
Scheduling Threads for Low Space Requirement and
Good Locality

Girija J. Narlikar
May 1999

CMU-CS-99-121

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This technical report is an extended version of a paper that appears in the proceedings of the
Eleventh ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 1999.

This research is supported by ARPA Contract No. DABT63-96-C-0071. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright notation thereon. Views and conclusions contained in
this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied,
of ARPA or the U.S. Government.

Abstract

The running time and memory requirement of a parallel program with dynamic, lightweight threads depends
heavily on the underlying thread scheduler. In this paper, we present a simple, asynchronous, space-efficient
scheduling algorithm for shared memory machines that combines the low scheduling overheads and good
locality of work stealing with the low space requirements of depth-first schedulers. For a nested-parallel
program with depthD and serial space requirementS

1
, we show that the expected space requirement is

S
1
+O(K � p �D) onp processors. Here,K is a user-adjustable runtime parameter, which provides a trade-

off between running time and space requirement. Our algorithm achieves good locality and low scheduling
overheads by automatically increasing the granularity of the work scheduled on each processor.

We have implemented the new scheduling algorithm in the context of a native, user-level implementation
of Posix standard threads or Pthreads, and evaluated its performance using a set of C-based benchmarks
that have dynamic or irregular parallelism. We compare the performance of our scheduler with that of two
previous schedulers: the thread library’s original scheduler (which uses a FIFO queue), and a provably
space-efficient depth-first scheduler. At a fine thread granularity, our scheduler outperforms both these
previous schedulers, but requires marginally more memory than the depth-first scheduler.

We also present simulation results on synthetic benchmarks to compare our scheduler with space-efficient
versions of both a work-stealing scheduler and a depth-first scheduler. The results indicate that unlike these
previous approaches, the new algorithm covers a range of scheduling granularities and space requirements,
and allows the user to trade the space requirement of a program with the scheduling granularity.

Keywords: Multithreading, space efficiency, work stealing,dynamic scheduling, nested parallelism, dynamic dags.

1 Introduction

Many parallel programming languages allow the expression
of dynamic, lightweight threads. These include data paral-
lel languages like HPF [22] or Nesl [5] (where the sequence
of instructions executed over individual data elements are the
“threads”), dataflow languages like ID [16], control-parallel
languages with fork-join constructs like Cilk [20], CC++ [13],
and Proteus [29], languages with futures like Multilisp [39],
and various user-level thread libraries [3, 17, 30, 43]. In the
lightweight threads model, the programmer simply expresses
all the parallelism in the program, while the language imple-
mentation performs the task of scheduling the threads onto the
processors at runtime. Thus the advantages of lightweight,
user-level threads include the ease of programming, automatic
load balancing, architecture-independent code that can adapt
to a varying number of processors, and the flexibility to use
kernel-independent thread schedulers.

Programs with irregular and dynamic parallelism benefit
most from the use of lightweight threads. Compile-time anal-
ysis of such computations to partition and map the threads onto
processors is generally not possible. Therefore, the programs
depend heavily on the implementation of the runtime system
for good performance. In particular,

1. To allow the expression of a large number of threads, the
runtime system must provide fast thread operations such as
creation, deletion and synchronization.

2. The thread scheduler must incur low overheads while dy-
namically balancing the load across all the processors.

3. The scheduling algorithm must be space efficient, that is, it
must not create too many simultaneously active threads, or
schedule them in an order that results in high memory al-
location. A smaller memory footprint results in fewer page
and TLB misses. This is particularly important for parallel
programs, since they are typically used to solve large prob-
lems, and are often limited by the amount of memory avail-
able on a parallel machine. Existing commercial thread
systems, however, can lead to poor space and time perfor-
mance for multithreaded parallel programs, if the scheduler
is not designed to be space efficient [35].

4. Today’s hardware-coherentshared memory multiprocessors
(SMPs) typically have a large off-chip data cache for each
processor, with a latency significantly lower that the latency
to main memory. Therefore, the thread scheduler must
also schedule threads for good cache locality. The most
common heuristic to obtain good locality for fine grained
threads on multiprocessors is to schedule threads close in
the computation graph (e.g., a parent thread along with its
child threads) on the same processor, since they typically
share common data [1, 9, 25, 27, 31, 39].

Work stealing is a runtime scheduling mechanism that can
provide a fair combination of the above requirements. Each
processor maintains its own queue of ready threads; a pro-
cessor steals a thread from another processor’s ready queue
only when it runs out of ready threads in its own queue. Since
thread creation and scheduling are typically local operations,
they incur low overhead and contention. Further, threads close
together in the computation graph are often scheduled on the
same processor, resulting ingood locality. Several systems
have used work stealing to provide high performance [11, 17,
18, 20, 26, 39, 42, 44]. When each processor treats its own

ready queue as a LIFO stack (that is, adds or removes threads
from the top of the stack) and steals from the bottom of another
processor’s stack, the scheduler successfully throttles the ex-
cess parallelism [8, 39, 41, 44]. For fully strict computations,
such a mechanism was proved to requirep � S1 space onp
processors, whereS1 is the serial, depth-first space require-
ment [9]. A computation withW work (total number of oper-
ations) andD depth (length of the critical path) was shown to
requireW=p+O(D) time onp processors [9]. We will hence-
forth refer to such schedulers aswork-stealingschedulers.

Recent work [6, 34] has resulted indepth-firstschedul-
ing algorithms that requireS1 + O(p � D) space for nested-
parallel computations with depthD. For programs that have
a low depth (a high degree of parallelism), such as all pro-
grams in the classNC [14], the space bound ofS1 + O(p �
D) is asymptotically lower than the work stealing bound of
p � S1. Further, the depth-first approach allows a more gen-
eral memory allocation model compared to the stack-based al-
locations assumed in space-efficient work stealing [6]. The
depth-first approach has been extended to handle computa-
tions with futures [39] or I-structures [16], resulting in similar
space bounds [4]. Experiments showed that an asynchronous,
depth-first scheduler often results in lower space requirement
in practice, compared to a work-stealing scheduler [34]. How-
ever, since depth-first schedulers use a globally ordered queue,
they do not provide some of the practical advantages enjoyed
by work-stealing schedulers. When the threads expressed by
the user are fine grained, the performance may suffer due to
poor locality and high scheduling contention (i.e., contention
over shared data structures while scheduling) [35]. Therefore,
even if basic thread operations are cheap, the threads have to
be coarsened for depth-first schedulers to provide good perfor-
mance in practice.

In this paper, we present a new scheduling algorithm for
implementing multithreaded languages on shared memory ma-
chines. The algorithm, calledDFDeques1, provides a compro-
mise between previous work-stealing and depth-first sched-
ulers. Ready threads inDFDequesare organized in multiple
ready queues, that are globally ordered as in depth-first sched-
ulers. The ready queues are treated as LIFO stacks similar to
previous work-stealing schedulers. A processor steals from
a ready queue chosen randomly from a set of high-priority
queues. For nested-parallel (or fully strict) computations, our
algorithm guarantees an expected space bound ofS1+O(K�p�
D). Here,K is a user-adjustable runtime parameter called the
memory threshold, which specifies the net amount of memory
a processor may allocate between consecutive steals. SinceK
is typically fixed to be a small, constant amount of memory,
the space bound reduces toS1 +O(D � p), as with depth-first
schedulers. For a simplistic cost model, we show that the ex-
pected running time isO(W=p +D) onp processors2.

We refer to the total number of instructions executed in a
thread as the thread’sgranularity. We also (informally) de-
fine scheduling granularityto be the average number of in-
structions executed consecutively on a single processor, from
threads close together in the computation graph. Thus, a larger
scheduling granularity typically implies better locality and

1DFDequesstands for “depth-first deques”.
2When the scheduler inDFDequesis parallelized, the costs of all scheduling

operations can be accounted for with a more realistic model [33]. Then, in the
expected case, the parallel computation can be executed usingS1 + O(D � p �
logp) space andO(W=p+D � logp) time (including scheduling overheads).
However, for brevity, we omit a description and analysis of such a parallelized
scheduler.

1

lower scheduling contention. In theDFDequesscheduler,when
a processor finds its ready queue empty, it steals a thread from
the bottomof another ready queue. This thread is typically
the coarsest thread in the queue, resulting in a larger schedul-
ing granularity compared to depth first schedulers. Although
we do not analytically prove this claim, we present experi-
mental and simulation results to verify it. Adjusting the mem-
ory thresholdK in theDFDequesalgorithm provides a user-
controllable trade-off between scheduling granularity and
space requirement.

Posix threads or Pthreads have recently become a popu-
lar standard for shared memory parallel programming. We
therefore added theDFDequesscheduling algorithm to a na-
tive, user-level Pthreads library [43]. Despite being one of
the fastest user-level implementations of Pthreads today, the li-
brary’s scheduler does not efficiently support fine-grained, dy-
namic threads. In previous work [35], we showed how its per-
formance can be improved using a space-efficient depth-first
scheduler. In this paper, we compare the space and time per-
formance of the newDFDequesscheduler with the library’s
original scheduler (which uses a FIFO scheduling queue), and
with our previous implementation of a depth-first scheduler.
To perform the experimental comparison, we used7 parallel
benchmarks written with a large number ofdynamically cre-
ated Pthreads. As shown in Figure 1, the newDFDeques
scheduler results in better locality and higher speedups com-
pared to both the depth-first scheduler and the FIFO scheduler.

Ideally, we would also like to compare our Pthreads-based
implementation ofDFDequeswith a space-efficientwork-steal-
ing scheduler (e.g., the scheduler used in Cilk [8]). However,
supporting the general Pthreads functionality with an exist-
ing space-efficient work-stealing scheduler [8] would require
significant modifications to both the scheduling algorithm and
the Pthreads implementation3. Therefore, to compare our new
scheduler to this work-stealing scheduler, we instead built a
simple simulator that implements synthetic, fully-strict bench-
marks. Our simulation results indicate that by adjusting the
memory threshold, our new scheduler covers a wide range
of space requirements and scheduling granularities. At one
extreme it performs similar to a depth-first scheduler, with
low space requirement and small scheduling granularity. At
the other extreme, it behaves exactly like the work-stealing
scheduler, with higher space requirement and larger schedul-
ing granularity.

