
Algorithms and Models for Problems in
Networking

Michael Dinitz

CMU-CS-10-136

July 27, 2010

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Anupam Gupta, Chair

Avrim Blum
Bruce Maggs

Matthew Andrews

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2010 Michael Dinitz

Partially supported by an NSF Graduate Research Fellowship, an ARCS Foundation scholarship, and NSF awards
CCF-0448095 and CCF-079022



Keywords: Algorithms, Networking, Spanners, Routing, Wireless, Capacity, BGP



This thesis is dedicated to my family. Mom, Dad, Amy, and Tom:I couldn’t have done it without
your help, support, and encouragement.



iv



Abstract
Many interesting theoretical problems arise from computernetworks. In this

thesis we will consider three of them: algorithms and data structures for problems
involving distances in networks (in particular compact routing schemes, distance
labels, and distance oracles), algorithms for wireless capacity and scheduling prob-
lems, and algorithms for optimizing iBGP overlays in autonomous systems on the
Internet. While at first glance these problems may seem extremely different, they are
similar in that they all attempt to look at a previously studied networking problem
in new, more realistic frameworks. In other words, they are all as much about new
modelsfor old problems as they are about newalgorithms. In this thesis we will de-
fine these models, design algorithms for them, and prove hardness and impossibility
results for these three types of problems.
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Chapter 1

Introduction

There is no question that much of the algorithmic work in the theoretical computer science com-
munity has been at least indirectly motivated by problems arising from computer networks. After
all, one of the standard uses of graphs is to represent such networks. However, this motivation
has in many cases been one-way: theoreticians get motivation from networking, but after the
normal theoretical abstraction the problems they end up working on become so theoretical that
the original networking becomes almost unrecognizable. This can happen in multiple ways: for
example, perhaps in the abstract theoretical problem it canbe shown that basically nothing can
be done (the problem is hard to approximate, or certain necessary structures do not exist, or
some other negative result) but in practice many things seemto work fine. This is the standard
argument for analyses likeaverage-caseanalysis, in which we stay in the same model but try to
prove results other than worst case bounds. Or perhaps the model of the network used is funda-
mentally flawed, so any result we prove is a statement only about the model, not about reality. In
this thesis we examine networking problems where the previous theoretical work falls into these
categories and we attempt to make the theory more realistic.We also consider some networking
problems where there is no previous theoretical work.

1.1 Algorithms and Data Structures for Network Distances

For problems from the first category, in which the theoretical lower bounds seem too strong
compared to what is possible in practice, we consider a variety of problems having to do with
distances in computer networks. There are many notions of “distance” in networks, for exam-
ple the latency between points, the bandwidth, the hop count, the IGP distance, etc. For some
applications these distances are crucial (e.g. routing), and for others they are nice to know for op-
timization reasons (e.g. content-distribution networks). Some of these distance notions are truly
metric spaces (IGP distances), but for those that do violatetriangle inequality there is experimen-
tal evidence to suggest that these violations are relatively rare [75], so we will assume throughout
this work that whatever notion of distance we are working with obeys the triangle inequality. In
this thesis we will examine four distance-based problems: network spanners, distance oracles,
distance labels, and compact routing.

Given a metricM = (V, d) (presumably arising from some network distances), anα-spanner
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of M is a weighted graphG = (V, E, w) in whichd(u, v) ≤ dG(u, v) ≤ αd(u, v) for all u, v ∈ V
(wheredG is the distance inG according to the weightsw). Less formally,G is anα-spanner if it
preserves all distances in the metric up to a factor ofα. This is obviously achievable withα = 1
by simply makingG a complete graph withw({u, v}) = d(u, v), but in many situations what we
want is asparsegraph that preserves distances well. So the study of spanners is the study of the
tradeoff betweenα (thestretchor distortionof the spanner) and|E| (thesizeor sparsity).

There is a large body of work on spanners dating back to the late 1980’s [8, 10, 14, 29, 36,
73, 74, 82] and still going strong [16, 17, 22, 38, 84]; see, e.g., [71] for many of the results.
Spanners were initially studied due to applications in network synchronization, but since then
they have found myriad uses in network design and routing, aswell as in many places where it is
advisable to compactly store a graph without changing the distances much, such as in speeding
up shortest path computations. Apart from the literature onfinding spanners of general graphs,
there has also been a large body of work on Euclidean spanners(see, e.g., [10, 29, 49]), as well
as work on spanners for doubling metrics [26, 52].

Similar problems that have a more data structure-like flavorinclude constructing gooddis-
tance oraclesanddistance labels. A distance oracle is an algorithm that preprocesses a metric
spaceM = (V, d), stores some data structure, and then answers pairwise distance queries. The
relevant parameters are the amount of preprocessing time, the space used to store the data struc-
ture, the time necessary to answer a query, and the accuracy of the answer. Most previous work
on distance oracles, including the work in this thesis, focuses mainly on two of these parameters:
the size of the data structure and the accuracy of the response. It is obvious that exact distance
oracles require either large data structures (e.g. the entire distance matrix) or large query times
(e.g. a shortest path computation), but fast and compact oracles with bounded stretch have been
given for both general graphs [82] and for special classes ofgraphs [30, 50, 51, 81].

A distance labeling scheme can be thought of as “distributed” distance oracle: a distance
labeling scheme is an algorithm that, given a metric space, assigns a label to every point in the
metric such that the distance between two points can be approximated by a computation that
takes as input only the two labels. The most important parameters for these schemes are the size
of the labels and the accuracy of the response, although the time necessary for the computation
is also interesting. There is significant previous work on distance labels in the theory community
(e.g. [44, 72, 79, 87]) as well as in the practical networkingcommunity, where they usually go by
the name “network coordinate systems” and are generally restricted to labels corresponding to
the coordinates in some low-dimensional embedding of the metric into real space [32, 88]. The
practical uses of distance labels are obvious: any network algorithm that uses overlays or makes
connections between nodes that are not neighbors in the routing graph can take advantage of
the distance information provided by labels to optimize theoverlay. In fact, content distribution
networks that use overlays were the original motivation forthe work on network coordinate
systems.

Finally we consider the problem of compact routing. Of all ofthe tasks that must be per-
formed by a distributed system, routing messages is among the most fundamental. Whether the
system is the Internet, a LAN, or even a large multiprocessorcomputer, messages have to be
routed from sources to destinations. A natural model for this problem is a weighted graph in
which the cost of routing a message equals the total cost of the path taken. In this model the best
that we can hope to do would be to route along shortest paths between points. This naturally
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leads to the main way of measuring routing efficiency: thestretch(also called thedistortion) is
the maximum over all source-destination pairs of the ratio of the cost of routing from the source
to the sink and the length of the actual shortest path betweenthe source and the sink. The obvious
solution is to keep at each node a routing table with entries for all of the othern−1 nodes. But this
solution takesΩ(n log n) space, which for largen is impractical. Thus we have the fundamental
tradeoff between stretch and space that compact routing schemes try to address. This has been a
very active area of research in the distributed computing and theoretical networking community,
and previous work includes results for general graphs by Thorup and Zwick [83] and Abraham,
Gavoille, and Malkhi [6] and results on special classes of graphs such as trees [42, 43, 65] and
doubling metrics [4, 26, 59, 60].

For all of these problems strong lower bounds are known (assuming the well-known girth
conjecture of Erdős). But these lower bounds are on the worst case, and are of the form “there
exist graphs (or metrics) for which any spanner/oracle/labeling/routing scheme does poorly for
at least one pair of vertices”. In practice, though, this type of worst case behavior does not
seem to arise. For example, there are many distance labelingschemes that have good empirical
performance [32, 88]. We attempt to be slightly more realistic not by changing the network
model, but by changing the type of result we prove. In this thesis we will give constructions
and results that have someslack, in that we will prove statements of the form “on any graph or
metric, there is a construction that does well on all but anǫ fraction of pairs of vertices”. These
types of results will then let us prove average case bounds ofthe form “on any graph or metric
there is a construction such that the average performance (over pairs of vertices) is good”. These
are clearly more realistic results, and are at least an initial attempt at explaining why certain
algorithms do well in practice despite the theoretical lower bounds.

Slightly more formally, note that all of the problems we consider have a notion of stretch
or distortion and a notion of size. We say that they haveǫ-slack and stretchα if they have
stretchα on all but anǫ fraction of pairs. The hope is that allowing some slack also allows us
to give better size bounds in term of the slackǫ. We will also consider constructions that are
gracefully-degradingin the sense that a single construction hasǫ-slack andα(ǫ) stretch for allǫ
simultaneously. This is a much stronger condition than merely requiringǫ-slack, since it forces
one construction for allǫ rather than allowing different constructions for different ǫ. However, it
will allow us to prove stronger statements not involving slack, such as a construction having low
averagedistortion.

This thesis includes the work initially presented in [27] onspanners, distance oracles, and
distance labels, and the work in [34] on compact routing schemes. For example, we prove the
following theorems about spanners:

Theorem 1.1 For any metric onn points, for any0 < ǫ < 1, for any integerk > 0, there exists
a graphH(ǫ) that is a(12k − 1)-spanner withǫ-slack of sizen + O((1

ǫ
)1+1/k). Furthermore,

there is a graphH with O(n) edges that is aO(log 1
ǫ
)-stretch gracefully degrading spanner with

O(1) average stretch andO(log n) worst case stretch.

Analogous theorems can be proved for distance oracles and distance labels. Note that this
construction allows us to essentially bypass known lower bounds: assuming a girth conjecture of
Erdős, there are graphs for which it is not possible to construct a spanner with stretch less than
2k − 1 and at mostn1+1/k edges. This obviously implies that we cannot construct spanners with
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a linear number of edges unless we have logarithmic stretch.But Theorem 1.1 bypasses this and
gives us linear size spanners with constant stretch as long as we only make the stretch guarantee
on a1 − ǫ fraction of the pairs.

Our results for compact routing are a little more complicated, as they depend on the details
of the model. More specifically, one issue that influences thequality of routing schemes is the
power they have to rename nodes. There is thename-independentmodel, in which schemes have
to route without changing the names of any nodes, and thename-dependentmodel, in which
schemes are allowed to assign labels to vertices and can route using information in the labels.
Somewhat surprisingly, for general graphs there does not seem to be a large difference between
these two models. In particular, the best general name-dependent scheme is the one devised by
Thorup and Zwick in [83] which usesO(kn1/k) space ando(k log2 n) size labels to get stretch
4k − 5, while the best name-independent scheme is due to Abraham, Gavoille, and Malkhi
[6], who give a scheme that usesO(k2n1/k log3 n) space and has stretchO(k). There is also a
difference betweendesigner-portschemes, which can assign the ports that connect a vertex to its
neighbors to be any permutation, andfixed-portschemes which cannot renumber the ports and
thus must assume that they have been assigned adversarially. While there does not appear to be a
large amount of literature on this difference, it is one thatproves crucial when we start allowing
slack.

Note that these two distinctions (name-dependent vs. name-independent, designer port vs. fixed
port) give rise to four distinct models, each of which allowsthe routing scheme to have a different
amount of power. In the name-dependent model (in either portmodel) we can construct rout-
ing schemes with slack that give results analogous to those on spanners, i.e. we can construct
extremely small routing tables and still get constant stretch on all but anǫ fraction of pairs. In
the name-independent model this is possible for designer ports (although the bounds are some-
what weaker), but we prove that allowing even a constant amount of slack does not help in the
name-independent fixed-port model.

1.2 Wireless Network Capacity

A different problem that we consider in the realm of theoretical networking is maximizing the
transmission capacity of wireless networks. In the basic model we are given a collection of trans-
mitter/receiver pairs in the Euclidean plane, and the goal is to maximize the number of successful
instantaneous transmissions. Maximizing transmission capacity has been studied in many con-
texts, and while many variants have been considered, there are two axes along which much of the
work can be partitioned. The first axis is random vs. arbitrary networks. If we consider random
networks, then the goal is typically to give bounds on the expected capacity, and study how this
changes with the density of the network (or with some other interesting parameter). Another
option, which is what we consider in this work, is to study arbitrary or worst-case topologies. In
this setting it makes no sense to study the “average” capacity, since that could depend heavily
on the actual structure of the network. Instead, the goal is to study the problem of maximiz-
ing capacity as an optimization problem, and give hardness results, centralized algorithms, and
distributed protocols given an arbitrary network as input.

The second axis is the protocol model vs. the physical model,and is concerned with how
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we model interference and define a successful transmission.In theprotocol modelthere is some
interference graph on the transmitters, and a transmissionis successful if and only if none of the
neighbors of the transmitter in this graph also chose to transmit. It is obvious from this definition
that maximizing network capacity is the same problem as finding a maximum independent set in
the interference graph, which is a famous and well-studied problem in its own right. In the con-
text of this problem, further assumptions are usually made about the structure of the interference
graph, since physical constraints make it unlikely that this graph is totally arbitrary. One typical
assumption is that it is aunit disk graph(abbreviated UDG), which means that two transmitters
interfere if and only if they are at distance at most1 in the Euclidean plane. There has also been
a considerable line of work on weakening this assumption or on variants of it, including the Tx
model of [91] and the growth-bounded model of [77] and [64].

In thephysical model, on the other hand, we do not assume the existence of an interference
graph. Instead we let every transmitter choose a power to broadcast at, give a rule for how that
power fades with distance, and say that a transmission has been successful if and only if the
received signal divided by the sum of the interference and background noise is at least some
threshold. This model is significantly more complicated than the protocol model, for a variety
of reasons. In the protocol model the success of a transmission depends only on the OR of its
neighbors; if any of its neighbors transmit then it fails, irrespective of whether one or ten of them
transmitted, and any number of transmitters outside of its neighborhood can transmit without
affecting its success. But in the physical model interference accumulates and normally spreads
out to infinity, so not only is the decision function more complicated than an OR of neighbors it
actually depends on every transmitter in the entire network. While not all of the assumptions in
the physical model are absolutely true, it is commonly thought to be a more accurate model of
reality than the protocol model.

Furthermore, there is a difference betweencentralizedanddistributedalgorithms. While
studying the fundamental computational problem is interesting, in many (perhaps most) real
world situations there is no central authority to run the algorithm and tell all of the transmitters
what to do. Ideally each transmitter would make its own decisions about whether to broadcast
(and in the physical model, how much power to use). In the protocol model, since we have an
interference graph we can simply abstract out to the graph and run a normal distributed pro-
tocol on this graph, and indeed this problem is usually classified under “distributed maximum
independent set”. In the physical model, however, there is no underlying communication or in-
terference graph so coordination, even among very close transmitters, is more complicated. And
even in the protocol model, using standard models for distributed algorithms are problematic: do
transmitters really know their neighbors? Can they really send different messages to different
transmitters? Can a transmitter really receive multiple messages at the same time? In this thesis
we will examine both the centralized and the distributed problem.

There has been very little study of the complexity of calculating the maximum possible ca-
pacity in arbitrary networks in the physical model. We believe that addressing this question is
important for two reasons. First, although analyzing capacity in random networks is important
for determining what level of transmissions will be possible in completely unstructured networks,
there are many situations where the network will have some sort of structure and the transmis-
sion capacity may be very different than what is possible in random networks. In these cases
we believe that knowing the complexity of calculating the maximum number of transmissions is
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important. Second, as is well-known the Unit Disk Graph model does not capture many features
of wireless networks. One reason for this is that receivers will hear interference from all other
transmitters, even if they are far away. A more important reason is that interference at a receiver
is acumulativeeffect of multiple transmitters whereas in the Unit Disk Graph model interference
is simply a local binary property.

This thesis includes the results of [9] on the centralized problem and the results of [35]
on the distributed version. In particular, we show that it isNP-hard to maximize the number
of simultaneous successful connections in the physical mode, but on the other hand there is a
polynomial time algorithm that gives anO(log dmax)-approximation, wheredmax is the largest
distance of any transmitter-receiver pair. We also design agame played by the transmitters with
the property that any Nash equilibrium has an expected number of successful transmissions that is
within O(d2α

max) of the optimum, whereα is a parameter of the physical model known as the path-
loss exponent. Finally, we show that this game also has the property that if every transmitter uses
an algorithm with theno-regretproperty then the average number of successful transmissions is
also withinO(d2α

max) of the optimum. We will define no-regret algorithms in Section 3.5, but it is
known that no-regret algorithms exist for every game. So in other words, we design a distributed
algorithm (every transmitter uses no-regret algorithms) that is based on agame-theoreticanalysis
rather than a purelyalgorithmicanalysis. We believe that this style of analysis is one of themain
contributions of this work, and we hope that this technique for designing distributed algorithms
will prove useful for other problems.

1.3 Constrained Connectivity and iBGP

The final problem that we consider is back in the realm of wirednetworks, but is based on
real life protocols rather than the idealized settings of compact routing, spanners, and the other
problems involving network distances. In particular, we will be looking at interdomain routing on
the Internet and how routes are internally distributed using theinterior Border Gateway Protocol
(iBGP). This is the version of the interdomain routing protocol BGP [78] used by routers within a
subnetwork to announce routes to each other that have been learned from outside the subnetwork.

1.3.1 iBGP Problem Definition

The Internet consists of a number of interconnected subnetworks called Autonomous Systems
(ASes). As described in [15], the way that routes to a given destination are chosen by routers
within an AS can be viewed as follows. Routers have a ranking of routes based on economic
considerations of the AS. Without loss of generality, in what follows we assume that all routes are
equally ranked. Thus routers must use some tie-breaking scheme in order to choose a route from
amongst the equally ranked routes. Tie-breaking is based ontraffic engineering considerations
and in particular, the goal is to get packets out of the AS as quickly as possible (calledhot-potato
routing).

An AS attempts to achieve hot-potato routing as follows. Therouters that initially know of a
route are calledborder routers. (These initial routes are those learned by the border routers from
routers outside the AS.) The border router that initially knows of a route is said to be theegress
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routerof that route. Each border router knows of at most one route per destination. Thus an initial
set of routesF defines a set of egress routersXF where there is a one-to-one relationship between
routes inF and routers inXF . The AS has an underlying physical network with edge weights
(e.g., IGP distances or OSPF weights). Thedistancebetween two routers is then defined to be the
length of the shortest path (according to the edge weights) between them. Given a set of routes,
a router will rank highest the one whose egress router is closest according to this definition of
distance. Thesignaling graphH is an overlay network whose nodes represent routers and whose
edges represent the fact that the two routers at its endpoints use iBGP to inform one another of
their current chosen route. The endpoints of an edge inH are callediBGP neighbors. A path
in H is called asignaling path. Finally, iBGP can be thought of as working as follows. In an
asynchronous fashion, each router considers all the latestroutes it has heard about from its iBGP
neighbors, chooses the one with the closest egress router and tells its iBGP neighbors about the
route it has chosen. This continues until no router learns ofa route whose egress router is closer
than that of its currently chosen route. When this process ends the route chosen by routerr is
denoted byR(r). Let P (r) be the shortest path fromr to E(r), the egress router ofR(r). When
a packet arrives atr, it sends it to the next routerr′ on P (r), r′ in turn sends the packet to the
next router onP (r′) and so on. Thus ifP (r′) is not the subpath ofP (r) starting atr′ then the
packet will not get routed asr expected.

Thus there are two properties that a signaling graphH should have if the AS is to achieve
hot-potato routing:

1. complete visibility: each routerr hears about (and hence chooses asR(r)) the route inF
whose egress routerE(r) is closest tor from amongst all routers inXF and

2. no deflections: for each routerr, all routersr′ alongP (r) haveE(r′) = E(r).
For a givenXF , we say that a signaling graph iscorrect forXF if it satisfies the goals of complete
visibility and no deflections. If it satisfies these goals forall possibleXF then we say that the
signaling graph iscorrect.

Clearly if H is the complete graph thenH is correct. However the complete graph is not
practical and so network managers have adopted various configuration techniques to reduce the
size of the signaling graph [18, 85]. Unfortunately these methods do not guarantee correct sig-
naling graphs [15, 47]. Thus our goal is to determine correctsignaling graphs with fewer edges
than the complete graph.

It is easy to check that complete visibility implies no deflections. Therefore a signaling graph
is correct if and only if it satisfies complete visibility. A natural question is to minimize the
number of edges in the signaling graph or to minimize the maximum number of iBGP neighbors
for any router while guaranteeing correctness. We defineIBGP-SUM to be the problem of finding
a correct signaling graph with the fewest edges. Similarly we defineIBGP-DEGREE to be the
problem of finding a correct signaling graph with the minimumpossible maximum degree.

1.3.2 Safe Sets and Constrained Connectivity

The definitions ofIBGP-SUM and IBGP-DEGREE presented above are the ones that we would
like to use, but they are somewhat difficult to work with. Thisis true for two reasons: first, even
if we are given a signaling graphH and an initial set of routesF , how do we check for complete
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visibility? The obvious way is to simulate iBGP on thatH andF , but since we want to examine
this problem from an optimization standpoint we would like to have a more structural definition
of correctness that does not require protocol simulation. Second, note that the definition of
a correct signaling graph is that it satisfies complete visibility for every possiblyXF . So the
corresponding decision problem would be to decide if there exists a graphH such thatH has at
mostk edges and has complete visibility for all possibleXF . But this is aΣ2 statement, where we
have an existential quantifier followed by a universal quantifier followed by a polynomial time
evaluable predicate. Unless the polynomial hierarchy collapses,Σ2 is a harder class even than
NP. Soa priori the iBGP problems might be even more difficult than the NP-complete problems.

Fortunately this turns out not to be the case: the decision versions of the iBGP problems
are in NP. Moreover, in the process of proving this we also handle the first problem and give a
structural definition of correctness. Given the underlyingnetwork (or at least the IGP distances),
we can associate a specialsafe setof verticesS(x, y) ⊆ V with every pair of vertices(x, y). The
precise definitions of the safe sets will be presented in Section 4.1.1, but they are based only on
the network distances. It turns out thatH is correct if and only if for all(x, y) ∈ V × V there
is a path betweenx andy in H that is completely contained inS(x, y). We call this thesafe set
definitionof iBGP, and because of the if and only if statement of the theorem we know that it
is completely equivalent to the more normal and application-centered definition. In this thesis
we will use the safe set definition to prove that bothIBGP-SUM and IBGP-DEGREE cannot
be approximated better thanΩ(log n) (unless P=NP), and we will give two different but related
algorithms based on a natural LP relaxation that areÕ(n2/3)-approximations.

While for our purposes the safe setsS(x, y) were defined in such a way as to make the safe
set definition equivalent to the original iBGP definition, the safe set definition itself suggests a
few generalizations which are a bit more theoretical, although still have their own applications.
The two natural relaxations are to allow arbitrary safe setsas part of the input to the problem
(instead of safe sets based on the network distances), and toallow an input graphG that the
output signaling graph must be a subgraph of. When we make both of these relaxations we get
a new network design problem that we callConstrained Connectivity: given a graphG and a
setS(x, y) ⊆ V for all pairs of vertices inV , find a subgraphH of G of minimum size (or
minimum max degree) such that every pair of nodesx, y has a path between them inH that
is completely contained inS(x, y). If we only allow the first relaxation, then we simple have
constrained connectivity on the input graphG is the complete graphKn; we will refer to this
version of the problem asConstrained Connectivity onKn.

While the iBGP problem is not nearly as general as constrained connectivity, there is an ob-
vious security application that, to the best of our knowledge, has not previously been considered.
Suppose we haven players who wish to communicate with each other but they do not all trust
one another with messages they send to others. That is, whenu wishes to send a message to
v there is a subsetS(u, v) of players that it trusts to see the messages that it sends tov. Of
course, if for every pair of players there were direct communication channels between the two
players, then there would be no problem. But suppose there isa cost to protect communication
channels from eavesdropping or other such attacks. Then a goal would be to have a network of
fewer thanO(n2) communication channels that would still allow a route from eachu to each
v with the route completely contained withinS(u, v). Thus this problem defines a Constrained
Connectivity problem.
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In this thesis we show that both the sum and the degree versions of the general Constrained
Connectivity problem are extremely difficult to approximate: under plausible complexity as-
sumptions it is impossible to approximate either one to better than2log1−ǫ n for any constantǫ > 0.
Moreover, the natural LP relaxation (which is simply the obvious generalization of the LP for the
iBGP problem) has a polynomial integrality gap. On the otherhand, theÕ(n2/3)-approximation
algorithm that we originally designed for iBGP generalizesto Constrained Connectivity onKn.
We will also show some easier settings (for example, if all ofthe safe sets are hierarchical) in
which Constrained Connectivity can actually be solved in polynomial time.
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Chapter 2

Network Distances

2.1 Introduction

In this chapter we discuss four data structures related to distances in computer networks: net-
work/graph spanners, distance oracles, distance labels, and compact routing schemes. Recall
that given a metricM = (V, d) (presumably arising from some network distances), anα-spanner
of M is a weighted graphG = (V, E, w) in whichd(u, v) ≤ dG(u, v) ≤ αd(u, v) for all u, v ∈ V
(wheredG is the distance inG according to the weightsw). Less formally,G is anα-spanner
if it preserves all distances in the metric up to a factor ofα (which is called thestretchof the
spanner). Our goal is to construct spanners with both low stretch and few edges. Similarly, a
distance oraclefor M is an algorithm that preprocessesM , stores some data structure, and then
approximately answers pairwise distance queries. The relevant parameters are the amount of pre-
processing time, the space used to store the data structure,the time necessary to answer a query,
and the accuracy of the answer. We are mainly be concerned with the size of the data structure
and the accuracy of the response. We define the stretch of a distance oracle in the obvious way
analogous to the stretch of a spanner: an oracle has stretchα if on every pair of vertices it returns
a value that is at least as large as the true distance and at most α times the true distance. A dis-
tance labeling scheme is in many way a distributed distance oracle: a labeling assigns a label to
every vertex so that an approximation of the distance between two points can be computed just
from the labels of the two points. The most important parameters are the size of the labels and
the accuracy of the approximation, where we measure the accuracy using the stretch, defined in
the obvious way similar to the stretch of oracles and spanners.

Compact routing schemes are an abstraction of the normal packet-switched network routing
schemes that are commonly used in networks today. They assign some data structure to each
vertex (e.g. the normal routing tables so heavily used in networking) and when a packet arrives
they use this data together with other available information (such as the packet header or the
incoming port) to figure out what outgoing link the packet should be forwarded on. The stretch
of a compact routing scheme is defined in the obvious way as themaximum over pairs of nodes of
the distance taken by a packet going from one node to the otherdivided by the shortest possible
distance. As always, we want to study the tradeoff between the size of the scheme (i.e. the size
of the data structures stored at each node) and the stretch itincurs.
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There has been a significant amount of work on all of these problems. Our main contribution
is introducing the notion ofslack to these problems, which allows us to ignore anǫ fraction of
the pairs in the hope of getting much stronger guarantees forthe remaining1 − ǫ fraction of
the pairs. This notion has its roots in the study ofmetric embeddings, which has been a central
pursuit in algorithms research in the past decade. Loosely speaking, an embedding is a map from
a metric space into a “simpler” metric space so that distances between points are changed by at
most a small factor. More formally, given atarget classC of metrics, anembeddingof a finite
metric spaceM = (V, d) into the classC is a new metric spaceM ′ = (V, d′) such thatM ′ ∈ C.
Most of the work on embeddings has useddistortionas the fundamental measure of quality; the
distortion of an embedding is the worst multiplicative factor by which distances are increased by
the embedding. This is equivalent to the notion of stretch inour problems, and we will use the
terms “distortion” and “stretch” interchangeably. Given the metricM = (V, d) and the classC,
one natural goal is to find an embeddingϕ((V, d)) = (V, d′) ∈ C such that the distortion of the
mapϕ is minimized. Note that this notion of embedding includes concepts such as spanners, in
which the classC is the class of metrics generated by sparse graphs.

In the theoretical computer science community the popularity of the notion of distortion/stretch
has been driven by its applicability to approximation algorithms: if the embeddingϕ : (V, d) →
(V, d′) has a distortion ofD, then the cost of solutions to some optimization problems on(V, d)
and on(V, d′) can only differ by some function ofD; this idea has led to numerous approxima-
tion algorithms [54]. Seminal results in embeddings include theO(log n) distortion embeddings
of arbitrary metrics intoℓp spaces [23], the fact that any metric admits anO(log n) stretch span-
ner withO(n) edges [8], and that any metric can be embedded into a distribution of trees with
distortionO(log n) [41]. These three results are known to be tight.

In parallel to this theoretical work, more applied communities have had much recent interest
in embeddings (and more generally, but also somewhat vaguely, on problems of finding “simpler
representations” of distance spaces). One example is the networking community, where there is
much interest in taking the point-to-point latencies between nodes in a network, treating it as a
metric spaceM = (V, d) satisfying the triangle inequality, and finding some simpler represen-
tationM ′ = (V, d′) of this resulting metric so that distances between nodes canbe quickly and
accurately computed in this “simpler” metricM ′. Despite this similarity of interest, many of the
theoretical results mentioned above have not been used widely in these applications; the logarith-
mic guarantees on the distortion are often deemed unacceptable. Indeed, the notion of distortion
turns out to be a demanding and inflexible objective function, and the empirical works are often
happy with guarantees of the following form: they allow somesmall fraction of the distances to
be distorted byarbitrary amounts, but then seek very strong guarantees on the distortion incurred
by the remaining large fraction of the distances. E.g., in the networking application above, we
would be happy ifmostinter-node distances were correct and only a small fractionof distances
would be estimated poorly.

To remedy the situation, Kleinberg, Slivkins, and Wexler [58] defined the notion ofembed-
dings with slack: in addition to the metricM = (V, d) and the classC in the initial formulation
above, we are also given aslack parameterǫ. We now want to find a mapϕ(M) = (V, d′) ∈ C
whose distortion is bounded by some quantityD(ǫ) on all but anǫ fraction of the pairs of points
in V × V . Note that we allow the distortion on the remainingǫn2 pairs of points to be arbitrarily
large. The line of work starting with their paper, and furthered by Abraham et al. [2] and [3]
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showed that very strong results were indeed possible: in fact, when allowed constant slack, one
could get constant-distortion constant-dimensional embeddings. Given these results for embed-
dings into normed spaces, it is natural to ask whether one canobtain similar results for spanners
and related constructs such as distance oracles, distance labelings, and compact routing schemes.
In particular, all of these have a notion of stretch or distortion and a notion of size; we say that
they haveǫ-slack and stretchα if they have stretchα on all but anǫ fraction of pairs. This should
presumably let us give better size bounds in term of the slackparameterǫ, and that is exactly
what we do in this chapter.

We also discuss a different way of bypassing the lower boundson spanners, by designing
approximation algorithms or per-instance guarantees. Thelower bound on spanners is based
on the existence of graphs that do not have good spanners, so to get around them we make
guarantees of the form “this algorithm returns a spanner that is close in size to the best possible
spanner”. Our algorithms are the best known for the directedspanner problem, and are detailed
in Section 2.6

2.2 Definitions and Slack Basics

All metric spaces we consider are finite and the graphs we consider are undirected. Let(V, d)
be a metric space, wheren = |V |. Theball B(x, r) = {y ∈ V | d(x, y) ≤ r} is the set of
points at distance at mostr from x. For0 < ǫ < 1, let R(x, ǫ) be the minimum distancer such
that |B(x, r)| ≥ ǫn. The pointy is ǫ-far away from pointx if d(x, y) ≥ R(x, ǫ). We begin by
defining slack spanners, and then similarly define slack distance oracles, distance labelings, and
compact routing scheme.

