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Abstract

Creating coordinated multiagent policies in environmentswith uncertainty is a challenging
problem, which can be greatly simplified if the coordinationneeds are known to be limited to
specific parts of the state-space. In this work, we explore how such local interactions can simplify
coordination in multiagent systems. We focus on problems inwhich the interaction between the
agents is sparse, exploiting this property to minimize the coupling of the decision processes for
the different agents. We contribute a new decision-theoretic model for multiagent systems, Dec-
SIMDPs, that explicitly distinguishes the situations in which the agents in the team must coordinate
from those in which they can act independently. We relate ournew model to other existing models
from the literature, such as MMDPs and Dec-MDPs. We then propose a solution method that takes
advantage of the particular structure of Dec-SIMDPs and provide theoretical error bounds on the
quality of the obtained solution. Finally, we illustrate the performance of our method in several
simulated navigation problems.





1 Introduction

Decision-theoretic models such as Dec-MDPs and Dec-POMDPsprovide a rich framework to
tackle decentralized decision-making problems. However,using these models to create coordinated
multiagent policies in environments with uncertainty is a challenging problem, even more so if the
decision-makers must tackle issues of partial observability. As such, solving Dec-POMDPs is a
NEXP-complete problem and thus computationally too demanding to solve except for the simplest
scenarios.

Recent years have witnessed a profusion of work on Dec-(PO)MDP-related models that aim at
capturing some of the fundamental features of this class of problems such as partial observability
without incurring in the associated computational cost. Inthis paper, we contribute to this area of
research, and propose a new model for cooperative multiagent decision-making in the presence of
partial observability. Our model is motivated by the observation that, in many real-world scenarios,
the tasks of the different agents in a multiagent system are not coupled at every decision-step but
only in relatively infrequent situations. We dub such problems as havingsparse interaction.

Multi-robot systems provide our primary motivation and constitute natural examples for the
class of problems considered herein. In multi-robot systems, the interaction among the different
robots is naturally limited by each robot’s physical boundaries, such as workspace or commu-
nication range, and limited perception capabilities. Therefore, when programming a multi-robot
system to perform some task, one natural approach is to subdivide this task into smaller tasks that
each robot can then execute autonomously or as part of a smaller group (see, for example, Fig. 1).

Other examples include problems of sequential resource allocation, in which groups of agents
must interact only to the extent that they need to share some common resource. In this context,
several methods have been proposed that leverage sparse interactions by decomposing the “global”
problem into several smaller “local” problems that can be solved more efficiently, and then com-
bining the obtained solutions [23, 28]. Such approaches, however, are not particularly concerned
with partial observability issues.

Several previous works have exploited simplified models of interaction in multiagent settings.
For example, learning tasks involving multiple agents can be partitioned in a state-wise manner,
allowing different agents to independently learn the resulting “smaller tasks” [31]. Similarly, a
hierarchical learning algorithm can be used that considersonly interaction between the different
agents at a higher control level, while allowing the agents to learn lower level tasks independently
[10]. Other works use coordination graphs to compactly represent dependences between the actions
of different agents, thus capturing the local interaction between them [14, 17]. Local interactions
have also been exploited to minimize communication during policy execution [25] and in the game-
theoretic literature to attain compact game representations. Examples include graphical games [15]
and action-graph games [35].

In this paper we consider Dec-MDPs with sparse interactions, henceforth Dec-SIMDPs. Dec-
SIMDPs leverage the independence between agents to decouple the decision process in significant
portions of the joint state-space. On those situations in which the agents interact – theinteraction
areas, – Dec-SIMDPs rely on communication to bring down the computational complexity of the
joint decision process. Dec-SIMDPs “balance” the independence assumptions with observability:
in any given state, the agents are either independent or can share state information (e.g., by com-
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Figure 1: Example of a simple navigation task. Goals are marked with red, dashed lines. While
Robot3 can navigate to its goal, disregarding the remaining robots, Robots1 and2 need to coordi-
nate so as not to cross the narrow doorway simultaneously. However, this coordination needs only
occur around the doorway.

municating).1 A related model has recently been proposed under the designation of distributed
POMDPs with coordination locales [32].

The contributions of this paper are two-fold. On one hand we provide a precise formalization
of the Dec-SIMDP model and discuss in some detail the relation with well-established decision-
theoretic models such as Dec-MDPs, MMDPs and MDPs. On the other hand, we contribute two
new algorithms that exhibit significant computational savings when compared to existing algo-
rithms for Dec-SIMDPs, and illustrate their application inseveral simple navigation tasks.

2 Decision Theoretic Models for Multiagent Systems

We now review several standard decision theoretic models, pinpointing the main differences be-
tween these. We start with single agent models, namely Markov decision problems (MDPs) and
their partially observable counterparts (POMDPs) before moving to multiagent models such as
multiagent MDPs (MMDPs) and their partially observable counterparts (Dec-MDPs). The purpose
of this introductory section is to establish the notation used throughout the paper and review some
fundamental concepts and results that will play a fundamental role in the development to come.

2.1 Markov Decision Processes

A Markov decision problem(MDP) describes a sequential decision problem in which a single agent
must choose the sequence of actions that maximizes some reward-based optimization criterion.
Formally, an MDP is a tupleM = (X,A,P, r, γ), whereX represents the finite state-space,A
represents the finite action-space,P(x, a, y) represents the transition probability from statex to

1Both independence assumptions and communication can significantly bring down the computational complexity
in Dec-(PO)MDP related models [3, 12].
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statey when actiona is taken andr(x, a) represents the expected reward for taking actiona in state
x. The scalarγ is a discount factor.

A Markov policy is a mappingπ : X ×A −→ [0, 1] such that, for allx ∈ X ,
∑

a∈A

π(x, a) = 1.

The purpose of the agent is to determine a policyπ so as to maximize, for allx ∈ X ,

V π(x) = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x

]

,

whereX(t) denotes the state at timet, A(t) denotes the action taken at that time instant such that

P [A(t) = a | H(t) = h] = P [A(t) = a | X(t) = x] = π(x, a),

whereH(t) = {X(0), A(0), . . . , X(t− 1), A(t− 1), X(t)} is the random variable corresponding
to the history of the process up to timet, andh denotes a particular realization ofH(t) such that
X(t) = x. We define theQ-function associated with a policyπ as

Qπ(x, a) = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x,A(0) = a

]

.

where, again,A(t) ∼ π for all t > 0.
For any finite MDP, there is at least oneoptimal policyπ∗ such that

V π∗

(x) ≥ V π(x)

for anyπ and everyx ∈ X . The corresponding value function is denoted byV ∗ and verifies the
Bellman optimality equation,

V ∗(x) = max
a∈A

[

r(x, a) + γ
∑

y∈X

P(x, a, y)V ∗(y)

]

. (1)

The associatedQ-function in turn verifies

Q∗(x, a) = r(x, a) + γ
∑

y∈X

P(x, a, y)max
u∈A

Q∗(y, u). (2)

The optimal policy can be recovered directly fromQ∗ by settingπ∗(x, a) > 0 only if a ∈ argmaxu Q
∗(x, u).

As such, the solution for any given MDP can be obtained by computing the corresponding optimal
Q-function,Q∗.

For future reference, given a functionsq defined overX × A, we define theBellman operator
H as

(Hq)(x, a) = r(x, a) + γ
∑

y∈X

P(x, a, y)max
u∈A

q(y, u). (3)

The functionQ∗ in (2) is the fixed-point ofH and thus can be computed,e.g., by iteratively applying
H to some initial estimateQ(0), a dynamic programming (DP) method known asvalue iteration.
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2.2 Partially Observable Markov Decision Processes

Partially observable MDPsdescribe problems essentially similar to MDPs, in which an agent must
choose a sequence of actions to maximize a reward-based criterion. However, unlike MDPs, in a
POMDP the agent has only access to the underlying state of theprocess,X(t), by means of indirect
observations. Formally, a POMDP is a tuple(X ,A,Z,P,O, r, γ), whereX is the finite state-space,
A is the finite action-space andZ is the finite observation space. As before,P(x, a, y) represents the
transition probability from statex to statey when actiona is taken, and nowO(x, a, z) represents
the probability of observationz given that the state isx and actiona was taken,i.e.,

O(x, a, z) = P [Z(t+ 1) = z | X(t + 1) = x,A(t) = a] .

Finally,r(x, a) again represents the expected reward for taking actiona in statex andγ is a discount
factor.

A non-Markov policy is a mappingπ : H −→ [0, 1] such that, for allh ∈ H,
∑

a∈A

π(h, a) = 1,

whereh = {a(0), z(1), a(1), . . . , a(t− 1), z(t)} is afinite history, i.e., a finite sequence of action-
observation pairs. As before, the history observed up to time t is a random variable, denoted as
H(t), and denote byH the set of all possible finite histories for the POMDP. The purpose of the
agent is now to determine a policyπ so as to maximize, for all probability vectorsb,

V π(b) = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) ∼ b

]

,

whereX(0) ∼ b denotes the fact thatX(0) is distributed according tob. Similarly, we define the
Q-function associated with a policyπ as

Qπ(b, a) = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) ∼ b, A(0) = a

]

.

We refer to the probability vectorb in the expressions above as theinitial belief stateor just
the initial belief. It translates the “belief” that the agent has at timet = 0 regarding its state at that
time. From the initial belief and given the history up to timet, H(t), we can construct a sequence
{b(t)} of probability vectors recursively as

by(t+ 1) = Bel(b(t), A(t), Z(t+ 1))

, η
∑

x

bx(t)P(x,A(t), y)O(y, A(t), Z(t+ 1)),

whereBel is the belief update operator,bx(t) denotes thex component ofb(t) andη is a normal-
ization factor. We generally refer to the vectorb(t) as thebelief at timet. It corresponds to a
distribution over the unknown state at timet such that

bx(t) = P [X(t) = x | H(t)] .
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Given the POMDP model parametersP andO, every finite historyh ∈ H can be mapped to a belief
b. Moreover, for any given policy, two histories leading to the same belief will have the same value.
As such, beliefs can be used as compact representations of histories, and we can define policies in
terms of beliefs instead of histories [29]. In fact, it is possible to reinterpret a POMDP as an infinite
MDP in which the state-space corresponds to the set of all possible beliefs. Therefore, for any finite
POMDP, there is at least oneoptimal policyπ∗ such that

V π∗

(b) ≥ V π(b)

for anyπ and every initial beliefb. The corresponding value function is denoted byV ∗ and also
verifies the Bellman optimality equation,

V ∗(b) = max
a∈A

∑

x

bx

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)V ∗(Bel(b, a, z))

]

,

wherex, y take values inX , z takes values inZ andBel(b, a, z) corresponds to the updated belief
after taking actiona and observingz. The associatedQ-function in turn verifies

Q∗(b, a) =
∑

x

bx

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)max
u∈A

Q∗(Bel(b, a, z), u)

]

.

