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Abstract

Privacy policies in sectors as diverse as Web services, finance and healthcare often place restrictions
on the purposes for which a governed entity may use personal information. Thus, automated
methods for enforcing privacy policies require a semantics of purpose restrictions to determine
whether a governed agent used information for a purpose. We provide such a semantics using
a formalism based on planning. We model planning using Partially Observable Markov Decision
Processes (POMDPs), which supports an explicit model of information. We argue that information
use is for a purpose if and only if the information is used while planning to optimize the satisfaction
of that purpose under the POMDP model. We determine information use by simulating ignorance
of the information prohibited by the purpose restriction, which we relate to noninterference. We
use this semantics to develop a sound audit algorithm to automate the enforcement of purpose
restrictions.
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1 Introduction

Purpose is a key concept for privacy policies. Some policies limit the use of certain information
to an explicit list of purposes. The privacy policy of The Bank of America states, “Employees are
authorized to access Customer Information for business purposes only.” [5]. The HIPAA Privacy
Rule requires that healthcare providers in the U.S. use protected health information about a patient
with that patient’s authorization or only for a fixed list of allowed purposes, such as treatment and
billing [30]. Other policies prohibit using certain information for a purpose. For example, Yahoo!’s
privacy policy states “Yahoo!’s practice on Yahoo! Mail Classic is not to use the content of messages
stored in your Yahoo! Mail account for marketing purposes.” [48].

Each of these examples presents a constraint on the purposes for which the organization may
use information. We call these constraints purpose restrictions.

Let us consider a purpose restriction in detail. As a simplification of the Yahoo! example,
consider an advertising network attempting to determine which advertisement to show for marketing
to a visitor of a website (such as an email website). To improve its public image and to satisfy
government regulations, the network adopts a privacy policy containing a restriction prohibiting
the use of the visitor’s gender for the purpose of marketing.

The network has access to a database of information about potential visitors, which includes
their gender. Since some advertisements are more effective, on average, for some demographics
than others, using this information is in the network’s interest. However, the purpose restriction
prohibits the use of gender for selecting advertisements since it is a form of marketing. Since
tension exists between selecting the most effective ad and obeying the purpose restriction, internal
compliance officers and government regulators should audit the network to determine whether it
has complied with the privacy policy.

However, the auditors may find manually auditing the network difficult and error prone leading
them to desire automated tools to aid them. Indeed, the difficulty of manually auditing purpose
restrictions has led to commercial software for this task (e.g., [14]). However, their approaches have
been ad hoc.

Our goal is to place purpose restrictions governing information use on a formal footing and to
automate their enforcement. In the above example, intuitively, the auditor must determine what
information the network used while planning which ads to show to a user. In general, determining
whether the purpose restriction was obeyed involves determining facts about how the audited agent
(a person, organization, or computer system) planned its actions. In particular, philosophical
inquiry [41] and an empirical study [42] show that the behavior of an audited agent is for a purpose
when the agent chooses that behavior while planning to satisfy the purpose. Our prior work has
used a formal model of planning to automate the auditing of purpose restrictions that limit visible
actions to certain purposes [42].

We build upon that work to provide formal semantics and algorithms for purpose restrictions
limiting information uses, whose occurrence the auditor cannot directly observe. For example,
while the ad network is prohibited from using the visitor’s gender, it may access the database to
use other information even if the database returns the gender as part of a larger record. Thus, our
model must elucidate whether the network used the gender component of the accessed information.

To provide auditing algorithms, we need a formal model of planning. Fortunately, research in
artificial intelligence has provided a variety of formal models of planning. To select an appropriate
model for auditing, we examine the key features of our motivating example of the ad network.
First, it shows that purposes are not just goals to be achieved since the purpose of marketing is
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quantitative: marketing can be satisfied to varying degrees and more can always be done. Second,
the example shows that outcomes can be probabilistic since the network does not know what ad
will be best for each visitor but does have statistical information about various demographics.
Lastly, the policy is governing the use of information. Thus, our model needs an explicit model of
information.

The first two features suggest using Markov Decision Processes (MDPs), which we have suc-
cessfully used in an auditing algorithm for purpose restrictions on observable actions [42]. However,
needing an explicit model of information requires us to use an extension of MDPs, Partially Ob-
servable Markov Decision Processes (POMDPs), which make the ability of the planning agent to
observe its environment and collect information explicit. We use a POMDP to model the agent’s
environment where the purpose in question defines the reward function of the POMDP. The ex-
plicitness of observations (inputs) in the POMDP model allows us to go beyond standard research
on planning to provide a semantics of information use by considering how the agent would plan if
some observations were conflated to ignore information of interest.

In more detail, we quotient the POMDP’s space of observations to express information use.
Intuitively, to use information is to see a distinction, and to not use information corresponds to
ignoring this distinction. Thus, we quotient by an equivalence relation that treats two observations
as indistinguishable if they differ only by information whose use is prohibited by a purpose restric-
tion. For example, the ad network promising not to use gender should quotient its observations
by an equivalence relation that treats the genders as equivalent. By conflating observations that
differ only by gender, the network will ignore gender, simulating ignorance of it. Such quotienting
is defined for POMDPs since observations probabilistically constrain the space of possible current
states of the agent’s environment, and quotienting just decreases the constraint’s accuracy.

We use our quotienting operation to provide two different definitions of what it means for
an agent to obey a purpose restriction involving information use. The first requires that the
agent uses the quotiented POMDP to select its behavior. We call this definition cognitive since it
refers to the agent’s cognitive process of selecting behavior. Since the auditor cannot examine the
agent’s cognitive processes and might only care about their external consequences, we offer a second
weaker definition that depends upon the agent’s observable behavior. The behaviorist definition
only requires that the agent’s behaviors be consistent with using the quotiented POMDP. It does
not depend upon whether the agent actually used that POMDP or a different process to select its
behavior.

