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Abstract

Multiple inheritance has long been plagued with the “diamond” inheritance problem, leading
to solutions that restrict expressiveness, such as mixins and traits. Instead, we address the dia-
mond problem directly, considering two difficulties it causes: ensuring a correct semantics for
object initializers, and typechecking multiple dispatch in a modular fashion—the latter prob-
lem arising even with multiple interface inheritance. We show that previous solutions to these
problems are either unsatisfactory or cumbersome, and suggest a novel approach: supporting
multiple inheritance but forbidding diamond inheritance. Expressiveness is retained through
two features: a “requires” construct that provides a form of subtyping without inheritance (in-
spired by Scala [39]), and a dynamically-dispatched “super” call similar to that found in traits.
Through examples, we illustrate that inheritance diamonds can be eliminated via a combina-
tion of “requires” and ordinary inheritance. We provide a sound formal model for our language
and demonstrate its modularity and expressiveness.





1 Introduction

Single inheritance, mixins [12, 5, 24, 22, 4, 9], and traits [19, 23, 39] each have disadvantages:
single inheritance restricts expressiveness, mixins must be linearly applied, and traits do not al-
low state. Multiple inheritance is one solution to these problems, as it allows code to be reused
along multiple dimensions. Unfortunately however, multiple inheritance poses challenges it-
self.

There are two types of problems with multiple inheritance: (a) a class can inherit multiple
features with the same name, and (b) a class can have more than one path to a given ances-
tor (i.e., the “diamond problem”, also known as “fork-join” inheritance) [42, 45]. The first, the
conflicting-features problem, can be solved by allowing renaming (e.g., Eiffel [31]) or by lin-
earizing the class hierarchy [46, 45]. However, there is still no satisfactory solution to the dia-
mond problem.

The diamond problem arises when a class C inherits an ancestor A through more than one
path. This is particularly problematic when A has fields—should C inherit multiple copies of
the fields or just one? Virtual inheritance in C++ is designed as one solution for C to inherit
only one copy of A’s fields [21]. But with only one copy of A’s fields, object initializers are a
problem: if C transitively calls A’s initializer, how can we ensure that it is called only once?
Existing solutions either restrict the form of constructor definitions, or ignore some constructor
calls [38, 21].

There is another consequence of the diamond problem: it causes multiple inheritance to in-
teract poorly with modular typechecking of multiple dispatch. Multiple dispatch is a very pow-
erful language mechanism that provides direct support for extensibility and software evolution
[14, 16]; for these reasons, it has been adopted by designers of new programming languages,
such as Fortress [2]. Unfortunately however, modular multimethods are difficult to combine
with any form of multiple inheritance—even restricted forms, such as traits or Java-style mul-
tiple interface inheritance. Previous work either disallows multiple inheritance across module
boundaries, or burdens programmers by requiring that they always provide (possibly numer-
ous) disambiguating methods.

To solve these problems, we take a different approach: while permitting multiple inheri-
tance, we disallow inheritance diamonds entirely. So that there is no loss of expressiveness,
we divide the notion of inheritance into two concepts: an inheritance dependency (expressed
using a requires clause, an extension of a Scala construct [38]) and implementation inheri-
tance (expressed through extends). Through examples, we illustrate that programs that are ex-
pressed using diamond inheritance can be translated to a hierarchy that uses a combination
of requires and extends, without the presence of diamonds. As a result, our language, CZ—for
cubic zirconia—retains the expressiveness of diamond inheritance.

We argue that a hierarchy with multiple inheritance is conceptually two or more separate hi-
erarchies. These hierarchies represent different “dimensions” of the class that is multiply inher-
ited. We express dependencies between these dimensions using requires, and give an extended
example of its use in Sect. 5.

Our solution has two advantages: fields and multiple inheritance (including initializers)
can gracefully co-exist, and multiple dispatch and multiple inheritance can be combined. To
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achieve the latter, we make an incremental extension to existing techniques for modular type-
checking of multiple dispatch.1

An additional feature of our language is a dynamically-dispatched super call, modelled after
trait super calls [19]. When a call is made to A.super. f () on an object with dynamic type D , the
call proceeds to f defined within D’s immediate superclass along the A path. With dynamically-
dispatched super calls and requires, our language attains the expressiveness of traits while still
allowing classes to inherit state.

We have formalized our system as an extension of Featherweight Java (FJ) [28] (Sect. 8) and
have proved it sound (Appendix B).

Contributions:
• The design of a novel multiple inheritance scheme2 that solves (1) the object initializa-

tion problem and (2) the modular typechecking of multimethods, by forbidding diamond
inheritance (Sections 2 and 4).

• Generalization of the requires construct and integration with dynamically-dispatched su-
per calls (Sect. 6).

• Examples that illustrate how a diamond inheritance scheme can be converted to one
without diamonds (Sections 3 and 5).

• Examples from actual C++ and Java programs, illustrating the utility of multiple inheri-
tance and inheritance diamonds (Sect. 7).

• A formalization of the language, detailed argument of modularity (Sect. 8), and proof of
type safety.

• An implementation of a typechecker for the language, as an extension of the JastAddJ Java
compiler [20].

2 Object Initialization

To start with, diamond inheritance raises a question: should class C with a repeated ancestor
A have two copies of A’s instance variables or just one—i.e., should inheritance be “tree inheri-
tance” or “graph inheritance” [13]? As the former may be modelled using composition, the latter
is the desirable semantics; it is supported in languages such as Scala, Eiffel, and C++ (the last
through virtual inheritance) [38, 31, 21]. Unfortunately, the object initialization problem occurs
in this semantics, depending how and when the superclass constructor or initializer is called
[46, 45].

1For simplicity and ease of understanding, our formal system only allows dispatch on a method’s receiver and
its first argument, corresponding to double dispatch. The system can be easily generalized to n-argument multi-
methods, as all interesting typechecking issues also arise in the two-argument case. See Sect. 8 for further details.

2This is a revised and expanded version of a paper presented at the FOOL ’09 workshop [30]. (FOOL has no
archival proceedings and is not intended to preclude later publication.) The main changes are the inclusion of
multimethods rather than external methods and a new section on real-world examples (Sect 7).
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« constructor »
Stream(int)

Stream

« constructor »
InputStream(int)

InputStream
« constructor »
OutputStream(int)

OutputStream

InputOutputStream

Stream.super(1024); Stream.super(2048);

Figure 1: An inheritance diamond. Italicized class names indicate abstract classes.

The Problem. To illustrate the problem, consider Figure 1, which shows a class hierarchy con-
taining a diamond. Suppose that the Stream superclass has a constructor taking an integer, to
set the size of a buffer. InputStream and OutputStream call this constructor with different val-
ues (1024 and 2048, respectively). But, when creating an InputOutputStream, with which value
should the Stream constructor be called? Moreover, InputStream and OutputStream could even
call different constructors with differing parameter types, making the situation even more un-
certain.

Previous Solutions. Languages that directly attempt to solve the object initialization problem
include Eiffel [31], C++ [21], Scala [38] and Smalltalk with stateful traits [8].

In Eiffel, even though (by default) only one instance of the repeatedly inherited class is in-
cluded (e.g., Stream), when constructing an InputOutputStream, the Stream constructor is called
twice. This has the advantage of simplicity, but unfortunately it does not provide the proper se-
mantics; Stream’s constructor may perform a stateful operation (e.g., allocating a buffer), and
this operation would occur twice.

In C++, if virtual inheritance is used (so that there is only one copy of Stream), the con-
structor problem is solved as follows: the calls to the Stream constructor from InputStream
and OutputStream are ignored, and InputOutputStream must call the Stream constructor explic-
itly.3 Though the Stream constructor is called only once, this awkward design has the problem
that constructor calls are ignored. The semantics of InputStream may require that a particu-
lar Stream constructor be called, but the language semantics would ignore this dependency by
bypassing the constructor call.

Scala provides a different solution: trait constructors may not take arguments. (Scala traits
are abstract classes that may contain state and may be multiply inherited.) This ensures that
InputStream and OutputStream call the same super-trait constructor, causing no ambiguity for
InputOutputStream. Though this design is simple and elegant, it restricts expressiveness (in
fact, the Scala team is currently seeking a workaround to this problem [49]).

Smalltalk with stateful traits [8] does not contain constructors, but by convention, objects

3Since there is no default Stream constructor, this call cannot be automatically generated.
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are initialized using an initialize message. Unfortunately, this results in the same semantics as
Eiffel; here, the Stream constructor would be called twice [7]. The only way to avoid this prob-
lem would be to always define a special initializer that does not call the superclass initializer.
Requiring that the programmer define such a method essentially means that the C++ solution
must be hand-coded. Aside from being tedious and error-prone, this has the same drawbacks
as the C++ semantics.

Mixins and traits do not address the object initialization problem directly, but instead re-
strict the language so that the problem does not arise in the first place. We compare CZ to each
of these designs in Sect. 3.2.

3 An Overview of CZ

This section describes the CZ language design at a high level, including a description of how CZ
addresses the object initialization problem and a comparison to related language designs.

3.1 CZ Design

CZ’s design is based on the intuition that there are relationships between classes that are not
captured by inheritance, and that if class hierarchies could express richer interconnections, in-
heritance diamonds need not exist. Suppose the concrete class C extends A. As noted by Schärli
et al., it is beneficial to recognize that C serves two roles: (1) it is a generator of instances, and (2)
it is a unit of reuse (through subclassing) [43]. In the first role, inheritance is the implementa-
tion strategy and may not be omitted. In the second role, however, it is possible to transform the
class hierarchy to one where an inheritance dependency between C and A is stated and where
subclasses of C inherit from both C and A. The key distinguishing feature of CZ is this notion
of inheritance dependency, because while multiple inheritance is permitted, inheritance dia-
monds are forbidden.

Consider the inheritance diamond of Fig. 1. To translate this hierarchy to CZ, InputStream
would be made abstract and its relationship to Stream would be changed from inheritance to an
inheritance dependency, requiring that (concrete) subclasses of InputStream also inherit from
Stream. In other words, InputStream requires the presence of Stream in the extends clause of con-
crete subclasses, but it need not extend Stream itself. Since InputStream is now abstract (making
it serve only as a unit of reuse), it can be safely treated as a subtype of Stream. However, any
concrete subclasses of InputStream (generators of instances), must also inherit from Stream.
Accordingly, InputOutputStream must inherit from Stream directly.

We have reified this notion of an inheritance dependency using the requires keyword, a gen-
eralized form of a similar construct in Scala [39, 38].4

Definition 3.1 (Subclassing). The subclass relation is defined as the reflexive, transitive closure
of the extends relationship.

4In Scala, requires is used to specify the type of a method’s receiver (i.e., it is a selftype), and does not create a
subtype relationship. As far as the Scala team is aware, our proposed use of requires is novel [49].
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Stream

InputStream OutputStream

InputOutputStream

requiresrequires

ConcreteInputStream ConcreteOutputStream

EncryptedStream

EncryptedInputStream EncryptedOutputStream

requires

Figure 2: The stream hierarchy of Fig. 1, translated to CZ, with an encryption extension in gray.
Italicized class names indicate abstract classes, solid lines indicate extends, and dashed lines
indicate requires.

Definition 3.2 (Requires).
When a class C requires a class B , we have the following:

• C is abstract

• C is a subtype of B (but not a subclass)

• Subclasses of C must either require B themselves (making them abstract) or extend B (al-
lowing them to be concrete). This is achieved by including a requires B ′ or extends B ′

clause, where B ′ is a subclass of B .

In essence, C requires B is a contract that C ’s concrete subclasses will extend B .
The revised stream hierarchy is displayed in Fig. 2. In the original hierarchy, InputStream

served as both generator of instances and a unit of reuse. In the revised hierarchy, we
divide the class in two—one for each role. The class ConcreteInputStream is the gener-
ator of instances, and the abstract class InputStream is the unit of reuse. Accordingly,
InputStream requires Stream, and ConcreteInputStream extends both InputStream and Stream.
The concrete class InputOutputStream extends each of Stream, InputStream, and OutputStream,
creating a subtyping diamond, but not a subclassing diamond, as requires does not create a
subclass relationship.

The code for InputStreamwill be essentially the same as before, except for the call to its super
constructor (explained further below). Because InputStream is a subtype of Stream, it may use
all the fields and methods of Stream, without having to define them itself.