2 Background and Previous Work

A parallel computation can be represented by a directed acyclic
graph; we will refer to such a computation graph as adag in
the remainder of this paper. Each node in the dag represents
a singleaction in a thread; an action is a unit of work that re-
quires a single timestep to be executed. Each edge in the dag
represents a dependence between two actions. Figure 2 shows
such an example dag for a simple parallel computation. The
dashed, right-to-leftfork edges in the figure represent the fork
of a child thread. The dashed, left-to-rightsynchedges repre-
sent a join between a parent and child thread, while each solid
verticalcontinueedge represents a sequential dependence be-
tween a pair of consecutive actions within a single thread. For

3Even fully strict Pthreads benchmarks cannot be executed using such a
work-stealing scheduler in the existing Solaris Pthreads implementation, be-
cause the Pthreads implementation itself makes extensive use of blocking syn-
chronization primitives such as Pthread mutexes and condition variables.

t0

t2

t4

t1

t5

root thread

t3

Figure 2: An example dag for a parallel computation; the
threads are shown shaded. Each right-to-left edge represents
a fork, and each left-to-right edge represents a synchroniza-
tion of a child thread with its parent. Vertical edges represent
sequential dependencies within threads.t0 is the initial (root)
thread, which forks child threadst1, t2, t3, andt4 in that order.
Child threads may fork threads themselves;e.g., t2 forks t5.

computations with dynamic parallelism, the dag is revealed
and scheduled onto the processors at runtime.

2.1 Scheduling for locality

Detection of data accesses or data sharing patterns among
threads in a dynamic and irregular computation is often be-
yond the scope of the compiler. Further, today’s hardware-
coherent SMPs do not allow explicit, software-controlled place-
ment of data in processor caches; therefore, owner-compute
optimizations for locality that arepopular on distributed mem-
ory machines typically do not apply to SMPs. However, in
many parallel programs with fine-grained threads, the threads
close together in the computation’s dag often access the same
data. For example, in a divide-and-conquer computation (such
as quicksort) where a new thread is forked for each recur-
sive call, a thread shares data with all its descendent threads.
Therefore, many parallel implementations of lightweight
threads use per-processor data structures to store ready
threads [17, 20, 24, 25, 39, 42, 44]. Threads created on a pro-
cessor are stored locally and moved only when required to bal-
ance the load. This technique effectively increases scheduling
granularity, and therefore provides good locality [7] and low
scheduling contention.

Another approach for obtaining good locality is to allow
the user to supply hints to the scheduler regarding the data ac-
cess patterns of the threads [12, 28, 37, 45]. However, such
hints can be cumbersome for the user to provide in complex
programs, and are often specific to a certain language or li-
brary interface. Therefore, ourDFDequesalgorithm instead
uses the heuristic of scheduling threads close in the dag on the
same processor to obtain good locality.

2.2 Scheduling for space-efficiency

The thread scheduler plays a significant role in controlling the
amount of active parallelism in a fine-grained computation.
For example, consider a single-processor execution of the dag
in Figure 2. If the scheduler uses a LIFO stack to store ready
threads, and a child thread preempts its parent as soon as it
is forked, the nodes are executed in a (left-to-right) depth-first
order, resulting in at most 5 simultaneously active threads. In

2

Benchmark Max threads L2 Cache miss rate 8 processor speedup
FIFO ADF DFD FIFO ADF DFD FIFO ADF DFD

Vol. Rend. 436 36 37 4.2 3.0 1.8 5.39 5.99 6.96

Dense MM 3752 55 77 24.0 13 8.7 0.22 3.78 5.82
Sparse MVM 173 51 49 13.8 13.7 13.7 3.59 5.04 6.29

FFTW 510 30 33 14.6 16.4 14.4 6.02 5.96 6.38
FMM 2030 50 54 14.0 2.1 1.0 1.64 7.03 7.47

Barnes Hut 3570 42 120 19.0 3.9 2.9 0.64 6.26 6.97
Decision Tr. 194 138 149 5.8 4.9 4.6 4.83 4.85 5.39

Figure 1: Summary of experimental results with the Solaris Pthreads library. For each scheduling technique, we show the maximum
number of simultaneously active threads (each of which requires min. 8kB stack space), the L2 cache misses rates (%), and the
speedups on an 8-processor Enterprise 5000 SMP. “FIFO” is the original Pthreads scheduler, “ADF” is an asynchronous, depth-first
scheduler [35], and “DFD” is our newDFDequesscheduler.

contrast, if the scheduler uses a FIFO queue, the threads are
executed in a breadth-first order, resulting in all 16 threads be-
ing simultaneously active. Systems that support fine-grained,
dynamic parallelism can suffer from such a creation of excess
parallelism.

Initial attempts to control the active parallelism were based
on heuristics [3, 16, 31, 40, 39], which included work stealing
techniques [31, 39]. Heuristic attempts work well for some
programs, but do not guarantee an upper bound on the space
requirements of a program. More recently, two different tech-
niques have been shown to be provably space-efficient: work-
stealing schedulers, and depth-first schedulers.

In addition to being space efficient [8, 41], work stealing
can often result in large scheduling granularities, by allowing
idle processors to steal threads higher up in the dag (e.g., see
Figure 3(a)). Several systems use such an approach to obtain
good parallel performance [8, 17, 26, 39, 44].

Depth-first schedulers guarantee an upper bound on the
space requirement of a parallel computation by prioritizing
its threads according to their serial, depth-first execution or-
der [6, 34]. In a recent paper [35], we showed that the per-
formance of a commercial Pthreads implementation could be
improved for predominantly nested-parallel benchmarks using
a depth-first scheduler. However, depth-first schedulers can re-
sult in high scheduling contention and poor locality when the
threads in the program are very fine grained [34, 35] (see Fig-
ure 3).

The next section describes a new scheduling algorithm that
combines ideas from the above two space-efficientapproaches.

3 The DFDeques Scheduling Algorithm

We first describe the programming model for the multithreaded
computations that are executed by theDFDequesscheduling
algorithm. We then list the data structures used by the sched-
uler, followed by a description of theDFDequesscheduling
algorithm.

3.1 Programming model

As with depth-first schedulers, our scheduling algorithm ap-
plies to pure,nested-parallelcomputations, which can be mod-
eled by series-parallel dags [6]. Nested-parallel computations
are equivalent to the subset of fully strict computations sup-
ported by Cilk’s space-efficient work-stealing scheduler [8,

(a)

P3 P2 P1 P0

(b)

P1P2 P0P3

Figure 3: Possible mappings of threads of the dag in Figure 2
onto processorsP0; : : : ; P3 by (a) work-stealing schedulers,
and (b) depth-first schedulers. If, say, theith thread (going
from left to right) accesses theith block or element of an ar-
ray, then scheduling consecutive threads on the same processor
provides better cache locality and lower scheduling overheads.

20]. Nested parallelism can be used to express a large variety
of parallel programs, including recursive, divide-and-conquer
programs and programs with nested-parallel loops. Our model
assumes binary forks and joins; the example dag in Figure 2
represents such a nested-parallel computation.

Although we describe and analyze our algorithm for nested-
parallel computations, in practice it can be extended to exe-
cute programs with other styles of parallelism. For example,
the Pthreads scheduler described in Section 5 supports com-
putations with arbitrary synchronizations,such as mutexes and
condition variables. However, our analytical spacebound does
not apply to such general computations.

A thread isactiveif it has been created but has not yet ter-

3

8
5

11

7
9

10

1

3

2
6

4

Figure 4: The serial, depth-first execution order for a nested-
parallel computation. Theith node executed is labelledi in
this dag; the lower the label of a thread’s current node (action),
the higher is its priority inDFDeques.

minated. A parent thread waiting to synchronize with a child
thread is said to besuspended. We say an active thread is
readyto be scheduled if it is not suspended, and is not cur-
rently being executed by a processor. Each action in a thread
may allocate an arbitrary amount of space on the thread stack,
or on the shared heap.

Every nested-parallel computation has a natural serial exe-
cution order, which we call itsdepth-first order. When a child
thread is forked, it is executed before its parent in a depth-
first execution (e.g., see Figure 4). Thus, the depth-first or-
der is identical to the unique serial execution order for any
stack-based language (such as C), when the thread forks are
replaced by simple function calls. AlgorithmDFDequespri-
oritizes ready threads according to their serial, depth-first ex-
ecution order; an earlier serial execution order translates to a
higher priority.

3.2 Scheduling data structures

Although the dag for a computation is revealed as the execu-
tion proceeds, dynamically maintaining the relative thread pri-
orities for nested-parallel computations is straightforward [6]
and inexpensive in practice [34]. In algorithmDFDeques,
the ready threads are stored in doubly-ended queues orde-
ques[15]. Each of these deques supports popping from and
pushing onto its top, as well as popping from the bottom of the
deque. At any time during the execution, a processorownsat
most one deque, and executes threads from it. A single deque
has at most one owner at any time. However, unlike traditional
work stealing, the number of deques may exceed the number
of processors. All the deques are arranged in a global listR of
deques. The list supports adding of a new deque to the imme-
diate right of another deque, deletion of a deque, and finding
themth dequeue from the left end ofR.

3.3 The DFDeques scheduling algorithm

The processors execute the code in Figure 5 for algorithm
DFDeques(K); hereK is thememory threshold, a user-defined
runtime parameter. Each processor treats its own deque as
a regular LIFO stack, and is assigned a memory quota ofK
bytes from which to allocate heap and stack data. This mem-
ory thresholdK is equivalent to the per-thread memory quota
in depth-first schedulers [34]; however, in algorithmDFDe-
ques, the memory quota ofK bytes can be used by a proces-
sor to execute multiple threads from one deque. A thread exe-
cutes without preemption on a processor until it forks a child
thread, suspends waiting for a child to terminate, terminates,
or the processor runs out of its memory quota. If a terminating
thread wakes up its previously suspended parent, the processor

while (9 threads)
if (currS= NULL) currS:= steal();
if (currT = NULL) currT := pop from top(currS);
executecurrTuntil it forks, suspends, terminates,

or memory quota exhausted:
case(fork):

pushto top(currT, currS);
currT := newly forked child thread;

case(suspend):
currT := NULL;

case(memory quota exhausted):
pushto top(currT, currS);
currT := NULL;
currS:= NULL; /� give up stack�/

case(terminate):
if currTwakes up suspended parentT 0

currT := T 0;
elsecurrT := NULL;

if ((is empty(currS)) and (currT= NULL))
currS:= NULL; /� give up and delete stack�/

endwhile

proceduresteal():
set memory quota to K;
while (TRUE)
m := random number in [1 : : : p];
S := mthdeque inR;
T := pop from bot(S);
if (T 6= NULL)

create new dequeS0 containingT
and become its owner;

placeS0 to immediate right ofS in R;
return S0;

Figure 5: Pseudocode for theDFDeques(K) scheduling algo-
rithm executed by each of thep processors;K is the memory
threshold. currS is the processor’s current deque.currT is
the current thread being executed; changing its value denotes
a context switch. Memory management of the deques is not
shown here for brevity.

starts executing the parent next; for nested parallel computa-
tions, we can show that the processor’s deque must be empty at
this stage [33]. When an idle processor finds its deque empty,
it deletes the deque. When a processor deletes its deque, or
when it gives up ownership of its deque due to exhaustion of
its memory quota, it uses thesteal() procedure to obtain
a new deque. Every invocation ofsteal() resets the pro-
cessor’s memory quota toK bytes. We call an iteration of the
loop in thesteal() procedure asteal attempt.