We use the behaviorist definition as the basis of an auditing algorithm that compares the
behaviors of an agent to each of the behaviors that is acceptable under our notion of simulated
ignorance. Despite comparing to multiple behaviors, our algorithm only needs to optimize the
quotiented POMDP once. For the behaviorist definition, we prove that the algorithm is sound
(Theorem 1) and is complete when the POMDP can be optimized exactly (Theorem 2).

To show that our semantics is not too weak, we compare it to noninterference, a formalization of
information use for automata found in prior security research [15]. This definition examines how an
input to an automaton affects the automaton’s output. Our approach is similar but uses POMDPs
instead of automata. We relate the two models by defining how an automaton can implement a
strategy for a quotiented POMDP, which allows us to prove that the cognitive definition implies
a form of noninterference (Theorem 3). On the other hand, we show that an agent can obey the
behaviorist definition while still exhibiting interference. However, interestingly, such interference
cannot actually further the restricted purpose showing that the behaviorist definition is still strong
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enough to prevent interference for that purpose.
Since an action’s purpose can depend upon how it fits into a chain of actions, we focus on post-

hoc auditing. Nevertheless, other enforcement mechanisms can employ our semantics. Despite
focusing on privacy policies, our semantics and algorithm may aid the enforcement of other policies
restricting the use of information to only certain purposes, such as those governing intellectual
property.

Contributions and Outline. We start by reviewing related work and POMDPs (Sections 2 and
3). Our first contribution is definitional: we use our quotienting characterization of information use
to provide both the cognitive and behaviorist definitions of complying with a purpose restriction
on information use (Section 4). Our second contribution is our auditing algorithm accompanied by
theorems of soundness and a qualified form of completeness (Section 5). Our final contribution is
relating our formalization to noninterference with a theorem showing that the cognitive definition
implies noninterference (Sections 6). We end with conclusions (Sections 7).

2 Prior Work

Our work builds upon three strands of prior work: information flow analysis, enforcing purpose
restrictions, and planning.

Information Flow Analysis. Research on information flow analysis led to noninterference [15],
a formalization of information flow, or use. However, prior methods of detecting noninterference
have typically required access to the program running the system in question. These analyses either
used the program for directly analyzing its code (see [37] for a survey), for running an instrumented
version of the system (e.g., [45, 28, 46, 24]), or for simulating multiple executions of the system
(e.g., [49, 10, 12]). Traditionally, the requirement of access to the program has not been problematic
since the analysis has been motivated as a tool for software engineers securing a program that they
have designed.

However, in our setting of enforcing purpose restrictions, such access is not always possible since
the analyzed system can be a person who could be adversarial and whose behavior the auditor can
only observe. On the other hand, the auditor has information about the purposes that the system
should be pursuing. Since the system is a purpose-driven agent, the auditor can understand its
behavior in terms of a POMDP model of its environment. Thus, while prior work provides a
definition of information use, it does not provide appropriate models or methods for determining
whether it occurs in our setting.

Enforcing Purpose Restrictions. Most prior work on using formal methods for enforcing
purpose restrictions has focused on when observable actions achieve a purpose [1, 8, 2, 9, 32, 18,
29, 13]. That is, they define an action as being for a purpose if that action (possibly as part of a
chain of actions) results in that purpose being achieved. Our work differs from these works in two
ways.

First, we define an action as being for a purpose when that action is part of a plan for maximizing
the satisfaction of that purpose. Our definition differs by treating purposes as rewards that can be
satisfied to varying degrees and by focusing on the plans rather than outcomes, which allows an
action to be for a purpose even if it probabilistically fails to improve it. The semantics of purpose we
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use follows from informal philosophical inquiry [41] and prior work using Markov Decision Processes
to formalize purpose restrictions for actions [42]. Jafari et al. offer an alternative view of planning
and purposes in which a purpose is high-level action related to low-level actions by a plan [17]. Our
views are complementary in that theirs picks up where ours leaves off: Our model of planning can
justify the plans that their model accepts as given while their model allows for reasoning about the
relationships among purposes with a logic.

Second, we consider information use. While the aforementioned works address restrictions on
information access, they do not have a model of information use, such as noninterference [15].
Hayati and Abadi provide a type system for tracking information flow in programs with purpose
restrictions in mind [16]. However, their work presupposes that the programmer can determine the
purpose of a function and provides no formal guidance for making this determination.

Minimal disclosure requires that the amount of information used in granting a request for access
should be as little as possible while still achieving the purpose behind the request. This is closely
related to enforcing purpose restrictions. However, purpose restrictions do not require the amount
of information used to be minimal and often involve purposes that are never fully achieved (e.g.,
more marketing is always possible). Unlike works on minimal disclosure [22, 6] that model purposes
as conditions that are either satisfied or not, we model them as being satisfied to varying degrees.
Furthermore, we model probabilistic factors absent in these works that can lead to an agent’s plan
failing. Modeling the such failures allows us to identify when information use is for a purpose
despite not increasing the purpose’s satisfaction due to issues outside of the agent’s control.

Planning. Since our formal definition is in terms of planning, automating auditing depends upon
automated plan recognition [38]. We build upon works that use models of planning to recognize
plans (e.g., [4, 3, 34, 35]). The most related work has provided methods of determining when a
sequence of actions are for a purpose (or “goal” in their nomenclature) given a POMDP model of
the environment [35]. Our algorithm for auditing is similar to their algorithm. However, whereas
their algorithm attempts to determine the probability that a sequence of actions are for a purpose,
we are concerned with whether a use of information could be for a purpose. Thus, we must first
develop a formalism for information use. We must also concern ourselves with the soundness of
our algorithm rather than its accuracy in terms of a predicted probability. Additionally, we use
traditional POMDPs to model purposes that are never fully satisfied instead of the goal POMDPs
used in their work.

