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Abstract
This thesis introduces the concept of heterogeneous decompositions of

a degree-balanced search tree and applies this concept to establish the

following three results.

(1) Any leaf-store or node-store degree-balanced search tree can support a

constant number of dynamic fingers in the worst case without storing

extra pointers in its nodes nor restructuring after a finger search. Each

dynamic finger is represented as a logarithmic-sized data structure that

contains pointers pointing into the tree, which is maintained using dic-

tionary algorithms that exploit this representation of dynamic fingers.

(2) By construction, there exists a static binary search tree algorithm with

the dynamic finger property in the worst case. This algorithm is primar-

ily intended to serve as an alternate proof that the dynamic optimality

conjecture implies the dynamic finger conjecture—in view of the fact

that the earlier explicit proof of this implication is the highly-nontrivial

proof of the dynamic finger theorem due to Cole.

(3) By construction, there exists a static O(lg lg n)-competitive binary search

tree algorithm with the dynamic finger property in the amortized case.

As a corollary, if the splay trees of Sleator and Tarjan are O(1)-competitive

even in the presence of splits and joins, then the multi-splay trees of

Wang, Derryberry, and Sleator have the dynamic finger property in the

amortized case.
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1

1
Introduction

This thesis introduces the concept of heterogeneous decompositions of

a degree-balanced search tree and applies this concept to establish the

following three results.

(1) Any leaf-store or node-store degree-balanced search tree can support a

constant number of dynamic fingers in the worst case without storing

extra pointers in its nodes nor restructuring after a finger search. Each

dynamic finger is represented as a logarithmic-sized data structure that

contains pointers pointing into the tree, which is maintained using dic-

tionary algorithms that exploit this representation of dynamic fingers.

(2) By construction, there exists a static binary search tree algorithm with

the dynamic finger property in the worst case. This algorithm is primar-

ily intended to serve as an alternate proof that the dynamic optimality

conjecture implies the dynamic finger conjecture [ST85b]—in view of

the fact that the earlier explicit proof of this implication is the highly-

nontrivial proof of the dynamic finger theorem due to Cole [Col00].

(3) By construction, there exists a static O(lg lg n)-competitive binary search

tree algorithm with the dynamic finger property in the amortized case.

As a corollary, if the splay trees of Sleator and Tarjan [ST85b] are O(1)-
competitive even in the presence of splits and joins, then the multi-splay

trees of Wang, Derryberry, and Sleator [WDS06] have the dynamic finger

property in the amortized case.

10+152+20+15 pages, 18 figures, 4 tables base revision 903 built on 2009-5-28 16:00
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2 Introduction

To ensure that these results are presented in the thesis in a self-contained

manner, this chapter presents the four background topics that these results

depend upon. We will use §1.1– §1.4 to provide a technical overview of

each topic with a brief account of its history mixed in. A short survey on

the history of finger search will then be provided in §1.5. Even though some

of the definitions appearing in this chapter are new, we acknowledge that

all technical results presented in this chapter are essentially our adaptation

of the literature and due credits will be given throughout. The reader can

find our own work starting from §2.

1.1 Degree-Balanced Search Trees
The term “degree-balanced search trees” was coined in the thesis of Over-

mars [Ove83, §3.2] to denote a major class of worst-case balanced search

trees available at the time. A search tree in this class maintains its balance

by ensuring that (i) all external nodes appear at the same depth, and (ii) the
degree of an internal node ranges from a constant a ≥ 2 to another constant

b ≥ (2a− 1). A sole exception is allowed at the root, whose degree can be as

low as 2 regardless of both the value of a and the number of keys in the tree.

Together these invariants imply that the height of a degree-balanced search

tree with n keys is O(loga n), which is the definition of being “balanced”

for any worst-case search tree.

Embedded in the above description of degree-balanced search trees

is Assumption 1.1 below. Note that this assumption implies that b is a

constant multiple of a. However, we specifically do not assume that a and

b are small; an explicit assumption has to be made when it is needed.

We will also make two other assumptions throughout this thesis, namely

Assumption 1.2 and Assumption 1.3 below. The former specifies several

important properties of keys and also allows us to avoid dealing with

duplicate keys in any of our search trees no matter it is degree-balanced or

not. The latter is a technical assumption that will be explained in §1.1.1.2

when we deal with search tree representations, but it is stated here with

the other two global assumptions of this thesis for the sake of coherence.

Assumption 1.1 Both degree bounds of a degree-balanced search tree are

fixed but possibly large constants.

Assumption 1.2 All keys appearing within a search tree are unique ele-

ments drawn from a totally ordered set. Each key can be encoded and

stored using O(1) words and two keys can be compared in O(1) time. The
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only operation that can be performed on keys are comparisons unless other

operations are explicitly allowed.

Assumption 1.3 Any search tree is in the node-store representation unless

it is specified to be otherwise.

Before we go on, let us make a few further remarks regarding the

first two assumptions. First, as we will see, within this thesis we will be

frequently working inside some context in which both a and b are small.

When this is true, or in general when the base of a logarithm is small,

we will simply use the binary logarithm lg to suppress the base in our

asymptotic bounds. Related to this, we are also lax about logarithms when

they concern natural numbers such as the number of keys in a search tree.

Our hope is the O(loga n) bound above would have raised no eyebrows,

even though n may in fact be 0 or 1 in the expression.

We also acknowledge that Assumption 1.1 and Assumption 1.2 are

certainly not applicable to all degree-balanced search trees. For example,

Brodal [Bro98] has a design in which the ratio between the two degree

bounds as well as the two bounds themselves are doubly-exponential func-

tions on the height of a node. Also, certain applications such as sorting can

benefit from using search trees that handle duplicate keys correctly. Finally,

notice that Assumption 1.2 restricts our attention in this thesis to search

trees that are comparison-based. Readers who are interested in search trees

that can take advantage of the RAM model of computation are referred to

the work of Andersson and Thorup [AT07].

1.1.1 Search Trees and Their Representations
Since we are going to discuss various search tree designs and their relative

strengths, it will be useful for us to define a minimal pointer-based search

tree as the baseline in our comparisons. We will also take this chance to

spell out our search tree terminology for the sake of completeness and

definiteness—the latter being particularly important because some of the

terms we use are new and some of the existing ones do not have a standard

definition in the literature. We stress that the search trees within this

section (§1.1.1) are not necessarily degree-balanced and all definitions here

are applicable to all search trees whether they are balanced in any way or

not. Finally, we must caution that the statements within each numbered

list in this thesis are supposed to be read sequentially like a paragraph;

otherwise there can be free variables.
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1.1.1.1 Search Trees

(1) For b ≥ 2, a b-way search tree T is a structure made up of nodes that are

connected by links. A node can either be internal or external and any

b-way search tree has at least one external node.

(2) If b > 2, then T and each of its internal nodes are said to be “multiway”;

otherwise, they are said to be “two-way” or “binary”. Note that this

characterization is solely based on the chosen value of b.
(3) A particular node of T is distinguished as the root of T. This node is

considered to be the topmost node of T and it can be either internal or

external.

(4) An internal node u of T has between 2 and b child nodes (children)

below it and they are arranged from left to right. Each of these nodes

can be either internal or external. The child nodes of u are connected to

u by links and they call u their parent. The degree of u is the number

of children of u and is denoted Λ(u). An internal node u is a k-node iff

Λ(u) = k.
(5) An internal node u of T has (Λ(u) − 1) keys drawn from a totally

ordered set. (See Assumption 1.2.) The keys of u are arranged from left

to right in-between the Λ(u) children of u. The number of keys in u is

denoted #(u) and it is also the size of u. It is easy to verify that #(u)
ranges from 1 to (b − 1).

(6) An internal node is a leaf iff all of its children are external; otherwise it

is a junction. Note that all leaves and junctions are internal nodes.

(7) An external node does not contain any key and has no children. Note

that the root of a search tree can be external and this happens when the

tree is a sole external node, which implies that the tree has no keys.

(8) Counting from left to right, the i-th external position of T is the position

of the i-th external node of T. By structural induction, it can be shown

that any b-way search tree with n keys has (n + 1) external positions

regardless of the value of b.
(9) For any node u of T, a descendant of u is either a child of u or a

descendant of a child of u. The node u is an ancestor of any of its

descendants. Note that u is not a descendant nor an ancestor of itself.

(A) For any node u of T, the subtree of T rooted at u is denoted T⋃︀u and

it comprises (i) the node u itself, plus (ii) all descendants of u, together
with (iii) the links going among these nodes. A subtree of u is a subtree

of T rooted at a child of u. Note that even if u is external, the subtree

T⋃︀u still exists but u itself has no subtrees because it has no children.
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(B) For T to be a valid search tree, a so-called “search tree relation” must

hold among the keys in u and the keys in the subtrees of u. Moreover, it

can shown that a subtree of T is also a b-way search tree. We will post-

pone the definition of this relation into §1.1.1.2 until further notation

has been set up.

(C) Suppose T′
is a subtree of T rooted at any node of T. The size of T′

is

denoted ⋃︀T′⋃︀ and it is the total size of the internal nodes in T′
. A subtree

is empty iff its size is zero, which implies that an empty subtree must

be an external node. Note that if b = 2, then the size of a subtree is also

the number of internal nodes in it.

(D) For any node u of T, the depth of u is denoted depth(u) and it is the

number of links on the simple path going from the root of T to u. The
depth of T, denoted depth(T), is the maximum depth among all nodes

in T. Note that the depth of the root of T is 0 and it is easy to verify

that T is empty iff it has depth 0.
(E) The height of an external node is 0, and the height of an internal node

is one plus the maximum height among its children. The height of a

node u is denoted ah(u). Note that the height of an internal node is

at least 1. Suppose T′
is T⋃︀u for some node u in T. The height of T′

is

denoted ah(T′) and it is ah(u). It is easy to verify that T′
is empty iff

it has height 0 and that the height of T′
equals to the depth of T′

by

viewing the subtree T′
as a b-way search tree itself.

With the above definitions in place, let us turn to the representation of

search trees after the following remarks.

+ In our usage, strictness and properness will be specifically noted. This

is applicable to paths, sequences, sets, trees, etc. and we have already

seen this in the usage of “subtree” in the above. However, we also note

that some concepts have been or will be defined to be inherently strict

or proper—an example being the descendants of a node, which do not

include the node itself.

+ The intention behind using ah(u) instead of h(u) is to better distinguish

it within expressions once another notion of height is introduced in §2.

The symbol “ah” is our mnemonic of actual height.

+ Although one of Λ and # is arguably redundant, we are going to use

them as a crude form of type-safety to guard against off-by-one errors.

In particular, the keys of a node will always be indexed over # and

the children over Λ when they are referred to directly. To help the

reader distinguish them better, Λ is meant to resemble the two links of

a degree-two node. . . to a certain degree. ,
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+ We will borrow two conventions from [CLRS01, pp. 19–20, 438–439].

First, each of our arrays is left-to-right 1-based with a fixed number

of allocated locations. The i-th location of an array A is denoted A(︀i⌋︀.
Each location can store a fixed number of words and the size of an array

is the number of locations allocated. Second, we distinguish among

four types of names by their typesetting—constants are Like-This; fixed

mathematical functions are like-this(x); identifiers or fields of an object

are like-this(︀x⌋︀; and pseudocode procedures are Like-This(x).
1.1.1.2 Representations

Historically, there have been two common representations of search trees.

Nievergelt and Wong [NW73], for example, distinguished between leaf-

trees and node-trees when they studied the path lengths of binary search

trees. Although Tarjan [Tar83a, pp. 9, 45] would call these representations

“exogenous” and “endogenous” respectively, we allow ourselves to simply

say leaf-store and node-store to avoid any casual mistakes. As the two

representations share a large amount of detail and it will be useful to

understand them both, let us start with their common points below.

- common -

(1) A pointer to the root of T is stored in a field root(︀T⌋︀. Unless specifically

indicated, this is the only field we store about T.

(2) An internal node u of T is represented as either two (leaf-store) or three

(node-store) arrays, with each array entry defaulting to Nil.

(3) The first array is the key array and it has (b − 1) locations. It contains

the fields to store the information that encodes each key of u. (See

Assumption 1.2.) These fields are denoted keyi(︀u⌋︀ for 1 ≤ i ≤ (b − 1) and

we will simply drop the subscript when b = 2.

k1 k2 k3 k4

c1 c2 c3 c4 c5

(4) The second array is the child array and it has b locations.

It contains the fields to store the pointers that implements

the links to the children of u. These fields are denoted

ci(︀u⌋︀ for 1 ≤ i ≤ b. When b = 2, we will also use left(︀u⌋︀ and

right(︀u⌋︀ to denote c1(︀u⌋︀ and c2(︀u⌋︀ respectively. On our side is a figure

depicting the fields of a node when b = 5, with keyi abbreviated into ki.

(5) In order for T to be a search tree, for 1 ≤ i ≤ #(u), all keys in the subtree

rooted at ci(︀u⌋︀ must be less than keyi(︀u⌋︀, which in turn must be less

than all keys in the subtree rooted at ci+1(︀u⌋︀. This is the “search tree

relation” we mentioned on page 5.

(6) Any non-Nil field must be packed towards the beginning of an array

and all unused fields must be reset to Nil. Thus, the i-th key of u is
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keyi(︀u⌋︀, the i-th child of u is ci(︀u⌋︀, and the i-th subtree of u is the subtree

rooted at ci(︀u⌋︀.
(7) Though #(u) is not stored as a field in u, we remark that it can be com-

puted by scanning through the key array until the first Nil is reached

or all (b − 1) fields have been checked. The running time to compute

#(u) and by extension Λ(u) is O(b).
- leaf-store specific (cont.) -

(8) Each external node in a leaf-tree stores an item associated with a key

and a terminal bit to mark the exterior of T.

(9) Counting from the left, the item at the i-th external node is associated

with the i-th key of T. Observe that if this key is stored in an internal

node u, then the corresponding external node is the rightmost external

node of the subtree preceding this key in u. This is also the node

preceding u in an in-order traversal of T.

(A) The terminal bit is a specification of whether a child pointer ci(︀u⌋︀ is

pointing to an internal or an external node. We remark that the idea of

distinguishing a pointer by a bit stored at its destination will be used

in several occasions inside this thesis.

∞ ∞

(B) Since there are (n + 1) external nodes but only

the leftmost n of them have items to store, the

rightmost external node will be assigned as the∞ sentinel. Notice that this implies an empty

leaf-tree is represented by the ∞ sentinel and

has height 0.

- node-store specific (cont.) -
(9) If T is a node-tree, then the third array of u is the item array and it has(b − 1) locations. It contains the fields to store the items associated with

key1(︀u⌋︀ through key#(u)(︀u⌋︀. However, since we do not concern ourselves

with these items, these fields will not be named.

∞∞

(A) The external nodes in a node-tree serve no pur-

pose. Similar to an approach taken in [CLRS01,

p. 275], we represent all external nodes as one
sentinel denoted ⊥⊥⊥. Notice that this implies an

empty node-tree is represented by the ⊥⊥⊥ sen-

tinel and has height 0.
(B) Finally, since ⊥⊥⊥ is unique, we can test if a node is ⊥⊥⊥ in O(1) time and

thus there is no need for terminal bits in a node-tree.

Leaf-Store vs. Node-Store. Having seen the two representations, let us

remark about a space-time tradeoff that exists between leaf-trees and node-
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trees. Suppose a key of our interest has been located in an internal node

u. Since the item associated with this key is stored along with u in a node-

tree, it can be readily retrieved in O(1) time. But to do so in a leaf-tree

would require reaching the corresponding external node, which can be

unboundedly far away from u. As such, the running time in this scenario is

clearly in favor of node-trees.

Node-trees, however, have two relative drawbacks. First, its space

efficiency is lower because a total of (n + 1) of its pointers are used to

point to ⊥⊥⊥. This is true even if we were not to implement ⊥⊥⊥, as the storage

for these pointers would still have been allocated. Second, the decision

procedure in a node-tree actually requires an extra comparison (equality) at

each node and this makes the running time comparison above a bit unfair.

The extra comparison is most evident when b = 2 in which case we are

essentially making a three-way comparison at each internal node. This will

be pointed out again when we review a search procedure for node-store

degree-balanced search trees on page 12.

Node-Store is Default. At this point, let us remind the reader about As-

sumption 1.3 on page 3, which states that every search tree in this thesis is

a node-tree unless it is specified to be otherwise. We remark that unlike the

other two assumptions we made, this assumption is not a simplification in

this thesis. In fact, quite the opposite is true—leaf-store is simply a special

case of node-store from the perspective of our work, as will become clear

in the chapters to come.

1.1.1.3 More About Search Trees

Using the notation developed in §1.1.1.2, let us present the remaining defi-

nitions related to search trees. Note that these definitions are independent

of the representation used. Also, as a large number of the following defini-

tions are symmetric with respect to left vs. right, we will define only the

version on the right hand side when symmetry applies.

r0 r1 r2 r3 r4

k1 k2 k3 k4

c1 c2 c3 c4 c5
l1 l2 l3 l4 l5

Generalized Left⇑Right and Key Pointers. To make multi-

way nodes easier to handle, let us introduce the following

definitions. As a visual aid, on our side is a b-way node u for

b = 5 and #(u) = 3, which implies that key4(︀u⌋︀ and c5(︀u⌋︀ are

Nil. Note that the figure abbreviates key, left, and right into k,
l, and r respectively. In what follows, let u be an internal node of T.

(1) For 1 ≤ i ≤ (b − 1), the i-th left and the i-th right children of u are ci(︀u⌋︀
and ci+1(︀u⌋︀ respectively. These two children are also respectively the

left and right children of keyi(︀u⌋︀.
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(2) The child array will be aliased with the correct offset so that these two

children can also be referred to as lefti(︀u⌋︀ and righti(︀u⌋︀. When b = 2,
left1(︀u⌋︀ and right1(︀u⌋︀ may also be collapsed into left(︀u⌋︀ and right(︀u⌋︀.

(3) A key pointer pointing to keyi(︀u⌋︀ is a tuple comprising a pointer to u
and the position i, written as (u, i). Contrast this with the node pointers

that are stored in, say, root(︀T⌋︀ and ci(︀u⌋︀.
The benefit of making the above definitions is twofold. First, they allow

us to think of a multiway node as if it were a binary node, albeit with an

offset to indicate which key we are centering on. For example, instead of

thinking about the subtree succeeding keyi(︀u⌋︀ in u, we can think of it as the

i-th right subtree of u. And—this being our most important criteria—we

know the root of this subtree is denoted righti(︀u⌋︀ without hesitating if we

have made an off-by-one mistake in the subscript. We also note that since

lefti(︀u⌋︀ and righti(︀u⌋︀ are notions associated with keyi(︀u⌋︀, they should also

be indexed over #(u) but not Λ(u). This explains the comment on page 5

in which we mentioned that the children of a node should be indexed over

Λ when they are referred to directly. (Both lefti and righti are aliases.)

Second, the above definitions enable our degree-balanced search tree

algorithms to more closely resemble their two-way specializations, which

are usually more intuitive. To see this, observe that ci(︀u⌋︀ is a “left” child

iff i < Λ(u) and a “right” child iff i > 1. In other words, a child is a left

(resp. right) child of u iff it is not the rightmost (resp. leftmost) child of

u. Note that we would classify some child of u as both left and right

simultaneously and this is not a bug. This notation actually eliminates

many negations in our algorithms, which makes our algorithms easier to

reason about.

Remark 1.4. The reader may notice that our key pointer notation (u, i)
does not reveal that we are storing a pointer to u instead of the value

of u itself. Indeed, all nodes are passed by reference in this thesis and

therefore the distinction on the level of indirection will only be made in

our definitions. For example, in the case of a key pointer, we have explicitly

defined the first value in the tuple to be a pointer to a node.

Paths. We will often refer to certain paths in a search tree by a nominal

and, in all but one case, the starting node of the path. In what follows, let

u denote any node of T and let x be keyi(︀u⌋︀ for some i ranging from 1 to

#(u). Note that these paths are illustrated in Figure 1.1.
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Figure 1.1 – Some examples to the path definitions starting on page 9: (a) access path of 8
when top-down; ancestral path of 8 when bottom-up; (b) right spine of root; also 2-nd right

spine of root; (c) 1-st right spine of root; (d) 2-nd right-left spine of the root.

(1) The access path of u or x is the unique simple path from root(︀T⌋︀ to u.
(2) The ancestral path of u or x is the access path of u but with its nodes

appearing in the opposite order. Note that this path contains u and it

is specifically not named “the ancestor path” because we have defined

ancestor as a proper notion.

(3) The right spine of u or T⋃︀u is the node u followed by, if present, the

right spine of the rightmost child of u.
(4) The i-th right spine of u or T⋃︀u is the node u followed by, if present, the

right spine of righti(︀u⌋︀. The right spine of x is this path also. We remark

that the i-th left spine is defined with respect to lefti(︀u⌋︀.
(5) The i-th right-left spine of u or T⋃︀u is the left spine of the i-right child of

u. The right-left spine of x is this path also. Notice that this path does

not contain u and it is the sole exception here.

(6) Finally, following [CLRS01, p. 298], we will measure the length of a path

in a search tree by the number of nodes on it.
☇1

1.This is also why we would not define search trees as graphs. The subject of the latter has a

time-honored tradition of measuring the length of a path by the number of edges on it.
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Family Relations. Besides the child relation which we have been focusing

on, several other family-inspired relations also appear in a search tree. In

what follows, let p be an internal node of T and let u and w be any two

nodes of T. Also, let x be keyi(︀u⌋︀ for some i ranging from 1 to #(u).
(1) The node p is the parent of u or x iff u is a child of p. We remark that

by “the parent of a node (or of a key)”, we are always referring to a

node—which is p in this case.

(2) Suppose u is cj(︀p⌋︀ for some j ranging from 1 to Λ(p). The right sibling

of u is cj+1(︀p⌋︀ if (j + 1) ≤ Λ(p); otherwise u has no right sibling.

(3) Listing all nodes in T at the same depth as u from left to right, the right

peer of u, if present, is the node succeeding u. Note that the right peer

of u may or may not be the right sibling of u, meaning they may not

have a common parent.

(4) Suppose u is cj(︀p⌋︀ for some j ranging from 1 to Λ(p). The right parent

key of u or x is defined as follows—if u is a left child of p, then it

is keyj(︀p⌋︀; otherwise, it is the right parent key of p if this key exists.

An alternative definition that is not based on structural induction is as

follows—the right parent key of u or x is the leftmost key on the access

path of u that is also to the right of u. In Figure 1.1, the right parent key

of 8 is 9 and the right parent key of 10 is 12.
(5) The right parent of u or x is the node containing the right parent key of

u. Notice that it may contain keys that are to the left of u when b > 2.
(6) When the right parent of u or x does not exist, its right parent and its

right parent key are both defined to be ∞. Observe that this happens iff
u is on the right spine of T. We remark that ∞ is merely a concept in

our analysis and it is not stored in any form. Moreover, note that this

also explains why the rightmost external node of a leaf-tree is named

the ∞ sentinel.

(7) To simplify our logic, we further define key0(︀u⌋︀ and key#(u)+1(︀u⌋︀ to be

the left and right parent keys of u respectively. These are again merely

concepts in our analysis and are not stored in any form. Note that the

subscript of the latter is not defined as b. It is easy to verify that the

former is smaller than key1(︀u⌋︀ and the latter is larger than key#(u)(︀u⌋︀.
Therefore, the relation keyi(︀u⌋︀ < keyj(︀u⌋︀ iff i < j still holds.

(8) A right ancestor key of u or x is either the right parent key of u or a

right ancestor key of the right parent key of u. An ancestor key of u or

x is either a left or right ancestor key of u.
(9) A right ancestor of u or x is an ancestor of u that contains a right

ancestor key of u.
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(A) Suppose w is the right parent of u. The node w is classified as trivial iff

(i) w is the parent of u, or (ii) w is ∞ and u is root(︀T⌋︀. This classification

also applies to the right parent key, the right ancestor key, and the right

ancestor as well. In Figure 1.1, the left parent of 8 is trivial, but its right

parent is nontrivial. Note that if u has a nontrivial right parent, then its

left parent is trivial. However, the converse is not always true unless

b = 2. As a counterexample, both left and right parents of 5 are trivial

in Figure 1.1.

1.1.2 Dictionary Operations
Having defined our search tree representation, let us review how to per-

form all three dictionary operations on a node-store degree-balanced search

tree. (This marks the last time we will hint at node-store.) Not only can

we use this to introduce a number of relevant terms, we can also point out

how several of the above definitions actually apply when degree-balanced

search trees are concerned. As all three algorithms start at the root of the

tree, we classify them as “root-start”.

Let us begin with an observation—in a degree-balanced search tree, all

leaves appear at the same depth and a node u is a leaf iff c1(︀u⌋︀ = ⊥⊥⊥, which

is a worst-case O(1)-time test. In what follows, let T be a degree-balanced

search tree and let x be a key that may or may not appear in T.

Search. To search for x, start with root(︀T⌋︀ as the current node u. As an

option, also initialize an empty stack to store tuples comprising a node

pointer and a child position. This stack will be called the parent stack.

⎷ search for x at subtree rooted at u ⌄
1> If u is external, i.e., u = ⊥⊥⊥, then stop and report that x is not found.

2> Identify the position i of the leftmost key that is greater than or equal

to x by, for example, scanning the keys in u from left to right. If all keys

in u are smaller than x, then let i be (#(u)+ 1).
(Post: keyi−1(︀u⌋︀ < x ≤ keyi(︀u⌋︀)

3> Push the tuple (u, i) into the parent stack, if maintained.

4> Test if keyi(︀u⌋︀ = x.
4.1> If so, return the tuple (u, i) as the key pointer to x.
4.2> Otherwise, descend by setting u to ci(︀u⌋︀ and going back to step 1.

Remark 1.5. The path traversed by the above algorithm is the access path

of x, which is represented by the parent stack we built in step 3. The tuple

at the top of the stack is a key pointer to x, and each remaining tuple in

the stack stores a pointer to an ancestor of x and the position of the child
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we descended into. As an aside, the test in step 4 is the extra comparison

we mentioned on page 8. In a leaf-tree, we always descend into ci(︀u⌋︀.
Insert. To insert x into T, first search for it in T while maintaining the

parent stack. If x is found, then report it is already present and stop. This

is because we do not handle duplicate keys in a search tree as stated in

Assumption 1.2. Otherwise, the search will have terminated at the leaf v∗

at the top of the parent stack. We proceed by inserting x and (technically)

its left child ⊥⊥⊥ into v∗ using the following procedure, in which xL will be

⊥⊥⊥ initially.

⎷ insert (xL, x) into top node of parent stack ⌄
1> Pop the parent stack to obtain (u, i).
2> By shifting, add x to u as its new i-th key and attach w to u as its new

i-th child.

3> If Λ(u) ≤ b, stop. No further work needs to be done.

4> Otherwise, u is said to have become over-full. Any over-full node can

be handled by promoting one of its keys in a node fission.⎷ fission of u ⌄
4.1> Let m be [︂#(u)

2 ⌉︂ and let um be keym(︀u⌋︀ (a median key of u).
4.2> Split u at um into the following three parts.

(1) Let uL be a new node with the first (m − 1) keys and the first m
children of u.

(2) Let um be a standalone key.

(3) Let uR be what remained at u.
Notice that uR is still attached as the i-th child of its parent, if present.

4.3> We begin to promote um by testing if the parent stack is empty.

4.3.1> If so, we know u (now uR) is the root. Create a new root containing

um as its only key, with uL and uR being its first and second children

respectively. This case is terminal.

4.3.2> Otherwise, the parent p of u will be at the top of the parent stack.

Insert (uL, um) into p recursively.

Delete. To delete x from T, first search for it in T while maintaining the

parent stack. If x is absent, report this and stop. Otherwise, by peeking,

suppose the top of the parent stack is (u, i). Run the following procedure

to determine a particular leaf to be denoted v∗. (We note that the idea of

this procedure first appeared in the work of Hibbard in [Hib62].)

⎷Hibbard replacement ⌄
1> If u is a leaf, then let v∗ be u and proceed to delete x from v∗. This case

is terminal.
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2> Otherwise, we know that u has some children. Continue to search for

x in righti(︀u⌋︀ and build up the parent stack. The search will fail at a

leaf v∗, which will be the last node of the left spine of righti(︀u⌋︀. In our

definition, this spine is also known as the i-th right-left spine of u.
3> Let x+ be key1(︀v∗⌋︀, which will also be the successor key of x. Replace x

with x+ inside u and proceed as if the key to be deleted is x+ from v∗.

Observe that after the above procedure, v∗ denotes the leaf containing

the correct key to be deleted. Proceed with the following procedure using

the correct key.

⎷ delete x from top node in parent stack ⌄
1> Pop the parent stack to obtain x = (u, i) and let xL be lefti(︀u⌋︀.
2> By shifting, remove x from u and also detach xL from u.
3> If Λ(u) ≥ a, stop. No further work needs to be done.

4> Test if the parent stack is empty. If so, u is the root and we stop after

handling one of the following two cases.

4.1> If u is nonempty, stop. The root can have as few as one key.

4.2> Otherwise, stop after deleting u and letting root(︀T⌋︀ point to xL.

(Pre: parent stack is nonempty ⇒ u has parent ⇒ u has a sibling)

5> In this case, u is said to have became under-full. Any under-full node

can be handled by demoting a key from its parent in a node fusion with

a sibling.⎷ fusion of u with a sibling w ⌄
5.1> By symmetry assume that u has a sibling w on the right. Pop the

parent stack to obtain (p, j). Notice that u and w are, respectively,

leftj(︀p⌋︀ and rightj(︀p⌋︀.
5.2> Begin to demote keyj(︀p⌋︀ by first removing it from p and also detaching

u from p. Note that w is still attached to p as (the new) leftj(︀p⌋︀.
5.3> Using keyj(︀p⌋︀ as the splitting key, join u into the left end of w. This

finishes the demotion of keyj(︀p⌋︀ and the fusion of u with w.

6> At this point one of the following two cases applies.

(1) If Λ(w) > b, then subject w to a fission. This case is terminal because

(i) Λ(p) has been restored to its original value due to the promoted

key, and (ii) Λ(w) and the degree of the new node created in the

fission are both upperbounded by
a+b

2 < b.
(2) Otherwise, Λ(w) ≤ b, but Λ(p) has just been decremented due to

the demotion of keyj(︀p⌋︀. Let xL and u be, respectively, u and p and

then go back to step 3. Notice that from the perspective of p, both
keyj(︀p⌋︀ and leftj(︀p⌋︀ = u have both been taken care of just like what

step 2 would have done.
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Running Time. On a degree-balanced search tree with n keys, the running

time of any of the three operations above is O(b loga n) because we spend

O(b) time at each node and we visit O(loga n) nodes. By construction,

the degree invariant is preserved by both the insertion and the deletion

algorithms. For the depth invariant, observe that a degree-balanced search

tree can change its height only at its root because any restructuring must

start at the leaf level and propagate up. Note that if a multiway node is

implemented as a sorted array—which they are in this thesis—then the

multiway decision in step 2 of the search algorithm can be improved from a

left-to-right scan to a binary search. Although this does improve the search

time, insertions and deletions see no improvement precisely because sorted

arrays are used.

1.1.3 Splits, Joins, and Sorted List Operations
Besides the three dictionary operations, degree-balanced search trees also

support splits and joins in O(b loga n) time. The algorithms for these oper-

ations are largely similar to their AVL-trees [AVL62] equivalents devised in

the thesis of Crane [Cra72, §1.7]. Instead of spelling out these algorithms,

here we will give their specifications only.
☇2

Furthermore, we also note that degree-balanced search trees support

sorted list operations such as merging, union, intersection, and difference.

The algorithms for these operations will be covered in §1.2.4.2.

+ In a join, we are given a key x and two degree-balanced search trees TL
and TR, with the condition that every key in TL is less than x, which is

in turn less than every key in TR. Let nL and nR be the number of key(s)

in TL and TR respectively. The result of joining the triple (TL, x, TR) is

a new degree-balanced search tree T that contains the n = (nL + 1+ nR)
keys involved.

+ A common variation of join is catenation in which we are given only TL
and TR. The nontrivial case is often implemented by first removing the

largest key of TL or the smallest key in TR, which is then used to join

what remains of the two trees.

+ In a split, we are given a degree-balanced search tree T of size n and

a key x that may or may not be in T. The result of the split is a triple

2.Interested readers can solve Problem 18.2 in [CLRS01], which specifically asks about these

algorithms on (2, 4)-trees augmented in a certain way. We do note that there are algorithms

that do not depend on any augmentation such as the one used in the problem and still run in

asymptotically the same amount of time.
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(TL, x?, TR) with TL and TR taking their meanings from the above. The

option x?
will either be a key pointer to x if x is in T, orNil if otherwise.

1.1.4 History of Degree-Balanced Search Trees
The earliest degree-balanced search trees are the (2, 3)-trees [AHU74, §4]

designed by Hopcroft in 1970 (year from [AHU82, p. 197]). As their name

suggests
☇3
, the degree of an internal node in a (2, 3)-tree ranges from two

to three. It’s commonly agreed that (2, 3)-trees are simple and highly

intuitive, and as Hopcroft observed, they are very versatile for internal

memory applications because they support dictionary operations as well

as splits and joins in logarithmic time.

Independent of the then-unpublished (2, 3)-trees, Bayer and McCreight

[BM72] introduced the class of (a, 2a − 1)-trees in 1972 and named the

trees in this class “B-trees”. Unlike (2, 3)-trees, B-trees are designed in

consideration of the external memory model in which we measure the

running time of an algorithm by the number of pages accessed in the

underlying hardware. By treating each page as a node, the value of a can

be made quite large in a B-tree and therefore the height of a B-tree can be

significantly smaller than that of a corresponding (2, 3)-tree. As the number

of pages accessed is proportional to the height of the tree, in practice the

performance advantage of B-trees is very significant in the external memory

setting. B-trees have many variants and we refer interested readers to both

[Knu98, §6.2.4, pp. 486–489] and [Com79] for more information.

A particularly notable refinement of B-trees is the class of weak B-trees

by Huddleston and Mehlhorn [HM82]. These trees—known as (a, b)-trees
in [HM82]—are highly similar to B-trees but with the critical requirement

that b ≥ 2a. It follows that the minimal weak B-tree in terms of the degree

bounds is a (2, 4)-tree. Huddleston and Mehlhorn were able to show that

the extra degree(s) in a weak B-tree makes it robust, meaning that if we

discount the search time at the beginning of all inserts and deletes, then the

restructuring cost of a length-m access sequence is O(m). This is in stark

contrast with B-trees, which at size n can incur Θ(mb loga n) time with the

same access sequence. B-trees and generally the class of (a, 2a − 1)-trees
are thus said to be “fragile”.

☇4
Weak B-trees are in fact parameterized into

several variants and they can be found in [HM82] as well as the thesis of

Huddleston [Hud81]. We also note that a highly-related variant known

3.The choice of using parenthesis in the notation of (a, b)-tree is customary, even though square

brackets may better reflect the closed nature of the degree interval.

4.Indeed, weak B-trees are robust, but (the presumably strong) B-trees are fragile.

base revision 903 built on 2009-5-28 16:00 10+152+20+15 pages, 18 figures, 4 tables



917

1.1 Degree-Balanced Search Trees 17

as “hysterical B-trees” have been independently introduced by Maier and

Salveter [MS81]. (The choice of this name is explained in [MS81].)

The importance of degree-balanced search trees in practice is hard to be

overstated. By 1979, a mere seven years after their introduction in [BM72],

B-trees and its variants were already considered to “have become, de facto,
the standard organization for indexes in a database system” [Com79, p. 1].

This trend has stayed true ever since and a recent survey on external

memory algorithms by Vitter [Vit08, p. 6] confirms that B-trees are still

considered to be “the most widely used online external memory data

structure for dictionary operations and one-dimensional range queries”.

B-trees have also gained extra momentum in the last few years due to

their cache-oblivious adaptation by Bender, Demaine, and Farach-Colton

[BDFC05]. Compared to their traditional variants, cache-oblivious B-trees

adapt to the underlying hardware without knowing the actual page size.

Consequently, a single implementation can be deployed on multiple plat-

forms sans the time-consuming process of hardware-specific tuning.

On the internal memory side, degree-balanced search trees can also

be said to be immensely popular in applications, albeit in the form of

red-black trees of Guibas and Sedgewick [GS78]. For example, our recent

inspection of the source code of three major open-source operating system

kernels
☇5

shows that red-black trees are used as their standard dictionary

data structure.

Technically speaking, red-black trees are not really degree-balanced

since they are binary search trees. However, red-black trees can be and

are often understood via their isometry to (2, 4)-tree [Tar83a, p. 49; Sed98,

§13.4] because they did start out as a binarization of B-trees. (See the

sequence [Bay71], [Bay72], and [GS78].) Having said that, we should be

careful not to overlook the many benefits that this binarization brings. Be-

sides leading to beautiful and simple adaptations such as AA-trees [And93]

(as named in [Wei99]) and the recent left-leaning variant [Sed08], red-black

trees also have a distinct advantage over (2, 4)-trees regarding the amount

of restructuring in the worst case [Oli80; Tar83b; OW92]. (The reader, of

course, already knows that this advantage does not hold in the amortized

case.)

5.Linux http://www.gelato.unsw.edu.au/lxr/source/include/linux/rbtree.h
FreeBSD http://svn.freebsd.org/viewvc/base/stable/7/sys/sys/tree.h
OpenBSD http://www.openbsd.org/cgi-bin/man.cgi/usr/include/sys/tree.h
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1.2 The Dynamic Finger Property
This thesis is primarily concerned with the dynamic finger property of

various search trees. Although this property has its underpinnings in an

operation known as “finger search” invented over 30 years ago by Guibas

et al. [GMPR77], for the sake of clarity let us first define this property on a

clean slate in §1.2.1 and then come back to finger search in §1.2.2.

We will start with a few preliminary definitions. Consider a data struc-

ture representing the sorted list A of n items with keys ⎷a1, a2, . . . , an⌄ and

let x and y be two not-necessarily-distinct keys of A.

(1) The rank of x with respect to A is its position in A. In other words, if x
is ai, then the rank of x with respect to A is i. Any key that is not in A
does not have a rank with respect to A in our definition.

(2) The key space of A is an imaginary space spanned by the minimum

and the current maximum ranks of A. Notice that the former is always

1, but the latter can change with the number of keys in A.

(3) The distance between x and y with respect to A—denoted distA(x, y)—
is the absolute difference between their ranks with respect to A. This

distance is also known as the rank distance between the two keys and

must range from 0 to (n − 1). Note that when the context is clear, we

will drop the subscript in distA.

1.2.1 Definition
In what follows, we will offer two definitions of the dynamic finger prop-

erty. The first definition is phrased in the lingo of competitive analysis

pioneered by Sleator and Tarjan [ST85a]. This is what we prefer and what

we will be using for the rest of this thesis. But to address what might appear

to be over-simplifications of this first definition, we also offer an opera-

tional definition that fully justifies these simplifications from a theoretical

standpoint.

Competitive Analysis. Recall that in the competitive analysis of online

algorithms, we are given a length-m access sequence σ = ⎷σi⌄ where each

σi is one of n different possible accesses (a.k.a. requests). We are interested

to serve σ by an online algorithm ALG, and we compare its cost to that of

an offline optimal algorithm OPT.

For any algorithm Q, let Q(σi) denote the cost incurred by Q to serve

σi for 1 ≤ i ≤ m and let Q(σ) denote the total cost summing over σ. For

good measure, Q(σi) is required to be at least 1 and thus Q(σ) = Ω(m). If
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there exist both a function f (n) and a constant c such that for all possible

choices of m = Ω(n) and σ of length m the relation

ALG(σ) ≤ f (n)×OPT(σ)+ c (1.1)

holds, then ALG is said to be f (n)-competitive against OPT. Since we will

be ignoring constant multiples, we also allow ourselves to say “O(g(n))-
competitive” as long as there is some f (n) = O(g(n)) that satisfies (1.1).

Finally, notice that we only consider long access sequences, meaning m =
Ω(n) as stated above.

Dynamic Finger Property. For our purpose, we consider our data struc-

ture to be an online algorithm that maintains a dictionary A with a fixed

set of n keys. The access sequence σ is a sequence of m accesses, with

each access σi being one of the keys of A. The cost of the data structure to

serve σi is the cost incurred in searching for σi. For a data structure in the

comparison-based model, this cost is the number of comparisons made in

the search for σi.

The offline algorithm in this context is not exactly an optimal algorithm

per se. Instead, it is used to model the desired upperbound on the cost of

serving the access σi. Let d1 be n and let di be distA(σi−1, σi) for i ≥ 2. The

offline algorithm is considered to incur a cost of exactly lg max(2, di) to

serve σi. We say that the dynamic finger budget of σi is lg max(2, di), which

we abbreviate to lg di.

With the above definitions, a data structure is said to have the dynamic

finger property if it is O(1)-competitive against the above offline algorithm.

Simply put, this means a data structure with the dynamic finger property

serves σ in O(∑m
i=1 lg di) time when m = Ω(n). Splay trees [ST85b], for

example, have the dynamic finger property as shown by a renowned result

of Cole [Col00].

Technicalities. Note that in our formulation of (1.1), we have intentionally

considered only the cost of serving the entire access sequence. This allows

the performance guarantee of our data structure to be either worst-case

or amortized. When we want to highlight the difference between the two,

we will say that a data structure has the dynamic finger property in the

worst or amortized case. Furthermore, by taking expectation over the

random bits used to build the data structure, we may have even chosen

to allow randomization in (1.1). Finally, the conditions m = Ω(n) and

Q(σi) ≥ 1 together allow us to absorb an O(n) term in (1.1). This term plays

a significant role in what follows.
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An Operational Definition. On the surface, the above definition of the

dynamic finger property may appear to have the following issues.

(1) All searches must be successful.

(2) The key set is fixed and there is no support for insertions and deletions.

(3) Even if insertions and deletions are supported, as a consequence of

issue (2), only the time spent in the searches has been accounted.

To see how these issues can be addressed, let us consider an alternate

definition that is based on the operations of a more realistic data structure.

For simplicity of exposition, we will assume that there are two implicit
sentinels −∞ and ∞ at the two ends of A. It is crucial to note that they do

not affect the rank of any keys, and although we will denote their ranks

as −∞ and ∞, these should be considered to be one less⇑greater than the

minimum⇑current maximum ranks in A.

To address issue (1), let us define the rank of a search operation to be

the rank of the key at which the search terminates. This key, possibly a

sentinel, is also known as the terminating key of the search. Denoting the

search target by x, this key is defined with respect to the direction of the

search and is (i) the least key larger than x either when this is the first

search or when the most-recently searched target is less than x, or (ii) the

greatest key less than x otherwise. With this definition, notice that even

unsuccessful searches have ranks.

To address issue (2), we further define the rank of an insert operation to

be the rank of the inserted key after it is inserted. This is also the rank of

the key that is displaced by the inserted key. The rank of a delete operation

is then defined symmetrically. Notice that all three dictionary operations

are now supported and each of them has a notion of rank. An insert or a

delete will be referred to as an update, and an update or a search will then

be referred to as an access.

Now consider a length-m access sequence S made to a data structure

representing an initially-empty A. Let si denote the key at the rank of

the i-th access, and let N denote the maximum size of our data structure

throughout S. We define the search sequence of S to be the length-m
sequence σ = ⎷si⌄. Notice that right before the time of every access, si is a

key that is currently in A.

To address issue (3), we will use the notion of robust balancing intro-

duced on page 16. Recall that a degree-balanced search tree supports

robust balancing if the total restructuring cost of a length-m access se-

quence is O(m). Notice that the notion of robustness is in fact applicable
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to dictionary data structure, although it won’t be a useful notion, say, for a

hash table. In any case, as long as our data structure is robust, the search

cost and the restructuring cost can be accounted for separately. This is

precisely we show next.

