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Abstract
In this thesis, we present novel techniques to solve various fundamental discrete

and continuous optimization problems, with the deployment of highly-efficient data
structures.

• Sparsification: We obtain fast deterministic and randomized algorithms for
spectral sparsification and its variants. We give a deterministic algorithm for
constructing linear-sized spectral sparsifier in time O(dω+1) where ω ≈ 2.37 is
the exponent of matrix multiplication, breaking the Ω(d4) barrier for all prior
deterministic methods.

• Non-Convex Optimization: We present the first algorithm to train deep and
over-parametrized neural networks in truly sub-quadratic time. It has a training
cost of O(m2.25−α), where m is the width of the network and α ≈ 0.31 is the
dual exponent of matrix multiplication.

The main theme of these major improvements is the novel adaption of data struc-
tures in different iterative processes. We show that for different optimization prob-
lems, we can frame their iterations as solving certain data structure problems. We
design different data structures that are efficient and adaptively robust to realize such
speedup.
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Chapter 1

Introduction

Data structures are perhaps the most important and widely-studied objects in computer science.
In fact, every aspect and subfield of computer science heavily replies on data structures. Data
structures also play critical roles in advancing theoretical computer science, and many recent
breakthroughs in developing fast algorithms come from the smart deployment of data structures.
In this thesis, we show how to improve the running time of different discrete and continuous
optimization processes using efficient data structures.

Specifically, we study the following important theoretical problems and give an overview of
their history and improvements.

Linear-Sized Spectral Sparsification and its Varaints. Given a matrix V ∈ Rm×d with m≫
d, the goal is to compute a matrix Ṽ ∈ Rs×d with s ≪ m whose rows are a subset of re-scaled
rows of V , with the guarantee that

(1− ε)V ⊤V ⪯ Ṽ ⊤Ṽ ⪯ (1 + ε)V ⊤V,

this is the well-known spectral sparsifier problem. Using leverage score sampling, [80] shows
that it suffices to have s = Θ(ε−2d log d). The seminal work by Batson, Spielman and Srivas-
tava [12] further improves this s to Θ(ε−2d), which is essentially optimal. However, for the most
common setting in which m = d2, their algorithm takes Ω(d5) time. [90] improves the determin-
istic running time to O(d4) by introducing a deterministic procedure to generate a sparsifier of
size ε−2d log d, then run the [12] algorithm. To further speed up the construction, [3, 53] makes
use of a new variant of potential functions, and [54] finally settles down this problem by pro-
viding a randomized algorithm that runs in time Õ(ε−2m) for graphs and O(ε−2nnz(V ⊤V )) for
general matrices.

While efficient, most of these recent developments highly rely the use of randomness and it
is unclear how to derandomized their methods and preserving the efficiency in the meantime. On
the other hand, it is important to develop fast deterministic algorithms for spectral sparsifier, since
it is much easier to turn a static algorithm to handle updates to the matrix, and obtaining a nearly
linear time deterministic algorithm will also lead to breakthroughs in computing deterministic
minimum weighted cut problem.

Besides linear-sized spectral sparsifier, the potential function in [12] has wide range of ap-
plications in other problems, such as restricted invertibility [81], one-sided vector packing [84],
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experimental design [7, 51] and Fourier signal interpolation [77].

Training Over-parametrized Neural Networks. Machine learning and particularly deep learn-
ing is one of the most popular topics in modern computer science. Despite of its empirical suc-
cess, it has always been a mystery from a theoretical perspective, that why deep learning works
so well. Recently, via the power of over-parametrization, a long line of works [5, 6, 31, 32, 38,
41, 52, 56, 71, 75] show that popular first order methods such as gradient descent and stochastic
gradient descent converge on such architecture of networks. Second order methods provide even
faster convergence rate for two-layer over-parametrized ReLU networks [17, 18, 89]. However,
such methods typically suffer from slow training time, due to the over-parametrized nature of the
network, which means the network width m = poly(n) where n is the number of data points. In
fact, for deep networks, it seems one has to pay Ω(m2) per training iteration, since the weight
matrix itself has size m×m.

For training shallow ReLU networks, [75] has shown how to obtain a sublinear training time
per iteration using some high dimensional geometric search data structure. However, the main
reason they can obtain sublinear running time is due to the size of the weight matrix is onlym×d
for d≪ m being the data dimension. Moreover, their algorithms suffer from exponential initial-
ization time due to the data structures they use. For second order methods, [17] uses sketching for
preconditioning to realize a nearly linear time algorithm for shallow ReLU networks. However,
when adapting their methods for deep networks, the running time cannot bypass Ω(m2).

Linear Programming and Robust Interior Point Method. Linear programmings have been
studied for nearly a century. One of the first and most popular LP algorithm is the simplex
algorithm [28]. Despite it works well in practical small size problems, the simplex algorithm is
known to be an exponential time algorithm in the worst case of Klee-Minty cube [50]. The first
polynomial time algorithm for solving LP is the ellipsoid method [49]. Although this algorithm
runs in polynomial time theoretically, but in practice this algorithm runs much slower than the
simplex algorithm. The interior point type of methods [47] have both polynomial running time in
theory and fast and stable performance in practice. In the case of d = Ω(n), the time complexity
of Karmarkar’s algorithm is O∗(n3.5). In the work [65, 82], the time complexity was further
improved to O∗(n3). In 1989, Vaidya further proposed an algorithm that takes a running time
of O∗(n2.5) [83]. This result hasn’t been improved for three decades until recent work due to
Cohen, Lee and Song [27], which gives an algorithm that runs in timeO∗(nω+n2.5−α/2+n2+1/6),
where ω denotes the exponent of matrix multiplication [8], and α denotes the dual exponent of
matrix multiplication [33]. Currently ω ≈ 2.373 and α ≈ 0.31. By using a more sophisticated
analysis and data structure, Jiang, Song, Weinsten and Zhang further improve this running time
to O∗(nω + n2.5−α/2 + n2+1/18) [42]. Besides the square LP case d = Ω(n), there are also a line
of work focusing on studying the flat LP case d≪ n, for instance [25].

The breakthrough result by Cohen, Lee and Song [27] can be roughly described as follows:
given a projection matrix P :=

√
WA⊤(AWA⊤)−1A

√
W for A ∈ Rd×n be a fixed constraint

matrix and a diagonal matrix W ∈ Rn×n with non-negative entries, they provide an algorithm
that maintains P in a lazy fashion when W undergoes ℓ2 multiplicative change. Specifically,
by utilizing fast rectangular matrix multiplication, they get a per iteration cost of O∗(nω−0.5 +
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n2−α/2). Further, they need to multiply P with a (possibly dense) vector h ∈ Rn. To speed up
this process, they use an importance sampling method to sparsify the vector h, so that it only has√
n nonzero entries in expectation. To facilitate the analysis, they introduce a novel framework

called stochastic central path, which gives comparable convergence rate as classical central path.
Following their seminal work, many alternative approaches have been proposed to “sparsify”

the vector h or reduce its dimension directly. In [55] and [72], they use randomized sketching
techniques to reduce the size of either the projection matrix or the vector directly, and achieve
similar result of [27].

1.1 Data Structures: Tasks and Results
Data structures are integral to speed up iterative processes. Many optimization algorithms can
be formulated as solving certain data structure tasks. In this section, we start with a list of tasks,
and give various data structures for solving these tasks.

1.1.1 Data Structure Tasks
Many of the tasks relate to inner product — perhaps, search, sample and estimate inner product
is one of the most important components in the series problems we study.

References Sa/Se/Es Main Task Special Task Theorem Chapter
[12, 78] Search Task 1.1.1 Task 1.1.4 Theorem 1.2.1 Chapter 3
[75] Search Task 1.1.1 Task 1.1.4 Theorem 1.2.6 Chapter 1
[53, 54] Sample Task 1.1.2 Task 1.1.5 Theorem 3.1.9 Chapter 3
[27, 72] Estimate Task 1.1.3 Task 1.1.9 Theorem 2.6.12 Chapter 2
[55] Estimate Task 1.1.3 Task 1.1.9 Theorem 2.6.10 Chapter 2

Table 1.1: Optimization algorithms and their corresponding data structure tasks: inner product
search/sample/estimate. We use Sa to denote Sample, Se to denote Search and Es to denote
Estimate.

General Inner Product Tasks We give a list of general tasks related to inner product. Roughly,
it can be categorized into inner product search, which, suppose the input dataset satisfies some
constraints on inner product, then give a query matrix, we search a vector that satisfies the desired
property.

Inner product sample is similar to search, but instead, one wants to sample from a distribution
defined by the inner product of vectors in the dataset and the query.

Another task is to estimate inner product. Given a query vector, we are asked to (approxi-
mately) estimate the inner product between query with one or more vectors in the dataset.
Task 1.1.1 (General Inner Product Search). Let X = {x1, . . . , xm} ⊂ Rd be a collection of
vectors. Given a query matrix Q ∈ Rd×d with some promised condition g(X,Q), we need to
output a vector xi such that f(i,X,Q) holds.
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Inner product search has wide range of applications, we will see later that constructing deter-
ministic spectral sparsification [12] relies on it. Vector packing [84] and experimental design [7]
can also be formulated as inner product search. Interesting enough, we also see its applications
in training over-parametrized networks [75].
Task 1.1.2 (General Inner Product Sample). Let X = {x1, . . . , xm} ⊂ Rd be a collection of
vectors. Given a query matrix Q ∈ Rd×d with some promised condition g(X,Q), we need to
sample a vector xi with probability f(i,X,Q).

Sampling from the distribution defined by the inner product is core to many problems, such
as randomized linear-sized spectral sparsifier [53, 54], which is essential to combat the poten-
tial presence of the noise in the model [20]. We believe this task also captures sampling from
symmetric Determinantal Point Process (DPP) and Non-symmetric Determinantal Point Process
(NDPP) distributions.
Task 1.1.3 (General Inner Product Estimation). Let X = {x1, . . . , xm} ⊂ Rd be a collection
of vectors. Let ε ∈ (0, 1) be a parameter. Given a query vector q ∈ Rd with some promised
condition g(X, q), we need to output some estimates esti such that f(i,X, q, ε) holds.

At first glance, this task is rather abstract. However, note that the matrix-vector product can
be interpreted as estimating all the inner products: given V ∈ Rm×d and q ∈ Rd, estimating all
inner products can be implemented trivially as computing V q in time O(md). So this task can
be alternatively viewed as computing the matrix-vector product approximately and efficiently.

Note that this is a more general task than the prior two: once we estimated all inner products,
we can just scan through all results to implement the search or sample.

Due to its generality, this task facilitates solving linear programs fast [27, 72] and empirical
risk minimization [55].

Special Instances We localize the discussion to specific tasks corresponding to the general
inner product tasks we defined above.
Task 1.1.4 (Special case of Task 1.1.1, Non-negative Inner Product Search). LetX = {x1, . . . , xm}
⊂ Rd be a collection of vectors. Given a query matrix Q ∈ Rd×d with g(X,Q) being the predi-
cate

∑
i∈[m] x

⊤
i Qxi ≥ 0, we need to output a vector xi such that f(i,X,Q) is the predicate that

x⊤i Qxi ≥ 0.
We will show the above task directly captures the iterative process of deterministic linear-

sized spectral sparsifier [12].
Task 1.1.5 (Special case of Task 1.1.2, Inner Product Sample). LetX = {x1, . . . , xm} ⊂ Rd be a
collection of vectors. Given a positive semidefinite matrixQ ∈ Rd×d and g(X,Q) is the predicate
that Q is PSD, we need to sample a vector xi with probability f(i,X,Q) = x⊤i Qxi∑

i∈[m] x
⊤
i Qxi

.

Sampling based on a distribution defined by the inner product is key to randomized linear-
sized spectral sparsifier [53, 54].
Task 1.1.6 (Special case of Task 1.1.1, Minimum Inner Product Search). Let X = {x1, . . . , xm}
⊂ Rd. Given a query matrix Q ∈ Rd×d with g(X,Q) being that ∀i ∈ [m], x⊤i Qxi ≥ 0, we need
to find an xi with f(i,X,Q) := argminx∈X x

⊤Qx.
Given a set of vectors, the goal is to find the one that has the minimum inner product with the

query vector. Using certain inner product-preserving transformation [59], this problem is dual to
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the furthest neighbor search problem, where one wants to find the vector that has the maximum
ℓ2 distance with the query vector. This task has classical data structures to realize [39], but as we
will show, it is nontrivial to augment classical data structures for iterative process. Surprisingly
enough, we also show estimating all inner products is a good approach.

Minimum inner product search captures the iterative process for vector packing [84] and
experimental design [7]. In general, when one tries to use a one-sided barrier potential function,
it becomes useful.
Task 1.1.7 (Special case of Task 1.1.1, Inner Product Search with Prior Knowledge). Let X =
{x1, . . . , xn} ⊂ Rd and W = {w1, . . . , wm} ⊂ Rd. For any Q = xi for i ∈ [m], we need to find
all wj’s with f(j,W,Q) being ⟨wj, Q⟩ ≥ τ for some threshold τ ≥ 0.

This task is related to the training of neural network under ReLU or similar activations. After
applying ReLU, only a subset of neurons is nonzero, and the training consists of returning the
set of nonzero neurons efficiently [75]. The inner product ⟨wj, xi⟩ can be viewed as multiplying
the weight with the data point, which is key in neural network inference.
Task 1.1.8 (Special case of Task 1.1.2, Inner Product Sample with Prior Knowledge). Let X =
{x1, . . . , xm} ⊂ Rd and Q = {Q1, . . . , Qn} ⊂ Rd×d with g(X,Qi) being Qi is positive semidef-
inite for i ∈ [n], at query time, we are given a fixed Qj and we need to sample xi with probability
f(i,X,Qj) =

x⊤i Qjxi∑
i∈[m] x

⊤
i Qjxi

.

For sampling from DPP or NDPP distributions, which are defined on the determinant of
certain sub-matrix, one can generate samples one at a time. By using rank-1 determinant formula,
this can also be formulated as an inner product sample task. In contrast to other applications, the
query quantity comes from a sequence we know in advance: it is a linear combination of the
input vectors. Hence, one can use this knowledge to build up faster data structures.
Task 1.1.9 (Special case of Task 1.1.3, Approximate Inner Product Estimation). Let X =
{x1, . . . , xm} ⊂ Rd and ε ∈ (0, 1). Given a query vector q ∈ Rd, we need to output all esti-
mates esti for all i ∈ [m] with f(i,X, q, ε) being esti = ⟨xi, q⟩ ± ε∥xi∥2∥q∥2.

This is perhaps the most important inner product task, since it captures estimating the matrix-
vector product approximately. All prior tasks can be reduced to solve this task, and itself is crucial
for recent breakthroughs in linear programming [27, 72] and empirical risk minimization [55].

Matrix Maintenance Tasks We discuss two tasks related to maintain certain matrices. Many
optimization algorithms require maintain matrices under some (slow) changes, or maintain some
low rank structure of the change.

References LR/Proj Task Theorem Chapter
[76] LR Task 1.1.10 Theorem 1.2.4 Chapter 4
[27, 55, 72] Proj Task 1.1.11 Theorem 2.6.10 and 2.6.12 Chapter 2

Table 1.2: Optimization algorithms and their corresponding data structure tasks: low rank or
projection maintenance. We use LR to denote Low Rank and Proj to denote Projection

Task 1.1.10 (Low Rank Maintenance). Let A ∈ Rd×d and U, V ∈ Rd×k for some k < d. The
goal is to maintain the matrix A+UV ⊤ so that for any vector x ∈ Rd, the matrix-vector product
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query (A+ UV ⊤)x can be answered fast.
The above task is inspired by training deep, large neural networks [76], in which the gradient

of the weight matrix has a natural low rank structure, and the network inference requires to
compute the matrix-vector product with a (sparse) vector.
Task 1.1.11 (Projection Maintenance). Let W ∈ Rn×n be a diagonal matrix with non-negative
entries, A ∈ Rd×n with d ≤ n and rank d. The goal is to maintain the projection matrix
P =

√
WA⊤(AWA⊤)−1A

√
W under the change to diagonal matrix W , so that for any vector

h ∈ Rn, the matrix-vector product query Ph can be answered fast.
Projection maintenance is fundamental for efficiently implementing the central path method,

which is the crux for interior point method (IPM). Problems such as linear programming [27, 72]
and empirical risk minimization crucially rely on fast IPM implementations.

1.1.2 Data Structure Results
In this section, we give our main data structures, addressing tasks we propose in the previous
section.

Data Structures Special Task Theorem Chapter
Matrix Search Tree Task 1.1.4 Theorem 1.1.12 Chapter 2.2.1
Matrix Sample Tree Task 1.1.5 Theorem 1.1.12 Chapter 2.2.1
Vector Search Tree Task 1.1.4 Theorem 1.1.13 Chapter 2.2.2
Vector Sample Tree Task 1.1.5 Theorem 1.1.13 Chapter 2.2.2
AFN+TensorSparse Task 1.1.6 Theorem 1.1.14 Chapter 2.3
AIPE Task 1.1.6 Theorem 1.1.15 Chapter 2.4
Correlation DTree Task 1.1.7 Theorem 1.1.16 Chapter 2.2.3
Correlation WTree Task 1.1.7 Theorem 1.1.17 Chapter 2.2.3
Coordinate-wise Embedding Task 1.1.9 Theorem 1.1.20 Chapter 2.6.2
Low Rank Maintenance Task 1.1.10 Theorem 1.1.18 Chapter 2.5
Projection Maintenance Task 1.1.11 Theorem 2.6.10 and 2.6.12 Chapter 2.6

Table 1.3: Our data structures that fulfill different tasks.

Matrix and Vector Search & Sample Tree. Our first data structures are surprisingly simple
yet highly effective trees that solves Task 1.1.4 and 1.1.5. They have good initialization and
query time that can be balanced based on the structure of the input. We state their guarantees
here.
Theorem 1.1.12 (Matrix Search & Sample Tree, informal version of Theorem 2.2.1). There
exists a data structure with the following procedures:

• INIT({M1,M2, · · · ,Mm} ⊆ Rd×d). It takes a sequence of matrices M1,M2, · · · ,Mm as
input, and preprocesses in time O(

∑m
i=1 nnz(Mi)).

• QUERYPOSITIVESEARCH1(A ∈ Rd×d). Given a matrixAwith the promise that
∑m

i=1⟨Mi, A⟩ >
0, it returns an index i such that ⟨Mi, A⟩ > 0 in time O(d2 logm).

1Throughout this thesis, we use the phrase “positive search” and “nonnegative search” interchangeably.
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• QUERYSAMPLE(A ∈ Rd×d). Given a positive semidefinite matrix A ∈ Rd×d, it samples
an index i with probability ⟨Mi,A⟩∑m

i=1⟨Mi,A⟩ in time O(d2 logm).
The above data structure has very fast query time, since reading the input matrix A will take

O(d2) time for a dense A, and when the preprocessed dataset {M1, . . . ,Mm} are rather sparse,
it also has fast initialization time.
Theorem 1.1.13 (Vector Search & Sample Tree, informal version of Theorem 2.2.4). There
exists a data structure with the following procedures:

• INIT({v1, v2, · · · , vm} ⊆ Rd). It takes a sequence of vectors v1, v2, · · · , vm as input, and
preprocesses in time O(mdω−1) and in space O(md).

• QUERYSAMPLE(A ∈ Rd×d). Given a positive semidefinite matrix A ∈ Rd×d, it samples
an index i with probability ⟨Mi,A⟩∑n

i=1⟨Mi,A⟩ in time O(d2 logm+ dω).
• QUERYPOSITIVESEARCH(A ∈ Rd×d). Given a matrixAwith the promise that

∑m
i=1⟨Mi, A⟩

> 0, it returns an index i such that ⟨Mi, A⟩ > 0 in time O(d2 logm+ dω).
When the dataset is given as a set of vectors, the above data structure gives a faster ini-

tialization time at the expense of a worse query time. Unlike traditional data structures, this is
acceptable — as we will see later, the optimization task we consider has dω barrier per iteration
due to computing some full rank updated inverse. Hence, the slower query time actually gives us
leverage to design algorithm that has overall good running time.

We remark the two data structures do not have any internal randomness, this means they
are automatically robust against adaptive queries. Using these simple data structures to reduce
iteration cost resembles a similarity to that of [48].

Approximate Furthest Neighbor and Sparse Embedding for Tensors. To solve Task 1.1.6,
i.e., finding the vector with the minimum inner product, it is natural to consider its dual problem,
the furthest neighbor search. By using a reduction that normalizes vector while preserving inner
product, we solve Task 1.1.6 using the AFN data structure of [39]. However, there are two
caveats: 1). the data structure is not robust against adaptive adversary, 2). the data structure is
typically used with Johnson-Lindenstrauss transform, which itself is not robust.

We address these two problems individually. For the first one, we use a quantization method
to make it robust. For the second one, we design a new type of sparse embedding matrix for
tensors, and augment it to be robust. Our result can be viewed as a practice to equip classical
data structures with the arsenals for iterative process.
Theorem 1.1.14 (Informal version of Theorem 2.3.24). Let c, τ, ε, δ ∈ (0, 1) andX = {x1, . . . , xm} ⊂
Rd.

Let k = Õ(d2) be the number of independent TensorSparse matrices. Then there exists a ran-
domized data structure with success probability at least 1− δ even against an adaptive sequence
of queries, such that given a query matrix Q ∈ Rd×d with minx∈X x⊤Qx ≤ τ , the data structure
outputs a vector x̂ ∈ X such that x̂⊤Qx̂ ≤ τ/c + o(1). Moreover if c ∈ (τ, 400τ

(1−ε)2τ+2ε+399
), the

data structure has the following runtime behaviors:
• It preprocesses X in time Õ((m1.01 + nnz(X))d2).
• Given a query matrixQ, it outputs a x̂ ∈ X with the promised guarantee in time Õ(m0.01+
d2).
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• It inserts or deletes a point into the dataset in time Õ(m0.01d2).

Approximate Inner Product Estimation. An alternative approach for Task 1.1.6 is to simply
estimate all the inner products approximately. Note data structure with such properties can also
be used for Task 1.1.9, but the AIPE data structure uses many independent JL matrices (the
number is proportional to the dimension), hence when iteration is small (which is common in
optimization), it does not have the best performance.

To produce such data structure, we again use the duality between inner product and norm,
and adapt the adaptive distance estimation data structures [22, 23].
Theorem 1.1.15 (Informal version of Theorem 2.4.6). Let c, τ, δ ∈ (0, 1). GivenX = {x1, . . . , xm}
⊂ Rd and Q ∈ Rd×d with minx∈X x

⊤Qx ≤ τ , the data structure outputs a vector x̂ ∈ X such
that x̂⊤Qx ≤ τ/c. Moreover, if c ∈ (τ, 1.01τ

τ+0.99
), the data structure has the following runtime

behaviors:
• It preprocesses X in time Õ(md2).
• Given a query matrixQ, it outputs a x̂ ∈ X with the promised guarantee in time Õ(m+d2).
• It inserts or deltes a point into the dataset in time Õ(d2).

Correlation Trees. Task 1.1.7 gives us two datasets X and W , then we need to preprocess one
of them, using the other as query dataset. One of the datasets needs to be constantly updated.
This task is closely related to training over-parametrized neural networks, in which one needs to
find the neurons being fired up, which means ⟨wj, xi⟩ ≥ τ for some τ .

The data structures we design is called the correlation tree, basically, we preprocess either
X or W , storing the maximum inner product at each node. During query, we only search the
subtree with the value at node at least as large as the threshold. Hence, we only touch the subtree
that contains fired-up neurons.
Theorem 1.1.16 (Correlation DTree, informal version of Theorem 2.2.9). There exists a data
structure with the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(n · (d+ logm))

• QUERY(i ∈ [n], τ ∈ R). Given an index i indicating data point xi and a threshold τ , it
finds all index r ∈ [m] such that ⟨wr, xi⟩ > τ in time O(|S̃(τ)| · logm), where S̃(τ) :=
{r : ⟨wr, xi⟩ > τ}

The second data structure preprocesses all data points and supports queries in terms of
weights:
Theorem 1.1.17 (Correlation WTree, informal version of Theorem 2.2.13). There exists a data
structure with the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)
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• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(nd)

• QUERY(r ∈ [m], τ ∈ R). Given an index r indicating weight wr and a threshold τ , it finds
all index i ∈ [n] such that ⟨wr, xi⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i :
⟨wr, xi⟩ > τ}

Low Rank Maintenance via Lazy Update. Task 1.1.10 describes the following simple prob-
lem: given a matrix A ∈ Rd×d, at each iteration, it receives an update UkV ⊤

k with Uk, Vk ∈ Rd×k

for some k ≪ d, we need to maintain A+UkV
⊤
k so that matrix-vector product can be computed

fast. Suppose one has computed Ah for some h ∈ Rd, computing UkV ⊤
k h only takes O(kd)

time. However, when the number of updates becomes large, this k grows larger and larger, and
we might need to restart. The following data structure implements this idea.
Theorem 1.1.18 (Informal version of Lemma 2.5.2). There exists a deterministic data structure
such that, given an initial matrix A ∈ Rd×d, has the following guarantees:

• It preprocesses A in time O(d2).
• Given an updateUk, Vk ∈ Rd×k, it updates the representationA+∆A+UkV

⊤
k in amortized

time O(kd2−α+o(1)), where α ≈ 0.31 is the dual matrix multiplication exponent [33].
• Given a vector h ∈ Rd, it computes the product (∆A)h in time O(d · (nnz(h) + r)), where
r is the rank of ∆A when it is queried.

Projection Maintenance via Inverse Maintenance and Coordinate-wise Embedding. Pro-
jection maintenance in its original form is not obvious how to achieve it efficient, due it its rather
complicated structure. We simplify it via a reduction to inverse maintenance, this reduction is
general enough to take into the account of the sketching matrices to speed up the construction.

The construction itself uses Schur complement, basically, for proper matrices A,B,C,D, we
have

[
A B
C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

Assume all corresponding parts that require inversion is invertible. By properly putting the
matrices into correct location, it is not hard to see that

W−1 A⊤
√
W

−1
0

A 0 0 0
0 0 −I 0

(
√
W

−1
)⊤ 0 0 −I


−1 

0n
0d
−h
−h

 =


⋆
⋆
⋆√

WA⊤(AUA⊤)−1A
√
Wh


For a more detailed discussion, we refer readers to Section 2.6.
As observed in [27], even if the projection matrix P is given us for free, computing Phmight

take O(n2) assuming no structures on P and h, so they use a sample scheme to sparsify h so that
it only has

√
n nonzero entries. [55] uses sketch to reduce the size of projection matrix, more

specifically, they maintain a matrix RP where R ∈ R
√
n × n. [72] maintains PR⊤ and Rh and
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they categorize a family of sketching matrices that can support their desired accuracy into the
so-called coordinate-wise embedding property.
Definition 1.1.19 ((α, β, δ)-coordinate wise embedding). We say a randomized matrixR ∈ Rb×n

satisfying (α, β, δ)-coordinate wise embedding if

1. ER∼Π[g
⊤R⊤Rh] = g⊤h,

2. ER∼Π[(g
⊤R⊤Rh)2] ≤ (g⊤h)2 +

α

b
∥g∥22∥h∥22,

3. Pr
R∼Π

[
|g⊤R⊤Rh− g⊤h| ≥ β√

b
∥g∥2∥h∥2

]
≤ δ.

Coordinate-wise embedding solves Task 1.1.9, it is more light-weighted, optimization friendly
and compatible to many updates to the rows of matrix P , compare to that of AIPE. Both [55]
and [72] can be directly captured by coordinate-wise embedding. Our result shows that the sam-
pling technique in [27] is also a coordinate-wise embedding:
Theorem 1.1.20 (Informal version of Lemma 2.6.16). Given a vector h ∈ Rn, let D be a diago-
nal sampling matrix defined as

Di,i =

{
1
pi
, with probability pi := b ·

(
h2i

∥h∥22
+ 1

n

)
;

0, otherwise.

For any g ∈ Rn, we have
• ED[g⊤Dh] = g⊤h.
• ED[(g⊤Dh)2] = (g⊤h)2 + 1

b
∥g∥22∥h∥22.

• PrD[|g⊤Dh− g⊤h| ≥ log(1/δ)√
b
∥g∥2∥h∥2] ≤ δ.

With this result, we achieve a final unification for [27, 55, 72], or more specifically, a class of
algorithms for robust central path method with running time2

O∗(nω + n2+1/6)

Both [27] and [72] can be viewed as sketching on the right, since one can decompose the
sampling matrix in [27] into R⊤R with R ∈ R

√
n×n. The major difference is [27] adapts a data-

dependent approach, since the sampling matrix is designed after observing the vector h. [72] is
an oblivious approach, in the sense that the sketching matrices are chosen beforehand. Clearly,
the former has some advantages, e.g., has the optimal dependence on β (log(1/δ)). But the
parameters for oblivious sketching are also enough to achieve comparable results.

[55] is an instance of sketching on the left, i.e., maintains RP , and in the query time, first
compute RPh then R⊤RPh. In contrast for the other two papers, it approximately maintains
the product between I and Ph instead of P and h. This makes the central path infeasible, and
one needs to restart the algorithm after a number of iterations. Their sketching technique is also
oblivious.

2We use O∗ to hide poly log(n) and no(1).

10



1.2 Faster Optimization Algorithms via Data Structures
In this section, we give an overview of our main results in speeding up optimization algorithms
using the bag of data structures we developed.

Deterministic Linear-Sized Spectral Sparsifier. We show that the linear-sized spectral spar-
sifier problem solved by Batson, Spielman and Srivastava [12] is an iterative process in which
each iteration, it solves Task 1.1.4. Hence, we use data structures we developed to speed up this
process. Suppose the input is given as a list of vectors X = {x1, . . . , xm} ⊂ Rd.

References Time for Sparse Instances Time for Dense Instances
Batson, Spielman and Srivastava [12] ε−2d(

∑
i∈[m] nnz

2(xi) + dω) ε−2d(md2 + dω)

Zouzias [90] ε−4d4 + ε−2md2 ε−4d4 + ε−2md2

Theorem 1.2.1
∑

i∈[m] nnz
2(xi) + ε−2dω+1 mdω−1 + ε−2dω+1

Table 1.4: Main results for deterministic linear-sized spectral sparsifier.

Theorem 1.2.1 (Informal version of Theorem 3.1.8). Let {x1, . . . , xm} ⊂ Rd. Suppose we have∑m
i=1 xix

⊤
i = I , then there exists a deterministic algorithm that computes a set of non-negative

weights {si}mi=1 with |{si : si ̸= 0}| = Θ(ε−2d) in time

min{
m∑
i=1

nnz2(xi),md
ω−1}+ ε−2dω+1.

For the most standard setting that m = d2, we improve from the O(d4) algorithm of [90]
to O(dω+1). Perhaps the most surprising aspect of our result is it models the algorithm of [12]
as Task 1.1.4, which can also be adapted to improve the algorithm of [3], the sampling process
of [53] when input is given as rank-1 matrices.

One-Sided Vector Packing and Experimental Design. The potential function studied in [12]
has other applications, including restricted invertibility [81] and one-sided vector packing [84].
The iterative algorithm in [84] can be modeled as solving Task 1.1.6 per iteration. One interesting
perspective of the one-sided vector packing task is the number of vectors one needs to pick
can be small or large. We give different algorithms for these two cases. When the number
of vectors is small, we use the AIPE data structure, and when the number is large, we use the
AFN+TensorSparse data structure.
Theorem 1.2.2 (Informal of Theorem 3.2.10). Let τ, c ∈ (0, 1) andN ∈ N+, ifX := {x1, . . . , xm}
is a finite sequence of vectors in Rd satisfying ∥xi∥2 = 1√

N
,∀i ∈ [m] and

∑m
i=1 xix

⊤
i = I . Then

for any n < m, there exists a randomized algorithm (succeed with high probability) that takes
time T to find a set S (|S| = n) such that∥∥∥∥∥∑

i∈S

xix
⊤
i

∥∥∥∥∥ ≤ 1

c
· ( n
m

+O(
1√
N
)).

Further, we have that,

11



• if c ∈ (τ, 400τ
399+τ

), then T = Õ((m1.01 + nnz(X)) · d2 + n · (m0.01d2 + dω)).

• if c ∈ (τ, 1.01τ
0.01+τ

), then T = Õ(md2 + n · (m+ dω)).

References Running Time
[84] n · (md2 + dω)

Theorem 1.2.2 (m1.01 + nnz(V )) · d2 + n · (m0.01d2 + dω)

Theorem 1.2.2 md2 + n · (m+ dω)

Table 1.5: Main results for one-sided vector packing problem.

A key rounding algorithm for the experimental design problem [7] can also be viewed as
solving Task 1.1.6, we include our result here.
Theorem 1.2.3 (Informal version of Theorem 3.3.16). Let π ∈ [0, 1]m with ∥π∥1 ≤ n and∑m

i=1 πixix
⊤
i = Id. Let γ ≥ 3 and ε ∈ (0, 1

γ
]. Then, there exists a subset S ⊂ [m] with |S| ≤ n

such that

λmin(
∑
i∈S

xix
⊤
i ) ≥ 1− γ · ε.

Let τ ∈ (0, 1) and c ∈ ( 1
γ−1

, 1). If n ≥ 6d/ε2

γ−1−1/c
, then there exists a randomized algorithm

(success with high probability) that takes time T to find such S. Furthermore,
• If c ∈ (τ, 1.01τ

0.01+τ
), then T = Õ(nd2 + ε−1n · (n+ dω + (m− n)d2));

• If c ∈ (τ, 400τ
399+τ

), then T = Õ((n1.01 + nnz(X))d2 + ε−1n · (n0.01d2 + dω + (m− n)d2)).

References Running Time
[7] vanilla ε−1mnd2

[7] warm restart mnd2

Theorem 1.2.3 nd2 + ε−1n(n+ dω + (m− n)d2)

Theorem 1.2.3 (n1.01 + nnz(X))d2 + ε−1n((n0.01 + z)d2 + dω + (m− n)d2)

Table 1.6: Main results for experimental design via regret minimization.

In the table, we use z to denote maxi∈[m] nnz(xi).

Training Deep, Over-parametrized Networks. Let X = {x1, . . . , xn} ⊂ Rd be the dataset,
the goal is to train a neural network with L layers and the network width m = poly(n, d, L).
Note that the weight matrices for layer 2 to L − 1 are of size m × m. From an algorithmic
perspective, the major challenge is to implement a training algorithm that has per iteration cost
o(m2), since in this scenario, m ≥ n4, so reduce the dependence on m is crucial.

We obtain an algorithm that has training cost per iteration Õ(nm2−α) where α ≈ 0.31.
Under current best over-parametrization setting in which m ≥ n4, our algorithm has running
time Õ(m1.94), which is the first truly subquadratic algorithm that realizes such training cost.
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Theorem 1.2.4 (Runtime, informal version of Theorem 4.3.1). There exists a randomized al-
gorithm that trains a multi-layer neural network of width m with the cost per training iteration
being

Õ(nm2−α).

Moreover, under current over-parametrization setting in which m ≥ n4, the cost per training
iteration being

Õ(m1.94).

Our algorithm also has a good convergence rate. Let λL be the smallest eigenvalue of the
induced Neural Tangent Kernel of the deep, over-parametrized network and y ∈ Rn being the
label. Moreover, let ft ∈ Rn denote the prediction of the our trained neural network at time t,
then
Theorem 1.2.5 (Convergence, informal version of Theorem 4.7.14). Suppose the width of the
neural network satisfies m ≥ poly(n, L, λL), then there exists an algorithm such that, over
the randomness of initialization of the network and the algorithm, with probability at least 1 −
e−Ω(log2 n), we have

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2.

Improving Initialization of [75]. One of the most important tasks for training over-parametrized
networks is to quickly lookup the neurons that have been fired-up. This is Task 1.1.7, and we’ll
use the Correlation DTree and Correlation WTree to give two different runtime guarantees.

Consider the network architecture being a 2-layer ReLU network with m hidden units, the
last layer is un-trained uniform Rademacher, and the training loss of the squared ℓ2 loss. The
ReLU we use is the shifted ReLU, with shifting parameter b =

√
0.4 log n.

In [75], they obtain different running times for initializing weights or data points. Here, we
show that by using DTree or WTree, the running time is essentially identical, asymptotically.
Theorem 1.2.6. Given n data points in d-dimensional space, running gradient descent using
Correlation DTree (Theorem 1.1.16) or Correlation WTree (Theorem 1.1.17) has initialization
time O(mnd). For each iteration, the expected training cost is Õ(m4/5n2d).

We note that comparing to the per iteration cost of [75], which is Õ(m4/5nd), we lose an
extra n factor, but our initialization time is much more tractable in contrast to their exponential
initialization time. We believe this result can find more applications for training deep networks,
in which one observes an even larger discrepancy between m and n.

1.3 Discussion: Optimization-Friendly Data Structures
Unlike traditional design of data structures, the data structures we develop are specifically geared
towards their deployment in an iterative process. We highlight some of the major differences:
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• The balance of initialization, and per iteration query, update time. Traditional data struc-
tures typically have very fast query and update time, at the expense of worse initializa-
tion time, with the most prominent case being high dimensional geometric search data
structures [1, 13]. If our goal is to use them in an iterative process, we have to balance
the initialization and per iteration cost, so that the initialization is not too slow, and the
query/update is not too fast so that the initialization time dominates. This makes certain
data structures that are not perfect in both worlds very valuable, since they achieve a good
balance due to the number of iterations of the optimization algorithm.

• Robust against adaptive queries. To improve the efficiency, many data structures maintain
some internal randomness and provide Monte Carlo guarantees. However, most such suc-
cess guarantees are against a sequence that is oblivious towards the internal randomness of
the data structure. In an iterative process, this is usually not the case, since one might use
the query result of the data structure from last iteration as the input to the data structure.
For example, locality senstive hashing-based data structures [30, 40] are typically used
in conjunction with Johnson-Lindenstrauss transforms [43], which assumes the query and
update sequence is oblivious towards the JL and the LSH data structures, renders them
useless in an iterative process, in their original form.
To address this issue, many techniques have been developed, including:

1. Using deterministic data structures [78] or data structures that generate fresh random-
ness for new queries which is perhaps the most prevalent adaptation of data structures
in iterative process.

2. Using an ε-net argument and union bound over all points on the net [69, 70]. Specif-
ically, one can quantize the unit Euclidean ball into lattices spanned by so-called net
points. One can show that exp(d) many net points suffice to cover the unit Euclidean
ball in d-dimension. Then, one can union bound over all net points and the query can
be performed on these points instead. This provides a “for all” guarantee for success
probability, instead of for a fixed set.

3. Effectively detecting the failure of the data structure via so-called flip number [34].
In many streaming problems, one typically maintain a linear sketch to approximate
some statistics in small space, such linear sketch is randomized, and will leak the
randomness of itself as the it receives more and more updates. However, it does
not leak the randomness immediately after receiving one update, rather gradually
performs worse and worse. Flip number captures the moment that the linear sketch
does not function well. One can then use a fresh sketch to restart the computation.

4. Injecting random noise into the algorithm to make it differentially private against the
internal randomness of the data structure [79]. Differential privacy can be viewed as
a framework to smooth the algorithm, in the sense that if only one row of the input
database has changed, the function output should still be close. By adding carefully-
crafted noises, one makes the algorithm “smooth” with respect to the randomness
of the data structure. In this way, even though the query will leak the randomness,
the adaptive adversary cannot differentiate between the internal randomness and the
noise added.
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5. For specific task such as finding the large/heavy coordinates of a vector, one can use
sparse recovery technique to approximately find location of these coordinates first,
then compute the values for those heavy coordinates exactly. In the standard sparse
recovery problem [21, 35, 63], there are two steps: one is approximately finding the
heavy indices (“locate frequency”). The other is approximately evaluating the fre-
quencies (“set query”). In classical sparse recovery, we are not allowed to verify the
heavy indices exactly and therefore have to run the set query step [62]. However,
in optimization task, one can evaluate the heavy indices exactly and hence remove
the effect of randomness. The reason is we can conditioned on the correctness of
all locate frequency algorithm are correct at the beginning for the deterministic opti-
mization algorithm.

1.4 Open Problems
In this thesis, we study data structures and optimizations, two central topics in computer science,
to better support each other. We design data structures that are friendly to optimizations, and we
formalize optimization problems in terms of data structure tasks.

Note that Task 1.1.9 is to estimate all inner products approximately, so it can serve as a more
general case for Task 1.1.6. Naturally, all data structures that support Task 1.1.9 also can be used
to solve Task 1.1.6. Hence, we have 3 data structures for this task: coordinate-wise embedding
(CE), AIPE and AFN. CE is perhaps one of the most flexible and iteration-sensitive approach,
when number of iterations is small (≪ d), it provides the best performance due to the number of
sketches it uses depends on the number of iterations. When number of iterations is comparable
to or slightly larger than the small dimension d (∼ d), AIPE gives the fastest algorithm, since
it uses roughly d sketches. However, both of these approaches require linear scan over all m
data points, so when number of iterations is very large, say comparable to the large dimension m
(∼ m), AFN is more useful since it has the best query complexity. For many optimization tasks,
number of iterations is rather small, therefore CE is more valuable for most applications. It is
interesting to discover and study the natural optimization problems that have many iterations, so
that AIPE and AFN can be utilized.

There are several open problems in this thesis. The first is to obtain a nearly linear time deter-
ministic sparsification algorithm for graph and general matrix V ∈ Rm×d. Solving this problem
deterministically has major implications in dynamic algorithms and computing minimum cut of
a graph, and even might lend insights to the dynamic graph sparsification problem. We achieve
the current best running time O(dω+1), it will be an interesting to further improve this running
time to O(dω) or even O(d2), which is nearly linear for dense graph.

Also, we state Task 1.1.8 but do not provide a data structure and its corresponding optimiza-
tion problem to it. This task is actually related to the symmetric Determinantal Point Process
(DPP) and Non-symmetric Determinantal Point Process (NDPP). We leave exploring data struc-
tures to speed up this task as an open problem.

Improving the running time of linear programming to O∗(n2) is always an important open
problem in computer science. Currently, even though we have ω = 2, the best running time is
O∗(n2+1/18). We believe to obtain a breakthrough result, it is essential to simplify the current best
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algorithms for LP. We show that a coordinate-wise embedding-based dimensionality reduction
tool is key to this speedup, and it will be interesting to see how this property manifests in state-
of-the-art [42] and potentially lead to other future improvements.

Finally, note that we solve a one-sided Kadison-Singer problem posed by Weaver [84] in this
thesis. The ultimate goal is to solve the two-sided Kadison-Singer problem in quasi-polynomial
time. Marcus, Spielman and Srivastava [58] shows that given a set of vectors {v1, . . . , vm} ⊂ Rd

with
∑m

i=1 viv
⊤
i = I and ∥vi∥22 ≤ α, it is possible to find a subset S with 1

2
− c ·

√
α ≤∑

i∈S⟨vi, u⟩2 ≤
1
2
+ c ·

√
α, which resolves the Kadison-Singer conjecture [44]. However,

their algorithm requires exhaustive search over all possible subsets, which takes O(2m) time.
Instead, we ask the following data structure problem: given m vectors in dimension d, does
there exist a data structure that can preprocess these m vectors and answer the query on the
set of vectors

∑m
i=1 civi where ci ∈ {±1}? Intuitively, this means that we are given m points,

and we wish to design data structure that answers query in a restricted span of these m points
and can be dynamically updated, in quasi-polynomial time? We believe such data structure is
key to solve Kadison-Singer problem in quasi-polynomial time, improving from the state-of-
the-art which approximates the largest root of polynomial in 2Õ(m1/3) time [9]. Note that when
d = poly(logm), we can aim at a preprocessing time of mpoly(d) = 2poly(logm) which could
already be significant progress on algorithmic Kadison-Singer problem. This is an open problem
posed in a 2021 April manuscript by Song, Xu and Zhang [74]3.