A processor executes a steal attempt by picking a random
numberm between 1 andp, wherep is the number of proces-
sors. It then tries to steal the bottom thread from themth

deque (starting from the left end) inR. A steal attempt
may fail (that is,pop from bot() returnsNULL) if two or
more processors target the same deque (see Section 4.1), or
if the deque is empty or non-existent. If the steal attempt is
successful (pop from bot() returns a thread), the stealing
processor creates a new deque for itself, places it to the imme-
diate right of the target deque, and starts executing the stolen
thread. Otherwise, it repeats the steal attempt. When a proces-
sor steals the last thread from a deque not currently associated

4

list of dequesR

top

bottom

executing
 threads

owners P0 P3 P2 P1

ta

tb

deques

-- --

Figure 6: The listR of deques maintained in the system by al-
gorithmDFDeques. Each deque may have one (or no) owner
processor. The dotted line traces the decreasing order of prior-
ities of the threads in the system; thusta in this figure has the
highest priority, whiletb has the lowest priority.

with (owned by) any processor, it deletes the deque.
If a thread contains an action that performs a memory al-

location ofm units such thatm > K (whereK is the mem-
ory threshold), thenbm=Kc dummy threads must be forked
in a binary tree of depth�(logm=K) before the allocation4.
We do not show this extension in Figure 5 for brevity. Each
dummy thread executes a no-op. However, processors must
give up their deques and perform a steal every time they exe-
cute a dummy thread. Once all the dummy threads have been
executed, a processor may proceed with the memory alloca-
tion. This transformation takes place at runtime. The addition
of dummy threads effectively delays large allocations of space,
so that higher priority threads may be scheduled instead. In
practice,K is typically set to a few thousand bytes, so that the
runtime overhead due to the dummy threads is negligible (e.g.,
see Section 5).

We now prove a lemma regarding the order of threads in
R maintained by algorithmDFDeques; this order is shown
pictorially in Figure 6.

Lemma 3.1 Algorithm DFDequesmaintains the following
ordering of threads in the system.

1. Threads in each deque are in decreasing order of priorities
from top to bottom.

2. A thread currently executing on a processor has higher pri-
ority than all other threads on the processor’s deque.

3. The threads in any given deque have higher priorities than
threads in all the deques to its right inR.

Proof: By induction on the timesteps. The base case is the
start of the execution, when the root thread is the only thread
in the system. Let the three properties be true at the start of
any subsequent timestep. Any of the following events may
take place on each processorduring the timestep; we will show
that the properties continue to hold at the end of the timestep.

When a thread forks a child thread, the parent is added to
the top of the processor’s deque, and the child starts execution.
Since the parent has a higher priority that all other threads in
the processor’s deque (by induction), and since the child thread
has a higher priority (earlier depth-first execution order) than
its parent, properties (1) and (2) continue to hold. Further,

4This transformation differs slightly from depth-first schedulers [6, 34],
which allow dummy threads to be forked in a multi-way fork of constant depth.

since the child now has the priority immediately higher than
its parent, property (3) holds.

When a threadT terminates, the processor checks ifT
has reactivated a suspended parent threadTp. In this case,
it starts executingTp. Since the computation is nested paral-
lel, the processor’s deque must now be empty (since the parent
Tp must have been stolen at some earlier point and then sus-
pended). Therefore, all 3 conditions continue to hold. IfT did
not wake up its parent, the processorpicks the next thread from
the top its deque. If the deque is empty, it deletes the deque
and performs a steal. Therefore all three properties continue
to hold in these cases too.

When a thread suspends or is preempted due to exhaustion
of the processor’s memory quota, it is put back on the top of its
deque, and the deque retains its position inR. Thus all three
properties continue to hold.

When a processor steals the bottom thread from another
deque, it adds the new deque to the right of the target deque.
Since the stolen thread had the lowest priority in the target
deque, the properties continue to hold. Similarly, removal of a
thread from the target deque does not affect the validity of the
three properties for the target deque. A thread may be stolen
from a processor’s deque while one of the above events takes
place on the processor itself; this does not affect the validity
of our argument.

Finally, deletion of one or more deques fromR does not
affect the three properties.

Work stealing as a special case of algorithmDFDeques.
Consider the case when we set the memory thresholdK =
1. Then, for nested-parallel computations, algorithmDFD-
eques(1) produces a schedule identical to the one produced
by the provably-efficient work-stealing scheduler “WS” [9].
The processors inDFDeques1 never give up a deque due to
exhaustion of their memory quota, and therefore, as with the
work stealer, there are never more thanp deques in the sys-
tem. Further, in both algorithms, when a processor’s deque
becomes empty, it picks another processor uniformly at ran-
dom, and steals the bottommost thread from that processor’s
deque. Similarly, for nested parallel computations, the rule for
waking up a suspended parent inDFDeques(1) is equivalent
to the corresponding rule in WS5. Of course, the schedules are
identical assuming the same cost model for both algorithms;
the model could be either the atomic-access model used to an-
alyze WS [9], or our cost model from Section 4.1.

4 Analysis of Time and Space Bounds Us-
ing Algorithm DFDeques

We now prove the space and time bounds for nested-parallel
computations.

4.1 Cost model

We define the total number of unit actions in a parallel com-
putation (or the number of nodes in its dag) as itswork W .
Further, letD be thedepth of the computation, that is, the
length of the longest path in its dag. For example, the com-
putation represented in Figure 4 has workW = 11 and depth

5In WS, the reawakened parent is placed added to the current processor’s
deque (which is empty); for nested parallel computations, the child must termi-
nate at this point, and therefore, the next thread executed by the processor is the
parent thread.

5

D = 6. We assume that an allocation ofm bytes of memory
(for anym > 0) has a depth of�(logm) units6.

For this analysis, we assume that timesteps (clock cycles)
are synchronized across all the processors. If multiple proces-
sors target a non-empty deque in a single timestep, we assume
that one of them succeeds in the steal, while all the others fail
in that timestep. If the deque targeted by one or more steals is
empty, all of those steals fail in a single timestep. When a steal
fails, the processor attempts another steal in the next timestep.
When a steal succeeds, the processor inserts the newly cre-
ated deque intoR and executes the first action from the stolen
thread in the same timestep. At the end of a timestep, if a
processor’s current thread terminates or suspends, and it finds
its deque to be empty, it immediately deletes its deque in that
timestep. Similarly, when a processor steals the last thread
from a deque not currently associated with any processor, it
deletes the deque in that timestep. Thus, at the start of a
timestep, if a deque is empty, it must be owned by a processor
that is busy executing a thread.

Our cost model is somewhat simplistic, because it ignores
the cost of maintaining the ordered set of dequesR. If we par-
allelize the scheduling tasks of inserting and deleting deques
in R (by performing them lazily), we can account for all their
overheads in the time bound. We can then show that in the
expected case, the computation can be executed inO(W=p +
D � log p) time andS1 + O(p � log p �D) space onp proces-
sors, including the scheduling overheads [33]. In practice, the
insertions and deletions of deques fromR can be either serial-
ized and protected by a lock (for smallp), or performed lazily
in parallel (for largep).

4.2 Space bound

We now analyze the space bound for a parallel computation
executed by algorithmDFDeques. The analysis uses several
ideas from previous work [2, 6, 34].

Let G be the dag that represents the parallel computation
being executed. Depending on the resulting parallel schedule,
we classify its nodes (actions) into one of two types: heavy and
light. Every time a processor performs a steal, the first node
it executes from the stolen thread is called aheavyaction. All
remaining nodes inG are labelled aslight.

We first assume that every node allocates at mostK space;
we will relax this assumption in the end. Recall that a proces-
sor may allocate at mostK space between consecutive steals;
thus, it may allocate at mostK space for every heavy node it
executes. Therefore, we can attribute all the memory allocated
by light nodes to the last heavy node that precedes them. This
results in a conservative view of the total space allocation.

Let sp = V1; : : : ; V� be the parallel schedule of the dag
generated by algorithmDFDeques(K). HereVi is the set of
nodes that are executed at timestepi. Let s1 be the serial,
depth-first schedule or the 1DF-schedulefor the same dag;
e.g., the nodes in Figure 4 are numbered according to their
order of execution in a 1DF-schedule.

We now view an intermediate snapshotof the parallel sched-
ule sp. At any timestep1 � j � � during the execution of
sp, all the nodes executed so far form aprefixof sp. This pre-
fix of sp is defined as�p =

Sj

i=1
Vi. Let �1 be thelongest

prefix of s1 containing only nodes in�p, that is,�1 � �p.

6This is a reasonable assumption in systems with binary forks that zero out
the memoryas soon asit is allocated. The zeroing then requires a minimum
depth of�(logm); it can be performed in parallel by forking a tree of height
�(logm).

Then the prefix�1 is called thecorrespondingserial prefix of
�p. The nodes in the set�p � �1 are calledprematurenodes,
since they have been executed out of order with respect to the
1DF-schedules1. All other nodes in�p, that is, the set�1, are
callednon-premature. For example, Figure 7 shows a simple
dag with a parallel prefix�p for an arbitraryp-schedulesp, its
corresponding serial prefix�1, and a possible classification of
nodes as heavy or light.

A ready thread being present in a deque is equivalent to
its first unexecuted node (action) being in the deque, and we
will use the two phrases interchangeably. Given ap-schedule
sp of a dagG generated by algorithmDFDeques, we can find
a uniquelast parentfor every node inG (except for the root
node) as follows. The last parent of a nodeu in G is defined
as the last ofu’s parent nodes to be executed in the sched-
ule sp. If two or more parent nodes ofu were the last to be
executed, the processor executing one of them continues exe-
cution ofu’s thread. We label the unique parent ofu executed
by this processor as its last parent. This processor may have
to preemptu’s thread without executingu if it runs out of its
memory quota; in this case, it putsu’s thread on to its deque
and then gives up the deque.

Consider the prefix�p of the parallel schedulesp after the
first j timesteps, for any1 � j � � . Let v be the last non-
premature node (i.e., the last node from�1) to be executed
during the firstj timesteps ofsp. If more than one such node
exist, letv be any one of them. LetP be a set of nodes in the
dag constructed as follows:P is initialized tofvg; for every
nodeu in P , the last parent ofu is added toP . Since the
root is the only node at depth 1, it must be inP , and thus,P
contains exactly all the nodes along a particular path from the
root tov. Further, sincev is non-premature, all the nodes inP
are non-premature.

Let ui be the node inP at depthi; thenu1 is the root,
andu� is the nodev, where� is the depth ofv. Let ti be the
timestep in whichui is executed; thent1 = 1 since the root
is executed in the first timestep. Fori = 2; : : : ; � let Ii be the
interval fti�1 + 1; : : : ; tig, and letI1 = f1g. Let I�+1 =
ft� + 1; : : : ; jg. Since�p consists of all the nodes executed
in the first j timesteps, the intervalsI1; : : : ; I�+1 cover the
duration of execution of all nodes in�p.

