Scheduling Threads for Low Space Requirement and
Good Locality

Girija J. Narlikar
May 1999
CMU-CS-99-121

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This technical report is an extended version of a paper that appears in the proceedings of the
Eleventh ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 1999.

This research is supported by ARPA Contract No. DABT63-96-C-0071. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright notation thereon. Views and conclusions contained in
this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied,
of ARPA or the U.S. Government.

Abstract

The running time and memory requirement of a parallel program with dynamic, lightweight threads depends
heavily on the underlying thread scheduler. In this paper, we present a simple, asynchronous, space-efficient
scheduling algorithm for shared memory machines that combines the low scheduling overheads and good
locality of work stealing with the low space requirements of depth-first schedulers. For a nested-parallel
program with depthD and serial space requireme$it, we show that the expected space requirement is
S14+O(K -p- D) onpprocessors. Herdy is a user-adjustable runtime parameter, which provides a trade-

off between running time and space requirement. Our algorithm achieves good locality and low scheduling
overheads by automatically increasing the granularity of the work scheduled on each processor.

We have implemented the new scheduling algorithm in the context of a native, user-level implementation
of Posix standard threads or Pthreads, and evaluated its performance using a set of C-based benchmarks
that have dynamic or irregular parallelism. We compare the performance of our scheduler with that of two
previous schedulers: the thread library’s original scheduler (which uses a FIFO queue), and a provably
space-efficient depth-first scheduler. At a fine thread granularity, our scheduler outperforms both these
previous schedulers, but requires marginally more memory than the depth-first scheduler.

We also present simulation results on synthetic benchmarks to compare our scheduler with space-efficient
versions of both a work-stealing scheduler and a depth-first scheduler. The results indicate that unlike these
previous approaches, the new algorithm covers a range of scheduling granularities and space requirements,
and allows the user to trade the space requirement of a program with the scheduling granularity.

Keywords: Multithreading, space efficiency, work stealinlynamic scheduling, nested parallelism, dynamic dags.

1 Introduction ready queue as a LIFO stack (that is, adds or removes threads
from the top of the stack) and steals from the bottom of another
Many parallel programming languages allow the expression processor’s stack, the scheduler successfully throttles the ex-
of dynamic, lightweight threads. These include data paral- cess parallelism [8, 39, 41, 44]. For fully strict computations,
lel languages like HPF [22] or Nesl [5] (where the sequence such a mechanism was proved to require.S; space ornp
of instructions executed over individual data elements are the processors, whers; is the serial, depth-first space require-
“threads”), dataflow languages like ID [16], control-parallel ment [9]. A computation witiV work (total number of oper-
languages with fork-join constructs like Cilk [20], CC++ [13], ations) andD depth (length of the critical path) was shown to
and Proteus [29], languages with futures like ltlisp [39], requireWV/p+O(D) time onp processors [9]. We will hence-
and various user-level thread libraries [3, 17, 30, 43]. In the forth refer to such schedulerswasrk-stealingschedulers.
lightweight threads model, the programmer simply expresses Recent work [6, 34] has resulted @epth-firstschedul-
all the parallelism in the program, while the language imple- ing algorithms that requir€;, + O(p - D) space for nested-
mentation performs the task of scheduling the threads onto the parallel computations with dept®. For programs that have
processors at runtime. Thus the advantages of lightweight, a low depth (a high degree of parallelism), such as all pro-
user-level threads include the ease of programming, automaticgrams in the clas&’C' [14], the space bound ¢, + O(p -
load balancing, architecture-independent code that can adaptD) is asymptotically lower than the work stealing bound of
to a varying number of processors, and the flexibility to use p . S;. Further, the depth-first approach allows a more gen-
kernel-independentthread schedulers. eral memory allocation model compared to the stack-based al-
Programs with irregular and dynamic parallelism benefit locations assumed in space-efficient work stealing [6]. The
most from the use of lightweight threads. Compile-time anal- depth-first approach has been extended to handle computa-
ysis of such computations to partition and map the threads onto tions with futures [39] or I-structures [16], resulting in similar
processors is generally not possible. Therefore, the programsspace bounds [4]. Experiments showed that an asynchronous,
depend heavily on the implementation of the runtime system depth-first scheduler often results in lower space requirement
for good performance. In particular, in practice, compared to a work-stealing scheduler [34]. How-
ever, since depth-first schedulers use a globally ordered queue,
1. To allow the expression of a large number of threads, the they do not provide some of the practical advantages enjoyed
runtime system must provide fast thread operations such asby work-stealing schedulers. When the threads expressed by
creation, deletion and synchronization. the user are fine grained, the performance may suffer due to
2. The thread scheduler must incur low overheads while dy- POOr locdity and high scheduling contentiond, contention
namically balancing the load across all the processors. over s_,harec_i data structures while scheduling) [35]. Therefore,
.) . .. evenif basic thread operations are cheap, the threads have to
3. The scheduling algorithm must be space efficient, that is, it pe coarsened for depth-first schedulers to provide good perfor-
must not create too many simultaneously active threads, of mance in practice.
schedule them in an order that results in high memory al- | this paper, we present a new scheduling algorithm for
location. A smaller memory footprint results in fewer page jmplementing multithreadedtguages on shared memory ma-
and TLB misses. This is part_lcularly important for parallel chines. The algorithm, callddFDeques, provides a compro-
programs, since they are typically used to solve large prob- mise petween previous work-stealing and depth-first sched-
lems, and are often limited by the amount of memory avail- jers. Ready threads iDFDequesare organized in multiple
able on a parallel machine. Existing commercial thread (eady queues, that are globally ordered as in depth-first sched-
systems, however, can lead to poor space and time perfor- yjers. The ready queues are treated as LIFO stacks similar to
mance for multithreaded parallel programs, if the scheduler previous work-stealing schedulers. A processor steals from
is not designed to be space efficient [35]. a ready queue chosen randomly from a set of high-priority
4. Today's hardware-coherentshared memory multiprocessorsqueues. For nested-parallel (or fully strict) computations, our
(SMPs) typically have a large off-chip data cache for each algorithm guarantees an expected space boufide) (K -p-
processor, with a latency significantly lower that the latency). Here, K is a user-adjustable runtime parameter called the
to main memory. Therefore, the thread scheduler must memory thresholdwhich specifies the net amount of memory
also schedule threads for good cache libca The most a processor may allocate between consecutive steals. Bince
common heuristic to obtain good Idita for fine grained is typically fixed to be a small, constant amount of memory,
threads on multiprocessors is to schedule threads close inthe space bound reducesip+ O(D - p), as with depth-first
the computation graple(g, a parent thread along with its ~ schedulers. For a simplistic cost model, we show that the ex-
child threads) on the same processor, since they typically pected running time i©(W/p + D) onp processors
share common data [1, 9, 25, 27, 31, 39]. We refer to the total number of instructions executed in a
thread as the thread@ranularity. We also (informally) de-
Work stealing is a runtime scheduling mechanism that can fine scheduling granularityto be the average number of in-
provide a fair combination of the above requirements. Each Structions executed consecutively on a single processor, from
processor maintains its own queue of ready threads; a pro- threads close together in the computation graph. Thus, a larger
cessor steals a thread from another processor’s ready queusscheduling granularity typically implies better locality and
only when it runs out of ready threads in its own queue. Since I DFDequestands for “depth-first deques’
threa.d creation and scheduling are _typlcally local operations, 2When the scheduler iBFDequess parallelized, the costs of all scheduling
they incur low overhead and contention. Further, threads close operations can be accounted for with a more realistic model [33]. Then, in the
together in the computation graph are often scheduled on the expected case, the parallel computation can be executedsisingO (D - p -
same processor, resulting good locdity. Several systems logp) space and (W/p + D -logp) time (including scheduling overheads).
have used work stealing to provide high performance [11, 17, I::hv;%\ﬁgrfor brevity, we omit a description and analysis of such a parallelized
18, 20, 26, 39, 42, 44]. When each processor treats its own '

lower scheduling contention. In tfie-Dequescheduler,when

a processor finds its ready queue empty, it steals a thread from
the bottomof another ready queue. This thread is typically
the coarsest thread in the queue, resulting in a larger schedul-
ing granularity compared to depth first schedulers. Although
we do not analytically prove this claim, we present experi-
mental and simulation results to verify it. Adjusting the mem-
ory thresholdi in the DFDequesalgorithm provides a user-
controllable trade-off between scheduling granularity and
space requirement.

Posix threads or Pthreads have recently become a popu-
lar standard for shared memory parallel programming. We
therefore added thBFDequesscheduling algorithm to a na-
tive, user-level Pthreads library [43]. Despite being one of figyre 2: An example dag for a parallel computation; the
the fastest user-level implementations of Pthreads today, the li- threads are shown shaded. Each right-to-left edge represents
brary’s scheduler does not efficiently support fine-grained, dy- 5 fork, and each left-to-right edge represents a synchroniza-
namic threads. In previous work [35], we showed how its per- jon of a child thread with its parent. Vertical edges represent
formance can be improved using a space-efficient depth-first sequential dependencies within threagsis the initial (root)
scheduler. In this paper, we compare the space and time per-thread, which forks child threads, t2, t=, andt, in that order.

formance of the newDFDequesscheduler with the library's chjld threads may fork threads themsehes, ¢ forksts.
original scheduler (which uses a FIFO scheduling queue), and

with our previous implementation of a depth-first scheduler.

root thread—~

To perform the experimental comparison, we ugqghrallel
benchmarks written with a large numberdynamically cre-
ated Pthreads. As shown in Figure 1, the neRDeques
scheduler results in better locality and higher sha®s com-
pared to both the depth-first scheduler and the FIFO scheduler.
Ideally, we would also like to compare our Pthreads-based
implementation oDFDequesvith a space-efficientwork-steal-
ing schedulerd.g, the scheduler used in Cilk [8]). However,
supporting the general Pthreads functid@gawith an exist-
ing space-efficient work-stealing scheduler [8] would require
significant modifications to both the scheduling algorithm and
the Pthreads implementatioriTherefore, to compare our new
scheduler to this work-stealing scheduler, we instead built a
simple simulator that implements synthetic, fully-strict bench-

computations with dynamic parallelism, the dag is revealed
and scheduled onto the processors at runtime.