In spite of its representative power, POMDPs have been shownto be undecidable in the worst
case for infinite horizon settings such as those considered herein [19]. As such, exact solutions
can be computed only in very specific instances, and most approaches in the literature resort to ap-
proximate or heuristic methods. Good surveys on POMDP solution methods can be found,e.g., in
[1, 9].

We describe an MDP-based heuristic solution that will proveof later use in the paper. This
method is known asQMDP as it makes use of the optimalQ-function for the underlying MDP as
an estimate for the optimalQ-function for the POMDP. Since the optimal solution for the under-
lying MDP can be computed in a straightforward manner, this method is very simple and fast to
implement and attains good performance in many practical situations [9, 18].

Let M = (X ,A,Z,P,O, r, γ) be a POMDP with finite state, action and observation spaces.
Associated with this POMDP there is an underlying MDP̄M = (X,A,P, r, γ). Let Q̄∗ be the
optimalQ-function forM̄. QMDP uses an estimate for the optimalQ-function for the POMDP
given by

Q̂(b, a) =
∑

x

bxQ̄
∗(x, a).

When usingQMDP, the agent acts under the implicit assumption that state uncertainty only affects
the immediate decision,i.e., after one decision the agent will act on the underlying MDP.This
sometimes leads to poor performance and several works have proposed further improvements on
QMDP to address this issue [9, 21], but we do not pursue such discussion here.
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2.3 Multiagent MDPs

Multiagent Markov decision processes(MMDPs) generalize MDPs to multiagent cooperative sce-
narios. MMDPs describe sequential decision tasks in which multiple agents must each choose
a sequence of individual actions that jointly maximize somecommon reward-based optimization
criterion. Formally, an MMDP is a tupleM = (N,X, (Ak),P, r, γ), whereN is the number of
agents,X represents the finite state-space,Ak is the finiteindividualaction space of agentk. As in
MDPs,P(x, a, y) represents the transition probability from statex to statey when thejoint action
a = (a1, . . . , aN) is taken;r(x, a) represents the expected reward received byall agents for taking
the joint actiona in statex. In an MMDP all agents receive the same reward, which impliesthat
MMDPs representfully cooperativemultiagent tasks.

As noted above, a joint actiona is a tuplea = (a1, . . . , aN) and we denote byA = ×N
k=1Ak the

set of all possible joint actions – the joint action space. For k = 1, . . . , N , let

A−k = A1 × . . .×Ak−1 ×Ak+1 × . . .×AN .

We writea−k to denote a general element ofA−k, k = 1, . . . , N and refer to any such action as a
reduced joint actionor simply a reduced action. We writea = (a−k, ak) to denote the fact that the
joint actiona is composed by the reduced actiona−k and the individual actionak for agentk.

In this work, we also assume that the state-spaceX can be factored asX = X0×X1× . . .×XN .
As such, each elementx ∈ X is a tuplex = (x0, . . . , xN ), with xk ∈ Xk, k = 0, . . . , N . For any
x ∈ X , we refer to the pair(x0, xk) as the local state of agentk, and generally denote it as̄xk. Note
that this factorization implies no loss of generality, as any set can be factorized as indicated above
by considering singleton setsX1, . . . ,XN .2

An individualMarkov policy for agentk is a mappingπk : X ×Ak −→ [0, 1] such that, for all
x ∈ X ,

∑

ak∈Ak

πk(x, ak) = 1.

Similarly, a joint policy is a mappingπ : X × A −→ [0, 1] that we take as the combination ofN
individual policies,i.e.,

π(x, a) =
N
∏

k=1

πk(x, ak),

wherea = (a1, . . . , aN). As we do with actions, we writeπ−k to denote areduced policyand
π = (π−k, πk) to denote the fact that the joint policyπ is composed by the reduced policyπ−k and
the individual policyπk for agentk.

In an MMDP, the purpose ofall agents is to determine a joint policyπ so as to maximize, for
all x ∈ X ,

V π(x) = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x

]

,

2Not all multiagent problems can effectively leverage this factorization of the state-space to simplify the decision
process. However, there are problems in which this factorization can significantly simplify the decision process and
bring significant computational savings.
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whereX(t) denotes the state at timet andA(t) denotes the joint action taken at that time instant.
TheQ-function associated with a joint policyπ is defined fromV π as its single-agent counterpart.

We conclude by noting that, for the purposes of planning,i.e., computing the optimal policy,
an MMDP is indistinguishable from an ordinary MDP. It is onlyat execution timethat an MMDP
differs from an MDP, since the process of decision making is not centralized, but distributed. This
poses severe difficulties when we move to partially observable settings.

2.4 Dec-MDPs

Decentralized MDPs (Dec-MDPs) are partially observable generalizations of MMDPs. As in
MMDPs, the agents in a Dec-MDP must each choose a sequence of individual actions that jointly
maximize some common reward-based optimization criterion. Unlike MMDPs, however, the agents
can only access the global state of the process by means of local indirect observations. Formally, a
Dec-MDP can be represented a tuple

M = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ),

whereN is the number of agents,X = ×N
k=0Xk is the joint state-space,A = ×N

k=1Ak is the set
of joint actions, eachZk represents the set of possible local observation for agentk, P(x, a, y)
represents the transition probabilities from joint statex to joint statey when the joint actiona
is taken, eachOk(x, a, zk) represents the probability of agentk making the local observationzk
when the joint state isx and the last action taken wasa, andr(x, a) represents the expected reward
received by all agents for taking the joint actiona in joint statex. The scalarγ is a discount factor.
In a Dec-MDP, for every joint observationz ∈ Z, there is a statex ∈ X such that

P [X(t) = x | Z(t) = z] = 1.

This means that, in a Dec-MDP, the agents havejoint full observability: if all agents share their
observations, they can recover the state of the Dec-MDP unambiguously.

Throughout this work, we consider only Dec-MDPs withlocal full observability, meaning that
each agent can infer from its local observations the corresponding local state unambiguously. For-
mally this can be translated into the following condition: for every local observationzk ∈ Zk there
is a local statēxk ∈ X0 ×Xk such that

P
[

X̄k(t) = x̄k | Zk(t) = zk
]

= 1.

Although more general Dec-MDP models are possible, we adhere to this simplified version, as this
is sufficient for our purposes and makes the presentation both clearer and simpler. We refer to [6]
for a more general formulation.

For future reference, define the set

X−k = X0 × . . .× Xk−1 ×Xk+1 × . . .×XN .

and denote byx−k a general element ofX−k. As with actions, we writex = (x−k, xk) to denote
the fact that thekth component ofx takes the valuexk.
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In this partially observable multiagent setting, an individual non-Markov policy for agentk is a
mappingπk : Hk −→ [0, 1] such that, for allhk ∈ Hk,

∑

ak∈Ak

π(hk, ak) = 1,

wherehk = {ak(0), zk(1), . . . , ak(t− 1), zk(t)} is anindividual historyfor agentk, i.e., a sequence
of individual action-observation pairs.Hk is the set of all possible finite histories for agentk and
we denote byHk(t) the random variable that represents the history of agentk at timet.

Like in POMDPs, in a Dec-MDP each agent has only partial perception of the global state.
Therefore, from the agent’s perspective, its local state isnon-Markovian– the current local state
and action are not sufficient to uniquely determine its next local state. It is also noteworthy that,
in the general multiagent setting, there is no compact representation of histories that plays the
role of beliefs in POMDPs. This implies, in particular, thatthe passage from MMDP to its partially
observable counterpart is fundamentally different from the same passage in single-agent scenarios.3

However, if communication between the agents is instantaneous, free and error-free, then a Dec-
MDP reduces to a MMDP, and partial observability is no longeran issue.

In a Dec-MDP, the purpose of all agents is to determine a jointpolicy π so as to maximize
the total sum of discounted rewards. In order to write this interms of a function, we consider a
distinguished initial state,x0 ∈ X , that is assumed common knowledge among all agents.4 The
purpose of the agents is then to maximize

V π = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x0

]

.

Transition-independent Dec-MDPsconstitute a particular subclass of Dec-MDPs in which, for
all (x, a) ∈ X ×A,

P [X0(t+ 1) = y0 | X(t) = x,A(t) = a] = P [X0(t+ 1) = y0 | X0(t) = x0] (4a)

P [Xk(t+ 1) = yk | X(t) = x,A(t) = a] = P
[

Xk(t+ 1) = yk | X̄k(t) = x̄k, Ak(t) = ak
]

. (4b)

The transition probabilities can thus be factorized as

P(x, a, y) = P0(x0, y0)
N
∏

k=1

Pk(x̄k, ak, yk), (5)

where

P0(x0, y0) = P [X0(t+ 1) = y0 | X0(t) = x0]

Pk(x̄k, ak, yk) = P
[

Xk(t + 1) = yk | X̄k(t) = x̄k, Ak(t) = ak
]

.

3This fact can also be observed by considering the worst-casecomputational complexity of each of the different
models. In finite horizon settings, POMDPs are PSPACE-complete, versus the P-completeness of fully observable
MDPs [24]. In multiagent settings, however, Dec-MDPs are NEXP-complete [6] even in the “benign” 2-agent case,
versus the P-completeness of MMDPs.

4In fact, the Dec-MDP definition should explicitly include the initial statex0. However, in order to avoid cluttering
the notation, we omit the explicit reference to this initialstate in the Dec-MDP tuple, with the understanding that one
such state is implicit.

8



This particular class of Dec-MDPs was introduced in [5] and seeks to exploit a particular form of
independence to somehow bring down the computational complexity required to solve such models.
In this class of problems, the local state of each agent constitutes a sufficient statistic for its history,
and the optimal policy for each agent can thus be computed in terms of this individual state [12].
This particular class of Dec-MDPs has been shown to be NP-complete in finite-horizon settings,
versus the NEXP-completeness of general Dec-MDPs [12].

Similarly, reward independent Dec-MDPscorrespond to a subclass of Dec-MDPs in which, for
all x, a,

r(x, a) = f(rk(x̄k, ak), k = 1, . . . , N), (6)

i.e., the global reward functionr can be obtained from local reward functionsrk, k = 1, . . . , N . To
ensure consistency of the decision process, we also requirethat

f(r−k(x−k, a−k), rk(x̄k, ak)) ≥ f(r−k(x−k, a−k), rk(x̄k, uk))

if and only if
rk(x̄k, ak) ≥ rk(x̄k, uk).