Consider the search sequence ⎷σi⌄ transcribed from any given access

sequence S of length m. Let d1 be 0 and let di be distA(σi−1, σi) for i ≥ 2.
We say that a data structure “has the dynamic finger property” if (i) it is

robust, and (ii) the search time incurred in the i-th access is asymptotically

within the dynamic finger budget of lg max(2, di), or lg di for short. Again,

in general we allow this time bound to be worst-case or amortized, and

when needed it can even be in the expected case by taking expectation

over the random bits used to build the data structure. Summing the search

cost and the restructuring cost, the running time bound on S for such a

data structure is O(∑m
i=1 lg di)+O(m) = O(∑m

i=1 lg di). This also justifies the

running time bound in the competitive definition by setting n in (1.1) to

N and using the search sequence here as the access sequence there. The

reader is reminded that from this point on, we will switch back to the

competitive lingo.

1.2.2 All About Fingers: Dynamic, Static, and Finger Search
Now that we are familiar with the dynamic finger property, let us use this

section to address a number of “finger” concepts in one place.

Static Finger Property. Consider a data structure implementing a dictio-

nary A of n keys and an access sequence σ of length m. Let f ∗ be a fixed

key in A and let si be distA( f ∗, σi) for 1 ≤ i ≤ m. Similar to how we defined

the dynamic finger property, the offline algorithm in this case is considered

to incur a cost of exactly lg max(2, si) to serve σi. This cost is also known as

the the static finger budget of σi. A data structure is said to have the static

finger property if it is O(1)-competitive against this offline static finger

algorithm. In other words, for m = Ω(n), the running time of such a data

structure to serve σ is O(∑m
i=1 lg max(2, si)).

The static finger property is implied by the dynamic finger property

and therefore it is weaker. A proof of this can be found in [Wan06, Lemma

11, p. 14]. Combining this with the dynamic finger theorem of Cole [Col00],

we can show that splay trees have the static finger property. We do note

that prior to Cole’s result, Sleator and Tarjan [ST85b] have already shown

that splay trees have the static finger property when m = Ω(n lg n).
Finger and Finger Pointer. In the context of the dynamic finger property,

we usually imagine that there is a finger pointing at the key of the previous
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access. The first access σ1 defines the initial location of a dynamic finger,

and any subsequent access σi moves it from σi−1 to σi. This is in contrast

with a static finger, which always stays at f ∗ as defined above in the context

of the static finger property.

Corresponding to the imaginary concept of a finger is an explicit im-

plementation of a finger pointer in some data structures. We will see two

examples of this in §1.2.3. However, we must note that a finger pointer can

also be more sophisticated than a pointer in the sense of the word in some

programming languages. We will see a perfect and simple example of

this when we show how heterogeneous red-black trees attain the dynamic

finger property in §1.3.2.

Finger Search. For those data structures that do implement explicit finger

pointers, finger search refers to a search procedure that takes a finger

pointer in addition to a search target. In the context of degree-balanced

search trees, this is in contrast with the logarithmic-time search procedure

in §1.1.2 since the latter only takes a search target. In many cases, a finger

search procedure can in fact take any finger pointer regardless of whether

we are after the dynamic or the static finger property, and the running time

of finger searching from a given finger f to x is logarithmic to dist( f , x).
It is important to observe that dist( f , x) is at most the size of the data

structure. Therefore, a finger search always runs in logarithmic time and is

never slower than the “typical search” asymptotically. Furthermore, it can

yield an asymptotically smaller running time bound on access sequences

where many accesses are close to the finger used in the corresponding

access. We will study these sequences in §1.2.5.

Dynamic Finger Tree vs. Finger Search Tree. We make a distinction be-

tween two types of search trees, both of which support finger search and

have the dynamic finger property.

(1) A dynamic finger tree is a search tree that supports finger searching

from a dynamic finger. While some dynamic finger trees can support

multiple dynamic fingers, often we have to limit the number of fingers

to O(1) in order for the running time bound to stay under the dynamic

finger budget. As an example, the design of Kosaraju in [Kos81] is a

representative dynamic finger tree that supports a constant number of

dynamic fingers.

(2) A finger search tree is a search tree that supports finger searching

from any key in the tree. Moreover, the starting keys in consecutive

finger searches do not need to be related at all. A finger search tree can

naturally simulate a dynamic finger tree by implementing the semantics
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of any number of dynamic fingers, but the opposite is not true. In other

words, finger search trees are more powerful than dynamic finger trees

when finger searches are our only concern. As an example, the design

of Brown and Tarjan in [BT80] is a representative finger search tree.

Usage. Since the two types are quite different in regard to their support

of finger search, from now only finger search trees will be said to support

finger search. When the context demands, however, we will still say a

dynamic finger tree “supports a dynamic finger” or “supports a constant

number of dynamic fingers”, just as we have demonstrated above.

1.2.3 Two Example Data Structures
To better understand how data structures attain the dynamic finger prop-

erty, let us turn to two simple examples. Incidentally, both of these data

structures support finger searches from any key. But to retain simplicity,

we will use them by implementing a finger pointer to the most-recently

accessed key and start searches from it.

1.2.3.1 Sorted Arrays

Consider a sorted array A of n keys serving an access sequence σ of length

m. To serve σ1, we employ a binary search in A. This takes O(lg n) time

and initializes a finger pointer at σ1. Let f denote the array index of the

key currently under the finger pointer.

Consider serving σi for i ≥ 2 and assume the nontrival case where

σi ≠ σi−1. Furthermore, by symmetry assume σi−1 < σi. We will use the

following two-step procedure which Bentley and Yao [BY76] called an

unbounded binary search.

⎷ forward unbounded binary search for σi from A(︀ f ⌋︀ ⌄
1> Sequentially add to f the doubling offsets 20

, 21
, 22

, . . . until either

we have σi ≤ A(︀ f + 2h⌋︀ or we hit the array boundary in which case( f + 2h) > n. This step is known as a doubling scan (a.k.a. doubling

search).

2> A binary search between the indices ( f + ⟨︀2h−1⧹︀ + 1) and min( f + 2h, n)
will yield the index of σi, which is where we address the finger pointer

next.

To analyze the running time of this algorithm to serve σ, let ri be the

rank of σi with respect to A, which in this case is simply the index of σi
in A. Observe that (i) h is proportional to lg(ri − ri−1), which is evident
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in the stopping condition of the doubling scan, and (ii) both the doubling

scan and the binary search take O(h) time. Therefore, the running time is

O(∑m
i=1 lg di), with d1 being n and di being ⋃︀ri − ri−1⋃︀ for i ≥ 2. This shows

that any sorted array has the dynamic finger property when we search

it using an unbounded binary search. The reader is invited to contrast

this with the bounded binary search which we used to establish the initial

position of f .
Bootstrapping. Before we go on, let us point out that the algorithm above

is still using a linear scan to identify h and so we may recursively bootstrap

this phase using another unbounded binary search. Even though this

will not yield an asymptotic improvement since the bottleneck in step 2

remains, bootstrapping for a constant number of times can still be useful

and later on we will see it used to our benefit in §5.

Remark 1.6. The above algorithm is Algorithm B1 in the classic paper on

unbounded searching by Bentley and Yao [BY76]. However, it was simply

called “binary search” in the paper and the prefix was added by us to

distinguish it from the bounded version of binary search. If we bootstrap

Algorithm B1 once in the first phase, then we will arrive their Algorithm

B2, namely “double binary search”.

1.2.3.2 Level-Linked Degree-Balanced Search Trees

Our second example is the class of level-linked degree-balanced search

trees, which must be in the leaf-store representation for a reason that will

be explained later. Each internal node u is augmented to store three extra

pointers, all defaulting to Nil. The first is a parent pointer p(︀u⌋︀ that points

to the parent of u, if present. The remaining two are the left and right level

pointers of u and they point to the left and right peers of u, if present. The

two fields that store the level pointers will be unnamed since they are used

only once in the algorithm below.

∞ ∞

As an example, on our side is a minimal level-

linked (2, 4)-tree of 15 keys in which every inter-

nal node happens to have degree 2. Notice that all

edges in the figure are bidirectional except the ones

between the internal and the external nodes.

Algorithm. Consider a level-linked leaf-store degree-balanced search tree

T of size n. We maintain a pointer to a leaf f of T that is the parent of the

external node f ′ containing the most-recently accessed item. Notice that
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when f ′ is the rightmost child of f , the key corresponding to f ′ is actually

in the right parent of f but not in f itself.

To establish the initial location of f , we use a root-start search to serve

σ1 and leave f at the last leaf we visit. This takes Θ(b loga n) time. Let x
be the target key of a subsequent search. The search for x will start at the

current location of f and follow a particular path from f to the external

node of x, also leaving f at the last leaf we visit. We remark that this path

is not always one of the shortest path(s) between f and the external node

of x, but it is simple in the technical sense of the word and its length can

only be off by an additive constant in the worst case. Since this algorithm

always starts a search from a leaf, we will also call it a leaf-start search in

contrast to the root-start search on page 12.

The following is an algorithm that determines our desired path between

f and the external node of x when key1(︀ f ⌋︀ ≤ x. The case of x ≤ key#( f )(︀ f ⌋︀
can be handled symmetrically. The two cases indeed overlap in the trivial

case when key1(︀ f ⌋︀ ≤ x ≤ key#( f )(︀ f ⌋︀, but this does not affect the correctness

of our algorithm.

Our algorithm maintains a node pointer q and the invariant that the

node pointed by q contains a key less than or equal to x. Initially, q is set

to f and this satisfies our invariant since key1(︀ f ⌋︀ ≤ x. Let u denote the node

pointed by q and let w denote be the right peer of u, if present.

⎷ finger search for x in T using f ⌄
- ascend q to exit node -

1> Locate an internal node known as the exit node as follows.

1.1> Stop if u is root(︀T⌋︀ or any other node on the right spine of T. Note that

either of these conditions can be tested in O(1) time by utilizing the

parent and right peer pointers. The exit node is u, and the invariant

continues to hold because we did not move q.
1.2> Since u is not on the right spine of T, we know w exists. Test if

x < key1(︀w⌋︀. If so, stop and the exit node is u. The invariant continues

to hold because we did not move q also.

1.3> Reaching this step, we must have x ≮ key1(︀w⌋︀⇒ key1(︀w⌋︀ ≤ x. Start by

computing #(p(︀u⌋︀) in O(b) time.

1.3.1> If u is a left child of p(︀u⌋︀, i.e., u ≠ right#(p(︀u⌋︀)(︀p(︀u⌋︀⌋︀, then move q
upward to p(︀u⌋︀. The invariant continues to hold because both u
and w are children of p(︀u⌋︀ and the key separating u and w in p(︀u⌋︀
is less than key1(︀w⌋︀, which in turn is less than or equal to x.

1.3.2> Otherwise, move q sideways to w. The invariant continues to hold

because key1(︀w⌋︀ ≤ x.
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1.4> Now that q has been updated, go back to step 1.1.

(Post: u on right spine of T ∨ x < key1(︀w⌋︀)
- locate exit key in u -

2> Scan for the rightmost key in u that is less than or equal to x. Suppose
this key is keyj(︀u⌋︀. This key is guaranteed to exist inside u due to the

invariant and is known as the exit key of the search.

- descend from u -
3> Start by testing if keyj(︀u⌋︀ = x.
3.1> If so, search for the external node containing x by descending into

the subtree rooted at leftj(︀u⌋︀. The target node will end up being the

rightmost external node of this subtree.

3.2> Otherwise, we must have keyj(︀u⌋︀ < x and we test if j < #(u).
3.2.1> If so, search for the external node of x by descending into the

subtree rooted at rightj(︀u⌋︀.
3.2.2> Otherwise, in addition to searching the subtree rooted at rightj(︀u⌋︀,

also search the subtree rooted at left1(︀w⌋︀ iff w exists.

Analysis. Let us start by observing the path followed by q. In step 1, it is

critical that q moves upward whenever u is a left child of its parent. This

ensures that q never moves sideways twice, implying that q ascends at least

half of the times within this step.

Fix u at its final value, namely the exit node, and let the height of u
be h. With the above observation, the length of the path between f and u
is at most 2h and so the running time of step 1 is O(bh). As the running

time of step 2 is O(b), the time it takes us to locate the exit key is O(bh).
Furthermore, the length of the path from u to the external node of x is at

most (h + 2), and therefore the time spent in step 3 is also O(bh).
What remains is to relate h and dist( f , x) when h = ω(1). Observe that

q never moves left in our algorithm. Therefore, there is a subtree T∗
of

height Θ(h) between f and x. We finish off by noting that T∗
has Ω(ah)

keys, meaning dist( f , x) = Ω(ah). Therefore, h is O(loga dist( f , x)) and the

total running time is O(b loga dist( f , x)).
Relating to Unbounded Binary Search. Although our algorithm seems

to be plagued with details of handling multiway nodes, it is in fact largely

similar to how we finger searched sorted arrays in §1.2.3.1. To see this, let

us interpret the path of q as follows. Observe that the size of T∗
increases

roughly geometrically as q ascends—this is akin to a doubling scan. Once

q reaches the exit key, we continue the search by descending into the

appropriate subtree(s)—this is akin to a binary search. The only difference

between the two algorithms is that the series appearing here is only roughly
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geometric. However, if we consider executing the algorithm from the

leftmost leaf on the minimal tree displayed in the beginning of this section,

then the series is in fact exactly geometric.

Leaf-Store vs. Node-Store. It is easy to see that the above algorithm will

fail on a level-linked degree-balanced search tree in the node-store represen-

tation. The reason is not so much related to the algorithm itself; instead

it is because the pointer structure of a node-tree no longer guarantees a

path of length O(lg d) exists between two items that are d ranks apart. This

is most evident by considering the items of the rightmost key of root(︀T⌋︀
and its successor in both representations. But in §3, we will show how a

degree-balanced search tree in either representation can support a constant

number of dynamic fingers but with no level-linking at all.

1.2.4 Three Example Applications
To show the benefit of data structures sporting the dynamic finger property,

let us consider three of its simplest applications. Note that data structures

with the dynamic finger property are in fact used in many applications,

especially in computational geometry. Some references can be found in

[BLMTT03].

1.2.4.1 Scanning

Suppose we use a search tree to represent the sorted list A = ⎷a1, a2,⋯, an⌄.
Consider the scanning access sequence σ = ⎷a1, a2,⋯, an⌄, i.e., we access

each element of A in the sorted order, unbeknownst to the search tree.

If our search tree has the dynamic finger property, then we can easily

upperbound the running time by O(n). But if not, say we are using a

classical red-black tree [GS78], then the best upperbound we can have is

O(n lg n).
In-order Traversal vs. Scanning. To be sure, we do not expect any appli-

cation to scan the keys of a search tree by accessing it once at each key,

even though this is exactly what happened above. If the particular scan-

ning access sequence is known in advance, and if the interface exposes the

internals of a search tree, then an in-order traversal suffices to scan it.

However, notice that while the in-order traversal algorithm can exploit

this particular access sequence, the access sequence is not known in ad-

vance. From the data structure’s standpoint, it can only serve the access

sequence one access at a time. This is the essence of being an online al-

gorithm. The very fact that only some search trees can exploit an “easy”

access sequence precisely shows that they have a desirable property absent
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in the others. Splay trees [ST85b], for example can serve the scanning

access sequence in linear time and in fact there has even been four proofs

of this: [Tar85; Sun92; Col00; Elm04].

1.2.4.2 Merging Two Sorted Lists

Consider merging two disjoint sorted lists C and D of sizes m ≤ n, each

represented using a degree-balanced search tree of the same name. For

simplicity, let us assume that these degree-balanced search trees are level-

linked leaf-trees and their degree bounds are O(1).
One correct algorithm would be to insert each element from C into

D. This would yield an upperbound of O(m lg n) on the running time

regardless of the order of the insertions. However, since we are using

degree-balanced search trees with the dynamic finger property, a similar

algorithm that orders the insertions in the symmetric order can be shown

to run in O(∑m
i=1 lg di) time, where d1 is n and di for i ≥ 2 is the difference

in rank between the (i − 1)-th and i-th elements of C in the merged list.

⎷merging sorted lists C and D ⌄
1> A scan of C will yield its keys in the symmetric (sorted) order. The time

incurred in this part of the algorithm is O(m).
2> As each key of C becomes available, we insert it into D. We break down

the insertion into two sub-steps

2.1> Locate the insertion point by searching for the key in D, thereby

incurring O(lg di) time before the i-th insertion actually takes place.

2.2> Perform the actual insertion and the necessary restructuring.

To analyze the running time, observe that the total amount of time

incurred in the first sub-step is O(∑m
i=1 lg di). And if the degree-balanced

search tree is robust, then we can follow Huddleston and Mehlhorn [HM82,

Theorem 6] and show that the additional time incurred in the second sub-

step is O(lg n). This term is then absorbed by the above because n = d1.

But even not, we can still use a similar result by Brown and Tarjan [BT80,

Theorem 1], which applies to level-linked (2, 3)-trees and can be readily

adapted to B-trees.

Our O(∑m
i=1 lg di) upperbound is clearly no worse than O(m lg n). And

thanks to the intuitive notion of a dynamic finger, our algorithm is also

conceptually much simpler than an earlier AVL-tree [AVL62] merging al-

gorithm by Brown and Tarjan [BT79]. Using the fact that ∑m
i=1 di = O(m + n)

and the concavity of logarithm, it can be shown that this bound is max-

imized when each di is
m+n

m and therefore our upperbound is O(m lg n
m).
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Note that this upperbound is particularly favorable when m = Θ(n), in

which case it simplifies into O(n).
Optimality and Similars. Finally, we also note that this bound is also

information-theoretically optimal because there are (m+n
m ) possible inter-

leavings among the elements of C and D and lg (m+n
m ) = Θ(m lg n

m). In fact,

similar algorithms can be devised for other sorted list operations, which

showcase the versatility of degree-balanced search trees sporting the dy-

namic finger property. In particular, union can be supported by discarding

duplicates, intersection by retaining only duplicates, and difference by dis-

carding the intersection. For more details on these and also the earliest

appearances of the merging algorithm above, see [BT80] and also [HM82]

and the references therein.

1.2.4.3 Inversion-Sensitive Sorting

Consider sorting a sequence of n unsorted keys A = ⎷a1, a2,⋯, an⌄. It is well-

known that this requires Ω(n lg n) comparisons in the comparison-based

model. However, if the sequence is almost sorted, then we can circumvent

this lowerbound by being sensitive to the presortedness of the sequence.

In this example, we will use the number of inversions of a sequence as the

measure.

An inversion happens when a larger key appears before a smaller key.

More precisely, if j < k but aj > ak, then the pair (aj, ak) induces an inversion

in A. For any sequence of length n, the number of inversions can range

from 0 to
n(n−1)

2 . The former happens when the sequence is sorted, whereas

the latter happens also when the sequence is sorted but in the reverse order.

The number of inversions of a sequence also happens to be the number of

adjacent exchanges required to sort it, à la bubble sort.

Let Inv denote the number of inversions in A. Consider inserting the

keys from A into an initially empty search tree sequentially. Essentially,

this is an insertion sort and any balanced search tree can perform this in

O(n lg n) time. However, if we are using a search tree with the static (or

dynamic) finger property, then we can upperbound the running time by

O(n lg Inv
n ) by placing a static finger at the rightmost leaf of the tree and

use it for insertions. The analysis is as follows.

(1) Let si denote the number of keys after the insertion point of ai till the

end of the tree. Observe that besides being the static finger budget, si is
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also the number of inversions due to ai because ai is smaller than si of

the keys preceding it in A. Therefore,

n∑
i=1

si = Inv. (1.2)

(2) Using the static finger property and the amortization technique used

in the merging example, we can again bound the total running time by

O(∑n
i=1 lg si).

(3) Using (1.2) and the concavity of logarithm, we can show by induction

that ∑n
i=1 lg si is maximized when each si is

Inv
n .

(4) We bound the maximum, ∑n
i=1 lg Inv

n = lg∏n
i=1

Inv
n , as follows.

( n∏
i=1

Inv
n

)
1
n ≤ ∑n

i=1
Inv
n

n
= Inv

n
by A.M.-G.M. inequality

⇒ 1
n

lg
n∏

i=1

Inv
n

≤ lg
Inv
n

by monotonicity of lg

⇒ lg
n∏

i=1

Inv
n

≤ n lg
Inv
n

Note that our O(n lg Inv
n ) bound degenerates into O(n lg n) in the worst

case, and no smaller bound can be expected since this algorithm is

comparison-based.

Adaptive Sorting. Before we finish, let us observe that the above algo-

rithm uses a static finger and thus we have not fully exploited the dynamic

finger property of the underlying search tree. This is most evident when

we observe an inherent asymmetry in the notion of inversion. Few would

agree that it is difficult to sort a reversely-sorted sequence, and yet there

are Θ(n2) inversions in it and we only have an O(n lg n) bound. Had a

dynamic finger been used instead, we could have sorted this particular

sequence in O(n) time.

However, there are actually two good reasons why we would choose

to present this algorithm—and this is besides the fact that it is simple to

describe and analyze. First, it appeared in the very same paper [GMPR77]

that introduced finger search, meaning it is one of the earliest applications

of finger search. Second, it is also historically the first adaptive sorting

algorithm and has a whole field of follow-up works. For example, the

“local insertion sort” of Mannila [Man85] is precisely what we would have

described if a dynamic finger was used instead!
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Given its importance in both theory and practice, adaptive sorting is in

fact a vast field. For more information about it, we refer the reader to a

survey on the subject by Estivill-Castro and Wood [ECW92] as well as the

following works as some starting points: [Man85], [PM95], [BCDI07], and

[EF08].

1.2.5 A Data Compression Perspective
Let us end our introduction of the dynamic finger property with some

intuition from a data compression perspective. Our goal is to relate the

dynamic finger property with difference coding, and then show how other

forms of compression give rise to other interesting properties. For simplic-

ity, in this section we will consider a search tree containing a static set of

keys {1, 2, . . . , n}.
1.2.5.1 Gamma Codes

We will start by reviewing how a particular variant of γ codes [Eli75]

encodes a natural number d into a bit string known as its codeword. Let

the binary representation of d be Bin(d) and let the number of digits in

Bin(d) be h. Notice that h is Θ(lg d). The γ code of d consists of 2h bits:(h− 1) ones, followed by a zero, followed by Bin(d). For example, if d is 42,
then Bin(d) is 101010 and h is 6. The codeword is therefore 111110101010.

A key property of γ codes is that they are prefix codes. This means that

it is impossible to find d1 ≠ d2 such that the codeword of d1 is a prefix of

the codeword of d2. As an application, this means we can use γ code to

encode a sequence of natural numbers into a uniquely-decodable bit string

by simply catenating their γ codes.

1.2.5.2 Difference Coding

Consider the following method of compressing a length-m access sequence

σ into a uniquely-decodable bit string S.

1> Record the γ code of σ1.

2> For each subsequent σi, first record a sign bit indicating if σi is larger

than σi−1, then record the γ code of their absolute difference.

The decompression procedure is straightforward, but what is the length

of S? Let d1 be σ1 and di be ⋃︀σi −σi−1⋃︀ for i ≥ 2. By the property of γ codes, we

know that σi can be encoded in Θ(lg di) bits, and thus S has Θ(∑m
i=1 lg di)

bits in total. Since S can be uniquely decoded back into σ, we have not lost

any information in the compression and we can say that the information

content of σ is upperbounded by O(∑m
i=1 lg di) bits.
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Of course, this also happens to be the total dynamic finger budget of σ,

which upperbounds the time it takes to serve σ by any data structure with

the dynamic finger property. To explain this apparent coincidence, let us

offer the following interpretations.

(1) Recall that we assumed the set of keys is {1, 2, . . . , n}. This implies

that the rank of σi is simply σi. When a data structure with dynamic

finger property serves σi, the distance travelled by the dynamic finger

is precisely ⋃︀σi −σi−1⋃︀. Not surprisingly, this difference is what difference

coding captures.

(2) The particular variant of γ code we have chosen corresponds to an

encoding of the binary decisions in an unbounded binary search. In

particular, the first h bits come from a doubling scan in which each 1
is “double” and the final 0 is “stop”, and the last h bits come from a

binary search, with 0 being “smaller” and 1 being “larger”. (In fact, we

could have define γ codes using the algorithm of unbounded binary

search.)

Having seen the above, it should be clear that the actual compression is

due to difference coding, and γ-coding does not actually reduce the amount

of redundancy in σ at all. This leads us to the following question—what are

the access sequences that have redundancy to be exploited?

1.2.5.3 Locality of References

Spatial. To answer the above question, let us start by re-examining the

access sequences of the three applications in §1.2.4, all of which we know

how to exploit.

(1) In the scanning access sequence, notice that each access is only one key

apart from the previous. Serving this sequence hardly involves any

searching at all.

(2) To merge two sorted lists of length m ≤ n, we only need to perform

m insertions into the longer lists from left to right. Furthermore, the

insertion points are on average at most
m+n

n keys apart.

(3) When we use insertion sort to sort an n-sequence with Inv inversions,

on average each insertion point is at most
Inv
n away from the largest

number seen so far. If Inv happens to be o(n2), then the average search

space of each insertion will be o(n).
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The common trait shared by these access sequences is their spatial lo-
cality of references.

☇6
Indeed, for each of these access sequences, we notice

that the distance between two consecutive accesses is more restricted than

it is possible in the general case. The presence of spatial locality in these

access sequences is why a data structure with the dynamic finger prop-

erty can have an asymptotically improved running time. This observation

also brings us to the one issue that no introduction to the dynamic finger

property can end without.

Temporal. As it turns out, difference coding may not be always effective—

much less optimal. Here is another type of locality which difference coding

fails to capture at all.

Consider the access sequence σws = ⎷1, n, 1, n, 1, n,⋯⌄. Difference coding

saves very little here because consecutive accesses are (n − 1) apart in the

key space. On the other hand, σws actually exhibits a temporal locality of

references, which is what any data structure with the working set property

can exploit. The data compression perspective also suggests that there must
be a method in which σws can be succinctly compressed:

1> At the first occurrence of any key x, record 0 (written as + below)

followed by the γ code of x in full.

2> At the next occurrence of the same key x, say as σi, record 1 (written as− below) and the γ code of one plus the number of unique keys that has

occurred since the last occurrence of this key. This number, commonly

denoted ti(x), is the working set number of x at the time of σi and

ranges from 1 to n.

Applying this on σws, the resulting sequence before γ-coding would

be ⎷+1,+n,−2,−2,−2,−2⌄ followed by any number of repeated −2’s and is

thus highly compressible. And as an example data structure that has the

working set property, we note that splay trees [ST85b] can serve any σ of

length m in O(n lg n +∑m
i=1 lg max(2, ti(σi))) time. (It is an interesting open

question whether the O(n lg n) term can be reduced to O(n).)
Other Types of Locality. Having read the above discussion, we note that

many interesting questions can be asked. For example, does some other

type of locality exist? And is there an optimal method to compress any

access sequence? And if so, do we have any data structure that can match

such a compression scheme? However, as important as these questions are,

they are beyond our scope and it’s time for us to turn to our next topic.

6.The term “locality of references” actually originates in the work on computer systems in the

late 1950s. Denning [Den05] has an interesting account of it.
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1.3 Heterogeneous Finger Search Trees
Highly related to this thesis is the class of heterogeneous finger search

trees introduced by Tarjan and Van Wyk [TVW88]. A heterogeneous finger

search tree is a worst-case balanced search tree with its two spines inverted.

On the right spine, this means instead of having each node point to its

rightmost child, we have each node point to its own parent. And instead

of keeping a pointer to the root, we keep two pointers to the bottommost

internal node on the two spines from which the algorithms on these trees

start. These two internal nodes—as opposed to the leftmost and the right-

most external nodes—will be referred to as the two “ends” of the tree. Note

that the number of pointers in each node on the spine actually remains the

same.
As observed by Tarjan and Van Wyk, in principle the technique of spine

inversion can be applied to any balanced search tree that is robust. Indeed,

this approach has also been applied on AVL-trees by Tsakalidis [Tsa85],

who essentially inverted the left spine of an AVL-tree and “robustify” it

by allowing an extra height imbalance on the spine (see §1.5.3 for a better

comparison). Moreover, due to the performance guarantees to be described

below, we can also choose to work with either leaf-trees or node-trees

depending on the requirements of an application. This is why even though

Tarjan and Van Wyk based their work on leaf-store red-black trees, we will

use node-store red-black trees in this thesis instead.

Before we go on, observe that in our description above, the root can no

longer reach its leftmost and the rightmost children due to spine inversion.

But in some applications that require augmentation, it may be necessary

to allow the root to reach these two children by maintaining two extra

pointers. An example of this can be found in the thesis of Booth [Boo90],

and we note that for our purpose we do not need these two pointers.

1.3.1 Representation and Operations
To give a flavor of how a heterogeneous red-black tree works, let us review

the algorithms for search and join. Note that our description below assumes

familiarity with red-black trees as described in, say, [CLRS01, §13]. The

reader is simply reminded that the external nodes are considered to be

black and their black-height is defined to be 0.

1.3.1.1 Representation

The representation of a heterogeneous red-black tree is basically the same

as a red-black tree but with the nodes on the two spines pointing upward.

base revision 903 built on 2009-5-28 16:00 10+152+20+15 pages, 18 figures, 4 tables



1835

1.3 Heterogeneous Finger Search Trees 35

To implement the inverted right spine, we will simply define right(︀u⌋︀ to

be the parent of u for any internal node u on the spine. The inverted left

spine is defined symmetrically. And to aid our presentation below, we

will let p(︀u⌋︀ to denote the correct child pointer which we use to point to

the parent. Notice that the above definition is stated for node-trees. For a

leaf-tree, we would have to maintain two extra pointers to the leftmost and

the rightmost external nodes since their parents no longer have pointers to

them. (Or we may let these two external node have parent pointers as in

[TVW88] and define them to be the two ends of the tree.)

1.3.1.2 Search

To search for a key x in a heterogeneous red-black tree T, we start two

searches simultaneously from the two ends towards the root and stop

once either search finds x. By symmetry, we will describe only the search

starting from the left end of T.

The idea is to scan the left spine bottom-up until we hit the rightmost

node u whose key is still less than or equal to x. This key is often called the

turn key. In other words, we have key(︀u⌋︀ ≤ x and, if p(︀u⌋︀ exists, x < key(︀p(︀u⌋︀⌋︀
also. At this point, one of the following three possibilities can happen.

(1) If key(︀u⌋︀ = x, then we are done.

(2) If key(︀u⌋︀ ≠ x but u = root(︀T⌋︀, then x is not in the left subtree of T and we

can terminate the search on this side.

(3) If both of the above do not apply, then x can only be in the right subtree

of u because our stopping condition implies x < key(︀p(︀u⌋︀⌋︀. We descend

(turn) right from u and continue searching downward as in a normal

red-black tree.

Running Time. We claim that if x is at rank d, then the above algorithm

runs in Θ(lg d) time. The reasoning here—not surprisingly—is highly

similar to that of an unbounded binary search. Suppose the black-height

of u is h, i.e., u is the h-th black node we meet on the left spine. Observe

that the above algorithm runs in Θ(h) time, and as long as u is not the

left end, the right subtree of the left child of u separates the left end of T
from x. Since we are dealing with a red-black tree, this subtree has Θ(2h)
keys and gives us the desired lowerbound on d. By combining a similar

argument on the right hand side, this gives us the running time bound

Θ(lg min(d, n − d)) with n being the number of keys in T.
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1.3.1.3 Join

Given two heterogeneous red-black trees TL and TR and a key x in-between,

we can join them together using the following algorithm.

⎷ join (TL, x, TR) ⌄
1> Scan the black nodes on the right spine of TL and the left spine of TR in

lock-step and terminate once we hit the root of either tree. By symmetry,

assume we hit the root of TL first and let v be the last black node we

visited on the left spine of TR. Notice that TL and v share the same

black height, which will be denoted hL.

2> Determine if the black height of TR is also hL by checking if v has a

black parent or a black grandparent.

3> If the black height of TR is hL, then finish with following procedure.

- form (TL, x, TR) -
3.1> Make x the new root by pointing both roots of TL and TR towards x.
3.2> Color x red if both roots are black, or else color it black.

3.3> Un-invert the right spine of TL and the left spine of TR.

4> Otherwise, the black height of TR is larger than hL and we will join TL
to the left spine of TR as follows.

- replace v∗ ∈ TR by (TL, x, v∗) and restructure -

4.1> If the root of TL is black, let v∗ simply be v. Otherwise, color the root

of TL black and let v∗ be the lowest black ancestor of u. Notice that

in either cases, v∗ is black and has the same black height as TL.

4.2> Put x in a new red node u with v∗ as its right child, and let the root

of TL points to u from the left, and let u points to p(︀v∗⌋︀.
4.3> Un-invert the right spine of TL and the left spine of TR up to and

including v∗.
4.4> Start restructuring at x if it has a red parent.

Running Time. First, we claim that the restructuring in step 4.4 takes

amortized O(1) time. This can be proved by defining the potential function

of the tree as (i) the black height of the tree, plus (ii) the number of black

nodes with no black children. The time spent in the steps of the algorithm is

proportional to hL, but this can be entirely charged to the potential released

by TL. By also considering the similar case where TR has a smaller black

height, the total running time is therefore amortized O(1).
1.3.1.4 Other Operations

Heterogeneous red-black trees actually support all three dictionary oper-

ations as well as splits and joins. However, instead of reviewing all of

them in detail, here we will simply give the specifications and the running
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Potential
black height of T + # black

nodes w. no black children

(used in this thesis)

# black nodes w. two black

children + 2 # black nodes

w. two red children

Insert O(1) O(1)
Delete O(lg min(d, n − d)) O(1)
Join⇑Catenate O(1) O(lg min(⋃︀TL⋃︀, ⋃︀TR⋃︀))
Split O(lg min(⋃︀TL⋃︀, ⋃︀TR⋃︀)) O(lg min(⋃︀TL⋃︀, ⋃︀TR⋃︀))

Table 1.1 – Running Time Bounds of Heterogeneous Red-Black Trees

time bounds the operations that we did not review. Interested readers are

referred to [TVW88, Appendix A] and [Boo90, §2] for the details.

We note that at least two different potential functions can be used to

analyze heterogeneous red-black trees and both of them have appeared in

[TVW88]. For this thesis, we will stick with the one we used above in the

analysis of joins. But for completeness we will also state the bounds for the

other more classical potential function when we summarize the running

time bounds in Table 1.1.

Insert and Delete. Given a heterogeneous red-black tree of size n and

assuming the location of the update is known, the amortized time to in-

sert a key is O(1), and the amortized time to delete the key at rank d is

O(lg min(d, n − d)). Note that the former will degenerate into the latter if

we have to search for the update location first.

Catenate. Given two heterogeneous red-black trees TL and TR, the amor-

tized time to catenate them is O(1). The resulting tree contains all keys of

TL and all keys of TR, in order. This uses the fact that we can delete the

rightmost key of TL in amortized O(1) time and use it in a join.

Split. Given a heterogeneous red-black tree T of size n and a key x, the
amortized time to split it at x is O(lg min(⋃︀TL⋃︀, ⋃︀TR⋃︀)). The result is a triple(TL, x?, TR), with TL and TR being heterogeneous red-black trees containing

the keys of T that are respectively smaller than and greater than x. The

option x?
will be x if it is in T; or Nil if otherwise.

1.3.2 Dynamic Finger Property
While the above bounds implies that a heterogeneous red-black tree only

has two static fingers at the two ends, it can actually implement the se-

mantics of a dynamic finger using splits and joins. In other words, a

heterogeneous red-black tree can also be considered to have the dynamic

finger property when used in the following way, which we call the triplet

representation. (We acknowledge that this is a slight abuse of the word

“triplet”; however, we deem it is better than saying a doublet is a triple.)
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Initialization. Suppose we are given a red-black tree T containing n keys

and we would like to initialize a finger at a key f in T. First, split T at

f using the red-black tree split algorithm to obtain the triple (TL, f , TR).
Then, convert TL and TR into heterogeneous red-black trees by inverting

their spines. Notice that these two steps run in O(lg n) time.

f

x

TL TR

T′L T′R

T∗R

Finger Search. From now on, we will maintain this

triple as our data structure. Suppose the finger needs

to be moved to another key x ≠ f . By symmetry let us

assume f < x. First, split TR at x to create (T∗
R, x, T′

R).
Then, join (TL, f , T∗

R) to create the new T′
L. The amor-

tized time of these two steps are both O(lg ⋃︀T∗
R⋃︀). Since

T∗
R contains exactly all the keys that sits between f and

x in T, this becomes O(lg distT( f , x)) as we desired.

Remark 1.7. Although we will not get into details, it is not hard to see

how the above construction can be generalized to handle a constant number
of dynamic fingers. In general, k fingers can be supported by maintaining a

tuple of (2k + 1) values. The odd positions are the heterogeneous red-black

trees and the even positions are the keys at the dynamic fingers.

1.3.3 Binarization
In the format presented above, searching a heterogeneous red-black tree

involves starting from the two ends of the tree. Because of this, it can

be argued that these trees are not search trees in the strictest sense of

the phrase. Fortunately, a construction that appeared in a recent paper

by Demaine, Harmon, Iacono, Kane, and Pǎtraşcu [DHIKP09] actually

shows how to simulate a heterogeneous red-black tree using a binary

search tree algorithm. This puts heterogeneous red-black trees—or rather

the applications of them—firmly in the domain of binary search trees.

Their method is very easy to understand and we will present it here for

completeness.

Construction. Let T be the heterogeneous red-black tree to be simulated

and let T∗
be its binary search tree simulation. The following algorithm

constructs T∗
from T.

⎷ T (hrb) → T4
(h24) → T4

Z (z24) → T∗ (bst) ⌄
1> Color the root of T black if it is red.

- un-binarization -

2> Convert T into a heterogeneous (2, 4)-tree T4
by collapsing the red

nodes into their black ancestors. Let the height of T4
be h and notice
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that the length of the two spines of T4
is h exactly. Also, let li and ri be,

respectively, the left and right spinal nodes of T4
at height i.

- pull the two spines and interweave -

3> Convert T4
into 4-way search tree T4

Z as follows.

3.1> Form the zig-zag skeleton of T4
Z by interweaving the two spines bottom-

up while preserving the symmetric order. Specifically, start with l1 as

the root. Then, for 1 ≤ i < h, li will have ri as its rightmost child, and

in turn ri will have li+1 as its leftmost. Notice that the formation of the

skeleton displaces the rightmost⇑ leftmost child of li ⇑ri for 1 < i < h.
3.2> For each li where 1 < i < h, reconnect its rightmost child as the leftmost

child of li+1 in T4
Z. Notice that the leftmost child of li+1 in T4

was li and
thus this child position was left empty in T4

Z at the skeletal formation.

3.3> Similarly for 1 < i < h, we reconnect the leftmost child of ri as the

rightmost child of ri+1.

- binarization -

4> Convert T4
Z back into a red-black tree T∗

by expanding each node with

degree larger than 2 into a black parent and its corresponding red

children. Notice that T∗
is not a red-black tree in the sense of a balanced

search tree. The red-black encoding is simply used to encode 3- and

4-nodes in the binarization.

Simulation. To see that T∗
can simulate T, first observe the followings.

(1) A spinal node at height h in T has a depth of either (2h − 1) or 2h in T∗

and appears on the zig-zag skeleton.

(2) Each subtree that is hanging off a left spinal node u of T is now hanging

off a skeletal node of T∗
.

(a) If the subtree is not rooted at the rightmost child of u, then it is

rooted at the same child position of u in T∗
.

(b) Otherwise, the subtree is rooted at the leftmost child position of the

leftmost child of the rightmost child of u in T∗
.

The cases on the right spine is symmetric.

(3) The parent-child relationship within each subtree hanging off the spines

of T remain the same in T∗
.

Since all operations on T starts from the two ends, we can simulate the

upward traversal of the spines by descending through the zig-zag skeleton

from the root of T∗
. Once the turn key has been identified on the skeleton,

we can descend into the correct subtree depending on the condition in

observation (2). From that point on, the subtree we are operating on is

exactly the same in T and T∗
. It follows that T∗

can simulate T with only

constant slow-down.
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1.3.4 Homogenity and Finger Search Trees
To enhance our understanding of heterogeneous finger search trees, let

us understand why they are called “heterogeneous” in the first place.

Recall that in §1.2.2, we made a distinction between finger search trees and

dynamic finger trees. A finger search tree can be finger searched from any

key in the tree, whereas a dynamic finger tree can finger searched only

from a dynamic finger. Out of the homogeneity among the locations from

which a finger search can start, Tarjan and Van Wyk [TVW88] called the

former a homogeneous finger search tree. This is to draw a better contrast

with a heterogeneous finger search tree, on which we always start searching

from its two ends. We remark that since we have already reserved the term

“finger search trees” for the homogeneous type, we will not be using this

adjective very often except when drawing parallels.

Although a homogeneous finger search tree is simply a finger search

tree, the exact relationship between a dynamic finger tree and a heteroge-

neous finger search tree is more complicated. First of all, a heterogeneous

finger search tree is not a dynamic finger tree since technically it only has

two static fingers on the two ends. But from §1.3.2 we know a hetero-

geneous finger search tree that supports splits and joins can be used to

implement the semantics of a dynamic finger due to the triplet represen-

tation. Furthermore, by suitably generalizing the construction in §1.3.3,

we know any heterogeneous finger search tree can in fact be simulated

by a binary search tree. Putting these two facts together, we can actually

obtain a dynamic finger tree from an underlying balanced search tree T as

follows.

⎷ transforms balanced search tree T into a dynamic finger tree T′ ⌄
1> Convert T into its triplet representation (TL, f , TR) in which TL and TR

are both heterogeneous finger search trees.

2> Simulate TL and TR as the binary search trees T∗
L and T∗

R.

3> Maintain a binary search tree T′
with its root containing f and let T∗

L
and T∗

R be respectively its left and right subtrees.

With the above transformation, T′
is in fact a faithful representation of

T as long as each insertion or deletion happens at the dynamic finger. Fur-

thermore, if k dynamic fingers have to be supported, we can also organize

them as a balanced binary search tree of k keys and hang the (k + 1) binary

search tree simulations at the corresponding external positions.

Relative Strength. Without doubt, homogeneous finger search trees are

more powerful than heterogeneous finger search trees when the ability to
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search by key is concerned. However, Tarjan and Van Wyk [TVW88] have

discovered how the latter can be augmented to support other useful opera-

tions such as search by rank or search by a secondary heap order. While

technically a homogeneous finger search tree can support these operations

if it also supports splits and joins, this is because it can then be used to

simulate a heterogeneous finger search tree in the straightforward manner.

Tipping the balance, some homogeneous finger search trees support an op-

eration called excisions and there is no efficient analogue in heterogeneous

finger search trees.

Excision. Also known as a three-way split, an excision is the splitting of

an inner portion of a finger search tree T of size n specified by two of its

keys x ≤ y. Suppose the number of keys in T within the closed interval(︀x, y⌋︀ is d. After the excision, these keys will be in a new tree of size d and

the other (n − d) keys will remain in T.

Hoffman, Mehlhorn, Rosenstiehl, and Tarjan [HMRT86] have demon-

strated how excisions can be used in an optimal linear time algorithm

for the so-called “Jordan sorting” problem
☇7
. Their algorithm is based on

circularly level-linked (2, 4)-trees. Using robust balancing, the running time

of an excision is amortized O(lg min(d, n − d)). Hoffman et al. has also

noted that their data structure can be used to speed up an O(V lg V)-time

planarity algorithm of Hopcroft and Tarjan [HT71] to run in optimal O(V)
time. This matches an optimal planarity algorithm that was also due to

Hopcroft and Tarjan [HT74] and was based on a complicated application

of depth-first search (see also the thesis of Tarjan [Tar71]).

Even though the Jordan sorting algorithm of Hoffman et al. [HMRT86]

may have popularized the excision operation, we must also note that exci-

sion is not exactly required by the Jordan sorting problem. For example,

Aurenhammer [Aur87] have proposed another linear time algorithm that

is based on computing the convex hull of a carefully constructed polygon.

