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Abstract
Dealing with uncertainty is a fundamental challenge for building any practical

robot platform. In fact, the ability to adapt and react to uncertain scenarios is an
essential sign of an intelligent agent. Furthermore, uncertainty can arise from ev-
ery component of a robotic system. Inaccurate motion models, sensory noises, and
even human factors are all common sources of the unexpected. From an algorith-
mic perspective, handling uncertainty in robotics introduces a new layer of difficulty
because the algorithm not only needs to be accurate in a single scenario but also
need to adapt to the changes in uncertainties as the environment shifts. This thesis
presents methods for adapting to uncertainties in two tasks: object pose estimation
and assistive navigation.

For object pose estimation, we present a sensor fusion method that is highly
robust in estimating the pose of fiducial tags. The method leverages the different
structural and sensory advantages of RGB and Depth sensors to joint-optimize the
Perspective-N-Point problem and obtains the pose. The key insight being adaptively
bounding the optimization region by testing the pose solution uncertainty.

For assistive navigation, we wish to tackle the problem of using active signaling
to avoid pedestrians while it is minimally invasive to other people. We formulate the
problem as a bandit with expert advice problem with reinforcement learning poli-
cies as the experts. We present an online learning algorithm which can continuously
adapt to new and uncertain pedestrian types by using an online policy search tech-
nique and the Dirichlet Process.
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Chapter 1

Introduction

Uncertainty is a fundemental problem for any robots that intend to perform intellgently in the
real world. At its core, uncertainity captures the essence of our ever-changing world and its un-
derlying latent states. In practice, uncertainity arises from almost every part of the robotic system
such as noisy sensors, poor localization, and even inputs from surrounding human users. Many
of these challgnes have been well studied in different areas of robotics including manipulation,
mobile robots, aerial robots, and human-robot interactions.

From an algorithmitic point of view, the challenge of designing algorithms dealing with un-
certainity is that we cannot make strong assumptions about the uniformity of its inputs. With the
case of classical deterministic algorithm, there is a deterministic mapping from inputs to correct
outputs. The mapping can be arbitrarly complicated or dif�cult to compute but it remains static
over time. In other words, all the necessary information are provided as inputs to the algorithm.
The accuracy of the algorithm can be objectively measured by verifying against the groundtruth.
However, we have to relax this assumption for the inputs under uncertainity. In facts uncertain
inputs can have multiple correct answers based on some latent state of the world which can't
be captured as part of the input. Furthermore, uncertain inputs are everywhere in robotics. For
instances, consectuive images taken from the same camera in a static scene are often not the
same due to randomness in lighting variations and the amount of photons captured by each pixel

Figure 1.1: Robot uncertainity
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