descent. The algorithm which represents and solves Equa-
tion 5.3 explicitly is called LS-TD, for Least-Squares TD, even though it is not
actually a least squares algorithm. It is described in [BB96].

Methods based on solving Equation 5.2 have an important advantage over
�tted value iteration. As mentioned in Chapter 2, �tted value iteration applies a
function approximator over and over again to the same value function, possibly
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resulting in loss of accuracy. Rather than approximating the value function
directly, Equation 5.2 approximates the update direction instead. That is, while
�tted value iteration computes a target value function Tv and approximates
that, Equation 5.2 computes the direction from the current value function to
the target value function, (T � I)v, and approximates that instead.

To see why this di�erence is important, consider the case where we are lucky
enough that our function approximator can represent the optimal value function
v� perfectly. (The results will be similar if we can only represent something close
to v�.) We pointed out in Chapter 2 that �tted value iteration can still drift
away from v� if we are using the wrong kind of function approximator. On the
other hand, the update direction from v� is by de�nition the zero vector, and
any linear function approximator can �t the zero function exactly. So, v� will
be a solution to Equation 5.2.

Unfortunately, it is di�cult to generalize Equation 5.2 to �nd approximate
solutions to Markov decision processes: since the Bellman equations for MDPs
are nonlinear, it is not even clear how to decide what rank B to use to ensure
that there exists a solution.

5.3.5 Collocation and Galkerin methods

Sometimes we can solve the Hamilton-Jacobi-Bellman equations approximately
by numerical methods. This section describes two related techniques for doing
so. These techniques work best when the HJB equations are linear, that is,
for Markov processes instead of MDPs. In fact, they are in some sense the
continuous time analogs of the methods in Section 5.3.4.

Suppose we wish to solve a system of di�erential equations numerically|say
for example

@tf(t) + f(t) = 0

f(0) = 1

We begin by assuming a simple form for f(t), say f(t) = a+bt+ct2, and imposing
the boundary constraint f(0) = 1 to �nd a = 1. Now we can analytically
evaluate the derivative to get

(b+ 2ct) + (1 + bt+ ct2) = 0 (5.4)

For any given value of t, this is an ordinary algebraic equation. In fact, since the
both the original di�erential equation and our approximation to f are linear,
the algebraic equation is linear in b and c for each t. In general it will be
impossible to satisfy the equation for all t, since we have replaced an arbitrary
smooth function f by an approximation with only a �nite number of degrees of
freedom. So, we will need to pick a reduced set of equations to satisfy.

There are several ways to pick a reduced set of equations. The simplest is
collocation [GO77], in which we choose just enough values of t from the interval
of interest to guarantee a unique solution. In our example we have two free
parameters; so, since each collocation point gives us one new equation, we need
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Figure 5.2: The solution to f 0 + f = 0 along with two approximations.

to collocate at two points. If we choose t = 0; 1, we can solve for the coe�cients
b = �1; c = 1

3
; �gure 5.2 compares the resulting approximation to the true

solution e�t near the collocation points.
The choice of collocation points can in
uence the quality of our result. We

can reduce the dependence of the answer on our exact choice of points, and
so sometimes get a more accurate approximation, by choosing more collocation
points than are strictly necessary and solving the resulting overdetermined set
of equations by least squares.

Rather than a set of test points, the so-called Galerkin methods [GO77] use
a set of test functions instead. Each test function speci�es a weighted average
of the equations for di�erent values of t. For example, if we choose the test
functions t and t2 over the interval [0; 1], Equation 5.4 yields the constraintsZ 1

0

t(1 + b+ (b+ 2c)t+ ct2)dt = 0

Z 1

0

t2(1 + b+ (b+ 2c)t+ ct2)dt = 0

which we can solve to �nd b = � 32
35
; c = 2

7
(see �gure 5.2).