3 Modeling Purpose-Driven Agents

We review the Partially Observable Markov Decision Process (POMDP) model and then show
how to model the above motivating example as one. We start with an agent, such as a person,
organization, or artificially intelligent computer, that attempts to maximize the satisfaction of
a purpose. The agent uses a POMDP to plan its actions. The POMDP models the agent’s
environment and how its actions affects the environment’s state and the satisfaction of the purpose.
The agent selects a plan that optimizes the expected total discounted reward (degree of purpose
satisfaction) under the POMDP. This plan corresponds to the program running the audited system.

POMDPs. To define POMDPs, let Dist(X) denote the space of all distributions over the set X
and let R be the set of real numbers. A POMDP is a tuple 〈Q,A, τ, ρ,O, ν, γ〉 where
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• Q is a finite state space representing the states of the agent’s environment;

• A, a finite set of actions;

• τ : Q×A → Dist(Q), a transition function from a state and an action to a distribution over
states representing the possible outcomes of the action;

• ρ : Q×A → R, a reward function measuring the immediate impact on the satisfaction of the
purpose when the agent takes the given action in the given state;

• O, a finite observation space containing any observations the agent may perceive while per-
forming actions;

• ν : A×Q → Dist(O), a distribution over observations given an action and the state resulting
from performing that action; and

• γ, a discount factor such that 0 ≤ γ < 1.

We say that a POMDP models a purpose if ρ measures the degree to which the purpose is
satisfied. To select actions for that purpose, the agent should select those that maximizes its
expected total discounted reward, E

[
∑∞

i=0 γ
iui

]

where i represents time and ui, the reward from
the agent’s ith action.

This goal is complicated by the agent not knowing a priori which of the possible states of the
POMDP is the current state of its environment. Rather it holds beliefs about which state is the
current state. In particular, the agent assigns a probability to each state q according to how likely
the agent believes that the current state is the state q. A belief state β captures these beliefs as a
distribution over states of Q (i.e., β ∈ Dist(Q)). An agent updates its belief state as it performs
actions and makes observations. When an agent takes the action a and makes the observation o
starting with the beliefs β, the agent develops the new beliefs β′ where β′(q′) is the probability that
q′ is the next state.

We define upm(β, a, o) to equal the updated beliefs β′. β′ assigns to the state q′ the probability
β′(q′) = Pr[Q′=q′|O=o,A=a,B=β] where Q′ is a random variable over next states, B=β identifies
the agent’s current belief state as β, A=a identifies the agent’s current action as a, and O=o iden-
tifies the observation the agent makes while performing action a as o. We may reduce upm(β, a, o)
to the following formula in terms of the POMDP model:

upm(β, a, o)(q′) =
ν(a, q′)(o)

∑

q∈Q β(q) ∗ τ(q, a)(q′)
∑

q′∈Q ν(a, q′)(o)
∑

q∈Q β(q) ∗ τ(q, a)(q′)

To maximize its expected total discounted reward, the agent does not need to track its history of
actions and observations independently of its beliefs as such beliefs are a sufficient statistic. Thus,
the agent need only consider for each possible belief β it can have, what action it would perform.
That is, the agent can plan by selecting a strategy : a function from the space of beliefs Dist(Q) to
the space of actions A. (We use the word “strategy” instead of the more common “policy” to avoid
confusion with privacy policies.)

The goal of the agent is find the optimal strategy. By the Bellman equation [7], the expected
value of a belief state β under a strategy σ is

Vm(σ, β) = Rm(β, σ(β)) + γ
∑

o∈O

Nm(β, σ(β))(o) ∗ Vm(σ, upm(β, σ(β), o))(1)
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where Rm and Nm are ρ and ν raised to work over beliefs: Rm(β, a) =
∑

q∈Q β(q) ∗ ρ(q, a) and
Nm(β, a)(o) =

∑

q,q′∈Q β(q) ∗ τ(q, a)(q′) ∗ ν(a, q′)(o). A strategy σ is optimal if it maximizes Vm

for all belief states, that is, if for all β, Vm(σ, β) is equal to V ∗
m(β) = maxσ′ Vm(σ′, β). Prior work

has provided algorithms for finding optimal strategies by reducing the problem to one of finding an
optimal strategy for a related Markov Decision Process (MDP) that uses these belief states as its
state space (e.g., [40]). (For a survey, see [27].)

Example. We can formalize the motivating example provided in Section 1 as a POMDP mex.
Here, we provide an overview that is sufficient for understanding the rest of the paper; the appendix
provides additional details.

For simplicity, we assume that the only information relevant to advertising is the gender of the
visitor. Thus, the state space Q is determined by three factors: the visitor’s gender, the gender
(if any) recorded in the database, and what advertisement (if any) the network has shown to the
visitor.

Also for simplicity, we assume that the network is choosing among three advertisements. We
use the action space A = {lookup, ad1, ad2, ad3}. The actions ad1, ad2, and ad3 correspond to the
network showing the visitor one of the three possible advertisements while lookup corresponds to
the network looking up information on the visitor. We presume ad1 is the best for females and
the worst for males, ad3 is the best for males and the worst for females, and ad2 strikes a middle
ground. In particular, we use ρ(q, ad1) = 9 for a state q in which the visitor is a female and has
not yet seen an ad. The reward 9 could refer to a measure of the click through rate or the average
preference assigned to the ad by females during market research. If the visitor were instead a male,
the reward would be 3. For ad3, the rewards are reversed with 3 for females and 9 for males. For
ad2, the reward is 7 for both genders. The action lookup or showing a second ad produces reward
of zero. We use a discounting factor of γ = 0.9.

The function τ shows how actions change the environment’s state while ν shows how observa-
tions accompany these actions. τ enforces that showing an ad changes the state into one in which
showing a second ad produces no further rewards. It also specifies that performing lookup does not
change the state of the environment. On the other hand, ν shows that lookup can change the state
of the agent’s knowledge. In particular, it shows that performing lookup produces an observation
〈d, α〉. The observation reveals that the database holds data d about the visitor’s gender and α about
what if any ad the visitor has seen. Thus, the observation space is O = {f,m,⊥}×{ad1, ad2, ad3,∅}
with f for the database showing a female, m for a male, ⊥ for no gender entry, adi for the visitor
having seen adi, and ∅ for the visitor having not seen an ad.