1.5 Preliminaries and Thesis Structure
We give a preliminary overview of the notations that will be used across this thesis. We also
discuss the structure of this thesis and provide a general roadmap.

1.5.1 Notations
General Notations. For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use
E[·] for expectation and Pr[·] for probability. We useN (µ, σ2) for the Gaussian distribution with
mean µ and variance σ2. We use Õ(f(n)) forO(f(n) ·poly log(f(n)). For a matrixA or a vector
x, we use nnz(A) and nnz(x) to denote the number of nonzero entries of A and x respectively.

Vectors. For any vector x, we use ∥x∥2 to denote its ℓ2 norm, ∥x∥0 denote the number of
nonzero entries x. Note that ∥ · ∥0 is a semi-norm since it satisfies triangle inequality. Let ⟨·, ·⟩
be the inner product between two vectors defined as ⟨x, y⟩ = x⊤y. We use x ⊗ y = vec(xy⊤)
for the tensor product between two conforming vectors x and y. For a vector x ∈ Rn, we use
diag(x) ∈ Rn×n to denote a diagonal matrix with diagonal being x.

Matrices. For any matrix A ∈ Rm×m, We use ∥A∥ for the spectral norm of a real symmetric
matrix A, i.e., ∥A∥ = maxi∈[m]{|λi(A)|} where λi(A) is the i-th eigenvalue. We use ∥A∥F for

3[74] is an early version of [78], most of the results in [74] have been improved in [78]. We state the open
problem only in [74] 2021 manuscript version.
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the Frobenius norm of A. We use ∥A∥0 to denote the number of nonzero entries of A.
For any A ∈ Rn×m, we define A⊤ ∈ Rm×n to be the transpose of A. We use Im for the

identity matrix of size m × m. For a square and full rank matrix A, we use A−1 to denote its
inverse.

Given a real square matrix A, we use λmax(A) and λmin(A) for its largest and smallest eigen-
values respectively. Given a real matrix A, we use σmax(A) and σmin(A) for its largest and
smallest singular values respectively. We use tr[A] to denote the trace of matrix A.

We use ⟨·, ·⟩ to denote the inner product between two conforming matrices A and B, defined
as ⟨A,B⟩ = tr[A⊤B].

We say a symmetric matrix A ∈ Rn×n is positive semidefinite (PSD, denoted as A ⪰ 0) if
for any vector x ∈ Rn, x⊤Ax ≥ 0. We say a symmetric matrix A ∈ Rn×n is positive definite
(PD, denoted as A ≻ 0) if for any vector x ∈ Rn, x⊤Ax > 0.

For two symmetric matrices A and B with conforming sizes, we say A ⪯ B if and only if
A−B ⪯ 0.

For a real positive semidefinite matrix A, we define its square root A1/2 to be the unique
positive semidefinite matrix such that (A1/2)⊤A1/2 = A.

We define Tmat(a, b, c) to be the time of multiplying an a×bmatrix with another b×cmatrix.
Note that Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(b, a, c)).

For real symmetric matrices A and B of the same size, we use A ≈ε B if (1 − ε)B ⪯ A ⪯
(1 + ε)B.

For two matrices A and B, we use A⊙B to denote the Hadamard product between A and B
and we use A×B to denote the tensor product between A and B.

1.5.2 Thesis Structure
In Chapter 2, we design data structures for tasks in Section 1.1. In Chapter 3, we use data struc-
tures specifically geared towards inner product type tasks (see Task 1.1.1 and 1.1.2) to improve
various sparsification algorithms. In Chapter 4, we give the first subquadratic algorithm for train-
ing deep, over-parametrized neural networks. In Appendix A, we include an implementation of
the approximate furthest neighbor search data structure and its proof. In Appendix B, we include
an implementation of the inverse maintenance data structure when input is a projection matrix,
coupled with a vector. In Appendix C, we introduce a new variant of fast sketching matrix for
tensors, using circulant matrix.
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Chapter 2

Data Structures

We design data structures to solve the tasks posed in Section 1.1. For different tasks, we develop
different data structures using techniques from a wide range of literature. Many of our data
structures will be deterministic — this is essential when used in conjunction with an iterative
process. For randomized data structures, we make sure that either each update/query uses fresh
randomness, or we take extra care to make sure the data structure is robust against adaptive
update/query sequence.

The data structures in Section 2.2.1, 2.2.2, 2.3 and 2.4 are based on the arXiv document
https://arxiv.org/pdf/2204.03209.pdf coauthored by the thesis author. Section 2.5 is based on the
arXiv document https://arxiv.org/pdf/2112.07628.pdf coauthored by the thesis author.

2.1 Tools
In this section, we recall some important tools and facts.

In this section, we present some probability tools.
We start with the standard 2-stable Gaussian distribution. We refer the readers to [30] for

more details.
Fact 2.1.1 (Standard Gaussian is 2-stable). Let Z,X1, X2, . . . , Xk ∼ N (0, 1) and v ∈ Rk, then∑k

i=1 viXi and ∥v∥2 · Z have the same distribution.
Next, we present a concentration and anti-concentration bound for Gaussian distribution.

Fact 2.1.2 (Gaussian concentration bound). Let X ∼ N (0, 1) and t > 0, then we have
• Part 1 Concentration. Pr[|X| ≥ t] ≤ 2 exp(−t2/2)/t.
• Part 2 Anti-Concentration. There exists a constant B > 0 such that

Pr[|X| ≥ t] ≥ 2B · exp(−t2/2)/max{1, t}.

Definition 2.1.3. LetX be a random variable, we use ∥X∥Lq to denote (E[|X|q])1/q. By Minkowski’s
inequality, ∥ · ∥Lq is a norm when q ≥ 1.
Lemma 2.1.4 (Hanson-Wright inequality [36]). For σ1, σn independent Rademachers and A ∈
Rn×n, for all q ≥ 1,

∥σ⊤Aσ − E[σ⊤Aσ]∥Lq ≤ O(1) · (
√
q · ∥A∥F + q · ∥A∥).
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Lemma 2.1.5. For Y distributed as Binomial(N,α) for integer N ≥ 1 and α ∈ (0, 1), let
1 ≤ p ≤ N and define B := p/(αN). Then

∥Y ∥Lp ≤

{
p

logB
, if B ≥ e

p
B
, if B < e.

2.2 Trees
Trees are perhaps the most widely-used data structure primitives in computer science. In this
thesis, we design trees that can support fast search and sample based on the inner product of
inputs. Unlike the usual self-balancing tree or link-cut tree data structures, for inner product-
typed query, there’s often a naturally induced ordering. This means that we can preprocess data
using this natural order, and search along a tree path only takes O(logm) levels. Unlike typical
search trees in which compute each node takes O(1) time, we’ll have to compute the inner
product in O(d) time.

2.2.1 Matrix Search Tree: Input Sparsity Time Initialization and Fast
Query

Given a list of matrices {M1, . . . ,Mm} ⊂ Rd×d, we design a data structure to solve Task 1.1.4
and 1.1.5. The data structure proprocesses the list of matrices in input sparsity time, i.e.,

∑
i∈[m] nnz(Mi).

When query, it takes inner product between a query matrix A and a partial sum matrix stored at
a tree node in O(d2) time and only traverses one path from root to a leaf. Note that when we are
dealing with vector inputs, we need to spend O(

∑
i∈[m] nnz(vi)

2) time forming the outer prod-
ucts viv⊤i . Our data structure also supports sample based on the distribution defined by the inner
product.

Algorithms.
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Algorithm 1 Matrix Positive Search
1: data structure MATRIXPS ▷ Theorem 2.2.1
2: members
3: M1,M2, · · · ,Mm ⊂ Rd×d (matrix of each index)
4: S0, S1, S2, · · · , Sn ⊂ Rd×d (partial sum of each node)
5: Binary tree T (each node is a tuple (i1, i2, S) where i1 < i2 are indices and S =

∑i2
i=i1

Si)
6: end members
7:
8: procedure INIT(M1,M2, · · · ,Mm ⊂ Rd)
9: S0 = 0

10: for i = 1 to m do
11: Mi ←Mi

12: si ← Si−1 +Mi

13: end for
14: Insert (1,m, Sm) as root of T
15: while exists a leaf l = (i1, i2, S) of T such that i2 − i1 ≥ 1 do
16: k = ⌊(i1 + i2)/2⌋
17: Insert (i1, k, Sk − Si1−1) as left child of l
18: Insert (k + 1, i2, Si2 − Sk) as right child of l
19: end while
20: end procedure
21:
22: procedure QUERYPOSITIVESEARCH(A ∈ Rd×d) ▷ Lemma 2.2.2
23: r ← root of T
24: while r is not a leaf of T do
25: r1 ← left child of r, r2 ← right child of r
26: M1 ← matrix of r1, M2 ← matrix of r2
27: p1 ← ⟨A,M1⟩, p2 ← ⟨A,M2⟩
28: if p1 > 0 then
29: r ← r1
30: else ▷ p2 > 0
31: r ← r2
32: end if
33: end while
34: return index of r
35: end procedure
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Algorithm 2 Matrix Sample
1: data structure MATRIXPS ▷ Theorem 2.2.1
2: procedure QUERYSAMPLE(A ∈ Rd×d) ▷ Lemma 2.2.3
3: r ← root of T
4: while r is not a leaf of T do
5: r1 ← left child of r, r2 ← right child of r
6: M1 ← matrix of r1, M2 ← matrix of r2
7: p1 ← ⟨A,M1⟩, p2 ← ⟨A,M2⟩
8: Generate random number b ∈ (0, 1)
9: if b < p1

p1+p2
then

10: r ← r1
11: else
12: r ← r2
13: end if
14: end while
15: return index of r
16: end procedure
17: end data structure

Running time and correctness

We summarize the correctness and running time of Algorithm 1 as follows:
Theorem 2.2.1 (Formal version of Theorem 1.1.12). There exists a data structure with the fol-
lowing procedures:

• INIT({M1,M2, · · · ,Mm} ⊆ Rd×d). It takes a sequence of matrices M1,M2, · · · ,Mm as
input, and preprocesses in time O(

∑m
i=1 nnz(Mi)).

• QUERYPOSITIVESEARCH(A ∈ Rd×d). Given a matrixAwith the promise that
∑m

i=1⟨Mi, A⟩ >
0, it returns an index i such that ⟨Mi, A⟩ > 0 in time O(d2 logm).

• QUERYSAMPLE(A ∈ Rd×d). Given a positive semidefinite matrix A ∈ Rd×d, it samples
an index i with probability ⟨Mi,A⟩∑m

i=1⟨Mi,A⟩ in time O(d2 logm).

Proof. We prove the data structure (see Algorithm 1) satisfies the requirements. In INIT, every
node (i1, i2,M) stores the partial sum of matrices

∑i2
j=i1

Mj , the number of nodes is O(m), then
the preprocess time is O(

∑m
i=1 nnz(Mi)) accounts for the sparsity of the input.

For QUERYPOSITIVESEARCH, see Lemma 2.2.2 and for QUERYSAMPLE, see Lemma 2.2.3.

Lemma 2.2.2 (Positive Search). Given a matrix A with the promise that
∑m

i=1⟨Mi, A⟩ > 0,
QUERYSEARCH returns an index i such that ⟨Mi, A⟩ > 0 in time O(d2 logm).

Proof. For QUERYSEARCH, note that the correctness holds obviously: given a node and its two
children, suppose we know the inner product at the node is greater than 0, then it must be the
case that at least one of its two children has value greater than 0. For the running time, each
inner product takes O(d2) time, and we traverse a path on the tree of depth O(logm), so it takes
O(d2 logm) time in total.

22



Lemma 2.2.3 (Sample). Given a positive semi-definite matrix A ∈ Rd×d, QUERYSAMPLE sam-
ples an index i with probability ⟨Mi,A⟩∑m

i=1⟨Mi,A⟩ in time O(d2 logm).

Proof. In QUERYSAMPLE, we sequentially sample its child node from the root to a leaf and
return the index of the leaf. To prove its correctness, for an index interval {i1, i1 + 1, · · · , i2},
define w[i1,i2] =

∑i2
i=i1
⟨A,Mi⟩, and for a node m = (i1, i2,M) ∈ T , define wn = w[i1,i2].

Also for a parent p ∈ T and a child c of p, define Pr[c|p] = Pr[c is sampled | p is sampled],
then Pr[c|p] = wc

wp
. Now for each leaf l = (i, i,Mi) ∈ T , suppose the path from root r to l is

r = r0 → r1 → · · · → rk = l, then

Pr[QUERY outputs l] = Pr[r1|r] Pr[r2|r1] · · ·Pr[l|rk−1]

=
wr1
wr

wr2
wr1
· · · wl

wrk−1

=
wl
wr

=
wl∑m
i=1wi

=
⟨A,Ml⟩

⟨A,
∑m

i=1Mi⟩
.

And note that the depth of T is O(logm), the running time of QUERYSAMPLE is O(d2 logm)
since computing each inner product takes O(d2) time.

2.2.2 Faster Initialization via Fast Matrix Multiplication and Batching
We note that the MATRIXPS data structure is more general than some of the tasks, in which the
input is given as a list of vectors {v1, . . . , vm} ⊂ Rd, we can speed up the initialization via fast
matrix multiplication, in the expense of worse query time. In certain tasks we can balance the
initialization time and query time to achieve a better overall performance.

The idea is to maintain a tree with only m/d nodes, with each of the leaf is a sum of d outer
products

∑
i∈S viv

⊤
i for S ⊂ [m] and |S| = d. During initialization, we can form each leaf in dω

time, and since there are m/d leaves in total, it only takes O(mdω−1) time to initialize. We store
the d× d matrix V where each column is vi. During query, when we reach the leaf node, we can
perform the matrix multiplication V ⊤AV and extract the diagonal entries in time O(dω).

Algorithm
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Algorithm 3 Vector Search & Sample
1: data structure VECTORPS ▷ Theorem 2.2.4
2: members
3: v1, v2, · · · , vm ⊂ Rd (vector of each index)
4: {Si,j}i∈{0,...,log(m/d)},j∈[2−im/d] ∈ Rd×d

5: end members
6:
7: procedure INIT(v1, v2, · · · , vm ⊂ Rd)
8: for i = 1→ m/d do

9: Vi ←

 | | . . . |
v(i−1)d+1 v(i−1)d+2 . . . vid
| | . . . |


10: S0,i ← ViV

⊤
i

11: end for
12: for i = 1→ log(m/d) do
13: for j = 1→ 2−im/d do
14: Si,j ← Si−1,2j−1 + Si−1,2j

15: end for
16: end for
17: end procedure
18:
19: procedure QUERYPOSITIVESEARCH(A ∈ Rd×d) ▷ Lemma 2.2.6
20: j ← 1
21: for i = log(m/d)→ 0 do
22: L← Si−1,2j−1, R← Si−1,2j

23: p1 ← ⟨A,L⟩, p2 ← ⟨A,R⟩

24: j ←

{
2j − 1, with probability p1 > 0

2j, with probability p2 > 0.

25: end for
26: V ← Vj
27: B ← V ⊤AV
28: for i = 1→ d do
29: if Bi,i > 0 then
30: i∗ ← i
31: break
32: end if
33: end for
34: return i∗
35: end procedure
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Algorithm 4 Vector Sample
1: data structure VECTORPS ▷ Theorem 2.2.4
2: procedure QUERYSAMPLE(A ∈ Rd×d) ▷ Lemma 2.2.7
3: j ← 1
4: for i = log(m/d)→ 1 do
5: M ← Si,j
6: L← Si−1,2j−1, R← Si−1,2j

7: p1 ← ⟨A,L⟩, p2 ← ⟨A,R⟩
8: p← ⟨A,M⟩

9: j ←

{
2j − 1, with probability p1/p
2j, with probability p2/p.

10: end for
11: V ← Vj
12: B ← V ⊤AV
13: return i with probability Bi,i/tr[B]
14: end procedure
15: end data structure
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Running time and correctness

Theorem 2.2.4 (Formal version of Theorem 1.1.13). There exists a data structure with the fol-
lowing procedures:

• INIT({v1, v2, · · · , vm} ⊆ Rd). It takes a sequence of vectors v1, v2, · · · , vm as input, and
preprocesses in time O(mdω−1) and in space O(md).

• QUERYSAMPLE(A ∈ Rd×d). Given a positive semidefinite matrix A ∈ Rd×d, it samples
an index i with probability ⟨Mi,A⟩∑m

i=1⟨Mi,A⟩ in time O(d2 logm+ dω).

• QUERYPOSITIVESEARCH(A ∈ Rd×d). Given a matrixAwith the promise that
∑m

i=1⟨Mi, A⟩ >
0, it returns an index i such that ⟨Mi, A⟩ > 0 in time O(d2 logm+ dω).

Proof. We prove the data structure (see Algorithm 3) satisfies the requirements. In INIT, we
will perform m/d matrix multiplications of d × d matrix, yields a time of O(mdω−1). We then
compute m/d sums of d× d matrices, which takes O(md) time, or nnz(V 2) time. Note that the
space is only O(md), since we have constructed a tree of O(m/d) nodes, with each node stores
a d × d matrix. We note an invariant by our construction: for matrix Si,j , it represents the sum
of outer products

∑i2
k=i1

vkv
⊤
k , where i1 = 2i(j − 1)d + 1 and i2 = 2ijd, hence Slog(n/d),1 =∑m

i=1 viv
⊤
i .

For QUERYSAMPLE, we prove in Lemma 2.2.7. For QUERYSEARCH, we prove in Lemma 2.2.6.

We will show that each matrix Si,j stores the proper sum of viv⊤i over a desired range.
Lemma 2.2.5. Let i ∈ {0, 1, . . . , log(m/d)} and j ∈ [2−im/d], then we have

Si,j =
2id∑
k=1

v2ij−2i+kv
⊤
2ij−2i+k.

Proof. We start with the bottom level where i = 0. Note that S0,j = VjV
⊤
j , where Vj = | | . . . |

v(j−1)d+1 v(j−1)d+2 . . . vjd
| | . . . |

. Use the outer product formulation of matrix multiplication,

we have that

S0,j = VjV
⊤
j

=
d∑

k=1

(Vj)∗,k(Vj)
⊤
∗,k

=
d∑

k=1

v(j−1)d+kv
⊤
(j−1)d+k

= v(j−1)d+1v
⊤
(j−1)d+1 + v(j−1)d+2v

⊤
(j−1)d+2 + . . .+ vjdv

⊤
jd.
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For internal levels, we can show by induction. For i = 1, note that S1,j = S0,2j−1 + S0,2j , we
know that S0,2j−1 =

∑d
k=1 v(2j−2)d+kv

⊤
(2j−2)d+k and S0,2j =

∑d
k=1 v(2j−1)d+kv

⊤
(2j−1)d+k, hence

S1,j =
2d∑
k=1

v(2j−2)d+kv
⊤
(2j−2)d+k.

Assume this holds up until some level l, i.e., Sl,j =
∑2ld

k=1 v2lj−2l+kv
⊤
2lj−2l+k

, then

Sl+1,j = Sl,2j−1 + Sl,2j

= (
2ld∑
k=1

v2l(2j−1)−2l+kv
⊤
2l(2j−1)−2l+k) + (

2ld∑
k=1

v2l(2j)−2l+kv
⊤
2l(2j)−2l+k)

=
2l+1d∑
k=1

v2l+1j−2l+1+kv
⊤
2l+1j−2l+1+k.

Hence, we complete the proof. Note that when i = log(m/d), j = 1 and

Sm/d,1 =
m∑
k=1

v(m/d)−(m/d)+k

=
m∑
k=1

vk.

Lemma 2.2.6 (Positive Search). Given a matrix A with the promise that
∑m

i=1⟨viv⊤i , A⟩ > 0,
QUERYPOSITIVESEARCH returns an index i such that ⟨viv⊤i , A⟩ > 0 in time O(d2 log(m/d) +
dω).

Proof. To see the correctness, we note a simple if and only if statement: given numbers a1, . . . , am
such that

∑m
i=1 ai > 0, then there must exist an i such that ai > 0, otherwise the sum must be

negative. For our search procedure, we can prove the correctness inductively: at root, since
we know that

∑m
i=1 v

⊤
i Avi > 0, then it must be the case that either

∑m/2
i=1 v

⊤
i Avi > 0 or∑n

i=m/2+1 v
⊤
i Avi > 0, otherwise the root sum must be negative. Suppose this holds to level

k, and we are deciding where to go for level k + 1, note by induction hypothesis, for level k,
the inner product must be positive, then it must be the case that one of its children has a positive
inner product, otherwise the sum of inner product will be negative. Also, each node stores the
correct partial sum, as shown in Lemma 2.2.5.

At the bottom level for leaf node j, we compute B = V ⊤
j AVj , the claim is the diagonal entry

Bi,i = v⊤(j−1)d+iAv(j−1)d+i, to see this, note that

(V ⊤
j AVj)i,i = (V ⊤

j

 | | . . . |
Av(j−1)d+1 Av(j−1)d+2 . . . Avjd

| | . . . |

)i,i
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= v⊤(j−1)d+iAv(j−1)d+i.

This completes the correctness proof.
For the running time, each inner product takes O(d2) time, and we traverse a path on the tree

of depth O(log(m/d)), for the leaf, it takes O(dω) time. This concludes our proof.

Lemma 2.2.7 (Sample). Given a positive semidefinite matrix A ∈ Rd×d, QUERYSAMPLE sam-
ples an index i with probability ⟨viv⊤i ,A⟩∑m

i=1⟨viv⊤i ,A⟩
in time O(d2 log(m/d) + dω).

Proof. To prove we sample index i with probability ⟨viv⊤i ,A⟩∑m
i=1⟨viv⊤i ,A⟩

, suppose i comes from the
matrix S0,j , and we use Pr[S0,j] to denote the probability of sampling the matrix S0,j .

Pr[QUERYSAMPLE outputs i]
= Pr[i | S0,j] Pr[S0,j]

= Pr[i | S0,j] Pr[S0,j | S1,⌊j/2⌋] · . . . · Pr[Slog(m/d)−1,⌊21−log(m/d)j⌋ | Slog(m/d),1]

=
(V ⊤

j AVj)i,i

tr[V ⊤
j AVj]

⟨A, S0,j⟩
⟨A, S1,⌊j/2⌋

· . . .
⟨A, Slog(m/d)−1,⌊21−log(m/d)j⌋⟩

⟨A, Slog(m/d),1⟩

=
v⊤i Avi

⟨A, Slog(m/d),1⟩

=
⟨viv⊤i , A⟩

⟨
∑m

i=1 viv
⊤
i , A⟩

,

the last line is by Slog(m/d),1 =
∑m

i=1 viv
⊤
i .

For the running time, note that from the root to the level above leaves, it takes O(d2) per
level, and there are log(m/d) levels in total. For the leaf, it takes O(dω) time. Hence, it takes
O(d2 log(m/d) + dω) time in total.

Remark 2.2.8. The VECTORPS data structure can be viewed as using a crude estimation for
all levels above the bottom level, and for the bottom level, we use a more refined computation to
exactly estimate v⊤i Avi. This means we have to spend more time at the bottom level, but this is
fine since we also gain speedup from the initialization. In the setting of a dense graph or a matrix
with m ≥ d2 rows, we achieve a initialization time of mdω−1 and overall iteration cost ε−2dω+1,
these two terms balance out. In contrast, with the MATRIXPS data structure, it might incur
md2 ≈ d4 time for initialization. Such a high-level idea of the tradeoff between crude and refined
computation has also been utilized in balancing sample complexity in completely different field
(see sparse Fourier transform in the continuous setting [63]). Our case is a different scenario,
since we care about the running time perspective of this tradeoff.

2.2.3 Correlation Trees
In this section, we showcase two data structures for Task 1.1.7. The motivation for design-
ing these data structures comes from training over-parametrized neural networks with ReLU or
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shifted ReLU activations. Let X ∈ Rn×d consists of n data points of dimension d, the hidden
layer is a matrix W ∈ Rm×d with m ≫ n. For each data point x, the forward pass can be pre-
sented as σb(Wx), where σb is the (shifted) ReLU activation defined as σb(x) = max{x− b, 0}.
In order to use first order method such as gradient descent to optimize the network, it is important
to find the set {wi : ⟨wi, x⟩ ≥ b, i ∈ [m]} efficiently. Naively one needs to pay O(md) time for
each data point, which will take Ω(nmd) time per training iteration.

To speed up this process, [75] uses some deterministic high-dimensional data structure to
find and update this set fast. Unfortunately, their preprocessing time is exponential in terms of
dimension d.

We alleviate this issue via trees based on inner product, but used in a different fashion.

Correlation DTree data structure

We first present a data structure that preprocesses all weights w1, . . . , wm for each data point xi.
During query, we simply look at one tree.
Theorem 2.2.9 (Correlation DTree data structure, formal version of Theorem 1.1.16). There
exists a data structure with the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(n · (d+ logm))

• QUERY(i ∈ [n], τ ∈ R). Given an index i indicating data point xi and a threshold τ , it
finds all index r ∈ [m] such that ⟨wr, xi⟩ > τ in time O(|S̃(τ)| · logm), where S̃(τ) :=
{r : ⟨wr, xi⟩ > τ}

Algorithm
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Algorithm 5 Correlation DTree data structure
1: data structure CORRELATIONDTREE ▷ Theorem 2.2.9
2: members
3: W ∈ Rm×d (m weight vectors)
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , Tn ▷ n binary search trees
6: end members
7:
8: public:
9: procedure INIT(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷ Lemma 2.2.10

10: for i = 1→ n do
11: xi ← xi
12: end for
13: for j = 1→ m do
14: wj ← wj
15: end for
16: for i = 1→ n do ▷ for data point, we create a tree
17: for j = 1→ m do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ← MAKETREE(u1, · · · , um) ▷ Each node stores the maximum value for his two

children
21: end for
22: end procedure
23: end data structure
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Algorithm 6 Correlation DTrees
1: data structure CORRELATIONTREE ▷ Theorem 2.2.9
2: public:
3: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ Lemma 2.2.11
4: wr ← z
5: for i = 1→ n do
6: l← the l-th leaf of tree Ti
7: l.value = ⟨z, xi⟩
8: while l is not root do
9: p← parent of l

10: p.value← max{p.value, l.value}
11: l← p
12: end while
13: end for
14: end procedure
15: public:
16: procedure QUERY(i ∈ [n], τ ∈ R≥0) ▷ Lemma 2.2.12
17: return QUERYSUB(τ, root(Ti))
18: end procedure
19:
20: private:
21: procedure QUERYSUB(τ ∈ R≥0, r ∈ T )
22: if r is leaf then
23: return r
24: else
25: r1 ← left child of r, r2 ← right child of r
26: if r1.value ≥ τ then
27: S1 ←QUERYSUB(τ, r1)
28: end if
29: if r2.value ≥ τ then
30: S2 ←QUERYSUB(τ, r2)
31: end if
32: end if
33: return S1 ∪ S2

34: end procedure
35: end data structure
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Running time

The goal of this secion is to prove the running time of INIT, UPDATE and QUERY.
Lemma 2.2.10 (Running time of INIT). Given a series of weights {w1, w2, · · · , wm} ⊂ Rd and
datas {x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd)

Proof. The INIT consists of two independent forloop and two recursive forloops. The first for-
loop (start from line 10) has n interations, which takes O(n) time. The second forloop (start
from line 13) has m iterations, which takes O(m) time. Now we consider the recursive forloop.
The outer loop (line 16) has n iterations. In inner loop has m iterations. In each iteration of the
inner loop, line 18 takes O(d) time. Line 20 takes O(m) time. Putting it all together, the running
time of INIT is

O(n+m+ n(md+m))

= O(nmd)

Thus, we complete the proof.

Lemma 2.2.11 (Running time of UPDATE). Given a weight z ∈ Rd and index j ∈ [m], it updates
weight wj with z in time O(n · (d+ logm))

Proof. The running time of UPDATE mainly comes from the forloop (line 5), which consists of
n iterations. In each iteration, line 6 takes O(logm) time, line 7 takes O(d) time and the while
loop takes O(logm) time since it go through a path bottom up. Putting it together, the running
time of UPDATE is O(n(d+ logm)).

Lemma 2.2.12 (Running time of QUERY). Given a query q ∈ Rd and a threshold τ > 0, it finds
all index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i : ⟨wi, q⟩ > τ}

Proof. The running time comes from QUERYSUB with input τ and root(Ti). In QUERYSUB,
we start from the root node r and find indices in a recursive way. The INIT guarantees that for
a node r satisfying r.value > τ , the sub-tree with root r must contains a leaf whose value is
greater than τ If not satisfied, all the values of the nodes in the sub-tree with root r is less than τ .
This guarantees that all the paths it search does not have any branches that leads to the leaf we
don’t need and it will report all the indiex i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is
O(log n), the running time of QUERY is O(|S(τ)| · log n)

Correlation WTree data structure

We show that one can also preprocess all data points, and each query each of the weights.
Theorem 2.2.13 (Correlation WTree data structure, formal version of Theorem 1.1.17). There
exists a data structure with the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(nd)
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• QUERY(r ∈ [m], τ ∈ R). Given an index r indicating weight wr and a threshold τ , it finds
all index i ∈ [n] such that ⟨wr, xi⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i :
⟨wr, xi⟩ > τ}.

Algorithm

Algorithm 7 Correlation WTree data structure
1: data structure CORRELATIONWTREE ▷ Theorem 2.2.13
2: members
3: W ∈ Rm×d (m weight vectors)
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , TM ▷ m binary search trees
6: end members
7:
8: public:
9: procedure INIT(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷ Lemma 2.2.14

10: for i = 1→ n do
11: xi ← xi
12: end for
13: for j = 1→ m do
14: wj ← wj
15: end for
16: for i = 1→ m do ▷ for weight, we create a tree
17: for j = 1→ n do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ← MAKETREE(u1, · · · , un) ▷ Each node stores the maximum value for his two

children
21: end for
22: end procedure
23: end data structure
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Algorithm 8 Correlation WTrees
1: data structure CORRELATIONWTREE ▷ Theorem 2.2.13
2: public:
3: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ Lemma 2.2.15
4: wr ← z
5: for j = 1→ n do
6: uj ← ⟨xj, wr⟩
7: Ti ← MAKETREE(u1, · · · , un) ▷ Each node stores the maximum value for his two

children
8: end for
9: end procedure

10: public:
11: procedure QUERY(r ∈ [m], τ ∈ R≥0) ▷ Lemma 2.2.16
12: return QUERYSUB(τ, root(Tr))
13: end procedure
14:
15: private:
16: procedure QUERYSUB(τ ∈ R≥0, r ∈ T )
17: if r is leaf then
18: return r
19: else
20: r1 ← left child of r, r2 ← right child of r
21: if r1.value ≥ τ then
22: S1 ←QUERYSUB(τ, r1)
23: end if
24: if r2.value ≥ τ then
25: S2 ←QUERYSUB(τ, r2)
26: end if
27: end if
28: return S1 ∪ S2

29: end procedure
30: end data structure

Running time

The goal of this secion is to prove the running time of INIT, UPDATE and QUERY.
Lemma 2.2.14 (Running time of INIT). Given a series of weights {w1, w2, · · · , wm} ⊂ Rd and
datas {x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd)

Proof. The INIT consists of two independent forloop and two recursive forloops. The first for-
loop (start from line 10) has n interations, which takes O(n) time. The second forloop (start
from line 13) has m iterations, which takes O(m) time. Now we consider the recursive forloop.
The outer loop (line 16) has m iterations. In inner loop has n iterations. In each iteration of the
inner loop, line 18 takes O(d) time. Line 20 takes O(n) time. Putting it all together, the running
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time of INIT is

O(n+m+m(nd+ n))

= O(nmd)

Thus, we complete the proof.

Lemma 2.2.15 (Running time of UPDATE). Given a weight z ∈ Rd and index r ∈ [m], it updates
weight wj with z in time O(nd)

Proof. In this procedure, it generates a new tree for weight wr with n leaves, which takes O(nd)
time. Thus, we complete the proof.

Lemma 2.2.16 (Running time of QUERY). Given a query q ∈ Rd and a threshold τ > 0, it finds
all index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i : ⟨wi, q⟩ > τ}

Proof. The running time comes from QUERYSUB with input τ and root(Ti). In QUERYSUB,
we start from the root node r and find indices in a recursive way. The INIT guarantees that for
a node r satisfying r.value > τ , the sub-tree with root r must contains a leaf whose value is
greater than τ If not satisfied, all the values of the nodes in the sub-tree with root r is less thanτ .
This guarantees that all the paths it search does not have any branches that leads to the leaf we
don’ want and it will report all the indiex i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is
O(log n), the running time of QUERY is O(|S(τ)| · log n)

2.3 Approximate Furthest Neighbor Search
In this section, we present data structure that solves Task 1.1.6 approximately but efficiently.
To motivate our data structure, we note that finding the smallest inner product is equivalent
of finding a vector that maximizes its distance with the query point q, i.e., the xi such that
∥xi − q∥2 is maximized. This is the so-called furthest neighbor search data structure. While
deterministic implementations of such data structure exists, they typically suffer from the curse
of dimensionality [1]. Hence, we consider the approximate variant of such data structure.

For later discussions, we will assume the dataset X are in unit Euclidean ball, and so are all
query points q. In general, we have no control over the norm of the query point q and X . To
address this issue, we consider an inner product preserve transformation by [59]:
Definition 2.3.1 ([59]). Given the query set X ⊂ Rd and a dataset Y ⊂ Rd, we performs the
following transformations for any x ∈ X and y ∈ Y .

φ(x) =
[
x⊤

DX
0
√

1− ∥x∥22
D2

X

]⊤
, ψ(y) =

[
y⊤

DY

√
1− ∥y∥22

D2
Y

0
]⊤
,

where DX is larger than the maximum diameter of X and and DY is larger than the maximum
diameter of Y . In this way, we map x ∈ X and y ∈ Y to unit vectors. In this way, we
have ∥φ(x) − ψ(y)∥22 = 2 − 2⟨φ(x), ψ(y)⟩. Moreover, we have argminy∈Y ∥φ(x) − ψ(y)∥2 =
argmaxy∈Y ⟨x, y⟩ and argmaxy∈Y −∥φ(x)− ψ(y)∥2 = argminy∈Y ⟨x, y⟩
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Remark 2.3.2. In our later applications, we implicitly assume all points have undergone such
transformations in preprocessing phase. We also remark that in query phase, the set Y consists of
a single query point, it suffices to pickDY as ∥y∥2, in this case, the transformation can be viewed
as normalizing the query vector. If computing the inner product between x and y is required, we
can retrieve the original x and y by its first d dimension, and by storing DX as a variable in the
data structure.

For data structures presented in this section and Section 2.4, we assume all vectors in dataset
and query point have undergone such transformations. Throughout this section, we will use n to
denote the number of points in dataset and d to denote the dimension of points.
Definition 2.3.3 (Min-IP). Given an n-point dataset P ⊂ Sd−1 on the sphere, the goal of the
Minimum Inner Product Search (Min-IP) is to build a data structure that, given a query q ∈ Sd−1,
retrieve the solution of argminp∈P ⟨p, q⟩.

The naive brutal force algorithm solves Min-IP in O(nd) time. However, there exists algo-
rithms that achieve time complexity sublinear in n with relaxation on the retrieved vector. These
algorithms aim at solving the approximate Min-IP problem.
Definition 2.3.4 (Approximate Min-IP). Let c ∈ (0, 1) and τ ∈ (0, 1). Given an n-point dataset
P ⊂ Sd−1 on the sphere, the goal of the (c, τ)-Minimum Inner Product Search (Min-IP) is to
build a data structure that, given a query q ∈ Sd−1 with the promise that minp∈P ⟨p, q⟩ ≤ τ , it
reports a point p′ ∈ P with similarity ⟨p′, q⟩ ≤ τ/c.

The approximate Min-IP has a dual problem: approximate furthest neighbor (AFN). We could
solve approximate Min-IP via solving AFN. To illustrate this, we first present the definition of
AFN.
Definition 2.3.5 (Approximate Furthest Neighbor (AFN)). Let c > 1 and r ∈ (0, 2). Given an
n-point dataset P ⊂ Sd−1 on the sphere, the goal of the (c, r)-Approximate Furthest-Neighbor
(AFN) problem is to build a data structure that, given a query q ∈ Sd−1 with the promise that
maxp∈P ∥p− q∥2 ≥ r, it reports a point p′ ∈ P with distance ∥p′ − q∥2 ≥ r/c.

Next, we show the connection between approximate Min-IP and AFN. In this discussion, we
assume all vectors are unit vectors, later we’ll see a transformation realizes this guarantee.
Lemma 2.3.6. Given an n-point dataset P ⊂ Sd−1 and a query point q ∈ Sd−1, suppose for some
c > 1 and r ∈ (0, 2), we have a (c, r)-AFN data structure, then we can solve the (c, τ)-Min-IP
problem for

τ = 1− 0.5r2, c =
1− 0.5r2

1− 0.5r2/c2
.

Proof. For any two points x, y with ∥x∥2 = ∥y∥2 = 1, we have ∥x − y∥22 = 2 − 2⟨x, y⟩. This
implies that if we have ∥xi − q∥22 ≥ r2, then we have ⟨xi, q⟩ ≤ 1 − 0.5r2. Moreover, if we find
a xj such that ∥xj − q∥22 ≥ r2/c2, then we have ⟨xj, q⟩ ≤ 1− 0.5r2/c2. If we set τ = 1− 0.5r2

and c = 1−0.5r2

1−0.5r2/c2
, then the above inner product guarantee becomes

⟨xj, q⟩ ≤ 1− 0.5r2/c2

= 1− 0.5r2 + (1− 1/c2)0.5r2

= τ + (1− c− τ
c(1− τ)

)(1− τ)
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= τ/c

where the second-to-last line is because

c2 =
cr2

2c− 2 + r2

=
c(2− 2τ)

2c− 2 + (2− 2τ)

=
c(1− τ)
c− τ

. (2.1)

This indicates that if we have a data structure for (c, r)-AFN, it automatically becomes a data
structure for (c, τ)-Min-IP with τ and c chosen as above.

Next, we explore some structures on the function c(1−τ)
c−τ . We show that it increases as τ

increases.
Lemma 2.3.7. Let c ∈ (0, 1) and τ ∈ (0, 1), we show that function f(c, τ) := c(1−τ)

c−τ is decreas-
ing as c increase and increasing as τ increase.

Proof. We take the derivative of f(c, τ) over c and get

∂

∂c
f(c, τ) =

(τ − 1)τ

(c− τ)2
< 0

where the second step follows from c > τ and τ < 1.
Therefore, f(c, τ) := c(1−τ)

c−τ is decreasing as c increase.
We take the derivative of f(c, τ) over τ and get

∂

∂τ
f(c, τ) =

c(τ 2 − 2cτ + c)

(c− τ)2

=
c((τ − c)τ + c(1− τ))

(c− τ)2
> 0

where the second step follows from c > τ and τ < 1.
Therefore, f(c, τ) := c(1−τ)

c−τ is increasing as τ increases.

We augment the Min-IP definition to tolerate additive errors.
Definition 2.3.8 (Additive approximate Min-IP). Let c ∈ (0, 1) and τ ∈ (0, 1). Let λ ≥ 0. Given
an n-point dataset Y ⊂ Sd−1, the goal of the (c, τ, λ)-Min-IP is to build a data structure, given a
query x ∈ Sd−1 with the promise that minp∈P ⟨p, q⟩ ≤ τ , it reports a data point z ∈ Y such that
⟨x, z⟩ ≤ c−1minp∈P ⟨p, q⟩+ λ.

2.3.1 From AFN to approximate Min-IP
The AFN data structure we will be using is inspired by [39]. We include its complete algorithm
and analysis in Appendix A.

We restate Theorem A.4.2 here.
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Lemma 2.3.9 (Informal version of Theorem A.4.2). Let P ⊂ Rd be an n-point dataset, c >
1, r > 0 and δ > 0. Let ε = c − 1. There exists a randomized dynamic data structure
(against an oblivious adversary) that solves (c+ δ, r)-AFN task using space O((n1+1/c2 log n+
dn1/c2 log n) log log(d/εδ) + dn) with the following operations:

• INIT: Preprocess P in O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ)) time;
• QUERY: Given a point q ∈ Rd, returns a (c + δ)-approximate furthest neighbor p ∈ P

with constant probability in O(n1/c2(d+ log n) log n log(d/εδ) log log(d/εδ)) time;
• INSERT: Insert a point p ∈ Rd into the data structure in O(n1/c2 log2 n log log(d/εδ) +
d log n) time;

• DELETE: Delete a point p ∈ Rd from the data structure in O(n1/c2 log2 n log log(d/εδ) +
d log n) time.

Next, we introduce several corollaries that simplify the time complexity in solving AFN.
Corollary 2.3.10. Let P ⊂ Rd be an n-point dataset, c >

√
2, and r > 0. There exists

a randomized dynamic data structure (Alg. 26, 27) that solves (2c, r)-AFN with query time
O(n0.5(d+log n) log n log d log log d), preprocessing timeO((n1.5 log2 n+dn0.5 log n) log log d)
and space
O((n1.5 log2 n+dn0.5 log n) log log d+nd). Moreover, the dynamic data structure supports insert
or delete in O(n0.5 log2 n log log d+ d log n) time.

Proof. If c >
√
2, we have 1/c2 < 0.5. We take this fact into the preprocessing, query, insert

and delete time and get the following:
Space

O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ) + nd) = O((n1.5 log2 n+ dn0.5 log n) log log d+ nd)

Preprocesing time

O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ)) = O((n1.5 log2 n+ dn0.5 log n) log log d)

Query time

O(n1/c2(d+ log n) log n log(d/εδ) log log(d/εδ)) = O(n0.5(d+ log n) log n log d log log d)

Insert/delete time

O(n1/c2 log2 n log log(d/εδ) + d log n) = O(n0.5 log2 n log log d+ d log n)

Corollary 2.3.11. Let P ⊂ Rd be an n-point dataset, c > 10, and r > 0. There exists a ran-
domized dynamic data structure (Alg. 26, 27) that solves (2c, r)-AFN with query timeO(n0.01(d+
log n) log n log d log log d), preprocessing timeO((n1.01 log2 n+dn0.01 log n) log log d) and space
O((n1.01 log2 n + dn0.01 log n) log log d + nd). Moreover, the dynamic data structure supports
insert or delete in O(n0.01 log2 n log log d+ d log n) time.
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Proof. If c > 10, we have 1/c2 < 0.01. We take this fact into the preprocessing, query, insert
and delete time and get the following:

Space

O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ) + nd) = O((n1.01 log2 n+ dn0.01 log n) log log d+ nd)

Preprocesing time

O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ)) = O((n1.01 log2 n+ dn0.01 log n) log log d)

Query time

O(n1/c2(d+ log n) log n log(d/εδ) log log(d/εδ)) = O(n0.01(d+ log n) log n log d log log d)

Insert/delete time

O(n1/c2 log2 n log log(d/εδ) + d log n) = O(n0.01 log2 n log log d+ d log n)

Using the AFN data structure, we design an approximate Min-IP search data structure.