2.1 Scheduling for locality

Detection of data accesses or data sharing patterns among
threads in a dynamic and irregular computation is often be-
yond the scope of the compiler. Further, today’s hardware-
coherent SMPs do not allow explicit, software-controlled place-
ment of data in processor caches; therefore, owner-compute
optimizations for locality that arpopular on distributed mem-

ory machines typically do not apply to SMPs. However, in
many parallel programs with fine-grained threads, the threads
close together in the computation’s dag often access the same

marks. Our simulation results indicate that by adjusting the data. Forexample, in a divide-and-conquer computation (such
memory threshold, our new scheduler covers a wide range &S quicksort) where a new thread is forked for each recur-
of space requirements and scheduling granularities. At one Sive call, a thread shares data with all its descendent threads.
extreme it performs similar to a depth-first scheduler, with Therefore, many parallel implementations of lightweight
low space requirement and small scheduling granularity. At threads use per-processor data structures to store ready
the other extreme, it behaves exactly like the work-stealing threads [17, 20, 24, 25, 39, 42, 44]. Threads created on a pro-

scheduler, with higher space requirement and larger schedul-cessor are stored locally and moved only when required to bal-
ing granularity. ance the load. This technique effectively increases scheduling

granularity, and therefore provides good lityg7] and low
scheduling contention.

Another approach for obtaining good lditais to allow
the user to supply hints to the scheduler regarding the data ac-
A parallel computation can be represented by a directed acyclic cess patterns of the threads [12, 28, 37, 45]. However, such
graph; we will refer to such a computation graph atagin hints can be cumbersome for the user to provide in complex
the remainder of this paper. Each node in the dag representsprograms, and are often specific to a certain language or li-
a singleaction in a thread; an action is a unit of work that re- brary interface. Therefore, olFDequesalgorithm instead
quires a single timestep to be executed. Each edge in the daguses the heuristic of scheduling threads close in the dag on the
represents a dependence between two actions. Figure 2 showsame processor to obtain good lbiga
such an example dag for a simple parallel computation. The
dashed, right-to-leffork edges in the figure represent the fork
of a child thread. The dashed, left-to-righytnchedges repre-
sent a join between a parent and child thread, while each solid The thread scheduler plays a significant role in controlling the
verticalcontinueedge represents a sequential dependence be-amount of active parallelism in a fine-grained computation.
tween a pair of consecutive actions within a single thread. For For example, consider a single-processor execution of the dag
in Figure 2. If the scheduler uses a LIFO stack to store ready

2 Background and Previous Work

2.2 Scheduling for space-efficiency

SEven fully strict Pthreads benchmarks cannot be executed using such a
work-stealing scheduler in the existing Solaris Pthreads implementation, be-
cause the Pthreads implementation itself makes extensive use of blocking syn-
chronization primitives such as Pthread mutexes and condition variables.

threads, and a child thread preempts its parent as soon as it
is forked, the nodes are executed in a (left-to-right) depth-first
order, resulting in at most 5 simultaneously active threads. In

Benchmark Max threads L2 Cache missrate | 8 processor speedup
FIFO | ADF | DFD || FIFO | ADF | DFD | FIFO | ADF | DFD
Vol. Rend. 436 36 37 4.2 3.0 1.8 539 | 599 | 6.96
Dense MM 3752 | 55 77 24.0 13 8.7 0.22 | 3.78 | 5.82
Sparse MVM || 173 51 49 13.8 | 13.7 | 13.7 359 | 5.04 | 6.29
FFTW 510 30 33 146 | 164 | 144 6.02 | 596 | 6.38
FMM 2030 | 50 54 14.0 2.1 1.0 1.64 | 7.03 | 7.47
Barnes Hut || 3570 | 42 120 19.0 3.9 29 0.64 | 6.26 | 6.97
Decision Tr. 194 138 | 149 5.8 4.9 4.6 483 | 485 | 5.39

Figure 1: Summary of experimental results with the Solaris Pthreads library. For each scheduling technique, we show the maximum
number of simultaneously active threads (each of which requires min. 8kB stack space), the L2 cache misses rates (%), and the
speedups on an 8-processor Enterprise 5000 SMP. “FIFO” is the original Pthreads scheduler, “ADF” is an asynchronous, depth-first
scheduler [35], and “DFD” is our ne®@FDequescheduler.

contrast, if the scheduler uses a FIFO queue, the threads are
executed in a breadth-first order, resulting in all 16 threads be-
ing simultaneously active. Systems that support fine-grained,
dynamic parallelism can suffer from such a creation of excess
parallelism.

Initial attempts to control the active parallelism were based
on heuristics [3, 16, 31, 40, 39], which included work stealing
techniques [31, 39]. Heuristic attempts work well for some
programs, but do not guarantee an upper bound on the space
requirements of a program. More recently, two different tech-
niques have been shown to be provably space-efficient: work-
stealing schedulers, and depth-first schedulers.

In addition to being space efficient [8, 41], work stealing
can often result in large scheduling granularities, by allowing
idle processors to steal threads higher up in the dag 6ee
Figure 3(a)). Several systems use such an approach to obtain
good parallel performance [8, 17, 26, 39, 44].

Depth-first schedulers guarantee an upper bound on the
space requirement of a parallel computation by prioritizing
its threads according to their serial, depth-first execution or-
der [6, 34]. In a recent paper [35], we showed that the per-
formance of a commercial Pthreads implementation could be
improved for predominantly nested-parallel benchmarks using
a depth-first scheduler. However, depth-first schedulers can re-
sult in high scheduling contention and poor lityawvhen the
threads in the program are very fine grained [34, 35] (see Fig-
ure 3). . _) Figure 3: Possible mappings of threads of the dag in Figure 2

The next SeCtiOn deSCI’IbeS anew SChedU“ng algonthm that onto processor§07 e P3 by (a) Work-stealing schedulers’
combinesideas from the above two space-efficientapproachesgng (b) depth-first schedulers. If, say, #é thread (going
from left to right) accesses th&" block or element of an ar-
ray, then scheduling consecutive threads on the same processor
provides better cache lolitt and lower scheduling overheads.

3 The DFDeques Scheduling Algorithm

We first describe the programming model for the multithreaded
computations that are executed by tBEDequesscheduling
algorithm. We then list the data structures used by the sched-
uler, followed by a description of thBFDequesscheduling
algorithm.

20]. Nested parallelism can be used to express a large variety
of parallel programs, including recursive, divide-and-conquer

programs and programs with nested-parallel loops. Our model
assumes binary forks and joins; the example dag in Figure 2
represents such a nested-parallel computation.

) Although we describe and analyze our algorithm for nested-
3.1 Programming model parallel computations, in practice it can be extended to exe-
As with h-fir heduler r scheduling algorithm ap- Cute programs with other styles of parallelism. For example,

eled by series-parallel dags [6]. Nested-parallel computations putations with arbitrary synchronizations, such as mutexes and
are equivalent to the subset of fully strict computations sup- condition variables. However, our analytical spaoend does

o o) : not apply to such general computations.
ported by Cilk's space-efficient work-stealing scheduler [8, A thread isactiveif it has been created but has not yet ter-

Figure 4: The serial, depth-first execution order for a nested-
parallel computation. Th&#" node executed is labelledin

this dag; the lower the label of a thread’s current node (action),
the higher is its priority inDFDeques

minated. A parent thread waiting to synchronize with a child
thread is said to bsuspended We say an active thread is
readyto be scheduled if it is not suspended, and is not cur-
rently being executed by a processor. Each action in a thread
may allocate an arbitrary amount of space on the thread stack,
or on the shared heap.

Every nested-parallel computation has a natural serial exe-
cution order, which we call itdepth-first order When a child
thread is forked, it is executed before its parent in a depth-
first execution €.g, see Figure 4). Thus, the depth-first or-
der is identical to the unique serial execution order for any

stack-based language (such as C), when the thread forks are

replaced by simple function calls. AlgorithBFDequegpri-
oritizes ready threads according to their serial, depth-first ex-
ecution order; an earlier serial execution order translates to a
higher priority.

3.2 Scheduling data structures

Although the dag for a computation is revealed as the execu-
tion proceeds, dynamically maintaining the relative thread pri-
orities for nested-parallel computations is straightforward [6]
and inexpensive in practice [34]. In algorithBFDeques

the ready threads are stored in doubly-ended queués-or
ques[15]. Each of these deques supports popping from and
pushing onto its top, as well as popping from the bottom of the
deque. At any time during the execution, a processarsat

while (3 threads)
if (currS=NuLL) currS:= steal();
if (currT=NuLL) currT:= popfrom_top(currS;
executecurrTuntil it forks, suspends, terminates,
or memory quota exhausted:
case(fork):
pushto_top(currT, currS;
currT:= newly forked child thread,;
case(suspend):
currT:= NULL;
case(memory quota exhausted):
pushto_top(currT, currS;
currT:= NULL;
currS:= NULL;
case(terminate):
if currTwakes up suspended pardrit
cunT=T
elsecurrT:= NULL;
if ((is_.emptyurrg) and (currT= NULL))
currS:= NULL; [+ give up and delete staek
endwhile

/x give up stacks/

proceduresteal():
set memory quota to K;
while (TRUE)
m = random number inl[. . . p];
S:=m'*dequeinR;
T := popfrom_bot(S);
if (T# NULL)
create new dequ8’ containingT
and become its owner;
placeS’ to immediate right ofSin R;
return S’;

Figure 5: Pseudocode for tiFDeque$K’) scheduling algo-
rithm executed by each of theprocessorsk is the memory
threshold. currSis the processor’s current dequeurrT is

the current thread being executed; changing its value denotes
a context switch. Memory management of the deques is not
shown here for brevity.

most one deque, and executes threads from it. A single deque

has at most one owner at any time. However, unlike traditional

work stealing, the number of deques may exceed the numberStarts executing the parent next; for nested parallel computa-

of processors. All the deques are arranged in a globatlist
deques. The list supports adding of a new deque to the imme-
diate right of another deque, deletion of a deque, and finding
them'" dequeue from the left end &.

3.3 The DFDeques scheduling algorithm

The processors execute the code in Figure 5 for algorithm
DFDeque$k); herek is thememory thresholda user-defined

tions, we can show that the processor’'s deque must be empty at
this stage [33]. When an idle processor finds its deque empty,
it deletes the deque. When a processor deletes its deque, or
when it gives up ownership of its deque due to exhaustion of
its memory quota, it uses trsteal() procedure to obtain
a new deque. Every invocation sfeal() resets the pro-
cessor's memory quota i bytes. We call an iteration of the
loopinthesteal() procedure steal attempt

A processor executes a steal attempt by picking a random

runtime parameter. Each processor treats its own deque asnumberm between 1 ang, wherep is the number of proces-

a regular LIFO stack, and is assigned a memory quot& of
bytes from which to allocate heap and stack data. This mem-
ory thresholdX is equivalent to the per-thread memory quota
in depth-first schedulers [34]; however, in algoritiD#De-
gues the memory quota oK™ bytes can be used by a proces-
sor to execute multiple threads from one deque. A thread exe-

sors. It then tries to steal the bottom thread from th&'
deque (starting from the left end) iR. A steal attempt

may falil (that is,pop _from _bot() returnsnuLL) if two or

more processors target the same deque (see Section 4.1), or
if the deque is empty or non-existent. If the steal attempt is
successfulgop -from _bot() returns a thread), the stealing

cutes without preemption on a processor until it forks a child Processor creates a new deque for itself, places it to the imme-
thread, suspends waiting for a child to terminate, terminates, diate right of the target deque, and starts executing the stolen
or the processor runs out of its memory quota. If a terminating thread. Otherwise, it repeats the steal attempt. When a proces-
thread wakes up its previously suspended parent, the processofor steals the last thread from a deque not currently associated

owners Po — Ps
executing t B]] i ﬁ
threads © i T
op [0 11
decues aiulN
bottom|[: HW I
<— list of dequesR —

Figure 6: The listR of deques maintained in the system by al-
gorithm DFDeques Each deque may have one (or no) owner

since the child now has the priority immediately higher than
its parent, property (3) holds.