We first prove the following lemma regarding the nodes in
a deque below any of the nodesui in P .

Lemma 4.1 For any 1 � i � �, let ui be the node inP at
depthi. Then,

1. If during the executionui is on some deque, then every node
below it in its deque is the right child of some node inP .

2. Whenui is executed on a processor, every node on the pro-
cessor’s deque must be the right child of some node inP .

Proof: We can prove this lemma to be true for anyui by
induction oni. The base case is the root node. Initially it is
the only node in its deque, and gets executed before any new
nodes are created. Thus, the lemma is trivially true. Let us
assume the lemma is true for alluj, for 0 � j � i. We must
prove that it is true forui+1.

Sinceui is the last parent ofui+1, ui+1 becomes ready
immediately afterui is executed on some processor. There are
two possibilities:

1. ui+1 is executed immediately followingui on that proces-
sor. Property (1) hold trivially sinceui+1 is never put on a

6

= non-premature
= premature

σp

= heavy nodes

P1

P2

P3

P4

(a) (b)

Figure 7: (a) An example snapshot of a parallel schedule for a simple dag. The shaded nodes (the set of nodes in�p) have been
executed, while the blank (white) nodes have not. Of the nodes in�p, the black nodes form the corresponding parallel prefix�1,
while the remaining grey nodes are premature. (b) A possible partitioning of nodes in�p into heavy and light nodes. Each shaded
region denotes the set of nodes executed consecutively in depth-first order on a single processor (P1; P2; P3 orP4) between steals.
The heavy node in each region is shown shaded black.

deque. If the deque remains unchanged beforeui+1 is exe-
cuted, property (2) holds trivially forui+1. Otherwise, the
only change that may be made to the deque is the addition
of the right child ofui beforeui+1 is executed, ifui was
a fork with ui+1 as its left child. In this case too, property
(2) holds, since the new node in the deque is right child of
some node inP .

2. ui+1 is added to the processor’s deque afterui is executed.
This may happen becauseui was a fork andui+1 was its
right child (see Figure 8), or because the processor exhausted
its memory quota. In the former case, sinceui+1 is the right
child ofui, nothing can be added to the deque beforeui+1.
In the latter case (that is, the memory quota is exhausted be-
foreui+1 is executed), the only node that may be added to
the deque beforeui+1 is the right child ofui, if ui is a fork.
This does not violate the lemma. Onceui+1 is added to the
deque, it may either get executed on a processor when it be-
comes the topmost node in the deque, or it may get stolen.
If it gets executed without being stolen, properties (1) and
(2) hold, since no new nodes can be added belowui+1 in
the deque. If it is stolen, the processor that steals and ex-
ecutes it has an empty deque, and therefore properties (1)
and (2) are true, and continue to hold untilui+1 has been
executed.

Recall that heavy nodes are a property of the parallel schedule,
while premature nodes are defined relative to a given prefix of
the parallel schedule. To prove the space bound, we first bound
thenumber of heavy premature nodesin an arbitrary prefix�p
of sp.

Lemma 4.2 Let�p be any parallel prefix of ap-schedule pro-
duced by algorithmDFDeques(K) for a computation with
depthD, in which every action allocates at mostK space.
Then the expected number of heavy premature nodes in�p is
O(p � D). Further, for any� > 0, the number of heavy pre-
mature nodes isO(p � (D+ln(1=�))) with probability at least
1 � �.

Proof: Consider the start of any intervalIi of �p, for i =
1; : : : ; � (we will look at the last intervalI�+1 separately). By

Lemma 3.1, all nodes in the deques to the left ofui’s deque,
and all nodes aboveui in its deque are non-premature. Letxi
be the number of nodes belowui in its deque. Because steals
target the firstp deques inR, heavy premature nodes can be
picked in any timestep from at mostp deques. Further, every
time a heavy premature node is picked, the deque containing
ui must also be a candidate deque to be picked as a target for
a steal; that is,ui must be among the leftmostp deques. Con-
sider only the timesteps in whichui is among the leftmostp
deques; we will refer to such timesteps ascandidatetimesteps.
Because new deques may be created to the left ofui at any
time, the candidate timesteps need not be contiguous.

We now bound the total number of steal attempts that take
place during the candidate timesteps. Each such steal attempt
may result in the execution of a heavy premature node; steals
in all other timesteps result in the execution of heavy, but non-
premature nodes. Each timestep can have at mostp steal at-
tempts. Therefore, we can partition the candidate timesteps
into phases, such that each phase has betweenp and2p � 1
steal attempts. We call a phase in intervalIi successfulif at
least one of its�(p) steal attempts targets the deque contain-
ing ui. Let Xij be the random variable with value 1 if the
jth phase in intervalIi is successful, and 0 otherwise. Be-
cause targets for steal attempts are chosen at random from the
leftmostp deques with uniform probability, and because each
phase has at leastP steal attempts,

Pr [Xij = 1] � 1�

�
1�

1

p

�p

� 1�
1

e

�
1

2

Thus, each phase succeeds with probability greater than1=2.
Becauseui must get executed before or by the timexi + 1
successful steals targetui’s deque, there can be at mostxi+1
successful phases in intervalIi. The nodeui may get exe-
cuted beforexi+1 steal attempts target its deque, if its owner
processor executesui off the top of the deque. Let there be
someni � (xi+1) successful phases in the intervalIi. From

7

ui+1

ui

ui-1

ui-2

ui-3

ui-4

b

c

d
a

a

b
c

ui+1

d top

bottom

deque

: nodes along pathP

(a) (b)

Figure 8: (a) A portion of the dynamically unfolding dag during the execution. Nodeui+1 along the pathP is ready, and is currently
present in some deque. The deque is shown in (b); all nodes belowui+1 on the deque must be right children of some nodes onP
aboveui+1. In this example, nodeui+1 was the right child ofui, and was added to the deque when the fork atui was executed.
Subsequently, descendents of the left child ofui (e.g., noded), may be added to the deque aboveui+1.

Lemma 4.1, thexi nodes belowui are right children of nodes
in P . There are(�� 1) < D nodes alongP not includingu�,
and each of them may have at most one right child. Further,
each successful phase in any of the first� intervals results in at
least one of these right children (or the current ready node on
P) being executed. Therefore, the total number of successful
phases in the first� intervals is

P�

i=1
ni < 2D.

Finally, consider the final phaseI�+1. Let z be the ready
node at the start of the interval with the highest priority. Then,
z 62 �p, because otherwisez (or some other node), and notv,
would have been the last non-premature node to be executed
in �p. Hence, ifz is about to be executed on a processor,
then intervalI�+1 is empty. Otherwise,z must be at the top
of the leftmost deque at the start of intervalI�+1. Using an
argument similar to that of Lemma 4.1, we can show that the
nodes belowz in the deque must be right children of nodes
along a path from the root toz. Thus,z can have at most(D�
2) nodes below it. Becausez must be among the leftmostp
deques throughout the intervalI�+1, the phases in this interval
are formed from all its timesteps. We call a phasesuccessful
in intervalI�+1 if at least one of the�(p) steal attempts in the
phase targets the deque containingz. Then this interval must
have less thanD successful phases. As before, the probability
of a phase being successful is at least1=2.

We have shown that the firstj � � timesteps of the par-
allel execution (i.e., the time within which nodes from�p are
executed) must have< 3D successful phases. Each phase
may result inO(p) heavy premature nodes being stolen and
executed. Further, fori = 1; : : : ; �, in each intervalIi, an-
otherp � 1 heavy premature nodes may be executed in the
same timestep thatui is executed. Therefore, if�p has a total
of N phases, the number of heavy premature nodes in�p is
at most(N +D) � p. Because the entire execution must have
less than3D successful phases, and each phase succeeds with
probability> 1=2, the expected number of total phases before
we see3D successful phases is at most6D. Therefore, the
expected number of heavy premature nodes in�p is at most
(6D+D) � p = O(p �D).

The high probabilitybound can be proved as follows. Sup-
pose the execution takes at least12D+8 ln(1=�) phases. Then

the expected number of successfulphases is at least� = 6D+
4 ln(1=�). Using the Chernoff bound [32, Theorem 4.2] on
the number of successful phases X, and settinga = 6D +
8 ln(1=�), we get7

Pr [X < � � a=2] < exp

�
� (a=2)2

2�

�

Therefore,

Pr [(X < 3D)] < exp

�
�a2=4

12D + 8 ln(1=�)

�

= exp

�
�a2

4 � (2a� 8 ln(1=�))

�

� e
�a2=8a

= e�a=8

= e�(6D+8 ln(1=�))=8

< e
�8 ln(1=�)=8

= �

Because there can be at most3D successful phases, algo-
rithm DFDequesrequires12D + 8 ln(1=�) or more phases
with probability at most�. Recall that each phase consists of
�(p) steal attempts. Therefore,�p hasO(p � (D + ln(1=�)))
heavy premature nodes with probability at least1� �.

We can now state a lemma relating the number of heavy pre-
mature nodes in�p with the memory requirement ofsp.

Lemma 4.3 LetG be a dag with depthD, in which every node
allocates at mostK space, and for which the serial depth-
first execution requiresS1 space. Letsp be thep-schedule of
lengthT generated forG by algorithmDFDeques(K). If for
any i such that1 � i � T , the prefix�p of sp representing
the computation after the firsti timesteps contains at mostr

7The probability of success for a phase is not necessarily independent of
previous phases; however, because each phase succeeds with probability at least
1=2, independent of other phases, we can apply the Chernoff bound.

8

Pa

Pbwv

u

thread t

Figure 9: An example scenario when a processor may not ex-
ecute a contiguous subsequence of nodes between steals. The
shaded regions indicate the subset of nodes executed on each
of the two processors,Pa andPb. Here, processorPa steals
the threadt and executes nodeu. It then forks a child thread
(containing nodev), puts threadt on its deque, and starts exe-
cuting the child. In the mean time, processorPb steals thread
t from the deque belonging toPa, and executes it until it sus-
pends. Subsequently,Pa finished executing the child thread,
and wakes up the suspended parentt and resumes execution
of t. The combined sets of nodes executed on both processors
forms a contiguous subsequence of 1DF-schedule.

heavy premature nodes, then the parallel space requirement of
sp is at mostS1 + r �min(K;S1). Further, there are at most
D+ r �min(K;S1) active threads during the execution.

Proof: We can partition�p into the set of non-premature
nodes and the set of premature nodes. Since, by definition,
all non-premature nodes form some serial prefix of the
1DF-schedule, their net memory allocation cannot exceedS1.
We now bound the net memory allocated by the premature
nodes. Consider a steal that results in the execution of a heavy
premature node on a processorPa. The nodes executed byPa
until its next steal, cannot allocate more thanK space. Be-
cause there are at mostr heavy premature nodes executed, the
total space allocated across all processors afteri timesteps can-
not exceedS1 + r �K.

