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Abstract

Smoke is one of the core phenomena which fluid simulation techniques in computer graphics
have attempted to capture. Its behavior is well understood mathematically, and accurate smoke
simulation can greatly enhance the realism of computer generated effects. In an attempt to
overcome the diffusion inherent to Eulerian grid-based simulators, a technique has recently
been developed which represents velocity using a sparse set of vortex filaments. This has the
advantage of providing an easily understandable and controllable model for fluid velocity, but
is computationally expensive because each filament affects the fluid velocity over the entire
simulation space. We build upon previous work which merges adjacent rings of filaments by
allowing filaments to form structures other than rings and developing a new set of reconnection
criteria to take advantage of this generic filament graph. To complement this technique, we
also introduce a method for smoke rendering designed to minimize the number of sample points
without introducing excessive diffusion or blurring. This rendering technique advects a mesh
representation of the smoke surface, thus effectively preserving the appearance of thin sheets
and curls.
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Figure 1: A smoke plume simulated using our method (left). Fluid motion is simulated using
vortex filaments (center) and the smoke surface is tracked using a triangle mesh (right).

1 Introduction

The majority of smoke simulation methods take an Eulerian approach to the problem [8, 18, 16]. As
the fluid which drives the smoke’s behavior, air, occupies the entire volume of the simulation space,
the characteristic space filling grid or mesh of an Eulerian discretization is a natural choice of basis.
One of the major advantages of grid-based methods lies in their ability to construct and preserve a
divergence free flow using a robust projection step. However, grid-based simulators remain unable
to capture fine-scale vortices smaller than the mesh resolution, leading to inherent diffusion of the
fluid velocity.

Lagrangian, particle-based simulations offer an alternative. Rather than discretizing the equations
of motion into a grid of static cells, they instead associate mass and velocity with moving particles
[17]. Though features can be defined anywhere in the simulation space, rather than only at fixed
grid cells, the granularity of the simulation is still limited by the particle density. Furthermore,
global optimizations, such as the divergence-eliminating projection step, are difficult to perform on
a dynamic set of particles [5].

Vortex filaments offer a compromise between these two techniques [2, 13, 20]. Though Lagrangian in
nature, they define the fluid velocity through a series of filaments of vorticity rather than through
particles of momentum. This eliminates the need for a projection operation, since the vortex
filaments define a divergence-free velocity field by construction. Additionally, as a Hamiltonian
system, these filament-based simulations are inherently energy preserving.

This method differs from traditional momentum-based particle and grid simulations in that each
element of the basis, a vortex filament, contributes velocity to the entire simulation space rather
than just a localized region. This means that there is no boundary to the simulation, and thus
no related artifacts. However, it increases the computational complexity of the simulation, since
each vortex filament is advected by the combined velocity contributions of all other filaments, and
makes the simulation of object boundaries significantly more complex [20].

Despite these shortcomings, vortex filaments offer a compelling alternative to grid or particle based
simulations. Only a small number of filaments are required to produce a convincing animation,
since the sheets of vorticity that form as an inviscid fluid is disturbed naturally tend to roll up
into filament-like structures. Furthermore, the sparsity of this representation allows the unique
possibility of precise artistic control over the very basis of the simulation itself, rather than through
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more traditional high-level interfaces [2].

Previous work on vortex filaments has limited itself to ring-structured vorticity. This is a natural
simplification, since vortex rings remain stable even in the presence of small amounts of viscosity,
and for computational reasons. Specifically, they can be easily simplified through projection into
a limited frequency space [2], and they enable the use of more accurate self advection techniques
[13].

We extend this work by relaxing the requirement that filaments exist only as a set of distinct, closed
loops, and taking advantage of the additional flexibility to support reconnections between any pair
of vertices in the filament graph. This allows us to both simplify the reconnection procedure and
to support any velocity field with a minimal number of total vortex filaments. We further develop
a set of heuristics designed to preserve physical plausibility while minimizing the number of vortex
filaments present in the simulation.

To complement this technique, we introduce a method for smoke rendering designed to minimize
the number of velocity calculations to be performed at each timestep. By simulating sheets of
smoke instead of individual disconnected particles, we are able to vastly reduce the number of
points being advected. We apply a method similar to that used for filament reconnection to control
splitting and reconnection of edges both within and between sheets. By varying the density of
particles across each smoke sheet, we are able to preserve fine details while maintaining an overall
low particle count.