Programmers may add another dimension of stream behavior through additional abstract
classes, for instance EncryptedStream. EncryptedStream is a type of stream, but it need not ex-
tend Stream, merely require it. Concrete subclasses, such as EncryptedInputStream must inherit
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from Stream, which is achieved by extending ConcreteInputStream. (It would also be possible to
extend Stream and InputStream directly.)

The requires relationship can also be viewed as declaring a semantic “mixin”—if B requires
A, then B is effectively stating that it is an extension of A that can be “mixed-in” to clients. For
example, EncryptedStream is enhancing Stream by adding encryption. Because the relationship
is explicitly stated, it allows B to be substitutable for A.

Using requires is preferable to using extends because the two classes are more loosely cou-
pled. For example, we could modify EncryptedInputStream to require InputStream (rather than
extend ConcreteInputStream). A concrete subclass of EncryptedInputStream could then also ex-
tend a subclass of InputStream, such as Bu�eredInputStream, rather than extending InputStream
directly. In this way, different pieces of functionality can be combined in a flexible manner while
avoiding the complexity introduced by inheritance diamonds.

Object initialization. Because there are no inheritance diamonds, the object initialization
problem is trivially solved. Note that if class C requires A, it need not (and should not) call
A’s constructor, since C does not inherit from A. In our example, InputStream does not call
the Stream constructor, while ConcreteInputStream calls the constructors of its superclasses,
InputStream and Stream. Thus, a subtyping diamond does not cause problems for object ini-
tialization.

This may seem similar to the C++ solution; after all, in both designs, InputOutputStream
calls the Stream constructor. However, the CZ design is preferable for two reasons: a) there are
no constructor calls to non-direct superclasses, and, more importantly, b) no constructor calls
are ignored. In the C++ solution, InputStream may expect a particular Stream constructor to be
called; as a result, it may not be properly initialized when this call is ignored. Essentially, CZ
does not allow the programmer to create constructor dependencies that cannot be enforced.

Using “requires”. Introducing two kinds of class relationships raises the question: when
should programmers use requires, rather than extends? A rule of thumb is that requires should
be used when a class is an extension of another class and is itself a unit of reuse. If necessary,
a concrete class extending the required class (such as ConcreteInputStream) could also be de-
fined to allow object creation. Note that this concrete class definition would be trivial, likely
containing only a constructor. On the other hand, when a class hierarchy contains multiple
disjoint alternatives (such as in the AST example in the next section), extends should be used;
the no-diamond property is also a semantic property of the class hierarchy in question.

The above guideline may result in programmers defining more abstract classes (and corre-
sponding concrete classes) than they may have otherwise used. However, some argue that it
is good design to make a class abstract whenever it can be a base class. This is in accordance
with the design of classes in Sather [48], traits in Scala and Fortress [38, 2, 3], and the advice that
“non-leaf” classes in C++ be abstract [32]. In Sather and Fortress, for example, only abstract
classes may have descendants; concrete classes (called “objects” in Fortress) form the leaves of
the inheritance hierarchy [48]. Furthermore, a language could define syntactic sugar to ease the
task of creating concrete class definitions; we sketch such a design in Sect. 6.4.
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3.2 Related Work

Subtyping and subclassing. Since requires provides subtyping without subclassing, our de-
sign may seem to bear similarity to other work that has also separated these two concepts (e.g.
[27, 18, 48, 15, 29]). There is an important difference, however, regarding information hiding. In
a language that separates subclassing and subtyping, an “interface” type cannot contain private
members; otherwise superclasses would be able to access private members defined in sub-
classes. Unfortunately, this restriction can be problematic for defining binary methods such as
the equals method; its argument type must contain those private members for the method be
able to access them. But, for this type to contain private members, it must be tied to a particular
class implementation, as only subclasses (as opposed to subtypes) should conform to this type.
See Appendix A for an example illustrating this issue.

This difficulty does not arise when using requires, as it establishes a stronger relation-
ship than just subtyping; concrete subclasses must (directly or indirectly) inherit from the re-
quired class, as opposed to any class that provides a particular interface. Therefore, Stream
may define an equals(Stream) method, and objects of type e.g. InputStream, OutputStream, or
InputOutputStream may be safely passed to this method. Since the private member is defined
in Stream and is only accessed by a method of Stream, this does not violate information hiding.

Mixins. Mixins, also known as abstract subclasses, provide many of the reuse benefits of mul-
tiple inheritance while fitting into a single inheritance framework [12, 5, 24, 22, 4, 9]. While mix-
ins allow defining state, they have the drawbacks that they must be explicitly linearized by the
programmer and they cannot inherit from one another (though most systems allow expressing
implementation dependencies, such as abstract members). If mixin inheritance were allowed,
this would be essentially equivalent to Scala traits, which do have the object initialization prob-
lem. Additionally, the lack of inheritance has the consequence that mixins do not integrate well
with multiple dispatch; multiple dispatch requires an explicit inheritance hierarchy on which
to perform the dispatch.

Traits. Traits were proposed as a mechanism for finer-grained reuse, to solve the reuse prob-
lems caused by mixins and multiple inheritance [19, 23, 39]. In particular, the linearization
imposed by mixins can necessitate the definition of numerous “glue” methods [19]. This design
avoids many problems caused by multiple inheritance since fields may not be defined in traits.

Unfortunately, this restriction results in other problems. In particular, non-private accessors
in a trait negatively impact information hiding: if a trait needs to use state, this is encoded using
abstract accessor methods, which must then be implemented by the class composed using the
trait. Consequently, it is impossible to define “state” that is private to a trait—by definition,
all classes reusing the trait can access this state. Additionally, introducing new accessors in a
trait results in a ripple effect, as all client classes must now provide implementations for these
methods [8], even if there are no other changes.

In contrast, CZ allows a class to multiply inherit other classes, which may contain state. In
particular, a class may extend other concrete classes, while in trait systems, only traits may be
multiply inherited.
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Stateful traits. Stateful traits [8] were designed to address the aforementioned problems with
stateless traits. But, as previously mentioned, this language does not address the problem of
a correct semantics for object initialization in the presence of diamonds. Additionally, stateful
traits do not address the information hiding problem, as they have been designed for maximal
code reuse. In this design, state is hidden by default, but clients can “unhide” it, and may have
to resort to merging variables that are inherited from multiple traits. While this provides a great
deal of flexibility for trait clients, this design does not allow traits to define private state.

4 Modular Multiple Dispatch

CZ also supports multiple dispatch, which we and others believe is more natural and more
expressive than single dispatch [14, 16, 15]. In fact, one common source of bugs in Java pro-
grams occurs when programmers expect static overloading to behave in a dynamic manner
[26]. Multiple dispatch also avoids the extensibility problem inherent in the Visitor pattern, as
well as the complexity introduced by manual double dispatch. However, typechecking mul-
tiple dispatch in a modular fashion is very difficult in the presence of any form of multiple
inheritance—precisely because of the diamond problem.

4.1 The Problem

To see why diamond inheritance causes problems, suppose we have the original diamond
stream hierarchy, and we now define a multimethod seek in a helper class (supposing that such
functionality did not already exist in the classes in question):

class StreamHelper {
void seek(Stream s, long pos) {

// default implementation: do nothing
}
void seek(Stream@InputStream is, long pos) {

// seek if pos <= eofPos
}
void seek(Stream@OutputStream os, long pos) {

// if pos > eofPos, fill with zeros
}

}

The declaration seek(Stream@InputStream, long) specifies that the method specializes
seek(Stream, long) for the case that the first argument dynamically has type InputStream.

Unfortunately, in the context of our diamond hierarchy, this method definition is
ambiguous—what if we perform the call h.seek(new InputOutputStream(), 1024)? Unfortu-
nately, it is difficult to perform a modular check to determine this fact. When typecheck-
ing the definition of seek(), we cannot search for a potential subclass of both InputStream
and OutputStream, as this analysis would not be modular. And, when typechecking
InputOutputStream, we cannot search for multimethods defined on both of its superclasses,
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as that check would not be modular, either. We provide a detailed description of the conditions
for modularity in Sect. 8.1.

It is important to note that this problem is not confined to multiple (implementation)
inheritance—it arises in any scenario where an object can have multiple dynamic types on
which dispatch is performed. For instance, the problem appears if dispatch is permitted on
Java interfaces, as in JPred [25], or on traits, as in Fortress [3, 2]. For this reason, some languages
restrict the form of dispatch to the single-inheritance case; e.g., MultiJava disallows dispatching
on interfaces [16, 17].

4.2 Previous Solutions

There are two main solutions to the problem of modular typechecking of multiple dispatch
in the presence of multiple inheritance. The first solution is simply to restrict expressiveness
and disallow multiple inheritance across module boundaries; this is the approach taken by the
“System M” type system for Dubious [36].

JPred [25] and Fortress [3] take a different approach. The diamond problem arises in these
languages due to multiple interface inheritance and multiple trait inheritance, respectively. In
these languages, the typechecker ensures that multimethods are unambiguous by requiring
that the programmer always specify a method for the case that an object is a subtype of two or
more incomparable interfaces (or traits). In our streams example, the programmer would have
to provide a method like the following in the StreamHelper class (in JPred syntax):

void seek(Stream s, long pos) when s@InputStream && s@OutputStream

(In Fortress, the method would be specified using intersection types.) Note that in both lan-
guages, this method would have to be defined for every subset of incomparable types (that
contains at least 2 members), regardless of whether a type like InputOutputStream will ever be
defined. Even if two types will never have a common subtype,5 the programmer must specify a
disambiguating method, one that perhaps throws an exception. Thus, the problem with this ap-
proach is that the programmer is required to write numerous additional methods—exponential
in the number of incomparable types—some of which may never be called. JPred alleviates the
problem somewhat by providing syntax to specify that a particular branch should be preferred
in the case of an ambiguity, but it may not always be possible for programmers to know in ad-
vance which method to mark as preferred.

Note that neither JPred interfaces nor Fortress traits may contain state and thus the lan-
guages do not provide a solution to the object initialization problem; neither does Dubious,
since it does not contain constructors.

These solutions and the previously described related work are summarized in Table 1.

5In Fortress, the programmer may specify that two traits are disjoint, meaning that there will never be a subtype
of both. To allow modular typechecking, this disjoint specification must appear on one of the two trait definitions,
which means that one must have knowledge of the other; consequently this is not an extensible solution.
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Language Object initialization Multimethod ambiguity
Eiffel repeat initialization –
C++ special constructor semantics –
Scala no-arg constructors –
Fortress traits n/a disambiguating methods
Stateful traits repeat initialization –
Mixins linearization –
JPred n/a disambiguating methods
Dubious n/a MI restrictions

Table 1: Summary of related work and solutions to the object initialization and modular multi-
method problems.

4.3 Multimethods in CZ

To solve the problem of modular multiple dispatch, we use the same solution as for the ob-
ject initialization problem: inheritance diamonds are forbidden, and requires is used as a sub-
stitute. An additional constraint is that a multimethod may only specialize a method in a
superclass, not a required class (i.e., specialization is based on subclassing, not subtyping).
So, in the CZ hierarchy of Fig. 2, the typechecker will signal an error, since the definitions
seek(Stream@InputStream, long) and seek(Stream@OutputStream, long) are not valid special-
izations of seek(Stream, long).

Let us suppose for a moment that all classes in Fig. 2 have been defined, except
InputOutputStream. Accordingly, we would re-write the seek methods as follows:

class StreamHelper {
// helper methods
void seekInput(InputStream s, long pos) { ... }
void seekOutput(OutputStream s, long pos) { ... }

// multimethods
void seek(Stream s, long pos) { }
void seek(Stream@ConcreteInputStream is, long pos) {

seekInput(is, pos);
}
void seek(Stream@ConcreteOutputStream os, long pos) {

seekOutput(os, pos);
}

}

(Though these definitions are slightly more verbose than before, syntactic sugar could be pro-
vided, particularly for mapping multimethods to helper methods.)

Note that the typechecker does not require that a method be provided for
“InputStream && OutputStream,” unlike JPred and Fortress. If a programmer now defines
InputOutputStream, but does not provide a new specialization for seek, the default implemen-
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tation of seek(Stream) will be inherited. An specialization for InputOutputStream can then be
implemented, perhaps one that calls seekOutput(). Note that this override need not be defined
in StreamHelper directly; the method may be defined in one of its subclasses.