When a thread” terminates, the processor checkd/if
has reactivated a suspended parent thfBad In this case,
it starts executind,. Since the computation is nested paral-
lel, the processor's deque must now be empty (since the parent
T, must have been stolen at some earlier point and then sus-
pended). Therefore, all 3 conditions continue to hold. did
not wake up its parent, the processor picks the next thread from
the top its deque. If the deque is empty, it deletes the deque
and performs a steal. Therefore all three properties continue
to hold in these cases too.

When a thread suspends or is preempted due to exhaustion
of the processor's memory quota, it is put back on the top of its

processor. The dotted line traces the decreasing order of prior- deque, and the deque retains its positioRinThus all three

ities of the threads in the system; thuusin this figure has the
highest priority, whilef, has the lowest priority.

with (owned by) any processor, it deletes the deque.

If a thread contains an action that performs a memory al-
location ofm units such thatn > K (wheref is the mem-
ory threshold), theym /K | dummy threads must be forked
in a binary tree of dept®(log m/K) before the allocatich
We do not show this extension in Figure 5 for brevity. Each

properties continue to hold.

When a processor steals the bottom thread from another
deque, it adds the new deque to the right of the target deque.
Since the stolen thread had the lowest priority in the target
deque, the properties continue to hold. Similarly, removal of a
thread from the target deque does not affect the validity of the
three properties for the target deque. A thread may be stolen
from a processor’s deque while one of the above events takes
place on the processor itself; this does not affect the validity
of our argument.

dummy thread executes a no-op. However, processors must ; .

give up their deques and perform a steal every time they exe- _ . Flnﬁlly,hdeletlon of one or more deques frofhdoes not

cute a dummy thread. Once all the dummy threads have beendiiect the three properties. .

executed, a processor may proceed with the memory alloca-)) .

tion. This transformation takes place at runtime. The addition WOrk stealing as a special case of algorithnDFDeques

of dummy threads effectively delays large allocations of space, Consider the case when we set the memory threshole:

so that higher priority threads may be scheduled instead. In ©°- Then, for nested-parallel computations, algoritbD-

practice K is typically set to a few thousand bytes, so that the €quéoo) produces a schedule identical to the one produced

runtime overhead due to the dummy threads is negligéatg (by the provably-efficient work-stealing scheduler “WS” [9].

see Section 5). The processors iDFDequesc never give up a deque due to
We now prove a lemma regarding the order of threads in exhaustion of their memory quota, and therefore, as with the

R maintained by algorithmDFDeques this order is shown Work stealer, there are never more thadeques in the sys-
pictorially in Figure 6. tem. Further, in both algorithms, when a processor's deque

becomes empty, it picks another processor uniformly at ran-
dom, and steals the bottommost thread from that processor’s
deque. Similarly, for nested parallel computations, the rule for
waking up a suspended parentifrDequeéo) is equivalent
to the corresponding rule in WSOf course, the schedules are
identical assuming the same cost model for both algorithms;
the model could be either the atomic-access model used to an-
2. Athread currently executing on a processor has higher pri- alyze WS [9], or our cost model from Section 4.1.

ority than all other threads on the processor’s deque.

Lemma 3.1 Algorithm DFDequesmaintains the following
ordering of threads in the system.

1. Threadsin each deque are in decreasing order of priorities
from top to bottom.

3. Thethreads in any given deque have higher priorities than 4 Analysis of Time and Space Bounds Us-
threads in all the deques to its right R. ing Algorithm DFDeques

Proof By induction on the timesteps. The base case is the
start of the execution, when the root thread is the only thread
in the system. Let the three properties be true at the start of
any subsequent timestep. Any of the following events may
take place on each processor during the timestep; we will show 4-1 ~ Cost model

that the properties continue to hold at the end of the timestep. e define the total number of unit actions in a parallel com-

When a thread forks a child thread, the parent is added to tation (or the number of nodes in its dag) aswtrk W.

the top of the processor's deque, and the child starts execution.gther, letD be thedepth of the computation, that is, the
Since the parent has a higher priority that all other threads in |ength of the longest path in its dag. For example, the com-

the processor’'s deque (by induction), and since the child thread putation represented in Figure 4 has wotk= 11 and depth
has a higher priority (earlier depth-first execution order) than

its parent, properties (1) and (2) continue to hold. Further,

We now prove the space and time bounds for nested-parallel
computations.

5In WS, the reawakened parent is placed added to the current processor’s
deque (which is empty); for nested parallel computations, the child must termi-
nate at this point, and therefore, the next thread executed by the processor is the
parent thread.

4This transformation differs slightly from depth-first schedulers [6, 34],
which allow dummy threads to be forked in a multi-way fork of constant depth.

D = 6. We assume that an allocation+f bytes of memory Then the prefix; is called thecorrespondingserial prefix of
(for anym > 0) has a depth o®(log m) units. op. The nodesin the set, — o, are callecprematurenodes,

For this analysis, we assume that timesteps (clock cycles) since they have been executed out of order with respect to the
are synchronized across all the processors. If multiple proces- 1bF-schedules; . All other nodes ins;,, that is, the set, are
sors target a non-empty deque in a single timestep, we assumecallednon-premature For example, Figure 7 shows a simple
that one of them succeeds in the steal, while all the others fail dag with a parallel prefix,, for an arbitraryp-schedules,, its
in that timestep. If the deque targeted by one or more steals is corresponding serial prefix , and a possible classification of
empty, all of those steals fail in a single timestep. When a steal nodes as heavy or light.
fails, the processor attempts another steal in the next timestep. A ready thread being present in a deque is equivalent to
When a steal succeeds, the processor inserts the newly cre4ts first unexecuted node (action) being in the deque, and we
ated deque int® and executes the first action from the stolen will use the two phrases interchangeably. Givesrschedule
thread in the same timestep. At the end of a timestep, if a s, of a dag@ generated by algorithi@FDequeswe can find
processor’s current thread terminates or suspends, and it findsa uniquelast parentfor every node inG (except for the root
its deque to be empty, it immediately deletes its deque in that node) as follows. The last parent of a naden G is defined
timestep. Similarly, when a processor steals the last thread as the last ok’s parent nodes to be executed in the sched-
from a deque not currently associated with any processor, it ule s,. If two or more parent nodes ef were the last to be
deletes the deque in that timestep. Thus, at the start of aexecuted, the processor executing one of them continues exe-
timestep, if a deque is empty, it must be owned by a processorcution ofu’s thread. We label the unique parentoéxecuted

that is busy executing a thread. by this processor as its last parent. This processor may have
Our cost model is somewhat simplistic, because it ignores to preempt:’s thread without executing if it runs out of its
the cost of maintaining the ordered set of dedRedf we par- memory quota; in this case, it puiss thread on to its deque
allelize the scheduling tasks of inserting and deleting deques and then gives up the deque.
in R (by performing them lazily), we can account for all their Consider the prefix,, of the parallel scheduls, after the
overheads in the time bound. We can then show that in the first 5 timesteps, for any < 5 < 7. Letwv be the last non-
expected case, the computation can be executedii/p + premature nodei.é.,, the last node fronr;) to be executed
D -log p) time andS: + O(p - log p - D) space orp proces- during the firsty timesteps of,. If more than one such node
sors, including the scheduling overheads [33]. In practice, the exist, letv be any one of them. Le&? be a set of nodes in the
insertions and deletions of deques fr@tan be either serial- dag constructed as follows? is initialized to{v}; for every
ized and protected by a lock (for smg)l or performed lazily nodew in P, the last parent of. is added toP. Since the
in parallel (for largep). root is the only node at depth 1, it must befth and thus,P

contains exactly all the nodes along a particular path from the
root tov. Further, since is non-premature, all the nodes#h

are non-premature.

We now analyze the space bound for a parallel computation Let u; be the node inP at depths; thenu, is the root,
executed by algorithnDFDeques The analysis uses several andus is the nodey, whered is the depth ob. Lett; be the

4.2 Space bound

ideas from previous work [2, 6, 34]. timestep in whichy; is executed; then; = 1 since the root
Let G be the dag that represents the parallel computation is executed in the first timestep. Foe= 2, ..., let I; be the

being executed. Depending on the resulting parallel schedule,interval {¢;—1 + 1,...,¢}, and let/; = {1}. Letls31 =

we classify its nodes (actions) into one of two types: heavyand {¢; + 1,...,5}. Sinces, consists of all the nodes executed

light. Every time a processor performs a steal, the first node in the first; timesteps, the intervalg, ..., Is+1 cover the

it executes from the stolen thread is calleldemvyaction. All duration of execution of all nodes ir,.

remaining nodes id/ are labelled alght. We first prove the following lemma regarding the nodes in
We first assume that every node allocates at rfiospace; a deque below any of the nodesin P.

we will relax this assumption in the end. Recall that a proces-
sor may allocate at mogt' space between consecutive steals; | emma 4.1 For any1 < i < §, let u; be the node in? at
thus, it may allocate at mog$t space for every heavy node it hi. Th
- depthi. Then,

executes. Therefore, we can attribute all the memory allocated
by light nodes to the last heavy node that precedes them. This1. If duringthe execution, is on some deque, then every node
results in a conservative view of the total space allocation. below it in its deque is the right child of some nodéin

Lets, = Vi,...,V; be the parallel schedule of the dag .
generated by algorithrPFDequegK). HereV; is the set of 2. Whenu,,' is executed on a processor, every node on th_e pro-
nodes that are executed at timestepLet s; be the serial, cessor's deque must be the right child of some node.in
depth-first schedule or thept-schedulefor the same dag; .
e.g, the nodes in Figure 4 are numbered according to their Proof We can prove this lemma to be true for amy by
order of execution in adr-schedule. induction on:. _The base case is the root nodeitidtly it is

We now view an intermediate snapshotof the parallel sched{h€ only node in its deque, and gets executed before any new
ule s,. At any timestepl < j < 7 during the execution of nodes are created. Thus, the lemma is trivially true. Let us

sp, all the nodes executed so far fornpaefix of s,. This pre- assume the lemma is true for al}, for 0 < j <. We must

; . . _ : prove that it is true fok:; ;1.
fix of s, is defined as, = [Ji_, Vi. Leto: be thelongest Sinceu; is the last parent ofi; 11, u.+1 becomes ready

prefix of s, containing only nodes i, that is, o1 < op immediately after:; is executed on some processor. There are

SThis is a reasonable assumption in systems with binary forks that zero out WO possibilities:
the memoryas soon ast is allocated. The zeroing then requires a minimum i . . .
depth of®@(log m); it can be performed in parallel by forking a tree of height 1. w41 IS executed immediately following; on that proces-
©(logm). sor. Property (1) hold trivially since; 1 is never puton a

e = non-premature
o = premature

o = heavy nodes

(b)

Figure 7: (a) An example snapshot of a parallel schedule for a simple dag. The shaded nodes (the set ofpptiasérbeen
executed, while the blank (white) nodes have not. Of the nodeg,ithe black nodes form the corresponding parallel prefix
while the remaining grey nodes are premature. (b) A possibtéipaing of nodes ins,, into heavy and light nodes. Each shaded
region denotes the set of nodes executed consecutively in depth-first order on a single prétesgsoF% or P,) between steals.