Furthermore, Fung, Nicholl, Tarjan, and Van Wyk [FNTVW90] also have

a simpler (but not simple) linear time algorithm that is based on none

other than the heterogeneous finger search trees of Tarjan and Van Wyk

[TVW88].

7.In a Jordan sorting problem, we would like to sort a permutation of size n that corresponds to

the ordering of the intersections of a Jordan curve and a straight line as they appear on curve.

Using the restriction that the curve cannot self-intersect, it can be shown that there are only cn

different possible inputs for some constant c. This implies that the Jordan sorting problem is

strictly easier than the general sorting problem since the latter can have n! different possible
inputs.
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1.4 Tangolike Trees
The final topic we will introduce in this chapter is the class of tangolike

trees. Search trees in this class all follow a schema that was first used in

the tango trees of Demaine, Harmon, Iacono, and Pǎtraşcu [DHIP04]. Since

this schema is best-understood via a lowerbound in the binary search tree

model, let us start with a review of the model itself.

1.4.1 The Binary Search Tree Model
The term “binary search tree model” refers to a concept that was first al-

luded to in the seminal paper on splay trees by Sleator and Tarjan [ST83].

Many readers of this thesis will be familiar with their dynamic optimality

conjecture in [ST85b], which states that for any access sequence σ, the run-

ning time of a splay tree of size n is within O(n) plus a constant multiple

of the running time required by any search tree. Put in the lingo of com-

petitive analysis also by the same authors [ST85a], this conjecture simply

means splay trees are O(1)-competitive against an offline optimal binary

search tree.

Implicit in the above restatement of the conjecture is a proper definition

of search trees. To ensure the comparison of running times is meaningful,

Sleator and Tarjan [ST85b] spelled out several requirements that any search

tree used in the comparison has to follow. In our usage, these requirements

are said to form a binary search tree model, and the restructuring algorithm

used in any search tree that fits these requirements is said to be a binary

search tree algorithm. Since the restructuring algorithms in many search

trees are not specifically named, we will also allow ourselves to say a

search tree is a binary search tree algorithm if it uses a binary search tree

algorithm to restructure itself.

Historically, several different binary search tree models have been put

forward by researchers in the field. Besides the unnamed model of Sleator

and Tarjan, we also have the “standard search algorithm” model of Wilber

[Wil86] as well as another unnamed model of Lucas [Luc88b, p. 3]. Al-

though their details differ, these three models are equivalent up to constant

factors in the sense that an algorithm running in one model can be con-

verted to run in another with only a constant slowdown. Since the choice of

model does not affect asymptotic analysis, for our purpose we will simply

say a restructuring algorithm is in the binary search tree model as long as

it is in one of these models.
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The Reorganization Tree Cost Model. For concreteness, we will restate

the model of Lucas here. Following the suggestion of Harmon [Har06,

Appendix A], this model is also called the reorganization tree cost model.

(1) A search tree is a node-store binary search tree T with {1, 2, . . . , n} as

its fixed set of keys. It can have any initial shape, and in particular this

shape is not chosen by the restructuring algorithm.

(2) A internal node u of T can only be addressed via a pointer to u, but the
actual address of u cannot be obtained using any method.

(3) Each node can have any amount of extra storage for augmentation but

no extra pointers besides the existing two. Together with the restriction

in (2), this means the extra storage cannot be used to address nodes.

(4) An access sequence σ is {1, 2, . . . , n}m
for any natural number m. Notice

this implies all accesses are successful.

(5) An access σi starts with a finger visiting the root of T.

(6) The finger is allowed to traverse on the pointers of T in either direction

to visit any set of internal nodes, but it must use the pointers of T to

get there. In other words, it cannot go from one node to another when

there is no pointer between them in either direction.

(7) During the tour, any node currently under the finger can be rotated

with its parent, if present.

(8) To satisfy the access, the finger must visit the internal node containing

σi at least once during the tour.

(9) The cost of serving σi, denoted T(σi), is the number of unique nodes

visited by the finger. Note that this is independent of the number of

rotations performed.

(A) Finally, the cost of serving σ is defined to be ∑m
i=1 T(σi). Note that we

do not impose any restriction on the length of σ.

Before we go on, let us present a few remarks concerning this model.

+ Since the finger is required to traverse along the pointers of T and it has

to visit the node of σi at least once, we observe that the nodes visited by

the finger form a connected subtree τi that contains the access path of

σi. This subtree is known as the reorganization tree of σi, in reference

to the fact that it can be reorganized by rotations during the tour.

+ Binary search tree algorithms in this model can be specified at a high

level that does not involve specifying the actual rotations. All we have

to specify is how to compute the node membership and the final shape

of τi from any given σi. The actual rotations can then be obtained using

the fact that any two search trees of size τi can be rotated into each

other in O(τi⋃︀) rotations [CW82; STT86]. In other words, we will think
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of decomposing T into (⋃︀τi⋃︀+ 2) parts, namely τi itself and the (⋃︀τi⋃︀+ 1)
subtrees at the external positions of τi. After σi is served, we simply

transform τi from its current shape to the new shape via rotations.

Notice that this keeps the shapes of (⋃︀τi⋃︀+ 1) subtrees intact.

Example Binary Search Tree Algorithms. One example binary search tree

algorithm that fits this model is the venerable splaying algorithm used by

Sleator and Tarjan [ST85b]. The reorganization tree is the access path itself

and its final shape can be described by a rotate-to-root procedure followed

by a path compression in a certain form.

Another example is the binarization of heterogeneous red-black trees

we discussed in §1.3.3. Note that heterogeneous red-black trees in their

original form are not in the binary search tree model. In fact, Demaine et al.

[DHIKP09] devised this binarization precisely because they want to use the

capabilities of heterogeneous red-black trees inside their new “GreedyOSS”

binary search tree algorithm.

1.4.2 The Interleave Bound
Having defined the binary search tree model, let us turn to a lowerbound

that forms the theoretical underpinnings of all tangolike trees. We note

that this bound first appeared in the work of Demaine, Harmon, Iacono,

and Pǎtraşcu [DHIP04] and is a slight variation of Wilber’s first bound in

[Wil86].

The Interleave Bound. The interleave bound of an access sequence σ is a

function of σ and a reference tree P. The latter is a node-store binary search

tree with n internal nodes fixed at any shape of our choice. Each internal

node of P has a preferred direction of either left or right at all time, and

initially every internal node prefers left. Even though P usually only exists

in our imagination, let us also use root(︀P⌋︀ to denote its root.

We say that a node u prefers left (resp. right) if the most recent access

within P⋃︀u is in the left (resp. right) subtree of u. We leave the preference of

u flexible in the case when the most recent access within P⋃︀u is the key in u
itself. The two common choices are to force u to prefer left after it has been

accessed, or to simply force u to change its preference whatever it was.

To build up our intuition on node preferences, let us suppose that P has

just served σi. Let u0 = root(︀P⌋︀, . . . , ud = σi denote the node(s) on the access

path of σi in P. Observe that for 1 ≤ j ≤ d, the node uj−1 prefers towards the

direction of uj, and the target node ud may prefer left or right depending

on the definition used. Any node with a new preferred direction after P
has served σi is said to have “switched due to σi”. Notice that if a node

base revision 903 built on 2009-5-28 16:00 10+152+20+15 pages, 18 figures, 4 tables



2345

1.4 Tangolike Trees 45

does not appear on the access path of σi, then its preference cannot have

switched due to σi.

Let m be the length of σ and let IB(σi, P) be the number of switches

induced on P by σi. The interleave bound IB(σ, P) is simply ∑m
i=1 IB(σi, P).

We claim that the cost of any binary search tree algorithm serving σ is at

least
1
2IB(σ, P), and a proof of this can be found in [DHIP04, Appendix A].

Notice that the claim is meant to hold only after the serving costs are ag-
gregated over the entire σ. In other words, the number of switches induced

by one particular access is not a lowerbound of any sort.

We also note that this bound can be reduced by O(n) +O(m) due to,

respectively, our arbitrary choice for the initial node preferences and the

flexible preference of the access node itself. However, the cost of serving

σ in our model definition in page 43 can fully absorb this reduction when

m = Ω(n), which is precisely what we required in our competitiveness

definition on page 19.

Bit-Reversal Sequence. Before we go on, let us follow Wilber [Wil89] and

show a simple application of the interleave bound. Let A be the sequence⎷0, 1, 2, . . . , 2h − 1⌄ for any h. Let ai be the i-th element of A and let bi be

the sequence of binary digits that represents ai, with zeros padded on the

left to ensure that bi is a sequence of exactly h binary digits. Let di be

the reversal of bi and let ei be the integer whose binary representation is

di. Finally, let σi be (2ei + 1). We call the sequence ⎷σi⌄ the bit-reversal

sequence of h bits, denoted BR(h). As an example, Table 1.2 illustrates

BR(4), which is contained in its last column.

ai bi di ei σi

0 0, 0, 0, 0 0, 0, 0, 0 0 1
1 0, 0, 0, 1 1, 0, 0, 0 8 17
2 0, 0, 1, 0 0, 1, 0, 0 4 9
3 0, 0, 1, 1 1, 1, 0, 0 12 25

4 0, 1, 0, 0 0, 0, 1, 0 2 5
5 0, 1, 0, 1 1, 0, 1, 0 10 21
6 0, 1, 1, 0 0, 1, 1, 0 6 13
7 0, 1, 1, 1 1, 1, 1, 0 14 29

8 1, 0, 0, 0 0, 0, 0, 1 1 3
9 1, 0, 0, 1 1, 0, 0, 1 9 19

10 1, 0, 1, 0 0, 1, 0, 1 5 11
11 1, 0, 1, 1 1, 1, 0, 1 13 27

12 1, 1, 0, 0 0, 0, 1, 1 3 7
13 1, 1, 0, 1 1, 0, 1, 1 11 23
14 1, 1, 1, 0 0, 1, 1, 1 7 15
15 1, 1, 1, 1 1, 1, 1, 1 15 31

Table 1.2 – Bit-Reversal Sequence

of 4 Bits

A remarkable fact about the bit-reversal se-

quence is that it is one of the “hardest” access

sequences for a binary search tree. Consider a

reference tree in the form of a complete binary

search tree of height (h + 1) and consider how

we descend through the reference tree when it

serves σi. If the first digit of di is a 0, we de-

scend left; otherwise, we descend right. After

h descents, we will reach the leaf containing σi.

Observe that at every descent, the preference of

the current key changes. This is evident by in-

specting the digits of bi as a binary counter, with

the least significant bit corresponding to the root

of the reference tree. We conclude that the num-

ber of switches per access is h. This gives us the
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desired lowerbound of Ω(n lg n) for any binary

search tree of size n to serve BR(h), where n is

the size of the reference tree (2h+1 − 1).
A Little Bit of History. As we mentioned, the

interleave bound is due to Demaine, Harmon, Iacono, and Pǎtraşcu

[DHIP04] and in fact appeared in the very same paper that defined tango

trees. Just as the authors themselves have pointed out, this bound is a

slight variation of a lowerbound first proved by Wilber in [Wil86]. In fact,

the two bounds differ precisely in their model of search trees—Wilber’s

bound is based on leaf-trees and the interleave bound adapts it to node-

trees. Incidentally, Wilber actually proved two lowerbounds in [Wil86] and

the interleave bound corresponds to the first of the two. Wilber conjectured

that his second bound is stronger than his first one. Although there are

intuitions why this may be true, so far it remains an open conjecture.

For many years, the two lowerbounds of Wilber were the only candi-

dates when lowerbounds in the binary search tree model are concerned.

However, subsequent to the interleave bound, two highly-similar lower-

bound frameworks were independently proposed by Harmon [Har06] (see

also [DHIKP09]) and Derryberry, Sleator, and Wang [DSW05]. Since these

two frameworks encompass all known lowerbounds in the binary search

tree model as of this writing, an open problem in the field is whether there

can be any lowerbound outside, i.e., higher than the ones provable using

these frameworks.

1.4.3 Terminologies
Having introduced the notion of preference to define the interleave bound,

let us define a number of related terms before we go on. For a given

reference tree P, let u and v be any two of its internal nodes and let x be

the key in u. Also, let σi be the most recent access served by P.

(1) The reference depth of u or x is the depth of u in the reference tree

P. We note that in many cases P is usually specified using the context.

Furthermore, although we do not support updating P dynamically, in

such a setting the reference depth of u or x can change over time.

(2) If v is the child at the preferred direction of its parent u, then v is the

preferred child of u. This child is also denoted ✓i(u).
(3) The preferred subtree of u is P⋃︀✓i(u)

.

(4) Oppositely defined are, respectively, the nonpreferred child and the

nonpreferred subtree of u.
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Figure 1.2 – Example reference tree of 31 nodes (see Example 1.1)

(5) For convenience in structural inductions, root(︀P⌋︀ is defined to be a

nonpreferred child.

(6) Due to the way they are usually drawn in figures, the child pointer from

u to ✓i(u) is said to be solid and the other child pointer of u is said to

be dashed.

(7) A solid path is a maximal path of internal nodes in P that comprises only

solid pointers. The solid path of u or x is the solid path that contains u
and will be denoted SP(u) or SP(x).

(8) For any subtree P′ of P, the root solid path of P′ is the solid path of the

root of P′. Note that the root solid path of P⋃︀u is simply SP(u).
(9) The preferred leaf of u or x or SP(u) is the last and hence deepest node

of SP(u). Notice that given our assumption that u is internal, this is

always a leaf according to our definition of a leaf
☇8

on page 4.

Example 1.1. Switches on a Reference Tree.
Figure 1.2 shows a reference tree P of 31 internal nodes in the form of a

complete binary search tree, with the external nodes omitted for clarity. In

its current state, the preferred leaf of 8 is 7, and if the next access is 17, then
a left-to-right switch at 16 and a right-to-left switch at 18 will be made in

P. Note that P could have taken on any shape, but in §1.4.4 we will explain

why a complete binary search tree is a common choice.

1.4.4 Interleave Bound and Tangolike Trees
With the reference tree framework set up, tangolike trees are in fact quite

easy to understand. In particular, a tangolike tree T is a simulation of a

reference tree P but with a different cost model. Suppose we are serving

8.For an interesting example, consider a reference tree in the form of a red-black tree of size 2
with a black root and a red nonpreferred child on the right. The preferred leaf of the root is

the root itself, but this root may not be designated as a leaf in some definitions.
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an access σi using P and T. Since P is a node-tree, the cost incurred by

P is simply one plus the reference depth of σi. The cost incurred by T,

however, is one plus the number of switches induced by σi on P. Notice

that this can be significantly lower than the cost incurred by P, but it is

also upperbounded by the latter because at most one switch occurs at each

depth. For flexibility, we allow T to be either worst-case or amortized.

Summing over the entire σ, the cost incurred by T is thus proportional to

the total number of switches induced on P by σ. This is in turn proportional

to the interleave bound IB(σ, P).
It would be truly wonderful if the simulation would introduce only

a constant slowdown for this would imply that T is O(1)-competitive.

Unfortunately, this is not true and in the worst case the slowdown can

be logarithmic in the height of P. Yet this amount of slowdown is still

sufficient to guarantee that T is O(lg lg n)-competitive, for we merely need

to pick any P that has O(lg n) height. This explains why P is commonly

chosen to be a complete binary search tree—just as we did in Example 1.1—

even though in theory P can be any balanced binary search tree and the

competitiveness result will hold. Having said this, the reader is reminded

that P can be any binary search tree in our discussion to follow. Assuming

it is balanced or even complete would be unnecessarily restrictive.

1.4.5 Structure of Tangolike Trees
To define the structure of a tangolike tree, let us fix a moment in time and

suppose our reference tree P has just served σi for some i. Notice that this

fixes the preferences of all nodes in P.

Two Forests. Overall, a tangolike tree T is an interconnected forest of

binary search trees which simulates the solid path decomposition of P.

Let r denote root(︀P⌋︀. The solid path decomposition of P is the union of

(i) the singleton set {SP(r)} and (ii) the solid path decomposition of the

nonpreferred subtrees hanging off SP(r).
Observe that any path in a binary search tree is also a binary search tree

in itself. By applying this view to the solid paths, P is a forest of binary

search trees interconnected by dashed pointers into a binary search tree.

Each solid path in P is then implemented by another binary search tree in

the forest of T. Following Demaine et al. [DHIP04], each of these binary

search trees is called an auxiliary tree. Note that an auxiliary tree contains

exactly the same set of keys as its corresponding solid path, but in general

they do not have the same shape.
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Before we go on, let us introduce an extra notation here. Suppose u is

a node in T and contains x as its key. The auxiliary tree of u or x will be

denoted ST(u) or ST(x).
Interconnections. To define the interconnections between the auxiliary

trees of T, let us take a closer look at the solid paths hanging off SP(r).
Let k denote the size of SP(r). Observe that SP(r) has k nonpreferred

subtrees and one preferred external node. As P is a node-tree, the latter is

actually ⊥⊥⊥. By decomposing P into its solid paths, observe that the (k + 1)
external positions of SP(r) will be occupied by the root solid paths of these(k + 1) subtrees in some order. Note that at least two of the solid paths

hanging off SP(r) have length zero because at least one of the nonpreferred

subtrees is also an external node. To distinguish between a preferred and

a nonpreferred external node, we will introduce a second sentinel ⊥̃⊥⊥ to P.

When a leaf of P should point to an external node in a particular direction,

it will point to ⊥⊥⊥ if the direction is preferred; otherwise it will point to ⊥̃⊥⊥.

The situation in ST(r) is essentially the same as in SP(r) because they are

both binary search trees and have exactly the same set of keys. In particular,

the i-th external position of ST(r) will be occupied by an auxiliary tree that

represents the solid path at the i-th external position of SP(r). This gives

a precise one-one correspondence between the external positions of SP(r)
and ST(r), which in turn recursively defines the interconnections among

the binary search trees in the forest of T. As a corollary, this correspondence

also proves that T is a binary search tree.

Root Bits. Of course, only one type of pointer is allowed by the binary

search tree model. To implement the notion of dashed pointers, we will

allocate a root bit in each node of T and also introduce ⊥̃⊥⊥ to T as a repre-

sentation of an empty auxiliary tree. The root bit of an internal node u is

marked iff u is the root of a nonempty auxiliary tree, and we also think of

⊥̃⊥⊥ as ⊥⊥⊥ with its root bit marked. With this definition of root bits, a child

pointer is dashed iff it points to a marked node. Any other pointer in T is

solid and resides entirely within an auxiliary tree.

1.4.6 Restructuring Algorithm
Since a tangolike tree implements the solid path decomposition of a ref-

erence tree, it has to restructure if an access causes the decomposition to

change. Let us develop the restructuring algorithm by considering how to

serve an access σi using a reference tree P and a tangolike tree T.
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1.4.6.1 Inside P

Although serving σi using P is the most straightforward, for our purpose let

us also record any node from which we descend towards its nonpreferred

child and the direction of the descent. By definition, these are precisely the

nodes that will switch due to σi. We make three observations here.

(1) In our descent towards σi, the moment we follow a dashed pointer from

a node, we know it is a switching node and we also know the direction

of the switch.

(2) We always stay on a solid path until we hit a switching node, at which

point we jump to another solid path via its dashed pointer.

(3) After σi is served and v has switched its preference, the solid subpath

that starts at ✓i−1(v) will stay solid. This is because none of the nodes

on this subpath is on the access path of σi and thus cannot have a new

preference.

Using the above observations, the following is an algorithm that updates

the solid path decomposition of P assuming that we have located σi in P
with the additional information collected during the descent. Note that in

the algorithm we will speak as if we are really manipulating the pointers

in the solid path decomposition of P. This will ease our future task of

converting it to restructure T instead.

⎷ update solid path decomposition of P after serving σi ⌄
1> Let q be a node pointer that is initially pointing at the node of σi. We

will ascend towards root(︀P⌋︀ and maintain the invariant that q stays on

SP(σi) throughout by patching SP(σi).
2> Ascend q until it hits the beginning node of SP(σi).
3> If q ≠ root(︀P⌋︀, then by observation (2), the current parent of q must be in

another solid path and is the switching node v. By symmetry, assume

this is a left-to-right switch. Note that we know the direction of the

switch due to observation (1).

- switch v left-to-right in SP(v) -
3.1> Split SP(v) into two by changing the left pointer of v from solid to

dashed. This separates out the subpath that starts at ✓i−1(v). By

observation (3), this subpath will stay solid in the new decomposition.

3.2> Join what remained of SP(v) with SP(σi) using a solid pointer. This

extends SP(σi) upward and allows the ascent to continue without

breaking the invariant.

3.3> Go back to step 2.

4> The ascent terminates once q = root(︀P⌋︀. If needed, perform the final

switch at the node of σi by using step 3.1 and step 3.2.
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Before we go on, let us note that technically there is no restriction on

how the switches should be ordered. However, the sequential nature of our

algorithm imposes a particular one. We will explain our choice in §1.4.7.2.

1.4.6.2 Inside T

Being a simulation of the solid path decomposition of P, the happenings

inside T are in fact highly similar to the above. There are two major

differences, however, and both of them require us to augment each node u
of T with an extra field refdep(︀u⌋︀ to store the reference depth of u. Let us

look at these two differences now.

Switching Node and Direction. While descending in P, it is straightfor-

ward to identify a switching node and its new preferred direction as in

observation (1). Unfortunately, this does not carry over to T. Although

each auxiliary tree ST has the same set of keys as its corresponding solid

path SP, in general the two of them do not have the same shape. The trick

is to recall that both of them are binary search trees and thus their external

positions correspond to the same set of intervals. Therefore if a search for

σi in SP ends at its i-th external position EP, meaning σi ∉ SP, then a search

for σi in ST will have to end at its i-th external position ET as well.

Furthermore, the very same procedure is in fact applicable to both trees

even though it degenerates into a trivial statement when running on SP.

Let S be either SP or ST and let E be the corresponding external position.

⎷ determine the node and direction of a switch in S ⌄
1> By keeping track of the predecessor and the successor of the current

node as we descend through S, let u and w be the predecessor and the

successor of E.

2> If u does not exist in S, then w is the leftmost internal node of S and

this must be a right-to-left switch at w. The case when w does not exist

is symmetric. And as long as S is nonempty, it cannot be the case that

both u and w do not exist.

3> If both u and w exist in S, then the switch will happen at either u or w
whichever is deeper in P. Furthermore, the switch is right-to-left iff E
is a left child.

Observe that the above procedure is well-specified as long as we have

the reference depths of u and w for the test in step 3. In the case of SP, this

is easy since we can keep track of the current depth as we descend through

SP. But in the case of ST, there is no efficient substitute and this gives us

the first reason why we need to store the refdep field in each node of T.
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Actual Switch in T. The second difference between the situations in P
and T is how we actually perform a switch on our way up. Consider a

left-to-right switch at a node v containing y as its key. Let K be the set of

keys on SP(y) that are referentially-deeper than y, meaning their reference

depths are greater than that of y. To switch v, first we have to take out K
from ST(y) as in step 3.1 on page 50.

Let u and w denote the reference left and right parents of v if present

in P and let x and z be their keys respectively. By viewing SP(y) as a

binary search tree, observe that (i) K is the set of keys between x and y, and
(ii) this set of keys is contiguous in rank in SP(y) and hence also in ST(y).
Furthermore, by symmetry the set of keys K′

that will replace K also have

the same properties with respect to y and z. This highlights the need to

locate K in ST(y) efficiently, and we will show how to do this using a small

detour.

Bitonicity. Observe that the reference depths in any solid path SP are

strictly bitonic—if we scan SP left-to-right, the reference depth increases

until we reach a key y∗ with the maximum reference depth and then

decreases afterwards. The key y∗ is also the key at the preferred leaf of SP
and y∗ is to the left of y iff this is a left-to-right switch.

y∗

y
To see how a switch at y affects SP(y), it is useful to picture the

keys of SP(y) arranged in a “V” shape from left to right, with y∗ at

the bottom and y at some height on the rising stroke. Observe that

any key to the right of y will stay in SP(y) because it is referentially-

higher than y. If only we could split what’s on the left of y at x, then
we would have successfully taken K out from SP(y) because K is precisely

the set of keys between x and y.
Alas, x is not necessarily in SP(y)—this happens when y is on the left

spine of SP(y). Worse, precisely because x can be in a solid path other

than SP(y), it would be difficult if we need the value of x to switch at

y in bottom-up setting. Fortunately, we did keep track of the reference

depth of y during the descent and the keys in K are precisely those that are

referentially-deeper than y. Therefore, if we can split SP(y) by the reference

depths, then we can take K out by splitting SP(y) at the reference depth of

y instead.
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y∗

y

But wait! So far we have been considering SP(y), but actually

we want to do this on ST(y) instead. Fortunately, SP(y) and ST(y)
have exactly the same set of keys and thus the bitonicity condition

also holds in ST(y). By changing our mental picture, the discussion

above is therefore applicable to ST(y). All we need is the ability

to split ST(y) by the reference depth at refdep(︀y⌋︀. (Notice, however,

that y∗ is not necessarily a leaf in ST(y).)
Left-to-Right Switch. Now that we understand the bitonicity condition,

let us state the algorithm to perform a left-to-right switch at y in ST(y). Let
S and S′ be ST(y) respectively before and after the switch, and let SK′ be
the auxiliary tree corresponding to K′

.

S

SK′

S′
Sx Sz

x?Sx
L Sx

R Sz
L Sz

Rz?

ySy
L Sy

R

Sx
R

⎷ switch v left-to-right in auxiliary tree S ⌄
1> Split S by the keys at y into (Sy

L, y, Sy
R).

2> Split Sy
L by the reference depths at refdep(︀y⌋︀ into(Sx

L, x?, Sx
R), taking care to break ties so that x?

is

referentially-higher than y. The option x?
will be

x if x is in S, or Nil if otherwise. Notice that Sx
R

contains exactly K.

3> Split Sy
R by the reference depths at refdep(︀y⌋︀ into(Sz

L, z?, Sz
R), taking care to break ties so that z? is

referentially-higher than y. The option z? will be

z if z is in S, or Nil if otherwise. Notice that Sz
L

will be ⊥̃⊥⊥ since this is a left-to-right switch.

4> Mark the root of Sx
R and unmark the root of SK′ . Note that if Sx

R is ⊥⊥⊥,

this means changing it ⊥̃⊥⊥. This also applies to SK′ symmetrically.

5> Join (Sx
L, x?, ⊥̃⊥⊥) into Sx

and hang Sx
R at the rightmost external position

of Sx
.

6> Join (SK′ , z?, Sz
R) into Sz

.

7> Join (Sx, y, Sz) into S′ to finish the switch.

Running Time and Competitiveness. To analyze the running time of serv-

ing σi, let us assume our auxiliary trees are implemented with a binary

search tree that supports search, join, both types of split—all in either

worst-case or amortized logarithmic time. The descent towards σi is the

same as in a normal binary search tree. Although we must take care to

identify the switching nodes and the direction of each switch using the

algorithm on page 51, this does not add to our asymptotic running time.

As the number of auxiliary trees we traverse is O(lg n) and the number

of nodes in each auxiliary tree is also O(lg n), the search time is upper-
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bounded by O(lg n lg lg n). Since each switch comprises three splits and

three joins, the restructuring afterwards takes O(lg lg n) time per auxiliary

tree and thus O(lg n lg lg n) in total. The O(lg lg n)-competitiveness also

follows immediately from the interleave bound.

1.4.7 Existing Tangolike Trees and Their History
Having defined the class of tangolike trees, let us end this section by

looking at several designs in this class and how they relate to each other.

1.4.7.1 Tango Trees

The first provably O(lg lg n)-competitive binary search trees are the tango

trees of Demaine, Harmon, Iacono, and Pǎtraşcu [DHIP04] and the name

“tangolike trees” was chosen as our tribute to these trees. The simplest

design in the class, tango trees deploy red-black trees [GS78] as their auxil-

iary trees. Besides its reference depth, each node u in an auxiliary tree ST
is further augmented to store the maximum reference depth appearing in

ST⋃︀u. The switch procedure is largely similar to the algorithm on page 53.

Tango trees are most remarkable from the perspective of the famous

“dynamic optimality conjecture”. Recall that this conjecture of Sleator and

Tarjan [ST85b] states that splay trees are O(1)-competitive against an offline

optimal binary search tree. Note that if by being balanced means a binary

search tree of size n has height O(lg n), then any balanced binary search

tree is automatically O(lg n)-competitive. However, prior to tango trees,

none of the binary search tree algorithms known at the time has been shown

to have a competitive ratio of o(lg n). This includes splay trees, which at the

time have already been proven to have numerous optimal [ST85b; Tar85;

Col00; Iac02] or close-optimal [Luc88a; Sun92; CH93] properties. (See also

[Pet08] for a new result after 2004.) Indeed, one of the major open problems

in the field is whether splay trees are o(lg n)-competitive.

However, tango trees are also known to be Θ(lg lg n)-competitive even

at the time of publication. In fact, access sequences that are tight for tango

trees are easy to construct. Although this rules out the possibility that tango

trees are dynamically optimal, a previously inaccessible design space has

been opened up for several follow-up works.

Super Tango Trees. Besides appearing in [DHIP04; DHIP07], tango trees

also form a major part of the thesis of Harmon [Har06]. Inside, Harmon

described another data structure known as “super tango trees” which

simultaneously maintains a tango tree and an explicit reference tree. Even
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though this puts super tango trees out of the binary search tree model,

super tango trees may be considered to be easier to reason about.

1.4.7.2 Multi-Splay Trees

The success of tango trees was quickly followed-up in the work of multi-

splay trees by Wang, Derryberry, and Sleator [WDS06]. As the name sug-

gests, these trees are based on splay trees [ST85b] and indeed one may

think of multi-splay trees as tango trees with each red-black tree replaced

by a splay tree. Besides its reference depth, each node u in an auxiliary

tree ST is augmented with an extra field mindep(︀u⌋︀ to store the minimum

reference depth appearing in ST⋃︀u. The switch procedure is also largely

similar to the algorithm on page 53.

Although on the surface there seems to be little changes between the

two, in comparison multi-splay trees do have some theoretical advantage

over tango trees. Specifically, Wang et al. have shown that the worst-case

and amortized running times of a multi-splay tree of size n is, respectively,

O(lg2 n) and O(lg n). The latter in particular proves that our estimate of

O(lg n lg lg n) on page 53 is loose. Therefore, unlike tango trees which are

Θ(lg lg n)-competitive, multi-splay trees are possibly O(1)-competitive.

Furthermore, in his thesis, Wang [Wan06] has shown that multi-splay

trees enjoy several optimal properties such as working set and another

property known as “deque” (as defined in [Tar85]). While possessing these

properties are not sufficient for being O(1)-competitive, they certainly are

necessary. Indeed, splay trees and tango trees as the only candidates for

dynamic optimality as of 2006; but subsequently a new binary search

tree algorithm known as “GreedyOSS” has been proposed by Demaine,

Harmon, Iacono, Kane, and Pǎtraşcu [DHIKP09] as a third candidate.

To wrap up, we note that Wang, Derryberry, and Sleator [WDS06]

have also proposed a generalization of the binary search tree model that

supports updates. By allowing the reference tree to restructure as a red-

black tree [GS78], multi-splay trees can support insertions and deletions

and are also O(lg lg n)-competitive in this model. This is the primary reason

why we wanted to keep the shape of the reference tree flexible on page 48.

Multi-splay trees also affect another aspect of our description of tangolike

trees. In particular, the somewhat peculiar ordering of switches in our

restructuring algorithm on page 50 is the one used in the existing analysis

of multi-splay trees. (For example, the proof of the scanning theorem in

[WDS06] depends on this order critically.)
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1.4.7.3 Chain-Splay Trees

A perhaps less-visible follow-up work to tango trees is the chain-splay

trees of Georgakopoulos [Geo05] (see also [Geo08] for an updated version

of this design). Similar to multi-splay trees, chain-splay trees can also be

seen as tango trees that use splay trees instead of red-black trees. The

crucial difference is that a chain-splay tree does not require its nodes to

store any extra fields other than refdep, which is favorable when compared

to multi-splay trees because the nodes in the latter would also store the

mindep field.

However, it is not known if this advantage in space would end up help-

ing or hurting chain-splay trees in their actual running times. Specifically,

when Wang et al. [WDS06] proved that a multi-splay tree of size n can

serve an access in amortized O(lg n) time, they needed a property of the

multi-splaying algorithm which intuitively seems to require the mindep field.

Since the restructuring algorithm of a chain-splay tree does have access to

this field, it can end up performing two extra splays when compared to the

corresponding multi-splay tree. As the proofs of Wang et al. do not cover

these two splays, it is not clear if chain-splay trees share any other property

with multi-splay trees besides the O(lg lg n)-competitiveness. Indeed, as

of this writing, it is not known if a chain-splay tree can serve an access in

amortized o(lg n lg lg n) time. For a discussion of this finer point, we refer

the reader to the thesis of Wang [Wan06, §3.5].

1.4.7.4 Improved Tango Trees

As we noted, the fact that tango trees are not O(1)-competitive has already

been pointed out by Demaine, Harmon, Iacono, and Pǎtraşcu in [DHIP04].

But subsequently, the authors have also sketched an unnamed variant of

tango tree in [DHIP07] based on another type of auxiliary tree. Demaine

et al. have shown that this variant can serve each access in worst-case

O(lg n) time. Seeing that this variant is unnamed and so is the type of the

auxiliary trees used in it, we took the liberty to call this variant “improved

tango trees” to distinguish it from the original tango trees. The description

of improved tango trees by Demaine et al. is very concise and we will

reproduce it here in full [DHIP07, pp. 243–244].

[. . . ] Namely, we can replace the auxiliary tree data structure

with a balanced BST supporting search, split and concatenate

operations in the worst-case dynamic finger bound, O(1+ lg r)
worst-case time, where r is 1 plus the rank difference between

the accessed element and the previously accessed element. For
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example, one such data structure maintains the previously ac-

cessed element at the root and has subtrees hanging off the

spine with size roughly exponentially increasing with distance

from the root. Following the analysis in Section 3.4, the cost

of accessing an element in the tree of auxiliary trees then be-

comes O (∑k
i=1 (1+ lg ri)), where r1, r2, . . . , rk are the numbers of

nodes along the k preferred paths we visit; thus r1 + r2 +⋯+ rk =
Θ(lg n). This cost is maximized up to constant factors when

r1 = r2 = ⋯ = rk = Θ ( lg n
k ), for a cost of O (k (1+ lg lg n

k )). Because
k = O(lg n), we obtain an O(lg n) worst-case time bound per

access. [. . . ]

1.4.7.5 Poketrees

While not a tangolike tree in our definition, a highly-related work is the

“poketrees” by Kujala and Elomaa [KE06]. A poketree is essentially a di-

rection implementation of a reference tree augmented with extra pointers

between its own nodes and these pointers are known as “dynamic links”.

One way to think of the dynamic links of a poketree is to observe that

the key space spanned by a node on a solid path decreases as we get deeper.

When we view it this way, the switching node on the root solid path is

simply the deepest node that still spans the search target. Kujala and

Elomaa have therefore arranged the dynamic links so that the switching

node within a solid path of size k can be located in worst-case O(lg k)
time. While it is already nontrivial to update the dynamic links to reflect

node preferences after each access, Kujala and Elomaa have managed to

take advantage of the existing pointers of the underlying reference tree so

that any search runs in worst-case O(lg n) time. In fact, their design even

supports insertions and deletions just like multi-splay trees. We refer the

reader to [KE06] for details.

1.5 A Brief History of Finger Search
To bring this introduction to its end, let us briefly survey the history of

finger search and see how the four topics in §1.1– §1.4 fit into the picture.

Unfortunately, this also means we can no longer control the model nor

the representation we are working with. Therefore, in this section, an

access means either a search or an update and the representations in our

description can have technically insignificant differences to the original. In

what follows, let n denote the number of keys in a data structure and let d
denote the rank distance between the target and the finger being used in an
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dictionary operation. (The emphasis is important for data structures that

support more than one finger.)

1.5.1 The First Year
Finger search was originally introduced on a variant of leaf-store B-trees by

Guibas, McCreight, Plass, and Roberts [GMPR77]. In this variant, any leaf

can be designated as a finger through the creation of a “finger path” from

the leaf up to the root. Each internal node is augmented with five pointers,

three of which are used in level-linking. The remaining two are paired

with an extra bit at each node to facilitate a special kind of threading that

we will not describe. Unlike the root-start access algorithms in §1.1.2, an

access in this design takes a finger as an additional input and starts at the

leaf underneath the finger. Finger searching are then performed in a way

similar to the leaf-start algorithm in §1.2.3.2.

The focus of Guibas et al., however, was in supporting updates so that

their running time bound is asymptotically the same as that of searches.

In order to do this, a regularity condition is imposed on the number of

keys appearing in the nodes on a finger path. By suitably partitioning the

possible node sizes into digits, they showed how to manipulate a finger

path as a form of redundant counter
☇9
. For example, a carry is a key

promotion and a borrow is a key demotion. But in order for this regularity

condition to hold, each node in their design is required to contain between⟨︀m
3 − 1⧹︀ and m keys for some m ≥ 24. In other words, the smallest such node

is an (8, 25) node.

Guibas et al. have also specifically described how multiple fingers can

be supported in their design. With k fingers set up, the worst-case running

time of any access is O(k + lg d). We note that the O(k) term in this bound

is not related to identifying which finger should be used. Instead, this term

accounts for the time in updating the other (k − 1) fingers during an access.

Groundbreaking as it is, the design of Guibas et al. does have two

issues. First, the running time can be dominated by the number of fingers

which we denoted as k. Notice that this possibility only becomes more

likely when d is small and finger search is most desirable. Second, the

9.A redundant counter is a representation of a number in certain forms of a positional number

system in which one number has multiple representations. By imposing certain regularity con-

ditions on the digits, it can be shown that the carry induced by incrementing or decrementing

any digit of a redundant counter only affects a constant number of digits in total. Notice that

this cannot be achieved with, say, the typical binary or decimal representation of a number.

The subject has a rich history but it is out of the scope of this thesis. We refer the reader to

[CK77], [KT96; Kap97], [Oka96], and [Bro96] for some references and applications.
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fingers in this design are in fact nonmovable and each finger can require

Θ(lg n) time to construct and to destruct. In applications such as adaptive

sorting described in §1.2.4.3, determining the finger locations can become

an interesting challenge.

1.5.2 A Divergence
The design of Guibas et al. in [GMPR77] spurred several follow-ups that

can be classified as the beginning of two different lines of work. As we will

see, an interesting divergence would emerge among these two lines.

Worst-Case Dynamic Finger Trees. In one line of work, Kosaraju [Kos81]

introduced a clever data structure in which each access runs in worst-
case O(lg k + lg d) time and can be implemented in either the leaf-store

or the node-store representation. Not only does his design improve the

dependency on the number of fingers k from linear to logarithmic, the

fingers in this data structure are in fact dynamic☇10
. The latter in particular

means that we can move a finger used in an access to the location of the

access itself with no change to the asymptotic time bound.

We note that the keys under the fingers are stored in another balanced

search tree and the O(lg k) term here represents the time spent to search for

the closest finger to use in an access. Furthermore, we also note that if we

restrict to the case of one finger, Kosaraju’s data structure can be viewed as

a dynamic finger tree augmented with only Θ(lg n) extra pointer(s). This

is a crucial point that we will revisit in §4 where Kosaraju’s design as well

as its relationship to our own dynamic finger tree design is discussed.

Amortized Finger Search Trees. In another line of work, Brown and Tar-

jan [BT80] applied the technique of level-linking used by
☇11

Guibas et al. to(2, 3)-trees [AHU74]. A similar approach is then taken by Huddleston and

Mehlhorn in [HM82] on weak B-trees, which were introduced earlier by

the same authors in [HM81].

As we have seen in §1.2.3.2, a level-linked degree-balanced search tree

must be a leaf-tree and can readily support finger searching in worst-case

O(lg d) time because of its pointer structure. It is also a finger search tree—

meaning that a finger search can start at any given leaf—and is thus more

versatile than the data structure designed by Kosaraju. Its amortized update

time bound, however, is where the critical difference lies in comparison

10.“Movable” is what the literature at the time would say, e.g., see the title of [BT78].

11.We refrain to use “introduced by” here because so far we have not been able to track down

if Guibas et al. [GMPR77] originated the idea of level-linking. This is something we hope to

know more about one day.

10+152+20+15 pages, 18 figures, 4 tables base revision 903 built on 2009-5-28 16:00



60

60 Introduction

to the worst-case bound guaranteed by Kosaraju’s design. Having said

that, amortized level-linked degree-balanced search trees are hard to beat

in terms of their simplicity. This is true when compared to the design of

Kosaraju in [Kos81], more so with respect to the design of Guibas et al.

in [GMPR77], and much more so with respect to a worst-case level-linked

degree-balanced search tree design that we will get to.

1.5.3 More on Dynamic Finger Trees
Swinging back to dynamic finger trees, Tsakalidis [Tsa85] has introduced

a variant of AVL-trees [AVL62] with an inverted spine which he called

“inclined AVL-trees”. Since a static finger is available at one end of the

tree, a dynamic finger traveling in a fixed direction can be supported by

repeated splits. Although Tsakalidis did not mention joins nor inverting

both spines, these can be seen as easy extensions. Therefore, we would also

say his design can be used to support a dynamic finger with no restriction

in its travel direction. Note that as with almost all dynamic finger trees,

both leaf-store and node-store representations can be used his design.

As the reader will certainly recall from §1.3, inverted spines with splits

and joins is also the key idea in the design of heterogeneous red-black

trees by Tarjan and Van Wyk [TVW88]. This is where we see a tradeoff

between worst-case and amortized designs. The design of Tsakalidis, in

particular, has worst-case guarantees because a regularity constraint is

imposed on the height-imbalance of the nodes on the inverted spine; but

enforcing this constraint would require a careful manipulation of up to

Θ(lg n) extra pointers on the spine after each update. This is in contrast

with the amortized design of Tarjan and Van Wyk in which no constraint

has to be enforced—in fact, the robustness of red-black trees is all it needs.

However, the above comparison is made from the perspective of finger

search alone. To make this more fair, we must note that the repertoire

of operations considered by Tarjan and Van Wyk is much broader than

the ones considered by Tsakalidis. In particular, besides splits and joins,

through augmentation the former also includes search by rank and search

by a secondary heap value.

The technique of inverted spines is also a crucial idea in a design of

purely-functional catenable sorted lists by Kaplan and Tarjan [KT96] (see also

the thesis of Kaplan [Kap97]). In fact, two designs of such lists are described

in [KT96], and the second can be said to organize a forest of (2, 3)-trees
using a purely-functional data structure that resembles an inverted spine.

Both designs of Kaplan and Tarjan in [KT96] have worst-case guarantees
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Insert Delete

Harel [Har80] O(lg∗ n) O(lg∗ n)
Fleischer [Fle96] O(lg∗ n) not supported

Brodal [Bro98] O(1) O(lg∗ n)
Brodal et al. [BLMTT03] O(1) O(1)

Table 1.3 – Update time of four major worst-case finger search tree designs

for the dictionary operations as well as splits and joins, which for purely-

functional data structures are highly nontrivial feats. However, the details

of their inner-workings are also nontrivial and we note that a much simpler

amortized design has been proposed by Hinze and Paterson in [HP06].

Last but not least, we must also note that the splay trees of Sleator and

Tarjan [ST85b] are also dynamic finger trees due to a renowned result by

Cole [Col00]. As is natural for splay trees, the performance guarantee of

a finger search is amortized, and we also note that it continues to hold

even in the presence of updates at the finger. At present, it is not known if

splay trees can support more than one dynamic finger, and the problem of

supporting multiple fingers becomes particularly hard when updates have

to be considered. For example, an open question in the field is a highly

special case of the latter in which a splay tree is used as a doubly-ended

queue, or deque for short [Tar85; Sun92; Elm04; Pet08].

1.5.4 More on Finger Search Trees
Deterministic. To swing back to finger search trees, let us start with Ta-

ble 1.3 which lists four major worst-case finger search tree designs. As is

usual for finger search trees, all of these designs are leaf-trees and support

finger search in worst-case O(lg d) time. What’s different among them is

the update time, and in one case whether deletion is supported or not.