One typical example is

r(x, a) =

N
∑

k=1

rk(x̄k, ak), (7)

wherex = (x0, . . . , xN) anda = (a1, . . . , aN). Interestingly, it was recently shown [2, 3] that
reward independent Dec-MDPs retain NEXP-complete complexity. However, when associated
with transition independence, reward independence implies that a Dec-MDP can be decomposed
intoN independent MDPs, each of which can be solved separately. The complexity of this class of
problems thus reduces to that of standard MDPs (P-complete).

3 Decentralized Sparse-Interaction MDPs (Dec-SIMDPs)

We now depart from the transition-independent Dec-MDP and introduce a new model for multi-
agent decision problems that is, at the same time, more general and more specific than transition
independent Dec-MDPs. In the previous section we discussedhow different degrees of indepen-
dence between the agents in a Dec-MDP translate in terms of reduced worst-case complexity. This
discussion is summarized in the diagram in Fig. 2.5

The goal of this paper is to exploit sparse interactions among the different agents in a Dec-MDP.
In particular, we are interested in Dec-MDPs in which there is some level of both transition and
reward dependency, but this dependency is limited to specific regions of the state-space. Therefore,
in the diagram of Fig. 2, our model would correspond to the open blue circle.

5In the diagram we have included a “complexity gap” between the P and NP classes. Formally, that such a gap
actually exists must yet be proved. However, for illustration purposes, we have included it in the diagram, translating
the common belief that P6=NP.
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Figure 2: Currently known complexity results for differentsub-classes of Dec-MDPs (see discus-
sion in the main text). We refer to [2] for formal proofs of most such results.

We start with a couple of definitions that will be used to refinethe notions of transition and
reward independence described in Section 2.4. LetK = {k1, . . . , km} be a subset of agents in a
Dec-MDP. We denote by

XK = X0 × Xk1 × . . .×Xkm

the joint state-space of all agents inK. Extending the notation introduced in Section 2, we write
X−K to denote the joint state-space of the agentsnot in K. We writexK to denote a general element
of XK andx−K to denote a general element ofX−K . We writex = (x−K , xK) to distinguish the
components ofx corresponding to agents inK and those corresponding to agents not inK.

Also we decompose the reward function for a Dec-MDP as

r(x, a) =

N
∑

k=1

rk(x̄k, ak) +

M
∑

i=1

rIi (xKi
, aKi

), (8)

where eachrk corresponds to an individual component of the reward function that depends only
on agentk and there areM sets,Ki, i = 1, . . . ,M , andM reward components,rIi (the interaction
components), each depending on all the agents inKi and only on these.

The decomposition in (8) can be performed at no loss of generality, since any rewardr can
be trivially written in that form by settingM = 1, rk ≡ 0, K1 = {1, . . . , N}, andrI1 = r. The
scenarios that we are interested in, however, are those in which the support of

∑M
i=1 r

I
i – the subset

of X ×A in which this sum is non-zero – is small when compared withX ×A.

Definition 3.1. In a Dec-MDPM = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ), an agentk0 is indepen-
dentof agentk1 in a statex ∈ X if the following conditions both hold at statex:

• The transition probabilities for the individual state of agent k0 at x do not depend on the
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state/action of agentk1, i.e.,

P [Xk0(t+ 1) = yk0 | X(t) = x,A(t) = a]

= P [Xk0(t+ 1) = yk0 | X−k1(t) = x−k1 , A−k1(t) = a−k1 ] .

• It is possible to decompose the global reward functionr(x, a) as in(8) in such a way that no
agent setKi contains bothk0 andk1.

When any of the above conditions does not hold, agentk0 is said todependon agentk1 in x.
Similarly, agentk0 is independent of a set of agentsK = {k1, . . . , km} at statex if the above
conditions hold simultaneously for allk ∈ K in statex, and dependent otherwise.

Roughly speaking, an agentk0 depends on another agentk1 in a particular state if either the
reward function or the transition probabilities or both cannot be decomposed so as to decouple the
influence of each agent’s individual state and action. Note however that the dependence relation
is not symmetrical: even if agentk0 depends on agentk1, the reverse need not hold. In fact, it is
possible that the two agents are reward independent and thatthe transition probabilities from state
xk0 depend on the individual state/action of agentk1 without the reverse holding.

Definition 3.2. In a Dec-MDPM = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ) a set of agentsK interact
at statex ∈ X if the following conditions simultaneously hold

• If k0 ∈ K and agentk0 depends on agentk1 in statex, thenk1 ∈ K.

• If k1 ∈ K and there is an agentk0 that depends on agentk1 in statex, thenk0 ∈ K.

• There is no strict subsetK ′ ⊂ K such that the above conditions hold forK ′.

If the agents in a setK interact in a statex, then we refer toxK as aninteraction statefor the
agents inK.

The concept of interaction introduced above captures a local dependence between a set of agents
in a Dec-MDP. Note that, ifxK is an interaction state for the agents inK, this does not mean that
each agentk in K depends on all other agents in that statex. Instead, it means that there is at least
one agent inK that either depends onk or k depends on it. Note also that the definition above is
transitive in the following sense: if agentsk0 andk1 interact at some statex and agentsk1 andk2
interact at that same statex, then agentsk0 andk2 interact atx.

Definition 3.3 (Interaction Area). Let M = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ) be a generalN-
agent Dec-MDP. We define aninteraction areaX I as follows:

(i) X I ⊂ XK for some set of agentsK;

(ii) There is at least one statex∗ ∈ X I such thatx∗ is an interaction state for the agents inK;

(iii) For any x ∈ X I , aK ∈ AK andy /∈ X I ,

P [XK(t + 1) = y | XK(t) = x,AK(t) = aK ] = P0(x0, y0)
∏

k∈K

P(xk, ak, yk);

11



(iv) The setX I is connected.6

An agentk is involved in an interaction at timet if there is one interaction areaXI involving a set
of agentsK such thatk ∈ K andX(t) = x, withx = (xK , x−K) andxK ∈ X I .

Let us briefly review conditions i through iv. The first condition states that each interaction
area will involve a subsetK of the agents in a Dec-MDP. The second condition ensures thatin
every interaction area there is at least one interaction state involving all agents inK. This seeks to
minimize the number of agents involved in each interaction.Condition iii defines interaction areas
as regions of the state-space “around” an interaction state. This is perhaps most easily visualized
in a robot navigation task. Returning to the scenario in Fig.1, one interaction state could be
xnarrow
−3 = (xnarrow

1 , xnarrow
2 ), corresponding to the situation in which both agents 1 and 2 are in the

narrow doorway. In this case, an interaction area should include the statexnarrow
−3 and at least those

states inX1 ×X2 immediately adjacent to it. In this navigation example, in order for two agents to
avoid crashing in the narrow doorway, they must coordinatebeforeactually reaching the doorway
and hence the inclusion of neighboring states in the interaction area associated with this interaction
state. Finally, condition iv merely states that interaction areas are sets of “adjacent” states.

The purpose of defining/identifying the interaction areas in a Dec-MDP is to single out those
situations in which the actions of one agent depend on other agents. An agent that is not involved
in any interaction should be able to choose its individual actions somewhat independently of the
other agents and thus be unaffected by partial joint state observability. In contrast, when in an
interaction area, the agent should use state information from the other agents in the interaction area
when choosing its actions. It is important to note that, unlike interaction states, interaction areas are
not disjoint: an agent can be simultaneously involved in an interaction at two different interaction
areas.

In this paper we are interested in those problems for which all agents involved in an interaction
in a particular interaction areaX I ⊂ XK at timet have full access to the stateXK(t). We henceforth
refer to such a Dec-MDP as havingobservable interactions, a concept that we formalize in the next
definition.

Definition 3.4. A Dec-MDP hasobservable interactionsif for any interaction areaX I involving a
setK of agents it holds that for eachk ∈ K there is a set of local observationsZI

k ⊂ Zk such that
for everyx ∈ X I

P
[

Zk(t) ∈ ZI
k | XK(t) ∈ X I

]

= 1

and, for everyzk ∈ ZI
k there is a local statexK ∈ X I such that

P [XK(t) = xK | Zk(t) = zk] = 1.

Our focus on Dec-MDPs with observable interactions, although apparently restrictive, actually
translates a property often observed in real-world scenarios: when involved in an interaction, agents
are often able to observe/communicate information that is relevant for coordination. In a sense,

6In this context we say that a setU ⊂ X is connectedif, for any pair of statesx, y ∈ U , there is a sequence of
actions that, with positive probability, yields a trajectory {x(0), . . . , x(T )} such thatx(t) ∈ U, t = 0, . . . , T , and either
x(0) = x andx(T ) = y or vice-versa.
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Robot 1 Robot 2

Switch 1 Switch 2

Communication

channel

Figure 3: Example of a simple navigation task. The two robots, 1 and 2, must simultaneously ac-
tivate the corresponding switch, marked with the same number and color. In this scenario, coordi-
nation needs only to occur when the robots are in the switch cells. For the purpose of coordination,
the two switch cells have been equipped with a communicationchannel that allows the two robots
to coordinate.

interaction areas encapsulate the need for information sharing in a general multiagent decision
problem.

Generally, one may interpret interaction areas in one of twoways:

• As arising naturally from the sensory information available to the agents. The example in
Fig. 1 provides an illustration of one such situation: the interaction between Robots 1 and 2
occurs only when both robots stand in opposite sides of the narrow doorway. In this situa-
tion, spacial proximity of the agents will typically allow the robots to perceive each other’s
state and/or communicate, allowing the agents to use joint state information in the decision
process.

• As arising specifically to address inter-agent dependences. In this class of scenarios, com-
munication capabilities are built into the agents specifically to allow for explicit handling
of interactions among agents. An example of one such situation is depicted in Fig. 3: the
interaction between Robots 1 and 2 occurs only at the switch locations. In these locations, a
communication channel has been setup that can be used for thetwo robots to coordinate.

The main distinction between the two situations depicted: in the former situation, interaction is
localized in such a way that it allows the agents to mutually perceive the state of the other; in the
latter, however, interaction arises from a coupling that ispart of the task definition. As such, full
state observability should be explicitly ensured – in this case by the communication channel. In
this paper, we are not concerned with the distinction between the two above situations.

