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Abstract

The differential temporal dynamic logic dTL2 is a logic to specify temporal properties of hybrid
systems. It combines differential dynamic logic with temporal logic to reason about the inter-
mediate states reached by a hybrid system. The logic dTL2 supports some linear time temporal
properties of LTL. It extends differential temporal dynamic logic dTL with nested temporalities.
We provide a semantics and a proof system for the logic dTL2, and show its usefulness for nontriv-
ial temporal properties of hybrid systems. We take particular care to handle the case of alternating
universal dynamic and existential temporal modalities and its dual, solving an open problem for-
mulated in previous work.
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1 Introduction
A major task of computer science is to program objects of our physical world: cars, trains, air-
planes, robots, etc. — often grouped under the denomination of cyber-physical systems (CPS). A
CPS is governed by its programmable controllers, but also by the laws of physics. To fully verify
it, one thus needs to model the controllers and their software as well as the relevant laws of physics
in the same system. Such a system then becomes hybrid: the controllers are discrete while the laws
of physics are continuous.

In recent years, a number of systems have been explored to reason about such hybrid sys-
tems. In particular, this paper is based on differential dynamic logic [Pla07], [Pla10, chapter 4], a
logic based on dynamic logic [Pla08, Pla12], [Pla10, chapter 2] and including programs enabling
discrete assignments and discrete control structures, but also execution of differential equations.
Differential dynamic logic comes with a semantics as well as a proof system, which is sound and
relatively complete.

Based on dynamic logic, differential dynamic logic only reasons about the end state of a sys-
tem. However, to ensure that a system always stays within some structural limits, or always ac-
complishes a certain task, one needs to reason about its intermediate states as well. CPSs that are
safe when their systems terminate but have been unsafe in the middle of the program run are still
not safe to use. The idea is to use both dynamic logic — to quantify over possible executions —
and temporal logic — to quantify over the states in the trace of each execution. This is not a new
idea, but previous work [BS01, Pla07] focuses only on the non-alternating cases: “some property
is always verified during all executions” and “something happens during some execution.”

In this paper, we are developing a differential temporal dynamic logic dTL2 inspired from
LTL, and we are focusing on correctly handling the more complex alternating cases: “something
happens during all executions” and “there is an execution where some property is always verified,”
as well as nested temporal modalities. In particular, a property checking that a task is always
accomplished can now be checked. This logic is an important stepping stone towards full dTL∗,
the differential analog of CTL∗.

As a simple example, let us look at a satellite with position x trying to leave the solar system,
avoiding planets. To simplify, let us consider only two planets with radiuses r1 and r2, at (evolving)
positions p1 and p2. The satellite can be controlled either by a pilot who can set its steering ω to left
or right then let x evolve according to differential equation flight(ω), or by an autopilot following
a PID controller with target direction set to d. During each evolution, the positions of the planets
continue to evolve, following differential equation planets(p1, p2). The program of the satellite
and its safety property φ — expressing that there exists a steering avoiding all planets — can be
expressed as:

satellite ::=(((ω := left ∪ ω := right);x′ = flight(ω), (p′1, p
′
2) = planets(p1, p2))

∪ (d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)))

∗;

control := lost; d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)

φ ::= 〈satellite〉�(dist(x, p1) > r1 ∧ dist(x, p2) > r2 ∧ control 6= lost)

This example shows several features of hybrid programs and the logic dTL2. Under the pilot’s com-
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mand, the variable ω can be assigned to either left or right, following a nondeterministic choice ∪.
Then x, p1 and p2 follow a differential equation modeling the continuous evolution of the system,
including movement of the planets. Under the autopilot’s command, d is nondeterministically as-
signed (d := ∗). There is a nondeterministic choice between the two commands, followed by a star
∗ representing repetition. In case of mechanical or communication failure, control could be lost,
which we represent by a variable assignment, and the system continues to evolve. The formula
φ says that there exists a possible evolution (〈satellite〉) such that throughout this evolution (�),
the satellite does not hit any planet; namely, the evolution avoiding planets where control is never
lost. The formula φ is expressible in dTL2, and shows how dTL2 handles alternating and nested
program (〈satellite〉) and temporal modalities (� and ♦). The focus of this paper is to create a
semantics and a proof calculus for dTL2.

There are three main contributions to this paper. First, we show how to correctly handle the
alternating cases of a universal dynamic modality followed by an existential temporal modality, and
its dual an existential dynamic modality followed by a universal temporal modality. This solves
an open problem identified in 2001 [BS01] and identified as a problem for hybrid systems in
2007 [Pla07], [Pla10, chapter 4]. Second, we offer a treatment where programs are not duplicated
by proof rules, solving another open problem formulated in [Pla07], [Pla10, chapter 4]. This is
significant for proving hybrid systems in practice, because previous approaches led to a duplication
of proof effort, once for intermediate and once for final states. Third and finally, we extend the
logic to nested temporal quantifiers, show that all formulas of interest are equivalent to formulas
containing at most two quantifiers — thus the name dTL2 — by identifying the resemblance to
modal system S4.2, and develop a logic and proof calculus for the new temporal formulas.

The paper is organized as follows. After presenting the syntax and semantics of Differential
Temporal Dynamic Logic dTL2 in Section 2, we show how to normalize trace formulas and how
to axiomatize dTL2 in Section 3. We study alternative proof systems in Section 4 and related work
in Section 5, before concluding in Section 6.

2 Differential Temporal Dynamic Logic dTL2

This section defines the syntax and semantics of hybrid programs and trace formulas formally. The
development mostly follows and extends previous work on differential temporal dynamic logic
[Pla07], [Pla10, chapter 4]; we explicitly point out differences and extensions from the previous
work.

2.1 Hybrid Programs
We use hybrid programs (HP) [Pla08, Pla12], [Pla10, chapter 2] α, β to model hybrid systems.
Syntactically, hybrid programs can be atomic hybrid programs or compound hybrid programs.
Atomic hybrid programs can be discrete jump assignments (x := θ), tests (?χ) and differential
equations evolving within an evolution domain constraint χ— meaning that the system can evolve
following a solution of the differential equation as long as χ remains true (x′ = θ & χ). Terms θ are
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polynomials with rational coefficients, and conditions χ are first-order formulas of real arithmetic.1

Compound hybrid programs are nondeterministic choice (α ∪ β), sequential composition (α; β)
and nondeterministic finite repetition (α∗):

α, β ::= x := θ | ?χ | x′ = θ & χ | α ∪ β | α; β | α∗

The trace semantics of hybrid programs assigns to each program α a set of traces τ(α). The
set of states Sta is the set of (total) functions from variables to the reals R. In addition, we consider
a separate state Λ (not in Sta) denoting a failure of the system. For v ∈ Sta or v = Λ, we denote
by v̂ the function σ : {0} → {v}, 0 7→ v, defined only on the singleton interval [0, 0]. A trace is
a (nonempty) finite sequence σ = (σ0, σ1, ..., σn) of functions σi. For 0 ≤ i < n, the piece σi is
a function σi : [0, ri] → Sta, where ri ≥ 0 is the duration of this step. For i = n, the piece σn is
either a function:

• σn : [0, ri]→ Sta; we then say that σ is a terminating trace; or

• σn : [0,+∞)→ Sta; we then say that σ is an infinite trace; or

• σn : {0} → {Λ}, 0 7→ Λ, for n ≥ 1;2 we then say that σ is an error trace.

We often collectively refer to infinite and error traces as nonterminating; thus when we refer to
terminating traces, we only refer to those traces that terminate but not with an error state Λ. We
write Tra for the set of all traces. A position of σ is a pair (i, ζ) with 0 ≤ i ≤ n and ζ in the
domain of definition of σi; the state of σ at (i, ζ) is σi(ζ). For any trace σ, we denote by first σ the
state σ0(0); we informally say that “σ starts with v” to say that v = first σ. If σ = (σ0, . . . , σn)
terminates (and only in that case), we also denote by last σ the state σn(rn); when σ does not
terminate, last σ is undefined. We denote by val(v, θ) the value of term θ in state v, and by v[x 7→ r]
the valuation assigning variable x to r ∈ R and matching with v on all other variables. We also
write v � χ if state v satisfies condition χ, and v 6� χ otherwise.

Given two traces σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm), we say that ρ is a prefix of σ if it
describes the trace σ truncated at some position. Formally, ρ is a prefix of σ if and only if ρ = σ —
a condition ensuring that nonterminating traces are also suffixes of themselves — or there exists a
position (i, ζ) of σ such that:

• traces (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are identical.3 In particular this imposes that i = m;
and

• the domain of definition of ρm is exactly [0, ζ] and is included in the domain of definition of
σm, and for all d ∈ [0, ζ], σm(d) = ρm(d).

1using first-order formulas or real arithmetic results in a poor-test version of the logic. Our results generalize to a
rich-test version, where a condition χ is instead defined as any formula φ of dTL2 (see Section 2.2).

2We impose n ≥ 1 so that (Λ̂) is not considered a trace
3if i = m = 0, (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are empty and thus not formally traces, but we still consider

the condition fulfilled.
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Symmetrically, we say that ρ is a suffix of σ if it starts at some position of σ then follows σ.
Formally, ρ is a suffix of σ if and only if there exists a position (i, ζ) of σ such that:

• if σi has domain of definition [0, ri], then the domain of definition of ρ0 is exactly [0, ri − ζ]
and for all d ∈ [ζ, ri], σi(d) = ρ0(d− ζ); and in the case where σi has domain of definition
[0,+∞), the domain of definition of ρ0 is also [0,+∞) and for all d ∈ [ζ,+∞), σi(d) =
ρ0(d− ζ); and

• (σi+1, . . . , σn) and (ρ1, . . . , ρm) are identical, which imposes that n− i = m.

Definition 1 (Trace Semantics of Hybrid Programs). The trace semantics τ(α) ⊆ 2Tra of a hybrid
program α is then defined inductively as follows:

• τ(x := θ) = {(v̂, ŵ) | w = v[x 7→ val(v, θ)]};

• τ(x′ = θ & χ) = {(σ) : σ is a state flow of order 1 [Pla08] defined on [0, r] or [0,+∞)
solution of x′ = θ, and for all t in its domain of definition, σ(t) � χ}
∪ {(v̂, Λ̂) : v 6� χ};4

• τ(?χ) = {(v̂) : v � χ} ∪ {(v̂, Λ̂) : v 6� χ};

• τ(α ∪ β) = τ(α) ∪ τ(β);

• τ(α; β) = {σ ◦ ρ : σ ∈ τ(α), ρ ∈ τ(β) when σ ◦ ρ is defined};
where the composition σ ◦ ρ of σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm) is

– σ◦ρ = (σ0, . . . , σn, ρ0, . . . , ρm) if σ terminates and last σ = first ρ (since σ terminates,
last σ is well-defined);

– σ if σ does not terminate;

– undefined otherwise;

• τ(α∗) =
⋃
n∈N τ(αn), where α0 is defined as ?true, α1 is defined as α and αn+1 is defined as

αn;α for n ≥ 1.

An important property of this trace semantics is that for all programs α and states v, there
exists a trace σ of α starting with v (even if it might be an error trace). This property will be key to
proving the soundness of assignment rules.