We can now obtain a tigher bound whenK > S1. Con-
sider the case when processorPa steals a thread and executes
a heavy premature node. The nodes executed byPa before
the next steal are all premature, and form a series of one or
more subsequences of the 1DF-schedule. The intermediate
nodes between these subsequences (in depth-first order) are
executed on other processors (e.g., see Figure 9). These in-
termediate nodes occur when other processors steal threads
from the deque belonging toPa, and finish excecuting the
stolen threads beforePa finishes executing all the remaining
threads in its deque. Subsequently, whenPa’s deque becomes
empty, the thread executing onPa may wake up its parent,
so thatPa starts executing the parent without performing an-
other steal. Therefore, the set of nodes executed byPa before
the next steal, possibly along with premature nodes executed
on other processors, form a continguous subsequence of the
1DF-schedule.

Assuming that the net space allocated during the 1DF-schedule
can never be negative, this subsequence cannot allocate more
thanS1 units of net memory. Therefore, the net memory allo-

cation of all the premature nodes cannot exceedr�min(K;S1),
and the total space allocated across all processors afteri timesteps
cannot exceedS1+r �min(K;S1). Because this bound holds
for every prefix ofsp, it holds for the entire parallel execution.

The maximum number of active threads is at most the num-
ber of threads with premature nodes, plus the maximum num-
ber of active threads during a serial execution, which isD.
Assuming that each thread needs to allocate at least a unit
of space when it is forked (e.g., to store its register state), at
mostmin(K;S1) threads with premature nodes can be forked
for each heavy premature node executed. Therefore, the total
number of active threads is at mostD+ r �min(K;S1).

Note that each active thread requires at most a constant
amount of space to be stored by the scheduler (not including
stack space). We now extend the analysis to handle large allo-
cations.

Handling large allocations of space. We had assumed ear-
lier in this section that every node allocates at mostK units
of memory. Individual nodes that allocate more thanK space
are handled as described in Section 3. The key idea is to delay
the big allocations, so that if threads with higher priorities be-
come ready, they will be executed instead. The solution is to
insert before every allocation ofm bytes (m > K), a binary
fork tree of depthlog(m=K), so thatm=K dummy threads
are created at its leaves. Each of the dummy threads simply
performs a no-op that takes one timestep, but the threads at
the leaves of the fork tree are treated as if it were allocating
K space; a processor gives up its deque and performs a steal
after executing each of these dummy threads. Therefore, by
the time them=K dummy threads are executed, a processor
may proceed with the allocation ofm bytes without exceeding
our space bound. Recall that in our cost model, an allocation
of m bytes requires a depth ofO(logm); therefore, this trans-
formation of the dag increases its depth by at most a constant
factor. This transformation takes place at runtime, and the on-
line DFDequesalgorithm generates a schedule for this trans-
formed dag. Therefore, the final bound on the space require-
ment of the generated schedule, using Lemmas 4.2 and 4.3, is
stated below.

Theorem 4.4 (Upper bound on space requirement)
Consider a nested-parallel computation with depthD and se-
rial, depth-first space requirementS1. Then, for anyK > 0,
the expected value of the space required to execute the com-
putation onp processors using algorithmDFDeques(K), in-
cluding the space required to store active threads, isS1 +
O(min(K;S1) � p � D). Further, for any� > 0, the proba-
bility that the computation requiresS1 +O(min(K;S1) � p �
(D+ ln(1=�))) space is at least1� �.

We now show that the above space bound is tight (within
constant factors) in the expected case, for algorithmDFDe-
ques.

Theorem 4.5 (Lower bound on space requirement)
For anyS1 > 0, p > 0, K > 0, andD � 24 log p, there
exists a nested parallel dag with a serial space requirement
of S1 and depthD, such that the expected space required
by algorithmDFDeques(K) to execute it onp processors is

(S1 +min(K;S1) � p �D).

Proof: Consider the dag shown in Figure 10. The black nodes
denote allocations, while the grey nodes denote deallocations.

9

The dag essentially has the a fork tree of depthlog(p=2), at
the leaves of which exist subgraphs8. The root nodes of these
subgraphs are labelledu1; u2; : : : ; un, wheren = p=2. The
leftmost of these subgraphs,G0, shown in Figure 10 (b), con-
sists of a serial chain ofd nodes. The remaining subgraphs are
identical, have a depth of2d+ 1, and are shown in Figure 10
(c). The amount of space allocated by each of the black nodes
in these subgraphs is defined asA = min(K;S1). Since we
are constructing a dag of depthD, the value ofd is set such
that2d + 1 + 2 log(p=2) = D. The space requirement of a
1DF-schedule for this dag isS1.

We now examine how algorithmDFDeques(K) would ex-
ecute such a dag. One processor starts executing the root node,
and executes the left child of the current node at each timestep.
Thus, within log(p=2) = log n timesteps, it will have exe-
cuted nodeu1. Now consider nodeun; it is guaranteed to be
executed oncelog n successful steals target the root thread.
(Recall that the right child of a forking node, that is, the next
node in the parent thread, must be executed either before or
when the parent thread is next stolen.) Because there are al-
waysn = p=2 processors in this example that are idle and at-
tempt steals targettingp deques at the start of every timestep,
the probabilityPsteal that a steal will target a particular deque
is given by

Psteal � 1�

�
1�

1

p

�p=2

� 1� e
�1=2

>
1

3

We call a timestepi successfulif some node along the path
from the root toun gets executed; this happens when a steal
targets the deque containing that node. Thus, afterlog n suc-
cessful timesteps, nodeun must get executed; after that, we
can consider every subsequent timestep to be successful. Let
S be the number of successful timesteps in the first12 log n
timesteps. Then, the expected value is given by

E [S] � 12 log n � Psteal

� 4 log n

Using the Chernoff bound [32, Theorem 4.2] on the number of
successful timesteps, we have

Pr[S <

�
1�

3

4

�
� E [S]] � exp

�
�
�
3

4

�2
�
E [S]

2

�

Therefore,

Pr[S < log n] � exp
h
�
9

8
log n

i

= exp
h
�
9

8
�
ln n

ln 2

i

< e
�1:62�ln n

= n
�0:62 �

1

n

<
2

3
�
1

n
for p � 4

8All logarithms denoted aslog are to the base 2.

Recall thatn = p=2. (The case ofp < 4 can be easily han-
dled separately.) LetEi be the event that nodeui is not ex-
ecuted within the first12 log n timesteps. We have showed
thatPr[En] < 2=3 � 1=n. Similarly, we can show that for
eachi = 1; : : : ; n � 1, Pr[Ei] < 2=3 � 1=n. Therefore,
Pr[
Sn

1
Ei] < 2=3. Thus, fori = 1; : : : ; n, all theui nodes

get executed within the first12 log n timesteps with probabil-
ity greater than1=3.

Each subgraphG hasd nodes at different depths that al-
locate memory; the first of these nodes cannot be executed
before timesteplog n. Let t be the first timestep at which
all theui nodes have been executed. Then, at this timestep,
there are at least(d+ log n� t) nodes remaining in each sub-
graphG that allocateA bytes each, but have not yet been ex-
ecuted. Similarly, nodew in sugraphG0 will not be executed
before timestep(d + log n), that is, another(d + log n �
t) timesteps after timestept. Therefore, for the next(d +
log n � t) timesteps there are alwaysn � 1 = (p=2) � 1
non-empty deques (out of a total ofp deques) during the ex-
ecution. Each time a thread is stolen from one of these de-
ques, a black node (see Figure 10 (c)) is executed, and the
thread then suspends. Becausep=2 processors become idle
and attempt a steal at the start of each timestep, we can show
that in the expected case, at least a constant fraction of the
p=2 steals are successful in every timestep. Each successful
steal results inA = min(S1;K) units of memory being al-
located. Consider the case whent = 12 log n, Then, using
linearity of expectations, over thed� 11 log n timesteps after
timestept, the expected value of the total space allocated is
S1 +
(A � p � (d� 11 log n)) = S1 +
(A � p � (D� log p)).
(D � 24 log p ensures that(d� 11 log n) > 0.)

We showed that with constant probability (> 1=3), all the
ui nodes will be executed within the first12 log n timesteps.
Therefore, in the expected case, the space allocated (at some
point during the execution after allui nodes have been exe-
cuted) is
(S1 +min(S1;K) � (D� logp) � p).

Corollary 4.6 (Lower bound using work stealing)
For anyS1 > 0, p > 0, andD � 24 log p, there exists a
nested parallel dag with a serial space requirement ofS1 and
depthD, such that the expected space required to execute it
using the space-efficient work stealer from [9] onp processors
is
(S1 � p �D).

The corollary follows from Theorem 4.5 and the fact that algo-
rithm DFDequesbehaves like the space-efficientwork-stealing
scheduler forK = 1. Blumofe and Leiserson [9] presented
an upper bound on space ofp � S1 using randomized work
stealing. Their result is not inconsistent with the above corol-
lary, because their analysis allows only “stack-like” memory
allocation9, which is more restricted than our model. For such
restricted dags, their space bound ofp �S1 also applies directly
to DFDeques(1). Our lower bound is also consistent with the
upper bound ofp � S by Simpson and Burton [41], whereS is
the maximum space requirement over all possible depth-first
schedules; in this example,S = S1 �D.

9Their model does not allow allocation of space on a global heap. An in-
struction in a thread may allocate stack space only if the thread cannot possibly
have a living child when the instruction is executed. The stack space allocated
by the thread must be freed when the thread terminates.

10

GGGGGG
 p/2

G
G0

u1 u2 unu3

lo
g

(p
/2

)
lo

g
(p

/2
)

subgraphs

(a)

subgraph G0 :

de
pt

h
d

+S1

- S1

...

node w

...

...
+A

+A

+A
+A

d threads forked

subgraph G :

de
pt

h
 2

d
+

1

- A

- A

- A
- A

(b) (c)

Figure 10: (a) The dag for which the existential lower bound holds. (b) and (c) present the details of the subgraphs shown in
(a). The black nodes denote allocations and grey nodes denote deallocations; the nodes are marked with the amount of memory
(de)allocated.

11

4.3 Time bound

We now prove the time bound required for a parallel computa-
tion using algorithmDFDeques. This time bound does not in-
clude the scheduling costs of maintaining the relative order of
the deques (i.e., inserting and deleting deques inR), or finding
themth deque. Elsewhere [33], we describe how the scheduler
can be parallelized, and then prove the time bound including
these scheduling costs. We first assume that every action al-
locates at mostK space, for some constantK, and prove the
time bound. We then relax this assumption and provide the
modified time bound at the end of this subsection.