Algorithm 9 Minimum Inner Product Search
1: data structure MINIMUM INNER PRODUCT SEARCH ▷ Theorem 2.3.24
2: members
3: APPROXIMATEFURTHESTNEIGHBOR AFN
4: end members
5:
6: procedure INIT(x1, x2, · · · , xn, c, r)
7: AFN.INIT(x1, x2, · · · , xn, c, r)
8: end procedure
9:

10: procedure INSERT(z ∈ Rd)
11: AFN.INSERT(z)
12: end procedure
13:
14: procedure DELETE(i ∈ [n])
15: AFN.DELETE(i)
16: end procedure
17:
18: procedure QUERYMIN(q ∈ Rd)
19: xi ← AFN.QUERY(q)
20: return xi
21: end procedure
22: end data structure

We take the adaptive query in iterative optimization algorithm into consideration and design
a robust algorithm against adversary. Before proceeding to the main theorem of this section, we
first consider a technical lemma regarding quantization.
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Lemma 2.3.12. Let c ∈ (0, 1), τ ∈ (0, 1) and λ ∈ (0, 1). Given a set of n-points Y ⊂ Sd−1, one
can construct a data structure with Tinit · κ preprocessing time and Sspace · κ space so that for
every x ∈ Sd−1 in an adaptive sequence X = {x1, . . . , xT}, the query time is Õ(dn0.01 · κ):

• If Min-IP(x, Y ) ≤ τ , then we output a vector in Y which is a (c, τ, λ)-Min-IP with respect
to (x, Y ) with probability at least 1− δ.

• Otherwise, we output fail.
where κ := d log(ndDX/(λδ)), and DX is the diameter of all queries in X .

Proof. The failure probability for an adaptive sequence X is equivalent to the probability that
at least one query q̂ ∈ Q̂ fail in solving all κ number of (c, τ)-Min-IP. We bound this failure
probability as

Pr[∃q̂ ∈ Q̂ s.t all (c, τ)-Min-IP fail] = n · (dDX

λ
)d · (1/10)κ ≤ δ

where the last step follows from κ := d log(ndDX/(λδ)).
For the success queries, it introduces a λ error in the inner product. Thus, the results is

(c, τ, λ)-Max-IP.
Then, following Corollary 2.3.11, we finish the proof.

2.3.2 Efficient and Adaptive Sketchings for Tensors
Often times, the geometric search data structures are used in conjunction with dimensionality
reduction tools, such as Johnson-Lindentrauss transform [43]. However, since we will use the
data structure in an iterative process, it is important to make sure that it is robust against adaptive
inputs. We therefore augment the standard Johnson-Lindenstrauss in a way so that its guarantee
works for all vectors, instead of a fixed set of vectors.

Also, note Task 1.1.6 is defined on the inner products in the form of ⟨xix⊤i , Q⟩, which means
we will pass in rank 1 matrices into our data structure. To speeding up the construction of
xix

⊤
i = xi ⊗ xi, we introduce a new type of Johnson-Lindentrasuss transforms that are sparse,

and succeed with high probability. In fact, we generalize the sparse embedding [26, 29, 45, 46]
matrix to process tensor-typed inputs fast.

Throughout this section, we will use m to denote the number of data points, d to denote the
dimension of points, b to denote the sketching dimension and s to denote the column sparsity.

We first recall the Johnson-Lindenstrauss transform [43]:
Definition 2.3.13 (Johnson-Lindenstrauss transform (JLT)). Let {x1, . . . , xm} ∈ (Rd)m, we say
a distribution Π over s× d matrices is a (m, ε, δ)-JLT if for any S ∼ Π, we have

Pr[∥S(xi − xj)∥22 ≤ (1± ε)∥xi − xj∥22] ≥ 1− δ, ∀(i, j) ∈ [m]×m.

We remark that in order to obtain this property for all m2 pairs of point, it suffices to obtain
the following guarantee for any fixed point x ∈ Rd:

Pr[∥Sx∥22 ≤ (1± ε)∥x∥22] ≥ 1− δ,

then union bound over all m2 pairs of points, we are done.
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2.3.3 TensorSparse: Efficient Tensor Product in Input-Sparsity Time
We recall the sparse embedding matrix [26, 29, 45, 46].
Definition 2.3.14. Let h : [d] × [s] → [b/s] be a random O(log 1/δ)-wise independent hash
function and σ : [d] × [s] → {±1} be O(log 1/δ)-wise independent. Then R ∈ Rb×d is a
sparse embedding matrix with sparsity parameter s if we set R(j−1)b/s+h(i,j),i = σ(i, j)/

√
s for

all (i, j) ∈ [d]× [s] and all other entries to 0.
Alternatively, we can define the following:

Rr,i = ∃k ∈ [s] : σ(i, k)/
√
s · 1[h(i, k) + (k − 1)b/s = r]

We extend the construction of sparse embedding to handle tensor product of vectors, specif-
ically, our goal is to design a sparse matrix that is similar to Def. 2.3.14, so that we can enjoy
certain nice properties, such as it is a (1, ε, δ)-JLT with b = O(ε−2 log(1/δ)), this again enables
us to union bound over m points.
Definition 2.3.15 (TensorSparse). Let h1, h2 : [d]× [s]→ [b/s] be O(log 1/δ)-wise independent
hash functions and let σ1, σ2 : [d] × [s] → {±1} be O(log 1/δ)-wise independent random sign
functions. Then, the degree two tensor sparse transform, R : Rd × Rd → Rb is given as:

Rr,(i,j) = ∃k ∈ [s] : σ1(i, k)σ2(j, k)/
√
s · 1[((h1(i, k) + h2(j, k)) mod b/s) + (k − 1)b/s = r]

We will show that for any fixed unit vector x ∈ Rd2 , Rx preserves the length of x with good
probability. To do so, we first exhibit some properties of our sketch.
Lemma 2.3.16. The degree two TensorSparse transform (Def. 2.3.15) has the following property.
We define δr,(i,j) as the Bernoulli random variable on whether the entryRr,(i,j) is non-zero or not.
Then

1. Each column has support size s.
2. For all r ∈ [b] and (i, j) ∈ [d]× [d], E[δr,(i,j)] = s/b.
3. Negative correlations of δr,(i,j)’s defined as follows:

∀T ⊂ [b]× [d]× [d] and |T | ≤ Θ(log(1/δ)), E
[ ∏
r,(i,j)∈T

δr,(i,j)

]
≤

∏
r,(i,j)∈T

E[δr,(i,j)] =
(s
b

)|T |
.

Proof. We prove three parts separately.
Part 1. To see each column has support size s, we partition each column into s blocks, where

each block contains b/s entries and then show that each block has exactly 1 non-zero entry. Fix
the block to be the k-th block and consider the (i, j)-th column, then we are looking at the values
of hash functions (h1(i, k) + h2(j, k)) mod b/s, since both h1 and h2 have their ranges being
[b/s], this means (h1(i, k) + h2(j, k)) mod b/s must have its value being in the range of [b/s],
and its value corresponding to the entry that is non-zero.

Part 2. We will again use the block-partition view and consider the k-th block of (i, j)-th
column. For each index r, the probability that it is non-zero is equal to the probability that
(h1(i, k) + h2(j, k)) mod b/s = r − (k − 1)b/s. We first observe that if we are using a single
3-wise independent hashing function, then this probability is naturally s/m. Here, the hashing
function we are considering is H(i, j, k) := h1(i, k) + h2(j, k) mod b/s, it is well-known that H
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is also Θ(log(1/δ))-wise independent [19, 64]. We hence conclude that Pr[δr,(i,j) = 1] = s
b

and
therefore, E[δr,(i,j)] = s

b
.

Part 3. To see the negative correlation, we let t = |T |, and we denote the elements in T
as (r1, l1), . . . , (rt, lt). We define the following indicator random variable: 1[∃(ri, li), (rj, lj) ∈
T s.t. ri ̸= rj belong to the same block and li = lj].

Note that if such event happens, then E[
∏

(r,l)∈T δr,l] = 0 since we can write it as

E[
∏

(r,l)∈T

δr,l] = Pr[
∧
r,l∈T

δr,l = 1]

= Pr[δr1,l1 = 1 ∧ δr2,l2 = 1] · Pr[
∧

(r,l)∈T,r ̸=r1,r2,l ̸=l1,l2

δr,l = 1 | δr1,l1 = 1 ∧ δr2,l2 = 1].

When the above event happens, then we are considering the case that r1 ̸= r2 but they belong to
the same block, and the column is the same. By construction, for each column, there is exactly
one non-zero entry. Hence, Pr[δr1,l1 = 1 ∧ δr2,l2 = 1] = 0, and we conclude the expectation is 0.

Suppose the above event does not happen, then we will make use the fact that our hashing
function H is Θ(log(1/δ))-wise independent, and δr,l = 1 is equivalent to for some k ∈ [s], we
have H(l, k) = r. The above event does not happen is equivalent to

Pr[
∧

(r,l)∈T

∃k ∈ [s], H(l, k) = r] =
∏

(r,l)∈T

Pr[∃k ∈ [s], H(l, k) = r]

=
∏

(r,l)∈T

Pr[δr,l = 1]

=
∏

(r,l)∈T

E[δr,l],

where the first step is due to H is Θ(log(1/δ))-wise independence. Therefore, we conclude that
the random variables δr,l’s are negatively correlated.

Remark 2.3.17. We note that we only require our hashing function H and sign function σ to be
Θ(log(1/δ))-wise independent, since in our later proofs, we will only consider the q-th power of
an expression Z which involves the term

∏
(r,l)∈T δr,l for |T | ≤ q. Thus, the expectation of Z are

term-by-term dominated by the case that all δr,l are i.i.d. Bernoulli with expectation s/b. This
justifies our later use of Lemma 2.1.5 and Hanson-Wright inequality.

We will adapt an analysis from [26] to conclude that TensorSparse is a JLT:
Lemma 2.3.18. If R is a TensorSparse matrix as defined in Def. 2.3.15, with target dimension
m ≥ Ω(log(1/δ)/ε2) and sparsity parameter s = εm, then

Pr[|∥Rx∥22 − 1| > ε] ≤ δ.

Proof. We first observe that

∥Rx∥22 =
1

s

b∑
r=1

d2∑
i,j=1

δr,iδr,jσr,iσr,jxixj
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=
1

s

b∑
r=1

d2∑
i=1

δr,ix
2
i +

1

s

b∑
r=1

d2∑
i ̸=j

δr,iδr,jσr,iσr,jxixj,

for the first term (diagonal term), we have

1

s

b∑
r=1

d2∑
i=1

δr,ix
2
i =

d2∑
i=1

x2i (
1

s

b∑
r=1

δr,i)

= ∥x∥22
= 1,

where the second step follows from the fact that each column of R has support size s. We
define the intermediate variable Z := ∥Rx∥22 − 1, which as shown by proceeding calculations,
captures the off-diagonal term. Consider the following terms: we first define Ax,δ which is a
block diagonal matrix with b blocks, where the k-th block is defined as 1

s
x(k)(x(k))⊤ but with

the diagonal zeroed out, with (x(k))i = δk,ixi. Note that by construction, Ax,δ ∈ Rbd2×bd2 . We
further define the following length bd2 vector σ ∈ Rbd2 , where σr,i is the sign generated for the
entry (r, i) of R.

It is not hard to see that Z = 1
s

∑b
r=1

∑d2

i ̸=j δr,iδr,jσr,iσr,jxixj = σ⊤Ax,δσ. Let ∥X∥Lq :=

(E[|X|q])1/q. Since σ is a vector with each entry being independent Rademacher random vari-
able, by Hanson-Wright inequality, we have

∥σ⊤Ax,δσ∥Lq ≤ ∥
√
q · ∥Ax,δ∥F + q · ∥Ax,δ∥∥Lq

≤ √q · ∥∥Ax,δ∥F∥Lq + q · ∥∥Ax,δ∥∥Lq ,

since Ax,δ is block diagonal, its spectral norm is the largest spectral norm of any block. Note that
the spectral norm of k-th block is

∥1
s
· x(k)(x(k))⊤∥ ≤ 1

s
· ∥x(k)∥22

≤ 1

s
,

where the first step is the sub-multiplicativity of spectral norm and the spectral norm of a vector
is its ℓ2 norm, and the second line follows from ∥x(k)∥2 ≤ ∥x∥2 = 1.

Next, we define Qi,j =
∑b

r=1 δr,iδr,j , so

∥Ax,δ∥2F =
1

s2

b∑
r=1

d2∑
i ̸=j

δr,iδr,jx
2
ix

2
j

=
1

s2

d2∑
i ̸=j

Qi,jx
2
ix

2
j .

Recall that for any column i of R, there exists exactly s non-zero entries, so we suppose δrt,i = 1
for all distinct rt.
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Consider the event that δrt,j = 1, and let Yt be the indicator random variable for this event.
By Lemma 2.3.16, we assume Yt’s are independent, so that the sum Qi,j =

∑s
t=1 Yt has the

distribution of Binomial(s, s/b). Combining with Lemma 2.1.5, we have that ∥Qi,j∥Lq/2
≤ q/2.

Thus,

∥∥Ax,δ∥F∥Lq = ∥∥Ax,δ∥2F∥
1/2
Lq/2

= ∥ 1
s2

∑
i ̸=j

x2ix
2
jQi,j∥1/2Lq/2

≤ 1

s
(
∑
i ̸=j

x2ix
2
j∥Qi,j∥Lq/2

)1/2

≤ O
(√

q

s

)
.

Put things together, we have

∥σ⊤Ax,δσ∥Lq ≤ O
(q
s

)
. (2.2)

Set q = Θ(log(1/δ)) = Θ(s2/b), we have ∥Z∥Lq ≤ O( s
b
), then by Markov inequality, we have

Pr[|∥Rx∥22 − 1| > ε] = Pr[|σ⊤Ax,δσ| > ε] < ε−q · Cq(m−q/2 + s−q) < δ,

as desired.

Note that our construction resembles the TensorSketch matrix [11, 61], more specifically, we
can view our tensor sparse embedding as s distinct TensorSketch matrices, each with dimension
b/s×d2. Hence, to compute the tensor product between two vectors, we can run the TensorSketch
algorithm for s blocks, yielding an overall running time of O(s · (nnz(x)+nnz(y))+ b log(b/s))
for computing S(x⊗ y).

We summarize the JLT result and efficient computation of tensor in the following theorem:
Theorem 2.3.19. Let {x1, . . . , xm} ∈ (Rd2)m. Let ε ∈ (0, 1) be precision parameter and δ ∈
(0, 1) be success probability. Let R ∈ Rb×d2 be a TensorSparse matrix (Def. 2.3.15). Suppose
b = Ω(ε−2 log(m/δ)) and s = εm be the sparsity parameter, then we have R is an (m, ε, δ)-JLT
(Def. 2.3.13).

Moreover, if x = u⊗v for some u, v ∈ Rd, then Rx can be computed in time O(s · (nnz(u)+
nnz(v)) + b log(b/s)).

Proof. The JLT result is by apply union bound over all m2 pairs of points using Lemma 2.3.18.
The running time is by using the TensorSketch algorithm for s blocks.

For further applications, we prove a simple result regarding the Frobenius norm of R.
Lemma 2.3.20. Let R ∈ Rb×d2 be a TensorSparse matrix (Def. 2.3.15), then we have

∥R∥F = d.

Proof. We observe that each column ofR has exactly s non-zero entries, each has magnitude 1√
s
,

hence each column is a unit length vector. There are d2 columns in total, yielding a Frobenius
norm of d.
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2.3.4 Robust Sketches Against Adaptive Adversary
We note that the above discussion only applies when we consider an independent set of points,
i.e., all points we want to preserve using TensorSRHT or TensorSparse are picked oblivious with
respect to the randomness of the sketch. However, this is no longer the case for our application
— specifically, the query we send for iteration t + 1 is dependent on the answer we receive at
iteration t.

One idea is to require a sketching matrix that preserves the length of all vectors in a subspace.
Unfortunately, this will result in a sketching dimension of roughly Θ(d2/ε2), which essentially
diminishes the necessity of using sketching. To address this problem, we exploit the following
idea: we use a number of independent sketches of small dimension, and we show that with high
probability, a good fraction of them will do well on a (potentially) adversary query. We will show
that the dimension-saving by using lower-dimensional sketching matrices will have to be paid
back by the number of sketches required. However, this has one distinctive advantage for our
applications: we will then operate our AFN data structures on much lower dimensions, hence the
preprocessing time and query time can be significantly improved.

We prove the following lemma:
Lemma 2.3.21. Let V := {v1, . . . , vm} ∈ (Rd)m, ε ∈ (0, 1) and δ ∈ (0, 1). Furthermore,
let {Si}ki=1 ⊂ Rb×d for k ≥ Ω((d + log(1/δ)) log(md)) such that each Si is an independent
(m+ 1, ε, 0.99)-JLT matrix (Def. 2.3.13) with ∥Si∥F ≤ d. Then we have

∀q ∈ Sd−1, ∀v ∈ V,
k∑
i=1

1[∥Si(q − v)∥22 ≤ (1±O(ε))∥q − v∥22 + α] ≥ 0.95k

with probability at least 1− δ and α ≤ O( 1
(md)9

).

Proof. We will prove via a standard γ-net argument. Let N be a γ-net of Sd−1 with γ = c
(md)10

for some small enough constant c, and it is not hard to see that |N | ≤ (md)O(d). Let u ∈ N ,
define the following event:

Wi(u) = ∥Siu∥22 ≤ (1 +O(ε)) and ∀vi, vj ∈ V, |u⊤S⊤
i Si(vi − vj)− u⊤(vi − vj)| ≤ O(ε)∥vi − vj∥2,

i.e., the length of u is preserved by Si and for any pair of points in V , the inner product is also
preserved by Si. We note that we only need this property to hold with respect to the set of points
V ∪ {u}, since Si is a (m + 1, ε, 0.99)-JLT, we know this event holds with probability at least
0.99.

By an application of Hoeffding’s inequality on the random variables
∑k

i=1Wi(u), we have
that

Pr[
k∑
i=1

Wi(u) ≤ 0.97k] ≤ exp(−2k),

we then union bound over all points in N :

Pr[∀u ∈ N,
k∑
i=1

Wi(u) ≤ 0.97k] ≤ exp(−2k) · (md)O(d)
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= (
1

md
)O(d) · (md)O(d) · exp(− log(1/δ) log(md))

≤ δ/4.

We will condition on this event happen throughout the rest of the proof. To extend this bound
from all points in N to the entire unit sphere, consider any q ∈ Sd−1 and pick a net point u ∈ N
such that ∥q − u∥2 ≤ γ. Let i ∈ [k] be the index such that Wi(u) happens. We shall bound the
term ∥Si(q − v)∥2 for v ∈ V :

∥Si(q − v)∥2 ≤ ∥Si(q − u)∥2 + ∥Si(u− v)∥2
≤ d · γ + (1±O(ε))∥u− v∥2
≤ d · γ + (1±O(ε))(∥q − v∥2 − γ)
= (1±O(ε))∥q − v∥2 + (d− (1±O(ε)))γ
≤ (1±O(ε))∥q − v∥2 + α.

The conclusion of the lemma follows.

Remark 2.3.22. We note that by using the γ-net argument, we get a weaker conclusion compared
to standard Johnson-Lindenstrauss lemma, namely, we preserve the distance with (1 ± O(ε))
relative error and α additive error. Fortunately, the magnitude of α is small enough so that it
won’t affect the quality of our downstream task too much.

As an example, consider the following adaptive robust AFN: we use k different independent
data structures where each one has an independent JLT matrix Si. At each query point q, we
shall sample Θ(log b) data structures and output the one with the best quality.

As a direct consequence, we have the following result for TensorSparse:
Corollary 2.3.23. Let V := {v1, . . . , vm} ∈ (Rd)m, ε ∈ (0, 1) and δ ∈ (0, 1). Furthermore,
let {Ri}ki=1 ∈ Rb×d for k ≥ Ω((d + log(1/δ)) log(md)) such that each Ri is an independent
TensorSparse matrix with b = Θ(ε−2 logm) rows and ∥Ri∥F = d. Then we have

∀q ∈ Sd−1,∀v ∈ V,
k∑
i=1

1[∥Si(q − v)∥22 ≤ (1±O(ε))∥q − v∥22 + α] ≥ 0.95k

with probability at least 1− δ and α ≤ O( 1
(md)9

).

Proof. The result follows from Theorem 2.3.19 and Lemma 2.3.21.

2.3.5 Putting Things Together
Now we have a powerful dimensionality reduction tool that computes the tensor product fast
and robust against adaptive adversary, and an efficient approximate furthest neighbor search data
structure that are also robust against adaptive inputs. We combine them together to get our meta
result in this section.
Theorem 2.3.24 (Formal version of Theorem 1.1.14). Let c ∈ (0, 1), τ ∈ (0, 1), λ ∈ (0, 1),
ε ∈ (0, 1) and δ ∈ (0, 1). We define the following additional parameters:
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• α = O( 1
(nd)9

), the additive error by Lemma 2.3.21;
• s ≤ d, the dimension of JLT;
• k = O((d+ log(1/δ)) log(nd)), number of independent JLT sketches;
• κ = s log(ns/(λδ));
• λ̃ = O(

√
c−τ
c(1−τ)) · (λ+ α), the additive error of Min-IP.

Let TS(x) denote the time of applying S to a vector x ∈ Rd. Given a set of n-points Y ⊂ Sd−1

on the sphere, one can build a dynamic data structure with preprocessing time Tinit ·κ·k+TS(Y )·
k, space Sspace · κ · k insert time (Tinsert · κ + TS(x)) · k and delete time (Tdelete · κ + TS(x)) · k
so that for every query x ∈ Sd−1 in an adaptive sequence X = {x1, . . . , xT}, the query time is
Õ(Tquery · κ+ TS(x)):

• if Min-IP(x, Y ) ≤ τ , then we output a vector in Y that is a (c, τ, λ̃)-Min-IP with respect to
(x, Y ).

• otherwise, we output fail.
Further,

• If c ∈ (τ, 8τ
(1−ε)2τ+2ε+7

), we have Tinit = O((n1.5 log2 n+ sn0.5 log n) log log s),
Sspace = O((n1.5 log2 n+sn0.5 log n) log log s+ns), Tquery = O(n0.5(s+log n) log n log s log log s)
and Tinsert = Tdelete = O(n0.5 log2 n log log s+ s log n)

• If c ∈ (τ, 400τ
(1−ε)2τ+2ε+399

), we have Tinit = O((n1.01 log2 n+sn0.01 log n) log log s), Sspace =
O((n1.01 log2 n+sn0.01 log n) log log s+ns), Tquery = O(n0.01(s+log n) log n log s log log s)
and
Tinsert = Tdelete = O(n0.01 log2 n log log s+ s log n)

Finally, the probability that all queries succeed is at least 1− δ.

Proof. We first use Lemma 2.3.21 to initiate k ≥ Ω((d + log(1/δ)) log(nd)) different JLT ma-
trices with parameters (m + 1, ε, 0.99). Then, for each JLT matrix Si ∈ Rs×d, we run the
quantization process on it. Specifically, this requires us to use κ = s log(ns/(λδ)) independent
AFN data structures due to Lemma 2.3.12.

Throughout the proof, we will condition on the event that there exists some i ∈ [k] such that
Si preserves the pair-wise distances between any query point and points in X . To simplify the
notation, we use S to denote the corresponding JLT matrix Si.

We consider the following: given a query point Sx ∈ Rs, we quantize it into a point x̂ ∈ Rs,
then we use x̂ as our query. Let Sy be the furthest neighbor of x̂, the AFN data structure will
output a point Sy′ with the guarantee that ∥Sy′− x̂∥2 ≥ ∥Sy− x̂∥2/c. Towards the end, we wish
to have a bound on the term ∥x− y′∥2 in terms of ∥x− y∥2.

∥Sy′ − Sx∥2 = ∥Sy′ − x̂+ x̂− Sx∥2
≥ ∥Sy′ − x̂∥2 − ∥Sx− x̂∥2
≥ ∥Sy − x̂∥2/c− λ
≥ ∥Sy − Sx+ Sx− x̂∥2/c− λ
≥ (∥Sy − Sx∥2 − λ)/c− λ
≥ c−1 · ((1− ε)∥y − x∥2 − α− λ)− λ,
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on the other hand, we know that ∥x− y′∥2 ≥ ∥Sy′−Sx∥2−α
1+ε

, we hence conclude that

∥x− y′∥2 ≥
c−1 · (1− ε)∥x− y∥2 − (1 + c−1)λ− (1 + c−1)α

1 + ε

= c−1 · (1−O(ε))︸ ︷︷ ︸
c̃−1

∥x− y∥2 − (1−O(ε)) · ((1 + c−1) · λ+ (1 + c−1) · α)︸ ︷︷ ︸
λ̃

.

By further setting r̃ = r
1−ε , we conclude we get a (c̃, r̃)-AFN data structure with additive error

λ̃. Moreover, this (c̃, r̃)-AFN data structure would also be a data structure for (c, τ)-Min-IP with
τ = 1− 0.5r̃2 and c = 1−0.5r2

1−0.5r̃2/c̃2
. Using Eq. (2.1), we have c̃2 = c(1−cτ)

c−τ .
Next, we present how to obtain the desired query, preprocessing insert, and delete time com-

plexity in the statement.
Part 1. Let c̃ = 2c/(1 − ε), we conclude that c2 = c(1−cτ)(1−ε)2

4(c−τ) . If τ ∈ (0, 1) and c ∈
(τ, 8τ

(1−ε)2τ+2ε+7
), we have

c2 =
c(1− τ)(1− ε)2

4(c− τ)

> (1− ε)2 · 8τ

(1− ε)2τ + 2ε+ 7
) · 1− τ

4( 8τ
(1−ε)2τ+2ε+7

)− τ)

> (1− ε)2 · 8τ

(1− ε)2τ − (1− ε)2 + 8
) · 1− τ

4( 8τ
(1−ε)2τ−(1−ε)2+8

)− τ)

=
2(1− ε)2τ(1− τ)

8τ − (1− ε)2τ 2 + (1− ε)2τ − 8τ

= 2

where the second and third steps follow from Lemma 2.3.7.
Then, we use Corollary 2.3.10 with c2 > 2 and obtain the query timeO(n0.5(s+log n) log n log s log log s),

preprocessing timeO((n1.5 log2 n+sn0.5 log n) log log s) and spaceO((n1.5 log2 n+sn0.5 log n) log log s+
ns). Moreover, the dynamic data structure supports insert or delete in O(n0.5 log2 n log log s +
s log n) time.

Part 2. Let c̃ = 2c/(1 − ε), we conclude that c2 = c(1−cτ)(1−ε)2
4(c−τ) . If τ ∈ (0, 1) and c ∈

(τ, 400τ
(1−ε)2τ+2ε+399

), we have

c2 =
c(1− τ)(1− ε)2

4(c− τ)

> (1− ε)2 · 400τ

(1− ε)2τ + 2ε+ 399
) · 1− τ

4( 400τ
(1−ε)2τ+2ε+399

)− τ)

> (1− ε)2 · 400τ

(1− ε)2τ − (1− ε)2 + 400
) · 1− τ

4( 400τ
(1−ε)2τ−(1−ε)2+400

)− τ)

=
100(1− ε)2τ(1− τ)

400τ − (1− ε)2τ 2 + (1− ε)2τ − 400τ
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= 10

where the second and third steps follow from Lemma 2.3.7.
Then, we use Corollary 2.3.11 with c2 > 100 and obtain the query timeO(n0.01(s+log n) log n log s log log s),

preprocessing timeO((n1.01 log2 n+sn0.01 log n) log log s) and spaceO((n1.01 log2 n+sn0.01 log n) log log s+
ns). Moreover, the dynamic data structure supports insert or delete in O(n0.01 log2 n log log s +
s log n) time.

Next, we analyze the additive error. Use the relationship c2 = c(1−τ)(1−ε)2
4(c−τ) we derived above,

we can further simplify λ̃:

(1−O(ε)) · ((1 + c−1) · λ+ (1 + c−1) · α) ≤ O(1) ·
√

c− τ
c(1− τ)

· (λ+ α).

Therefore, we simplify λ̃ ≤ O(
√

c−τ
c(1−τ) ·(λ+α)), we conclude that we get a (c, τ, λ̃)-Min-IP.

2.4 Adaptive Inner Product Estimations
In this section, we design a data structure with the following query feature: given a query vector
q ∈ Rd and a preprocessed dataset {x1, . . . , xm} ⊂ Rd, it approximately estimates all the inner
products ⟨q, xi⟩.

The data structure builds upon the adaptive distance estimation data structures introduced
in [22, 23]. Such data structures can output estimates to ∥q − xi∥2 for any i ∈ [m], we use an
inner product preserve reduction to show that it also preserves the inner product.

While such data structure is useful for Task 1.1.9, we will mainly use it for Task 1.1.6. This is
because, for the optimization problems that require us to realize Task 1.1.9 have more structures,
and thus simpler and more efficient data structures can be adapted.
Definition 2.4.1 (Adaptive Inner Product Estimation (AIPE)). Let X = {x1, . . . , xm} ∈ (Rd)m

be a dataset of dimension d and radius D and let q ∈ Rd be a query point in unit Euclidean ball.
The Adaptive Inner Product Estimation (AIPE) data structure, D, has the following guarantee:
with probability at least 1− δ we have for any i ∈ [m],

(1 + ε)⟨xi, q⟩ −Dε ≤ wi ≤ (1− ε)⟨xi, q⟩+Dε,

where wi denotes the inner product estimation between xi and q.
We have the following result from [23]:

Lemma 2.4.2 (Theorem 1.4 of [23]). Let ε, δ ∈ (0, 1/2). Then, there exists a data structure for
Distance Estimation in Euclidean space which is initialized correctly with probability at least
1− δ and supports the following operations:

• Output a correct answer to a possibly adaptively chosen distance estimation query with
probability at least 1− δ, i.e.,

(1− ε)∥xi − q∥2 ≤ di ≤ (1 + ε)∥xi − q∥2,

where di denotes the distance estimation between xi and q.
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• Add input x ∈ Rd to the dataset X .
Furthermore, the query and update (insert/delete) time of the data structure are Õ(ε−2(m +

d) log 1/δ) and Õ(ε−2d log 1/δ) respectively while the data structure is constructed in time
Õ(ε−2md log 1/δ).

Now, we are ready to present our AIPE data structure.

Algorithm 10 Adaptive Inner Product Estimation
1: data structure ADAPTIVE INNER PRODUCT ESTIMATION ▷ Theorem 2.4.6
2: members
3: ADAPTIVEDISTANCEESTIMATION ADE
4: end members
5:
6: procedure INIT(x1, x2, · · · , xm, ε, δ)
7: ADE.INIT(x1, x2, · · · , xm, ε, δ)
8: end procedure
9:

10: procedure INSERT(z ∈ Rd)
11: ADE.INSERT(z)
12: end procedure
13:
14: procedure DELETE(i ∈ [m])
15: ADE.DELETE(i)
16: end procedure
17:
18: procedure QUERY(q ∈ Rd) ▷ Lemma 2.4.5
19: d1, d2, · · · , dm ← ADE.QUERY(q)
20: for i = 1, 2, · · · ,m do
21: wi = 1− 1

2
d2i

22: end for
23: return {wi}mi=1

24: end procedure
25:
26: procedure QUERYMIN(q ∈ Rd) ▷ Lemma 2.4.3
27: d1, d2, · · · , dm ← ADE.QUERY(q)
28: i← argmaxi∈[m] di
29: return xi
30: end procedure
31: end data structure

We first show that given an ADE data structure, we can solve the AFN data structure problem.
Lemma 2.4.3. Let X = {x1, . . . , xm} ∈ (Sd−1)m be the dataset and q ∈ Sd−1 be a query
vector. Suppose for some r ∈ (0, 2), maxx∈X ∥x− q∥2 ≥ r. Then, procedure QUERYMIN(q) in
Algorithm 10 solves the (1 + ε, r)-AFN data structure problem.
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Proof. Let x ∈ X be the point inX that maximizes the distance with q, also, we have ∥x−q∥2 ≥
r.Let dx denote the distance estimation corresponds to x outputted by the ADE data structure.
Suppose for some y ∈ X , dy ≥ dx, then we have

dy ≥ dx
≥ (1− ε)∥x− q∥2
≥ (1− ε)r
≥ r/(1 + 2ε),

this concludes our proof.

As a corollary, it automatically induces a Min-IP data structure.
Corollary 2.4.4. Let X = {x1, . . . , xm} ∈ (Sd−1)m be the dataset and q ∈ Sd−1 be a query
vector. Suppose for some r ∈ (0, 2), maxx∈X ∥x − q∥2 ≥ r. Given a (1 + ε, r)-AFN data
structure, it can solve the (c, τ)-Min-IP problem with

τ = 1− 0.5r2, c =
(1 + ε)2τ

(1 + ε)2 − 1 + τ
.

Similarly, the AIPE problem can be solved using ADE.
Lemma 2.4.5. Let X = {x1, . . . , xm} ⊂ Rd−1 be the dataset with m points and radius D,
let q ∈ Sd−1 be the query vector. The procedure QUERY(q) in Algorithm 10 outputs a list of
estimates {wi}mi=1 such that

(1 + ε)⟨xi, q⟩ −Dε ≤ wi ≤ (1− ε)⟨xi, q⟩+Dε.

Proof. Throughout the proof, we assume transformation Q has been applied to all points xi ∈ X
and transformation P has been applied to query vector q.

By Definition 2.3.1, we have

∥P (q)−Q(xi)∥22 = 2− 2 ·D−1⟨q, xi⟩ (2.3)

By Lemma 2.4.2, we have

(1− ε)2∥P (q)−Q(xi)∥22 ≤ d2i ≤ (1 + ε)2∥P (q)−Q(xi)∥22,∀i ∈ [n]

Then we have

1− (1 + ε)2∥P (q)−Q(xi)∥22
2

≤ 1− d2i
2
≤ 1− (1− ε)2∥P (q)−Q(xi)∥22

2

Applying Eq. (2.3) we get

1− (1 + 3ε)(2− 2 ·D−1⟨q, xi⟩)
2

≤ 1− d2i
2
≤ 1− (1− 3ε)(2− 2 ·D−1⟨q, xi⟩)

2

Thus, we get

(1 + 3ε)⟨q, xi⟩ − 3Dε ≤ D · (1− d2i
2
) ≤ (1− 3ε)⟨q, xi⟩+ 3Dε.
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We summarize results regarding Algorithm 10 in the following main theorem.
Theorem 2.4.6 (Adaptive Inner Product Estimation, formal version of Theorem 1.1.15). There
is a data structure uses Õ(ε−2md log(1/δ)) space for the Adaptive Inner Product Estimation
Problem with the following procedures:

• INIT({x1, x2, . . . , xm} ⊂ Rd, ε ∈ (0, 1), δ ∈ (0, 1)): Given data points {x1, x2, . . . , xn} ⊂
Rd with radius D, an accuracy parameter ε and a failure probability δ as input, the data
structure preprocesses in time Õ(ε−2md log(1/δ)).

• INSERT(z ∈ Rd): Given a vector z, the data structure insert z in time Õ(ε−2d log(1/δ)).
• DELETE(i ∈ [m]): Given an index i, the data structure deletes xi in time Õ(ε−2d log(1/δ)).
• QUERY(q ∈ Rd): Given a query point q ∈ Rd, the QUERY operation takes q as input and

approximately estimates the inner product of q and all the data points {x1, x2, . . . , xm} ⊂
Rd in time Õ(ε−2(m+ d) log(1/δ)) i.e. it provides a set of estimates {w̃i}mi=1 such that:

∀i ∈ [m], (1 + ε)⟨q, xi⟩ −Dε ≤ w̃i ≤ (1− ε)⟨q, xi⟩+Dε

with probability at least 1− δ, even for a sequence of adaptively chosen queries.
• QUERYMIN(q ∈ Rd): Given a query point q ∈ Rd, the QUERYMIN operation takes q

as input and solves the (1 + ε, r)-AFN data structure problem, where r ∈ (0, 2) satisfies
maxx∈X ∥x− q∥2/D ≥ r, in time Õ(ε−2d log(1/δ)).

Proof. Proof of INIT. The running time follows from the initialization time of Lemma 2.4.2.
Proof of INSERT and DELETE. The running time follows from the update time of Lemma 2.4.2.
Proof of QUERY. The correctness follows from Lemma 2.4.5, for the running time, it follows

from Lemma 2.4.2.
Proof of QUERYMIN. The correctness follows from Lemma 2.4.3, for the running time, it

follows from Lemma 2.4.2.

Remark 2.4.7. ADE data structure is robust against adaptive queries, which is especially feasi-
ble during an iterative process. During query, to find the vector that approximates the minimum
inner product, we need to perform a linear scan over all m vectors, this makes it useful when
number of iterations is rather small, in which linear scan is affordable. The initialization time of
the data structure is also nearly linear in the size of input.

2.5 Low Rank Maintenance: Simple Restart
Low rank maintenance task (Task 1.1.10) is a simple yet very useful primitive that finds its
applications in many optimization algorithms. Consider we are given a matrix W ∈ Rm×m,
at each iteration, W receives a low rank update UV ⊤, where U, V ∈ Rn. Clearly, if n ≪ m,
then one can use a clever data structure to store W and its updates in a fashion such that the
matrix-product query can be answered in time o(m2). We present a data structure that realizes
this guarantee.

Before moving, we define some notions related to rectangular matrix multiplication.
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Definition 2.5.1 ([8, 33, 85]). Let ω be the matrix multiplication exponent such that it takes
nω+o(1) time to multiply two n×n matrices. Let α be the dual exponent of the matrix multiplica-
tion which is the supremum among all a ≥ 0 such that it takes n2+o(1) time to multiply an n× n
by n× na matrix.

Additionally, we define the function ω(·) where ω(b) denotes the exponent of multiplying an
n× n matrix by an n× nb matrix. Hence, we have ω(1) = ω and ω(α) = 2.

The overall idea of our low rank maintenance data structure is as follows: we keep accumu-
lating the low rank change, when the rank of the change reaches a certain threshold (mα), then
we restart the data structure and update the weight matrix.

Algorithm 11 Low rank maintenance data structure
1: data structure LOWRANKMAINTENANCE ▷ Lemma 2.5.2
2: members
3: rℓ, ∀ℓ ∈ [L] ▷ rℓ denotes the accumulated rank of the change
4: Wℓ,∀ℓ ∈ [L] ▷ {Wℓ}Lℓ=1 ∈ (Rm×m)L

5: ∆Wℓ, ∀ℓ ∈ [L] ▷ {∆Wℓ}Lℓ=1 ∈ (Rm×m)L

6: end members
7:
8: procedures
9: INIT({W1(0), . . .WL(0)}) ▷ Initialize the data structure

10: UPDATE(Uℓ, Vℓ) ▷ Update the low rank representation
11: QUERY(ℓ, y) ▷ Compute the matrix-vector product between ∆Wℓ and y
12: end procedures
13: end data structure

Lemma 2.5.2 (Formal version of Theorem 1.1.18). There exists a deterministic data struc-
ture (Algorithm 11) such that maintains

∆W1, . . . ,∆WL

such that
• The procedure INIT (Algorithm 12) takes O(m2L) time.
• The procedure UPDATE (Algorithm 12) takes O(nm2−α+o(1)) amortized time, where α =
ω(2).

• The procedure QUERY (Algorithm 12) takes O(m · (nnz(y) + rℓ)) time, where rℓ is the
rank of ∆Wℓ when QUERY is called.

Proof. The runtime for INIT is straightforward, for QUERY, notice that we are multiplying vector
y with a (possibly) dense matrix Wℓ ∈ Rm×m, which takes O(nnz(y) ·m) time, and an accumu-
lated low rank matrix ∆Wℓ with rank rℓ. By using the low rank decomposition ∆Wℓ = UV ⊤

with U, V ∈ Rm×rℓ , the time to multiply y with ∆W is O(mrℓ). Combine them together, we get
a running time of O(m · (nnz(y) + rℓ)).

It remains to analyze the amortized cost of UPDATE. Note that if rℓ < ma, then we just
pay O(1) time to update corresponding variables in the data structure. If rℓ = ma, then we will
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Algorithm 12 Procedures of LRM data structure
1: procedure INIT({W1(0), . . . ,WL(0)}) ▷ Lemma 2.5.2
2: Wℓ ← Wℓ(0)
3: ∆Wℓ ← 0,∀ℓ ∈ [L]
4: rℓ ← 0,∀ℓ ∈ [L]
5: end procedure
6:
7: procedure UPDATE(Uℓ ∈ Rm×n, Vℓ ∈ Rm×n) ▷ Lemma 2.5.2
8: ∆Wℓ ← ∆Wℓ + UℓV

⊤
ℓ without forming the product and sum the two matrices

9: rℓ ← rℓ + n
10: if rℓ = ma where a = ω(2) then
11: Wℓ ← Wℓ +∆Wℓ ▷ Takes O(m2) time
12: rℓ ← 0
13: ∆Wℓ ← 0
14: end if
15: end procedure
16:
17: procedure QUERY(ℓ ∈ [L], y ∈ Rm) ▷ Lemma 2.5.2
18: z ← Wℓ · y +∆Wℓ · y ▷ Takes O(nnz(y) ·m+mrℓ) time
19: return z
20: end procedure

explicitly form the m ×m matrix ∆Wℓ. To form it, notice we have accumulated rℓ/n different
sums of rank-n decompositions, which can be represented as

U = [Uℓ(1), Uℓ(2), . . . , Uℓ(rℓ/n)] ∈ Rm×rℓ ,

V = [Vℓ(1), Vℓ(2), . . . , Vℓ(rℓ/n)] ∈ Rm×rℓ ,

and ∆Wℓ = UV ⊤, which takes O(m2+o(1)) time to compute since rℓ = ma and a = ω(2).
Finally, note that this update of Wℓ only happens once per rℓ/n number of calls to UPDATE,
therefore we can charge each step by O( m

2

rℓ/n
) = O(m2−an) = O(m2−αn), arrives at our final

amortized running time.

Remark 2.5.3. Currently, the dual matrix multiplication exponent α ≈ 0.31 [33], hence the
amortized time for UPDATE is O(nm1.69). If m ≥ n4, then we achieve an update time of o(m2).
Similarly, the time for QUERY is O(m · (nnz(y) + rℓ)) = O(m · nnz(y) + m1+α) = O(m ·
nnz(y) +m1.31), as long as nnz(y) = o(m), then its running time is also o(m2).

2.6 Projection Maintenance via Inverse Maintenance and the
Power of Sketching

Given a diagonal matrix W ∈ Rn×n with non-negative entries on the diagonal, and A ∈ Rd×n

where d ≤ n with rank d, the goal is to maintain the projection P =
√
WA⊤(AWA⊤)−1A

√
W
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under ℓ2 multiplicative changes to W and support the matrix vector product Ph for some vector
h ∈ Rn. This is a key core step in speeding up the robust interior point method for linear
programming [27, 72] and empirical risk minimization [55]. We present a unified framework
that uses Schur completement to reduce the projection maintenance into an inverse maintenance,
coupled with the clever use of sketching techniques to reduce the query complexity.
Fact 2.6.1 (Schur complement). Given four matrices A,B,C,D, we have the following identity
assuming that all inverses exist:[

A B
C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

2.6.1 From Projection to Inverse Maintenance
While projection maintenance has rather complicated form, we can pack the corresponding terms
into a large matrix and use Schur complement in a clever way.
Lemma 2.6.2 (Original version). Let A ∈ Rd×n be a matrix of rank d and let W ∈ Rn×n be a
diagonal matrix with non-zero diagonal entries and let h ∈ Rn. Then

W−1 A⊤
√
W

−1
0

A 0 0 0
0 0 −I 0

(
√
W

−1
)⊤ 0 0 −I


−1 

0n
0d
−h
−h

 =


⋆
⋆
⋆√

WA⊤(AUA⊤)−1A
√
Wh

 (2.4)

where ⋆ represents some entries that do not care about.