We note that the update times in the table are all worst-case and are stated

assuming the location of an update is known. Otherwise, all O(1) entries

should simply be replaced with O(lg d). Also note that the last design

by Brodal, Lagogiannis, Makris, Tsakalidis, and Tsichlas [BLMTT03] is the

convergence of the two lines of work we mentioned in §1.5.2 and can be

considered as a perfect solution to the problem first studied by Guibas et al.

[GMPR77] over a quarter century ago.

Randomized. Optimal as it is, the design of Brodal et al. is in fact rather

complicated—as the authors themselves would point out in [BLMTT03,

p. 417]. This is a perfect example where allowing randomization can give

rise to a tremendously simpler data structure.
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Let us start by noting that we can use a randomized method of Seidel

and Aragon [SA96] to maintain a binary search tree under updates such

that it remains a random binary search tree throughout. We will follow

Seidel and Aragon and call any binary search tree maintained with their

method a “treap”. What’s interesting from our perspective is that their

analysis of treaps actually shows a random binary search tree is also a

finger search tree supporting O(1) updates in the expected case. More

precisely, Seidel and Aragon have shown that by taking expectation over

the random bits used in the maintenance of a treap, (i) the expected update

time of a treap is O(1) assuming the location of the update is known, and

(ii) the expected length of the simple path between two keys that are d
ranks apart in a treap is O(lg d).

It is important to realize that the mere existence of the path in (ii) does

not mean we can traverse it efficiently—this is true even if parent pointers

are implemented. In fact, Seidel and Aragon gave three methods to perform

finger searching in a treap, each requiring a different augmentation. Their

last method, which also uses the least augmentation among the three,

only requires a parent pointer and a “spinal” bit in each node to indicate

whether a node is on the two spines.

As it turns out, the spinal bit can be eliminated with an improved algo-

rithm as described by Brodal in [Bro04]. Small as a one-bit improvement

may seem, this new algorithm actually performs equally well in both the

unweighted and the weighted case of the problem—just like the other two

method of Seidel and Aragon. Although we will not discuss the weighted

case here, let us simply note that the analysis of the weighted case is one

of the distinguishing features of [SA96] when compared to the work of

Martínez and Roura in [MR98]. The latter is specifically focused on the

maintenance of a random binary search tree under updates and the analy-

sis inside does not treat finger searching per se. Readers who are interested

in the intricacies of this subject and how random binary search trees re-

late to finger search are referred to [Vui80], [AS89; SA96], [RM96; MR98],

[DN04], and [KP07] for starting points and references.

Besides treaps, we must also note that the skip lists of Pugh [Pug90b;

Pug90a] can also be seen as randomized finger search trees with O(1)
updates. The truth is, even though technically a skip list is not a search

tree, there are many interesting parallels between it and a random binary

search tree. For one thing, skip lists have also been extended to handle

arbitrarily weighted keys by Bagchi, Buchsbaum, and Goodrich [BBG05].

We believe the time bounds in [BBG05, Table 1] will give the reader a
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useful perspective of what’s common among a skip list and a random

binary search tree and exactly where they differ.

Finally, we remark that the work of Bagchi et al. in [BBG05] also includes

deterministic biased skip lists. Curiously, this varaiant actually has matching

worst-case guarantees as its randomized counterpart. Unfortunately, as the

authors themselves have noted, their current design is different from what

we expect a derandomized skip list might be. In particular, even if we were to

“unbias” a deterministic biased skip list by letting all keys have the same

weight, the time bound on an update would still be worst-case O(lg n).
Indeed, had this been worst-case O(1), which is what a derandomized skip

list would have, this design would match the optimal finger search tree

design of Brodal et al. [BLMTT03] while being much simpler.

RAM. So far we have only been looking at pointer-based designs, but

finger searching has also been considered with the power of RAM. In par-

ticular, Dietz and Raman [DR94] started by refining a bucketing technique

that was used earlier by Levcopoulos and Overmars [LO88] and also by

Dietz and Sleator [DS87], and then applied it on a level-linked (2, 3)-tree
[BT80]. The result is a comparison-based design that supports finger search-

ing in worst-case O(lg d) time and update in worst-case O(1) time. The

only reason why this design is not a pointer algorithm
☇12

is because it uses

a table-lookup technique to speed up the bucket updates.

Perhaps not surprisingly, the above design does not really make full

use of the power of RAM. Indeed, Andersson and Thorup [AT07] have an

improved finger search tree in the RAM model that has worst-case O(1)
update cost and worst-case O(⌈︂lg d⇑ lg lg d) finger search cost. Note that

this is optimal since it matches a corresponding lowerbound on predecessor

search by Beame and Fich [BF02]. Furthermore, we also note that the result

of Andersson and Thorup can be strengthened by breaking down into cases

and can also be implemented in AC0
operations but with a weaker bound.

For the exact statement, the reader is referred to [AT07, Theorem 1.5].

Unified Structures. We will close this review with a class of data struc-

tures that are not exactly finger search trees but are nonetheless relevant to

the dynamic finger property.

In §1.2.5.3, we have seen evidence that the dynamic finger property and

the working set property do not capture each other. But before we use this

to conclude that there are two irreconcilable types of locality, let us look at

12.This terminology was suggested by Ben-Amram [BA95] in his survey on the meaning of the

term “pointer machine”.
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a new class of data structures that also be said to “support finger search”

but in the following technical sense.

Instead of finger searching for x from a given finger, we will consider a

model in which we can finger search simultaneously from all keys. However,

the finger search that was started from the key f will incur an additional

cost of O(lg t( f )), with t( f ) being the working set number of f as defined

on page 33. The cost to search for x is the minimum taken over the cost

of all searches, or more succinctly O(min f (lg t( f ) + lg dist( f , x))). Notice

that this can be no worse than the cost incurred by finger searching with

a dynamic finger as well as the cost incurred by a data structure with the

working set property.

Miraculous as it may seem, a neat data structure that was designed

by Iacono [Iac01] does have this guarantee. Furthermore, it has also been

extended by Badoiu, Cole, Demaine, and Iacono [BCDI07] to support up-

dates. Iacono calls the property captured by his data structure the unified

property. As it turns out, this property has a natural interpretation using

the data compression perspective in §1.2.5. However, it is also known that

if a data structure is tight with respect to the above bound, then it is not

O(1)-competitive against an optimal binary search tree. We note that quite

a bit more about the unified property is known and interested readers are

referred to the forth-coming thesis of Derryberry [Der08].
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2
Heterogeneous Decompositions

The main concept introduced by this thesis is the heterogeneous decom-

positions of a degree-balanced search tree and we will define it in this

chapter. To develop our intuition, let us start by handling a special case

in §2.1 where we show how a complete binary search tree can be hetero-

geneously decomposed. Then we will use this special case to guide us

when we generalize our definitions to degree-balanced search trees in §2.2.

Besides presenting these definitions, this chapter also serves two other

purposes. First, although the concept of heterogeneous decompositions is

very much inspired by the heterogeneous finger search trees of Tarjan and

Van Wyk [TVW88], there are also some critical differences among them.

This will be explained in §2.3. Second, we will explore the relationship

between finger search and heterogeneous decompositions in §2.4 by show-

ing how to think about a finger search via excisions on heterogeneous

decompositions. Such excision arguments will be used many times in the

remaining chapters of this thesis.

Lists and Types. Before we proceed, let us extend our algorithmic notation

to include catenable lists that support linear-time access from both ends.

More specifically, the running time to access the j-th value of such a list

is O(j), where j can be counted from either ends. Note that this does not

preclude our lists to have an asymptotically faster running time such as

O(lg j). The length of a list is the number of values appearing in it. For a
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list Q′
to be a sublist of a list Q, the values of Q′

must appear contiguously
inside Q. As an example as well as an illustration of our notation, if the

variables a through e denote some values, then Q = {a;{b; c}; d;{e}} is a list

of length 4 with its second and last values being lists themselves. The list{{b; c}; d} is a sublist of Q, but the lists {a, d} and {{c}; d} are not. We will

use Concat(⋅ , ⋅) to denote the procedure that catenates two lists. Although

we will not specify the actual implementation here, we require Concat to

run in worst-case O(1) time but it is not required to preserve its two inputs.

One data structure that fits these requirements is a doubly-linked list.

It will also be convenient to introduce two type variables so that we can

better distinguish among keys and nodes inside a list. We will let α denote

the type of a key and τ denote the type of a node. In our usage, a tree will

also be of type τ, which means we will be representing a tree using its root.

We remark that we have intentionally kept our use of types at its most

rudimentary; in particular, we will allow a list to contain multiple types of

values even though the lists in our applications can all be homogeneously

typed if only we choose to treat them more properly.

2.1 For Complete Binary Search Trees
Given a complete binary search tree T, we can heterogeneously decompose

T with respect to any one of its keys. This means that if T has size n, then
it has n different heterogeneous decompositions. But with our interest in

finger search, most of the time we take the decomposition with respect

to the key that is currently under a dynamic finger. The tree T is called

the reference tree of the decomposition. Within this section (§2.1) we will

restrict T to be a complete binary search tree.

2.1.1 Heterogeneous Decomposition
Given a complete binary search tree T and one of its keys f , the heteroge-

neous decomposition of T with respect to f is a triple (L, f , R), where L
and R are lists of odd lengths comprising two alternating types of values.

Appearing in the same order as they do in T, the odd positions of L⇑R
are the left⇑right subtrees hanging off the access path of f and the even

positions of L⇑R are the left⇑right ancestor keys of f . Although the above

already defines L and R very rigidly, let us use an algorithm in §2.1.1.1 as

our definition. This will allow us to gain some more intuition about the

content of L and R, which will be useful when we generalize them in §2.2.

Let us also remark that this is one of the few places in which we specify

our algorithms in the style of [CLRS01].
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Hetero-Decomp-Cbst(u, f )
1 if f = key(︀u⌋︀
2 then return ({left(︀u⌋︀}, key(︀u⌋︀,{right(︀u⌋︀}) ⊳ base case

3 elseif f < key(︀u⌋︀
4 then (L′, ⋅ , R′)←Hetero-Decomp-Cbst(left(︀u⌋︀, f ) ⊳ descend left

5 return (L′, f ,Concat(R′,{key(︀u⌋︀; right(︀u⌋︀}))
6 else (L′, ⋅ , R′)←Hetero-Decomp-Cbst(right(︀u⌋︀, f ) ⊳ descend right

7 return (Concat({left(︀u⌋︀; key(︀u⌋︀}, L′), f , R′)
Figure 2.1 – Procedure Hetero-Decomp-Cbst

2.1.1.1 Definition

Given the root u of a complete binary search tree T and one of its keys

f , the procedure Hetero-Decomp-Cbst in Figure 2.1 returns the triple that

represents the heterogeneous decomposition of T with respect to f . By

inspecting the procedure, it is easy to see that we are recursively searching

for f in T. Let (L, f , R) be the final triple returned by the call. We make the

following observations.

(1) Since f is one of the keys in T, this procedure always terminates at the

base case in line 2.

(2) Each time when we make a recursive call in line 4⇑ line 6, we keep track

of u by its key and whichever subtree of u that does not contain f by its

root using a suitable Concat in line 5⇑ line 7. Note that key(︀u⌋︀ is a right⇑ left ancestor key of f .
(3) Being a top-down search for f , every left or right ancestor key of f will

appear as key(︀u⌋︀ at some point in the recursion.

(4) The catenations in line 5⇑ line 7 preserve the symmetric order inside

R⇑L in the following sense—if {T′
1; x; T′

2} is a sublist of R⇑L, then every

key in T′
1 is smaller than x, which in turn is smaller than every key in

T′
2.

(5) Both the leftmost and rightmost values of both L and R are of type τ

and some of them can be ⊥⊥⊥.

Convenience Measures. Before we go on, let us deploy a few tricks to

simplify the presentation to follow.

Sentinels. We add sentinels to the two ends of L and R as well as the

key space of T. For L, we add the sentinels −∞ and f ; for R, we add f and∞; for T, we add −∞ and ∞. Note that the sentinels are not part of L, R,

or T; in particular, the leftmost and rightmost values of both L and R do

not change. However, now that we have the sentinels defined, we can refer

to the keys preceding and succeeding them in L and R inside our analysis.
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Furthermore, the ranks of the −∞ and the ∞ sentinels with respect to T are

defined to be 0 and one plus the current size of T.

Inner⇑Outer vs. Left⇑Right. Since we will be dealing with left-right

symmetry extensively, we will start referring to the direction towards f
as inner and the other direction as outer. For example, in the situation of

line 5 inHetero-Decomp-Cbst, we see that right(︀u⌋︀ will succeed key(︀u⌋︀ in R.

Using the notation introduced here, key(︀u⌋︀ is the inner key of the subtree

rooted at right(︀u⌋︀ in R and this subtree is the outer subtree of key(︀u⌋︀ in R.

Right Majorization. When symmetry applies, we will only deal with

the situation on the right hand side and mark a statement or a theorem

as such using the (ℛ) symbol. The left hand side symbol is (ℒ) and will

only be called upon when we need to refer to the left hand side of a

theorem. In other words, say if we refer to Theorem 2.2 below, then we

mean Theorem 2.2 (ℛ) since this theorem is specified as (ℛ). To refer to its

left hand variant, we will have to specifically refer to Theorem 2.2 (ℒ).

2.1.1.2 Analysis

Theorem 2.1 Given the root u of a complete binary search tree T and one

of its keys f , the procedure Hetero-Decomp-Cbst(u, f ) runs in O(lg ⋃︀T⋃︀)
time. Furthermore, the total size of the triple returned is O(lg ⋃︀T⋃︀).
Proof. Since Hetero-Decomp-Cbst recurs only on successively deeper keys

of T in line 4 and line 6, the running time bound follows. The space bound

follows from the time bound and the fact that R⇑L can only grow by two

values in line 4⇑6.
Theorem 2.2 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

complete binary search tree T with respect to one of its keys f and let u∗

be a node in T containing the key x. If {x; T′; z} of type {α; τ; α} is a sublist

of R, then (i) x is either f or a right ancestor key of f , and (ii) T′
is the right

subtree of u∗, and (iii) z is the right parent key of x. Note that x and z may

be sentinels.

Proof. If x is f itself, then the first point is trivially true. Otherwise, observe

that the test on line 3 guarantees that for x = key(︀u⌋︀ to be added to R′
on

line 5, f is in the left subtree of x and thus x is a right ancestor key of f .
To show the second point, we merely need to inspect line 2 or line 5 of

Hetero-Decomp-Cbst. The former applies if x is the f sentinel; the latter if

otherwise.

For the last point, first assume that z is not the ∞ sentinel. From

observation (2), z is a right ancestor key of f ; and if x is not the f sentinel,

then x is one also. Since we never append to the left to R in the procedure,
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z is a right ancestor key of every key to the left of it in R. As we did not

skip any node on the access path of f , all right ancestor keys of f are in

R. Combining the two, z is the right parent key of x whether x is the f
sentinel or not.

Finally, if z is the ∞ sentinel, then T′
is the rightmost subtree occurring

in R. This happens either because of line 2 in which x is in the root, or

because of line 5 in which x is the first key from which we descend left.

In either case, x is on the right spine of T and our definition of the right

parent key of x is precisely z.

Theorem 2.3 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

complete binary search tree T with respect to one of its keys f and let u∗

be a node in T containing the key x. If x is either f or one of its right

ancestor keys in T and z is the right ancestor key of x, then {x; right(︀x⌋︀; z}
is a sublist of R. Note that x and z may be sentinels.

Proof. Consider when Hetero-Decomp-Cbst(u∗, f ) is the most recent call

and let (Lx, x, Rx) be the triple returned by this call. Note that this call

must happen because of the identity of x and observation (3) on page 67.

Assuming that z is not the ∞ sentinel, we must have descended left

from z on line 4 some time ago and there was not another left descend until

we reach the present call. If x is f , then we will return {right(︀x⌋︀} as Rx
on

line 2. otherwise, we will descend left from x on line 4 and then append{x; right(︀x⌋︀} to R′
from the recursive call. In both cases, when we rewind

back to the call in which u contains z, the rightmost value of R′
from the

recursive call on line 4 will be right(︀x⌋︀ and we will append {z; right(︀z⌋︀} to

it on line 5. This proves that R contains {right(︀x⌋︀; z} as a sublist if x is f , or{x; right(︀x⌋︀; z} if otherwise.

If z is the ∞ sentinel, then by its definition x must be on the right spine

of T. This means we have always descended right until reaching the current

call. The two cases considered in the above analysis still applies, except

that nothing will be appended to the right of Rx
afterwards. Since Rx

is

the rightmost sublist of R, the theorem follows.

Remark 2.4. Theorem 2.2 and Theorem 2.3 and their generalizations to

be given as Theorem 2.12 and Theorem 2.13 can be considered to be the

necessary and the sufficient condition for a list {x; T′; z} of type {α; τ; α} to

appear in R.
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52

64

32

48
56

f
Figure 2.2 – Heterogeneous decomposition of a complete binary search tree of 127 keys with

respect to the key f at rank 52, with the keys on the access path of f drawn at their respective

heterogeneous heights (see Example 2.1 and Example 2.2)

Example 2.1. Heterogeneous Decompositions.
Refer to Figure 2.2. Assuming the set of keys in the reference tree is{1, 2, . . . , 127}, the heterogeneous decomposition of the tree with respect to

f is the triple

({T32
L ; 32; T48

L ; 48; T52
L }, 52,{T52

R ; 56; T56
R ; 64; T64

R })
where Tx

L and Tx
R denote the left and right subtrees of the key x respectively.

The figure is vertically divided into two parts. The upper part shows the

reference tree with the ancestor keys of f labeled with their ranks and with

the edges on the access path of f turned into arrows pointing towards f .
The lower part shows a collection of subtrees interleaved with the ancestor

keys of f while keeping the horizontal position of all keys intact. These

are precisely the subtrees and keys appearing in the decomposition. The

heights of the ancestor keys will be explained in §2.1.2.

In the figure, any filled area is an abstract representation of a key and

the black strokes indicate the link structure and the node boundaries. As a

visual aid, the ancestors keys of f are colored green in both the upper and

lower parts. Note that the areas corresponding to these keys in the lower

part of the figure are not surrounded by black strokes. Furthermore, dashed

vertical lines in red have been drawn underneath these keys to assist the

identification of subtrees in the decomposition. Finally, brackets have also

been drawn at the bottom of both parts to indicate the partitioning of the

key space by f and its ancestor keys.
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2.1.2 Heterogeneous Height
Let T continue to denote a complete binary search tree and let f be one of

its keys. A notion of heterogeneous height with respect to f is associated

with each key on the access path of f ; any other key in T does not have a

heterogeneous height. Note that since T is a complete binary search tree,

the keys on the access path of f are either f itself or an ancestor key of f .
To prevent any confusion, we will always use the longer term “het-

erogeneous height” in full and reserve the shorter term “height” for its

original meaning as defined on page 5. The reader is reminded that the

latter is denoted ah(⋅), which is our mnemonic of “actual height”.

2.1.2.1 Definition

Let (L, f , R) be the heterogeneous decomposition of T with respect to one

of its keys f and let z be an ancestor key of f . The heterogeneous height of

z with respect to f will be denoted as hhT
f (z).

(1) As the base case, hhT
f ( f ) is defined to be 0.

(2) If the inner subtree of z in the decomposition is T′
, then hhT

f (z) is

defined to be (ah(T′) + 1). The superscript will be dropped when the

context makes it clear, but the subscript will never be dropped. Note

that z may be the −∞ or ∞ sentinel.

(3) In the setting of (2) above, we say that z is supported by T′
in the

decomposition and the amount of support by T′
is ah(T′).

2.1.2.2 Analysis

Even though their proofs are very simple, the following theorems about

heterogeneous heights will be used many times later in this thesis. The

reader is encouraged to use Example 2.2 to familiarize them.

Theorem 2.5 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

complete binary search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then hh f (z) = ah(x). Note that x and z
may be sentinels.

Proof. Let u∗ be the node containing x in T. By Theorem 2.2, T′
is the

right subtree of u∗. The theorem follows because hh f (z) is defined to be(ah(T′)+ 1) and this value is ah(x).
Theorem 2.6 Let (L, f , R) be the heterogeneous decomposition of a com-

plete binary search tree T with respect to one of its keys f . Consider any

key z in L or R. If hh f (z) is h, then distT( f , z) ≥ 2h−1
. In the asymptotic

notation, lg distT( f , z) = Ω(hh f (z)).
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Figure 2.3 – Duplicate of Figure 2.2 on page 70

Example 2.2. Heterogeneous Heights.
Figure 2.3 is a duplicate of Figure 2.2, which shows the heterogeneous

decomposition of a complete binary search tree of 127 keys with respect to

the key f at rank 52. Using the definition above, the heterogeneous heights

of the keys at rank 32, 48, 52, 56, and 64 are 5, 3, 0, 3, and 4 respectively.

Note that these are exactly the ancestor keys of f in the tree.

In the lower part of the figure, these keys have been drawn at their

respective heterogeneous heights. Note that the base of the figure where

the brackets are drawn is at height 0 and the leaves of the subtrees are

drawn at height 1.
To better understand the meaning of heterogeneous heights, Table 2.1

is an illustration of applying Theorem 2.5 to the example in Figure 2.3.

−∞ L f R ∞
rank 32 48 52 56 64
ah ↙6 ↙5 ↙3↘ 4↘ 7↘
hh 6 5 3 0 3 4 7

Table 2.1 – A visualization of applying Theorem 2.5 to the example in Figure 2.3

Proof. By definition, for z to attain a heterogeneous height of h, the inner

subtree T′
of z in the decomposition must have height (h − 1). Since T′

is a

subtree of a complete binary search tree, it has exactly (2h−1 − 1) keys. The

theorem follows because distT( f , z) ≥ 1+ ⋃︀T′⋃︀.
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Remark 2.7. Note that Theorem 2.6 does not allow z to be the f sen-

tinel and the inequality distT( f , z) ≥ 2h−1
is in fact tight. This can be wit-

nessed when f has rank 1 and z has rank 2, which implies that h = 1 and

distT( f , z) = 1.

Interpretation. Let us interpret Theorem 2.6 from the perspective of finger

searching in T. Suppose we are searching from f for a key σi ≥ f and z
happens to be some key in the semi-open interval ( f , σi⌋︀ inside the key

space of T. Observe that this setting implies

distT( f , σi) ≥ distT( f , z). (2.1)

Furthermore, by Theorem 2.6, we also have

distT( f , z) ≥ 2hh f (z)−1. (2.2)

Combining the two above yields

distT( f , σi) ≥ 2hh f (z)−1, (2.3)

or in the asymptotic notation

lg distT( f , σi) = Ω(hh f (z)). (2.4)

In other words, Theorem 2.6 basically says that hh f (z) is a lowerbound on

the dynamic finger budget of finger searching from f to σi. As simple as it

is, this is arguably the most important concept in the whole chapter.

2.1.3 Heterogeneous Spines
Let T continue to denote a complete binary search tree and let f be one of

its keys. We will further define the notion of heterogeneous spines of T
with respect to f .

2.1.3.1 Definition

Let (L, f , R) be the heterogeneous decomposition of T with respect to one

of its keys f . Each of L and R has its corresponding heterogeneous spine.

By symmetry, we will define the right heterogeneous spine only.

The right heterogeneous spine is simply R with each of its subtree T′

replaced by a list of keys on the inner spine of T′
. Let {x; T′} with type{α; τ} be a sublist of R in which x can be the f sentinel. We replace T′

by a

sorted list of the innermost key of the topmost (ah(x)−hh f (x)− 1) nodes

on the inner spine of T′
. In general, this list corresponds to a prefix of
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f

52

64

32 96

6044

4816 80
5640 72

Figure 2.4 – Heterogeneous spines of a complete binary search tree of 127 keys with respect to

the key f at rank 52 shown as two overlay paths (see Example 2.3)

Example 2.3. Heterogeneous Spines.
Refer to Figure 2.4. Assuming the set of keys in the reference tree

is {1, 2, . . . , 127}, the left and right heterogeneous spines of the tree with

respect to f are

{{}; 32;{40}; 48;{50; 51}} and {{53; 54}; 56;{}; 64;{80; 96}}
respectively. Note that the keys 32, 48, 56, and 64 are primary, and the

remaining keys inside the nested lists are secondary.

The figure is based on Figure 2.2 and we have additionally colored the

secondary keys as well as their inner child edges blue. Furthermore, we

have added an overlay path in the lower part. First, each inner child edge

of a secondary key has been turned into an arrow pointing away from f .
Then, for each primary key x, we also add two dashed arrows pointing

away from f . Let u be the node containing x. The first is an rising arrow

that points to x from the root of inner subtree of u. The second is an level

arrow that points from x to a node at height hh f (x) on the inner spine of

the outer subtree of u. Notice that the arrows appear to connect into two

paths emanating from f . This will be explained in §2.3.

the inner spine of T′
. This spine prefix is said to be “owned” by x and is

simply “the spine prefix of x”.
Primary vs. Secondary. We make the following distinction among the

keys that appear inside the right heterogeneous spine. The keys that were

retained from R will be classified as primary, whereas the keys that appear

inside the nested lists which were used to replace the subtrees in R will be

classified as secondary. Note that the former are the right ancestor keys of
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f . In addition, when the −∞, f , and ∞ sentinels are needed, they will all

be classified as primary.

2.1.3.2 Analysis

Theorem 2.8 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

complete binary search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then the list of secondary keys representing

T′
in the right heterogeneous spine of T with respect to f has length(hh f (z)−hh f (x)− 1). Note that x and z may be sentinels.

Proof. By definition, T′
is represented by a list of (ah(x)−hh f (x)− 1) sec-

ondary keys. By Theorem 2.5, ah(x) = hh f (z) and the theorem follows.

Theorem 2.9 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

complete binary search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then the deepest and highest keys in the

list of secondary keys representing T′
in the right heterogeneous spine of

T with respect to f have height (hh f (x)+ 1) and (hh f (z)− 1) respectively.

Note that x and z may be sentinels and the list of secondary keys may be

empty.

Proof. Let u∗ be the node containing x in T. By Theorem 2.2, T′
is the

right subtree of u∗. Since ah(T′) = (ah(x) − 1), including the topmost(ah(x)−hh f (x)−1) keys on the inner spine of T′
is equivalent to excluding

its bottommost hh f (x) keys. Therefore, among the keys that have been

included on the spine, the deepest key has height (hh f (x) + 1). For the

highest key, by definition it has height ah(T′) and hh f (z) is precisely de-

fined to be (ah(T′) + 1). Note that this means the heterogeneous heights

of f and all primary keys as well as the heights of all secondary keys are

unique.

Remark 2.10. Observe that Theorem 2.9 implies that the only subtree in

R that has its entire inner spine represented is the innermost subtree in R.

This is because it is the only subtree whose inner key has a heterogeneous

height of 0, meaning that the deepest key in the list of secondary keys

representing this subtree in R has height 1. Furthermore, had we defined

hh f (x) to be one less than its current value, we will lose the uniqueness

property implied by Theorem 2.9 unless some (rather unpleasant) measures

are taken.

Usage. From now on, whenever we consider a heterogeneous decompo-

sition (L, f , R), we will be representing L and R in the format of hetero-

geneous spines and call them as such. Every subtree in L and R will be
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represented by a suitably-long list of secondary keys on its inner spine and

we will call this list the inner spine representation of the subtree.

2.2 For Degree-Balanced Search Trees
Generalizing our definitions in §2.1 to handle degree-balanced search trees

requires relatively little effort because we already have both the conceptual

and the notational frameworks set up. Specifically, from the interpretation

of Theorem 2.6, what we are after is a set of definitions that will give rise

to a version of this theorem for degree-balanced search trees. This means

the heterogeneous height of a key should be a lowerbound on the dynamic

finger budget to search for that key or any key in its outer direction. As

it will turn out, our generalized notation of left⇑right introduced in §1.1.1

will make the theorems in this section (§2.2) look highly similar to their

special cases in §2.1. Note that while some of the writings in this section

may start like a rehash of those in §2.1, they are repeated here only for the

sake of self-containment. In what follows, any degree-balanced search tree

is an (a, b)-tree for any legitimate values of a and b.

2.2.1 Heterogeneous Decomposition
Given a degree-balanced search tree T and one of its keys f , the heteroge-

neous decomposition of T with respect to f is a triple (L, f , R), where L
and R are lists of odd lengths comprising two alternating types of values.

Appearing in the same order as they do in T, the odd positions of L⇑R are

the left⇑right subtrees hanging off the access path of f and the even posi-

tions of L⇑R are the left⇑right ancestor keys of f . Underneath the above

description lies one particular definition of “hanging off” since the nodes

in T are multiway. To define this properly, let us start with an algorithm in

§2.2.1.1 that computes the decomposition.

2.2.1.1 Definition

Given the root u of a degree-balanced search tree T and one of its keys

f , the procedure Hetero-Decomp-Dbst in Figure 2.5 returns the triple that

represents the heterogeneous decomposition of T with respect to f . The

possibility of having multiple keys inside a node makes our procedure a bit

more complicated than the corresponding procedureHetero-Decomp-Cbst

in §2.1.1.1. However, similar to Hetero-Decomp-Cbst, this procedure is

based on a recursive search for f starting from root(︀T⌋︀ while keeping track

of the subtrees hanging off the access path of f . As we have hinted, the

question is what makes a desirable definition of “hanging off”.
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Hetero-Decomp-Dbst(u, f )
1 (i, j)← Bracket(u, f )
2 if i = j
3 then return ({lefti(︀u⌋︀}, keyj(︀u⌋︀,{rightj(︀u⌋︀}) ⊳ f = keyj(︀u⌋︀
4 else (L′, ⋅ , R′)←Hetero-Decomp-Dbst(cj(︀u⌋︀, f ) ⊳ cj(︀u⌋︀ subtends f
5 if i ≥ 1
6 then L′ ← Concat({lefti(︀u⌋︀; keyi(︀u⌋︀}, L′) ⊳ cj(︀u⌋︀ not leftmost

7 if j ≠ b and keyj(︀u⌋︀ ≠Nil
8 then R′ ← Concat(R′,{keyj(︀u⌋︀; rightj(︀u⌋︀}) ⊳ cj(︀u⌋︀ not rightmost

9 return (L′, f , R′)
Figure 2.5 – Procedure Hetero-Decomp-Dbst

Bracket(u, f )
1 (i, j)← (0, 1)
2 while keyj(︀u⌋︀ < f
3 do (i, j)← (i + 1, j + 1)

(Post: keyi(︀u⌋︀ < f ≤ keyj(︀u⌋︀)
4 if f = keyj(︀u⌋︀
5 then return (j, j) ⊳ case (i)

6 else return (i, j) ⊳ case (ii)

li

f(i)

rj

cj

k jki(ii)

li rj

Figure 2.6 – Procedure Bracket

For the moment, let us first understand what Hetero-Decomp-Dbst

actually does. It starts off with the procedure Bracket in Figure 2.6 which

satisfies the following contract. Given a node u and a key f that may or

may not be in u, Bracket(u, f ) returns a tuple (i, j) such that (i) if f is in

u, then i = j and keyj(︀u⌋︀ = f ; (ii) otherwise, j = (i + 1) and cj(︀u⌋︀ subtends f ,
meaning that f is in the subtree rooted at cj(︀u⌋︀. Note that in the second

case, keyi(︀u⌋︀⇑keyj(︀u⌋︀ is a left⇑right ancestor key of f . Furthermore, in both

cases, the subtrees rooted at lefti(︀u⌋︀ and rightj(︀u⌋︀ do not contain f .
Back to Hetero-Decomp-Dbst. If f happens to be in u, then we will

return the triple ({lefti(︀u⌋︀}, keyj(︀u⌋︀,{rightj(︀u⌋︀}) in line 3. Since keyj(︀u⌋︀ is f
and i = j, that means we are using L and R to keep track of only the two

subtrees that are adjacent to f in u. But what about the other subtrees of

u? In fact, the same question must also be asked in line 6 and line 8, where

we seem to be dropping some subtrees of u altogether. . .

In our lingo, any maximal subtree of T that does not appear in the

heterogeneous decomposition of T with respect to f is said to be “invisible

from f”, or “invisible” for short. An example that illustrates this visibility
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issue will be shown in §2.2.2 where we define the heterogeneous heights.

We say a subtree is hanging off the access path of f iff it is rooted at (i) a

left or right child of f , or (ii) a left⇑right child of a left⇑right ancestor key

of f . Using the contract of Bracket(u, f ), we see that these are precisely

lefti(︀u⌋︀ and rightj(︀u⌋︀ in both cases.

2.2.1.2 Analysis

Theorem 2.11 Given the root u of a degree-balanced search tree T and one

of its keys f , the procedureHetero-Decomp-Dbst(u, f ) runs in O(b loga ⋃︀T⋃︀)
time. Furthermore, the total size of the triple returned is O(loga ⋃︀T⋃︀).
Proof. The proof is equivalent to the proof of Theorem 2.1 but with the b
factor in the running time solely due to the O(b) time required by Bracket

in line 1. Note that in line 7, we could have computed #(u) in O(b) time

and test for j ≤ #(u) instead; however, here we are making use of the left

packing property of the keys array. Also, note that the size of the triple

returned does not have this factor.

Theorem 2.12 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

degree-balanced search tree T with respect to one of its keys f and let u∗ be

a node in T containing the key x as its j-th key. If {x; T′; z} of type {α; τ; α}
is a sublist of R, then (i) x is either f or a right ancestor key of f , and (ii) T′

is the j-th right subtree of u∗, and (iii) z is the right parent key of x. Note

that x and z may be sentinels.

Proof. If x is f itself, then the first point is trivially true. Otherwise,

observe that the test on line 7 and the contract of Bracket guarantee that

for x = keyj(︀u⌋︀ to be added to R′
on line 8, f is in the left subtree of x and

thus x is a right ancestor key of f .
To show the second point, we merely need to inspect line 3 or line 8 of

Hetero-Decomp-Dbst. The former applies if x is the f sentinel; the latter if

otherwise.

The proof of the last point is similar to the proof of Theorem 2.2 due the

observation we used to prove the first point here. This is a generalization

of observation (2) on page 67.

Theorem 2.13 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

degree-balanced search tree T with respect to one of its keys f and let u∗

be a node in T containing the key x as its j-th key. If x is either f or one

of its right ancestor keys in T and z is the right ancestor key of x, then{x; rightj(︀x⌋︀; z} is a sublist of R. Note that x and z may be sentinels.

base revision 903 built on 2009-5-28 16:00 10+152+20+15 pages, 18 figures, 4 tables



4079

2.2 For Degree-Balanced Search Trees 79

24

27

18

f

54

9 36

21

24

27

18

f

54

9 36

21

Figure 2.7 – Heterogeneous decompositions of a maximal (2, 3) degree-balanced search tree

of 80 keys with respect to the key f at rank 23 (upper) and at rank 24 (lower), with the keys

on the access path of f drawn at their respective heterogeneous heights (see Example 2.4 and

Example 2.5)

Example 2.4. Heterogeneous Decompositions.
Refer to Figure 2.7. Assuming the set of keys in the reference tree is{1, 2, . . . , 80} and letting Tx

L and Tx
R denote the left and right subtrees of

the key x respectively, the heterogeneous decompositions of the tree with

respect to f in the two halves are respectively the triples

({T18
L ; 18; T21

L ; 21; T23
L }, 23,{T23

R ; 24; T24
R ; 27; T27

R })
and ({T18

L ; 18; T24
L }, 24,{T24

R ; 27; T27
R }).

The color scheme is based on the one described in Example 2.1 and

in addition we have drawn each non-ancestor key on the access path of

f as a hollow circle. Note that the nodes on the access path of f do

not appear in the decomposition and their keys are exposed. We will

explain the “invisible” subtrees that are drawn with a dashed stroke later

in Example 2.5.
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Proof. The proof is similar to the one for Theorem 2.3 except that a re-

cursive call to Hetero-Decomp-Dbst can be considered as both a left and a

right descend simultaneously here. This is because a single node in T can

contain both a left and a right parent key of f .

2.2.2 Heterogeneous Height
Let T continue to denote a degree-balanced search tree and let f be one of

its keys. A notion of heterogeneous height with respect to f is associated

with each key on the access path of f ; any other key in T does not have a

heterogeneous height. Note that since T is a degree-balanced search tree,

the keys on the access path of f can be divided into three groups—the key

f itself, the ancestor keys of f , and the non-ancestor keys of f on this path.

2.2.2.1 Definition

The definition of heterogeneous heights for degree-balanced search trees

remains the same as the one for complete binary search trees in §2.1.2.

However, we must additionally define the heterogeneous height of a non-

ancestor key on the access path of f . For any such key y, we define hhT
f (y)

to be (ah(y)− 1). Note that in terms of support, this is equivalent to saying

that y is supported by a subtree of height (ah(y)− 2).
2.2.2.2 Analysis

It may seem strange that the heterogeneous height of a non-ancestor key

on the access path of f is defined without considering its position in its

node relative to f . Say if f is in the leftmost subtree of a multiway node u
and y is a non-ancestor key of f in u, then distT( f , y) would get larger if

y is closer to the right end of u. However, as the following theorems and

Example 2.5 will show, this definition is again tight from the perspective

of lowerbounding the dynamic finger budget.

Theorem 2.14 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

degree-balanced search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then hh f (z) = ah(x). Furthermore, if y > x
is in the same node as x, then hh f (y) = ah(T′). Note that x and z may be

sentinels.

Proof. The proof here is mostly similar to the proof of Theorem 2.5. Let

u∗ be the node containing x in T and let x be the j-th key of u∗. By

Theorem 2.12, T′
is the j-th right subtree of u∗. The first part of the theorem

follows because hh f (z) is defined to be (1+ ah(T′)) and this value is ah(x).
To show that hh f (y) = ah(T′), we merely need to note that T′

is the j-th
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Figure 2.8 – Duplicate of Figure 2.7 on page 79

Example 2.5. Heterogeneous Heights.
Figure 2.8 is a duplicate of Figure 2.7, which shows the heterogeneous

decompositions of a maximal (2, 3) degree-balanced search tree of 80 keys

with respect to the key f at rank 23 and at rank 24 in its upper and lower

halves. Using the definition above, the heterogeneous heights of the keys

at rank 9, 18, 21, 22, 23, 24, 27 and 54 in the upper half are 2, 2, 1, 0, 0, 1,
2 and 3 respectively. For the lower half, only the keys at rank 9, 18, 21, 24,
27, and 54 have their heterogeneous heights defined and they are 2, 2, 1, 0,
2, and 3 respectively.

The reason why some subtrees are drawn in a dashed stroke and some

keys are drawn as hollow circles is because they are invisible from f in

the decomposition. Let Tx
L denote the left subtree of the key x. A perfect

example here is T21
L . When f is 23, T21

L is visible because 21 is a left ancestor

key of f . However, when f is 24, the key 21 ceases to be a left ancestor

key of f any more and our definition of heterogeneous height puts this

key at height 1. Notice that both 21 and T21
L are completely hidden by T24

L
in the sense that they do not have any part that is higher than T24

L . Being

“invisible from f” seems to be a suitable description here.
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right subtree of u∗, meaning that ah(T′) = ah(u) − 1 = ah(y) − 1. The last

value is precisely our definition of hh f (y).
Theorem 2.15 Let (L, f , R) be the heterogeneous decomposition of a degree-

balanced search tree T with respect to one of its keys f and let a be the

degree lowerbound of any non-root node in T. Consider any key z in L or

R. If hh f (z) is h, then distT( f , z) ≥ ah−1
. Furthermore, consider any non-

ancestor key y on the access path of f . If hh f (y) is h, then distT( f , y) ≥ ah
. In

the asymptotic notation, loga distT( f , z) = Ω(hh f (z)) and loga distT( f , y) =
Ω(hh f (y)).
Proof. First let us consider z. By definition, for z to attain a heterogeneous

height of h, the inner subtree T′
of z in the decomposition must have height(h − 1). Since T′

is a strict subtree of a degree-balanced search tree with

a degree lowerbound of a on any non-root node, T′
has at least (ah−1 − 1)

keys. The theorem follows in this case because distT( f , z) ≥ 1+ ⋃︀T′⋃︀.
For y, by definition it is not in L and R. By symmetry, suppose y is in

the same node as the key x < y and x is either f itself or a right ancestor

key of f . Furthermore, suppose {x; T′′} of type {α; τ} is a sublist of R,

meaning x may be regarded as the f sentinel. By Theorem 2.12, T′′
is the

right subtree of x, which implies that T′′
is to the left of y. By Theorem 2.14,

h = ah(T′′). Using a calculation similar to the above, T′′
has at least (ah − 1)

keys. The theorem follows in this case because distT( f , y) ≥ 1+ ⋃︀T′′⋃︀.
Remark 2.16. Note that Theorem 2.15 does not allow z to be the f sentinel

and the inequality distT( f , z) ≥ ah−1
is in fact tight. Of course, the example

in Remark 2.7 suffices to show this when a = 2, but this is true even if a > 2.
This can be witnessed when T has height at least 2, f has rank (a − 1), and
z has rank a, which implies that h = 1 and distT( f , z) = 1. The inequality

distT( f , y) ≥ ah
is also tight. This can be witnessed when f has rank 1 and

y has rank 2, which implies that h = 0 and distT( f , y) = 1. Note that for y to

exist, a must be at least 3 and thus f and y are in fact in the same node.

2.2.3 Heterogeneous Spines
Let T continue to denote a degree-balanced search tree and let f be one of

its keys. We will further define the notion of heterogeneous spines of T
with respect to f .

2.2.3.1 Definition

Let (L, f , R) be the heterogeneous decomposition of T with respect to one

of its keys f . Each of L and R has its corresponding heterogeneous spine.
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Figure 2.9 – Heterogeneous spines of a maximal (2, 3) degree-balanced search tree of 80 keys

with respect to the key f at rank 23 (upper) and at rank 24 (lower) shown as two overlay paths

(see Example 2.6)

Example 2.6. Heterogeneous Spines.
Refer to Figure 2.9. Assuming the set of keys in the reference tree

is {1, 2, . . . , 80}, the left and right heterogeneous spines of the tree with

respect to f in the upper and the lower halves are respectively

{{}; 18;{}; 21;{}} and {{}; 24;{}; 27;{36}}
and {{}; 18;{23}} and {{25}; 27;{36}}.

The figure is based on Figure 2.7 and we have modified it exactly the

same way as we derived Figure 2.4 from Figure 2.2. Additionally, the non-

ancestor keys on the access path of f has been drawn as hollow circles and

the subtrees that are invisible from f as well as the edges leading to them

in the reference tree have been drawn in a dashed stroke.

The definition here is exactly the same as the one in §2.1.3.1. Note that each

node on a spine prefix has been defined to be represented by its innermost
key. This specification is redundant for complete binary search trees, but it

is critical for degree-balanced search trees.
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2.2.3.2 Analysis

The theorems below are verbatim copy of the ones in §2.1.3.2 except that

T is now a degree-balanced search tree. As this change does not affect our

definition in §2.2.3.1, the proofs are exactly the same and thus omitted.

Theorem 2.17 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

degree-balanced search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then the list of secondary keys representing

T′
in the right heterogeneous spine of T with respect to f has length(hh f (z)−hh f (x)− 1). Note that x and z may be sentinels.

Theorem 2.18 (ℛ) Let (L, f , R) be the heterogeneous decomposition of a

degree-balanced search tree T with respect to one of its keys f . If {x; T′; z}
of type {α; τ; α} is a sublist of R, then the deepest and highest keys in the

list of secondary keys representing T′
in the right heterogeneous spine of

T with respect to f have height (hh f (x)+ 1) and (hh f (z)− 1) respectively.

Note that x and z may be sentinels and the list of secondary keys may be

empty.

2.3 Connecting to Heterogeneous Finger Search Trees
Before we go on, let us highlight a connection between the heterogeneous

decompositions of a complete binary search tree T and the triplet represen-

tations of T as defined in §1.3.2. Let us stress that T is not a degree-balanced

search tree.