Lemma 4.7 Consider a parallel computation with workW
and depthD, in which every action allocates at mostK space.
The expected time to execute this computation onp processors
using theDFDeques(K) scheduling algorithm isO(W=p +
D). Further, for any� > 0, the time required to execute the
computation isO(W=p + D + ln(1=�)) with probability at
least1 � �.

Proof: Consider any timestepi of the p-schedule; letni be
the number of deques inR at timestepi. We first classify each
timestepi into one of two types (A and B), depending on the
value ofni. We then bound the total number of timestepsTA
andTB of types A and B, respectively.

Type A: ni � p. At the start of timestepi, let there ber �
p steal attempts in this timestep. Then the remainingp � r
processors are busy executing nodes, that is, at leastp � r
nodes are executed in timestepi. Further, at mostp� r of the
leftmostp deques may be empty; the rest must have at least
one thread in them.

LetXj be the random variable with value 1 if thejth non-
empty deque inR (from the left end) gets exactly one steal
request, and 0 otherwise. Then,E [Xj] = Pr [Xj = 1] =
(r=p) � (1 � 1=p)r�1 . Let X be the random variable repre-
senting the total number of non-empty deques that get exactly
one steal request. Because there are at leastr non-empty de-
ques, the expected value ofX (assuming thatp � 2) is given
by

E [X] �

rX
j=1

E [Xj]

= r �
r

p
� (1�

1

p
)
r�1

�
r2

p
� (1�

1

p
)p

�
r2

p
� (1�

1

p
) �

1

e

�
r2

2 � p � e

Recall thatp � r nodes are executed by the busy processors.
Therefore, ifY is the random variable denoting the total num-
ber of nodes executed during this timestep, then

E [Y] � (p� r) + r
2
=2ep

� p=2e

Therefore; E [p� Y] � p� p=2e

= p(1� 1=2e)

The quantity(p � Y) must be non-negative; therefore, using
the Markov’s inequality [32, Theorem 3.2], we get

Pr [(p� Y) > p(1� 1=4e)] <
E [(p� Y)]

p
�
1� 1

4e

�

�

�
1� 1

2e

�
�
1� 1

4e

�
Therefore; Pr [Y < p=4e] <

9

10

that is; Pr [Y � p=4e] >
1

10

We will call each timestep of type Asuccessfulif at least
p=4e nodes get executed during the timestep. Then the proba-
bility of the timestep being successful is at least1=10. Because
there areW nodes in the entire computation, there can be at
most4e �W=p successful timesteps of type A. Therefore, the
expected value forTA is at most40e �W=p.

The analysis of the high probabilitybound is similar to
that for Lemma 4.2. Suppose the execution takes more than
80eW=p+40 ln(1=�) timesteps of type A. Then the expected
number� of successful timesteps of type A is at least8eW=p+
4 ln(1=�). If Z is the random variable denoting the total num-
ber of successful timesteps, then using the Chernoff bound [32,
Theorem 4.2], and settinga = 40eW=p+40 ln(1=�), we get10

Pr [Z < �� a=10] < exp

�
� (a=10)2

2�

�

Therefore,

Pr [Z < 4eW=p] < e
�a2=200�

= exp

�
�

a2

200(a=5 � 4 ln(1=�))

�

� exp

�
�

a2

200 � a=5

�

= e
�a=40

= e
�eW=p�ln(1=�)

� e
� ln(1=�)

= �

We have shown that the execution will not complete even after
80eW=p + 40 ln(1=�) type A timesteps with probability at
most�. Thus, for any� > 0, TA = O(W=p + ln(1=�)) with
probability at least1� �.

Type B: ni < p. We now consider timesteps in which the
number of deques inR is less thanp. As with the proof of
Lemma 4.2, we split type B timesteps into phases such that
each phase has betweenp and2p � 1 steal attempts. We can
then use a potential function argument similar to the dedicated
machine case by Arora et al. [2]. Composing phases from only
type B timesteps (ignoring type A timesteps) retains the valid-
ity of their analysis. We briefly outline the proof here. Nodes
are assigned exponentially decreasing potentials starting from

10As with the proof of Lemma 4.2, we can use the Chernoff bound here be-
cause each timestep succeeds with probability at least1=10, even if the exact
probabilities of successes for timesteps are not independent.

12

the root downwards. Thus, a node at a depth ofd is assigned
a potential of32(D�d), and in the timestep in which it is about
to be executed on a processor, a weight of32(D�d)�1. They
show that in any phase during which betweenp and2p�1 steal
attempts occur, the total potential of the nodes in all the deques
drops by a constant factor with at least a constant probability.
Since the potential at the start of the execution is32D�1, the
expected value of the total number of phases isO(D). The
difference with our algorithm is that a processor may execute
a node, and then put up to 2 (instead of 1) children of the node
on the deque if it runs out of memory; however, this differ-
ence does not violate the basis of their arguments. Since each
phase has�(p) steal attempts, the expected number of steal
attempts during type B timesteps isO(pD). Further, for any
� > 0, we can show that the total number of steal attempts
during timesteps of type B isO(p � (D+ ln(1=�))) with prob-
ability at least1� �.

Recall that in every timestep, each processor either exe-
cutes a steal attempt that fails, or executes a node from the dag.
Therefore, ifNsteal is the total the number of steal attempts
during type B timesteps, thenTB is at most(W +Nsteal)=p.
Therefore, the expected value forTB isO(W=p+D), and for
any� > 0, the number of timesteps isO(W=p+D+ln(1=�))
with probability at least1� �.

The total number of timesteps in the entire execution is
TA + TB . Therefore, the expected number of timesteps in
the execution isO(W=p + D). Further, combining the high
probabilitybounds for timesteps of type A and B, (and using
the fact thatP (A [B) � P (A) + P (B)), we can show that
for any � > 0, the total number of timesteps in the parallel
execution isO(W=p+D+ ln(1=�)) with probability at least
1 � �.

To handle each large allocation ofm units (wherem >
K), recall that we addbm=Kc dummy threads; the dummy
threads are forked in a binary tree of depth�(log(m=K)).
Because we assume a depth of�(logm) for every allocation
of m bytes, this transformation of the dag increases its depth
by at most a constant factor. IfSa is the total space allocated
in the program (not counting the deallocations), the number of
nodes in the transformed dag is at mostW+Sa=K. Therefore,
using Lemma 4.7, the modified time bound is stated as follows.

Theorem 4.8 (Upper bound on time requirement)
The expected time to execute a parallel computation withW
work,D depth, and total space allocationSa onp processors
using algorithmDFDeques(K) is O(W=p + Sa=pK + D).
Further, for any� > 0, the time required to execute the com-
putation isO(W=p+Sa=pK+D+ln(1=�)) with probability
at least1 � �.

In a system where every memory location allocated must be
zeroed,Sa = O(W). The expected time bound therefore be-
comesO(W=p + D). This time bound, although asymptoti-
cally optimal [10], is not as low as the time bound ofW=p +
O(D) for work stealing [9].

Trade-off between space, time, and scheduling granular-
ity . As the memory thresholdK is increased, the scheduling
granularity increases, since a processor can execute more in-
structions between steals. In addition, the number of dummy
threads added before large allocations decreases. However, the
space requirement increases withK. Thus, adjusting the value
ofK provides a trade-off between running time (or scheduling
granularity), and space requirement.

5 Experiments with Pthreads

We implemented the scheduler as part of an existing library
for Posix standard threads or Pthreads [23]. The library is
the native, user-level Pthreads library on Solaris 2.5 [38, 43].
Pthreads on Solaris are multiplexed at the user level on top of
kernel threads, which act like virtual processors. The original
scheduler in the Pthread library uses a FIFO queue. Our ex-
periments were conducted on an 8 processor Enterprise 5000
SMP with 2GB main memory. Each processor is a 167 MHz
UltraSPARC with a 512 kB L2 cache.

Having to support the general Pthreads functionality pre-
vents even a user-level Pthreads implementation from being
extremely lightweight. For example, a thread creation is two
orders of magnitude more expensive than a null function call
on the UltraSPARC. Therefore, the user is required to create
Pthreads that are coarse enough to amortize the cost of thread
operations. However, with a depth-first scheduler, threads at
this granularity had to be coarsened further to get good parallel
performance [35]. We show that using algorithmDFDeques,
good speedups can be achieved using Pthreads without this
additional coarsening. Thus, the user can now fix the thread
granularity to amortize thread operation costs, and expect to
get good parallel performance in both space and time.

The Pthreads model supports a binary fork and join mech-
anism. We modified memory allocation routinesmalloc and
free to keep track of the memory quota of the current pro-
cessor (or kernel thread) and to fork dummy threads before
an allocation if required. Our scheduler implementation is
a simple extension of algorithmDFDequesthat supports the
full Pthreads functionality (including blocking11 mutexes and
condition variables) by maintaining additional entries inR for
threads suspended on synchronizations. Our benchmarks are
predominantly nested parallel, and make limited use of mu-
texes and condition variables. For example, the tree-building
phase in Barnes-Hut uses mutexes to protect modifications to
the tree’s cells. However, the Solaris Pthreads implementation
itself makes extensive use of blocking synchronization primi-
tives such as Pthread mutexes and condition variables.

Since our execution platform is an SMP with a modest
number of processors, access to the ready threads inR was
serialized.R is implemented as a linked list of deques pro-
tected by a shared scheduler lock. We optimized the common
cases of pushing and popping threads onto a processor’s cur-
rent deque by minimizing locking time. A steal requires the
lock to be acquired more often and for a longer period of time.

In the existing Pthreads implementation, it is not always
possible to place a reawakenedthread on the same deque as the
thread that wakes it up; therefore, our implementation ofDFD-
equesis an approximation of the pseudocode in Figure 5. Fur-
ther, since we serialize access toR, and support mutexes and
condition variables, setting the memory thresholdK to infin-
ity does not produce the same schedule as the space-efficient
work-stealing scheduler intended for fully strict
computations [9]. Therefore, we can use this setting only as
a rough approximationof a pure work-stealing scheduler.

We first list the benchmarks used in our experiments. Next,
we compare the space and time performance of the library’s
original scheduler (labelled “FIFO”) with an asynchronous,
depth-first scheduler [35] (labelled “ADF”), and the newDFD-
equesscheduler (labelled “DFD”) for a fixed value of the mem-
ory thresholdK. We also useDFDeques(1) as an approx-

11We use the term “blocking” for synchronization that causes the calling
thread to block and suspend, rather than spin wait.

13

imation for a work-stealing scheduler (labelled “DFD-inf”).
To study how the performance of the schedulers is affected by
thread granularity, we present results of the experiments at two
different thread granularities. Finally, we measure the trade-
off between running time, scheduling granularity, and space
for algorithmDFDequesby varying the value of the memory
thresholdK for one of the benchmarks.