Here, it is of key importance that subclassing diamonds are disallowed; because they cannot
occur, multimethods can be easily checked for ambiguities. Subtyping diamonds do not cause
problems, as multimethod specialization is based on subclassing.

Dispatch semantics. There are two dispatch semantics that can be used for multimethods:
asymmetric or symmetric. In asymmetric dispatching, the order of arguments affects dispatch.
In particular, earlier arguments are treated as more important when selecting between equally
specific methods. This semantics is used in a number of languages, such as Common Lisp and
parasitic methods, among others [47, 40, 1, 11, 6].

Other languages employ the symmetric dispatch semantics, where all arguments have equal
priority in determining method lookup [15, 44, 17, 35]. Some argue that symmetric dispatch is
more intuitive and less error-prone than asymmetric dispatch [17, 35], though this form of dis-
patch adversely affects information hiding. In particular, a class may not hide the existence
of a particular method specialization; this information is needed to correctly perform ambigu-
ity checking of subclasses [35]. For this reason, and to simplify the type system and method
lookup rules, CZ multimethod dispatch is asymmetric. However, CZ is compatible with sym-
metric dispatch; a symmetric-dispatch version of CZ would simply require additional (modu-
lar) checks on multimethod definitions. Incidentally, method lookup need not change, as these
new ambiguity checks would ensure the same result, regardless of whether asymmetric lookup
or symmetric lookup were used. Section 8 describes these issues in more detail.

Fragments of CZ. Note that it would be possible to omit multimethods from the language and
use the CZ design (as is) for only the object initialization problem. That is, our solution can be
used to solve either the object initialization problem, the modular multimethod problem, or
both.

5 Example: Abstract Syntax Trees

Consider a simple class hierarchy for manipulating abstract syntax trees (ASTs), such as the
one in Fig. 3. The original hierarchy is the one on the left, which consists of ASTNode, Num,
Var, and Plus. An ASTNode contains a reference pointing to its parent node, as indicated in the
figure. Each of the concrete subclasses of ASTNode implements its own version of the abstract
ASTNode.eval() method.

Suppose we wish to add debugging support to our AST, after the original hierarchy is de-
fined. Each node now additionally has a source location field, DebugNode.location. Debugging
support, on the right side of the figure, is essentially a new dimension of AST nodes that has
a dependency on ASTNode. We express this using requires. Now, classes like DebugPlus can
multiply inherit from ASTNode and DebugNode without creating a subclassing diamond. In
particular, DebugPlus does not inherit two copies of the parent field, because DebugNode is a
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requires

+ eval() : ASTNode

ASTNode
# parent : ASTNode

+ eval() : ASTNode

DebugNode
# location : SourceRef

+ eval() : ASTNode
Num

+ eval() : ASTNode
Var

+ eval() : ASTNode
Plus

+ eval() : ASTNode
DebugPlus

+ eval() : ASTNode
DebugVar

+ eval() : ASTNode
DebugNum

return 
DebugNode.super.eval()

print(this.toString();
return ASTNode.super.eval()

Figure 3: The AST node example in CZ. Abstract classes and abstract methods are set in italic.

class DebugNode requires ASTNode {
ASTNode eval() {

print(this.toString());
return ASTNode.super.eval(); // dynamic super call

}
}

class DebugPlus extends DebugNode, Plus {
ASTNode eval() {

return DebugNode.super.eval(); // ordinary super call
}

}

Figure 4: Implementing a mixin-like debug class using dynamically-dispatched super calls, and
performing multimethod dispatch on the ASTNode hierarchy.

subtype, but not a subclass, of ASTNode. Thus, the no-diamond property allows fields and mul-
tiple inheritance to co-exist gracefully.

In this example, each of these classes has a method eval() which evaluates that node of
the AST, as in the code in Fig. 4. Suppose we intend DebugNode to act as a generic wrapper
class for each of the subclasses of ASTNode. This can be implemented by using a dynamically-
dispatched super call of the form ASTNode.super.eval() after performing the debug-specific
functionality (in this case, printing the node’s string representation). The prefix ASTNode.super
means “find the parent class of the dynamic class of this along the ASTNode path.” At run-
time, when eval() is called on an instance of DebugPlus, the chain of calls proceeds as follows:
DebugPlus.eval()→DebugNode.eval()→ Plus.eval(). If the dynamically-dispatched super call
behaved as an ordinary super call, it would fail, because DebugNode has no superclass.

Each of the DebugNode subclasses implements its own eval() method that calls
DebugNode.eval()with an ordinary super call. (This could be omitted if the language linearized
method overriding based on the order of inheritance declarations, such as in Scala traits.) Dy-
namic super calls are a generalization of ordinary super calls, when the qualifier class is a re-
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quired class.

Adding multimethods. Suppose that after we have defined these classes, we wish to add a
new method that operates over the AST. For instance, we may want to check that variables are
declared before they are used (assuming a variable declaration statement). Since CZ has mul-
timethods, such a method defCheck() could be defined in a helper class, rather than in the
classes of the original hierarchy:

class DefChecker {
void defCheck(ASTNode n) { ... }
void defCheck(ASTNode@Var v) { ... }
void defCheck(ASTNode@Plus p) { ... }
void defCheck(ASTNode@Num n) { ... }

}

Note that the programmer would only have to define cases for ASTNode, Num, Var and Plus;
she need not specify what method should be called when an object has a combination of these
types—such a situation cannot occur (as there are no diamonds).

Discussion. The examples illustrate that subtyping allows substitutability; subclassing, in ad-
dition to providing inheritance, defines semantic alternatives that may not overlap (such as
Num, Var and Plus in the example above). Because they do not overlap, we can safely perform
an unambiguous “case” analysis on them—that is, multimethod dispatch. In other words, dis-
patch in our system is analogous to case-analyzing datatypes in functional programming (e.g.
ML, Haskell).

Alternative designs. Traits could be used to express this example, but as previously mentioned
(Sect. 3.2), the lack of state results in an information hiding problem with accessors. Also, as we
have noted, stateful traits do not address the object initialization problem.

Mixins could express some aspects of the class hierarchy for this example, but as previously
mentioned, subclassing—or even subtyping—cannot be specified among (standard-style) mix-
ins [12, 24, 4]. For this reason, mixins do not integrate well with multimethods. For details on
this issue, see [30].

Using Java-style single inheritance would be unwieldy. A forwarding pattern would have to
be used, along with the definition of at least four new interfaces [30]. Additionally, accessors
would have to be public, since they would have to be defined in an interface (the only way
to achieve any form of multiple inheritance in Java-like languages). Finally, the Visitor design
pattern would have to be used in order to allow new operations to be defined.

6 CZ Design

In this section, we give informal details of the typechecking rules in CZ, and provide an intuition
as to why typechecking is modular. In Sect. 8 we formalize CZ and provide a detailed argument
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showing its modularity.

6.1 Multiple Inheritance

CZ places the following constraints on class definitions:

C1. If a class C extends D1 and D2 then there must not exist some E , other than Object, such
that both D1 and D2 are subclasses of E (the no-diamond property).

C2. If class C extends D1 and D2 and the unspecialized method m is defined or inherited by
both D1 and D2 then C must also define the unspecialized method m. Also, if method
m with specializer B is defined or inherited by both D1 and D2, then C must also define
either (1) m with specializer B ′, where B is a subclass of B ′, or (2) an unspecialized method
m.

Additionally, the calculus assumes an elaboration phase that translates method names to qual-
ified names, using the name of the class where the method was first defined; consequently,
methods have a unique point of introduction. That is, in the calculus, two classes only share
a method name if it exists in a common superclass or common required class. This conven-
tion prevents a name clash if two methods in unrelated classes A and B coincidentally have the
same name and a third class inherits from both A and B .6 (Of course, an implementation of the
language would have to provide a syntactic way for disambiguating methods that accidentally
have the same name; this could be achieved through rename directives, e.g., Eiffel [31], or by
using qualified names, e.g., C# interfaces and C++.)

We have already described the reason for condition C1, the no-diamond property. We make
a special case for the class Object—the root of the inheritance hierarchy, since every class au-
tomatically extends it. (Otherwise, a class could never extend two unrelated classes—the exis-
tence of Object would create a diamond.7) Note that this does not result in the object initial-
ization problem, because Object has only a no-argument constructor. Also, this condition does
not preclude a class from inheriting from two concrete classes if this does not form a diamond.

Condition C2 ensures that if a class C inherits two identical method definitions, either spe-
cialized or unspecialized, this will not lead to an ambiguity; in such a case, C must provide an
overriding definition.

6.2 Multiple Dispatch

CZ allows methods to be specialized on a subclass of the first argument’s class type. Any unspe-
cialized method (i.e., an ordinary method) defined or inherited by a class C may be specialized
within C , provided the method’s first argument type is not Object. In general, typechecking
multimethods has two components: exhaustiveness checking (i.e., the provided cases provide

6Incidentally, this is not the convention used in Java interfaces, but is that of C#.
7An alternative design would be to make every abstract class implicitly require Object and every concrete class

implicitly extend Object. The problem with this design is that it would prevent a class from extending two concrete
classes, as a diamond with Object at the root would result.
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full coverage of the dispatch hierarchy) and ambiguity checking (i.e., when executing a given
method call, there is a unique most specific applicable method).

Since the core calculus of CZ does not include abstract methods, exhaustiveness is automat-
ically handled; we need only ensure there are no ambiguities. (Abstract methods are orthogonal
to our considerations, as they are adequately handled by previous work [36, 16, 34].) We adapt
previous techniques for ambiguity checking [36, 16, 34]:

M1. A method D m(A@B x,D x) may only be defined if in class C if all of the following hold:

1. A 6=Object
2. B 6= A
3. B is a subclass of A
4. a method D m(A,D) is defined or inherited by C .

These conditions, together with with C1 and C2, ensure the absence of ambiguity. In particular,
since B must be a strict subclass of A, condition C1 ensures that if method m(A@B ′) is defined
or inherited by C , then either B ¹ B ′ or B ′ ¹ B (since A 6= Object and inheritance diamonds
are disallowed). Condition C2 ensures that if B = B ′, there exists a disambiguating definition
m(A@B ′′) within class C , where B ¹ B ′′. Together, these properties ensure that if a program
typechecks, a unique most-specific applicable method always exists.

Previous work either disallowed inheritance across module boundaries [36] or did not per-
mit interfaces to be specializers [16]. In CZ, we can remove each of these restrictions, due to the
absence of inheritance diamonds.

In Sect. 8, we describe a generalization of multimethods to the n-argument case and de-
scribe why this generalization does not introduce new typechecking issues.

6.3 Dynamically-Dispatched Super Calls

As illustrated in Sect. 5, CZ includes dynamically-dispatched super calls. When A requires B
(i.e., A is acting as a mixin extension of B), then within A, a call of the form B.super is dynami-
cally resolved, similar to super calls in traits. Other super calls (i.e., those where the qualifier is
a parent class) have the same semantics as that of Java.

6.4 Discussion

Extensions. External methods (also known as open classes), could also be added to CZ, with-
out sacrificing modular typechecking. External methods are more general than multimethods,
since they allow new classes to override an existing external method. For details on the type-
checking issues that arise, see our previous work [30].

It would also be possible to combine our solution with existing techniques for dealing with
the object initialization and modular multiple dispatch problems. A programmer could specify
that a class C , whose constructor takes no arguments, may be the root of a diamond hierar-
chy. Then, we would use the Scala solution for ensuring that C ’s constructor is called only once.
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To solve the multiple dispatch problem, if methods m(B) and m(B ′) specialize m(C ), the type-
checker would ensure that m contained a disambiguating definition for (B ∧B ′)—the JPred and
Fortress solutions.

Finally, the language could include syntactic sugar to ease the definition of concrete classes.
If C requires B , and both C and B have no-argument constructors, the compiler could automat-
ically generate a class C $concrete that extends both C and B ; programmers could then more
easily define multimethods that dispatch on C $concrete.

Encapsulation and the diamond problem. As noted by Snyder, there are two possible ways
to view inheritance: as an internal design decision chosen for convenience, or as a public dec-
laration that a subclass is specializing its superclass, thereby adhering to its semantics [46].

Though Snyder believes that it can be useful to use inheritance without it being part of the
external interface of a class, we argue that the second definition of inheritance is more appro-
priate. In fact, if inheritance is being used merely out of convenience (e.g., Stack extending
Vector in the Java standard library), then it is very likely that composition is a more appropriate
design [10]. For similar reasons, we do not believe a language should allow inheritance without
subtyping—e.g., C++ private inheritance—as this can always be implemented using a helper
class whose visibility is restricted using the language’s module system.