2 Background

Much of the work in fluid simulation for computer graphics over the past decade is based on Stam’s
Stable Fluids technique [16], with the addition of vorticity confinement [8] in order to counteract
velocity dissipation. For general information on simulated fluids in graphics, we refer the reader to
a recent survey paper and the references therein [18]. Though well suited for confined environments,
these techniques require prior knowledge and careful planning for application in open environments,
as the entire fluid domain must be discretized. Furthermore, simulation detail is limited by the
predetermined grid spacing, preventing the creation of small-scale vortical flows, and leading to the
diffusion of velocity and density values over time.

Smoothed Particle Hydrodynamics (SPH) offers an alternative, where fluid state is associated with
mobile particles instead of static grid coordinates [6, 17]. By representing the fluid domain as a
collection of discrete particles, this and other Lagrangian methods avoid the need to predetermine
and discretize the region of space in which the simulation will take place. However, SPH is best
suited for the simulation of a fluid which is mobile within a larger space, such as water surrounded
by air (in which case the air is often assumed to exert no force on the water, and is simply omitted
from the simulation).

Localized regions of vorticity have long been recognized as important features for the believability of
a fluid simulation. A variety of vorticity-preserving techniques have been developed to help ensure
that these regions do not dissipate unnaturally quickly due to velocity diffusion [8, 11, 15]. Simplical
Fluids [7] offers a mesh-based technique which preserves vorticity by construction. However, even
here the ability to resolve these important structures of vorticity remains limited by the sampling
resolution of the simulation. Vorticity particle formulations offer an alternative analogous to SPH
[3, 15]. However, similar difficulties in information propagation arise, making them ill-suited for
situations in which small timesteps are otherwise unnecessary, such as smoke simulation.
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Angelidis and Neyret [1] pioneered the use of vortex filaments as a simulation primitive. Since
filaments of vorticity naturally form in a turbulent flow, a sparse basis is sufficient to approximate
complex fluid motion. Pinkall et al. [13] further developed a means to accurately model self-
advection of discretized polygonal filaments, and Weißmann and Pinkall [20] introduced a physically
motivated criteria for vortex reconnection and hairpin removal. These techniques simulate only
ring-structured vortices.

The most direct means of simulating smoke is to store density values throughout the fluid domain,
usually at the same grid coordinates as the fluid velocity [8]. However, this limits the minimum
size of fluid features to the grid spacing, and can cause aliasing artifacts if this spacing is too large.
Smoke particles can simulate fine-scale detail, but dissipate quickly [10]. Funck et al. [9] use implied
connectivity information to render smoke using sheets of geometry with a particle at each vertex.
Alternatively, geometry can be constructed dynamically at each frame by joining adjacent streams
of particles [12]. However, neither of these methods modify particle placements or densities once
they have been spawned.

3 Contributions

We develop a method of filament reconnection which preserves physical plausibility while allowing
for the maximum number of filament reconnections. Our approach is motivated both visually and
by the desire to preserve fluid energy.

Rather than enforcing ring-shaped structures of vorticity, we allow arbitrary reconnection between
filaments of varying strength, resulting in a directed graph of vortex filaments. This increased
flexibility in reconnections allows our simulator to represent complex flows with a minimum number
of vortex filaments.

We also explore the use of a triangle mesh with adaptive vertex spacing for smoke surface track-
ing. We use similar criteria to those of our vortex reconnection technique to control the vertex
spacing within this mesh, enabling both dynamic re-meshing within a single layer, and arbitrary
reconnection between multiple layers of smoke.

4 Physical Motivation

Our vortex filament based simulator allows for the construction of any directed graph of vortex
filaments. This representation itself is inspired by previous work, including Simplical Fluids [7],
which represents generic fluid motion using vorticity defined on the edges of a space-filling mesh.
In regions of our simulation where the graph structure consists of a dense set of vortex edges, the
primary difference over short time periods between our technique and Simplical Fluids is that we
advect vertices rather than values assigned to each edge.