Recall that if we want to implement the semantics of a dynamic finger

on T, we can first decompose T into its triplet representation (TL, f , TR) by

splitting T at one of its keys f to obtain TL and TR. Then we invert the two

spines of both TL and TR and turn them into heterogeneous finger search

trees. Through repeated splits and joins, this triplet can be maintained

such that f always corresponds to the key under the dynamic finger.

2.3.1 A Canonical Transformation
Let (L, f , R) be the heterogeneous decomposition of T with respect to one

of its keys f . Using the Split procedure for (2, 3)-trees, let TL and TR be

the pair of (2, 3)-trees we obtained by splitting T at f . We claim that TL ⇑TR
can be obtained from L⇑R using the following (ℛ) procedure.

⎷ transform heterogeneous spine R into left spine of (2, 3)-tree TR ⌄
1> If R currently has length one, then stop.

2> Otherwise, let {T′
1; x; T′

2} with type {τ; α; τ} be the innermost sublist

of R and let w be the node at height hh f (x) on the inner spine of T′
2.
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Figure 2.10 – Between the heterogeneous decomposition of a complete binary search tree of

127 keys with respect to the key f at rank 52 and the triplet representation of the tree as(TL, f , TR) (see §2.3.1)

Observe that by Theorem 2.9, w is the innermost child of the node

containing the deepest secondary key that represents T′
2 in R.

3> Remove T′
1 and x from R, making T′

2 the innermost value of R.

4> Construct a 3-node u∗ containing the keys x followed by key(︀w⌋︀ and

from left to right attach T′
1, the left subtree of w, and the right subtree

of w to u∗. Note that w must be a 2-node since it resides in T′
2 and this

procedure has not operated on T′
2 yet.

5> Modify T′
2 by replacing w with u∗ and replace the list of secondary keys

representing T′
2 in R using Concat(T′

1,Concat({(u∗, 1)}, T′
2)). Note

that T′
1 and T′

2 inside the Concat procedure are in their inner spine

representations. Furthermore, note that the catenations do not affect

the applicability of Theorem 2.9 on, if present, the outer key of T′
2 in R

and its outer subtree.

6> Go back to step 1.

When the above procedure ends, only one value will remain in R and

it will be the inner spine representation of the (now modified) T′
2 in step 5.

Let T′
R denote this modified T′

2. It is straightforward to verify that T′
R is a

valid (2, 3)-tree and that the definition of heterogeneous heights puts each

of the 3-nodes constructed in step 4 at exactly the same location as Split

would have. In other words, T′
R is exactly the same as TR.

Furthermore, since the key pointed by (u∗, 1) in step 5 is in fact the

primary key x which we removed in step 3, the final value in R is simply

a catenation of the original values in R. As this final value represents the

entire inner spine of T′
R due to the observations in Remark 2.10 and step 2,

we see that the original R is in fact a representation of the left spine of TR.
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Observe that whether we invert the spines or not does not matter as

long as R is understood as a list in the same direction as the spine. In this

sense, the heterogeneous decomposition of T with respect to f is also a

decomposition of the triplet (TL, f , TR) where TL and TR are decomposed on

their inner spines in a particular way specified by our definitions. We offer

Figure 2.10 for a quick visualization of this fact. We remark that this is only

one of the several reasonable decompositions of the triplet.

2.3.2 The Issue of Stability
It is important to observe that even though the heterogeneous spines of

a complete binary search tree T can be transformed into the inner spines

of a corresponding triplet, this does not mean they are equivalent objects.

More precisely, once a finger search has been performed using the triplet,

in general transforming the updated heterogeneous spines using the above

procedure is not going to yield the inner spines of the updated triplet. This

is because the heterogeneous decomposition with respect to a fixed key

is unique, which implies that the above transformation always produces a

pair of (2, 3)-trees in a fixed shape that we will call their canonical shape.

But as we will explain below, if we restrict the two trees in the triplet

representation of T to their canonical shape, then the triplet can no longer

be used to implement the semantics of a dynamic finger.

A Counterexample. Consider two heterogeneous decompositions of T,

one of which is taken with respect to one of its keys f and the other is

to another key x that is d keys further down in the key space of T. Us-

ing the uniqueness observation above, this would give rise to two triplets(T f
L , f , T f

R) and (Tx
L , x, Tx

R) in their respective canonical shapes. The ques-

tions are (i) how do the shapes of these two triplets relate to each other,

and (ii) how does the difference between the two shapes relate to d?
Let T′

L and T′
R be respectively the left and right subtree of T. It turns

out that both of these questions can be answered by inspecting a special

case when f is at the root of T and d is 1, meaning that x is in the leftmost

leaf of T′
R. While it is easy to see that T f

L ⇑T f
R is just T′

L ⇑T′
R in another name,

the situation is more complicated when we get to Tx
L ⇑Tx

R.

Let f− be the predecessor of f in the key space of T and let the height of

T be h. For 1 ≤ i ≤ (h− 1), let r(i) be the node at height i on the left spine of

T′
R and let T′

R(i) denote the right subtree of r(i). Observe that Tx
L is T′

L with

its rightmost leaf replaced by a 3-node that contains f− and f . Therefore,
the shapes of Tx

L and T f
L are in fact quite similar. However, observe that the

left spine of Tx
R is exclusively made up of 3-nodes, with the node at height
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f xT f
L

Tx
L Tx

Rf x

T

T f
R

Figure 2.11 – Transforming a complete binary search tree T of height 5 into its triplet represen-

tations (T f
L , f , T f

R) and (Tx
L , x, Tx

R) where f is the key at the root of T and x is the successor of

f

i being the 3-node that comes from combining key(︀r(i + 1)⌋︀ with the root of

T′
R(i + 1). This makes the shape of Tx

R very different from that of T f
R as the

latter is a binary tree. Figure 2.11 is an illustration of the above description

when T is a complete binary search tree of height 5.
By now it should be obvious that the difference between the canonical

shapes of (T f
L , f , T f

R) and (Tx
L , x, Tx

R) is not related to d in any straightfor-

ward sense. In fact, we have just seen an example where d is merely 1 but

the “amount” of difference is proportional to h = Θ(lg ⋃︀T⋃︀). By going back

and forth between f and x, this clearly shows that the triplet representation

is not conducive to the dynamic finger property if we restrict the two trees

to their canonical shape.

Robustness and Heterogeneous Finger Search Trees. Observe that if we

compare the shapes of T f
R and Tx

R, the situation is akin to repeatedly delet-

ing and re-inserting the smallest key into a (2, 3)-tree containing the keys

of T f
R. And because (2, 3)-trees are not robust, we can be forced to incur

an ω(1) cost in the example. This is precisely why a heterogeneous finger

search tree has to be based on a balanced search tree that is robust. For

example, Tarjan and Van Wyk [TVW88] used the robust red-black trees

[GS78], whereas Tsakalidis [Tsa85] had to “robustify” AVL-trees [AVL62]

by allowing a height imbalance of 2 on the inverted spine.

Given the discussion above, it may seem that using heterogeneous de-

compositions to reason about finger search would be a lost cause because

this is equivalent to restricting the two trees in the triplet representation to

their canonical shape. Fortunately, while the heterogeneous decomposition

is not “robust”, our representation of the corresponding heterogeneous

spines is—this is true even if the reference tree is a complete binary search

tree. As a preview, we can see that in our example every primary key in

the heterogeneous spine corresponding to the left spine of Tx
R is already
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present in the heterogeneous spine corresponding to the left spine of T f
R,

except that they are secondary keys in the latter. If we can transform these

secondary keys into primary keys in an amount of time that is propor-

tional to the dynamic finger budget, then perhaps the fragility issue can be

circumvented. This is the very idea that we will rely on in §3.

Stability and Unique Representation. Although we will not get into the

details, let us point out that this section actually touches on two highly-

related issues in the design of dynamic data structures. The first is the

issue of stability and the second is the issue of unique vs. redundant repre-

sentations. Interested readers can start with the thesis of Acar [Aca05] and

the thesis of Golovin [Gol08], which explore these two issues respectively.

2.4 Excision Arguments
To see how the concept of heterogeneous decompositions can help us

understand finger searching, let us present a particular way of thinking

about it which we call an “excision argument”. The reader is reminded

that an excision refers to the splitting of an inner portion of a sorted list,

with the region to be excised specified by two keys in the list. We have

discussed this operation on page 41.

Consider a complete binary search tree T and two of its keys f < x. Let
u be the lowest common ancestor of f and x, which means that f and x
are both in T⋃︀u. Suppose we take two heterogeneous decompositions of T,

one at f which gives (L f , f , R f ) and the other at x which gives (Lx, x, Rx).
While we have focused on their worst-case differences in §2.3.2, here we

are mostly interested in their similarity. We remark that Figure 2.12 depicts

the relative locations of the keys in the discussion below.

2.4.1 Type U
Suppose f is in the left subtree of u and x is in the right subtree of u. Let

lpu and rpu be the left and right parent keys of u, with lpu being −∞ if u is

on the left spine of T and rpu being ∞ if u is on the right spine. We claim

that the two decompositions are identical to each other except in the region

spanning from lpu to rpu, both inclusive.

To see this on the right hand side, observe that rpu is on the access

paths of both f and x and so it remains a right ancestor key in either cases.

Because of this, any of the right ancestor keys of rpu will stay as well.

Therefore, any subtrees and right ancestor keys that appear on the right of

rpu in R f and Rx are identical. A symmetric argument applies on the left

to lpu.
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Type U: [lpx, rpx]
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Type F: [ f , rp f ]
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Figure 2.12 – The three types of excision arguments and their excision keys

From the above argument, we see that the heterogeneous height of

any right ancestor key of rpu will not change. However, the heterogeneous

height of rpu can. Say f is in the leftmost leaf of T⋃︀u and x is in its rightmost

leaf, then the heterogeneous heights of rpu with respect to these two keys

are ah(u) and 0 respectively. The situation on the left is symmetric, with

lpu being the only key that can change its heterogeneous height.

2.4.2 Type F
Suppose f is in u and x is in the right subtree of f . Let rp f be the right

parent key of f , with rp f being ∞ if f is on the right spine of T. We claim

that the two decompositions are identical to each other except in the region

spanning from f to rp f , both inclusive.

On the right hand side, the situation is exactly the same as in a Type U

excision; however, the left hand side is subtly different. In particular, f will

take the place of lp f in the argument, meaning that the left parent key of f
will not change its heterogeneous height. In other words, the leftmost key

that will change its heterogeneous height is f .

2.4.3 Type X
Suppose x is in u and f is in the left subtree of x. Let lpx be the left parent

key of x, with lpx being −∞ if x is on the left spine of T. We claim that

the two decompositions are identical to each other except in the region

spanning from lpx to x, both inclusive. The argument here is symmetric to

the one for Type F above.

2.4.4 Usage
What we have seen above are the three cases of an excision argument when

we are finger searching from f to x. In Figure 2.12, note that f and x can

be any key in the subtree represented by the shaded regions. Notice that

in each of the three cases, we have identified the two excision keys and the
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region bracketed by them is precisely the part of the heterogeneous decom-

position that can see any change in the finger search. Most importantly, we

can actually turn this into a procedure that transforms the heterogeneous

decomposition taken at f (source) into the one taken at x (target). This

procedure can be given as follows.

1> Find the lowest common ancestor of f and x to identify the type of the

excision. This determines the two excision keys.

2> Remove the region between these two excision keys in the source de-

composition and replace it with the corresponding region from the

target decomposition.

3> Compute the new heterogeneous heights of the two excision keys and

adjust their spine prefixes accordingly.
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3
The Hands Revisited

In our previous work [BMW03], we have introduced a data structure

called “the hands” that enables a degree-balanced search tree to support

a constant number of dynamic fingers without storing extra pointers in its

nodes nor restructuring after a finger search. Gratefully, the intuition we

obtained during the development of this data structure eventually led us

to the concept of heterogeneous decompositions, which then became the

basis of this thesis.

In this chapter, we will revisit the hands and show how our newfound

concept of heterogeneous decompositions clarifies the design and analysis

of this data structure. Along the way, we will demonstrate that the hands

can simply be viewed as an efficient worst-case implementation of the

heterogeneous spines of the reference tree with respect to the key under a

dynamic finger. This means that (i) the hands can be maintained in worst-

case O(lg d) time when its corresponding dynamic finger is moved d ranks

away, and (ii) the hands can be updated in real time when the reference

tree is being restructured during an update.

Let us note that although the name of the data structure remains the

same as in [BMW03], one of its invariants has been improved and leads

to what we believe to be a simplier data structure. Also, even though “the

hands” is apparently a plural form, it actually refers to a single data struc-

ture and thus we will continue to allow ourselves to refer to it as a singular.
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3.1 Motivation
The hands was originally developed when we were investigating how to

perform set operations such as intersection using sorted lists in a manner

that is both optimal in time and compact in space. To understand how

the hands is related to this problem, let us start with a review of the early

history of optimal merging algorithms.

Optimal Merging Algorithms. Historically, the first comparison-optimal

merging algorithm was due to Hwang and Lin [HL72], who were inter-

ested in how to merge two sorted lists that are stored on tapes. The number

of comparsions made by their algorithm is ([︂lg (m+n
n )⌉︂+min(m, n)), where

m ≤ n are the lengths of the two input lists. Since their application requires

the merged list to be written back onto an output tape, any merging algo-

rithm must incur at least Θ(m + n) time. Notice that this time bound can

asymptically absorb the second term in the above.

It is also not difficult to see that the remaining term, [︂lg (m+n
n )⌉︂, is a

lowerbound on any comparison-based merging algorithm. This is because

any such algorithm must be able to distinguish among the (m+n
n ) possi-

ble interleavings of the elements in the two lists. However, because their

application is tape-based, Hwang and Lin had no need to consider any

efficient representation of the lists other than the linear representation. Un-

fortunately, it happens that if we are to naively implement their algorithm

with arrays in a memory-based application, then the running time may

asymptotically exceed the number of comparisons made. This means that

there might still be room for improvement in this scenario.

Indeed, subsequently the merging problem in the memory-based setting

has been studied by Brown and Tarjan [BT79], who proposed the first

time-optimal merging algorithm that is based on the venerable AVL-trees

[AVL62]. Their algorithm assumes that each of the two input lists is stored

in a separate leaf-store AVL-tree in memory, and it inserts the items from

the smaller tree into the larger tree in the sorted order so that the larger

tree eventually becomes the merged list.
☇1

What Brown and Tarjan have

shown is how to do these m insertions in O (lg (m+n
n )) = O (m lg n

m) time,

which makes their algorithm the first optimal merging algorithm in which

the two input lists and the output list are represented with data structures

of the same type.

1.Although it was not explicitly mentioned by Brown and Tarjan [BT79], we may even consider

the output of their algorithm to be a newAVL-tree assuming that the technique of path-copying

is used.
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However, according to Brown and Tarjan themselves in [BT80, p. 613],

the merging algorithm in [BT79] is “not obvious and the time bound re-

quires an involved proof”. As such, in a later joint work of theirs [BT80],

Brown and Tarjan proposed yet another merging algorithm based on (2, 3)-
trees [AHU74] that are modified with the technique of level-linking. As

we have demonstrated in §1.2.4.2, optimal merging can be performed very

intuitively with level-linked degree-balanced search trees by implement-

ing a simple dynamic finger pointer on the larger tree. But with the finger

search algorithm analyzed in [BT80], which we have also covered in §1.2.3.2

when we described level-linking, the search tree must be in the leaf-store

representation for the algorithm to be optimal.

Space Efficiency vs. Simplicity. Putting the representation issue aside,

let us observe a curious mismatch in concepts underlying the approach

taken by Brown and Tarjan in [BT80]. In particular, notice that what

their merging algorithm needs is a single dynamic finger, but what it uses

are homogeneous finger search trees, which are arguably designed for

problems that require finger searching from any key.

Once we have phrased it in this way, it is suggestive that a more apt

solution for the merging problem could be the heterogeneous finger search

trees that were later introduced by Tarjan and Van Wyk [TVW88]. Indeed,

when a pair of these trees is used in the triplet representation as described

in §1.3.2, it is as if we have a dynamic finger on the search tree represented

by the triplet. This immediately gives us a second time-optimal merging

algorithm that is also based on the intuitive notion of finger search.

Furthermore, this approach has a distinct advantage in terms of space—

whereas level-linking introduces a linear overhead to a degree-balanced

search tree due to the parent and level pointers, as we have pointed out

in §1.3.1, the number of pointers in a heterogeneous red-black tree is the

same as its corresponding red-black tree. In fact, even when we have to

use degree-balanced search trees as the basis, the overhead due to the extra

number of nodes in a triplet representation is only logarithmic. This makes

a truly compact solution to the optimal merging problem.

Unfortunately, heterogeneous finger search trees are not exactly as easy

to implement as level-linked degree-balanced search trees and this might

potentially make the above solution slightly less desirable. In fact, Booth—

then a doctoral student of Tarjan—has noted in her thesis [Boo90, §2.3] that

heterogeneous finger search trees “have a reputation for being complicated

and impractical, hard to understand and hard to implement” (presumably

because they are often used with augmentation). Regardless of whether
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this reputation is justified or not when it comes to the merging problem,

the required restructuring of the triplet after each finger search does have

some nontrivial details that must be handled carefully.

Finger Search vs. Update. Although we can agree that such details only

need to be taken care of once per implementation—and hence not being

a significant concern, in our investigation we have also observed that the

above solution may be improved at the conceptual level. To illustrate

this, let us consider a finger search spanning a rank distance of d on a

level-linked (2, 4)-tree and a corresponding triplet based on heterogeneous

red-black trees. While the former can be shown to run in worst-case O(lg d)
time, we can only prove an equivalent but amortized bound with the latter.

The amortization, however, has little to do with the finger searching itself—

in both cases, we need to traverse only Θ(lg d) pointers; instead, the worst-

case guarantee is lost due to the restructuring of the triplet after a finger

search, which in the worst case may propagate all the way to the root.

Our observation is that this restructuring is not related to an update of

the triplet and it is performed purely to restore the red-black tree invariants

after splits and joins. This is most evident if we observe that there are

applications—intersection being a prime example—in which the set of

items in the triplet remains the same throughout the entire sequence of

finger searches. Together, these two observations suggest that maybe we

should look for a solution such that if the time due to the restructuring

in updates is discounted, then each finger search has a worst-case time

guarantee. From a data structure design standpoint, this means we are

trying to decouple the concern of finger searching from the concern of

updates.

An Auxiliary Data Structure. With the decoupling idea in our mind, a

careful scrutiny of the earlier merging algorithm by Brown and Tarjan in

[BT79]—which does not rely on any pointers other than the ones already

in an AVL-tree—would reveal an interesting property of the utilization of

the parent and level pointers during a finger search in a level-linked (a, b)
degree-balanced search tree. In particular, although these pointers are al-

ways present in the tree and thus occupying linear space, a finger search

spanning a rank distance of d can only use Θ(loga d) of such pointers. Since

initially we were interested in supporting only one dynamic finger, this

gave us the idea of getting rid of the parent and level pointers altogether

and instead simulating them using an auxiliary data structure that is main-

tained outside of the search tree. Our goal is to minimize the size of this

data structure while making sure that (i) it can be used to compute every
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parent or level pointer when its corresponding dynamic finger is used in a

finger search, and (ii) it can be updated in real time when the search tree

has to be restructured after an update.

As documented in [BMW03], our actual thought process started with

how to scan a complete binary search tree in worst-case O(1) time per

key. Observe that in the absence of parent and level pointers, the choice

between leaf-store and node-store makes little difference to our problem.

In fact, a leaf-tree can be seen a special case of a node-tree in which only the

keys at the leaves can be accessed. Our solution to the scanning problem

happens to be a simple logarithmic-sized data structure, which can easily

be symmetrized into a pair of inter-linked data structures that supports

bidirectional stepping. At the time, it was thought that this pair of data

structures is a set of related fingers and this explains why we dubbed

it “the hands”. But somewhat curiously, although we have designed the

hands from the perspective of scanning, we discovered that the hands can

actually support finger searching without any modification to its structure.

Understanding exactly why the latter happens would lead us to extract the

concept of heterogeneous decompositions from the hands. The rest, as they

say, is history.

3.2 Overview
Using the concept of heterogeneous spines from §2, the definition of the

hands is straightforward—it is simply a stack of stack implementation of

the heterogeneous spines themselves. Since this cannot be simplified by

much even if we restrict our attention to the special case of complete binary

search trees, we will define the hands for degree-balanced search trees

immediately in §3.3. The same is true for the logarithmic-time algorithm

that builds the hands on any given key and we will be describe it in §3.4.

Unfortunately, we have not been able to finish rewriting the algorithms

to manipulate the hands within the timeframe of this thesis. Instead, we

have attached [BMW02] as §A to serve the purpose of describing these

algorithms. The final version of this document will contain their complete

descriptions.

Global Variables. Although global variables are considered harmful, let

us make a few deliberated exceptions here. Within this chapter, let T be

the underlying search tree and let f be one of its keys. We will specify

whether T is a complete binary search tree or an (a, b) degree-balanced

search tree in each section. Also, let (L, f , R) be the heterogeneous decom-

10+152+20+15 pages, 18 figures, 4 tables base revision 903 built on 2009-5-28 16:00



96

96 The Hands Revisited

position of T with respect to f . Note that T is both the reference tree of the

decomposition and the underlying tree of the hands in this chapter.

Catenable Stacks with Splits. All stacks in this chapter are a form of

catenable stacks that support splits. Let us spell out our notation and the

interface of such stacks here. As it will turn out, pointer loops are possible

on the hands, meaning that the hands itself is inherently an ephemeral

data structure; therefore, many of the operations in the interface below are

stated to modify their inputs.

Notation. A catenable stack Q is made up of cells and each cell con-

tains a value, which itself can be a tuple, say. The length of Q is the number

of cells in Q and is denoted ⋃︀Q⋃︀. The cells of Q are counted from the bottom

of the stack and the i-th cell of Q is denoted Q(︀i⌋︀.
Interface. We require our catenable stacks to support each of the fol-

lowing operations in worst-case O(1) time.

+ CreateStack() returns an empty stack.

+ IsEmpty(Q) tests if the stack Q is empty.

+ Push(Q, v) pushes the value v into a new top cell of the stack Q.

+ Pop(Q) pops the top cell of the stack Q and returns the value inside

this cell. This operation assumes Q is nonempty.

+ Top(Q) and Bot(Q) respectively return the address of the top and the

bottom cell in the stack Q. They both assume Q is nonempty.

+ Concat(Q1, Q2) puts the stack Q1 on top of another stack Q2. Assum-

ing that Q1 is not empty, this operation changes Q2 and the new top

cell of Q2 is the top cell of Q1. This operation destroys Q1.

+ Split(Q, p) splits the stack Q at one of its cells pointed by the pointer p
and returns a new stack Q′

spanning from the top cell of Q to the cell

pointed by p. After the split, Q no longer contains the cells that have

been split into Q′
.

Remark 3.1. To make sure we understand the last two operations, notice

that Split reverses the effect of Concat. In particular, suppose Q1 and Q2
are stacks and Q1 is nonempty. If p is the address returned by Bot(Q1),
then Concat(Q1, Q2) followed by Split(Q2, p) will return Q1 as its result

and restores Q2 to its original state.

Possible Implementation. One possible pointer structure that imple-

ments the above interface is depicted in the figure on our side.
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top
bot

1

2

3

4
In the figure, a stack of length 4 is shown with its cells labelled

with their positions in the stack. The data structure has a record that

stores two pointers to the top and bottom cells of the stack if the

stack is nonempty; otherwise, these two pointers are Nil. Each cell

stores its value and a pointer to the next cell down the stack. The

pointer in the bottom cell may be implemented to either point to the

record or store Nil. (Hence this pointer is drawn in a dashed stroke.)

Bottom-Up Traversal. We note that in §3.4 we will describe an algo-

rithm that traverses up a stack. Although this is not an operation supported

by the above interface, we can simulate this traversal by inverting a stack

Q into a temporary stack Q′
using Push and Pop; then we can traverse Q

in the bottom-up manner as we invert Q′
back into Q. The running time

for a bottom-up traversal of Q is Θ(⋃︀Q⋃︀). The actual implementation of

our algorithm using this simulation is straightforward. (Alternatively, we

may use a doubly-linked list to implement a catenable stack. This is the

approach taken in [BMW03]; however, it will not be as space-efficient.)

3.3 The Structure of the Hands
The hands on f in a degree-balanced search tree T consists of two parts,

namely the left hand and the right hand. Intuitively, the left⇑right hand

represents the left⇑right heterogeneous spine of T with respect to f , but
there are also additional pointers going between the two parts. The hands

is implemented as a pair of catenable stacks (lps, rps), each of which is used

to organize a collection of other catenable stacks. Since the definitions of

lps and rps are symmetric, we will only describe the structure of the latter.

Our focus here are the names and types; the content of the right hand will

be specified using the three invariants in §3.3.1.

(1) For 1 ≤ i ≤ ⋃︀rps⋃︀, the cell rps(︀i⌋︀ contains a triple of pointers. In order, they

are the key pointer, the spine pointer, and the cross pointer of rps(︀i⌋︀.
(2) The key pointer of rps(︀i⌋︀ is denoted key(︀rps(︀i⌋︀⌋︀ and it points to a key in

T. Suppose this key is contained in the node u in T and it is keyj(︀u⌋︀. We

further let node(︀rps(︀i⌋︀⌋︀ to denote u and pos(︀rps(︀i⌋︀⌋︀ to denote j.
(3) The spine pointer of rps(︀i⌋︀ is denoted spine(︀rps(︀i⌋︀⌋︀ and it points to a

catenable stack with exactly the same type as rps itself. This stack is

called the spine prefix stack of rps(︀i⌋︀.
(4) The cross pointer of rps(︀i⌋︀ is denoted cross(︀rps(︀i⌋︀⌋︀ and it can either be

Nil or point to another cell, which is called the cross cell of rps(︀i⌋︀.
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3.3.1 Invariants
Let us specify the content of rps via the following three invariants. The

first two can be verified to be consistent with our definition of heteroge-

neous spines in §2 and the third is the trick to an efficient catenable stacks

implementation of the heterogeneous spines. In what follows, let ` be ⋃︀rps⋃︀.
Invariant 3.2 (Primary ℛ) At the two ends, key(︀rps(︀`⌋︀⌋︀ points to f in T
and key(︀rps(︀1⌋︀⌋︀ points to a key on the right spine of T. For 1 ≤ i ≤ (` − 1),
key(︀rps(︀i⌋︀⌋︀ points to the right parent key of key(︀rps(︀i + 1⌋︀⌋︀ in T.

Invariant 3.3 (Secondary ℛ) For 1 ≤ i ≤ `, spine(︀rps(︀i⌋︀⌋︀ has length (ah(ki)−
hh f (ki) − 1). For 1 ≤ j ≤ ⋃︀spine(︀rps(︀i⌋︀⌋︀⋃︀, spine(︀rps(︀i⌋︀⌋︀(︀j⌋︀ contains the triple of

pointers (k j, sj, xj) with xj being Nil, sj pointing to an empty stack, and k j
pointing to the innermost key of the j-th node on the inner spine of the

outer subtree of key(︀rps(︀i⌋︀⌋︀ in R.

Invariant 3.4 (Cross ℛ) The cross pointer cross(︀rps(︀`⌋︀⌋︀ is Nil. For 1 ≤ i ≤(` − 1), if key(︀rps(︀i⌋︀⌋︀ is the trivial right parent key of key(︀rps(︀i + 1⌋︀⌋︀, then

cross(︀rps(︀i⌋︀⌋︀ is Nil; otherwise cross(︀rps(︀i⌋︀⌋︀ points to a cell in lps whose key

pointer points to a key in the left child of key(︀rps(︀i⌋︀⌋︀ in T.

Sentinels. As it will be convenient, we will imagine a sentinel cell rps(︀0⌋︀
containing the triple (k0, s0, x0) = (∞,Nil,Nil) underneath the bottom of

rps. Note that this is consistent with Invariant 3.2 because we have defined

the right parent key of any key on the right spine of T to be ∞. Also, note

that a corresponding sentinel using −∞ will also be added to lps as lps(︀0⌋︀.
3.3.2 Analysis
Theorem 3.5 (ℛ) Suppose ⋃︀rps⋃︀ is `. For 1 ≤ i ≤ `, the length of spine(︀rps(︀i⌋︀⌋︀
is (hh f (key(︀rps(︀i − 1⌋︀⌋︀)−hh f (key(︀rps(︀i⌋︀⌋︀)− 1) where k0 is ∞.

Proof. By Invariant 3.3, the length of spine(︀rps(︀i⌋︀⌋︀ is

(ah(key(︀rps(︀i⌋︀⌋︀)−hh f (key(︀rps(︀i⌋︀⌋︀)− 1).
Let j be pos(︀rps(︀i⌋︀⌋︀. If i ≥ 2, then by Invariant 3.2 key(︀rps(︀i − 1⌋︀⌋︀ is the right

parent key of key(︀rps(︀i⌋︀⌋︀ in T. By Theorem 2.13, this means

{key(︀rps(︀i⌋︀⌋︀; rightj(︀node(︀rps(︀i⌋︀⌋︀⌋︀; key(︀rps(︀i − 1⌋︀⌋︀}
is a sublist of R. By Theorem 2.17, this implies that ⋃︀spine(︀rps(︀i⌋︀⌋︀⋃︀ is

(hh f (key(︀rps(︀i − 1⌋︀⌋︀)−hh f (key(︀rps(︀i⌋︀⌋︀)− 1)
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Figure 3.1 – (a): Duplicate of Figure 2.4 on page 74, which shows the heterogeneous spines of

a complete binary search tree of 127 keys with respect to the key f at rank 52 shown as two

overlay paths; (b): The corresponding hands on f

and the theorem follows. If i = 1, then by Theorem 2.14 with x = key(︀rps(︀1⌋︀⌋︀,
we know hh f (∞) = ah(x). Since the former is hh f (key(︀rps(︀0⌋︀⌋︀) and the

latter is ah(key(︀rps(︀1⌋︀⌋︀), the theorem also follows.

Theorem 3.6 The number of cells in the hands on any key in a degree-

balanced search tree of height h is O(h).
Proof. By symmetry, let us only compute the total number of cells on the

right hand side. Suppose ⋃︀rps⋃︀ is `. For 1 ≤ i ≤ `, we have one cell due

to rpsi and (ah(key(︀rps(︀i⌋︀⌋︀) − hh f (key(︀rps(︀i⌋︀⌋︀) − 1) cells due to spine(︀rps(︀i⌋︀⌋︀.
Applying Theorem 3.5 to the latter, the total number of cells is therefore

`∑
i=1
(1+ (hh f (key(︀rps(︀i − 1⌋︀⌋︀)−hh f (key(︀rps(︀i⌋︀⌋︀)− 1))

=hh f (key(︀rps(︀0⌋︀⌋︀)−hh f (key(︀rps(︀`⌋︀⌋︀). (3.1)

Since key(︀rps(︀`⌋︀⌋︀ is f due to Invariant 3.2, we know that hh f (key(︀rps(︀`⌋︀⌋︀)
is 0. Furthermore, since key(︀rps(︀0⌋︀⌋︀ is the ∞ sentinel in Theorem 3.5, we

conclude hh f (key(︀rps(︀0⌋︀⌋︀) = ah(key(︀rps(︀1⌋︀⌋︀) = O(h).
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Figure 3.2 – (a): Duplicate of Figure 2.9 on page 83, which shows the heterogeneous spines of

a maximal (2, 3) degree-balanced search tree of 80 keys with respect to the key f at rank 23
shown as two overlay paths; (b): The corresponding hands on f ; (c) and (d): ditto when f is at

rank 24
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Theorem 3.7 If node(︀lps(︀j⌋︀⌋︀ and node(︀rps(︀i⌋︀⌋︀ both point to the same node

u in T (but possibly to a different key of u), then no cross pointer in lps
points to rps(︀i⌋︀ and no cross pointer in rps points to lps(︀j⌋︀.
Proof. We will prove this by contradiction. First, consider the case when a

cross pointer in rps points lps(︀j⌋︀. Let the cell containing this cross pointer

be rps(︀i′⌋︀. We will break this down into three cases.

Case (i′ < i): This condition implies that the cell rps(︀i′ + 1⌋︀ exists. By In-

variant 3.4, node(︀rps(︀i′ + 1⌋︀⌋︀ is not a child of node(︀rps(︀i′⌋︀⌋︀; also, node(︀lps(︀j⌋︀⌋︀ =
u is the left child of key(︀rps(︀i′⌋︀⌋︀. By Invariant 3.2, key(︀rps(︀i′⌋︀⌋︀ is the right

parent key of key(︀rps(︀i′ + 1⌋︀⌋︀ and thus node(︀rps(︀i′ + 1⌋︀⌋︀ is also in the left

subtree of key(︀rps(︀i′⌋︀⌋︀. Since node(︀rps(︀i′ + 1⌋︀⌋︀ is not a child of node(︀rps(︀i′⌋︀⌋︀,
node(︀rps(︀i′ +1⌋︀⌋︀ cannot be u and thus node(︀rps(︀i′ +1⌋︀⌋︀ must be deeper than u
in T. However, u is also on rps due to rps(︀i⌋︀, which together with the condi-

tion i′ < i implies that (i′ + 1) < i. This in turn implies that u is deeper than

node(︀rps(︀i′ + 1⌋︀⌋︀ by repeated applications of Invariant 3.2. The contradiction

is in the relative depth of u with respect to node(︀rps(︀i′ + 1⌋︀⌋︀.
Case (i′ = i): By Invariant 3.4, cross(︀rps(︀i′⌋︀⌋︀ = cross(︀rps(︀i⌋︀⌋︀ must point to

a cell in lps that points to a child of node(︀rps(︀i⌋︀⌋︀. This means node(︀lps(︀j⌋︀⌋︀ = u
is a child of node(︀rps(︀i⌋︀⌋︀. However, node(︀rps(︀i⌋︀⌋︀ is actually u itself from the

condition of the theorem statement—contradiction.

Case (i′ > i): By repeated applications of Invariant 3.2, node(︀rps(︀i′⌋︀⌋︀ is

deeper than u in T. By Invariant 3.4, cross(︀rps(︀i′⌋︀⌋︀ must point to a cell in

lps that points to a child of node(︀rps(︀i′⌋︀⌋︀. But since cross(︀rps(︀i′⌋︀⌋︀ points to

lps(︀j⌋︀ and node(︀lps(︀j⌋︀⌋︀ = u, it means u is deeper than node(︀rps(︀i′⌋︀⌋︀ instead.

The contradiction is the relative depth of u with respect to node(︀rps(︀i′⌋︀⌋︀.
Finally, the analysis for the case when a cell in lps points rps(︀i⌋︀ is sym-

metric to the above.

Theorem 3.8 The cross pointers in the hands do not cross each other, i.e.,

there do not exist positions i < i′ and j < j′ such that the cross(︀lps(︀j⌋︀⌋︀ points

to rps(︀i′⌋︀ and cross(︀rps(︀i⌋︀⌋︀ points to lps(︀j′⌋︀.
Proof. Suppose by way of contradiction there exists a pair of cross pointers

that cross each other as specified by the four locations in the statement of

the theorem. By symmetry, let us assume that node(︀rps(︀i⌋︀⌋︀ is higher than

node(︀lps(︀j⌋︀⌋︀ in T, i.e.,

ah(node(︀rps(︀i⌋︀⌋︀) > ah(node(︀lps(︀j⌋︀⌋︀). (3.2)

By Invariant 3.4, node(︀rps(︀i⌋︀⌋︀ is the parent of node(︀lps(︀j′⌋︀⌋︀, meaning that

ah(node(︀rps(︀i⌋︀⌋︀) = ah(node(︀lps(︀j′⌋︀⌋︀)+ 1. (3.3)
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Furthermore, by repeated applications of Invariant 3.2 (ℒ) and the condition

that j < j′, we also know that

ah(node(︀lps(︀j⌋︀⌋︀) > ah(node(︀lps(︀j′⌋︀⌋︀). (3.4)

However, these three relations cannot simultaneously hold.

3.4 The Ability to Build
The easiest way to build the hands is to do so in a number of elementary

steps, each of which performs a single task that is easy to understand and

easy to analyze. In what follows, we will give such an algorithm that builds

the hands on f in a degree-balanced search tree T. This algorithm assumes

it is given a node u in T such that f is in the subtree T⋃︀u. We can therefore

pass root(︀T⌋︀ as u to build the hands from scratch. In the general case when

u is not root(︀T⌋︀, we say that the hands returned by the algorithm is “the

hands on f restricted to u (or T⋃︀u)”.
Before we go on, let us remark that the algorithm below makes several

passes when it builds the hands and these passes can actually be condensed

into a single top-down pass. However, both the algorithm and its proof of

correctness will be considerably more complex.

3.4.1 Algorithm
⎷ build the hands on f in T⋃︀u ⌄
- pass 1 -

1> Compute the height h of T⋃︀u by traversing down its left spine. Note

that traversing this path is a correct way to compute h because T is a

degree-balanced search tree. The running time of this step is O(h).
- pass 2 -

2> Search for f starting from u while keeping track of (i) the current depth

with respect to u, and (ii) the access path of f in a parent stack. To actu-

ally build the hands, the search procedure in §1.1.2 should be modified

in two places.

2.1> During the descend, for each right parent key k of f from which we

descend into its left subtree, push (k,Nil,Nil) into rps and remember

its height in T. The latter of which can be deduced from h and the

current depth.

2.2> When we reach f , push ( f ,Nil,Nil) into rps and also remember its

height in T.

Note that in both places the first value of the triple pushed into rps
is a key pointer and not the key itself. As the two modifications only
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introduces an extra O(1) amount of work in each recursive call, this step

takes O(b ⋅ h) time. Also, note that the current rps satisfies Invariant 3.2

by construction.

- pass 3 -

3> Let ` be ⋃︀rps⋃︀. Since we know the height of each key appearing in rps,
we can apply Theorem 2.13 and then Theorem 2.14 to compute their

heterogeneous heights, which give us the values of ⋃︀spine(︀rps(︀i⌋︀⌋︀⋃︀ for
1 ≤ i ≤ `. The running time of this step is O(`), which is O(h) by

Theorem 3.6.

4> For 1 ≤ i ≤ `, build spine(︀rps(︀i⌋︀⌋︀ incrementally by traversing down the

right-left spine of key(︀rps(︀i⌋︀⌋︀ in T for ⋃︀spine(︀rps(︀i⌋︀⌋︀⋃︀ nodes. For each

visited node, push a triple comprising its innermost key, Nil, and Nil

into spine(︀rps(︀i⌋︀⌋︀. This step takes O(h) time by Theorem 3.6 and now

rps satisfies Invariant 3.3.

- pass 4 and pass 5 -

5> Symmetrically build lps using steps 2 to 4. Note that step 4 takes O(b ⋅ h)
time for lps because we need to compute #(u) for each visited node u
in order to descend into its rightmost child. In any case, all three steps

takes O(b ⋅ h) time in total. Note that so far all cross pointers in the cells

of both lps and rps are Nil.

- pass 6 -

6> To set the cross pointers in rps, we initialize a pointer rp to the bottom

cell of rps and another pointer lp to Nil, which is considered to be

poining at the sentinel lps(︀0⌋︀. We will also initialize a pointer p to the

bottom cell of the parent stack in step 2 and let node(︀p⌋︀ be the node

pointed by the cell at p.
We will maintain an invariant that node(︀rp⌋︀ is a descendant of node(︀lp⌋︀.

Observe that this invariant is true with the initial values of lp and rp.
This is because node(︀lps(︀0⌋︀⌋︀ is the −∞ sentinel of T, which we consider

to be a parent of root(︀T⌋︀, and thus node(︀rps(︀1⌋︀⌋︀ is a descendant of it.

7> If node(︀p⌋︀ is not node(︀rp⌋︀, then advance p up the parent stack until this

is true. This step will correctly finish since rp also points to a node on

the access path of f .
8> Test if rp is pointing to the top cell of rps.
8.1> If so, then there is nothing left to do in this pass. This is because

cross(︀rps(︀`⌋︀⌋︀ has already been initialized to Nil and this satisfies In-

variant 3.4. Go to step 9.

8.2> Otherwise, suppose rp is pointing at rps(︀i⌋︀ for some i ≤ (` − 1). From
the test result, we know rps(︀i + 1⌋︀ exists. Furthermore, the existence
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of rps(︀i + 1⌋︀ also implies that a cell exists above p in the parent stack.

Let c∗ be the node pointed by this cell. Note that c∗ is a child of

node(︀rps(︀i⌋︀⌋︀. Test if node(︀rps(︀i + 1⌋︀⌋︀ is c∗.
8.2.1> If so, then the placement of node(︀rps(︀i⌋︀⌋︀ and c∗ into rps in step 2

implies that we have descended left from both node(︀rps(︀i⌋︀⌋︀ and c∗.
This in turn implies that node(︀rps(︀i⌋︀⌋︀ is a trivial parent and therefore

cross(︀rps(︀i⌋︀⌋︀ should remain Nil. In other words, no work has to be

done.

8.2.2> Otherwise, advance lp up lps until it hits the cell pointing to c∗ and

then set cross(︀rps(︀i⌋︀⌋︀ to lp. This will finish correctly because (i) we

must have descended (right) into the rightmost child of c∗ for it to

not appear in rps, but descending right also means it will appear in

lps, and (ii) the local invariant governing lp and rp implies that lp
was still at a cell in lps that points to an ancestor of c∗.

8.3> Having handled one of the above two cases, advance rp up rps by

one cell and go back to step 7. Note that after advancing rp in this

step, we have restored the local invariant above—in the first case we

did not advance lp and so the invariant holds true; in the second case

node(︀rp⌋︀ is deeper than c∗ in T because c∗ is a child of node(︀rps(︀i⌋︀⌋︀ and
node(︀rps(︀i + 1⌋︀⌋︀ is in the rightmost subtree of c∗.

- pass 7 -

9> Repeat step 6 to step 7 to set the cross pointers in lps.

3.4.2 Analysis
Theorem 3.9 Given a node u at height h in a degree-balanced search tree

T and a key f in T⋃︀u, the hands on f restricted to u can be built in O(b ⋅ h)
time.

Proof. Note that we have already analyzed the running time of the first

five passes of the above algorithm and they all run within the desired

time bound. For the sixth and seventh passes, observe that each of lp,
rp, and p only gets advanced up in its corresponding stack and that each

advancement takes O(1) time. By viewing T⋃︀u as a degree-balanced search

tree, Theorem 3.6 applies and thus both of these passes finish in O(h)
time.
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4
A Worst-Case

Dynamic Finger Tree Algorithm

Besides giving us an easy way to describe and analyze “the hands” data

structure that was covered in §3, the concept of heterogeneous decom-

positions has also enabled us to design a new binary search tree algorithm

with the dynamic finger property in the worst case. As opposed to using

pseudocode, this time our algorithm is actually specified using a complete

implementation in the Standard ML programing language [MTHM97]. The

purpose of this chapter is to (i) explain why such a binary search tree algo-

rithm is interesting from both a historical and a theoretical standpoint, and

(ii) present the design of our algorithm and annotate a relevant subset of

its source code to make it easier to understand. (The complete source code

is available upon request.)

Before we get to our motivation, let us point out that the PDF document

of this thesis contains two layers that are invisible by default. Both of them

depict a binary search tree with 127 keys maintained using our algorithm.

The first layer overlays the 127 shapes of this tree in the sorted order on

pp. 1–127 of this document; the second layer is identical to the first except

it only appears on odd-numbered pages for double-sided printing.
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4.1 Motivation
Intellectual Curiosity. The primary motivation behind this work is to

answer the following question—why would Sleator and Tarjan [ST85b]

conjecture that splay trees have the dynamic finger property in the first

place?