Aside from the correction on τ(x′ = θ & χ), this definition is slightly different from [Pla07],
[Pla10, chapter 4] in two ways: these previous papers also consider infinite sequences σ =
(σ0, σ1, . . .), but infinite sequences are not part of the semantics of any program; and these pa-
pers do not consider infinite traces in the semantics. Still, we can prove that the interpretation of
trace formulas (Section 2.2) is the same on the subset of trace formulas they consider.

4this case is corrected from [Pla07], [Pla10, chapter 4], which wrongly forget the error traces of ordinary differential
equations — when χ is initially false.
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2.2 State and Trace Formulas
To reason about hybrid programs, we use state formulas and trace formulas. State formulas express
properties about states, while trace formulas express properties about traces; their definitions are
mutually inductive. A state formula φ, ψ can be a comparison of terms (θ1 ≥ θ2); a negation of a
state formula (¬φ); a conjunction (φ ∧ ψ) or a disjunction (φ ∨ ψ) of state formulas; a universally
quantified (∀x φ) or existentially quantified (∃x φ) state formula — quantification of a variable
x is over the set of reals R. Finally, a state formula can also be a program necessity ([α]π) —
expressing that all traces of hybrid program α starting at the current state satisfy trace formula π
— or its dual, a program possibility (〈α〉π) — expressing that there is a trace of α starting at the
current state satisfying trace formula π.

A trace formula π can be a state formula (φ); a negation of a trace formula (¬π); a temporal
necessity of a trace formula (�π) — expressing that every suffix of the current trace satisfies π —
or its dual, a temporal possibility of a trace formula (♦π) — expressing that there is a suffix of the
current trace satisfying π. The syntax of state and trace formulas is thus given by:

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x φ | ∃x φ | [α]π | 〈α〉π
π ::= φ | ¬π | �π | ♦π

Additionally, as in classical logic, the implication φ → ψ is defined as ¬φ ∨ ψ. When a trace
formula also happens to be a state formula φ, the formula ¬φ means the same whether it is seen as
a state or trace formula; in the rest of the paper we collude the two. We are now ready to define
satisfaction of state and trace formulas.

Definition 2 (Satisfaction of dTL2 Formulas). For state formulas, we write v � φ to say that state
v ∈ Sta satisfies state formula φ. Satisfaction of state formulas with respect to a state v is defined
inductively as follows:

• v � θ1 ≥ θ2 if and only if val(v, θ1) ≥ val(v, θ2)

• v � ¬φ if and only if v � φ does not hold.

• v � φ ∧ ψ if and only if v � φ and v � ψ.

• v � φ ∨ ψ if and only if v � φ or v � ψ.

• v � ∀xφ if and only if v[x 7→ d] � φ holds for all d ∈ R.

• v � ∃xφ if and only if v[x 7→ d] � φ holds for some d ∈ R.

• for φ a state formula, v � [α]φ if and only if for each trace σ ∈ τ(α) that starts in first σ = v,
if σ terminates, then last σ � φ.

• for φ a state formula, v � 〈α〉φ if and only if there is a trace σ ∈ τ(α) starting in first σ = v
such that σ terminates and last σ � φ.

5



• If π is not a state formula, v � [α]π if and only σ � π for each trace σ ∈ τ(α) that starts in
first σ = v.

• If π is not a state formula, v � 〈α〉π if and only σ � π for some trace σ ∈ τ(α) that starts in
first σ = v.

For trace formulas, we write σ � π to say that trace σ ∈ Tra satisfies trace formula π. Satisfaction
of trace formulas with respect to a trace σ is defined inductively as follows:

• σ � φ if and only if first σ � φ.

• σ � ¬π if and only if σ � π does not hold.

• σ � �π if and only if ρ � π holds for all suffixes ρ of σ that are different from (Λ̂).

• σ � ♦π if and only if ρ � π holds for some suffix ρ of σ that is different from (Λ̂).

This definition follows the intuition given when presenting the syntax of state and trace formu-
las, except for one point. Note that in the definitions of σ � �π and σ � ♦π, the suffix ρ of σ does
not have to be proper, and we can have ρ = σ. When seen as a trace formula, a state formula φ
can express a property on a trace σ. We then say that σ satisfies φ if and only if the first state of σ
satisfies φ (condition first σ � φ in the definition of σ � φ). However, there is an exception to this
definition: when φ appears directly after a program necessity (as in [α]φ) or a program possibility
(as in 〈α〉φ), φ only refers to terminating traces, and we say that σ satisfies φ if and only if the
last state of σ satisfies φ (condition σ � last φ in the definitions of σ � 〈α〉φ and σ � [α]φ). This
discontinuity in the definition of the satisfaction of φ enables following both the usual semantics
of dynamic logic and of temporal logic, and was also adopted in previous work [HKP82, Pla07],
[Pla10, chapter 4]. It is also useful for proof rules as temporal properties often reduce to what
happens after a program.

The syntax of dTL2 formulas extends the syntax of trace formulas given in [Pla07], [Pla10,
chapter 4] by allowing nesting of temporal modalities, and otherwise agrees with it. The satis-
faction of dTL2 formulas given in Def. 2, although presented in a slightly different way, agrees
with the definitions given in [Pla07], [Pla10, chapter 4] on trace formulas without nested temporal
modalities.

3 Proof Calculus

3.1 Equivalence of Trace Formulas
Trace formulas follow the axioms of modal system S4.2 [HC96], therefore there are only four
proper affirmative modalities �φ, ♦φ, �♦φ or ♦�φ. Intuitively, because formulas ¬�π and ♦¬π
are equivalent — in the sense that they are satisfied by the same traces — formulas can always
be expressed in a way where only state formulas have negations. Similarly, formulas �π and
��π are equivalent, therefore a trace formula containing exclusively � temporalities followed by
a state formula φ is equivalent to �φ. Moreover, a formula containing both � and ♦ temporalities,
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finishing by a ♦ temporality followed by a state formula φ is equivalent to �♦φ. Similar properties
are true for their duals. This is formalized by the following lemma, proved in Appendix B.

Lemma 1 (Equivalence of Trace Formulas). For any trace formula π1, there exists a trace formula
π2 of the form φ, �φ, ♦φ, �♦φ or ♦�φ such that σ � π1 if and only if σ � π2. Such a π2 can be
computed from π1 in linear time in the number of temporal modalities and negations in π1.

Remark 1. Lemma 1 tells us that the only interesting trace formulas of our system are those of the
form φ, �φ, ♦φ, �♦φ and ♦�φ. For any trace σ, the intuitive meaning of σ � π for π of the form
φ, �φ or ♦φ is clear: we have σ � φ if and only if σ starts in a state satisfying φ; we have σ � �φ
if and only if all non-error states of the trace σ satisfy φ; and we have σ � ♦φ if and only if there
is a non-error state of trace σ satisfying φ. When π is of the form �♦φ and ♦�φ, we get a better
intuition by distinguishing cases:

• if σ is a terminating trace, σ � ♦�φ if and only if last σ � φ, and σ � �♦φ if and only if
last σ � φ as well;

• if σ is an error trace, σ can be written (σ0, . . . , σn−1, Λ̂). Let ρ = (σ0, . . . , σn−1), then ρ is a
terminating trace and a prefix of σ. Moreover, both σ � ♦�φ and σ � �♦φ are equivalent
to last ρ � φ;

• if σ is an infinite trace, σ � ♦�φ holds if and only if φ holds on all states of σ after some
position, and σ � �♦φ holds if and only if any state of σ has a later state satisfying φ (if we
did not have continuous dynamics, this would be the same as φ being true infinitely often
along σ; but here it is not sufficient).

3.2 Normalization of Trace Formulas
The primary goal of this paper is to establish a proof system for differential temporal dynamic logic
dTL2. As for dL and dTL, rules typically decompose programs syntactically. Let us look at the
state formula 〈α; β〉�φ, and to simplify, let us only consider terminating traces for now. Intuitively,
this formula says that there exists a trace in τ(α; β) throughout which φ holds. Considering only
terminating traces, this is true as long as there exists a trace σ of α throughout which φ is true,
and a trace ρ of β starting at last σ throughout which φ is also true. It is thus tempting to write the
following rule:

〈α〉�φ ∧ 〈α〉〈β〉�φ
〈α; β〉�φ

(unsound)

This rule is unsound because α is possibly nondeterministic. Its premise says that there is a trace
σ of α throughout which φ is true, and a trace σ′ of α followed by a trace ρ of β throughout which
φ is true. But σ and σ′ do not have to be the same trace; the trick is that φ is not necessarily true
throughout σ′. To fix this rule, we need to express that traces σ and σ′ are the same, thus writing a
premise resembling:

〈α〉(�φ ∧ 〈β〉�φ) (1)
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Unfortunately, this is not directly expressible with dTL2, without using the program α; β again:
the missing piece is the expressibility of a conjunction on traces that simultaneously talks about
temporal properties like �φ and properties true at the end of the trace. To achieve this expressibil-
ity, we extend the logic with normalized trace formulas to make conjunction of temporal formulas
expressible as needed in (1).

A normalized trace formula ξ can be of different forms: for terminating traces, the formula
φ u �ψ captures the conjunction of ending in a state satisfying φ, and satisfying �ψ; and the
formula φ t ♦ψ captures the disjunction of ending in a state satisfying φ, or satisfying ♦ψ. For
nonterminating traces, φ u �ψ is the same as �ψ, and φ t ♦ψ is the same as ♦ψ, because there
is no terminal state in which it makes sense to evaluate φ. Additionally, the formula φ � �♦ψ
captures ending in a state satisfying φ if terminating, and satisfying �♦ψ otherwise; and similarly,
the formula φ � ♦�ψ captures ending in a state satisfying φ if terminating, and satisfying ♦�ψ
otherwise.

Formulas φ�♦�ψ and φ��♦ψ play the same role for formulas ♦�ψ and �♦ψ as formulas
φ u �ψ and φ t ♦ψ play for formulas �ψ and ♦ψ: they allow us to define premises of modular
inference rules for sequential composition as in (1). Like standard trace formulas, normalized
trace formulas can appear after a program necessity [α] or a program possibility 〈α〉. We therefore
extend state formulas to accept normalized trace formulas, and define normalized trace formulas
as:

φ, ψ ::= . . . | [α]ξ | 〈α〉ξ
ξ ::= φ u�ψ | φ t ♦ψ | φ��♦ψ | φ� ♦�ψ

Sometimes we will also use the notation φ � π, with the understanding that in such cases π can
only be of the form �♦ψ or ♦�ψ.

Coming back to our example, a sound rule for 〈α; β〉�φ can be expressed as:

〈α〉(〈β〉�φ u�φ)

〈α; β〉�φ
(〈;〉�)

In the form of its dual [;]♦, this rule will be discussed later and proved sound in Appendix A.1.
Observe how 〈;〉� does not even duplicate α and β.

Extending Def. 2, the satisfaction of trace formulas [α]ξ and 〈α〉ξ is defined in the same way as
trace formulas [α]π and 〈α〉π (if π is not a state formula):

• v � [α]ξ if and only σ � ξ for each trace σ ∈ τ(α) that starts in first σ = v.

• v � 〈α〉ξ if and only σ � ξ for some trace σ ∈ τ(α) that starts in first σ = v.

Satisfaction of normalized trace formulas carefully distinguishes between terminating and nonter-
minating traces, and is defined as follows.