The strength of vortex filament methods is that filaments need only be defined in limited regions
of the fluid. This leads to the primary motivation for vortex reconnection: the interaction of
individual pairs of vortex filaments. It is well understood that regions of opposing vorticity will
tend to attract each other and merge over time [14, 4]. This principal applies to any pair of nearby
vortices, not only those which are already parallel, leading even perpendicular vortices to be drawn
toward each other and deflected such that their vorticity aligns in opposing directions.
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Figure 2: Cross section of velocity magnitude surrounding perpendicular filament (orange) inter-
section at origin. The centers of rotation, shown by the regions of least velocity (purple), bend
towards each other in the direction of opposing vorticity as they merge. The filaments each have a
radius of 1 and unbounded length in all directions in which they leave the region shown.

Perpendicular ⊥ and + shaped junctions which form due to vortex reconnections are an approx-
imation of this effect. Though they do not directly represent the tendency of the filaments to
align as they approach each other, the velocity field constructed from their smoothed vorticity will
nevertheless demonstrate this effect (figure 2). Furthermore, in the absence of other filaments,
those joined perpendicularly continue to be drawn towards each other in the direction of opposing
vorticity, leading to continued alignment and reconnection along their length.

5 Method

Though they are intended to complement each other, our vortex-filament based simulation and mesh
based smoke tracking and rendering system work independently. Our smoke renderer requires only
that each vertex is advected according to some velocity field.

5.1 Filament-based Fluid Simulation

Our fluid simulator is based on the smoothed filament model of Weißmann and Pinkall [19]. Though
they suggest the use of doubly discrete smoke ring flow [13] to capture more accurate filament self-
advection, for simplicity and in order to support non-ring shaped filaments, we instead opt to use
only the induced velocity formula derived using the Biot-Savart law,

u(0) = (γi · γj)

||γi||2√
a2+||γi||2

− ||γj ||2√
a2+||γj ||2

a2||γj − γi||2 + ||γi × γj ||2
||γj × γi|| (1)
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Figure 3: Without reconnection, thick bundles of vortex filaments form (left). With reconnection,
the simulation contains 1

3 the number of filaments, though a small amount of viscosity is introduced
(right).

[19]. Here, u(0) is the velocity at the origin due to a filament of strength 4π from vertices γi to γj ,
with smoothing radius a. In order to obtain u(x), simply replace γi with γi − x.

5.1.1 Filament Splitting

For each vortex filament, we maintain a target segment length equivalent to its smoothing radius.
Though our simulator tracks each filament’s radius individually and is technically capable of han-
dling filaments of multiple radii simultaneously, we spawn filaments with only a single constant
smoothing radius. (For reference, the smoothing radius in figure 1 is 0.1, while the view covers a
range from −1.2 to 1.2 both horizontally and vertically at the origin.)

Splitting is straightforward. We simply split a filament segment whenever its length exceeds its
radius. The new vertex is inserted at a point which is equidistant to the two end points of the
segment, but offset slightly according to the average direction of all filaments previously attached
to these two endpoints. In order to facilitate this computation, we track a tangent value for each
vertex in the filament graph, which is updated automatically as needed.

The tangent is computed as an average of the directions of each filament attached to the vertex,
weighted by their strengths. We store both negative and positive filament strengths, though it
is worth noting that a filament of strength Γ from vertex γi to γj is equivalent to a filament of
strength −Γ from vertex γj to γi. We do not normalize these tangents after averaging their values,
as we use their magnitude when computing filament midpoints during splitting as a measure of
agreement on the vorticity direction at each vertex. Vertex radii are computed analogously using
filament smoothing radii, and aggregate strength values are computed by summing each filament’s
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direction multiplied by its strength and taking the length of the resulting vector.

τ =

∑
diΓi∑
Γi

(2)

a =

∑
aiΓi∑
Γi

(3)

Γ = ||
∑

diΓi|| (4)

, where τ , a, and Γ are the vertex tangent, radius, and aggregate strength, and di, Γi, and ri are
filament directions, strengths, and radii.

τi mi
−τj

mj

γi γjc

Figure 4: When splitting the vortex filament c with vertices γi and γj, we compute separate offsets
mi and mj between the midpoint of the filament and the midpoint of the arc constructed according
to the tangents at each vertex, τi and τj. We then average these offsets and multiply by the product
of tangent magnitudes (which represent the agreement at each vertex on the tangent value between
the various connected filaments) to obtain the final splitting vertex offset.