How the network will behave depends upon the network’s initial beliefs βex1. We presume that
the network believes its database’s entries to be correct, that it has not shown an advertisement to
the visitor yet, and that visitors are equally likely to be female or male. Under these assumptions,
the optimal plan for the network is to first check whether the database contains information about
the visitor. If the database records that the visitor is a female, then the network shows her ad1.
If it records a male, the network shows ad3. If the database does not contain the visitor’s gender
(holds ⊥), then the network shows ad2. The optimal plan is not constrained as to what the agent
does after showing the advertisement as it does not affect the reward. (We return to this point
later when we consider non-redundancy in Section 5.)

This optimal plan characterizes the form of the set of optimal strategies. The set contains
multiple optimal strategies since the network is unconstrained in the actions it performs after
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showing the advertisement. The optimal strategies must also specify how the network would behave
under other possible beliefs it could have had. For example, if the network believed that all visitors
are females regardless of what its database records, then it would always show ad1 without first
checking its database.

Intuitively, using any of these optimal strategies would violate the privacy policy prohibiting
using gender for marketing. The reason is that the network selected which advertisement to show
using the database’s information about the visitor’s gender.

We expect the network constrained to obeying the policy will show ad2 to all visitors (presuming
approximately equal numbers of female and male visitors). Our reasoning is that the network must
plan as though it does not know and cannot learn the visitor’s gender. In this state of simulated
ignorance, the best plan the network can select is the middle ground of ad2. The next section
formalizes this planning under simulated ignorance.

4 Constraining POMDPs for Information Use

We now provide a formal characterization of how an agent pursuing a purpose should behave when
prohibited from using a class of information. Recall the intuition that using information is using a
distinction and that not using it corresponds to ignoring the distinction. We use this idea to model
sensitive information with an equivalence relation ≡. We set o1 ≡ o2 for any two observations o1
and o2 that differ only by sensitive information.

From≡ and a POMDPm, we construct a POMDPm/≡ that ignores the prohibited information.
For each equivalence class of ≡, m/≡ will conflate its members by treating every observation in
it as indistinguishable from one another. To ignore these distinctions, on observing o, the agent
updates its belief state as though it has seen some element of ≡[o] but is unsure of which one where
≡[o] is the equivalence class that holds the observation o.

To make this formal, we define a quotient POMDP m/≡ that uses a quotiented space of ob-
servations. Let O/≡ be the set of equivalence classes of O under ≡. Let ν/≡ give the probability
of seeing any observation of an equivalence class: ν/≡(a, q′)(O) =

∑

o∈O ν(a, q′)(o) where O is an
equivalence class in O/≡. Given m = 〈Q,A, τ, ρ,O, ν, γ〉, let m/≡ be 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉.

Proposition 1. For all POMDPs m and equivalences ≡, m/≡ is a POMDP.

Proof. We prove that ν/≡ produces probability distributions over O/≡. For all a and q′,
∑

O∈O/≡

ν/≡(a, q′)(O) =
∑

O∈O/≡

∑

o∈O

ν(a, q′)(o) =
∑

o∈O

ν(a, q′)(o) = 1

follows from O/≡ being a partition of O and from ν(a, q′) being a distribution over O. For all
O ∈ O/≡, 0 ≤ ν/≡(a, q′)(O) ≤ 1 since ν/≡(a, q′)(O) =

∑

o∈O ν(a, q′)(o) and O ⊆ O. Thus,
ν/≡(a, q′) is a probability distribution.

Example. Returning to the example POMDP of Section 3, the policy governing the network
states that the network will not use the database’s entry about the visitor’s gender for determin-
ing the advertisement to show the visitor. The auditor must decide how to formally model this
restriction. One way would be to define ≡ex such that for all g and g′ in {f,m,⊥}, and α in
{ad1, ad2, ad3,∅}, 〈g, α〉 ≡ex 〈g

′, α〉, conflating the gender for all observations. Under this require-
ment, mex/≡ex will be such that the optimal strategy will be determined solely by the network’s
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initial beliefs and performing the action lookup will be of no benefit. Any optimal strategy for
mex/≡ex will call for performing ad2 from the initial beliefs βex1 discussed above.

Alternatively, the auditor might conclude that the policy only forces the network to ignore
whether the database records the visitor as a female or male and not whether the database contains
this information. In this case, the auditor would use a different equivalence ≡′

ex such that 〈f, α〉 ≡′
ex

〈m, α〉 but 〈f, α〉 6≡′
ex 〈⊥, α〉 6≡′

ex 〈m, α〉 for all α. Under the initial beliefs βex1, the network would
behave identically under ≡ex and ≡′

ex. However, if the network’s beliefs were such that it is much
more likely to not know a female’s gender than a male’s, then it might choose to show ad1 instead
of ad2 in the case of observing 〈⊥,∅〉.

The next proposition proves that we constructed the POMDP m/≡ so that beliefs are updated
as if the agent only learns that some element of an equivalence class of observations was observed
but not which one. That is, we prove that the updated belief upm/≡(β, a,≡[o])(q′) is equal to the
probability that the next environmental state is q′ given the distribution β over possible last states,
that the last action was a, and that the observation was a member of ≡[o]. Recall that Q′ is a
random variable over the next state while O, A, and B identify the last observation, action, and
belief state, respectively.

Proposition 2. For all POMDPs m, equivalences ≡, beliefs β, actions a, observations o, and
states q′, upm/≡(β, a,≡[o])(q′) = Pr[Q′=q′ | O ∈ ≡[o],A=a,B=β].