Galerkin methods are more general than collocation, since we can choose
Dirac �-functions as our test functions in a Galerkin method and reduce it
to collocation. Just as in collocation, the choice of test functions in
uences
the quality of the resulting approximation; in our example, we have followed
common practice and chosen the basis functions themselves as test functions
(recall that we �xed the coe�cient of 1 to satisfy the boundary condition, thus
removing it from the basis).

We can use collocation or Galerkin methods to �nd the value function of a
continuous-time deterministic Markov chain. If we assume that the goal state
is at the origin, and if the state vector evolves according to

dx

dt
= f(x)
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then the value function satis�es the HJB equations�
d

dx
v(x)

�
� f(x) + c(x) = 0

v(0) = 0

Now suppose that we choose a set of basis functions �i(x), each with �i(0) = 0,
and perform a Galerkin approximation using the basis functions as test func-
tions. A typical constraint will look like

Z
S

�j(x)

"X
i

wi

�
d

dx
�i(x)

�
� f(x) + c(x)

#
dx = 0 (5.5)

where S is the state space and wi is the weight for �i. While this expression looks
formidable, it is actually completely analogous to the unweighted TD equations

AT[(P � I)Aw + c] = 0 (5.6)

(Equation 5.6 is the same as Equation 5.2 with the choice B = A.) Replacing
v by Aw is analogous to replacing v(x) by

P
i wi�i(x), with the ith column

of A playing the same role as �i. The term
P

i wi(
d
dx
�i(x)) � f(x) is the rate

at which the value of the current state changes with time, given that we are in
state x; it is analogous to a single component of the vector (P �I)Aw in the TD
equations. So, the term in square brackets in Equation 5.5 is analogous to the
term in square brackets in Equation 5.6. Finally, the integral is the continuous
equivalent of a dot product, so using the �i as test functions in Equation 5.5 is
analogous to the multiplication by AT in Equation 5.6. The end result in either
case is the same: we are computing for each state the rate of change of the value
function with time, and constraining the resulting vector to be perpendicular
to each of our basis functions.

Unfortunately, just as in the Section 5.3.4, it is not clear how to generalize
collocation and Galerkin methods from Markov chains to Markov decision pro-
cesses. Since the HJB equation is in general nonlinear, collocation or Galerkin
methods will yield a set of nonlinear algebraic equations. It can be arbitrarily
di�cult to solve these equations; in fact it is not even clear how many collo-
cation points or test functions are necessary to ensure that they have a unique
solution.

5.3.6 Squared Bellman error

In Section 5.3.4 we discussed substituting an approximate representation for the
value function into the Bellman equations. In that section, we used a represen-
tation which was linear in its parameters and we restricted attention to Markov
processes; the result was that we derived a system of linear equations for the
coe�cients in our approximation.

In this section we will examine the more general case where we allow non-
linear function approximators such as neural networks, and where we replace
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Markov processes by Markov decision processes. In this case, of course, we
will not be able to �nd a closed-form solution for the parameters of our ap-
proximation to the value function. Instead, we will need to rely on numerical
methods.

In particular, we will focus on numerical methods for �nding a local min-
imum of the sum of squared Bellman error. The Bellman error vector for an
approximate value function v is de�ned to be Tv � v, where T is the parallel
value backup operator for our Markov decision process. So, the sum of squared
Bellman errors is a nonnegative real-valued function of the parameters of our
approximation to the value function.

Unfortunately, squared Bellman error is a badly-behaved function: it is
poorly conditioned and it has derivative discontinuities. Ill-conditioning hap-
pens because the values of two states can be strongly linked even if they are
separated by many time steps. (Two states will be linked when the current
policy causes the agent to move from one to the other with high probability.) If
we update the values of such a pair of states in opposite directions, the Bellman
error will change much more quickly than if we update them in the same direc-
tion. This lack of condition means that the contours of equal Bellman error are
long and narrow, so that simple minimization algorithms like gradient descent
will be forced to take short steps and converge slowly.