We determine the offset between the physical midpoint of a vortex filament and the point at which
we insert the splitting vertex independently based on the tangents at the two endpoints and average
the results. The offset corresponding to the first tangent is computed as follows (figure 4):

c = γj − γi (5)

ν = −τi × c× c (6)

m =
1

2
||τi|| ||c||ν̂ tan

arccos(max( τi
||τi|| ·

c
||c|| , 0)

2
(7)

, where m is the offset for the given tangent. We cap the size of the arc at half of a full circle, in
order to prevent the midpoint from being located more than half the length of the filament segment
away from its physical center (since we are splitting the filament, this will be half of its radius),
and we further scale the offset between the physical filament center and the center of this arc by
the magnitude of the tangent. The procedure is analogous for the second tangent, except that the
tangent and filament directions must be negated.

The actual splitting operation replaces the original filament with two new filaments of half the
original strength, connected from the first vertex through the newly created midpoint vertex to the
second vertex.

5.1.2 Filament Reconnection

We perform vortex filament reconnection by merging nearby vertices in the vorticity graph, and
adjusting the filaments attached to these vertices accordingly. In order to help preserve realism, we
have developed several additional constraints controlling when reconnection occurs, beyond simply
requiring the vertices to be within half a radius of each other. When determining whether or not
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to join two vertices, we also consider their relative tangents and the angle between their tangents
and their relative offset.

The first observation behind these criteria is that, while reconnections occurring along a filament
cause relatively little change in overall velocity, reconnections between multiple filaments, especially
when these are two opposing filaments running parallel to each other, can be much more visible.
In order to prevent this, we multiply the maximum distance at which the vertices γi, and γj can
be merged by the factor,

||τi|| ||τj ||

√∣∣∣∣(τ̂i · (γj − γi))(τ̂j · (γj − γi))||γj − γi||2

∣∣∣∣+ (1− ||τi|| ||τj ||) (8)

. This reduces the maximum radius for merges when the offset between the vertices under consid-
eration is perpendicular to either of their tangents, weighted by the magnitude of their tangents.

We also directly enforce a maximum angle between any two filaments being joined, so that passing
perpendicular filaments do not immediately merge. This angle is computed as follows:

arccos |τ̂i · τ̂j | ||τi|| ||τj || (9)

. Once again, we modulate the angle by the magnitudes of the vertex tangents, so that vertices
without a predominant vorticity direction are not arbitrarily prevented from reconnecting.

We compute the merged vertex location by taking an average of the positions of the two original
vertices, weighted by their aggregate strength. If there is no vortex filament between the vertices
to be merged, reconnection is straightforward. All filaments which were previously connected to
the original vertex become connected to the new one, and any filaments which become coincident
due to the merge are combined by adding their strengths. If there was a filament between the two
vertices being merged, we must first redistribute its vorticity to the surrounding filaments. We
do this by redistributing the strength of the filament to be eliminated to all filaments which will
be attached to the merged vertex, weighted by the dot product between the eliminated filament’s
direction and the remaining filaments’ new directions.

Both this procedure and the the merging that may occur between two filaments which become
coincident due to a reconnection may lead to the loss of some vorticity. Though this prevents the
simulation from being perfectly energy preserving, we found the total amount of lost energy to be
negligible, and the effect is consistent with a fluid of low, but nonzero viscosity. In the simulation
shown in figure 3, approximately 20% of the vortex energy is lost over the course of the 1,800
timestep, 30 second simulation.

The reconnection phase is sufficiently robust that in all simulations (except that shown in figure 3,
for comparison purposes), we seed low strength vortex rings at every timestep. They simply merge
instantly, producing a smaller number of high strength rings leaving the source.

5.1.3 Filament Dissipation

As a final step to reduce the number of filaments in our simulation, we cause the vorticity of a
filament to dissipate into neighboring filaments (which share a vertex with the filament in question)
whenever its strength is less than the average strength of the neighboring filaments by some user-
defined constant. The dissipation is performed in a manner analogous to the dissipation of filaments
which are removed due to reconnection. The strength is distributed among neighboring filaments,
weighted by the dot product between the direction of the filament being dissipated and the direction
of the neighboring filament.
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Figure 5: The smoke source begins as a pair of coincident rings of vertices, one fixed and one
advected with the fluid, which are connected to form a cylindrical mesh as they are drawn apart.
Once the initial vertices become far enough apart, our triangle splitting procedure begins to insert
additional vertices into the mesh, allowing a sheet of smoke to form.