Proof. For all m, ≡, β, a, o, and q′,

upm/≡(β, a,≡[o])(q′) =
ν/≡(a, q′)(≡[o])

∑

q∈Q β(q) ∗ τ(q, a)(q′)
∑

q′∈Q ν/≡(a, q′)(≡[o])
∑

q∈Q β(q) ∗ τ(q, a)(q′)

=

∑

o1∈≡[o] ν(a, q
′)(o1)

∑

q∈Q β(q) ∗ τ(q, a)(q′)
∑

o1∈≡[o]

∑

q′∈Q ν(a, q′)(o1)
∑

q∈Q β(q) ∗ τ(q, a)(q′)

=
Pr[O ∈ ≡[o]|Q′=q′, A=a,B=β] Pr[Q′=q′|A=a,B=β]

Pr[O ∈ ≡[o]|A=a,B=β]

= Pr[Q′=q′ | O ∈ ≡[o],A=a,B=β]

since Pr[O ∈ ≡[o]|Q′=q′, A=a,B=β] = Pr[O ∈ ≡[o]|Q′=q′, A=a].

Propositions 1 and 2 show that m/≡ is a POMDP that ignores the distinctions among ob-
servations that only differ by sensitive information. They justify the following definition, which
explains how a purpose-driven agent should act when prohibited from using certain information.
They show that it correctly prevents the use of the prohibited information. The definition’s appeal
to optimizing a POMDP is justified by our prior work showing that an action is for a purpose when
that action is selected as part of a plan optimizing the satisfaction of that purpose [42]. We extend
this result to information by concluding that information used to select an action is used for that
action’s purpose.

Definition 1 (Cognitive). An agent obeys the purpose restriction to perform actions for the pur-
pose modeled by the POMDP m without using the information modeled by ≡ iff the agent selects
an strategy by optimizing m/≡.
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We call the above definition cognitive since it refers to the strategy selected by the agent as
part of a cognitive process that the auditor cannot measure. Rather, the auditor can only view
the agent’s external behavior and visible aspects of the environment. That is, the auditor can only
view the agent’s actions and observations, which we refer to collectively as the agent’s execution.

We can formalize the agent’s execution using a function exe. Even when the agent uses the
POMDP m/≡ with observation space O/≡ to select a strategy, the actual observations the agent
makes lie in O, complicating exe. We recursively define exe(m,≡, σ, β1, ~o) to be the agent’s ex-
ecution that arises from it employing a strategy σ observing a sequence of observations ~o =
[o1, . . . on] in O∗ starting with beliefs β1 for a POMDP m/≡. For the empty sequence [] of ob-
servations, exe(m,≡, σ, β, []) = [σ(β)] since the agent can only make one action before needing to
wait for the next observation and updating its beliefs. For non-empty sequences o:~o, it is equal to
σ(β):o:exe(m,≡, σ, upm/≡(β, σ(β),≡[o]), ~o) where x:y denotes prepending element x to the sequence
y.

A single execution ~e can be consistent with both an optimal strategy for m/≡ and a strategy
that is not optimal for m/≡. Consider for example, the execution ~e = [ad2] = exe(mex,≡ex, σ, βex, [])
that arises from an optimal strategy σ for mex/≡ex. This execution can also arise from the agent
planning for a different purpose, such as maximizing kickbacks for showing certain ads, provided
that ad2 also just so happens to maximize that purpose. Since the auditor only observes the
execution ~e and not the cognitive process that selected the action ad2, the auditor cannot know by
which process the agent selected the ad. Thus, the auditor cannot determine from an execution
that an agent obeyed a purpose restriction under Definition 1.

Some auditors may find this fundamental limitation immaterial since such an agent’s actions
are still consistent with an allowed strategy. Since the actual reasons behind the agent selecting
those actions do not affect the environment, an auditor might not find concerning an agent doing
the right actions for the wrong reasons. To capture this more consequentialist view of compliance,
we provide a weaker definition that focuses on only the agent’s execution.

Definition 2 (Behaviorist). An agent performing execution ~e obeys the purpose restriction to
perform actions for the purpose modeled by the POMDP m and initial beliefs β1 without using the
information modeled by the equivalence relation ≡ given the observations ~o iff ~e = exe(m,≡, σ, β1, ~o)
for some σ that is an optimal strategy of m/≡.

5 Auditing Algorithm

Under the behaviorist definition, to determine whether an agent obeyed a prohibition against
using certain information for a purpose pursued by the agent, the auditor can compare the agent’s
behaviors to the appropriate strategies. The auditor records the agent’s execution in a log ℓ that
shows the actions and observations of the agent. For example, databases for electronic medical
records log many of the actions and observations of healthcare providers. The auditor may then
compare the recorded behavior to that dictated by Definition 2, i.e., to the optimal strategies for
the quotient POMDP modeling the purpose while ignoring disallowed information.

Given our formal model, we can automate the comparison of the agent’s behavior to the al-
lowable behavior. We use an algorithm Audit that takes as inputs a POMDP m, an equivalence
relation ≡, and a log ℓ = [a1, o1, a2, o2, . . . , an, on] such that the audited agent is operating in the
environment m under a policy prohibiting information as described by ≡ and took action ai fol-
lowed by observation oi for all i ≤ n. For simplicity, we assume that ℓ records all relevant actions
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and observations. Audit returns whether the agent’s behavior, as recorded in ℓ, is inconsistent
with optimizing the POMDP m/≡.