We say that a Dec-MDPM = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ) hassparse interactionsif all
agents are independent except in a set ofM interaction areas,

{

XI
1 , . . . , X

I
M

}

, with XI
i ⊂ XKi

for some set of agentsKi, and such that|X I
i | ≪ |XKi

|. We refer to a Dec-MDP with sparse,
observable interactions as a Dec-SIMDP (decentralized sparse-interaction MDP). For all agents
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outside interaction areas, the joint transition probabilities and reward function for a Dec-SIMDP
can be factorized as in (5) and (7), and it is possible to modelthese agents using “individual MDPs”.
On the other hand, the agents involved in an interaction can be modeled using a “local” MMDP.

This leads to the central definition in this section.

Definition 3.5 (Dec-SIMDP). Let M = (N, (Xk), (Ak), (Zk),P, (Ok), r, γ) be a Dec-MDP with
sparse observable interactions, encapsulated in a set ofM interaction areas,

{

X I
1 , . . . ,X

I
M

}

, as
described above. We represent such adecentralized sparse-interaction MDP(Dec-SIMDP) as a
tuple

Γ =
(

{Mk, k = 1, . . . , N}, {(X I
i ,M

I
i ), i = 1, . . . ,M}

)

,

where

• EachMk is an MDPMk =
(

X0×Xk,Ak,Pk, rk, γ
)

that individually models agentk in the
absence of other agents, whererk is the component of the joint reward function associated
with agentk in the decomposition in(7);

• EachMI
i is an MMDP that captures alocal interactionbetweenKi agents in the states in

X I
i and is given byMI

i = (Ki,XKi
, (Ak),P

I
i , r

I
i , γ), withX I

i ⊂ XKi
.

Each MMDPMI
i describes the interaction between a subsetKi of theN agents, and the corre-

sponding state-spaceXKi
is a superset of an interaction area as defined above.

A Dec-SIMDP is an alternative way of representing a Dec-MDP with observable interactions.
In the states of each interaction area in a Dec-SIMDP, and only in these, the agents involved in
the associated MMDP areable to communicate freely. In these areas the agents can thus use
communication to overcome local state perception and decide jointly on their action. Outside these
areas, the agents have only a local perception of the state and should, therefore, choose the actions
independently of the other agents. A simple albeit innacurate way of thinking of a a Dec-SIMDP is
as a Dec-MDP in which each agent has access, at each time step,to all state-information required
to predict its next local state and reward. In the remainder of this section and throughout Section 4,
we assume interaction areas to be known in advance,i.e., they are provided as part of the model
specification. For a discussion on how these areas can be determined, we refer to [22].

It is interesting to explore the relation between the Dec-SIMDP model and the MDP, MMDP,
and Dec-MDP models. First of all, as expected, in the absenceof any interaction areas, the Dec-
SIMDP reduces to a set of independent MDPs that can be solved separately. This captures the
situation in which the agents are completely independent. On the other hand, given an Dec-SIMDP
Γ, it possible to construct an associated MMDPM whose optimal policies provide a performance
upper bound on the Dec-SIMDP solution. Our algorithm for Dec-SIMDPs arises precisely from
the consideration of this associated MMDP and is described in greater detail in the following sub-
section.

Finally, as discussed above, the Dec-SIMDP model is essentially a Dec-MDP model with joint
state observability in the interaction areas. In those situations in which all agents interact in all
states, as assumed in the general Dec-MDP model, the whole state-space is an interaction area
and, as such, our assumption of observable interactions renders our model equivalent to an MMDP.

14



Nevertheless, the appeal of the Dec-SIMDP model is that manypractical situations do not fall in
either of the two extreme casesi.e., independent MDPs vs. fully observable MMDP. It is in these
situations that the Dec-SIMDP model may bring an advantage over more general but potentially
intractable models.

4 Planning in Dec-SIMDPs

In this section we address the problem of planning in Dec-SIMDPs, i.e., estimating the optimal
policy for each agent in a Dec-SIMDP when the model is fully specified – this including the in-
teraction areas. We start by introducing a general heuristic approach to the problem of planning in
a Dec-SIMDP that relies on the solution for an associated POMDP. This leads to the two general
algorithms dubbed MPSI and LAPSI. We then introduce the concept ofgeneralizedα-vectorsfor
Dec-SIMDPs and describe instances of both MPSI and LAPSI that use generalized alpha-vectors.
We discuss some of the appealing features of these methods aswell as some interesting issues
raised by our solution method.

To minimize the disruption of the main text, we collected theproofs of all results in this Section
in Appendix A and provide only brief overviews as needed for the presentation.

4.1 Heuristic Planning in Dec-SIMDP

Let us start by considering a Dec-SIMDP in which all except one of the agents have full state
observability. Let this agent be agentk and let us further suppose that the remaining agents (those
with full state observability) follow some fixed known policy, π−k. Agentk can thus be modeled
as a POMDP and the other agents can be collectively regarded as part of the environment. In this
particular situation, any POMDP solution method can be usedto compute the policy for agentk.

Our heuristic departs from this simplified setting and computes a policy for each agentk as
if all other agents indeed had full observability and followed some fixed known policyπ−k. This
hypothesized policyπ−k will allow each agentk to approximately “track” the other agents and
choose its actions accordingly. The closerπ−k is to the actual policy of the other agents, the better
agentk will be able to track them, and the better he will decide.

This idea can be used in general Dec-(PO)MDPs. However, as the hypothesized policyπ−k

will seldom correspond to the actual policy followed by the other agents, it is only natural that this
method will not allow each agentk to properly “track” the other agents and decide accordingly,
this leading to poor results in general Dec-(PO)MDPs. The particular structure of Dec-SIMDPs,
however, renders this approach more appealing for two reasons: on one hand, outside interaction
areas the policy of agentk ideally exhibits minimum dependence on the state/policy ofthe other
agents. As such, poor tracking in these areas has little impact on the policy of agentk. In interaction
areas, on the other hand, local full observability allows agentk to perfectly track the other agents
involved in the interaction and choose its actions accordingly.

The two proposed algorithms, dubbed MPSI (Myopic Planning for Sparse Interactions) and
LAPSI (Look-Ahead Planning for Sparse Interactions), share the underlying idea described above
but arise from considering different hypothetical policies for the other agents. In MPSI, agentk
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considers each of the other agents as completely self-centered and oblivious to the interactions.
Agentk thus acts as if each agentj, j 6= k, acts according to a policyπj – the optimal policy for
the corresponding MDPMj in the Dec-SIMDP. In environments with almost no interaction, the
MPSI heuristic actually provides a good approximation to the policy of the other agents outside the
interaction areas.

In contrast, in LAPSI, agentk considers that all other agents jointly adopt the optimal policy
for the underlying MMDP.7 LAPSI is, in a sense, the counterpart to MPSI, as it provides agood
approximation to the policy of the other agents in scenarioswhere the interactions are not so sparse.

Using the corresponding hypothesized policies for the remaining agents, MPSI and LAPSI can
now leverage any POMDP solution methods to obtain a policy for each agentk. In the continuation
we introduce the concept ofgeneralizedα-vectors, that will later be used to construct particular
instances of both MPSI and LAPSI.

4.2 Generalizedα-vectors for Dec-SIMDPs

The two methods proposed in the previous subsection, MPSI and LAPSI, are described in terms of
general POMDP solvers and allow efficiently computing an individual policy for each agent in a
Dec-SIMDP. As seen in the previous section, this arises fromthe observation that, if all remaining
agents have full-state observability and follow some knownpolicy π−k, then agentk can be mod-
eled as a POMDP. In this section we follow on this idea and propose particular instances of both
MPSI and LAPSI that further exploit the structure of the Dec-SIMDPs model.

Using the POMDP model obtained by adopting the assumption above, agentk computes an in-
dividual policyπk that mapsbeliefsto actions. However, that agentk has full local state observabil-
ity, implying thatkth component of the state is always unambiguously determined. Furthermore,
given our assumption of observable interactions (see Definition 3.4), at each time step only those
state-components corresponding to agents not interactingwith agentk will be unobservable. How-
ever, by definition, the evolution of these state-components does not depend on the state/action of
agentk and depends only onπ−k. In the continuation, and to avoid unnecessarily complicating the
presentation, we focus on a 2-agent scenario, remarking however that the development presented
extends trivially to more than two agents at the cost of more cumbersome expressions.

Recovering the POMDP model for agentk, we have from Section 2,

Q∗(b, a) =
∑

x

bx

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)max
u

Q∗(Bel(b, a, z), u)

]

.

Taking into consideration that agentk has full local observability, the beliefb concerns only the
state component of the other agent. We write this explicitlyas

Q∗(x̄k,b−k, a)

=
∑

x
−k

bx
−k

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)max
u

Q∗(ȳk,Bel(b, a, z), u)

]

.

7We recall that a Dec-SIMDP is a particular class of Dec-MDP. The MMDP associated with the Dec-SIMDP is
thus the MMDP obtained by endowing all agents with full-state observability at all times.
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Noting now that the other agent is assumed to follow a fixed policy that depends only on the current
state, we can eliminate the explicit dependence on its action and write

Q∗(x̄k,b−k, ak)

=
∑

x
−k

bx
−k

[

rπ
−k
(x, ak) + γ

∑

z,y

Pπ
−k
(x, ak, y)O(y, a, z)max

uk

Q∗(ȳk,Bel(b, ak, z), uk)

]

.

where

rπ
−k
(x, ak) =

∑

a
−k

π−k(x, a−k)r
(

x, (a−k, ak)
)

Pπ
−k
(x, ak, y) =

∑

a
−k

π−k(x, a−k)P
(

x, (a−k, ak), y
)

.

Now, every time stept that agentk is in an interaction area, implying that so is the other agent,
it can unambiguously perceive their joint state and henceZk(t) = X(t). In all remaining time
steps,Zk(t) = X̄k(t), meaning that the agent observes only its local state. Denoting byXI the set
of all joint states in any interaction area,i.e., XI =

⋃M
i=1X

I
i , we have

Q∗(x̄k,b−k, ak)

=
∑

x
−k

bx
−k

[

rπ
−k
(x, ak) + γ

∑

y∈XI

Pπ
−k
(x, ak, y)max

uk

Q∗(ȳk, y−k, uk)

+ γ
∑

y/∈XI

Pπ
−k
(x, ak, y)max

uk

Q∗(ȳk,Bel(b, ak, ȳk), uk)

]

.

(9)

Let us now focus explicitly on two elements in the above expression, namely, the updated belief
Bel(·) and the optimalQ-function for the states in the interaction areas. Recall the general belief-
update expression from Section 2.2,

Bely(b, ak, Zk(t + 1)) = η
∑

x

bx(t)P(x,A(t), y)O(y, A(t), Zk(t+ 1)).