Proof. Let A = W−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈ nd×d in Fact 2.6.1,
then the matrix has full-rank (i.e. it is invertible) and the top-left block of the inverse is W −
WA⊤(AWA⊤)−1AW ∈ Rn×n. Further, consider the following block-matrix and its inverse:M N 0

0 −I 0
N⊤ 0 −I

−1

=

 M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I


Note that

M =

[
W−1 A⊤

A 0

]
By the Fact 2.6.1 and set A = W−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈

Rd×d, then we have

M−1 =

[
W +WA⊤(0− AWA⊤)−1AW −WA⊤(0− AWA⊤)−1

−(0− AWA⊤)AW (0− AWA⊤)−1

]
When M ∈ R(n+d)×(n+d) is the previous block-matrix and N ∈ R(n+d)×n block-matrix

(
√
W

−1
, 0n×d)

⊤, i.e.,

N =

[√
W

−1

0d×n

]
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Then we compute the N⊤M−1N ∈ Rn×n:

N⊤M−1N =
√
W

−1
(W −WA⊤(AWA⊤)−1AW )

√
W

−1

= I −
√
WA⊤(AWA⊤)−1A

√
W

Consider the matrix multiplication in Eq. (2.4) and its last n coordinates, we have

[
N⊤M−1 N⊤M−1N −I

] 0n+d−h
−h

 = 0−N⊤M−1Nh+ h

= − (I −
√
WA⊤(AWA⊤)A

√
W )h+ h

=
√
WA⊤(AWA⊤)A

√
Wh

Therefore we know that Eq. (2.4) holds and complete the proof.

Sometimes, we want to put sketching matrix on the left or on the right. By slightly modifying
the matrix, we can also achieve these objectives.
Definition 2.6.3 (M matrix). Let A ∈ Rd×n with rank d and W ∈ Rn×n be a diagonal matrix
with non-zero elements on the diagonal. We define the matrix M ∈ R(n+d)×(n+d) as follows:

M =

[
W−1 A⊤

A 0

]
Lemma 2.6.4. Let M ∈ R(n+d)×(n+d) be defined as in Definition 2.6.3, then

M−1 =

[
W −WA⊤(AWA⊤)−1AW WA⊤(AWA⊤)−1

(AWA⊤)−1AW −(AWA⊤)−1

]
Proof. We have

M−1 =

([
W−1 A⊤

A 0

])−1

=

[
W +WA⊤(0− AWA⊤)−1AW −WA⊤(0− AWA⊤)−1

−(0− AWA⊤)−1AW (0− AWA⊤)−1

]
=

[
W −WA⊤(AWA⊤)−1AW WA⊤(AWA⊤)−1

(AWA⊤)−1AW −(AWA⊤)−1

]
where the first step follows from Fact 2.6.1 and the second step comes from simplifying the
terms.

Definition 2.6.5 (L matrix). Let A ∈ Rd×n be rank d and W ∈ Rn×n be a diagonal matrix with
non-zero elements on the diagonal. We define the matrix L ∈ R(3n+d)×(3n+d) as follows

L =


W−1 A⊤ W−1/2 0
A 0 0 0
0 0 −I 0

(W−1/2)⊤ 0 0 −I
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To get a better view of the inverse of L, we define the matrix N first.
Definition 2.6.6 (N matrix). Let W ∈ Rn×n be a diagonal matrix with non-zero diagonal ele-
ment. We define the matrix N ∈ R(n+d)×n as follows:

N =

[
W−1/2

0d×n

]
We can express the inverse ofL ∈ R(3n+d)×(3n+d) usingM ∈ R(n+d)×(n+d) andN ∈ R(n+d)×n

.
Lemma 2.6.7. Let L ∈ R(3n+d)×(3n+d) be defined in Definition 2.6.5. Then,

L−1 =

 M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I


where M ∈ R(n+d)×(n+d) and N ∈ R(n+d)×n are defined in Definition 2.6.3 and 2.6.6.

One important feature of the L ∈ R(3n+d)×(3n+d) matrix is multiplying its inverse with a
proper vector gives the desired matrix vector product of interest.
Lemma 2.6.8 (Restatement of Lemma 2.6.2). Let L be defined as in Definition 2.6.5. Then we
have

L−1

0n+dh
h

 =

 ⋆
⋆√

WA⊤(AWA⊤)−1A
√
Wh


Lemma 2.6.9 (Sketch on the left). Let R ∈ Rn×(3n+d), let L ∈ R(3n+d)×(3n+d) be the matrix
defined in Definition 2.6.5, consider the matrix[

L 0
R −I

]
,

then we have ([
L 0
R −I

])−1

=

[
L−1 0
RL−1 −I

]
Proof. We have ([

L 0
R −I

])−1

=

[
L−1 0

−(−I)−1RL−1 (−I)−1

]
=

[
L−1 0
RL−1 −I

]
where the first step comes from Fact 2.6.1 and the second step comes from simplying the terms.
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As we have shown, it is possible to multiply a conforming matrix R either on the left or on
the right of L−1 ∈ R(3n+d)×(3n+d). We now show how to design proper sketching matrices. We
start with the discussion on sketching on the left.
Theorem 2.6.10. Let R ∈ Rn×n be a collection of sketching matrices, define R ∈ Rn×(3n+d) to
be the following matrix:

R =
[
0n×(2n+d) R

]
Then we have

([
L 0(3n+d)×n
R −In

])−1


0n+d
h
h
0n

 =

[
⋆

R
√
WA⊤(AWA⊤)−1A

√
Wh

]

Proof. By Lemma 2.6.9, we know([
L 0(3n+d)×n
R −In

])−1

=

[
L−1 0(3n+d)×n
RL−1 −In

]
.

Compute the matrix vector product gives us

[
L−1 0(3n+d)×n
RL−1 −In

]
0n+d
h
h
0n

 =


⋆

RL−1

0n+dh
h




We have

RL−1

0n+dh
h

 = R

 ⋆
⋆√

WA⊤(AWA⊤)−1A
√
Wh


=
[
0n×(2n+d) R

]  ⋆
⋆√

WA⊤(AWA⊤)−1A
√
Wh


= R
√
WA⊤(AWA⊤)−1A

√
Wh

where the first step follows that L−1

0n+dh
h

 =

 ⋆
⋆√

WA⊤(AWA⊤)−1A
√
Wh

 by Lemma 2.6.2,

the second step follows from the definition of R, and the final step comes from the matrix multi-
plication.

This completes the proof.

Both [27] and [72] can be identified as sketching on the right. We show how to maintain their
sketching as inverse.
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Lemma 2.6.11 (Sketch on the right). Let R ∈ R(3n+d)×n, let L ∈ R(3n+d)×(3n+d) be the matrix
defined in Definition 2.6.5, consider the matrix[

L R
0 −I

]
,

then we have ([
L R
0 −I

])−1

=

[
L−1 L−1R
0 −I

]
Proof. We have ([

L R
0 −I

])−1

=

[
L−1 −L−1R(−I)−1

0 (−I)−1

]
=

[
L−1 L−1R
0 −I

]
where the first step comes from Fact 2.6.1 and the second step comes from simplifying the
terms.

Theorem 2.6.12. Let R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
∈ Rn×n be a collection of sketching matrices.

Let T =
√
n. Define B ∈ R(3n+d)×n to be the following matrix:

B =

0(n+d)×n
R⊤

R⊤


Then we have([

L B
0n×(3n+d) −In

])−1 [
03n+d

ItRh

]
=

[
⋆√

WA⊤(AWA⊤)−1A
√
WR⊤

t Rth

]
where It is a diagonal matrix whose n(t−1)

T
th to nt

T
th diagonal entries are 1 and other diagonal

entries are 0 such that R⊤ItR = R⊤
t Rt.

Proof. By Lemma 2.6.11, we know([
L B

0n×(3n+d) −In

])−1

=

[
L−1 L−1B

0n×(3n+d) −In

]
.

Compute the matrix vector product gives us[
L−1 L−1B

0n×(3n+d) −In

] [
03n+d

ItRh

]
=

[
⋆

L−1RItRh

]
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We have

L−1BItRh = L−1

 0n+d
R⊤ItRh
R⊤ItRh


=

 ⋆
⋆√

WA⊤(AWA⊤)−1A
√
WR⊤ItRh


=

 ⋆
⋆√

WA⊤(AWA⊤)−1A
√
WR⊤

t Rth



where the first step follows from the definition of B, the second step follows from Lemma 2.6.2,
and the final step follows that R⊤ItR = R⊤

t Rt.
This completes the proof.

Remark 2.6.13. We include these constructions here as a showcase of one attempt to unify the
projection maintenance task. However, the inverse maintenance itself is not the key to realize
the speedup in [27, 55, 72], as we will show in next section, it is the coordinate-wise embedding
property that is key to these developments.

For completeness, we include the version where h can be maintained inside the matrix and
an algorithm to update, query and reset the data structure in Appendix B.

2.6.2 Coordinate-wise Embedding
In [72], they propose a unified framework for sketching or sampling called coordinate-wise em-
bedding property:
Definition 2.6.14 ((α, β, δ)-coordinate wise embedding). We say a randomized matrixR ∈ Rb×n

satisfying (α, β, δ)-coordinate wise embedding if

1. ER∼Π[g
⊤R⊤Rh] = g⊤h,

2. ER∼Π[(g
⊤R⊤Rh)2] ≤ (g⊤h)2 +

α

b
∥g∥22∥h∥22,

3. Pr
R∼Π

[
|g⊤R⊤Rh− g⊤h| ≥ β√

b
∥g∥2∥h∥2

]
≤ δ.

Remark 2.6.15. Given a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-coordinate wise em-
bedding and any orthogonal projection P ∈ Rn×n, above definition implies

1. ER∼Π[PR
⊤Rh] = Ph,

2. ER∼Π[(PR
⊤Rh)2i ] ≤ (Ph)2i +

α

b
∥h∥22,

3. Pr
R∼Π

[
|(PR⊤Rh)i − (Ph)i| ≥

β√
b
∥h∥2

]
≤ δ.
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since ∥P∥2 ≤ 1 implies ∥Pi,:∥2 ≤ 1 for all i ∈ [n].
In [72], they use certain family of sketching matrices satisfying the coordinate-wise embed-

ding to speed up the computation of the approximate matrix vector product Ph. Their approach
is also oblivious, in the sense that sketching matrices are initialized before we have access to the
vector h.

In [27], they use a diagonal sampling matrix D ∈ Rn×n with roughly b non-zero entries on
the diagonal. We design the matrix R ∈ Rb×n as follows: let S be the set of indices of non-zeros
in D, then we set Ri,i = Di,i for i ∈ S.

The matrix D is designed as follows: given h ∈ Rn, we have

Di,i =

{
1
pi

with probability pi := b ·
(

h2i
∥h∥22

+ 1
n

)
0 otherwise

We prove the above diagonal sampling matrix satisfies the first two conditions of Defini-
tion 2.6.14.
Lemma 2.6.16 (Formal version of Theorem 1.1.20). Let D ∈ Rn×n be the sampling matrix
defined as above. For any g ∈ Rn, we have

• ED[g⊤Dh] = g⊤h.
• ED[(g⊤Dh)2] = (g⊤h)2 + 1

b
∥g∥22∥h∥22.

• PrD[|g⊤Dh− g⊤h| ≥ log(1/δ)√
b
∥g∥2∥h∥2] ≤ δ.

Proof. In expectation, we have

E[Di,i] = pi ·
1

pi
+ (1− pi) · 0

= 1

hence, the matrix in expectation is identity.
For variance, we have

E[(g⊤Dh)2] = E[(
n∑
i=1

giDi,ihi)
2]

= E[
n∑
i=1

(giDi,ihi)
2 +

∑
i ̸=j

2giDi,ihigjDj,jhj]

=
n∑
i=1

E[(giDi,ihi)
2]︸ ︷︷ ︸

A

+2
∑
i ̸=j

E[giDi,ihigjDj,jhj]︸ ︷︷ ︸
B

.

We bound A (diagonal term) and B (off-diagonal term) separately.
For A, we have

A = E[
n∑
i=1

g2iD
2
i,ih

2
i ]
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=
n∑
i=1

g2iE[D2
i,i]h

2
i

=
n∑
i=1

1

pi
g2i h

2
i

=
1

b

n∑
i=1

1
h2i

∥h∥22
+ 1

n

g2i h
2
i

=
1

b

n∑
i=1

n∥h∥22
nh2i + ∥h∥22

g2i h
2
i

≤ 1

b

n∑
i=1

n∥h∥22
nh2i

g2i h
2
i

=
1

b
∥h∥22∥g∥22

For B, we have

B = E[
∑
i ̸=j

giDi,ihigjDj,jhj]

=
∑
i ̸=j

gihigjhjE[Di,iDj,j]

=
∑
i ̸=j

gihigjhj

=
∑
i∈[n]

gihi
∑

j∈[n]\{i}

gjhj

=
∑
i∈[n]

gihi(
∑
j∈[n]

gjhj − gihi)

=
∑
i∈[n]

gihi(g
⊤h− gihi)

= (g⊤h)2 −
∑
i∈[n]

g2i h
2
i

≤ (g⊤h)2.

Put it together, we have

E[(g⊤Dh)2] ≤ (g⊤h)2 +
1

b
∥g∥22∥h∥22.

For probability, let Yi denote giDi,ihi − gihi, note that E[Yi] = 0 and the variance of Yi is

Var[Yi] = E[Y 2
i ]

= g2iE[(Di,i − 1)2]h2i
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= g2i h
2
i (E[D2

i,i]− 2E[Di,i] + 1)

= g2i h
2
i (

1

pi
− 1)

= g2i h
2
i

1

b

1
h2i

∥h∥22
+ 1

n

= g2i h
2
i

1

b

n∥h∥22
nh2i + ∥h∥22

≤ 1

b
g2i ∥h∥22.

We also need an absolute value bound:

|Yi| = |gi(Di,i − 1)hi|
≤ |gihi|.

By Bernstein inequality, we have

Pr[|
n∑
i=1

Yi| ≥
β√
b
∥g∥2∥h∥2] ≤ exp

(
−

β2

b
∥g∥22∥h∥22

1
b
∥g∥22∥h∥22 +maxi∈[n]

β√
b
|gihi|∥g∥2∥h∥2/3

)

≤ exp

(
−

β2

b
∥g∥22∥h∥22

β
b
∥g∥22∥h∥22

)
= exp(−β),

picking β = log(1/δ), we obtain the desired result.

Remark 2.6.17. Our above argument shows that the sampling matrix used in [27] is a (1, log(1/δ), δ)-
coordinate-wise embedding.

The above lemma ultimately unifies [27, 55, 72]. From the perspective of inserting the
sketching/sampling matrix, [27] and [72] are very similar in the sense that both of them com-
pute PR⊤Rh with different R. For [55], its sketch is in the form

R⊤RPh,

in the language of coordinate-wise embedding, we use the sketching matrix to preserve the
norm between I and Ph, however, this will make central path infeasible.
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Chapter 3

Faster Sparsification via Faster Inner
Product Data Structures

Given a matrix V ∈ Rm×d, the task of sparsifying the matrix by selecting a small number of
re-scaled rows while preserving the spectral structure of the matrix is one of the most important
primitives in graphs and numerical linear algebra tasks. The celebrated work by Batson, Spiel-
man and Srivastava [12] shows that it’s possible to obtain a sparsified matrix with only ε−2d
rows. While nearly linear time algorithm has been obtained by Lee and Sun [54], it remains a
major open problem whether it is possible to compute such spectral sparsifier deterministically.
Computing spectral sparsifier deterministically has implications to various graph problems in the
adaptive streaming model and derandomize some important numerical linear algebra problems.
However, the fastest deterministic algorithm still takes time Ω(d4) [90].

Our main contribution is a deterministic algorithm that runs in time O(dω+1) for computing
a spectral sparsifier. To achieve such performance, we model the first algorithm in [12] as a data
structure task, and get a direct speedup from their iterative process.

Apart from linear-sized spectral sparsifier, we also obtain faster algorithms for two related
problems: the vector packing problem posed by [84] and the experimental design problem by [7].

This chapter is based on the arXiv document: https://arxiv.org/pdf/2204.03209.pdf, coau-
thored by the thesis author.

3.1 Linear-Sized Spectral Sparsifier
In this section, we speed up the construction of deterministic spectral sparsifier. We show that
solving such problem is equivalent of Task 1.1.4. We also provide an alternative implementation
of the almost-linear time algorithm by Lee and Sun [53]. We show that their iterative process can
be solved as Task 1.1.5.

3.1.1 Problem Setup
In this section, we setup the problem. Given a full rank matrix V ∈ Rm×d with m ≥ d, the goal
is to pick only s = Θ(ε−2d) rescaled rows of V to form Ṽ ∈ Rs×d such that (1 − ε)V ⊤V ⪯
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Ṽ ⊤Ṽ (1 + ε)V ⊤V . Since V is full rank, we can normalize V ⊤V and assume it’s identity. The
task can be defined as follows:

Definition 3.1.1. Suppose we are given m vectors vi, . . . , vm ∈ Rd satisfying
∑m

i=1 viv
⊤
i = I ,

we want to find scalars {si}mi=1 satisfying

|{si : si ̸= 0}| = O(d/ε2),

such that

(1− ε) · I ⪯
m∑
i=1

siviv
⊤
i ⪯ (1 + ε) · I.

We define several notions that will be used extensively in the proof of BSS sparsifier.

Definition 3.1.2. LetA ∈ Rd×d be a symmetric matrix with eigenvalues λ1, . . . , λd and u, ℓ ∈ R,
define:

Φu(A) := tr[(uI − A)−1] =
d∑
i=1

1

u− λi

Φℓ(A) := tr[(A− ℓI)−1] =
d∑
i=1

1

λi − ℓ
.

3.1.2 The BSS Algorithm

The BSS algorithm is as follows: the algorithm starts by maintaining two “barriers” of eigenval-
ues u0 = d

ε
and ℓ0 = −d

ε
. Iteratively, the algorithm searches for an index i ∈ [m] such that the

inner product between viv⊤i and a quantity related to lower barrier is large while the inner product
related to barrier is small. Then we add this outer product viv⊤i with a scaling into the matrix A
we are forming. After Θ(d/ε2) iterations, we’ve constructed a matrix A with the property that
A ≈ε I .

We formalize the algorithm as follows:
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Algorithm 13 BSS algorithm
1: procedure BSS({v1, . . . , vm} ∈ (Rd)m)
2: u0 ← d

ε
, ℓ0 ← −d

ε

3: A0 ← 0d×d
4: T ← d

ε2

5: δU ← 1, δL ← 1
1+2ε

6: for t = 1→ T do
7: ut ← ut−1 + δU , ℓt ← ℓt−1 + δL
8: Lt ← (At−1−ℓtI)−2

Φℓt
(At−1)−Φℓt−1

(At−1)
− (At−1 − ℓtI)−1

9: Ut ← (utI−At−1)−2

Φut−1 (At−1)−Φut (At−1)
+ (utI − At−1)

−1

10: Find an index j such that

v⊤j (Lt − Ut)vj ≥ 0

11: c← v⊤j (Lt+Ut)vj

2

12: At ← At−1 +
1
c
· vjv⊤j

13: end for
14: return AT/d
15: end procedure

The central lemma that guarantees the BSS algorithm to find a good sparsifier that satisfies
both upper and lower bound is the following:
Lemma 3.1.3 (Lemma 3.5 of [12]). Suppose A ∈ Rd×d satisfying ℓI ≺ A ≺ uI , let ε ∈ (0, 1)
and suppose Φu(A) ≤ ε,Φℓ(A) ≤ ε, and ε, δU , δL satisfying

0 ≤ 1

δU
+ ε ≤ 1

δL
− ε,

then we have
1. Lower bounding lower barrier.

m∑
i=1

v⊤i (
(A− (ℓ+ δL)I)

−2

Φℓ+δL(A)− Φℓ(A)
− (A− (ℓ+ δL)I)

−1)vi ≥
1

δL
− ε.

2. Upper bounding upper barrier.
m∑
i=1

v⊤i (
((u+ δU)I − A)−2

Φu(A)− Φu+δU (A)
+ ((u+ δU)I − A)−1)vi ≤

1

δU
+ ε.

We also record two lemmas that control the growth of lower and upper barriers.
Lemma 3.1.4 (Lemma 3.3 of [12]). Suppose A ≺ uI and v ∈ Rd is any vector. If

c ≥ v⊤( ((u+ δU)I − A)−2

Φu(A)− Φu+δU (A)
+ ((u+ δU)I − A)−1)v,
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then

Φu+δU (A+
1

c
· vv⊤) ≤ Φu(A) and A+

1

c
· vv⊤ ≺ (u+ δU)I.

Lemma 3.1.5 (Lemma 3.4 of [12]). Suppose A ≻ ℓI , Φℓ(A) ≤ 1/δL and v ∈ Rd is any vector.
If

0 < c ≤ v⊤( (A− (ℓ+ δL)I)
−2

Φℓ+δL(A)− Φℓ(A)
− (A− (ℓ+ δL)I)

−1)v,

then

Φℓ+δL(A+
1

c
· vv⊤) ≤ Φℓ(A) and A+

1

c
· vv⊤ ≻ (ℓ+ δL)I.

Combining the above 3 lemmas, we derive a lemma that justifies that in each iteration of
Alg. 13, we can always find an index j satisfying the inequality on line 10. To simplify notation,
we define Lt := ( (A−(ℓ+δL)I)

−2

Φℓ+δL
(A)−Φℓ(A)

− (A− (ℓ+ δL)I)
−1) and Ut := ( ((u+δU )I−A)−2

Φu(A)−Φu+δU (A)
+((u+ δU)I−

A)−1).
Lemma 3.1.6. Suppose A ∈ Rd×d satisfying ℓI ≺ A ≺ uI , let ε ∈ (0, 1) and suppose Φu(A) ≤
ε,Φℓ(A) ≤ ε, and ε, δU , δL satisfying

0 ≤ 1

δU
+ ε ≤ 1

δL
− ε,

then there exists an index j ∈ [m] and a positive value c such that
1. Witness of gap between lower and upper barriers.

v⊤j Ltvj ≥ c ≥ v⊤j Utvj.

2. Spectral property.

(ℓ+ δL)I ≺ A+
1

c
· vjv⊤j ≺ (u+ δU)I.

Moreover, if we further have

0 ≤ 1

δU
+ ε <

1

δL
− ε,

then the witness of gap between lower and upper barriers has a strict inequality between the two
quantities:

v⊤j (
(A− (ℓ+ δL)I)

−2

Φℓ+δL(A)− Φℓ(A)
− (A− (ℓ+ δL)I)

−1)vj > c

> v⊤j (
((u+ δU)I − A)−2

Φu(A)− Φu+δU (A)
+ ((u+ δU)I − A)−1)vj.

68



Proof. By Lemma 3.1.3, we have the following:

m∑
i=1

v⊤i (
(A− (ℓ+ δL)I)

−2

Φℓ+δL(A)− Φℓ(A)
− (A− (ℓ+ δL)I)

−1)vi ≥
1

δL
− ε,

m∑
i=1

v⊤i (
((u+ δU)I − A)−2

Φu(A)− Φu+δU (A)
+ ((u+ δU)I − A)−1)vi ≤

1

δU
+ ε.

By an averaging argument, there must exist an index j ∈ [m] that witnesses this inequality, i.e.,

v⊤j (
(A− (ℓ+ δL)I)

−2

Φℓ+δL(A)− Φℓ(A)
− (A− (ℓ+ δL)I)

−1)vj ≥ v⊤j (
((u+ δU)I − A)−2

Φu(A)− Φu+δU (A)
+ ((u+ δU)I − A)−1)vj.

The spectral property is guaranteed by Lemma 3.1.5 and Lemma 3.1.4.
For the strict inequality, note that if we have 1

δL
−ε > 1

δU
+ε, then by Lemma 3.1.3 and again

by an averaging argument, we conclude that witness also exhibits a strict inequality.

We also include a proof for the main Theorem of [12] here, since we will need to later adapt
our data structure for this problem.
Lemma 3.1.7 (Theorem 3.1 of [12]). Suppose we are givenm vectors v1, . . . , vm ∈ Rd satisfying∑m

i=1 viv
⊤
i = I , then there exists a deterministic algorithm (Alg. 13) can find scalars {si}mi=1

satisfying

|{si : si ̸= 0}| = O(d/ε2),

such that

(1− ε) · I ⪯
m∑
i=1

siviv
⊤
i ⪯ (1 + ε)I.

The algorithm (Alg. 13) runs in time O(md3/ε2).

Proof. We first prove the correctness. By the update rule of Alg. 13, we know that we maintain
the following invariants across all iterations due to Lemma 3.1.5 and Lemma 3.1.4

Φut(At) ≤ Φut−1(At−1) and Φℓt(At) ≤ Φℓt−1(At−1),

which means it suffices to examine Φu0(A0) and Φℓ0(A0) respectively, recall that we choose
u0 =

d
ε
, ℓ0 = −d

ε
, hence we have

Φu0(A0) =
d∑
i=1

ε

d

= ε,

Φℓ0(A0) =
d∑
i=1

ε

d
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= ε.

To conclude the proof, we shall apply Lemma 3.1.3 for T = Θ(d/ε2) times, so we verify the
relations between ε, δU , δL:

1

δU
+ ε = 1 + ε ≥ 0,

1

δL
− ε = 1 + ε ≥ 1

δU
+ ε.

This means we can apply Lemma 3.1.3 and have

(ℓ0 + TδL)I ≺ AT ≺ (u0 + TδU)I,

plug in the values of ℓ0, u0, δL, δU and T , we conclude that

(1− ε− 2ε2)I ≺ AT/d ≺ (1 + ε)I.

Now we analyze the running time, the algorithm iterates for T = Θ(d/ε2) iterations, and for
each iteration t, we compute Lt and Ut in O(dω) time, and the search for index j takes O(md2)
time. Hence, the total running time is O(md3/ε2).

3.1.3 Faster Deterministic Sparsification via Nonnegative Inner Product
Search

We observe that the core of the deterministic BSS algorithm is an inner product search step:
given a query matrix Lt − Ut, we need to find a vector vi with ⟨viv⊤i , Lt − Ut⟩. To speed up
this process, we make use of the positive search tree we developed in prior section. In short, we
first preprocess all vectors in min{O(nnz(V 2)), O(mdω−1)} time, then at query time, we simply
perform the positive search to find the desired vector, in time Õ(d2) or O(dω).

We present our algorithm as follows:
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Algorithm 14 Faster Sparsification with Nonnegative Inner Product Search Tree
1: procedure FASTERSPARSIFICATION(V = {v1, . . . , vm} ∈ (Rd)m) ▷ Theorem 3.1.8
2: u0 ← d

ε
, ℓ0 ← −d

ε

3: A0 ← 0d×d
4: T ← d

ε2

5: δU ← 1, δL ← 1
1+3ε

6: if mdω−1 ≤ nnz(V 2) then
7: DS ← VECTORPS VECPS
8: else
9: DS ← MATRIXPS MATPS

10: end if
11: DS.INIT(V )
12: for t = 1→ T do
13: ut ← ut−1 + δU , ℓt ← ℓt−1 + δL
14: Lt ← (At−1−ℓtI)−2

Φℓt
(At−1)−Φℓt−1

(At−1)
− (At−1 − ℓtI)−1

15: Ut ← (utI−At−1)−2

Φut−1 (At−1)−Φut (At−1)
+ (utI − At−1)

−1

16: Q← Lt − Ut
17: vj ← DS.QUERYPOSITIVESEARCH(Q)

18: ct ←
v⊤j (Lt+Ut)vj

2

19: At ← At−1 +
1
ct
· vjv⊤j

20: end for
21: return AT/d
22: end procedure

The correctness of the above algorithm follows obviously: by using the Positive Inner Product
Search Tree, we are guaranteed to find a vector with positive inner product, which suffices to
proceed the BSS algorithm. We summarize the running time in the following theorem.
Theorem 3.1.8 (Formal version of Theorem 1.2.1). Suppose we have

∑m
i=1 viv

⊤
i = I , let A be

the output of Algorithm 14, then

(1− ε) · I ⪯ A ⪯ (1 + ε) · I

and A =
∑m

i=1 siviv
⊤
i for |{si : si ̸= 0}| = ε−2d.

Moreover, Algorithm 14 has runtime

min{nnz(V 2),mdω−1}+ ε−2dω+1.

Proof. The correctness follows naturally. To see the running time, note that by Theorem 2.2.1
and Theorem 2.2.4, the initialization takes min{nnz(V 2),mdω−1} time. For each iteration, we
need to invert d × d matrices, which takes O(dω) time, and we need to query the Positive IP
Search Tree, which takes Õ(d2) (Theorem 2.2.1) or O(dω) (Theorem 2.2.4) time. Thus, each
iteration takes O(dω) time, and there are O(ε−2d) iterations in total. Hence, the total running
time is

min{nnz(V 2),mdω−1}+ ε−2dω+1.
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3.1.4 Deterministic Sparsification via VECTORPS: Comparisons and Ex-
tensions

We compare our algorithm with known algorithms in the literature, both deterministic and ran-
domized.

[90]: Deterministic. To improve the running time of [12], [90] adapts the following strategy:
it uses a deterministic lossy construction to first compute a sparsifier of size ε−2d log d, then it
runs the BSS algorithm on the matrix with ε−2d log d. The deterministic sparsifier it computes
can be viewed as an analogy of the leverage score sampling [80] in deterministic setting. In order
to construct the lossy sparsifier, it makes use of the hyperbolic cosine function as a potential to
progress. At each iteration, it has to compute the hyperbolic cosine potential over all rows of V ,
incurring a O(md) cost per iteration. Similar to the BSS algorithm, it only selects one vector
at each iteration, hence its running time is Õ(ε−2md2) for constructing the lossy sparsifier. For
the case of m = d2, which is the standard case for a dense graph or a tall skinny matrix, their
algorithm has Ω(d4) runtime.

[3]: Randomized. The work by Allen-Zhu, Liao and Orecchia provides an alternative view
of constructing the spectral sparsifier, it shows that spectral sparsification can be solved as a
regret minimization problem over PSD matrices. While leverage score sampling [80] has in-
herent connection with matrix multiplicative weights update [10, 60], the linear-sized sparsifier
requires a new view of the problem. Using regret minimization and the popular follow-the-
regularized-leader (FTRL) approach, they show that by using a q norm regularizer, one can ob-
tain a linear-sized sparsifier using mirror descent. This also introduces a novel potential function
that leads later breakthroughs. From an algorithmic perspective, by using Johnson-Lindenstrauss
to reduce the dimension then compute all necessary information at each iteration, they obtain an
improved running time of Õ(ε−O(1)(md2 + d3+1/q)). Unfortunately, without the use of Johnson-
Lindenstrauss, their algorithm is no faster than [12].

[53]: Randomized. Motivated by the q norm potential function in [3], Lee and Sun show how
to further speed up their algorithm via randomized sampling. A key (bonus) result of the q norm
potential function is that the iterative process might only run for O(ε−2qd1/q) iterations. [53]
exploits this feature and ensures that their algorithm only runs for O(ε−2qd3/q) iterations, at each
iteration, they batch sample many vectors and add them into the target matrix. By using fast ma-
trix multiplication, they achieve a per iteration cost of mdω−1, coupled with ε−2qd3/q iterations,
their algorithm has a running time of Õ(ε−2qmdω−1+3/q). Since their algorithm heavily relies on
the sampling process, it is certain that their algorithm is randomized.

[54]: Randomized. Note that since [53], reducing the iteration count has been a main theme
of speeding up the construction of linear-sized sparsifier. [54] achieves the optimality by only
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requires O(ε−2) iterations, with a novel potential function that provides more leeway in the
analysis. This also means that roughly for each iteration, one needs to select O(d) vectors into
the sparsifier. Intuitively, [54] reduces the iteration count by setting up a much stronger objective
per iteration. To solve such an objective, they invoke a positive SDP solver [4]. The correctness
of their SDP solver builds upon its internal randomness, hence it is unclear how to derandomize
their method and achieve a similar running time.

Bootstrapping via Sketching: Randomized. A randomized alternative of [90] is to approx-
imate leverage score quickly then run any fast randomized linear-sized algorithm (say, [54]) on
the bootstrapped sparsifier. To quickly approximate leverage scores, a popular approach is to use
randomized sketching and adaptive sampling [16]. Similar to any randomized method we have
discussed above, the speed comes from the use of randomness and efficient sketching matrix,
which is inherent random. Also, such method typically does not care about the dependence on
d, since it typically applies a sketching matrix then perform QR decomposition on the sketched
matrix, incurring a poly(d) dependence on the running time.

Comparison with Our Method. We note that all the faster algorithms that break the Ω(d4)
barrier of [90] are randomized methods, they are either slow when derandomized, or inherently
rely on the randomness to progress the algorithm. This poses a challenge when one wants to de-
sign dynamic spectral sparsifiers against adaptive adversary based on these primitives. In contrast
to their deterministic counterpart, where the robustness against adaptive queries is guaranteed, it
is nontrivial to modify a static randomized algorithm for adaptivity without slowdowns. Obtain-
ing efficient deterministic spectral sparsifier has sophisticated implications for various dynamic
graph and matrix problems.

In many senses, while previous results [53, 54] give almost and nearly linear time algorithms
for spectral sparsification, they all need to read the input data entirely for each iteration. This is
fine when the iteration count is small, and in the case of graph, such ε−2m dependence seems
inevitable since one replaces the primitive matrix operations such as inversion with a Laplacian
solve. When the target matrix V is a general matrix, it is clear that reading input for each
iteration is sub-optimal. From this perspective, our data structure formulation gives the right
direction to achieve the truly optimal running time for this problem, and various sparsification
problem using the potential function of [12]. It also opens up the door to further study of efficient
and deterministic spectral sparsifier.

Extensions to Sparsify PSD Matrices. We remark that our framework can be further extended
to sparsify sum of PSD matrices, using the regret minimization approach introduced by Allen-
Zhu, Liao and Orecchia [3]. Observe that their mirror descent algorithm can also be viewed as a
variant of nonnegative inner product search.

3.1.5 Randomized BSS via Efficient Sampling
Note that the vanilla BSS algorithm has ε−2d iterations, and at each iteration, it only adds one
vector and requires inverting d × d matrices. To alleviate this issue, [53] gives a randomized
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sampling algorithm that only has O(ε−2qd3/q) iterations and sample multiple vectors at each
iteration. To this end, they give an Õ(ε−2qmdω−1+3/q) algorithm. We note that their algorithm
reads the entire input at each iteration and involves using fast matrix multiplication, hence it
cannot exploit the sparsity of the input unless for graph case. We show that by using the Weighted
Sampling Tree, we 1). only need to read the input once, 2). exploit the sparsity of the input.

Algorithm 15 Randomized BSS with Weighted Sampling Tree
1: procedure RANDOMIZEDBSS(V = {v1, . . . , vm} ∈ (Rd)m) ▷ Theorem 3.1.9
2: j ← 0
3: u0 ← (2d)1/q, ℓ0 ← −(2d)1/q
4: A0 ← 0d×d
5: DS ← MATRIXPS MATPS
6: DS.INIT(V )
7: while uj − ℓj < 4 · (2d)1/q do
8: Wj ← 0d×d
9: Rj ← (ujI − Aj)−1 + (Aj − ℓjI)−1

10: Nj ← 1
d2/q

tr[Rj] ·min{λmin(ujI − Aj), λmin(Aj − ℓjI)}
11: ∆u,j ← (1 + 2ε) · ε·Nj

q·tr[Rj ]
,∆ℓ,j ← (1− 2ε)

ε·Nj

q·tr[Rj ]

12: for k = 1→ Nj do
13: Mk ← DS.QUERYSAMPLE(Rj)
14: Wj ← ε

q
· ⟨Mk, Rj⟩ ·Mk

15: end for
16: Aj+1 ← Aj +Wj

17: uj+1 ← uj +∆u,j, ℓj+1 ← ℓj +∆ℓ,j

18: j ← j + 1
19: end while
20: return Aj
21: end procedure

In [53], they need to compute the quantity v⊤i Rjvi for all i ∈ [m] at each iteration, by
leveraging fast matrix multiplication, this can be done in O(mdω−1) time. Computing matrix in-
verses and minimum eigenvalue takes O(dω) time, hence, their total running time per iteration is
O(mdω−1+dω). In contrast, our algorithm only needs to perform matrix inversion and minimum
eigenvalue computation in O(dω), and sample Nj vectors each in Õ(d2) time per iteration.
Theorem 3.1.9. Suppose we have

∑m
i=1 viv

⊤
i = I , let A be the output of Algorithm 15, then

(1− ε) · I ⪯ A ⪯ (1 + ε) · I

and A =
∑m

i=1 siviv
⊤
i for |{si : si ̸= 0}| = O(ε−2qd).

Moreover, Algorithm 15 has runtime

Õ(nnz(V 2) + ε−2qdω+3/q + ε−2qd3).

Proof. Again, since we only change the sampling process without modifying the distribution,
the correctness follows from Theorem 1.2 of [53].
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For the running time, initialization takes Õ(nnz(V 2)) time, each query takes Õ(d2) time and
there are ε−2qd queries in total, yields Õ(ε−2qd3). There are O(ε−2qd3/q) iterations in total, each
iteration takes O(dω) time, so the total cost overall all iterations and all queries is

Õ(ε−2qdω+3/q + ε−2qd3).

This gives a total running time of

Õ(nnz(V 2) + ε−2qdω+3/q + ε−2qd3).

Remark 3.1.10. Compared to the algorithm of [53], our algorithm has several advantages.
To achieve the per iteration cost of O(mdω−1), [53] assumes the input is given in the format
{v1, . . . , vm}, to get the running time, they need to form a matrix V ∈ Rm×d then multiply a
d× d matrix, which takes O(mdω−1), then they can compute m values using extra O(md) time.
Suppose in the more general case, when one is only given rank 1 matricesMi, then it is no longer
feasible to do the fast matrix multiplication trick since the input size is md2 (assume inputs are
dense matrices). In such scenario, the running time of [53] becomes Õ(ε−2qd3/q(md2 + dω)) or
Õ(ε−2qd3/q(nnz(V 2) + dω)) in the sparse case.

3.2 Vector Packing, or One-Sided Kadison-Singer Problem
In this section, we improve the running time of the vector packing, or one-sided Kadison-Singer
problem [84]. We observe that their iterative process essentially Task 1.1.6.

3.2.1 Problem Setup
We consider a simpler and one-sided version of the well-known Kadison-Singer problem studied
by Weaver [84], which is similar to the restricted invertibility problem [81].
Question 3.2.1. Does there exist a constantN ∈ N, such that if {v1, . . . , vm} ∈ (Rd)m satisfying
∥vi∥2 = 1√

N
,∀i ∈ [m], and

m∑
i=1

viv
⊤
i = I,

then there exists a subset S ⊆ {1, . . . ,m} such that for any q ∈ (0, 1), we have

∥
∑
i∈S

viv
⊤
i ∥ ≤ q −

1√
N
.

In Weaver’s discrepancy theory II, 2013 [84], he presented a polynomial algorithm that has
the following guarantee:

∥
∑
i∈S

viv
⊤
i ∥ ≤

n

m
+O(

1√
N
).

Here n := |S|. We will dedicate our efforts to design a faster algorithmic framework to achieve
an approximate guarantee as Weaver’s result.
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3.2.2 Tools

We introduce some useful facts and tools that will be used later.
Fact 3.2.2. For any PSD matrix Z ∈ Rd×d, we have tr[Z1/2] ≤

√
d · tr[Z].

Proof. Note that for any d × d positive semi-definite matrix Z ⪰ 0, tr[Z1/2] ≤
√
d · tr[Z] due

to Cauchy-Schwartz inequality applied to the non-negative spectrum of Z1/2.

Fact 3.2.3 (Matrix Woodbury Identity, [86, 87]). For matricesM ∈ Rn×n, U ∈ Rn×d,C ∈ Rd×d,
V ∈ Rd×n,

(M + UCV )−1 =M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Fact 3.2.4. Let A and B denote two diagonal matrices in Rd×d. Suppose ∀i ̸= j ∈ [n], we have
βi − αi = βj − αj , and let γ = βi − αi. We have

tr[A−1 −B−1] = γ · tr[A−1B−1].

Proof. We have

tr[A−1 −B−1] =
k∑
i=1

1

αi
− 1

βi

=
k∑
i=1

βi − αi
αiβi

= γ
k∑
i=1

1

αiβi

= γ · tr[A−1B−1]

Thus, we complete the proof.

Fact 3.2.5 (Inequality for two monotone sequences). Suppose a1 ≥ a2 ≥ · · · ≥ an ≥ 0,
b1 ≥ · · · ≥ bn ≥ 0, then we have

n∑
i=1

aibn−i ≤
1

n

n∑
i=1

ai

n∑
j=1

bj

3.2.3 Approximate Greedy Lemma

In this section, we describe and analyze a high level greedy process to construct the set S with
the guarantee given in [84]. We generalize his analysis by introducing an approximation factor
β, which is particularly valuable when later, we want to use certain approximate data structure
to implement the high-level idea. We start with the main lemma of this section.
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Lemma 3.2.6 (Approximate greedy lemma). Let N ∈ R+, if {v1, . . . , vm} is a finite sequence of
vectors in Rd satisfying ∥vi∥2 = 1√

N
,∀i ∈ [m] and

m∑
i=1

viv
⊤
i = I.

Then for any n < m and any unit vector u, we can find a set S (|S| = n) such that

∥
∑
i∈S

viv
⊤
i ∥ ≤ β · ( n

m
+O(

1√
N
)).

where β ≥ 1.

Proof. Before proceeding to main body of the proof, we observe that for the choice of N , we
know tr[viv

⊤
i ] = ∥vi∥22 = 1

N
and

∑m
i=1 viv

⊤
i = I , thus we have m = dN .

We define the following sequence of numbers

ai =
1√
N

+ (1 +
1√

N − 1
)
i

m
,∀i ∈ {0, 1, · · · , n}.

Let Sj to be the set we have at round t, we also define the matrix Tj as

Tj :=
1

β
·
∑
i∈Sj

viv
⊤
i

We are going to find a set of indices i1, . . . , in such that the following two things hold

• ∥Tj∥ < aj ,
• Φa0(T0) ≥ . . . ≥ Φan(Tn),

where Φa is the upper barrier potential as in Def. 3.1.2.
Assume the above two conditions hold, then we will have∥∥∥∥∥∑

i∈Sn

viv
⊤
i

∥∥∥∥∥ = β · ∥Tn∥

< β · an

= β · ( 1√
N

+ (1 +
1√

N − 1
)
n

m
)

≤ β · ( n
m

+O(
1√
N
)).

Therefore, it suffices to show how to construct Sj that satisfies above two conditions. We will
prove via induction.
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Base case. For base case, consider j = 0, note a0 = 1√
N
> 0 and T0 = 0, so ∥T0∥ < a0. For

potential, we compute Φa0(T0):

Φa0(T0) = tr[(
1√
N
I)−1] = d

√
N.

Inductive hypothesis. For inductive hypothesis, we suppose for some j < n, we have ∥Tj∥ <
aj and Φa0(T0) ≥ . . . ≥ Φaj(Tj).