On the other hand, methods which are more robust to ill-conditioning, such
as conjugate gradient and Newton's method, often depend on the smoothness
of the function to be minimized. Unfortunately, the Bellman error function can
have discontinuous derivatives even for linearly-parameterized families of value
functions: there will usually be a derivative discontinuity at every value func-
tion for which there is more than one greedy policy. So, for example, conjugate
gradient can get caught against a derivative discontinuity in such a way that
none of its line searches ever makes progress, while Newton's method can os-
cillate forever by stepping back and forth across a discontinuity. (Interestingly,
Newton's method for minimizing jjTv�vjj22 with respect to v is identical to pol-
icy iteration, so it is guaranteed to converge; Newton's method can only have
problems when we substitute an approximation for v.)

Figure 5.3 shows several views of the Bellman error surface for a very simple
MDP. On the bottom row of the �gure is the MDP. It has two states, so its value
function is an element of R2 : the two coordiantes are x and y, the estimated
values for the left-hand and right-hand states respectively. The top row of
the �gure shows a 3D and a contour plot of the MDP's error surface: the x
and y axes represent our current estimate of the value function, while the z

axis shows the sum of squared Bellman errors for each estimate. These plots
clearly show the derivative discontinuity that happens when the two actions
from the right-hand state have the same backed-up value. They also show that
the contours of the error surface near the global minimum can be elliptical.
In this plot the ellipses are close to circular and therefore well-conditioned,
but changing the transition probabilities can give the contours arbitrarily bad
aspect ratios. Finally, the middle row of the plot shows the error surfaces for two
di�erent one-dimensional slices of the set of possible value functions. These one-
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Figure 5.3: Several views of a Bellman error surface.
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dimensional slices correspond to di�erent one-parameter families of approximate
representations for the value function. As the plots show, it is easily possible to
have multiple local minima or derivative discontinuities at the minimum.

It may be possible to minimize Bellman error e�ciently by using hybrid al-
gorithms, for example damped Newton methods, Levenberg-Marquardt, or gra-
dient descent with momentum. Baird has proposed a promising hybrid method
which interpolates between temporal di�erencing (described below) and gradi-
ent descent [Bai95].

Even if we can �nd the parameters which minimize squared Bellman error,
though, there is another important di�culty: not all Bellman errors are equally
important. In some MDPs, many optimal paths pass through one or a small
number of bottleneck states. Errors at the bottlenecks are more important
than errors elsewhere: at the bottlenecks, a single error can a�ect many paths.
If we simply minimize Bellman error, we may end up accepting an important
error at a bottleneck instead of a larger but less important error at some other
state. Worse, we can't sidestep the problem simply by weighting errors at
the bottleneck states more heavily, since di�erent policies can have di�erent
bottlenecks and we won't know which states are the real bottlenecks until we
have already found the optimal policy.

There are heuristic algorithms which attempt to reweight states during the
optimization procedure, but so far no such algorithm has been proven to con-
verge for general function approximators. These algorithms can perform quite
well in practice.

5.3.7 Multi-step methods

The Bellman constraint that corresponds to a transition from state x to state
y with cost c is

v(x) � 
v(y) + c

This constraint relates the value of state x to the value of its immediate successor
y. Similarly, the constraint that corresponds to a transition from y to z with
cost d is v(y) � 
v(z) + d. Combining these two constraints gives

v(x) � 
2v(z) + 
d+ c (5.7)

Equation 5.7 relates the value of state x to the value of its two-step successor z.