Definition 3 (Semantics of Normalized dTL2 Trace Formulas). For normalized trace formulas, we
write σ � ξ to say that trace σ satisfies normalized state formula ξ. Satisfaction of normalized trace
formulas with respect to a trace σ is defined inductively:
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�φ; true u�φ (;u) ♦φ; false t ♦φ (;t)

�♦φ; φ��♦φ (;��) ♦�φ; φ� ♦�φ (;�♦)

φ; φ (;φ)
π1 ∼ π2 π2 ; ξ

π1 ; ξ
(∼;)

Figure 1: Normalization rules for trace formulas

σ � φ t ♦ψ if and only if
{

last σ � φ or σ � ♦ψ
σ � ♦ψ

if σ terminates
otherwise

σ � φ u�ψ if and only if
{

last σ � φ and σ � �ψ
σ � �ψ

if σ terminates
otherwise

σ � φ� π if and only if
{

last σ � φ
σ � π

if σ terminates
otherwise

Not only can normalized trace formulas help express rules like 〈;〉�, they can also, along with
state formulas, express all possible trace formulas. In Lemma 1, we have shown how to express
any trace formula in the form φ, �φ, ♦φ, �♦φ or ♦�φ. Building on this result, we now show how
to normalize every trace formula into a state formula or a normalized trace formula. To this effect,
we define a relation ; between the set of state formulas and trace formulas, and the set of state
formulas and normalized trace formulas. This simplifies the axiomatization of dTL2 by allowing
us to only consider cases containing normalized trace formulas.

The normalization is sound, meaning that two related formulas are satisfied by the same trace.
Additionally, every trace formula is related to either a state formula or a normalized trace formula,
which can be found in linear time.

Lemma 2 (Soundness of Normalization). If π ; ξ then for all traces σ, σ � π if and only if σ � ξ.

Proof. Soundness of;φ is trivial. Soundness of proof rules;u,;t,;�� and;�♦ is true
by Def. 3, keeping in mind the intuition given in Remark 1. Soundness of proof rule ∼; is by
induction and using Lemma 1.

Lemma 3 (Existence of a Normalized Form). For any trace formula π there exists a state formula
φ such that π ; φ, or a normalized trace formula ξ such that π ; ξ. Such a φ or ξ can be
computed from π in linear time.

Proof. This lemma is a direct consequence of Lemma 1, using the identities of Fig. 1. Unless π is
itself a state formula φ, it is related to a normalized trace formula ξ.

Lemma 3 concludes our study of normalized forms. Since every trace formula is related (and
thus semantically equivalent by Lemma 2) to a state formula or a normalized trace formula, we can
limit our axiomatization to the study of state formulas and normalized trace formulas. Formulas
of the form [α]φ or 〈α〉φ involving state formulas have already been axiomatized in dL [Pla08,
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Pla12], [Pla10, chapter 2] (for reference we repeat this axiomatization in Appendix D). The rest of
this paper focuses on axiomatizing formulas of the form [α]ξ or 〈α〉ξ involving normalized trace
formulas. In Appendix A.1, we come back to trace formulas to study a direct treatment of proof
rules for state formulas of the form [α]π and 〈α〉π in order to make the system more efficient.

3.3 Proof Calculus for dTL2

In this section we present a proof calculus for dTL2 for verifying temporal properties of hybrid
programs specified in the differential temporal dynamic logic dTL2. The basic idea of the proof
calculus is symbolic decomposition. The calculus progressively transforms formulas to simpler
formulas, often by inductively decomposing programs that are in program modalities. In particular,
the temporal rules progressively transform temporal formulas to temporal-free formulas, in order
to leverage the nontemporal rules of dL. The proof system inherits its nontemporal rules from the
dL proof system [Pla08, Pla12], [Pla10, chapter 2], and adds its own temporal rules. As is the case
for dL, the basis of our proof system is real arithmetic, and we integrate it as in dL [Pla08, Pla12],
[Pla10, chapter 2]. We first present how to use the rules, then a brief overview on the inherited
nontemporal rules from dL, and finally a detailed account of the new temporal rules of dTL2,
summarized in Fig. 2.

Usage of the Rules. Rules are to be used in the same way as in the dL calculus. We do, however,
use a new double bar notation by writing some rules in the form

φ

ψ

This notation denotes equivalence of the premise and its conclusion. This means that there exists
a dual rule, hence the two following rules are true

φ

ψ

¬φ
¬ψ

For space reasons we do not list dual rules explicitly but give them in Appendix C.

Inherited Nontemporal Rules. On top of the temporal rules presented in Fig. 2, the proof cal-
culus of dTL2 also inherits the rules of the proof calculus of dL. Since the semantics of dTL2

conservatively extends the semantics of dTL, which itself conservatively extends the semantics of
dL [Pla07], [Pla10, chapter 4], it is sound to inherit the dL calculus. While we inherit the non-
temporal rules of dL, we do not inherit — but rather reformulate with normalized trace formulas
— the temporal rules of dTL [Pla07], [Pla10, chapter 4], thus enabling more efficient proofs by
exploiting normalized trace formulas.

Temporal Rules. The temporal rules of the proof calculus of dTL2 are presented in Fig. 2, in
which they are grouped by program construct. Rules [ ]; and 〈 〉; lift trace formula normal-
ization to program modalities. Rule [∪]ξ for nondeterministic choice easily extends corresponding
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Normalization of Trace Formulas π ; ξ [α]ξ

[α]π
([ ];)

π ; ξ 〈α〉ξ
〈α〉π

(〈 〉;)

Sequential Composition

[α]([β](φ u�ψ) u�ψ)

[α; β](φ u�ψ)
([;]u)

[α]([β](φ t ♦ψ) t ♦ψ)

[α; β](φ t ♦ψ)
([;]t)

[α]([β](φ� π)� π)

[α; β](φ� π)
([;]�)

Nondeterministic Choice

[α]ξ ∧ [β]ξ

[α ∪ β]ξ
([∪]ξ)

Test
(¬χ ∨ φ) ∧ ψ
[?χ](φ u�ψ)

([?]u)
(χ ∧ φ) ∨ (¬χ ∧ ψ)

[?χ](φ� ♦�ψ)
([?]�♦)

(χ ∧ φ) ∨ ψ
[?χ](φ t ♦ψ)

([?]t)
(χ ∧ φ) ∨ (¬χ ∧ ψ)

[?χ](φ��♦ψ)
([?]��)

Assignment

ψ ∧ [x := θ](φ ∧ ψ)

[x := θ](φ u�ψ)
([:=]u)

ψ ∨ [x := θ](φ ∨ ψ)

[x := θ](φ t ♦ψ)
([:=]t)

[x := θ]φ

[x := θ](φ� π)
([:=]�)

Ordinary Differential Equation
ψ ∧ [x′ = θ & χ](φ ∧ ψ)

[x′ = θ & χ](φ u�ψ)
([′]u)

(χ ∨ ψ) ∧ [x′ = θ & (χ ∧ ¬ψ)]φ ∧ 〈x′ = θ〉(¬χ ∨ ψ)

[x′ = θ & χ](φ t ♦ψ)
([′]t)

(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]ψ)

[x′ = θ & χ](φ� ♦�ψ)
([′]�♦)

(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ [x′ = θ]〈x′ = θ〉ψ)

[x′ = θ & χ](φ��♦ψ)
([′]��)

Repetition
φ ∧ [α∗][α](φ u�ψ)

[α∗](φ u�ψ)
([∗]u)

ψ ∨ (φ ∧ [α;α∗](φ t ♦ψ))

[α∗](φ t ♦ψ)
([∗n]t)

∀α(φ→ [α](φ t ♦ψ))

φ→ [α∗](φ t ♦ψ)
(indt)

φ ∧ [α∗][α](φ� π)

[α∗](φ� π)
([∗]�)

∀α∀r > 0 (ϕ(r)→ 〈α〉(ϕ(r − 1) u�ψ))

(∃r ϕ(r)) ∧ ψ → 〈α∗〉((∃r ≤ 0 ϕ(r)) u�ψ)
(conu)

Figure 2: Rule schemata of the proof calculus for dTL2
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rule [∪] of dL, and assignment rules behave as expected, largely because assignments always ter-
minate.

The sequential composition rules exhibit how nicely the normalized formula interact with se-
quential composition; remember that sequential composition is one of the main technical difficul-
ties of a calculus handling alternating program and temporal modalities. Normalized trace formulas
were designed for these rules, and particular care was taken in considering nonterminating traces.
Rule [;]u expresses that all traces of the composition of two programs α and β satisfies φ u �ψ
if and only if all traces of α satisfy �ψ, and for terminating traces of α, if all following traces of
β satisfy φ u �ψ. In particular, this rule improves on the corresponding rule [;]� of dTL by not
duplicating program modality [β], thus eliminating proofs that are exponential in the number of
sequential compositions. Rule [;]t is the main rule for alternating program and temporal modali-
ties in the context of sequential composition. It expresses that all traces of the composition of two
programs α and β satisfies φu♦ψ if and only if all traces of α either satisfy ♦ψ, or are terminating
and followed only by traces of β satisfying φ t ♦ψ. Finally, rule [;]� similarly handles sequential
compositions followed by a � operator.

For the test rules, let us remember that a test trace terminates only if the test passes, and is
otherwise an error trace. Any trace of test ?χ satisfies φu�ψ if and only if its initial state satisfies
φ ∧ ψ when it terminates, or satisfies just ψ when it doesn’t terminate; this can be summarized as
(¬χ∨φ)∧ψ as in rule [?]u. Rule [?]t is similar. Any trace of test ?χ satisfies φ�♦�ψ if and only
if it terminates and its initial state satisfied φ, or it doesn’t terminate and its initial state satisfied ψ;
this can be summarized as (χ ∧ φ) ∨ (¬χ ∧ ψ) as in rule [?]� ♦. Rule [?]�� is similar.

Ordinary differential equations have terminating traces, but also infinite and error traces. Ad-
ditionally, the execution can exit a differential equation at any moment, even if the evolution con-
straint domain it still verified; thus formulas like [x′ = θ & χ]φ and [x′ = θ & χ]�φ are equivalent
in a state satisfying χ. Rules for ordinary differential equations transform formulas into temporal-
free formulas, on which the dL proof calculus and in particular differential invariants can be used.
In rule [′]u, the first conjunct ψ is necessary to handle error traces, when χ is initially false. In
rule [′]t, the first conjunct χ∨ψ expresses that the differential equation can evolve or has satisfied
♦ψ initially. The second conjunct handles traces that never satisfy ψ and thus have to satisfy φ,
and the third conjunct makes sure there is either no infinite trace (〈x′ = θ〉¬χ), or that such an
infinite trace satisfies ♦ψ (condition 〈x′ = θ〉ψ, equivalent to 〈x′ = θ〉♦ψ). The first conjunct of
rule [′] � ♦ again handles error traces as in rule [′]t. The second conjunct ensures all terminating
traces finish in a state satisfying φ, and its third conjunct handles infinite traces by making sure
they don’t exist (〈x′ = θ〉¬χ) or that they satisfy ♦�ψ (condition 〈x′ = θ〉[x′ = θ]ψ). Rule [′]��
is similar.