Inductive step. We prove for j+1. Suppose v1, . . . vj have been chose and we use λ1 ≤ · · · ≤
λd be the eigenvalue of Tj . Then the eigenvalues of I − Tj are 1 − λ1 ≥ · · · ≥ 1 − λd and the
eigenvalues of (aj+1I−Tj)−1 are 1

aj+1−λ1 ≤ · · · ≤
1

aj+1−λd
. Note that Tj is a complex symmetric

matrix, we can express it using its eigen-decomposition: Tj = Q−1
j DjQj , where Dj ∈ Cd×d is a

diagonal matrix, whose i-th entry is λi.
Then we have

tr[(aj+1I − Tj)−1(I − βTj)] = tr[Q−1
j (aj+1I −Dj)

−1(I − βDj)Qj]

= tr[(aj+1I −Dj)
−1(I − βDj)]

=
d∑
l=1

1

aj+1 − λl
(1− βλl)

≤ 1

d

d∑
l=1

1

aj+1 − λl

d∑
l=1

(1− βλl)

=
1

d
· tr[(aj+1I − Tj)−1] · tr[I − βTj]

≤ 1

d
· tr[(ajI − Tj)−1] · tr[I − βTj]

=
1

d
Φaj(Tj) · tr[I − βTj]

≤ 1

d
Φa0(T0) · tr[I − βTj]

=
√
N · tr[I − βTj], (3.1)

where the fourth step follows from sorting inequality 3.2.5, the sixth step follows from aj+1 > aj ,
the eighth step follows from the inductive hypothesis.

Consequently, we have

Φaj(Tj)− Φaj+1(Tj) = tr[(ajI − Tj)−1 − (aj+1I − Tj)−1]

= tr[Q−1
j (ajI −Dj)

−1Qj −Q−1
j (aj+1I −Dj)

−1Qj]

= tr[(ajI −Dj)
−1 − (aj+1I −Dj)

−1]

= (aj+1 − aj)tr[(ajI −Dj)
−1(aj+1I −Dj)

−1]

= (1 +
1√

N − 1
)
1

m
· tr[(ajI − Tj)−1(aj+1I − Tj)−1]
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≥ (1 +
1√

N − 1
)
1

m
· tr[(aj+1I − Tj)−2] (3.2)

where the forth step follows from Fact 3.2.4, and the fifth step follows from aj+1 − aj = 1
m
(1 +

1√
N−1

). The last step follows from

1

(aj+1 − λl)2
≤ 1

(aj − λl)(aj+1 − λl)
.

Furthermore, we have

tr[(aj+1I − Tj)−2(I − βTj)] =
d∑
l=1

1

(aj+1 − λl)2
(1− βλl)

≤ 1

d

d∑
l=1

1

(aj+1 − λl)2
d∑
l=1

(1− βλl)

=
1

d
tr[(aj+1I − Tj)−2] · tr[I − βTj]. (3.3)

Combining Eq. (3.2) and (3.3), we get

tr[(aj+1I − Tj)−2(I − βTj)]
Φaj(Tj)− Φaj+1(Tj)

≤ m

d

√
N − 1√
N

· tr[I − βTj]

= N(1− 1√
N
) · tr[I − βTj], (3.4)

where the last step follows from m/d = N .
Denote S = [m] \ S, then we have∑

i∈S

(
v⊤i (aj+1I − Tj)−2vi
Φa(Tj)− Φaj+1(Tj)

+ v⊤i (aj+1I − Tj)−1vi

)

=
tr[(aj+1I − Tj)−2(I − βTj)]

Φaj(Tj)− Φaj+1(Tj)
+ tr[(aj+1I − Tj)−1(I − βTj)]

≤ N(1− 1√
N
) · tr[I − βTj] +

√
N · tr[I − βTj]

= N · tr[I − βTj]
=m− j.

The first step follows from
∑

i∈S′ viv
⊤
i = I − βTj ∈ Cd×d, the second step follows from

Eq. (3.1) and (3.4). The last step follows from tr[βTj] = j/N and m = Nd. Thus we conclude
there exists an element of S satisfying

v⊤i⋆(aj+1I − Tj)−2vi⋆

Φaj(Tj)− Φaj+1(Tj)
+ v⊤i⋆(aj+1I − Tj)vi⋆ ≤ 1 ≤ β.

Thus choosing Sj+1 = Sj ∪ {i⋆} ⊆ [m], and using Lemma 3.1.4, we conclude ∥Tj+1∥ < aj+1

and Φaj+1(Tj+1) ≤ Φaj(Tj).
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Remark 3.2.7. If we choose β = 1, then the above theorem reduces to the original version
proved by Weaver [84], which corresponds to the exact algorithms. In our generalized version,
we show that if we scale down each copy of viv⊤i by a factor of β, then the final bound is just
worse by a factor of β, compared to the bound obtained by Weaver. This means that at each step
of algorithm, we can tolerate for a vector with only approximately small inner products, as long
as we know the approximation ratio, we can scale matrix T down and pay back the factor at the
final bound. This inspires the use of data structure that outputs approximate solution.

As another side note, the proof provides an algorithm that runs in n iterations and picks one
vector at each iteration. This means the algorithm can either have a few iterations, or a large
amount of iterations. Depending on n, we provide different algorithms.

3.2.4 An O(n(md2 + dω)) Implementation

Algorithm 16 Vanilla greedy algorithm derived from [84], it takes nm · Tmat(d, d, d) time.
1: procedure VANILLAGREEDY({v1, . . . , vm}, N, n) ▷ Theorem 3.2.8
2: T0 ← 0d×d
3: S ← ∅
4: for j = 0→ n do
5: aj =

1√
N
+ (1 + 1√

N−1
) j
m

6: end for
7: for j = 0→ n do
8: for i ∈ [m] \ S do
9: ci ← (Φaj−1(Tj)− Φaj(Tj))

−1 · v⊤i (ajI − Tj)−2vi + v⊤i (ajI − Tj)−1vi ▷
Tmat(d, d, d) time

10: end for
11: i∗ = argmini∈[m]\S ci
12: Tj+1 ← Tj + vi∗v

⊤
i∗

13: S ← S ∪ {i∗}
14: end for
15: return S
16: end procedure

Note that Algorithm 16 is a straightforward implementation of the process derived from the
proof of Lemma 3.2.6.
Theorem 3.2.8. Let N ∈ N+, if {v1, . . . , vm} is a finite sequence of vectors in Rd satisfying
∥vi∥2 = 1√

N
,∀i ∈ [m] and

∑m
i=1 viv

⊤
i = I. Then for any n < m, there exists a deterministic

algorithm that takes time O(n(md2 + dω)) to find a set S with cardinality n such that

∥
∑
i∈S

viv
⊤
i ∥ ≤

n

m
+O(

1√
N
),

Proof. The correctness proof is straightforward, since Algorithm 16 implements the greedy pro-
cess exactly. To analyze the runtime, note the expensive step is to compute quantity ci at each
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iteration, where it involves inverting a d × d matrix, which takes O(dω) time, and compute the
quantity in the form of v⊤A−1v, which takes O(d2) time. Note that at each round, we need to
compute ci for at most m vectors, and there are n rounds. Thus, the total running time is

O(n(md2 + dω)).

3.2.5 Small Iterations via AIPE Data Structure
We note that the number of iterations in Algorithm 16 is determined by the number of vectors in
the set S, hence, we provide different algorithms for different choices of n. In this section, we
specifically consider the setting where n≪ m. In this case, we use the AIPE data structure with
fast preprocessing time but need to linear scan over all vectors at each iteration. This is fine in
our setting, since n is small.

Algorithm 17 AIPE-based Implementation
1: procedure AIPE-BASED(d ∈ N, m ∈ N, n ∈ N, V ⊂ Rd, ε ∈ (0, 1),τ ∈ (0, 1)) ▷

Theorem 3.2.10
2: T0 ← 0d×d
3: S ← ∅
4: Construct V ▷ V = [v1, v2, · · · , vm]
5: for j = 0→ n do
6: aj =

1√
N
+ (1 + 1√

N−1
) j
m

7: end for
8: ADAPTIVEINNERPRODUCTESTIMATION AIPE
9: AIPE.INIT(V ,1 + ε,δ)

10: for j = 0→ n do
11: Mj ← (ajI − Tj)−1 ▷ Mj ∈ Rd×d, it takes dω time
12: Nj ← (aj−1I − Tj)−1 ▷ Nj ∈ Rd×d, it takes dω time
13: q ← vec((tr[Nj]− tr[Mj])

−1MjMj +Mj))
14: i∗ ← AIPE.QUERYMIN(q)
15: Tj+1 ← Tj + vi∗v

⊤
i∗

16: S ← S ∪ {i∗}
17: AIPE.DELETE(i∗)
18: end for
19: return S
20: end procedure

Theorem 3.2.9 (Small Iterations). Let τ, ε, δ ∈ (0, 1) and N ∈ N+, if V = {v1, . . . , vm} is a
finite sequence of vectors in Rd satisfying ∥vi∥2 = 1√

N
,∀i ∈ [m] and

∑m
i=1 viv

⊤
i = I. Then for

any n < m, there exists a randomized algorithm (Algorithm 17) that takes time T to find a set S
(|S| = n) such that with probability at least 1− δ,

∥
∑
i∈S

viv
⊤
i ∥ ≤

1

c
· ( n
m

+O(
1√
N
)).
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Further, if c ∈ (τ, 1.01τ
0.01+τ

), then the running time is T = Õ(md2 + n · (m+ dω)).

Proof. We first recall that the AIPE data structure provides a (1 + ε, r)-AFN data structure by
Lemma 2.4.3, this means that as long as we have (1 + ε)2 = c−cτ

c−τ , then it gives the guarantee for
(c, τ)-Min-IP. Note that by the range of c, as long as τ = O(1), we have ε = O(1). From now
on, we assume the AIPE data structure produces a (c, τ)-Min-IP data structure. This implies that

⟨vi∗v⊤i∗ , τ ·
(aj+1I − T )−2

Φaj(T )− Φaj+1(T )
+ (aj+1I − T )−1⟩ ≤ τ

c

⇒ ⟨vi∗v⊤i∗ ,
(aj+1I − T )−2

Φaj(T )− Φaj+1(T )
+ (aj+1I − T )−1⟩ ≤ 1

c
.

i.e., we obtain an index with 1
c

approximation guarantee. As we showed in Theorem 3.2.6, if we
proceed with adding c copies of vi∗v⊤i∗ , we will end up with the following guarantee:∥∥∥∥∥∑

i∈S

viv
⊤
i

∥∥∥∥∥ ≤ 1

c
· ( n
m

+O(
1√
N
)).

Regarding the running time the algorithm, we note that it is enough to pick ε = O(1),
therefore by Theorem 2.4.6, the initialization takes Õ(md2) time. At each iteration, we pay
O(dω) to invert matrices, the QUERYMIN procedure takes Õ(m + d2) time and the DELETE

procedure takes Õ(d2) time per Theorem 2.4.6.

3.2.6 Large Iterations via AFN Data Structure
When number of iterations n becomes large, the linear scan at each round becomes expensive,
e.g., if n = O(m0.5), then the overall iteration cost becomes Õ(m1.5). To resolve this issue,
we utilize the AFN-based data structure developed in Appendix A, which has a slightly worse
initialization time but much improved per iteration cost.
Theorem 3.2.10 (Formal version of Theorem 1.2.2). Let τ, c, δ ∈ (0, 1) and N ∈ N+, if
V = {v1, . . . , vm} is a finite sequence of vectors in Rd satisfying ∥vi∥2 = 1√

N
,∀i ∈ [m] and∑m

i=1 viv
⊤
i = I. Then for any n < m, there exists a randomized algorithm that takes time T to

find a set S (|S| = n) such that with probability at least 1− δ,

∥
∑
i∈S

viv
⊤
i ∥ ≤

2

c
· ( n
m

+O(
1√
N
)).

Further, we have
• If c ∈ (τ, 8τ

7+τ
), then T = Õ((m1.5 + nnz(V ))d2 + n · (

√
md2 + dω));

• If c ∈ (τ, 400τ
399+τ

), then T = Õ((m1.01 + nnz(V ))d2 + n · (m0.01d2 + dω)).

Proof. Note that since we are using the approximate Min-IP data structure with parameter c and
τ , we are promised to get an index i∗ such that

⟨vi∗v⊤i∗ , τ ·
(aj+1I − T )−2

Φaj(T )− Φaj+1(T )
+ (aj+1I − T )−1⟩ ≤ τ

c
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Algorithm 18 AFN-based implementation.
1: procedure AFN-BASED(d ∈ N, m ∈ N, n ∈ N, V ⊂ Rd, c ∈ (0, 1),τ ∈ (0, 1)) ▷

Theorem 3.2.10
2: T0 ← 0d×d
3: S ← ∅
4: Construct V ▷ V = [v1, v2, · · · , vm]
5: for j = 0→ n do
6: aj =

1√
N
+ (1 + 1√

N−1
) j
m

7: end for
8: MINIP MI
9: MI.INIT(d2,m,V ,c,τ ) ▷ The dimension input to the Min-IP has been reduced by JLT

10: for j = 0→ n do
11: Mj ← (ajI − Tj)−1 ▷ Mj ∈ Rd×d, it takes dω time
12: Nj ← (aj−1I − Tj)−1 ▷ Nj ∈ Rd×d, it takes dω time
13: q ← vec((tr[Nj]− tr[Mj])

−1MjMj +Mj))
14: i∗ ← MI.QUERYMIN(q)
15: Tj+1 ← Tj + vi∗v

⊤
i∗

16: S ← S ∪ {i∗}
17: MI.DELETE(vec(vi∗v

⊤
i∗))

18: end for
19: return S
20: end procedure

⇒ ⟨vi∗v⊤i∗ ,
(aj+1I − T )−2

Φaj(T )− Φaj+1(T )
+ (aj+1I − T )−1⟩ ≤ 1

c
.

i.e., we obtain an index with 1
c

approximation guarantee. As we showed in Theorem 3.2.6, if we
proceed with adding c copies of vi∗v⊤i∗ , we will end up with the following guarantee:∥∥∥∥∥∑

i∈S

viv
⊤
i

∥∥∥∥∥ ≤ 1

c
· ( n
m

+O(
1√
N
)).

It remains to show we can have a data structure with such guarantee, we shall make use of
Theorem 2.3.24 combined with the transformation illustrated in 2.3.1, we complete the proof of
correctness of the data structure.

Now, we prove the correctness of the running time, which follows directly from Theo-
rem 2.3.24. Note that it would incur an additive τ

c
to the guarantee of inner product, which

means the quality of approximation becomes 2
c
, with a success probability at least 1− δ.

This completes the proof.

3.3 Experimental Design via Regret Minimization
In [7], they show that by using a regret minimization framework, one can round up a frac-
tional solution to the experimental design problem to integral. Their algorithm is exactly solving
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Task 1.1.6 per iteration.

3.3.1 Definitions and Problem Setup

Definition 3.3.1. Let ∆d×d be the class of matrices defined as

∆d×d := {A ∈ Rd×d : A ⪰ 0, tr[A] = 1}.

Definition 3.3.2. Let ψ : Rd×d → R be defined as

ψ(A) = −2tr[A1/2],

where A ∈ Rd×d is a positive semi-definite matrix.
Definition 3.3.3. We define the Bregman divergence function associated with ψ, ∆ψ : Rd×d ×
Rd×d → R as

∆ψ(A,B) = ψ(B)− ψ(A)− ⟨∇ψ(A), B − A⟩.

Definition 3.3.4. We define the mirror descent matrices Ãt ∈ Rd×d and At ∈ Rd×d as follows:

Ãt := argmin
A⪰0
{∆ψ(At−1, A) + α⟨Ft−1, A⟩},

At := arg min
A∈∆d×d

∆ψ(Ãt, A).

Definition 3.3.5. We define a sequence of matrices A0, A1, . . . ∈ Rd×d as follows:

A0 := (c0I + αZ0)
−2,

where c0 ∈ R, Z0 ∈ Rd×d is symmetric and A0 ≻ 0. We also define At as

At := (ctI + αZ0 + α
t−1∑
l=0

Fl)
−2,

where ct ∈ R is the unique constant such that At ≻ 0 and tr[At] = 1.

Note we give two alternative definitions of matrix At, as shown in Claim 3.3.8, these two
definitions are equivalent.

Finally, we formally define the rounding up problem for experimental design.
Question 3.3.6. Let π ∈ [0, 1]m with ∥π∥1 ≤ n and

∑m
i=1 πixix

⊤
i = Id. Let γ ≥ 3 and ε ∈ (0, 1

γ
].

Does there exist a subset S ⊂ [m] with |S| ≤ n such that

λmin

(∑
i∈S

xix
⊤
i

)
≥ 1− γ · ε?
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3.3.2 Useful Facts from Previous Work
In this section, we list the facts and tools that will be useful for our proof. For the complete
proofs of these facts, we refer readers to [7].
Claim 3.3.7 (Lemma 2.7 in [7]). Let ∆d×d be defined as Definition 3.3.1. Suppose A0 = (c0I +
αZ0)

−2 ∈ Rd×d, where coI + αZ0 ∈ Rd×d is positive definite, then for any U ∈ ∆d×d,

∆ψ(A0, U) ≤ 2
√
d+ α⟨Z0, U⟩.

Claim 3.3.8 (Claim 2.9 in [7]). Let Ãt, At ∈ Rd×d be the matrices defined in Def. 3.3.4, if

αv⊤t A
1/2
t vt < 1,

then we have

Ãt = (A
−1/2
t−1 + αFt−1)

−2.

Claim 3.3.9 (Claim 2.10 in [7]). Let ∆d×d be defined as in Definition 3.3.1. Suppose P⊤
t A

1/2
t Pt =

[b d; d c] ∈ R2×2, J = diag(1,−1), and 2αv⊤t A
1/2
t vt < 1 for vt ∈ Rd and At ∈ ∆d×d. Then(

J + P⊤
t A

1/2
t Pt

)−1

=
(
J +

[
b d
d c

])−1

⪰
(
J +

[
2b 0
0 2c

])−1

.

Claim 3.3.10 (Claim 2.11 of [7]). Suppose Z ⪰ 0 is a d× d PSD matrix with λmin(Z) ≤ 1. Let
α > 0 be a parameter and A = (αZ + cI)−2 ∈ Rd×d, where c ∈ R is the unique real number
such that A ⪰ 0 and tr[A] = 1. Then

• α⟨A1/2, Z⟩ ≤ d+ α
√
d,

• ⟨A,Z⟩ ≤
√
d/α + λmin(Z).
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3.3.3 Algorithm

Algorithm 19 Swapping algorithm with Min-IP data structure
1: procedure SWAP(X ∈ Rm×d, n ∈ N+, π ∈ [0, 1]m, ε ∈ (0, 1/γ],c ∈ (0, 1),τ ∈ (0, 1)) ▷

Theorem 3.3.16
2: α←

√
dβ/ε and T ← n/(cε)

3: X ← X(X⊤diag(π)X)−1/2 ▷ Whitening
4: S0 ⊆ [m] be an arbitrary subset of support n
5: t← 1
6: if mT < nnz(V )d2 then ▷ Small iterations
7: DS ← ADAPTIVEINNERPRODUCTESTIMATION DS
8: else ▷ Large iterations
9: DS ← MINIP DS

10: end if
11: DS.INIT(d2,m,X ,c,τ )
12: while t ≤ T and λmin(

∑
i∈St−1

xix
⊤
i ) ≤ 1− γε do

13: Let ct be the constant s.t. (ctI + α
∑

i∈St−1
xix

⊤
i )

−2 ∈ ∆d×d ▷ Binary search
14: At ← (ctId + α

∑
i∈St−1

xix
⊤
i )

−2

15: q ← vec( At

(1−ε)/n + 2αA
1/2
t )

16: /* Query q */
17: it ← DS.QUERYMIN(q) ▷ If DS is AIPE, then here it is QUERYMIN

18: jt ← argmaxj∈St−1
B+(xj) ▷ Def. 3.3.12 with 1

c
as β

19: St ← St−1 ∪ {jt} \ {it}
20: t← t+ 1 ▷ Increase the counter
21: /* Updating data structure by swapping jt and it */
22: DS.DELETE(xitx

⊤
it)

23: DS.INSERT(xjtx
⊤
jt)

24: end while
25: return St−1

26: end procedure
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3.3.4 Approximate Regret Lemma
In this section, we prove the approximate regret lemma. The key consequence of this lemma is
to provide a lower bound of the eigenvalue λmin(

∑
i∈S xix

⊤
i ).

Lemma 3.3.11 (Approximate regret lemma). Let β ≥ 1. Suppose Ft = utu
⊤
t − vtv⊤t for vectors

ut, vt ∈ Rd and A0, . . . , AT−1 ∈ ∆d×d are defined in Def. 3.3.5 some constant α > 0. Then, if
αv⊤t A

1/2
t vt < β/2 for all t, we have for any U ∈ ∆d×d,

−
T−1∑
t=0

⟨Ft, U⟩ ≤
T−1∑
t=0

(− βu⊤t Atut

β + 2αu⊤t A
1/2
t ut

+
βv⊤t Atvt

β − 2αv⊤t A
1/2
t vt

) +
β∆ψ(A0, U)

α
.

Proof. Throughout the proof, we let α := α
β

, note that α has the property that αv⊤t A
1/2
t vt < 1/2,

this enables us to use both Claim 3.3.8 and 3.3.9. The proof relies on the mirror descent matrices
Ãt and At we defined Def. 3.3.4, we need to modify the definition of Ãt with α instead of α. Per
Claim 3.3.8, we know that Ãt = (A

−1/2
t−1 + αFt−1)

−2, and because of their definitions, we know
that∇ψ(Ãt)−∇ψ(At−1) + αFt−1 = 0 where the gradient is evaluated at Ãt. This means that

⟨αFt−1, At−1 − U⟩ = ⟨∇ψ(At−1)−∇ψ(Ãt), At−1 − U⟩
= ∆ψ(At−1, U)−∆ψ(Ãt, U) + ∆ψ(Ãt, At−1)

≤ ∆ψ(Ãt−1, U)−∆ψ(Ãt, U) + ∆ψ(Ãt, At−1). (3.5)

Above, the second inequality and the last inequality follow from standard inequlities and gen-
eralized Pythagorean Theorem of Bregman divergence. Now, consider the quantity ∆ψ(Ãt, At−1):

∆ψ(Ãt, At−1) = ψ(At−1)− ψ(Ãt)− ⟨∇ψ(Ãt), At−1 − Ãt⟩
= − 2tr[A

−1/2
t−1 ] + 2tr[Ã

1/2
t ] + ⟨Ã−1/2

t , At−1 − Ãt⟩
= ⟨Ã−1/2

t , At−1⟩+ tr[Ã
1/2
t ]− 2tr[A

1/2
t−1]

= ⟨A−1/2
t−1 + αFt−1, At−1⟩+ tr[Ã

1/2
t ]− 2tr[A

1/2
t−1]

= α⟨Ft−1, At−1⟩+ tr[Ã
1/2
t ]− tr[A

1/2
t−1]. (3.6)

Combining Eqs. (3.5) and (3.6) and telescoping t from 1 to T yields

−α
T−1∑
t=0

⟨Ft, U⟩ ≤ ∆ψ(A0, U)−∆ψ(ÃT , U) +
T−1∑
t=0

tr[Ã
1/2
t+1]− tr[A

1/2
t ]

≤ ∆ψ(A0, U) +
T−1∑
t=0

tr[Ã
1/2
t+1]− tr[A

1/2
t ], (3.7)

where the second inequality follows from the non-negativitiy of Bregman divergence.
It remains to upper bound tr[Ã

1/2
t+1]− tr[A

1/2
t ].

Set Pt as
√
α[ut vt] ∈ Rd×2 and J = diag(1,−1) ∈ R2×2, we have αFt = PtJP

⊤
t . By the

definition of Ã1/2
t+1 and the matrix Woodbury formula (Fact. 3.2.3), we have

tr[Ã
1/2
t+1] = tr[(A

−1/2
t + PtJP

⊤
t )

−1] = tr[A
1/2
t − A

1/2
t Pt(J + P⊤

t A
1/2
t Pt)

−1P⊤
t A

1/2
t ]. (3.8)
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By linearity of trace operator, it suffices to give a spectral lower bound on the 2 × 2 matrix
(J + P⊤

t A
1/2
t Pt)

−1/2. We will use Claim 3.3.9 as a lower bound:

tr[Ã
1/2
t+1]− tr[A

1/2
t ] = − tr[−A1/2

t Pt(J + P⊤
t A

1/2
t Pt)

−1P⊤
t A

1/2
t ]

≤ − tr[−A1/2
t Pt(J + diag(2αu⊤t A

1/2
t ut, 2αv

⊤
t A

1/2
t vt))

−1P⊤
t A

1/2
t ]

= − αu⊤t Atut

1 + 2αu⊤t A
1/2
t ut

+
αv⊤t Atvt

1− 2αv⊤t A
1/2
t vt

. (3.9)

Plugging Eq. (3.9) into Eq. (3.7), we arrive at the desired result:

−
T−1∑
t=0

⟨Ft, U⟩ ≤
T−1∑
t=0

(− βu⊤t Atu
t

β + 2αu⊤t A
1/2
t ut

+
βv⊤t Atvt

β − 2αv⊤t A
1/2
t vt

) +
β

α
∆ψ(A0, U).

3.3.5 Approximate Swapping Lemma
The goal of this section is to present and prove Lemma 3.3.13. We start with a helpful definition.
Definition 3.3.12 (B functions). Let α, β denote two fixed parameters. Let A denote a fixed
matrix. We define function B+ : Rd → R and B− : Rd → R as follows:

B+(x) =
⟨A, xx⊤⟩

β + 2α⟨A1/2, xx⊤⟩
,

B−(x) =
⟨A, xx⊤⟩

β − 2α⟨A1/2, xx⊤⟩
.

Lemma 3.3.13. Let β ∈ [1, γ − 1) and ε ∈ (0, 1/γ]. For every subset S ⊂ [m] of cardinality
n (let S denote [m] \ S), suppose λmin(

∑
i∈S xix

⊤
i ) ≤ 1 − γε and A = (cI + α

∑
i∈S xix

⊤
i )

−2,
where c ∈ R is the unique number such that A ⪰ 0 and tr[A] = 1. For any α =

√
dβ/ε and

n ≥ 6
γ−1−βd/ε

2, we have
• Part 1. There exists i ∈ S such that 2αx⊤i Axi < β and B−(xi) ≤ 1−ε

βn
,

• Part 2. There exists j ∈ S such that B+(xj) ≥ 1
βn

.

Proof. In this proof, we will extensively use Claim 3.3.10, therefore, we pre-compute the value
d+ α

√
d and

√
d/α here for references. By the choice of our α, we have

d+ α
√
d = (1 +

β

ε
)d ,
√
d/α =

ε

β
. (3.10)

We also define the quantity ν := mini∈S,2αx⊤i Axi<β B−(xi) which will be used throughout our
proof.

The proof directly follows from combining Claim 3.3.14 and Claim 3.3.15.
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3.3.6 Approximate Swapping Lemma, Part 1
In this section, we will prove that as long as we enter the main while loop of the algorithm, we
can always find an index i ∈ S such that B−(xi) is small.
Claim 3.3.14 (Part 1 of Lemma 3.3.13). There exists i ∈ S such that 2αx⊤i Axi < β and
B−(xi) ≤ 1−ε

βn
.

Proof. To demonstrate the existence of such an i, it suffices to show that mini∈S,2αx⊤i Axi<β B
−(xi) ≤

1−ε
βn

, we use ν to denote this minimum value. Note that ν > 0, due to the fact 2αx⊤i Axi < β
and A is positive definite. To start off, we first show that there always exists an i such that
2α⟨A1/2, xix

⊤
i ⟩ < 1. Define Z =

∑
i∈S xix

⊤
i , and by definition A = (cI + α

∑
i∈S xix

⊤
i )

−2 =
(αZ + cI)−2. Assume for the sake of contradiction that such i does not exists. We have∑

i∈S

2α⟨A1/2, xix
⊤
i ⟩ = 2α⟨A1/2, Z⟩ ≥ |S| = n. (3.11)

On the other hand, because Z ⪰ 0 and λmin(Z) < 1, invoking Claim 3.3.10 we get

2α⟨A1/2, Z⟩ ≤ 2d+ 2α
√
d,

which contradicts Eq. (3.11) given the choice of α and n > 4d/ε. Thus, there must exist i ∈ S
such that 2α⟨A1/2, xix

⊤
i ⟩ < 1. Since we set β ≥ 1, this means we can always find an index i such

that 2α⟨A1/2, xix
⊤
i ⟩ < β holds. By the same token, we also have

∑
i∈S(β−2α⟨A1/2, xix

⊤
i ⟩) ≥ 0.

We claim that

(β − 2α⟨A1/2, xix
⊤
i ⟩)ν ≤ ⟨A, xix⊤i ⟩, for all i ∈ S,

because if 2α⟨A1/2, xix
⊤
i ⟩ ≥ β the LHS is non-positive while the RHS is always non-negative

due to the positive semi-definiteness of A. Subsequently,

ν ≤
∑

i∈S⟨A, xix⊤i ⟩∑
i∈S(β − 2α⟨A1/2, xix⊤i ⟩)

≤
√
d/α + λmin(

∑
i∈S xix

⊤
i )

βn− 2d− 2α
√
d

≤ ε/β + 1− γε
βn(1− βε/3)

≤ 1− ε
βn

where the first step holds because the denominator is strictly positive as we have shown; the
second step is due to Claim 3.3.10; the third step has used our choices α and n and our assumption
λmin(

∑
i∈S xix

⊤
i ) ≤ 1− γε; and the forth step has used 1− βε/3 < 1. We have thus proved that

ν ≤ (1− ε)/(βn). This proves the existence of the i we want.
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3.3.7 Approximate Swapping Lemma, Part 2
In this section, we prove the other key gredient for the swapping to proceed, i.e., there exists an
j ∈ S such that B+(xj) is large.
Claim 3.3.15 (Part 2 of Lemma 3.3.13). There exists j ∈ S such that B+(xj) ≥ 1

βn
.

Proof. Define t = 1/(βn). To prove Part 2 it suffices to show that∑
j∈S

πj⟨A, xjx⊤j ⟩ ≥ t ·
∑
j∈S

πj(β + 2α⟨A1/2, xjx
⊤
j ⟩), (3.12)

because πj ≥ 0 for all j ∈ [m]. Recall that
∑m

j=1 πj = n,
∑m

j=1 πjxjx
⊤
j = Id. We then have∑

j∈S

πj(β + 2α⟨A1/2, xjx
⊤
j ⟩) ≤ β(n−

∑
j∈S

πj) + 2α ·
∑
j∈S

πj⟨A1/2, xjx
⊤
j ⟩

≤ β(n−
∑
j∈S

πj) + 2α ·
m∑
j=1

πj⟨A1/2, xjx
⊤
j ⟩

= βn− β
∑
j∈S

πj + 2α⟨I, A1/2⟩

= βn− β
∑
j∈S

πj + 2α · tr[A1/2].

Similarly, ∑
j∈S

πj⟨A, xjx⊤j ⟩ = ⟨I −
∑
j∈S

πjxjx
⊤
j , A⟩

= tr[A]−
∑
j∈S

πj⟨A, xjx⊤j ⟩

Subsequently,∑
j∈S

πj⟨A, xjx⊤j ⟩ − t ·
∑
j∈S

πj(β + 2α⟨A1/2, xjx
⊤
j ⟩)

≥ tr[A]−
∑
j∈S

πj⟨A, xjx⊤j ⟩ − t · β · (n−
∑
j∈S

πj)− 2αt · tr[A1/2]

≥ 1−
∑
j∈S

πj⟨A, xjx⊤j ⟩ − t · β · (n−
∑
j∈S

πj)− 2αt
√
d

= 1− tβn− 2tα
√
d−

∑
j∈S

πj(⟨A, xjx⊤j ⟩ − tβ)

≥ 1− tβn− 2tα
√
d−

∑
j∈S

max{⟨A, xjx⊤j ⟩ − tβ, 0}

= 1− tβn− 2tα
√
d−

∑
j∈S

(⟨A, xjx⊤j ⟩ − tβ)−
∑
j∈S

max{(tβ − ⟨A, xjx⊤j ⟩), 0}
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≥ 1− 2tα
√
d−
√
d/α− λmin(

∑
j∈S

xjx
⊤
j )−

∑
j∈S

max{(tβ − ⟨A, xjx⊤j ⟩), 0}

≥ (γ − β)ε− 2d

εn
−
∑
j∈S

max{tβ − ⟨A, xjx⊤j ⟩, 0} (3.13)

where the second step follows from Fact 3.2.2 and tr[A] = 1. The forth step follows from
πj ≤ 1 for all j, the second-to-last step follows from we apply

∑
j∈S⟨A, xjx⊤j ⟩ ≤

√
d/α +

λmin(
∑

j∈S xjx
⊤
j ) which comes from Claim 3.3.10. The fifth step comes from the fact that

max{x, 0} − max{−x, 0} = x. Finally, the last step comes from the choices of α, t and
λmin(

∑
j∈S xjx

⊤
j ) ≤ 1− γε.

Furthermore, because (β − 2α⟨A1/2, xix
⊤
i ⟩)ν ≤ ⟨A, xix⊤i ⟩ for all i ∈ S, using Claim 3.3.10

we have ∑
i∈S′

(βν − ⟨A, xix⊤i ⟩) ≤
∑
i∈S′

2να⟨A1/2, xix
⊤
i ⟩ ≤ 2ν(d+ α

√
d),

for all S ′ ⊆ S.
Consider S ′ = {i ∈ S : βt− ⟨A, xix⊤i ⟩ ≥ 0}. We then have∑

j∈S′

max{βt− ⟨A, xjx⊤j ⟩, 0} =
∑
j∈S′

(βt− ⟨A, xjx⊤j ⟩)

= β(t− ν)|S ′|+
∑
j∈S′

(βν − ⟨A, xjx⊤j ⟩)

≤ β(t− ν)n+ 2ν(d+ α
√
d)

≤ ε+ 4d/ε

n
(3.14)

where the last two inequalities hold because t − ν = ε/(βn) ≥ 0, |S ′| ≤ |S| = n, ν ≤ 1/(βn)
and the choice of α.

Combining Eqs.(3.13) and (3.14) we arrive at∑
j∈S

πj{⟨A, xjx⊤j ⟩ − t(β + 2α⟨A1/2, xjx
⊤
j ⟩)} ≥ (γ − 1− β)ε− 6d

εn
.

By choice of n, the RHS of the above inequality is non-negative, which finishes the proof of
Eq. (3.12) and thus also the proof of Part 2.

3.3.8 Implication of Swapping Lemma
Note that Lemma 3.3.13 gives rise to a natural swapping algorithm: at each round, we can find
an index i ∈ S with 2αx⊤i Axi < β and B−(xi) ≤ 1−ε

βn
and an index j ∈ S with B+(xj) ≥ 1

βn
,

then swap them. As demonstrated in Alg. 19, the task of finding i is a search for minimum
inner product, which can be implemented via our data structures. On the other hand, the search
for j is a Max-IP search. Though it can also be realized by our Max-IP data structure, the two
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approximation factor cMax-IP and cMin-IP would impose a restriction on the relationship between
them and ε. Also, due to such precision requirement, one can not use a lossy estimation for
Max-IP data structure as in the BSS case. Hence, we only present an algorithmic result that deals
with one-side of the sets. We will discuss how to implement the two data structures paradigm
towards the end of next section.

We also remark that by considering to finding a β-approximation point instead of an point
with distance exactly 1, we require the cardinality of S to be larger since n ∝ d/ε2

γ−1−β . This is
an interesting trade-off compared to the approximate result we get in one-sided Kadison-Singer,
where the quality of solution becomes worse when β becomes larger. Here, the quality of solution
is unaffected while we have more leeway to pack vectors into S. To some extent, this makes the
problem easier similar to a worse quality of solution.

3.3.9 Main Result
In this section, we present the correctness and runtime analysis of Algorithm 19. The correct-
ness follows from the approximate regret and swap lemma, while the runtime comes from the
approximate Min-IP data structure.
Theorem 3.3.16 (Formal version of Theorem 1.2.3). Let π ∈ [0, 1]m with ∥π∥1 ≤ n and∑m

i=1 πixix
⊤
i = Id. Let γ ≥ 3 and ε ∈ (0, 1

γ
]. Then, there exists a subset S ⊂ [m] with

|S| ≤ n such that

λmin(
∑
i∈S

xix
⊤
i ) ≥ 1− γ · ε.

Let τ, δ ∈ (0, 1) and c ∈ ( 1
γ−1

, 1). If n ≥ 6d/ε2

γ−1−2/c
and α =

√
d/(cε), then there exists a random-

ized algorithm with success probability at least 1−δ and running time T = min{TSmallIter, TLargeIter}
where

• For TSmallIter, we have c ∈ (τ, 1.01τ
0.01+τ

) and

TSmallIter = Õ(Tmat(m, d, d) + nd2 + ε−1n · (dω + n+ (m− n) · d2)).

• For TLargeIter, we have c ∈ (τ, 400τ
399+τ

) and

TLargeIter = Õ(Tmat(m, d, d) + (n1.01 + nnz(X))d2 + ε−1n · (dω + (n0.01 + z) · d2 + (m− n) · d2)),

where z = maxi∈[m] nnz(xi).

Proof. We will show Alg. 19 satisfies the properties in the theorem statement. Similar to the
proof of Theorem 3.2.10, we need to scale down the query point by a factor of τ . This means
each query will return an index i ∈ St−1 such that

x⊤i Atxi
(1− ε)/n

+ 2αx⊤i A
1/2
t xi ≤

1

c
,

Set β = 1
c
, note this is equivalent to find an index i satisfying B−(xi) ≤ 1−ε

βn
.
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On the other hand, we can search the index j ∈ St−1 such that

B+(xj) ≥
1

βn

This means that at each iteration, we either have

λmin(
∑
i∈S

xix
⊤
i ) ≥ 1− γε,

which we are done, or we can find it and jt such that

B−(xit)−B+(xjt) ≤ −
ε

βn
.

Combining this fact with Lemma 3.3.11 and Claim 3.3.7, we have

−⟨Z0 +
T−1∑
t=0

Ft, U⟩ ≤
T−1∑
t=0

β(B−(xit)−B+(xjt)) +
2β
√
d

α

≤ − T · ε
βn

+ 2ε,

Since we can choose U such that

−⟨Z0 +
T−1∑
t=0

Ft, U⟩ = −λmin(Z0 +
T−1∑
t=0

Ft) = −λmin(
∑
i∈ST

xix
⊤
i ),

this gives a lower bound on the desired eigenvalue we want:

λmin(
∑
i∈ST

xix
⊤
i ) ≥ T ·

ε

βn
− 2ε.

Since T = βn
ε

, it is lower bounded by 1 − 2ε > 1 − γε, and we have completed the proof of
correctness.

For the running time, we separately consider initialization and cost per iteration. In initial-
ization phase,

• Computing X(X⊤diag(π)X)−1/2 takes O(Tmat(m, d, d)) time;
• The Initialization time for data structure with n random points is either Õ(nd2) (see The-

orem 2.4.6) or Õ((n1.01 + nnz(X))d2) (see Theorem 2.3.24);

For each iteration, we perform the following:

• Computing eigen-decomposition of
∑

i∈St−1
xix

⊤
i takes O(dω) time;

• Using binary search to finding ct takesO(dω log d/(cε)) since the searching range isO(α+√
d) and each search takes dω to form the matrix and compute its trace;

• The time of querying data structure is either Õ(n + d2) (see Theorem 2.4.6) or Õ(n0.01)
(see Theorem 2.3.24);

• The brute force search for j takes O((m− n) · d2) if we pre-compute At and A1/2
t ;

• The insertion and deletion of point xjt takes either Õ(d2) (see Theorem 2.4.6) or Õ((n0.01+
nnz(xjt))d

2) (see Theorem 2.3.24) time.

This concludes the proof of running time.
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Chapter 4

Faster Training of Deep,
Over-parametrized Neural Networks

As machine learning grows in its popularity and practical applications, it is more and more
important to develop algorithms that can train deep neural network efficiently. In this thesis, we
focus on neural networks that are both deep and over-parametrized: most practical networks are
deep, and provable convergence results have been obtained for over-parametrized networks.

Let n denotes the number of data points, d denotes the data dimension, m denotes the width
of the network and L denotes the number of layers, we obtain an algorithm that runs in time
O(m2−Ω(1)) per training iteration, breaking the quadratic barrier for training deep and over-
parametrized networks. Different from the standard first order methods, we use second order
methods, which are considered much harder to compute and implement efficiently. One of the
big advantages of second order methods is its adaptive adjustment of step size, which signifi-
cantly reduces the hyperparameters one needs to tune.

Techniques centered around our algorithms include a shifted-ReLU sparsifier, the low rank
maintenance data structure for Task 1.1.10 and use fast tensor sketching techniques as a good
preconditioner to compute the Gram matrix.

This chapter is based on the following arXiv document: https://arxiv.org/pdf/2112.07628.pdf
coauthored by the thesis author.

4.1 Problem Setup

Let X ∈ Rm0×n denote the data matrix with n data points and m0 features. By proper re-scaling,
we have ∥xi∥2 = 1 for all i ∈ [n]. Consider an L layer neural network with one vector a ∈ RmL

and L matrices WL ∈ RmL×mL−1 , · · · , W2 ∈ Rm2×m1 and W1 ∈ Rm1×m0 . We will use Wℓ(t)
to denote the weight matrix at layer ℓ at time t, and ∇Wℓ(t) to denote its gradient. We also use
W (t) = {W1(t), . . . ,WL(t)} to denote the collection of weight matrices at time t.

Architecture. We first describe our network architecture. The network consists of L hidden
layers, each represented by a weight matrix Wℓ ∈ Rmℓ×mℓ−1 for any ℓ ∈ [L]. The output layer
consists of a vector a ∈ RmL . We define the neural network prediction function f : Rm0 → R as
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follows:

f(W,x) = a⊤φ(WL(φ(· · ·φ(W1x)))),

where φ : R → R is the (shifted) ReLU activation function (σb(x) = max{x − b, 0}) applied
coordinate-wise to a vector.

We measure the loss via the squared-loss function:

L(W ) =
1

2

n∑
i=1

(yi − f(W,xi))2.

This is also the objective function for our training.
The prediction function ft : Rm0×n → Rn is defined as

ft(X) =
[
f(W (t), x1) f(W (t), x2) · · · f(W (t), xn)

]⊤
.

Initialization. Our neural networks are initialized as follows:
• For each ℓ ∈ [L], the layer-ℓ’s weight parameter Wℓ(0) ∈ Rmℓ×mℓ−1 is initialized such that

each entry is sampled from N (0, 2
mℓ

).