Definition 2.1 ((Uniform) Slack Spanner) Given a metric(V, d) and 0 < ǫ < 1, a weighted
graph H = (V, E) with each edge(u, v) ∈ E having weightd(u, v) is an α-spanner withǫ-
uniform slackif for all x, y ∈ V such thaty is ǫ-far away fromx,

d(x, y) ≤ dH(x, y) ≤ α · d(x, y)

In general,α can be a function ofǫ and |V |. If the metric(V, d) is induced by some weighted
graphG, we say thatH is asubgraph spannerif H is a subgraph ofG.

In other words, anǫ-uniform slack spanner is a graph with the property that for each point
x, apart from theǫn points closest tox, the distances fromx to the rest of the points are well
approximated. We call this concept “uniformslack” to be consistent with previous notation; all
references to “ǫ-slack” in this thesis mean “ǫ-uniform slack”. For the record, thereis a non-
uniform notion of slack in which the only restriction is thatat most anǫ fraction of the edges can
be ignored (see [2, Defn. 1.1] or [58] for details). But we achieve positive results even in the more
restrictive uniform model. Also, readers of [3] should notethatǫ-uniform slack embeddings are
called “coarsely(1 − ǫ) partial embeddings” in that paper.

Definition 2.2 (Gracefully degrading spanner) A weighted graphH is anα(1
ǫ
)-gracefully de-

grading spannerfor the metric(V, d) if for each0 < ǫ < 1, H is anα(1
ǫ
)-spanner withǫ-slack.

The notion of subgraph spanner also applies analogously.
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We also consider two incomparable notions of “average” distortion; both have been consid-
ered previously in the literature, and we will construct spanners that are simultaneously good
with respect to both these notions.

Definition 2.3 (Average Distortion) Theaverage distortionof a spannerH for a metric space
(V, d) is

1

(n
2)

∑
{x,y}∈(V

2)
dH(x,y)
d(x,y)

.

Definition 2.4 (Distortion of Averages) Thedistortion of averagesof a spannerH for a metric
space(V, d) is

P

{x,y}∈(V
2)

dH(x,y)

P

{x,y}∈(V
2)

d(x,y)
.

The corresponding slack definitions of distance oracles, distance labelings, and compact rout-
ing schemes are obvious. Recall that a distance oracle is a small data structure which allows fast
queries for approximate distances, a distance labeling is an assignment of labels to vertices so
that the approximate distance between two points can be computed just from their two labels,
and a compact routing scheme consists of a data structure at each vertex (e.g. a routing table) and
a forwarding rule that outputs the outgoing port number given a packet’s header and the node’s
routing table (as well as possibly other information like the incoming port number, depending on
the model).

Definition 2.5 (Slack Distance Oracle)A distance oracleO has stretchα with ǫ-slack ifd(x, y) ≤
dO(x, y) ≤ αd(x, y) for all x, y ∈ V such thaty is ǫ-far from x. OracleO is α-gracefully de-
gradingif it has stretchα with ǫ-slack for all0 < ǫ < 1.

Definition 2.6 (Slack Distance Labeling)A distance labeling(L, f) (whereL maps vertices to
labels andf maps pairs of labels to distances) has stretchα with ǫ-slack ifd(x, y) ≤ f(L(x), L(y)) ≤
αd(x, y) for all x, y ∈ V such thaty is ǫ-far from x. A labeling isα-gracefully-degradingif it
has stretchα with ǫ-slack for all0 < ǫ < 1.

Definition 2.7 (Slack Compact Routing Schemes)For a compact routing schemeR, letdR(x, y)
denote the total distance traveled by a packet starting fromx that is destined fory. ThenR has
stretchα with ǫ-slack ifd(x, y) ≤ dR(x, y) ≤ αd(x, y) for all x, y ∈ V such thaty is ǫ-far from
x. A scheme isα-gracefully-degradingif it has stretchα with ǫ-slack for all0 < ǫ < 1.

Now that the basic definitions are clear, we can start actually building these structures. The
basic building block that we will use in all of them is a small sample of points from the metric
spaceV such that each point is “close” to some sample point:

Definition 2.8 (Density Net) Given a metric space(V, d) with n = |V |, and0 < ǫ < 1, an
ǫ-density netis a setN ⊆ V such that(1) for all x ∈ V , there existsy ∈ N such thatd(x, y) ≤
2R(x, ǫ), (2) |N | ≤ 1

ǫ
, and(3) B(x, R(x, ǫ)) ∩ B(y, R(y, ǫ)) = ∅ for all x, y ∈ N .

We will often refer to the nodes inN ascenters. Note that the difference between anǫ-net
and anǫ-density net is in the notion of “closeness”: here the allowed distance fromx to its closest
center depends on the density of points aroundx.

Lemma 2.9 Given a metric space(V, d) and 0 < ǫ < 1, an ǫ-density netN can be found in
polynomial time.
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Proof: For brevity, let us denote the ballB(x, R(x, ǫ)) by Bx for any pointx ∈ V . We begin
by ordering the vertices in a listL by nondecreasing value ofR(·, ǫ), breaking ties arbitrarily,
and initializing the setN to be empty. We remove the first vertexv from list L. If there exists
u ∈ N such thatBv intersectsBu, then we just discardv; otherwise, we addv to N and remove
all vertices in the ballBv from the listL. We repeat this process until the listL becomes empty
and returnN as ourǫ-density net.

We first prove the third property. Letx, y ∈ N , and without loss of generality suppose thatx
was beforey on the listL. Then wheny was considered, since we added it toN we know that
By did not intersectBz for any otherz ∈ N (if it did intersect then the algorithm would have
discarded it). So in particularBx ∩ By = ∅.

We next show that the subsetN returned satisfies the three properties given in Definition 2.8.
Consider any pointx ∈ V . We show that there is a pointy ∈ N within distance2R(x, ǫ) of
x. If x is included inN , this is trivially true. Otherwise, eitherx was at some point the first
vertex in listL and get discarded, orx was in some ballBv and removed from listL. In the
former case there is some pointu ∈ N such thatBu intersectsBx. Sinceu appears beforex in
the initial list,R(u, ǫ) ≤ R(x, ǫ) and hence the distance betweenx and the density-net pointu is
d(u, x) ≤ R(u, ǫ) + R(x, ǫ) ≤ 2R(x, ǫ). In the latter case, asv appear beforex in the initial list,
we also haveR(v, ǫ) ≤ R(x, ǫ) and sod(x, v) ≤ R(v, ǫ) ≤ R(x, ǫ) ≤ 2R(x, ǫ).

To show that|N | ≤ 1
ǫ
, note that by the third property the intersection ofBx andBy is empty

for any two distinct pointsx, y ∈ N . Since for eachx ∈ N , the ballBx contains at leastǫn
points, we conclude that|N | ≤ 1

ǫ
.

The following lemma, which we will use regularly, is one of the most useful facts about
density nets:

Lemma 2.10 Let N be anǫ-density net, letu, v ∈ V such thatv is ǫ-far fromu, and letu′ and
v′ be the closest nodes inN to u and v respectively. Thend(u, u′) ≤ 2d(u, v) andd(v, v′) ≤
3d(u, v).

Proof: By property (1) of density nets,d(u, u′) ≤ 2R(u, ǫ). Sincev is ǫ-far fromu, by definition
R(u, ǫ) ≤ d(u, v), and thusd(u, u′) ≤ 2d(u, v). By the choice ofv′ and the triangle inequality
we know thatd(v, v′) ≤ d(v, u′) ≤ d(v, u) + d(u, u′) ≤ 3d(u, v).

2.3 Slack Spanners

We will now use the ability to find density nets to construct good slack spanners. We give a
general transformation technique to convertα(n)-spanners withT (n) edges intoǫ-slack spanners
with stretch(5+6α(1

ǫ
)) andn+T (1

ǫ
) edges. Our construction is very simple. We first construct

an ǫ-density netN as given in Lemma 2.9. Since|N | ≤ 1
ǫ
, we can construct anα(1

ǫ
)-spanner

Ĥ for the set of centersN . Then, for each pointx ∈ X \ N , we add an edge betweenx and its
closest point inN to Ĥ; this gives us a spannerH for (V, d).

Theorem 2.11 The spannerH hasn+T (1
ǫ
) edges, and is a(5+6α(1

ǫ
))-spanner withǫ-uniform

slack.

Proof: First we bound the size ofH. SinceN has at most1
ǫ

points, the spanner̂H has at most
T (1

ǫ
) edges. Moreover, for each pointx ∈ V \N , one extra edge is added. Hence,H has at most
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n + T (1
ǫ
) edges.

Next, we bound the stretch ofH. Consider two pointsu andv such thatv is ǫ-far away from
u, i.e.,d(u, v) ≥ R(u, ǫ). Let u′ be a closest point inN to whichu is connected to inH (or set
u′ = u if u is inN), and definev′ similarly with respect tov. By Lemma 2.10,d(u, u′) ≤ 2d(u, v)
andd(v, v′) ≤ 3d(u, v). Also,d(u′, v′) ≤ d(u′, u) + d(u, v) + d(v, v′) ≤ 6d(u, v). This implies
that

dH(u, v) ≤ d(u, u′) + dH(u′, v′) + d(v′, v)

≤ 5d(u, v) + dH(u′, v′)

≤ 5d(u, v) + α(1
ǫ
)d(u′, v′)

≤ 5d(u, v) + α(1
ǫ
)(6d(u, v))

as claimed.
As an example of how we apply Theorem 2.11, let us recall a well-known result about span-

ners for general metrics.

Theorem 2.12 (Spanners for general metrics [8, 73])For any metric of sizen, there exists a
(2k − 1)-spanner withO(n1+1/k) edges.

Applying Theorem 2.11 to Theorem 2.12 yields the following corollary.

Corollary 2.13 (Uniform slack spanners for general metrics) For any metric, for any0 <
ǫ < 1, for any integerk > 0, there exists a(12k − 1)-spanner withǫ-uniform slack of size
n + O((1

ǫ
)1+1/k).

Note that if the metric(V, d) was generated by a graphG = (V, E), our previous construction
may result in a spanner that is not a subgraph of the original graphG. We now give an alternative
construction to obtain a subgraph spanner.

Let us first recall a fact about shortest paths in weighted graphs, whose proof can be found in
the journal version of [31]. SupposeG = (V, E) is a weighted graph andP is a set of pairs of
vertices.
Fact 2.14 We can assign a shortest path in the graphG to each pair inP such that the inter-
section of any two such shortest paths is either empty or alsoa path inG. If H is the subgraph
obtained by the union of all such shortest paths andB is the set of vertices inH with degree at
least 3, then

∑
v∈B degH(v) ≤ O(

√
|B| · |P |).

Using this fact we can now construct subgraph spanners. As before, letN be anǫ-density
net, which we know has at most1

ǫ
elements. We construct anα(1

ǫ
)-spannerH ′ of sizeT (1

ǫ
) on

N , which we convert to a subgraph in the following manner. We take P to be the set of distinct
pairs{u, v} that are edges inH ′. We takeĤ to be the union of the shortest paths inG between
all pairs inP in the manner as stated in Fact 2.14. Finally, assuming that each node inV has a
unique closest point inN (by resolving ties according to some fixed permutation ofV ), points in
V are connected toN by shortest path trees rooted at the points inN , using edges in the given
graphG.

The following theorem shows that the resulting subgraph spannerH contains a small number
of edges and has small stretch.
Theorem 2.15 The subgraphH is a (5 + 6α(1

ǫ
))-spanner withǫ-uniform slack and hasO(n +

T (1
ǫ
)2) edges.
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Proof: Note that the setP containsT (1
ǫ
) pairs. Moreover, because the intersection of any two

shortest paths between pairs inP is either empty or a path inG, any two such shortest paths
can lead to at most 2 vertices in̂H with degrees at least 3 and so it follows that the setB of
vertices inĤ having degree at least 3 has size bounded byO(T (1

ǫ
)2). Using the Fact 2.14 and

the observation that the vertices having degree at most 2 inĤ must be trivially bounded byn, it
follows thatĤ has at mostO(n + T (1

ǫ
)2) edges. Connecting points inV to their closest points

in N using shortest path trees adds an extraO(n) edges.
To bound the stretch, observe thatĤ is anα(1

ǫ
)-spanner for points inN . Moreover, each

point x ∈ V has a shortest path to a closest point inN . Hence, it follows immediately as in
the proof of Theorem 2.11 that for any two pointsu, v ∈ V such thatu is ǫ-far away fromv,
dH(u, v) ≤ (5 + 6α(1

ǫ
))d(u, v).

Applying Theorem 2.15 to Theorem 2.12 gives the following corollary.

Corollary 2.16 (Subgraph uniform slack spanners for general metrics) For any metric, for
any0 < ǫ < 1, for any integerk > 0, there exists a subgraph(12k − 1)-spanner withǫ-uniform
slack of sizeO(n + (1

ǫ
)2+2/k).

2.3.1 Low Weight Spanners

Ideally the slack spanners we create would have low weight aswell as low size (where weight
is the sum of the distances on the included edges, and size is the number of edges). Clearly
distances can be scaled arbitrarily, so by low weight we meanrelative to an MST. Chandra et
al. [29] give a general transformational method fort-spanners that are not necessarily subgraphs.
They assume thatt is a constant, though, which will not necessarily be true forour purposes. In
particular, we will want to lett beO(log n). A slight reworking of their algorithm and analysis
yields the following result:

Lemma 2.17 Suppose that there exists anα(n)-spanner construction withO(f(n)) edges, where
f(n)/2 ≥ f(⌊n/2⌋), that can be constructed in polynomial time. Then for everyǫ > 0 there is a
poly-time constructible(α(n)(1+ ǫ)+ ǫ)-spanner withO(f(n

ǫ
)) edges and weightO( 1

n
f(n

ǫ
)(1+

ǫ)α(n) log n) · wt(MST ).

This lemma allows us to build a low-weight spanner on theǫ-density netNǫ, but in order to
make the entire spanner low-weight we also need to be able to connect the rest of the nodes to the
centers via short edges. Fortunately, this is easy to do thanks to a result of Khuller, Raghavachari,
and Young [57]. They defined and gave a construction for LASTs(Light Approximate Shortest-
path Trees) which we will use as a black box.

Definition 2.18 ((α, β)-LAST) Let G be an arbitrary graph with non-negative edge weights
and a root vertexr. A treeT rooted atr is called an(α, β)-LAST if the following conditions are
satisfied:

1. The distance of every vertexv fromr in T is at mostα times the distance betweenv andr
in G.

2. The weight ofT is at mostβ times the weight of an MST ofG.

Khuller, Raghavachari, and Young give an algorithm for constructing good LASTs, and prove
the following theorem about it.
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Theorem 2.19 The algorithm finds a(1 +
√

2γ, 1 +
√

2
γ

)-LAST for anyγ > 0.

Using this together with Lemma 2.17, the following theorem is fairly simple.

Theorem 2.20 Given anα(n)-spanner withǫ-slack andf(n) edges, we can create a(O(1)α(1
ǫ
))-

spanner withǫ-slack,O(n + f(1
ǫ
)) edges, andO(ǫf(1

ǫ
)α(1

ǫ
) log 1

ǫ
) · wt(MST (Nǫ)) + O(1) ·

wt(MST (V ))) weight.

Proof: Our construction from Lemma 2.9 finds a set of1
ǫ

centers, builds anα(1
ǫ
)-spanner on

those, and then connects every node to its closest center. Weuse the same set of centers, but
instead of the default spanner we put down the low-weight transformation of it, and instead of
simply connecting every vertex to the closest center we growa (1 +

√
2, 1 +

√
2)-LAST out of

the set of centers. Then the total number of edges will be at most O(n + f(1
ǫ
)), and the total

weight will beO(ǫf(1
ǫ
)α(1

ǫ
) log 1

ǫ
) · wt(MSTcenters) + (1 +

√
2) · wt(MST )) (where the first

term is from the low weight spanner on the centers, and the second is from the LAST). Following
the analysis of Theorem 2.11, but with an extra1+

√
2 factor for the distances to the centers and

a2α(1
ǫ
) + 1 factor instead of anα(1

ǫ
) factor for the distance between the centers, we get that the

stretch is11 + 5
√

2 + 12α(1
ǫ
) = O(1)α(1

ǫ
) as claimed.

Applying Theorem 2.20 to Theorem 2.12 withk = O(log n) gives the following corollary.

Corollary 2.21 (Low weight uniform slack spanner for general metrics) For any metric of size
n, there exists anO(log 1

ǫ
)-spanner withǫ-uniform slack of sizeO(n + 1

ǫ
) and weightO(log2 1

ǫ
)

times that of an MST.

2.3.2 Gracefully Degrading Spanners and Notions of AverageDistortion

In this section, we give general procedures to convert ordinary spanners into gracefully degrading
spanners. We present two constructions, a simpler one, followed by a more sophisticated one that
works under weaker assumptions.

The Simpler Construction

Suppose we know how to construct ordinaryα(n)-spanners of sizeT (n) for finite metrics of size
n. Observe that typicallyα(·) is a sublinear function, such asO(log n). It is often the case that
there existsC, c > 1 such thatα(n) ≤ Cα(n1/c). Then, one can takeǫ0 = n−1/c and construct
a 1-spannerH0 for someǫ0-density netN0, having small size. In particular,H0 can just be a
complete graph onN0, which will have size at most( 1

ǫ0
)2 = n2/c. We also make use of the

α(n)-spannerĤ for the entire metricV . The gracefully degrading spanner consists of the union
of Ĥ andH0, together with edges that connect each point inV to its closest point inN0. So as
long asc ≥ 2 the size of the spanner is at mostT (n) + n2/c + n ≤ T (n) + 2n.

Observe that ifǫ < ǫ0, andy is ǫ-far away fromx, then we can use the spannerĤ to bound
the stretched distance, which is at mostCα(1

ǫ
)d(x, y), becauseα(n) ≤ Cα(n1/c) ≤ Cα(1

ǫ
). If

ǫ ≥ ǫ0, then we can use the spannerH0 as in the slack spanner to conclude that the multiplicative
stretch is at most 11. Note that for interesting functionα, we have11 ≤ Cα(1

ǫ
). Hence, this

simple construction gives us the following theorem on gracefully degrading spanners.
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Theorem 2.22 Suppose there exists anα(n)-spanner of sizeT (n) for any metric of sizen, where
α(·) is a non-decreasing function such that there exists existsC > 1 such thatα(n) ≤ Cα(n1/2).
Then, for any finite metric(V, d) of sizen, there exists anCα(1

ǫ
)-gracefully degrading spanner

of size at mostT (n) + 2n.
If we have the stronger assumption thatα(n) ≤ Cα(n1/4), then the gracefully degrading

spanner can be made to be a subgraph of the weighted graph thatinduces the metric(V, d).

Applying Theorem 2.22 to Theorem 2.12 withk = O(log n), we obtain the following corol-
lary.
Corollary 2.23 (Gracefully degrading spanner for general metrics) Any metric of sizen has
a O(log 1

ǫ
)-gracefully degrading spannerH of sizeO(n). If the metric is induced by some

weighted graphG, thenH can be made to be a subgraph ofG.
We can now show that this construction actually gives a spanner that hasO(1) “average

distortion” for both notions of average distortion given inDefinitions 2.3 and 2.4.

Theorem 2.24 (“Average Distortion”) For any metric(V, d), there exists a spannerH with
sizeO(n) that has both constant average distortion and constant distortion of the average, and
moreover hasO(log n) stretch in the worst case. If the metric(V, d) is induced by some graph
G, thenH can be made to be a subgraph ofG.

Proof: We use the spanner of Corollary 2.23. Recall that ify is ǫ0-far away fromx, then
dH(x, y) ≤ 11d(x, y), otherwisedH(x, y) ≤ O(log n)d(x, y).

We first bound the average distortion.

1

(n
2)

∑
{x,y}∈(V

2)
dH(x,y)
d(x,y)

= 1
n

∑
x∈V

1
n−1

∑
y 6=x

dH(x,y)
d(x,y)

≤ 1
n

∑
x∈V

(
1

n1/4 O(log n) + (1 − 1
n1/4 ) · 11

)
= O(1)

We next bound the distortion of average.
P

{x,y}∈(V
2)

dH(x,y)

P

{x,y}∈(V
2)

d(x,y)
=

P

x∈V

P

y 6=x dH(x,y)
P

x∈V

P

y 6=x d(x,y)

≤ maxx∈V

P

y 6=x dH(x,y)
P

y 6=x d(x,y)

≤ maxx∈V { 1
n1/4 O(log n) + 11} = O(1),

the last inequality following from the following argument.For fixedx, let A be the set of points
y that areǫ0-far away fromx andA be the rest of the points. Note that for anyy ∈ A andy ∈ A,
d(x, y) ≤ d(x, y). Hence, from|A| ≤ ǫ0n, we have

P

y∈A d(x,y)
P

y∈V d(x,y)
≤ ǫ0 = n−1/4.

The Sophisticated Construction

Our second construction makes use of density nets of different scales and exhibits gracefully
degrading behavior with only weaker assumption on the function α.
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Suppose there exists anα(n)-spanner of sizeT (n) for any metric of sizen. The assumption
that we make isα is bounded by a linear function. This is perfectly reasonable as Kruskal’s MST
algorithm immediately gives ann-spanner. Moreover, note thatT (n) has to be at leastn − 1 in
order to connect every pair of points. Hence, we have the following smoothness assumptions.

Assumption 2.25 (Smoothness)We assume that
1. α(2n) ≤ 2α(n), and
2. T (n

2
) ≤ 1

2
T (n).

Theorem 2.26 Suppose there exists aα(n)-spanner of sizeT (n) for every metric of sizen. Then,
for any finite metric of sizen, there exists an(152α(1/ǫ) + 150)-gracefully degrading spanner
of size2T (n) + O(n log∗ n).

Construction outline. Let I := {0, 1, 2, . . . , ⌈log2 n⌉}, and for eachi ∈ I, let ǫi = 2i/n. For
eachi ∈ I, we construct anǫi-density netNi for the metric(V, d) and also a corresponding
α(1/ǫi)-spannerHi of sizeT (1/ǫi) for Ni. Note thatN0 = V . The union of theHi’s would be
part of our gracefully degrading spanner, which so far contains at most

∑
i∈I T (n/2i) ≤ 2T (n),

by the smoothness assumption. The crux of the construction is how to add a few number of edges
between net points from different scales and maintain smallgracefully degrading stretch.

Recall that from the first property of density net, each pointx is within distance at most
2R(x, ǫi) from Ni. The next lemma shows that if we go fromx to Ni via net points from smaller
scales, the distance travelled would not increase too much.

Lemma 2.27 Suppose0 < i(1) < i(2) < · · · < i(s) andz0 ∈ V . Suppose for1 ≤ l ≤ s, the
pointzl is a closest point inNi(l) to zl−1, andz∗l is a closest point inNi(l) to z0. Then,

s∑

l=1

d(zl−1, zl) ≤
s∑

l=1

2s−ld(z0, z
∗
l ).

Proof: We show the result by induction ons. For the base cases = 1, the result is trivial,
becausez1 = z∗1 . Assume the result holds for somes > 0. Consider the pointzs+1 ∈ Ni(s+1)

closest tozs. Hence,d(zs, zs+1) ≤ d(zs, z
∗
s+1). Now, by the triangle inequality,

d(zs, zs+1) ≤ d(zs, z
∗
s+1) ≤ d(z0, zs) + d(z0, z

∗
s+1).

Using the triangle inequality again,

d(z0, zs) ≤
∑s

l=1 d(zl−1, zl).

By the induction hypothesis,
∑s

l=1 d(zl−1, zl) ≤
∑s

l=1 2s−ld(z0, z
∗
l ).

Finally, combining the three inequalities, we have

s+1∑

l=1

d(zl−1, zl) ≤ 2
s∑

l=1

2s−ld(z0, z
∗
l ) + d(z0, z

∗
s+1) =

s+1∑

l=1

2(s+1)−ld(z0, z
∗
l ),

as required.
Observing that for1 ≤ l ≤ s, d(z0, z

∗
l ) ≤ 2R(z0, ǫi(l)) ≤ 2R(z0, ǫi(s)), we have the following

corollary.
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Corollary 2.28 Let0 < i(1) < · · · < i(s) andz0, z1, . . . , zs be as before. Then,

∑s
l=1 d(zl−1, zl) ≤ 2(2s − 1)R(z0, ǫi(s)).

In view of Lemma 2.27 and Corollary 2.28, we can bound the distance betweenx andy in
the gracefully degrading spanner ify is ǫi(s)-far away fromx.

Lemma 2.29 Suppose0 = i(0) < i(1) < · · · < i(s) and for1 ≤ l ≤ s, every point inNi(l−1) is
connected directly with its closest point inNi(l) in the gracefully degrading spannerH. Suppose
y is ǫi(s)-far away fromx. Then, the distance betweenx andy in H is at most

((5 · 2s − 4)α( 1
ǫi(s)

) + 5 · (2s − 1))d(x, y).

Proof: Note that from the hypothesis, we haveR(x, ǫi(s)) ≤ d(x, y). We apply Lemma 2.27
with z0 = x and go through the various net pointsx1, x2, . . . to reachxs. By Corollary 2.28, the
distance travelled fromx to xs is dH(x, xs) ≤ 2(2s − 1)R(x, ǫi(s)) ≤ 2(2s − 1)d(x, y).

Now we apply Lemma 2.27 again withz0 = y = y0. Using the notation that for1 ≤ l ≤ s,
yl andy∗

l are closest points inNi(l) to yl−1 andy respectively, the distance travelled fromy to ys

is dH(y, ys) ≤
∑s

l=1 2s−ld(y, y∗
l ).

However, observing thatd(y, y∗
l ) ≤ d(y, x∗

l ) ≤ d(x, y)+d(x, x∗
l ). We conclude thatdH(y, ys) ≤

3 · (2s − 1)d(x, y). Combining the two bounds ondH(x, xs) anddH(y, ys) and using the triangle
inequality,d(xs, ys) ≤ d(xs, x) + d(x, y) + d(y, ys) ≤ (5 · 2s − 4)d(x, y).

Now, the distance betweenxs andys in the spannerHi(s) is at most

α( 1
ǫi(s)

)d(xs, ys) ≤ (5 · 2s − 4)α( 1
ǫi(s)

)d(x, y).

Hence, the distancedH(x, y) is at most

((5 · 2s − 4)α( 1
ǫi(s)

) + 5 · (2s − 1))d(x, y).

From the above Lemma 2.29, one can see why our spannerH (which consists of the union
of Hi’s and extra edges between density nets of different scales)is gracefully degrading. Indeed,
given 0 < ǫ < 1, we pick the largesti such thatǫi ≤ ǫ. Observe thatǫ ≤ 2ǫi and hence
α(1/ǫi) ≤ 2α(1/ǫ), by the smoothness assumption. Suppose that for any leveli, any pointx ∈ V
can reach a close net point inNi using at mosts hops, in the manner described in Lemma 2.29.
If y is ǫ-far away fromx, then we can conclude thatdH(x, y) ≤ O(2s)α(1/ǫ)d(x, y).

Our problem reduces to how to add a small number of edges between density net points so
that the number of hops to reach a close net point in any level is small. For example, if we add
an edge from each point inV to a closest net point in each level, then we can ensure that the hop
number to reach any level to be 1, but we could have addedΩ(n log n) edges. Fortunately, there
is a technique introduced by Yao [90] and independently by Alon and Schieber [7] that provides
a nice tradeoff between the number of edges added and the hop count, which is also used in the
construction of low hop diameter spanner in [28].

The construction makes use of the Ackermann’s function, whose definition is recalled below.
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Definition 2.30 (Ackermann’s function [80]) LetA(s, t) be a function defined for integerss, t ≥
0 as the following.

A(0, t) = 2t for t ≥ 0

A(s, 0) = 0, A(s, 1) = 2 for s ≥ 1

A(s, t) = A(s − 1, A(s, t − 1)) for s ≥ 1, t ≥ 2

Using the construction as described in [90] and [28], one canget the following result in a
straight forward manner.

Lemma 2.31 Supposeh, s, t are non-negative integers such that2h ≤ 4A(s, t). Then, it is
possible to add2(t + 1)n edges between density net points of different scales such that for any
point x ∈ V and anyi ≤ h, a net point inNi can be reached fromx via net points in smaller
scales, in the manner described in Lemma 2.27, ins + 1 hops.

Proof of Theorem 2.26: We use Lemma 2.31. Note that the number of levels ish ≤ log2 n.
Hence, by puttings = 3 andt = O(log∗ n), we conclude that the number of hops is at most 4.
Hence, using Lemma 2.29, we can obtain a(152α(1/ǫ) + 150)-gracefully degrading spanner, as
required.

2.4 Distance Oracles and Labelings

The techniques that we developed for slack spanners also turn out to be useful for developing
slack distance oracles and distance labelings. Distance oracles and labelings have been widely
studied, perhaps even more so than spanners, and distance labelings were in fact one of the orig-
inal motivations for the definition of slack embeddings by Kleinberg, Slivkins, and Wexler [58].
We give the first slack labelings that do not use an embedding into ℓp, allowing us to bypass a
lower bound from Abraham et al. [2].

2.4.1 Distance oracles

Thorup and Zwick [82] studied the problem of creating distance oracles for metric spaces. A
distance oracle is a small data structure which allows fast queries for approximate distances.
Distance oracles are supposed to capture the heart of the all-pairs shortest paths problem; in
many applications we are not actually interested in every single one of the distances, but instead
just need to quickly find any distance if it is needed. They give an oracle that, for any integer
k ≥ 1, takesO(kn1+1/k) space, hasO(k) query time, and has stretch of2k − 1. It is natural
to introduce slack to distance oracles, especially since the main method of constructing distance
oracles is via sparse spanners. This was first done by Abraham, Bartal, and Neiman [3], who
give a result for gracefully degrading distance oracles butnot for slack distance oracles. We
describe constructions for both, giving the first slack distance oracles and a simpler gracefully
degrading oracle that achieves constant average distortion, matching the result of [3]. We as-
sume a word of memory can store a distance or a node identifier (which would be true in most
practical implementations, as well as in the theoretical cell-probe model). We first give a general
transformational theorem.
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Theorem 2.32 Suppose that there exists some distance oracle withα(n) stretch andO(q(n))
query time that usesO(f(n)) space. Then there exists a distance oracle withǫ-uniform slack,
5 + 6α(1

ǫ
) stretch, andO(q(1

ǫ
)) query time that usesO(n + f(1

ǫ
)) space.

Proof: As usual we first create the set of centers by using theǫ-density net of Lemma 2.9. For
each vertex that is not a center, store the edge to the closestcenter. Then use the given distance
oracle on the set of centers. The claimed slack and stretch bounds are directly from the analysis
of Theorem 2.11. On a query of verticesu, v, we simply look up the centeru′ closest tou and
v′ closest tov (which can be done in constant time since we only store that one edge) and then
use the given oracle on the centers, which takesO(q(1

ǫ
)) time. Similarly, we needO(n) space

to store the one edge incident on each non-center andO(f(1
ǫ
)) space to store the oracle for the

centers, giving a total ofO(n + f(1
ǫ
)) space.