In some way, repetition rules are easier because as long as a repetition only repeats a termi-
nating trace, it is itself terminating. Rules [∗]u and [∗]� are particularly satisfying because their
premise no longer contains a temporal property of a loop, but only a non-temporal postcondition
of a loop, which is thus provable by ordinary, non-temporal induction. Only the postcondition still
has a temporal property but no more loops. That is, these rules reduce temporal properties of loops
to nontemporal properties of loops, or more complicated temporal properties on a program with-
out the loop. In rule [∗]u, the first disjunct expresses that ♦ψ holds without repeating if ψ holds
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initially. The first conjunct φ of the second disjunct is necessary when α repeats zero times; while
the second conjunct executes α any number of times n, then checks that the (n + 1)-st execution
of α also satisfies φu�ψ. The treatment of rule [∗]� is similar. Rule [∗n] is less satisfying because
it leaves an α∗ inside a program modality followed by a normalized trace formula. If ψ is true
then the conclusion trivially holds; otherwise the rule relies on the fact that α∗ is equivalent to
?true ∪ α;α∗ and just unwinds the loop once. Program α;α∗ in the modality could as well be the
equivalent α∗;α. The same thing is not true for rule [∗]u, where [α∗][α](φu�φ) ensures progress
of the proof, while writing [α][α∗](φ u �φ) would not. Rules indt and conu extend induction
(ind) and convergence (con) rules of dL to normalized trace formulas. As in dL, they are not equiv-
alences; and also as in dL, they use the notation ∀α, which quantifies over all variables possibly
assigned by α in assignments or differential equations. Rule indt shows that φ is inductive with
exit clause ♦ψ, i.e., φ holds after all traces of α from any state where φ holds, except when exit
condition ψ was true at some point during that trace. If ψ was true initially, rule [∗n] applies instead.
Rule conu proves that ϕ is a variant of some trace of α (i.e., its level r decreases) during which
ψ always holds true. Then starting from some initial r (assumption of conclusion), an r for which
ϕ(r) holds will ultimately be ≤0 without having violated when repeating α∗ often enough.

3.4 Meta-Results
Soundness. The following result shows that verification with the dTL2 calculus always produces
correct results about the temporal behavior of hybrid systems, i.e., the dTL2 calculus presented in
Fig. 2 is sound. Theorem 4 is proved in Appendix B.2.

Theorem 4 (Soundness of dTL2). The dTL2 calculus presented in Fig. 2 is sound, i.e., derivable
state formulas are valid, i.e., valid in every state.

Incompleteness of dTL2. In [Pla08, Pla12], [Pla10, chapter 2] it was shown that the discrete
and continuous fragments of dL are non-axiomatizable. An extension of dL, the logic dTL is
also non-axiomatizable [Pla07], [Pla10, chapter 4]. Since dTL2 is a conservative extension of
both dL and dTL, those results lift to dTL2. Therefore the discrete and continuous fragments of
dTL2, even if only containing nontemporal formulas are non-axiomatizable. In particular dTL2 is
non-axiomatizable.

Relative Completeness for Star-Free Expressions. We now show how to lift the relative com-
pleteness result of dL [Pla08, Pla12], [Pla10, chapter 2] to dTL2; this completeness result is relative
to first order logic of differential equations (FOD), i.e., first-order real arithmetic augmented with
formulas expressing properties of differential equations [Pla08, Pla12], [Pla10, chapter 2].

Theorem 5 (Relative completeness for star-free expressions). The dTL2 calculus restricted to ∗-
free programs is complete relative to FOD, i.e., every valid dTL2 formula with only star-free pro-
grams can be derived from FOD tautologies.

Theorem 5 is proved in Appendix B.3. We conjecture that the proof system of dTL2 is also
relatively complete relative to FOD for all expressions, including repetitions.
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4 Alternative Proof Systems
Normalizing all temporal formulas before applying the rules of Fig. 2 can sometimes result in
longer proofs than necessary. In Appendix A.1 we study a proof system directly handling (non-
normalized) trace formulas. This extended proof system alleviates the need for normalizing all
trace formulas, and is thus more efficient.

Another alternative, that we also study in Appendix A.2, is to suppress all the [ ]u rules of Fig. 2
(rules [; ]u, [?]u, [:=]u, [′]u and [∗]u) and replace them by rules directly handling formulas of the
form [α]�φ, and the following rule:

[α]φ ∧ [α]�ψ
[α](φ u�ψ)

([ ]u)

This results in a simpler system, because some of the rules are less complicated. However the
system is not as efficient, because it duplicates the symbolic execution of α.

5 Related Work
In this section we study work related specifically to temporal reasoning of hybrid systems. For a
more general account of previous work on verification of hybrid systems we refer to [Pla08, Pla12],
[Pla10, chapter 2].

This paper is based on work by Platzer introducing a temporal dynamic logic for hybrid sys-
tems [Pla07], extending previous work by Beckert and Schlager [BS01] to hybrid programs. Both
papers present a relatively complete calculus; however Beckert and Schlager only consider discrete
state spaces, and only study temporal formulas of the form [α]�φ and its dual 〈α〉♦φ, leaving out
any mixed cases alternating program and temporal modalities [α]♦φ or [α]�♦φ. Platzer proposes
to handle mixed cases by nonlocal program transformation, but does not show how to handle them
compositionally.

Process logic [HKP82, Nis80, Par78, Pra79] initially used temporal logic [EH86, Pnu77] in the
context of dynamic logic [HKT00] to reason about temporal behavior of programs. It is well stud-
ied, but limited to discrete programs. It also only considers an abstract notion of atomic program,
without explicitly considering assignments and tests.

Davoren and Nerode [DN00] study hybrid systems and their topological aspects in the con-
text of the propositional modal µ-calculus. Davoren, Coulthard, Markey and Moor [DCMM04]
also give a semantics in general flow systems for a generalization of CTL∗. In both [DN00] and
[DCMM04], the authors provide Hilbert-style calculi to prove formulas of their systems, but in
a propositional — not first-order — system, without specific proof rules to handle ordinary dif-
ferential equations. Zhou, Ravn and Hansen [ZRH92] present a duration calculus extended by
mathematical expressions with derivatives of state variables. Their system requires external math-
ematical reasoning about derivatives and continuity.

Other authors have studied temporal properties of hybrid systems in the context of model
checking. Mysore, Piazza and Mishra [MPM05] study model checking of semi-algebraic hybrid
systems for TCTL (Timed Computation Tree Logic) properties and prove undecidability. They
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do bounded model checking for differential equations with polynomial solutions only, while we
handle more general polynomial differential equations and unbounded safety verification. Ad-
ditionally TCTL does not allow nesting of temporal modalities as we do. Cimatti, Roveri and
Tonetta [CRT09] present HRELTL, a linear temporal logic with regular expressions for hybrid
traces. Their work is inspired by requirements validation for the European Train Control System,
and uses bounded model checking and satisfiability modulo theory. More recently, Bresolin [Bre13]
develops HyLTL, a temporal logic for model checking hybrid systems, and shows how to solve the
model checking problem by translating formulas into equivalent hybrid automata.

6 Conclusion and Future Work
In this paper we have presented a proof calculus for dTL2, extending dTL by allowing nesting
of temporal modalities. We showed proof rules for handling compositionally alternating program
and temporal modalities, solving an open problem formulated in 2001 [BS01] and identified as a
problem for hybrid systems in 2007 [Pla07], [Pla10, chapter 4]. We also offered a treatment where
programs are not duplicated by proof rules, solving another open problem formulated by [Pla07],
[Pla10, chapter 4]. We showed that the system is relatively complete with respect to FOD for ∗-
free hybrid programs. The treatment of infinite traces is crucial to make the logic interesting, as
temporal properties on terminating and error traces simplify greatly (Remark 1).

Future work includes proving our conjecture that the system is relatively complete with respect
to FOD for all expressions; extending the semantics and the proof system to allow repetition —
and not just differential equations — to create infinite traces; and implementing our proof rules in
a tool such as KeYmaera [PQ08].

A number of extensions to dTL2 should be explored, such as inclusion of the temporal Until
operator, or nested conjunctions and disjunctions inside temporal formulas. Some of these exten-
sions can be handled by program transformations [Pla07], [Pla10, chapter 4], but a compositional
proof system such as the one presented here would be more interesting. The proof system of dTL2

is an important step towards a more general system dTL∗, extending dTL2 with formulas of CTL∗,
and expressing formulas such as [α]�(♦φ∧ψ). We would like to develop a semantics and a proof
system for dTL∗.
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A Alternative Proof Systems

A.1 Direct proofs of (non-normalized) trace formulas
Normalizing all temporal formulas before applying the rules of Fig. 2 can sometimes result in
longer proofs than necessary. In Fig. 3 we show a proof system directly handling (non-normalized)
trace formulas. These rules do not replace the rules of Fig. 2, but are rather added to them. How-
ever using the rules of Fig. 3 alleviates the need for normalizing all trace formulas, and thus the
definition of the relation ; can be dropped (but not the definition of normalized trace formulas),
without losing any proving power.

In this new proof system, we use Lemma 1 to transform any trace formula into an equivalent
trace formula of the form φ, �φ, ♦φ, �♦φ or ♦�φ. Rules [ ]∼ and 〈 〉∼ lift this transformation to
program modalities. However, we do not transform it into a normalized trace formula. Most of the
rules in Fig. 3 correspond to a closely related rule in Fig. 2, and are obtained from it by replacing
formulas �φ, ♦φ, �♦φ and ♦�φ by their normalized equivalent, and simplifying.

Noteworthy are the rules for sequential compositions, because their premises make use of nor-
malized trace formulas, while their conclusions do not; these rules indicate that normalized trace
formulas cannot be avoided and are naturally introduced. Rules for ordinary differential equations
simplify greatly compared to Fig. 2, as some premises become unnecessary because implied by
other premises. Finally, rule [∗]♦ is particularly interesting: it is not a trivial consequence of any
single rule of Fig. 2, but it can be proved from indt and conu; it is however simpler to prove it
directly. It also shows a more disappointing fact: [α∗]♦φ is equivalent to φ, and therefore it cannot
express any interesting property.

Soundness of the rules of Fig. 3

Proof. Most of the rules of Fig. 3 are direct consequences of a rule of Fig. 2, using Lemma 2 on
rules of Fig. 1. The only exception — and a slightly more difficult case — is the rule [∗]♦. We now
treat this case in detail.