• Each entry of a is an i.i.d. sample from {−1,+1} uniformly at random.
Gradient. In order to write gradient in an elegant way, we define some artificial variables:

gi,1 =W1xi, hi,1 = φ(W1xi), ∀i ∈ [n]

gi,ℓ =Wℓhi,ℓ−1, hi,ℓ = φ(Wℓhi,ℓ−1), ∀i ∈ [n],∀ℓ ∈ [L]\{1} (4.1)

Di,1 = diag
(
φ′(W1xi)

)
, ∀i ∈ [n]

Di,ℓ = diag
(
φ′(Wℓhi,ℓ−1)

)
, ∀i ∈ [n],∀ℓ ∈ [L]\{1}

Using the definitions of f and h, we have

f(W,xi) = a⊤hi,L, ∈ R, ∀i ∈ [n]

We can compute the gradient of L in terms of Wℓ ∈ Rmℓ×mℓ−1 , for all ℓ ≥ 2

∂L(W )

∂Wℓ

=
n∑
i=1

(f(W,xi)− yi) Di,ℓ︸︷︷︸
mℓ×mℓ

 L∏
k=ℓ+1

W⊤
k︸︷︷︸

mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸
mL×1

h⊤i,ℓ−1︸ ︷︷ ︸
1×mℓ−1

(4.2)

Note that the gradient for W1 ∈ Rm1×m0 (recall that m0 = d) is slightly different and can not be
written by general form. By the chain rule, the gradient of the variables in W1 can be expressed
as:

∂L(W )

∂W1

=
n∑
i=1

(f(W,xi)− yi) Di,1︸︷︷︸
m1×m1

 L∏
k=2

W⊤
k︸︷︷︸

mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸
mL×1

x⊤i︸︷︷︸
1×m0

(4.3)
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It is worth noting that the gradient matrix is of rank n, since it’s a sum of n rank-1 matrices.
Jacobian. For each layer ℓ ∈ [L] and time t ∈ [T ], we define the Jacobian matrix Jℓ,t ∈

Rn×mℓmℓ−1 via the following formulation:

Jℓ,t :=
[
vec(∂f(W (t),x1)

∂Wℓ(t)
) vec(∂f(W (t),x2)

∂Wℓ(t)
) · · · vec(∂f(W (t),xn)

∂Wℓ(t)
)
]⊤
.

The Gram matrix at layer ℓ and time t is then defined asGℓ,t = Jℓ,tJ
⊤
ℓ,t ∈ Rn×n whose (i, j)-th

entry is 〈∂f(W (t), xi)

∂Wℓ

,
∂f(W (t), xj)

∂Wℓ

〉
.

Remark 4.1.1. For simplicity, we assume for any i ∈ [L], mi = m for some m. Our methods
can be generalized to different mi’s by designing a more general type of sketching matrices.

4.2 Probability Tools
Lemma 4.2.1 (Chernoff bound [24]). Let X =

∑n
i=1Xi, where X1, . . . , Xn are n independent

0/1 Bernoulli random variables with Pr[Xi = 1] = pi for i ∈ [n]. Let µ = E[X]. Then,
1. Pr[X ≥ (1 + ε)µ] ≤ exp(−ε2µ/3), ∀ ε > 0 ;
2. Pr[X ≤ (1− ε)µ] ≤ exp(−ε2µ/2), ∀ ε ∈ (0, 1).
Lemma 4.2.2 (Hoeffding bound [37]). Let Y1, · · · , Yn denote n independent bounded variables
in [αi, βi]. For Y =

∑n
i=1 Yi and τ > 0, we have

Pr[|Y − E[Y ]| ≥ τ ] ≤ 2 exp

(
− 2τ 2∑n

i=1(βi − αi)2

)
.

Lemma 4.2.3 (Bernstein inequality [14]). Let Z1, · · · , Zn denote n independent mean-zero ran-
dom variables. Suppose that |Zi| ≤ B almost surely, for all i ∈ [n]. Let σ2 :=

∑
i∈[n] E[Z2

i ].
Then, for all τ > 0,

Pr

[
n∑
i=1

Zi > τ

]
≤ exp

(
− τ 2/2

σ2 +Bτ/3

)
.

Lemma 4.2.4 (Anti-concentration of Gaussian distribution). Let X ∼ N (0, σ2), then

Pr[|X| ≤ t] = Θ(t/σ).

Lemma 4.2.5 (Concentration of subgaussian random variables). Let a ∈ Rn be a vector where
each coordinate of a is an independent subgaussian random variable with parameter σ2. Then,
for any vector x ∈ Rn,

Pr[|⟨a, x⟩| ≥ t · ∥x∥2] ≤ 2 exp

(
− t2

2σ2

)
.
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Lemma 4.2.6 (Small ball probability, [66]). Let h ∈ Rn be a vector such that |hi| ≥ δ for all
i ∈ [n]. Let a ∈ {−1, 1}n be a random vector such that each coordinate is an independent
Rademacher random variable. Then, for some absolute constants C1, C2, we have for any t > 0,

Pr[|⟨h, a⟩| ≤ t] ≤ min

{
C1t

∥h∥2
,
C2t

δ
√
n

}
.

Fact 4.2.7 (Minimum eigenvalue of Hadamard product matrices, [68]). Let A,B ∈ Rn×n be two
PSD matrices. Then, we have

λmin(A⊙B) ≥ min
i∈[n]

(B)i,i · λmin(A).

4.3 Complete Algorithm and its Runtime Analysis
In this section, we first present our complete algorithm, then we analyze its running time. We
show that as long as we use the shifted ReLU activation so that the number of activated neurons
is sparse, then all our operations can be realized in subquadratic time.

Algorithm 20 Training last layer.
1: procedure COMPLETEALGORITHM(X ∈ Rd×n, y ∈ Rn) ▷ Theorem 4.3.1
2: /*Initialization*/
3: Initialize Wℓ(0), ∀ℓ ∈ [L]
4: Compute hi,ℓ for ℓ ∈ [L− 1] ▷ Takes O(nm2L) time
5: Store hi,L−1 in memory, ∀i ∈ [n]
6: LOWRANKMAINTENANCE LMR ▷ Algorithm 11
7: LMR.INIT({W1(0) . . . ,WL(0)})
8: for t = 0→ T do
9: /*Forward computation*/

10: vi,L ← hi,L−1,∀i ∈ [n]
11: gi,L ← LMR.QUERY(L, hi,L−1),∀i ∈ [n] ▷ Takes o(nm2) time
12: hi,L ← φ(gi,L),∀i ∈ [n] ▷ hi,L is sparse
13: Di,L ← diag(φ′(gi,L)),∀i ∈ [n] ▷ Di,L is sparse
14: ft ← [a⊤h1,L, . . . , a

⊤hn,L]
⊤ ▷ Takes O(nm) time

15: /*Backward computation*/
16: ui,L ← a⊤Di,L,∀i ∈ [n] ▷ Takes o(nm) time
17: gL ← FASTTENSORREGRESSION({ui,L}ni=1, {vi,L}ni=1, ft − y) with precision√

λL/n
18: LMR.UPDATE({gL,iui,L}ni=1, {vi,L}ni=1)
19: end for
20: end procedure

Theorem 4.3.1 (Formal version of Theorem 1.2.4). Let X ∈ Rd×n and y ∈ Rn, and let k denote
the sparsity of Di,ℓ and s denote the sparsity of ∆Di,ℓ, ∀ℓ ∈ [L], i ∈ [n]. Let m denote the width
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of neural network, L denote the number of layers and α denote the dual matrix multiplication
exponent (Def. 2.5.1),then the running time of Algorithm 20 is

O(Tinit + T · Titer),

where

Tinit = O(m2nL),

Titer = Õ(n · (m2−α +m · (s+ k))).

Therefore, the cost per iteration of Algorithm 20 is

Õ(n · (m2−α +m · (s+ k))).

Proof. We analyze Tinit and Titer separately.
Initialization time. We will first initialize (L − 1) m ×m matrices and one m × d matrix,

which takesO(m2L) time. Compute hi,L−1 for all i ∈ [n] takesO(m2nL) time. Finally, initialize
the data structure takes O(m2L) time. Hence, Tinit = O(m2nL).

Cost per iteration. For each iteration, we perform one forward computation from layer 1 to
L, then we train the last layer via solving a regression based on its Jacobian matrix.

• Forward computation: In forward computation, we first compute gi,L ∈ Rm, which
involves using the QUERY procedure of LMR data structure, hence by Lemma 2.5.2, it
takes O(m · (s + k + mα)) time. Compute hi,L and Di,L takes O(m) time. Hence the
overall runtime of forward computation is O(nm · (s+ k +mα)).

• Backward computation: In backward computation, we first compute ui,L ∈ Rm, which
takes O(m(s+k)) time owing to the sparsity of Di,L. Then, we call Algorithm 22 to solve
the Gram regression problem, which due to Theorem 4.5.14 takes Õ(mn+nω) time. Note
that even we want a high probability version of the solver with e− log2 nL failure probability,
we only pay extra log2 nL term in running time, which is absorbed by the Õ(·) notation.
Finally, the update takes O(m2−αn) amortized time owing to Lemma 2.5.2. Put things
together, we get an overall running time of Õ(n(m(s+ k) +m2−α)) time.

This concludes the proof of our Theorem.

Corollary 4.3.2. Suppose the network width m is chosen as in 4.7.20 and the shift parameter b
is chosen as in 4.7.7, then the cost per iteration of Algorithm 20 is

Õ(m2−αn).

Remark 4.3.3. As long as the neural network is wide enough, as in 4.7.20 and we choose the
shift threshold properly, as in 4.7.7, then we can make sure that both sparsity parameters k and
s to be o(m), and we achieve subquadratic cost per iteration.

We also compare our result with our approaches. Note that a naive implementation of vari-
ants of gradient descent will take O(nm2) time, namely, one evaluates the gradient with respect
to each data point and sum them up. By batching the n data points and use fast rectangular
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matrix multiplication, the running time can be improved to Tmat(m,n,m), in the setting where
n ≤ mα, this will only take O(m2+o(1)) time.

In the specific parameter set we choose, we need thatm2−αn < m2 to truly beat the quadratic
barrier, which implies that n < mα. As we will later see the choice of m (Def. 4.7.20), we will
have n ≤ m1/4, which means that we get a truly subquadratic time in m.

4.4 Efficient Computation of Rank-1 Decompositions
We note that to compute the vectors ui,L, we need to compute the vector gi,L on line 11 of
Algorithm 20, which is a matrix-vector product query in which the matrix is updated in a low
rank fashion. This is Task 1.1.10, and we will use the low rank maintenance data structure to
speed up this step.

We illustrate the method to compute the vectors ui,ℓ, vi,ℓ ∈ Rm using the low rank mainte-
nance data structure. Recall the definition of these vectors:

ui,ℓ(t)
⊤ = a⊤Di,L(t)WL(t) . . . Di,ℓ+1(t)Wℓ+1(t)Di,ℓ(t) ∈ R1×m,

vi,ℓ(t) = hi,ℓ−1(t) ∈ Rm.

Before proceeding, we list the assumptions we will be using:
• For any ℓ ∈ [L], Di,ℓ(t) is sD-sparse, where sD := k + s, k is the sparsity of Di,ℓ(0) and s

is the sparsity of Di,ℓ(t)−Di,ℓ(0).
• For any ℓ ∈ [L], the change of the weight matrix Wℓ, ∆Wℓ(t) := Wℓ(t) −Wℓ(0), is of

low-rank. That is, ∆Wℓ(t) =
∑rt

j=1 yℓ,jz
⊤
ℓ,j .

• For any i ∈ [n], W1(0)xi is pre-computed.
We first note that as a direct consequence of Di,ℓ(0) is k-sparse, hi,ℓ(0) is k-sparse as well.

Similarly, hi,ℓ(t)− hi,ℓ(0) has sparsity s. Hence hi,ℓ(t) has sparsity bounded by sD.

Compute ui,ℓ(t). Compute ui,ℓ(t) is equivalent to compute the following vector:

Di,ℓ(t)(Wℓ+1(0) + ∆Wℓ+1(t))
⊤Di,ℓ+1(t) · · · (WL(0) + ∆WL(t))

⊤Di,L(t)a.

First, we know that Di,L(t)a ∈ Rm is an sD-sparse vector, and it takes O(sD) time. The next ma-
trix is (WL(0)+∆WL(t))

⊤, which gives two terms: WL(0)
⊤(Di,L(t)a) and ∆WL(t)

⊤(Di,L(t)a).
For the first term, since Di,L(t)a is sD-sparse, it takes O(msD)-time. For the second term, we
have

∆WL(t)
⊤(Di,L(t)a) =

rt∑
j=1

zL,jy
⊤
L,j(Di,L(t)a)

=
rt∑
j=1

zL,j · ⟨yL,j, Di,L(t)a⟩.

Each inner-product takesO(sD)-time and it takesO(mrt+sDrt) = O(mrt)-time in total. Hence,
in O(m(sD+ rt))-time, we compute the vector WL(t)

⊤Di,L(t)a. Note that we do not assume the
sparsity of a.
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Thus, by repeating this process for the L − ℓ intermediate matrices W⊤
j (t)Di,j(t), we can

obtain the vector (
L∏

j=ℓ+1

W⊤
j (t)Di,j(t)

)
a

in time O((L− ℓ)m(sD + rt)). Finally, by multiplying a sparse diagonal matrix Di,ℓ(t), we get
the desired vector ui,ℓ(t).

Compute vi,ℓ(t). Note that vi,ℓ(t) is essentially hi,ℓ−1(t), so we consider how to compute hi,ℓ(t)
for general ℓ ∈ [L]. Recall that

hi,ℓ(t) = φ((Wℓ(0) + ∆Wℓ(t))hi,ℓ−1(t)),

since hi,ℓ−1(t) is sD-sparse, the productWℓ(0)hi,ℓ−1(t) can be computed inO(msD) time. For the
product ∆Wℓ(t)hi,ℓ−1(t) can be computed use the low rank decomposition, which takes O(mrt)
time. Apply the shifted ReLU takes O(m) time. Hence, the total time is O(m(rt + sD)) time.

The running time results are summarized in the following lemma:
Lemma 4.4.1. For ℓ ∈ [L] and i ∈ [n], suppose ∥Di,ℓ(0)∥0 ≤ k. Let t > 0. Suppose the
change of Di,ℓ is sparse, i.e., ∥Di,ℓ(t) − Di,ℓ(0)∥0 ≤ s. For ℓ ∈ [L], i ∈ [n], for any t > 0,
suppose the change of Wℓ is of low-rank, i.e., ∆Wℓ(t) =

∑rt
j=1 yℓ,jz

⊤
ℓ,j . We further assume that

{yℓ,j, zℓ,j}ℓ∈[L],j∈[rt] and {W1(0)xi}i∈[n] are pre-computed.
Then, for any ℓ ∈ [L] and i ∈ [n], the vectors uℓ,i(t), vℓ,i(t) ∈ Rm can be computed in

O(mL(s+ k + rt))

time.
As a direct consequence, if we combine Lemma 2.5.2 and Lemma 4.4.1, then we get the

following corollary:
Corollary 4.4.2. For ℓ ∈ [L] and i ∈ [n], we can compute vi,ℓ(t), ui,ℓ(t) ∈ Rm as in Algorithm 20
with the following time bound:

• Compute ui,ℓ(t) in time O(mL(s+ k + rℓ)).
• Compute vi,ℓ(t) in time O(m(s+ k + rℓ)).

Remark 4.4.3. We note that the result we present is more general than needed for our algorithm,
since it can handle the updates across all layers. This means we can use it to implement a
subquadratic cost per iteration algorithm for gradient descent algorithm over all layers. In this
work, we focus our attention to the training of last layer, since the step size of that algorithm is
chosen adaptively.

4.5 Fast Tensor Product Regression
In this section, we show how to solve a specific type of regression fast using both tensor-based
sketching matrices for approximation, and sketching-based preconditioner for high precision
solution.
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Consider the following problem: Given two matricesU = [u⊤1 , . . . , u
⊤
n ]

⊤, V = [v⊤1 , . . . , v
⊤
n ] ∈

Rm×n with m≫ n, consider the matrix J ∈ Rn×m2 formed by

J =


vec(u1v

⊤
1 )

⊤

vec(u2v
⊤
2 )

⊤

...
vec(unv

⊤
n )

⊤

 .
We are also given a vector c in n dimension, our task is to find a solution to the following
regression problem:

min
x∈Rn

∥JJ⊤x− c∥22.

Our main theorem for this section is as follows:
Theorem 4.5.1 (Restatement of Theorem 4.5.14). Given two n × m matrices U and V , and a
target vector c ∈ Rn. Let J = [vec(u1v

⊤
1 )

⊤, . . . , vec(unv
⊤
n )

⊤] ∈ Rn×m2
. There is an algorithm

(Algorithm 22) takes Õ(nm + n2(log(κ/ε) + log(m/εδ)ε−2) + nω) time and outputs a vector
x̂ ∈ Rn such that

∥JJ⊤x̂− c∥2 ≤ ε∥c∥2

holds with probability at least 1− δ, and κ is the condition number of J .

4.5.1 Approximate J via TensorSketch

We introduce the notion of TensorSketch for two vectors:
Definition 4.5.2. Let h1, h2 : [m]→ [s] be 3-wise independent hash functions, also let σ : [m]→
{±1} be a 4-wise independent random sign function. The degree two TensorSketch transform,
S : Rm × Rm → Rs is defined as follows: for any i, j ∈ [m] and r ∈ [s],

Sr,(i,j) = σ1(i) · σ2(j) · 1[h1(i) + h2(j) = r mod s].

Remark 4.5.3. Apply S to two vectors x, y ∈ Rm can be implemented in time O(s log s +
nnz(x) + nnz(y)).

We introduce one key technical lemma from [11]:
Lemma 4.5.4 (Theorem 1 of [11]). Let S ∈ Rs×m2

be the TensorSketch matrix, consider a
fixed n-dimensional subspace V . If s = Ω(n2/(ε2δ)), then with probability at least 1 − δ,
∥Sx∥2 = (1± ε)∥x∥2 simultaneously for all x ∈ V .

Now we are ready to prove the main lemma of this section:
Lemma 4.5.5. Let ε, δ ∈ (0, 1) denote two parameters. Let J ∈ Rn×m2

represent a matrix such
that the i-th row of J is equal to vec(uiv

⊤
i ) for some ui, vi ∈ Rm. Then, we can compute a matrix

J̃ ∈ Rn×s such that for any vector x ∈ Rn, with probability at least 1− δ, we have

∥J̃⊤x∥2 = (1± ε)∥J⊤x∥2,

where s = Ω(n2/(ε2δ)). The time to compute J̃ is O(ns log s+ nnz(U) + nnz(V )).
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Proof. Notice that the row space of matrix J can be viewed as an n-dimensional subspace, hence,
by Lemma 4.5.4, the TensorSketch matrix S with s = Ω(n2/(ε2δ)) can preserve the length of
all vectors in the subspace generated by J⊤ with probability 1 − δ, to a multiplicative factor of
1± ε.

The running time part is to apply the FFT algorithm to each row of J with a total of n rows.
For each row, it takes O(s log s + m) time, hence the overall running time is O(n(s log s +
m)).

4.5.2 Approximate J via TensorSRHT

We note that the dependence on the target dimension of sketching is O(1/δ) for TensorSketch.
We introduce another kind of sketching technique for tensor, called TensorSRHT. The tradeoff
is we lose input sparsity runtime of matrices U and V .
Definition 4.5.6. We define the TensorSRHT S : Rm×Rm → Rs as S = 1√

s
P · (HD1×HD2),

where each row of P ∈ {0, 1}s×m2 contains only one 1 at a random coordinate, one can view P
as a sampling matrix. H is a m×m Hadamard matrix, and D1, D2 are two m×m independent
diagonal matrices with diagonals that are each independently set to be a Rademacher random
variable (uniform in {−1, 1}).
Remark 4.5.7. By using FFT algorithm, apply S to two vectors x, y ∈ Rm takes timeO(m logm+
s).

We again introduce a technical lemma for TensorSRHT.
Lemma 4.5.8 (Theorem 3 of [2]). Let S ∈ Rs×m2

be the TensorSRHT matrix, consider a fixed
n-dimensional subspace V . If s = Ω(n log3(nm/εδ)ε−2), then with probability at least 1 − δ,
∥Sx∥2 = (1± ε)∥x∥2 simultaneously for all x ∈ V .
Lemma 4.5.9. Let ε, δ ∈ (0, 1) denote two parameters. Given a list of vectors u1, · · · , um, v1, · · · , vm ∈
Rm. Let J ∈ Rn×m2

represent a matrix where the i-th row of J is equal to vec(uiv
⊤
i ). Then, we

can compute a matrix J̃ ∈ Rn×s such that for any vector x ∈ Rn, with probability at least 1− δ,
we have

∥J̃⊤x∥2 = (1± ε)∥J⊤x∥2,

where s = Ω(n log3(nm/(εδ))ε−2). The time to compute J̃ is O(n(m logm+ s)).

Proof. The correctness follows directly from Lemma 4.5.8. The running time follows from the
FFT algorithm to each row of J , each application takes O(m logm + s) time, and we need to
apply it to n rows.

4.5.3 Sketching-based Preconditioner

In this section, we first use TensorSketch and TensorSRHT to approximate J , then use a general
sketching matrix as a preconditioner to solve a regression task involving JJ⊤.

Before proceeding, we introduce the notion of subspace embedding:
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Definition 4.5.10 (Subspace Embedding, [67]). Let A ∈ RN×k, we say a matrix S ∈ Rs×N is a
(1 ± ε) − ℓ2 subspace embedding for A if for any x ∈ Rk, we have ∥SAx∥22 = (1 ± ε)∥Ax∥22.
Equivalently, ∥I − U⊤S⊤SU∥ ≤ ε where U is an orthonormal basis for the column space of A.

We will mainly utilize efficient subspace embedding.
Definition 4.5.11 ([57, 88]). Given a matrixA ∈ RN×k withN = poly(k), then we can compute
an S ∈ Rkpoly(log(k/δ))/ε2×N such that with probability at least 1− δ, we have

∥SAx∥2 = (1± ε)∥Ax∥2

hols for all x ∈ Rk. Moreover, SA can be computed in O(Nk log((k logN)/ε)) time.

Algorithm 21 Fast Regression algorithm of [17]]
1: procedure FASTREGRESSION(A, y, ε) ▷ Lemma 4.5.12
2: ▷ A ∈ RN×k is full rank, ε ∈ (0, 1/2)
3: Compute a subspace embedding SA ▷ S ∈ Rkpoly(log k) ×N
4: Compute R such that SAR has orthonormal columns via QR decomposition ▷
R ∈ Rk×k

5: z0 = 0k ∈ Rk

6: t← 0
7: while ∥A⊤ARzt − y∥2 ≥ ε do
8: zt+1 ← zt − (R⊤A⊤AR)⊤(R⊤A⊤ARzt −R⊤y)
9: t← t+ 1

10: end while
11: return Rzt
12: end procedure

Lemma 4.5.12 (Lemma 4.2 of [17]). Let N = Ω(kpoly(log k)). Given a matrix A ∈ RN×k, let
κ denote its condition number. Consider the following regression task:

min
x∈Rk

∥A⊤Ax− y∥2.

Using the procedure FASTREGRESSION (Algorithm 21), with probability at least 1 − δ, we can
compute an ε-approximate solution x̂ satisfying

∥A⊤Ax̂− y∥2 ≤ ε∥y∥2

in time Õ(Nk log(κ/ε) + kω).
Our algorithm is similar to the ridge regression procedure in [73], where they first apply their

sketching algorithm as a bootstrapping to reduce the dimension of the original matrix, then use
another subspace embedding to proceed and get stronger guarantee.

We shall first prove a useful lemma.
Lemma 4.5.13. Let A ∈ RN×k, suppose SA is a subspace embedding for A (Def. 4.5.11), then
we have for any x ∈ Rk, with probability at least 1− δ,

∥(SA)⊤SAx− b∥2 = (1± ε)∥A⊤Ax− b∥2.
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Proof. Throughout the proof, we condition on the event that S preserves the length of all vectors
in the column space of A.

Note that

∥(SA)⊤SAx− b∥22 = ∥(SA)⊤SAx∥22 + ∥b∥22 − 2⟨(SA)⊤SAx, b⟩.

We will first bound the norm of (SA)⊤SAx, then the inner product term.

Bounding ∥(SA)⊤SAx∥22.

Let U ∈ RN×k represent an orthonormal basis of A, then use an alternative definition of
subspace embedding, we have ∥U⊤S⊤SU − I∥ ≤ ε, this means all the eigenvalues of U⊤S⊤SU
lie in the range of of [(1−ε)2, (1+ε)2]. Let V denote the matrix U⊤S⊤SU , then we know that all
eigenvalues of V ⊤V lie in range [(1−ε)4, (1+ε)4]. Setting ε as ε/4, we arrive at ∥V ⊤V −I∥ ≤ ε.
This shows that for any x ∈ Rk, we have ∥(SA)⊤SAx∥2 = (1± ε)∥A⊤Ax∥2.

Bounding ⟨(SA)⊤SAx, b⟩.

Note that

⟨(SA)⊤SAx, b⟩ = ⟨SAx, SAb⟩
= 1/2 · (∥SAx∥22 + ∥SAb∥22 − ∥SA(x− b)∥22)
= 1/2 · (1± ε)(∥Ax∥22 + ∥Ab∥22 − ∥A(x− b)∥22)
= (1± ε)⟨A⊤Ax, b⟩.

Combining these two terms, we conclude that, with probability at least 1− δ,

∥(SA)⊤SAx− b∥2 = (1± ε)∥A⊤Ax− b∥2.
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Algorithm 22 Fast Regression via tensor trick
1: procedure FASTTENSORREGRESSION({ui}ni=1 ∈ Rm×n, {vi}ni=1 ∈ Rm×n, c ∈ Rn) ▷

Theorem 4.5.14
2: ▷ J = [vec(u1v

⊤
1 )

⊤, vec(u2v
⊤
2 )

⊤, . . . , vec(unv
⊤
n )

⊤]⊤ ∈ Rn×m2

3: s1 ← Θ(n log3(nm/δ))
4: s2 ← Θ((n+ logm) log n)
5: Let S1 ∈ Rs1×m2 be a sketching matrix ▷ S1 can be TensorSketch or TensorSRHT
6: Compute J̃ = JS⊤

1 via FFT algorithm ▷ J̃ ∈ Rn×s1

7: Choose S2 ∈ Rs2×s1 to be a sketching matrix (see Def. 4.5.11)
8: Compute a subspace embedding S2J̃

⊤

9: Compute R such that S2J̃
⊤R has orthonormal columns via QR decomposition ▷

R ∈ Rn×n

10: z0 ← 0k ∈ Rk

11: t← 0
12: while ∥J̃ J̃⊤Rzt − c∥2 ≥ ε do
13: zt+1 ← zt − (R⊤J̃ J̃⊤R)⊤(R⊤J̃ J̃⊤Rzt −R⊤c)
14: t← t+ 1
15: end while
16: return Rzt
17: end procedure

Theorem 4.5.14. Given two n × m matrices U and V , and a target vector c ∈ Rn. Let J =
[vec(u1v

⊤
1 )

⊤, . . . , vec(unv
⊤
n )

⊤] ∈ Rn×m2
. There is an algorithm (Algorithm 22) takes Õ(nm +

n2(log(κ/ε) + log(m/δ)) + nω) time and outputs a vector x̂ ∈ Rn such that

∥JJ⊤x̂− c∥2 ≤ ε∥c∥2

holds with probability at least 1− δ, and κ is the condition number of J .

Proof. We can decompose Algorithm 22 into two parts:

• Applying S1 to efficiently form matrix J̃ to approximate J and reduce its dimension, notice
here we only need ε for this part to be a small constant, pick ε = 0.1 suffices.

• Using S2 as a preconditioner and solve the regression problem iteratively.

Let x̂ denote the solution found by the iterative regime. We will prove this statement in two-folds:

• First, we will show that ∥J̃ J̃⊤x̂− c∥2 ≤ ε∥c∥2 with probability at least 1− δ;
• Then, we will show that ∥JJ⊤x̂ − c∥2 = (1 ± 0.1)∥J̃ J̃⊤x̂ − c∥2 with probability at least
1− δ.

Combining these two statements, we can show that

∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2
≤ 1.1ε∥c∥2
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Setting ε to ε/1.1 and δ to δ/2, we conclude our proof. It remains to prove these two parts.
Part 1 ∥J̃ J̃⊤x̂ − c∥2 ≤ ε∥c∥2. We observe the iterative procedure is essentially the same as

running FASTREGRESSION on input J̃⊤, y, ε, hence by Lemma 4.5.12, we know

Pr
[
∥J̃ J̃⊤x̂− c∥2 ≤ ε∥c∥2

]
≥ 1− δ.

Part 2 ∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2. To prove this part, note that by Lemma 4.5.8,
we know that J̃⊤ is a subspace embedding for J⊤. Hence, we can utilize Lemma 4.5.13 and get
that,

Pr
[
∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2

]
≥ 1− δ.

Combining these two parts, we have proven the correctness of the theorem. It remains to
justify the running time. Note that running time can be decomposed into two parts: 1). The time
to generate J̃ , 2). The time to compute x̂ via iterative scheme.

Part 1 Generate J̃ . To generate J̃ , we apply S1 ∈ Rs1×m2 which is a TensorSRHT. By
Lemma 4.5.9, it takes O(n(m logm + s1)) time to compute J̃ , plug in s1 = Θ(n log3(nm/δ)),
the time is Õ(nm).

Part 2 Compute x̂. To compute x̂, essentially we run FASTREGRESSION on J̃⊤, c, ε, hence
by Lemma 4.5.12, it takes Õ(s2n log(κ/ε) + nω) time, with s2 = Θ((n+ logm) log n) and κ is
the condition number of J̃ , which has the guarantee κ = (1±ε)κ(J). Hence, the overall running
time of this part is Õ(n2 log(κ/ε) + nω).

Put things together, the overall running time is Õ(nm+ n2 log(κ/ε) + nω).

Remark 4.5.15. Due to the probability requirement (union bounding over all data points), here
we only prove by using TensorSRHT. One can use similar strategy to obtain an input sparsity
time version using TensorSketch. We remark that this framework is similar to the approach [73]
takes to solve kernel ridge regression, where one first uses a shallow but fast sketch to bootstrap,
then use another sketching to proceed with the main task.

We also point out that in a more general neural network architecture, the network width
between different layers might differ, i.e., we are in fact dealing with the tensor product u ⊗ v
where u ∈ Rmℓ and v ∈ Rmℓ−1 . Our sketching can be modified to handle this kind of inputs.
Specifically, for TensorSketch, it is defined by a pair of hash functions and sign functions, we
can change their domain to handle different input dimensions. For TensorSRHT, it’s more tricky,
however, we note that the Hadamard matrix is merely for speeding up computation via FFT
algorithm, hence we can differ the size of D1 and D2, and change the size of sampling matrix P
accordingly.

4.6 Spectral Properties of Over-parametrized Deep Neural Net-
work

In this section, we study the spectral structure of our Gram matrix and its connection to the multi-
layer NTK matrix. We show two different results regarding the minimum eigenvalue of the last
layer and the intermediate layers. We also show that as long as the weight matrix does not move
too far, the eigenvalue of the Gram matrix is relatively stable around its initialization.

107



4.6.1 Bounds on the Least Eigenvalue of Kernel at Initialization
The following fact gives the exact form of the Gram matrix of the ℓ-th layer of the neural network.
Fact 4.6.1 (Multi-layer Gram matrix). For any ℓ ∈ [L], let Gℓ = JℓJ

⊤
ℓ ∈ Rn×n be the layer-ℓ’s

Gram matrix. Then, for any i, j ∈ [n],

(Gℓ)i,j = h⊤i,ℓ−1hj,ℓ−1 · a⊤
(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,k

)
a,

where hi,ℓ−1 =
∏ℓ−1

k=1Di,kWkxi.

Proof. For for any i, j ∈ [n], by definition,

(Gℓ)i,j = vec(
∂f(W,xi)

∂Wℓ

)⊤vec(
∂f(W,xj)

∂Wℓ

)

= vec

(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,kah

⊤
i,ℓ−1

)⊤

vec

(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,kah

⊤
j,ℓ−1

)

=

(
(hi,ℓ−1 ⊗ Imℓ

)

(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,ka

))⊤

(hj,ℓ−1 ⊗ Imℓ
)

(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,ka

)

=

(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,ka

)⊤

(h⊤i,ℓ−1 ⊗ Imℓ
)(hj,ℓ−1 ⊗ Imℓ

)

(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,ka

)

= a⊤

(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,k

)
a · h⊤i,ℓ−1hj,ℓ−1.

The following lemma handles the least eigenvalue for all intermediate layers ℓ ∈ [L− 1].
Lemma 4.6.2 (Bounds on the least eigenvalue at initialization for layer 1 to L − 1). Let λ :=
minℓ∈[L−1] λℓ. Then, for all ℓ ∈ [L− 1], with probability at least 1− δ, we have

λmin(Gℓ) ≥ Ω(λδ2n−2L−1).

Proof. Let ℓ ∈ [L] and i, j ∈ [n]. By Fact 4.6.1, the (i, j)-th entry of the layer-ℓ Gram matrix
can be expressed as

(Gℓ)i,j = h⊤i,ℓ−1hj,ℓ−1 · a⊤
(
Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏
k=ℓ+1

W⊤
k Dj,k

)
a

= (Hℓ−1)i,j · (Aℓ)i,j,

where (Hℓ−1)i,j = h⊤i,ℓ−1hj,ℓ−1 and (Aℓ)i,j = a⊤(Di,ℓ

∏L
k=ℓ+1W

⊤
k Di,k)

⊤(Dj,ℓ

∏L
k=ℓ+1W

⊤
k Dj,k)a.

Hence, we can write Gℓ as

Gℓ = Hℓ−1 ⊙ Aℓ,
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where ⊙ represents the Hadamard product.
By Fact 4.2.7, we have

λmin(Gℓ) ≥ min
i∈[n]

(Aℓ)i,i · λmin(Hℓ)

Note that for i ∈ [n],

(Aℓ)i,i = a⊤(Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,k)

⊤(Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,k)a

=
∥∥∥Di,ℓ

L∏
k=ℓ+1

W⊤
k Di,ka

∥∥∥2
2

≥

〈
Wℓ

∏ℓ−1
k=1Di,kWkxi, Di,ℓ

∏L
k=ℓ+1W

⊤
k Di,ka

〉2
∥Wℓ

∏ℓ−1
k=1Di,kWkxi∥22

=
⟨a, hi,L⟩2

∥Wℓ

∏ℓ−1
k=1Di,kWkxi∥22

.

By Lemma 4.7.9 part (a), we have∥∥∥Wℓ

ℓ−1∏
k=1

Di,kWkxi

∥∥∥2
2
≤ O(

√
L)

with probability 1− e−Ω(k/L2) for all i ∈ [n], where k = m exp(−b2m/4) = m0.8 by our choice
of parameters.

By Lemma 4.7.8,

Pr[∀i ∈ [n], ∥hi,L∥2 ∈ 1± ε] ≥ 1−O(nL) · exp(−Ω(kε2/L2)).

Conditioning on this event, let hi,L be a fixed vector h with length 1 ± ε and consider the ran-
domness of the Rademacher vector a.

Note that ⟨a, h⟩ can be written as a⊤(hh⊤)a = a⊤Ba, whereB := hh⊤ satisfies ∥B∥ = ∥h∥22
and ∥B∥2HS = ∥h∥42. For r ∈ [mL], we know that ar is a centered subgaussian random variable
with ∥ar∥ψ2 = 1.

By Lemma 4.2.6, we have

Pr[|⟨a, h⟩| ≤ t] ≤ min

{
C1t

∥h∥2
,

C2t

Õ(m−0.2)
√
k

}
≤ Õ(t).

By taking t to be O(δ/n), we have

Pr[∀i ∈ [n], ⟨a, hi,L⟩2 = Ω(δ2/n2)] ≥ 1−O(δ).

Applying a union bound gives

Pr[min
i∈[n]

(Aℓ)i,i = Ω(δ2n−2L−1)] ≥ 1− δ/2.
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By Lemma 4.6.4, with probability at least 1− δ/2, we have:

λmin(Hℓ−1) ≥ Ω(λ)

for all ℓ ∈ [L].
Combine them together, we get that

λmin(Gℓ) ≥ Ω(δ2λn−2L−1)

for all ℓ ∈ [L] with probability 1− δ, which completes the proof of the lemma.

In order to bound λmin(Hℓ), we first define the NTK kernel for multiple layer neural network.
Definition 4.6.3 (Multiple layer NTK kernel). The NTK kernel Kℓ ∈ Rn×n for ℓ ∈ {0, . . . , L}
of an L-layer neural network are defined as follows:

• (K0)i,j := x⊤i xj

• For ℓ > 0, let Σℓ,i,j :=

[
(Kℓ−1)i,i (Kℓ−1)i,j
(Kℓ−1)j,i (Kℓ−1)j,j

]
∈ R2×2 for any (i, j) ∈ [n]× [n]. Then,

(Kℓ)i,j := E(x1,x2)∼N (0,2Σℓ−1,i,j)[φ(x1)φ(x2)] ∀ℓ ∈ [L− 1],

(KL)i,j := E(x1,x2)∼N (0,2ΣL−1,i,j)[φ
′(x1)φ

′(x2)]

Let λℓ := λmin(Kℓ) to be the minimum eigenvalue of the NTK kernel Kℓ.
In the following lemma, we generalize Lemma C.3 in [17] (also Lemma 3 in [18]) into

multiple layer neural networks.
Lemma 4.6.4. For ℓ ∈ [L − 1], let λℓ denote the minimum eigenvalue of NTK defined for ℓ-th
layer of neural networks. Suppose mℓ = Ω(λ−2

ℓ n2 log(n/δ)), then with probability at least 1−δ,
we have

λmin(Hℓ) ≥
3

4
λℓ, ∀ℓ ∈ [L]

Proof. We will prove that ∥Hℓ−Kℓ∥∞ is small, which implies that λmin(Hℓ) is close to λℓ. The
proof idea is similar to [31] via induction on ℓ.

For ℓ = 1, recall (g1,i)k =
∑

b∈[m](W1)k,b(xi)b for k ∈ [m]. Hence, for any k ∈ [m],

E[(gi,1)k(gj,1)k] =
∑

b,b′∈[m]

E[(W1)k,b(W1)k,b′(xi)b(xj)b′ ]

=
∑
b∈[m]

E[(W1)
2
k,b] · (xi)b(xj)b ((W1)k,b ∼ N (0, 2

m
).)

=
2

m

∑
b∈[m]

(xi)b(xj)b

=
2

m
x⊤i xj.
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Then, we have

E[h⊤i,1hj,1] =
∑
k∈[m]

E[(hi,1)k(hj,1)k]

=
∑
k∈[m]

E[φ((gi,1)k)φ((gj,1)k)]

=
∑
k∈[m]

E(u,v)∼N (0, 2
m
Σ1,i,j)

[φ(u)φ(v)]

= E(u,v)∼N (0, 2
m
Σ1,i,j)

[mφ(u)φ(v)]

= E(u′,v′)∼N (0,2Σ1,i,j)[φ(u
′)φ(v′)]

= (K1)i,j.

Next, we will show that h⊤i,1hj,1 concentrates around its expectation. First, for any k ∈ [m],

|(hi,1)k(hj,1)k| ≤ |(gi,1)k(gj,1)k| ≤ |⟨(W1)k,∗, xi⟩| · |⟨(W1)k,∗, xj⟩|.

Since ⟨(W1)k,∗, xi⟩ ∼ N (0,
2∥xi∥22
m

), by the concentration of Gaussian distribution,

|⟨(W1)k,∗, xi⟩| ≤
√
c ∀k ∈ [m], i ∈ [n]

holds with probability at least 1−mne−cm/4.
Conditioning on the above event, we have |(hi,1)k(hj,1)k| ≤ c for all i, j ∈ [n] and k ∈ [m].

Then, by Hoeffding’s inequality, we have for any (i, j) ∈ [n]× [n],

Pr
[
|h⊤i,1hj,1 − (K1)i,j| ≥ t

]
≤ exp

(
− t2

2m · (2c)2

)
= exp(−Ω(t2/(mc2))).

Hence, by union bound, we get that

Pr[ max
(i,j)∈[n]×[n]

|h⊤i,1hj,1 − (K1)i,j| ≤ t] ≥ 1−mn · exp(−Ω(mc))− n2 · exp(−Ω(t2/(mc2))).

If we choose c := log(mnL/δ)
m

and t := m−1/2 · polylog(nL/δ), we have with probability at least
1− δ

L
,

max
(i,j)∈[n]×[n]

|h⊤i,1hj,1 − (K1)i,j| ≤ Õ(m−1/2).

Let h < L. Suppose that for ℓ = 1, . . . h,

max
(i,j)∈[n]×[n]

|h⊤i,ℓhj,ℓ − (Kℓ)i,j| ≤ Õ(m−1/2).

Consider ℓ = h+ 1. By a similar computation, we have

EWℓ
[(gi,ℓ)k(gj,ℓ)k] =

2

m
h⊤i,ℓ−1hj,ℓ−1.
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Define a new covariance matrix

Σ̂ℓ,i,j :=

[
h⊤i,ℓ−1hi,ℓ−1 h⊤i,ℓ−1hj,ℓ−1

h⊤j,ℓ−1hi,ℓ−1 h⊤j,ℓ−1hj,ℓ−1

]
∀(i, j) ∈ [n]× [n].

We have

EWℓ
[h⊤i,ℓhj,ℓ] =

∑
k∈[m]

E(u,v)∼N (0, 2
m
Σ̂ℓ,i,j)

[φ(u)φ(v)]

= E(u′,v′)∼N (0,2Σ̂ℓ,i,j)
[φ(u′)φ(v′)]

:= (K̂ℓ)i,j.

Hence, we have with probability at least 1− δ
L

,

max
(i,j)∈[n]×[n]

∣∣∣h⊤i,ℓhj,ℓ − (K̂ℓ)i,j

∣∣∣ ≤ Õ(m−1/2). (4.4)

It remains to upper bound the difference ∥K̂ℓ −Kℓ∥∞.∥∥∥K̂ℓ −Kℓ

∥∥∥
∞

= max
(i,j)∈[n]×[n]

∣∣∣E(u,v)∼N (0,2Σ̂ℓ,i,j)
[φ(u)φ(v)]− E(u,v)∼N (0,2Σℓ,i,j)[φ(u)φ(v)]

∣∣∣ .
Recall that

Σℓ,i,j :=

[
(Kℓ−1)i,i (Kℓ−1)i,j
(Kℓ−1)j,i (Kℓ−1)j,j

]
∀(i, j) ∈ [n]× [n],

and hence, by the induction hypothesis, we have

∥Σ̂ℓ,i,j − Σℓ,i,j∥∞ ≤ max
(i,j)∈[n]×[n]

∣∣h⊤i,ℓ−1hj,ℓ−1 − (Kℓ−1)i,j
∣∣ = Õ(m−1/2).

Notice that Σ̂ℓ,i,j can be written as[
∥hi,ℓ−1∥22 cos(θℓ,i,j)∥hi,ℓ−1∥2∥hj,ℓ−1∥2

cos(θℓ,i,j)∥hi,ℓ−1∥2∥hj,ℓ−1∥2 ∥hj,ℓ−1∥22

]
.

Moreover, when φ is the ReLU function, we have

E(u,v)∼N (0,2Σ̂ℓ,i,j)
[φ(u)φ(v)] = 2∥hi,ℓ−1∥2∥hj,ℓ−1∥2 · F (θℓ,i,j),

where

F (θ) := E(u,v)∼N (0,Σ(θ))[φ(u)φ(v)] with Σ(θ) :=

[
1 cos(θ)

cos(θ) 1

]
.