By using this transformation on the distance oracle of Thorup and Zwick [82, Theorem 3.1],
we get the following corollary.

Corollary 2.33 (Uniform slack distance oracle) For every integerk ≥ 1, there is a distance
oracle withǫ-uniform slack,O(k) query time, and12k − 1 stretch that usesO(n + k(1

ǫ
)1+1/k)

space.

Proof: For any integerk ≥ 1, Thorup and Zwick give a distance oracle withO(k) query
time and2k − 1 stretch that useskn1+1/k space. The corollary then follows immediately from
Theorem 2.32.

Gracefully degrading distance oracles

We can also use the ideas for gracefully degrading spanners from Section 2.3.2 to create grace-
fully degrading distance oracles. Recall that Theorem 2.22used aα(n)-spanner of the entire
metric together with an1-spanner for anǫ0-density net. Instead of using two levels of spanners,
we just use two levels of distance oracles, where the oracle on theǫ0-density net is exact. So if
ǫ < ǫ0 then we use the distance oracle on the entire metric which forany pointsx, y in the space
gives a stretch ofα(n) ≤ Cα(n1/c) ≤ Cα(1

ǫ
). If ǫ ≥ ǫ0 then we use the exact distance oracle on

the density net to get a multiplicative stretch of11. By letting c = 2 we know that the1-oracle
will not take more thann space, and storing the closest center for each node only takes another
n space, so the total space used is onlyf(n) + 2n. The query time in the1-oracle is constant,
so the total query time isO(q(n)). This gives the following theorem on transforming distance
oracles into gracefully degrading distance oracles.

Theorem 2.34 Suppose that there exists some distance oracle withα(n) stretch andO(q(n))
query time that usesO(f(n)) space, whereα(·) is a nondecreasing function for which there exists
a constantC > 0 such thatα(n) ≤ Cα(n1/2). Then there exists a gracefully degrading distance
oracle withCα(1

ǫ
) stretch andO(q(n)) query time that usesO(f(n)) + 2n space. Furthermore,

the average distortion and distortion of average of this distance oracle isO(1).

The stretch of the distance oracle of Thorup and Zwick [82, Theorem 3.1] satisfies the re-
quirement onα(·), so by applying Theorem 2.34 to that oracle and using the average case analysis
of Theorem 2.24 we get the following corollary.
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Corollary 2.35 (Gracefully degrading distance oracle)For any integerk with1 ≤ k ≤ O(log n),
there is a distance oracle with worst case stretch of2k − 1 and O(k) query time that uses
O(kn1+1/k) space such that the average distortion and the distortion ofaverage isO(1).

The gracefully degrading distance oracle of Abraham, Bartal, and Neiman [3, Theorem 14]
gives the same query time, worst case stretch, average distortion, and distortion of average. Their
oracle usesO(n1+1/k log n) space, though, which is more than we use ifk = o(log n) and the
same ifk = Θ(log n).

2.4.2 Distance labels

A distance labeling is an assignment of labels to the vertices so that the approximate distance
between any two vertices can be computed simply by looking atthe two labels. The goals are
to minimize the stretch, the size of the label, and the time needed to compute the distance given
the two labels. It is natural to extend this definition to slack labelings in the obvious way. We
give the first slack distance labeling that uses space independent ofn. Note that any embedding
of a metric intoℓp gives a distance labeling where the size of a label is the dimension of the
embedding. Embeddings of this form were considered by Abraham et al. [2], who proved that
the dimension must depend onlog n. Thus any distance labeling that uses a slack embedding
into ℓp must use space that depends onlog n, whereas our labeling is independent ofn.

As with distance oracles, we begin by giving a general transformation theorem. Note that as
before all space claims assume that it takes only a constant amount of space to store a distance or
an identifier of a point, or equivalently the space bounds canbe viewed as bounds on the number
of words rather than the number of bits.

Theorem 2.36 Let (V, d) be a metric space withn points. Suppose that there exists a distance
labeling where each label has sizeO(f(n)) and for any two pointsu, v it is possible to compute,
in O(q(n)) time, an approximation to the distance betweenu and v with a stretch of at most
α(n). Then there exists a distance labeling withǫ-uniform slack such that every label has size
O(f(1

ǫ
)), and computing distances up to a stretch of5 + 6α(1

ǫ
) can be done inO(q(1

ǫ
)) time.

Proof: Create a set of centers using Lemma 2.9. Apply the given labeling to the set of centers,
and for each non-center let its label be the distance to the center closest to it together with the
label for that center. The claimed slack and stretch bounds are clear, and the size bound is
immediate since each label is just a distance and a center label. The computation time is just
the time to add two distances (which we assume takes constanttime) plus the time to find the
distance between the two centers.

We get the following corollary by simply applying Theorem 2.36 to the distance labeling of
Thorup and Zwick [82, Theorem 3.4]. Note that the size of the labels is independent ofn.

Corollary 2.37 (Uniform lack distance labeling) Let (V, d) be a metric space onn points. Let
0 < ǫ < 1, and letk be an integer with1 ≤ k ≤ log 1

ǫ
. Then it is possible to assign each point a

label that usesO((1
ǫ
)1/k log1−1/k 1

ǫ
) space such that, given the labels of verticesu, v wherev is

ǫ-far fromu, the distanced(u, v) can be computed up to a stretch of12k − 1 in O(k) time.
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Gracefully degrading distance labelings

As with distance oracles, we can use the ideas from Section2.3.2 to create gracefully degrading
labelings.

Theorem 2.38 Suppose that there exists some distance labeling scheme forany metric space in
which each label has sizeO(f(n)) and for any two pointsu, v ∈ V it is possible to compute, in
O(q(n)) time, an approximation tod(u, v) with α(n) stretch. Furthermore, suppose thatα(·) is a
nondecreasing function such that for every integerc > 0 there exists a constantC > 0 such that
α(n) ≤ Cα(n1/c). Then for every metric space(V, d) onn points and every integerc > 0 there
exists a gracefully degrading distance labeling ofV where each label has sizeO(f(n)+n1/c), the
stretch isCα(1

ǫ
), and the time to compute an approximate distance given two labels isO(q(n)).

Proof: Let ǫ0 = n−1/c, and create anǫ0-density net ofV . For each pointv in the density
net, letlabel′(v) be the distances to every other point in the net, which takes at mostO(n1/c)
space. For every pointv ∈ V , let label′′(v) be the label assigned tov by simply using the given
scheme on the entire space, giving labels of sizeO(f(n)). Then for every pointv ∈ V we let
label(v) belabel′′(v) together with the distance fromv to the closest pointu in theǫ0-density net
andlabel′(u). Then clearly the required space for a single label isO(f(n) + n1/c), as claimed.
If ǫ < ǫ0 then we can compute the distance between two nodesu andv by simply comparing
label′′(u) andlabel′′(v) in O(q(n)) time, giving a stretch of at mostα(n) ≤ Cα(n1/c) ≤ Cα(1

ǫ
).

If ǫ ≥ ǫ0 then we get a multiplicative stretch of11 by adding the distance fromv to its closest
center point to the distance fromu to its closest center point and then adding the distance between
the two center points (which can be obtained from either label). This only takes constant time,
and thus the computation time isO(q(n)).

Applying Theorem 2.38 withc = k to the distance labeling of Thorup and Zwick [82, Theo-
rem 3.4] and then using the average case analysis of Theorem 2.24 gives the following corollary,
which gives a distance labeling with bounds that essentially match those of Abraham, Bartal, and
Neiman [3, Theorem 10] whenk = O(log n).

Corollary 2.39 (Gracefully degrading distance labeling)For any integerk with 1 ≤ k ≤
O(logn), there is a distance labeling of anyn point metric such that each label has size at
mostO(n1/k log1−1/k n), and given two labels it is possible to compute the distance between the
two points up to a worst case stretch of2k−1 in O(k) time. Furthermore, the average distortion
and the distortion of average areO(1).

2.5 Compact Routing

As in spanners, oracles, and labelings, the main tradeoff incompact routing is between thestretch
(the distance traveled by a packet divided by the shortest path distance) and thespace. But in the
compact routing setting the notion of space is a bit more complicated. There is thetable size,
which is just the amount of space used at each node to store routing table information or anything
else used by the routing protocol, but there is also theheader size, which is the amount of space
used in each packet to store information used by the routing scheme. Furthermore, there are two
main models of compact routing: thename-dependentmodel (in which schemes are allowed to
assign labels to vertices and can route using information inthe labels) and thename-independent
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model (in which schemes have to route without changing the name of any node). In the name-
dependent model an additional space parameter is thelabel size, which is the size of an assigned
name. These models turn out to be quite different when our goal is slack constructions. We begin
with constructing schemes for the name-dependent model, and then construct schemes and prove
impossibility results for the name-independent model.

2.5.1 Name Dependent Model

Our name-dependent schemes are adaptations of the spannersin Section 2.3. In particular, they
follow the general formula of building a density net and remembering how to route to, on, and
from it. Givenǫ, let N be anǫ-density net. For eachu ∈ V , let Net(u) be the closest point inN
to u. For eachv ∈ N , connect all pointsu ∈ V such thatNet(u) = v to v by a shortest path tree
Tv rooted atv. We begin by giving a general conversion theorem from tree routing to general
slack routing. Note that the real power of this method is reducing general routing to tree routing,
which works well when tree routing is much easier than general routing but does not obviously
help us if tree routing is hard; we will discuss this more in Section 2.5.2.

Theorem 2.40 Suppose that any tree withn vertices admits a routing schemeR′ with routing
tables of sizes(n), labels of sizeℓ(n), headers of sizeh(n), and stretchα(n). Then given any
weighted graphG = (V, E) and any0 < ǫ < 1, there is anǫ-slack routing schemeR in the
name-dependent model with routing tables of size1

ǫ
log n + s(n), labels of sizelog 1

ǫ
+ ℓ(n),

headers of sizelog 1
ǫ

+ h(n), and stretch3α(n) + 4

Proof: Arbitrarily assign each node in the net a unique ID in{1, . . . , |N |}. The ID of a vertex
v will be referred to asID(v). The routing table of each node contains|N | ≤ 1

ǫ
entries, one for

each net node, and thus every node can route directly to any net node. The label of a nodev is
the ID ofNet(v) together with the label assigned tov by R′ applied toTNet(v). Routing fromu
to v is done by routing directly toNet(v) (which can be done using the routing tables at each
node and the ID ofNet(v), which is contained in the label ofv) and then usingR′ to get from
Net(v) to v. The table size is then at most1

ǫ
log n + s(n), since it takes at mostlog n bits to

represent a port. Since each ID of a net node is some integer in{1, . . . , 1
ǫ
}, the total label size is

at mostlog 1
ǫ
+ ℓ(n) and the total header size is at mostlog 1

ǫ
+ h(n).

We use Lemma 2.10 and the triangle inequality to bound the stretch fromu to v whenv is
ǫ-far from u, getting thatdR(u, v) = d(u, Net(v)) + dR′(Net(v), v) ≤ d(u, v)+ d(v, Net(v)) +
α(n)d(Net(v), v) ≤ 4d(u, v) + 3α(n)d(u, v).

Note that since the ports only have to be labeled according tothe one tree routing schemeR′,
this conversion gives a scheme in the designer-port model ifR′ is in the designer-port model and
a scheme in the fixed-port model otherwise.

To get an actual routing scheme, we apply this conversion theorem to the following tree
routing schemes of Thorup and Zwick:

Theorem 2.41 (Thorup and Zwick [83]) Given a treeT , it is possible to route exactly onT
(stretch1) in the fixed port model using no routing tables and labels andheaders of sizeo(log2 n).
In the designer port model, it is possible to route onT with stretch1 using no routing tables and
labels and headers of size(1 + o(1)) logn.

Using Theorems 2.40 and 2.41, we can give our first name-dependent slack routing schemes:
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Theorem 2.42 LetG = (V, E) be a weighted graph. Then for any0 < ǫ < 1, there is a routing
scheme in the fixed-port model withǫ-slack, routing tables of sizeO(1

ǫ
log n), headers and labels

of sizeo(log2 n), and stretch7. In the designer port model, there is a scheme with the same
parameters except with headers and labels of size(1 + o(1)) log n + log 1

ǫ
.

One downside of this scheme is the dependence on1
ǫ

in the table size. We would like to
decrease this, since ifǫ is extremely small then this becomes large. Our next scheme reduces this
dependence, but at the cost of slightly increased stretch. We again give a conversion theorem,
this time from tree and general routing schemes to slack routing schemes:

Theorem 2.43 Suppose that there is a general routing schemeR̄ with routing tables of sizes(n),
labels of sizeℓ(n), headers of sizeh(n), and stretchα(n). Furthermore, suppose that there is a
tree routing schemeR′ with routing tables of sizes′(n), labels of sizeℓ′(n), headers of sizeh′(n),
and stretchα′(n). Then given a weighted graphG = (V, E) and a parameter0 < ǫ < 1, there
is a ǫ-slack routing schemeR for G with routing tables of sizes( 1

ǫ4
+ 1

ǫ
) + s′(n), labels of size

ℓ( 1
ǫ4

+ 1
ǫ
) + ℓ′(n), headers of sizeh( 1

ǫ4
+ 1

ǫ
) + h′(n), and stretch2 + 3α′(n) + 6α( 1

ǫ4
+ 1

ǫ
)

Proof: The basic idea of this scheme is to route inside of the net, so apacket going fromu to v
will go from u to Net(u) to Net(v) to v instead of going fromu to Net(v) to v as in Theorem
2.40. Unfortunately we cannot just applȳR to the net since the net nodes themselves do not
necessarily induce a connected subgraph. Indeed, since thenet nodes are all fairly far away from
each other they are likely connected only through many intermediate nodes.

Fortunately we can use techniques similar to those used by Coppersmith and Elkin to con-
struct pair-wise distance preservers [31]. In particular,we can use Fact 2.14 on the graphG with
P =

(
N
2

)
. The resulting subgraphG′ is a shortest path graph ofN . Considering just the edges

used in two paths, there are at most two vertices of degree at least3 (since they either intersect
at a single path or not at all). Since there are at most1

ǫ2
paths, this implies that there are at most

1
ǫ4

vertices in the shortest path graph with degree at least3, and thus at most1
ǫ4

+ 1
ǫ

vertices with
degree either1 or at least3. Each node of degree2 is on a unique path between these nodes,
so we get a new grapĥG by removing all of the nodes of degree2 in G′ and replacing each of
the removed paths by an edge of the same total length.Ĝ is connected and has the property that
the shortest path between every pair of net nodes is the same as the shortest path in the original
graph, so we applȳR to this graph.

Routing fromu to v takes place as follows. Firstu routes up toNet(u), which takes only
constant space if we have every node remember the port used tosend up to its net node. In
the next phase we route toNet(v) usingR̄ on Ĝ. Since this graph replaced paths with edges,
all of the degree2 nodes that were removed need to know what to do. But this is easy since
they only have degree2 in G′, so they can just remember the two ports used for net routing and
automatically forward any packet received on one port in this phase to the other port. All of
the other nodes that might be encountered in this phase were not removed, so they know how to
route. When the packet reachesNet(v), we route downTNet(v) to v by usingR′.

So in this scheme the routing table at a node might have to include the routing table of̄R
on a graph with1

ǫ4
+ 1

ǫ
nodes and the table ofR′ on a graph withn nodes, for a total size of

s( 1
ǫ4

+ 1
ǫ
) + s′(n). A label forv consists of a tree routing label fromR′ together with the label

of Net(v) in R̄ applied toĜ, for a total size ofℓ( 1
ǫ4

+ 1
ǫ
) + ℓ′(n). A header has to include a tree

routing header and a general header forĜ, for a total size ofh( 1
ǫ4

+ 1
ǫ
) + h′(n).
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It remains to prove the stretch bound. Letu, v ∈ V such thatv is ǫ-far fromu. Using Lemma
2.10 and the triangle inequality, we have that

dR(u, v) ≤ d(u, Net(u)) + α(
1

ǫ4
+

1

ǫ
)d(Net(u), Net(v)) + α′(n)d(Net(v), v)

≤ 2d(u, v) + 3α′(n)d(u, v) + α(
1

ǫ4
+

1

ǫ
)(d(Net(u), u) + d(u, v) + d(Net(v), v))

≤ 2d(u, v) + 3α′(n)d(u, v) + α(
1

ǫ4
+

1

ǫ
)6d(u, v))

as claimed.
We now use another result of Thorup and Zwick, this time on general compact routing. Note

that since the fixed-port model is a restricted version of thedesigner-port model, the following
results (which hold for fixed ports) also hold for designer ports.

Theorem 2.44 (Thorup and Zwick [83]) Let k > 1 be an integer, and letG = (V, E) be a
weighted graph. Then there is a compact routing scheme in thefixed-port model with routing
tables of sizeo(n1/k log3−1/k n), labels of sizeo(k log2 n), and headers of sizeo(log2 n), and
stretch 4k-3. In addition, after one round of handshaking inwhicho(log2 n) bits are exchanged
they route with stretch2k − 1.

Now we can apply Theorem 2.43 to the Thorup and Zwick schemes to get out main result on
name-dependent compact routing with slack:

Theorem 2.45 Let k > 1 be an integer, and letG = (V, E) be a weighted graph. Then
there is a compact routing scheme in the fixed-port model withǫ-slack, routing tables of size
o( 1

ǫ4/k log3−1/k 1
ǫ
), labels of sizeo(log2 n) + o(k log2 1

ǫ
), headers of sizeo(log2 n), and stretch

24k − 13. After a round of handshaking in whicho(log2 1
ǫ
) bits are exchanged, this stretch can

be reduced to12k − 1.

One important corollary of this is the scheme obtained by setting k = log 1
ǫ

in the above
scheme. This results in a name-dependent compact routing scheme withO(log 1

ǫ
) stretch and

all of the space bounds at most polylogarithmic inn and 1
ǫ
. We will use this scheme in the next

section.

Gracefully Degrading Routing

As with spanners and embeddings, we would like to create a slack routing scheme that works
not just for a fixedǫ but for all ǫ simultaneously. Such a scheme would have polylogarithmic (in
n) routing tables, headers, and labels, and for anyǫ would guaranteeO(log 1

ǫ
) stretch on all but

an ǫ fraction of the pairs. We almost give such a scheme, using ourslack routing scheme from
Theorem 2.45 as a basic building block but also losing alog ∆ factor in the label size (where∆
is the diameter of the graph). However, this loss oflog ∆ is due exclusively to having to store
some distances, so if it takes constant space to store a distance (as would be the case in any actual
implementation or in the cell-probe model), then we achievepolylog(n) size labels.

For integeri with 0 ≤ i ≤ log n, let ǫi = 2i

n
. We will refer to eachi as alevel. For each

ǫi, create aǫi-slack routing scheme according to Theorem 2.45 withk = log 1
ǫi

. Let 0 < ǫ < 1,
and leti be the largesti such thatǫi ≤ ǫ (such ani always exists since without loss of generality
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ǫ ≥ 1
n
). Then the routing scheme forǫi suffices forǫ, since it ignoresǫi < ǫ fraction of the pairs,

has stretchO(log 1
ǫi

) = O(log 2
ǫ
) = O(log 1

ǫ
), and has tables, headers, and labels of size still

polylogarithmic inn and 1
ǫ
. Unfortunately the same routing scheme needs to work for allǫ, so

we can’t simply choose ani and use that level. However, note that the route betweenu andv in
the desired level is no shorter than the shortest route betweenu andv over all log n levels. So if
we could remember for each pair of nodes which level gives theshortest path, then we could just
use that level whenever we’re asked to route between that pair.

Obviously we can’t actually remember the best level for eachpair, since that would take
Ω(n) space at each node. But we can do something just as good: allowthe source to do some
computation and figure out which level would be best given thedestination. And thanks to
another result of Thorup and Zwick [82] we can do this using only polylogathmic space at each
node. In particular, Thorup and Zwick proved the following result about distance labels:

Theorem 2.46 (Thorup and Zwick [82]) Let (V, δ) be a metric space onn points with integral
distances with diameter∆. Let 1 ≤ k ≤ log n be an integer. Then it is possible to assign to
each pointv ∈ V an O(n1/k log1−1/k n log(n∆))-bit label, denoted label(v), such that for any
two pointsu, v ∈ V it is possible to compute, inO(k) time, an approximation to the distances
δ(u, v) with a stretch of at most2k − 1.

The restriction to integral distances is required only so that a distance can be stored inlog ∆
space. We remove this assumption, and just letlog ∆ be the space necessary to store a distance.

Now we can define our gracefully degrading routing scheme. For each leveli with 0 ≤ i ≤
log n, let Ri be the routing scheme from Theorem 2.45 with parametersǫi andk = log 1

ǫi
. For

eachv ∈ V , let Neti(v) be the closest net point tov in the density net used byRi. The routing
table ofv consists of the union over all levelsi of the routing table ofRi at v. The label ofv is
the union over levelsi of the label assigned tov by Ri together with the distance toNeti(v) and
the distance label given by Theorem 2.46 toNeti(v) in the shortest path graph for the net at level
i.

When routing fromu to v we compute the distance fromu to v in each leveli by computing
d(u, Neti(u)) + d(Neti(v), v) + d′(Neti(u), Neti(v)), whered′ is the distance given by com-
paring the distance labels for the two net points. We then route along the level that minimizes
this quantity. Note that all of the information needed to compute the correct level is in the labels
of u andv, and that after the correct level is determined routing can be carried out as in Theorem
2.45 by using an extraO(log log n) bits in the header to tell intermediate nodes what the correct
level is.

Theorem 2.47 The above scheme is a gracefully degrading compact routing scheme with routing
tables of sizeo(log4 n), labels of sizeO(log4 n + log2 n log ∆), headers of sizeo(log2 n), and
stretchO(log 1

ǫ
).

Proof: Since each level usesk = log 1
ǫi

, the total size of the tables is at most
∑log n

i=0 o(log3 n
2i ) ≤

o(log4 n). Each label contains for each level a normal slack label and adistance label for its net
node, so the size of a label is at most

∑log n
i=0 (o(log2 n) + o(log3 1

ǫ
) + O(log2 n + log n log ∆)) ≤

O(log4 n + log2 n log ∆) since1
ǫ
≤ n. Each header is just the header for a given level together

with the number of that level, so has size at mosto(log2 n) + log log n = o(log2 n).
For the stretch bound, it is important to note that we chose touse results of Thorup and Zwick

for both the net routing and the distance labels. This was notcoincidence. The Thorup and Zwick
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routing scheme we use (Theorem 2.44) is based on the techniques that they pioneered for distance
oracles and labels in [82], and in particular the2k − 1 stretch (after handshaking) in the routing
scheme is the exact same2k − 1 as the stretch of their distance labels. Furthermore, usingthe
same labels we can compute the same4k − 3 as in the routing scheme without handshaking. It
is not just that the bounds are the same, but that they actually compute the exact same path, so
in fact the distance label gives precisely the distance thatthe routing scheme will take inside the
net. Thus our calculation of the distance travelled betweenu andv at each level exactly equals
the actual distance it would take if we routed at that level using our scheme, and so by choosing
the smallest such distance we choose the best level.

Since we are routing along the best level, we are in particular routing along a path that is
no longer than the path we would have taken by routing along the level just belowǫ, which we
showed earlier would be a sufficient level to route on. So the stretch of the path that we take is
no more than the stretch of that level, which by constructionis O(log 1

ǫ
).

One thing to note about the above theorem is that while it is not scale-free due to the depen-
dence onlog ∆ in the labels, it is close to being scale-free. In particular, the log ∆ comes from
the need to store distances [82, Thm 3.4], not from any inherent dependence on the aspect ratio
due to a distance-based decomposition like the sparse covers of [12, 13]. So if distances can be
stored in a constant amount of space (which is a reasonable approximation, since presumably
any implementation would use a fixed size floating point method of storing distances) then the
dependence on the diameter disappears.

An important corollary to the above theorem is the existenceof a routing scheme (without
any kind of slack) with polylogarithmic size labels, tables, and headers, and stretchO(log n) in
the worst case butO(1) on average. In fact, the above scheme satisfies these requirements:

Corollary 2.48 The above gracefully degrading routing scheme hasO(log n) worst case stretch,
butO(1) average distortion andO(1) distortion of average.

Proof: It clearly hasO(log n) worst case stretch since ifǫ = 1
n

the fact that it hasǫ-(uniform)
slack guarantees that it does not ignore any pair (since eachvertexv is only allowed to ignore
the closest node tov, which would be itself), and on everything else it has stretch O(log n). To
bound the average distortion, again letǫi = 2i

n
, and letu ∈ V be an arbitrary vertex. For eachǫi

the routing scheme ignores the closest2i nodes, and has stretchO(log n
2i ) on the rest. Leth(v)

denote the largesti such thatu does not ignorev, i.e. h(v) = max{i : v 6∈ Bǫi
(u)}. For each

0 ≤ i ≤ log n, let F (i) = {v ∈ V : h(v) = i}. Note that|F (i)| ≤ 2i, and that there is some
constantc such that for eachv ∈ F (i) the stretch of the route fromu to v is at mostc log n

2i .
Then the average stretch of routes with sourceu is at most

1

n − 1

∑

v∈V

d′(u, v)

d(u, v)
≤ 1

n − 1

log n∑

i=0

|F (i)|c log
n

2i
≤ c

n − 1

log n∑

i=0

2i log
n

2i

≤ c

n − 1
(2n − log n − 2) = O(1)

Since this is true for allu ∈ V , the total average distortion isO(1).
To bound the distortion of average, first note that

∑
x,y∈V dR(x, y)
∑

x,y∈V d(x, y)
=

∑
x

∑
y dR(x, y)

∑
x

∑
y d(x, y)

≤ max
x∈V

∑
y dR(x, y)
∑

y d(x, y)
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Let x be the vertex that maximizes this ratio. LetZ =
∑

y d(x, y), and letZi =
∑

y∈F (i) d(x, y).

Then for some constantc, the distortion of average is(1/Z)
∑log n

i=0 Zic log n
2i . But Zi/Z ≤ 2i+1

n

since every vertex inF (i) is one of the closest2i+1 nodes tox. Hence the total distortion of
average is at mostc

∑log n
i=0

2i+1

n
log n

2i = 2c(2n − log n − 2)/n = O(1).

2.5.2 Name-Independent Model

The name-independent model is significantly more difficult to work in than the name dependent
model. As an example, note that the above schemes depend on being to extractNet(v) from the
label ofv. This is impossible in the name-independent model, since the names are arbitrarily (or
adversarially) assigned and thus contain no information about their location in the network. In
this section we give a good compact routing scheme with slackfor the designer port model and
give a simple modification of a lower bound of Abraham, Gavoille, and Malkhi [5] to prove that
no such scheme exists in the fixed port model. The difference between the models is that in the
designer port model the scheme is allowed to number the portsof a vertex in any way it wants
(so long as it only uses the values from0 up to the degree), while in the fixed port model it is not
allowed to renumber the ports.

Designer ports

Our name-independent designer port scheme is based off of the basic name-dependent scheme
of Theorem 2.42. The main problem is that without the power toassign labels we do not know
Net(v), so we do not know which net node to route to. We overcome this by using hashing and
a distributed data structure that stores all of the necessary label information somewhere close to
the source node.

There is also the added difficulty of tree routing. In the name-dependent model we could
route in trees very efficiently, but in the name-independentmodel the best known single source
routing algorithm, due to Laing [65], has stretch2k − 1 and uses̃O(n1/k) space at each node,
and the best all-pairs scheme [6] hasO(k) distortion and uses̃O(n1/k) space. In the fixed port
model Laing’s single-source scheme is optimal [5], and although this lower bound does not work
in the designer port model there is no known algorithm that uses the ability to assign ports to
beat the scheme of [65]. So reducing the problem to tree routing, as we did in Theorem 2.42, is
not particularly helpful.

There is one situation where name-independent tree routingcan be done, though: Abraham,
Gavoille, and Malkhi showed in [1] that tree routing can be done with polylog space and constant
stretch if the tree is unweighted. This result holds for boththe fixed port and designer port
models.

Let u ∈ V , and letv ∈ V be ǫ-far from u. Let B′
u = B(Net(u), R(Net(u), ǫ)) be the

ǫn closest points toNet(u), and letT ′
u be the shortest path tree rooted atNet(u) on B′

u. The
following lemma gives the essential property of these treesthat we will be using.

Lemma 2.49 If v is ǫ-far fromu andw ∈ B′
u, thendT ′

u
(Net(u), w) ≤ 4d(u, v).

Proof: Sincew ∈ B′
u, by definitiond(Net(u), w) ≤ R(Net(u), ǫ). If Net(u) is the first net

point to coveru in the greedy density net construction algorithm then we know thatR(Net(u), ǫ) ≤
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R(u, ǫ), and thusdT ′
u
(Net(u), w) ≤ R(Net(u), ǫ) ≤ R(u, ǫ) ≤ d(u, v) by the definition ofǫ-far.

Otherwise letu′ ∈ N be the first point in the greedy algorithm to coveru. Then not only is
d(u, Net(u)) ≤ 2R(u, ǫ), but alsod(u, u′) ≤ 2R(u, ǫ). Sinceu′ is in N , by property (3) of
ǫ-density nets we know thatu′ 6∈ Bǫ(Net(u)), and thus

d(Net(u), w) ≤ R(Net(u), ǫ) ≤ d(Net(u), u′)

≤ d(Net(u), u) + d(u′, u) ≤ 2d(u, v) + 2d(u, v) = 4d(u, v)

as claimed.
Since we are aiming for constant stretch, this lemma impliesthat we can play around for

a while insideB′
u. Let h : V → [ǫn] be any balanced hash function, e.g. computingID(v)

mod ǫn. Note that sinceh is balanced onlyO(1
ǫ
) nodes map onto a single value. For each

centeru ∈ N assign each of theǫn elements ofB′
u = Bǫ(u) a different color in[ǫn], and let the

color assigned to a nodev be denoted bycolor(v). Each node receives at most one color since
Bǫ(x)∩Bǫ(y) = ∅ for all x, y ∈ N by property (3) of density nets. If a nodev has colora then it
stores the label assigned toy by Theorem 2.42 (in the fixed-port model) for ally ∈ V such that
h(y) = a, which uses a total of at mosto(1

ǫ
log2 n) space.

Once we have found the label of the destination then we are done, since we can simply
have every node remember the routing table of Theorem 2.42 and pretend that we are in the
name dependent setting. Thus the problem is reduced to finding the nodew ∈ B′

u such that
color(w) = h(v). Unfortunately as previously mentioned doing name-independent compact
routing in trees is hard, but Lemma 2.49 tells us that we can get around this. In particular, stretch
is not the right measure: everything inBu′ is close tou relative tov, so we can route on shortest
paths to a constant number of destinations inB′

u before routing tow (and then tov). These other
destinations might be very far away fromw relative tou or Net(u) and so would incur large
stretch, but since our end goal is notw butv this is acceptable.