[∗]♦ The soundness of [∗]♦ is a consequence of rule indt of Fig. 2, while the soundness of
its converse is a consequence of rule conu of Fig. 2. If v � φ, then v � false ∨ φ,
and v � ∀α(false → [α](false t ♦φ)) vacuously. Therefore we can apply rule indt to
conclude that v � [α∗](false t ♦φ), which is the same as v � [α∗]♦φ. For the converse,
let us prove the dual rule instead:

φ

〈α∗〉�φ
(〈∗〉�)

If v � φ, then let us define the real function ϕ as ϕ(r) = false if r > 0 and ϕ(r) = true
if r ≤ 0. Then v � (∃r ϕ(r)) ∧ φ, and vacuously v � ∀α∀r > 0 (ϕ(r) → 〈α〉(ϕ(r −
1)u�φ)), since ϕ(r) = false for r > 0. Therefore we can apply rule conu to conclude
that 〈α∗〉((∃r ≤ 0 ϕ(r)) u�ψ), which is the same as 〈α∗〉�ψ.
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Equivalence of Trace Formulas π1 ∼ π2 [α]π2
[α]π1

([ ]∼)
π1 ∼ π2 〈α〉π2

〈α〉π1
(〈 〉∼)

Sequential Composition

[α]([β]�φ u�φ)

[α; β]�φ
([;]�)

[α]([β]♦φ t ♦φ)

[α; β]♦φ
([;]♦)

[α]([β]♦�φ� ♦�φ)

[α; β]♦�φ
([;]♦�)

[α]([β]�♦φ��♦φ)

[α; β]�♦φ
([;]�♦)

Nondeterministic Choice

[α]π ∧ [β]π

[α ∪ β]π
([∪]π)

Test φ

[?χ]�φ
([?]�)

φ

[?χ]♦φ
([?]♦)

φ

[?χ]♦�φ
([?]♦�)

φ

[?χ]�♦φ
([?]�♦)

Assignment φ ∧ [x := θ]φ

[x := θ]�φ
([:=]�)

φ ∨ [x := θ]φ

[x := θ]♦φ
([:=]♦)

[x := θ]φ

[x := θ]♦�φ
([:=]♦�)

[x := θ]φ

[x := θ]�♦φ
([:=]�♦)

Differential Equation φ ∧ [x′ = θ & χ]φ

[x′ = θ & χ]�φ
([′]�)

φ

[x′ = θ & χ]♦φ
([′]♦)

(χ ∨ φ) ∧ [x′ = θ & χ]φ

[x′ = θ & χ]♦�φ
([′]♦�)

(χ ∨ φ) ∧ [x′ = θ & χ]φ

[x′ = θ & χ]�♦φ
([′]�♦)

Repetition

[α∗][α]�φ
[α∗]�φ

([∗]�)
φ

[α∗]♦φ
([∗]♦)

φ ∧ [α∗][α]♦�φ
[α∗]♦�φ

([∗]♦�)
φ ∧ [α∗][α]�♦φ

[α∗]�♦φ
([∗]�♦)

Figure 3: Rules of the proof calculus for direct proofs of (non-normalized) trace formulas
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[ ]∼ Soundness of [ ]∼ is a direct consequence of rule [ ];, using Lemmas 2 and 3 on π1.

〈 〉∼ Soundness of 〈 〉∼ is a direct consequence of rule 〈 〉;, using Lemmas 2 and 3 on π1.

[;]� Soundness of [;]� and its converse are a direct consequence of rule [;]u and its converse,
using Lemma 2 on �φ; true u�φ by rule;u.

[;]♦ Soundness of [;]♦ and its converse are a direct consequence of rule [;]t and its converse,
using Lemma 2 on ♦φ; false t ♦φ by rule;t.

[;]♦� Soundness of [;]♦� and its converse are a direct consequence of rule [;]� and its con-
verse, using Lemma 2 on ♦�φ; φ� ♦�φ by rule;�♦.

[;]�♦ Soundness of [;]�♦ and its converse are a direct consequence of rule [;]� and its con-
verse, using Lemma 2 on �♦φ; φ��♦φ by rule;��.

[∪]π Soundness of [∪]π and its converse are a direct consequence of rule [∪]ξ and its converse,
using Lemmas 2 and 3 on π.

[?]� Soundness of [?]� and its converse are a direct consequence of rule [?]u and its converse,
using Lemma 2 on �φ; true u�φ by rule;u.

[?]♦ Soundness of [?]♦ and its converse are a direct consequence of rule [?]t and its converse,
using Lemma 2 on ♦φ; false t ♦φ by rule;t.

[?]♦� Soundness of [?]♦� and its converse are a direct consequence of rule [?] � ♦ and its
converse, using Lemma 2 on ♦�φ; φ� ♦�φ by rule;�♦.

[?]�♦ Soundness of [?]�♦ and its converse are a direct consequence of rule [?] � � and its
converse, using Lemma 2 on �♦φ; φ��♦φ by rule;��.

[:=]� Soundness of [:=]� and its converse are a direct consequence of rule [:=]u and its
converse, using Lemma 2 on �φ; true u�φ by rule;u.

[:=]♦ Soundness of [:=]♦ and its converse are a direct consequence of rule [:=]t and its con-
verse, using Lemma 2 on ♦φ; false t ♦φ by rule;t.

[:=]♦� Soundness of [:=]♦� and its converse are a direct consequence of rule [:=]� ♦ and its
converse, using Lemma 2 on ♦�φ; φ� ♦�φ by rule;�♦.

[:=]�♦ Soundness of [:=]�♦ and its converse are a direct consequence of rule [:=]�� and its
converse, using Lemma 2 on �♦φ; φ��♦φ by rule;��.

[′]� Soundness of [′]� and its converse are a direct consequence of rule [′]u and its converse,
using Lemma 2 on �φ; true u�φ by rule;u.

[′]♦ Soundness of [′]♦ and its converse are a consequence of rule [′]t and its converse, using
Lemma 2 on ♦φ ; false t ♦φ by rule ; t, and noticing that v � [x′ = θ & (χ ∧
¬φ)]true ∧ 〈x′ = θ〉(¬χ ∨ φ) is implied by v � φ.
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[′]♦� Soundness of [′]♦� and its converse are a consequence of rule [′] � ♦ and its converse,
using Lemma 2 on ♦�φ ; φ � ♦�φ by rule ; �♦, and noticing that v � (〈x′ =
θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]φ) is implied by v � [x′ = θ & χ]φ.

[′]�♦ Soundness of [′]�♦ and its converse are a consequence of rule [′]�� and its converse,
using Lemma 2 on �♦φ ; φ � �♦φ by rule ; ��, and noticing that v � (〈x′ =
θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]φ) is implied by v � [x′ = θ & χ]φ.

[∗]� Soundness of [∗]� and its converse are a direct consequence of rule [∗]u and its converse,
using Lemma 2 on �φ; true u�φ by rule;u.

[∗]♦� Soundness of [∗]♦� and its converse are a direct consequence of rule [∗]� and its con-
verse, using Lemma 2 on ♦�φ; φ� ♦�φ by rule;�♦.

[∗]�♦ Soundness of [∗]�♦ and its converse are a direct consequence of rule [∗]� and its con-
verse, using Lemma 2 on �♦φ; φ��♦φ by rule;��.

A.2 A somewhat simpler but less efficient system
Another alternative is to suppress all the [ ]u rules of Fig. 2 (rules [; ]u, [?]u, [:=]u, [′]u and [∗]u)
and replace them by the [ ]� rules of Fig. 3 (rules [; ]�, [?]�, [:=]�, [′]� and [∗]�) and the following
intuitive rule:

[α]φ ∧ [α]�ψ
[α](φ u�ψ)

([ ]u)

These changes keep the same proving power. In some way it’s nicer because the rules look less
complicated, and there is only one more intuitive rule [ ]u, very simple. The system, limited to
formulas [α]�φ and 〈α〉�φ also reduces to the system presented in dTL [Pla07], [Pla10, chapter
4].

However the duplication of the program α in rule [ ]u is not desirable. Specifically, an expres-
sion of the form [α; β]�φ now reduces to [α]([β]�φu�φ) (using rule [;]�), which itself reduces to
[α][β]�φ∧ [α]�φ (using rule [ ]u). The proof is now split into two very similar subproofs; avoid-
ing this duplication of α in the system dTL2 presented in Fig. 3 solves an open problem introduced
in the dTL work [Pla07], [Pla10, chapter 4].

Proof of the Soundness of rule [ ]u

Proof. To prove soundness of [ ]u and its converse, we just need to distinguish between terminating
and nonterminating traces. Assume v � [α]φ ∧ [α]�ψ, and let σ be a trace of τ(α) starting with v.
If σ terminates, then σ � φ and σ � �ψ, therefore σ � φ u �ψ. Otherwise, σ does not terminate
and σ � �ψ which is sufficient to prove σ � φ u �ψ. Conversely, assume v � [α](φ u �ψ). To
prove [α]φ we need only consider terminating traces; for any terminating trace σ of τ(α) starting
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π ∼ π (reflexivity)
π2 ∼ π1
π1 ∼ π2

(symmetry)
π1 ∼ π2 π2 ∼ π3

π1 ∼ π3
(transitivity)

¬�π ∼ ♦¬π (∼¬�) ��π ∼ �π (∼��) �♦�φ ∼ ♦�φ (∼♦�)

¬♦π ∼ �¬π (∼¬♦) ♦♦π ∼ ♦π (∼♦♦) ♦�♦φ ∼ �♦φ (∼�♦)

π1 ∼ π2
�π1 ∼ �π2

(∼�)
π1 ∼ π2

♦π1 ∼ ♦π2
(∼♦)

Figure 4: Temporal equivalence rules for trace formulas
with v, we have σ � φ u �ψ so last σ � φ, therefore v � [α]π. Now let ρ be a (possibly different
and possibly nonterminating) trace of τ(α) starting with v. By hypothesis ρ � φu�ψ so ρ � �ψ,
therefore v � [α]�ψ.

B Proofs

B.1 Proof of Lemma 1
Proof. In this proof we define an equivalence relation on trace formulas capturing nice properties
of trace formulas — where two formulas are equivalent only if they are satisfied on the same traces
(Lemma 6). We further show that every trace formula is equivalent to a trace formula with at
most two temporal modalities — specifically of the form φ, �φ, ♦φ, �♦φ or ♦�φ, and that this
simplified trace formula can be found in linear time (Lemma 1).

Let us define an equivalence relation ∼ on trace formulas as the smallest equivalence relation
(reflexive, symmetric and transitive) satisfying the additional 6 axioms and 2 rules of Fig. 4, where,
as usual, π, π1, π2 and π3 range over trace formulas, and φ ranges over state formulas. Formally,
we say that π1 and π2 are equivalent, and we write π1 ∼ π2, if and only if there is a derivation tree
proving π1 ∼ π2 using only axioms and rules of Fig. 4.

A desirable property is that two equivalent trace formulas are satisfied by exactly the same
trace. This is formalized by Lemma 6:

Lemma 6 (Soundness of Equivalence). If π1 ∼ π2 then for all traces σ, σ � π1 if and only if
σ � π2.

Proof. The proof is by induction on the derivation tree of π1 ∼ π2. The soundness of reflexivity,
symmetry and transitivity is trivial. Rules ∼¬� and ∼¬♦ are standard in temporal logic: if it is
not the case that every suffix of σ satisfies π, then there must be a suffix of σ not satisfying π, and
vice-versa; similarly, if it is not the case that there exists a suffix of σ satisfying π, then all suffixes
of σ must satisfy ¬π. Rules ∼�� and ∼♦♦ have similarly easy soundness proofs, since the set
of suffixes of suffixes of any trace σ is the same as the set of suffixes of σ. For ∼�, if π1 ∼ π2,
then σ � �π1 if and only if every suffix ρ of σ satisfies π1, which is true if and only if ρ satisfies
π2 by hypothesis. This holds exactly when σ � �π2. The soundness of ∼♦ is similar. Finally, for
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∼♦�, suppose σ � �♦�φ, then σ � ♦�φ since σ is a suffix of itself. Conversely if σ � ♦�φ,
there exists a suffix σ′ of σ such that σ′ � �φ. For any suffix ρ of σ, either σ′ is a suffix of ρ
and ρ � ♦�φ, or otherwise ρ is a suffix of σ′ and ρ � �φ, in particular ρ � ♦�φ. Therefore
σ � �♦�φ. The rule ∼�♦ is dual and has a similar proof.