The heavy node in each region is shown shaded black.

deque. If the deque remains unchanged beifgre is exe-
cuted, property (2) holds trivially fot; 1. Otherwise, the
only change that may be made to the deque is the addition
of the right child ofu; beforeu;+ is executed, ifu; was

a fork with u;41 as its left child. In this case too, property
(2) holds, since the new node in the deque is right child of
some node irP.

. u;4+1 i added to the processor’'s deque afteis executed.
This may happen because was a fork and:; 1 was its
right child (see Figure 8), or because the processor exhauste
its memory quota. In the former case, sinGg; is the right
child of u;, nothing can be added to the deque befarg .
Inthe latter case (that is, the memory quota is exhausted be-
fore u;41 is executed), the only node that may be added to
the deque before;; is the right child ofu;, if u; is a fork.
This does not violate the lemma. Oneg.; is added to the
deque, it may either get executed on a processorwhen it be-
comes the topmost node in the deque, or it may get stolen.
If it gets executed without being stolen, properties (1) and
(2) hold, since no new nodes can be added belgw in
the deque. If it is stolen, the processor that steals and ex-
ecutes it has an empty deque, and therefore properties (1)
and (2) are true, and continue to hold untl.: has been
executed.

N
Recall that heavy nodes are a property of the parallel schedule,
while premature nodes are defined relative to a given prefix of
the parallel schedule. To prove the space bound, we first bound
thenumber of heavy premature nodesn arbitrary prefix-,

of s,.

Lemma 4.2 Lets, be any parallel prefix of @-schedule pro-
duced by algorithmDFDequeg) for a computation with
depth D, in which every action allocates at moAt space.
Then the expected number of heavy premature nodes ig
O(p - D). Further, for anye > 0, the number of heavy pre-
mature nodes i®(p - (D +1In(1/¢))) with probability at least
1—e.

Proof. Consider the start of any intervé) of o, for ¢ =
1,...,6 (we will look at the last interval s, separately). By

Lemma 3.1, all nodes in the deques to the lef:gé deque,

and all nodes abowvg; in its deque are non-premature. Lgt

be the number of nodes belaw in its deque. Because steals
target the firsp deques inR, heavy premature nodes can be
picked in any timestep from at mogtdeques. Further, every
time a heavy premature node is picked, the deque containing
u; must also be a candidate deque to be picked as a target for
a steal; that isy; must be among the leftmogtdeques. Con-
sider only the timesteps in whiaky is among the leftmogt
deques; we will refer to such timestepcasdidatetimesteps.
Because new deques may be created to the lef; @t any
time, the candidate timesteps need not be contiguous.

We now bound the total number of steal attempts that take
place during the candidate timesteps. Each such steal attempt
may result in the execution of a heavy premature node; steals
in all other timesteps result in the execution of heavy, but non-
premature nodes. Each timestep can have at mestal at-
tempts. Therefore, we can partition the candidate timesteps
into phasessuch that each phase has betwgpeand2p — 1
steal attempts. We call a phase in interabuccessfulf at
least one of it (p) steal attempts targets the deque contain-
ing u;. Let X;; be the random variable with value 1 if the
4™ phase in interval; is successful, and 0 otherwise. Be-
cause targets for steal attempts are chosen at random from the
leftmostp deques with uniform probability, andebause each
phase has at least steal attempts,

1 P
PriX,; =1 > 1—(1——)
p
> 1-1
€
1
> —
- 2

Thus, each phase succeeds with praligtgreater thant /2.
Because:; must get executed before or by the timg+ 1
successful steals target's deque, there can be at mast+ 1
successful phases in intervhl The nodeu; may get exe-
cuted before:; + 1 steal attempts target its deque, if its owner
processor executes off the top of the deque. Let there be
somen; < (z;+ 1) successful phases in the interéal From

deque

d |top
Ui+1
C

I : nodes along patlf® b
a | bottom

(b)

Figure 8: (a) A portion of the dynamically unfolding dag during the execution. Negdealong the pattP is ready, and is currently
presentin some deque. The deque is shown in (b); all nodes belawon the deque must be right children of some node&on
aboveu; 1. In this example, node;;: was the right child of:;, and was added to the deque when the forl;atias executed.

Subsequently, descendents of the left childpofe.g, noded), may be added to the deque abave; .

Lemma 4.1, the:; nodes below; are right children of nodes the expected number of successful phasesis atdeast D +
in P. There ardé — 1) < D nodes along’ not includingus, 4In(1/€). Using the Chernoff bound [32, Theorem 4.2] on
and each of them may have at most one right child. Further, the number of successful phases X, and setiing 6D +
each successful phase in any of the firgitervals results in at 8In(1/e), we gef
least one of these right children (or the current ready node on
P) being executed. Therefore, the total number of successful
phases in the first intervals isy"0_ n; < 2D.

Finally, consider the final phade... Let z be the ready
node at the start of the interval with the highest priority. Then, Therefore,
z & op, because otherwise(or some other node), and nat

PriX <p—af2] < exp [%]

would have been the last non-premature node to be executed —a’/4

in o,. Hence, ifz is about to be executed on a processor, Pr(X <3D)] < exp [12D + 81H(1/e)]
then intervalls4 ;1 is empty. Otherwise; must be at the top 5

of the leftmost deque at the start of interval,;. Using an — exp —a
argument similar to that of Lemma 4.1, we can show that the 4. (2a —8In(1/e))

nodes below: in the deque must be right children of nodes —a?/8a
along a path from the root ta Thus,z can have at mogtD — €
2) nodes below it. Becausemust be among the leftmogt

deques throughout the inten&l; 1, the phases in this interval

—a/8

(3]

o—(6D+481n(1/¢))/8

are formed from all its timesteps. We call a phasecessful o —8In(1/9)/8

in intervalIs1 if at least one of th®(p) steal attempts in the < €

phase targets the deque containingrhen this interval must = €

have less tha® successful phases. As before, the probability

of a phase being successful is at lelgist. Because there can be at madP successful phases, algo-
We have shown that the firgt < r timesteps of the par- rithm DFDequesrequires12D + 8In(1/¢) or more phases

allel executioni(e., the time within which nodes from,, are with probability at most. Recall that each phase consists of

executed) must have 3D successful phases. Each phase ©(p) steal attempts. Therefore, hasO(p - (D 4 1n(1/e)))

may result inO(p) heavy premature nodes being stolen and heavy premature nodes with prolilip at leastl — e. u

executed. Further, for = 1,...,4, in each interval/;, an- We can now state a lemma relating the number of heavy pre-

otherp — 1 heavy premature nodes may be executed in the mature nodes imr,, with the memory requirement af,.
same timestep that; is executed. Therefore, #, has a total

OI N phz]avses,Dthe nulgnber of Tﬁa\’y ?rematuret_node:@,itish Lemma 4.3 Let(be a dag with deptt, in which every node
atmost(N + D) - p. Because the entire execution must have allocates at mos# space, and for which the serial depth-

less thars [) successful phases, and each phase succeeds withy o o e cytion requires; space. Les, be thep-schedule of
probability> 1/2, the expected number of total phases before lengthT’ generated foiG7 by aIgorithnfDFDeque(sK). If for
we see3D successful phases is at médp. Tht_e_refore, the anyi such thatl < i < T, the prefixo, of s, representing
expected number of heavy premature nodes;ins at most ¢ computation after the firsttimesteps contains at most
6D+ D) -p=0O(p- D).
The high probabilithound can be proved as follows. Sup- "The probability of success for a phase is not necessarily independent of

pose the execution takes at lebsD 48 ln(l/e) phases. Then previous phases; however, because each phase succeeds with probability at least
1/2,independent of other phases, we can apply the Chernoff bound.

thread t cation of all the premature nodes cannot excesdn (X, S),
and the total space allocated across all processors &ftesteps
cannotexceed; + r - min(X, S,). Because this bound holds
for every prefix ofs,, it holds for the entire parallel execution.
The maximum number of active threads is at most the num-
ber of threads with premature nodes, plus the maximum num-
ber of active threads during a serial execution, whictDis
Assuming that each thread needs to allocate at least a unit
of space when it is forkede(g, to store its register state), at
mostmin(£, S1) threads with premature nodes can be forked
for each heavy premature node executed. Therefore, the total
number of active threads is at mds$t+ r - min(4,51). N
Note that each active thread requires at most a constant
amount of space to be stored by the scheduler (not including
stack space). We now extend the analysis to handle large allo-
Figure 9: An example scenario when a processor may not ex- cations.
ecute a contiguous subsequence of nodes between steals. The

shaded regions indicate the subset of nodes executed on eaclyandling large allocations of space We had assumed ear-
of the two processors;, and /.. Here, processaf. steals lier in this section that every node allocates at m@stinits
the thread and executes node It then forks a child thread of memory. Individual nodes that allocate more tHarspace
(containing node), puts thread on its deque, and starts exe- are handled as described in Section 3. The key idea is to delay
cuting the child. In the mean time, processbrsteals thread the big allocations, so that if threads with higher priorities be-
¢ from the deque belonging t8., and executes it until it sus- come ready, they will be executed instead. The solution is to
pends. Subsequentl¥, finished executing the child thread, insert before every allocation @t bytes (» > K), a binary
and wakes up the suspended pareand resumes execution fork tree of depttog(m/K), so thatm/K dummy threads
of ¢. The combined sets of nodes executed on both processorsare created at its leaves. Each of the dummy threads simply
forms a contiguous subsequence ofischedule. performs a no-op that takes one timestep, but the threads at

the leaves of the fork tree are treated as if it were allocating

) K space; a processor gives up its deque and performs a steal

heavy premature nodes, then the parallel space requirementof after executing each of these dummy threads. Therefore, by
sp is at mostSy + r - min(k, 51). Further, there are at most the time them /K dummy threads are executed, a processor
D +r - min(K, 51) active threads during the execution. may proceed with the allocation ef bytes without exceeding