5.2 Smoke Sheets

At its core, our smoke representation simply consists of an indexed triangle mesh, with smoke den-
sity values stored at each vertex. The mesh is seeded from an emitter, which is initially constructed
as a ring of vertex pairs, one locked in place and one freely moving, stitched together in a cylindri-
cal configuration. As the freely moving vertices are advected by the smoke, our system will begin
splitting triangle edges in order to prevent their lengths from exceeding a predefined limit. This
causes the smoke to be drawn out of the emitter as a single sheet of triangles joined at common
vertices (figure 5).

As with the vortex filaments, we also merge vertices in the smoke mesh in order to prevent the
vertex density in areas of constriction and areas where multiple smoke sheets fold over each other
from becoming unnecessarily high. However, as any change to the smoke mesh is immediately
visible, we place additional restrictions on when this may take place, which we describe below.

5.2.1 Density and Rendering

We store smoke density values at each vertex, representing the total absorbency for all the smoke
to be rendered due to the vertex. Since the density is distributed over the area of all triangles
connected to each vertex, the absorbance at each point within these triangles will decrease as the
area of the triangles attached to a vertex increases. We define a density per unit area value for
each vertex as follows:

3d∑
ai

(10)

, where d is the total density stored at the vertex, and ai is the area of each face.

Since we are rendering an arbitrary collection of triangles, each vertex does not necessarily have
a well defined surface normal. Instead, we adjust for the angle of incidence between the viewing
direction and the normal of each triangle independently, and use the sum of their contributions
to determine an absorbance value at each vertex. We then interpolate these absorbance values
between vertices during rendering.

We will first consider the case of a single triangle with absorbance α per unit area and normal
n, viewed from the direction v. We assume that the smoke density is distributed within a thin
layer which, when viewed head-on, will have absorption α. Stated differently, this layer has an
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Figure 6: We remove sharp angles due to our mesh discretization (left) using a Laplacian smooth-
ing technique (right).

θ
nv

lt

Figure 7: We treat each face in the smoke sheet as a thin layer with thickness t approaching zero.
As we already know the absorption of the sheet when viewed from the normal direction n, all we
need is the ratio l

t = | csc θ| = 1
|n·v| .

absorbance of αt l for a ray which travels l distance through the layer, and a thickness of t (figure 7).
Thus, when viewed from an angle θ, the absorbance will be α

t t sec θ, or simply

α sec θ =
α

|n · v|
(11)

.

By distributing the density from a single vertex over its connected faces and summing the absorption
for each face from direction v, we obtain the following formula for the total absorption at the vertex:

3d∑
ai|ni · v|

(12)

. For the final rendering step, we interpolate this absorption value across each triangle using an
OpenGL shader, and compute the proportion of background light to be absorbed (the alpha value)
of each pixel as follows,

exp(−α) (13)

, where α is the interpolated absorbance from the viewing direction at the pixel. Since we are
rendering non-reflective black smoke, the triangle ordering is unimportant.
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In order to improve the appearance of sheet boundaries and folds, we also optionally apply laplacian
smoothing to the vertices in the smoke mesh before rendering each frame (figure 6). This is done
by using the weighted average of neighbor vertex location in the place of each vertex location.
We weight by the inverse of the vertex coverage, as we found that this produced smoother edges.
Without this weighting, vertices on an edge or fold with more internal neighbors may be pulled
further toward the interior of the mesh than other nearby vertices, negating the overall smoothing
effect.

5.2.2 Triangle Splitting

Like vortex filaments, triangles are split whenever any of their edge lengths exceed a user-defined
threshold, Sd. However, we also split triangle edges when the angle between the velocities at each
vertex exceeds a second user-defined threshold, Sθ. This is to ensure that the triangle mesh can
properly track the natural smoke curvature as it curls around a vortex filament. On the rare
occasion that a smoke sheet actually intersects a vortex filament, however, this could lead to a
potentially unbounded vertex density, so we do not split an edge if its length is less than a third
threshold, Sm. Overall, we select an edge for splitting if either of the following conditions are met:

||γj − γi|| > Sd (14)

u(γi) · u(γj)

||u(γi)|| ||u(γj)||
< cosSθ and ||γj − γi|| > Sm (15)

, where γi is the position of vertex i and u(γi) is the velocity at it’s location.