Let us now finish the proof of Lemma 1 and prove that every trace formula π is equivalent to
a trace formula with at most two temporal modalities, by giving an explicit method of computing
π2 from π1. First, using rules ∼¬�, ∼¬♦, ∼ � and ∼ ♦, π1 is equivalent to a trace formula
where negation does not appear in front of any temporal modality, but only in the state formula φ
at the heart of π. Therefore we can assume without loss of generality that π1 does not contain any
negation in front of a temporal modality. If π1 does not contain any temporal modality, then π1 is
already a state formula and we are done by reflexivity. If π1 contains only temporal necessities,
then π1 = �� . . .�φ for some φ. Repeated use of rule ∼�� proves that π1 ∼ �φ. Similarly, if
π1 contains only temporal possibilities, repeated use of rule ∼♦♦ shows that π1 ∼ ♦φ for some
φ. If π1 contains both temporal necessities and temporal possibilities, and if the temporal modality
the furthest right is a temporal necessity, then π1 ∼ ♦�φ for some φ. Indeed using rules ∼��,
∼� and ∼♦, we can show that π1 is equivalent to a trace formula π3 finishing in ♦�φ for some
φ. If π3 is exactly ♦�φ then we are done, otherwise we can show that π3 is equivalent to ♦�φ
using rules ∼♦�, ∼��, ∼� and ∼♦. Symmetrically, if π1 contains both temporal necessities
and temporal possibilities, and if the temporal modality the furthest right is a temporal possibility,
then π1 ∼ �♦φ for some φ.

B.2 Proof of Theorem 4
Proof. We prove soundness of each rule individually. Soundness of the system then follows by
induction on proof trees.

[ ]; Soundness of rule [ ]; is a corollary of Lemma 2.

〈 〉; Soundness of rule 〈 〉; is also a a corollary of Lemma 2.

[;]u Assume v � [α]([β](φu�ψ)u�ψ) and let σ be any trace of τ(α; β) starting with v. If
σ is a nonterminating trace of τ(α), then by hypothesis, σ � �ψ. Otherwise there exists
a terminating trace ρ1 ∈ τ(α), and a possibly nonterminating trace ρ2 ∈ τ(β) such that
σ = ρ1 ◦ ρ2. By hypothesis ρ1 � �ψ and ρ2 � φ u �ψ. Therefore ρ1 ◦ ρ2 � �ψ, and
if ρ2 terminates then ρ1 ◦ ρ2 � φ. In all cases σ � φ u �ψ as desired. Conversely, let
us assume that v � [α; β](φ u�ψ) and let ρ1 be any trace of τ(α) starting with v. If ρ1
is nonterminating, then ρ1 ∈ τ(α; β), therefore ρ1 � �ψ. Otherwise let ρ2 ∈ τ(β) such
that ρ1 ◦ ρ2 is defined, then ρ1 ◦ ρ2 � φ u�ψ. In particular ρ1 � �ψ and ρ2 � φ u�ψ.
This is for all ρ2, therefore ρ1 � [β](φu�ψ)u�ψ. In all cases ρ1 � [β](φu�ψ)u�ψ
as desired. Since ρ1 was arbitrary, v � [α]([β](φ u�ψ) u�ψ).
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[;]t The proof is similar to the proof of [; ]u. Assume v � [α]([β](φ t ♦ψ) t ♦ψ) and let
σ be any trace of τ(α; β) starting with v. If σ is a nonterminating trace of τ(α), then
by hypothesis, σ � ♦ψ. Otherwise there exist a terminating trace ρ1 ∈ τ(α), and a
possibly nonterminating trace ρ2 ∈ τ(β) such that σ = ρ1 ◦ ρ2. By hypothesis ρ1 � ♦ψ
or ρ2 � φ t ♦ψ. Therefore if ρ2 terminates then ρ1 ◦ ρ2 � φ or ρ1 ◦ ρ2 � ♦ψ, and
otherwise ρ1 ◦ ρ2 � ♦ψ. In all three cases σ � φ t ♦ψ as desired. Conversely, let us
assume that v � [α; β](φ t ♦ψ) and let ρ1 be any trace of τ(α) starting with v. If ρ1 is
nonterminating, then ρ1 ∈ τ(α; β), therefore ρ1 � ♦ψ. Otherwise let ρ2 ∈ τ(β) such
that ρ1 ◦ ρ2 exists, then ρ1 ◦ ρ2 � φ t ♦ψ. In particular ρ1 � ♦ψ or ρ2 � φ t ♦ψ. This
is for all ρ2, therefore ρ1 � [β](φ t ♦ψ) t ♦ψ. In all cases ρ1 � [β](φ t ♦ψ) t ♦ψ as
desired.

Before continuing, let us prove the following lemma which will be useful for cases involving the
� construct:

Lemma 7. For every trace σ and trace formula of the form φ � π, the following three statements
are equivalent:

(i) σ � φ� π;

(ii) ρ � φ� π for every suffix ρ of σ that is different from (Λ̂);

(iii) ρ � φ� π for some suffix ρ of σ that is different from (Λ̂).

Proof. By definition σ cannot be the empty trace, therefore a suffix ρ of σ always exists, therefore
(ii)⇒ (iii) is trivial. Let us proceed by distinguishing whether σ is a finite, error or infinite trace;
in each case we prove that (i)⇒ (ii) and (iii)⇒ (i).

If σ is finite, then by definition σ � φ � π if and only if last σ � φ. For any suffix ρ of σ,
last ρ = last σ, therefore this is true if and only if ρ � φ�π, which concludes the case for finite σ.

If σ is an error trace, then any suffix ρ of σ is an error trace. Let σ′ be the prefix of σ obtained
from σ by removing its last state Λ̂, and similarly let ρ′ be the prefix of ρ obtained from ρ by
removing its last state Λ̂. As we have seen in Remark 1, if π is of the form ♦�φ or �♦φ, σ � π
if and only if last σ′ � φ. Since ρ′ is a suffix of σ′, this is true if and only if last ρ′ � φ, which is
itself true if and only if ρ � π. This concludes the case.

Finally, if σ is an infinite trace, any suffix ρ or σ is also infinite. If π is of the form ♦�ψ,
assuming (i), there exists a suffix σ′ of σ such that σ′ � �ψ. Since σ′ and ρ are both suffixes of σ,
either σ is a suffix of ρ or ρ is a suffix of σ. If σ′ is a suffix of ρ then ρ � ♦�ψ, and otherwise ρ is
a suffix of σ′ therefore ρ � �ψ, in particular ρ � ♦�ψ. Assuming (iii), if there is a suffix ρ of σ
satisfying ρ � ♦�ψ, then there is a suffix σ′ of ρ such that σ′ � �ψ; this implies σ � ♦�ψ since
σ′ is also a suffix of σ.

Dually, if π is of the form �♦ψ, assuming (i), for all suffixes σ′ of σ, we have σ′ � ♦ψ; this is
true in particular for any suffix of any suffix ρ of σ, therefore ρ � ♦�ψ. Conversely, if there is a
suffix ρ of σ such that ρ � �♦ψ, then any suffix of ρ satisfies ♦ψ. Since any suffix σ′ of σ contains
a suffix of ρ, we also have σ′ � ♦ψ then σ � �♦ψ. This concludes the proof of the lemma.

We can now resume the proof of soundness of Theorem 4.
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[;]� Assume v � [α]([β](φ�π)�π) and let σ be any trace of τ(α; β) starting with v. If σ is a
nonterminating trace of τ(α), then by hypothesis, σ � π so σ � φ� π. Otherwise there
exists a terminating trace ρ1 ∈ τ(α), and a possibly nonterminating trace ρ2 ∈ τ(β)
such that σ = ρ1 ◦ ρ2. By hypothesis ρ2 � φ � π and ρ2 is a suffix of σ, therefore by
Lemma 7, σ � φ � π (since ρ2 is a trace, it cannot be equal to (Λ̂)). Conversely, let us
assume that v � [α; β](φ � π) and let ρ1 be any trace of τ(α) starting with v. If ρ1 is
nonterminating, then ρ1 ∈ τ(α; β), therefore ρ1 � π. Otherwise let ρ2 ∈ τ(β) such that
ρ1 ◦ ρ2 exists, then ρ1 ◦ ρ2 � φ� π, which by Lemma 7 implies ρ2 � φ� π. This is for
all ρ2, therefore ρ1 � [β](φ� π)� π. In all cases ρ1 � [β](φ� π)� π as desired.

[∪]ξ For any state v, we have v � [α]ξ ∧ [β]ξ if and only if all traces σ ∈ τ(α) starting with
v satisfies σ � ξ, and all trace ρ ∈ τ(β) starting with v also satisfies ρ � ξ. This is the
case if and only if all traces σ ∈ τ(α ∪ β) starting with v satisfy σ � ξ, which in turn is
true if and only if v � [α ∪ β]ξ.

[?]u Assume v � (¬χ∨φ)∧ψ and let σ be any trace of τ(?χ) starting with v. If v � ¬χ then
σ is the nonterminating trace (v̂, Λ̂), and by hypothesis v � ψ, therefore σ � φ u �ψ.
Otherwise σ is the trace (v̂), and by hypothesis v � φ and v � ψ, therefore σ � φ u�ψ
as well. Conversely, assuming v � [?χ](φ u �ψ), then if v � ¬χ, the trace σ is the
nonterminating (v̂, Λ̂) and v � ψ. Otherwise v � χ and σ is the terminating trace (v̂),
therefore v � φ ∧ ψ. In both cases v � (¬χ ∨ φ) ∧ ψ as desired.

[?]t Assume v � (χ ∧ φ) ∨ ψ and let σ be any trace of τ(?χ) starting with v. If v � χ and
v � φ then σ is the terminating trace (v̂), therefore σ � φ so σ � φ t ♦ψ. Otherwise
v � ψ and σ is either the trace v̂ or the trace Λ̂; in both cases σ � ♦ψ so σ � φ t ♦ψ.
Conversely, assuming v � [?χ](φt♦ψ), then if v � ¬χ, the trace σ is the nonterminating
(v̂, Λ̂) and v � ψ. Otherwise v � χ and σ is the terminating trace (v̂), therefore v � φ
and v � ψ. In both cases v � (¬χ ∨ φ) ∧ ψ as desired.

[?]�♦ Assume v � (χ ∧ φ) ∨ (¬χ ∧ ψ). If v � ¬χ then the unique trace of ?χ starting with
v is the nonterminating (v̂, Λ̂), which satisfies ♦�ψ since v � ψ. Otherwise v � χ and
v � φ, and the unique trace of ?χ starting with v is (v̂), which is terminating and satisfies
(v̂) � φ. In both cases v � [?χ](φ� ♦�ψ). Conversely, assuming v � [?χ](φ� ♦�ψ),
if v � χ, the unique trace of ?χ starting with v is the terminating (v̂), so (v̂) � φ and
v � φ. If v � ¬χ, the unique trace of ?χ starting with v is the nonterminating (v̂, Λ̂),
which satisfies ♦�ψ, therefore v � ψ. Therefore in both cases v � ¬χ ∨ φ.

[?]�� Soundness of [?]�� is similar to soundness of [?]�♦.
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[:=]u For any state v, there is a unique, terminating trace of τ(x := θ) starting with v, which
is (v̂, ŵ) with w = v[x 7→ val(v, θ)]. Therefore v � [x := θ](φ u �ψ) if and only if
w � φ, v � ψ, and w � ψ, which is true if and only if v � ψ ∧ [x := θ](φ ∧ ψ).

[:=]t With the same notations as for the [:=]u case, v � [x := θ](φt♦ψ) if and only if w � φ,
v � ψ, or w � ψ, which is true if and only if v � ψ ∨ [x := θ](φ ∨ ψ).