We can combine three successive one-step constraints to make a three-step
constraint, four to make a four-step constraint, and so forth. In an absorbing
MDP, we can go so far as to combine all the transitions in an entire trajectory
to make a single constraint of the form v(x) � constant. Such an inequality
is called a TD(1) constraint, by analogy to the TD(�) algorithm described in
Section 5.4.1. The advantage of a TD(1) constraint is that it is not recursive: it
constrains the value of only one state rather than two. That means that we can
use supervised learning algorithms to �nd approximate solutions to problems
that contain only TD(1) constraints.
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There may be many more multi-step constraints than there are one-step ones:
if our MDP has a constant number of actions from each state, then (ignoring
possible duplicates) the number of k-step constraints on v(x) is exponential in
k. (A degenerate case of this rule applies to Markov processes. For a Markov
process the base of the exponential is 1, meaning that there is exactly one k-step
constraint on v(x) for each positive k.) To avoid dealing with an exponential
number of constraints, many practical methods restrict their attention to multi-
step constraints for transition sequences that actually occur in the observed
data. For example, such methods would ignore the constraint (5.7) unless the
learner had at some point moved from state x to state y to state z.

Multi-step constraints are redundant if we plan to solve the Bellman equa-
tions exactly. But, approximate methods for solving the Bellman equations
may treat a multi-step constraint di�erently from its component one-step con-
straints. For example, for a Markov process we can de�ne a k-step version of
Equation 5.3 that looks like

ATDiag(f)EkAw = : : :

It is reasonable to ask whether approximate methods are likely to be more
accurate if they use one-step or multi-step constraints. As a rough rule, one-
step constraints are more data-e�cient, while multi-step constraints are better
at minimizing the e�ects of the function approximator. There is experimental
evidence [Sut88] which suggests that a combination of constraints at di�erent
time scales works better than either single-step constraints or TD(1) constraints
alone.

5.3.8 Stopping problems

Stopping problems are the subset of MDPs in which the agent has exactly two
actions at each state: one action is called \continue" and has an arbitrary e�ect,
and the other is called \stop" and leads immediately to the ending state �.
The paper [TV97] points out that, unlike for general MDPs, there are still well-
de�ned state visitation frequencies in a stopping problem: these are just the
frequencies with which we would visit the nonterminal states if we never chose
the stop action. So, it makes sense to solve the nonlinear equations

ATDmin(PAw + c; d) = ATDAw

where P is the transition probability matrix for continuing, c is the cost vector
for continuing, d is the cost vector for stopping, D is the diagonal matrix whose
entries are the state visitation frequencies, A is a matrix whose columns are
basis vectors for representing the value function, and the minimum operation is
taken componentwise. This expression is the analog of Equation 5.3. While the
minimum operation makes the equations nonlinear, [TV97] gives a convergent
algorithm for �nding the solution.
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5.3.9 Approximate policy iteration

It is possible to combine policy iteration with approximate methods for �nding
value functions. There are no such combinations that have been proven to
converge for general MDPs and function approximators, but some combinations
seem to work in practice. For example, the experiments in Chapter 4 use one
such algorithm, and another is described in [BI96].

5.3.10 Policies without values

It is possible to learn a policy directly, without representing value functions along
the way. For example, we can pick a starting policy, evaluate it by following
some trajectories and measuring the incurred cost, and try to modify it to make
it better. Methods for doing so include gradient descent, simulated annealing,
and genetic algorithms.

Unlike simulated annealing and genetic algorithms, gradient descent requires
the ability to compute an unbiased estimate of the gradient of a parameterized
policy's expected cost with respect to one of its parameters. It is not obvi-
ous that it is possible to compute this gradient without reference to the value
function, but [Wil92] gives an algorithm called Reinforce which does so.

The advantage of methods of this kind is that they try directly to optimize
actual costs, instead of some proxy for actual costs like the consistency of a
value function. The disadvantage of these methods is that they can be slow
to converge: without the intermediate representation of a value function, it is
harder to decide which parts of a policy are responsible for high costs.

Baird and Moore [BM99] have recently derived an algorithm called VAPS
(for value and policy search) that can combine gradient descent on expected
total cost with gradient descent on squared Bellman error or on other related
performance measures. Such an algorithm can use a value function to decide
which parts of a policy need modifying, but can also take actual costs into
account directly.