Audit operates by first constructing the quotient POMDP m/≡ from m and ≡. Next, similar
to a prior algorithm [35], for each i, Audit checks whether performing the recorded action ai in the
current belief state βi is optimal under m/≡. The algorithm constructs these belief states from the
observations and initial belief state β1. Due to the complexity of solving POMDPs [31], we use an
approximation algorithm to solve for the value of performing ai in βi (denoted Q∗

m/≡(βi, ai)) and the

optimal value V ∗
m/≡(βi). Unlike prior work, for soundness, we require an approximation algorithm

solvePOMDP that produces both lower bounds V∗low and upper bounds V∗up on V ∗
m/≡(βi). Many

such algorithms exist (e.g., [50, 39, 20, 33]). For each βi and ai in ℓ, Audit checks whether these
bounds show that Q∗

m/≡(βi, ai) is strictly less than V ∗
m/≡(βi). If so, then the action ai is sub-optimal

for βi and Audit returns true. Pseudo-code for Audit follows:

Audit(〈Q,A, τ, ρ,O, ν, γ〉,≡, β1, [a1, o1, a2, o2, . . . , an, on]):
01 m′ = 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉
02 〈V∗low, V

∗
up〉 := solvePOMDP(m′)

03 for (i := 1; i ≤ n; i++):
04 if (Q∗up(V

∗
up, βi, ai) < V∗low(βi)):

05 return true
06 βi+1 := upm/≡(βi, ai,≡[oi]);
07 return false

where Q∗up(V
∗
up, β, a) is a function that uses V∗up to return an upper bound on Q∗

m/≡(β, a):

Q
∗
up(V

∗
up, β, a) = Rm(β, a) + γ

∑

O∈O/≡

Nm(β, a))(O) ∗ V∗up(upm′(β, σ(β), O))

Theorem 1 (Soundness). If Audit returns true, then the agent did not follow an optimal strategy
for m/≡, violating both Definitions 1 and 2.

Proof. If the algorithm returns true, then for some i, Q∗
m/≡(βi, ai) ≤ Q∗up(V

∗
up, βi, ai) < V∗low(βi) ≤

V ∗
m/≡(βi). This implies that ai is suboptimal at belief state βi and the agent did not follow an

optimal strategy for the allowed purpose using only the allowed information.

Thus, if Audit returns true, either the agent optimized some other purpose, used information
it should not have, used a different POMDP model of its environment, or failed to correctly opti-
mize the POMDP. Each of these possibilities should concern the auditor and is worthy of further
investigation.

If the algorithm returns false, then the auditor cannot find the agent’s behavior inconsistent
with an optimal strategy and should spend his time auditing other agents. However, Audit is
incomplete and such a finding does not mean that the agent surely performed its actions for the
purpose without using the prohibited information. For the cognitive definition, incompleteness is
unavoidable since the definition depends upon cognitive constructs that the auditor cannot measure.
For example, recall that the network could display the execution ~e = [ad2] either from performing
the allowed optimization or by performing some disallowed optimization that also results in the
action ad2 being optimal.

For the behaviorist definition, incompleteness results since a better approximation might actu-
ally show that Q∗

m/≡(βi, ai) < V ∗
m/≡(βi) for some i. In principle this source is avoidable by using
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an exact POMDP solver instead of an approximate one. However, the exact solution to some
POMDPs is undecidable [21]. Nevertheless, we can prove that this inability is the only source of
incompleteness.

Theorem 2 (Qualified Completeness). If Audit using an oracle to exactly solve POMDPs returns
false, then the agent obeyed the purpose restriction according to the behaviorist definition (Defini-
tion 2).

Proof. Assume that algorithm returns false. Then, for every i, it must be the case that Q∗up(V
∗
up, βi, ai) 6<

V∗low(βi). Since an oracle returns exact results for V∗up and V∗low, Q
∗
m/≡(βi, ai) = Q∗up(V

∗
up, βi, ai) and

V∗low(βi) = V ∗
m/≡(βi). Thus, for all i, Q

∗
m/≡(βi, ai) ≥ V ∗

m/≡(βi). Thus for all i, ai is optimal at belief

state βi and the agent’s are consistent with following an optimal strategy for m/≡.

Other Purpose Restrictions. Audit is specialized for determining whether or not the audited
agent performed its actions for a purpose without using some prohibited information. While such
a question is relevant to an internal compliance officer auditing employees, it does not correspond
to the purpose restrictions found in outward-facing privacy policies.

One type of restriction found in such policies is the not-for restriction prohibiting information
from being used for a purpose. For example, Yahoo! promised to not use contents of emails for
marketing. This restriction is similar to the condition checked by Audit, but is weaker in that
audited agent may obey it either (1) by performing actions for that purpose without using that
information (which Audit checks) or (2) by not performing actions for that purpose.

A second type is the only-for restriction, which limits the agent to using a class of information
only for a purpose. For example, HIPAA requires that medical records are used only for certain
purposes such as treatment. It is also weak in that the agent can obey it either (1) by performing
actions for the purpose (which Audit checks using equality for ≡ to allow the agent to use the
information) or (2) by not using the information in question while performing actions for some
other purpose.

For both of these types, our algorithm can handle the first option (1) for compliance. However,
for both these types, the second option (2) for compliance involves an open-ended space of possible
alternative purposes that could have motivated the agent’s actions. In some cases (e.g., healthcare),
this space may be small enough to check each alternative (e.g., treatment, billing, research, training)
with Audit. In other cases, the auditor might have the authority to compel the agent to explain
what its purpose was. In either of these cases, the auditor could use Audit to explore these
alternative purposes.

Modeling. Audit requires a POMDP that models how various actions affect the purpose in
question. In some cases, acquiring such a model may be non-trivial. We hope that future work
can ease the process of model construction using techniques from reinforcement learning, such as
SARSA [36], that automatically construct models from observing the behavior of multiple agents.

In some cases, the auditor might be able to compel the agent to provide the POMDP used. In
this case, Audit would check whether the agent’s story is consistent with its actions.

Non-Redundancy. In our running example, the actions of the agent after showing the adver-
tisement are unconstrained. The reason is that showing the advertisement will result in the current
state of the POMDP becoming one from which no further rewards are possible. Since the only
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criterion of an optimal strategy is its expected total discounted reward, a strategy may assign any
action to these states without changing whether it is optimal. However, none of the actions in
A actually improves the satisfaction of the purpose. Thus, intuitively, the agent should just stop
instead of performing any of them.