Nevertheless, if one takes the view that inheritance choices should not be visible to sub-
classes, a form of the diamond problem can arise in CZ. In particular, suppose class D extends
B and C , C extends A, and B extends Object—a valid hierarchy (recall that condition C1 makes
a special exception for diamonds involving Object). Now suppose that B is changed to extend
A, and the maintainer of B is unaware that class D exists. Now A, B and C typecheck, but D
does not. Thus, the use of inheritance can invalidate subclasses, which violates Snyder’s view
of encapsulation.

This situation highlights the fact that, in general, requires should be favored over extends if
a class is intended to be reused.

7 Real-World Examples

In this section, we present real-world examples (in both C++ and Java) that suggest that multi-
ple inheritance, and diamond inheritance in particular, can be useful for code reuse. We also
describe how these examples can be expressed in CZ.

7.1 C++ Examples

We examined several open-source C++ applications in a variety of domains and found many
instances of virtual inheritance and inheritance diamonds. Here we describe inheritance dia-
monds in two applications: Audacity8 and Guikachu.9

8http://audacity.sourceforge.net/
9http://cactus.rulez.org/projects/guikachu/
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Audacity. Audacity is a cross-platform application for recording and editing sounds. One of
its main storage abstractions is the class BlockedSequence (not shown), which represents an
array of audio samples, supporting operations such as cut and paste. A BlockedSequence is
composed of smaller chunks; these are objects of type SeqBlock, depicted in Fig. 5 (a). One
subclass of SeqBlock is SeqDataFileBlock, which stores the block data on disk. One superclass of
SeqDataFileBlock is ManagedFile, an abstraction for temporary files that are de-allocated based
on a reference-counting scheme. Since both ManagedFile and SeqBlock inherit from Storable (to
support serialization), this forms a diamond with Storable at the top.

Storable

SeqBlock ManagedFile

SeqDataFileBlock

virtualvirt
ua
l

virtual virt
ua
l

(a)

Storable

SeqBlock ManagedFile

SeqDataFileBlock

requiresreq
uire

s

(b)

Figure 5: An inheritance diamond (a) in the Audacity application, and (b) the re-written class
hierarchy in CZ. Abstract classes are set in italic.

This particular diamond can be easily re-written in CZ (Fig. 5 (b)), since the sides of the
diamond (SeqBlock and ManagedFile) are already abstract classes. (Compare to the example in
Fig. 2, where new concrete classes had to be defined for the sides of the diamond.) Here, we sim-
ply change the top two virtual inheritance edges to requires edges, and make SeqDataFileBlock
inherit from Storable directly. This may even be a preferable abstraction; while in the original
hierarchy SeqDataFileBlock is serializable by virtue of the fact that SeqBlock is serializable, in the
new hierarchy we are making this relationship explicit.

Guikachu. Guikachu is a graphical resource editor for the GNU PalmOS SDK. It allows pro-
grammers to graphically manipulate GUI elements for a Palm application in the GNOME
desktop environment. In this application, we found 10 examples of diamonds that included
the classes CanvasItem, WidgetCanvasItem, and ResizeableCanvasItem. CanvasItem is an ab-
stract base class that represents items that can be placed onto a canvas, while objects of type
WidgetCanvasItem and ResizeableCanvasItem are a type of widget or are resizeable, respectively.

Figure 6(a) shows two of these 10 diamonds, formed by TextFieldCanvasItem and
PopupTriggerCanvasItem, respectively. The hierarchy was likely designed this way because there
exist GUI elements that have only one of the two properties. For instance, Gra�tiCanvasItem
and LabelCanvasItem (not shown) are not resizeable, but they are widgets. In contrast, the class
FormCanvasItem (not shown) is resizeable, but is not a widget.

In this application, we also observed the use of the C++ virtual inheritance initializer invoca-
tion mechanism: TextFieldCanvasItem (for instance) directly calls the initializer of CanvasItem,
its grandparent. As previously described, when initializing TextFieldCanvasItem, the initializer
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CanvasItem

WidgetCanvasItem ResizeableCanvasItem

PopupTriggerCanvasItem

virtualvirt
ual

TextFieldCanvasItem

(a)

CanvasItem

WidgetCanvasItem ResizeableCanvasItem

PopupTriggerCanvasItem

requiresreq
uire

s

TextFieldCanvasItem

(b)

Figure 6: Two inheritance diamonds in the Guikachu application (a) and re-written in CZ (b).
Abstract classes are set in italic.

calls from WidgetCanvasItem and ResizeableCanvasItem to CanvasItem are ignored. In this ap-
plication, the initializers happen to all perform the same operation, but this invocation seman-
tics could introduce subtle bugs as the application evolves.

The corresponding CZ class hierarchy is displayed in Fig. 6 (b); note its similarity to that of
Fig. 5 (b). Essentially, the virtual inheritance is replaced with requires and each of the classes at
the bottom of the diamond inherit from all three of WidgetCanvasItem, ResizeableCanvasItem,
and CanvasItem. The CZ design has the advantage that constructor calls do not occur more
than one level up the hierarchy, and no constructor calls are ignored.

This example illustrates how a program could be translated from C++-style multiple inheri-
tance to CZ-style. In particular, virtual inheritance would be replaced by requires, and new con-
crete classes would be defined as necessary (changing instantiations of the now-abstract class
to instantiations of the new concrete class). Note that constructor calls can be easily generated
for the new concrete classes, as C++ requires a call from the bottom of the diamond to the top
of the diamond when virtual inheritance is used (such a constructor call would be necessary for
the new concrete class, as it would directly extend the class at the top of the diamond).

Discussion. It would be interesting to extend the C++ study and perform a more systematic
study of the nature of inheritance diamonds, quantifying how often new abstract classes would
have to be defined (i.e., how often concrete classes appear on the “sides” of the diamond). One
could also determine how often the initializer problem occurs in real code.

However, note that the multimethod problem will always arise in a multiple inheritance
situation, even if a programmer never actually creates an inheritance diamond, and (as noted in
Section 4) even if a language includes the more benign feature of multiple interface inheritance
(e.g., Java-like languages).

7.2 Java Example: Eclipse JDT

The Eclipse JDT (Java Development Tools) is an example of where multiple inheritance could
be useful for Java programs. In the JDT, every AST node contains structural properties. A node’s
structural properties allow uniform access to its components. For example, DoStatement has 2
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fields of type StructuralPropertyDescriptor: EXPRESSION_PROPERTY and BODY_PROPERTY. To get
the expression property of a DoStatement object, the programmer may call ds.getExpression()
or ds.getStructuralProperty( DoStatement.EXPRESSION_ PROPERTY). Structural property de-
scriptors are often used to specify how AST nodes change when a refactoring is performed.

Through inspection of the JDT code, we found that there was a great deal of dupli-
cation among the code for getting or setting a node property using the structural prop-
erty descriptors. For example, 19 AST classes (e.g., AssertStatement and ForStatement) have
getExpression/setExpression properties. As a result, in the method internalGetSetChildProperty
(an abstract method of ASTNode), there are 19 duplications of the following code:

if (property == EXPRESSION_PROPERTY) {
if (get) {

return getExpression();
} else {

setExpression((Expression) child);
return null;

}
} else if (property == BODY_PROPERTY) {

... // code for body property
}

}

Additionally, there are duplicate, identical definitions of the EXPRESSION_PROPERTY field. With-
out a form of multiple inheritance, however, it is difficult to refactor this code into a com-
mon location—DoStatement, for example, already has the superclass Statement. With mul-
tiple inheritance, the programmer could create an abstract helper class ExprPropertyHelper
that requires ASTNode. This new class would contain the field definition and an override
of internalGetSetChildProperty. DoStatement would then inherit from both Statement and
ExprPropertyHelper and would have the following body for internalGetSetChildProperty:

if (property == BODY_PROPERTY) {
... // code for body property

} else {
return ExprPropertyHelper.super.

internalGetSetChildProperty(property, get, child);
}

Additionally, this is a scenario where multiple dispatch would be beneficial. The framework
defines various visitors for traversing an AST; these could be omitted in favor of multimethods,
which are more extensible.

Overall, our real-world examples suggest that multiple inheritance can be useful, and that
even diamond inheritance is used in practice. We have shown that the inheritance diamonds
can be easily translated to CZ and that the resulting designs offer some benefits over the original
ones. In particular, CZ avoids the problem of ignored constructor calls in C++, while providing
more flexible code reuse than with single inheritance.
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Declarations L ::= class C extends C requires C {C f ; K M }

Constructors K ::=C (C f ) { this. f = f ; }

Methods M ::=C0 m(C x) { return e; } | C0 m(C @C ′ x,C x) { return e; }

Expressions e ::= x | e. f | e.m(e) | e.C .super.m(e) | new C (e)

Figure 7: CZ grammar

Subclassing C ¹ D

C ¹C

C ¹ D D ¹ E

C ¹ E

C T (C ) = class C extends D1, . . . ,Dn · · · { . . . }

C ¹ Di

Subtyping C <: D

C ¹ D

C <: D

C <: D D <: E

C <: E

C T (C ) = class C extends D requires E1, . . . ,En { . . . }

C <: Ei

Figure 8: Subclassing (¹) and subtyping (<:) judgement

8 Formal System

In this section, we describe the formalization of CZ, which is based on Featherweight Java (FJ)
[28]. We use the same conventions as FJ; D is shorthand for the (possibly empty) list D1, . . . ,Dn ,
which may be indexed by Di .

The grammar of CZ is presented in Fig. 7. Modifications to FJ are highlighted. Class declara-
tions may extend or require a list of classes. There is also a new syntactic form for multimethods;
such methods include a specializer on the first argument type.

We relax the FJ convention that a class may not define two methods with the same name;
such a case is permitted as long as one method or both methods have specializers (which must
be distinct). The type of all other arguments and the return type must remain the same.

To simplify the formal system, we assume that all methods have at least one argument. A
dummy object can be used to simulate a no-argument method.

To avoid syntax for resolving different superclass constructors, all fields, including those
inherited from superclasses, must be initialized in the constructor.

Aside from dynamically-dispatched super calls, and the removal of casts (they are orthog-
onal to our goals), CZ expression forms are identical to those of FJ. For simplicity, we have
not modeled ordinary super calls in our calculus, as this has been considered by others (e.g.,
[24, 37]) and is orthogonal to the issues we are considering. Therefore, the class qualifier of a
super call must be a required class.

We have added a new subclass (‘¹’) judgement (Fig. 8), which is the reflexive, transitive
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Γ `e : C

( T-VAR)

Γ `x : Γ(x)

( T-FIELD)
Γ `e0 : C0 C0 <: D fields(D) =C f

Γ `e0. fi : Ci

( T-INVK)
Γ `e0 : C0 mtype(m,C0) = D →C

Γ `e : C C <: D

Γ `e0.m(e) : C

( T-SUPER-INVK)
Γ `e0 : C0 class C0 extends D0 requires B ,E
mtype(m,B) = D →C Γ `e : C C <: D

Γ `e0.B.super.m(e) : C

( T-NEW )
fields(C ) = D f Γ `e : C C <: D class C requires •

Γ `new C (e) : C

Figure 9: Expression typing

closure of extends. The subtype judgement (<:) is extended to include the requires relationship.
Subclassing implies subtyping, and if class A requires B then A <: B , but A � B . In CZ, the
requires relation is not transitive; subclasses must either require or extend the required class,
which is enforced by the typechecking rules. Subtyping allows A be used in place of B , which is
in contrast to Scala; Scala only allows such a substitution for the this reference within a class.

The auxiliary judgements for typechecking appear after the typechecking and evaluation
rules, in Fig. 12. We will describe each of these when describing the rules that use them.

Static Semantics. The rules for typechecking expressions are in Fig. 9. The rule for method
invocations, T-INVK, is the same as that in FJ. However, the auxiliary judgement it uses, mtype,
is different.

The CZ judgement mtype (Fig. 12) has an additional rule as compared to FJ; it performs a
lookup of methods from required classes, in the case that the method does not exist in the class
itself or superclasses. This judgement considers only unspecialized methods.

The rule T-SUPER-INVK checks the dynamically-dispatched super call described in Sect. 6.
Essentially, for a call of the form this.B.super.m(e), where this : C0, instead of looking up
mtype(m,C0), we look up mtype(m,B), where B is a required class of C0.