To really understand this question, let us describe a relatively common

pattern in the study of dynamic optimality for splay trees. The first part

of this pattern involves defining a desirable property that can be exhibited

on some binary search tree algorithm, from which we infer that an optimal

binary search tree algorithm must also have this property. Then we would

attempt to prove that splay trees also have this property, because it is a

necessary condition for splay trees to remain its candidacy of dynamically

optimality. We feel that any work following this pattern would seem to

require that we pick a particular property which is already known to be

exhibited by some binary search tree algorithms. For if we have picked a

property that is unknown to be achievable by binary search trees, then we

would have no idea if splay trees really “should” have this property or not.

Now of course, part of the above reasoning relies on our faith in splay

trees being O(1)-competitive. Otherwise the norm among previous works

should really be the identification of some desirable property, followed by

the design of a binary search tree algorithm with the property, and then a

proof that splay trees do not have this property. However, when it comes

to the dynamic finger property, we have discovered that the situation in

the literature is interesting.

First, we note that at the time when Sleator and Tarjan [ST85b] put for-

ward the dynamic finger conjecture, there were already numerous works

on finger searching in various balanced search trees. For some examples,

we list [GMPR77], [BT80], and [HM82]. However, to the best of our knowl-

edge, none of these works fits into the binary search tree model. This is

of course most certainly known to Sleator and Tarjan as well. But in view

of this, Sleator and Tarjan [ST85b, p. 685] did go on to point out that dy-

namic optimality conjecture implies the dynamic finger conjecture. In other

words, a binary search tree algorithm that has the dynamic finger property

must be already known at the time, at least to the authors themselves.

We went on to search the literature for such a binary search tree algo-

rithm. In the most definitive word on the dynamic finger property, Cole

[Col00] have remarked that the proof that dynamic optimality implying

the dynamic finger property is “nontrivial”. This assures us that there

must be some technical difficulty in obtaining such a binary search tree
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algorithm. However, while researching for §5 of this thesis, we also met

with what may be the most recent mentioning of such an algorithm, which

is by Demaine, Harmon, Iacono, and Pǎtraşcu [DHIP07, p. 243]:

[. . . ] a balanced BST supporting search, split and concatenate

operations in the worst-case dynamic finger bound, O(1+ lg r)
worst-case time, where r is 1 plus the rank difference between

the accessed element and the previously accessed element. For

example, one such data structure maintains the previously ac-

cessed element at the root and has subtrees hanging off the

spine with size roughly exponentially increasing with distance

from the root. [. . . ]

While the fact that no citation is offered may suggest that there has been

no explicit description of such an algorithm, the reader may have already

begun to see how such an algorithm may work and may have perhaps even

seen such an algorithm.

Indeed, the most relevant work we found was a design by Kosaraju

[Kos81]. Although his design may essentially be described as above, with

the subtrees hanging off the spine being (2, 3)-trees of increasing heights,

we must note that the interaction between the subtrees hanging off the

spine is highly nontrivial. In fact, the details lying underneath the adjective

“roughly exponentially” makes up for the majority of the paper. However,

in that form that it is written in [Kos81], Kosaraju’s algorithm does not

seem to be in the binary search tree model. According to our analysis,

the problem has to do with the fact that his algorithm is designed to

support efficient insertions and deletions. In particular, Kosaraju would

allow consecutive (2, 3)-trees to have equivalent heights, even though they

are supposed to get exponentially larger as the distance from the root

increases. To control the amount of redundancy in the sizes, he would then

maintain a regularity condition so that, among other sub-conditions, there

can only be a O(1) number of subtrees sharing a particular height. But to

implement the regularity condition, he ended up using spinal nodes that

have five pointers, which can give an ability that may not be feasible in the

binary search tree model. In other words, it is not entirely clear that this is

the design that Sleator and Tarjan had in mind. This marks the beginning

of our effort.

To this end, we have made the simplifying assumption that the tree

contains a fixed set of (2h − 1) keys for any h ≥ 1. Our algorithm is de-

terministic and worst-case. This is in contrast to designs like splay trees,
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which are amortized, and treaps [SA96], which are randomized. However,

we do note that both of these designs have numerous advantages over our

design, for they are easier to implement, sport other desirable properties,

and support more operations such as insertions and deletions.

We will end this with a somewhat whimsical note. Before we started

working on our own design, we were aware of exactly one simple and

explicitly-stated binary search tree algorithm that has the dynamic finger

property. It is, in fact, the splay tree algorithm. ,

Stress Test. Another reason why we have developed this program is to

catch bugs in our own reasoning. While this is arguably backwards when

it comes to the pursuit of correctness, forcing ourselves to implement our

own theory have proved to be immensely useful in revealing corner cases

that the author has, in all honesty, simply missed. Of course, even though

we have done extensive testing with our code as described in §4.8, we

still cannot be sure that there can be no bug in our code and hence our

reasoning. But in contrast to having programmed our algorithms using

pseudocode, we feel that this boosts our confidence in the correctness in

two aspects. First, pseudocode—by its very nature—cannot be executed

on a computer. Even though we can dry run it on small instances, some

corner cases can only reveal themselves in larger nontrivial instances, either

causing an incorrect output or even crashing our programs. Second, leaving

a specification of an algorithm in pseudocode form means leaving room

for typographical mistakes even when the algorithm to be described is

completely correct to begin with. This can be witnessed by a cursory

glance over the errata of [CLRS01]
☇1
, which reveals a fair number of such

typos.

Having made the above observations, we have come to the conclu-

sion that we should attempt to leave our algorithmic specification in a

state that is as mechanically-verifiable as possible. For this work, we have

chosen to specify our algorithm in the Standard ML programming lan-

guage [MTHM97]. As we will see, the Standard ML type checker actually

enforces certain invariants due to the way the datatypes in our program

are chosen, and this has been a significant practical advantage. Another

benefit of presenting our algorithm in Standard ML is that we can verify

that our program is purely-functional by mere inspection. (Standard ML

have constructs that cause side-effects, but it is easy to check that we did

not use any of them.) However, we do note that all binary search tree

1.http://www.cs.dartmouth.edu/~thc/clrs-2e-bugs/bugs.php
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algorithms on a static set of keys are inherently purely-functional simply

because the reorganization tree can be implemented by copying.

4.2 Design
Intuitively, our dynamic finger tree is an implementation of the hetero-

geneous spines of a complete binary search tree T with respect to one of

its key f . The idea is to have f always at the root and use the two spine

structures of a binary search tree to implement the heterogeneous spines.

(For the moment, we may think of the spine structures simply as the spines.

This is a complication that we will explain later.) The subtrees that are

hanging off the ancestral paths of f in the reference tree will then be hung

off the two spine structures of the dynamic finger tree. While this is similar

to the design of the hands, where two parent stacks and a collection of

spine prefix stacks are used to implement the heterogeneous spines, there

are several major aspects where the dynamic finger tree is different from

the hands, all of which are consequences of staying in the binary search

tree model.

The first difference lies in the fact that catenable stacks have abilities

that do not come easily in the binary search tree model. In particular, they

can be catenated in worst-case O(1) time. Recall that in the algorithm to

perform a forward step in the hands, we rely on this ability to prepend the

spine prefix stack to the parent stack even though a spine prefix stack can

grow to unbounded length. To allow prepending to the spine structures of

the dynamic finger tree in worst-case O(1) time, we must therefore plan

to use incremental prepending, which correctly implements a catenation

because every secondary key residing in the spine prefix goes before the

primary keys in the ancestral path. Fortunately, with the help of an extra

bit at each node, this turns out to be both easy and advantageous when we

get to the next difference below.

The second difference is lies the fact that we cannot have extra pointers

such as the cross pointers, which as we recall is critical for the O(1) time

absorption in the nontrivial parent case. But as we will see in the source

code, cross pointers are in fact not needed in a dynamic finger tree because

the merging is done incrementally. Whenever we need to undo the effect

of a partially completed incremental merge, it would be the case that the

amount of work that is already done is proportional to the dynamic finger

budget. (In fact, this is another way to implement the hands, although it

certainly adds to the complexity.)
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The third difference is due to the use of incremental merging. Because

we will not have enough time to move to the spines all nodes that should

be merged in, some nodes that correspond to the primary keys will have to

reside in places other than the two spines of the dynamic finger tree. This

necessitates the storage of an extra bit at each node to help us differentiate

nodes that contain the primary keys, and is the reason why we keep

referring to the “spine structures” instead of just “spines”. (In other words,

the two parent stacks in the hands are now implemented by the two spine

structures of the dynamic finger tree.) A clean way to accomplish this turns

out to be using this bit to indicate whether a node in the dynamic finger

tree is the root of a subtree that contains the keys of the reference subtree

hanging off the access path of f . Such a subtree is called a boxed subtree,

which we will explain soon.

The fourth difference is how we represent the spine prefixes themselves.

Recall that in the hands, we store each key in a spine prefix in a cell of the

spine prefix stacks and maintain pointers to these stacks in the cells of the

parent stacks. Not having the space to store the spine prefixes anywhere,

we resort to “storing” them by skewing the boxed subtrees themselves. The

notion of skewness is very easy to understand. Consider a complete binary

search tree Tref which is a reference subtree hanging off the access path of

f . The initial shape of the boxed subtree T◻ that contains the keys in Tref
is exactly the same as Tref . To right skew T◻ once is to rotate its root t to

the right, thus making the left child of t as the new root. This is to signify

that the spine prefix of Tref now contains the key inside t. (It is important

to note that the new root of T◻ is not yet part of the spine prefix.) Further

skewing T◻ means a longer spine prefix. (In the pointer view, we can think

that the pointer that leads to the root of a boxed subtree is in fact a pointer

to the deepest key of the spine prefix.)

A further complication arises because a complete binary search tree of

height h can only be right skewed (h− 1) times because each skew shortens

its left spine by one key. However, a boxed subtree of height h, which

initially starts in the shape of a complete binary search tree, can be skewed

h times when it corresponds to the left or right reference subtree of f .
Therefore, we have to introduce another bit to indicate whether the current

root of a boxed subtree is in the spine prefix or not.

To finish the overview, we note that our algorithm is conceptually simi-

lar to the one for the hands and it is based on unrolling the decomposition

by means of absorption. The running time analysis follows analogously

since we will be simulating all operations of the hands in real-time. With-
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Figure 4.1 – Node naming convention used in our code

out getting bog down by further details of the representation, which will

become clear once we get pass the ability to build the dynamic finger tree

in §4.5, we will end this with Figure 4.1, which shows the alphabets we

used to name the nodes in our code, and Figure 4.2, which shows the call

graph of the functions that we are going to describe.

4.3 Datatype and Utilities
Datatype. We will start by understanding our main datatype. We define

the type of an α tree as usual, but with two twists. Usually, an α tree is

defined to be either an external node E, or it is an internal node that is

represented by a tuple made of a left α subtree, a key of type α, and a

right α subtree. Both internal nodes and leaves are referred to as nodes.

In our dynamic finger trees, however, we need to store additional bits of

information into the nodes. First we extend the tuple defining an internal

node by a HeadBit, which is either H (set, or head) or T (clear, or tail). The

purpose of the head bit will be explained later, and we merely remark that

setting it denotes that the key is a nontrivial parent key. Then, in contrast to

introducing two bits into the tuple explicitly, we differentiate among four

types of internal nodes by using four different constructors X (exposed), B

(balanced), S (skewed), and Z (maximally skewed).

16 datatype HeadBit = H | T

17 datatype 'a Tree =

18 (* non-boxed types *)

19 E (* Empty *)

20 | X of 'a Tree * 'a * HeadBit * 'a Tree (* eXposed node *)

21 (* boxed types *)

22 | B of 'a Tree * 'a * HeadBit * 'a Tree (* Balanced, S_h^0 *)

23 | S of 'a Tree * 'a * HeadBit * 'a Tree (* Skewed, for i=[1,h-1]: S_h^i *)

24 | Z of 'a Tree * 'a * HeadBit * 'a Tree (* maZimally skewed, S_h^h *)

Boxed and Non-Boxed Types. We will refer to the E and X types of nodes

as non-boxed types, while the B, S, and Z types are said to be boxed.

We may think of a non-boxed node as the usual kind of nodes used in

typical search tree implementations. The three types of boxed nodes are
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introduced to represent the root of the boxed subtrees hanging off the two

spine structures of the dynamic finger tree. The distinction among these

three types will be explained when we get to the function skewR.

Sentinels as Exceptions. Besides the five types of nodes, we also have two

exceptions that are related to sentinels. At present, we do not use the −∞
and ∞ sentinels in our dynamic finger trees. Instead, whenever a sentinel

is reached, we raise the corresponding exception. This does not cause any

problem because we can safely assume all accesses are within (︀n⌋︀ in the

binary search tree model. We note that this is also the reason why we have

specialized our α type to int, even though the majority of our code can

easily be modified to not relying on this specialization at all. (This basically

would be to changing our code to use a generic comparator function since

we currently use < on the int type.)

34 exception PositiveSentinel of int Tree

35 exception NegativeSentinel of int Tree

Building a Complete Binary Search Tree. At this point, we are ready to

demonstrate how to build a complete binary search tree of height h, which

is also the starting point of our procedure to build an dynamic finger tree.

The procedure is a simple divide-and-conquer based on recursion. Note

that the head bits in all nodes are initialized to T by default. Also, note that

even though we are building a complete binary search tree for the moment,

later on it will be restructured like a binary search tree. In particular, the

number of internal nodes in the tree we return will be (2h − 1), which is

computed by the twoHMO on the input h. The number of nodes, which

includes that of leaves, is (2h+1 − 1).
60 fun buildBst h = let

61 fun builder l r =

62 if l = r then X (E,l,T,E)

63 else let val m = Int.div (l + r, 2) in

64 X (builder l (m - 1),m,T,builder (m + 1) r) end

65 in builder 1 (twoHMO h) end

Rotations. We have also introduced four reparenthetization functions to

perform rotations quickly. Note that these functions rotate a node only if it

is an exposed node, and will throw an exception otherwise.

81 fun rotateL (xl,xk,xh,X (yl,yk,yh,yr)) = (X (xl,xk,xh,yl),yk,yh,yr)

82 | rotateL _ = raise Fail "rotateL on non-X edge"

83 fun rotateR (X (xl,xk,xh,yl),yk,yh,yr) = (xl,xk,xh,X (yl,yk,yh,yr))

84 | rotateR _ = raise Fail "rotateR on non-X edge"
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The two functions rotateL’ and rotateR’, which are not shown here, are

defined to be rotateR and rotateL for symmetry. (In our coding style, the

primed variant of a function is the inverse function.)

4.4 Skewing
The most important concept for our dynamic finger trees is the skewness

of a boxed subtree, which models the length of the spine prefix of the

corresponding reference subtree and increases as the heterogeneous height

of the corresponding right ancestor of f drops. Although we have not yet

seen how the first boxed nodes are introduced into dynamic finger trees

by the function buildDftAtWalker, we note that skewing only occurs at the

root of a boxed subtree.

Recall that the right skewing operation is simply a right rotation at

the root of a boxed subtree in the dynamic finger tree, with its left child

becoming the new root. A boxed subtree T that corresponds to a reference

subtree of height h can have (h+1) different possible amount of skewness—

or simply “skew(s)”—ranging from 0 to h. Initially, T has 0 skews and its

initial shape is a complete binary search tree of height h. The root of T will

have the type B, and for convenience we will refer to T in this configuration

as a Bh. Once T has acquired a skewness of i for 1 ≤ i < h, the root of T will

have the type S and we refer to T as a Si
h. Finally, as we have discussed

in §4.2, T can be skewed h times but we only have (h − 1) possible shapes.

Therefore, when T has been skewed h times, we let its root take on the type

Z and refer to it as a Zh.

To prepare for the possible merge of the spine prefix with the parent

stack, perhaps due to a forward step, we will also need to start boxing

the subtrees inside T as it increases its skewness. In general, this means

the right subtree of the left child of the original root will now become a

boxed left subtree of the right child of the new root. However, care must

be taken in these cases to box the right child in the first skew and also to

avoid boxing an E in the skew before the final skew:

(1) A boxed subtree B1 will be skewed into a Z1 immediately.

(2) After the initial skewing a boxed subtree B2, we must not box the left

subtree of the right child of the new root, as this subtree is in fact an E.

(3) Otherwise, we are skewing a boxed subtree Bh for h > 2 and the right

subtree of the right child of the new root will also be boxed. This kind

of boxed subtree will also be referred to as an end boxed subtree.

(4) When Bh for h > 2 is getting skewed for the h-th time, we will return it

as a Zh to signify this.
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(5) A similar precaution to (2) must be taken in general when a Bh for h > 2
is getting skewed for the (h − 1)-th time since the right subtree of the

left child before the skew is also an E.

126 fun skewR tree = case tree of

127 E => E

128 | X _ => raise Fail "skewR X is always a bug"

129 | B (n as (E ,_,_,E)) (* B_1 *)

130 =>Z n (* => Z_1 *)

131 | B (X (E ,xk,T, E) ,yk,T,X yrn ) (* B_2 *)

132 =>S ( E ,xk,T,X (E ,yk,T,B yrn)) (* => S_2^1 *)

133 | B (X (xl,xk,T,X xrn),yk,T,X yrn ) (* B_h *)

134 =>S ( xl,xk,T,X (B xrn ,yk,T,B yrn)) (* => S_h^1 *)

135 | S (n as (E ,_,_,_)) (* S_h^{h-1} *)

136 =>Z n (* => Z_h *)

137 | S (n as (X (E,_,_,E),_,_,_)) (* S_h^{h-2} *)

138 =>S (rotateR n) (* => S_h^{h-1} *)

139 | S (X (xl,xk,T, X xrn),yk,T,yr ) (* S_h^i *)

140 =>S ( xl,xk,T,X (B xrn ,yk,T,yr )) (* => S_h^{i+1} *)

141 | Z _ => raise Fail "skewR Z is always a bug"

142 | _ => raise Fail "skewR unknown BS pat"

Finally, note that we will thrown an exception should we ever try to skew

a Z. This is because conceptually a Z is already at its maximum skewness

and we should never increase its skewness.

The function skewR’ is the inverse of the function skewR. The special

cases can be derived similar to those of skewR.

144 fun skewR' tree = case tree of

145 E => E

146 | X _ => raise Fail "skewR' X is always a bug"

147 | B _ => raise Fail "skewR' B is always a bug"

148 | S ( E ,xk,T,X (E ,yk,T,B yrn)) (* S_2^1 *)

149 =>B (X (E ,xk,T, E) ,yk,T,X yrn ) (* => B_2 *)

150 | S (n as (E,_,_,X (E,_,_,_))) (* S_h^{h-1} *)

151 =>S (rotateR' n) (* => S_h^{h-2} *)

152 | S ( xl,xk,T,X (B xrn ,yk,T,B yrn)) (* S_h^1 *)

153 =>B (X (xl,xk,T, X xrn),yk,T,X yrn ) (* => B_1 *)

154 | S ( xl,xk,T,X (B xrn ,yk,T,yr )) (* S_h^i *)

155 =>S (X (xl,xk,T, X xrn),yk,T,yr ) (* => S_h^{i-1} *)

156 | Z (n as (E,_,_,E )) (* Z_1 *)

157 =>B n (* => B_1 *)

158 | Z (n as (E,_,_,_ )) (* Z_h *)

159 =>S n (* => S_h^{h-1} *)

160 | _ => raise Fail "skewR' unknown SZ pat"

4.5 The Ability to Build
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Two Forward Operators. We will start with two convenience operators

known as the forward pipe operator |> and the forward composition op-

erator >>. These are not in the Standard ML programming language but

their definitions are simply:

1 fun (x |> f) = f x

2 fun (f >> g) = g o f

Although it will not matter in our code here, the reader is referred to

infix.sml for the relative precedence of these operators.

4.5.1 Building a Finger Search Tree
buildDftAt. First comes a wrapper function that calls buildDftAtWalker

and buildDftRotator for the actual work. We will explain these functions

next.

318 fun buildDftAt x tree =

319 buildDftAtWalker x E tree E |> #3 |> buildDftAtRotator

buildDftAtWalker. The function buildDftAtWalker takes four arguments.

The first is simply the target key x where we should build our dynamic

finger tree at. The third is the root of the subtree we should look at. As

seen in buildDftAt, initially this is simply the root of a complete binary

search tree. The second and the fourth will be explained below.

Conceptually, we can think of buildDftAtWalker as having a descend

phase, a destination phase and an ascend phase. In the descend phase,

we search for x as usual, but we do two extra actions before each de-

scend. Suppose this is a right descend. First, we box and keep track of

the left subtree of the current node in ilst, which is the second argument

of buildDftAtWalker. The fourth argument is simply the mirror of the sec-

ond. Second, we skew the subtree that we have been keeping track in irst.
Observe that, due to the symmetry of the first move above, this is the right

subtree of the last node we descended left (all subsequent descends are

to the right). From the above two actions, we see that the left subtree of

a node where we descended right will be skewed k times if we continue

by descending left k times before the next right descend. Finally, as a side

note, notice that although the initial value of these two arguments are set to

E, they will be set after the first right descend and the first left descend. For

convenience in this function, we have allowed skewR to skew an E without

throwing an exception.

In the destination phase, we have reached the target node that con-

tains x. We will simply skew the two subtrees of the target node to their

maximum before the next phase.
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In the ascend phase, we also perform two extra actions in each ascend.

The first is simply a rotation to rotate the target node to the root. The

second is to set the head bits of the nontrivial ancestors. Since we did not

keep track of the direction of the descend, we would provide the answer to

both cases. The first (last) value of the tuple to be returned is the head bit

of the parent if it was a right (left) descend. Say we have just performed a

right descend and we are about to return. If we are at a right child, then

the parent is a trivial ancestor. Otherwise, we are at a left child, and the

parent will be a nontrivial ancestor.

165 fun buildDftAtWalker x = let

166 (* dn: skew the hanging subtrees towards `x' accordingly *)

167 (* up: rotate `x' to root *)

168 fun walker ilst (tree as X (E,_,T,E)) irst = (* bottom node stays T *)

169 (T, ilst, tree, irst, T)

170 | walker ilst ( X (l,k,T,r)) irst =

171 if x = k then let (* skew our two subtrees all the way to Z *)

172 fun skewer skewFn = let

173 fun worker tree = case tree of

174 Z _ => tree (* termination *)

175 | X n => worker (B n) (* start by boxing *)

176 | _ => worker (skewFn tree) (* recursion *)

177 in worker end

178 in (* internal marks H *)

179 (T, ilst, X (skewer skewL l,k,H,skewer skewR r), irst, T)

180 end

181 else if x < k then let (* skew ilst and pass r as new irst *)

182 val (_, olst, c, orst, h) = walker (skewL ilst) l (box r)

183 in (* ilst touched; L => (c,orst) are new (l,r); irst untouched *)

184 (H, olst, X (rotateR (c,k,h,orst)), irst, T) (* LP marks H *)

185 end

186 else let (* skew rlst and pass l as new ilst *)

187 val (h, olst, c, orst, _) = walker (box l) r (skewR irst)

188 in (* ilst untouched; R => (olst,c) are new (l,r); irst touched *)

189 (T, ilst, X (rotateL (olst,k,h,c)), orst, H) (* RP marks H *)

190 end

191 | walker _ _ _ = raise Fail "buildDftAt walker unknown pat, probably X:H"

192 in walker end

buildDftAtRotator. The function buildDftAtRotator takes one argument,

which is the root of the partially build dynamic finger tree piped from the

third position of the tuple returned by buildDftAtWalker. Recall that the

target key x is already rotated to the root. It’s easy to verify that rotating

x to the root would cause the left-right and the right-left spines to contain

exactly, up to the two (now boxed) subtrees of x before the rotation, the

left and right ancestors of x.
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Assuming that we do not have the concern of incremental merging, this

function simply rotates the two children of the root to exhaust the left-right

and the right-left spine until we hit the two boxed subtrees. This would

put the left (right) ancestors on the left (right) spine, with the right child

relation being the “right parent of” relation. Indeed, we can think of this

as inverting the heterogeneous spines of x and storing them on the two

spines of the dynamic finger tree.

Alas, incremental merging is a real concern when we get to the functions

prependL’ and prependR. The idea of buildDftAtRotator is invert the spines

while performing an “incremental unmerge” to mimic the effect of partially

completed incremental merges. This brings us to the dynamic finger tree

equivalent of Invariant 3.4, which for the reason of synchronization with

§3 is displayed as Invariant 4.4.

We will explain the significance of Invariant 4.4 when we get to the

function prependL’. For now, we simply note it is easy to maintain it as

we invert the right-left spine into the right spine—whenever we see the(T, T, H) pattern at the (g, i, k) position, we will first right rotate at i to

bring g up as usual, but then perform an additional left rotation at i to

bury i as the left child of k.

293 fun buildDftAtRotator tree = let

294 val (l,k,h,r) = get4 tree

295 fun rotatorL ls = case ls of

296 E => ls (* singleton *)

297 | Z _ => ls (* no parent *)

298 | X (_,_,_,E ) => ls (* done *)

299 | X (_,_,_,Z _) => ls (* stop at own child *)

300 | X (X (ll,lk,H,lr),k,T,X (rl,rk,T,rr)) (* H,T,T *)

301 =>X (X (ll,lk,H,X (lr,k,T,rl)),rk,T,rr) |> rotatorL

302 | X (n as (_,_,_,X _)) => X (rotateL n) |> rotatorL

303 | _ => raise Fail "buildDftAt rotatorL unknown pat"

304 fun rotatorR rs = case rs of

305 E => rs (* singleton *)

306 | Z _ => rs (* no parent *)

307 | X (E ,_,_,_) => rs (* done *)

308 | X (Z _,_,_,_) => rs (* stop at own child *)

309 | X (X (ll,lk,T,lr),k,T,X (rl,rk,H,rr)) (* T,T,H *)

310 =>X (ll,lk,T,X (X (lr,k,T,rl),rk,H,rr)) |> rotatorR

311 | X (n as (X _,_,_,_)) => X (rotateR n) |> rotatorR

312 | _ => raise Fail "buildDftAt rotatorR unknown pat"

313 in

314 X (rotatorL l,k,h,rotatorR r)

315 end
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The function get4 simply returns the tuple that represents an internal node.

Remark 4.1. Technically we can combine buildDftAtWalker and

buildDftAtRotator into one function, although we see that abstracting them

as two separate functions actually facilitates code reuse.

4.5.2 Spine Structures and Invariants
At this point we are ready to state the dynamic finger tree equivalent of

Invariant 3.2 and Invariant 3.3. But first, let us define the i-th node on

the right spine structure of a dynamic finger tree to be the i-th node we

visit when we perform an in-order traversal of all exposed nodes in the

right subtree of the root. In other words, the traversal would regard the

root of boxed subtrees as leaves and return, and had we not performed

the incremental unmerge, the i-node on the right spine structure is the

i-th node on the right spine of the right child of the root. The root then is

considered to be the 0-th node on the right spine structure.

For i > 0, the i-th subtree hanging off the right spine structure is the

left subtree of the i-th node on the right spine structure. Note that these

subtrees are all boxed, with the exception when it is an E. Note also that,

due to the root being the 0-th node, the i-th subtree hanging off the right

spine structure in fact corresponds to right reference subtree of the (i − 1)-
th key. We will say that this boxed subtree, i.e., the i-th one, is hanging off

the (i − 1) key even though in general this boxed subtree is the left subtree

of the right child of the key. Finally, suppose there are k nodes on the

right spine structure, which means the rightmost node t on the right spine

structure is the (k − 1)-th. We further define the k-th subtree hanging off

the right spine structure to be the right subtree of t, which is also either an

E or a boxed node as it is the end boxed subtree. This also corresponds to

the only case (i = k) when the i-th subtree is actually a child of the (i − 1)-th
key on the right spine structure.

With the above definitions, we state the three remaining invariants

besides Invariant 4.4.

Invariant 4.2 (Primary) Suppose the right spine structure has k nodes. The

0-th node on the right spine structure contains the most recently accessed

key. For 1 ≤ i ≤ k, the i-th node on the right spine structure contains the

right parent key of the key in the (i − 1)-th node in the reference tree.

Invariant 4.3 (Secondary) Suppose the right spine structure has k nodes.

For 1 ≤ i ≤ k, suppose Ti is the i-th subtree hanging off the right spine
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structure. Let wi−1 and wi be the (i − 1)-th and the i-th nodes on the

right spine structure, with wk being the sentinel ∞ as in §2.1.3. Then Ti
is (hh f (wi) − hh f (wi−1) − 1)-skewed, where f is the key at the root of the

dynamic finger tree.

Invariant 4.4 (Incremental Prepend) Let the right spine of an dynamic

finger tree contains the non-root grandparent g, the parent p and the child

c. If the head bit of c is set, then the head bits of g and p cannot be both

clear.

Invariant 4.5 (Incremental Merging Lower) If the right child i of the root

has its head bit set, and if i has a left child g, then g cannot be exposed.

4.6 The Ability to Step
Recall from §3 that the ability to step is a primitive used in the search. We

will start by discussing the function stepR before we go into the functions

it depends on.

stepR. The function stepR can be understood in two parts. In the first part,

we use the functions incMergeR, extendR, and prependR to operate on the

right subtree of the current root. The current root at f is thus implicitly

“popped”. This will give us the new root, which contains the key at g,
along with its new right subtree. In the second part, we operate on the left

subtree of the current root using the corresponding functions prependL’,

extendL’, and incMergeL’, which are of course used in this reversed order.

However, as we will see, we will need to fix the head bit on the new left

child before we use extend’. This is accomplished by the function fixHeadL.

451 fun stepR (tree as X (_,_,_,E)) = raise PositiveSentinel tree

452 | stepR tree = let

453 val (l,f,t,r) = get4 tree

454 val ltree = X (l,f,t,E) |> prependL' >> extendL' (* clear R *)

455 val root = r |> incMergeR >> extendR >> prependR

456 in case fixHeadL ltree root of

457 X (l,f,t,r) => X (incMergeL' l,f,t,r)

458 | _ => raise Fail "stepR fixHeadL only returns X"

459 end

460

461 ;use "visualizations.sml";

Assuming that each of the above functions takes worst-case O(1) time, we

conclude that stepR runs in worst-case O(1) time as well.

incMergeR. The functio incMergeR is very easy to understand. Whenever

we see a (T, T, H) pattern in the (i, j, k) position, we know that there is

10+152+20+15 pages, 18 figures, 4 tables base revision 903 built on 2009-5-28 16:00



120

120 A Worst-Case Dynamic Finger Tree Algorithm

an incremental merging going on and the left-right spine of k is to be

prepended in front of k. (Recall j is the left child of k.) Therefore, we simply

rotate j up as a step in the incremental merge to satisfy Invariant 4.5 since

i will become the new root.

409 fun incMergeR (X (il,i,T,X (kn as (X (_,j,T,_),k,H,_)))) =

410 X (il,i,T,X (rotateR kn) )

411 | incMergeR itree = itree (* nothing to merge *)

We note that this is the reason for the name “head bit”. It signifies that k is

the head of the second part of the incremental merge.

extendR. The function extendR extends the spine prefix of the key in i,
which in general corresponds to the boxed subtree in the j position, i.e., it
is the boxed subtree hanging off i. This can be very confusing because it

is not at all clear why there is a boxed subtree at the j position. To clarify

this, we must note that extendR is called after incMergeR, which means that

at this point the key in the k position is in fact the key following the key at

i in the right spine structure. (For instance, if the incremental merge had

an effect, the key in the k position was in the j position back in incMergeR.)

We also note that a special case occurs if i is already the rightmost key on

the right spine structure, in which case the boxed subtree hanging off i is

in fact k, the end boxed subtree. Both of these cases restore Invariant 4.3 at

j.

338 fun extendR (X (il,i,it,X ( j,k,kt,kr))) = (* i's box is j *)

339 X (il,i,it,X (skewR j,k,kt,kr))

340 | extendR (X (il,i,it, k)) = (* i's box is k *)

341 X (il,i,it,skewR k)

342 | extendR (ztree as Z _) = ztree (* i degen *)

343 | extendR _ = raise Fail "extendR unknown pat"

Finally, we note that this function corresponds to decrementing the het-

erogeneous height of the right parent of the new root, which is in the i
position. The consequence of which is to extend its spine prefix by one key,

which we did.

prependR. The last function we need for adjusting the right subtree is the

function prependR. Its purpose is to restore Invariant 4.2 and Invariant 4.4.

Observe that when the function gets called, we have already performed the

pop and the extend parts of the forward step. What’s missing is to prepend

the spine prefix of the original root to the front of the right spine. We see

that this spine prefix corresponds to the left boxed subtree of i, which must

have already been maximally skewed since it is the boxed subtree hanging

off f before the forward step. Invariant 4.4 actually gives us a good idea of
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what to do. Suppose the boxed subtree is a Zh, which will be exposed since

the corresponding secondary keys are now primary. If h ≥ 2, then we will

incrementally merge the first two keys into the right spine of the dynamic

finger tree. If h = 1, then one key will be merged. Otherwise h = 0 and no

keys need to be merged. In all three cases, we will set the head bit of i to

indicate that i is the head of the second part of the concatenation. Finally,

we note that there is a special end case when f was in fact the rightmost

key on the right spine structure. In this case, we will simply expose the

boxed subtree hanging off it, which is at position i.

377 fun prependR itree = case itree of

378 X (Z (E,g,T,X (hl,h,T, hr)),i,_,ir ) (* Z>1 *)

379 =>X ( E,g,T,X (hl,h,T,X (hr ,i,H,ir))) (* mark H *)

380 | X (Z (E,g,T, E),i,_,ir ) (* Z=1, h degen *)

381 =>X ( E,g,T,X (E ,i,H,ir)) (* mark H *)

382 | X (E,i,_,ir) => X (E,i,H,ir) (* Z=0; mark H *)

383 | Z (n as (E,_,_,_)) => X n (* Z at end; unbox *)

384 | E => E (* empty rps *)

385 | _ => raise Fail "prependR unknown pat"

prependL’. The effect of the function prependL’ can easily be understood

by reversing the function prependR. Recall that, before the prepend that

we are trying to undo, we have just initiated an incremental merge to

prepend the Zh at the e position in front of c. A trick we deployed is to

mark the head bit of c to signify that it is the head of the second part of

the concatenation. It is important to note this bit is set even if there was

nothing to be prepended. We can therefore use the first head bit we see

on the left spine structure to determine the head of the second part and

“unprepend” accordingly, thanks to Invariant 4.4. Finally, we remark that

the three end cases are merely a boxing operation and could be collapsed

into one had we not been so keen on explicitly matching all possible cases.

365 fun prependL' tree = case tree of

366 X (_,_,H,E) => tree (* Z=0 *)

367 | X (X (X (al,a,H, ar),c,T,cr),f,T,E ) (* Z>1 *)

368 =>X ( al,a,H,Z (X (ar ,c,T,cr),f,T,E))

369 | X (X (cl,c,H, E),f,T,E ) (* Z=1 *)

370 =>X ( cl,c,H,Z (E ,f,T,E))

371 | X (n as (E ,f,T,E)) => Z n (* Z=1 end *)

372 | X (n as (X (B (E,a,T,E),c,T,E),f,T,E)) => Z n (* Z=2 end *)

373 | X (n as (X (X (_,a,T,_),c,T,E),f,T,E)) => Z n (* Z>2 end *)

374 | _ => raise Fail "prependL' unknown pat"

extendL’. The operation of extendL’ is the exact opposite of extendR. We

merely remark that we are “unextending” the boxed subtree hanging off c.
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330 fun extendL' (X (X (al,a,at, b),c,ct,cr)) = (* c's box is b *)

331 X (X (al,a,at,skewL' b),c,ct,cr)

332 | extendL' (X ( a,c,ct,cr)) = (* c's box is a *)

333 X (skewL' a,c,ct,cr)

334 | extendL' (ztree as Z _) = ztree (* c degen *)

335 | extendL' _ = raise Fail "extendL' unknown pat"

fixHeadL. The function fixHeadL is a distinctive function in the forward

step for it is not mirroring some function that operates on the right spine

structure. Instead, it uses the newly built right spine structure to help

determine if we should clear the head bit of the key at f , which after the

forward step will be the key at the left child of the root. This is one of

the few places where we clear the head bit, which was set by the function

prependR for the purpose of our current discussion of a forward step. The

idea is to look at the right child of the new root, and see if it corresponds

to a nontrivial parent key. If so, using the fact that the reference tree is a

complete binary search tree, we know that the left child of the new root

should correspond to a trivial parent key. It could also be possible that g
is on the right spine of the reference tree, in which case the the right child

is either a maximally skewed boxed subtree, or E. If none of the the above

applies, we leave the head bit as it was. Finally, fixHeadL is also responsible

for piecing together the left and the right spine structures.

418 fun fixHeadL (ltree as X (ll,l,_,lr)) (X (E,f,ft,fr)) =

419 (case fr of

420 X (_,_,H,_) (* only one parent is nontrivial and it is RP *)

421 => X (X (ll,l,T,lr),f,ft,fr)

422 | Z _ => X (X (ll,l,T,lr),f,ft,fr) (* LP trivial, RP sentinel *)

423 | E => X (X (ll,l,T,lr),f,ft,fr) (* at the rightmost node *)

424 | _ => X (ltree ,f,ft,fr))

425 | fixHeadL (ltree as Z _) (X (E,f,ft,fr)) = X (ltree,f,ft,fr)

426 | fixHeadL _ _ = raise Fail "fixHeadL unknown pat"

incMergeL’. The last function in a forward step is incMergeL’. It may ap-

pear that we have already performed an unprepend before. However,

observe that this is for the spine prefix of f before the backward step that

we are trying to undo. This spine prefix corresponds to the Zh at the e
position before. Now that we have performed an unprepend, we still need

to undo the possible incremental merge which would bring the key at b to

the a position. Hence we will check to see if the head bit of the current al
position is set (this was the key at a), and if so, rotate the key at the current

a position down to the b position.

404 fun incMergeL' (X (X (bn as (X (al,a,H,ar),b,T,br)),c,T,cr)) =

405 X (X (rotateL' bn) ,c,T,cr)
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406 | incMergeL' ctree = ctree (* nothing to unmerge *)

We note that the code above names the nodes as they were before the

incremental merge was performed, hence b seems to be on the left spine

and has a as its left child.

4.7 The Ability to Search
As we may recall from §3, our search function is built upon four abstrac-

tions based on absorption. We will first discuss them in the context of

dynamic finger trees before we show how we perform a search.

4.7.1 Abstractions
promoteRoot. The function promoteRoot is responsible for promoting the

key at the root to one less than its (actual) height, therefore eliminating its

spine prefix. In the context of dynamic finger trees, this corresponds to

eliminating the skewness of the boxed subtrees hanging off it and can be

done by successively called the functions extendL’ and extendR’. There are

a total of six terminal cases because of our treatment of the end cases. We

merely remark that in all these six cases, the skewness of the boxed subtree

hanging off the root has been completely eliminated.

464 fun promoteRoot tree = case tree of

465 X (E,_,_,_) => tree (* 3 leaf cases *)

466 | X (_,_,_,E) => tree

467 | X (X (_,_,_,E),_,_,X (E,_,_,_)) => tree

468 | X (B _,_,_,_) => tree (* 3 B cases *)

469 | X (_,_,_,B _) => tree

470 | X (X (_,_,_,B _),_,_,X (B _,_,_,_)) => tree

471 | _ => tree |> extendL' >> extendR' |> promoteRoot (* otherwise *)

demoteRoot. The function demoteRoot is the opposite of promoteRoot. The

only difference is that we will set the head bit of the root key after the

demotion if the key resides in a non-bottom internal node in the reference

tree. Observe that, from what we understand from the forward step, a key

at a non-bottom internal node will has its head bit marked until it rolls

over the left side of the root of the dynamic finger tree. It is until then that

we will check if we should clear its head bit. This explains why we mark

its head bit here.

474 fun demoteRoot tree = case tree of

475 X (E,_,_,_) => tree (* 3 leaf cases *)

476 | X (_,_,_,E) => tree

477 | X (X (_,_,_,E),_,_,X (E,_,_,_)) => tree

478 | X (l as Z _,k,_,r) => X (l,k,H,r) (* 3 Z cases, mark H *)
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479 | X (l,k,_,r as Z _) => X (l,k,H,r)

480 | X (l as X (_,_,_,Z _),k,_,r as X (Z _,_,_,_)) => X (l,k,H,r)

481 | _ => tree |> extendL >> extendR |> demoteRoot (* otherwise *)

absorbTrivialRP. We use the function absorbTrivialRP to absorb the key

at the root and advance to its trivial right parent key, which will be at the

new root. The first thing we do is to promote the root key, thus eliminated

the skewness of the two boxed subtrees hanging off it. A key step is to

perform an incMergeR now to ensure that the key at the k position is in fact

the right parent key of the key at the i position.

We will then dispatch based on whether the left child is exposed or

not. If not, we are in the easy case since there is no left parent key. (This

happens when f is on the left spine of the reference tree and is the second

case in the code.) In this case, we merely need to prepare a new boxed

subtree nb and put it as the left child of the new root, which contains the

key at i. Otherwise, the preparation of nb proceeds by first building a B

node that contains the root’s left child, the key at the root, and the root’s

right child. We further have to determine the head bit lh of the new left

child. Fortunately, it simply is the opposite of what the new right child

would have. At this point we assemble the new left child using nb as its

left subtree. Notice that nb will therefore be the boxed subtree hanging off

the new root, exactly as it should be. There are two final steps. First, we

must call extendL’ on the new left child because its key has just increased

in its heterogeneous height. We can witness this by noting that its support,

which comes from nb, is one more than it was from lr (the left subtree of

nb now). Second, we must also call incMergeL’ on nl to make sure that it

does not violate Invariant 4.4 should we have cleared its head bit lh.
502 fun absorbTrivialRP dftP =

503 case promoteRoot dftP of (* turn associated trees into B or E *)

504 X (l,k,_,r) =>

505 (case (l, incMergeR r) of (* restore RS invariant *)

506 (X (ll,lk,H,lr), X (rl,rk,T,rr)) => let (* LP present *)

507 val nb = B (unBE lr,k,T,unBE rl)

508 (* if we have a new trivial RP, then LP remains nontrivial *)

509 val lh = case rr of X (_,_,T,_) => H | _ => T

510 val nl = X (ll,lk,lh,nb) |> extendL'

511 (* if lh is cleared, check and restore LS invariant *)

512 in X (incMergeL' nl,rk,T,rr) end

513 | (_ , X (rl,rk,T,rr)) => let (* LP absent *)

514 val nb = B (unBE l,k,T,unBE rl)

515 in X (nb,rk,T,rr) end

516 | _ => raise Fail "absorbTrivialRP unknown l,r pat")

517 | _ => raise Fail "absorbTrivialRP non-X pat"
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Finally, we note that the function unBE exposes a B node to become an X

while passing E through.

absorbNonTrivialRP. The function absorbNonTrivialRP is in fact largely

similar to absorbTrivialRP, with only a complication at the preparation of

the new left child nl. Ideally, it is simply a node consisting of the left child

of the root l, the key k at the root and also the subtree hanging off to the

right of the root rl. Observe that when the right parent key rp is nontrivial,

there can be an unbounded number of left ancestor keys that are in the left

reference subtree of rp. Fortunately, these left ancestor keys must appear

before the left parent key lrp of rp in the left spine structure, and the head

bit of lrp must have set when we prepended them on. In other words, we

just need to proceed similar to prependL’ and rotate all keys up to the first

head off the left spine. The only difference now is that after the rotation(s),

we must also call extendL’ on lrp, which will now be in the c position.