We note that, in the particular setting considered here, thebelief concerns only the distribution over
states of the other agent. As such, ifXk(t) = xk, we have

Bely
−k
(b, ak, Zk(t + 1)) = η

∑

x
−k

bx
−k
(t)Pπ

−k
(x,Ak(t), y−k)O(y−k, Ak(t), Zk(t+ 1)),

wherex = (x−k, x̄k) and

Pπ
−k
(x, ak, y−k) =

∑

a
−k

π−k(x, a−k)P−k

(

x−k, (a−k, a), y−k

)

.
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If the agents are not in an interaction area, the transitionsof the other agent does not depend on the
actions of agentk and hence the above expression simplifies to

Bely
−k
(b, ak, Zk(t+ 1)) = η

∑

x
−k

bx
−k
(t)Pπ

−k
(x, y−k)O(y−k, Ak(t), Zk(t + 1)).

If Xk(t+ 1) = ȳk andy = (y−k, ȳk) is in an interaction area, then agentk can observe the state
of the other agent and, as such,

Bely
−k
(b, ak, y) = ey

−k
.

For the general situation in whichy /∈ XI ,

Bely
−k
(b, ak, ȳk) = η

∑

x
−k

bx
−k
(t)Pπ

−k
(x,Ak(t), y−k)IX c

I
(y), (10)

where, for a general setU ⊂ X , IU is the indicator function forU andU c denotes the complement
of U in X .

Let us now consider the expression forQ∗(x̄k,b−k, ak) when the agents are in an interaction
area. In this case,b−k = ex

−k
for somex−k, and we have

Q∗(x̄k, x−k, ak)

= rπ
−k
(x, ak) + γ

∑

y∈XI

Pπ
−k
(x, ak, y)max

uk

Q∗(ȳk, y−k, uk)

+ γ
∑

y/∈XI

Pπ
−k
(x, ak, y)max

uk

Q∗(ȳk,Bel(b, ak, ȳk), uk).

(11)

Noting the similarity between the right-hand side of (11) and the term in square brackets in the
right-hand side of (9), we define ageneralizedα-vectorfor agentk, αk, recursively as follows:

αk(x, ak) = rπ
−k
(x, ak) + γ

∑

y

Pπ
−k
(x, ak, y)max

uk

αk(y, uk)IXI
(y)

+ γ
∑

yk

P(x̄k, ak, ȳk)max
uk

∑

y
−k

Pπ
−k
(x−k, y−k)αk(y, uk)IX c

I
(y).

(12)

Theorem 4.1. Given a two-agent Dec-SIMDPΓ, the generalizedα-vectors associated with agent
k when the other agent follows a fixed known policyπ−k are well-defined, i.e., they always exist
and are unique.

Proof. In order to minimize the disruption of the text, we include the complete proof of the theo-
rem in Appendix A, of which we present here only a brief sketch.

To establish this result, we introduce a dynamic-programming operatorTk such that

αk = Tkαk

and show this operator to be a contraction in the sup-norm. The statement in the theorem follows
from Banach’s fixed-point theorem. �
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It is worth noting that the operatorTk introduced in the proof of Theorem 4.1 can actually be
used to iteratively compute the generalizedα-vectors, in a way very similar to the value-iteration
algorithm used to compute the optimalQ-function for an MDP. And, in fact, the next result estab-
lishes that the generalizedα-vectors associated with a Dec-SIMDP can be computed efficiently.

Theorem 4.2. The generalizedα-vectors for a 2-agent Dec-SIMDPΓ verifying the conditions of
Theorem 4.1 can be computed in polynomial time.

Proof. The result follows from noting that the generalizedα-vectors can be computed by solving
an associated MDP. We again refer to Appendix A for a completeproof. �

Actually, an MDP is a particular case of a Dec-SIMDP in which there is a single agent. For
this particular Dec-SIMDP, the generalizedα-vectors indeed correspond to the optimalQ-values.
It then follows from the above result that computing the generalizedα-vectors for a Dec-SIMDP is
actually a P-complete problem.

We conclude by noting that all results extend naturally to scenarios with more than two agents.
For example, the definition in (12) takes the more general form

αk(x, ak) = rπ
−k
(x, ak) + γ

∑

yO

Pπ
−k
(xO, ak, yO)max

uk

∑

y−O

Pπ
−k
(x−O, y−O)αk(y, uk)

where we write a statey ∈ X asy = (yO, y−O). The componentsyO correspond to the observable
components ofy – those that belong to agents involved in an interaction withagentk, – andy−O

correspond to the remaining components.

4.3 Generalizedα-vectors in LAPSI and MPSI

We now propose using the generalizedα-vectors and use as estimatesQ̂(b, ak) for the optimal
Q-function for agentk,

Q̂(x̄k,b−k, ak) =
∑

x
−k

bx
−k
αk(x, ak). (13)

We point out that the approximation above shares several features with theQMDP algorithm re-
viewed in Section 2.2. In fact, as seen in our previous discussion, computing the generalized
α-vectors for a Dec-SIMDP can be done by solving and associated MDP, for which the above
approximation actually corresponds to theQMDP algorithm.

We now derive error bounds for the approximation in (13) thatdepend only on thedispersion
of the maximum values of the generalizedα-vectors outside the interaction areas. This result can
be extended to general POMDPs, providing error bounds for theQMDP algorithm that depend only
on the optimalQ-function for the underlying MDP.

Given anα-vectorαk(x, ak), let xO denote theobservablecomponents ofx – those corre-
sponding to agents interacting withk at x̄k, – andx−O the remaining components. We define the
dispersionof a set ofα-vectorsαk(x, ak), with x ∈ X andak ∈ Ak, as

δk = max
xO

∣

∣

∣

∣

∣

∣

max
uk

∑

x−O

αk((xO, x−O), uk)−
∑

x−O

max
uk

αk((xO, x−O), uk)

∣

∣

∣

∣

∣

∣

(14)
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The dispersion of a set ofα-vectors measures how the maximum value ofαk taken over all actions
differs from the corresponding average in the non-observable components of the state. In other
words, the dispersion quantifies how the lack of knowledge ofagentk on the state of the other
agents can impact the action choice of agentk in terms of value. This leads to the following result.

Theorem 4.3. Let M =
(

{Mk, k = 1, . . . , N}, {(X I
i ,M

I
i ), i = 1, . . . ,M}

)

be a Dec-SIMDP
and letπk denote the policy for agentk obtained from the approximation(13)when the policyπ−k

for the other agents is fixed and known. Then,

‖V ∗ − V πk‖∞ ≤
2γ2

1− γ
δk, (15)

whereδk represents the dispersion of the alpha-vectors associatedwith π−k.

Proof. See Appendix A. �

Theorem 4.3 translates well-known bounds for approximate policies to the particular setting
considered herein. Nevertheless, it prompts several interesting observations. First of all, as ex-
pected, the bound in (15) is proportional to the total dispersion of the generalizedα-vectors.
As noted before, the dispersion of the generalizedα-vectors somehow quantifies the fundamen-
tal trade-off being made in the approximation (13): it measures how much state uncertainty outside
the interaction areas can impact the choice of the maximizing action.

Secondly, it is clear that the bound in (15) is zero if one of two things happens, to know

• The whole state-space is an interaction area,i.e., XI = X . In this case, we recover the
MMDP version of the problem, as discussed in Section 3.

• There are no interaction states,i.e., XI = ∅. In this case, the definition of the generalized
α-vectors for agentk does not depend on the other agents, implying thatδk = 0.

Using the generalizedα-vectors in LAPSI and MPSI is now straightforward. Essentially, both
methods use the estimate in (13) to chooose the action for agent k. The difference between the
two methods thus lies on the policyπ−k hypothesized for the other agents, needed to both track
the beliefb−k and to compute theα-vectors. In MPSI,π−k is taken as the reduced policy obtained
from the individual policiespij , j 6= k, the optimal policy for the corresponding MDPMj in the
Dec-SIMDP. In contrast, in LAPSI,π−k is obtained from the optimal policy for the underlying
MMDP by ignoring componentk.

For illustration purposes, in the following section we apply both these methods to several prob-
lems of different dimension, using (13) as our estimate for the POMDP optimalQ-function. Our
results indicate that, even using such a sub-optimal POMDP solver, LAPSI is able to attain a perfor-
mance that is close to optimal in all test scenarios while incurring in a computational cost similar
to that of solving the underlying MMDP. MPSI, on the other hand, while computationally more
efficient, seems to lead to agents that are “too cautious”. Wealso compare our algorithms with a
previous algorithm for Dec-SIMDPs introduced in [30] and henceforth referred as the IDMG algo-
rithm. Our results indicate that LAPSI is able to attain similar performance to that of IDMG while
providing significant computational savings. We also show that the IDMG algorithm is, by design,
unable to consider future interactions when planning outside the interaction areas, this potentially
leading to poor performance. This limitation is not presentin LAPSI.
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Table 1: Dimension of the different test scenarios.

Environment # States

Map 1 441
Map 2 1, 296
Map 3 400
Map 4 65, 536

CIT 4, 900
CMU 17, 689
ISR 1, 849
MIT 2, 401

PENTAGON 2, 704
SUNY 5, 476

4.4 Results

In this section we describe the results obtained from applying both MPSI and LAPSI to a range of
problems of different dimensions, and analyze the performance of our methods in each of the test
scenarios. To gain a better understanding on the applicability and general properties of our methods,
we compared the performance of both MPSI and LAPSI to that of the optimal fully observable
MMDP policy and that of the IDMG algorithm from [30]. In the IDMG algorithm, each agentk in
a Dec-SIMDP

(

{Mk, k = 1, . . . , N}, {(X I
i ,M

I
i ), i = 1, . . . ,M}

)

follows the optimal individual
policyπk for the MDPMk outside the interaction areas. In the interaction areas, the agents engage
in a sequence of local matrix games in which they jointly adopt the equilibrium policy.

The different scenarios used to test our algorithm are depicted in Fig. 4, and the dimension of
the state-space for the corresponding Dec-MDP is summarized in Table 1. The reason for using
navigation scenarios is that the Dec-SIMDP model appears particularly appealing for modeling
multi-robot problems. Furthermore, in this class of problems, the results can be easily visualized
and interpreted. In each of the test scenarios, each robot ina set of two/four robots must reach
one specific state. In the smaller environments (Maps 1 through 4), the goal state is marked with
a number, corresponding to the number of the robot. The cellswith a boxed number correspond
to the initial states for the robots. In the larger environments, the goal for each robot is marked
with a cross,×, and the robots each depart from the other robot’s goal state, in an attempt to
increase the possibility of interaction. Each robot has 4 possible actions that move the robot in
the corresponding direction with probability0.8 and fail with probability0.2. The shaded regions
correspond to interaction areas, inside of which the darkercells correspond to interaction states, in
which the robots get a penalty of−20 if they stand in the same cell simultaneously. Also, in these
interaction states, the rate of action failure is increasedto 0.4.8 Upon reaching the corresponding
goal, each agent receives a reward of+1 and its position is reset to the initial state.