Prior work has formalized this intuition for MDPs using the idea of non-redundancy [42]. We
may apply the same idea to POMDPs. We add to each POMDP a distinguished action stop that
indicates that the agent stops and does nothing more (for the purpose in question). The stop action
always produces zero reward and results in no state change: ρ(q, stop) = 0 and τ(q, stop) = δ(q)
for all q in Q. An action a other than stop from a belief state β is redundant if it is no better
than stopping: Q∗

m/≡(β, a) ≤ Q∗
m/≡(β, stop) = 0. A strategy is non-redundant if it never requires a

redundant action from any belief state. We require that the strategy that the agent selects is not
just optimal for the total expected discounted reward, but also that it is non-redundant.

We modify Audit to enforce this requirement by additionally checking that Q∗up(βi, ai) > 0 for
each pair of a belief state βi and an action ai other than stop in the log ℓ. If not, Audit has found
a redundant action ai indicating a violation and returns true.

6 Relationship with Noninterference

We have provided a definition of information use in terms of a POMDP. Prior work provides the
noninterference definition of information use for automata [15]. In this section, we show that our
definition implies a form of noninterference. In particular, we show that agents using strategies
optimizing m/≡ has noninterference for ≡, which suggests that our definition is sufficiently strong
to rule out information use. We start by reviewing automata and noninterference.

Automaton Model of Systems. The agent using the POMDP to select a strategy can imple-
ment that strategy as a control system or controller (e.g., [19]). We follow Goguen and Meseguer’s
work and model systems as deterministic automata [15]. However, since we do not analyze the
internal structure of systems (it is unavailable to the auditor), our approach can be applied to
other models. We limit our discussion to deterministic systems since there are many competing
generalizations of noninterference to the nondeterministic setting (e.g., [25, 47, 26]), but the main
competitors collapse into standard noninterference in the deterministic case [11].

A system automaton s = 〈t, r〉 consists of a labeled transition system (LTS) t and a current
state r. An LTS t = 〈R,O,A, next, act〉 describes the automaton’s behavior where R is a set of
states; O, a set of observations (inputs); A, a set of actions (outputs); next : R × O → R is a
transition function; and act : R → A is a function identifying the action that the automation
selects given its current state. The current state r ∈ R changes as the system makes observations
and takes actions.

As with POMDPs, an execution of a system s modeled as an automaton corresponds to an
interleaving of observations from the environment and actions taken by the system. Let exe(s, ~o)
denote the execution of s on a sequence ~o of observations. As for POMDPs, we define exe for
systems recursively: exe(〈t, r〉, []) = [act(r)] and exe(〈t, r〉, o:~o) = act(r):o:exe(〈r, next(r, o)〉, ~o) where
t = 〈R,O,A, next, act〉.

Noninterference. Recall that we set o1 ≡ o2 for any two observations o1 and o2 that differ only
by sensitive information. To not use the sensitive information, the system s should treat such
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related observations identically.
To formalize this notion, we raise ≡ to work over sequences of observations and actions (i.e.,

executions and sequences of observations). For such sequences ~x and ~y in (O ∪A)∗, ~x ≡ ~y iff they
are of the same length and for each pair of elements x and y at the same position in ~x and ~y,
respectively, x ≡ y where ≡ is treated as equality when comparing actions.

Definition 3. A system s has noninterference for ≡ iff for all observation sequences ~o1 and ~o2 in
O∗, ~o1 ≡ ~o2 implies that exe(s, ~o1) ≡ exe(s, ~o2).

Our definition corresponds to the form of noninterference enforced by most type systems for
information flow. (See [37] for a survey.) Unlike Goguen and Meseguer’s definition, ours does not
require the system’s behavior to remain unchanged regardless of whether or not it receives sensitive
information. Rather, the system’s behavior may change upon receiving sensitive information, but
this change must be the same regardless of the value of the sensitive information. (See [44] for a
discussion.)

Relationship. We now characterize the relationship between our quotienting definition of in-
formation use and noninterference. We do so by considering a control system s operating in an
environment modeled by a POMDP m. We require that s and m share the same sets of actions A
and observations O. However, the state spaces R of s and Q of m differ with R representing the
internal states of the system and Q representing the external states of the environment.

We relate systems and strategies by saying that a system s implements a strategy σ form/≡ and
beliefs β1 iff for all ~o in O∗, exe(s, ~o) = exe(m,≡, σ, β1, ~o). We denote the set of such implementing
systems as Imp(m,≡, σ, β1). This definition allows us to formalize the intuition that agents using
strategies optimizing m/≡ has noninterference for ≡. In fact, systems implementing any strategy
for m/≡ has noninterference since any such implementation respects ≡.

Theorem 3. For all systems q, POMDPs m, initial beliefs β1, strategies σ, and equivalences ≡, if
s is in Imp(m,≡, σ, β1), then s has noninterference for ≡.

Proof. Assume that the system s is in Imp(m,≡, σ, β). Then for any observation ~o, exe(s, ~o) =
exe(m,≡, σ, β, ~o).

Suppose that ~o1 ≡ ~o2. Since ~o1 ≡ ~o2, |~o1| = |~o2|. We can prove by induction over this length
that exe(m,≡, σ, β, ~o1) ≡ exe(m,≡, σ, β, ~o2):

• Base Case: ~o1 = [] and ~o2 = []. The result follows immediately since ~o1 = ~o2.

• Inductive Case: ~o1 = o1:~o
′
1 and ~o2 = o2:~o

′
2. Since ~o1 ≡ ~o2, ~o

′
1 ≡ ~o′2 and o1 ≡ o2. For

some β′, upm/≡(β, σ(β),≡[o1]) = β′ = upm/≡(β, σ(β),≡[o2]) since o1 ≡ o2. By the inductive
hypothesis on ~o′1 and ~o′2, exe(m,≡, σ, β′, ~o′1) ≡ exe(m,≡, σ, β′, ~o′2). Thus,

exe(m,≡, σ, β, o1:~o1) = σ(β):o1:exe(m,≡, σ, β′, ~o′1)

≡ σ(β):o2:exe(m,≡, σ, β′, ~o′2) = exe(m,≡, σ, β, o2:~o2)

Since exe(m,≡, σ, β, ~o1) ≡ exe(m,≡, σ, β, ~o2), exe(s, ~o1) ≡ exe(s, ~o2).