5.1 Parallel benchmarks

The benchmarks were either adapted from publicly available
coarse grained versions [19, 36, 42, 46], or written from scratch
using the lightweight threads model [35]. The parallelism in
both divide-and-conquer recursion and parallel loops was ex-
pressed as a binary tree of forks, with a separate Pthread cre-
ated for each recursive call. Thread granularity was adjusted
by serializing the recursion near the leafs. In the comparison
results in Section 5.2,mediumgranularity refers to the thread
granularity that provides good parallel performance using the
depth-first scheduler [35]. Even at medium granularity, the
number of threads significantly exceeds the number of proces-
sors; this allows simple coding and automatic load balancing,
while resulting in performance equivalent to hand-partitioned,
coarse-grained code using the depth-first scheduler [35].Fine
granularity refers to the finest thread granularity that allows the
cost of thread operations in a single-processor execution to be
up to 5% of the serial execution time12. The benchmarks are
volume rendering, dense matrix multiply, sparse matrix multi-
ply, Fast Fourier Transform, Fast Multipole Method, Barnes-
Hut, and a decision tree builder13. Figure 11 lists the total
number of threads expressed in each benchmark at both the
thread granularities.

5.2 Comparison results

In all the comparison results, we use a memory threshold of
K = 50; 000 bytes for “ADF” and “DFD”14. Each active
thread is allocated a minimum 8kB (1 page) stack. Therefore,
the space-efficient schedulers effectively conserve stack mem-
ory by creating fewer simultaneously active threads compared
to the original FIFO scheduler (see Figure 11). The FIFO
scheduler spends significant portions of time executing system
calls related to memory allocation for the thread stacks [35];
this problem is aggravated when the threads are made fine
grained.

The 8-processor speedupsfor all the benchmarksat medium
and fine thread granularities are shown in Figure 12. To con-
centrate on the effect of the scheduler, and to ignore the ef-
fect of increased thread overheads (up to 5% for all except
dense matrix multiply) at the fine granularity, speedups for
each thread granularity are with respect to the single-processor
multithreaded execution at that granularity. The speedupsshow
that both the depth-first schedulerand the newDFDequessched-
uler outperform the library’s original FIFO scheduler. How-
ever, at the fine thread granularity, the new scheduler provides
better performance than the depth-first scheduler. This differ-
ence can be explained by the better locality and lower schedul-
ing contention experienced by algorithmDFDeques.

12The exception was the dense matrix multiply, which we wrote forn � n
blocks, wheren is a power of two. Therefore,fine granularity involved reducing
the block size by a factor of 4, and increasing the number of threads by a factor
of 8, resulting in 10% additional overhead.

13Details on the benchmarks can be found elsewhere [33].
14In the depth-first scheduler, the memory thresholdK is the memory quota

assigned to each thread between thread preemptions [35].

 Medium-Grain

 Fine-Grain

 0

 2

 4

 6

 8

 FIFO ADF DFD

(a) Volume Rendering

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(b) Dense Matrix Multiply (c) Sparse Matrix Multiply

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(d) Fast Fourier Transform (e) Fast Multipole Method

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(f) Barnes Hut (g) Decision Tree Builder

Figure 12: Speedups on 8 processors with respect to single-
processor executions for the three schedulers (the original
“FIFO”, the depth-first “ADF”, and the new “DFD” or
DFDeques) at both medium and fine thread granularities,
with K = 50,000 bytes. Performance of “DFD-inf” (or
DFDeques(1)), being very similar to that of “DFD”,
is not shown here. All benchmarks were compiled us-
ing cc -fast -xarch=v8plusa -xchip=ultra
-xtarget=native -xO4 .

14

Benchmark Input size Medium grained Fine grained
total FIFO ADF DFD total FIFO ADF DFD

Vol. Rend. 256
3 vol, 3752 img 1427 195 29 29 4499 436 36 37

Dense MM 1024� 1024 doubles 4687 623 33 48 37491 3752 55 77
Sparse MVM 30K nodes, 151K edges 1263 54 31 31 5103 173 51 49

FFTW N = 2
22 177 64 13 18 1777 510 30 33

FMM N = 10K, 5 mpl terms 4500 1314 21 29 36676 2030 50 54

Barnes Hut N = 100K, Plmr model 40893 1264 33 106 124767 3570 42 120
Decision Tree 133,999 instances 3059 82 60 77 6995 194 138 149

Figure 11: Input sizes for each benchmark, total number of threads expressed in the program at medium and fine granularities, and
max. number of simultaneously active threads created by each scheduler at both granularities, forK = 50,000 bytes. “DFD-inf”
creates at most twice as many threads as “DFD” for Dense MM, and at most 15% more threads than “DFD” for the remaining
benchmarks.

0

10

20

30

40

50

1 2 3 4 5 6 7 8

M
E

M
O

R
Y

PROCESSORS

Cilk
DFD
ADF

Input size

Figure 13: Variation of the memory requirement with the num-
ber of processors for dense matrix multiply using three sched-
ulers: depth-first (“ADF”),DFDeques(“DFD”), and Cilk
(“Cilk”).

We measured the external (L2) cache miss rates for each
benchmark using on-chip UltraSPARC performance counters.
Figure 1, which lists the results at the fine thread granularity,
shows that our scheduler achieves relatively low cache miss
rates (i.e., results in better locality).

Three out of the seven benchmarks make significant use
of heap memory. For these benchmarks, we measured the
high water mark for heap memory allocation using the three
schedulers. Figure 14 shows that algorithmDFDequesresults
in slightly higher heap memory requirement compared to the
depth-first scheduler, but still outperforms the original FIFO
scheduler.

The Cilk runtime system [20] uses a provably space-efficient
work stealing algorithm to schedule threads15. Figure 13 com-
pares the space performance of Cilk with the depth-first and
DFDequesschedulers for the dense matrix multiply bench-
mark (at the fine thread granularity). The figure indicates that
DFDequesrequires more memory than the depth-first sched-
uler, but less memory than Cilk. In particular, similar to the
depth-first scheduler, the memory requirement ofDFDeques
increases slowly with the number of processors.

5.3 Measuring the tradeoff between space, time, and
scheduling granularity

We studied the effect of the size of memory thresholdK on
the running time, memory requirement, and scheduling granu-

15Because Cilk requiresgcc to compile the benchmarks (which results in
slower code for floating point operations compared to the nativecc compiler
on UltraSPARCs), we do not show a direct comparison of running times or
speedups of Cilk benchmarkswith our Pthreads-based system here.

larity usingDFDeques(K). Each processor keeps track of the
number of times a thread from its own deque is scheduled, and
the number of times it has to perform a steal. The ratio of these
two counts, averaged over all the processors, is our approx-
imation of the scheduling granularity. The trade-off is best
illustrated in the dense matrix multiply benchmark, which al-
locates significant amounts of heap memory. Figure 15 shows
the resulting trade-off for this benchmark at the fine thread
granularity. As expected, both memory and scheduling gran-
ularity increase withK, while running time reduces asK is
increased.

6 Simulating the schedulers

To compare algorithmDFDequeswith a work-stealing sched-
uler, we built a simple system that simulates the parallel execu-
tion of synthetic, nested-parallel, divide-and-conquer bench-
marks16. Our implementation simulates the execution of the
space-efficientwork-stealing scheduler [9] (labeled “WS”), the
space-efficient, asynchronousdepth-first scheduler [34] (“ADF”),
and our newDFDequesscheduler (labeled “DFD”).

Due to limited space, we present results for only one of
the synthetic benchmarks here17, in which both the memory
requirement and the thread granularity decrease geometrically
down the recursion tree. A number of divide-and-conquer
programs exhibit such properties. Scheduling granularity was
measured as the average number of actions executed by a pro-
cessor between two steals. Figure 16 shows that work stealing
results in high scheduling granularity and high space require-
ment, the depth first scheduler results in low scheduling gran-
ularity and low space requirement, whileDFDequesallows
scheduling granularity to be traded with space requirement by
varying the memory thresholdK.

7 Summary and Discussion

Depth-first schedulers are space-efficient, but unlike work-
stealing schedulers, they require the user to explicitly increase
the thread granularity beyond what is required to amortize
basic thread costs. In contrast, algorithmDFDequesauto-
matically increases the scheduling granularity by executing

16To model irregular applications, the space and time requirementsof a thread
at each level of the recursion are selected uniformlyat random with the specified
mean.

17Results for other benchmarksand a detailed description of the simulator can
be found elsewhere [33].

15

 Medium-Grain Fine-Grain

 0

 40

 80

 120

 160

 200

 240

 FIFO ADF DFD DFD-inf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 FIFO ADF DFD DFD-inf

 0

 10

 20

 30

 40

 50

 60

 FIFO ADF DFD DFD-inf

(a) Dense Matrix Multiply (b) Fast Multipole Method (c) Decision Tree Builder

Figure 14: High water mark of heap memory allocation (in MB) on 8 processors for benchmarks involving dynamic memory
allocation (K = 50,000 bytes for “ADF” and “DFD”), at both thread granularities. “DFD-inf” is our approximation of work
stealing usingDFDeques(1).

0

1

2

3

4

5

6

1e+02 1e+04 1e+06

T
im

e
(s

ec
)

K (bytes)

0

20

40

60

80

1e+02 1e+04 1e+06

M
em

or
y

(M
B

)

K (bytes)

0

5

10

15

20

1e+02 1e+04 1e+06

S
ch

ed
. g

ra
nu

la
rit

y

K (bytes)

(a) Running time (b) Memory Allocation (c) Scheduling granularity

Figure 15: Trade-off between running time, memory allocation and scheduling granularity using algorithmDFDequesas the
memory thresholdK is varied, for the dense matrix multiply benchmark at fine thread granularity.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 40 80 120 160

S
ch

ed
ul

in
g

G
ra

nu
la

rit
y

Memory Threshold K (KB)

WS
DFD
ADF

400

800

1200

1600

2000

0 40 80 120 160

M
em

or
y

(K
B

)

Memory Threshold (KB)

WS
DFD
ADF

(a) Scheduling granularity (b) Memory

Figure 16: Simulation results for a divide-and-conquer benchmark with 15 levels of recursion running on 64 processors. The mem-
ory requirement and thread granularity decrease geometrically (by a factor of 2) down the recursion tree. Scheduling granularity is
shown as a percentage of the total work in the dag. “WS” is the space-efficient work-stealing scheduler, “ADF” is the space-efficient
depth-first scheduler, and “DFD” is our newDFDequesscheduler.