For each of the different scenarios in Fig. 4, we ran the four algorithms above and then tested

8Both the penalty and the increased action failure rate implythat there is both reward and transition dependence in
the interaction areas.
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Figure 4: Environments used in the experiments.
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Table 2: Total discounted reward for each of the four different algorithms in each of the test-
scenarios. The results are averaged over1, 000 independent Monte-Carlo runs. Bold entries corre-
spond to optimal values (differences are not statisticallysignificant). Also, italic entries correspond
to values whose differences are not statistically different.

Environment IDMG MPSI LAPSI Opt.

Map 1 12.035 11.130 11.992 12.588
Map 2 10.672 10.159 10.94711.069
Map 3 13.722 13.249 13.701 14.380
Map 4 − 15.384 15.564 16.447

CIT 11.178 11.105 11.126 11.151
CMU 2.839 2.688 2.824 2.906
ISR 14.168 13.937 13.997 14.335
MIT 6.663 6.641 6.648 6.681

PENTAGON 16.031 15.162 15.976 16.312
SUNY 11.161 11.130 11.139 11.110

Table 3: Total number of steps until the two robots reach the corresponding goals for each of the
four different algorithms in each of the test-scenarios. The results are averaged over1, 000 indepen-
dent Monte-Carlo runs. Bold entries correspond to optimal values (differences are not statistically
significant). Also, italic entries correspond to values whose differences are not statistically differ-
ent.

Environment IDMG MPSI LAPSI Opt.

Map 1 11.021 12.752 11.091 10.090
Map 2 13.368 14.433 12.82812.511
Map 3 8.450 9.282 8.477 7.477
Map 4 − 6.088 6.071 5.001

CIT 12.422 12.552 12.514 12.466
CMU 39.338 49.341 39.444 38.850
ISR 7.993 8.986 8.012 7.504
MIT 22.578 24.507 22.618 22.523

PENTAGON 5.348 19.684 5.416 5.006
SUNY 12.448 12.500 12.487 12.539

the computed policy for1, 000 independent trials of 100 steps each, in the smaller environments,
and 250 time-steps each, in the larger environments. The obtained results can be found in Tables 2
and 3.

First of all, that the LAPSI algorithm performed very close to the optimal MMDP policy in
all environments, in spite of the significant difference in terms of state information available to
both methods. Also, in most scenarios, LAPSI and IDMG performed similarly, both in terms
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Figure 5: Computation time for the different algorithms as afunction of the problem dimension.

of total discounted reward and in terms of time-to-goal. Theonly exceptions are Map 2, where
LAPSI outperformed IDMG, and ISR, where IDMG outperformed LAPSI. Interestingly, however,
the difference in terms of time-to-goal in the ISR environment is not significant. In any case, our
results agree with previous ones that showed that IDMG attained close-to-optimal performance in
most such scenarios [30].

Another interesting observation is that MPSI typically performed worse than the other methods.
As pointed out before, since an agent in MPSI considers the other agents to be selfish and disregard
the consequences of mis-coordinations (each is focused only on its individual goal), it is expected
that the agent following MPSI is more “cautious” and hence the observed longer time to the goal.

We note in our results that the difference in performance between LAPSI/IDMG and the optimal
MMDP policy occurs both in terms of total discounted reward and also in terms oftime-to-goal.
And indeed, given the discount factorγ, the latter in part explains the former: if the agents take
longer to reach their goal, the corresponding reward will befurther discounted. The above results
thus seem to indicate that both our algorithms and the IDMG algorithm require more time to reach
the goal configuration than that needed by MMDP solution, andthis time must be spent in avoiding
the penalties.

The choice of interaction areas greatly influences the ability of the algorithms to avoid penal-
ties without incurring in delays in reaching the goal. This phenomenon was also reported in [30]
concerning the IDMG algorithm.

It is also worth noting at this point that, since the IDMG method requires the computation of
several equilibria both in the off-line planning phase and in the on-line running phase, the computa-
tional complexity of the IDMG algorithm may quickly become prohibitive, in scenarios with large
action spaces and/or with many interaction areas. To assesswhether this is indeed so, we compared
the computational effort of our methods with that of IDMG, both in terms of the average off-line
computation time and the on-line computation time. These results are summarized in Fig. 5.

Both MPSI and LAPSI are significantly more computation efficient than the IDMG algorithm
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Goal 2

Robot 1

Robot 2
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Figure 6: Example scenario where avoiding the interaction may be beneficial.

according to any of the two performance metrics. It is also interesting to note how the average
computation times evolve with the dimension of the problem.

Finally, the IDMG method is, by construction, unable to consider future interactions when
planning for the action in a non-interaction area. In this sense, the IDMG algorithm is “myopic” to
such interactions and only handles these as it reaches an interaction area. This can have a negative
impact on the performance of the method, as seen in the following final example.

Consider the scenario depicted in Fig. 6. Once again, the tworobots must reach the marked
states while avoiding simultaneously crossing the narrow pathways. We model this problem using
a Dec-SIMDP: the two sets of shaded cells represent two interaction areas in which the robots only
get a non-zero penalty by standing simultaneously in the darker state. In this environment, and
ignoring the interaction, Robot 1 can reach its goal by usingeither of the narrow pathways, since
both trajectories have the same length. However, Robot 2 should use the upper pathway, since it is
significantly faster than using the lower pathway.

By using the IDMG algorithm, Robot 2 goes for the upper pathway while Robot 1 chooses
randomly between the two. For concreteness, let’s suppose that Robot 1 chooses to go for the
upper pathway. In this case, according to the IDMG algorithm, both robots reach the interaction
area simultaneously and Robot 1 must move out of the way for Robot 2 to go on. This means that,
in total, the two robots take a mean time of 9 steps to reach thegoal. If, instead, Robot 1 takes the
lower pathway, the two robots will reach their goal states in8 steps. Since the IDMG algorithm
chooses between the two randomly – or, at least, has no way to differentiate between the two –
the average time to the goal is 8.5 time-steps. We ran1, 000 independent trials using the IDMG
algorithm in this scenario and, indeed, obtained an averageof 8.485 steps to goal, with a standard
deviation of0.5. Clearly, it seems possible to do better in this scenario by simply considering that
it may be more convenient to use the lower pathway.

For comparison purposes, we also ran1, 000 independent trials using the LAPSI algorithm in
this same scenario. Out of1, 000 trials, Robot 1alwayspicked the lower pathway. As expected, the
group had an average time-to-goal of8 time-steps with a variance of0. Notice that this difference
could be made arbitrarily large by increasing the “narrow doorway” to an arbitrary number of states,
thus causing an arbitrarily large delay.
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5 Related Work

In the past decades, a wide range of models have been proposedto formalize decision-making
problems in multiagent systems. These include general models such as stochastic games [26] as
well as more specific models such as multiagent MDPs [8], Dec-(PO)MDPs [6], I-POMDPs [11]
among others. This paper follows on the extensive literature on Dec-(PO)MDP-related approaches.

The Dec-MDP and Dec-POMDP models were originally proposed by Bernstein et al. [6]. The
paper introduces both models and proceeds by analyzing the computational complexity of finite-
horizon Dec-MDPs and Dec-POMDPs. The fundamental result isthat finite-horizon Dec-MDPs
areNEXP-complete even for the “benign” 2-agent scenarios. Complexity results are even worst in
non-cooperative settings: non-cooperative partially observable stochastic games are complete for
theNEXPNP class [13].

These disencouraging complexity results have led to a significant amount of research on (i)
approximate methods for Dec-(PO)MDPs that, in a sense, trade-off optimality for computability;
and (ii) models that, while less general than Dec-POMDPs, still manage to capture fundamental
features of this class of problems such as decentralized control and partial state observability. These
models, in a sense, trade-off representability for computability.

Several of these models assume, to some degree, that the interaction between the different
agents can be simplified. For example intransition-independent Dec-MDPs[4, 5], the transition
probabilities for each agent depend solely on its own actions and local states (see Section 2.4). This
class of problems can be solved using the Coverage Set algorithm [5] and has been shown to be
NP-complete, in contrast with theNEXP-completeness of general Dec-MDPs.

As seen in Section 3, the Dec-SIMDP model proposed in this paper allows the transition prob-
abilities for an agent to depend on the actions of other agents in the interaction areas. In this sense,
it is more general than transition independent Dec-MDPs. Onthe other hand, to deal with these
dependences we assume joint state observability in these areas – or, equivalently, free instantaneous
communication. It remains an open question what is the worst-case complexity associated with the
Dec-SIMDP model.

Local interactions have also been exploited in other multiagent scenarios. For example, several
works propose the use of hierarchical approaches that allowthe agents to learn at different levels
of abstraction [10, 20, 31]. The idea in these approaches is to subdivide the overall task in a
hierarchy of subtasks, each restricted to the states and actions relevant to that particular subtask.
This task decomposition allows the subtasks to be conductedindividually, without requiring the
agents to know the state of others or communicate their own state. Going up in the hierarchy
thus corresponds to moving from low-level “local” tasks to higher-level “global” tasks, in which
coordination is necessary and must be accounted for explicitly. However, since execution at the
highest level actually corresponds to several low-level time-steps, this means that communication
needs are minimized.

Coordination graphs[14] capture local dependences between the different agents in an MMDP.
Coordination graphs thus allow the overallQ-function to be decomposed into “local”Q-functions,
each of which can be optimized individually. Coordination graphs have been used for efficient
planning [14] and learning [16] in large multiagent MDPs.

Both hierarchical approaches and coordination-graph-based approaches exploit local interac-
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tions between the agents and can thus accommodate some levelof partial state observablity, even
if not originally designed to. The interactions between theagents captured by coordination graphs
are closely related to the notion ofinteractionintroduced in Section 3. Also, as with the interac-
tion areas in the Dec-SIMDP model, both aforementioned works assume the coordination graph or
subtask hierarchy to be known in advance. A posterior work [17] introduces the concept of “utile
coordination”, proposing a method to actuallylearn the coordination graph structure. Unlike the
previous approaches [14, 16], this work does not assume thatthe coordination graph is known but,
instead, it is learned from experience. Although using a fundamentally different approach, it shares
the same underlying idea as [22]: both methods infer where joint-state information can improve the
performance of the agents.