542 fun absorbNonTrivialRP dftP =

543 case promoteRoot dftP of (* turn associated trees into B or E *)

544 X (l,k,_,r) =>

545 (case (l, incMergeR r) of (* restore RS invariant *)

546 (X (ll,lk,T,lr), X (rl,rk,H,rr)) => let (* LP must be present *)

547 (* if we have a new trivial RP, then new LP is nontrivial *)

548 val h = case rr of X (_,_,T,_) => H | _ => T

549 (* construct new LP: prepend' all nodes up to the first H into S *)

550 val nl = case X (l,k,T,unBE rl) of

551 (* if we still have an LP, then we need to extendL' it *)

552 X (X (X (al,a,H, ar),c,T,cr),f,T,fr ) (* S>1 *)

553 =>X ( al,a,h,S (X (ar ,c,T,cr),f,T,fr)) |> extendL'

554 | X (X (cl,c,H, E),f,T,fr ) (* S=1 *)

555 =>X ( cl,c,h,S (E ,f,T,fr)) |> extendL'

556 | X n => S n (* no H means we have absorbed the last LP *)

557 | _ => raise Fail "absorbNonTrivialRP nl unknown pat"

558 (* if we cleared H of new LP, check and restore LS invariant *)

559 in X (incMergeL' nl,rk,T,rr) end

560 | _ => raise Fail "absorbNonTrivialRP unknown l,r pat")

561 | _ => raise Fail "absorbNonTrivialRP non-X pat"

4.7.2 The Search Algorithm
With the four abstractions laid out, we are ready to describe the search

algorithm.

search. This is simply the wrapper to implement the semantics of a dy-

namic finger we defined in §1. If it is determined that the finger has to move

based on the last search target stored in lastTarget, it calls searchForward

to perform the actual work.
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702 local

703 val lastTarget = ref 0 (* the first search is always forward *)

704 in

705 fun search x tree = let

706 val k = getK tree

707 in

708 (if x = !lastTarget orelse x = k then tree (* no op *)

709 else if !lastTarget < x then (* forward *)

710 if x < k then tree (* x is still not present *)

711 else searchForward x tree

712 else (* backward *)

713 if k < x then tree (* x is still not present *)

714 else searchBackward x tree)

715 before lastTarget := x

716 end

717 end (* local *)

searchForward. The function searchForward proceeds exactly as in the for-

ward search algorithm for the hands. First, we locate the exit key w using

the function exitForward and restore Invariant 4.3 to obtain a dynamic

finger tree at w via demoteRoot. Then, if the target x is in the right refer-

ence subtree of w, we make a forward step. To locate the turn key w′
, we

use exitForward again. If w′
is x, then we can restore our invariants via

demoteRoot again. Otherwise, we use the function reassembleForward to

restore Invariant 4.3.

666 fun searchForward x dft = let

667 val exitDft = dft |> exitForward x |> demoteRoot

668 in

669 if x <= getK exitDft then exitDft

670 else let (* x is in the right subtree *)

671 val turnP = exitDft |> stepR |> exitForward x

672 in

673 if x <= getK turnP then demoteRoot turnP

674 else let

675 val destDft = reassembleForward x turnP

676 in

677 if x <= getK destDft then destDft

678 else raise PositiveSentinel destDft

679 end

680 end

681 end

exitForward. The function exitForward scans for the exit key by successive

absorptions using absorbTrivialRP and absorbNonTrivialRP appropriately.

Assuming we do not hit the easy case when the target key is one of the

primary keys, this means we check if x is less than the right parent key of
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the current root. The first time we hit this, we know that x must be in the

right reference subtree of the current root key and we return the current

root. Note that we do not call demoteRoot in this function since we also use

it to locate the turn key, from which we simply descend and restore our

invariants directly.

644 fun exitForward x dftP =

645 if x = getK dftP then dftP (* do note demote: this happens in lg^2 d *)

646 else case getR dftP of

647 X (_,rk,rh,_) =>

648 if x < rk then dftP (* root is exit *)

649 else dftP (* recurse after absorption *)

650 |> (case rh of T => absorbTrivialRP | H => absorbNonTrivialRP)

651 |> exitForward x

652 | _ => dftP (* boxes, root has no RP => root is exit *)

reassembleForward. The last function reassembleForward is perhaps con-

ceptually the most complicated of all. Its purpose is to complete building

the dynamic finger tree at the target key x. Recall that if this function gets

called, then we have already obtained a tree turnP rooted at the turn key

k. Note that this tree does not yet fully satisfy our invariants and hence is

not a dynamic finger tree. We may think of it as a partially-built dynamic

finger tree, however. To complete building it, we will dispatch based on the

the right child r of turnP and invoke the appropriate excision argument.

First Case. In the first case, r is a B which means k is on the right spine

of the reference tree and x is in the reference subtree rref corresponding

to the boxed subtree rooted at r. In this case, we will unbox r (X rn in

code) and call buildDftAtWalker on it. We will pass the subtree hanging

off on the left of k, namely lr, as the second argument so that it can get

appropriately skewed inside buildDftAtWalker and come back as olst. This
subtree also corresponds to the left reference subtree lref of k. The key k,
which is now a left parent key, will also get its head bit h computed.

Let’s look at the node represented by the tuple ttuple assembled in the

code right before we perform the left rotation using rotateL. The node

contains k, with its right child being nc. The left child contains lk, with the

left child being ll and the right child being olst. Observe that the subtree

rooted at nc is in fact the dynamic finger tree build at x using the reference

subtree rooted at rref . Comparing the heterogeneous decompositions of

the whole reference tree and that of the subtree rooted at rref , we see that

the only difference is that the former is the latter with some extra keys

and subtrees on the left. The rightmost extra key corresponds to k, and
to its left the rest of the decomposition. To get the former decomposition
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using the latter, we only need to get the heterogeneous height of k correct,

which in turns means we have to compute the correct spine prefix for lref .

The rest of the decomposition to the left of lref is the same as it is in the

decomposition at the turn key, which we already have from turnP. But of

course, the spine prefix of lref has already been computed correctly when

we use buildDftAtWalker to skew lr into olst. In other words, the only thing

that is missing is a left rotation to bring nc to the root, followed by a call

to buildDftAtRotator to invert the left-right and the right-left spine of the

new root. (The fact that we do not have to perform incMergeL’ lies in the

case condition that k is on the right spine of the reference tree and hence

all left ancestors are trivial and no incremental merging is in progress.)

Second Case. The second case is only slightly more complicated be-

cause now we have to deal with both the left parent and the right parent

of the turn key. In this case, x is in the reference subtree rref correspond-

ing to the boxed subtree rooted at rl, which we unbox into X rln. The

boxed subtree rooted at rbox corresponds to the right reference subtree

of rk, which is the right parent key of k. Depending on whether rr is the

rightmost node or not, it is either rrl or rr itself. As we are descending

from k to rref in the reference tree, we have to skew rbox once before we

pass to buildDftAtWalker as the input subtree on the right. The left input

subtree remains lr, and we obtain the values of h, olst, c, and orst. At this

point, again depending on whether rr is the rightmost node or not, we

assemble the new right-right child nrr by replacing rrl or rr itself with orst.
The piecing together of the new root can be understood based on its

two sides. On the right side, we let rk be the child key with nrr as its

right child because rk is the leftmost extra primary key in the right of the

heterogeneous decomposition. Its heterogeneous height, or more relevantly

the skewness of the boxed subtree orst that represents its right reference

subtree, has already been adjusted by buildDftAtWalker. On the left side,

we let k be the child key. (Recall that k is the rightmost extra key in the

left of the heterogeneous decomposition.) The right child of k is cl, and the

left child consists of the left subtree ll, the key lk and the right subtree olst,
which was lr before we adjust its skewness by buildDftAtWalker. Lastly,

we restore Invariant 4.4 by calling incMergeL’ to rotate the node containing

lk in the a position in the case when k is a trivial ancestor key of x. We then

pass the job to buildDftAtRotator to finish inverting the left-right and the

right-left spine of the new root.

596 fun reassembleForward x turnP = let

597 val (l,k,_,r) = get4 turnP
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598 val (ll,lk,lh,lr) = get4 l

599 val newRoot = case incMergeR r of (* restore RS invariant *)

600 B rn => let (* no rbox *)

601 val (h,olst,nc,_,_) = buildDftAtWalker x lr (X rn) E

602 val ttuple = (X (ll,lk,lh,olst),k,h,nc)

603 in X (rotateL ttuple) end (* nc is now root *)

604 | X (B rln,rk,rh,rr) => let

605 val rbox = case rr of X (rrl,_,_,_) => rrl | _ => rr

606 val (h,olst,nc,orst,_) = buildDftAtWalker x lr (X rln) (skewR rbox)

607 val nrr = case rr of X (_,rrk,rrh,rrr) => X (orst,rrk,rrh,rrr)

608 | _ => orst

609 val (ncl,nck,nch,ncr) = get4 nc

610 in

611 X (incMergeL' (X (X (ll,lk,lh,olst),k,h,ncl)),nck,nch,X (ncr,rk,H,nrr))

612 end

613 | _ => raise Fail "reassembleForward unknown r pat"

614 in

615 buildDftAtRotator newRoot

616 end

4.8 Testing Procedures
We have performed extensive testing with our code using the Standard ML

of New Jersey
☇2
, up to the limit allowed by the memory of our experiment

machine. Without showing the actual test programs, which can be found

in regressions.sml, we remark that we have tested our code with up to

N = (213 − 1) keys in the following ways:

+ Using a helper function fullFromReflection which computes the left

subtree of a dynamic finger tree at f by taking the mirror image of

the right subtree of the dynamic finger tree at (N − f + 1), we check

that the dynamic finger trees built by buildDftAt satisfy the symmetry

condition.

+ Using buildDftAt, we build a dynamic finger tree at each key from 1 to

N. Then we use stepR to repeatedly step from the dynamic finger tree at

1 to N and check that the results match. We also check stepL similarly,

and also check that stepL is the inverse function of stepR by taking a

backward step after a forward step at each key from 1 to (N − 1).
+ For all 1 ≤ i < j ≤ N, we build a dynamic finger tree at i using buildDftAt,

then perform a forward search to j using searchForward. Then we

compare the output with a dynamic finger tree built at j by buildDftAt.

2.http://www.smlnj.org/
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In other words, all possible forward searches are tested. We test all

possible backward searches similarly.
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Figure 4.2 – Call graph for the functions involved in the forward direction (backward sup-

pressed by boxes around the forward variant)
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5
An O(lg lg n)-Competitive

Dynamic Finger Tree Algorithm

At the time when this thesis was proposed, the author conjectured that

multi-splay trees have the dynamic finger property and proposed that

heterogeneous decompositions can be a useful perspective to look at the

dynamic finger property of tangolike trees. Let us admit upfront that we

have not been able to prove or disprove our own conjecture. Instead we

will use this chapter to report some progress that we have made towards

this goal. In particular, we will describe what we believe to be the first

O(lg lg n)-competitive binary search tree algorithm that has the dynamic

finger property in the amortized case, which we dubbed “handy tango

trees”. To simplify our exposition, we will make the following assumption

about the reference tree.

Assumption 5.1 The reference tree is a complete binary search tree of

height h.

5.1 Tango Trees vs. Dynamic Finger Property
Perhaps the best way to start is to show two existing tangolike tree designs

that do not have the dynamic finger property.
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5.1.1 Vanilla Tango Trees
It is easy to see that tango trees do not have the dynamic finger property

by considering repeated accesses to the smallest key x1. Observe that the

top auxiliary red-black tree T∗
that contains x1 has exactly lg n keys and it

stores x1 at the deepest level. Consequently, we will need Θ(lg lg n) time

to search for x1 inside T∗
, and our easy theorem follows.

Theorem 5.2 Tango trees do not have the dynamic finger property.

We may be tempted to conjecture that for a tangolike tree to have the

dynamic finger property, at least the top auxiliary tree must have the

dynamic finger property. However, using the understanding we gained

from heterogeneous decompositions, we see that the ranks of the keys in

the top auxiliary tree are approximately geometrically separated, and as

such the dynamic finger budget may in fact be quite large even if the finger

does not move over a large number of keys within it. An extreme case is

analyzed in Example 5.1.

Example 5.1.

Suppose the left spine of the reference tree is solid and we scan each

of these keys once from left to right. Clearly, there is no switches induced.

The i-th key has rank 2i−1
. We compute that the difference in rank between

the (i + 1)-th key and the i-th is (2i − 2i−1) = 2i−1
, which gives a dynamic

finger budget of Θ(i). Scanning the left spine would therefore have a

budget of Θ(h2), where h is the height of the reference tree. This budget is

sufficient even for a search tree that incurs linear time.

The above example actually leads us to the following theorem for access

sequences that induce no switches.

Theorem 5.3 Suppose the root solid path ends at a leaf f . Consider the

access sequence σ that contains only keys on this path. We can serve σ

within the dynamic finger budget using a tangolike design as long as the

top auxiliary tree can serve a key x in O(k) time, where k is the number of

keys between f and x inside the top auxiliary tree.

Proof. Take the heterogeneous decomposition of the reference tree with

respect to f . The runtime condition of the top auxiliary tree simply says

that the k-th closest primary key x on the heterogeneous spines can be

served in O(k) time.

We lowerbound the dynamic finger budget as follows. Observe that

the heterogeneous height of the primary keys in the right heterogeneous
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spine is non-decreasing with bounded multiplicity. (Or we can rely on

Assumption 5.1, in which case the heterogeneous height of the primary

keys are unique and strictly increasing.) Therefore, if x is the k-th key,

we know hh(x) = Ω(k). By Theorem 2.15, we know that lg dist( f , x) =
Ω(hh(x)), which is Ω(k) from the above. Suppose σi−1 and σi are both on

the right heterogeneous spine. If σi−1 < σi, then dist(σi−1, σi) ≥ 1
2 dist( f , σi).

Otherwise, σi−1 ≥ σi and dist(σi−1, σi) ≥ dist( f , σi). Suppose σi−1 and σi are

on the right and left heterogeneous spines respectively. Then dist(σi−1, σi) ≥
dist( f , σi). In all three cases, the dynamic finger budget is Ω(lg dist( f , σi)) =
Ω(k) and is sufficient to cover our O(k) cost.

Observations. Using the static finger theorem of splay trees, Theorem 5.3

shows that multi-splay trees serves any access sequence that induces no

switches within the dynamic finger budget. In particular, note that the

top splay tree can serve x in O(lg k) time, which is better than what we

need. Therefore, by considering such sequences alone, we cannot conclude

that the dynamic finger property is necessary for the top auxiliary tree.

However, it does suggest that when an arbitrary access sequence gets into

a segment where there is no switches, the keys with lower heterogeneous

heights with respect to to the leaf at the current solid path should be made

cheaper to access.

5.1.2 Improved Tango Trees
In all fairness, Demaine et al. have already observed that tango trees are

not dynamically optimal in their original conference paper [DHIP04]. In

particular, they have noted that if we use any non-self-adjusting binary

search tree to represent an auxiliary tree, then there must exist a key x at

depth Ω(lg lg n) in the top auxiliary tree. Since there are only O(1) switches

per access in the access sequence we considered in §5.1.1, repeated accesses

to x shows that tango trees are in fact Θ(lg lg n)-competitive.

Demaine et al. have subsequently proposed to replace each red-black

tree with a certain variant of search tree in the journal version of their

paper [DHIP07, p. 243]. The reader may recall that we have reproduced

their relatively short description of this variant in full on page 56 and called

it the “improved tango trees”. Furthermore, the reader may also recall that

we have partially quoted this on page 107 as well when we discussed

possible candidates of binary search tree algorithms that have the dynamic

finger property. Indeed, the description of the “balanced BST” in the quote

seems to fit the binary search tree algorithm we presented in §4. This

motivates us to represent each auxiliary tree using a generalized version of
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our dynamic finger trees with support for splits and joins. (Recall that our

design in §4 only handles search.) To avoid any possible confusion, let us

call this hypothetical version of dynamic finger trees “generalized dynamic

finger trees”. It must be stressed that our generalized dynamic finger trees

merely represent only one possibility of what the above “balanced BST”

might be.

Unfortunately, if we are allowed to make the following two assumptions

on how generalized dynamic finger trees may work, we do not get a

tangolike design with the dynamic finger property. In particular, our

analysis below shows that such a tangolike design incurs Ω(lg n lg lg n)
time per access when serving a certain form of the bit-reversal sequence,

which we define next.

Assumption 5.4 Splitting a generalized dynamic finger tree at a key that

is d rank away from the finger takes Θ(lg d) time.

Assumption 5.5 After splitting a generalized dynamic finger tree at the

key x, the fingers in the two resultant generalized dynamic finger trees will

be at the predecessor and the successor of x.
Having made these two assumptions, let us consider using a tangolike

tree to serve an arbitrary repetition of the bit-reversal sequence. To develop

our intuition, we will first look at a particular key f defined as follows.

Starting at the root, we alternately descend left and right until we reach a

leaf. Let the key in this leaf be f , and let σi be an access to f . (If h is 4 as in

Table 1.2, then f is 11.) Let the auxiliary tree that contains f at the access

σi be denoted Tf . Notice that Tf currently has (h + 1) keys.

Observe that up until the next access to f , each key on the access

path of f will have changed its preference once and each will be due to a

different access. Furthermore, the preference changes occur in the top-to-

bottom order, i.e., the topmost key (the root) will change its preference first,

followed by the second topmost etc. All these are due to the property of the

bit-reversal sequence. (Figuratively, we see that the bit-reversal sequence

keeps “peeling” the access path of f at the top.)

Suppose the topmost key on the access path of f has switched due to

an access sometime after σi. In a tangolike design, this corresponds to a

split of Tf at this key, which by construction is the rightmost key of Tf . The

finger is now at the new rightmost key of Tf by Assumption 5.5 and Tf
now contains h keys. Forward into the future, suppose the second topmost

key on the access path of f has switched due to another subsequent access.

How much time would it take to split Tf at this key, which by construction
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is the leftmost key of Tf ? By Assumption 5.4, it takes Θ(lg h) time and we

note that Tf now contains (h − 1) keys.

It is not hard to see that f has been chosen so that the lone finger in Tf
has to alternate between the two ends. The time we spent on splitting Tf

aggregates to ∑h−1
i=0 Θ(lg(h − i)) = Θ(h lg h), and this is divided among the

h subsequent accesses at an average of Θ(lg h) for each of these accesses.

Notice that this is the cost incurred due to splitting Tf alone and each of

these accesses incur some other costs due to the splitting of other auxiliary

trees, among other operations.

One may hope that in general the access paths to most leaves do not

see this extreme behavior we exhibited using f . However, we observe

that each time when there is a turn in the upper half of an access path to

any leaf, we incur a cost logarithmic to the size of the whole path due to

Assumption 5.4. In particular, say this is a right turn where we are at a

left child and about to descend right. In this case, the finger must have

been in the rightmost of the auxiliary tree before we reach the left child,

where the finger is now. As we will descend right, this left child is at the

leftmost of the auxiliary tree. As we only consider the turns in the top half

of the reference tree, this turn will cost us Θ(lg h) time. The question is,

therefore, how many such turns do we see when serving one repetition of

the bit-reversal sequence?

The probabilistic method allows us to compute this easily. Consider the

address of a random leaf f . A turn corresponds to the event that the (i+ 1)-
th bit differs from the i-th bit in the address. This happens with probability

1
2 at each bit independently for 1 ≤ i < h. Therefore, the expected number of

turns in the upper half of the access path of f is
1
2 × h

2 = Θ(h), and the cost

due to splitting the auxiliary tree that contains f over the course of serving

one repetition of the bit-reversal sequence is Θ(h lg h). Finally, since the

bit-reversal sequence visits every leaf once per repetition, the expected

number of turns is the average number of turns when summing over all

leaves. In other words, to serve one repetition of the bit-reversal sequence,

we incur Θ(h lg h) time per access.

Theorem 5.6 Let h be the height of the reference tree and let n be the

number of keys in it, i.e., n = (2h − 1). Any tangolike design using general-

ized dynamic finger trees satisfying Assumption 5.4 and Assumption 5.5

as its auxiliary trees will incur Θ(lg n lg lg n) time per access to serve the

bit-reversal sequence.
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Observations. Theorem 5.6 suggests that having one finger per auxiliary

tree may not be sufficient for a tangolike design to have the dynamic finger

property. Otherwise, the time bound would have been O(lg n) instead.

However, we must note that Assumption 5.4 is very strong because

it forces us to spend Θ(lg d) time to split at d keys away. It is totally

conceivable that a tighter analysis is possible on some (stronger) variants

of search trees, such as splay trees. Furthermore, after splitting a splay

tree, the keys at the roots of the two resultant splay trees do not satisfy

Assumption 5.5 as well. If the finger should be considered to be at the

two new roots of the splay trees after the split, then we must note that the

new finger is most certainly not the predecessor/successor of the splitting

key. (Although we have no good intuition on whether the finger should

be considered to be at the two new roots or the predecessor/successor of

the original root, the latter seems more intuitive and happens to satisfy

Assumption 5.5.)

In any case, Theorem 5.6 does not rule out the possibility of multi-splay

trees having dynamic finger property at all. However, it does suggest that

we should not merely rely on the dynamic finger property of splay trees,

for otherwise it is as if we are assuming Assumption 5.4 in the auxiliary

trees.

We further remark that when this research was started, it was an open

problem whether any online binary search tree algorithm can be split into

singletons in linear time. For more information, see the discussion at the

end of [Col90] as well as [Luc88a] and [Har06, §2.3.7]. However, recently

Demaine, Harmon, Iacono, Kane, and Pǎtraşcu [DHIKP09] have resolved

this question by showing how to simulate a heterogeneous (2, 4)-tree with

a binary search tree algorithm. Notice that this simulation is a sufficient

but not necessary condition for our proof to fail. In other words, even

though this simulation does not give the worst-case bounds as asserted

in [DHIP07], it does give us a binary search tree algorithm that has two

fingers and thus invalidating Assumption 5.4.

5.2 Wilber I vs. the Dynamic Finger Budget
Upon further investigation, we have identified four obstacles that any tan-

golike design must overcome in order to have the dynamic finger property.

Let us explain these issues before we go on to describe handy tango trees.
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5.2.1 Dynamic Finger Budget Can Be Too High
Consider an extreme example where we keep alternating between the

smallest and the largest key of the tree. The number of switch per search

is exactly 1, but the dynamic finger budget is lg n. If we were to retain

O(lg lg n)-competitiveness, then we only have O(lg lg n) time to work with.

This already means that the dynamic finger tree in §4 is too slow.

5.2.2 Switching At Θ(lg lg n) Time Is Too slow
Let us first recall that tangolike trees have a very specific structure to guar-

antee their competitiveness. In particular, each solid path in the reference

tree is represented by an auxiliary tree. A switch is then implemented

by several splits and joins among the involved auxiliary trees. If we are

not aiming for the dynamic finger property, then it suffices to bound each

split and join in time that is proportional to the logarithm of the size of

an auxiliary tree. But what if we encounter a search sequence such as the

alternation between the predecessor and the successor of the root of the

reference tree? This sequence has a low O(m) dynamic finger budget, but

the two auxiliary trees involved both have size Θ(lg n). If a switch requires

time that is proportional to the logarithm of the size of the auxiliary trees,

then we are already off by a Θ(lg lg n) factor from the dynamic finger

budget.

5.2.3 Must Avoid The Dynamic Optimality Dragon
Now it should be clear that we must more tightly analyze the running

time of a switch, but it turns out we must also be careful not to hope for an

analysis that is too tight in the following pragmatic sense. Recall that the

number of switches of a search sequence is a lowerbound on the running

time of any binary search tree algorithm on that sequence, and that we

have seen binary search tree algorithms that achieve the dynamic finger

budget of any search sequence. A simple but useful consequence of the

above is that the number of switches of a search sequence is upperbounded

by the dynamic finger budget of that sequence. It also follows that the bit-

reversal sequence, which induces Ω(n lg n) switches, has a dynamic finger

budget of Θ(n lg n). Therefore, when we serving this sequence, we must

implement each switch in O(1) time. However, realize that any auxiliary

tree that supports switching in O(1) time regardless of the search sequence

would immediately give a tangolike design that is dynamically optimal!

Therefore, we must aim for an analysis that is tight enough for access
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sequences like bit-reversal, but not so tight lest we are attempting to solve

the even harder problem of dynamic optimality.

5.2.4 Amortization Is Necessary
Consider the sequence where we first scan through the n keys, followed by

a search to the predecessor of the root and then a search to the successor.

The dynamic finger budget for the last search is Θ(1). However, observe

that we have set up every key on the left spine of the right subtree of the

root to prefer to the right. Therefore, to get to the successor of the root,

we have exactly lg n switches to perform. In other words, any tangolike

design that represents a solid path using an auxiliary tree cannot have the

dynamic finger property in the worst-case.

5.3 Handy Tango Trees—The Leaf-Only Case
As we will explain in the future writeup of handy tango trees, search

targets that are in the junctions of the reference tree creates a complication

that is best treated separately. For now, we merely note that it is an artifact

due to how the typical search algorithm in a tangolike design interacts

with the auxiliary tree tree we will use here. To separate this concern as

cleanly as possible, let us handle the case when all search targets are in the

leaves of the reference tree. This is formalized by making the following

assumption within this section.

Assumption 5.7 All search targets are in the leaves of the reference tree.

The following recursive definition captures an intuitive concept on the

reference tree when Assumption 5.7 holds. We will be making use of this

concept in this chapter.

Definition 5.8 Consider a subtree T in the heterogeneous decomposition

of the reference tree with respect to any key f . We say that the subtree T is

leaf-decomposed iff (i) the most-recently searched target x in T is at a leaf

of T, and (ii) each of the subtrees in the heterogeneous decomposition of T
with respect to x is itself leaf-decomposed.

We remark that f in the above definition can be any key in the reference

tree, i.e., it can be either in a leaf or in a junction. To check our understand-

ing of this definition, observe that if a subtree in a given heterogeneous

decomposition is leaf-decomposed, then the most-recently searched tar-

get on each solid path in that subtree is in the leaf of that path (hence

the name). The reader is invited to contrast this with the situation when

Assumption 5.7 does not hold.
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5.3.1 Auxiliary Tree
Recall that an auxiliary tree in a tangolike design corresponds to a solid

path in the reference tree. For now, we will focus on one such solid path

and show how it is represented.

Let f be the key at the leaf of the considered path. We categorize the

keys on this path into five groups, with the first group being the key f
itself. The next two are the trivial and nontrivial right ancestors of f in the

solid path, and the remaining two the corresponding groups among the

left ancestors of f . Notice that every key on the solid path is in exactly one

of these five groups.

Our auxiliary tree design is in fact a segmented representation of a

variant of the left and right parent stacks of f . Recall that the right parent

stack of f is a stack in which f is at the top and each non-top cell contains

the right parent of the key in the cell above. By considering each nontrivial

ancestor in the stack as a partition point, the trivial ancestors will be

organized into contiguous but possibly empty segments.

On the schematic level, our auxiliary tree is defined as the following

three-layer structure.

(1) The top layer contains only the root, which contains the key f .
(2) The middle layer are two heterogeneous red-black trees, one on each

side of the root. The one on the right stores the nontrivial right ancestors

of f . We call this tree the “nontrivial subtree” of the auxiliary tree.

(3) The bottom layer consists of two collections of heterogeneous red-black

trees, hanging from the leaves of the two nontrivial subtrees. Each of

these trees stores the corresponding segment of the trivial ancestors of

f , and will be referred to as a “trivial subtree”.

Of course, either of the two nontrivial subtrees or any one of the trivial

subtrees may be empty. This brings us to the first of several technical issues

in our auxiliary tree design.

5.3.1.1 Root Bits, Trivial Bits, and Nontrivial Bits

Just as in any tangolike design, the root of each auxiliary tree will be

marked to distinguish them from the other nodes so that we know when

we have traversed from one auxiliary tree into another. This is achieved

by storing a root bit in each node and mark it at the roots of the auxiliary

trees.

For handy tango trees, we must also mark the root of each hetero-

geneous red-black tree using a separate nontrivial bit so that we know

whether the heterogeneous red-black tree we are traversing is a trivial sub-
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tree or not. This is crucial because some of these heterogeneous red-black

trees are in fact empty and will leave no trace in a handy tango tree at all.

As an example, suppose f is the smallest key in a tall reference tree. Since

f does not have any nontrivial right ancestor, the heterogeneous red-black

tree at its right child position is in fact representing the trivial right ances-

tors of f . By keeping track of the nontrivial bit when we descend from f ,
we know we have skipped over an empty nontrivial subtree.

As it turns out, the nontrivial bit can be implemented in multiple ways.

In this thesis, we allocate two extra bits at each node—the nontrivial bit

and the trivial bit. One of these bits will be marked at the roots of the

heterogeneous red-black trees appropriately.

5.3.1.2 Augmentation

Similar to tango trees and multi-splay trees, each node w in the auxiliary

tree is also augmented to store an extra reference depth field. This field stores

the depth of the key of w in the reference tree, denoted refdep(w). Since we

are dealing with a static reference tree as per Assumption 5.1, the content

of this field does not change.

The augmentation in multi-splay trees requires two fields and can be

particularly tricky to use correctly. Handy tango trees are more intuitive

in this regard for two reasons: (i) we store the left and right ancestors

separately, and (ii) we search from the two ends of an auxiliary tree, instead

from the root. We remark that the second point above affords us great

convenience. Consider a heterogeneous red-black tree on the right hand

side of an auxiliary tree. Observe that as we scan from left to right in

this tree, the reference depth of the keys decreases. In other words, the

keys in this tree are in fact also sorted in their reference depth, albeit in the

reverse order. (The situation is even simpler if we consider a heterogeneous

red-black tree on the left hand side of an auxiliary tree.) Consequently,

any comparison-based algorithm that operates on the keys of the tree can

also operate on the reference depths of the keys simply by changing the

comparison function only. For example, this means we can split the tree at

a given reference depth, just as we can split the tree at a given key. We will

be using this handy ability frequently in what follows.

5.3.1.3 Binary Search Tree Simulation

Lastly and most importantly, notice that we have been describing the aux-

iliary trees as if heterogeneous red-black trees are in the binary search tree

model. Of course, this is not literally true since heterogeneous red-black

trees are usually understood as red-black trees with inverted spines and
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we search such trees from its two ends. Fortunately, recall that in §1.3.3,

we presented a recent result by Demaine et al. [DHIKP09, Lemma 2.4] that

allows us to simulate a heterogeneous red-black tree by a binary search

tree algorithm with only constant slowdown. Indeed, we will be using this

simulation for the rest of this chapter and continue to speak as if we are

operating on the heterogeneous red-black trees directly. We do caution

that the trivial and nontrivial bits are to be marked on the roots of the

binary search trees that are used in the simulation. (The actual root of

the heterogeneous red-black tree is buried deeply in the binary search tree

simulation.)

5.3.2 Switch
As usual in a tangolike design, the search algorithm is structured around

the switch primitive. In this section, we will deal with how to switch a

given auxiliary tree T at one of its key w. Let f be the key at the root of T.

First of all, notice that by Assumption 5.7, w cannot be f since we will

never switch at a leaf of the reference tree. Now observe that if w is to

the right of f , then this can only be a left-to-right switch because w is a

right ancestor of f . If w has a left parent in the reference tree, then we will

denote its key by lpw. Observe that lpw is the rightmost key to the left of f
that has a reference depth smaller than that of w. Furthermore, lpw must

be a nontrivial left ancestor of f , since f is in the left reference subtree of w.

In the case when w does not have a left parent in the reference tree, let lpw
denote −∞ in what follows. Similarly, we define rpw as the right parent of

w in the reference tree if it exists, or ∞ otherwise.

Intuition. In the case of a left-to-right switch, we would like to separate

out the keys in T that are below w in the reference tree, and replace them

with another set of keys that corresponds to the keys in the solid path of the

right reference subtree of w. Notice that the these two sets of keys are in the

open intervals (lpw, w) and (w, rpw) respectively. If the parent stacks are

represented by a non-segmented representation such a list, then the switch

algorithm would be straighforward. However, we are using a segmented

representation and this adds a bit of complexity to our algorithm, which

we describe in §5.3.2.1–§5.3.2.5.

5.3.2.1 RHS Splits

If w is a nontrivial ancestor, then it is in the nontrivial subtree RN of T. We

split RN at w to obtain RNl, w, and RNr.
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Otherwise, w is in a trivial subtree RT. We split RT at w to obtain RTl,

w, and RTr. If RT has a parent subtree in T, then it must be the nontrivial

subtree RN. We further split RN at w to obtain RNl and RNr. Finally,

we hang RTl and RTr at the rightmost and the leftmost of RNl and RNr
respectively.

5.3.2.2 Existence Test of lpw

Before we can deal with the left hand side, first we need to give a test for

the existence of lpw in T. Fortunately, this is easy since the left ancestor

keys get deeper as we scan them from left to right. Therefore, the left

parent of w is in T iff the left subtree of T is not empty and its leftmost

key has a reference depth that is smaller than that of w. Since we are using

heterogeneous red-black trees as components to store the left subtree of T,

the above can be tested in worst-case O(1) time in all three possible cases.

5.3.2.3 LHS Splits

If lpw exists inside T, then we also need to split the left hand side of T
using lpw. This is performed in a fashion similar to the right hand side.

The only difference is that this time we are splitting at the reference depth

of w using the augmentation field, which gives us the effect of splitting at

lpw. (In fact, we do not know the value of lpw before the splitting.) Let the

variables LNl, LNr, LTl, and LTr denote their corresponding parts.

5.3.2.4 Auxiliary Tree of f

To obtain the auxiliary tree for f after the switch, first we let f be the root

of the resulting auxiliary tree. The right subtree of f is RNl if it exists, or

RTl if otherwise. We should note that none of the keys in RNl and RTl will

change their triviality nature after the switch and hence no adjustment is

needed. The left hand side is treated symmetrically.

5.3.2.5 Auxiliary Tree of x

The auxiliary tree Tx of x before the switch is rooted at the external position

immediately to the right of w before the splits. After the splits, this position

is now the leftmost external position of RTr if exists. Otherwise, it is either

at the leftmost external position of RNr, or the leftmost external position

of the leftmost trivial subtree underneath RNr. In all three cases, the root

of Tx—containing x itself—can be reached in worst-case O(1) time.

At this point, we will proceed to join the remaining pieces of T together

with Tx in the exact opposite order of how we split T. However, some care
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must be taken in the joins because some keys will change their triviality

nature after the switch.

In particular, lpw will become a trivial left ancestor if it is the parent

of w in the reference tree. This can be tested by checking if the reference

depths of the two differ by one.

Similarly, w will become a trivial left ancestor if x is to the right of the

root r of the right reference subtree of w. To test for this, notice that r is

either the rightmost or the leftmost ancestor of x depending on the relative

order between r and x. In either cases, r can be reached in worst-case O(1)
time in Tx by noting that r has the smallest reference depth among all keys

in Tx.

Fortunately, all of the above happen at the end of some heterogeneous

red-black trees and we only need to pick the correct tree to join when we

consider lpw and w.

5.3.3 The Search Algorithm
In any tangolike design, it is straightforward to search for a given target

x by descending through the auxiliary trees. But during the descend,

the search algorithm must also identify the correct key to switch and

the direction of the switch in each auxiliary tree it traverses. Once x is

reached, the algorithm will then switch these keys bottom-up. Below we

will describe how the search algorithm identifies the key and the direction

of the switch in an auxiliary tree T. But first, let us define a useful notation

that we will be using throughout the analysis.

5.3.3.1 Segmented Notation

We will be frequently dealing with the rank of a key in the two subtrees of

an auxiliary tree. In the most general case, each of these subtrees consists

of a nontrivial subtree at the top and a collection of trivial subtrees on the

bottom. To make it convenient to reason about the rank of a key in this

segmented representation, we define the following notation using a tuple.

Definition 5.9 Consider an auxiliary tree T and let R be the right subtree

of T. Assuming the right nontrivial subtree of T exists.

+ The (i, 0)-th key from the left and right of R is the i-th key in the

nontrivial subtree, counting from the left and right respectively.

+ The (i, j)-th key from the left of R is, counting from the left, the j-th key

of the trivial subtree hanging at the i-th leftmost external position of

the nontrivial subtree.

10+152+20+15 pages, 18 figures, 4 tables base revision 903 built on 2009-5-28 16:00



146 An O(lg lg n)-Competitive Dynamic Finger Tree Algorithm

+ The (i, j)-th key from the right of R is, counting from the right, the j-th
key of the trivial subtree hanging at the i-th rightmost external position

of the nontrivial subtree.

If the right nontrivial subtree of T does not exist, then the last two defini-

tions above degenerate to the case where i is always 0.
To make sure we understand this definition and facilitate reuse, we now

prove the following simple lemma.

Lemma 5.10 Suppose w is the k-th leftmost (rightmost) right ancestor of f
in T and w is also the (i, j)-th key from the left (right) of the right subtree

of T. Then both i and j are no larger than k.
Proof. First of all, observe that i cannot be larger than k since in the worst-

case every trivial subtree is empty. Now if i = 0, then j = k, or else i > 0 and

we have j < k.

5.3.3.2 Switch Direction

Recall that a switch happened in the reference tree once we descend into

an external position of T. In handy tango trees, it is easy to determine the

direction of the switch because our auxiliary trees store the left and right

ancestors separately. In particular, it is a left-to-right switch iff the external

position is to the right of the root of T.

5.3.3.3 Switch Key

Suppose we have to perform a left-to-right switch in T and let f be the root

of T. As this is a left-to-right switch, we know that f < x and the switch

key is the lowest common ancestor w of f and x in the reference tree. It

follows that w is the largest right ancestor of f that is no larger than x.
Our auxiliary tree design together with Assumption 5.7 makes it partic-

ularly easy to find w in T. Suppose w is the (i, j)-th key from the left in the

right subtree of T. What we want is the key at the lexicographically largest(i, j) position.

High Level Search. Consider the most general case when w is in a trivial

subtree underneath the nontrivial subtree. We first search for x in the

nontrivial subtree, while keeping track of the largest key nw that is no

larger than x in this tree. Since x is not in T, we will reach an external

position, in which we find a trivial subtree. Similarly we search for x in the

trivial subtree, while keeping track of the largest key tw that is no larger

than x in this tree. Eventually we will reach yet another external position.

If we find any key in the trivial subtree that is not larger than x, then
tw is w. Otherwise, every key in the trivial subtree is larger than x, and we
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conclude that nw is w. What we need is the low level search primitive that

allows us to identify nw and tw.

Low Level Search. Below we will describe how to search for the largest

key that is no larger than a given target x from the left end of a heteroge-

neous red-black tree. The search from the right end is similar.

The idea is to keep track of our candidate by means of a pointer, which

initially points at the leftmost node of T. Each time we ascend from a node,

we place the pointer at the node we ascend from. Note that in the ascend

phase, we either reach the root of T or not. If so, then we know that the

external position is not in the left subtree of T and we simply terminate.

Otherwise, we will start descending from a node on the left spine of T.

Each time we descend right from a node, we place the pointer at the node

we descend from. Eventually we will reach an external position and the

pointer will point to w.

The correctness of this algorithm hinges on two facts:

(1) Assumption 5.7 guarantees that we must reach an external position.

(2) By definition w is the left parent of the external position and the pointer

is updated each time we descend right.

5.3.4 O(lg lg n)-Competitiveness
To show that handy tango trees are O(lg lg n)-competitive, we merely need

to show that each switch takes amortized O(lg lg n) time. Allowing for an

O(n) potential drop due to amortization, the competitiveness follows from

Wilber’s lowerbound.

Theorem 5.11 In a handy tango tree, each switch takes amortized O(lg lg n)
time.

Proof. Each switch involves an O(1) number of splits and joins. Each split

involves a heterogeneous red-black tree that is O(lg n) in size and therefore

runs in amortized O(lg lg n) time. Each join takes amortized O(1) time.

Although the above analysis already suffices to establish the O(lg lg n)-
competitiveness, we still need more refined estimates to establish the dy-

namic finger property.

5.3.4.1 Free Joins

To handle the running time incurred by the joins, let us amortize the cost

of joins into that of the splits in heterogeneous red-black trees using the

following deductions.
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(1) Modulo the O(n) potential drop, the time spent in the joins is propor-

tional to the number of joins since each join only takes amortized O(1)
time.

(2) The number of joins is in turn proportional to the number of switches,

which is a lowerbound on the running time of any binary search tree

algorithms.

(3) This lowerbound is of course asymptotically no higher than any up-

perbound we can prove on the running time of any binary search tree

algorithm.

In other words, the time spent in the joins will be fully absorbed by the

constant in the Big-O notation of an upperbound, which we can safely

assume to contain an additive O(n) term to account for the size of the data

structure. We note that some authors may say that each join is amortized

O(0) time, although we will not be using this notation.

5.3.4.2 Costly Splits

Before we go on, we will also state and prove a refinement of Theorem 5.11

as the following benign-looking lemma.

Lemma 5.12 Consider a left-to-right switch on the key w in an auxiliary

tree T rooted at f . If w is the (i, j)-th key from the left (right) of the right

subtree of T, then the switch takes amortized O(lg i + lg j) time.

Proof. In the worst-case, there are two splits in the right subtree of T and

in total they take amortized O(lg i + lg j) time. But we still have to split the

left subtree of T at the left parent lpw of w. We claim that lpw is either the(i, 0)-th or (i + 1, 0)-th key from the right (left) of the left subtree of T.

To see this, first observe that lpw is a nontrivial left ancestor of f because

f is in the left subtree of w. Thus the second position of the tuple is indeed

always 0.
Next we consider the nontrivial ancestors bottom-up (top-down). Ob-

serve that between two consecutive nontrivial right ancestors u and v, there
must be a left nontrivial ancestor because (i) we must have descended left

and then immediately right at both u and v, thereby implying the existence

of a chain of left ancestor(s) between u and v, and (ii) the lowest left ances-

tor on this chain is a nontrivial left ancestor. In other words, the nontrivial

left and right ancestors must appear in alternation.

Therefore, depending on whether f is a left or right child, lpw is re-

spectively either the (i + 1, 0)-th or (i, 0)-th key from the right (left) of the

left subtree of T. It then follows that the two splits at lpw take amortized

O(lg i) time.
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5.3.5 No Working Set Property
Before we prove that handy tango trees have the dynamic finger property,

we must point out that these trees do not have the working set property.

The weakness of handy tango trees is precisely the overly-rigid structure

in the heterogeneous red-black trees.

Theorem 5.13 Handy tango trees do not have the working set property.

Proof. We give a simple alternating search sequence that incurs Ω(lg lg n)
time in handy tango trees.

Recall that h is the height of the reference tree and let h be large. We

define the key f as the leaf reached from the root by alternating between

left and right at each descend. Let w be the right nontrivial ancestor of f
at depth [︂ h

2⌉︂. By picking the initial descend direction from the root, we can

ensure that w is a right child of its parent. It follows that f is in the left

subtree of w. Let x be the key reached from the root of the right subtree

of w by first descending left and then alternating between right and left at

each descend.

Notice that both f and x have Θ(h) nontrivial ancestors on both left

and right. Furthermore, w is a Θ(h)-th nontrivial ancestor of both f and x,
each at its corresponding side.

The search sequence is simply an alternation between f and x. The

working set budget for each search is clearly Θ(1). However, notice that

since w is basically in the middle of the corresponding nontrivial subtree

at each switch, it takes Ω(lg lg n) time to split at w.

The above, of course, means that handy tango trees are not dynam-

ically optimal. In contrast, multi-splay trees do have the working set

property [Wan06, Corollary 3, p. 34], among several others.

5.3.6 Dynamic Finger Property
We will now analyze the running time of handy tango trees from the

perspective of the dynamic finger property. Consider the heterogeneous

decomposition of the reference tree with respect to to a key f and suppose

we are searching for a key x to the right of f . By Assumption 5.7, x is in

one of the subtrees TR
w in the heterogeneous decomposition. Our analysis

consists of three parts and each part corresponds one of the following

groups of switches induced by the search of x.
Group I The topmost switch at w in the reference tree will be analyzed

on its own. Note that this is the only switch that does not occur inside TR
w .
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Group II The right-to-left switch(es) on the left spine of TR
w will form the

second group. The size of this group ranges from zero to one less than the

height of TR
w . The latter is because every key on the left spine could have

preferred to the right but we do not count the leaf.

Group III The topmost left-to-right switch on the left spine of TR
w forms

the third group. Note that this group can be empty.

Group IV The remaining switch(es) will form the fourth group. The size

of this group ranges from zero to two less than the height of TR
w . The latter

can be justified similar to the second group, except that we do not count

the switch that occurs on the left spine.