To split the edge, we simply insert a new vertex γm and split each triangle containing the vertices
γi and γj into one triangle containing γi and γm, and a second containing γm and γj . We then
place the new vertex at the average of the positions of all vertices it is connected to, weighted by
the inverse of their coverage.

Our concept of vertex coverage is derived from the idea that a vertex in an approximately flat sheet
of geometry will normally be surrounded on all sides by triangles which are located near the tangent
plane of that vertex. Thus, the sum of all angles which the vertex is part of will be approximately
360◦. Our coverage value is simply the sum of all angles which a vertex is part of, divided by 360◦.
It provides a rough estimate of the configuration of local geometry surrounding the vertex. If the
vertex is on the edge of a sheet, its coverage will be near 1

2 . If it is in the middle of a single sheet,
the coverage will be near 1, and if it is part of a more complex configuration, the coverage may be
higher.

By using the coverage to help determine the splitting vertex location, we can place it near locations
in which additional geometric information is more useful, such as near the edge of a sheet. This also
allows us to place vertices based on the location of all surrounding vertices without significantly
eroding sheet edges. It would be possible to prevent erosion by simply placing splitting vertices at
the center of the edge they are splitting. However, this would also cause unnatural creeping and
folding when splitting curved regions, as the splitting vertex could be located significantly closer
to the local center of curvature than surrounding vertices. (Vertices located near the center of an
edge being split will track the curvature of the velocity field, but the edge itself simply represents
the shortest path between it’s endpoints.)

The final step in triangle splitting is to redistribute vertex density. This procedure is described in
detail in section 5.2.4, as it is common to both splitting and reconnection. Briefly, we attempt to
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Figure 8: Without the additional constraints in equations 15, 16, and 17, detail is lost in the
constricting column in the center, as well as the curl under the plume (left). With these additions,
detail is preserved in these areas at the expense of vertex density in flatter areas of the plume
(right). (The splitting distance used in the left simulation is slightly longer in order to achieve
similar total vertex counts.)

ensure that the density per unit area remains constant in all existing vertices. As the insertion of
the splitting vertex will nearly always reduce the area of triangles connected to the surrounding
vertices, maintaining a constant density per unit area in these vertices will generate some excess
density, which we store in the new vertex.

5.2.3 Triangle Reconnection

As with filament reconnection, we perform triangle reconnection by merging adjacent vertices in
the smoke mesh. Once again, the basic requirement is that the distance between the vertices is at
most half of the splitting distance, and we have developed several additional constraints to help
preserve mesh detail under certain circumstances.

We again multiply the maximum reconnection distance by a factor, guaranteed to be less than
1, which is designed to help preserve edge detail and locally increase the density of vertices in
directions perpendicular to the fluid flow. This factor is more easily discussed as two separate
components.

The first, responsible for preserving edges, is simply the ratio of coverage between the vertex with
lesser coverage and the vertex with greater coverage. When both vertices have similar coverage
(e.g. if they are both part of a flat sheet-like region) then this factor will have no effect. However, if
one vertex is part of the border of a sheet and the other is not, the maximum reconnection distance
will be roughly cut in half.

The second factor is similar to the factor we apply to the filament reconnection distance. It
is designed to allow reconnection freely along the direction of the velocity field, but reduce the
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Figure 9: An adaptive splitting and reconnection distance (right) generates significantly smoother
smoke and preserves fine details better than than a constant distance (left), despite using just over
2
3 the number of total triangles.

reconnection distance perpendicular to it:√√√√∣∣∣∣∣(u(γi) · (γj − γi))(u(γj) · (γj − γi))
||u(γi)|| ||u(γj)|| ||γj − γi||2

∣∣∣∣∣ (16)

(figure 8).

Finally, we add a second constraint to maintain consistency with that expressed in equation 15:

u(γi) · u(γj)

||u(γi)|| ||u(γj)||
> cos

1

2
Sθ and ||γj − γi|| <

1

2
Sm (17)

. In general, while a reconnection constraint need not be mirrored in the splitting constraints, all
splitting constraints must be mirrored with similar reconnection constraints, so that a vertex is not
reconnected immediately after being split.