In the game-theoretic literature, several works have explored local dependences between the
players in large games. For example,graphical games[15] representn-player matrix games using
a graph where players correspond to nodes in an undirected graph and the payoff for that player
depends only on the actions of its direct neighbors in the graph. This concept is further exploited
in action-graphgames, that generalize graphical games in several aspects.Multiple algorithns
have been proposed to compute Nash equilibria in this class of games, mostly relying on the so-
called “continuation methods” [7]. In these methods a knownsolution for a “simple” game is
gradually perturbed toward the desired game until a solution is obtained. These methods take an
amount of time that is exponential in thein-degreeof the action-graph, and not in thenumber of
nodes– typically considered as the dimension of the game. Therefore, games with many context-
specific independences yield sparsely connected action-graphs, leading to exponential savings in
computational time. Posterior works [33, 34] further exploit the structure of action-graph games for
some classes of problems to allow for more efficient computation of equilibria. They also provide a
worst-case complexity analysis on the general computationof equilibria in these problems. A good
overview of action-graph games and associated methods can be found in [35].

Our Dec-SIMDP model was originally proposed under the designation of interaction-driven
Markov games[30]. This work also introduced the IDMG algorithm mentioned in Section 4.4,
which differs from IDMG and LAPSI in two fundamental aspects. On one hand, outside the in-
teraction areas each agentk uses the optimal policy for the corresponding MDPMk in the Dec-
SIMDP model. This makes the agents unable to act taking into account the impact that interaction
areas visited in the future can have in the current decision.On the other hand, when at interac-
tion areai, each agentk combines the optimalQ-function associated with its individual MDPMk

with the optimalQ-function associated with the MMDPMI
i . All agents interacting in that area

share the correspondingQ-functions thus obtained and play a matrix game in that state, adopting
an equilibrium strategy for that game.

Put simply, both the MPSI and LAPSI algorithms compute the optimal Q-function for a full
MMDP associated with the original Dec-SIMDP and use the corresponding policy in the interaction
areas. Although the dimension of the full MMDP is typically much larger than that of the MMDPs
solved by IDMG, the fact that the latter algorithm must compute several Nash equilibria brings
a computational advantage to our method that larger in problems with many states in interaction
areas. As an example, the environment in Fig. 4a requires thecomputation of about 90 Nash
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equilibria.9

Another closely related model is that of distributed POMDPswith coordination locales [32].
In DCPLs, each agent is assumed independent of all other agents except on previously specified
coordination locales. This work also proposes the TREMOR algorithm for DCPLs: much as in the
IDMG algorithm, TREMOR models each agentk using a POMDP model that is solved to yield
a policyπk for that agent. Coordination locales are handled by modifying the POMDP model for
each agent taking the policies of the other agents into account.

Finally, several works have analyzed the worst-case complexity of known models for decen-
tralized multiagent systems, including transition-independent Dec-MDPs and reward-independent
Dec-MDPs [3, 12]. We summarized several of these results in Fig. 2. Although the worst-case
complexity for the proposed Dec-SIMDP model remains an openquestion, our conjecture is that
may be possible to replicate the reasoning in Section 3 and relate the worst-case complexity of
Dec-SIMDPs with that of single-agent partially observablemodels.

More recently, an information-theoretic measure of inter-agent influence has been proposed
under the designation ofinfluence gap[2]. The influence gap, in a sense, indicates how much the
actions of one agent determines the actions of the other agents in the optimal policy, in an attempt
to quantify the level of dependence between the different agents. As expected, larger influence
gaps – corresponding to smaller inter-agent influence, – typically translate into less computational
complexity. This opens an interesting question to be addressed in future work. While the influence
gap described above is a measure ofglobal inter-agent influence, our interaction areas capture
local interactions between the agents. However, larger or numerous interaction areas typically lead
to “harder” problems. It would be interesting to translate this intuition in terms of the proposed
influence gap, as it would certainly provide a more direct wayof assessing the general applicability
of the Dec-SIMDP model.

6 Conclusion

Both instances of LAPSI and MPSI used in the experimental results rest on having each agent
track the other agents in the environment using a belief vector that is then used to choose the
actions. The difference between the two algorithms lies in the assumed policy for the other agents.
MPSI assumes each of the other agents to be completely absorbed by their “individual goals”, thus
discarding whatever interaction there may be. In the cases where these interactions are negative, this
causes the MPSI agents to act more cautiously. In contrast, the LAPSI agent assumes that the other
agents are “team-players”, in that they choose their actions for the common goal of the group. This
allows the agent to adopt a policy that is closer to the actualoptimal fully-observable policy, which
indicates that the LAPSI algorithm successfully leveragesthe particular independences between the
different agents to attain efficient and yet near-optimal performance. In MPSI and LAPSI, these
“modeling strategies” are used to abstract the decision process of each agent into a single-agent

9More precisely, the IDMG method requires the computation ofone equilibrium for every state inside or adjacent to
the interaction area and one additional equilibrium at every state in the interaction area. In the environment of Fig. 4a
this corresponds to having9 × 9 equilibria for the states inside and adjacent to the interaction area plus the aditional
3× 3 equilibria for the states in the interaction area, leading to a total of90 equilibria.
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decision process – namely, a POMDP. Although we illustratedour methods using aQMDP-like
approach, the same principle can be used with any other POMDPsolver.

Also, the ability that both MPSI and LAPSI have to track the other agent allows the planning
process to take into consideration the possibility of future interaction. This, as seen in the example
in Fig. 6, is an important property of the method that overcomes one important limitation of the
IDMG algorithm.

We further note that the differences between MPSI and LAPSI may provide additional informa-
tion in defining the interaction areas. While MPSI relies on the optimal policies for the individual
MDPs in the Dec-SIMDP model, LAPSI relies on the joint policyfor the underlying MMDP. Since
outside interaction areas we expect the actions of the different agents to be approximately inde-
pendent, the interactions areas should be those in which theestimated policies using the individual
MDPs and the joint MMDP disagree. This provides one recipe for choosing the interaction states
as those in which individual state-information is not sufficient to determine the best action. In [25]
a similar approach was used to implement decentralized execution of a jointly optimal policy.

Finally, given the similarity between our methods andQMDP, one would expect our methods to
suffer in states of great uncertainty, much likeQMDP does. In these states, action selection may be
“conservative” but sparse interactions will hopefully minimize the effects of this situation.

We conclude by noting that it would be interesting to extend the ideas in this paper to more
general models such as Dec-POMDPs, alleviating the requirement of full local state observability.
In this case, POMDP models could replace the individual MDP models used in this paper, similarly
to the approach in [32].
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A Proofs

In this appendix we present the proofs of the several theorems along the text.

A.1 Proof of Theorem 4.1

We establish this statement by showing that the generalizedα-vectors can be computed using a convergent
dynamic-programming like approach, by iterating over the recurrent expression in (12).

We start by noting that, in Dec-SIMDP verifying the conditions of the theorem, a generalizedα-vector
αk is actually a|X | × |Ak| matrix with component(x, ak) given byαk(x, ak). Let us define, for a general

29



matrix |X | × |Ak| matrixW , the operatorTk as follows

(TkW )(x, ak) = rπ
−k
(x, ak) + γ

∑

y∈XI

Pπ
−k
(x, ak, y)max

uk

W (y, uk)

+ γmax
uk

∑

y/∈XI

Pπ
−k
(x, ak, y)W (y, uk),

where(TkW )(x, ak) denotes the element(x, ak) of the matrixTkW . We now establish the assertion of the
theorem by showingTk to be a contraction in the sup-norm. In fact, we have

‖TkW1 −TkW2‖∞ = max
x,ak

|(TkW1)(x, ak)− (TkW2)(x, ak)|

≤ γmax
x,ak

∑

y

Pπ
−k
(x, ak, y)max

uk

|W1(y, uk)−W2(y, uk)| ,

where the last inequality follows from Jensen’s inequality. This immediately implies that

‖TkW1 −TkW2‖∞ ≤ γmax
x,ak

|W1(x, ak)−W2(x, ak)|

= γ ‖W1 −W2‖∞ .

We have thus shown thatTk is a contraction in the sup-norm, which implies that

• It has a unique fixed-point, corresponding to the generalized α-vectors. This establishes the claim of
the theorem.

• It can be used to compute the generalizedα-vectors in a dynamic-programming-like fashion, using
the update rule

α
(n+1)
k (x, ak) = (Tkα

(n)
k )(x, ak),

whereα(n)
k denotes thenth estimate ofαk(x, ak).

A.2 Proof of Theorem 4.2

To establish the claim of the theorem, we show that the problem of computing the generalizedα-vectors for a
Dec-SIMDP verifying the conditions of the theorem is equivalent (in terms of complexity) to that of solving
an MDP whose dimension depends polynomially on the dimension of the original Dec-SIMDP. In particular,
we show that computing the generalizedα-vectors for such Dec-SIMDP is equivalent to computing the
optimalQ-function for an MDP. Since MDPs are known to be P-complete [24], this establishes the desired
result.

We start by noting that (12) can be rewritten as

αk(x, ak) = rπ
−k
(x, ak) + γ

∑

y∈XI

Pπ
−k
(x, ak, y)max

uk

αk(y, uk)

+ γ
∑

y/∈XI

Pπ
−k
(x, ak, y)max

uk

ηxak
∑

z /∈XI

Pπ
−k
(x, ak, z)αk(z, uk)

(16)

where

ηxak =
1

∑

y/∈XI
Pπ

−k
(x, ak, y)

.
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We now construct an MDPM̂ = (X̂ ,Ak, P̂, r̂), whereX̂ = X ∪ X × Ak. We define the transition
probabilities for this MDP as

P̂(x̂, ak, ŷ) =











































Pπ
−k
(x̂, ak, ŷ) if x̂ ∈ X andŷ ∈ XI

1/ηx̂ak if x̂ ∈ X andŷ = (x̂, ak)

ηzuk

∑

y/∈XI
Pπ

−k
(z, uk, y)Pπ

−k
(y, ak, ŷ) if x̂ = (z, uk) andŷ ∈ XI

ηzuk
Pπ

−k
(z, uk, y)/ηyak if x̂ = (z, uk), ŷ = (y, ak),

andy /∈ XI

0 otherwise.