our space bound. Recall that in our cost model, an allocation
Proof We can partitions,, into the set of non-premature of 1, bytes requires a depth 6f(log m); therefore, this trans-
nodes and the set of premature nodes. Since, byitiefin formation of the dag increases its depth by at most a constant
all non-premature nodes form some serial prefix of the factor. This transformation takes place at runtime, and the on-
1pF-schedule, their net memory allocation cannotexcg&ed |ine DFDequesalgorithm generates a schedule for this trans-
We now bound the net memory allocated by the premature formed dag. Therefore, the final bound on the space require-
nodes. Consider a steal that results in the execution of a heavyment of the generated schedule, using Lemmas 4.2 and 4.3, is
premature node on a processtr The nodes executed &, stated below.
until its next steal, cannot allocate more thAhspace. Be-
cause there are at mosheavy premature nodes executed, the Theorem 4.4 (Upper bound on space requirement)
total space allocated across all processors éfteresteps can- Consider a nested-parallel computation with depttand se-

not exceedb; + r - K. rial, depth-first space requiremeRt. Then, for anyK” > 0,

We can now obtain a tigher bound whé&nh > S;. Con- the expected value of the space required to execute the com-
sider the case when procesgtrsteals a thread and executes putation onp processors using algorithi@FDequegK), in-
a heavy premature node. The nodes execute@ppefore cluding the space required to store active threadsSis+

the next steal are all premature, and form a series of one or O(min(#, S1) - p - D). Further, for anye > 0, the proba-
more subsequences of therschedule. The intermediate bility that the computation require$; + O(min(X,51) - p -
nodes between these subsequences (in depth-first order) aré D +1In(1/¢))) space is at least — . n
executed on other processoesq, see Figure 9). These in- o o
termediate nodes occur when other processors steal threads We now show that the above space bound is tight (within
from the deque belonging t#., and finish excecuting the ~ constant factors) in the expected case, for algorifhRDe-
stolen threads beforg, finishes executing all the remaining qués
threads in its deque. Subsequently, witgrs deque becomes
empty, the thread executing df, may wake up its parent, Theorem 4.5 (Lower bound on space requirement)
so thatP, starts executing the parent without performing an- For anyS; > 0,p > 0, K > 0, andD > 24logp, there
other steal. Therefore, the set of nodes executeB:blyefore exists a nested parallel dag with a serial space requirement
the next steal, possibly along with premature nodes executedof S; and depthD, such that the expected space required
on other processors, form a continguous subsequence of theby algorithm DFDequegK) to execute it orp processors is
1bF-schedule. Q(S1 + min(K,51)-p- D).

Assuming thatthe netspace allocated during the-&chedule
can never be negative, this subsequence cannot allocate moréProof. Consider the dag shown in Figure 10. The black nodes
than.S; units of net memory. Therefore, the net memory allo- denote allocations, while the grey nodes denote deallocations.

The dag essentially has the a fork tree of ddpti{(p/2), at
the leaves of which exist subgrafh3he root nodes of these
subgraphs are labelled , uz, . . ., u, wheren = p/2. The
leftmost of these subgraphs,, shown in Figure 10 (b), con-
sists of a serial chain efnodes. The remaining subgraphs are
identical, have a depth @i 4+ 1, and are shown in Figure 10

Recall that: = p/2. (The case of < 4 can be easily han-
dled separately.) Lef; be the event that node; is not ex-
ecuted within the first 2log n timesteps. We have showed
thatPr[&,] < 2/3 - 1/n. Similarly, we can show that for
eachi = 1,...,n — 1, Pr[&] < 2/3 - 1/n. Therefore,
Pr{{J; &] < 2/3. Thus, fori = 1,...,n, all theu; nodes

(c). The amount of space allocated by each of the black nodesget executed within the firdf2 log n timesteps with probabil-

in these subgraphs is defined.4s= min(#, S1). Since we
are constructing a dag of depih, the value ofd is set such
that2d + 1 + 2log(p/2) = D. The space requirement of a
1bF-schedule for this dag iS; .

We now examine how algorith@FDeque$K’) would ex-

ity greater thart /3.

Each subgrapli’ hasd nodes at different depths that al-
locate memory; the first of these nodes cannot be executed
before timestegog n. Let ¢t be the first timestep at which
all the u; nodes have been executed. Then, at this timestep,

ecute such a dag. One processor starts executing the root nodethere are at leagt! + log » — t) nodes remaining in each sub-
and executes the left child of the current node at each timestep.graphG that allocateA bytes each, but have not yet been ex-

Thus, withinlog(p/2) = log n timesteps, it will have exe-
cuted node:;. Now consider node,,; it is guaranteed to be
executed oncéog n successful steals target the root thread.
(Recall that the right child of a forking node, that is, the next

ecuted. Similarly, node in sugraphG, will not be executed
before timestefd + log n), that is, anothe(d + logn —
t) timesteps after timestep Therefore, for the nextd +
logn — t) timesteps there are always— 1 = (p/2) — 1

node in the parent thread, must be executed either before ornon-empty deques (out of a total pideques) during the ex-
when the parent thread is next stolen.) Because there are al-ecution. Each time a thread is stolen from one of these de-

waysn = p/2 processors in this example that are idle and at-
tempt steals targetting deques at the start of every timestep,

the probabilityPs:..1 that a steal will target a particular deque

is given by

1 p/2
Psteal Z 1—- (1 - _)
P
> 1-—e /2
1
3

We call a timestep successfuif some node along the path
from the root tou,, gets executed; this happens when a steal
targets the deque containing that node. Thus, &ften suc-
cessful timesteps, node, must get executed; after that, we

ques, a black node (see Figure 10 (c)) is executed, and the
thread then suspends. Becaygé processors become idle
and attempt a steal at the start of each timestep, we can show
that in the expected case, at least a constant fraction of the
p/2 steals are successful in every timestep. Each successful
steal results inA = min(.S;, K) units of memory being al-
located. Consider the case wher= 12logn, Then, using
linearity of expectations, over the— 11 log n timesteps after
timestept, the expected value of the total space allocated is
S14+Q(A p-(d—11logn)) = S1 +Q(A-p- (D —logp)).
(D > 24log p ensures thatd — 11logn) > 0.)

We showed that with constant probability- (1/3), all the
u; nodes will be executed within the firsg log n timesteps.
Therefore, in the expected case, the space allocated (at some
point during the execution after all; nodes have been exe-
cuted) isQ2(.S1 + min(Sy, K) - (D — logp) - p). [|

can consider every subsequent timestep to be successful. Let

S be the number of successful timesteps in the fizcdbg n
timesteps. Then, the expected value is given by

E [S] Z 1210g n- Psteal

> 4dlogn

Using the Chernoff bound [32, Theorem 4.2] on the number of
successful timesteps, we have

Pr[S<(1—§)~E[5]] < exp[—(§)2~

2

E[S]]

Therefore,

Pr[S < log n]

IA

exp {— 2 log n}
8

9 lnn}

P [‘g'm

—1.621lnn

—0.62 l
n

<

Wl S

for p >4

8All logarithms denoted alog are to the base 2.

10

Corollary 4.6 (Lower bound using work stealing)

ForanyS; > 0,p > 0, andD > 24log p, there exists a
nested parallel dag with a serial space requirementpfind
depthD, such that the expected space required to execute it
using the space-efficientwork stealer from [9] @processors
isQ(S1 -p- D). [

The corollary follows from Theorem 4.5 and the fact that algo-
rithm DFDequedehaves like the space-efficientwork-stealing
scheduler forfk” = co. Blumofe and Leiserson [9] presented
an upper bound on space pf S; using randomized work
stealing. Their result is not inconsistent with the above corol-
lary, because their analysis allows only “stack-like” memory
allocatior?, which is more restricted than our model. For such
restricted dags, their space boungef, also applies directly

to DFDequeé>o). Our lower bound is also consistent with the
upper bound of: - S by Simpson and Burton [41], whereis

the maximum space requirement over all possible depth-first
schedules; in this examplg,= S, - D.

9Their model does not allow allocation of space on a global heap. An in-
struction in a thread may allocate stack space only if the thread cannot possibly
have a living child when the instruction is executed. The stack space allocated
by the thread must be freed when the thread terminates.

4\
|
|
—~
'S
2
|
8
|
|
Up
p/2
subgraphs
4\
|
|
—~
'S
&
()]
RS}
|
|
v
(a)
subgraph G :
4\
|
|
|
- |
+ |
S |
o~ !
subgraph Gy : < |
(o]
1 S S |
| |
o : . |
£ ! : }
o | I v
T
| - — = — — = -
v -S1 0 nodew d threads forked
(b) (c)

Figure 10: (a) The dag for which the existential lower bound holds. (b) and (c) present the details of the subgraphs shown in
(a). The black nodes denote allocations and grey nodes denote deallocations; the nodes are marked with the amount of memory
(de)allocated.

11

4.3 Time bound

We now prove the time bound required for a parallel computa-
tion using algorithmDFDequesThis time bound does not in-
clude the scheduling costs of maintaining the relative order of
the deques.g, inserting and deleting dequesR), or finding
them!” deque. Elsewhere [33], we describe how the scheduler
can be parallelized, and then prove the time bound including
these scheduling costs. We first assume that every action al-
locates at mosi space, for some constafit, and prove the
time bound. We then relax this assumption and provide the
modified time bound at the end of this subsection.

Lemma 4.7 Consider a parallel computation with worl”
and depthD, in which every action allocates at madstspace.
The expected time to execute this computationmmocessors
using theDFDequeK’) scheduling algorithm i€>(W/p +
D). Further, for anye > 0, the time required to execute the
computation isO(W/p + D + In(1/¢)) with probablity at
leastl — e.

Proof. Consider any timestepof the p-schedule; let:; be
the number of deques iR at timestep. We first classify each
timestep: into one of two types (A and B), depending on the
value ofr;. We then bound the total number of timestédps
andT7’s of types A and B, respectively.

Type A: n; > p. At the start of timestep, let there ber <

p steal attempts in this timestep. Then the remaining r
processors are busy executing nodes, that is, at jeast
nodes are executed in timesteg-urther, at mogt — r of the
leftmostp deques may be empty; the rest must have at least
one thread in them.