5.3.11 Linear-quadratic-Gaussian approximations

It is common practice to approximate a nonlinear control problem by an LQG
problem in some neighborhood. Unfortunately, a single linear-quadratic model
is often not su�cient, and it is much harder to build a piecewise-LQG approx-
imation to a control problem. The di�culty is in ensuring consistency along
the edges of the pieces: the value function in each piece no longer satis�es the
Ricatti equations, since it depends also on the values in every other piece.

One approach to this problem is to ignore it. That is, we can compute several
separate LQG approximations around di�erent points, ignoring possible inter-
actions. Then we can control the system using the LQG approximation which
is most appropriate for the current operating conditions, or by interpolating
among several nearby models. This approach is called gain scheduling. It is
particularly e�ective when the reward function is globally quadratic, as it is for
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example when we are trying to track a reference signal as closely as possible. In
this case the LQG models can't get confused about where the lowest costs are,
but only about how to get there. In addition, if the controller does get stuck far
from the small costs, it is often possible to unstick it by hallucinating a series
of target points (represented as a series of �ctitious quadratic cost functions)
which are close enough together that the linear-quadratic approximations can
follow them and which lead the controller to a desirable region of state space.
Of course, the question of which target points to use can be as di�cult as the
original control problem.

For control problems too di�cult for gain scheduling, Atkeson has developed
a method for growing \spines" backward along optimal trajectories [Atk94]. A
spine comprises a series of local LQG models; each model is locally approxi-
mately consistent with the previous and subsequent models on the same spine,
but models on di�erent spines do not interact, so there are not too many de-
pendencies between models.

Control methods based on linearization su�er from some problems. The
�rst is that they may require a large number of linear pieces, forcing us either
to store many precomputed controllers or to search for and generate controllers
as needed in real time. The second and more important is that the system may
not be even locally approximable by an LQG model: transition functions aren't
always smooth, errors aren't always small and Gaussian, and arbitrarily large
control inputs aren't always practical.

5.4 Incremental algorithms

Two of the best-known algorithms for �nding value functions are TD(�) and
Q-learning [Sut88, Wat89]. Both of these algorithms are incremental, meaning
that they examine each training example once and then forget it. This property
may be useful if storage space is at a premium or if it is as easy to generate a
new training example as it is to remember an old one. Q-learning solves Markov
decision processes but does not handle function approximation, while TD(�) can
handle function approximation but only solves Markov processes.

5.4.1 TD(�)

TD(�) is an algorithm that �nds approximate value functions for Markov pro-
cesses. (TD is short for temporal di�erences, because the update for TD(�)
depends on the di�erence between parameters of successive states.) It can use
any representation for value functions that is linear in its coe�cients; that is, it
can represent v = Aw for any matrix A whose columns we want to use as basis
vectors.

If we are given a Markov process, it is possible to discover the bottleneck
states by observing actual or simulated trajectories from the process. (This is
not true for an MDP, since the bottleneck states depend on the optimal policy.)
By observing trajectories, we can build unbiased estimates of how often we
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visit each state. Once we know the state visitation frequencies, we can solve
Equation 5.3 to �nd an approximate value function.

The TD(0) algorithm is an incremental algorithm which implicitly discov-
ers the state visitation frequencies and solves Equation 5.3. After observing a
transition from state i to state j at cost c, TD(0) updates its parameter vector
w by the rule

w  w + �ai((
aj � ai) � w + c)

where � is a learning rate and ai and aj are the ith and jth rows of A expressed
as column vectors. It is possible to show [Sut88, Day92, TV96] that under
appropriate conditions TD(0) converges to the solution of Equation 5.3.

TD(�) is a slightly more complicated algorithm with an update that depends
on a whole sequence of states instead of just the last two. As the papers cited
above show, it converges to the solution of an equation similar to Equation 5.3.