We note that F (θ) has the following analytic form:

F (θ) =
1

2π
(sin(θ) + (π − θ) cos(θ)) ∈ [0, 1/2]. (4.5)
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Similarly,

E(u,v)∼N (0,2Σℓ,i,j)[φ(u)φ(v)] = 2
√
(Kℓ−1)i,i(Kℓ−1)j,j · F (τℓ,i,j),

where τℓ,i,j := cos−1

(
(Kℓ−1)i,j√

(Kℓ−1)i,i(Kℓ−1)j,j

)
. By the induction hypothesis, we have (Kℓ)i,j ∈

h⊤ℓ,ihℓ,j ± Õ(m−1/2) for all i, j ∈ [n]. By Lemma 4.7.8, we also have ∥hℓ,i∥2 ∈ 1 ± ε for all
ℓ ∈ [L] and i ∈ [n] with probability 1 − O(nL) · e−Ω(mε2/L). They implies that cos(τℓ,i,j) ∈
cos(θ)± Õ(m−1/2). Thus, by Taylor’s theorem, it gives us

|F (θℓ,i,j)− F (τℓ,i,j)| ≤ Õ(m−1/2).

Therefore, we have∣∣∣E(u,v)∼N (0,2Σ̂ℓ,i,j)
[φ(u)φ(v)]− E(u,v)∼N (0,2Σℓ,i,j)[φ(u)φ(v)]

∣∣∣
= 2

∣∣∣∣∥hi,ℓ−1∥2∥hj,ℓ−1∥2F (θℓ,i,j)−
√
(Kℓ−1)i,i(Kℓ−1)j,jF (τℓ,i,j)

∣∣∣∣
≤ Õ(m−1/2).

That is,

∥K̂ℓ −Kℓ∥∞ ≤ Õ(m−1/2). (4.6)

Combining Eqs. (4.4) and (4.6) together, we get that

max
(i,j)∈[n]×[n]

|h⊤ℓ,ihℓ,j − (Kℓ)i,j| ≤ Õ(m−1/2)

holds with probability at least 1− δ
L

for ℓ = h+ 1.
By induction, we have proved that for the first L − 1 layers, the intermediate correlation

h⊤ℓ,ihℓ,j is close to the intermediate Gram matrix (Kℓ)i,j , i.e.,

∥Hℓ −Kℓ∥ ≤
λℓ
4
∀ℓ ∈ [L− 1].

Hence, we get that for all ℓ ∈ [L− 1],

λmin(Hℓ) ≥
3

4
λℓ

The lemma is then proved.

Lemma 4.6.5 (Bounds on the least eigenvalue at initialization for layer L). Suppose m =
Ω(λ−2

L n2 log(n/δ)), then we have

Pr[λmin(GL) ≥
3

4
λL] ≥ 1− δ.
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Proof. Recall GL is defined as

(GL)i,j = vec(
∂f(W,xi)

∂WL

)⊤vec(
∂f(W,xj)

∂WL

)

= vec(Di,Lah
⊤
i,L−1)

⊤vec(Dj,Lah
⊤
j,L−1)

= a⊤Di,LDj,La · h⊤i,L−1hj,L−1,

which has the same form as the correlation matrix of a two-layer over-parameterized neural
network with input data {hL−1,i}i∈[n]. Define

(K̂L)i,j := h⊤i,L−1hj,L−1 · Ew∼N (0,2Im)

[
φ′(w⊤hi,L−1)φ

′(w⊤hj,L−1)
]
.

Then, by the analysis of the two-layer case (see for example [32, 71]), we have

∥GL − K̂L∥ ≤
λL
8
,

if m = Ω(λ−2
L n2 log(n/δ)), where λL := λmin(KL). It remains to bound ∥K̂L −KL∥∞. Equiv-

alently, for any (i, j) ∈ [n]× [n],

max
(i,j)∈[n]×[n]

∣∣∣E(u,v)∼N (0,2Σ̂L,i,j)
[φ′(u)φ′(v)]− E(u,v)∼N (0,2ΣL,i,j)[φ

′(u)φ′(v)]
∣∣∣ .

The expectation has the following analytic form:

E(z1,z2)∼N (0,Σ)[φ
′(z1)φ

′(z2)] =
1

4
+

sin−1(ρ)

2π
with Σ =

[
p2 ρpq
ρpq q2

]
.

By the analysis of the (L − 1)-layer, we know that |ρL,i,j − ρ̂L,i,j| ≤ Õ(m−1/2), where ρL,i,j :=
cos(τL,i,j) and ρ̂L,i,j := cos(θL,i,j). Also, notice that cos(τL,i,j) = F (τL−1,i,j) ∈ [0, 1/2] by
Eq. (4.5). Hence, the derivative of the expectation is bounded, and by Taylor’s theorem, we have

∥K̂L −KL∥∞ ≤ Õ(m−1/2).

It implies that ∥K̂L −KL∥ ≤ λL
8

, which further implies that

∥GL −KL∥ ≤
λL
4
.

Equivalently, we get that

λmin(GL) ≥
3

4
λL

with probability at least 1− δ.

Remark 4.6.6. We observe a discrepancy of eigenvalue in our analysis: For last layer, the eigen-
value of our Gram matrix and the NTK is almost the same, while for intermediate layers, we can
only provide a much weaker lower bound for Gram matrix. The main reason is by definition, the
NTK for last layer is defined as the product of two derivatives of ReLU, which always have value
0 or 1. On the other hand, the NTKs for intermediate layers are defined in terms of the product
of two ReLU’s, which can have much larger magnitudes.

Due to such eigenvalue discrepancy, our algorithm focuses on training the last layer, since
the training dynamic on intermediate layers has a much smaller magnitude. Hence, we present
an algorithm that only trains the last layer while obtaining a good convergence result.
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4.6.2 Bounds on the Least Eigenvalue during Optimization
In this section, we adapt the Lemma C.5 in [17] into the last layer of a multi-layer neural network.
We make use of the result proved in [75].
Lemma 4.6.7 (Lemma C.2 in [75]). Let b > 0 and R̃ ≤ 1/b. Let c > 0 and c′ > 0 denote two
fixed constants. Suppose we have

∥WL −WL(0)∥ ≤ R̃,

then we have
• ∥GL(W )−GL(W (0))∥F ≤ nα holds with probability at least 1− n2β.
• λmin(GL(W )) ≥ 3

4
λL − nα holds with probability at least 1− n2β − δ,

where α = min{c · exp(−b2/2), 3R̃} and β = exp(−m ·min{c′ · exp(−b2/2), R̃/10}).
Corollary 4.6.8. Suppose we have

• α = 3R̃ and R̃ ≤ O(λL
n
).

• α = c · exp(−b2/2) and exp(−b2/2) ≤ O(λL
n
).

then we have λmin(GL(W )) ≥ λL
2

.

Proof. We first note that to prove the corollary, it suffices to show that nα ≤ λL
4

. We analyze
two cases.

Case 1: α = 3R. Suppose α = 3R, then the condition translates to 3nR̃ ≤ λL
4

which
indicates R̃ ≤ O(λL

n
).

Case 2: α = c·exp(−b2/2). Suppose α = c·exp(−b2/2), then we have cn·exp(−b2/2) ≤ λL
4

and exp(−b2/2) ≤ O(λL
n
).

Remark 4.6.9. We note that the analysis of [75] focuses on the standard two-layer case of NTK,
the reason we can leverage their result is that we can treat the NTK for last layer as a two-layer
neural network where the inputs are hi,L−1 ∈ Rm. One can also give include a direct proof of
the multi-layer version, which agrees the above lemma and corollary.

4.7 Convergence Analysis of Our Algorithm
In this section, we present a convergence analysis of Algorithm 20. We show that as long as the
neural network width is large enough, the convergence of Algorithm 20 is linear, and the weight
matrix does not change too much.

4.7.1 Preliminary
We recall the initialization of our neural network.
Definition 4.7.1 (Initialization). Let m = mℓ for all ℓ ∈ [L]. Let m0 = d. We assume weights
are initialized as

• Each entry of weight vector a ∈ Rm is i.i.d. sampled from {−1,+1} uniformly at random.
• Each entry of weight matrices Wℓ ∈ Rm×m sampled from N (0, 2/m).
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Remark 4.7.2. Later, we will also interpret WL as sampled from N (0, 1) and then being scaled

by
√

2
m

.
We also restate the architecture of our neural network here.

Definition 4.7.3 (Architecture). Our neural network is a standard L-layer feed-forward neural
network, with the activation functions defined as a scaled version of shifted ReLU activation:
φ(x) =

√
cb1[x >

√
2/mb]x, where cb := (2(1 − Φ(b) + bφ(b)))−1/2. Here b is a threshold

value we will pick later. At last layer, we use a scaled version of a vector with its entry being
Rademacher random variables. We define the neural network function f : Rm0 → R as

f(W,xi) = a⊤φ(WLφ(WL−1φ(. . . φ(W1xi)))).

We measure the loss of the neural network via squared-loss function:

L(W ) =
1

2

n∑
i=1

(f(xi)− yi)2.

We use ft : Rd×n → Rn denote the prediction of our network:

ft(X) = [f(W (t), x1), . . . , f(W (t), xn)]
⊤.

We state two assumptions here.
Assumption 4.7.4 (Small Row Norm). Let t ∈ {0, . . . , T} and let R̃ ≤ 1 be a parameter. We
assume

∥WL,r(t)−WL,r(0)∥2 ≤ R̃/
√
m, ∀r ∈ [m].

Here, WL,r ∈ Rm means the r-th row of matrix WL.
Later, we will invoke this assumption by specifying the choice of R̃.

Assumption 4.7.5 (Sparsity). Let t ∈ {0, . . . , T} and let s ≥ 1 be an integer parameter. We
assume

∥∆Di,ℓ∥0 ≤ s,∀ℓ ∈ [L], i ∈ [n].

Later, we will invoke this assumption by specifying the choice of s.

4.7.2 Technical Lemmas
We first show that during initialization, by using our shifted ReLU activation, the vector hi,ℓ is
sparse. Hence, the diagonal matrix Di,ℓ is sparse as well.
Lemma 4.7.6 (Sparse initialization). Let σb(x) = max{x− b, 0} be the shifted ReLU activation
with threshold b > 0. After initialization, with probability

1− nL · e−Ω(me−b2m/4),

it holds for all i ∈ [n] and ℓ ∈ [L],

∥hi,ℓ∥0 ≤ O(m · e−b2m/4).
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Proof. We fix i ∈ [n] and ℓ ∈ [L], since we will union bound over all i and ℓ at last. Let ui ∈ Rm

be a fixed vector and Wℓ,r to denote the r-th row of Wℓ, then by the concentration of Gaussian,
we have

Pr[σb(⟨Wℓ,r, ui⟩) > 0] = Pr
z∼N (0, 2

m
)
[z > b] ≤ exp(−b2m/4).

Let S be the following index set S := {r ∈ [m] : ⟨Wℓ,r, ui⟩ > b}, the above reasoning means
that for the indicator random variable 1[r ∈ S], we have

E[1[r ∈ S]] ≤ exp(−b2m/4).

Use Bernstein’s inequality (Lemma 4.2.3) we have that for all t > 0,

Pr[|S| > k + t] ≤ exp(− t2/2

k + t/3
),

where k := m · exp(−b2m/4). By picking t = k, we have

Pr[|S| > 2k] ≤ exp(
−3k
8

).

Note that |S| is essentially the quantity ∥hi,ℓ∥0, hence we can union bound over all ℓ and i and
with probability at least

1− nL · exp(−Ω(m · exp(−b2m/4))),

we have ∥hi,ℓ∥0 ≤ 2m · exp(−b2m/4).

Remark 4.7.7. The above lemma shows that by using the shifted ReLU activation, we make sure
that all hi,ℓ are sparse after initialization. Specifically, we use k := m · exp(−b2m/4) as a
sparsity parameter. Later, we might rescale b so that the probability becomes exp(−b2/2). We
stress that such rescaling does not affect the sparsity of our initial vectors. If we rescale b and
choose it as

√
2α logm, then k = m1−α and hence with high probability, ∥hi,ℓ∥0 ≤ O(m1−α).

As a direct consequence, we note that all initial Di,ℓ are k-sparse as well.
We state a lemma that handles the ℓ2 norm of hi,ℓ when one uses truncated Gaussian distri-

bution instead. Due to the length and the delicacy of the proof, we defer it to Section 4.8.
Lemma 4.7.8 (Restatement of Lemma 4.8.6). Let b > 0 be a fixed scalar. Let the activation
function φ(x) :=

√
cb1[x >

√
2/mb]x, where cb := (2(1 − Φ(b) + bφ(b)))−1/2. Let ε ∈ (0, 1),

then over the randomness of W (0), with probability at least

1−O(nL) · exp(−Ω(m exp(−b2/2)ε2/L2)),

we have

∥hi,ℓ∥2 ∈ [1− ε, 1 + ε], ∀i ∈ [n], ℓ ∈ [L].

The second lemma handles the consecutive product that appears naturally in the gradient
computation. It is useful in analyzing the spectral property of the Gram matrix.
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Lemma 4.7.9 (Variant of Lemma 7.3 in [5]). Suppose m ≥ Ω(nL log(nL)), then over the ran-
domness of initializations W1(0), . . . ,WL(0) ∈ Rm×m, for all i ∈ [n] and 1 ≤ a ≤ b ≤ L,

Pr[∥WbDi,b−1Wb−1 . . . Di,aWa∥ ≤ O(
√
L)] ≥ 1− e−Ω(k/L2).

The proof is similarly to the original proof of the corresponding lemma in [5], however we
replace the bound on hi,ℓ with our Lemma 4.7.8. We highlight this does not change the bound,
merely in expense of a worse probability.

The next several lemmas bound norms after small perturbation.
Lemma 4.7.10 (Lemma 8.2 in [5]). Suppose Assumption 4.7.4 is satisfied with R̃ ≤ O( 1

L9/2 log3m
).

With probability at least 1− e−Ω(mR̃2/3L),
(a) ∆gi,ℓ can be written as ∆gi,ℓ = ∆gi,ℓ,1 +∆gi,ℓ,2 where

∥∆gi,ℓ,1∥2 ≤ O(R̃L3/2)

∥∆gi,ℓ,2∥∞ ≤ O( R̃L
5/2

√
logm√

m
)

(b) ∥∆Di,ℓ∥0 ≤ O(mR̃2/3L) and ∥(∆Di,ℓ)gi,ℓ∥2 ≤ O(R̃L3/2).
(c) ∥∆gi,ℓ∥2, ∥∆hi,ℓ∥2 ≤ O(R̃L5/2

√
logm).

Remark 4.7.11. Lemma 4.7.10 establishes the connection between parameter R̃ and s of As-
sumption 4.7.4 and 4.7.5. As long as R̃ is small, then we have s = O(mR̃2/3L). Such a relation
enables us to pick R to our advantage and ensure the sparsity of ∆Di,ℓ is sublinear in m, and
hence the update time per iteration is subquadratic in m.

4.7.3 Bounds on Initialization
In the following lemma, we generalize the Lemma C.2 in [17] into multiple layer neural net-
works.
Lemma 4.7.12 (Bounds on initialization, multiple layer version of Lemma C.2 in [17]). Suppose
m = Ω(nL log(nL)), then we have the following

• Pr[f(W,xi) = Õ(1), ∀i ∈ [n]] ≥ 1− e−Ω(log2 n).
• Pr[∥JL,0,i∥ = O(1), ∀i ∈ [n]] ≥ 1−O(nL) · e−Ω(k/L2).

Proof. We will prove the two parts of the statement separately.

Part 1: By definition, for any i ∈ [n], we have

f(W,xi) = a⊤φ(WL(φ(· · ·φ(W1xi)))).

We shall make use of Lemma 4.7.8 here:

Pr
[
∥hi,L∥2 ∈ [0.9, 1.1],∀i ∈ [n]

]
≥ 1−O(nL) · exp(−Ω(k/L2)).

Recall that a ∈ Rm has each of its entry being a Rademacher random variable, hence it’s
1-subgaussian. Use the concentration of subgaussian (Lemma 4.2.5), we know that

Pr[|a⊤hi,L| ≥ 1.1t] ≤ 2 exp(−t
2

2
),

setting t = O(log2 n), and union bound over all i ∈ [n], we conclude our desired result.
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Part 2: For the last layer, we consider WL is initialized as follows: each entry is first sampled
from N (0, 1), then we scale down WL by

√
2√
m

. This means we can write the output of last layer

as
√
2√
m
WLhi,L−1, and therefore, the gradient is

√
2√
m
Di,Lhi,L−1a

⊤. Hence,

∥JL,0,i∥ =
1√
m
∥hi,L−1a

⊤Di,L∥

≤
√
2√
m
∥hi,L−1∥2 · ∥Di,La∥2

= O(1).

The last step follows from the fact that ∥Di,La∥2 ≤ O(
√
m) and ∥hi,L−1∥2 ≤ 1.1 with probability

at least 1−O(nL) · exp(−Ω(k/L2)).

4.7.4 Bounds on Small Perturbation
In the following, we generalize the Lemma C.4 in [17] into multiple layer neural network. We

use the interpretation that WL is generated from N (0, 1) and scaled by
√

2
m

in our proof.

Lemma 4.7.13 (multiple layer version of Lemma C.4 in [17]). Suppose m = Ω(nL log(nL)),
then over the random initialization of

W (0) = {W1(0),W2(0), · · ·WL(0)},

the following holds with probability at least 1−nL · e− log2m, for any set of weight WL satisfying
for each r ∈ [m],

∥WL,r −WL,r(0)∥2 ≤ R/
√
m,

• ∥WL −WL(0)∥F ≤ R.
• ∥JWL,xi − JWL(0),xi∥2 = Õ(R1/2/m1/4).
• ∥JWL

− JWL(0)∥F = Õ(n1/2R1/2/m1/4).
• ∥JWL

∥F = Õ(n1/2).

Proof. Part 1. Note that

∥WL −WL(0)∥2F =
m∑
r=1

∥WL,r −WL,r(0)∥22

≤m ·R2/m

= R2.

Taking square root yields our desired result.
Part 2. To simplify the notation, we ignore the subscripts i below. We have

∥JWL,x − JWL(0),x∥2 =
2

m
∥(DL(0) + ∆DL)ah

⊤
L −DL(0)ah

⊤
L∥2
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=
2

m
∥∆DLah

⊤
L∥2

=
2

m
∥∆DLah

⊤
L∥2F

=
2

m

∑
r∈[m]

a2r · h2L,r · |1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]|

= O(
1

m
)
∑
r∈[m]

|1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]|.

where we use ∆DLah
⊤
L is a rank 1 matrix in the third step.

Let sr := |1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]| and define the event Er as

Er =
{
∥WL,r −WL,r(0)∥2 ≤ R/

√
m, 1[⟨WL,r, hL⟩ ≥ b] ̸= 1[⟨WL,r(0), hL⟩ ≥ b]

}
.

It is not hard to see that event Er happens if and only if

WL,r(0)
⊤hL ∈ [b− ∥hL∥2R/

√
m, b+ ∥hL∥2R/

√
m].

By the anti-concentration of Gaussian distribution (Lemma 4.2.4), we have

E[sr] = Pr[Er = 1] ≤ 4

5
R/
√
m.

We have

Pr
[ m∑
r=1

sr ≥ (t+
4

5
)∥hL∥R

√
m
]
≤ Pr

[ m∑
r=1

(sr − E[sr]) ≥ t∥hL∥2R
√
m
]

≤ 2 exp(−2t2R2∥hL∥22m2

m2
)

= 2 exp(−2t2R2∥hL∥22)
≤ 2 exp(−t2),

where the first step follows from our above analysis, we use Lemma 4.2.2 in the second step, and
we use both ∥hL∥22 ≥ 0.5 and R ≥ 1 in the final step.

Set t = logm and by union bound over i, we have with probability at least 1− n · e− log2m,

∥JWL,xi − JWL(0),xi∥2 =
1

m

m∑
r=1

sr

≤ 1

m
Õ(R
√
m)

= Õ(
R√
m
).

Taking square root yields our desired result.
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Part 3. Note that the squared Frobenious norm is just the sum of all squared ℓ2 norm of rows,
hence

∥JWL
− JWL(0)∥F ≤ Õ(n1/2R1/2/m1/4).

Part 4. We will prove by triangle inequality:

∥JWL
∥F ≤ ∥JWL(0)∥F + ∥JWL

− JWL(0)∥F
≤ Õ(n1/2) + Õ(n1/2R1/2/m1/4)

= Õ(n1/2).

Note that, in the final step, we use both the choice ofR (see Def. 4.7.18) andm (see Def. 4.7.20).

4.7.5 Putting It All Together
In this section, we will prove the following core theorem that analyzes the convergence behavior
of Algorithm 20:
Theorem 4.7.14 (Formal version of Theorem 1.2.5). Suppose the neural network width satisfies
m = Ω(λ−2

L n2L2), then over the randomness of the initialization of the neural network and the
randomness of the algorithm, Algorithm 20 satisfies

Pr[∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2] ≥ 1− exp(−Ω(log2 n)).

Before moving on, we introduce several definitions and prove some useful facts related to
them.
Definition 4.7.15 (function J). We define

Jℓ(Z1, . . . , ZL)i := Di,ℓ(Zℓ)
L∏

k=ℓ+1

Z⊤
k Di,k(Zk)a(hi(Z1, . . . , Zℓ−1))

⊤ ∈ Rmℓ×mℓ−1

where

Di,ℓ(Zℓ) := diag(φ′(Zℓhi(Z1, . . . , Zℓ−1))), ∈ Rmℓ×mℓ

hi(Z1, . . . , Zℓ−1) := φ(Zℓ−1(φ(Zℓ−2 · · · (φ(Z1xi))))) ∈ Rmℓ−1

Fact 4.7.16. Let Jℓ denote the function be defined as Definition 4.7.15. For any t ∈ {0, . . . , T},
we have

ft+1 − ft =
(∫ 1

0

JL((1− s)W (t) + sW (t+ 1))ds

)⊤

· vec(WL(t+ 1)−WL(t)),

Proof. For i ∈ [n], consider the i-th coordinate.

(ft+1 − ft)i =
∫ 1

0

f((1− s)W (t) + sW (t+ 1), xi)
′ds
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=

∫ 1

0

(
∂f

∂WL

((1− s)W (t) + sW (t+ 1), xi)

)⊤

· vec(WL(t+ 1)−WL(t))ds

=

(∫ 1

0

JL((1− s)W (t) + sW (t+ 1))ids

)⊤

· vec(WL(t+ 1)−WL(t)),

Thus, we complete the proof.

Fact 4.7.17. For any t ∈ {0, . . . , T}, we have Jℓ(W1(t), . . . ,WL(t)) = Jℓ,t.

Proof. In order to simplify the notation, we drop the term t below.
We note that for i ∈ [n], the i-th row of matrix Jℓ,t is defined as

Di,ℓ(
L∏

k=ℓ+1

W⊤
k Di,k)ah

⊤
i,ℓ−1,

where

Di,ℓ = diag(φ′(Wℓhi,ℓ−1)),

hi,ℓ−1 = φ(Wℓ−1(φ(Wℓ−2 . . . (φ(W1xi))))),

this is essentially the same as hi(W1, . . . ,Wℓ−1) and Di,ℓ(Wℓ). This completes the proof.

We state the range we require for parameter R̃ and R:
Definition 4.7.18. We choose R̃ so that

2√
m
· n
λL
≤ R̃ ≤ min{ 1

L4.5 log3m
,
λL
n
}.

Recall that R is the scale-up version of R̃, hence

n

λL
≤ R ≤ min{ 1

L4.5 log3m
,
λL
n
} ·
√
m.

Remark 4.7.19. Recall that the sparsity parameter s is directly related to R̃: s = O(mR̃2/3L),
hence to ensure the sparsity is small, we shall pick R̃ as small as possible.

Next, we pick the value of m:
Definition 4.7.20. We choose m to be

m ≥ Ω(n4Lλ−4
L ).

We use induction to prove the following two claims recursively.
Definition 4.7.21 (Induction hypothesis 1). Let t ∈ [T ] be a fixed integer. We have

∥WL,r(t)−WL,r(0)∥2 ≤ R/
√
m

holds for any r ∈ [m].
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Definition 4.7.22 (Induction Hypothesis 2). Let t ∈ [T ] be a fixed integer. We have

∥ft − y∥2 ≤
1

3
∥ft−1 − y∥2.

Suppose the above two claims hold up to t, we prove they continue to hold for time t + 1.
The second claim is more delicate, we are going to prove it first and we define

Jℓ,t,t+1 :=

∫ 1

0

Jℓ
(
(1− s)Wt + sWt+1

)
ds,

where Jℓ is defined as Definition 4.7.15.
Lemma 4.7.23. Let g⋆L := (JL,tJ

⊤
L,t)

−1(ft − y). We have

∥ft+1 − y∥2 ≤ ∥ft − y − JL,tJ⊤
L,tgL,t∥2

+ ∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2

+ ∥(JL,t − JL,t,t+1)J
⊤
ℓ,t(gL,t − g⋆L)∥2. (4.7)

Proof. Consider the following computation:

∥ft+1 − y∥2
= ∥ft − y + (ft+1 − ft)∥2
= ∥ft − y + JL,t,t+1 · vec(WL,t+1 −WL,t)∥2
= ∥ft − y − JL,t,t+1 · J⊤

L,tgL,t∥2
= ∥ft − y − JL,tJ⊤

L,tgL,t + JL,tJ
⊤
L,tgL,t − JL,t,t+1J

⊤
L,tgL,t∥2

≤ ∥ft − y − JL,tJ⊤
L,tgL,t∥2 + ∥(JL,t − JL,t,t+1)J

⊤
L,tgL,t∥2

≤ ∥ft − y − JL,tJ⊤
L,tgL,t∥2 + ∥(JL,t − JL,t,t+1)J

⊤
L,tg

⋆
L∥2 + ∥(JL,t − JL,t,t+1)J

⊤
L,t(gL,t − g⋆L)∥2,

The second step follows from the definition of JL,t,t+1 and simple calculus.

Claim 4.7.24 (1st term in Eq. (4.7)). We have

∥ft − y − JL,tJ⊤
L,tgL,t∥2 ≤

1

9
∥ft − y∥2.

Proof. We have

∥ft − y − JL,tJ⊤
L,tgL,t∥2 ≤ ε0∥ft − y∥2

≤ 1

9
∥ft − y∥2, (4.8)

since gL,t is an ε0 (ε0 ≤ 1
9
) approximate solution to the regression problem

min
g
∥JL,tJ⊤

L,tg − (ft − y)∥2.
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Claim 4.7.25 (2nd term in Eq. (4.7)). We have

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤

1

9
∥ft − y∥2.

Proof. We bound the second term in Eq. (4.7) as follows:

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤

L,tg
⋆
L∥2

= ∥JL,t − JL,t,t+1∥ · ∥J⊤
L,t(JL,tJ

⊤
L,t)

−1 · (ft − y)∥2
≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤

L,t(JL,tJ
⊤
L,t)

−1∥ · ∥ft − y∥2. (4.9)

We bound these term separately.
For the first term in Eq. (4.9),

∥JL,t − JL,t,t+1∥ =
∥∥∥∥JL(Wt)−

∫ 1

0

JL((1− s)Wt + sWt+1)ds

∥∥∥∥
≤
∫ 1

0

∥JL(Wt)− JL((1− s)Wt + sWt+1)∥ ds

≤
∫ 1

0

∥JL(Wt)− JL(W0)∥+ ∥JL(W0)− JL((1− s)Wt + sWt+1)∥ ds

≤ ∥JL(Wt)− JL(W0)∥+
∫ 1

0

∥JL(W0)− JL((1− s)Wt + sWt+1)∥ ds

≤ Õ(n1/2R1/2/m1/4), (4.10)

where by Fact 4.7.17, we know ∥JL(Wt)− JL(W0)∥ = ∥JWL(t)−JWL(0)∥ ≤ Õ(n1/2R1/2/m1/4),
we use Lemma 4.7.13 in the last inequality.

For the term
∫ 1

0
∥JL(W0)− JL((1− s)Wt + sWt+1)∥ ds, we analyze the following:

∥(1− s) · vec(WL(t)) + s · vec(WL(t+ 1))− vec(WL(0))∥2
≤ (1− s) · ∥vec(WL(t))− vec(WL(0))∥2 + s · ∥vec(WL(t+ 1))− vec(WL(0))∥2
= (1− s) · ∥WL(t)−WL(0)∥F + s · ∥WL(t+ 1)−WL(0)∥F
≤ O(R).

This means the perturbation of (1−s)WL(t)+sWL(t+1) with respect to WL(0) is small, hence
∥JL(W0)− JL((1− s)Wt + sWt+1)∥ = Õ(n1/2R1/2/m1/4).

Furthermore, we have

∥J⊤
L,t(JL,tJ

⊤
L,t)

−1∥ = 1

σmin(J⊤
L,t)
≤
√

2/λL, (4.11)

where the second inequality follows from σmin(JL,t) =
√
λmin(JL,tJ⊤

L,t) ≥
√
λL/2 (see Lemma 4.6.8).

Combining Eq. (4.9), (4.10) and (4.11), we have

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤ Õ(n1/2R1/2/m1/4) · λ−1/2

L · ∥ft − y∥2

≤ 1

9
∥ft − y∥2, (4.12)

where the last step follows from choice of m (Definition 4.7.20).
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Claim 4.7.26 (3rd term in Eq. (4.7)). We have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤

1

9
∥ft − y∥2

Proof. We can show

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤

L,t∥ · ∥gL,t − g⋆L∥2. (4.13)

Moreover, one has

λ

2
∥gL,t − g⋆L∥2 ≤ λmin(JL,tJ

⊤
L,t) · ∥gL,t − g⋆L∥2

≤ ∥JL,tJ⊤
L,tgL,t − JL,tJ⊤

L,tg
⋆
L∥2

= ∥JL,tJ⊤
L,tgL,t − (ft − y)∥2

≤
√
λL/n

2
· ∥ft − y∥2. (4.14)

The first step comes from λmin(JL,tJ
⊤
L,t) = λmin(GL,t) ≥ λL/2 (see Lemma 4.6.8). The last step

follows from gL,t is an ε0 (ε0 ≤
√
λL/n) approximate solution to the regression.

Consequently, we have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤

L,t∥ · ∥gL,t − g⋆L∥2

≤ Õ(n1/2R1/2/m1/4) · Õ(n1/2) · 2√
nλL

· ∥ft − y∥2

= Õ(
n1/2R1/2

m1/4λ
1/2
L

) · ∥ft − y∥2.

Note that, for the 2nd step, it follows from Eq. (4.10) and (4.14) and the fact that ∥JL,t∥ ≤ O(
√
n)

(see Lemma 4.7.13).
Finally, we have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ Õ(

n1/2R1/2

m1/4λ
1/2
L

) · ∥ft − y∥2 (4.15)

≤ 1

9
∥ft − y∥2. (4.16)

The last step follows from choice of m (Definition 4.7.20).

Lemma 4.7.27 (Putting it all together). We have

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2. (4.17)

Proof. Combining Eq. (4.7), (4.8), (4.12), and (4.15), we have proved the second claim, i.e.,

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2.
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4.7.6 Bounds on the Movement of Weights
Lemma 4.7.28. Let R be chosen as in Definition 4.7.18, then the following holds:

∥WL,r(t+ 1)−WL,r(0)∥2 ≤ R/
√
m.

Proof. First, we have

∥gL,t∥2 ≤ ∥g⋆L∥2 + ∥gL,t − g⋆L∥2
= ∥(JL,tJ⊤

L,t)
−1(ft − y)∥2 + ∥gL,t − g⋆L∥2

≤ ∥(JL,tJ⊤
L,t)

−1∥ · ∥(ft − y)∥2 + ∥gL,t − g⋆L∥2

≤ 1

λL
· ∥ft − y∥2 +

1√
nλL

· ∥ft − y∥2

≲
1

λL
· ∥ft − y∥2 (4.18)

where the third step is owing to Eq. (4.14), and the final step is due to the fact that 1/
√
nλL ≤

1/λL.
Then

∥WL,r(k + 1)−WL,r(k)∥2 =
∥∥∥ n∑
i=1

1√
m
arh

⊤
i,L−11[⟨WL,r(k), hi,L−1⟩ ≥ 0]gL,k,i

∥∥∥
2

≤ O( 1√
m
)

n∑
i=1

|gL,k,i|

≤ O(
√
n√
m
) · ∥gL,k∥2

≤ O(
√
n√
m
) · 1

λL
· ∥fk − y∥2

≤ O( n1/2

2kλLm1/2
) · ∥f0 − y∥2

≤ Õ( n

2kλLm1/2
).

The first step follows from the update rule, the second step is by triangle inequality, the third step
uses the fact the ℓ1 norm of a vector is upper bounded by

√
n times the ℓ2 norm, the fourth step

is by Eq. (4.18), and the last step is by each entry of f0 and y is of order Õ(1).
Consequently, we have

∥WL,r(t+ 1)−WL,r(0)∥2 ≤
t∑

k=0

∥WL,r(k + 1)−WL,r(k)∥2

≤
t∑

k=0

Õ(
n

2kλLm1/2
)
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≤ Õ( n

λLm1/2
).

By the choice ofR (Definition 4.7.18), we know this is upper bounded byR/
√
m. This concludes

our proof.

4.8 Bounds on the Intermediate Layer Output with Shifted
ReLU

In this section, we prove a technical lemma (Lemma 4.7.8) involving truncated gaussian distri-
bution, which correlates to the shifted ReLU activation we use.
Definition 4.8.1 (Truncated Gaussian distribution). Suppose X ∼ N (0, σ2). Let b ∈ R. Then,
we say a random variable Y follows from a truncated Gaussian distribution Nb(0, σ2) if Y =
X|X ≥ b. The probability density function for Nb(0, σ2) is as follows:

f(y) =
1

σ(1− Φ(b/σ))
· 1√

2π
e−y

2/(2σ2) y ∈ [b,∞),

where Φ(·) is the standard Gaussian distribution’s CDF.
Fact 4.8.2 (Properties of truncated Gaussian distribution). For b ∈ R, suppose X ∼ Nb(0, σ2).
Let β := b/σ. Then, we have

• E[X] = σφ(β)
1−Φ(β)

, where φ(x) := 1√
2π
e−x

2/2.
• Var[X] = σ2(1 + βφ(β)/(1− Φ(β))− (φ(β)/(1− Φ(β)))2).
• X/σ ∼ Nb/σ(0, 1).
• When σ = 1, X is C(b+ 1)-subgaussian, where C > 0 is an absolute constant.

Lemma 4.8.3 (Concentration inequality for b-truncated chi-square distribution). For b ∈ R,
n > 0, let X ∼ χ2

b,n; that is, X =
∑n

i=1 Y
2
i where Y1, . . . , Yn ∼ Nb(0, 1) are independent

b-truncated Gaussian random variables. Then, there exist two constants C1, C2 such that for any
t > 0,

Pr

[∣∣∣∣X − n(1 + bφ(b)

1− Φ(b)
)

∣∣∣∣ ≥ nt

]
≤ exp

(
−C1nt

2/b4
)
+ exp

(
−C2nt/b

2
)
.

In particular, we have

Pr [|X − n(1 + b(b+ 1))| ≥ t] ≤ exp
(
−C1t

2/(nb4)
)
+ exp

(
−C2t/b

2
)
.

Proof. Since we know that Yi ∼ Nb(0, 1) is C(b + 1)-subgaussian, it implies that Y 2
i is a sub-

exponential random variable with parameters (4
√
2C2(b + 1)2, 4C2(b + 1)2). Hence, by the

standard concentration of sub-exponential random variables, we have

Pr

[∣∣∣∣∣
n∑
i=1

Y 2
i − nE[Y 2

i ]

∣∣∣∣∣ ≥ nt

]
≤

2 exp
(
− nt2

2·32C4(b+1)4

)
if nt ≤ 8C2(b+ 1)2

2 exp
(
− nt

2·4C2(b+1)2

)
otherwise
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≤ 2 exp
(
−C1nt

2/b4
)
+ 2 exp

(
−C2nt/b

2
)
.

Fact 4.8.4. Let h ∈ Rp be fixed vectors and h ̸= 0, let b > 0 be a fixed scalar, W ∈ Rm×p

be random matrix with i.i.d. entries Wi,j ∼ N (0, 2
m
) and vector v ∈ Rm defined as vi =

φ((Wh)i) = 1[(Wh)i ≥ b](Wh)i. Then
• |vi| follows i.i.d. from the following distribution: with probability 1− e−b2m/(4∥h∥2), |vi| =
0, and with probability e−b

2m/(4∥h∥2), |vi| follows from truncated Gaussian distribution
Nb(0, 2

m
∥h∥22).

• m∥v∥22
2∥h∥22

is in distribution identical to χ2
b′,ω (b′-truncated chi-square distribution of order ω)

where ω follows from binomial distribution B(m, e−b2m/(4∥h∥2)) and b′ =
√
m/2

∥h∥2 b.

Proof. We assume each vectorWi is generated by first generating a gaussian vector g ∼ N (0, 2
m
I)

and then setting Wi = ±g where the sign is chosen with half-half probability.
Now, |⟨Wi, h⟩| = |⟨g, h⟩| only depends on g, and is in distribution identical toNb(0, 2

m
∥h∥22).

Next, after the sign is determined, the indicator 1[(Wih)i ≥ b] is 1 with probability e−b2m/(4∥h∥2)

and 0 with probability 1− e−b2m/(4∥h∥2).
Therefore, |vi| satisfies the aforementioned distribution.
As for ∥v∥22, letting ω ∈ {0, 1, . . . ,m} be the variable indicates how many indicators are 1,

then ω ∼ B(m, e−b2m/(4∥h∥2)) and m∥v∥22
2∥h∥22

∼ χ2
b′,ω, where b′ =

√
m/2

∥h∥2 b.

Fact 4.8.5 (Gaussian tail bound). For any b > 0, we have

e−b
2/2

C(b+ 1)
≤ 1− Φ(b) ≤ e−b

2/2,

where C is an absolute constant.
We prove a truncated Gaussian version of Lemma 7.1 of [5].

Lemma 4.8.6. Let b > 0 be a fixed scalar. Let the activation function be defined as

φ(x) :=
√
cb1[x >

√
2/mb]x,

where

cb := (2(1− Φ(b) + bφ(b)))−1.

Let ε ∈ (0, 1), then over the randomness of W (0), with probability at least

1−O(nL) · exp(−Ω(m exp(−b2/2)ε2/L2)),

we have

∥hi,ℓ∥2 ∈ [1− ε, 1 + ε], ∀i ∈ [n], ℓ ∈ [L].
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Proof. We only prove for a fixed i ∈ [n] and ℓ ∈ {0, 1, 2, . . . , L} because we can apply union
bound at the end. Below, we drop the subscript i for notational convenience, and write hi,ℓ and
xi as hℓ and x respectively.

According to Fact 4.8.4, fixing any hℓ−1 ̸= 0 and lettingWℓ be the only source of randomness,
we have

m

2
∥hℓ∥22 ∼ χ2

b/∥h∥2,ω, with ω ∼ B(m, 1− Φ(b′)),

where b′ := b/∥hℓ−1∥2.
We first consider the ℓ = 1 case. Then, we have ∥hℓ−1∥2 = 1, and b′ = b. Let Pb := 1−Φ(b).

By Chernoff bound, for any δ ∈ (0, 1), we have

Pr[ω ∈ (1± δ)mPb] ≥ 1− exp(−Ω(δ2Pbm)).

In the following proof, we condition on this event. By Fact 4.8.5,

ω ∈ (1± δ)Pbm ⇐⇒ ω ∈

[
(1− δ) e−b

2/2

C(b+ 1)
m, (1 + δ) exp(−b2/2)m

]
.

By Lemma 4.8.3, we have

Pr

[∣∣∣∣m2 ∥h1∥22 − ω
(
1 +

bφ(b)

Pb

)∣∣∣∣ > t

]
≤ exp

(
−Ω(t2/(ωb4))

)
+ exp

(
−Ω(t/b2)

)
Note that

ω

(
1 +

bφ(b)

Pb

)
∈ (1± δ)mPb + (1± δ)mPb ·

bφ(b)

Pb
= (1± δ)(Pb + bφ(b)) ·m.

Let c−1
b := 2(Pb + bφ(b)) be the normalization constant. Then, we have

Pr[|cb∥h1∥22 − (1± δ)| > 2tcb/m] ≤ exp
(
−Ω(t2/(ωb4))

)
+ exp

(
−Ω(t/b2)

)
.

We want 2tcb/m = O(δ), i.e., t = O(δc−1
b m). Then, we have ωt = mΩ(1) > b2. Hence, by

Lemma 4.8.3, we actually have

Pr[|cb∥h1∥22 − (1± δ)| > O(δ)] ≤ exp
(
−Ω(δm/(cbb2))

)
.

By taking δ = ε/L, we get that

∥h1∥22 ∈ [1− ε/L, 1 + ε/L]

holds with probability at least

1− exp(−Ω(ε2Pbm/L2))− exp
(
−Ω(εm/(cbb2L))

)
≥ 1− exp(−Ω(ε2Pbm/L2)),

where the last step follows from 1
cbb2

= Pb+bφ(b)
b2

= Θ(Pb).
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We can inductively prove the ℓ > 1 case. Since the blowup of the norm of h1 is 1 ± ε/L,
the concentration bound is roughly the same for hℓ for ℓ ≥ 2. Thus, by carefully choosing the
parameters, we can achieve ∥hℓ∥22 ∈ [(1− ε/L)ℓ, (1 + ε/L)ℓ] with high probability.

In this end, by a union bound over all the layers ℓ ∈ [L] and all the input data i ∈ [n], we get
that

∥hi,ℓ∥2 ∈ [1− ε, 1 + ε]

with probability at least

1−O(nL) exp(−Ω(ε2Pbm/L2)),

which completes the proof of the lemma.
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Appendix A

The AFN Data Structure

In this section, we include the algorithm and correctness analysis of the AFN data structure.
Throughout this section, we use n to denote the number of data points, and d denote the

dimension of the data.

A.1 Algorithm
The AFN data structure we are going to use has similar high-level idea as that of Indyk [39], but
we give an improved analysis on the overall running time.

In this section, we present our algorithm that solves approximate Min-IP efficiently. We start
with presenting the SORTEDLIST data structure in Alg. 23.

Algorithm 23 Helper data structure SORTEDLIST

1: data structure SORTEDLIST ▷ This data structure can be implemented via various
self-balancing binary search trees

2: INIT(P ∈ (R× Rd)n) ▷ n points each has a real key and d dimensional data points,
O(n log n) time

3: INSERT(p ∈ R× Rd) ▷ Insert a single key-value pair, O(log n) time
4: DELETE(p ∈ R× Rd) ▷ Remove a single key-value pair, O(log n) time
5: SEARCHLEQ(T ∈ R) ▷ Output a subtree with key less than or equal to T , O(log n) time
6: SEARCHGEQ(T ∈ R) ▷ Output a subtree with key greater than or equal to T , O(log n)

time
7: MAX() ▷ Return max key-value pair, O(log n) time
8: MIN() ▷ Return min key-value pair, O(log n) time
9: end data structure

Next, we introduce a task called (c, r)-DFN defined in Task A.1.1.
Task A.1.1. Let P ⊂ Rd be an n-point dataset. Let c > 1 We define the (c, r)-DFN problem as
follows: given a point q ∈ Rd and r > 0, if there exists a point p ∈ P such that, if ∥p− q∥2 ≥ r,
then the data structure reports a point p̂ ∈ P such that ∥p̂ − q∥2 ≥ r/c, otherwise, it reports
“Fail”.
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The data structure for (c, r)-DFN shown in Alg. 24 and Alg. 25 is the building block of our
approximate Min-IP algorithm.