Let X, be the random variable with value 1 if th& non-
empty deque iR (from the left end) gets exactly one steal
request, and 0 otherwise. Théa[X;] = Pr[X; = 1] =
(r/p)- (1 —1/p)"~*. Let X be the random variable repre-
senting the total number of non-empty deques that get exactly
one steal request. Because there are at leash-empty de-
ques, the expected value &f (assuming thap > 2) is given
by

BE[X] > > ELX)
=1
r lr—l
= r.—.(1—-=
p(p)
r2 1
> —.(1==)P
i (p)
r? 1, 1
> — . (1==).=
> =)
7"2
- 2-p-e

Recall thatp — r nodes are executed by the busy processors.
Therefore, ifY is the random variable denoting the total num-
ber of nodes executed during this timestep, then

E[Y] > (p—r)+r2/26p
> pf2e
Therefore, E[p—Y] < p—p/2e
= p(1—1/2€)

12

The quantity(p — Y) must be non-negative; therefore, using
the Markov’s inequality [32, Theorem 3.2], we get

Pri(p=Y) > p(1 = 1/4e)] < i[{f . 3]
(-5)
<
T (%)
Therefore, Pr[Y < p/de] < %
thatis, Pr[Y > p/4e] > %

We will call each timestep of type Auccessfulf at least
p/4e nodes get executed during the timestep. Then the proba-
bility of the timestep being sicessfulis atleadt/10. Because
there aredV nodes in the entire computation, there can be at
most4e - W/p successful timesteps of type A. Therefore, the
expected value fdf'4 is at mosttOe - W/p.

The analysis of the high probabilityound is similar to
that for Lemma 4.2. Suppose the execution takes more than
80eW/p 4+ 401In(1/¢) timesteps of type A. Then the expected
numbei of successfultimesteps of type A is at le@stl /p+
4In(1/e). If Z is the random variable denoting the total num-
ber of successfultimesteps, then using the Chernoff bound [32,
Theorem 4.2], and setting= 40eW/p+401n(1/e), we get®

- (a/10)2]

Pr(Z < p—af10] < exp [
2p

Therefore,
Pr(Z < 4eW/p] < a7 /2001
Cl2
= P |7 500(a/5 — 4In(1/c))
Cl2
< -
= eXp[200 - a/5
— 6—(1/40
6—6W/p—1n(1/e)
< 6—1n(1/e)

€

We have shown that the execution will not complete even after
80eW/p + 401In(1/€) type A timesteps with probability at
moste. Thus, for any > 0, 74 = O(W/p + In(1/€)) with
probability at least — e.

Type B: n; < p. We now consider timesteps in which the
number of deques iR is less tharp. As with the proof of
Lemma 4.2, we split type B timesteps into phases such that
each phase has betwegmand2p — 1 steal attempts. We can
then use a potential function argument similar to the dedicated
machine case by Arora et al. [2]. Composing phases from only
type B timesteps (ignoring type A timesteps) retains the valid-
ity of their analysis. We briefly outline the proof here. Nodes
are assigned exponentially decreasing potentials starting from

19As with the proof of Lemma 4.2, we can use the Chernoff bound here be-
cause each timestep succeeds with probability at le&k0, even if the exact
probabilities of successes for timesteps are not independent.

the root downwards. Thus, a node at a deptti f assigned 5 Experiments with Pthreads
a potential 082(P~9 and in the timestep in which it is about _ S
to be executed on a processor, a weight®f~? . They We |mp_Iemented the scheduler as part of an existing Ilbra(y
show thatin any phase during which betwe@md2p—1 steal for Pos_lx standard threads or I_Dthreads [23]. _The library is
attempts occur, the total potential of the nodes in all the deques the native, user-level Pthreads library on Solaris 2.5 [38, 43].
drops by a constant factor with at least a constant probability. Pthreads on Solaris are multiplexed at the user level on top of
Since the potential at the start of the executiod®&~!, the kernel thre_ads, which act I_|ke virtual processors. The original
expected value of the total number of phase®i®). The scheduler in the Pthread library uses a FIFO queue. Our ex-
difference with our algorithm is that a processor may execute Periments were conducted on an 8 processor Enterprise 5000
anode, and then put up to 2 (instead of 1) children of the node SMP With 2GB main memory. Each processoris a 167 MHz
on the deque if it runs out of memory; however, this differ- UItraRSPARC with a 512 kB L2 cache.)
ence does not violate the basis of their arguments. Since each Having to support the general Pthreads functipare-
phase ha®(p) steal attempts, the expected number of steal vents even a use_r—level Pthreads implementation f_rom_ being
attempts during type B timestepsG§p D). Further, for any extremely Ilght\/_/elght. For exampl_e, a thread creation is two
¢ > 0, we can show that the total number of steal attempts orders of magnitude more expensive thar_l a nuII_functlon call
during timesteps of type B i9(p - (D +In(1/c))) with prob- on the UltraSPARC. Therefore, the user is required to create
ability at leastl — . Pthrea_ds that are coarse enough to amortize the cost of thread
Recall that in every timestep, each processor either exe- operations. _However, with a depth-first scheduler, threads at
cutes a steal attempt that fails, or executes a node from the dag!his granularity had to be coarsened further to get good parallel
Therefore, if N.cca1 is the total the number of steal attempts Performance [35]. We show that using algoritiiPDeques

during type B timesteps, théfs is at most(W + Natea1)/p. goo_d_ speedups can be achieved using Pthread_s without this
Therefore, the expected value s is O(W/p+ D), and for addltlonal coarsening. Thus, the user can now fix the thread
anye > 0, the number of timesteps@(W/p+ D +1In(1/e)) granularity to amortize thread operation costs, and expect to
with probability at least — e. get good parallel performance in both space and time.

The total number of timesteps in the entire execution is _The Pthreads model supports a binary fork and join mech-
Ta + Ts. Therefore, the expected number of timesteps in aN1SM- We modified memory allocation routinealloc and
the execution iSO(W/p + D). Further, combining the high free to keep track of the memory quota of the current pro-
probability bounds for timesteps of type A and B, (and using C€€ssor (or kernel thread) and to fork dummy threads before
the fact thatP(A U B) < P(A) 4+ P(B)), we can show that an _aIIocatlon if _requwed. _Our scheduler implementation is
for anye > 0, the total number of timesteps in the parallel & Simple extension of algorithi@FDequeshat supports the
execution iSO(W/p + D + In(1/¢)) with probability atleast full Pthreads functionality (including blockifgmutexes and

1_e. n condition variables) by maintaining additional entrieirior

To handle each large allocation of units (wherem > threads suspended on synchronizations. Our benchmarks are
K), recall that we addm/ K | dummy threads; the dummy predominantly nested parallel, and make limited use of mu-
threads are forked in a binary tree of defklog(m/K)). texes and condition variables. For example, the tree-building

Because we assume a depthlog m) for every allocation phase in Barnes-Hut uses mutexes to protect modifications to
of m bytes, this transformation of the dag increases its depth the tree’s cells. However, the Solaris Pthreads implementation
by at most a constant factor. §, is the total space allocated [tS€lf makes extensive use of blocking synchronization primi-
in the program (not counting the deallocations), the number of V€S such as Pthread mutexes and condition variables.
nodesin the transformed dag is at midé#- S, / K. Therefore, Since our execution platform is an SMP with a modest

using Lemma 4.7, the modified time bound is stated as follows, NUMber of processors, access to the ready threads was
serialized. R is implemented as a linked list of deques pro-

tected by a shared scheduler lock. We optimized the common
The expected time to execute a parallel computation With cases of pushing and popping threads onto a processors cur-

work, D depth, and total space allocatio, onp processors rent deque by minimizing locking time. A steal requires the
usingi algorithr’nDFDeque(sK) is O(W/p + Sa/pK + D). lock to be acquired more often and for a longer period of time.

Further, for anye > 0, the time required to execute the com- In_élhe ex:sting Pthrealsls in:ijemegtatiohn, it is ngt always h
P g - ; e possible to place a reawakenedthread on the same deque as the
g?lt:ggtq Iioe(W/p—i_S“/ph +D+In(1/e)) with probabity thread that wakes it up; therefore, ourimplementatioRBD-

equesi_s an approx_im_ation of the pseudocode in Figure 5. Fur-
In a system where every memory location allocated must be ther, since we serialize accessRq and support mutexes and
zeroed S, = O(W). The expected time bound therefore be- condition variables, setting the memory threshaldo infin-
comesO(W/p + D). This time bound, although asymptoti- ity does not produce the same schedule as the space-efficient

cally optimal [10], is not as low as the time boundi&/p + Work-stealing scheduler intended for_ fully strict
O(D) for work stealing [9]. computations [9]. Therefore, we can use this setting only as

arough approximatiomf a pure work-stealing scheduler.

We first list the benchmarks used in our experiments. Next,
we compare the space and time performance of the library’s
original scheduler (labelled “FIFO”) with an asynchronous,
depth-first scheduler [35] (labelled “ADF"), and the nB\#&D-

Theorem 4.8 (Upper bound on time requirement)

Trade-off between space, time, and scheduling granular-
ity. As the memory thresholdl is increased, the scheduling
granularity increases, since a processor can execute more in-
structions between steals. In addition, the number of dummy h ” .
threads added before large allocations decreases. However, th£queh$0h:dllé}ej (|\<':/1\l/3€||l|?d DFD Iz_ng a fixed value of the mem-
space requirement increases with Thus, adjusting the value 01 threshold’’. We also useDFDequego) as an approx-
of K" provides a trade-off between running time (or scheduling 11ywe yse the term “blocking” for synchronization that causes the calling
granularity), and space requirement. thread to block and suspend, rather than spin wait.

13

imation for a work-stealing scheduler (labelled “DFD-inf").
To study how the performance of the schedulers is affected by
thread granularity, we present results of the experiments at two
different thread granularities. Finally, we measure the trade-
off between running time, scheduling granularity, and space
for algorithm DFDequedy varying the value of the memory
threshold/™ for one of the benchmarks.

5.1 Parallel benchmarks

The benchmarks were either adapted from publicly available
coarse grained versions [19, 36, 42, 46], or written from scratch
using the lightweight threads model [35]. The parallelism in [0 Medium-Grain
both divide-and-conquer recursion and parallel loops was ex-
pressed as a binary tree of forks, with a separate Pthread cre-
ated for each recursive call. Thread granularity was adjusted
by serializing the recursion near the leafs. In the comparison
results in Section 5.2nediumgranularity refers to the thread 8
granularity that provides good parallel performance using the 6
depth-first scheduler [35]. Even at medium granularity, the 4
2
0

o N A O ©

B Fine-Grain FIFO ADF DFD
(a) Volume Rendering

number of threads significantly exceeds the number of proces-

sors; this allows simple coding and automatic load balancing,

while resulting in performance equivalent to hand-partitioned,

coarse-grained code using the depth-first scheduler 35§ FIFO ADF DFD FIFO ADF DFD

granularity refers to the finest thread granularity that allows the (b) Dense Matrix Multiply (c) Sparse Matrix Multiply

cost of thread operations in a single-processor execution to be

up to 5% of the serial execution tiffe The benchmarks are 8

volume rendering, dense matrix multiply, sparse matrix multi-

ply, Fast Fourier Transform, Fast Multipole Method, Barnes- 6

Hut, and a decision tree buildér Figure 11 lists the total 4
2
0

o N A O ©

number of threads expressed in each benchmark at both the
thread granularities.

o N A O ©

FIFO ADF DFD FIFO ADF DFD

5.2 Comparison results (d) Fast Fourier Transform (e) Fast Multipole Method

In all the comparison results, we use a memory threshold of
K = 50,000 bytes for “ADF” and “DFD''*. Each active
thread is allocated a minimum 8kB (1 page) stack. Therefore,
the space-efficient schedulers effectively conserve stack mem-
ory by creating fewer simultaneously active threads compared
to the original FIFO scheduler (see Figure 11). The FIFO
scheduler spends significant portions of time executing system
calls related to memory allocation for the thread stacks [35]; FIFO ADE DFD FIFO ADE DFD
this_ prgblem is aggravated when the threads are made fine (f) Barnes Hut (g) Decision Tree Builder
grained.