Intuitively this is reminiscent of unweighted routing, since we do not care about the weights
of the edges inT ′

u as long as we are routing along shortest paths to only a constant number of
destinations. Indeed, we are able to use a result of Abraham,Gavoille, and Malkhi to do this:

Theorem 2.50 (Abraham, Gavoille, Malkhi [1]) Every unweighted rooted tree withn nodes
has a single-source name-independent routing scheme (in the designer port model) such that the
distance traveled between the rootr and a destinationv is at mostd(r, v) + 2d(T ), whered(T )
is the depth of the tree. Moreover, onlyO(log4 n/(log log n)2 +log3 n/ log log n) bits are needed
per node and headers have sizeo(log2 n)

We cannot use this result as a black box since even though it makes a good guarantee about
distances it does not make the necessary guarantee about thenumber of intermediate nodes
routed to, so it could require routing directly toω(1) intermediate nodes and thus incur too
much weighted distance. But an examination of the proof of Theorem 2.50 reveals that it does
in fact route to only one other intermediate nodex, and routes along the shortest path fromr to
x, then back up tor, and then directly fromr to w. They use another hash functionH which
maps the nodes of the tree onto a key space, and then assign these keys in a very careful manner
so that interval routing on the key space can be done efficiently. This lets them find the node that
ownsH(w), which will then contain the necessary information for routing tow. One fact to note
about their theorem is that it uses the power of designer ports to rearrange the ports so that they
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are in order of the size of the subtree rooted at each child. Putting this all together, we get the
following theorem:

Theorem 2.51 Let G = (V, E) be a weighted graph. Then for any0 < ǫ < 1 there is a
name-independent designer-port routing scheme withǫ-slack forG with routing tables of size
O(1

ǫ
log2 n + log4 n), headers of sizeo(log2 n), and stretch27.

Proof: Each node has to remember the routing tables of Theorem 2.42,the routing tables and
information for Theorem 2.50, and the name-dependent labels for up to1

ǫ
other nodes. This totals

O(1
ǫ
log n) + O(log4 n) + O(1

ǫ
log2 n) = O(1

ǫ
log2 n + log4 n) bits. The header contains at most

a header from Theorem 2.42 and a header from Theorem 2.50, using at mosto(log2 n) bits.
Routing in this scheme will take place as follows. First,u will route up toNet(u). Then

using the scheme from Theorem 2.50 we route to the node which owns H(h(v)), where the
name of a node is now its color. Then atH(h(v)) we find out how to get to the node colored
h(v) in B′

u, so we go there. Then at that node we find out the label from Theorem 2.42 forv, so
we route toNet(v) and then down tov. We can use Lemmas 2.49 and 2.10 to give a bound on
the distances to and fromH(h(v)) andh(v), giving us

d′(u, v) ≤ d(u, Net(u)) + 2d(Net(u), H(h(v))) +

2d(Net(u), h(v)) + d(Net(u), Net(v)) + d(Net(v), v)

≤ 2d(u, v) + 8d(u, v) + 8d(u, v) + d(Net(u), u) + d(u, v) + d(v, Net(v)) + 3d(u, v)

≤ 18d(u, v) + 2d(u, v) + d(u, v) + 3d(u, v) + 3d(u, v) ≤ 27d(u, v)

as claimed.
We can create a slightly different tradeoff between space and stretch by making one easy

change: instead of havingH(h(v)) remember how to get toh(v), we just have it remember all
of the name-dependent labels thath(v) is supposed to remember. One of the lemmas proved in
[1] about Theorem 2.50 is that each node remembers at mostO(log n/ log log n) different hash
values, and at mostO(log n) nodes hash to the same value. So the node that ownsH(h(v))
might have to store the name-dependent labels originally stored byO(log2 n/ log log n) different
nodes, for a total extra space ofO(1

ǫ
log4 n/ log log n). The stretch is then reduced from27 to 19,

since we don’t waste a trip fromH(h(v)) to Net(u) to h(v). So we have as an easy corollary:

Corollary 2.52 Let G = (V, E) be a weighted graph. Then for any0 < ǫ < 1 there is a
name-independent designer-port routing scheme withǫ-slack forG with routing tables of size
O(1

ǫ
log4 n/ log log n + log4 n), headers of sizeo(log2 n), and stretch19.

Fixed ports

Abraham, Gavoille, and Malkhi recently showed [5] that for every integerk ≥ 1 there is a graph
(in fact a star) such that any name-independent fixed-port routing scheme with stretch2k − 1
requiresΩ(n1/k) space. They also proved a polynomial lower bound on the spacewhen only
the averagestretch is constant, which eliminates the possibility of good gracefully degrading
routing schemes in this model (since any such gracefully degrading scheme has constant average
stretch, following the proof of Corollary 2.48). We extend their basic argument to prove that
for any0 < ǫ < 1/2 with ǫ constant, noǫ-slack scheme exists with constant stretch and space
polynomial in 1

ǫ
and polylogarithmic inn.
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The proof from [5] uses a distributed Kolmogorov complexityargument, where they fix some
of the ports to a sequence with high Kolmogorov complexity and show that any routing scheme
that does not useΩ(n1/k) space allows us to compute the sequence without using much space,
giving a contradiction. In particular, they fix a sequenceL of size⌊n/2⌋ with the property that
any subsequence or subset ofL has large Kolmogorov complexity relative to its size, and then
create a star network where the first⌊n/2⌋ nodes are at distance1 from the root and are on ports
in L and the other⌈n/2⌉ nodes are at distancek from the root. LetC be the set of nodes at
distance1 from the root, and letF be the others. In order to reach the nodes inC from the root
with stretch at most2k − 1, the routing scheme cannot route to any of the nodes inF . They then
just consider destinations inC and show that being forced to never leaveC except to go to the
root forces the scheme to use polynomial space.

However, this is not true anymore when we allow constant slack. In particular, some of the
destinations inC will be ignored by the root and so the routes to those nodes could go out to
some nodes inF to get extra information. However, we can fix this by just considering the subset
of destinations that we do not ignore, which will still have large Kolmogorov complexity since it
has size at least a constant fraction of|C|. We also need the property that we can easily generate
the initial outgoing headers for this set, which we can maintain by slightly perturbing the first
(1 − ǫ)n points to have distance1 + δ from the root for some small constantδ > 0. Then since
the root is forced to ignore the closestǫn nodes it cannot ignore any of these nodes, and we easily
generate the outgoing headers since they are just all elements of{1, . . . , (1 − 2ǫ)n/2}. We omit
the details since they are just a rehashing of [5]; it is straightforward to modify the proof of the
lower bound in [5] using this new subset ofC instead of all ofC. This gives the following lower
bound.

Theorem 2.53 For each integerk ≥ 1 and constant0 < ǫ < 1/2, there is a weightedn-node
star for which every name-independent fixed-port routing scheme withǫ-slack and stretch2k−1
uses at leastΩ(n1/k) bits of memory at some node.

2.6 Approximation Algorithms for Spanner Problems

We now examine a slightly different topic: approximation algorithms for spanner problems. The
motivation for this is simple, and corresponds with the motivation for looking at slack problems
in the first place: the strong lower bounds are not realistic.Slack was one way around them,
but looking at per-instance guarantees rather than global guarantees is another way. The lower
bounds implied by Erdős’s girth conjecture are of the form “there exist a family of graphs for
which no good spanner exists”. But many graphs are not like this, so we instead turn our attention
to approximation algorithms, or per-instance guarantees,that are of the form “we can build a
spanner that is close to the size of the best spanner, whatever that happens to be”.

We will consider a few different spanner variants. In general, we are given a graphG =
(V, E) (possibly directed), alength functionℓ : E → R

+, and aweight functionw : E → R
+.

The distance between any two vertices is defined to be the shortest path distance between them
according toℓ. We will want to find a subgraphH of G of minimum total weight such that
the stretch between any two points is at most some parameterk (in this section we define a
spanner to be what was called a subgraph spanner in Section 2.3). This is obviously equivalent

34



to finding a subgraphH such that the stretch of any edge inE is at mostk. In thebasick-spanner
problem, the graphG is undirected and both the length and the weight functions are always equal
to 1, i.e. distances are the number of hops and the goal is to minimize the number of edges. In
the unit-lengthk-spanner problem the length function is always1 and the weight function is
arbitrary, while in theunit-weightk-spanner problem the weight function is always1 and the
length function is arbitrary (note that this is the version of spanners discussed in Section 2.3).
All of these versions can clearly be defined for both undirected and directed graphs.

The basic tool that we will use to design approximation algorithms is an LP relaxation of the
k-spanner problem. For each edge(x, y) ∈ E, letPx,y denote the set of paths inG from x to y
with stretch at mostk (i.e. the sum of the lengths of edges inP is at mostk × ℓ(u, v)). For each
edgee ∈ E we will have a variablexe, and for each pathP ∈ Px,y we will have a variablefP .
This gives the following linear program:

min
∑

e∈E

w(e)xe

s.t.
∑

P∈Px,y:e∈P

fP ≤ xe ∀(x, y) ∈ E, e ∈ E

∑

P∈Px,y

fP ≥ 1 ∀(x, y) ∈ E

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(x, y) ∈ E, P ∈ Px,y

(2.1)

This LP is obviously a valid relaxation of thek-spanner problems. To see this, suppose that
we are given a spannerH. Then for every edge(x, y) in the original graph there is a path inH
of stretch at mostk, i.e. there is some path fromPx,y in H. So we can setxe to 1 for all edges
e in H, and we will setfP to 1 if P is in H. SinceH is a valid spanner all the constraints are
satisfied.

This LP has polynomial size for certain versions of the problem, for example the unit-length
version in whichk is a constant. In general, it will have polynomial size whenever the number of
stretchk paths between two adjacent points is at most a constant, for example ifk is a constant
and the ratio between the length of the maximum edge and the length of the minimum edge is
a constant. In these cases this LP can be solved in polynomialtime using any polynomial time
linear programming algorithm. In some cases, though, this LP has exponential size, and it is not
obvious how to solve it in those cases. In fact, we will not solve the LP in these instances. We
will insteadapproximatelysolve the LP.

We do this by using a different LP that is an edge based formulation instead of a path based
formulation. We will again have a variablexe for every edge, but we will change the flow
variables fromfP to f

(x,y)
(u,v) , i.e. we will have a variable for every edge indicating how much

flow is going from one endpoint to the other for every commodity (in the undirected case this
will actually mean two variables per edge, one for each direction). The intuition behind this LP
is simple: the first constraint forces every flow to obey the edge capacities, the second, third,
and fourth constraints force a unit flow out of the source and into the sink (with flow conserved
everywhere else) for every commodity, and the fifth constraint forces the “length” of each flow
to have stretch at mostk.
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min
∑

e∈E

w(e)xe

s.t. f (x,y)
e ≤ xe ∀e ∈ E, (x, y) ∈ E∑

z:(u,z)∈E

f
(u,v)
(u,z) −

∑

z:(z,u)∈E

f
(u,v)
(z,u) = 1 ∀(u, v) ∈ E

∑

z:(z,v)∈E

f
(u,v)
(z,v) −

∑

z:(v,z)∈E

f
(u,v)
(v,z) = 1 ∀(u, v) ∈ E

∑

v:(u,v)∈E

f
(x,y)
(u,v) −

∑

v:(v,u)∈E

f
(x,y)
(v,u) = 0 ∀(x, y) ∈ E, u 6= x, y

∑

(u,v)∈E

ℓ((u, v))f
(x,y)
(u,v) ≤ kℓ((x, y)) ∀(x, y) ∈ E, (u, v) ∈ E

xe ≥ 0 ∀e ∈ E

f
(x,y)
(u,v) ≥ 0 ∀(x, y) ∈ E, (u, v) ∈ E

(2.2)

This LP clearly has polynomial size, and is also a relaxationof thek-spanner problems. It is
a relaxation basically for the same reason that LP 2.1 is a valid relaxation: given ak-spannerH,
we will setxe to 1 for all edges inH, and for all edges(x, y) ∈ E we will route one unit of flow
from x to y through a path inPx,y that is also inH, at least one of which must exist sinceH is
a validk-spanner. So we can solve this LP in polynomial size using anypolynomial time linear
programming algorithm and get a fractional solution. We canchange this into a solution with a
polynomial number of path-based flows rather than edge-based flows using standard techniques;
for example, for every commodity we can find an arbitrary pathfrom the source to the sink on
which every edge has nonzero flow, assign the amount of flow on the bottleneck edge to that
path, and then remove that flow from the original. In each iteration some edge gets pushed to
have0 flow, so this only runs a polynomial number of iterations so weend up with a path based
solution that has polynomial support.

However, this still might not be a valid solution to LP 2.1. This is because the only guarantee
we have on the path lengths is that for every edge(x, y) ∈ E, the sum of the lengths of the paths
times the flow on the path is at mostkℓ((x, y)). More formally, letP ′

x,y be the set ofall paths
betweenx andy, not just the paths with stretch at mostk. Then after converting our solution for
LP 2.2 to a path-based solution we will have the property that

∑
P∈P ′

x,y
ℓ(P )fP ≤ kℓ((u, v)),

whereℓ(P ) is defined to be the sum of the lengths of the edges inP . This is weaker than the
stretch condition of LP 2.1, since it just says that the average path used must have stretch at most
k, not that all paths used must have stretch at mostk. On the other hand, if the average stretch
is at mostk, then by Markov’s inequality we know that at least1/2 of the flow is on paths with
stretch at most2k. More generally, we know that at leastǫ

1+ǫ
flow is on paths with stretch at

most1 + ǫ. So if we increase allx values by a factor of1+ǫ
ǫ

and remove the flow on all paths of
length more than(1 + ǫ)k, we will have a solution to LP 2.1 for the(1 + ǫ)k-spanner problem.
This naturally gives rise tobicriteria approximation algorithms, where we will give a(1 + ǫ)k-
spanner that has weight at most anα factor larger than the optimumk-spanner. We will call such
algorithms(1 + ǫ, α)-approximations. Slightly more formally, this analysis yields the following
theorem:
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Theorem 2.54 If there is an algorithm that is anα-approximation for thek-spanner problem
assuming it has a valid fraction solution for LP 2.1, then it can be modified to yield a polynomial
time(1 + ǫ, 1+ǫ

ǫ
α)-approximation algorithm.

In this section we will explore these relaxations by using them to design approximation algo-
rithms and analyzing their integrality gaps.

2.6.1 Approximation Algorithm for Unit-Weight k-Spanner

In this section we design ãO(n2/3)-approximation algorithm for the unit-weightk-spanner prob-
lem (directed and undirected) as long as we can solve LP 2.1. If we cannot solve it we will give
a bicriteria approximation by applying Theorem 2.54. For the undirected unit-weightk-spanner
problem it is well known that there is always ak-spanner with at mostn1+ 2

k+1 edges, which is
obviously an

2
k+1 approximation since any spanner needs at leastn−1 edges just to be connected.

So our new algorithm is not an improvement over this existingalgorithm. For the directed ver-
sion, though, the best known algorithm is ãO(n1−1/k)-approximation due to Bhattacharyya et
al. [19] that works only for the basic directedk-spanner problem (unit lengths and weights). So
for k > 3 our algorithm is better for the basic directed problem, and to the best of our knowledge
it is the only known algorithm for the unit-weight directedk-spanner problem. Fork = 3 there
is also a previous̃O(n2/3)-approximation due to Elkin and Peleg [37] that does not use LP-based
techniques, but their algorithm and analysis are significantly more complicated than ours.

We begin by assuming a fractional solution(x, f) for LP 2.1. For every(u, v) edge inE, let
Nu,v ⊆ V be the set of vertices that lie on a path of stretch at mostk from u to v (i.e. the set of
vertices that are used by at least one path inPu,v). The following lemma bounds how small the
capacities in the solution can be relative to the size of these sets:

Lemma 2.55 For any(u, v) ∈ E there is a pathP ∈ Pu,v with the property that every edge ine
hasxe ≥ 1

|Nu,v|2

Proof: Suppose this is false for some(u, v). Let B ⊆ Nu,v × Nu,v be the set of edges with
xe < 1/|Nu,v|2. Then every pathP ∈ Pu,v goes through at least one edge inB, so these edges
form a cut betweenu andv relative to the paths inPu,v. Since we have a valid LP solution, we
know that at least one unit of flow is sent fromu to v using paths inPu,v. This means that the
number of edges inB must be at least|Nu,v|2. But this is a contradiction: every edge inB has
both endpoints inNu,v, so there are at most

(|Nu,v|
2

)
< |Nu,v|2 of them.

So if |Nu,v| is small, Lemma 2.55 implies that there is some stretchk path with the property
that every edge is assigned a large capacity. This is good news for rounding, since it means that
we will not have to round the capacities up by very much. But what if |Nu,v| is large? Then there
are many nodes that are on stretchk paths, so we should be able to find such a path by picking
nodes randomly. This is formalized in the following lemma:

Lemma 2.56 If we sample at least3n ln n
|Nu,v| vertices independently and uniformly at random, then

with probability at least1 − 1/n3 at least one sampled vertex will be inNu,v

Proof: The probability that no sampled vertex is inNu,v is at most
(

1 − |Nu,v|
n

) 3n lnn
|Nu,v |

≤ e−3 lnn = 1/n3
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and thus the probability that at least one sampled vertex is in Nu,v is at least1 − 1/n3

Our algorithm is quite simple, and is based on these two lemmas. We first do a thresh-
old LP rounding: any edgee with xe ≥ 1/(3n lnn)2/3 is included in our spanner. We then
randomly sample(3n ln n)2/3 vertices, and for each sampled vertexv we built a shortest path
in-arborescence and a shortest path out-arborescence rooted atv (in the undirected case these
will simply be the same shortest path tree).

Theorem 2.57 This algorithm returns a valid spanner with probability at least1 − 1/n, and if
it does return a valid spanner then it is aO((n lnn)2/3)-approximation.

Proof: We first prove that it results in a valid spanner. Consider some edge(u, v) ∈ E.
If |Nu,v| ≤ (3n ln n)1/3, then Lemma 2.55 implies that there is some stretchk path in which
every edgee hasxe ≥ 1/(3n lnn)2/3. So the threshold rounding step will add all of the edges
of this path to our spanner, so there will be a path fromu to v in our spanner with length at
mostkℓ((u, v)). On the other hand, if|Nu,v| > (3n ln n)1/3 then Lemma 2.56 implies that with
probability at least1 − 1/n3 we will have sampled some vertex inNu,v. Suppose we sample
x ∈ Nu,v. By the definition ofNu,v we know thatx is on some path fromu to v with stretch
at mostk, and thus the length of the shortest path fromu to x plus the length of the shortest
path fromx to v is at mostkℓ((u, v)). Since we included both a shortest path in-arborescence
and a shortest path out-arborescence rooted atx our spanner will include both of these shortest
paths, and thus will include a path fromu to v with stretch at mostk. Now we can take a union
bound over all such edges, and get that with probability at least1 − 1/n everyedge(u, v) with
|Nu,v| > (3n lnn)1/3 has at least one vertex fromNu,v in the sample set. So for any edge(u, v)
either the LP rounding or the random sampling will guaranteea valid path of stretch at mostk,
and thus the graph we return is a valid spanner (with probability at least1 − 1/n).

To prove that it is aO((n lnn)2/3)-approximation we will show that each step costs at most
O((n lnn)2/3)×OPT . This is obvious for the LP rounding step: everyxe is increased by at most
a factor ofO((n lnn)2/3) so the rounding costs at mostO((n lnn)2/3) times the LP cost. Since
the LP is a valid relaxation, this implies that the rounding costs at mostO((n lnn)2/3) × OPT .
To show that the second step does not add many edges, considersome sampled vertexx. Suppose
that in the original graphRx nodes are reachable fromx andSx nodes have paths tox. Then
obviously any spanner must have size at leastmax{Rx −1, Sx −1} just to maintain connectivity
between nodes that should be connected. But adding a shortest path in-arborescence adds at most
Sx − 1 edges, and adding a shortest path out-arborescence adds at mostRx − 1 edges. So the
number of edges we added by samplingx is at mostSx −1+Rx −1 ≤ 2×OPT . Thus the total
cost for the second step is at most2(3n ln n)2/3 × OPT

This gives aÕ(n2/3) approximation to the directed unit-weightk-spanner problem as long
as we can solve LP 2.1. If we cannot solve it, then combining Theorem 2.54 with Theorem 2.57
gives a bicriteria(1 + ǫ, 1+ǫ

ǫ
O((n lnn)2/3))-approximation.

2.6.2 Unit-length2-Spanner

The unit-length2-spanner problem is qualitatively and quantitatively different fromk-spanner
with k > 2: it is known that it can be approximated toO(log n) and that this is tight (assuming
P 6= NP ). As part of our goal of understanding the spanner problem through LP relaxations,
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we show that LP 2.1 has integrality gap ofO(log n), and that there exist instances of unit-length
2-spanner on which the integrality gap is alsoΩ(log n). In fact, these instances show large gap
even when weights are also unit, i.e. when we are actually in the basic2-spanner problem. For
this section we will assume that we are in the undirected version, but the same techniques work
in the directed version as well.

Lower Bound

We first show that the integrality gap isΩ(log n) on certain instances. The intuition is that we
will apply the hardness reduction from set cover to2-spanner to an instance of set cover that
has a large integrality gap. We first describe the generic reduction, then the particular set cover
instance that we apply it to.

Suppose we have a (unweighted) set cover instance with elementsU and setsS, where|U | =
N and|S| = M . We create a graphG with vertex setU ∪ S ∪ {xi : i ∈ [k]}, wherek = M2.
In other words, there is a vertex for every element, a vertex for every set, andk new vertices
x1, . . . , xk. Clearly the number of vertices is polynomial in the size of the set cover instance (it
is in fact n = M2 + M + N). There is an edge from everyxi to every set node and to every
element node, an edge between every two set nodes, and an edgebetween a set nodeS ∈ S and
everye ∈ U : e ∈ S. More formally, the edge set is{{xi, S} : i ∈ [k], S ∈ S} ∪ {{xi, e} : i ∈
[k], e ∈ U} ∪ {{S, S ′} : S, S ′ ∈ S} ∪ {{S, e} : s ∈ S, e ∈ U, e ∈ S}.

The set cover instance that we use has element setF
q
2 \ {~0}, so there are2q − 1 elements.

There is a setSα for everyα ∈ F
q
2 (so there are2q sets), whereSα = {e ∈ F

q
2 \ {~0} : α · e = 1}.

We are using the normal notion of dot product overF
q
2 here, i.e.α · e = α1e1 + · · ·+ αqeq (mod

2). It is easy to see that every element is in exactly half of thesets. This large amount of overlap
intuitively allows the linear program to “cheat”.

To see that the LP has a small solution, we will set the capacity of the edges between set
vertices to1, the edges between set vertices and element vertices to1, and the edges betweenxi

vertices and element vertices to0. We will also set the capacity of edges betweenxi vertices and
set vertices to2/M . Obviously this solution has cost at mostkM 2

M
+ M2 + MN = O(M2) =

O(n), so it remains to show that it is a feasible solution. To show this, for every edge in the
original graph we need to find a way to route at least one unit offlow subject to our capacities
from one endpoint to the other along paths of length at most2. This is trivial for every edge that
we set to have capacity1, so we just need to worry about edges incident onxi nodes. For edges
of the form{xi, S} with S ∈ S, we can send1/M flow on every edge fromxi to S (including
the edge fromxi to S, and then flow that was set to setsS ′ 6= S can be forwarded along the
{S ′, S} edge. For edges of the form{xi, e} with e ∈ U , we can send2/M flow from xi to every
set that containse. Since exactly half of the sets containe this adds up to a total flow of1. This
flow can then be forwarded directly toe, since there is an edge of capacity1 betweene and every
set containinge. Thus this if a feasible solution to the flow LP of costO(n).

Now we want to show than any integral solution has cost at least Ω(n log n). Consider some
arbitrary integral solution (i.e. a setting of 0/1 capacities to every edge such that one unit of flow
can be sent between the endpoints of any original edge using paths of length at most2). Consider
an edge{xi, e} with e ∈ U . Either this edge has capacity1, or there is someS ∈ S with e ∈ S
such that the edges{xi, S} and{S, e} both have capacity1. This is because the only paths of
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length at most2 betweenxi ande are paths of this form and the one direct edge. Since this is true
for everye, the vertices adjacent toxi must form a valid set cover of this original instance (where
an edge directly to an elemente is equivalent to adding the set{e}). Thus the degree of anyxi

node must be at least the size of the smallest valid set cover.For our set cover instance, it is easy
to see that the size of the smallest cover is at leastq. To see this, suppose otherwise, i.e. assume
there is some collection of setsSα1 , . . . , Sαq−1 that covers the elements. Then∩q−1

i=1Sαi
= ∅, so

∩q−1
i=1{e ∈ F

q
2 : αi · e = 0} = {~0}. But this is a contradiction, since the intersection ofq − 1

hyperplanes in theq-dimensional vector space overF2 cannot be just a single point (that would
require at leastq hyperplanes). So any valid set cover has size at leastq ≥ log N .

So now we know that any integral solution to the flow LP has costat leastkq ≥ M2 log N =
Ω(n log n), thus proving that the integrality gap of the flow LP is at least Ω(log n).

Upper Bound

To see that the LP has an integrality gap ofO(logn) we will essentially do the reverse and
reduce2-spanner to set cover. First, some notation: for each vertexv ∈ V , let N(v) ⊆ V be
the set of neighbors ofv in G. For eachv ∈ V andU ⊆ N(v), let SU

v = {{v, u} ∈ E : u ∈
U} ∪ {{w, z} ∈ E : w, z ∈ U}, i.e.SU

v consists of edges in which both endpoints are contained
in U or one endpoint isv and the other is inU . The intuition is that if we include all edges from
v to nodes inU in our spanner, thenSU

v are the edges that are now stretched by at most2.
This leads to the obvious set cover formulation: the elements are edges inE, the sets are

{SU
v }v∈V,U⊆N(v), and the cost of a setSU

v is c(v, U) =
∑

u∈U w({u, v}) (i.e. the cost of adding all
the edges betweenv andU to the spanner). As a side note, the existingO(log n)-approximation
algorithms for2-spanner [61, 63] are basically just the basic greedy algorithm for this set cover
instance, although they don’t phrase it that way. The only difference is that in their algorithms
the cost of a set changes throughout the algorithm, since if an edge has already been included
then it’s cost should not be factored into the cost of any set.

This set cover formulation leads to the obvious related IP and LP relaxation:

min
∑

v∈V

∑

U⊆N(v)

c(v, U)yU
v

s.t.
∑

v∈V

∑

U⊆N(v):e∈SU
v

yU
v ≥ 1 ∀e ∈ E

(2.3)

Since this is a set cover LP, we know that it has integrality gap of O(logn) (note that
this is irrespective of whether or not it is an exact formulation of 2-spanner). LetLPflow and
IPflow denote the optimum fractional and integer values respectively LP 2.1, and letLPSC and
IPSC denote the optimum fractional and integer values of this second LP. We want to show that
IPflow ≤ O(logn)LPflow, and we know thatIPSC ≤ O(log n)LPSC . So to finish off we will
show thatIPflow ≤ O(IPSC) and thatLPSC ≤ O(LPflow).

Lemma 2.58 IPflow ≤ IPSC

Proof: Since these are the optimum values of minimization problems, in order to show this we
just need to show how to transform any integer set cover solution into an integer flow solution of
no larger cost. Lety be a solution to the set cover IP. To build a flow solution, setx{u,v} = 1 if
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there is someU ⊆ N(v) such thatu ∈ U andyU
v = 1 or if there is someU ⊆ N(u) such that

v ∈ U andyU
u = 1. We first claim that the cost of this flow solution has not gone up, which is

easy to see since any edge for which we setxe = 1 (and thus cost usw(e)) contributesw(e) to the
cost of at least one setSU

v with yU
v = 1. Now we claim that this is a feasible integer flow solution,

which means that we need to find a way to route every edge inE along a path of length at most2
using only edges withxe = 1. Let {u, v} ∈ E be an arbitrary edge. Since it is covered by the set
cover solution, there is somev andU ⊆ N(v) with yU

v = 1 and{u, v} ∈ SU
v . This means that

there is either a length1 path or a length2 path (throughv) betweenu andv consisting of edges
that were set to havexe = 1, and thus we can route a feasible flow.

Lemma 2.59 LPSC ≤ O(LPflow)

Proof: To prove this lemma we show how to convert a fractional flow into a fractional set cover
that costs at most8 times as much. Letx, f be a solution to LP 2.1. The cost of this solution is∑

e∈E w(e)xe. We first increase allx andf values up to the next power of2, giving us a new
feasible flow solutionx′, f ′ with

∑
e w(e)x′

e ≤ 2
∑

e w(e)xe. For all v ∈ V andi ∈ Z≥0, let
U(v, i) = {u ∈ N(v) : x′

{u,v} ≥ 1/2i}. Now to create a fractional set cover we will just set

y
U(v,i)
v = 1/2i for all v ∈ V and nonnegative integersi.

We first claim that this is a feasible fractional set cover. Tosee this, consider some edge
{u, v} ∈ E. In the fractional flow solutionx′, f ′ at least one unit of flow is sent on paths of
length at most2 betweenu andv. So some amount of flow is sent directly along edge{u, v},
some is sent fromu to some intermediate vertexz1 and then tov, some through intermediate
vertexz2, etc. The flow sent along the pathu − zk − v is at mostmin{x′

{u,zk}, x
′
{v,zk}}. Suppose

this value is1/2i. Then note that bothu andv are inU(zk, i), so the variableyU(v,i)
v fractionally

covers the edge{u, v} by1/2i. So any path carrying flow in the flow solution has a corresponding
set that covers to the same amount.

Slightly more formally, for any three verticesz, u, v ∈ V with u, v ∈ N(z), let I(z, u, v) =
log max{ 1

x′
{u,z}

, 1
x′
{v,z}

}. Note that the maximum flow sent betweenu and v via z is at most

1/2I(z,u,v). Then

∑

z∈V

∑

U⊆N(z):{u,v}∈SU
z

yS
z ≥ y

U(u,log(1/x′
{u,v}

))
u + y

U(v,log(1/x′
{u,v}

))
v +

∑

z∈V :u,v∈N(z)

yU(z,I(z,u,v))
z

≥ x′
{u,v} + x′

{u,v} +
∑

z∈V :u,v∈N(z)

1/2I(z,u,v)

≥
∑

P∈Pu,v

f ′
P ≥ 1

and thus edge{x, y} is covered, so they values we set do indeed form a feasible fractional set
cover.

Now we need to argue that the cost of this fractional set coveris close to the cost of the
fractional flow. Note that by settingyU(v,i)

v to 1/2i we have incurred cost
∑

u∈U(v,i) c{u,v}/2i. So
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the total cost of our fractional set cover is
∑

v∈V

∑

i

c(v, U(v, i))yU(v,i)
v =

∑

v∈V

∑

i

∑

u∈U(v,i)

w({u, v})/2i

=
∑

v∈V

∑

i

∑

u∈N(v):x′
{u,v}

≥1/2i

w({u, v})/2i

≤
∑

v∈V

∑

u∈N(v)

2w({u, v})x′
{u,v}

= 4
∑

e∈E

w(e)x′
e

≤ 8
∑

e

w(e)xe

Thus the cost of our partial set cover is at most8 times the cost of the original flow solution,
soLPSC ≤ O(LPflow) as claimed.
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Chapter 3

Wireless Network Capacity and Scheduling

In this chapter we switch our attention to wireless networks, which have their own unique char-
acteristics including broadcast rather than point-to-point communication, the ability of multiple
transmissions to use the same channel, and somewhat more complex requirements for a trans-
mission to be “successful”. Because of these differences, there are various different models of
wireless communications, all of which are different than the standard models of wired commu-
nications. One fundamental problem in which the specifics ofthe model make a large difference
(and which demonstrates how different the wireless settting is from the wired setting) is the prob-
lem ofnetwork capacityor one-shot scheduling. In this problem we are given a wireless network
and a collection of transmission requests and simply want tomaximize the number of simulta-
neous successful transmissions. Obviously when considering this question the major modeling
issue is how we model interference, or equivalently how we determine what sets of transmitters
can successfully simultaneously transmit. In this thesis we will consider two basic models: the
protocol modeland thephysical model(although most of the results will be in the more interest-
ing physical model).