The rule T-NEW has one additional premise as compared to FJ: the requires clause must be
empty. This ensures that the class is concrete and can be instantiated, which in turn ensures
the soundness of the subtyping relation induced by requires.

Rules for typechecking methods are displayed in Fig. 10. The rule T-METHOD checks unspe-
cialized methods, and uses the override auxiliary judgement (which is unchanged from FJ). In
this rule, we check that method m is a valid override of the same (unspecialized) method in all
superclasses and required classes.

T-MULTI-METHOD checks specialized methods. The first two premises are the same as that of
T-METHOD. Premises (3), (4) and (5) check conditions 1, 2, and 3, respectively, of constraint M1.
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M ok in C

Ê x : B , this : C `e0 : E0
Ë E0 <: B Ì class C extends D requires E

Í ∀i .override(m, Di ,B → B) Î ∀i .override(m,Ei ,B → B)

B m(B x) { return e0; } ok in C
( T-METHOD)

Ê x : B ′, x : B , this : C `e0 : E0
Ë E0 <: B

Ì A 6=Object Í B0 6= A Î B0 ¹ A Ï mtype(m,C ) = (A,B) → B

B m(A@B0 x,B x) { return e0; } ok in C
( T-MULTI-METHOD)

Figure 10: Specialized and unspecialized method typing

Declaration Typing L ok

Ê ∀i .fields(Di ) = F i g i
Ë K =C ( F i g i

i∈1..n ,C f ){ this.g i = g i
i∈1..n ; this. f = f }

Ì M ok in C Í ∀i .class Di requires E ′, implies ∃k.Dk ¹ E ′ or ∃k.Ek ¹ E ′

Î ∀i .class Ei requires E ′′, implies ∃k.Dk ¹ E ′′ or ∃k.Ek ¹ E ′′

Ï ∀i .∀ j 6= i .ØD ′ 6=Object.Di ¹ D ′ and D j ¹ D ′

Ð ∀m.∀B ′.
(∃i .∃ j 6= i .methodDef (m,Di ,B ′) and methodDef (m,D j ,B ′)

)
, implies

∃B ′′.B ′ ¹ B ′′ and B0 m(〈A@〉B ′′x,B x) ∈ M

class C extends D requires E {C f ;K M } ok
( T-CLASS)

Figure 11: Class typing

Premise (6) checks condition 4 of M1; it ensures C defines or inherits an unspecialized method
with type (A,B) → B , where A is the static type being specialized.

The T-CLASS rule (Fig. 11) checks class definitions. Premises (1–3) are straightforward gener-
alizations of the corresponding premises in FJ. Premises (4) and (5) ensure that requires is prop-
agated down each level of the inheritance hierarchy; the extending class must either extend
or require its parents’ required classes. Premise (6) specifies that a subclassing diamond can-
not occur, except for the case of Object (condition C1). Finally, premise (7) enforces condition
C2, ensuring that if C inherits two methods m with the same first argument B ′ (or two unspe-
cialized methods m), then C provides an overriding definition for m. This premise uses the
methodDef (m,Di ,B ′) auxiliary judgement: a derivation of methodDef exists if Di defines or
inherits a method with specializer B ′ or first argument type B ′. This premise, as well as the
methodDef judgement, uses the notation 〈A@〉 to specify either a specialized or unspecialized
method (i.e., the A@ part is optional).

Dynamic Semantics. The evaluation rules and auxiliary judgements are presented in Fig. 13.
Most of the rules are similar to FJ, with the exception of E-INVK and E-SUPER-INVK. E-INVK passes

22



fields(C ) =C f

fields(Object) = •

class C extends D1, . . . ,Dn requires E {C f ;K M } ∀i .fields( Di ) = B i g i

fields(C ) = B i g i
i∈1..n ,C f

mtype(m,C ) = D → D

class C · · · {C f ;K M }
B m(B x) { return e; } ∈ M

mtype(m,C ) = B → B

class C extends D requires E {C f ;K M }

∃k .mtype(m, Dk ) = B → B

mtype(m,C ) = B → B

class C extends D requires E {C f ;K M }
∃k.mtype(m,Ek ) = B → B

mtype(m,C ) = B → B

methodDef (m,C ,B)

class C · · · {C f ;K M }
B0 m(〈B ′@〉B x,B x) { return e; } ∈ M

methodDef (m,C ,B)

class C extends D · · · {C f ;K M }
B0 m(〈B ′@〉B x,B x) { return e; } ∉ M

∃k.methodDef (m,Dk ,B)

methodDef (m,C ,B)

override(m,D,C →C0)

mtype(m,D) = D → D0 implies C = D and C0 = D0

override(m,D,C →C0)

Figure 12: CZ typechecking auxiliary judgements

the dynamic type of the method’s first argument as an additional argument to mbody, which
we describe below. E-SUPER-INVK uses the auxiliary judgement super(C ,D), which finds the first
superclass of the class C that is also a subclass of D . Then, mbody is called on the result of the
super call.

The main changes to the dynamic semantics are encoded in the auxiliary judgements
mbody, dispatch, and match. The mbody judgement has one additional argument as com-
pared with FJ, to (potentially) dispatch on the method’s first argument. This judgement sim-
ply extracts the arguments and method body from the result of the dispatch judgement, which
contains the actual dispatch logic.

Method dispatch is performed in two steps. The first dispatch rule uses the matchArg judge-
ment to search for a method defined in C that is applicable for D , the dynamic type of the
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method’s first argument. This latter judgement considers both specialized and unspecialized
methods (via the 〈B@〉 notation). If such a definition exists, it is returned; otherwise, a set of
methods M E is composed by calling dispatch on each of C ’s superclasses. Then, the unique
most specific method that is applicable for argument D is selected. Note the asymmetric dis-
patch semantics; if an appropriate method does not exist in C , its superclasses are searched
before dispatching on the argument type.

Constructors. As in FJ, CZ does not contain state, and thus constructor definitions are triv-
ial. However, a full implementation would have to ensure that when C extends A,B and
A requires B , when creating a C object, its B-part must be initialized before its A-part. Oth-
erwise, this could result in fields being accessed before they exist, since A is permitted to access
B ’s fields.

Generalizations. To generalize multimethod dispatch to n arguments, in the static semantics,
we would extend premise (7) of T-CLASS, which corresponds to condition C2. In particular, this
premise would ensure that if C inherits two method definitions that have identical specializer
lists (or argument types), then an overriding definition exists in C . In particular, the quantifier

∀B ′ would become ∀B
′

in this premise.
For the dynamic semantics, we would change dispatch and matchArg to take a list of dy-

namic types of the objects passed to the method in question. The latter judgement would then
select the unique most specific method such that each of its specializers (or argument types,
if there is no specializer) is a supertype of the corresponding dynamic type. This could be im-
plemented by first creating a candidate list of all applicable methods, then selecting the most
specific one.

We observe from the form of these judgements (dispatch and matchArg) that there could be
two ways in which more than one method applies: (1) within a single argument position, more
than one method applies and none is more specific than the others, (2) one method is more
specific at one argument position and another method is more specific at some other argument
position. Note that, in the absence of appropriate typechecking, either situation can arise, re-
gardless of whether dispatch is performed on n arguments or just two arguments. Premise (6)
of T-MULTI-METHOD ensures that there exists at least one method in the candidate list.

CZ’s static semantics—in particular, conditions C1 and C2—ensure that the first situation
cannot arise. As a consequence of condition C1 (the no-diamond restriction), for a particular
argument position k, all specializer types in the candidate method list are mutually comparable
(via subclassing). That is, if, at argument position k, method mi has specializer Ci and m j has
specializer C j , then either Ci ¹ C j or C j ¹ Ci (for i 6= j ). This is because both types must be
superclasses of Dk (the dynamic type at position k) and they also must both be subtypes of Ck ,
the static type at position k. Since Ck cannot be Object, Ci and C j must be comparable types.

C2 ensures that there exists an argument position k such that Ci 6=C j . We observe that two
methods in the candidate list could only have identical specializer types (or argument types) if
class C inherited two such methods (as there is a syntactic restriction against such a definition
directly in C ). But, C2 ensures that if such a situation were to occur, that C would have an
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Evaluation e 7−→ e ′

(E-FIELD)
fields(C ) = B f

(new C (e)). fi 7−→ ei

(E-INVK)
mbody(m,C , D ) = (x, x).e0

(new C (e)).m
(
new D(e ′) ,d

) 7−→[
new C (e)/this, new D(e ′)/x , d/x

]
e0

(E-SUPER-INVK)
super(C ,E) =C ′ mbody(m,C ′,D) = (x, x).e0

(new C (e)).E .super.m
(
new D(e ′),d

) 7−→[
new C (e)/this, new D(e ′)/x, d/x

]
e0

e0 7−→ e ′0
e0. f 7−→ e ′0. f

e0 7−→ e ′0
e0.m(e) 7−→ e ′0.m(e)

e0 7−→ e ′0
e0.C .super.m(e) 7−→ e ′0.C .super.m(e)

ei 7−→ e ′i
e0.m(. . . ,ei , . . . ) 7−→

e0.m(. . . ,e ′i , . . . )

ei 7−→ e ′i
e0.C .super.m(. . . ,ei , . . . ) 7−→

e0.C .super.m(. . . ,e ′i , . . . )

ei 7−→ e ′i
new C (. . . ,ei , . . . ) 7−→
new C (. . . ,e ′i , . . . )

Auxilliary Judgements

mbody(m,C , D ) = x.e

dispatch(m,C ,D) =
B0 m(〈B@〉B ′ x,B x) { return e; }

mbody(m,C , D ) = x.e

super(C ,D) = E

class C extends E E ¹ D

super(C ,D) = E

ØE ′ ¹ D.class C extends E ′

C extends B ∃k.super(C ,Bk ) = E

super(C ,D) = E

dispatch(m,C ,D) = M

class C · · · {C f ;K M }
matchArg(m,D, M) = M ′

dispatch(m,C ,D) = M ′

class C extends E requires F {C f ;K M }
ØM ′.matchArg(m,D, M) = M ′

M E = {Mi | dispatch(m,Ei ,D) = Mi }
∃ unique M ′′.matchArg(m,D, M E ) = M ′′

dispatch(m,C ,D) = M ′′

matchArg(m,D, M) = M

M ′ = B0 m(〈B@〉D x,B x) { return e; }
M ′ ∈ M

matchArg(m,D, M) = M ′

B0 m(〈B@〉D x,B x) ∉ M class D extends E
∃ unique (k, M ′).matchArg(m,Ek , M) = M ′

matchArg(m,D, M) = M ′

Figure 13: Evaluation rules and auxiliary judgements
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overriding definition. Therefore, the first dispatch rule would apply and superclasses would not
be considered.

Finally, situation (2) cannot occur, due our assymmetric dispatch semantics. To change to
symmetric dispatch (described in Sect. 4.3), we need only add an additional premise to T-CLASS.
This new premise would ensure that there is no combination of receiver and argument tuples
such that more than one method would apply, using the same modular check implemented in,
for instance, MultiJava and EML [17, 34]. Note that the dynamic semantics would not need to
change, since this new premise would ensure that asymmetric and symmetric dispatch produce
the same result.

8.1 Modularity

Here, we describe the conditions under which a class-based system is modular when there is
no explicit module system. We argue informally that typechecking in CZ is modular based on
the structure of the typechecking rules. (The other languages we have mentioned also perform
modular typechecking by this definition.)

Conditions for modular typechecking.

1. Checking a class signature C with methods M should only require examining: (a) signa-
tures of methods transitively overridden or specialized in M , (b) signatures of methods
transitively overridden or specialized by C ’s inherited methods, (c) class declarations of
C ’s supertypes.

2. Checking the definition of a particular method m (possibly specialized with class C )
should only require examining: (a) the declarations of C and its supertypes, (b) the signa-
ture of the method that m specializes, and (c) the signatures of methods called by m.

By inspection, checking a class definition C obeys condition 1. Each premise examines only
superclasses or required classes, and there is, for example, no search for multimethods with
first argument type C .

Checking a method definition m is also modular. If m is an unspecialized method, the only
generalization to the typechecking rule is additional override checks, which are modular. On the
other hand, when a specialized method is checked, we simply ensure that the specializer has
the appropriate relationship to its static type (which may not be Object), and call mtype(m,C ).
Since this judgement only searches up the subtype hierarchy, it is modular.