The 8-processor speedups for all the benchmarks at mediu
and fine thread granularities are shown in Figure 12. To con-
centrate on the effect of the scheduler, and to ignore the ef-

fect of increased thread overheads (up to 5% for all except . . .
dense matrix multiply) at the fine granularity, sgaps for D_FDeque$ at both medium and fine threaﬁ{ gran_uI%rltles,
each thread granularity are with respectto the single-processorVith & = 50,000 bytes. Performance of “DFD-inf" (or
multithreaded execution at that granularity. The shges show _DFDequesoo)), being very similar to that of D.FD '
that both the depth-first scheduler and the m#Dequesched- 1S _not shown here. Al benchmarks were compiled us-
uler outperform the library’s original FIFO scheduler. How- Ng cc -fast -xarch=v8plusa -xchip=ultra

ever, at the fine thread granularity, the new scheduler provides “t@rget=native -x04

better performance than the depth-first scheduler. This differ-

ence can be explained by the better locality and lower schedul-

ing contention experienced by algorithb-Deques

8
6
4
2
0

o N A O ©

n?:igure 12: Speedups on 8 processors with respect to single-
processor executions for the three schedulers (the original
“FIFO”, the depth-first “ADF”, and the new “DFD” or

2The exception was the dense matrix multiply, which we wrotefox n
blocks, where: is a power of two. Therefore, fine granularity involved reducing
the block size by a factor of 4, and increasing the number of threads by a factor
of 8, resulting in 10% additional overhead.

BDetails on the benchmarks can be found elsewhere [33].

141 the depth-first scheduler, the memory threshiglds the memory quota
assigned to each thread between thread preemptions[35].

14

Benchmark Input size Medium grained Fine grained
total | FIFO | ADF [DFD || total [FIFO | ADF | DFD
Vol. Rend. 2563 vol, 3752 img 1427 | 195 29 29 4499 | 436 | 36 37
Dense MM 1024 x 1024 doubles 4687 | 623 33 48 37491 | 3752 | 55 77
Sparse MVM | 30K nodes, 151K edges| 1263 54 31 31 5103 173 51 49
FFTW N =222 177 64 13 18 1777 510 30 33
FMM N =10K,5mplterms || 4500 | 1314 | 21 29 36676 | 2030 | 50 54
Barnes Hut | N = 100K, PImr model || 40893 | 1264 | 33 106 || 124767| 3570 | 42 120
Decision Tree 133,999 instances 3059 82 60 77 6995 194 | 138 | 149

Figure 11: Input sizes for each benchmark, total number of threads expressed in the program at medium and firigegramdar
max. number of simultaneously active threads created by each scheduler at both gjes)dtarx” = 50,000 bytes. “DFD-inf”
creates at most twice as many threads as “DFD” for Dense MM, and at most 15% more threads than “DFD” for the remaining

benchmarks.
T T T T T T
50 P i
> 40 b & SR TR RS
&
2 30 i
= 27 Cilk —-—
DFD -+--
10 - ADF = A
Input size -
0 L 1 L 1

1 2 3 45 6 7 8
PROCESSORS

Figure 13: Variation of the memory requirement with the num-
ber of processors for dense matrix multiply using three sched-
ulers: depth-first (“ADF"), DFDeques(“DFD”), and Cilk
(“Cilk™).

larity usingDFDeque$l). Each processor keeps track of the
number of times a thread from its own deque is scheduled, and
the number of times it has to perform a steal. The ratio of these
two counts, averaged over all the processors, is our approx-
imation of the scheduling granularity. The trade-off is best
illustrated in the dense matrix multiply benchmark, which al-
locates significant amounts of heap memory. Figure 15 shows
the resulting trade-off for this benchmark at the fine thread
granularity. As expected, both memory and scheduling gran-
ularity increase with/{', while running time reduces &s is
increased.

6 Simulating the schedulers

To compare algorithnDFDequeavith a work-stealing sched-

We measured the external (L2) cache miss rates for eachuler, we built a simple system that simulates the parallel execu-

benchmark using on-chip UltraSPARC performance counters.
Figure 1, which lists the results at the fine thread granularity,

tion of synthetic, nested-parallel, divide-and-conquer bench-
markg®. Our implementation simulates the execution of the

shows that our scheduler achieves relatively low cache miss space-efficientwork-stealing scheduler[9] (labeled “WS”), the

rates {.e., results in better locality).

space-efficient, asynchronousdepth-first scheduler[34] (“ADF"),

Three out of the seven benchmarks make significant use and our newDFDequesscheduler (labeled “DFD”).

of heap memory. For these benchmarks, we measured the

high water mark for heap memory allocation using the three
schedulers. Figure 14 shows that algoritbfDequegesults

in slightly higher heap memory requirement compared to the
depth-first scheduler, but still outperforms the original FIFO
scheduler.

Due to limited space, we present results for only one of
the synthetic benchmarks hé&tein which both the memory
requirement and the thread granularity decrease geometrically
down the recursion tree. A number of divide-and-conquer
programs exhibit such properties. Scheduling granularity was
measured as the average number of actions executed by a pro-

The Cilk runtime system [20] uses a provably space-efficientc€Ssor between two steals. Figure 16 shows that work stealing

work stealing algorithm to schedule thre&d$igure 13 com-
pares the space performance of Cilk with the depth-first and
DFDequesschedulers for the dense matrix multiply bench-
mark (at the fine thread granularity). The figure indicates that
DFDequegequires more memory than the depth-first sched-
uler, but less memory than Cilk. In particular, similar to the
depth-first scheduler, the memory requiremenDé&iDeques
increases slowly with the number of processors.

5.3 Measuring the tradeoff between space, time, and
scheduling granularity

We studied the effect of the size of memory threshilcn
the running time, memory requirement, and scheduling granu-

5Because Cilk requiregcc to compile the benchmarks (which results in
slower code for floating point operations compared to the nativeompiler
on UltraSPARCs), we do not show a direct comparison of running times or
speedups of Cilk benchmarks with our Pthreads-based system here.

15

results in high scheduling granularity and high space require-
ment, the depth first scheduler results in low scheduling gran-
ularity and low space requirement, whigFDequesallows
scheduling granularity to be traded with space requirement by
varying the memory threshold .

7 Summary and Discussion

Depth-first schedulers are space-efficient, but unlike work-
stealing schedulers, they require the user to explicitly increase
the thread granularity beyond what is required to amortize
basic thread costs. In contrast, algorittPfDequesauto-

matically increases the scheduling granularity by executing

1670 modelirregular applications, the space and time requirements of a thread
at each level of the recursion are selected uniformlyrdioa with the specified
mean.

Results for other benchmarksand a detailed description of the simulator can
be found elsewhere [33].

] Medium-Grain

FIFO

ADF

Il Fine-Grain

240
200
160
120
80
40
0

DFD DFD-inf

FIFO ADF

DFD DFD-inf

25

15

0.5
0

FIFO

ADF

DFD DFD-inf

(a) Dense Matrix Multiply (b) Fast Multipole Method (c) Decision Tree Builder

Figure 14: High water mark of heap memory allocation (in MB) on 8 processors for benchmarks involving dynamic memory
allocation & = 50,000 bytes for “ADF” and “DFD"), at both thread granularities. “DFD-inf” is our approximation of work

stealing usinddFDeque$x).

le+02 1e+04 1e+06

K (bytes)
(&) Running time

0
le+02 1e+04 1e+06

K (bytes)
(b) Memory Allocation

6 T T 80 F T T & T T T
& -
Sr —~ 0000®” = 20 0006°7]
~ @ 60| . b - 8 ¢
g 4F = R0 o4 3 15 B
2 = ' S I
o 3T § 40f 7 > 10 ; i
£ L € ; ;
[2 5] 8 !
s 20 - B < 5 —@Q%%%é .
1k [5)
(]
ol 1 1 1 1 1 1 1 1

0
le+02 1e+04 1e+06

K (bytes)
(c) Scheduling granularity

Figure 15: Trade-off between running time, memory allocation and scheduling granularity using algofbeguesas the
memory thresholds is varied, for the dense matrix multiply benchmark at fine thread granularity.

0.12 T T T T

T T T T
2 < 2000 %
S 01 [Y b Eay
2 o8k e] @ 1600 - e s .
] . R o-0-& X g)-’@/ DFD -¢--
6 % ; .
o 0061 g - g 1200 |-y ADE 4
£ & WS — £ 7 4
= 0.04 | / DFD -o-- o 5 J .
B 4 ADF -+ = 800§ A b
< 002 b i oA P
@ P T B
ot 1 1 1 ! 400 E L L 1 =
0 40 80 120 160 0 40 80 120 160
Memory Threshold K (KB) Memory Threshold (KB)
(a) Scheduling granularity (b) Memory

Figure 16: Simulation results for a divide-and-conquer benchmark with 15 levels of recursion running on 64 processors. The mem-
ory requirement and thread granularity decrease geometrically (by a factor of 2) down the recursion tree. Scheduling granularity is
shown as a percentage of the total work in the dag. “WS” is the space-efficient work-stealing scheduler, “ADF” is the space-efficient
depth-first scheduler, and “DFD” is our néW~Dequescheduler.

16

Medium-Grain Fine-Grain 8 -
- = of values of’ on smaller input sizes. Alternatively, it may be

6 possible for the system to keep statistics to dynamicallyset

to an appropriate value during the execution.
[L “ “ 0

FIFO ADF DFD Cilk

IN

N

Acknowledgements

Guy Blelloch, Robert Blumofe, and Bwolen Yang provided
valuable feedback on previous versions of this paper. We also

Figure 17: Speedups for the tree-building phase of Barnes thank Adam Kalai and Avrim Blum for useful discussions.