In the protocol model there is some interference graph on thedesired transmissions, and a
transmission is successful if and only if none of the neighbors of the transmission in this graph
also chose to transmit. It is obvious from this definition that maximizing network capacity is the
same problem as finding a maximum independent set in the interference graph, which is a famous
and well-studied problem in its own right. In the context of this problem, further assumptions
are usually made about the structure of the interference graph, since physical constraints make it
unlikely that this graph is totally arbitrary. One typical assumption is that it is aunit disk graph
(UDG), which basically means that transmitters interfere if they are too close to each other. But
even in this setting finding the maximum independent set is NP-hard [24], although there are
simple polynomial time approximation schemes [39, 53, 70].There has also been a considerable
line of work on weakening this assumption or on variants of it, including the Tx model of [91]
and the growth-bounded model of [77] and [64].

In the physical model, on the other hand, we do not assume the existence of an interference
graph. Instead we let every transmitter choose a power to broadcast at, give a rule for how that
power fades with distance, and say that a transmission is successful if and only if the received
signal divided by the sum of the interference and backgroundnoise is at least some threshold.
This model is significantly more complicated than the protocol model, for a variety of reasons. In
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the protocol model the success of a transmission depends only on the OR of its neighbors; if any
of its neighbors transmit then it fails, no matter whether one or 10 transmitted, and any number
of transmitters outside of its neighborhood can transmit without affecting its success. But in the
physical model interference accumulates and spreads out toinfinity, so not only is the decision
function more complicated than an OR of neighbors it actually depends on every transmitter in
the entire network. While not all of the assumptions in the physical model are absolutely true, it
is commonly thought to be a more accurate model of reality than the protocol model.

Furthermore, there is a difference betweencentralizedanddistributedalgorithms. While
studying the fundamental computational problem is interesting, in many (perhaps most) real
world situations there is no central authority to run the algorithm and tell all of the transmitters
what to do. Ideally each transmitter would make its own decisions about whether to broadcast
(and in the physical model, how much power to use). In the protocol model, since we have an
interference graph we can simply abstract out to the graph and run a normal distributed protocol
on this graph, and indeed this problem is usually classified under “distributed maximum indepen-
dent set”. In the physical model, however, there is no underlying communication or interference
graph so coordination is more complicated. And even in the protocol model, using standard
models for distributed algorithms are problematic: do transmitters really know their neighbors?
Can they send different messages to different transmitters? Can a transmitter receive multiple
messages at the same time?

In this thesis we try to work in a more general model that assumes less about inter-node com-
munication. We consider arbitrary networks in both the physical and protocol models, where
every transmitter knows only what happens to its transmissions. We do not even assume that
neighbors in the protocol model can communicate (although our assumption about reception
knowledge is equivalent to every node knowing whether or notat least one of its neighbors at-
tempted to transmit), and in fact we design algorithms assuming that they cannot. We show that
even in this extremely general model, there are simple algorithms that can guarantee that the av-
erage number of successful transmissions is a good approximation to the optimal solution. While
distributed approximation algorithms for maximum independent set are well studied (e.g. [77]),
this is, to the best of our knowledge, the first result that does not include communication among
nodes, just information about the result of a transmission.This is also the first decentralized al-
gorithm with provable approximation guarantees in the physical model, which is perhaps a more
interesting result as until recently we did not even know of agood centralized algorithm in this
model [9, 45, 46].

Moreover, the inspiration and techniques we use come not from the distributed computing
literature, but instead from the algorithmic game theory and learning theory literature. In par-
ticular, we study a notion that generalizes the well-known price of anarchy: theprice of total
anarchy, originally defined by [20] as a way of weakening the rationality assumption behind the
price of anarchy. But by definition there are algorithms thatdo almost as well as the price of total
anarchy, unlike the price of anarchy. So by proving that the price of total anarchy is small we
have actually proved that if every transmitter runs a so-called no-regretalgorithm then the av-
erage performance will be good. This is a powerful tool when designing distributed algorithms
since it allows the algorithm designer to prove approximation guarantees for distributed algo-
rithms simply by proving no-regret for a centralized algorithm. We hope that this technique for
designing distributed algorithms will prove useful for other problems, and believe that maximiz-
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ing network capacity is simply one of a number of problems in which the price of total anarchy
can be bounded.

We will begin by proving that maximizing wireless network capacity is NP-hard in the phys-
ical model. We call this the MAX -CONNECTIONSproblem. We will then describe two relatively
simple approximation algorithms. Since in reality we want distributed protocols and algorithms
in wireless networks, we then prove a bound on the price of anarchy of a natural game. Finally,
we will extend the analysis used to prove the price of anarchyto give a distributed algorithm
based on no-regret algorithms and the price of total anarchywhich works in both the protocol
and the physical models.

3.1 Wireless Models

In the protocol model every transmitter can either transmitor not transmit, and a particular trans-
mitter is successful if and only if it chooses to transmit andnone of the neighbors of its connection
in the interference graph choose to transmit. We will brieflyconsider general graphs, but will
spend most of our time onlocally growth-boundedgraphs, which are a generalization of the
growth-boundedgraphs of [64]:

Definition 3.1 A graphG = (V, E) is locally growth-boundedif there is some constantk such
that for every nodev ∈ V the size of a maximum independent set inN(v) ∪ {v} is at mostk,
whereN(v) denotes the set of neighbors ofv in G.

We note that, as pointed out by [77], growth-bounded graphs generalize unit disk graphs,
quasi-unit disk graphs, unit ball graphs, and other populargeneralizations of UDGs, and therefore
locally growth-bounded graphs also generalize these models.

For the physical model we consider a set ofn connections in the plane, where each connection
has a transmitterti and a receiverri. For two pointsu andv in the plane, letd(u, v) be the normal
Euclidean distance between them. Suppose thatu is broadcasting with powerp. Following the
model from [76] and [9], the signal strength atv is Pr(u, v) = p · min{(d0/d(u, v))α, 1}, where
α andd0 are some parameters that we assume are constants. We will also make the standard
assumption thatα > 2 (this assumption was used in [9, 45, 46], among others). Notethat this
model allows nodes to be arbitrarily close together, and just caps the received power by what
happens at distanced0. This model generalizes the model from much of the previous work in
whichd0 = 1 and all distances are at least1 [45, 68, 69].

A transmission fromtu to ru is successful if the ratio of the received signal strength tothe
interference is at least some thresholdτ ; that is, if

Pr(tu, ru)∑
v 6=u Pr(tv, ru)

≥ τ

We will sometimes call this anSINR constraint.
For ease of presentation, we will assume throughout this paper that the maximum power of a

transmitter is1. All of our results hold for an arbitrary maximum power. We will sometime make
the simplifying assumption that there is no background noise, i.e. the only causes of interference
at a receiver are the signals of other transmitters. Most of our results still hold with nonzero
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Figure 3.1: The graph that forms the basis of our NP-hardnessreduction.

background noise as long as we are guaranteed that every transmitter-receiver pair is at a distance
bounded away from their absolute physical limit, i.e. thereis some constantδ > 0 such that
d(ti, ri) ≤ (1 − δ)( 1

τW
)1/α whereW is the background noise. We will letdmax = maxi d(ti, ri)

be the maximum distance between any transmitter-receiver pair.

3.2 NP-hardness

In this section we show that the MAX -CONNECTIONS problem in arbitrary networks under the
physical model is NP-hard. Our reduction follows the basic strategy of the NP-hardness reduction
for Maximum Independent Set (MIS) in unit disk graphs. However, the reduction is somewhat
more complicated since we have to deal with the fact that interference comes from arbitrary
distances. The reduction starts from the NP-hardness of MISin planar cubic graphs. Specifically
it is known (see e.g. [24]) that MIS is NP-hard in graphs whereall nodes are on the edges of
a grid with squares of sizeM , edges are of size1, all nodes have degree at most3 and each
degree3 node is incident to linear arrays of size at leastM/4 (see Figure 3.1). Note that any
maximum independent set will include at most every other node along an edge of the grid. The
proof becomes somewhat complex since we need to show that allpower levels will lead to an
infeasible solution for any non-independent set.

We now describe a gadget that will be used in the eventual hardness proof. The purpose
of the gadget is to represent a degree-3 node in our grid. We consider three linear arrays of
nodes. (See Figure 3.2.) Each node serves as both the transmitter and receiver for a sin-
gle connection. The first linear array is at positions(0, 1.2), (0, 2.2), (0, 3.2), . . .. The second
linear array is at positions(1.2, 0), (2.2, 0), (3.2, 0), . . .. The third linear array is at positions
(0,−1.2), (0,−2.2), (0,−3.2), . . .. Lastly we have a single node at(0, 0). We let the path-loss
exponentα = 2.05, the signal-to-noise ratio thresholdτ = 1.00001 and the maximum power
pmax = 1. We also suppose that each linear array has a at leastℓ nodes for some parameterℓ.
The first result about this gadget follows directly from the chosen value ofτ .

Lemma 3.2 There is no feasible solution that contains adjacent nodes from one of the linear
arrays.
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1.2

1

Figure 3.2: The gadget.

Proof: Consider two adjacent nodes from a linear array. The distance between them equals1.
Consider the transmission with the smallest power. The SINRfor that transmission will be at
most1. Hence the SINR constraint is not satisfied.

Hence it remains to see what configurations are feasible thatonly use alternating members of
a linear array. The following facts can be verified numerically.
Lemma 3.3 The following configurations are feasible for arbitrarily largeℓ, even when there is
a background noise level ofε = 0.01.

• (0, 0), (0, 2.2), (0, 4.2), . . . , (2.2, 0), (4.2, 0), . . . , (0,−2.2), (0,−4.2), . . . (See Figure 3.3
(left).)

• (0, 1.2), (0, 3.2), . . . (1.2, 0), (3.2, 0), . . . , (0,−1.2), (0,−3.2), . . .. (See Figure 3.3 (right).)
For sufficiently largeℓ the following configurations are not feasible, even if thereis no back-
ground noise level.

• (0, 0), (0, 1.2), (0, 3.2), . . . , (2.2, 0), (4.2, 0), . . . , (0,−2.2), (0,−4.2), . . . (See Figure 3.4
(left).)

• (0, 0), (0, 2.2), (0, 4.2), . . . , (1.2, 0), (3.2, 0), . . . , (0,−2.2), (0,−4.2), . . . (See Figure 3.4
(middle).)

• (0, 0), (0, 2.2), (0, 4.2), . . . , (2.2, 0), (4.2, 0), . . . , (0,−1.2), (0,−3.2), . . . (See Figure 3.4
(right).)

It is easy to see that by makingM sufficiently large we can guarantee that for any nodea the
interference caused toa by nodes at distance at leastM/4 from a is at mostε. Note thatM will
depend only onε. It is also easy to see from Lemma 3.3 that in a single linear array it is feasible
for every other node to transmit atpmax = 1 even with background noise of0.01.

We can use the above gadget to show NP-hardness in the following manner. First we can
make sure that in the grid example where MIS is hard every nodeon the corners of the grid have
degree 3 and every other node has degree 1 or 2. (See Figure 3.1.) We then place a copy of the
gadget around every degree-3 node so that the linear arrays correspond to degree 1 or 2 nodes.

For the first direction of the reduction we would like to show that for any MIS in the original
graph, the corresponding nodes can transmit in our wirelessinstance. This is easy to see by
using Lemma 3.3, since close to the center of each gadget we know that the interference from
outside the gadget is at mostε, so it is still feasible. The only non-obvious case is when two
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Figure 3.3: The feasible configurations.

Figure 3.4: The infeasible configurations.
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gadgets meet at the center of a chain, but this is clearly still feasible since at the center of the
chain everything within distanceM/4 is just part of the chain, so is still feasible by broadcasting
at power1 (which is consistent with the feasible gadget solution).

Now we need to show that any maximum feasible solution forms an independent set in the
original graph. An important observation is that we can without loss of generality assume that in
any maximum feasible solution every other node in a linear array is transmitting. If not, then we
could always add to the number of nodes transmitting in the linear array by turning off one of the
degree 3 nodes. We can repeat this process until every lineararray has half its nodes transmitting.
Lemma 3.3 then implies that we cannot have a degree 3 node transmitting together with one of
its neighbors, and Lemma 3.2 implies that no other adjacent nodes are transmitting. This any
maximum feasible set also forms an independent set, completing the reduction.

3.3 Approximation algorithms

Due to the NP-hardness of our problem we now turn our attention to approximation algorithms.
Ideally we would like to adapt one of the polynomial time approximation schemes (that give a
(1 + ε)-approximation for anyε) for MIS on UDGs to the physical model. Unfortunately we are
unable to do that, mainly because the analyses of these algorithms make critical use of the fact
that two transmissions only interfere if the transmitters are close to each other. However, in the
physical model interference can occur at arbitrary distances which makes it difficult to directly
adapt these algorithms. However, in this section we show that if dmax is constant then we can
obtain constant approximation algorithms in polynomial time. More generally, we present an
O(log dmax)-approximation that runs in polynomial time, and for the case in which the back-
ground noiseW = 0 we give anO(1)-approximation that runs in timeO(nd2

max).
Before we present these algorithms we start with adensity lemmathat we shall use both for

these results and for our game-theoretic results in Sections 3.4 and 3.5. This lemma states that
any feasible solution can only have a limited number of receivers in any fixed area.

Lemma 3.4 Consider a squareS with side-lengthd0. In any feasible solution the maximum
number of connections with a receiver in squareS is 3α/τ .

Proof: Without loss of generality we assume that the background noise is0. Having a non-zero
background noise can only reduce the number of connections that can be supported.

Suppose that all nodes in the feasible solution transmit at apower such that the received
signal is a constant̄p, i.e. pi min{1, (d0/d(ti, ri))

α} = p̄. Let i andi′ be two connections such
that bothri andri′ lie in S.

The interference caused by connectioni at receiverri′ is at leastpi·min{1, (d0/d(ti, ri′))
α} ≥

pi min{1, (d0/(d(ri, ri′)+d(ti, ri)))
α}. By the geometry of the squareS we know thatd(ri, ri′) ≤

2d0, which implies thatpi min{1, (d0/(d(ri, ri′)+d(ti, ri)))
α} ≥ 1

3α pi min{1, (d0/d(ti, ri))
α} ≥

p̄
3α . Since the actual received signal strength of a connection is p̄, if there are more than3α/τ
such connections the interference experienced by all of them would be enough to prevent the
SINR constraint being satisfied forall connections.

We now remove the condition that the received powers for every connection are the same.
However, in this case the SINR value for some connection mustbe worse than it was when the
received signal powers were the same. This implies that if there are more than3α/τ connections,
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Figure 3.5: We form our solution using1 out of everyk2 squares. Herek = 3.

then for any set of transmission powers there will besomeconnection whose SINR constraint is
not satisfied.

Corollary 3.5 Suppose now that squareS has side-lengthd. In any feasible solution the maxi-
mum number of connections with a receiver in squareS is 3αd2/τ(d0)

2.

Proof: Divide squareS up into subsquares of sized0 and then apply Lemma 3.4.
Lemma 3.6 Now consider a ballB of radiusd. In any feasible solution the maximum number
of connections with a receiver in ballB is 3α · 4d2/τ(d0)

2.
Proof: Follows immediately from the fact that any circle with radiusd is contained in a square
with side-length2d.

The following extension of Lemma 3.4 will also be useful.
Lemma 3.7 Consider a squareS with side-lengthd. In any feasible solution the maximum
number of connections such thatd(ti, ri) ≥ d andri is in squareS is 3α/τ .
Proof: The analysis is almost identical to that of Lemma 3.4 once we note that in this case
d(ri, ri′) ≤ 2d ≤ 2d(ti, ri) for all i, i′.

In the next two theorems we present our approximation algorithms for the MAX -CONNECTIONS

problem in the SINR model.

Theorem 3.8 There exists a polynomial time algorithm that always finds a solution to MAX -
CONNECTIONS that is within a factorO(log dmax) of optimal.

Proof: We divide all connections into classes based on distance. ClassFj contains all connec-
tions i such thatdmax/2j−1 ≥ d(ti, ri) ≥ dmax/2j. Note that in the optimal solution there must
exist aj such thatFj contains OPT/ log dmax connections. In the following we will consider each
j in turn and obtain a constant approximation for the connections inFj only. We focus on aj for
whichdmax/2j ≥ dmin. The connections for whichdti,ri

= 0 can be handled similarly.
We now divide the problem into squares of sidedmax/2j. (See Figure 3.5.) We refer to these

squares asj-squares. From eachj-squareS, if there is at least one receiver inS then we choose
one arbitrarily, and restrict ourselves to the problem on these connections. Note that Lemma 3.7
implies that eachj-square only contains at most3α/τ receivers from the optimal solution onFj ,
so as long as we can support at least a constant fraction of ourchosen connections we are still
within a constant of the optimal solution onFj.

We now restrict our attention to1 out of everyk2 j-squares in an evenly spaced pattern for
some parameterk, i.e. squares located at the same coordinates modk. (See Figure 3.5). We can
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partition the plane intok2 such sets of squares. We show that in each set we can support one
connection in each square, so by taking the best set we are only losing anotherk2 factor.

Consider somej-squareS, and consider the setI of j-squares in the same pattern set that
are offset fromS by exactlyik in one coordinate and at mostik in the other coordinate (i.e.
the set ofj-squares that are on the border of theℓ∞ ball of radiusik aroundS). Since theℓ∞
distance is at most the normalℓ2 distance, it is not hard to verify that the maximum interference
caused by the connection inI to the connection inS is at mostpmax(d02

j/(ik − 3)dmax)
α ≤

pmax(d02
j/(i(k − 3))dmax)

α. It is also easy to see that there are at most8i squares inI. This
implies that the total interference suffered by the connection in S is at most

∞∑

i=1

8ipmax

(
d02

j

(i(k − 3))dmax

)α

= 8pmax

(
d02

j

(k − 3)dmax

)α

ζ(α − 1)

whereζ(α − 1) is the Riemann zeta function, which is constant for constantα > 2.
The connection inS can use powerpmax, so if W = 0 then the connection inS can be

supported as long as
pmax/(dmax/2j−1)

8pmax

(
d02j

(k−3)dmax

)α

ζ(α − 1)
≥ τ.

And thus by the same argument, so can all of the rest of the connections inI. So it suffices to
choosek such that(k − 3)α ≥ 8d02

αζ(α − 1), and thusk is some constant. IfW 6= 0 then we
have to increasek by a constant factor depending only onδ (recall thatδ is a measure of how far
dmax is from the physical limit). The approximation factor that we lose for classFj due to all the
connections that have been removed is3α

τ
k2 which is a constant for fixedα andτ . As already

mentioned, our overall approximation ratio is thereforeO(log dmax).
If there is no background noise we can obtain another algorithm whose approximation ratio

has a better dependence ondmax at the expense of a worse dependence in the running time. The
algorithm is extremely similar to the proof of Theorem 3.8 except for using squares of sizedmax,
scaling so total power from a square ispmax, and dropping half of the connections in each square.

Theorem 3.9 For the case with no background noise (i.e.W = 0) we can find anO(1) approxi-
mate solution in timenO((dmax/d0)2).

Proof: We divide the plane into squares of sizedmax. Consider one such squareS. We then
divide this square into subsquares of sized0. By Lemma 3.4, the number of connections that have
a receiver in a square of sized0 in any feasible solution is at most3α/τ . Therefore the number of
connections that have a receiver in squareS in any feasible solution is(dmax/d0)

23α/τ . Hence
we can find the optimum solution for connections with a receiver in S in time n(dmax/d0)23α/τ

by trying all possible subsets. LetOPTS denote this set of connections forS and their power
assignment.

Now for every squareS we scale the powers of the transmitters inOPTS so that the sum
of their powers is1. Note that any receiver inS that was part of a connection fromOPTS is
still feasible relative to the other connections inOPTS. This is because there is no background
noise, so scaling powers up or down by the same factor does notaffect feasibility. Obviously
combining all of these solutions for every squareS might result in an infeasible solution, but
certainlyOPT ≤∑S OPTS.
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We now letk be a number such that
∞∑

u=−∞∧u 6=0

∞∑

v=−∞∧u 6=0

1

((k − 3)(u + v)dmax))α
<

1

(6dmax)α
.

Note that it suffices fork to be a constant. We can now say that if we consider sets of squares in
which we include one out of everykth square in the horizontal direction and one out of everykth
square in the vertical direction, and limit the total transmission power to1 in each such square,
the total interference experienced at any receiver inS̄ is at most 1

(6dmax)α . Now we consider
what happens if we remove half of the transmissions fromOPTS. If we remove the half of
the transmissions with the maximum transmission power, thereduction in the interference at
the remaining transmissions is at least 1

(6dmax)α . Hence the increase in interference from the
additional squares is compensated for by the reduction in interference due to connections with
receivers inS. By choosing the best of thek2 square classes, and then losing at most half of the
transmissions in any square, we get a1/(2k2) = O(1)-approximation.

3.4 Game Theory

As discussed, the approximation algorithms described previously are centralized. We would
also like to examine highly distributed algorithms that allow each transmitter to make its own
decision based on limited local information. One extreme version of this is the setting in which
transmitters are not allowed to exchange any information between themselves, and instead must
make a decision on broadcast power based only on knowledge ofthe signal and noise at their
receivers (we assume that receivers periodically provide this information to their transmitters).
A natural way of viewing this setting is as a game where the transmitters are the players and the
pure strategies are power settings. In this section we will define such a game and show that every
Nash equilibrium in this game results in an expected number of successful transmissions that is
close to optimal if there is no background noise.

For simplicity of notation we will without loss of generality rescale powers andW so that
pmax = 1. The game that the transmitters will be playing is simple. Each transmitter is a player,
whose pure strategies are the reals in[0, 1], with a nonzero value representing broadcasting at
that power and0 representing not broadcasting. So a mixed strategy is a probability distribution
over [0, 1]. A transmitter gets payoff0 if it does not broadcast (i.e. has power0), payoff 1 if
it broadcasts and its receiver has signal to noise ratio at leastτ , and−1 if it broadcasts but its
receiver has SINR less thatτ . We note that it is easy to see that the same game without the−1
penalty can have bad Nash equilibria (in particular, everyone broadcasting). We first discuss pure
Nash equilibria in this game, and then examine the more general mixed Nash case.

3.4.1 Pure Nash Equilibria

A pure Nash equilibrium is a very natural solution concept, since it would guarantee that every-
one broadcasting is doing so successfully while no one not broadcasting could succeed even if
they went at maximum power. Unfortunately a simple example shows that pure Nash equilibria
do not always exist in our game.
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Figure 3.6: No pure Nash exists

The bad example is as follows, and is given in Figure 3.6. There are three transmitterst1, t2, t3
in an equilateral triangle with side length2d for some arbitraryd ≫ d0. The receiver fort1 (i.e.
r1) is located halfway betweent1 and t2 (so at distanced from each). Similarly,r2 is located
halfway betweent2 andt3 andr3 is located halfway betweent3 andt1. We will setτ = 2 and
α = 2.5, and will assume no background noise soW = 0.

We first claim that|OPT | = 1. To see this, suppose that there are at least two successful
broadcasts. Without loss of generality we will assume that connections1 and2 are successful,
and are broadcasting at powersp1 andp2 respectively. Then since connection1 is successful
we know that(p1/d

α)/(p2/d
α) ≥ 2, and thus thatp1 ≥ 2p2. Now we note by simple ge-

ometry that the distance fromt1 to r2 is exactlyd
√

3, so the SINR of connection2 at r2 is
(p2/d

α)/(p1/(d
√

3)α) = (p23
1.25)/p1 ≤ (p23

1.25)/(2p2) = 31.25/2 < 2 = τ , which is a contra-
diction since we assumed that connection2 was successful.

Now since|OPT | = 1, any pure Nash equilibrium must have exactly one successfultrans-
mission (since obviously it must have more than0 and at most|OPT |). Without loss of generality
we will assume that connection1 is successful with powerp1, so by the definition of a pure Nash
it must be the case that neither connection2 nor3 are broadcasting with power greater than0. But
then the interference atr2 is justp1/(d

√
3)α, so if t2 broadcasted at powerp1 then the SINR atr2

would be(p1/d
α)/(p1/(d

√
3)α) = (

√
3)α > 3 > τ . Sot2 would be successful if it transmitted

at power at leastp1, and thust1 broadcasting by itself is not a pure Nash equilibrium.

While pure Nash equilibria do not always exist, when they do exist they have value close to
OPT. This is formalized in the next subsection when we prove the same statement about mixed
Nash equilibria, but we will provide the intuition for the pure Nash special case. Fix some pure
Nash. We will try to find a receiver whose associated transmitter is not broadcasting in the Nash
but has “small” interference, where our notion of small is something that increases as the value of
the Nash gets closer to OPT. Since this receiver’s transmitter is not broadcasting, the interference
must be overcoming any possible signal and thus must actually be quite large, implying that the
Nash must actually have value close to OPT.
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3.4.2 Mixed Nash Equilibria

While pure Nash equilibria do not always exist, obviously a mixed Nash does (assuming a dis-
cretization of the action space). We now show that any mixed Nash (and thus any pure Nash, if
one does exist) has value close to OPT. This result is actually implied by the no-regret result that
we will discuss later (Theorem 3.15), but we feel it is usefulto first consider the more intuitive
case of mixed Nash. Recall that a mixed strategy is a probability distribution over the possible
powers (i.e. over[0, 1]), and in a mixed Nash there is no incentive for any transmitter to change
its distribution. For our purposes, for a transmitterti we will only need to consider the proba-
bility qi that ti broadcasts with non-zero power. We begin with a few useful lemmas. Fix some
Nash equilibrium. For each transmitterti, let pgood(i) be the probability (over the randomness
in the strategies of the other transmitters) thatti would be successful if it were to broadcast at
power1. Let pbad(i) = 1 − pgood(i) be the probability thatti would not be successful. Note that
if ti has non-zero probability of broadcasting at some power greater than0 but less than1 then
the probability of it succeeding at that power must be equal to the probability of it succeeding at
power1, since otherwise it could just switch to power1 and strictly increase its expected payoff.
SoS =

∑
i qipgood(i) is the expected number of successful transmissions (i.e. the value of the

equilibrium). LetT =
∑

i qi be the expected number of transmissions.

Lemma 3.10 For any Nash equilibrium, for any transmitterti, if qi < 1 thenpbad(i) ≥ 1/2 and
if qi > 0 thenpbad(i) ≤ 1/2

Proof: Suppose thatqi < 1 and thatpbad(i) < 1/2, sopgood(i) > 1/2. Then by broadcasting at
power1 with probabilityqi, the expected payoff toti would beqi(pgood(i) − (1 − pgood(i))) =
qi(2pgood(i)− 1). Since2pgood(i)− 1 > 0, this is maximized by settingqi = 1, contradicting our
choice ofi and our assumption that this is an equilibrium.

Similarly, suppose thatqi > 0 and thatpbad(i) > 1/2. Then whenti broadcasts it will fail
more than1/2 the time, giving negative expected payoff, soti would just never broadcast (i.e.
setqi to 0), contradicting our choice ofi.

Lemma 3.11 For any Nash equilibrium,S ≤ T ≤ 2S

Proof: The first inequality is obvious from the definitions, and the second immediately follows
from the second part of Lemma 3.10, sinceT =

∑
i qi = 2

∑
i

1
2
qi ≤ 2

∑
i pgood(i)qi = 2S.

Let OPT be the set of receivers that achieve their SINR requirement in the optimal solution.
We can now prove the main theorem of this section:

Theorem 3.12 Any Nash equilibrium has an expected number of successful transmissions at
leastΩ(|OPT |/d2α

max), where we assume thatα andτ are constants.

Proof: Fix a Nash equilibrium. LetL = {i : qi = 1} be the set of connections with
transmitters that broadcast at power greater than0 with probability 1. Consider the following
procedure (only for analysis, obviously). For each receiver x in OPT \ L we will keep track of
how much it is “bought” with a variableb(x), initially all set to0. Now we order all transmitters
in the instance (or just all transmitters with non-zeroqi in the Nash) arbitrarily. We examine the
transmitters one by one in this order. Say we are on transmitter ti. Let R(i) be the⌊ |OPT\L|−k

kT
⌋

closest receivers inOPT \ L to i (for some parameterk to be defined later) that are currently
bought to less than1, i.e. haveb(x) < 1. We now increase theirb values byqi, so b(x) :=
b(x) + qi.
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Since each transmitter increases the sum of theb values byqi⌊ |OPT\L|−k
kT

⌋, at the end of this

process we know that
∑

x b(x) =
∑

i qi⌊ |OPT\L|−k
kT

⌋ ≤ |OPT\L|−k
k

< |OPT L|
k

, since by definition
T =

∑
i qi. This means that there is some receivera ∈ OPT \ L that hasb(a) < 1/k.

Let M ′ be the set of transmitters that contributed tob(a) during the above process. Note that
sinceb(a) ≤ 1/k we know that

∑
x∈M ′ qx ≤ 1/k; we will use this later. LetM be all other

transmitters, and for every distanced let z(d) =
∑

x∈M :d(a,x)≤d qx be the probability mass from
M located insideB(a, d). Consider some transmitterx ∈ M . Sincea 6∈ R(x) andb(a) < 1, any
receivery ∈ R(x) must haved(x, y) ≤ d(x, a), or elsea would be inR(x). So by the triangle
inequality we know thatd(a, y) ≤ 2d(a, x), and thus that any transmitterx at distance at mostd
from a must have its entireR(x) at distance at most2d from a.