8.2 Type Safety

We prove type safety using the standard progress and preservation theorems, with a slightly
stronger progress theorem than that of FJ, due to the omission of casts. Note that in our system,
type safety implies that all method calls are unambiguous, as the dispatch and match judge-
ments require that there be a unique most-applicable method. We describe below a brief out-
line of the proof of type safety and refer the reader to Appendix B for further details.

Theorem 8.1 (Preservation). If Γ `e : C and e 7−→ e ′, then Γ `e ′ : C ′ for some C ′ <: C .
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The proof of preservation is relatively straightforward and is similar to the proof of FJ. We make
use of an auxiliary lemma (not shown) that proves that mtype returns a unique value. The proof
of this lemma makes use of the convention that method introductions are unique.

Theorem 8.2 (Progress). If · `e : C then either e is a value or there is an e ′ with e 7−→ e ′.

The proof of progress is slightly more complex. The proof requires the following lemma:

Lemma 8.1. If mtype(m,C ) = (B0,B) → B and Γ ` new C (e) : C and B ′ ¹ B0 then
dispatch(m,C ,B ′) = M , for some M .

However, unlike in FJ, we cannot prove this lemma by induction on the derivation of mtype,
since for the inductive step, we do not have a derivation Γ `new Dk (e) : Dk . Instead, we make
use of two auxiliary lemmas:

Lemma 8.2. If D :: mtype(m,C ) = (B0,B) → B and D does not contain the rule MTYPE3 and
B ′ ¹ B0, then dispatch(m,C ,B ′) = M , for some M .

Lemma 8.3. If Γ `new C (e) : C and C <: D and D :: mtype(m,D) = B → B , then there exist D ′

and D′ such that C ¹ D ′ and D′ :: mtype(m,D ′) = B → B does not contain the rule MTYPE3.

Lemma 8.2 is needed because it is the rule MTYPE3 that could result in mbody not being
defined—it is the only rule that has no dispatch counterpart. We use Lemma 8.3 to produce
such an mtype derivation.

With these lemmas, the rest of the proof of progress is straightforward.

9 Related Work

Here we describe related work that was not previously discussed in Sections 2, 3.2, and 4.2.
As mentioned in Sect. 4.2, JPred [25] and Fortress [3] perform modular multimethod type-

checking by requiring that programmers provide disambiguating methods, some of which may
never be called. However, we observe that the JPred and Fortress dispatch semantics may
be more expressive than that of CZ. In CZ, in the class hierarchy Fig. 2, the abstract class
InputStream may not be used as a specializer for Stream, because it is not a subclass of Stream.
In contrast, if this hierarchy were expressed in e.g. Fortress a multimethod defined on Stream
could be specialized for either InputStream or OutputStream. Note, however, that programmers
can achieve a similar effect in CZ by having concrete classes call helper methods (which may
themselves perform multiple dispatch) defined on the abstract classes.

Cecil [14, 15] also provides both multiple inheritance and multimethod dispatch, but it does
not include constructors (and therefore provides ordinary dispatch semantics for methods act-
ing as constructors), and it performs whole-program typechecking.

Like JPred, the language Half & Half [6] provides multimethod dispatch on Java interfaces.
In this language, if there exist specialized method implementations for two incomparable inter-
faces A and B , the visibility of one of the two interfaces must be package-private. Like System
M, this effectively disallows multiple (interface) inheritance across module boundaries (where
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a package is a module). Half & Half does not consider the problem of multiple inheritance with
state.

Pirkelbauer et al have considered the problem of integrating multimethods into C++, which
is especially difficult due to existing rules for overload resolution [41]. However, this proposal is
not modular; because of the potential for inheritance diamonds, the design requires link-time
typechecking.

It is worth noting that multimethods cannot be simulated with C# 3.0 “extension methods”
or partial classes [33]. The former, extension methods, are merely syntactic sugar and cannot
be overridden with a more specific type for the receiver. Partial classes, on the other hand, are
simple a compile-time mechanism for splitting a class’s definition across multiple compilation
units. In particular, compared to multimethods, they have the following limitations: 1) they
cannot span assemblies (so if the AST node classes are in a library, some other mechanism
would be needed, such as the Visitor pattern); 2) partial classes may not be used to perform
dispatch on interfaces, in contrast to multimethods; and 3) typechecking each part of a partial
class is not modular, as all parts are composed before typechecking. This last problem can cause
compilation errors if two programmers implement a partial class in incompatible ways, so it is
unclear what should be the appropriate level of granularity when partial classes are used in a
team environment.

10 Conclusions

We have presented a language that solves two major problems caused by inheritance diamonds:
object initialization and modular typechecking of multiple dispatch. We have also shown how
programs written with traditional multiple inheritance can be converted to programs in our
language. We note that though diamonds can still cause encapsulation problems (depending
on the definition of encapsulation), this problem can be ameliorated by preferring requires over
extends.

We emphasize that although programmers may indeed have to decide ahead of time
whether they want to make a class re-usable by making it abstract and by using requires in-
stead of extends—potentially a difficult decision to make—it is a decision the class designer
must already make, as a class must be designed carefully if it is to be a unit of reuse (e.g., see
item 17 in [32]).

One might also raise the objection that CZ would result in a proliferation of abstract classes,
for which a corresponding concrete class would have to be defined. We believe that this prob-
lem can mostly be solved through a syntactic sugar for defining concrete classes (Section 6.4).
Additionally, note that our proposed solution requires just as many abstract classes as there
would be mixins or traits (which also cannot be instantiated) if those solutions were to be used
(Section 3.2).
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A Subtyping vs. Subclassing

In CZ, the use of requires provides subtyping without inheritance, but it also places constraints
on concrete subclasses—they must inherit from their parent’s required classes. This raises the
question of whether simply providing subtyping without inheritance would be sufficient to en-
code the desired relationships.

When separating subtyping from inheritance, we may use nominal subtyping or structural
subtyping. However, in either case, private members are problematic. If private members are
included in a subtyping relationship, this can violate information hiding, if they are not, it can
restrict expressiveness.
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Concretely, consider the following program:

class A {
private int i;
boolean equals(A other) {
... // can access other.i?

}
}

class B subtypes A {
... // declare i?

}

Suppose that the subtypes keyword provides nominal subtyping without inheritance (but with-
out the additional constraints of requires). The question then arises: are private members con-
sidered when checking subtyping? If so, then B must declare a private field i. Unfortunately, this
also means that A.equals can access B.i, which violates information hiding; one class should not
be able to access private members defined in another class. On the other hand, if we assume
that subtyping does not include private members, then A.equals cannot access other.i, which is
problematic if the definition of equality depends on this field. An analogous problem occurs if
structural subtyping is used.

The problem can be avoided if inheritance or requires is used for types that contain binary
methods. Since requires is tied to a particular class, if we change the above code to B requires A
(or B extends A), then A.equals(A other) may safely access other.i, even if an object of type B is
passed to this method. Note that an information hiding problem does not arise here—the pri-
vate state has not been redefined in B, but is rather (eventually) inherited from A in the concrete
B implementation that was passed in.

B Type Safety Proof

B.1 Auxiliary Lemmas

Lemma B.1. If mtype(m,D) =C →C0, then for C ¹ D , mtype(m,C ) =C →C0.

Proof. By induction on C ¹ D .

case SUB-CREFL. Immediate.

case SUB-CTRANS. We have C ¹ D and D ¹ E . By the induction hypothesis, mtype(m,D) =C →
C0. Applying the induction hypothesis to C ¹ D gives the required result.

case SUB-EXTENDS. There are two cases:

C defines m. By inversion on override and T-METHOD, m must be a valid override and
must have type C →C0. By rule MTYPE1, mtype(m,C ) =C →C0.

C does not define m. By rule MTYPE2, mtype(m,C ) = mtype(m,D).
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Lemma B.2. If C <: E and mtype(m,E) = B → B , then mtype(m,C ) = B → B .

Proof. By case analysis of C <: D .

case SUB-SUBCLASS. Follows from Lemma B.1.

case SUB-TRANS. C <: D and D <: E .
By the induction hypothesis on D <: E , mtype(m,D) = B → B . The result then follows
from the induction hypothesis on C <: D .

case SUB-REQUIRES. There are two cases:

C defines m. Similar to the same case in Lemma B.1

C does not define m. By rule MTYPE3, mtype(m,C ) = mtype(m,E).

Lemma B.3. If mtype(m,C ) = B → B and mtype(m,C ′) = B
′ → B ′, then there exists a D where

C <: D and C ′ <: D and mtype(m,D) = B
′′ → B ′′ where B = B

′ = B
′′

and B = B ′ = B ′′.

Proof. By simultaneous induction on the two mtype derivations.

case MTYPE1, MTYPE1. By the convention that methods have a unique point of introduction,

B ′′ m(B
′′

x) must have been introduced in some D where C <: D and C ′ <: D . By MTYPE1,

mtype(m,D) = B
′′ → B ′′. The result then follows from Lemma B.2.

case —, MTYPE2; —, MTYPE3. The result follows from the induction hypothesis and the transi-
tivity of subtyping.

Lemma B.4. If A ¹ B and B requires C , then either there exists some C ′ ¹ C such that
A requires C ′ or A ¹C ′.

Proof. Straightforward induction on A ¹ B .

Lemma B.5. If A <: B and A � B then there exists some B ′ ¹ B such that A requires B ′.

Proof. By induction on A <: B .

case SUB-SUBCLASS. Vacuous.

case SUB-TRANS. We have A ¹C and C ¹ B .
Since A � B , there are three possibilities:
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subcase A � C , C � B . By the induction hypothesis on the first derivation, we have
∃C ′ ¹ C . A requires C ′. By the induction hypothesis on the second derivation, ∃B ′ ¹
B.C requires B ′. We have C ′ ¹ C and C requires B ′. Taking these facts together, by
Lemma B.4, ∃B ′′ ¹ B ′.C ′ requires B ′′ or C ′ ¹ B ′′. In the first case, again by Lemma B.4,
∃B ′′′ ¹ B ′. A requires B ′′′. But, since B ′′′ ¹ B , this proves the required result.

subcase A ¹ C ,C � B . By the induction hypothesis, ∃B ′ ¹ B.C requires B ′. Since A ¹ C ,
by Lemma B.4, ∃B ′′ ¹ B ′. A requires B ′′ or A ¹ B ′′.
In the first case, A requires B ′′, the result follows from the fact that B ′′ ¹ B . In the
second case, A ¹ B ′′, we have A ¹ B , which is a contradiction.

subcase A � C , C ¹ B , by the induction hypothesis, ∃C ′ ¹ C . A requires C ′. The result
follows from the fact that C ′ ¹ B .

case SUB-REQUIRES. Immediate.

Lemma B.6. If matchArg(m, A, M) = M0 and arg1(M0) = A′ then M0 = B0 m(〈B@〉A′ x,B x) and
M0 ∈ M and A ¹ A′.

Proof. By induction on matchArg.

case MATCH1. Immediate.

case MATCH2. We have matchArg(m, Ak , M) = M0, where A extends Ak . By the induction hy-
pothesis, M0 ∈ M and Ak ¹ A′. The result then follows from the transitivity of subclassing.

Lemma B.7. If arg1(M0) = A′ and M0 ∈ M and A ¹ A′, then matchArg(m, A, M) = M ′
0 where

arg1(M ′
0) ¹ A′.

Proof. By induction on A ¹ A′.

case SUB-REFL. Immediate from MATCH1.

case SUB-CTRANS. We have A ¹ B and B ¹ A′. By the induction hypothesis on the second
derivation, matchArg(m,B , M) = M ′

0 where arg1(M ′
0) ¹ A′. By Lemma B.6, M ′

0 ∈ M . By
the induction hypothesis on the first derivation (A ¹ B), matchArg(m, A, M) = M ′′

0 and
arg1(M ′′

0 ) ¹ arg1(M ′
0). By transitivity of subtyping, arg1(M ′′

0 ) ¹ A, which is the required
result.

case SUB-EXTENDS. We have A extends A′. Either (1) there exists M ′ where arg1(M ′) = A′ and
M ′ ∈ M or (2) M ′ ∉ M . In case (1), by MATCH1, matchArg(m, A, M) = A. Otherwise, in case
(2), the result follows from MATCH2.
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B.2 Progress Lemmas and Proof

Definition B.1. arg1
(
B m(〈A@〉B0 x,B x) { return e; }

) def= B0

Lemma B.8 (No-diamond property). If A ¹ D1 and A ¹ D2 and D1 ¹ B and D2 ¹ B , then either
B =Object or D1 ¹ D2 or D2 ¹ D1.