There is no straightforward way to generalize TD(�) to solve Markov decision
processes. Still, there are several popular heuristic MDP algorithms based on
the method of temporal di�erences. These include TD-based variants of value
iteration, Q-learning, policy iteration, and modi�ed policy iteration. Perhaps
the most successful is TD value iteration, which has surfaced for example in a
world-class backgammon player [Tes94] and an elevator controller [CB96].

TD-based methods have the advantage that, at least heuristically, one would
expect them to be good at �nding bottleneck states because they always reweight
each state based on how often the agent encounters it while following the current
policy. Unfortunately, this advantage is only heuristic: no one has yet found
a characterization of when these methods even converge, much less a proof
that they end up with reasonable weights. In fact, it is possible to construct
examples [Gor96, Ber96] where some of these methods oscillate forever between
two or more policies with di�erent value functions.

TD-based methods depend on being able to �nd out the state-visitation
frequencies for each policy. (In fact, it is easy to cause them to diverge by
visiting states at the wrong frequencies.) This fact is both an advantage and
a disadvantage: while it allows TD-based algorithms to take bottleneck states
into account easily and naturally, it means that all known implementations are
based on following trajectories in either the real MDP or a model of it, which
can be an e�ciency disadvantage compared to non-TD-based algorithms.

5.4.2 Q-learning

It is di�cult to write an incremental algorithm which directly learns the value
function of a Markov decision process. The problem is the location of the
nonlinearity in the Bellman equations: if we write

v(t+1)(x) = min
a

E

h
c(x; a) + 
v(t)(�(x; a))

i
then it is easy to get an unbiased estimate of the expectation for a single value
of a, but it is hard to get an unbiased estimate of the minimum over all a.
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To see why, imagine taking the minimum of two numbers, each corrupted by
zero-mean random noise. The minimum will be below the true minimum if the
noise in either number is negative, while it will be above the true minimum only
if both numbers have positive noise [TS93].

To solve this problem, we can (as suggested in [Wat89]) break the Bellman
equation into two pieces:

Q(x; a) = E [c(x; a) + 
v(�(x; a))]

v(x) = min
a

Q(x; a)

If we write

Q(t+1)(x; a) = E

�
c(x; a) + 
min

b
Q(t)(�(x; a); b)

�

then it is easy to get an unbiased estimate of the expectation: we can sample
c from the distribution of c(x; a) and y from the distribution of �(x; a) and
compute c+ 
minbQ

(t)(y; b).

The Q-learning algorithm stores Q instead of v. On each step it samples a
transition (say from state x to state y under action a at cost c) and updates

Q(x; a) (1� �)Q(x; a) + �(c+ 
min
b

Q(t)(y; b))

Under appropriate assumptions, [JJS94, Tsi94] prove that Q-learning converges
with probability 1 to the true Q function.

5.5 Other methods

There is a long history of research into Markov decision processes and related
problems, and we have only summarized a fraction of it here. Some interesting
approaches not mentioned above are:

� Methods which assume a particular form of representation for the solution
to the HJB equation, including [DS96] and [Goh93].

� Adaptive control (see, e.g., [SL91]), which attempts to control a system
containing unknown parameters by adapting parameter estimates online.
The adaptation law may be chosen to try to reproduce the observed dy-
namics as accurately as possible (self-tuning control); or, more directly,
it may try to reduce the tracking error between the observed trajectory
and the trajectory predicted by an ideal reference model (model-reference
adaptive control). General convergence guarantees usually require the
model to have some special form, for example linear separately in the
control inputs and the unknown parameters. Adaptive control techniques
may be combined with the robust sliding mode control design described
above. See [CS95] for a modern example of an adaptive control algorithm.
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� Various neural-net approaches based on \unfolding" a problem by making
a copy of the adjustable parameters for each time step. After unfolding,
all variable dependencies are feedforward, so derivative calculations are
simpli�ed.

5.6 Summary

The research in this thesis extends the state of the art in several ways. To
understand how, we can de�ne the following hierarchy of function �tters. Each
type of function approximation algorithm in the list includes and generalizes
the previous ones.