We will now give an upper bound forz(d). Since every transmitterx in M ∩ B(a, d) con-
tributesqx⌊ |OPT\L|−k

kT
⌋ to the sum of theb values, and each receiver that it contributes to must be

in B(a, 2d), the sum of theb values of receivers inB(a, 2d) is at leastz(d)⌊ |OPT\L|−k
kT

⌋. Since
a receiver’sb value only increases if it is less than1, and then only increases by at most1, we
know that theb value of any receiver is at most2. Thus the number of receivers from OPT in
B(a, 2d) is at leastz(d)

2
⌊ |OPT\L|−k

kT
⌋. By Lemma 3.6, this implies thatcd2 ≥ z(d)

2
⌊ |OPT\L|−k

kT
⌋ and

thus thatz(d) ≤ 2cd2/⌊ |OPT\L|−k
kT

⌋ for some constantc depending only onα, τ , andd0.
Now that we have an upper bound on the probability mass insidea ball arounda, we want

to upper bound the probability mass in an annulus of thickness 1 arounda. To do this, we note
that the interference ata is maximized if every ball arounda actually meets the above bound.
Since in the end we will care about upper bounding the interference, we can say without loss of
generality that every ball meets the above bound, implying that the sum of the probabilities of
transmitters between distanced andd + 1 is at most

2c⌊
|OPT\L|−k

kT

⌋((d + 1)2 − d2) ≤ 6cd⌊
|OPT\L|−k

kT

⌋

whend ≥ 1, and is at most2c/⌊ |OPT\L|−k
kT

⌋ whend = 0. Since the expected interference from a
transmitter at distanced from a is at most its probability of broadcasting times1/dα, this means
that the expected interference ata caused by transmitters at distance betweend andd + 1 from
a is at most(6c/⌊ |OPT\L|−k

kT
⌋) · 1

dα−1 for d ≥ 1. Ford = 0, since the interferenced caused by a
transmitter is at most1, the expected interference from transmitters between distances0 and1
from a is at most2c/⌊ |OPT\L|−k

kT
⌋. Using linearity of expectations, we can sum over the annulito

get that the expected interference ata is at most

2c⌊
|OPT\L|−k

kT

⌋ +
6c⌊

|OPT\L|−k
kT

⌋
∞∑

d=1

1

dα−1
≤ 8cζ(α − 1)⌊

|OPT\L|−k
kT

⌋

whereζ(α − 1) is the Riemann zeta function (which will be constant forα > 2).
This gives us an upper bound on the expected interference ata caused by transmitters inM .

What about the transmitters inM ′? Since we know that
∑

x∈M ′ qx ≤ 1
k
, we get that they cause

at most1
k

expected interference (which is what would happen if they were all at distance1 from

a). Thus the total expected interference is at most(8cζ(α − 1)/⌊ |OPT\L|−k
kT

⌋) + 1
k
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So now we have an upper bound on the expected interference. Let us assume (for now) that
W = 0. By using Markov’s inequality, we get that the probability thata hears interference at
least twice the expected interference is at most1/2. But since we know from how we selected
a that the probability that its transmitter tries to transmitis less than1, Lemma 3.10 implies that
pbad(a) ≥ 1/2. Thus(16cζ(α − 1)/⌊ |OPT\L|−k

kT
⌋) + 2

k
must be enough interference to kill the

transmission toa; in particular, it must be the case that16cζ(α − 1)/⌊ |OPT\L|−k
kT

⌋ ≥ 1
τdα

max
− 2

k
.

We will now finally setk, to 4τdα
max, giving us that16cζ(α − 1)/⌊ |OPT\L|−4τdα

max

4τdα
maxT

⌋ ≥ 1
2τdα

max
.

Solving forT in this equation, and assuming constantα andτ , implies thatT ≥ Ω(|OPT \
L|/d2α

max), and thus by Lemma 3.11 we have thatS ≥ Ω(|OPT \ L|/d2α
max). If |OPT \ L| =

o(|OPT |) then a superconstant fraction of transmitters are broadcasting with probability1 in the
Nash, which by Lemma 3.10 and Lemma 3.11 means that the expected number of successful
transmissions in the Nash is at leastΩ(|OPT |), which would prove the theorem. On the other
hand, if |OPT \ L| = Ω(|OPT |) then the above equation implies thatS ≥ Ω(|OPT |/d2α

max),
thus proving the theorem.

If W 6= 0 the theorem is still true but the details are slightly more complicated, so we give
only a brief sketch. With background noise, instead of twicethe expected interference being
enough to kill the signal it must be that twice the expected interference plus the background
noise must be enough to kill the signal. But this only causes us to lose another constant, since
we assumed from the beginning that the distance from any receiver to its transmitter (and thus
from a to its transmitter) is bounded away from the absolute limit by a constant.

3.5 Distributed Algorithms and No-Regret

We first need a few basic definitions about games. In this thesis the only games we will care
about will be games withn players in which every player has exactly two possible actions. Let
A = {0, 1}n be the space of possible strategy profiles for the game, i.e. given a pointA ∈ A,
the ith coordinateai represents the action used by playeri in profile A. Each playeri will have
a functionαi : A → R that assigns a utility to each strategy profile. We will want to consider
modifications of strategy profiles: givenA ∈ A, let A ⊕ a′

i be the strategy set obtained if player
i changed its action fromai to a′

i. We will use superscripts to denote time, soAt will be the
strategy profile at timet andat

i will be the action taken by playeri at timet.
The following definition will play a central role in this section:

Definition 3.13 Theregretof playeri at timeT given strategy profilesA1, A2, . . . , AT is

max
ai∈{0,1}

1

T

T∑

t=1

αi(A
t ⊕ ai) −

1

T

T∑

t=1

αi(A
t)

Intuitively, having low regret means that you do almost as well as on average as the best
single action would have done. This notion of regret has beenstudied extensively, especially in
two different models: theexpertsmodel and thebanditmodel. The difference between the two
models lies in the knowledge gained by a player after each round: in the bandit model a player
only finds out the utility that it gained, while in the expertsmodel players also find out the utility
they would have gained if they had played the other action. Since the results that we care about
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are similar in both models, we will choose the more general one and be in the bandit model.
In the wireless setting, this means that if a transmitter chooses to transmit then it will find out
whether or not it succeeded, but if it chooses not to transmitthen it gains no information.

Theprice of total anarchywas introduced by Blum et al. [20] as a way of generalizing the
price of anarchy. The price of anarchy of a game is the ratio of the value of the social optimum
to the value of the worst Nash equilibrium. For example, in Section 3.4 we proved that the price
of anarchy of the wireless game isO(d2α

max). It is, as the name suggests, supposed to quantify
the “price” that is being paid by allowing each player to be a separate rational agent rather than
simply being controlled by a centralized authority. Unfortunately there are various problems
with this definition, one of which is that, since finding a Nashequilibrium is PPAD-complete
[33], it is not clear that rational agents will actually playa Nash equilibrium. In particular, if they
always do then we could find a Nash equilibrium simply by letting rational agents play. Blum
et al. [20] proposed weakening this rationality assumptionby assuming only that the agents use
strategies with regret tending to0 as time goes to infinity (calledno-regret algorithms). They
chose this assumption because it generalizes the Nash assumption (playing a Nash equilibrium
is a no-regret algorithm), and is plausible since such algorithms actually do exist (e.g. [11]) so
rational players should do at least as well. They call the ratio of the optimum social welfare
to the average social welfare obtained by players using no-regret algorithms the price of total
anarchy. We will use this not as a tool for weakening rationality assumptions, but rather as a
tool for designing distributed algorithms, since by definition we are guaranteed the existence of
algorithms that achieve the price of total anarchy (any no-regret algorithm).

Some of the basic game theory underlying our results is the same in both the protocol model
and the physical model. In particular, the basic game is the same. Each transmitter is a player,
with two possible strategies: broadcast at power0 (i.e. do not broadcast) or broadcast at power1
(full power). Note that in the physical model we are competing with the optimum solution that
can use any power between0 and1, but we will only be using powers0 and1. A transmitter has
utility 1 if it broadcasts successfully, i.e. meets its SINR requirement in the physical model or has
no neighbors broadcasting in the protocol model. It has utility −1 if it broadcasts unsuccessfully,
and utility0 if it does not broadcast at all. This is the same game that we considered in Section 3.4
except we are restricting the transmitters to two strategies,0 and1.

Let T be some time at which all transmitters have regret at mostǫ. Our goal is to prove that
the average number of successful connections up to timeT has been close to|OPT |. For each
transmitterti, let qi be the fraction of times at whichti chose to transmit (i.e. played action1),
and letsi be the fraction of times at whichti transmitted successfully. ThenQ =

∑
i qi is the

average number of attempted transmissions andS =
∑

i si is the average number of successful
transmissions, so we are trying to prove thatS is close to|OPT |. The following lemma shows
thatS can be bounded byQ, and thus will allow us to only look at attempted broadcasts rather
than successful broadcasts:

Lemma 3.14 S ≤ Q ≤ 2S + ǫn

Proof: The first inequality is obvious from the definitions, since the average number of suc-
cessful transmissions is clearly at most the average numberof attempted transmissions. For the
second inequality, it is sufficient to show thatsi ≥ 1

2
(qi − ǫ) for all transmittersti. Suppose that

si < 1
2
(qi − ǫ) for somei. Thenti’s average utility issi − (qi − si) = 2si − qi < −ǫ. But ti could
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have had average utility of0 by never broadcasting, which is a contradiction sincei has regret at
mostǫ.

3.5.1 Physical Model

We first consider the physical model. Our main theorem is thatthe price of total anarchy is
small; in particular, we show that if all transmitters have low regret then the average number of
successful transmissions is close to optimal:

Theorem 3.15 Suppose that at timeT every sender has regret at mostǫ. Then the average
number of successful transmissions isΩ(|OPT |/d2α

max) − ǫn.

Proof: The proof of Theorem 3.15 is extremely similar to the proof ofTheorem 3.12. In fact,
since in a Nash equilibrium every player has regret0 (by the definition of Nash), Theorem 3.12
is actually a corollary of Theorem 3.15. The intuition behind the proof is that we can treat the
fraction of time that a transmitter chose to broadcast usinga no-regret algorithm in a similar way
to how we treated the probability that a transmitter broadcasted in a mixed Nash. Of course,
they are not identical since one is a statement about what hasempirically happened in the past
while the other is a probabilistic statement that holds for the past, present and future, but they
are similar enough that the proof basically goes through. Weinclude the modified proof for
completeness.

Let L = {i : qi ≥ 1/2 − ǫ} be the set of connections with transmitters that broadcast at least
1/2 − ǫ fraction of the time. Consider the following procedure. Foreach receiverx in OPT \ L
we will keep track of how much it is “bought” with a variableb(x), initially set to0. Now we
order all transmitters in the instance (or just all transmitters with non-zeroqi) arbitrarily. We
examine the transmitters one by one in this order. Say we are on transmitterti. Let

Φ =

⌊ |OPT \ L| − k

kQ

⌋

for some parameterk to be defined later, and letR(i) be theΦ closest receivers inOPT \L to ti
that are currently bought to less than1, i.e. haveb(x) < 1. We now increase theirb values byqi,
sob(x) := b(x) + qi.

Since each transmitteri increases the sum of theb values byqiΦ, at the end of this process
we know that ∑

x

b(x) =
∑

i

qiΦ ≤ |OPT \ L| − k

k
<

|OPT \ L|
k

since by definitionQ =
∑

i qi. This means that there is some receivera that is inOPT but
whose transmitter is not inL that hasb(a) < 1/k.

Let M ′ be the set of transmitters that contributed tob(a) during the above process. Note that
sinceb(a) ≤ 1/k we know that

∑
x∈M ′ qx ≤ 1/k; we will use this later. LetM be all other

transmitters, and for every distanced let z(d) =
∑

x∈M :d(a,x)≤d qx be the average number of
transmissions from transmitters inM located insideB(a, d). Consider some transmitterx ∈ M .
Sincea 6∈ R(x) andb(a) < 1, any receivery ∈ R(x) must haved(x, y) ≤ d(x, a), or elsea
would be inR(x). So by the triangle inequality we know thatd(a, y) ≤ 2d(a, x), and thus that
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any transmitterx at distance at mostd from a must have its entireR(x) at distance at most2d
from a.

We will now boundz(d). Since every transmitterx in M ∩ B(a, d) contributesqxΦ to the
sum of theb values, and each receiver that it contributes to must be inB(a, 2d), the sum of the
b values of receivers inB(a, 2d) is at leastz(d)Φ. Since a receiver’sb value only increases if it
is less than1, and then only increases by at most1, we know that theb value of any receiver is
at most2. Thus the number of receivers fromOPT \ L in B(a, 2d) is at leastz(d)

2
Φ. By Lemma

3.6, this implies thatcd2 ≥ z(d)
2

Φ and thus that

z(d) ≤ 2cd2

Φ
(3.1)

for some constantc depending only onα, τ , andd0.
Now that we have a bound on the average number of transmissions inside a ball arounda, we

want to bound the average interference ata. To do this, we will first bound the average number of
transmissions in an annulus of radiusd0, i.e.z(d + d0)− z(d). We first note that the interference
at a is at most the interference caused if every ball arounda actually meets the bound given by
(3.1). This is easily proved: letd be the first ball that doesn’t meet the bound of (3.1). If thereare
no transmitters at distance greater thand from a, then clearly the average interference could be
increased by adding more transmitters to every annulus pastd so that the bound of (3.1) is met.
If there are transmitters at distance greater thand from a, then clearly the average interference
would be increased by moving enough of them intoB(a, d) to meet the bound. Now we can just
keep repeating this process until there are no more transmitters past the first distance that fails to
meet (3.1), reducing to the first case.

This now implies that we can treat inequality (3.1) as a lowerbound as well as an upper
bound, and thus the average number of transmissions coming from senders between distanced
andd + d0 is at most

2c

Φ
((d + d0)

2 − d2) ≤ 6cd0d

Φ

whend ≥ d0, and is at most2c/Φ whend = 0. Since the interference from a transmitter at
distanced from a is at mostmin{1, (d0

d
)α}, this means that the average interference ata caused

by transmitters at distance betweend andd + d0 from a is at most(6cdα+1
0 /Φ) · 1

dα−1 for d ≥ d0.
Ford = 0, since the interference caused by a transmitter is at most1 the average interference from
transmitters between distances0 andd0 from a is at most2c/Φ. Using linearity of expectations,
we can sum over the annuli to get that the expected interference ata is at most

2c

Φ
+

6cdα+1
0

Φ

∞∑

i=1

1

(id0)α−1

=
2c(1 + 3d2

0ζ(α − 1))

Φ
≤ 8cζ(α − 1)

Φ

whereζ(α − 1) is the Riemann zeta function (which will be constant forα > 2) and we are
assumingd0 ≤ 1. If d0 > 1 then we will simply haved2

0 as a constant to carry through the rest of
the calculations, which will not matter since we are not attempting to optimize constants anyway.
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This gives us a bound on the average interference ata caused by transmitters inM . What
about the transmitters inM ′? Since we know that

∑
x∈M ′ qx ≤ 1

k
, it is obvious that they cause at

most 1
k

average interference (which is what would happen if they were all at distanced0 or less
from a). Thus the total expected interference is at most

8cζ(α − 1)

Φ
+

1

k

So now we have a bound on the average interference. Letpbad(a) denote the fraction of times
in whicha’s transmitter could not succeed in transmitting, whether it tried or not. Ifpbad(a) < 1

4
,

then sending at every time would give average utility greater than 3
4
− 1

4
= 1

2
. But when we chose

a we made sure that its transmitter (call itt) was fromOPT \ L, so we know thatqt < 1
2
− ǫ.

Thust only tries to transmit less than1
2
− ǫ the time, and hence it has an average utility of less

than 1
2
− ǫ. This is a contradiction since we are assuming thatt has regret at mostǫ, and thus

pbad(a) ≥ 1
4
.

So a’s transmitter would fail at least1
4

of the time if it tried to send every time, and the
average interference is at most(8cζ(α − 1)/Φ) + 1

k
. By Markov’s inequality we know that the

fraction of times at whicha hears interference at least four times the average interference is
at most1

4
, so the interference ata is at least(32cζ(α − 1)/Φ) + 4

k
at most1

4
of the time. So

this amount of interference must be enough to make it impossible for a to successfully receive
(i.e. the SINR constraint would be violated), or elsepbad(a) would be less than1

4
. Sincea is at

distance at mostdmax from its transmitter, the strength of its signal is at leastdα
0

dα
max

. Thus we get

that32cζ(α − 1)/Φ ≥ dα
0

τdα
max

− 4
k
. We will now finally setk, to 8dα

max/d
α
0 , giving us that

32cζ(α − 1)⌊
|OPT\L|−8τdα

max

8τdα
maxQ

⌋ ≥ dα
0

2τdα
max

. (3.2)

Solving for Q in this equation, and assuming constantα, τ , andd0, gives us thatQ ≥
Ω(|OPT \L|/d2α

max). To compareQ to |OPT | instead of|OPT \L|, we note that if|OPT \L| <
1
2
|OPT |) then at least half of the transmitters inOPT are broadcasting at least1

2
− ǫ of the time,

and thusQ ≥ 1
2
|OPT |(1

2
−ǫ) = Ω(|OPT |). On the other hand, if|OPT \L| ≥ 1

2
|OPT | then we

get thatQ ≥ Ω(|OPT |/d2α
max). Now we can simply apply Lemma 3.14 to prove that the average

number of successful connections is at leastΩ(|OPT |/d2α
max − ǫn), thus proving the theorem.

Other Metrics

The physical model assumes that the fundamental underlyingmetric is the Euclidean plane.
However, we only used this assumption in one place: the proofof Lemma 3.6, the main den-
sity lemma, which proved that the number of receivers from any feasible set of transmissions
contained in a ball of radiusd is at mostO(d2). We then used this lemma to bound the average
interference, which will work whenever the exponent in the density lemma is strictly less than
the path-loss exponentα. So actually our proof will work in any metric in which the number of
receivers from a feasible solution contained in a ball of radiusd is O(dα−ǫ) for someǫ > 0.

One example of this is true three-dimensional space with omnidirectional antennas. In this
case, it makes sense to assume thatα > 3, since power is being dissipated in three dimensions
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(soα ≥ 3) and some is probably being lost due to being absorbed by objects (or just the air). On
the other hand, a sphere of radiusd can clearly be covered withO((d/d0)

3) spheres of radiusd0,
and thus we can immediately derive the appropriate density lemma from Lemma 3.4 (which still
holds as stated).

But even making only the weakest standard assumption, thatα > 2, we can still handle extra
metrics; for example, any metric with doubling dimension2. Thedoubling dimensionof a metric
is defined to be the smallest numberk for which for all distancesd ∈ R≥0, any ball of radiusd
can be covered by2k balls of radiusd/2. Suppose we have a metric with doubling dimension
k. Then by recursive applications of the definition of doubling dimension we get that any ball of
radiusd can be covered by2k log(d/d0) = (d/d0)

k balls of radiusd0, and thus we can once again
apply Lemma 3.4 to get Lemma 3.6, and as long asα > k the rest of the proof will go through
as before.

Finally, we consider one class of metrics for which a good density lemma doesnot hold,
but for intuitively unrealistic reasons: thewireless manifold, introduced by Kanade and Vem-
pala [55]. Intuitively, they define the class of wireless manifolds as the class of distorted two-
dimensional grids. In particular, consider ak × k grid, with an arbitrary nonnegative length
assigned to every grid edge. Now let the distance between twopoints be the length of the short-
est path between them in this weighted graph. In their paper [55], Kanade and Vempala give
heuristics for finding the best such manifold given signal strength data, and show that for exist-
ing data sets the best wireless manifold is significantly more accurate than the best embedding
into the Euclidean plane. Thus it is natural to ask whether our techniques extend to these mani-
folds. Unfortunately they do not: the following theorem shows that the density lemma we require
for our proof to work is not true.

Theorem 3.16 For anyd > 0 there is a wireless manifold and a set ofΩ(dα) feasible transmis-
sions on this manifold such that all receivers are in a ball ofradiusd.

Proof: We first note that we can embed uniformly weighted complete graphs into a wireless
manifold. To see this, suppose that we want to embed a complete graph withk vertices and
weightd on every edge. We first create a squareS with ⌈k/4⌉ vertices on each side, and set the
length of all edges with both endpoints inS to 0. We can then takek edges with one endpoint
in S and the other outside ofS and set their lengths tod/2. All other edges will have weightM
for someM ≫ d. The resulting metric is clearly the required complete graph, where the non-S
endpoints of thek edges we chose are the vertices.

Now that we can embed complete graphs, consider the same complete graph onk vertices
with distanced between them. Put a transmitter/receiver pair on each vertex of the complete
graph (soti andri are co-located). If all transmitters broadcast at power1, the signal atri is
1 and the interference is(k − 1) 1

dα . So as long ask ≤ dα

τ
+ 1 the SINR at receiverri is at

leastτ , and thus the connection is supported. Thus in a ball of radius d we can supportΩ(dα)
connections.

Byzantine Transmitters

In many cases it is not realistic to assume that every single transmitter will be running a no-regret
algorithm, so when designing a distributed algorithm we would like to be robust to some fraction

61



of the transmitters behaving in arbitrary ways. We manage toachieve this, but only if the number
of transmitters that are Byzantine is a fraction of|OPT |, not if it depends onn.

We generalize the proof of Theorem 3.15 in a straightforwardway. First, letB be the set of
Byzantine transmitters, and letOPT be optimal relative to whatever the Byzantine transmitters
do (butOPT is still a fixed set that would be feasible at every time point if not for B). Let Q be
defined as before, but let̄Q be the part of the sum that comes only from transmitters not inB.
Note thatQ ≤ Q̄ + |B|. Also note that Lemma 3.14 still holds, except withQ̄ instead ofQ and
whereS is only summed over transmitters not inB.

It is easy to see that the analysis of Theorem 3.15 holds as stated forQ, since the nodea we
find will be in OPT and thus non-Byzantine and the packing argument works as before since
OPT is feasible on its own. SoQ = Ω(|OPT |/d2α

max). If |B| ≤ (1 − δ)Q then we know that
Q̄ ≥ δQ ≥ Ω(δ|OPT |/d2α

max), and can apply Lemma 3.14 to finish the proof. In particular,
by settingδ to 1/2 we see that there is some constantk such that if at mostk|OPT |/d2α

max

transmitters are Byzantine then we still get aO(d2α
max) approximation to|OPT |.

3.5.2 Protocol Model

As discussed, in theprotocol modeleach connection is a node in an interference graph, and
a transmission is successful if none of its neighbors are also transmitting. Clearly maximizing
capacity is just the same problem as finding a maximum independent set in the interference graph.
The classic theoretical model used for these graphs are unitdisk graphs, but we will generalize
to all locally growth bounded graphs. We show how to use the same basic technique as in the
physical model, i.e. proving that the price of total anarchyis small for a particular game, to give
a distributed algorithm that has good average performance.While we will not obtain either as
good an approximation or as small a running time as [77], our algorithm is totally distributed in
the sense that the only information each node gets is whetheror not any of its neighbors tried to
join the independent set in the last round.

We first show that in general graphs the average number of successful transmissions when
every transmitter uses a no-regret algorithm can be arbitrarily far from the size of even the small-
estmaximalindependent set. We then show that for growth bounded graphs, after a sufficient
number of rounds, the average number of nodes that broadcasted successfully in a round is within
a constant of the size of the maximum independent set.

General Graphs

Consider the following interference graph: there are two special nodesu andv that are adjacent.
The nodeu is also adjacent to(n − 2)/2 nodesx1, x2, . . . , x(n−2)/2, none of which are adjacent
to v, andv is also adjacent to(n− 2)/2 nodesy1, y2, . . . , y(n−2)/2, none of which are adjacent to
u (see Figure 3.7). Clearly the smallest maximal independentset has sizen−2

2
+ 1 = n/2, as it

consists of eitheru with all they’s or v with all thex’s. On the other hand, suppose thatu and
v each choose to broadcast independently with probability1/2 and all of thexi’s andyi’s never
broadcast. Obviously the expected number of successful transmissions given these strategies is
1/2, so it is only anΩ(n)-approximation. We claim that in this case, every transmitter is using a
no-regret algorithm.
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u v
x’s y’s

Figure 3.7: Bad interference graph

To see this, first consider somexi. Sinceu broadcasts with probability1/2, the expected
average utility ofxi if it chose to broadcast every time is0, and obviously never broadcasting has
average payoff0. Thus never broadcasting is a no-regret algorithm. The sameargument can be
used for anyyi, with v taking the place ofu. Now consideru. It too is adjacent to one nodev
that broadcasts with probability1/2, so both of its actions would give average utility0. Clearly
randomizing independently over these two actions also has an average utility of0, and thus is a
no-regret strategy. The same argument obviously works forv as well, finishing the proof.

Growth-Bounded Graphs

When we restrict to growth bounded graphs, no-regret algorithms actually do result in good
behavior. This is essentially because the bad example we designed for general graphs can’t occur,
since in growth bounded graphs the number of neighbors of a node that are in an independent
set is at most a constant. In other words, the definition of growth bounded graphs get us the
equivalent of the density lemmas we used in the physical model (i.e. Lemmas 3.4 and 3.6).

Theorem 3.17 In growth-bounded graphs in which at mostk neighbors of any node are in an
independent set, if all transmitters have regret at mostǫ then the average number of successful
connections is at leastΩ(|OPT |)− ǫn.

Proof: Let x0 be some node, with neighborsx1, . . . , xm. q, s, Q, andS are as defined in the
physical model. We first claim that

∑m
i=0 qxi

≥ 1
3
− ǫ

2
. The first case is ifqx0 ≥ 1/3, in which

case the claim is trivially true. So suppose thatqx0 < 1/3. Letpbad be the fraction of times thatx0

would be unsuccessful if it chose to broadcast, i.e. the fraction of times at which at least one of its
neighbors broadcasts. Then the average utility of always broadcasting is1−pbad−pbad = 1−2pbad.
If pbad ≤ 1/3 − ǫ/2, then the average utility of always broadcasting is at least1/3 + ǫ. But this
is a contradiction sincex0 has average utility at mostq0 < 1/3 but also hasǫ-regret. Thus we
know thatpbad > 1/3 − ǫ/2. But clearlypbad ≤

∑m
i=1 qxi

by definition, since in order for a time
to contribute topbad at least one of thexi’s need to be broadcasting. Hence we have proved that∑m

i=0 qxi
≥ 1

3
− ǫ

2
.

Now we relate|OPT | to Q. For nodesx ∈ OPT , let b(x) =
∑

y∈N(x)∪{x} qy. By the above
claim we know thatb(x) ≥ 1

3
− ǫ

2
, and thus

∑
x∈OPT b(x) ≥ |OPT |(1

3
− ǫ

2
). But every node

is adjacent to at mostk nodes fromOPT by the growth-boundedness of the graph, and thus∑
x∈OPT b(x) ≤ k

∑
u qu = kQ. Putting these together, we get thatQ ≥ 1

k
(1

3
− ǫ

2
)|OPT |. We

63



now apply Lemma 3.14 to get that

S ≥ 1

2
(Q − ǫn) ≥ 1

2

((
1

3k
− ǫ

2k

)
|OPT | − ǫn

)

≥ Ω(|OPT | − ǫn)

as claimed.

3.6 Simulations

While the main contributions of this thesis are theoretical, we also performed simulations to
show how no-regret algorithms do in practice. There are two aspects that we wanted to test: the
quality of the algorithm (i.e. the average number of successful transmissions) and the speed at
which the algorithm converges on that average. Our simulations will be in the vanilla physical
model, where transmitters and receiver are points in the Euclidean plane. We will be using
random topologies, in whichn transmitter-receiver pairs are placed uniformly at randomin a
square of size of size100× 100 in the Euclidean plane, subject to each receiver being at distance
at mostdmax from its transmitter. Throughout these simulations we willsetα = 2.1 andτ = 0.5,
since it turns out that changing these parameters does not change the trends by very much.

For the simulations to test the quality of the algorithm we will compare our algorithm to the
average performance achieved if every transmitter uses a best-response strategy instead of a no-
regret strategy. In particular, we will compare what happens when every transmitter uses Best
Response (the trivial algorithm in which each transmitter transmits if it would have succeeded
last round and does not transmit if it would not have, i.e. each transmitter simply does the best
thing relative to what happened last) to what happens when every transmitter uses the classic
no-regret algorithmRandomized Weighted Majority (WMR)of Littlestone and Warmuch [67].

Our quality simulation shows the relationship between the number of nodes and the average
number of successful transmissions per round after simulating for 100 rounds. We did this on100
instances for each value ofn and averaged the results. Figure 3.8 shows that asn gets larger our
algorithm does better, while Best Response does about the same (or slightly worse). Note that
largen is the only interesting regime, since only whenn is large is there a lot of interference from
other transmitters. This figure also shows that the approximation bound we proved,O(d2α

max), is
overly pessimistic, since for all three values ofdmax that we tested the actual performance is
significantly better thann/d2α

max, and clearlyn is an upper bound on|OPT |. For example, when
dmax = 8 andn = 1000, we observed an average of138.861 successful transmissions, while
1000/82.1 is only12.69.

For the convergence speed simulations, instead of comparing to the Best Response algorithm
we just test the average number of successful transmissionsafter various iterations. Our analysis
requiresΩ(n2 log n) iterations before the approximation guarantee can be made,but our simu-
lations show that in practice this number of iterations is not necessary. As shown in Figure 3.9,
substantially fewer thann iterations are required before the average is basically stable. The time
to stability is not constant, as it does seem to grow withn, but it is certainly substantially smaller
than theΩ(n2 log n) bound required by the analysis.
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3.7 Conclusions

In this chapter we examined the complexity of maximizing thenumber of supported connections
in the physical wireless model and we studied the performance that can be achieved by com-
pletely distributed algorithms operating under an appropriate incentive structure. In particular,
we proved NP-hardness and gave two approximation algorithms for the centralized case. In the
distributed setting our main techniques were game theoretic, namely proving that the price of
total anarchy of an appropriately defined game is small. We hope that this technique will prove
fruitful when considering other distributed problems, especially when only extremely limited
feedback is allowed. We also showed by simulation that low-regret algorithms do even better in
practice than the theoretical worst case, both in terms of their approximation to optimal and the
time it takes to achieve this approximation.
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Chapter 4

Constrained Connectivity and iBGP

In this chapter we will turn our attention back to wired networks and discuss the iBGP and Con-
strained Connectivity problems that we introduced in Section 1.3. We first review the basics of
iBGP that we introduced there. In this setting there is some set of distances in the network, pre-
sumably defined by the IGP distances or OSPF weights or by somesimilar networking protocol.
There is an initial set of routesF with corresponding egress routersXF , where the egress router
for some route is simply the router in the AS that initially heard about the route over eBGP from
some other autonomous system. Given a set of routes, a routerwill rank highest the one whose
egress router is closest according to this definition of distance. Thesignaling graphH is an
overlay network whose nodes represent routers and where an edge represents the fact that the
two routers at its endpoints use iBGP to inform one another oftheir current chosen route. The
endpoints of an edge inH are callediBGP neighbors. A path inH is called asignaling path.

iBGP can be thought of as working as follows. In an asynchronous fashion, each router
considers all the latest routes it has heard about from its iBGP neighbors, chooses the one with
the closest egress router and tells its iBGP neighbors aboutthe route it has chosen. This continues
until no router learns of a route whose egress router is closer than that of its currently chosen
route. When this process ends the route chosen by routerr is denoted byR(r). Let P (r) be the
shortest path fromr to E(r), the egress router ofR(r). When a packet arrives atr, it sends it to
the next routerr′ onP (r), r′ in turn sends the packet to the next router onP (r′) and so on. Thus
if P (r′) is not the subpath ofP (r) starting atr′ then the packet will not get routed asr expected.
An important property for a signaling graph to have iscomplete visibility, in which each router
r hears about (and hence chooses asR(r)) the route inF whose egress routerE(r) is closest to
r from amongst all routers inXF . It is easy to see that ifH has the complete visibility property
for F then it will correctly implement the desired routing, so we say thatH is correct if it has
complete visibility for all possible external routesF , or equivalently for all possible subsetsXF

of the routers that might announce external routes.
In Section 1.3 we claimed that the problems of minimizing thenumber of edges in a correct

signaling graph (theIBGP-SUM problem) and the minimizing the maximum degree in a correct
signaling graph (theIBGP-DEGREEproblem) are special cases of a new network design problem
that we callConstrained Connectivity. In Constrained Connectivity we are given a graphG =
(V, E) and for each pair of nodes(u, v) ∈ V × V we are given a setS(u, v) ⊆ V . Each
suchS(u, v) is called asafe setand it is assumed thatu, v ∈ S(u, v). We say that a subgraph
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H = (V, F ) of G is safely connectedif for every pair of nodes(u, v) there is a path inH from u
to v in which every node in the path is inS(u, v). We are interested in two versions this problem:

1. CONSTRAINED CONNECTIVITY-SUM: compute a safely connected subgraphH with the
minimum number of edges, and

2. CONSTRAINED CONNECTIVITY-DEGREE: compute a safely connected subgraphH that
minimizes the maximum degree over all nodes.