Proof. By simultaneous induction on A ¹ Di and A ¹ D j

case SUB-CREFL, SUB-CREFL. D1 = D2. Immediate.

case SUB-CREFL, SUB-CTRANS; SUB-CREFL, SUB-EXTENDS. A = D1. By assumption, A ¹ D2, which
is the required result.

case SUB-CTRANS, SUB-CTRANS. We have A ¹ C1 and C1 ¹ D1 and A ¹ C2 and C2 ¹ D2. By
the transitivity of subclassing, C1 ¹ B and C2 ¹ B . Applying the induction hypothesis to
A ¹C1 and A ¹C2, we have either (1) B =Object or (2) C1 ¹C2 or (3) C2 ¹C1. In case (1),
the result follows. In case (2), we have C1 ¹ D1 and C1 ¹ D2. The result follows by applying
the induction hypothesis to these derivations. Case (3) is similar to case (2).

case SUB-CTRANS, SUB-EXTENDS. We have A ¹ C and C ¹ D1 and A extends D2. Applying the
induction hypothesis to A ¹C and A ¹ D2, either (1) B =Object or (2) C ¹ D2 or (3) D2 ¹C .
In case (2), applying the induction hypothesis to C ¹ D1 and C ¹ D2 yields the required
result. In case (3), the result follows from transitivity of subclassing.

case SUB-EXTENDS, SUB-EXTENDS. Immediate from T-CLASS.

Lemma B.9. If matchArg(m,D, M) = M , then D ¹ D ′ where arg1(M) = D ′.

Proof. By induction on matchArg.

case MATCH1. D = D ′.

case MATCH2. We have matchArg(m,Ek , M) = M , where D extends Ek . By the induction hy-
pothesis, arg1(M) = D ′ and Ek ¹ E ′

k . By SUBCTRANS, D ¹ D ′, which is the required result.

Lemma B.10. If dispatch(m,C ,D) = M , then D ¹ D ′, where arg1(M) = D ′.

Proof. Follows by induction on dispatch and Lemma B.9.

Lemma B.11. If matchArg(m,D, M) = Mk , for some unique Mk and ∀i .arg1(M ′) � arg1(Mi ),
then matchArg(m,D, (M , M ′)) has the unique result Mk .

Proof. By induction on match.
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case MATCH1. Immediate from the fact that arg1(M ′) 6= arg1(Mk ).

case MATCH2. We have D extends E k and matchArg(m,Ek , M) = Mk . By the induction hypoth-
esis, there is a unique Mk where matchArg(m,Ek , (M , M ′)) = Mk .

Suppose M ′ = B0 m(D x,B x). Then, by MATCH1, matchArg(m,D, (M , M ′)) = D . But, by
Lemma B.9, Ek ¹ arg1(Mk ) and therefore D ¹ arg1(Mk ). By premise, arg1(M ′) � arg1(Mk )
so D � arg1(Mk ), which is a contradiction.

Therefore, B0 m(D x,B x) ∉ (M , M ′) and the rule MATCH2 applies, providing the required
result.

Lemma B.12 (Weakening for matchArg). If matchArg(m,D, M) = Mk , for some unique Mk and

∀i ∈ 1..#M
′
.∀ j ∈ 1..#M .arg1(M ′

i ) � arg1(M j ), then matchArg(m,D, (M , M
′
)) has the unique re-

sult Mk .

Proof. By induction on M
′
.

case M
′ = •. Immediate.

case M
′ = M0, M

′′
. Result follows from Lemma B.11.

Lemma B.13. If matchArg(m, A, M) = M0 and A′ ¹ A, then matchArg(m, A′, M) = M ′
0 where

arg1(M ′
0) ¹ arg1(M0).

Proof. By induction on matchArg(m, A, M).

case MATCH1. Follows from Lemma B.7.

case MATCH2. We have A extends Ak and matchArg(m, Ak , M) = M0. By transitivity of subtyp-
ing, A′ ¹ Ak . The result then follows from the induction hypothesis.

Lemma B.14 (Sufficient conditions for match to be defined.). If we have M where Mi =
Bi m(Ai x,B i x) { return ei ; } and

1. D ¹ A` (for some `)
2. Ai 6= A j (for all i 6= j )
3. D ¹ Ai and D ¹ A j , implies Ai ¹ A j or A j ¹ Ai (for all i 6= j )

then there exists a unique Mk such that matchArg(m,D, M) = Mk and for all j such that D ¹ A j ,
Ak ¹ A j .

Proof. By induction on M .
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case M = M0, where arg1(M0) = D ′ and D ¹ D ′. The result follows from Lemma B.7.

case M = M0, M
′
, where arg1(M0) = D ′.

Either ∃k ∈ 1..#M
′
.D ¹ Ak (where arg1(Mk ) = Ak ), or not. If such a Ak does not exist (i.e.,

∀i .D � Ai ), by assumption D ¹ D ′. By Lemma B.6, matchArg(m,D, M0) = M0. From this
it follows that ∀i .D ′ � Ai , and the result follows from Lemma B.12.

Otherwise, either D ¹ D ′ or not. If D � D ′, the result follows from Lemma B.12.

Therefore, we have D ¹ D ′ and by assumption, for all i ∈ 1..#M
′
, D ′ 6= Ai and if D ¹ Ai ,

either D ′ ¹ Ai or Ai ¹ D ′, where Ai = arg1(M ′
i ).

By the induction hypothesis, there exists a unique M ′
k such that matchArg(m,D, M

′
) = M ′

k
and ∀ j .D ¹ A j implies Ak ¹ A j . Since by Lemma B.9, D ¹ Ak , from above, either (1)
D ′ ¹ Ak or (2) Ak ¹ D ′.

In either case (1) or (2), by the induction hypothesis, matchArg(m,D, (M0, M ′
k )) = M ′′,

where arg1(M ′′) ¹ D ′ and arg1(M ′′) ¹ Ak . By Lemma B.6), M ′′ ∈ {M0, M ′
k }.

In case (1), we can conclude that M ′′ = M0. From above, we have ∀ j .D ¹ A j , D ′ ¹ A j . The
result then follows from Lemma B.12.

In case (2), we can conclude that M ′′ = M ′
k . The result then follows from Lemma B.12.

Lemma B.15. If class C · · · { C f ;K M } and M1 ∈ M where arg1(M1) = A1 and M2 ∈ M where
arg1(M1) = A2 and A1 ¹ A2 and A ¹ A1, A2 and matchArg(m, A, M) = M ′, then arg1(M ′) ¹ A1.

Proof. By case analysis on matchArg(m, A, M).

case MATCH1. Immediate.

case MATCH2. We have A extends Ak and matchArg(m, Ak , M) = M ′ and arg1(M ′) = A′
k . By

Lemma B.6, matchArg(m, A1, M) = M1. Since the result of matchArg(m, Ak , M) is unique,
Ak ¹ A1. Then, by Lemma B.13, A′

k ¹ A1.

Lemma B.16. If class C · · · { C f ;K M } and matchArg(m, A, M) = M1 and matchArg(m, A, M) =
M2 then M1 = M2.

Proof. By Lemma B.6, M1 = B m(〈B ′@〉B0 x,B x) ∈ M and M2 = B ′ m(〈B ′′@〉B ′
0 x,B

′
x) ∈ M . By

Lemma B.9, A ¹ B0 and A ¹ B ′
0. There are 3 cases to consider: (1) ∃B ′ and ∃B ′′, (2) (∃B ′ and ØB ′′)

or (ØB ′ and ∃B ′′), or (3) ØB ′ and ØB ′′.
In case (1), by T-MULTI-METHOD, B0 ¹ B ′ and B ′

0 ¹ B ′′. Also by T-MULTI-METHOD,

mtype(m,C ) = (B ′,B) → B and mtype(m,C ) = (B ′′,B
′
) → B ′. By the uniqueness of mtype
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(Lemma B.3), B ′ = B ′′. By T-MULTI-METHOD, B ′ 6=Object. But, since we have A ¹ B0 and A ¹ B ′
0,

B0 = B ′
0; otherwise this would violate the no-diamond property (Lemma B.8).

In case (2), suppose ∃B ′ and ØB ′′ (the other case is analogous). By T-MULTI-METHOD, B0 ¹ B ′

and B0 6= B ′ and mtype(m,C ) = (B0,B) → B . By MTYPE1, mtype(m,C ) = (B ′
0,B

′
) → B ′. By the

uniqueness of mtype (Lemma B.3), B ′
0 = B ′. We have A ¹ B ′, A ¹ B0 and B0 ¹ B ′. By Lemma B.15,

B ′ ¹ B0, which implies B0 = B ′. This is a contradiction.
In case (3), since there cannot be two unspecialized methods with the same name defined

in C , M1 = M2.

Lemma B.17. If class C · · · { C f ;K M } and B m(A x,B x) ∈ M and A′ ¹ A, then
matchArg(m, A′, M) = M0 where arg1(M0) = A′′ and A′′ ¹ A.

Proof. By induction on A′ ¹ A.

case SUB-CREFL. Result follows from MATCH1.

case SUB-CTRANS. We have A′ ¹ A1 and A1 ¹ A. By the induction hypothesis,
matchArg(m, A1, M) = A′′ where A′′ ¹ A. The result then follows from Lemma B.13.

case SUB-EXTENDS. We have A′ extends A. Suppose B ′ m(A′ x,B
′

x) ∈ M . By MATCH1,
arg1(matchArg(m, A′, M)) = A′, which gives the required result. Otherwise, if

A′ extends A
′
, we must show that there exist unique k, M ′ such that matchArg(m, A′

k , M)

is defined; MATCH2 then applies. By MATCH1, we have matchArg(m, A, M) = M ′ and
arg1(M ′) = A.

Suppose ∃A′
j .matchArg(m, A′

j , M) = M ′′ and arg1(M ′′) = B . By Lemma B.6,

C m(〈B0@〉B x,B
′

x) ∈ M . By Lemma B.9, A′
j ¹ B so therefore A′ ¹ B . By T-METHOD,

∃D 6= Object. A ¹ D and B ¹ D . However, this means that a diamond results, which is
impossible (Lemma B.8). Therefore, there exists a unique k where matchArg(m, A′

k , M) =
M1. By Lemma B.16, this value is unique.

Lemma B.18. If dispatch(m,C , A) = M and arg1(M) = A′ then mtype(m,C ) = (A′′,B) → B where
A′ ¹ A′′.

Proof. By induction on dispatch.

case DISPATCH1. We have class · · · { C f ;K M }. By Lemma B.6, B m(〈B ′@〉A′ x,B x) ∈ M . Either
(1) x has type B ′@A′ or it has type A′. In case (1), by T-MULTI-METHOD, mtype(m,C ) =
(B ′,B) → B , where A′ ¹ B ′. In case (2), the result follows from MTYPE1.

case DISPATCH2. We have dispatch(m,D, A) = M , arg(M) = A′ and C extends D . By the induc-
tion hypothesis, mtype(m,D) = (A′′,B) → B , where A′ ¹ A′′. The result then follows from
MTYPE2.
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Lemma B.19. If methodDef (m,C , A), then mtype(m,C ) = (B0,B) → B , where A ¹ B0.

Proof. By induction on methodDef (m,C , A).

case METHODDEF1. class C · · · { C f ;K M }
There are two possible cases:

(1) B m(A x,B) ∈ M . Result follows from MTYPE1.

(2) B m(B ′@A x,B) ∈ M . By T-MULTI-METHOD, A ¹ B ′ and mtype(m,C ) = (B ′,B) → B ,
which is the required result.

case METHODDEF2. By the induction hypothesis, mtype(m,Dk ) = (B0,B) → B , where A ¹ B0

and C extends Dk . The result then follows from MTYPE2.

Lemma B.20. If matchArg(m,D, M) = M0, and arg1(M0) = B ′ then methodDef (m,C ,B ′).

Proof. By induction on matchArg(m,D, M).

case MATCHARG1. Result follows from METHODDEF1.

case MATCHARG2. Result follows from induction hypothesis.

Lemma B.21. If dispatch(m,C ,D) = M0 and arg1(M0) = B ′, then methodDef (m,C ,B ′).