[:=]� Soundness and its converse are obvious for [:=]�, as all traces of τ(x := θ) are termi-
nating.

[′]u Assume v � ψ ∧ [x′ = θ & χ](φ∧ψ) and let σ be a trace of τ(x′ = θ & χ) starting with
v. If v � ¬χ, then σ is the nonterminating (v̂, Λ̂), which satisfies σ � �ψ, therefore
σ � φ u �ψ. Otherwise σ = {(f)} for a real function f defined on D = [0, r] or
D = [0,+∞) solution of x′ = θ and satisfying χ on its domain of definition. For
any restriction fa of f to [0, a] ⊆ D, by definition {(fa)} ∈ τ(x′ = θ & χ), therefore
by hypothesis any wa = v[x 7→ f(a)] satisfies wa � φ ∧ ψ. All the states of σ are
such wa, therefore σ � φ u �ψ. Conversely, assume v � [x′ = θ & χ](φ u �ψ). By
definition there is at least one trace σ of τ(x′ = θ & χ) starting with v, and it satisfies
�ψ, therefore v � ψ. Now proving [x′ = θ & χ](φ ∧ ψ) only requires us to consider
terminating traces. For any terminating σ ∈ τ(x′ = θ & χ), we have σ � φ u�ψ, so in
particular σ � φ ∧ ψ.

[′]t Assume v � (χ ∨ ψ) ∧ [x′ = θ & (χ ∧ ¬ψ)]φ ∧ 〈x′ = θ〉(¬χ ∨ ψ) and let σ be a trace
of τ(x′ = θ & χ) starting with v. If v � ¬χ, then σ is the nonterminating (v̂, Λ̂) with
v � ψ, therefore σ � φ t ♦ψ. Otherwise σ = {(f)} for a real function f defined on
D = [0, r] or D = [0,+∞) solution of x′ = θ and satisfying χ on D. If σ satisfies ♦ψ,
then σ � φ t ♦ψ and we are done. Otherwise, if σ is terminating, no state of σ ever
satisfies ψ, therefore σ ∈ τ(x′ = θ & (χ ∧ ¬ψ)), so by hypothesis σ � φ, leading to
σ � φ t ♦ψ. Finally, in the case where σ � ♦ψ does not hold, it is not possible to have
an infinite σ: such a σ would verify χ ∧ ¬ψ in all its states, and any trace of τ(x′ = θ)
would be its prefix, contradicting v � 〈x′ = θ〉(¬χ ∨ ψ).

Conversely, let v be a state satisfying v � [x′ = θ & χ](φt♦ψ). First, if v � ¬χ, then the
unique trace σ ∈ τ(x′ = θ & χ) starting with v is (v̂, Λ̂), and it satisfies ♦ψ, therefore
v � ψ. Therefore in all cases v � χ ∨ ψ. Second, let us prove [x′ = θ & (χ ∧ ¬ψ)]φ;
for this we only need to consider terminating traces. Let σ be a terminating trace of
τ(x′ = θ & (χ ∧ ¬ψ)), then in particular σ ∈ τ(x′ = θ & χ) so σ � φ t ♦ψ. Since
σ also has ¬ψ as a domain constraint, we cannot have σ � ♦ψ, therefore σ � φ. Third
and last, we need to prove that either v � 〈x′ = θ〉(¬χ) or that v � 〈x′ = θ〉ψ. If
v � 〈x′ = θ〉(¬χ), there is no infinite trace of τ(x′ = θ & χ) starting with v. Otherwise
there exists a unique infinite trace σ of τ(x′ = θ & χ) starting with v. By hypothesis
σ � ♦ψ, therefore ψ has to be true in some state reached by σ, which is the same
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as saying that 〈x′ = θ〉ψ. We have therefore proved that 〈x′ = θ〉(¬χ ∨ ψ), which
concludes.

[′]�♦ Assume v � (χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]ψ) and let
σ be a trace of τ(x′ = θ & χ) starting with v. If σ terminates the result is trivial since
v � [x′ = θ & χ]φ. If σ is an error trace then σ = (v̂, Λ̂) and σ � ♦�ψ, since v � ψ
because v 6� χ and v � χ ∨ ψ. If σ is an infinite trace, then by hypothesis σ satisfies
the domain constraint χ throughout, and since all traces starting with v are prefixes
of α, we cannot have 〈x′ = θ〉(¬χ). Therefore v � 〈x′ = θ〉[x′ = θ]ψ. Therefore
there is a finite trace ρ of τ(x′ = θ) starting with v such that last ρ � [x′ = θ]ψ.
By uniqueness [Pla10, appendix B] of the solution of a differential equation, ρ is a
prefix of σ; let (i, ζ) be the position of σ such that σi(ζ) = last ρ, and let σ′ be the
suffix of σ starting at position (i, ζ). Since first σ′ � [x′ = θ]ψ and by uniqueness of
the solution of the differential equation, σ′ � �ψ, therefore σ � ♦�ψ. Conversely,
assuming v � [x′ = θ & χ](φ � ♦�ψ), if v 6� χ then σ is the error trace (v̂, Λ̂), so
σ � ♦�ψ, therefore v � ψ. Therefore in all cases v � χ ∨ ψ. Now every terminating
trace of τ(x′ = θ & χ) satisfies φ, therefore v � [x′ = θ & χ]φ. If v � 〈x′ = θ〉(¬χ)
then there is no infinite trace in τ(x′ = θ & χ). Otherwise there is exactly one infinite
trace σ ∈ τ(x′ = θ & χ) and σ � ♦�ψ. Therefore there exists a suffix σ′ of σ satisfying
�ψ; let (i, ζ) be the position of σ such that first σ′ = σi(ζ). Since σ′ is an infinite
trace satisfying σ′ � �ψ, and by uniqueness of the solution of a differential equation,
first σ′ � [x′ = θ]ψ, therefore v � 〈x′ = θ〉[x′ = θ]ψ.

[′]�� This soundness proof is similar to the soundness of [′]�♦. Assume v � (χ ∨ ψ) ∧ [x′ =
θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ [x′ = θ]〈x′ = θ〉ψ) and let σ be a trace of τ(x′ = θ & χ)
starting with v. If σ terminates the result is trivial since v � [x′ = θ & χ]φ. If σ
is an error trace then σ = (v̂, Λ̂) and σ � �♦ψ, since v � ψ because v 6� χ and
v � χ ∨ ψ. If σ is an infinite trace, then by hypothesis σ satisfies the domain constraint
χ throughout, and since all traces starting with v are prefixes of α, we cannot have
〈x′ = θ〉(¬χ). Therefore v � [x′ = θ]〈x′ = θ〉ψ. Let σ′ be any suffix of σ, we need
to prove that σ′ � ♦ψ. Let (i, ζ) be the position of σ such that first σ′ = σi(ζ), and
let ρ be the prefix of σ such that last ρ = first σ′. Then ρ ∈ τ(x′ = θ), therefore
last ρ � 〈x′ = θ〉ψ. Since last ρ = first σ′ and by uniqueness [Pla10, appendix B] of
the solution of a differential equation, this means that σ′ � ♦ψ, which entails σ � �♦ψ.
Conversely, assuming v � [x′ = θ & χ](φ � �♦ψ), if v 6� χ then σ is the error
trace (v̂, Λ̂), so σ � �♦ψ, therefore v � ψ. Therefore in all cases v � χ ∨ ψ. Now
every terminating trace of τ(x′ = θ & χ) satisfies φ, therefore v � [x′ = θ & χ]φ. If
v � 〈x′ = θ〉(¬χ) then there is no infinite trace in τ(x′ = θ & χ). Otherwise there is
exactly one infinite trace σ ∈ τ(x′ = θ & χ) and σ � �♦ψ. Therefore every suffix
σ′ of σ satisfies ♦ψ. Let ρ be a finite trace of τ(x′ = θ) such that last ρ � [x′ = θ]ψ,
then by unicity of the solution of a differential equation, ρ is a prefix of σ; let (i, ζ) be
the position of σ such that last ρ = σiζ , and let σ′ be the suffix of σ starting at (i, ζ).
Then σ′ � ♦ψ and first σ′ = last ρ, therefore by unicity of the solution of a differential
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equation, last ρ � 〈x′ = θ〉ψ and σ � [x′ = θ]〈x′ = θ〉ψ.

[∗]u Assume v � φ∧ [α∗][α](φu�ψ) and let σ be a trace of τ(α∗). If σ ∈ τ(α0) = τ(?true)
then σ = (v̂) and σ � (φ u �ψ) since v � φ and v � [α](φ u �ψ), in particular
v � (φ ∧ ψ). Otherwise there exists an n ≥ 1 such that σ = σ1 ◦ . . . ◦ σn, where
σi ∈ τ(α) for all i ∈ {1, . . . , n}. For all i ∈ {1, . . . , n}, σ1 ◦ . . . ◦ σi−1 ∈ τ(α∗) and
σi ∈ τ(α), therefore by hypothesis σi � �ψ, therefore σ � �ψ by gluing. Moreover,
if σ terminates then σn terminates and by hypothesis last σn � φ, therefore last σ � φ.
Therefore σ � φu�ψ. Conversely, if v � [α∗](φu�ψ), then in particular (v̂) � φu�ψ
which implies v � φ. Let σ be a terminating trace of τ(α∗) starting with v and ρ a trace
of τ(α) starting with last σ. Then σ◦ρ ∈ τ(α∗), therefore by hypothesis σ◦ρ � φu�ψ,
in particular ρ � φ u�ψ.

[∗n]t By definition, the programs α∗ and (?true ∪ α;α∗) have the same semantics: τ(α∗) =
τ(?true ∪ α∗;α). Therefore v � [α∗](φt♦ψ) if and only if v � [?true∪α∗;α](φt♦ψ),
which by rule [∪]π is true if and only if v � [?true](φt♦ψ) and v � [α;α∗](φt♦ψ). By
rule [?]t, v � [?true](φ t ♦ψ) is itself equivalent to φ ∨ ψ, therefore v � [α∗](φ t ♦ψ)
if and only if v � (φ ∨ ψ) ∧ [α;α∗](φ t ♦ψ). But v � ψ implies v � [α;α∗](φ t ♦ψ),
therefore this is equivalent to v � ψ ∨ (φ ∧ [α;α∗](φ t ♦ψ)), which concludes.

indt Assuming v � ∀α(φ→ [α](φt♦ψ)) and v � φ, let σ be a trace in τ(α∗). If σ = (v̂) the
result is trivial. Otherwise there exists n ≥ 1 and σ1, . . . , σn such that σ = σ1 ◦ . . . ◦ σn.
If there exists a σi such that σi � ♦ψ, then σ � ♦ψ and we are done. Note that this
is necessarily the case if σ is nonterminating. Otherwise, for any i, since σi ∈ τ(α),
instantiating the premise using its universal closure ∀α, if first σi � φ then σi � φt♦ψ;
but since σi � ♦ψ does not hold, we have last σi � φ. Since v � φ, by induction on i, we
have last σ � φ which concludes. The universal closure ∀α is necessary as, otherwise,
the premise may behave differently in different states.

conu Assume that v � ∀α∀r > 0 (ϕ(r)→ 〈α〉(ϕ(r− 1)u�ψ)) and v � (∃r ϕ(r))∧ψ. Then
there exists a d ∈ R such that v � ϕ(d). Now, the proof is a well-founded induction
on d. If d ≤ 0, we directly have (v̂) � (∃r ≤ 0 ϕ(r)) u �ψ, where (v̂) ∈ τ(α∗)
for zero repetitions. Otherwise, if d > 0, we know that v � ϕ(d) and v � ϕ(d) →
〈α〉(ϕ(d − 1) u �ψ), therefore v � 〈α〉(ϕ(d − 1) u �ψ). Therefore there exists a
trace σ1 ∈ τ(α) such that σ1 � ϕ(d − 1) u �ψ. Now last σ1 � ϕ(d − 1), therefore if
d − 1 ≤ 0 we are done, otherwise we can construct a similar σ2 � ϕ(d − 2) u �ψ. By
induction we continue until a d ≤ 0; it is well-founded because d decreases by 1 at each
step up to the base case d ≤ 0. We have thus constructed σ = σ1 ◦ · · · ◦ σn ∈ τ(α∗),
where each σi � �ψ, thus σ � �ψ, and last σn = last σ � (∃r ≤ 0). Therefore
σ � (∃r ≤ 0 ϕ(r)) u�ψ.