Hut (for 1M particles). The phase involves extensive use of

locks on cells of the tree to ensure mutual exclusion. The

Pthreads-based schedulers (all except Cilk) support blocking References

locks. “DFD” does not result in a large scheduling granular- [1] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The

ity due to frequent suspension of the threads on locks; there- performance implications of thread management alterna-

fore, its performance is similar to that of “ADF”". Cilk [20] tives for shared-memory multiprocessoRerformance

uses a pure work stealer and supports spitimgalocks. For Evaluation Reviewl7:49-60, May 1989

this benchmark, the single-processor execution time on Cilk is ' '

comparable with that on the Pthreads-based system. [2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In

neighboring, fine-grained threads on the same processor to ACM symp. Parallel Algorithms and Architectur@998.

yield good locdity and low scheduling contention. In the- . o

ory, for nested-parallel programs with a large amount of par- [3] F. Bellosa and M. Steckermeier. The performance impli-

allelism, algorithmDFDequeshas a lower space bound than cations of locality information usage in shared-memory

work-stealing schedulers. We showed that in practice, it re- multiprocessorsJ. Parallel and Distributed Computing

quires more memory than a depth-firstscheduler,andless mem- 37(1):113-121, August 1996.

ory than work stealingDFDequeslso allows the userto con- . . .

trol the trade-off between space requirement and running time [4] CS;bchlgl-lgf?i?:’ieE.t S:Ir?ggﬂl?ﬁngfl\gztrlgﬁéligrr:gvﬁt-h ':322‘;‘:0

(or scheduling granularity). Because algorit@Dequesal- nization variables. IProc. ACM Svmo. on Paraliel Al-

lows more deques than processors, it can be easily extended fithms and Ar Hit fur : 1%_5'3 1997

to support blocking synchronizations. For example, prelimi- 90 sa chitecturepages ’)

nary results on a benchmark which makes a significant use of [5] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipel-

locks, indicate thaDFDequesnith blocking locks results in stein, and M. Zagha. Implementation of a portable nested
better performance than a work stealer that uses spin-waiting data-,parallel languagd. Parallel and Distributed Com-
locks (see Figure 17). _ _ . puting 21(1):4—14, April 1994

Since Pthreads are not very lightweight, serializing access
to the set of ready thread® did not significantly affect the [6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Prov-
performance in our implementation. However, serial access ably efficient scheduling for languages with fine-grained
to R can become a bottleneck if threads are extremely fine parallelism. InProc. ACM symp. Parallel Algorithms
grained, and require frequent suspension due to memory allo- and Architecturespages 1-12, Santa Barbara, Califor-
cation or synchronization. To supportsuch threads, the schedul- nia, July 17-19, 1995.

ing operations (such as update®pneed to be parallelized [33].
[7] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,

Each processor ibFDequedreats its deque as a regular and K. H. Randall. An analysis of dag-consistent dis-
stack. Therefore, in a system that supports very lightweight tributed shared-memory algorithms. Pmoc. ACM Sym-
threads, the algorithm should benefit from stack-based opti- posium on Parallel Algorithms and Architecturgmges
mizations such as lazy thread creation [21, 31]; these meth- 297-308, June 1996.

ods avoid allocating resources for a thread unless it is stolen,

thereby making most thread creations nearly as cheap as func- [8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leis-
erson, K. H. Randall, and Y. Zhou. Cilk: An efficient

tion calls. .) -
Increasing scheduling granularity typically serves to en- multithreaded runtime systeml. Par. and Distr. Com-
hance data locality on SMPs with limited-size, hardware- puting 37(1):55-69, August 1996.

coherent caches. However, on distributed memory machines [9]
(or software-coherent clusters), executing threads where the
data permanently resides becomes important. A multi-level
scheduling strategy may allow the thread implementation to
scale to clusters of SMPs. For example, DEDequesal- [10] R. P. Brent. The parallel evaluation of general arithmetic

gorithm could be deployed within a single SMP, while some expressions). ACM 21(2):201-206, April 1974.
scheme based on data affinity is used across SMPs. ’

An open question is how to automatically find the appro- [11] F. W. Burton and M. R. Sleep. Executing functional pro-

R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing.Aroc. Symp.
Foundations of Computer Sciengages 356—368,1994.

priate value of the memory threshald, which may depend on grams on a virtual tree of processorsPimc. ACM Conf.
the benchmark, and on the thread implementation. One pos- on Functional Programming Languages and Computer
sible solution is for the user (or the runtime system) to/Set Architecture pages 187-194, 1981.

to an appropriate value after running the program for a range

17

[12] R. Chandra, A. Gupta, and J. L. Hennessy. Data local- [27] E. P. Markatos and T. J. LeBlanc.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

ity and load balancing in COOL. IRroc. ACM symp.
Principles & Practice of Parallel Programmingpages
239-259, 1993.

K. M. Chandy and C. Kesselman. Compositional c++:
compositional parallel programming. Rroc. Intl. Wk-
shp. on Languages and Compilers for Parallel Comput-
ing, pages 124-144, New Haven, CT, August 1992.

S. A. Cook. A taxonomy of problems with fast parallel
algorithms.Information and Contrql64:2—-22, 1985.

T. H. Cormen, C. E. Leiserson, and R. L. Rivedh-
troduction to algorithms MIT Press and McGraw-Hill
Book Company, 6th edition, 1992.

D. E. Culler and G. Arvind. Resource requirements of
dataflow programs. IfProc. Intl. Symp. on Computer
Architecture pages 141-151, 1988.

D. R. Engler, G. R. Andrews, and D. K. Lowenthal. Fila-
ments: Efficient support for fine-grain parallelism. Tech-
nical Report 93-13, University of Arizona. Dept. of Com-
puter Science, 1993.

R. Feldmann, P. Mysliwietz, and B. Monien. Studying
overheads in massively parallel min/max-tree evaluation
(extended abstract). IACM Symp. Parallel Algorithms
and Architecturegpages 94-103, 1994.

M. Frigo and S. G. Johnson. The fastest fourier trans-
form in the west. Technical Report MIT-LCS-TR-728,
Massachusetts Institute of Tewlogy, September 1997.

M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreadeddguage. IrProc.
ACM Conf. on Programming Language Design and Im-
plementationpages 212—223, 1998.

S. C. Goldstein, K. E. Schauser, and D. E. Culler. En-
abling primitives for compiling parallel fguages. In
Workshop on Languages, Compilers, and Run-Time Sys-
tems for Scalable Computeiday 1995.

High Performance Fortran Forum. High performance
fortran language specification vertion 1.0, 1993.

IEEE. Information Technology—Portable Operating Sys-
tem Interface (POSIX)—Part 1: System Application: Pro-
gram Interface (API) [C Language]. IEEE/ANSI Std
1003.1, 1996 Eition.

V. Karamcheti, J. Plevyak, and A. A. Chien. Runtime
mechanisms for efficient dynamic fithreading.J. Par-
allel and Distributed Computing37(1):21-40, August
1996.

R. Karp and Y. Zhang. A randomized parallel branch-
and-bound procedure. IRroc. Symp. Theory of Com-
puting, pages 290-300, 1988.

D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T:
A High-Performance Parallel Lisp. IRroc. Program-
ming Language Design and Implementatidortland,
Oregon, June 21-23, 1989.

18

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Locality-based
scheduling in shared-memory multiprocessors. Tech-
nical Report 94, Inst for ICS-FORTH, Heraklio, Crete,

Greec, 1993.

Evangelos Markatos and Thomas LeBlanc. Locality-
based scheduling in shared-memory multiprocessors.
Technical Report TR93-0094, ICS-FORTH, Heraklio,

Crete, Greece, 1993.

P.H. Mills, L. S. Nyland, J. F. Prins, J. H. Reif, and R. A.
Wagner. Prototyping parallel and distributed programs
in Proteus. Technical Report UNC-CH TR90-041, Com-
puter Science Department, University of North Carolina,
1990.

T. Miyazaki, C. Sakamoto, M. Kuwayama, L. Saisho,
and A. Fukuda. Parallel pthread library (PPL): user-level
thread library with parallelism and portability. Froc.
Intl. Computer Software and Applications Conf. (COMP-
SAC) pages 301-306, November 1994.

E. Mohr, D. Kranz, and R. Halstead. Lazy task creation:
Atechnique for increasing the granularity of parallel pro-
grams.|[EEE Trans. on Parallel and Distributed Systems
1990.

R. Motwani and P. RaghavafRandomized Algorithms
Cambridge University Press, Cambridge, England, June
1995.

G. J. Narlikar. Space-Efficient Scheduling for Parallel,
Multithreaded Computation®hD thesis, Carnegie Mel-
lon University, 1999. Available as CMU-CS-99-119.

G. J. Narlikar and G. E. Blelloch. Space-efficientimple-
mentation of nested parallelism. froc. ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming
pages 25-36, June 1997.

G. J. Narlikar and G. E. Blelloch. Pthreads for dynamic
and irregular parallelism. IProc. of Supercomputing
98, November 1998.

D. O'Hallaron. Spark98: Sparse matrix kernels for
shared memory and message passing systems. Technical
Report CMU-CS-97-178, School of Computer Science,
Carnegie Mellon University, 1997.

J. Philbin, J. E., O.J. Anshus, and C. C. Douglas. Thread
scheduling for cache lotigy. In Intl. Conf. Architec-
tural Support for Programming Languages and Operat-
ing Systemspages 60-71, 1996.

M. L. Powell, S. R. Kleiman, S. Barton, D. Shah,
D. Stein, and M. Weeks. SunOS multi-thread archi-
tecture. InProc. Winter 1991 USENIX Technical Con-
ference and Exhibitionpages 65—80, Dallas, TX, USA,

January 1991.

Jr. R. H. Halstead. Multilisp: A laguage for concur-
rent symbolic computation ACM Trans. on Program-
ming Languages and System&t):501-538, 1985.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. A. Ruggiero and J. Sargeant. Control of parallelism
in the manchester dataflow machine. In G. Kahn, edi-
tor, Functional Programming Languages and Computer
Architecture pages 1-16. Springer-Verlag, Berlin, DE,
1987.

D. J. Simpson and F. W. Burton. Space efficient execu-
tion of deterministic parallel programdEEE Transac-
tions on Software Engineering5(3), May/June 1999.

J. P. Singh, A. Gupta, and M. Levoy. Parallel visualiza-
tion algorithms: Performance and architectural implica-
tions. IEEE Computer27(7):45-55, July 1994.

D. Stein and D. Shah. Implementing lightweight threads.
In Proc. Summer 1992 USENIX Technical Conference
and Exhibition pages 1-10, San Antonio, TX, 1992.
USENIX.

M. T. Vandevoorde and E. S. Roberts. WorkCrews: an
abstraction for controlling parallelismintl. J. Parallel
Programming 17(4):347-366, August 1988.

B. Weissman. Performance counters and state sharing
annotations: a unified approach to thread lingan Intl.

Conf. on Architectural Support for Programming Lan-
guages and Operating Systerpages 262—-273, October
1998.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characteriation and method-
ological considerations. IRroc. Intl. Symp. Computer
Architecture pages 24-37, June 1995.

19