We will begin this chapter by proving that the iBGP problems are in fact a special case of
Constrained Connectivity, and then we will use this characterization to prove that they are hard to
approximate to better thanΩ(log n). We will then generalize them to Constrained Connectivity
on Kn, for which we demonstrate two approximation algorithms based on obvious LP relax-
ations. Generalizing further, we show that the ConstrainedConnectivity problems are as hard to
approximate as the well-known Label Cover problem, and thatthe natural LP relaxations have at
least a polynomial integrality gap. Finally, we will consider Constrained Connectivity in some
simpler settings and show that in these settings it can actually be solved optimally in polynomial
time.

4.0.1 Related Work

Issues involving eBGP, the version of BGP that routers in different ASes use to announce routes
to one another, have recently received significant attention from the theoretical computer science
community, especially stability and game-theoretic issues (e.g., [40, 48, 66]). However, not
nearly as much work has been done on problems related to iBGP,which distributes routes inter-
nally in an AS. There has been some work on the problem of guaranteeing hot-potato routing in
any AS that uses aroute reflector architecture[18], which is the most commonly used type of
iBGP signaling graph. These earlier papers did not considerthe issue of finding small signaling
graphs that achieved the hot-potato goal. Instead they either provided sufficient conditions for
correctness relating the underlying physical network withthe route reflector configuration [47]
or they showed that by allowing some specific extra routes to be announced (rather than just the
one chosen route) one could guarantee a version of hot-potato routing [15]. The first people to
consider the problem of designing small iBGP overlays subject to achieving hot-potato correct-
ness were Vutukuru et al. [86], who used graph partitioning schemes to give such configurations.
But while they proved that their algorithm gave correct configurations, they only gave simulated
evidence that the configurations it produced were small. Buob et al. [25] considered the problem
of designing small correct solutions (along with other constraints that we do not concern our-
selves with) but went in the opposite direction, giving a mathematical programming formulation
but then simply solving the integer program using super-polynomial time algorithms. Xiao et
al. [89] were also concerned with constructing small iBGP overlays, but instead of guaranteeing
correctnessthey guaranteereliability.
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4.1 iBGP Problems

4.1.1 iBGP and Constrained Connectivity

We want to show that the iBGP problems are a special case of theConstrained Connectivity
problems. This involves defining a safe set for every pair of vertices, and proving that a signaling
graphH is correct if and only if it is safely connected according to these safe sets. We will
assume that there are no ties, i.e. all distances are distinct. For two routersx andy, letD(x, y) =
{w : d(x, w) > d(x, y)} be the set of routers that are farther fromx thany is. LetS(x, y) = {w :
d(w, y) < d(w, D(x, y))}∪ {y} be the set of routers that are closer toy than to any router not in
the ball aroundx of radiusd(x, y). We will refer toS(x, y) as “safe” routers for the pair(x, y),
and they form the safe sets for the Constrained Connectivityinstance. A path betweenx andy
in a signaling graph is said to be asafe signaling pathfor (x, y) if it is contained inS(x, y).

Theorem 4.1 An iBGP signaling graphH is correct if and only if for every pair(x, y) ∈ V ×V
there is a signaling path fromy to x that uses only routers inS(x, y).

Proof: We first show that if every pair has a safe signaling path then every node hears about
the route that has the closest egress router no matter what the set of egress routersXF is. This is
simple: letx be a router, and lety ∈ XF be its closest egress router. Letr be the route whose
egress router isy. By assumption there is a signaling path fromy to x that uses only routers in
S(x, y). By definition, every one of these routers is closer toy than to any router farther fromx
thany is. Sincey is the closest egress tox, this means that for all of the routers inS(x, y), y will
be the closest egress router. A simple induction then shows that the routers in a safe signaling
path will each chooser and hence tell their iBGP neighbor in the path aboutr. That is,x hears
aboutr.

For the other direction we need to show that if a signaling graph is correct then every pair has
a safe signaling path. For contradiction, suppose that there is no safe signaling path fromy to
x. Let XF , the set of egress routers, beD(x, y) ∪ {y}. Let r be the route whose egress router is
y. Since every router inD(x, y) is farther fromx thany is, this means that for this set of egress
routersx is closer toy than any other egress. By correctness we know thatx does hear abouty.
Let y = a1, a2, . . . , ak = x be the (or at least a) signaling path fromy to x through whichx hears
aboutr. Since there are no safe signaling paths fromy to x, we know that there exists somei
such thatai 6∈ S(x, y). This means that there is somew ∈ D(x, y) such thatd(ai, w) < d(ai, y).
Since we assumed correctness we know thatai heard about the route with the closest egress
routerz to ai, andz 6= y (sincew in particular is closer). Soai will not tell its iBGP neighbors
aboutr, which is a contradiction sinceai is on the signaling path from whichx heard aboutr.
Thus a safe signaling path must exist.

Note that this condition is easy to check in polynomial time,so we have shown membership
in NP. This characterization also shows that the problemsIBGP-SUM and IBGP-DEGREE are
Constrained Connectivity problems where the underlying graphG is Kn the complete graph on
n = |V | nodes and the safe sets are defined by certain geometric properties.
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4.1.2 iBGP Hardness

In this section we will show that the iBGP problems areΩ(log n)-hard to approximate by a re-
duction from HITTING SET (or equivalently from SET COVER). This is a much weaker hardness
than the2log1−ǫ n hardness that we will prove for the general Constrained Connectivity problems
in Section 4.3, but the iBGP problems are much more restrictive. We begin by giving a useful
gadget that encodes a HITTING SET instance as an instance of an iBGP problem in which all
we care about is minimizing the degree of a particular vertex. We will then show how a simple
combination of these gadgets can be used to prove thatIBGP-DEGREE is hard to approximate,
and how more complicated modifications to the gadget can be used to prove thatIBGP-SUM is
hard to approximate.

Suppose we are given an instance of hitting set with elements1, 2, . . . , n (note that we are
overloading these as both integers and elements) and setsT1, T2, . . . , Tm. Our gadget will contain
a nodex whose degree we want to minimize, a nodeai for all elementsi ∈ {1, . . . , n}, and a
nodebTi

for each setTi in the instance. We will also have four extra “dummy” nodes:z, y, u,
andh. The following table specifies some of the distances betweenpoints. All other distances
are the shortest path graph distances given these. LetM be some large value (e.g.20), and letǫ
be some extremely small value larger than0.

x z y ai bTj
u h

x M M + 1.4 + jǫ
z M 1.5 1 + iǫ 2
y 1.5
ai 1 + iǫ 1 + (i + j)ǫ (if i ∈ Tj) 1.1
bTj

M + 1.4 + jǫ 1 + (i + j)ǫ (if i ∈ Tj) 1 + jǫ
u 2 1.1
h 1 + jǫ

It is easy to check that this is indeed a metric space. Informally, we want to claim that any
solution to the iBGP problems on this instance must have an edge fromx to ai nodes such that
the associated elementsi form a hitting set. Herey, u, andh are nodes that force the safe sets
into the form we want, andz is used to guarantee the existence of a small solution.

Lemma 4.2 Let E be any feasible solution to the above iBGP instance. For every vertexbTj

there is either an edge{x, bTj
} ∈ E or an edge{x, ai} ∈ E wherei ∈ Tj .

Proof: We will prove this by analyzingS(x, bTj
). If we can show thatS(x, bTj

) = {x, bTj
}∪{ai :

i ∈ Tj} then we will be finished. Note thatd(x, bTj
) = M + 1.4 + jǫ, so the vertices outside

B(x, d(x, bTj
)) arey (distanceM + 1.5 from x), u (distanceM + 2 from x), h (distance at least

M + 2.4 from x), andbTk
with k > j (distanceM + 1.4 + kǫ from x). The vertices inside the

ball arex, z, all ai nodes, andbTk
with k ≤ j.

Obviouslyx andbTj
are inS(x, bTj

) by definition. Letai be a vertex withi ∈ Tj . It is easy
to verify thatai is closer tobTj

than to any vertex outside of the ball: it has distance1 + (i + j)ǫ
from bTj

, distance1 + (i + k)ǫ from bTk
with k > j, distance2.5 + iǫ from y, distance1.1 from

u, and distance greater than2 from h. Soai ∈ S(x, bTj
) as required. On the other hand, suppose

i 6∈ Tj . Thend(ai, bTj
) > 2, while d(ai, u) = 1.1, soai 6∈ S(x, bTj

). Similarly, any vertexbTk
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with k < j is closer toh (distance1 + jǫ) than tobTj
(distance at least2) andz is closer toy

(distance1.5) than tobTj
(distance at least2). ThusS(x, bTj

) = {x, bTj
} ∪ {ai : i ∈ Tj}, soE

must include an edge fromx to eitherbTj
or anai with i ∈ Tj.

We now want to use this gadget to prove logarithmic hardness for IBGP-SUM. We will
use the basic gadget but will duplicatex. So there will beℓ copies ofx, which we will call
x1, x2, . . . , xℓ, and their distances are defined to bed(xi, z) = M + iǫ andd(xi, bTj

) = M +
1.4 + (i + j)ǫ with all other distances defined to be the shortest path. Notethat all we did was
modify the gadget to “break ties” between thexi’s. Also note that the shortest path betweenxi

andxj is throughz, for a total distance of2M +(i+ j)ǫ. As before, letH be the smallest hitting
set.

Lemma 4.3 Any feasibleIBGP-SUM solution has at leastℓ|H| edges.

Proof: It is easy to see that Lemma 4.2 still holds, i.e. thatS(xi, bTj
) = {xi, bTj

}∪{ak : k ∈ Tj}.
Intuitively this is because all otherx nodes are outside ofB(xi, d(xibTj

)) and all distances from
x to the gadget are the same as before except with an additionaliǫ. This implies that the number
of ak andbTj

nodes adjacent toxi in any feasible solution must be at least|H|, since if there were
fewer such adjacent nodes it would imply the existence of a smaller hitting set (anybTj

nodes
adjacent toxi could just be covered using an arbitrary element inTj at the same cost as using the
set itself). Thus the total number of edges must be at leastℓ|H|.
Lemma 4.4 There is a feasibleIBGP-SUM solution with at mostℓ|H|+ℓ+(m+n+4)2 edges.

Proof: The solution is simple: create a clique on theai, bTj
, z, u, y, h nodes (which obviously

has size at most(m + n + 4)2), include an edge from everyxi to z (anotherℓ edges) and include
an edge from everyxi to everyak with k ∈ H (anotherℓ|H| edges). Obviously there are the
right number of edges in this solution, so it remains to provethat it is feasible. To show this
we partition the pairs into types and show that every pair in every type is satisfied. The types
are1) xi − bTj

, 2) xi − h, 3) xi − xj , 4) xi − α (whereα is any other node in the gadget not
included in a previous type), and5) α − xi This is clearly an exhaustive partitioning, so we can
just demonstrate that each type is satisfied in turn.

For the first type we already showed thatS(xi, bTj
) includes allak wherek ∈ Tj . Since

H is a valid hitting setxi must be adjacent to one suchak, which in turn is adjacent tobTj
,

forming a valid safe path. For the second type the only vertices outsideB(xi, d(xi, h)) arexj

with j 6= i, andz is closer toh than to any suchxj . Thusz ∈ S(xi, h) so the pathxi − z − h
in our solution is a valid safe path. For the third type the vertices outsideB(xi, d(xi, xj)) are
{xk : k > j andk 6= i}. Because of the tie-breaking we introduced,d(z, xj) = M + jǫ while
d(z, xk) = M + kǫ > M + jǫ, and thusz ∈ S(xi, xj) and so the pathxi − z − xj in our solution
is a valid safe path. The fourth type is even simpler, sinceα must be eitherz, u, y, or anak node
and the shortest path fromxi to any of these is throughz. Soz ∈ S(xi, α) andxi − z − α is a
valid safe path. Finally, for the last type the vertices outsideB(α, d(α, xi)) are{xk : k > i}, and
z is closer toxi (distanceM + iǫ) than any suchxk (distanceM + kǫ). So againz ∈ S(α, xi)
and thusα − z − xi is a valid safe path.

Theorem 4.5 It is NP-hard to approximateIBGP-SUM to a factor better thanΩ(log N), where
N is the number of vertices in the metric.

Proof: It is known that there is someβ for which it is NP-hard to distinguish hitting set instances
with a hitting set of size at mostβ from instances in which all hitting sets have size at leastβ ln m.
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In the first case we know from Lemma 4.4 that there is a validIBGP-SUM solution of size at
most ℓβ + ℓ + (m + n + 4)2. In the second case we know from Lemma 4.3 that any valid
IBGP-SUM solution must have size at leastℓβ lnm. If we setℓ = (m + n + 4)2 this gives a
gap ofℓβ ln m/ℓ(β + 2) = β ln m/β + 2 = Ω(log m). The number of verticesN in the IBGP-
SUM instance isO((m + n + 4)2) so log m = Ω(log N), and thus we getΩ(log n) hardness of
approximation.

It is also fairly simple to modify the basic gadget to prove the same logarithmic hardness for
IBGP-DEGREE. We do this by duplicating everythingother thanx, instead of duplicatingx.
This will force x to have the largest degree.

Theorem 4.6 It is NP-hard to approximateIBGP-DEGREE to a factor better thanΩ(log N),
whereN is the number of vertices in the metric.

Proof: We will use multiple copies of the above gadget. Letα be some large integer that we
will define later. We createα copies of the gadget but identify all of thex vertices, so there is
still a uniquex but for all other nodesv in the original there are nowα copiesv1, v2, . . . , vα.
The distance between two nodes in the same copy is exactly as in the original gadget, and the
distance between two nodes in different copies (saysi andtj) is the distance implied by forcing
them to go throughx (i.e. d(si, tj) = d(s, x) + d(x, t)). Call this metricM = (V, d). Every
vertex in copyi is closer to the rest of copyi than to any vertex in copyj, so Lemma 4.2 holds
for every copy. Thus if the smallest hitting set isH the degree ofx in any feasible solution to
IBGP-DEGREEonM must be at leastα|H|.

Conversely, we claim that there is a feasible solution toIBGP-DEGREEin which every vertex
has degree at mostα(|H| + 1). Consider the solution in whichx is adjacent tozj and toaj

i for
all j ∈ [α] andi ∈ H, and all nodes (other thanx) in copyj are adjacent to all other nodes (other
thanx) in copyj for all j ∈ [α]. By the above analysis ofS(x, bi

Tj
) we know that this solution

satisfies these safe sets (via the safe pathx − ai − bTj
wherei ∈ H is an element inTj). It also

obviously satisfies pairs not involvingx in the same copy, since there is an edge directly between
them. It remains to show that pairs involvingx are satisfied and that pairs involving two different
copies are satisfied.

For the first of these we will show thatz is in all safe sets of the formS(x, wi) wherew is
not ab node. This is easy to verify exhaustively. It is also true that z is in all safe sets of the
form S(wi, x) even whenw is ab node, since all vertices outside the ballB(wi, d(wi, x)) are in
different copies and the shortest path fromz to any node in a different copy must go throughx.
Thus the pathx − z − wi in our solution satisfies both of these safe sets. Finally, itis again easy
to verify that pairs in different copies are also satisfied.

Now by settingα appropriately we are finished. Each copy hasn + m + 4 nodes, so in the
feasible solution we have constructed the degree of any nodeother thanx is at most(n + m +
4)2 + 1. If we setα to some value larger than this, say(n + m + 4)3, we know that the degree
of x has to be at least(n + m + 4)3|H|. It is known that it is hard to distinguish between hitting
set instances with hitting sets of size at mostβ and those in which every hitting set has size at
leastβ ln m for some valueβ. Suppose that we are in the first case, where there is a hittingset
of size at mostβ. Then we constructed a feasible solution to theIBGP-DEGREE problem with
maximum degree at most(n + m + 4)3(β + 1). In the second case, where every hitting set
has size at leastβ ln m, we showed that the degree ofx (and thus the maximum degree) must

72



be at least(n + m + 4)3β ln n. This gives a gap ofβ ln m/(β + 1), which is clearlyΩ(log m).
Since the number of vertices in theIBGP-DEGREE instance is polynomial inm, this implies
Ω(log N)-hardness.

4.2 Constrained Connectivity onKn

In this section we show that there is ãO(n2/3)-approximation algorithm for CONSTRAINED

CONNECTIVITY-SUM and CONSTRAINED CONNECTIVITY-DEGREE as long as the underlying
graph is the complete graphKn. This obviously implies the same approximation ratio for the
iBGP problems, since they are special cases. Our algorithm has two components, an LP rounding
algorithm and a random sampling step. So we first discuss a simple LP relaxation: theflow
LP. This is actually a relaxation of the general Constrained Connectivity problems, but for the
purposes of this section we will just assume that the underlying graphG is Kn.

For every pair(u, v) ∈ V × V let Puv be the collection ofu − v paths that are contained in
S(u, v). The flow LP has a variablece for every edgee ∈ E (called thecapacityof edgee) and a
variablef(P ) for everyu − v path inPuv for every(u, v) ∈ V × V (called theflow assigned to
pathP ). The flow LP simply requires that at least one unit of flow is sent between all pairs while
obeying capacity constraints:

min
∑

e ce

s.t
∑

P∈Puv
f(P ) ≥ 1 ∀(u, v) ∈ V × V

∑
P∈Puv:e∈P f(P ) ≤ ce ∀e ∈ E, (u, v) ∈ V × V

0 ≤ ce ≤ 1 ∀e ∈ E

0 ≤ f(P ) ≤ 1 ∀(u, v) ∈ V × V, P ∈ Puv

This is obviously a valid relaxation of CONSTRAINED CONNECTIVITY-SUM: given a valid
solution to CONSTRAINED CONNECTIVITY-SUM, let Puv denote the required safeu − v path
for every (u, v) ∈ V × V . For every edgee in somePuv setce to 1, and setf(Puv) to 1 for
every (u, v) ∈ V × V . This is clearly a valid solution to the linear program with the exact
same value. To change the LP for CONSTRAINED CONNECTIVITY-DEGREE we can just in-
troduce a new variableλ, change the objective function tomin λ, and add the extra constraints∑

v:{u,v}∈E c{u,v} ≤ λ for all u ∈ V . And while this LP can be exponential in size (since
there is a variable for every path), it is also easy to design acompact representation that has
only O(n4) variables and constraints. This compact representation has variablesf (x,y)

(u,v) instead

of f(P ), wheref
(x,y)
(u,v) represents the amount of flow fromu to v along edge{u, v} for the de-

mand(x, y). Then we can write the normal flow conservation and capacity constraints for every
demand(x, y) independently, restricted toS(x, y).

Our rounding will make use of the following simple lemma.

Lemma 4.7 In any fractional solution to the flow LP, for every pair(x, y) ∈ V × V there is a
path betweenx andy completely contained inS(x, y) in which every edge is assigned capacity
at least1/|S(x, y)|2.
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Proof: Since the fractional solution is feasible, it sends one unitof flow from x to y using only
edges that have both endpoints inS(x, y). Suppose for contradiction that the lemma is false for
some(x, y) pair. Theneverysafe path fromx to y uses at least one edge with capacity less than
1/|S(x, y)|2. Let B be the set of these edges, i.e.B = {{u, v} : u, v ∈ S(x, y) andc{u,v} <
1/|S(x, y)|2}. Since every safex−y path must go through at least one edge inB, the edges ofB
must form anx − y cut in the graph induced onS(x, y). However,|B| < |S(x, y)|2, since every
edge inB must have both endpoints inS(x, y). This is a contradiction, since we cannot send one
unit of flow across a cut with less than|S(x, y)|2 edges in which every edge has capacity at most
1/|S(x, y)|2.

Another important part of our algorithm will be random sampling. We will use two different
types of sampling: star sampling for the sum version and edgesampling for the degree version.
First we consider star sampling, in which we independently sample nodes with probabilityp, and
every sampled node becomes the center of a star that spans thevertex set.

Lemma 4.8 All pairs with safe sets of size at leasts will be satisfied by random star sampling
with high probability ifp = 3 lnn/s.

Proof: Consider some pair(x, y) with |S(x, y)| ≥ s. If some node (sayz) from S(x, y) is
sampled then the pair is satisfied, since the creation of a star at z would create a pathx − z − y
that would satisfy(x, y). The probability that no node fromS(x, y) is sampled is

(1 − p)|S(x,y)| ≤ (1 − p)s ≤ e−ps = e−3 lnn = 1/n3

Since there are less thann2 pairs, we can take a union bound over all pairs(x, y) with |S(x, y)| ≥
s, giving us that all such pairs are satisfied with probabilityat least1 − 1/n.

For edge sampling, we essentially consider the Erdős-Rényi graphGn,p, i.e. we just sample
every edge independently with probabilityp. We will actually consider the union of3 log n
independentGn,p graphs, wherep = (1+ǫ) log s

s
for some smallǫ > 0. Let H be this random

graph.

Lemma 4.9 With probability at least1 − 1/n, all pairs with safe sets of size at leasts will be
connected by a safe path inH.

Proof: Let (x, y) be a pair with|S(x, y)| ≥ s. Obviously(x, y) is satisfied if the graph induced
onS(x, y) is connected. It is known [21] that there is some smallǫ with 0 < ǫ < 1 so thatGs,p is
connected with probability at least1/2. SinceH is the union of3 log n instantiations ofGn,p, we
know that the probability that the subgraph ofH induced onS(x, y) is not connected is at most
1/n3. We can now take a union bound over all such(x, y) pairs, giving us that the probability
that there is some unsatisfied(x, y) pairs with|S(x, y)| ≥ s is at most1/n.

We will now combine the random sampling and the threshold-based LP rounding into a single
approximation algorithm. Our algorithm is divided into twophases: first, we solve the LP and
round up any edge with capacity at least1/n2/3. This takes care of safe sets of size at mostn1/3.
Second, if the objective is to minimize the number of edges wedo star sampling with probability
3 lnn/n1/3, and if the objective is to minimize the maximum degree we do edge sampling using
the construction of Lemma 4.9 withs = n1/3.

Theorem 4.10 This algorithm is aÕ(n2/3)-approximation to bothCONSTRAINED CONNECTIVITY-
SUM andCONSTRAINED CONNECTIVITY-DEGREEonKn.
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Proof: We first argue that the algorithm does indeed give a valid solution to the problem. Let
(x, y) be an arbitrary pair. If|S(x, y)| ≤ n1/3, then Lemma 4.7 implies that the first phase of the
algorithm results in a safe path. If|S(x, y)| ≥ n1/3, then Lemma 4.8 or Lemma 4.9 imply that
the second phase of the algorithm results in a safe path. So every pair has a safe path, and thus
the solution is valid.

We now show that the cost of this algorithm is at mostÕ(n2/3)×OPT . We first consider the
objective function of minimizing the number of edges. In phase 1 we only increase capacities
by at most a factor ofn2/3, so since the LP is a relaxation of the problem we know that thetotal
cost of phase 1 is at mostn2/3 × OPT . For phase 2, in expectation we chose3n2/3 ln n stars,
for a total of at most3n5/3 ln n edges. But since there is a demand for every pair we know that
OPT ≥ n − 1, so phase 2 has total cost at mostÕ(n2/3) × OPT .

If instead our objective function is to minimize the maximumdegree, then since phase 1
only increases capacities byn2/3 we know that after phase 1 the maximum degree is at most
n2/3 × OPT . In phase 2, a simple Chernoff bound implies that with high probability every
node getsÕ(n2/3) new edges, and thus the node with maximum degree still has degree at most
Õ(n2/3) × OPT .

We also have a primal-dual algorithm that gives the same basic results as the threshold round-
ing for the CONSTRAINED CONNECTIVITY-SUM problem. While this algorithm and its analy-
sis is slightly more complicated and only works for the Sum version, by not solving the linear
program we get a faster algorithm. In particular, the best known algorithms for solving linear
programs withNn variables takeΩ(Nn3.5) time on general LPs, so since there areN = n4 vari-
ables in the compact version of the flow LP this takesΩ(n12.5) time. The primal-dual algorithm,
on the other hand, is significantly faster: a naı̈ve analysisshows that it takes̃O(n6) time.

In this algorithm we use the cut LP, which is a different relaxation than the flow LP. In
fact, the algorithm is quite similar to the primal-dual algorithm for Steiner Forest, which uses
a similar cut LP but doesn’t have to deal with safe sets. Givena pair (u, v) ∈ V × V , let
S(u, v) = {S ⊂ S(u, v) : u ∈ S ∧ v 6∈ S} be the collection of safe set cuts that separateu and
v. Furthermore, given a setS ∈ S(u, v) let δuv(S) = {e ∈

(
V
2

)
: e ∈ (S, S(u, v) \ S)} be the set

of safe edges that crossS. The cut LP has a variablexe for every edgee, and is quite simple:

min
∑

e

xe

s.t.
∑

e∈δuv(S)

xe ≥ 1 ∀u, v ∈ V, S ∈ S(u, v)

xe ≥ 0 ∀e ∈
(

V

2

)

This LP simply minimizes the sum of the edge variables subject to the constraint that for
every cut between two nodes there must be at least one safe edge crossing it. Since this is a
primal-dual algorithm, instead of solving and rounding this LP we also consider the dual, which
has a variableyuv

S for every pair(u, v) andS ∈ S(u, v). We say that an edgee ∈ S(u, v) if both
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endpoints ofe are inS(u, v).

max
∑

u,v∈V

∑

S∈S(u,v)

yuv
S

s.t.
∑

u,v∈V :e∈S(u,v)

∑

S∈S(u,v):e∈δuv(S)

yuv
S ≤ 1 ∀e ∈

(
V

2

)

yuv
S ≥ 0 ∀u, v ∈ V, S ∈ Suv

Unfortunately we will not be able to use a pure primal-dual approximation, but will have to
trade off with a random sampling scheme as in the rounding algorithm. So instead of this primal,
we will only have constraints foru, v ∈ V with |S(u, v)| ≤ t for some parametert that we will
set later. Thus in the dual we will only have variablesyuv

S for (u, v) with |S(u, v)| ≤ t. This
clearly preserves the property that the primal is a valid relaxation of the actual problem. Let
D = {(u, v) : |S(u, v)| ≤ t}.

Our primal-dual algorithm, like most primal-dual algorithms, maintains a set ofactivedual
variables that it increases until some dual constraint becomes tight. Once that happens we buy
an edge (i.e. set somexe to 1 in the primal), change the set of active dual variables, and repeat.
We do this until we have a feasible primal.

Initially our primal solutionH is empty and the active dual variables areyuv
{u} for every

(u, v) ∈ D, i.e. every nodeu has an active dual variable for every otherv that it has a de-
mand with corresponding to the cut inS(u, v) that is the singleton{u}. We raise these variables
uniformly until some constraint (say the one fore = {w, z}) becomes tight. At this point we add
e to our current primal solutionH. We now change the active dual variables by “merging” moats
that crosse. In particular, there are some active variables{yuv

S } wheree ∈ δuv(S) (which implies
thatw, z ∈ S(u, v) as well). LetH|S(u,v) denote the subgraph ofH induced onS(u, v). Without
loss of generality we can assume thatw ∈ S andz 6∈ S. Let T ⊂ S(u, v) be the connected
component ofH|S(u,v) containingz. We now makeyuv

S inactive, and makeyuv
S∪T active. We do

this for all such active variables, and then repeat this process (incrementing all dual variables
until some dual constraint becomes tight, adding that edge to H, and then merging moats that
cross it) until all pairs(u, v) ∈ D have a safe path inH.

Lemma 4.11 This algorithm always maintains a feasible dual solution and an active set that
does not contribute to any tight constraint.

Proof: We will show this by induction, where the inductive hypothesis is that the dual solution is
feasible and that no dual variables that contribute to a tight constraint are active. Initially all dual
variable are0, so it is obviously a feasible solution and no constraints are tight. Now suppose
this is true after we add some edgee′. We need to show that it is also true after we add the next
edgee = {w, z}. By induction the dual solution after we addede′ is feasible and none of the
active dual variables contribute to any tight constraints.Thus raising the active dual variables
until some constraint becomes tight maintains dual feasibility.

To prove that no active variables contribute to a tight constraint, note that the only new tight
constraint is the one corresponding toe. The only variables contributing to that constraint are of
the formyuv

S wheree ∈ δuv(S). But our algorithm made all of these variables inactive, andonly
added new active variables for setsS ′ that contain bothw andz and thus do not contribute to the
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newly tight constraint. Furthermore, these setsS ′ are formed by the union ofS and the connected
component inH|S(u,v) containing the other endpoint, so no newly active variable contributes to
a constraint that became tight previously (since they correspond to edges inH).

Theorem 4.12 The primal-dual algorithm returns a graphH with at mostO(t2) × OPT edges
in which every pair(u, v) with |S(u, v)| ≤ t has a safe path.

Proof: After every iteration of the algorithm all of the tight constraints are added toH, which
together with Lemma 4.11 implies that the algorithm never gets stuck. Thus it will run un-
til every pair u, v with |S(u, v)| ≤ t has a safe path. It just remains to show that the total
number of edges returned is at mostO(t2) × OPT . To see this, note that every edge inH
corresponds to a tight constraint in the feasible dual solution we constructed, so ife ∈ H then∑

u,v:e∈S(u,v)

∑
S∈S(u,v):e∈δuv(S) yuv

S = 1. Thus we have that

|H| =
∑

e∈H

1 =
∑

e∈H

∑

(u,v)∈D:e∈S(u,v)

∑

S∈S(u,v):e∈δuv(S)

yuv
S

=
∑

(u,v)∈D

∑

S∈S(u,v)

∑

e∈δuv(S)∩H

yuv
S

=
∑

(u,v)∈D

∑

S∈S(u,v)

|H ∩ δuv(S)|yuv
S

≤ t2
∑

(u,v)∈D

∑

S∈S(u,v)

yuv
S

≤ t2 × OPT

where the last inequality is by duality, and the next to last inequality is because|H ∩ δuv(S)| ≤(|δuv(S)|
2

)
≤ t2 (since(u, v) ∈ D).

Lemma 4.13 The primal-dual algorithm takes at mostÕ(n6) time.

Proof: The primal-dual algorithm adds at least one new edge per iteration, so there can be
at mostn2 iterations. In each iteration we have to figure out the current value of every dual
constraint and the number of active variables in each constraint, which together will imply what
the next tight constraint is and how much to raise they variables. We then need to raise the active
variables by that amount and merge moats. Note that for everydemand there are at most two
active moats, so the total number of active variables is at most O(n2). Thus each iteration can
be done in timeO(n4), where the dominant term is the time taken to calculate the value of each
dual constraint. So the total time is̃O(n6), where there are extra poylogarithmic terms due to
data structure overhead.