These probabilities are well-defined since, forx̂ ∈ X ,
∑

ŷ

P̂(x̂, ak, ŷ) =
∑

ŷ∈XI

Pπ
−k
(x̂, ak, ŷ) + 1/ηx̂ak

=
∑

ŷ∈XI

Pπ
−k
(x̂, ak, ŷ) +

∑

y/∈XI

Pπ
−k
(x̂, ak, y) = 1

and, forx̂ = (z, uk)
∑

ŷ

P̂(x̂, ak, ŷ) = ηzuk

∑

y/∈XI

Pπ
−k
(z, uk, y)

(

∑

ŷ∈XI

Pπ
−k
(y, ak, ŷ) + 1/ηyak

)

= ηzuk

∑

y/∈XI

Pπ
−k
(z, uk, y) = 1.

Similarly, we define the reward function for this MDP as

r̂(x̂, ak) =

{

rπ
−k
(x̂, ak) if x̂ ∈ X

ηzuk

∑

y/∈XI
Pπ

−k
(z, uk, y)rπ−k

(y, ak) if x̂ = (z, uk).

The optimalQ-function for this MDP verifies the recursive relation (2), that we repeat here for commodity:

Q∗(x̂, ak) = r̂(x̂, ak) + γ
∑

ŷ∈X̂

P̂(x̂, ak, ŷ)max
uk

Q∗(ŷ, uk).

Now, for x̂ ∈ X and replacing the definitions of̂P andr̂, we have

Q∗(x̂, ak) = rπ
−k
(x̂, ak) + γ

∑

ŷ∈XI

Pπ
−k
(x̂, ak, ŷ)max

uk

Q∗(ŷ, uk)

+
γ

ηx̂ak
max
uk

Q∗((x̂, ak), uk).

Similarly, for x̂ = (z, uk), we have

Q∗(x̂, ak) = ηzuk

∑

y/∈XI

Pπ
−k
(z, uk, y)

[

rπ
−k
(y, ak) + γ

∑

ŷ∈XI

Pπ
−k
(y, ak, ŷ)max

uk

Q∗(ŷ, uk)

+
γ

ηyak
max
uk

Q∗((y, ak), uk)

]

= ηzuk

∑

y/∈XI

Pπ
−k
(z, uk, y)Q

∗(y, ak).
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Replacing in the previous expression finally yields

Q∗(x̂, ak) = rπ
−k
(x̂, ak) + γ

∑

ŷ∈XI

Pπ
−k
(x̂, ak, ŷ)max

uk

Q∗(ŷ, uk)

+
γ

ηx̂ak
max
uk

ηx̂ak

∑

y/∈XI

Pπ
−k
(x̂, ak, y)Q

∗(y, uk),

and this is (16). As such, in computing the optimalQ-function for the MDPM̂, we compute the generalized
α-vectors for the original Dec-SIMDP as

αk(x, ak) = Q∗(x, ak).

Since the dimension of the new MDP grows polynomially (linearly, actually) with the dimension of the
generalizedα-vectors (and, hence, with the dimension of the corresponding Dec-SIMDP), the statement of
the theorem follows.

A.3 Proof of Theorem 4.3

It is well-known that, for a general MDPM = (X,A,P, r, γ), if π̂ is the greedy policy with respect to a
functionQ̂, i.e., if

π̂(x) = argmax
a∈A

Q̂(x, a)

for all x ∈ X , then
∥

∥

∥V π̂ − V ∗
∥

∥

∥

∞
≤

2γ

1− γ
BE(Q̂), (17)

whereBE(Q̂) is the Bellman error associated with the functionQ̂,

BE(Q̂) = sup
x,a

∣

∣

∣

∣

∣

r(x, a) + γ
∑

y

P(x, a, y)max
u

Q̂(y, u)− Q̂(x, a)

∣

∣

∣

∣

∣

.

In our Dec-SIMDP setting, since we are assuming the policyπ−k to be fixed and known, the decision-
process (from agentk’s perspective) is a standard POMDP. Recalling that a POMDP can be recast as an
equivalent belief-MDP, it follows that the relation (17) also holds for POMDPs. Writing down the Bellman
error for a general POMDP(X ,A,Z,P,O, r, γ) thus yields

BE(Q̂)

= sup
b,a

∣

∣

∣

∣

∣

∑

x

bx

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)max
u

Q̂(b′
za, u)

]

− Q̂(b, ak)

∣

∣

∣

∣

∣

.

For simplicity of notation, we consider theBellman error at(b, a) to be

BE(Q̂,b, a)

=

∣

∣

∣

∣

∣

∑

x

bx

[

r(x, a) + γ
∑

z,y

P(x, a, y)O(y, a, z)max
u

Q̂(b′
za, u)

]

− Q̂(b, a)

∣

∣

∣

∣

∣

.
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For the POMDP as perceived by agentk in our Dec-SIMDP setting, we have

BE(Q̂,b, ak)

=

∣

∣

∣

∣

∣

∣

∑

x
−k

bx
−k

[

rπ
−k
(x, ak) + γ

∑

z,y

Pπ
−k
(x, ak, y)O(y, z)max

u
Q̂(b′

zak
, u)

]

− Q̂(b, ak)

∣

∣

∣

∣

∣

∣

which, replacing the definitions of̂Q(b, ak) and the generalizedα-vectors yields, after some shuffling,

BE(Q̂,b, ak)

= γ

∣

∣

∣

∣

∣

∑

xO,yO

bxO
Pπ

−k
(xO, ak, yO)max

uk

∑

x−O,y−O

bx−O
Pπ

−k
(x−O, y−O)αk(y, uk)

−
∑

x,yO

bxO
bx−O

Pπ
−k
(xO, ak, yO)max

uk

∑

y−O

Pπ
−k
(x−O, y−O)αk(y, uk)

∣

∣

∣

∣

∣

,

where we have used the notation introduced in Section 4.2. Letting

Λk(x−O, yO, uk) =
∑

y−O

Pπ
−k
(x−O, y−O)αk(y, uk),

we have

BE(Q̂,b, ak) ≤ γmax
yO

∣

∣

∣

∣

∣

∣

max
uk

∑

x−O

bx−O
Λ(x−O, yO, uk)−

∑

x−O

bx−O
max
uk

Λ(x−O, yO, uk)

∣

∣

∣

∣

∣

∣

.

In order to bound the right-hand side of the expression above, we need two auxiliary results that we promptly
introduce. These results generalize some of the bounds in [27] to the case of functions defined overR

n and
are of independent interestper se.

Lemma A.1. Let{xk, k = 1, . . . ,M} be a set of points inRn, for some (finite)n, and{βk, k = 1, . . . ,M}
a set of corresponding weights, verifying0 ≤ βk ≤ 1, k = 1, . . . ,M and

∑

k βk = 1. Letf : Rn → R be a
convex function. Then, it holds that

∑

k

βkf(xk)− f

(

∑

k

βkxk

)

≤ β∗

[

∑

k

f(xk)−Mf

(

∑

k

xk/M

)]

. (18)

where
β∗ = max

k
βk.

Proof. The proof essentially follows that of Lemma 1 in [27]. Letk∗ be such thatβ∗ = βk∗ . Eq. (18) can
be rewritten as

∑

k 6=k∗

(β∗ − βk)f(xk) + f

(

∑

k

βkxk

)

≥ β∗Mf

(

∑

k

xk/M

)

or, equivalently,
∑

k 6=k∗

β∗ − βk
Mβ∗

f(xk) +
1

Mβ∗
f

(

∑

k

βkxk

)

≥ f

(

∑

k

xk/M

)

.
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Noting that
∑

k 6=k∗

β∗ − βk
Mβ∗

+
1

Mβ∗
= 1,

we finally get

∑

k 6=k∗

β∗ − βk
Mβ∗

f(xk) +
1

Mβ∗
f

(

∑

k

βkxk

)

≥ f





∑

k 6=k∗

β∗ − βk
Mβ∗

xk +
1

Mβ∗

∑

k

βkxk





= f

(

∑

k

xk/M

)

,

where the first inequality follows from Jensen’s inequality. This implies (18). �

Lemma A.1 implies the following corollary.

Corollary A.2. Let{xi, i = 1, . . . , N} be a set of points inRn, for some (finite)n, and{pi, i = 1, . . . , N}
a corresponding sequence of weights verifying0 ≤ pi ≤ 1 and

∑

i pi = 1. LetU denote a closed convex set
that can be represented as the convex hull of a set of points{ak, k = 1, . . . ,M} in R

n. Letf : U → R be a
convex function. Then, it holds that

∑

i

pif(xi)− f

(

∑

i

pixi

)

≤
∑

k

f(ak)−Mf

(

∑

k

ak/M

)

. (19)

Proof. We start by noting that eachxi can be written as

xi =
∑

k

λikak,

with 0 ≤ λik ≤ 1 and
∑

k λik = 1, i = 1, . . . , n. Then,

∑

i

pif(xi)− f

(

∑

i

pixi

)

=
∑

i

pif

(

∑

k

λikak

)

− f

(

∑

i

pi
∑

k

λikak

)

≤
∑

k

f(ak)
∑

i

piλik − f

(

∑

k

ak
∑

i

piλik

)

.

Lettingβk =
∑

i piλik, we get

∑

i

pif(xi)− f

(

∑

i

pixi

)

≤
∑

k

βkf(ak)− f

(

∑

k

βkak

)

.

Finally, applying Lemma A.1,

∑

i

pif(xi)− f

(

∑

i

pixi

)

≤
∑

k

βkf(ak)− f

(

∑

k

βkak

)

≤ β∗

[

∑

k

f(ak)−Mf

(

∑

k

ak/M

)]

≤
∑

k

f(ak)−Mf

(

∑

k

ak/M

)
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and the proof is complete. �

Note the difference between the two bounds: while (18) depends on the functionf and the set of points
{xk, k = 1, . . . ,M}, (19) depends only on the functionf and on the setU .

We now have that, for any givenu∗k ∈ Ak, x∗−O ∈ X−O andy∗O ∈ XO, Λk(x
∗
−O, y

∗
O, u

∗
k) lies in the

convex hull of the set of alpha-vectorsαk(y, u
∗
k) whereyO = y∗O. Then, from Corollary A.2,

BE(Q̂,b, ak) ≤ γmax
yO

∣

∣

∣

∣

∣

∣

max
uk

∑

y−O

αk((yO, y−O), uk)−
∑

y−O

max
uk

αk((yO, y−O), uk)

∣

∣

∣

∣

∣

∣

.

This finally yields

‖V ∗ − V πk‖∞ ≤
2γ2

1− γ
max
yO

∣

∣

∣

∣

∣

∣

max
uk

∑

y−O

αk((yO, y−O), uk)−
∑

y−O

max
uk

αk((yO, y−O), uk)

∣

∣

∣

∣

∣

∣

,

and the proof is complete.
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