Once a pair of vertices is selected for reconnection, we begin by computing the location of the new,
reconnected vertex. We do this by averaging the old locations, weighted by their respective ratios
of areas to coverage. This will tend to place the new vertex such that it is surrounded by a roughly
symmetric area on all sides, while placing it somewhat closer to areas of low coverage.

Before moving triangles from the old vertices to the new vertex, we determine the maximum change
in surface normal between all effected triangles due to the reconnection. As significant changes in
surface normal may produce significant changes in effective absorption from the viewing direction,
we do not perform the reconnection if the angle between the old and new surface normals of any
triangles are beyond a user-defined threshold. This does reduce reconnections between parallel
sheets of smoke, but also noticeably reduces popping artifacts due to changes in surface normals.

If this test passes, the reconnection is performed by removing any triangles which contain both old
vertices, as they would become degenerate, and swapping each old vertex for the new reconnected
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vertex in the remaining triangles. As with splitting, we must now redistribute the vertex densities,
this time seeding the pool of extra density with the density from the two vertices being joined.

Overall, we found that using a varying mesh density improved results while allowing the use of
a slightly larger maximum triangle splitting distance. In figure 9, the simulation with a dynamic
splitting distance yields visibly better results despite using 29% fewer triangles.

5.2.4 Density Redistribution

When we split or reconnect triangles, we must redistribute the density among the vertices adjacent
to the modified vertex in order to maintain consistent absorbance values, or density per unit area.
In each case, we first attempt to maintain the ratio of density to area in all adjacent vertices,
and place the remaining density in the new vertex. This method of redistribution preserves total
simulation density by construction.

We begin by storing the ratio of density to area in each vertex prior to the splitting. We adjust
the density in each neighbor vertex to match the old ratio, and keep track of the total difference in
density. In the case of splitting, this will usually leave excess density, but in the case of reconnection,
this will usually require extra density. With reconnections, however, we also add all the density
from the two merged vertices to this pool.

If the value of the excess density pool is positive, we simply store it in the new vertex. If there
is a shortage of density, we store no density in the new vertex, and remove density from all other
vertices proportional to their current total density.

We distribute density in this manner in order to avoid heuristically precomputing the density that
should be stored in the new vertex. In the case of reconnection in particular, it is not straightforward
to compute this value. If the reconnection occurs within a flat sheet, the average ratio of density to
area, weighted in the same manner as the average position, should be maintained from the original
two vertices. However, when sections from different layers of smoke merge, the new ratio of density
to area should be approximately the sum of the old ratios, in order to maintain the same absorbance
when viewed from above.

In both of these cases, all vertices not being merged should maintain the same absorption, and thus
the same ratio of density to area. By simply enforcing this constraint, reconnections both within
and between sheets are handled appropriately.

6 Results

Our vortex filament reconnection method is able to produce physically plausible simulation results
while significantly reducing the number of simulated filaments. In figure 3, we compare the results of
otherwise identical simulations with and without reconnection (reconnection is still allowed between
adjacent vertices in both cases). Without reconnection, the 1,800 frame simulation completes in 851
seconds, and results in 4,866 filaments and vertices. With reconnection, the simulation takes only
102 seconds (just under 1

3 of real time), and results in only 1,518 filaments and 1,391 vertices. This
is a reduction to about 9% of the original simulation complexity (measured by the total number
of individual edge velocity computations required, which is simply the product of the number of
edges and the number of vertices), as compared with a reduction to 12% of the original complexity
achieved by the reconnection method of Weißmann and Pinkall [20].
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Figure 10: The progression of a high resolution simulated smoke surface. In the rightmost frame,
the smoke mesh contains 76,077 vertices.
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Figure 11: Trends of a 30 second, 1,800 frame simulation.

20



To enable a fair comparison, in the simulation of figure 3, we spawn one filament ring every 0.6
seconds, so that the number of rings leaving the jet is identical both with and without reconnec-
tion. However, in all other simulation, we spawn a weaker ring at every timestep, and allow our
reconnection technique to merge it with the nearby ring from previous timesteps. Since we weight
the reconnected vertex location by strength, the ring will eventually leave the source despite the
reconnections, and a new one will begin forming.