Agents obeying a purpose restriction under the cognitive definition (Definition 1) will employ
a system in Imp(m,≡, σ, β1). Thus, Theorem 3 shows that the cognitive definition is sufficiently
strong to rule out information use.
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Information Use for Other Purposes. The situation is subtler for the weaker behaviorist
definition (Definition 2) and the algorithm Audit based upon it. Systems exist that will pass
Audit and satisfy the behaviorist definition despite having interference by using the protected
information for some purpose other than the restricted one. The key is that there could be more
than one optimal strategy for a POMDP and that the agent may use the choice among optimal
strategies to communicate information. The behavior of such a system will be consistent with
whichever optimal strategy it selects, satisfying the behaviorist definition and Audit. However,
such a system will not actually implement any strategy for the quotiented POMDP m/≡ since it
distinguishes between observations conflated by ≡.

For example, consider modifying the motivating example found in Section 3 in two ways to
make the POMDP m′

ex. First, let ad2 come in two versions, ada2 and adb2, which are otherwise
the same as the original ad2. Second, change the POMDP so that the network must perform the
action lookup before showing any ads. Two optimal non-redundant strategies will exist for m′

ex/≡.
Starting from the initial beliefs βex1 discussed above, in one of the strategies, σa, the network will
first perform lookup and then show ada2. Under the second, σ

b, it will show adb2 after lookup. Under
both, it then switches to the action stop.

The network’s ability to choose between σa and σb can result in interference. In particular, the
network might not implement either of them and instead delay the choice between ada2 and adb2
until after the observation from lookup informs it of the visitor’s gender. The network could then
use ada2 for a female and adb2 for a male. While such a system would use the information and have
interference, it obeys the behaviorist definition with its actions consistent with either σa in the case
of a female or σb in the case of a male.

Since such systems use the prohibited information to choose between optimal strategies, doing so
does not actually increase its satisfaction of the purpose. Thus, this information use is not intuitively
for that purpose. The agent must be motivated by some other purpose such as exfiltrating protected
information to a third-party that can see which ad the network selects but the not visitor’s gender
directly. Thus, the behaviorist definition does not allow the agent to use the information for the
purpose prohibited by the restriction, but rather allows the agent to use the information for some
other purpose.

The auditor might want to prevent such interference since it violates the cognitive definition.
The modifications to the example illustrate two ways that the auditor can do so if he has sufficient
control over the agent’s environment. The first is to ensure that only a single strategy is optimal
and non-redundant. The second is to make sure that the agent can avoid learning the protected
information (such as by performing the action lookup) and that learning it incurs a cost. When
learning information is optional and costly, the agent will only be able to learn it if doing so
increases its total reward, and not just to select among optimal strategies that do not depend upon
using that information. A third possible modification is to require the agent to perform an action
committing it to a single strategy before it can learn the protected information.

In some cases an auditor can detect such information flows without modifying the POMDP.
For example, intuitively, we would expect the ad network to handle more than one visitor. The
auditor could compare the network’s behavior when given a female to that when given a male. A
difference in treatment indicates that the network is not consistently implementing either of the
optimal strategies.
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7 Conclusion

We use planning to create the first formal semantics for determining when information is used for
a purpose. We have provided an auditing algorithm based on our formalism. We have discussed
applying our algorithm to the problem of enforcing purpose restrictions found in privacy policies.

Our methods have applications beyond enforcing purpose restrictions. For example, due to
privacy concerns, much interest exists in determining how third-party data collection agencies use
the information they collect. (See [23] for a survey.) Despite being a question of information flow,
program analyses are inapplicable since the programs are unavailable, as in our setting. Unlike our
setting, these agencies typically do not subject themselves to purpose restrictions. Nevertheless,
their desire for profit implicitly restrains their behavior in a manner similar to a purpose restriction.
Thus, our semantics and algorithm provide a starting point for investigating such agencies.
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Appendix: Details of Example POMDP

Here we provide details about the network POMDP mex. Formally, the state space is Q = {f,m}×
{f,m,⊥}×{ad1, ad2, ad3,∅} with f, m, ⊥, adi, and ∅ interpreted as in Section 3. For example, the
state 〈f,⊥, ad2〉 indicates that the visitor is a female, the database does not record her gender, and
the network has shown her ad2. ρ(〈f,⊥, ad2〉) = 0 since the visitor has already seen an ad.
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The actions and states are related by the transition function τ : Q × A → Dist(Q). τ(q, a) is
a distribution over states such that for each state q′, τ(q, a)(q′) is the probability of the environ-
ment transition from state q to state q′ by the network performing action a. While the network
has uncertainty about the gender of the visitor, each action selected by network deterministically
results in the next state. Thus, in this model, for all states q and actions a, the distribution
τ(q, a) is always a degenerate distribution that assigns a probability of 1 to exactly one state.
Let δ(q) denote the degenerate distribution assigning the probability of 1 to the state q. In our
model, τ(〈g, d,∅〉, adi) = δ(〈g, d, adi〉) for all g in {f,m}, d in {f,m,⊥}, and i in {1, 2, 3} reflecting
that showing an advertisement does not change the visitor’s gender or the network’s database.
τ(〈g, d, adi〉, adj) = δ(〈g, d, adi〉) since the network can show the visitor only one advertisement.
τ(q, lookup) = δ(q) since looking up information in the database does not change the state of the
environment.

The function ν : A ×Q → Dist(O) relates these observations to actions and states. Again we
restrict our attention to degenerate distributions since our example contains uncertainty but not
truly random processes. For each state 〈g, d, α〉, the lookup action results in the observation 〈d, α〉.
For simplicity, we model actions of showing an advertisement as providing a similar observation.
Thus, for all actions a, ν(a, 〈g, d, α〉) = δ(〈d, α〉). (Since the network only gets to show one adver-
tisement and following actions do not affect its total reward, the observation made from showing
an advertisement is of no consequence.)
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