Proof. By induction on dispatch(m,C ,D).

case DISPATCH1. We have matchArg(m,D, M) = B0 m(B ′x,B x), where class C · · · { C f ;K M }.
The result then follows from Lemma B.20.

case DISPATCH2. We have M E = {Mi | dispatch(m,Ei ,D)} and matchArg(m,D, M E ) =
B0 m(B ′x,B x), where C extends E . By the induction hypothesis, methodDef (m,Ei ,B ′) =
E ′

i , for some E ′
i where Ei ¹ E ′

i . The result then follows from METHODDEF2 and the transi-
tivity of subclassing.

Lemma B.22. If mtype(m,C ) = (Object,B) → B and methodDef (m,C , A), then A =Object.

Proof. By induction on the methodDef derivation.
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case METHODDEF1. class C · · · { C f ;K M }
There are two possible cases:

(1) B m(A x,B) ∈ M . By inversion on mtype and the uniqueness of mtype (Lemma B.3),
A =Object.

(2) B m(B ′@A x,B) ∈ M . By the uniqueness of mtype (Lemma B.3), and premise (6) of
T-MULTI-METHOD, B ′ =Object. But, by premise (3), B ′ 6=Object, so this case is impossible.

case METHODDEF2. We have methodDef (m,Dk , A), where C extends Dk . By Lemma B.19,

mtype(m,Dk ) = (B0,B
′
) → B ′. By the uniqueness of mtype (Lemma B.3), B

′ = B , B = B ′,
and B0 =Object. The result then follows from the induction hypothesis.

Lemma B.23. If we have the following:

1. class C { C f ;K M } extends D1,D2

2. m ∉ M
3. dispatch(m,D1,E) = M1 and dispatch(m,D2,E) = M2

4. arg1(M1) = A1 and arg1(M2) = A2

then A1 6= A2 and (A1 ¹ A2 or A2 ¹ A1).

Proof. By Lemma B.10, E ¹ A1 and E ¹ A2. By Lemma B.18, mtype(m,D1) = (B0,B) → B and

mtype(m,D2) = (B ′
0,B

′
) → B ′ where A1 ¹ B0 and A2 ¹ B ′

0. By Lemma B.3, B0 = B ′
0, so A1, A2 ¹ B0.

By Lemma B.21, we have methodDef (m,D1, A1) and methodDef (m,D2, A2). Suppose A1 =
A2. By T-CLASS, C ′ m(〈A′@〉C0 x,C x) ∈ M , which is a contradiction.

We can use the no-diamond property to prove the second conjunct of the result,
once we have shown that B0 6= Object. By Lemma B.21, methodDef (m,D1, A1) and

methodDef (m,D2, A2). Then mtype(m,D1) = (Object,B) → B and mtype(m,D2) = (Object,B
′
) →

B ′. By Lemma B.22, A1 = A2 =Object, which contradicts the result proved above that A1 6= A2.
Finally, by Lemma B.8, since B0 6= Object, either A1 ¹ A2 or A2 ¹ A1, which completes the

proof.

Lemma B.24. If D :: mtype(m,C ) = (B0,B) → B and D does not contain the rule MTYPE3, and
B ′ ¹ B0, then dispatch(m,C ,B ′) = M where arg1(M) = B ′′ and B ′′ ¹ B0.

Proof. By induction on D.

case MTYPE1. We have class C · · · { C f ;K M } and B m(B0 x,B x) ∈ M . By Lemma B.17,
matchArg(m,B ′, M) = M1 where arg1(M1) = B ′′ and B ′′ ¹ B0. The result then follows from
DISPATCH1.

case MTYPE2. class C extends D { C f ;K M } m ∉ M Dk :: mtype(m,Dk ) = (B0,B) → B

By the induction hypothesis, dispatch(m,Dk ,B ′) = Mk , where arg1(Mk ) = Ak and Ak ¹ B0.

Let M D = {Mi | dispatch(m,Di ,B ′)}. It suffices to show that
∃ unique M ′′.matchArg(m,B ′, M D ) = M ′′; the rule DISPATCH2 then applies.
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Let Ai = arg1(Mi ). By Lemma B.23, for all i 6= j , Ai 6= A j and either Ai ¹ A j or A j ¹ Ai . The
result then follows from Lemma B.14.

Lemma B.25. If D :: mtype(m,D) = B → B and C <: D and Γ `new C (e) : C , then there exist D ′

and D′ such that C ¹ D ′ and D′ :: mtype(m,D ′) = B → B , where D′ does not contain the rule
MTYPE3.

Proof. By induction on the mtype derivation.

case MTYPE1. We observe that D does not contain the rule MTYPE4. There are two possibilities:
either C ¹ D , in which case let D′ = D, or C � D . In the latter case, by Lemma B.5, ∃E ¹
D.C requires E . But, this is impossible; by inversion on T-NEW, C requires •.

case MTYPE2. We have D extends Dk where Dk :: mtype(m,Dk ) = B → B . The result then fol-
lows from the induction hypothesis and MTYPE2.

case MTYPE3. Similar to above.

Lemma B.26. If C ¹ D and D :: mtype(m,D) = B → B does not contain the rule MTYPE3, then
there exists D′ :: mtype(m,C ) = B → B that does not contain the rule MTYPE3.

Proof. Straightforward induction on C ¹ D .

Lemma B.27. If mtype(m,C ) = (B0,B) → B and Γ ` new C (e) : C , and B ′ ¹ B0, then
mbody(m,C ,B ′) = x.e0, for some x and e0.

Proof. By case analysis on the derivation of mtype.

case MTYPE1. By Lemma B.17, matchArg(m,B ′, M) is defined, where M are the methods of
C . By DISPATCH1, dispatch(m,C ,B ′) is defined, which implies that mbody(m,C ,B ′) is also
defined.

case MTYPE2. We have mtype(m,Dk ) = (B0,B) → B , where C extends Dk . By Lemmas B.25 and
B.26, there exists D :: mtype(m,C ) = (B0,B) → B that does not contain rule MTYPE3. By
Lemma B.24, dispatch(m,C ,B ′) is defined, which implies that mbody(m,C ,B ′) is also de-
fined.

case MTYPE3. Vacuous; by inversion of T-NEW, C requires •.

Theorem B.1 (Progress). If · `e : C then either e is a value or there is an e ′ with e 7−→ e ′.

Proof. By induction on e : C .
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case T-VAR. Vacuous.

case T-FIELD. e = e0. fi

We have fields(C0) =C f . By the induction hypothesis, either e0 is a value or it evaluates to
some e ′

0. In the first case, the rule T-FIELD1 applies. In the second case, the rule E-FIELD2

applies.

case T-INVK. e = e0.m(e) e : C C <:D
By the induction hypothesis, either e0 is a value or it evaluates to some e ′

0. If it evaluates,
then the rule E-INVK-RECV applies. If it is a value, then either the arguments e evaluate or
they are values. In the first case, E-INVK-ARG applies.

Otherwise, by assumption, mtype(m,C0) = D → D and e0 : C0 and e1 : C1 where C1 <: D1.
By inversion on T-NEW, we have e0 = new C0(e ′

0) and e1 = new C1(e ′
1) and C1 requires •. By

Lemma B.4, C1 ¹ D1. By Lemma B.27, mbody(m,C0,C1) is defined; the rule E-INVK then
applies.

case T-SUPER-INVK. e = e0.D.super.m(e)
By the induction hypothesis, either e0 is a value or it evaluates to some e ′

0. If it evalu-
ates, then the rule E-INVK-SUPER-RECV applies. If it is a value, then either the arguments e
evaluate or they are values. In the first case, E-SUPER-INVK-ARG applies.

Otherwise, by inversion on T-NEW we have e0 = new C0(e) and e1 = new C1(e ′
1) and

C1 requires •. By assumption, mtype(m,D) = D → C . Since C1 <: D1 by Lemma B.4,
C1 ¹ D1. Let E = super(C ,D). By the definition of super, we have E ¹ D . By Lemma B.1,
mtype(m,E) = D →C . By Lemma B.27, mbody(m,E ,C1) is defined. The rule E-SUPER-INVK

then applies.

case T-NEW. e = new C (e)
By the induction hypothesis, either e evaluates or it is a value. If it evaluates, the rule
E-NEW-ARG applies. Otherwise, the expression itself is a value.

B.3 Preservation Lemmas and Proof

Lemma B.28 (Substitution). If Γ, x : C ` e : D and Γ `d : C
′

where C
′ <: C then Γ ` [d/x]e : D ′

for some D ′ <: D .

Proof. Similar to proof of FJ, using Lemma B.2 for the case of method invocation.

Lemma B.29 (Weakening). If Γ, x : C ,Γ′ `e : B then for C ′ <: C and B ′ <: B , Γ, x : C ′,Γ′ `e : B ′.

Proof. Straightforward induction on typing derivations.

Lemma B.30. If dispatch(m,C ,D) = x.e0 then there exists a unique B → B such that
mtype(m,C ) = B → B .
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Proof. By induction on the derivation of dispatch.

case DISPATCH1. By Lemma B.6, m ∈ M . The result then follows from MTYPE1.

case DISPATCH2. By Lemma B.6, M ′′ ∈ M E . By definition, M ′′ = dispatch(m,Ek ,D) where
C extends Ek . By the induction hypothesis, mtype(m,Ek ) = B → B . By MTYPE2,
mtype(m,C ) = B → B and by Lemma B.3, this value is unique.

Lemma B.31. If dispatch(m,C ,D) = M ′ where M ′ = E m(E0 x,E x) { return e; } and
mtype(m,C ) = (B0,B) → B then there exists some B ′ <: B such that x : B0, x : B , this : C `e : B ′.

Proof. By induction on the definition of dispatch(m,C ,D).

case DISPATCH1. By Lemma B.6, M ′ = D0 m(〈D@〉D ′ x,D x) and M ′ ∈ M , where D ′ ¹ D . By
inversion on T-METHOD and T-MULTI-METHOD, the result follows.

case DISPATCH2. By Lemma B.6, M ′ ∈ M E . By definition, M ′ = dispatch(m,Ek ,D) where
C extends Ek . By Lemma B.30, mtype(m,Ek ) = C → C ′, for some unique C → C ′.
Since ØM ′.matchArg(m,D, M) = M ′, by Lemma B.7, C0 m(〈C @〉D ′ x,C x) ∉ M ′, where
D ¹ D ′. So, by MTYPE2, mtype(m,C ) = mtype(m,Ek ). Since the result of mtype is
unique (Lemma B.3), we have B = C and B = C ′. Applying the induction hypothesis to
dispatch(m,Ek ,D) and mtype(m,Ek ) yields the required result.

Theorem B.2 (Preservation). If Γ `e : C and e 7−→ e ′, then Γ `e ′ : C ′ for some C ′ <: C .

Proof. By induction on derivation of e 7−→ e ′.

case E-FIELD.
e = (new C0(e)). fi

e ′ = ei

fields(C0) = D f
Di =C

By the rule T-FIELD, Γ `new C0(e) : C0 C0 <: C0.
By T-NEW, Γ `e : C C <: D C0 =C0.
By transitivity of subtyping, ei : Di , which is the required result.

case E-INVK.
e = (new C0(e)).m(new D(e ′),d)
e ′ = [new D(e ′)/x, d/x, new C0(e)/this]e0

mbody(m,C0,D) = (x, x).e0

By T-INVK and T-NEW:
Γ `new C0(e) : C0
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Γ `new D(e ′) : D D <: D0

Γ `d : B B <: D
mtype(m,C0) = (D0,D) →C

From the definition of mbody, we have dispatch(m,C0,D) = E m(E0 x,E x) { return e; }.
By Lemma B.31, there exists some C ′ <: C such that x : D0, x : D , this : C0 ` e0 : C ′. By
Lemma B.28, · `[new D(e ′)/x, d/x, new C0(e)/this]e0 : C ′′, for some C ′′ <: C ′. By the tran-
sitivity of subtyping, C ′′ <: C , which is the required result.

case E-SUPER-INVK.
e = (new C0(e)).B.super.m(new D(e ′),d)

By T-SUPER-INVK and T-NEW:
class C0 requires B ,E
class C0 requires •

This is a contradiction, therefore this case is vacuous (dynamically-dispatched super calls
can only be applied to classes with a non-empty requires clause).

The cases for the congruence rules are straightforward.
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