16

 Medium-Grain Fine-Grain

 0

 2

 4

 6

 8

 FIFO ADF DFD Cilk

Figure 17: Speedups for the tree-building phase of Barnes
Hut (for 1M particles). The phase involves extensive use of
locks on cells of the tree to ensure mutual exclusion. The
Pthreads-based schedulers (all except Cilk) support blocking
locks. “DFD” does not result in a large scheduling granular-
ity due to frequent suspension of the threads on locks; there-
fore, its performance is similar to that of “ADF”. Cilk [20]
uses a pure work stealer and supports spin waiting locks. For
this benchmark, the single-processor execution time on Cilk is
comparable with that on the Pthreads-based system.

neighboring, fine-grained threads on the same processor to
yield good locality and low scheduling contention. In the-
ory, for nested-parallel programs with a large amount of par-
allelism, algorithmDFDequeshas a lower space bound than
work-stealing schedulers. We showed that in practice, it re-
quires more memory than a depth-first scheduler,and less mem-
ory than work stealing.DFDequesalso allows the user to con-
trol the trade-off between space requirement and running time
(or scheduling granularity). Because algorithmDFDequesal-
lows more deques than processors, it can be easily extended
to support blocking synchronizations. For example, prelimi-
nary results on a benchmark which makes a significant use of
locks, indicate thatDFDequeswith blocking locks results in
better performance than a work stealer that uses spin-waiting
locks (see Figure 17).

Since Pthreads are not very lightweight, serializing access
to the set of ready threadsR did not significantly affect the
performance in our implementation. However, serial access
to R can become a bottleneck if threads are extremely fine
grained, and require frequent suspension due to memory allo-
cation or synchronization. To support such threads, the schedul-
ing operations (such as updates toR) need to be parallelized [33].

Each processor inDFDequestreats its deque as a regular
stack. Therefore, in a system that supports very lightweight
threads, the algorithm should benefit from stack-based opti-
mizations such as lazy thread creation [21, 31]; these meth-
ods avoid allocating resources for a thread unless it is stolen,
thereby making most thread creations nearly as cheap as func-
tion calls.

Increasing scheduling granularity typically serves to en-
hance data locality on SMPs with limited-size, hardware-
coherent caches. However, on distributed memory machines
(or software-coherent clusters), executing threads where the
data permanently resides becomes important. A multi-level
scheduling strategy may allow the thread implementation to
scale to clusters of SMPs. For example, theDFDequesal-
gorithm could be deployed within a single SMP, while some
scheme based on data affinity is used across SMPs.

An open question is how to automatically find the appro-
priate value of the memory thresholdK, which may depend on
the benchmark, and on the thread implementation. One pos-
sible solution is for the user (or the runtime system) to setK
to an appropriate value after running the program for a range

of values ofK on smaller input sizes. Alternatively, it may be
possible for the system to keep statistics to dynamically setK
to an appropriate value during the execution.

Acknowledgements

Guy Blelloch, Robert Blumofe, and Bwolen Yang provided
valuable feedback on previous versions of this paper. We also
thank Adam Kalai and Avrim Blum for useful discussions.

References

[1] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The
performance implications of thread management alterna-
tives for shared-memory multiprocessors.Performance
Evaluation Review, 17:49–60, May 1989.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In
ACM symp. Parallel Algorithms and Architectures, 1998.

[3] F. Bellosa and M. Steckermeier. The performance impli-
cations of locality information usage in shared-memory
multiprocessors.J. Parallel and Distributed Computing,
37(1):113–121, August 1996.

[4] G. Blelloch, P. Gibbons, Y. Matias, and G. Narlikar.
Space-efficient scheduling of parallelism with synchro-
nization variables. InProc. ACM Symp. on Parallel Al-
gorithms and Architectures, pages 12–23, 1997.

[5] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipel-
stein, and M. Zagha. Implementation of a portable nested
data-parallel language.J. Parallel and Distributed Com-
puting, 21(1):4–14, April 1994.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Prov-
ably efficient scheduling for languages with fine-grained
parallelism. InProc. ACM symp. Parallel Algorithms
and Architectures, pages 1–12, Santa Barbara, Califor-
nia, July 17–19, 1995.

[7] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,
and K. H. Randall. An analysis of dag-consistent dis-
tributed shared-memory algorithms. InProc. ACM Sym-
posium on Parallel Algorithms and Architectures, pages
297–308, June 1996.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leis-
erson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system.J. Par. and Distr. Com-
puting, 37(1):55–69, August 1996.

[9] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. InProc. Symp.
Foundations of Computer Science, pages 356–368, 1994.

[10] R. P. Brent. The parallel evaluation of general arithmetic
expressions.J. ACM, 21(2):201–206, April 1974.

[11] F. W. Burton and M. R. Sleep. Executing functional pro-
grams on a virtual tree of processors. InProc. ACM Conf.
on Functional Programming Languages and Computer
Architecture, pages 187–194, 1981.

17

[12] R. Chandra, A. Gupta, and J. L. Hennessy. Data local-
ity and load balancing in COOL. InProc. ACM symp.
Principles & Practice of Parallel Programming, pages
239–259, 1993.

[13] K. M. Chandy and C. Kesselman. Compositional c++:
compositional parallel programming. InProc. Intl. Wk-
shp. on Languages and Compilers for Parallel Comput-
ing, pages 124–144, New Haven, CT, August 1992.

[14] S. A. Cook. A taxonomy of problems with fast parallel
algorithms.Information and Control, 64:2–22, 1985.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.In-
troduction to algorithms. MIT Press and McGraw-Hill
Book Company, 6th edition, 1992.

[16] D. E. Culler and G. Arvind. Resource requirements of
dataflow programs. InProc. Intl. Symp. on Computer
Architecture, pages 141–151, 1988.

[17] D. R. Engler, G. R. Andrews, and D. K. Lowenthal. Fila-
ments: Efficient support for fine-grain parallelism. Tech-
nical Report 93-13, University of Arizona. Dept. of Com-
puter Science, 1993.

[18] R. Feldmann, P. Mysliwietz, and B. Monien. Studying
overheads in massively parallel min/max-tree evaluation
(extended abstract). InACM Symp. Parallel Algorithms
and Architectures, pages 94–103, 1994.

[19] M. Frigo and S. G. Johnson. The fastest fourier trans-
form in the west. Technical Report MIT-LCS-TR-728,
Massachusetts Institute of Technology, September 1997.

[20] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. InProc.
ACM Conf. on Programming Language Design and Im-
plementation, pages 212–223, 1998.

[21] S. C. Goldstein, K. E. Schauser, and D. E. Culler. En-
abling primitives for compiling parallel languages. In
Workshop on Languages, Compilers, and Run-Time Sys-
tems for Scalable Computers, May 1995.

[22] High Performance Fortran Forum. High performance
fortran language specification vertion 1.0, 1993.

[23] IEEE. Information Technology–Portable Operating Sys-
tem Interface (POSIX)–Part 1: System Application: Pro-
gram Interface (API) [C Language]. IEEE/ANSI Std
1003.1, 1996 Edition.

[24] V. Karamcheti, J. Plevyak, and A. A. Chien. Runtime
mechanisms for efficient dynamic multithreading.J. Par-
allel and Distributed Computing, 37(1):21–40, August
1996.

[25] R. Karp and Y. Zhang. A randomized parallel branch-
and-bound procedure. InProc. Symp. Theory of Com-
puting, pages 290–300, 1988.

[26] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T:
A High-Performance Parallel Lisp. InProc. Program-
ming Language Design and Implementation, Portland,
Oregon, June 21–23, 1989.

[27] E. P. Markatos and T. J. LeBlanc. Locality-based
scheduling in shared-memory multiprocessors. Tech-
nical Report 94, Inst for ICS-FORTH, Heraklio, Crete,
Greec, 1993.

[28] Evangelos Markatos and Thomas LeBlanc. Locality-
based scheduling in shared-memory multiprocessors.
Technical Report TR93-0094, ICS-FORTH, Heraklio,
Crete, Greece, 1993.

[29] P. H. Mills, L. S. Nyland, J. F. Prins, J. H. Reif, and R. A.
Wagner. Prototyping parallel and distributed programs
in Proteus. Technical Report UNC-CH TR90-041, Com-
puter Science Department, University of North Carolina,
1990.

[30] T. Miyazaki, C. Sakamoto, M. Kuwayama, L. Saisho,
and A. Fukuda. Parallel pthread library (PPL): user-level
thread library with parallelism and portability. InProc.
Intl. Computer Software and Applications Conf. (COMP-
SAC), pages 301–306, November 1994.

[31] E. Mohr, D. Kranz, and R. Halstead. Lazy task creation:
A technique for increasing the granularity of parallel pro-
grams.IEEE Trans. on Parallel and Distributed Systems,
1990.

[32] R. Motwani and P. Raghavan.Randomized Algorithms.
Cambridge University Press, Cambridge, England, June
1995.

[33] G. J. Narlikar. Space-Efficient Scheduling for Parallel,
Multithreaded Computations. PhD thesis, Carnegie Mel-
lon University, 1999. Available as CMU-CS-99-119.

[34] G. J. Narlikar and G. E. Blelloch. Space-efficient imple-
mentation of nested parallelism. InProc. ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming,
pages 25–36, June 1997.

[35] G. J. Narlikar and G. E. Blelloch. Pthreads for dynamic
and irregular parallelism. InProc. of Supercomputing
’98, November 1998.

[36] D. O’Hallaron. Spark98: Sparse matrix kernels for
shared memory and message passing systems. Technical
Report CMU-CS-97-178, School of Computer Science,
Carnegie Mellon University, 1997.

[37] J. Philbin, J. E., O. J. Anshus, and C. C. Douglas. Thread
scheduling for cache locality. In Intl. Conf. Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 60–71, 1996.

[38] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah,
D. Stein, and M. Weeks. SunOS multi-thread archi-
tecture. InProc. Winter 1991 USENIX Technical Con-
ference and Exhibition, pages 65–80, Dallas, TX, USA,
January 1991.

[39] Jr. R. H. Halstead. Multilisp: A language for concur-
rent symbolic computation.ACM Trans. on Program-
ming Languages and Systems, 7(4):501–538, 1985.

18

[40] C. A. Ruggiero and J. Sargeant. Control of parallelism
in the manchester dataflow machine. In G. Kahn, edi-
tor, Functional Programming Languages and Computer
Architecture, pages 1–16. Springer-Verlag, Berlin, DE,
1987.

[41] D. J. Simpson and F. W. Burton. Space efficient execu-
tion of deterministic parallel programs.IEEE Transac-
tions on Software Engineering, 25(3), May/June 1999.

[42] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualiza-
tion algorithms: Performance and architectural implica-
tions. IEEE Computer, 27(7):45–55, July 1994.

[43] D. Stein and D. Shah. Implementing lightweight threads.
In Proc. Summer 1992 USENIX Technical Conference
and Exhibition, pages 1–10, San Antonio, TX, 1992.
USENIX.

[44] M. T. Vandevoorde and E. S. Roberts. WorkCrews: an
abstraction for controlling parallelism.Intl. J. Parallel
Programming, 17(4):347–366, August 1988.

[45] B. Weissman. Performance counters and state sharing
annotations: a unified approach to thread locality. In Intl.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 262–273, October
1998.

[46] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characteriation and method-
ological considerations. InProc. Intl. Symp. Computer
Architecture, pages 24–37, June 1995.

19