[∗]� Assume v � φ ∧ [α∗][α](φ� π) and let σ be a trace of τ(α∗). If σ ∈ τ(α0) = τ(?true)
then σ = (v̂) and σ � last φ since v � φ, so σ � φ� π. Otherwise there exists an n ≥ 1
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such that σ = σ1 ◦ . . . ◦ σn, where σi ∈ τ(α) for all i ∈ {1, . . . , n}. By hypothesis,
σ1 ◦ . . . ◦ σn−1 ∈ τ(α∗), therefore σn � φ� π, which using Lemma 7 is enough to prove
that σ � φ � π, whether σ terminates or not (since σn is a trace, it cannot be equal to
(Λ̂)). Conversely, if v � [α∗](φ � π), then in particular when executing the loop zero
times, last (v̂) � φ which implies v � φ. Let σ be a terminating trace of τ(α∗) starting
with v and ρ a trace of τ(α) starting with last σ. Then σ ◦ ρ ∈ τ(α∗), therefore by
hypothesis σ ◦ ρ � φ� π, which by Lemma 7 is enough to prove ρ � φ� π.

B.3 Proof of Theorem 5
Proof. The proof relies on the relative completeness of dL with respect to FOD [Pla08, Pla12],
[Pla10, chapter 2]. Except for programs containing repetitions, the dTL2 calculus successively re-
duces temporal properties to nontemporal properties. The temporal rules of dTL2 transforms nor-
malized trace formulas to simpler normalized trace formulas, i.e., in which the temporal modalities
appear after simpler programs, or disappear completely. Additionally, every reduction step is an
equivalence, meaning that the premise is equivalent to the conclusion, and Lemma 3 ensures that
all trace formulas can be handled by the proof system of dTL2. Hence, the relative completeness
of dL directly generalizes to dTL2 for star-free programs.
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C Dual rules

Sequential Composition

〈α〉(〈β〉(φ t ♦ψ) t ♦ψ)

〈α; β〉(φ t ♦ψ)
(〈;〉t)

〈α〉(〈β〉(φ u�ψ) u�ψ)

〈α; β〉(φ u�ψ)
(〈;〉u)

〈α〉(〈β〉(φ� π)� π)

〈α; β〉(φ� π)
(〈;〉�)

Nondeterministic Choice

〈α〉ξ ∨ 〈β〉ξ
〈α ∪ β〉ξ

(〈∪〉ξ)

Test
(χ ∧ φ) ∨ ψ
〈?χ〉(φ t ♦ψ)

(〈?〉t)
(¬χ ∨ φ) ∧ (χ ∨ ψ)

〈?χ〉(φ��♦ψ)
(〈?〉��)

(¬χ ∨ φ) ∧ ψ
〈?χ〉(φ u�ψ)

(〈?〉u)
(¬χ ∨ φ) ∧ (χ ∨ ψ)

〈?χ〉(φ� ♦�ψ)
(〈?〉�♦)

Assignment

ψ ∨ 〈x := θ〉(φ ∨ ψ)

〈x := θ〉(φ t ♦ψ)
(〈:=〉t)

ψ ∧ 〈x := θ〉(φ ∧ ψ)

〈x := θ〉(φ u�ψ)
(〈:=〉u)

〈x := θ〉φ
〈x := θ〉(φ� π)

(〈:=〉�)

Ordinary Differential Equation
ψ ∨ 〈x′ = θ & χ〉(φ ∨ ψ)

〈x′ = θ & χ〉(φ t ♦ψ)
(〈′〉t)

(¬χ ∧ ψ) ∨ 〈x′ = θ & (χ ∨ ¬ψ)〉φ ∨ [x′ = θ](χ ∧ ψ)

〈x′ = θ & χ〉(φ u�ψ)
(〈′〉u)

(¬χ ∧ ψ) ∨ 〈x′ = θ & χ〉φ ∨ ([x′ = θ]χ ∧ [x′ = θ]〈x′ = θ〉ψ)

〈x′ = θ & χ〉(φ��♦ψ)
(〈′〉��)

(¬χ ∧ ψ) ∨ 〈x′ = θ & χ〉φ ∨ ([x′ = θ]χ ∧ 〈x′ = θ〉[x′ = θ]ψ)

〈x′ = θ & χ〉(φ� ♦�ψ)
(〈′〉�♦)

Repetition
φ ∨ 〈α∗〉〈α〉(φ t ♦ψ)

〈α∗〉(φ t ♦ψ)
(〈∗〉t)

ψ ∧ (φ ∨ 〈α;α∗〉(φ u�ψ))

〈α∗〉(φ u�ψ)
(〈∗n〉u)

φ ∨ 〈α∗〉〈α〉(φ� π)

〈α∗〉(φ� π)
(〈∗〉�)

Figure 5: Dual rules for the rules of Figure 2
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Sequential Composition

〈α〉(〈β〉♦φ t ♦φ)

〈α; β〉♦φ
(〈;〉♦)

〈α〉(〈β〉�φ u�φ)

〈α; β〉�φ
(〈;〉�)

〈α〉(〈β〉�♦φ��♦φ)

〈α; β〉�♦φ
(〈;〉�♦)

〈α〉(〈β〉♦�φ� ♦�φ)

〈α; β〉♦�φ
(〈;〉♦�)

Nondeterministic Choice

〈α〉π ∨ 〈β〉π
〈α ∪ β〉π

(〈∪〉π)

Test φ

〈?χ〉♦φ
(〈?〉♦)

φ

〈?χ〉�φ
(〈?〉�)

φ

〈?χ〉�♦φ
(〈?〉�♦)

φ

〈?χ〉♦�φ
(〈?〉♦�)

Assignment φ ∨ 〈x := θ〉φ
〈x := θ〉♦φ

(〈:=〉♦)
φ ∧ 〈x := θ〉φ
〈x := θ〉�φ

(〈:=〉�)

〈x := θ〉φ
〈x := θ〉�♦φ

(〈:=〉�♦)
〈x := θ〉φ
〈x := θ〉♦�φ

(〈:=〉♦�)

Differential Equation φ ∨ 〈x′ = θ & χ〉φ
〈x′ = θ & χ〉♦φ

(〈′〉♦)
φ

〈x′ = θ & χ〉�φ
(〈′〉�)

(¬χ ∧ φ) ∨ 〈x′ = θ & χ〉φ
〈x′ = θ & χ〉�♦φ

(〈′〉�♦)
(¬χ ∧ φ) ∨ 〈x′ = θ & χ〉φ
〈x′ = θ & χ〉♦�φ

(〈′〉♦�)

Repetition

〈α∗〉〈α〉♦φ
〈α∗〉♦φ

(〈∗〉♦)
φ

〈α∗〉�φ
(〈∗〉�)

φ ∨ 〈α∗〉〈α〉�♦φ
〈α∗〉�♦φ

(〈∗〉�♦)
φ ∨ 〈α∗〉〈α〉♦�φ
〈α∗〉♦�φ

(〈∗〉♦�)

Figure 6: Dual rules for the rules of Figure 3

〈α〉φ ∨ 〈α〉♦ψ
〈α〉(φ t ♦ψ)

(〈 〉t)

Figure 7: Dual rule of rule [ ]u
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D Proof calculus of dL
The dL proof calculus was described in [Pla08, Pla12], [Pla10, chapter 2]. We include it Figure 8
for reference.

(¬r)
φ `
` ¬φ

(¬l)
` φ
¬φ `

(∨r)
` φ, ψ
` φ ∨ ψ

(∨l)
φ ` ψ `
φ ∨ ψ `

(∧r)
` φ ` ψ
` φ ∧ ψ

(∧l)
φ, ψ `
φ ∧ ψ `

(→r)
φ ` ψ
` φ→ ψ

(→l)
` φ ψ `
φ→ ψ `

(ax)
φ ` φ

(cut)
` φ φ `
`

(〈; 〉)
〈α〉〈β〉φ
〈α; β〉φ

([; ])
[α][β]φ

[α; β]φ

(〈∪〉)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

([∪])
[α]φ ∧ [β]φ

[α ∪ β]φ

(〈∗n〉)
φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

([∗n])
φ ∧ [α][α∗]φ

[α∗]φ

(〈?〉)
χ ∧ ψ
〈?χ〉ψ

([?])
χ→ ψ

[?χ]ψ

(〈:=〉)
φθ1x1 . . .

θn
xn

〈x1 := θ1, . . , xn := θn〉φ

([:=])
〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

(〈′〉)
∃t≥0

(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x′1 = θ1, . . , x′n = θn &χ〉φ

1

([′])
∀t≥0

(
(∀0≤t̃≤t 〈S(t̃)〉χ)→ 〈S(t)〉φ

)
[x′1 = θ1, . . , x′n = θn &χ]φ

1

(∀r)
` φ(s(X1, . . , Xn))

` ∀xφ(x)
2

(∃l)
φ(s(X1, . . , Xn)) `
∃xφ(x) `

2

(i∀)
` QE(∀X (Φ(X) ` Ψ(X)))

Φ(s(X1, . . , Xn)) ` Ψ(s(X1, . . , Xn))
3

(∃r)
` φ(X)

` ∃xφ(x)
4

(∀l)
φ(X) `
∀xφ(x) `

4

(i∃)
` QE(∃X

∧
i(Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

5

([]gen)
` Cl∀ (φ→ ψ)

[α]φ ` [α]ψ

(ind)
` Cl∀ (φ→ [α]φ)

φ ` [α∗]φ

(〈〉gen)
` Cl∀ (φ→ ψ)

〈α〉φ ` 〈α〉ψ

(con)
` Cl∀ ∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)
6

1t and t̃ are fresh logical variables and 〈S(t)〉 is the jump set 〈x1 := y1(t), . . , xn := yn(t)〉 with simultaneous
solutions y1, . . , yn of the respective differential equations with constant symbols xi as symbolic initial values.

2s is a new (Skolem) function symbol and X1, . . , Xn are all free logical variables of ∀xφ(x).
3X is a new logical variable. Further, QE needs to be defined for the formula in the premise.
4X is a new logical variable.
5Among all open branches, free logical variable X only occurs in the branches Φi ` Ψi. Further, QE needs to be

defined for the formula in the premise, especially, no Skolem dependencies on X can occur.
6Logical variable v does not occur in α.

Figure 8: dL Rules
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