Algorithm 24 Data structure DFN: members, init, insert and delete
1: data structure DFN ▷ Theorem A.3.1
2:
3: members
4: ℓ ∈ N+ ▷ Number of random directions
5: G ∈ Rℓ×d ▷ Random Gaussian vectors
6: SORTEDLISTL1, . . . , Lℓ ▷ ℓ sorted lists, Alg. 23
7: t ∈ R+ ▷ Threshold parameter
8: c ∈ (1,∞) ▷ Approximation parameter
9: end members

10:
11: procedure INIT(A ∈ Rn×d, c ∈ (1,∞))
12: c← c
13: ℓ← Θ(n1/c2 log(1−1/c)/2 n)
14: t← Θ(

√
log n) ▷ t is the solution to et2/2/t = 2n

15: Gi,j ∼ N (0, 1), ∀i ∈ [ℓ],∀j ∈ [d] ▷ Each entry is a standard Gaussian
16: SORTEDLIST L1, . . . , Lℓ ▷ Alg. 23
17: Let gi denote the i-th row of G and Ai denote the i-th row of A
18: for i = 1→ ℓ do
19: Pi ← {(⟨gi, aj⟩, aj) : j ∈ [n]}
20: Li.INIT(Pi) ▷ Alg. 23
21: end for
22: end procedure
23:
24: procedure INSERT(p ∈ Rd)
25: for i = 1→ ℓ do
26: k ← ⟨gi, p⟩
27: Li.INSERT((k, p)) ▷ Alg. 23
28: end for
29: end procedure
30:
31: procedure DELETE(p ∈ Rd)
32: for i = 1→ ℓ do
33: k ← ⟨gi, p⟩
34: Li.DELETE((k, p)) ▷ Alg. 23
35: end for
36: end procedure
37:
38: end data structure
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Algorithm 25 Data structure DFN: query
1: data structure DFN ▷ Theorem A.3.1
2:
3: procedure QUERY(q ∈ Rd, r ∈ R+)
4: T ← rt/c
5: i← 1, m← 0
6: S ← ∅
7: while i ≤ ℓ and m ≤ 2ℓ+ 1 do
8: dist← ⟨gi, q⟩
9: T1 ← Li.SEARCHLEQ(dist− T )

10: T2 ← Li.SEARCHGEQ(T + dist)
11: ▷ Search for the subtree such that |⟨gi, q − p⟩| ≥ T
12: if m+ |T1|+ |T2| ≤ 2ℓ+ 1 then
13: S ← S ∪ T1 ∪ T2
14: m← m+ |T1|+ |T2|
15: else
16: Add points from T1 and T2 to S until |S| = 2ℓ+ 1
17: m← 2ℓ+ 1
18: end if
19: i← i+ 1
20: end while
21: for p ∈ S do
22: if ∥p− q∥2 ≥ r/c then
23: return p
24: else
25: return “Fail”
26: end if
27: end for
28: end procedure
29:
30: end data structure

Finally, in Alg. 26 and Alg. 27, we present our algorithm that solves AFN (see Defini-
tion 2.3.5). As AFN is the dual problem of approximate Min-IP, this algorithm could be used to
solve approximate Min-IP.
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Algorithm 26 AFN Algorithm: members, init, insert and delete
1: data structure AFN ▷ Theorem A.4.2
2:
3: members
4: ε ∈ (0, 1)
5: δ ∈ (0, 1)
6: s ∈ N+ ▷ Number of data structures
7: DFN dfn1, dfn2, . . . , dfns
8: bw ∈ R+ ▷ Boxwidth of all points
9: SORTEDLIST T1, . . . , Td ▷ Max/min value for each dimension

10: end members
11:
12: procedure INIT(A ∈ Rn×d, c ∈ (1,∞), δ ∈ (0, 1))
13: ε← c− 1
14: s← Θ(log log(d/δ))
15: dfni.INIT(A, c) for all i ∈ [s] ▷ Alg. 24
16: for j = 1→ d do
17: Tj .INIT(A∗,j) ▷ Alg. 23
18: end for
19: bw← maxj∈[d] |Tj.MAX()− Tj.MIN()| ▷ 1d boxwidth
20: end procedure
21:
22: procedure INSERT(p ∈ Rd)
23: dfni.INSERT(p) for all i ∈ [s] ▷ Alg. 24
24: for j = 1→ d do
25: Tj.INSERT(pj) ▷ Alg. 23
26: end for
27: bw← maxj∈[d] |Tj.MAX()− Tj.MIN()|
28: end procedure
29:
30: procedure DELETE(p ∈ Rd)
31: dfni.DELETE(p) for all i ∈ [s] ▷ Alg. 24
32: for j = 1→ d do
33: Tj.DELETE(pj) ▷ Alg. 23
34: end for
35: bw← maxj∈[d] |Tj.MAX()− Tj.MIN()|
36: end procedure
37:
38: end data structure
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Algorithm 27 AFN Algorithm: query
1: data structure AFN ▷ Theorem A.4.2
2:
3: procedure QUERY(q ∈ Rd)
4: lo← bw/2
5: hi←

√
d/ε · bw

6: Binary search over the range [lo, hi] to search for r ∈ R+,
7: with the predicate dfni.QUERY(q, r) for i ∈ [s]
8: ▷ Θ(log(d/εδ)) rounds
9: for i = 1→ s do

10: p← dfni.QUERY(q, r)
11: if p ̸= “Fail” then
12: return p
13: end if
14: end for
15: return “Fail”
16: end procedure
17:
18: end data structure

A.2 Success and Failure Probability of Random Projection
In this section, we analyze both the success and failure probability of random projection. To start
with, we supply a technical lemma that upper bounds the failure probability that two points are
far in the random direction but close in the original space.
Lemma A.2.1. Let t be the solution to et

2/2/t = 2n and T = rt/c. Let p̂ be a point such that
∥p̂− q∥2 < r/c. Then

Pr
g∼N (0,I)

[|⟨g, p̂⟩ − ⟨g, q⟩| ≥ T ] ≤ 1/n.

Proof. Observe that

Pr[|⟨g, p̂⟩ − ⟨g, q⟩| ≥ T ] = Pr

[
|⟨g, p̂− q⟩|
∥p̂− q∥2

≥ T/∥p̂− q∥2
]

≤ Pr

[
|⟨g, p̂− q⟩|
∥p̂− q∥2

≥ T

r/c

]
= Pr

[
|⟨g, p̂− q⟩|
∥p̂− q∥2

≥ t

]
≤ 2 exp(−t2/2)/t
≤ 1/n.

The second step follows from ∥p̂ − q∥2 < r/c. For the fourth step, note that since standard
Gaussian is 2-stable (Fact 2.1.1), we know that ⟨g,p̂−q⟩

∥p̂−q∥2 follows a standard Gaussian distribution,
so we can apply part 1 of the Gaussian concentration bound (Fact 2.1.2).
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Next, we provide a lower bound on the success probability that when two points are far away
from each other in the random direction, then they are far away in the original space.
Lemma A.2.2. Let t be the solution to et

2/2/t = 2n and T = rt/c. Let ℓ = O(n1/c2 log(1−1/c)/2 n).
Let p be a point such that ∥p− q∥2 ≥ r. Then

Pr
g∼N(0,I)

[|⟨g, p⟩ − ⟨g, q⟩| ≥ T ] ≥ 1/ℓ.

Proof. The proof is similar to Lemma A.2.1, consider

Pr[|⟨g, p⟩ − ⟨g, q⟩| ≥ T ] = Pr

[
|⟨g, p− q⟩|
∥p− q∥2

≥ T

∥p− q∥2

]
≥ Pr

[
|⟨g, p− q⟩|
∥p− q∥2

≥ T

r

]
= Pr

[
|⟨g, p− q⟩|
∥p− q∥2

≥ t

c

]
≥ 2B · exp(−(t/c)2/2)/(t/c)

=
2B · c(exp(−t2/2)/t)1/c2

t1−1/c2

=
2Bc

n1/c2t1−1/c2
.

The second step follows from ∥p − q∥2 ≥ r, the fourth step follows from Fact 2.1.2. Note that
by picking ℓ = O(n1/c2 log(1−1/c2)/2 n), we get our desired result.

A.3 Guarantees of DFN Data Structure
In this section, we setup the theoretical guarantees of Alg. 24. We state and prove the following
theorem regarding our DFN data structure.
Theorem A.3.1. Let P ⊂ Rd be an n-point dataset and c > 1. There exists a randomized dy-
namic data structure (Alg. 24, 25) that solves c-DFN task (see Task A.1.1) usingO(n1+1/c2 log n+
dn1/c2 log n) space with the following operations:

• INIT: Preprocess P in O(n1+1/c2 log2 n+ dn1/c2 log n) time;
• QUERY: Given a point q ∈ Rd and r > 0, either outputs a point p̂ ∈ P such that
∥p̂ − q∥2 ≥ r/c with constant probability or outputs “Fail” in O(n1/c2(d + log n) log n)
time;

• INSERT: Insert a point p ∈ Rd into the data structure in O(n1/c2 log2 n) time;
• DELETE: Delete a point p ∈ P in O(n1/c2 log2 n) time.

Proof. We prove four corresponding parts of Theorem A.3.1 accordingly.

Space: Storing the ℓ×d standard Gaussian matrix takes O(ℓd) space. Maintaining ℓ sorted list
takes O(ℓn) space. Thus, the total space is

O(ℓ(d+ n)) = O(n1+1/c2 log(1−1/c)/2 n+ dn1/c2 log(1−1/c)/2 n).
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Procedure INIT: By Alg. 24, the initiation needs to initialize an ℓ × d standard Gaussian
matrix, which takes O(ℓd) time, processing all points into sorted lists takes O(ℓ(d + n log n))
time. Thus, the total time for INIT is

O(ℓ(d+ n log n)) = O(n1+1/c2 log n log(1−1/c)/2 n+ dn1/c2 log(1−1/c)/2 n).

Procedure QUERY: We first show the correctness. Our goal is to prove that with constant
probability, our data structure retrieves a pair (p, i) among the first 2ℓ + 1 pairs where each
point p satisfies |⟨gi, p⟩ − ⟨gi, q⟩| ≥ T and at least one of the point p has the guarantee that
∥p− q∥2 ≥ r/c.

We first justify that picking 2ℓ + 1 pairs suffices for at least one point has desired distance
guarantee, with constant probability. Let Yp̂,i denote the event that a pair (p̂, i) ∈ P × [ℓ] has the
property that ∥p̂− q∥2 < r/c and |⟨gi, q⟩ − ⟨gi, p̂⟩| ≥ T . Then

E[
∑
(p̂,i)

Yp̂,i] = nℓ · Pr[Yp̂,i]

≤ nℓ · 1
n

= ℓ.

The second step follows from Lemma A.2.1. Note that E[
∑

(p̂,i) Yp̂,i] is the expected total number
of such pairs, this means via a Markov bound, with the probability at least 1/2, there are no more
than 2ℓ such pairs. Thus, if we retrieve exactly 2ℓ + 1 such pairs, there must be at least one pair
(p, i) with ∥p − q∥2 ≥ r/c. Next, we analyze the failure probability when picking 2ℓ + 1 pairs.
Note that for a point p ∈ P with |⟨gi, p⟩ − ⟨gi, q⟩| ≥ T , the probability that ∥p− q∥2 < r/c is at
most 1− 1/ℓ, due to Lemma A.2.2. This means the probability that some i among the first 2ℓ+1
pairs has the property that ∥p− q∥2 ≥ r/c is at least

1− (1− 1/ℓ)2ℓ+1 ≥ 1− 1/e,

this means we have a constant probability of success. Thus, our DFN data structure has a constant
probability to output a point which is not within the distance of r/c from q.

For the running time, note that we do at most ℓ rounds of search, at each round, we search the
sorted lists, so we pay a total of O(ℓ log n) for searching the lists. Finally, we need to examine
these 2ℓ+ 1 pairs for their distances, this takes O(ℓd) time. Therefore, the total running time is

O(n1/c2 log n log(1−1/c2)/2 n+ dn1/c2 log(1−1/c2)/2 n).

Procedure INSERT and DELETE: It is obvious that the running time of both procedures is
O(ℓ(d+ log n)), which is the same as the time of procedure QUERY.

A.4 Guarantees of AFN Data Structure
In this section we provide an analysis for an AFN data structure implemented via DFN data
structure. The idea is to use binary search to find the correct distance r. The search range is
determined via the notion of box width.
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Definition A.4.1. Given a dataset P ⊂ Rd, we define the box width of P , denoted as bw(P ) or
bw if P is clear from context as

bw(P ) := max
i∈[d]

|max
p∈P

(pi)−min
p∈P

(pi)|.

Note that pi denotes the i-th coordinate of point p.
We now proceed with the formal statement and proof.

Theorem A.4.2. Let P ⊂ Rd be an n-point dataset, c > 1, r > 0 and δ > 0. Let ε = c − 1.
There exists a randomized dynamic data structure (Alg. 26, 27) that solves (c + δ, r)-AFN task
using space O((n1+1/c2 log n+ dn1/c2 log n) log log(d/εδ) + dn) with the following operations:

• INIT: Preprocess P in O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ)) time;
• QUERY: Given a point q ∈ Rd, returns a (c + δ)-approximate furthest neighbor p ∈ P

with constant probability in O(n1/c2(d+ log n) log n log(d/εδ) log log(d/εδ)) time;
• INSERT: Insert a point p ∈ Rd into the data structure in O(n1/c2 log2 n log log(d/εδ) +
d log n) time;

• DELETE: Delete a point p ∈ Rd from the data structure in O(n1/c2 log2 n log log(d/εδ) +
d log n) time.

Proof. We start with the space complexity

Space: We note that there are s = O(log log(d/εδ)) DFN data structures to initialize, each data
structure takes O(n1+1/c2 log n + dn1/c2 log n) space. Moreover. the d different sorted lists for
each dimension takes O(dn) space. Therefore, the final space is

O((n1+1/c2 log n+ dn1/c2 log n) log log(d/εδ) + dn)

Next, we prove four parts separately.

Procedure INIT: We note that there are s = O(log log(d/εδ))DFN data structures to initialize,
each data structure takesO(n1+1/c2 log2 n+dn1/c2 log n) time. To initialize d different sorted lists
for each dimension, it takes O(dn log n) time. Finally, computing boxwidth bw takes O(log n)
time. Thus, the total time in initialization phase is

O((n1+1/c2 log2 n+ dn1/c2 log n) log log(d/εδ)).

Procedure QUERY: We need to prove the runtime and correctness of the procedure. For the
runtime, we note that QUERY makes O(log(d/εδ)) calls to binary search with O(log log(d/εδ))
different data structures. Each call takes O(n1/c2(d+ log n) log n) time by Theorem A.3.1. This
completes the proof of runtime.

For correctness, note that for any query q ∈ Rd, if p is its furthest neighbor then ∥p− q∥2 ≥
bw/2 since q must be further from one point defining boxwidth. On the other hand, if the distance
from q to the center of box is at least 2

√
d/ε · bw, then any point in P is a (1 + ε)-approximate

furthest neighbor. To see this, note that any point p ∈ P is at most
√
d/2 · bw away from the

center, so the nearest point from the box to the center is at least (2
ε
− 1

2
)
√
d · bw. On the other
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hand, the furthest point on the box to q has a distance (2
ε
+ 1

2
)
√
d · bw, it suffices to show that

(2
ε
+ 1

2
)
√
d · bw/(1 + ε) ≤ (2

ε
− 1

2
)
√
d · bw, since the furthest neighbor to q from dataset P must

have distance smaller than (2
ε
+ 1

2
)
√
d · bw. Note that

(
2

ε
+

1

2
)/(1 + ε) =

4 + ε

2ε(1 + ε)
,

On the other hand,

2

ε
− 1

2
=

4− ε
2ε

=
4 + 3ε− ε2

2ε(1 + ε)
.

Since ε ∈ (0, 1), we always have 3ε− ε2 > ε, as desired.
This gives a lower and upper bound on binary search, namely we search the range [bw/2, 2

√
d/ε·

bw], hence, we need O(log d
εδ
) rounds to achieve a δ-precision solution. This leads to a c(1 +

ε)(1 + δ) = (1 + ε)2(1 + δ)-approximation furthest neighbor. By picking ε as ε/2 and δ as δ/3,
this leads to a (1+ε+δ) = (c+δ)-approximate furthest neighbor. Finally, to amplify the success
probability of each query, we need to use O(log log d

εδ
) different data structures. This completes

the correctness analysis.

Procedure INSERT and DELETE: Both of these procedures require to insert or delete a point
to s different data structures and update the sorted list for each dimension, then compute the new
boxwidth. The insert/delete point step takes O(n1/c2 log2 n log log d

εδ
) time and update the sorted

list takes O(d log n) time. This completes the proof.
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Appendix B

Inverse Maintenance: The Algorithm

In this section, we show how to maintain the vector h inside the matrix, so that a certain block of
the inverse directly gives the desired matrix-vector product Ph. We also give an algorithm that
updates W and h in the data structure.

B.1 Maintaining h for Sketch on the Left
We show how to maintain h inside the matrix, especially for sketching on the left.

We start with the following simple lemma implied by Schur complement.
Lemma B.1.1. Let N ∈ Rn×n and h ∈ Rn, then we have([

N h
01×n −1

])−1

=

[
N−1 N−1h
01×n −1

]
Proof. By Fact 2.6.1, we have that D − CA−1B = −1 and so is its inverse, A−1B = N−1h,
CA−1 = 0. So the top left block is N−1, top right block is N−1h, bottom left block is 0 and
bottom right block is −1.

Using the L matrix we defined in Definition 2.6.5, it is not hard to say that we can augment
the matrix as  L

0h
h


01×3n+d −1


so that the top right block of the inverse is our desired product.
Lemma B.1.2 (Sketch on the left, with vector). Let R ∈ Rn×n be a collection of sketching
matrices, then we have


W−1 A⊤ W−1/2 0 0 0
A 0 0 0 0 0
0 0 −I 0 0 h

W−1/2 0 0 −I 0 h
0 0 0 R −I 0




−1

=

[
⋆ RPh
⋆ ⋆

]
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B.2 Inverse Maintenance Algorithm
In this section, we present a data structure that maintains the big matrix (possibly with h), sup-
ports efficient update, reset and query the matrix-vector product. It is a key data structure to
recover the results in [27, 55, 72].

For simplicity and generality, we consider the matrix without sketching.

Algorithm 28 Projection Maintenance via Inverse Maintenance. Note that we store the inverse
of M , but only update it during the procedure RESET. For UPDATE, we assume the change
happens for at most na entries in at most nb columns. If we are not maintaining h, we can set h
to 0.

1: data structure PROJECTIONMAINTENANCE ▷ Theorem B.2.8
2: members
3: U ∈ Rn×n

4: A ∈ Rd×n

5: M ∈ R(3n+d+1)×(3n+d+1)

6: a ∈ (0, 1) ▷ Entry change threshold
7: b ∈ (0, 1) ▷ Column change threshold
8: X, Y ∈ R(3n+d+1)×nb

▷ Each column of Y has only one nonzero entry
9: Q ∈ Rnb×nb

10: N ∈ R(3n+d+1)×(3n+d+1) ▷ Inverse of M
11: h ∈ Rn

12: end members
13: private:
14: procedure INIT(b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n) ▷ Lemma B.2.4
15: b← b, A← A
16: U ← diag(u)
17: R← R

18: M ←


U−1 A⊤ U−1/2 0 0
A 0 0 0 0
0 0 −I 0 h

(U−1/2)⊤ 0 0 −I h
0 0 0 0 −1


19: X, Y ← 0(3n+d+1)×nb

20: N ←M−1 ▷ Takes O(nω) time
21: Q← 0nb×nb

22: end procedure

Lemma B.2.1 (Update correctness). The output of UPDATE(unew, hnew) in Algorithm 28 satis-
fies:

Q = (I + Y ⊤M−1X)−1

Proof. This follows directly from the invariant that N =M−1. Note that by storing the quantity
(I + Y ⊤M−1X)−1, we can compute the query quickly, as we will show later.
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Lemma B.2.2 (Reset correctness). The output of RESET(Xnew, Y new) in Algorithm 29 satisfies:

N =M−1

Proof.

Nnew = N −NXQY ⊤N

=M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

= (M +XY ⊤)−1

= (Mnew)−1

where the first step follows from N = M−1, the second step follows the matrix Woodbury
formula, and the third step follows from Line 38 in Algorithm 28.

Note at the end of RESET, N and M are updated with the new value. This completes the
proof.

Lemma B.2.3 (Query correctness). The output of QUERY(I ⊂ [n], j ∈ [n]) in Algorithm 29
satisfies:

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

Proof. We have

v = NI,j − (NX)IQY
⊤Nej

= (M−1)I,j − (M−1XQY ⊤M−1ej)I

= (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

where the first step follows from N = M−1, and the second step follows from Q = (I +
Y ⊤NX)−1 = (I + Y ⊤M−1X)−1.

This completes the proof.

Initialization Time
Lemma B.2.4 (Initialization Time). Taking a threshold a ∈ (0, 1), a vector u0 ∈ Rn, a sketching
matrix R ∈ Rn×n, a matrix A ∈ Rd×n and a vector h ∈ Rn as input, INIT (Algorithm 28)
operation takes O(nω) time to complete.

Proof. The running time of INIT (Algorithm 28) operation consists of the following component:

• N ←M−1 takes O(nω) to compute the matrix inverse of M ∈ R(3n+d+1)×(3n+d+1).

Therefore, we complete the proof.
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Update Time
Lemma B.2.5 (Update Time). Taking a vector unew ∈ Rn as input, the UPDATE (Algorithm 28)
operation takes O(na+b + nb·ω) time to complete.

Proof. The running time of UPDATE operation consists of the following components:

• Y ⊤N takes O(nb) time to compute the matrix multiplication between a sparse matrix
Y ⊤ ∈ Rnb×(3n+d+1) where each column of Y only has one non-zero entry and matrix
N ∈ R(3n+d+1)×(3n+d+1).

• (Y ⊤N) · X takes O(na+b)) time to compute the matrix multiplication between Y ⊤N ∈
Rnb×(3n+d+1) and X ∈ R(3n+d+1)×nb .

• Q← S−1 takes o(nbω) time to compute the matrix inverse of S ∈ Rnb×nb .

Therefore, we have:

O(nb) +O(na+b) +O(nbω)

= O(na+b) +O(nbω)

This completes the proof.

Query Time
Lemma B.2.6 (Query Time). Taking I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algo-
rithm 29) operation takes O(n2b + |I| · na) time to complete.

Proof. The running time of QUERY operation consists of the following components:

• v1 ← Y ⊤Nej takes O(nb) time to compute Y ⊤Nej where Y only contains one non-zero
entry per column and ej only has non-zero entry on jth element.

• v2 ← Qv1 takes O(n2b) time to compute the matrix vector multiplication between Q ∈
Rnb×nb and v1 ∈ Rnb .

• L ← (NX)I takes O(|I| · na) time to compute the matrix multiplication between N ∈
R(3n+d+1)×(3n+d+1) and X ∈ R(4n+d)×nb with na nonzero entries, for |I| rows.

• v3 ← Lv2 takes O(|I| · nb) time to compute the matrix vector multiplication between
L ∈ R|I|×nb and v2 ∈ Rnb .

Therefore, we have:

O(nb) +O(n2b) +O(|I| · na) +O(|I| · nb)
= O(n2b + |I| · na)

This completes our proof.
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Reset Time
Lemma B.2.7 (Reset Time). Let Xnew, Y new ∈ R(4n+d)×nc

be the inputs to RESET (Algo-
rithm 29), then RESET takes O(Tmat(n

c, n, n)) time to complete.

Proof. For the simplicity of notation, we use X and Y to denote Xnew and Y new.
The running time of RESET operation consists of the following components:

• L1 ← Y ⊤N takes O(Tmat(n
c, n, n)) time to compute the multiplication between a nc ×

(3n+ d+ 1) matrix and a (3n+ d+ 1)× (3n+ d+ 1) matrix.
• Q← (I+Y ⊤M−1X)−1, it takesO(Tmat(n

c, n, n)) time to compute the product Y ⊤M−1X
and O(nc·ω) time to compute the inverse.

• L2 ← QL1 takes O(Tmat(n
c, nc, n)) time to compute the matrix multiplication between

Q ∈ Rnc×nc and L1 ∈ Rnc×(3n+d+1).
• L3 ← NXL2 takes O(Tmat(n

c, n, n)) time to compute the matrix multiplication between
N ∈ R(3n+d+1)×(3n+d+1) andX ∈ R(3n+d+1)×nc andO(Tmat(n

c, n, n)) time to compute the
matrix multiplication betweenNX ∈ R(3n+d+1)×nc and L2 ∈ Rnc×(3n+d+1). Therefore, the
total time for L3 ← NXL2 is O(Tmat(n

c, n, n)).

Therefore, we have:

O(Tmat(n
c, n, n)) +O(Tmat(n

c, nc, n))

= O(Tmat(n
c, n, n))

This completes the proof.

Main Result
Theorem B.2.8. Let T =

√
n and m = 3n+ d+ 1.

Let A ∈ Rd×n of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero diagonal
entries and h ∈ Rn. There exists a data structure PROJECTIONMAINTENANCE (Algorithm 28
and 29) which supports the following operations:

• INIT(b ∈ (0, 1), u0 ∈ Rn, A ∈ Rd×n, h ∈ Rn): Given threshold b ∈ (0, 1), a vector
u0 ∈ Rn, a sketching matrix R ∈ Rn×n, a matrix A ∈ Rd×n and a vector h ∈ Rn as input,
INIT (Algorithm 28) operation runs in O(nω) time.

• UPDATE(unew ∈ Rn, hnew ∈ Rn): Given a vector unew ∈ Rn and a vector hnew ∈ Rn as
input, the UPDATE (Algorithm 28) operation runs O(na+b + nb·ω) time suppose unew has
at most nb nonzero entries and ∥hnew∥0 + ∥unew∥0 is at most na.

• QUERY(I ⊂ [n], j ∈ [n]): Given I ⊂ [n] and an index j ∈ [n] as input, the QUERY

(Algorithm 29) operation runs in O(n2b + |I| · na) time to return the rows of inverse in set
I and column j.

• RESET(Xnew, Y new): Give matrices Xnew, Y new ∈ Rn×nc
, RESET (Algorithm 29) opera-

tions runs in O(Tmat(n
c, n, n)) time.

Proof. The correctness follows from combining Lemma B.2.1, Lemma B.2.2 and Lemma B.2.3.
The running time follows from combining Lemma B.2.4, Lemma B.2.5, Lemma B.2.6 and

Lemma B.2.7.
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Remark B.2.9. Using this simple Schur complement-based inverse maintenance, we can simplify
the projection maintenance a bit and unify it using the data structure. However, this is not
enough, and even not the key to obtain the speed up for [27, 55, 72], rather, coordinate-wise
embedding, as we have demonstrated earlier, is the most important ingredient for improving the
running time.
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Algorithm 29 Query and Reset
1: data structure PROJECTIONMAINTENANCE ▷ Theorem B.2.8
2:
3: procedure UPDATE(unew ∈ Rn, hnew ∈ Rn) ▷ Lemma B.2.1 and Lemma B.2.5
4: ▷ To run this procedure, we require that unew has at most nb non-zero entries
5: if ∥unew∥0 > nb then
6: return error
7: end if
8: a← ∥unew∥0 + ∥hnew∥0

9: ∆←


(Unew)−1 0 (Unew)−1/2 0 0

0 0 0 0 0
0 0 0 0 hnew

((Unew)−1/2)⊤ 0 0 0 hnew

0 0 0 0 0


10: Let ∆ = XY ⊤ where X ∈ R(3n+d+1)×nb and Y ∈ R(3n+d+1)×nb

▷ X consists of nonzero
entries, Y is a column selection matrix

11: ▷ Each row of Y has only 1 nonzero entry
12: X ← X, Y ← Y
13: S ← I + Y ⊤NX ▷ Compute Y ⊤N takes O(nb) time and Y ⊤NX takes O(na+b) time
14: Q← S−1 ▷ Takes O(nb·ω) time
15: end procedure
16:
17: procedure QUERY(I ⊂ [n], j ∈ [n]) ▷ Lemma B.2.3 and Lemma B.2.6
18: ▷ Compute query using matrix Woodbury formula
19: ▷ Return (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
20: v1 ← Y ⊤ ·N · ej ▷ Takes O(nb) time, v1 ∈ Rnb

21: v2 ← Qv1 ▷ Takes O(n2b) time
22: L← (NX)I ▷ Takes O(|I| · na) time, L ∈ R|I|×nb

23: v3 ← Lv2 ▷ Takes O(|I| · nb) time
24: v ← NI,j − v3
25: return v
26: end procedure
27:
28: procedure RESET(Xnew ∈ R(3n+d+1)×k, Y new ∈ R(3n+d+1)×k) ▷ Lemma B.2.2 and

Lemma B.2.7
29: ▷ To run this procedure, we require that k ≥ na

30: ▷ Compute M−1 explicitly by matrix Woodbury formula
31: ▷ (M +XY ⊤)−1 =M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

32: ▷ Let k = nc

L1 ← (Y new)⊤N ▷ Takes O(Tmat(n
c, n, n)) time

33: Q← (I + (Y new)⊤M−1Xnew)−1 ▷ Takes O(Tmat(n, n, n
c)) time

34: L2 ← QL1 ▷ Takes O(Tmat(n
c, nc, n)) time

35: L3 ← NXnewL2 ▷ Takes O(Tmat(n, n, n
c)) time

36: L← N − L3

37: N ← L
38: M ←M +Xnew(Y new)⊤

39: X ← 0, Y ← 0
40: end procedure
41: end data structure
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Appendix C

Tensor Circulant Transform

In this section, we introduce a novel sketching matrix for tensors: the Tensor Circulant Gaussian
Transform.

C.1 Definitions and Basic Facts
We start with the definitions for Circulant Transform, Tensor Circulant Transform and some basic
useful facts regarding tensor product of matrices.
Definition C.1.1 (Circulant Transform). Let x ∈ Rd be a random vector, whose elements are
i.i.d. Rademacher random variables. Also, let P ∈ Rm×d be a random matrix in which each
row contains a 1 at a uniformly distributed coordinate and zeros elsewhere. Let G ∈ Rd×d be a
circulant matrix generated by x and D ∈ Rd×d be a diagonal matrix whose diagonal elements
are i.i.d. Rademacher random variables. Then, the Circulant Transform is defined as follows:

S = PGD,

where S : Rd → Rm.
Note that since G is a circulant matrix, multiplying G with vector x ∈ Rd only takes time

O(d log d). Therefore, apply the matrix S to vector x ∈ Rd takes time O(d log d+m).
Definition C.1.2 (Tensor Circulant Transform). Let x ∈ Rd be a random vector, whose elements
are i.i.d. Rademacher random variables. Also, let P ∈ Rm×d2 be a random matrix in which each
row contains a 1 at a uniformly distributed coordinate and zeros elsewhere and let G ∈ Rd×d be
a circulant matrix generated by x. Let D1 ∈ Rd×d and D2 ∈ Rd×d be two independent diagonal
matrices whose diagonal elements are i.i.d. Rademacher random variables. Then, the tensor
Circulant Transform T is defined as follows:

T = P · (GD1 ×GD2),

where T : Rd × Rd → Rm.
We recall a simple fact called mixed product property:

Fact C.1.3. Let A,B,C,D be conforming matrices, then we have

(A×B) · (C ×D) = (AC)× (BD).
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Using the mixed product property, we have that, for A,B ∈ Rd×d and x, y ∈ Rd,

(A×B)(x⊗ y) = (Ax)⊗ (By).

Therefore, the product T (x⊗ y) can be written as

T (x⊗ y) = P (GD1 ×GD2)(x⊗ y)
= P ((GD1x)⊗ (GD2y)),

note that computing GD1x and GD2y takes O(d log d) time. After that, we don’t directly
form (GD1x)⊗ (GD2y), rather, P is a selection matrix that picks out m indices, so we use P to
locate the indices of the desired entries, and compute each of the entry. Hence, applying T to a
tensor product x⊗ y only takes time O(d log d+m).

C.2 Circulant Transform and Tensor Circulant Transform:
Strong JL Moment Property

We show that both Circulant Transform and Tensor Circulant Transform satisfy the so-called
Strong JL Moment Property. Strong JL Moment Property is one of the core properties that can
show the sketching matrix has subspace embedding property [67].
Definition C.2.1 (Strong JL Moment Property [2]). For every ε, δ ∈ [0, 1], we say a distribution
over random matrices M ∈ Rm×d has the Strong (ε, δ)-JL Moment Property when

∥∥Mx∥22 − 1∥Lt ≤ ε

e

√
t

log(1/δ)

and

E
[
∥Mx∥22

]
= 1

for all x ∈ Rd, ∥x∥2 = 1 and every integer t ≤ log(1/δ).
To prove that Circulant Transform and Tensor Circulant Transform satisfy the strong JL mo-

ment property. We will do this by proving that a more general class of matrices satisfies the
strong JL moment property. More precisely, let k ∈ Z>0 be a positive integer and (D(i))i∈[k] ∈∏

i∈[k] Rdi×di be independent matrices, each with diagonal entries given by independent Rademacher
variables. Let d =

∏
i∈[k] di, and P ∈ {0, 1}m×d be a random sampling matrix in which each

row contains exactly one uniformly distributed nonzero element which has value one. Then we
prove that the matrix M = 1√

m
PG(D1 × · · · × Dk) satisfies the strong JL moment property,

where G is d × d circulant matrix which is generated by a random vector whose elements are
Rademacher variables. If k = 1 then M is just a Circulant Transform, and if k = 2 the M is a
Tensor Circulant Transform.

In order to prove this result we need a couple of lemmas. The first lemma can be seen as a
version of Khintchine’s inequality for higher order chaos.
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Lemma C.2.2 (Khintchine’s inequality for higher order chaos). Let t ≥ 1, k ∈ Z>0, and
(σ(i))i∈[k] ∈ Πi∈[k]Rdi be independent vectors each satisfying the Khintchine inequality ∥⟨σ(i), x⟩∥Lt ≤
Ct∥x∥2 for t ≥ 1 and any vector x ∈ Rdi . Let (ai1,...,ik)i1∈[dj ],...,ik∈[dk] be a tensor in Rd1×···×dk ,
then

∥
∑

i1∈[d1],...,ik∈[dk]

(
∏
j∈[k]

σ
(j)
ij
)ai1,...,ik∥Lt ≤ Ck

t · (
∑

i1∈[d1],...,ik∈[dk]

a2i1,...,ik)
1/2

for t ≥ 1. Or, considering a ∈ Rd1...dk a vector, then simply ∥⟨σ(1)⊗· · ·⊗σ(k), a⟩∥Lt ≤ Ck
t ∥a∥2,

for t ≥ 1.

Proof. The proof will be by induction on k. For k = 1 then the result is by assumption. So
assume that the result is true for every value up to k − 1. Let Bi1,...,ik−1

=
∑

ik∈[dk] σ
(k)
ik
ai1,...,ik .

We then pull it out of the left hand term in the theorem:

∥
∑

i1∈[d1],...,ic∈[dc]

(
∏
j∈[k]

σ
(j)
ij
)ai1,...,ik∥Lt = ∥

∑
i1∈[d1],...,ik−1∈[dk−1]

(
∏

j∈[k−1]

σ
(j)
ij
)Bi1,...,ik−1

∥Lt

≤ Ck−1
t · ∥(

∑
i1∈[d1],...,ik−1∈[dk−1]

B2
i1,...,ik−1

)1/2∥Lt

= Ck−1
t · ∥

∑
i1∈[d1],...,ik−1∈[dk−1]

B2
i1,...,ik−1

∥1/2
Lt/2

≤ Ck−1
t · (

∑
i1∈[d1],...,ik−1∈[dk−1]

∥B2
i1,...,ik−1

∥Lt/2)1/2

= Ck−1
p · (

∑
i1∈[d1],...,ik−1∈[dk−1]

∥B2
i1,...,ik−1

∥2Lt)1/2

where the first step follows from the definition of Bi1,...,ik−1
, the second step follows from the

inductive hypothesis, the third step follows from the Definition 2.1.3, the fourth step follows from
the triangle inequality, and the last step follows from the Definition 2.1.3. Now ∥Bi1,...,ik−1

∥2Lt ≤
C2
t

∑
ic∈[dc] a

2
i1,...,ic

by Khintchine’s inequality, which finishes the induction step and hence the
proof.

The next lemma we will be using is a type of Rosenthal inequality, but which mixes large
and small moments in a careful way. It bears similarity to the one sided bound in [15] (Theorem
15.10) derived from the Efron Stein inequality, and the literature has many similar bounds, but
we still include a proof here based on first principles.
Lemma C.2.3 (properties of random variables with t-moment). There exists a universal constant
L, such that, for t ≥ 1 if X1, . . . , Xk are independent non-negative random variables with t-
moment, then

∥
∑
i∈[k]

(Xi − E[Xi])∥Lt ≤ L ·
(√

t · ∥max
i∈[k]

Xi∥1/2Lt · (
∑
i∈[k]

E[Xi])
1/2 + t · ∥max

i∈[k]
Xi∥Lt

)
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Proof. Throughout these calculations L1, L2 and L3 will be universal constants.

∥
∑
i∈[k]

(Xi − E[Xi])∥Lt ≤ L1∥
∑
i∈[k]

σiXi∥Lt

≤ L2

√
t · ∥

∑
i∈[k]

X2
i ∥

1/2

Lt/2

≤ L2

√
t · ∥max

i∈[k]
Xi ·

∑
i∈[k]

Xi∥1/2Lt/2

≤ L2

√
t · ∥max

i∈[k]
Xi∥1/2Lt · ∥

∑
i∈[k]

Xi∥1/2Lt

≤ L2

√
t · ∥max

i∈[k]
Xi∥1/2Lt ·

(
(
∑
i∈[k]

E[Xi])
1/2 + L2∥

∑
i∈[k]

(Xi − E[Xi])∥1/2Lt

)
where the first step follows from symmetrization of Xi, the second step follows from Khint-
chine’s inequality, the third step follows from Non-negativity of Xi, and the fourth step follows
from Cauchy-Schwartz inequality, and the last step follows from triangle inequality.

Now let C,B,A be defined as follows:

C = ∥
∑
i∈[k]

(Xi − E[Xi])∥1/2Lt

B = L2(
∑

i∈[k] E[Xi])
1/2, and A =

√
t∥maxi∈[k]Xi∥1/2Lt . then we have shown C2 ≤ A(B + C).

That implies C is smaller than the largest of the roots of the quadratic. Solving this quadratic
inequality gives C2 ≤ L3(AB + A2) which is the result.

We can now prove that Circulant Transform and Tensor Circulant Transform have the Strong
JL Moment Property.
Theorem C.2.4 (Circulant Transform satisfies the Strong JL Moment Property). There exists a
universal constant L, such that, the following holds. Let k ∈ Z>0, and (D(i))i∈[k] ∈

∏
i∈[k] Rdi×di

be independent diagonal matrices with independent Rademacher variables. Define d =
∏

i∈[k] di
and D = D1 ×D2 × . . . Dc ∈ Rd×d. Let P ∈ Rm×d be an independent sampling matrix which
samples exactly one coordinate per row, and define M = PGD where G is a d × d circulant
matrix which is generated by a random vector y whose elements are i.i.d. Rademacher random
variables. Let x ∈ Rd be any vector with ∥x∥2 = 1 and t ≥ 1, then∥∥∥∥ 1

m
∥PGD∥22 − 1

∥∥∥∥
Lt

≤ L(

√
trk

m
+
trk

m
),

where r = max{t, logm}.
There exists a universal constant L′, such that, setting m = Ω(ε−2 log(1/δ)(L′ log(1/εδ)k),

we get that 1√
m
PGD has Strong (ε, δ)-JL Moment Property.

Proof. Throughout the proof C1, C2 and C3 will denote universal constants.
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For every i ∈ [m] we let Pi be the random variable that says which coordinate the i-th row
of P samples, and we define the random variable Zi = Mix = GPi

Dx. We note that since
the variables (Pi)i∈[m] are independent then the variables (Zi)i∈[m] are conditionally independent
given D, that is, if we fix D then (Zi)i∈[m] are independent.

Then, we could get the following inequality:

∥ 1
m

∑
i∈[m]

Z2
i − 1∥Lt

= ∥(E[( 1
m

∑
i∈[m]

Z2
i − 1)

∣∣ D])1/t∥Lt

≤ C1∥
√
t

m
· (E[(max

i∈[m]
Z2
i )
∣∣ D])1/(2t) · (

∑
i∈[m]

E[Z2
i

∣∣ D])1/2 +
t

m
· (E[(max

i∈[m]
Z2
i )
t
∣∣ D])1/t∥Lt

≤ C1

√
t

m
· ∥(E[(max

i∈[m]
Z2
i )
∣∣ D])1/(2t) · (

∑
i∈[m]

E[Z2
i

∣∣ D])1/2∥Lt + C1
t

m
· ∥max

i∈[m]
Z2
i ∥Lt

≤ C1

√
t

m
· ∥max

i∈[m]
Z2
i ∥

1/2
Lt · ∥

∑
i∈[m]

E[Z2
i

∣∣ D]∥1/2Lt + C1
t

m
· ∥max

i∈[m]
Z2
i ∥Lt

where the first step follows from Definition 2.1.3, the second step follows from Lemma C.2.3,
the third step follows from triangle inequality, and the last step follows from Cauchy-Schwartz
inequality.

Due to the reason thatG is generated by a random vector y whose elements are i.i.d. Rademacher
random variables, we could obtain that

E[Z2
i |D] =

∑
σ∈{−1,+1}d

pσ · (⟨x, σ⟩)2

=
(x1 + x2 + · · ·+ xd)

2

2d
+

(x1 + x2 + · · · − xd)2

2d
+ · · ·+ (−x1 − x2 − · · · − xd)2

2d

= x21 + x22 + · · ·+ x2d
= ∥x∥22

We could get that ∑
i∈[m]

E[Z2
i

∣∣ D] =
∑
i∈[m]

∥x∥22 = m.

where the second step follows from ∥x∥22 = 1.
To bound ∥maxi∈[m] Z

2
i ∥Lt , we could show

∥Z2
i ∥Lr = ∥GP iDx∥2L2r = ∥Dx∥2L2r ≤ rk∥x∥22.

where the first step follows from the definition of Zi, the second step follows fromG is generated
by the random vector y whose elements are i.i.d. Rademacher random variables, and the last step
follows from Lemma C.2.2.

153



We then bound the maximum using a sufficiently high powered sum:

∥max
i∈[m]

Z2
i ∥Lt ≤ ∥max

i∈[m]
Z2
i ∥Lr ≤ (

∑
i∈[m]

∥Z2
i ∥rLr)1/r ≤ m1/rrk∥x∥22 ≤ erk,

where the first step follows from Definition 2.1.3, the second step follows from Z2
i is non-

negative, and the last inequality follows from r ≥ logm. This gives us that

∥ 1
m

∑
i∈[m]

Z2
i − ∥x∥22∥Lt ≤ C2

√
trk

m
+ C2

trk

m

which finishes the first part of the proof.
We want to choose m as follows m = 4e2C2

2ε
−2 · log(1/δ) · (C3 log(1/(δε)))

k.
According to the above choice of m we know following condition for r is holding: r ≤

C3 log(1/(δε)).
Hence m ≥ 4e2C2

2ε
−2 · log(1/δ) · rk. We then get that

∥∥PGDx∥22 − 1∥Lt ≤ C2(
trk

4e2C2
2ε

−2 log(1/δ)rk
)1/2 + C2

trk

4e2C2
2ε

−2 log(1/δ)rk

≤ ε

e

√
t

log(1/δ)

for all 1 ≤ t ≤ log(1/δ) which finishes the proof.
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