Exact A degenerate case. Represents a function by storing its value at every
possible input.

Piecewise constant Includes grids and other state aggregation.

Averager As de�ned in Chapter 2. Includes k-nearest-neighbor and linear
and multilinear interpolation.

Linear Linear regression with an arbitrary basis, including for example poly-
nomials, sines and cosines, and wavelets.

Generalized linear A linear function with a monotone transfer function ap-
plied to the output. Includes for example logistic regression.

General Everything else. Examples include neural nets and hierarchical mix-
tures of experts.

Before this thesis, the state of the art in learning value functions for gen-
eral MDPs included algorithms that are guaranteed to converge when using
exact or piecewise constant representations, or when using a limited subset of
averagers. It also included algorithms that use general representations and can
work well in practice, but are not guaranteed to converge. And, it included
algorithms that can't handle fully-general MDPs but which can guarantee con-
vergence with more-general representations than averagers, such as TD(�) for
Markov processes, or analytic solution of the HJB equations for some continuous
control problems. Finally, the state of the art in worst-case learning included
performance bounds for some generalized linear functions but not all.

Chapter 2 of this thesis advances the state of the art by de�ning an algorithm
with guaranteed convergence that can represent value functions with arbitrary
averagers. Chapter 3 advances the state of the art by extending worst-case
regret bounds to cover a larger fraction of generalized linear function approxi-
mators. Finally, Chapter 4 takes the �rst steps towards an algorithm that can
use arbitrary linear function approximators to represent value functions.

During the course of this thesis, other researchers have (of course) also ad-
vanced the state of the art in �nding value functions. Of note are [TV94], which
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duplicated some of the results in Chapter 2; [SJJ95], which described an on-
line algorithm related to �tted value iteration; [TV97], which extended TD(�)
to handle stopping problems; [MM98], which described a kind of averager that
converges to the exact value function (in the limit of increasing representa-
tional power) when approximating a continuous-time MDP; and [Bai95] and
[BM99], which developed gradient-descent style algorithms that are guaranteed
to converge at least to a local maximum when using (di�erentiable) general
representations.
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Chapter 6

SUMMARY OF

CONTRIBUTIONS
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Finding approximate value functions for Markov decision processes is im-
portant because it addresses a basic need in machine learning: the need for the
learner to �nd reasonable sequences of actions despite complicated, probabilistic
environments. This thesis has presented three threads of research all motivated
by the goal of approximating value functions.

The contributions of the research on �tted value iteration are to discover a
class of function approximators that is compatible with �tted value iteration; to
derive convergence and error bounds for �tted value iteration using approxima-
tors in this class; to reduce �tted value iteration to exact value iteration on an
embedded process; and to perform experiments demonstrating that �tted value
iteration is capable of solving Markov decision processes that require complex
pattern recognition.

The contributions of the research on worst-case learning are to provide a
framework in which to prove regret bounds for a wide variety of learning al-
gorithms and to apply this framework to bring together known regret bounds
and prove new ones. While we have not proven any bounds speci�cally about
the problem of solving Markov decision processes, we expect that the results of
this research will be helpful in proving such bounds, because the information
available to a learner about an MDP is often not in the form of a sample of
independent identically distributed random variables.

The contributions of the research on solving Markov decision processes by
convex programming are to explore the connection among MDPs, convex opti-
mization, and statistical estimation; to propose a new way to design algorithms
for approximating value functions; and to experiment with new algorithms built
according to this design. While the new algorithms do not improve on the best
existing methods for approximating value functions, they do demonstrate that
the design holds the promise of avoiding some of the shortcomings of current
value function approximation methods.

These three threads of research work together to advance the state of the art
in �nding approximate solutions to Markov decision processes. Together they
provide a wide variety of new tools for designing algorithms that allow learners
to act appropriately in complicated, uncertain environments.
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