Now we can trade this off with the random sampling solution for large safe sets to get an
actual approximation algorithm:

Theorem 4.14 There is aÕ(n2/3) approximation algorithm for the CONSTRAINED CONNECTIVITY-
SUM problem that runs in timẽO(n6)

Proof: Omitted – basically like the proof of Theorem 4.10 except that instead of trading off
the LP rounding and the random sampling we trade off the primal-dual algorithm and random
sampling.
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Figure 4.1: Basic hardness construction.

4.3 Constrained Connectivity

In this section we consider the hardness of the Constrained Connectivity problems and the inte-
grality gaps of the natural LP relaxations.

4.3.1 Hardness

We now show that the CONSTRAINED CONNECTIVITY-SUM and CONSTRAINED CONNECTIVITY-
DEGREE problems are both hard to approximate to better than2log1−ǫ n for any constantǫ > 0.
We do this via a reduction from MIN-REP, a problem that is known to be impossible to approx-
imate to better than2log1−ǫ n unless NP⊆ DTIME(npolylog(n)) [62]. An instance of MIN-REP is
a bipartite graphG = (U, V, E) in which U is partitioned into groupsU1, U2, . . . , Um andV is
partitioned into groupsV1, V2, . . . , Vm. There is asuper-edgebetweenUi andVj if there is an
edge{u, v} ∈ E such thatu ∈ Ui andv ∈ Vj . The goal is to find a minimum setS of vertices
such that for all super-edges{Ui, Vj} there is some edge{u, v} ∈ E with u ∈ Ui andv ∈ Vj

andu, v ∈ S. Vertices from a group that are inS are called therepresentativesof the group. It is
easy to prove by a reduction from LABEL COVER that MIN-REP is hard to approximate to better
than2log1−ǫ n, and in particular it is hard to distinguish the case when2m vertices are enough
(one from each group for each side of the graph) from the case when2m × 2log1−ǫ n vertices are
necessary [62].

Given an instance of MIN-REP, we want to convert it into an instance of CONSTRAINED

CONNECTIVITY-SUM. We will create a graph with five types of vertices:xi
j for j ∈ [m] and

i ∈ [d]; U ; V ; yi
j for j ∈ [m] andi ∈ [d]; andz. Here thex nodes representd copies of the

groups ofU and they nodes representd copies of the groups ofV , whered is some parameter
that we will define later.z is a dummy node that we will use to connect pairs that are not crucial
to the analysis. Given this vertex set, there will be four types of edges:{xi

j , u} for all j ∈ [m]
andi ∈ [d] andu ∈ Uj ; {u, v} for all edges{u, v} in the original MIN-REP instance;{v, yi

j} for
all j ∈ [m] andi ∈ [d] andv ∈ Vj; and{w, z} for all verticesw.

This construction is shown in Figure 4.1, except in the actual construction there ared copies
of each node in the top and bottom layer and there is az node that is adjacent to all other nodes.
In Figure 4.1 the middle two layers are identical to the original MIN-REP problem, and the large
ellipses represent the groups. In the figure we have simply added a new vertex for each group,
and in the construction there ared such new vertices per group as well as az vertex.
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Now that we have described the constrained connectivity graph, we need to define the safe
sets. There are two types of safe sets: if in the original instance there is a super-edge between
Ui andVj thenS(xk

i , y
k
j ) = S(yk

j , x
k
i ) = {xk

i , y
k
j } ∪ Ui ∪ Vj for all k ∈ [d]. All other safe sets

consist of the two endpoints andz. Let eMR denote the number of super-edges in the MIN-REP

instance, and letnMR denote the number of vertices.
The intuition behind the following theorem and proof is thata safe path between anx node

and ay node corresponds to using the intermediate nodes in the pathas the representatives of the
groups corresponding to thex andy nodes, so minimizing the number of labels is like minimizing
the number of edges incident onx andy nodes.

Theorem 4.15 The originalM IN-REP instance has a solution of size at mostK if and only if
there is a solution to the reduced Constrained Connectivityproblem of size at mostKd + eMR +
2md + nMR.

Proof: We first prove the only if direction by showing that if there isa MIN-REP solution of
sizeK then there is a Constrained Connectivity solution of sizeKd + eMR + 2md + nMR. Let
OPTMR be the set of vertices in a Min-Rep solution of sizeK. Our constrained connectivity
solution includes all edges of type4, i.e. we include a star centered atz. For eachi ∈ [d] and
j ∈ [m] we also include all edges of the form{xi

j , u} whereu ∈ Uj ∩ OPTMR and all edges of
the form{yi

j, v} wherev ∈ Vj ∩ OPTMR. Finally, for each super-edge in the Min-Rep instance
we include the edge between the pair fromOPTMR that satisfies it (if there is more than one
such pair we choose one arbitrarily). The star clearly has2md + nMR edges, there areKd edges
from x andy nodes to nodes inOPTMR, and there are clearlyeMR of the third type of edges,
so the total number of edges in our solution isKd + eMR + 2md + nMR as required. To prove
that it is a valid solution, we first note that for all pairs except those of the form(xk

i , y
k
j ) or

(yk
j , x

k
i ) where{Ui, Vj} is a super-edge are satisfied via the star centered atz. For pairs(xk

i , y
k
j )

and(yk
j , x

k
i ) with an associated super-edge, sinceOPTMR is a valid solution there must be some

u ∈ Ui∩OPTMR andv ∈ Vj ∩OPTMR that have an edge between them, and the above solution
would include that edge as well as the edge fromxk

i to u and fromyk
j to v, thus forming a safe

path of length3.
For the if direction we need to show that if there is a Constrained Connectivity solution of

sizeKd+eMR +2md+nMR then there is a Min-Rep solution of size at mostK. LetOPTCC be
a constrained connectivity solution withKd+eMR +2md+nMR edges. SinceS(w, z) = {w, z}
for all verticesw, 2md + nMR of those edges must be a star centered atz, so onlyKd + eMR

edges are between other vertices. Obviously there need to beat leasteMR edges betweenU and
V , since otherwise it would be impossible to satisfy all of thedemands betweenx andy nodes
corresponding to super-edges. Thus there are at mostKd edges incident on eitherx or y nodes.
We can partition these edges intod parts, where the edges in theith part are those incident on an
xi or yi node. So there must be one part of size at mostK; let i be this part. But since this is a
valid constrained connectivity solution there is a safe path betweenxi

j andyi
ℓ for all j, ℓ such that

there is a super-edge betweenUj andyℓ, and thus the nodes inU andV that are incident to edges
in this ith part must form a valid Min-Rep solution of size at mostK.

We can now setd = n2
MR, which gives the following theorem

Theorem 4.16 CONSTRAINED CONNECTIVITY-SUM cannot be approximated better than2log1−ǫ n

for anyǫ > 0 unless NP⊆ DTIME(npolylog(n))
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Proof: We know that it is hard to distinguish between an instance of MIN-REP with a solution of
size at most2m and an instance in which every solution is of size at least2m× 2log1−ǫ n. Letd =
n2

MR. Then Theorem 4.15 implies that it is hard to distinguish between an instance of constrained
connectivity with a solution of size at most2mn2

MR+eMR+2mn2
MR+nMR = O(mn2

MR) and an
instance in which every solution has size at least2m2log1−ǫ nMRn2

MR + eMR + 2mn2
MR + nMR =

Ω(mn2
MR2log1−ǫ nMR). This gives an inapproximability gap ofΩ(2log1−ǫ nMR). Sinced = n2

MR

the number of verticesn in our constrained connectivity instances isnMR +2mn2
MR ≤ O(n2

MR),
and thusΩ(2log1−ǫ nMR) = 2Ω(log1−ǫ n). To get this to2log1−ǫ n we can simply use a smallerǫ′.

We will now prove that CONSTRAINED CONNECTIVITY-DEGREEhas the same hardness of
approximation of CONSTRAINED CONNECTIVITY-SUM. The reduction from MIN-REP to the
degree problem is basically the same as the reduction to the sum problem, except there are also
d2 additional copies of the gadget other than thex andy nodes. More formally, now the nodes
arexi

j andyi
j for j ∈ [m] andi ∈ [d], uij for u ∈ U andi, j ∈ [d], vij for v ∈ V andi, j ∈ [d],

andzij for i, j ∈ [d]. Now intuitively each copyij of the originalU, V , andz is hooked together
exactly like in the original construction, and is hooked up to the nodes{xi

k}k∈[m] and{yj
k}k∈[m]

exactly as if they were one copy of the outerx andy nodes of the original construction.
More formally, the edges are the same as before, except now each of thed2 new copies is

independent. In other words, there is an edge betweenxi
j anduik for all i, k ∈ [d] andj ∈ [m]

andu ∈ Uj , an edge betweenyi
j andvki for all i, k ∈ [d] andj ∈ [m] andv ∈ Vj , an edge

betweenuij andvij for all i, j ∈ [d] and edges{u, v} in the original MIN-REP instance, an edge
betweenxi

j andzik for all i, k ∈ [d] andj ∈ [m], an edge betweenyi
j andzki for all i, k ∈ [d] and

j ∈ [m], an edge betweenuik andzik for all i, k ∈ [d] andu ∈ U , and an edge betweenvik and
zik for all i, k ∈ [d] andv ∈ V . Similarly, the safe sets are as before but defined by the copies.
That is,S(xk

i , y
ℓ
j) = S(yℓ

j, x
k
i ) = {xk

i , y
ℓ
j} ∪ Uk

i ∪ V ℓ
j . All safe sets between nodes in the same

copyij are the two endpoints together withzij , and the safe set of vertices in different copies is
just all vertices.

Theorem 4.17 CONSTRAINED CONNECTIVITY-DEGREE cannot be approximated better than
2log1−ǫ n for any constantǫ > 0 unless NP⊆ DTIME(npolylog(n))

Proof: Every vertex inU ij or V ij can have degree at mostnMR + 1, since there are only
nMR − 1 other nodes in its copy, and it can in addition be adjacent tozij and the nodexi

k

or yj
k corresponding to its groupUk and Vk respectively. Every nodezij has degree at most

nMR + 2m < 3nMR, since it can be adjacent tonMR nodes inU ij andV ij as well asm nodes
from X i andm nodes fromY j . On the other hand, everyxi

k node and everyyj
k node must be

adjacent to at least1 U iℓ or V ℓj node respectively for alld possibilities forℓ. So every suchx
or y node has degree at leastd, so if we setd = 3nMR we know that the node with maximum
degree must be anx or ay node.

Recall that it is hard to distinguish MIN-REP instances with solutions of size at most2m from
those in which all solutions have size at least2m2log1−ǫ nMR . Suppose that there is a solution of
size2m, i.e. there is a solution with one representative from each group. Then there is a solu-
tion to the corresponding CONSTRAINED CONNECTIVITY-DEGREE instance with max degree
at mostd: everyxi

j andyi
j is connected to its corresponding representative in each ofthed copies

corresponding to it as well as to thez node for that copy, and in each copyij we include all edges
betweenU ij andV ij and all edges between those nodes andzij . It is easy to see that this is a
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valid solution: by the analysis of Theorem 4.15 we know that it is valid inside of each copy, and
to get between copies nodessij andtkℓ can use the safe pathsij −zij −xi

h −ziℓ −ykℓ
h −zkℓ − tkℓ,

wheres andt are arbitrary nodes in the copyij, andh is an arbitrary index in[m].
On the other hand, suppose that every solution to the MIN-REP instance has size at least

2m2log1−ǫ nMR. Then as in the analysis of Theorem 4.15 for every copyij there must be at least
2m2log1−ǫ nMR edges that are either betweenX i andU ij or betweenY j andV ij. Thus there are
at leastd22m2log1−ǫ nMR such edges. Since there are only2md vertices inX ∪ Y , at least one
such vertex must have degree at least2log1−ǫ nMRd.

This shows that it is hard to approximate CONSTRAINED CONNECTIVITY-DEGREEto better
than2log1−ǫ nMRd/d = 2log1−ǫ nMR. Since the number of verticesn in our instance is polynomial
in nMR, this means that it is hard to approximate to better than2Ω(log1−ǫ n). We can then get this
to 2log1−ǫ n by just using a smallerǫ′.

4.3.2 Linear Programming Integrality Gap

We will now show that the integrality gap of the flow LP for CONSTRAINED CONNECTIVITY-
SUM is large. The instances for which we will show a large integrality gap are derived from
instances of theUnique Games problem, in which we are given a graphG = (V, E) and a set of
permutationsπuv on some alphabetΣ (one constraint for every edge(u, v) ∈ E) and are asked
to assign a valuexu from Σ to each vertexu so as to satisfy the maximum number of constraints
of the formπuv(xu) = xv. This problem was first considered by Khot [56], who conjectured that
it was NP-hard to distinguish instances on which1− δ fraction of the constraints can be satisfied
from instances on which at mostǫ fraction of the constraints can be satisfied (for sufficiently
smallǫ andδ). For our purposes we will consider a minimization version of the Unique Games
problem in which we can assign multiple labels to vertices and the goal is to assign as few labels
as possible so that for every edge(u, v) there is some labelxu assigned tou with πuv(xu) assigned
to v. We first show that there exist instances that require many labels:

Lemma 4.18 For any constantǫ < 1, there are instances of Unique Games with alphabet size

O
(
n

2(1+ǫ)
1−3ǫ

)
andΘ(n2) edges that requireǫn2 labels for any valid solution.

Proof: We will prove this by the probabilistic method, i.e. we will analyze arandomUnique
Games instance with the given parameters and show that the probability that it has a solution of
size at mostO(n2) is strictly less than1. This then implies the existence of such an instance. For
our random instance, the underlying graph will beKn, so there is a permutation constraint on
every pair of vertices. Letk = |Σ| be the size of the alphabet (we will later set this to the value
claimed in the lemma, but for now we will leave it as a parameter). For each pair of vertices we
will then select a permutation uniformly at random fromSk.

Now consider some fixed setS of αn labels (so the average number of labels per node isα).
What is the probability thatS is a valid solution? By Markov’s inequality, we know that at most
n/2 vertices have more than2α labels, so there are at leastn/2 vertices with at most2α labels.
Call these verticeslight, and call an edgelight if both of its endpoints are light. Let{u, v} be
a light edge. We claim that the probability thatS satisfies{u, v} is at most4α2

k
. To see this,

let ℓ ∈ Σ be one of the labels assigned tou by S. Since the permutation for{u, v} was chosen
uniformly at random, the probability thatℓ is matched to one of the labels assigned tov by S is at
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most2α/k. Now we can do a union bound over all such labelsℓ, of which there are at most2α,
to get that the probability that edge{u, v} is satisfied byS is at most4α2

k
. Since the permutations

for each edge are chosen independently, the event that edgee is satisfied is independent of the
event that edgee′ is satisfied for alle′ 6= e. Thus the probability thatS satisfieseveryedge is at
most the product of the probabilities that it satisfies each fixed edge, i.e. the probability thatS is

a valid solution is at most
(

4α2

k

)(n
2)

<
(

4α2

k

) 1−ǫ
2

n2

(for sufficiently largen).

By the trivial union bound, we know that the probability thatthere issomevalid solution
of sizeαn for our random instance is at most the sum over all possible solutions of sizeαn
of the probability that the solution is valid, which by the above analysis we know is at most

|{S : |S| = αn}| ×
(

4α2

k

)(n
2)

. So we will now boundN = |{S : |S| = αn}|, which is easy

to do by a simple counting argument. In particular, it is obvious thatN =
(

kn
αn

)
, since there are

exactlykn total labels and we are just choosingαn of them. Now standard bounds for binomial
coefficients imply thatN ≤

(
kne
αn

)αn
=
(

ke
α

)αn
. Combining this with the previous analysis and

settingα = ǫn, we get that the probability that there is some valid solution of sizeαn is at most

(
ke

α

)αn

×
(

4α2

k

) 1−ǫ
2

n2

=
4

1−ǫ
2

n2
eǫn2

αn2

k
1−3ǫ

2
n2

=
4

1−ǫ
2

n2
eǫn2

ǫn2
nn2

k
1−3ǫ

2
n2

<
n(1+ǫ)n2

k
1−3ǫ

2
n2

The final inequality is true as long asn is sufficiently large. If we setk = n
2(1+ǫ)
1−3ǫ then this

expression is less than1. Since this is the probability that the random Unique Games instance
we selected has a satisfying solution of sizeαn, this implies that for the given parameters there
is someunique games instance that requires more thanαn = ǫn2 labels.

Now that we have found a Unique Games instance that requires many labels we would like
to use it to construct a CONSTRAINED CONNECTIVITY-SUM instance on which the flow LP has
large integrality gap. We will basically use the same transformation that we used in the reduction
of M IN-REP to CONSTRAINED CONNECTIVITY-SUM. Let VUG be the vertex set of the above
Unique Games instance, and letΣ be the alphabet. Then our CONSTRAINED CONNECTIVITY-
SUM instance will have vertex setV equal to the disjoint union ofVUG × [d], VUG × Σ, and a
special nodez, whered is a duplication parameter that we will set later. For ease ofnotation, we
will let xi denote thei’th copy of vertexx in VUG × [d], i.e. xi = (x, i). For all x ∈ VUG and
i ∈ [d] there is an edge fromxi to every vertex inx × Σ. For everyx, y ∈ VUG andα, β ∈ Σ
there is an edge between(x, α) and(y, β) if and only if assigningα to x andβ to y is sufficient to
satisfy the{x, y} edge in the Unique Games instance (i.e. the permutation for that edge matches
them up). There is also an edge between every vertex andz. Forx, y ∈ VUG andi ∈ [d] we set
S(xi, yi) = S(yi, xi) = {x, y} ∪ (x × Σ) ∪ (y × Σ), and we set all other safe sets to the two
endpoints andz.
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Lemma 4.19 The value of the flow LP on the aboveCONSTRAINED CONNECTIVITY-SUM in-
stance is at least2d|VUG| + |Σ||VUG| +

(|VUG|
2

)
.

Proof: We prove this by constructing an LP solution of the required size. We first set the
capacity of every edge incident onz to 1, for a total cost of|Σ||VUG| + d|VUG|. This is enough
capacity to satisfy all pairs other than those of the form(xi, yi) or (yi, xi), since for any other
pair z is in the safe set so we can send one unit of flow on the edge from one endpoint toz and
then one unit of flow on the edge fromz to the other endpoint.

Now we set the capacity of every other edge to1/|Σ|. Since the number of other edges is
d|VUG||Σ| +

(|VUG|
2

)
|Σ| this costs usd|VUG| +

(|VUG|
2

)
more, which when added to the cost of

the edges toz gives us the claimed total LP value. So we just need to prove that this is enough
capacity to satisfy demands betweenxi andyi for all x, y ∈ V andi ∈ [d]. But this is easy to see:
xi can send1/|Σ| flow to every node inx×Σ (for a total flow of1), and each of these nodes will
forward its incoming flow to its neighbor iny × Σ. Since this is a Unique Games instance this
neighbor will be unique, and each node iny × Σ will have exactly1/|Σ| incoming flow, which
it can then forward along its edge toyi. Thus we have enough capacity to send one unit of flow
from xi to yi. And yi can send flow toxi the same way, just in reverse.

Lemma 4.20 Any integral solution to the aboveCONSTRAINED CONNECTIVITY-SUM instance
must have size at most(d×OPTUG)+

(|VUG|
2

)
+d|VUG|+|Σ||VUG| whereOPTUG is the minimum

number of labels needed to satisfy the original Unique Gamesinstance.

Proof: The safe set of any node andz is only that node andz, so all edges incident toz need to
be present in any integral solution for a cost ofd|VUG| + |Σ||VUG|. Furthermore, for every pair
u, v ∈ VUG at least one edge must be present from(u × Σ) to (v × Σ) since if no such edge
existed there would be no way of connectingui andvi throughS(ui, vi) for any i ∈ [d]. This
adds

(|VUG|
2

)
to the total cost, so now we just need to prove that there must be at leastdOPTUG

edges between(VUG × [d]) and(VUG × Σ).
To show this, we will consider some arbitrary integral solution and partition the edges be-

tween(VUG × [d]) and(VUG ×Σ) into d parts where theith part consists of those edges incident
on nodes{xi : x ∈ VUG}. If every part has size at leastOPTUG then we are finished. To prove
that this is indeed the case, we will prove that for every part, the endpoints that are inVUG × Σ
actually form a valid solution to the Unique Games instance.So consider theith part of the par-
tition. Suppose that the associated label assignment does not form a valid solution to the Unique
Games instance. Then there is some pairu, v ∈ V such that none of the labels assigned tou and
none of the labels assigned tov are matched to each other in the permutation corresponding to
edge{u, v}. But this clearly implies that there is no safe path fromui to vi, as any such path
must be of length3 and pass through a label foru and a label forv that are matched to each in
the permutation corresponding to edge{u, v}. This is a contradiction since the integral solution
must be a valid solution.

Now we can finally prove Theorem 4.21:

Theorem 4.21 The flow LP forCONSTRAINED CONNECTIVITY-SUM has an integrality gap of
Ω(n

1
3
−ǫ) for any constantǫ > 0.

Proof: We will use the Unique Games instance of Lemma 4.18 in the above reduction. Lemma
4.19 implies that the flow LP has value at mostO(d|VUG|+ |VUG|

3−ǫ
1−3ǫ ) and Lemma 4.20 implies
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that any integral solution has size at leastΩ(dǫ|VUG|2) + |VUG|
3−ǫ
1−3ǫ ). If we let d = |Σ| =

|VUG|
2(1+ǫ)
1−3ǫ then this gives us an integrality gap of

Ω

(
ǫ|VUG|

4−4ǫ
1−3ǫ

|VUG|
3−ǫ
1−3ǫ

)

= Ω (ǫ|VUG|) .

It is easy to see that the number of nodesn in our reduction equalsd|VUG|+ |Σ||VUG|+ 1 which
in this case isΘ(|VUG|

3−ǫ
1−3ǫ ). Thus the integrality gap isΩ(n

1−3ǫ
3−ǫ ), which is sufficient since we

can setǫ to be arbitrarily small.
We can modify this construction to show a polynomial integrality gap for the flow LP for

CONSTRAINED CONNECTIVITY-DEGREEalso. We will need Unique Games instances with the
same parameters as in Lemma 4.18 but on the complete bipartite graph rather than the complete
graph. It is easy to see that Lemma 4.18 can be modified to provethe existence of these instance.
Now the modification is basically the same as the modificationwe made to show hardness: we
just maked2 copies of the inner Unique Games instance and connect them upto thed copies of
the outerxi andyi nodes in the obvious way. This is the proof of Theorem 4.22.

Theorem 4.22 The flow LP forCONSTRAINED CONNECTIVITY-DEGREE has an integrality
gap ofΩ(n

1
9
−ǫ) for any constantǫ > 0.

Proof: We only give a sketch of the proof here. The maximum degree of any node other
than the outerd copies of thex and y nodes is at most2|VUG|

3−ǫ
1−3ǫ , so if we setd equal to

that value we know that the maximum degree must be achieved bysome copy of anxi or yi.
By splitting up the flow equally as in the proof of Lemma 4.19 weknow that there is an LP
solution in which the maximum degree is at mostd|Σ|/|Σ| + d = 2d (where the extrad factor
is due to being adjacent to all associatedz copies). On the other hand, we know that any valid
integer solution must use at leastǫ|VUG|2 edges incident on copies ofxi or yi nodes for each
of the d2 instances. Thus there are at leastd2ǫ|VUG|2 edges incident on these nodes in total,
and since there ared|VUG| such nodes there must be at least one with degree at leastǫd|VUG|.
Thus the integrality gap is at leastǫd|VUG|/d = ǫ|VUG|. The total number of nodes in our
CONSTRAINED CONNECTIVITY-DEGREE instance isO(|VUG||Σ|d2) = O(|VUG|

9−3ǫ
1−3ǫ ), so this

means the integrality gap isΩ(n
1−3ǫ
9−3ǫ ). By settingǫ small enough this gives us the claimed gap of

Ω(n
1
9
−ǫ).

4.4 Hierarchical and Symmetric Safe Sets

In the hierarchical and symmetric safe set version of Constrained ConnectivityS(x, y) = S(y, x)
for all x, y ∈ V and if some nodez ∈ S(x, y) thenS(x, z) ⊆ S(x, y) andS(z, y) ⊆ S(x, y). We
show that a simple greedy algorithm solves this version optimally.

We say that a pair{x, y} is aneasypair if there is some nodez ∈ S(x, y) such thatS(x, z) ⊂
S(x, y) andS(y, z) ⊂ S(x, y). The pair{x, y} is hard otherwise. Note that in a hard pair{x, y},
every nodez in S(x, y) has eitherS(x, z) = S(x, y) or S(y, x) = S(x, y) by the hierarchy
property.
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Lemma 4.23 Let G be a graph that has a safe path for all hard pairs. Then all easypairs also
have a safe path inG, i.e.G is a feasible solution.

Proof: We prove that every pair{x, y} has a safe path inG by induction on the size of safe
sets. For the base case, all pairs{x, y} with |S(x, y)| = 2 are hard, so by assumption they have a
safe path inG. For the inductive step, suppose that there are safe paths for all pairs{u, v} with
|S(u, v)| < k, and let{x, y} be a pair with|S(x, y)| = k. If {x, y} is hard then by assumption
there is a safe path. If it is easy, then there is some nodez ∈ S(x, y) such thatS(x, z) ⊂ S(x, y)
andS(y, z) ⊂ S(x, y). Since these two subsets are strictly smaller, by inductionthere is anx−z
path contained inS(x, z) ⊂ S(x, y) and there is az − y path contained inS(y, z) ⊂ S(x, y).
Concatenating these paths give anx − y path contained inS(x, y).

This lemma means that we don’t have to worry about satisfyingeasy pairs, just hard ones.
We now prove a few useful and easy lemmas.

Lemma 4.24 Let{x, y} be a hard pair. ThenS(u, v) ⊆ S(x, y) for all u, v ∈ S(x, y).

Proof: Since{x, y} is hard eitherS(u, x) = S(x, y) or S(u, y) = S(x, y). Without loss of
generality we assume thatS(u, x) = S(x, y). This implies thatv ∈ S(u, x), so by the hierarchy
property we know thatS(u, v) ⊆ S(u, x) = S(x, y).

This clearly implies that ifG is a feasible solution and{x, y} is a hard pair thenG|S(x,y) is
connected and all pairsu, v ∈ S(x, y) have a safe path contained inS(x, y). We now prove some
lemmas about the structure of the optimal solution.

Lemma 4.25 Every edge{x, y} ∈ OPT is a hard pair.

Proof: Suppose{x, y} is an edge inOPT that is an easy pair. Then there is somez ∈ S(x, y)
such thatS(x, z) ⊂ S(x, y) andS(y, z) ⊂ S(x, y). Note thaty 6∈ S(x, z), since if it was then by
the hierarchy property we would have thatS(x, y) ⊆ S(x, z), soS(x, z) = S(x, y) contradicting
{x, y} being an easy pair. Similarly, we know thatx 6∈ S(y, z). SinceOPT is feasible there is
anx − z path inS(x, z) ⊂ S(x, y) and az − y path inS(y, z) ⊂ S(x, y), and by the previous
observation neither of them use the{x, y} edge. So there is anx− y safe path inOPT that does
not use the{x, y} edge. Any hard pair{u, v} that uses the{x, y} edge in a safe path can just
use the path we found throughz, since by Lemma 4.24S(x, y) ⊆ S(u, v). Thus if we remove
{x, y} all of the hard pairs still have a safe path, so by Lemma 4.23 sodo all of the easy pairs.
This contradictsOPT being optimal.

Order all hard pairs in nondecreasing order, breaking ties arbitrarily. We say{a, b} ≤ {c, d}
if {a, b} comes before{c, d} in this ordering. We partition the edges ofOPT as follows. Let
e = {u, v} be an edge inOPT , and let{x, y} be the first hard pair in the ordering such that
u ∈ S(x, y) and v ∈ S(x, y), and assigne to part OPT{x,y}. By Lemma 4.25 all edges in
OPT are hard pairs so this is a valid partition. LetOPT≤{x,y} = ∪{a,b}≤{x,y}OPT{a,b}, and let
OPT<{x,y} be defined analogously.

Lemma 4.26 Let{x, y} be a hard pair. ThenOPT≤{x,y}|S(x,y) is connected.

Proof: Let {u, v} be an edge inOPT |S(x,y). Then since{u, v} is a hard pair (by Lemma 4.25)
and{x, y} is a hard pair with bothu andv in S(x, y), by the definition of the partition the part
OPT{a,b} containing{u, v} must have{a, b} ≤ {x, y}. Thus{u, v} ∈ OPT≤{x,y}|S(x,y).

We now finally give our algorithm. First we construct the above ordering. We then consider
hard pairs in this order, and when considering a pair{x, y}we add the minimum number of edges
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required to make our current graph restricted toS(x, y) connected. This algorithm clearly returns
a feasible solution, since for any hard pair{x, y} at some point we consider it and make sure
that its safe set is connected and that is sufficient by Lemma 4.23. For every hard pair{x, y}, let
ALG{x,y} by the edges added by the algorithm when considering{x, y}, and defineALG<{x,y} =
∪{a,b}<{x,y}ALG{a,b} andALG≤{x,y} analogously. Now we will prove that|ALG| ≤ |OPT |.
Lemma 4.27 The endpoints of any edge inOPT<{x,y}|S(x,y) are connected inALG<{x,y}|S(x,y).

Proof: Let {u, v} be an edge inOPT<{x,y}|S(x,y). Then{u, v} ∈ OPT{a,b} for some{a, b} <
{x, y}. By definition, this means that{a, b} is the first pair in the ordering with a safe set that
contains bothu andv. By Lemma 4.24 we know thatS(u, v) ⊆ S(a, b). We also know that
{u, v} is a hard pair by Lemma 4.25, so ifS(u, v) ⊂ S(a, b) then{u, v} would be before{a, b}
in the ordering and would contain bothu andv, contradicting the definition of{a, b}. Thus
S(u, v) = S(a, b). After considering{a, b} the algorithm guarantees thatALG≤{a,b}|S(a,b) is
connected, and therefore there is a safeu−v path inALG after considering{a, b}. We also know
from Lemma 4.24 thatS(u, v) ⊆ S(x, y), so this safe path is entirely present inALG<{x,y}|S(x,y)

and thusu andv are connected inALG<{x,y}|S(x,y).

Theorem 4.28 |ALG| ≤ |OPT |
Proof: We will prove that|ALG{x,y}| ≤ |OPT{x,y}| for all hard pairs{x, y}. Since these form a
partition of the edges ofALG and ofOPT , this is sufficient to prove that|ALG| ≤ |OPT |. Con-
sider some such hard pair{x, y}. We know from Lemma 4.26 thatOPT≤{x,y}|S(x,y) is connected,
soOPT{x,y} must contain enough edges to connect the components ofOPT<{x,y}|S(x,y). By the
definition of the algorithm,ALG{x,y} has the minimum number of edges necessary to connect
the components ofALG<{x,y}|S(x,y). Now since the number of components inALG<{x,y}|S(x,y)

is at most the number of components ofOPT<{x,y}|S(x,y) (by Lemma 4.27), this implies that
|ALG{x,y}| ≤ |OPT{x,y}|.
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