Our smoke tracking and rendering method is able to produce high quality results, accurately track-
ing thin sheets of smoke using a limited number of mesh vertices (figure 1). We achieve results of
similar quality to those demonstrated by Weißmann and Pinkall [20] while using less than 1

10 of the
tracking locations (figure 10).

Our results in figure 9 demonstrate the effectiveness of our triangle splitting and reconnection
criteria. Despite having significantly more artifacts in regions of sheet reconnection, and losing
detail in the central smoke column where it becomes constricted, the left-hand simulation with a
fixed splitting and reconnection radius uses 29,449 smoke vertices, while the right-hand simulation
with our modified criteria uses only 21,008. (We increase the maximum reconnection range in the
second simulation, as otherwise it would inevitably end up with more vertices.)

The additional complexity of our dynamic vertex density criteria do, however, add some compu-
tational overhead, requiring 876 seconds to complete the 900 frame animation, as opposed to 631
with a constant density. This is most likely due to the need to expand the search for reconnections
beyond the closest available vertex, since the closest vertex may fail our additional criteria while
another more distant one that still falls within the maximum reconnection range will pass.

In figure 11, we plot several statistics of a simulation over time. Note that both the filament
count with reconnection and smoke vertex count curves flatten as the simulation progresses. Since
turbulence that forms ahead of the jet causes large-scale fluid motion to quickly dissipate, both
filaments and smoke become trapped in the region immediately in front of the source. As the
volume of this region becomes filled, reconnection prevents the smoke and filament vertex densities
from increasing beyond their respective thresholds. This effect is also visible in the reconnection
rates, which both rise roughly in proportion to the total number of vertices.

The total smoke density plot demonstrates the correctness of our density redistribution step. As the
velocity at the source is near constant, so is the rate of density introduction into the simulation.
Filament strength is also introduced at a constant rate. However, due to cancellation during
reconnections, it is also lost at a roughly constant rate.

7 Discussion

In this paper, we introduce both an extension to existing vortex filament based fluid simulation
methods, as well as a smoke tracking and rendering system designed to minimize the number
of points to be advected, and thus the number of velocity computations to be performed. Our
simulation is able to retain a high degree of physical realism while significantly reducing the total
number of filaments through reconnection, and our smoke representation and advection method is
able to preserve thin sheet-like formations without dissipation using far fewer points of advection
than would be required to achieve a similar result with a purely particle-based method.

Though we have shown that a visually inspired approach to reconnection can lead to plausible
results, we might extend this further by attempting to minimize the total change in velocity due to
each reconnection. While still allowing for arbitrary reconnections, one might construct a constraint
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that finds all edge pairs which can be reconnected with a net velocity change less that some
maximum value, and then proceeds to place the reconnected vertex in order to minimizes this
change.

Though our filament graph structure does not necessitate a change to previous methods of com-
puting boundary vortices, smoke must also be handled in such a way that it does not intersect
with object boundaries. This may necessitate the introduction of intersection tests between smoke
triangles and object surfaces, in order to split triangles to conform to the surface.

Smoke smoothing may offer another solution to this problem, as well as a way to reduce artifacts
due to reconnections. As our smoke mesh retains surface orientations within the smoke, it may
be possible to introduce a smoothing factor along the plane of the smoke. This would reduce
the visibility of boundaries at sheet edges, and smooth some of the triangular artifacts that occur
during reconnection.

This technique might be further extended to introduce simulated diffusion to our non-diffuse sur-
faces. Though low diffusion is desirable for smoke renderings, the complete lack of diffusion gener-
ated by our method can appear somewhat unrealistic over long simulation periods. By rendering
mesh triangles as a diffuse volume of increasing thickness, we might reintroduce a small amount
of diffusion while simultaneously allowing existing volumetric smoke rendering techniques to be
directly applied to our mesh.

Both filament-based fluids and mesh-based smoke have the potential to enable styles and effects
which are not well supported by other simulation and rendering techniques. These techniques may
have the greatest potential in real-time applications, where low complexity is more important than
photo realism, as each degrades well in quality with reduced complexity. The greatest advantage of
each of these methods is that computational complexity depends directly on the number of features
currently being simulated, and not the total capacity of the simulation environment.
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