Switch Classification. Before we proceed, let us give some intuition on

the seemingly-obscure definitions above and justify that we have included

every switch in one of the groups. We claim that the switches in these four

groups occur in increasing reference depth. In other words, if we were to

search for x from the root of the reference tree, then the switches induced

by the search occur from group I to IV in order.

The first group is obvious from its definition. Now consider the fol-

lowing question: how many left-to-right switches can there be on the left

spine of TR
w? We claim that there can be at most one. Suppose we consider

the keys on the left spine from top to bottom. The very first time when

such a switch happens, say at key w′
, we will have already descended right

from there. In other words, we have departed from the left spine. There-

fore, there cannot be a switch at any key on the left spine that is below

w′
. And if this switch happens, it is the only possible switch in the third

group. (Indeed, the word “topmost” in the definition of the third group is

redundant.)

The second group consisting of right-to-left switches is the most in-

teresting. By the same argument above, all the switches on the left spine

occur above the only possible left-to-right switch at w′
. Clearly, they are

all right-to-left switches and belong to the second group. Any remaining

switches must not occur on the left spine and will go into the fourth group

as claimed.

5.3.6.1 Group I

Recall that w is in fact the exit key in the search for x. Suppose w is the k-th
nearest right ancestor of f . Observe that the heterogeneous height increases

at each right ancestor because of Assumption 5.1. Therefore, hh f (w) is at

least k. By Theorem 2.6, k is O(lg di). Applying Lemma 5.10 on k to obtain

i and j, followed by Lemma 5.12 immediately yields the lemma below.
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Lemma 5.14 The switch in the first group runs in amortized O(lg lg di)
time.

5.3.6.2 Group II

Bounding the time spent by the switches in this group require two steps.

First Step. First we show that each of the switches runs in amortized O(1)
time. Of course, this is in general not possible with our current under-

standing of binary search trees. However, the following two properties

hold for each switch in this group.

Let T be the auxiliary tree that contains the switching key w′
, let rpw′

be the right parent of w′
in the reference tree if exists, and let y be the leaf

of the solid path represented by T. Recall that in a right-to-left switch, we

would split T at w and rpw′
, if exists.

(1) The switching key w′
is the leftmost key in the solid path represented

by T. Observe that w is either the leftmost key of the left nontrivial

subtree of T, or the leftmost key of the leftmost trivial subtree.

(2) The key rpw′
is the rightmost nontrivial right ancestor of y and hence

it is the rightmost key of the right nontrivial subtree of T.

As both w′
and rpw′

are at the extreme ends of their corresponding hetero-

geneous red-black trees, we have the following lemma.

Lemma 5.15 Each switch in the second group runs in amortized O(1)
time.

Remark 5.16. Note that rpw′
itself may have an unbounded number of

right ancestors. However, they are all trivial right ancestors of y and are

stored in a segment to the right of rpw′
. This is a trick afforded by our

segmented representation.

Second Step. Now that we have shown Lemma 5.15, the second step is

to absorb the running time incurred by the switches in this group into the

constant in the Big-O notation. The argument is exactly the same as the

“free” joins in §5.3.4.

5.3.6.3 Group III

Recall that if this group is not empty, its only member is the left-to-right

switch at w′
on the left spine of TR

w . Let the auxiliary tree that contains w′

be T, and let the leaf of the solid path represented by T be v. Observe that

v is to the left of w′
because w′

currently prefers to the left.

Recall that we are searching for x and the most-recently search target is

f . We claim the analysis in for the left-to-right switch in Group I applies
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here as well. The reason is simply because v is to the right of f , and so

dist( f , x) ≥ dist(v, x). By letting w′
be the k-th nearest right ancestor of v,

we have the following lemma.

Lemma 5.17 The switch in the third group runs in amortized O(lg lg di)
time.

5.3.6.4 Group IV

This group of switches are in fact easy to handle within the dynamic finger

budget. Observe that there are at most (ah(w′)− 2) switches in this group,

and more importantly that the dynamic finger budget is Ω(ah(w′)) because

of the left reference subtree of w′
. We claim that the running time incurred

by this group is O(ah(w′)). The analysis below is similar to a proof by

Demaine et al. [DHIP07, p. 243].

Suppose there are a total of p switches in this group. Let us follow

the reference path from the root of right subtree of w′
to x and number

the switches top-down. Observe that there are (p + 1) solid paths on this

path. Let r` for ` ∈ (︀1, p⌋︀ be the number of keys we traversed before the `-th
switch. It follows that

p∑̀
=1

r` ≤ ah(w′)− 1 = O(ah(w′)). (5.1)

We claim that the `-th switch takes amortized O(lg r`) time. By symme-

try, assume this is a left-to-right switch. Let T` be the auxiliary tree in the

switch and let v` be the leaf of the solid path represented by T`. Suppose

the switch key is the k-th farthest right ancestor of v`. Our claim follows by

applying Lemma 5.10 and Lemma 5.12.

Totalling the p switches, we have incurred amortized ∑p
`=1 O(lg r`) time.

By the concavity of the lg function and (5.1), this sum is maximized when

each r` is the same. This gives us an upperbound of O(p lg ah(w′)
p ). By

calculus, this is maximized when p = ah(w′)
2 and the value is O(ah(w′)

2 ). Our

claim follows and we have the lemma below.

Lemma 5.18 The switches in the fourth group run in amortized O(lg di)
time.

Theorem 5.19 Handy tango trees have the dynamic finger property in the

leaf-only case.

Proof. This follows immediately from Lemma 5.14, Lemma 5.15, Lemma 5.17,

and Lemma 5.18.
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Abstract

We show how to support the finger search operation on degree-balanced search trees in a space-
efficient manner that retains a worst-case time bound of O(log d), where d is the difference in rank
between successive search targets. While most existing tree-based designs allocate linear extra
storage in the nodes (e.g., for side links and parent pointers), our design maintains a compact
auxiliary data structure called the “hand” during the lifetime of the tree and imposes no other
storage requirement within the tree.
The hand requires O(log n) space for an n-node tree and has a relatively simple structure. It can
be updated synchronously during insertions and deletions with time proportional to the number
of structural changes in the tree. The auxiliary nature of the hand also makes it possible to
introduce finger searches into any existing implementation without modifying the underlying data
representation (e.g., any implementation of Red-Black trees can be used). Together these factors
make finger searches more appealing in practice.
Our design also yields a simple yet optimal in-order walk algorithm with worst-case O(1) work
per increment (again without any extra storage requirement in the nodes), and we believe our
algorithm can be used in database applications when the overall performance is very sensitive to
retrieval latency.
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1 Introduction

The problem of maintaining a sorted list of unique, totally-ordered elements is ubiquitous in Com-
puter Science. When efficient element access (insert, delete, or search) is needed, one of the most
common solutions is to use some form of balanced search trees to represent the list. Over the years,
many forms of balanced search trees have been devised, analyzed and implemented.

Balanced search trees are very versatile representations of sorted lists. In addition to providing
element access in logarithmic time, certain forms also allow efficient aggregated operations like set
intersection and union. For example, Brown and Tarjan [6] have shown a merging algorithm using
AVL trees [1] with an optimal O(m log n

m) time bound, where m and n are the sizes of the two lists
with m ≤ n.

Their merging algorithm is, however, “not obvious and the time bound requires an involved
proof” [7, p. 613]. As such, in their subsequent paper, Brown and Tarjan [7] proposed a new
structure by introducing extra pointers into a 2-3 tree [2] and called it a level-linked 2-3 tree. The
merging algorithm on level-linked 2-3 trees is simple and intuitive and it uses the idea of finger
searches, which we will define shortly. But there is a trade-off in this design. Each node in a
level-linked 2-3 tree contains not only a key and two child pointers, but also a parent pointer and
two side links. Considering this relatively high space requirement and the elegance of their simple
yet optimal merging algorithm, it is natural to wonder if finger searches can be supported in a
more space-efficient manner on any existing balanced search trees such as 2-3 trees. This is the
motivation of our work.

Finger search. Consider a sorted list A of n elements a1, . . . , an represented by a search struc-
ture. Let the rank of an element be its position in the list and let δA(ai, aj) be | i − j |, i.e., the
difference in the ranks of ai and aj w.r.t. the elements of A. We say that the search structure
has the finger search property if searching for aj takes O(log δA(ai, aj)) time, where ai is the most
recently found element. The time bound can be worst-case, expected-case or amortized and we will
distinguish them explicitly when needed. (As usual, we let log x denote log2 max(2, x) and we will
simply say O(log d) when the elements ai and aj are not made explicit.)

A finger is a reference to an element in the list and historically it is often realized by a simple
pointer to an element. (Indeed some papers mandate this representation in their definitions, e.g.,
see [5].) Typically, we maintain the invariant that the finger is on the most recently found element
and we refer to this element as the “current” element. The finger search operation uses the finger
as an extra hint to search for its new target and also shifts the finger to the element found. (Section
2 has a precise definition that is appropriate when the search target is absent from the list.) In
the worst scenario, finger searching matches the O(log n) time bound of a classical search; but in
applications like merging where there is a locality of reference in the sequence of search targets,
finger searching yields a significantly tighter time bound.

Finger search was introduced on a variant of B-trees [3] by Guibas et al. [10] in 1977. Since then,
finger search based on modification of balanced search trees has been studied by many researchers,
e.g., Brown and Tarjan [7, 2-3 trees], Huddleston and Mehlhorn [12, (a, b) trees], Tsakalidis [23,
AVL trees], Tarjan and Van Wyk [22, heterogeneous finger search trees] and Seidel and Aragon [20,
treaps]. In their original paper on splay trees, Sleator and Tarjan [21] conjectured that the splay
operation has the finger search property. Known as the Dynamic Finger Conjecture, it was subse-
quently proven by Cole [8]. There are other designs that are not entirely based on balanced search
trees as well. For example, Kosaraju [15] designed a more general structure with the finger search
property using on a collection of 2-3 trees. Skip Lists by Pugh [19] also support finger searching.
More recently, Brodal [5] has investigated finger search trees designed to improve insertion and
deletion time. Of special note are the purely-functional catenable sorted lists of Kaplan and Tar-
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jan [13]. Their design not only has the finger search property, but it also requires very little space
overhead. We will contrast our design with theirs in Section 6.

Challenges and results. Supporting finger search in balanced search trees can be challenging.
The main difficulty is in shifting the finger fast enough to achieve a worst-case O(log d) time bound.
Observe that if we have to strictly adhere to the unique path induced by the tree, then two elements
with similar rank can be stored far apart. As an extreme example, consider the root element and
its successor: the tree path has length Θ(log n), but we only have O(1) time.

One way to circumvent this apparent difficulty is to store extra information in the nodes so
that we do not have to adhere to the tree path. For example, this approach has been taken by
Brown and Tarjan [7] who added a parent pointer and two side links to each node. (Side links are
pointers to the previous and next node at the same depth.) With these extra pointers, it can be
shown that there exists a path of length O(log d) between two nodes differing in rank by d. Finger
search can now be supported by taking this new path. The problem with this design is that a total
of 3n extra pointers are introduced and the size of the tree is doubled, assuming the key has the
same size as a pointer. In fact, among the many other tree-based designs mentioned above, this
O(n) extra storage requirement is a common trait.

Our design is an attempt to avoid this O(n) storage requirement but at the same time retain the
structural simplicity of balanced search trees. To this end, we base our design on degree-balanced
search trees [18]1 and we assume a compact k-ary node with only (k− 1) keys and k child pointers.
Since any extra storage we need must be stored in some auxiliary data structures outside of the
tree, our goal is to minimize the amount of auxiliary storage while supporting the finger search
operation in worst-case O(log d) time.

As we will show in this paper, our design requires O(log n) space on a degree-balanced search
tree with n nodes and supports finger searches in worst-case O(log d) time. The finger searches can
go in both forward and backward directions without any restriction. We also show that once the
finger has been placed on the position of change, insertions and deletions can be implemented in
time proportional to the number of structural changes in the tree. This allows us to transfer any
results previously proven on these two operations, such as an amortized O(1) time bound and the
actual distribution of work at different depths of the tree [12]. In the development of our finger
search algorithm, we also obtain a simple in-order walk algorithm with worst-case O(1) work per
increment. We believe that this improvement over the previous amortized O(1) bound can be
used in database applications when the overall performance is very sensitive to retrieval latency.
(The focus of this paper is not on database applications, but we have documented our idea in
Appendix C.)

Design overview. We notice that if supporting finger searches is really possible under our storage
restrictions, then we must be able to support a special case of it: an in-order walk with worst-case
O(1) work per increment. Our solution is to eagerly schedule the in-order walk and walk the path
in advance. We call this the eager walk technique. Because we can only see a constant number
of nodes at a time, we also need to keep track of our progress and so we have devised a simple
data structure called the hand for this purpose. We will document these two ideas along with our
in-order walk algorithm in Section 3.

Having solved the in-order walk problem, we then go back to finger searches. Notice that in the
in-order walk, the future search targets are known in advance. However, this is not true in finger
searches. Our understanding of eager walk suggests that we want to start shifting the finger before
the actual search target arrives. For finger searches, that means we want to cache some portion of

1Apparently the term degree-balanced search trees was coined in this monograph. However, it does not cover the
details of such search trees. See other references in Section 2 for more information.
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the tree so that when the actual search target arrives, the cache will contain a prefix of the path
from the finger to the target. If the length of the prefix is chosen to be long enough, then we will
be able to finish shifting the finger over the rest of the path in O(log d) time. As it turns out, the
hand is precisely such a cache despite being initially designed just for the in-order walk. At this
point, we will also bring in a connection between the hand and the inverted spine technique used
in heterogeneous finger search trees by Tarjan and Van Wyk [22]. Using this connection, our finger
search algorithm becomes relatively straightforward. Section 4 will be devoted to presenting this
connection.

In our presentation in Sections 3 and 4, we will assume for simiplicity that the finger only goes
forward. In Section 5, we will handle the backward direction by using two hands and also show
how the hands can be updated during insertions and deletions. In addition, we also analyze how
the hands can be used during splits and joins. Finally, we will contrast our design with Kaplan
and Tarjan’s [13] in Section 6 and then conclude with some remarks to deal with practical issues
that may arise when using the hands.

2 Notations and definitions

Lists and elements. In the rest of this paper, all lists are sorted and have unique elements drawn
from (Z,≤) and the variables a through e will range over Z without any further quantification. (It
would be more general to leave the domain as any total order. For example, some total orders such
as (R,≤) do not have a natural notion of immediate successor. However, this issue does not come
up in this paper.)

Finger destination. To handle the possible case that the search target is not in the list, we
define a+ to be the smallest element in the list that is larger than or equal to a (much like the limit
notation). When a is larger than all elements in the list, let a+ be a sentinel denoted by ∞. We
can symmetrically define a−. With these two definitions, a finger search for a should place f at a+

if af ≤ a (forward), or a− otherwise (backward), where af is the element under f when the finger
search is started. Note that if a is in the list, then a+ and a− are both equal to a and therefore the
finger will be placed at a in either case. This allows us to say the finger will be placed on a+ (or
a−) when we are finger searching for a.

Trees and nodes. In a search tree TA representing a list A of n elements a1, . . . , an, the node
containing ai will simply be called xi and the variables w through z will range over nodes. (Notice
that a node can contain multiple keys, in which case multiple xi’s can correspond to the same node.
However, we will only use the xi notation when referring to nodes by their ranks.) When referring
to a node xi, we use x−−i and x++

i to denote its predecessor xi−1 and successor xi+1 respectively.
We denote the depth of a node x simply as depth(x), with the depth of the root defined to be 1.
The depth of the tree depth(TA) is the maximum depth among all nodes. We regard nodes without
children as leaves.

As stated, our design is based on degree-balanced search trees. All the leaves in such a tree are
at the same depth and its balance is maintained by varying the degree of internal nodes between
fixed constants. 2-3 trees [2], B-trees [3] and (a, b) trees [12] are all variants of degree-balanced
search trees. Red-Black trees [11] can also be viewed as degree-balanced easily via the isomorphism
with 2-3-4 trees. We sometimes simplify our presentation by assuming a complete binary search
tree (BST ), but we also show how to account for this assumption to retain full generality.

A k-ary node x has (2k − 1) fields. The keys are sorted elements from A and are denoted as
xj , for j = 1, 2, . . . , k − 1 and the children are denoted as x[j], for j = 1, 2, . . . , k. We define the
j-th left child to be x[j] for j = 1, 2, . . . , k− 1 and denote it by xj [L]. The corresponding j-th right
child is then x[j + 1] and denoted by xj [R]. If x is a leaf, then the child pointers are all nil. For
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binary nodes, we simply drop the superscript. We say that the finger is under a node x when the
finger is pointing at a key inside the sub-tree rooted at x.

A node is overfull if it has at least k keys. In a degree-balanced search tree, there are no overfull
nodes and different nodes can have different arity. During an update, any overfull node will be split
into two.

Spines and relatives. We first define spines on binary trees and we give only the version for the
right (forward) direction.

The right spine of a binary node is defined to
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be the list of node(s) starting at the node itself,
followed by the right spine of its right child, if
it exists. The right-left spine of a node is the
node itself and left spine of its right child. (Our
notation stresses the direction taken to traverse
the spine and is consistent if we view the right
spine as the right-right spine.) Now given any
spine of a node, its atlas is the second node on
the spine (a child) and its tail is the last node.
Suppose we have three nodes x, y, z in a tree. If
x is on the left-right spine of y, then we say y is
the right parent of x. The right ancestors of x
will then be y and the right ancestors of y. If y is the right parent of x and the left parent of z with
x and z at the same depth, then we say z is the right peer of x. In the special case when y is the
parent of both, then we say z is the right brother of x instead. Figure 1 illustrates some of these
concepts on a complete BST. Note that the dashed arrows are only for the purpose of illustration.
In particular, our work does not make use of such pointers in the nodes. The right-left spine of 8
has also been highlighted.

The definitions for nodes of any higher degree is straightforward using our j-th child quantifi-
cation. If a k-ary node y is the right parent of x and x is in yj [L], then we say yj is the right parent
key of x.

Deques. We will use doubly-linked queues (deques) as a building block of the hand. A deque is
made up of cells and we denote a deque with k cells by 〈ck, . . . , c1〉a, with the back on the right
hand side. A deque supports the following operations in O(1) time: MakeDeque, Push, Pop,
Inject, Eject, Front, Back, and Prepend. Note that Inject and Eject operate on the back
of a deque and a deque can be used as a catenable stack. With an additional pointer to a cell, a
deque also supports Split in O(1) time. For more information on deques, refer to Knuth [14].

3 In-order walk

In this section, we motivate and present the design of the hand by developing an in-order walk
algorithm with worst-case O(1) work per increment. Our goal is to develop our understanding of
the hand through this discussion. To simplify our presentation, we start by working with a complete
BST and then generalize to handle all degree-balanced search trees.

3.1 Design

The simpliest in-order walk algorithm is the straightforward recursive solution, which takes amor-
tized O(1) time per increment. To achieve the worst-case O(1) bound, we need to schedule the
discovery of nodes that will be processed later in order to avoid traversing a long path during an
increment. We refer to this discovery activity as an eager walk. To avoid confusion, in this section
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we say that we “visit” a node when it is the actual node being processed by the in-order walk and
we “explore” a node when it is being discovered due to the eager walk.

Now, let’s look at each increment individu-

x

w
z

( m a y c o n s i s t
o f  j u s t  1  n o d e ,  
i . e .  w =  x) ( s u b -t r e e s
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e xp l o r a t i o n
s c h e d u l e y

Figure 2: Possible locations of x++ and spine
exploration schedule

ally. Suppose we are currently visiting the node
x and so the next node to visit is x++. Observe
that in a search tree, there are only two possible
positions for x++ to appear. If x is not a leaf,
then x++ is the tail y on the right-left spine of x.
Otherwise, it is the right parent z of x. (If z does
not exist also, then we must be at the rightmost
node of the tree. We let the root have an imagi-
nary parent labelled∞ and end the in-order walk
there.) Figure 2 illustrates our situation.

To handle the first case, we must traverse the
full right-left spine of x before we visit x. Since
we have only a constant amount of time in each
increment but the spine can be long, we can only
afford to explore a constant number of nodes at
a time and perform this multiple times. As we need the spinal nodes in the bottom-to-top order
in the in-order walk, we associate a stack with x and we push the right-left spinal nodes of x,
beginning with the atlas, onto the stack as we discover them. The scheduling on a degree-balanced
search tree is intuitive because all of the leaves are at the same depth and so the left-right spine
of x has the same length as the right-left spine. Since all the nodes on the left-right spine must be
visited before x, a natural choice is to explore one right-left spinal node when we visit one left-right
spinal node. This way, by the time we have visited the tail of the left-right spine, we will have
explored the tail of the right-left spine, namely y.

The second case is simpler. To go up the tree, we use a stack to keep track of the ancestors as
we descend between visits. But as we show in Figure 2, x can have any number of left ancestors
(up to the atlas w). To get to z in constant time, we keep track of only the right ancestors, i.e., we
push a node when we descend left and pop it out when we return to it and descend right. Now z
will be at the top of the stack when we visit x. (We note that the idea of right parent stack has
been used before, e.g., see Brown and Tarjan [6].)

The right parent stack is related to our eager walk as well. Notice that as we approach y in
the eager walk, all the nodes we explored are right ancestors of y. Since the right ancestors of x
are also right ancestors of y, we are in fact building the upper part of the right parent stack for y.
A catenable stack will be perfect for our purpose because when we catenate the right-left spine of
x onto its right parent stack, we will immediately have the right parent stack of y. However, we
will need Inject and Eject in Section 5.4 to handle insertions and deletions. Hence, we will use
a deque as a catenable stack.

3.2 The “hand” data structure

The hand is an auxiliary data structure designed to keep track of our progress in the eager walk.
For our in-order walk algorithm, it is a deque named Rps. Stored inside the cells of Rps are pointer
pairs of the form (node, spine), where node is a pointer to a node in the underlying tree and spine
is a (null) pointer that can be used to point to a deque containing similar pointer pairs so that we
can prepend the deque pointed by spine onto Rps.

Let the underlying tree be a complete BST T and Rps be a deque consisting of k pointer pairs
〈(xk, sk), . . . , (x1, s1)〉a. Rps must obey these two invariants:

5
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Invariant 3.1 (node) x1 is on the right spine of T and ∀j ∈ { 2, . . . , k } : xj−1 is the right parent
of xj in T .

Invariant 3.2 (spine) ∀j ∈ { 1, . . . , k } : sj is a deque of (node, spine) pairs representing a prefix of
xj’s right-left spine, with the atlas stored at the back. The length of sj is depth(xj+1)−depth(xj)−1,
where depth(xk+1) is defined to be depth(T ) + 1.

We now relate these two invariants with our
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Figure 3: An example hand on 5

design. First of all, the top node xk in Rps will
always correspond to the node x that we are cur-
rently visiting. Together with Invariant 3.1, Rps
is indeed the right parent stack of x. Now con-
sider the node xj−1. By Invariant 3.1, it is the
right parent of xj . By Invariant 3.2, the length
of its associated spine prefix sj−1 is depth(xj)−
depth(xj−1)− 1. If z is the last node on the pre-
fix, then z is at depth depth(xj)−1 and therefore
z[L] is the right peer of xj . Since z is stored at the top of sj−1, we will be able to reach the right
peer of xj in O(1) time once we reach the cell containing sj−1. A special case to notice is sk. By
Invariant 3.2 and our definition of depth(xk+1), its length is depth(T )−depth(xk). This is precisely
the length of its full right-left spine and this also reflects our design. (In our usage, “prefix” is not
necessarily strict and so the full spine is a prefix of itself.)

The two invariants not only allow us to execute our desired schedule while we are visiting the
nodes on the left-right spine of xk−1, but also give us a very strong hint as to why the hand will
facilitate finger search. By traversing down Rps, we can reach the right ancestors of the current
node as if we had right parent pointers. Moreover, the right peer of any node on Rps can be reached
with an additional O(1) time, as if we had forward side links on each of the right ancestors. The
power of these pointers has already been demonstrated by Brown and Tarjan [7] in level-linked 2-3
trees: these pointers are exactly the pointers introduced to facilitate finger searches.

Figure 3 illustrates an example hand at node 5 in a complete BST with 15 nodes. Notice that
we have added two dotted arrows pointing upward in the tree to reflect the nature of the right
parent stack. As a demonstration of Invariant 3.2, note that the right peers of nodes 5 and 6 are
precisely one node away from the end of the spine prefix associated with their right parents.

Using Invariant 3.2, we can immediately bound the size of the hand by the depth of the tree.

Theorem 3.1 (Hand Size) The hand for a complete BST T has at most depth(T ) cells.

Proof Suppose Rps has k cells. The total number of cells in the hand is
∑k

j=1(1 + |sj |). By
Invariant 3.2, this is k+(depth(xk+1)−depth(x1)−k) which is at most depth(xk+1)−1 = depth(T ).
�
3.3 Algorithm

To start the in-order walk, we first build the hand on the leftmost node of the tree by pushing
the left spine of the tree into Rps. We associate an empty deque with each spinal node and use
an empty Rps to indicate termination. (The actual algorithm for increment is very succinct, but
we have grouped together all the pseudo-codes in this paper into Appendix A. Please refer to
the pseudo-code of Increment and ExtendRightLeftSpine.) The correctness of our algorithm
follows from the discussion in Section 3.1 and it clearly takes O(1) time per invocation. Note that a
hand can be built on any node in O(log n) time. (Refer to BuildHand for how this can be done.)
In our case it is built on the leftmost node.

6
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3.4 Extending to k-ary nodes

The in-order walk algorithm above works on a complete BST. When generalizing it to degree-
balanced search trees, our j-th child quantification is very handy. We will consider xj as a binary
node, with xj [L] and xj [R] as its two children. Suppose we are now visiting the rightmost node
of the sub-tree rooted at xj [L]. By a quantified version of Invariant 3.2, at this point we will have
all but the tail y of the right-left spine of xj . The increment to xj will complete the spine and
the increment to y will put us in the same situation as if we are visiting the leftmost node of
the sub-tree rooted at xj+1[L]. The remaining details are straightforward. (See Appendix B for a
demonstration.)

Theorem 3.2 (In-order Walk) In-order walk on a degree-balanced search tree can be performed
with worst-case O(1) time per increment, using O(log n) space and O(log n) pre-processing (to
obtain the initial hand).

4 Finger search

In this section, we demonstrate how the hand allows

w z

y

x

case (iii)case (ii)case (i)

Figure 4: Possible destination of finger

us to perform finger searches in a degree-balanced search
tree. Again we will simplify our presentation by working
with a complete BST and limiting the finger searches to
go in the forward direction.

We now consider a finger search for element a with
a finger f at node w. Let y be the right parent of w and
z be the right peer of w, as shown in Figure 4. Observe
that the destination of f can be divided into three rank
intervals: (i) (w, y], (ii) (y, z] and (iii) (z,∞). The first
two intervals are characterized by the right sub-tree of
w together with y and the left sub-tree of z together
with z. We can distinguish among these cases in O(1)
time by comparing a with y and z, both readily available from our hand on w.

To handle case (i), we first do an increment as in the in-order walk. This takes O(1) time.
Then we traverse the right-left spine of w bottom-up by scanning the Rps towards the back until
we hit an element larger than a (or the bottom of Rps). Let x be the node in the second to last
cell we scanned (or the bottom of Rps). Observe that if a is in the tree, then it must either be in
x or its right sub-tree, where we will perform an additional binary tree search. In either case, it
is straightforward to restore the two invariants of the hand on our destination. The whole process
takes time proportional to the length of x’s left spine minus one, which is logarithmic in the size of
the left sub-tree skipped by the finger. (We note that the algorithm for this case is precisely the
inverted spine technique used in heterogeneous finger search trees by Tarjan and Van Wyk [22].)

Case (ii) can be handled by first popping the Rps twice (removing w and y) and prepending the
right-left spine prefix of y onto it (now z is at the top). We then start a binary tree search for a
at z while restoring the invariants. The logarithmic time bound follows because the finger skipped
the right sub-tree of w.

We handle case (iii) by reducing it to case (i) on a larger scale. We first locate the lowest node
xj on Rps whose key is no larger than our target by successive popping. (Note that as we scan
down the Rps, the key gets larger.) Then we shift the hand over to xj by completing its right-left
spine. At this point we re-start the finger search at xj and we know we will be in case (i). Note that
both case (i) and case (ii) are just specializations of case (iii) and we can handle them using this

7
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more general procedure. To analyze the running time, we seperate the rank difference into δ(w, xj)
and δ(xj , a). The time it takes to obtain the hand on xj is O(log δ(w, xj)) because the size of the
right sub-tree of xj+1 is at most δ(w, xj). The subsequent finger search takes time O(log δ(xj , a)),
as we have already proved when analyzing case (i). The time bound follows from the inequality
log(c) + log(d) < 2 log(c + d).

We note that our algorithm can be similarly generalized to handle k-ary nodes as we described
in Section 3.4 and the time bound remains the same. We also provide a more precise specification
of our algorithm in Appendix A in the form of pseudo-code.
Theorem 4.1 (Forward Finger Search) Using the hand, forward finger searches on a degree-
balanced search tree can be performed in worst-case O(log d) time, where d is the difference in rank
between successive search targets.

5 Extensions

In this section we will outline how to extend the hand to support finger search in both directions
and how to update the hand during insertions, deletions, splits and joins.

5.1 Left and right hands

We say that Invariants 3.1 and 3.2 specify the right hand. By flipping the left/right directions,
we obtain the left hand which consists of the left parent stack Lps. For simplicity, we will use
“the hands” to denote the left hand and the right hand collectively.

Consider the hands on a node x. By definition, each of the ancestors of x will appear on either
Lps or Rps. In particular, the root node will be at the bottom of one of them. We now extend
the stack cells to contain a triple (node, spine, cross), where cross is a pointer to another cell. Let
Lps be 〈(xlk, slk, clk), . . . , (xl1, sl1, cl1)〉a and Rps be 〈(xrk, srk, crk), . . . , (xr1, sr1, cr1)〉a. Note that
in general lk 6= rk but x = xlk = xrk. We require the hands to satisfy one additional invariant:

Invariant 5.1 (cross) Starting at the cell containing the root, the path specified by chasing the
cross pointers is the path from the root to x, with the encoding that if clk or crk is nil, then it points
to the cell directly above the current cell. If x is a left child, then the path ends on Lps. Otherwise,
it ends on Rps.

5.2 Decrement

Instead of showing how to perform decre-
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Figure 5: Example hands on 2 to 5, shown with
cross pointers. (Dashed pointers are implicit.)

ment, we will describe how to update the left
hand in an increment. Decrement will follow
by symmetry. This also serves as a demon-
stration of Invariant 5.1 and the cross point-
ers. As an aid to our description below, Fig-
ure 5 shows the hands on nodes 2 to 5 in
a complete BST with 15 nodes, which was
shown in Figure 3.

Before we pop the Rps, we check to see
if the clp points to the top cell of Rps. If
so, we set it to nil. (See 3 → 4.) Then we
pop the Rps and extend the right-left spine of
xrp as usual. Let (xlj , slj , clj) be the cell cellj
pointed to by crp. (We can verify that this
cell always exists.) If slj is non-empty, then we pop off its top cell to shorten the spine prefix by
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one node and set snew be nil. (See 2 → 3 and 4 → 5.) Otherwise, we set crp to nil and split Lpr
at cellj to obtain 〈(xlk, slk, clk), . . . , (xlj , slj , clj)〉a as snew. (See 3→ 4.) We preprend scurr to Rps
as usual. Finally we push (xnew, snew, nil) onto Lps, where xnew is the top node in Rps. (We can
verify that snew is the correct left-right spine prefix of xnew.)

While the above procedure may seem complicated, it can be derived from the maintainence
required by the three invariants. We also note that the increment algorithm still takes O(1) time.
Since we showed the left hand can also be maintained in worst-case O(1) time during an increment,
by symmetry, the following theorem holds.
Theorem 5.1 (Backward In-order Walk) An in-order walk in the backward direction takes
worst-case O(1) time per decrement.

5.3 Backward finger search

The description in Section 4 can easily be adapted to update the left hand in a backward finger
search. Here we show how to preserve Invariants 3.1 and 3.2 for the right hand as well. The
maintenance of Invariant 5.1 is straightforward.

Recall that our finger search algorithm will first locate the left parent x containing the smallest
key that is no smaller than the target. Let the last cell we popped from Lps be (z, sz, cz). We will
pop the Rps and clean up the associated spine prefixes until the cell pointed to by cz is removed.
Note that we have enough time to do this because we have skipped the left sub-tree of z.

At this point, the top cell in Lps will be (x, sx, cx). We split Rps at cx, push a new cell containing
x into Rps and then associate the upper deque from the split to this cell as its right-left spine prefix.
Finally, we extend the prefix to contain z unless the finger search initially started at z. This step
only takes O(1) time.

Then our algorithm will complete the left-right spine of x to obtain the hands on it. We update
the right hand by completing its right-left spine prefix on Rps. Since the prefix already reaches z,
the time it actually takes to complete the spine is logarithmic in the size of the left sub-tree of z,
which we skipped.

If the target is not x, then it is in the left sub-tree. Our algorithm will preform a decrement
and then start searching for the target by scanning the left-right spine of x upward until we hit
the smallest key that is no smaller than the target. Every time we go up a node, we also update
the right hand by shortening the right-left spine prefix of x in Rps. Finally, our algorithm will
finish with a descent while restoring the invariants. The updates to the right hand in this part are
straightforward and take the same amount of time as updating the left hand.

Theorem 5.2 (Finger Search) The hands can be maintained in any sequence of finger searches
in O(log d) time per search, where d is the difference in rank between successive search targets.

5.4 Insertions and Deletions

In a search structure that supports finger search, insertions and deletions are typically implemented
by first placing the finger at the target element followed by the actual update. Huddleston and
Mehlhorn [12] have shown that in a sequence of updates, the amount of structural changes in an
(a, b) tree is exponentially decreasing with the height of the propagation from the leaves and that
each update takes amortized O(1) time, both assuming an initially empty tree and discounting the
time spent to shift the finger.

In this section, we will show that the hands can be updated to reflect each structural change in
worst-case O(1) time. Therefore, any result on the distribution of structural changes can be carried
over to the hands directly. In particular, both of the above results by Huddleston and Mehlhorn
will continue to hold even when we have to maintain the hands.

9

164 Reprint of CMU-CS-02-184

base revision 903 built on 2009-5-28 16:00 10+152+20+15 pages, 18 figures, 4 tables



83

In the following discussion, we assumed familiarity with the insertion and deletion algorithms
for degree-balanced search trees. (See Huddleston and Mehlhorn [12] for more information.) Let
the target element of the update be t. We will consider the hands for k-ary nodes. To simplify
our presentation, we will only update the right hand w.r.t. the k-ary adaption of Invariants 3.1
and 3.2. The left hand can be updated by symmetry and it is also easy to maintain Invariant 5.1
throughout. We adopt the convention that the hands will be placed on t after its insertion, or t++

for deletion.
We will start with an observation. In a degree-balanced search tree, the structural change due

to insertions and deletions propagates up from a leaf to the root. All the nodes involved must be
in either Lps or Rps. Let Rps be 〈(xk, sk), . . . , (x1, s1)〉a. We will update the hands by considering
one depth at a time in a bottom-up fashion, provided that the hands are placed on a leaf first.

There are three kinds of possible structural changes at a depth: node fusion, children sharing
and node split. (The last one is not to be confused with the splitting of a tree.) We will first
analyze them and then return to insertions and deletions.

Fusion. Consider a node x, with the finger under it. Suppose x has a right brother y that will
be fused into x and p is the right parent with key c. Note that c is the key being demoted. Let z
be the right parent of p, if it exists. If c is pk, then first extend the spine prefix of z and remove
the cell of p from Rps. No further change is needed if x is in Rps. Otherwise, create a cell in Rps
above that of p (or z if p is not in Rps anymore) and let it contain x with key c. Also eject the
bottom cell from the spine prefix of p and re-associate the result with x instead.

Now suppose x has a left brother w and x is being fused into w. No change is needed if x is
not in Rps. Otherwise, update the cell of x to contain w instead and adjust the offset in the cell
accordingly.

Sharing. Consider a node x, with the finger under it. Suppose x is sharing from its right brother
y and p is the right parent with key c. We only need to update Rps if x is not originally in it. First
create a new cell above that of p and let it contain x with key c. Then shorten the spine prefix of
p by ejecting the bottom cell and re-associate the result with x instead.

Now suppose x has a left brother w where x is sharing from. There are four possible cases
depending on whether x is in Rps and similarly for p. In each of these cases, the structure of Rps
does not change except that the offset in the cell of x needs to be updated to reflect the new key(s)
in x.

Split. Consider a overfull node x, with the finger under it and c as its median key. Suppose after
c is promoted to the parent p, a new right brother y of x is created. Let the finger be under x[j]
and z be the right parent of p, if it exists. We break down the analysis into three cases. In the first
two, if p is the new root, then inject an empty cell at the bottom of Rps and let it contain p.

Suppose xj is smaller than c. If p is on Rps, then no change is needed. Otherwise, shorten the
spine prefix of z, create a new cell under that of x and let it contain p with key c.

Suppose xj is c and let d be xj+1. If p is not on Rps, then shorten the spine prefix of z, create
a new cell under that of x and let it contain p with key c. Now remove the cell of x from Rps and
create a new cell containing y with key d. Finally, inject the new cell at the bottom of the spine
prefix of x and re-associate the result with p.

Suppose xj is larger than c. If p is on Rps, then increment the offset in its cell. Also, if x is on
Rps, then update its cell to contain y instead and adjust the offset accordingly.

Insertion. As we assumed the list maintains unique elements, t must be absent and the hands
are on either t− or t+. Observe that at least one of t− and t+ is in a leaf. Here we assume t+ is in
the leaf x with the hands placed on it. If t+ is an internal node instead, then perform a decrement
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to obtain the hands on t− and the rest is the same.
To begin the insertion, first increment the offset of the top cell of Rps. Notice that Rps is a

valid hand on t, but x may have too many keys and a split or sharing will be needed. After we
have handled x, its parent p may have one more key and another split or sharing may occur at its
depth. We will repeat until the propagation stops. It should be clear that at each depth involved
in the propagation, we spent only O(1) time.

Deletion. Here we assume we have the hands on the leaf x containing t. Observe that if t is not
in a leaf, then t++ is. By Invariant 3.2, t++ will be at the top of the spine stack associated with
x. We replace t with t++ in x, perform an increment to obtain the hands on the tail x′, which
contains the original t++. Now we will consider deleting t++ from x′ instead. A further decrement
will put the hands back on t++ in O(1) time.

To begin the deletion, consider the leaf x. If t is xk, then first extend the spine prefix of the
right parent of x and remove the cell of x from Rps. If t is not xk, then update the top cell of Rps
to contain t++ instead of t. In both cases, notice that Rps is still a valid right hand on t (it is on t+

now), but x may have too few keys and a fusion or sharing will be need. After we have handled x,
its parent p may have one less key and another fusion or sharing may occur at its depth. We will
repeat until the propagation stops. At the end, if the root is empty and it is on the Rps, then we
can simply eject the bottom cell. It should be clear that at each depth involved in the propagation,
we spent only O(1) time.

Theorem 5.3 (Insertion and Deletion) The hands can be updated synchronously during an in-
sertion or a deletion in time proportional to the total number of structural changes in the tree.

5.5 Splits and Joins

Again we assume familiarity with the split and join algorithms on degree-balanced search trees.
(See Cormen et al.[9, p. 278, p. 399] for their coverage on Red-Black Trees and 2-3-4 Trees.) Our
focus will be on analyzing the maintainence of the hands during these operations.

Join. Consider joining two trees T1 and T2 with b as the splitting key where a < b < c for any
a ∈ T1 and c ∈ T2. Let h1 and h2 be the heights of T1 and T2 respectively and by symmetry assume
h1 ≤ h2. The join operation should produce a new tree T = T1 ∪ {b} ∪ T2 in O(h2 − h1) time,
assuming the two trees maintain their own heights. For the purpose of our analysis, we will assume
that we have our hands holding any key in T2.

The first step in a typical join algorithm is to identify the node z on the left spine of T2 such
that the sub-tree rooted at z has the same height as T1. When the algorithm is scanning for z down
from the root, we can easily locate the cells in the hands that correspond to that height. (There
can be one cell at this depth in both Lps or Rps and so there are exactly either one or two.) Notice
that the cells located may not correspond to z, but they are the starting points for us to update
the hands one depth at a time.

Once z has been identified on the spine, the root node of T1 will be fused into z, with b as
the key in-between. z may now get overfull and a sequence of node splits and children sharings
may follow. The key observation is that this sequence of structural changes all occur on the left
spine of T2, starting at the depth of z. The situaton is very similar to an insertion, except the
structural change propagates from z instead of from a leaf. Therefore, the hands can be updated
in a way similar to during insertions and stop as soon as the propagation stops. The actual details
are straightforward.

Theorem 5.4 (Join) The hands in the larger tree can be updated synchronously during a join in
time proportional to the total number of structural changes in that tree.
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However, we note that if there is a pair of hands on the smaller tree (T1 in our case), then
discarding the hands alone will take O(h1) time. Fortunately, there is no pointers from the nodes
to the hands. Therefore, we may choose to discard the hands at a later time.

Split. When we split a tree T of height h using a key b, we obtain two trees T1 and T2 such that
a < b < c for any a ∈ T1 and c ∈ T2 in O(log n) time. In this analysis, we assume we have already
placed the hands on b (see below if we do not have our hands on b yet) and by symmetry we assume
b is in the left sub-tree of root. At the end of the split, we should have two pairs of hands, one at
b−− and the other at b++.

A typical split algorithm will decompose T into four groups: the left ancestors of b, their left
sub-trees and symmetrically for the right ancestors. By symmetry, we will consider only the right
ancestors and their right sub-trees. Let Rps be 〈(xrk, srk), . . . , (xr1, sr1)〉a, i.e., xrk contains b and
xr1 is the root, and let Tri be the right sub-tree of xri. To obtain T2, split will be joining Tri to the
left of Tr(i−1) using xr(i−1) as the splitting key for i = k down to 2 (or from k − 1 down to 2 if b is
a leaf). We now show that the hands actually facilitate these joins in an intuitive way.

Consider joining Tri with Tr(i−1). Observe that, using the notation in our analysis of join,
we don’t have to scan for z any more. By Invariant 3.2, z will be the left-left grandchild of the
node contained in the top cell of sr(i−1). The key xr(i−1) is also readily available on the Rps.
Therefore, we can immediately start the join at z. Furthermore, notice that sri actually contains a
fragment of the left spine of T2. Therefore, the assembling sri’s into the Rps for T2 is can be done
straightforwardly. The Lps for T2 will be a single cell containing b++. The hands for T1 can also
be obtained symmetrically.

Theorem 5.5 (Split) When splitting a tree T into T1 and T2 using the current key b held in the
hands, the two new hands at b−− and b++ can be generated in time proportional to the total amount
of work done by the joins to assemble the right spine of T1 and the left spine of T2.

The above analysis assumes that we have already placed the hands on the splitting key b. Notice
that the total time of the split is proportional to the depth of b in T . Therefore, if b is deep and
the hands are not positioned close-by, then it will be simpler to discard the hands and split T as
usual. Rebuilding the two hands can then be done in logarithmic time.

6 Discussion

Hands and inverted spines. In this paper, we have demonstrated that our view of finger search
as a property, rather than an operation, allows us a much bigger design space. In fact, there are
other previous works that do not use an element pointer. A recent exception to this is the purely-
functional catenable sorted list designed by Kaplan and Tarjan [13] in 1996. Instead of an element
pointer, their structure allows splitting the list at the d-th position in worst-case O(log d) time
and catenating in time doubly logarithmic in the size of the smaller list. Finger searches can thus
be realized by splitting and catenating between two instances of their structure, with the finger
pointing at the element at the break.

Although it was not mentioned explicitly, the modified 2-3 finger search tree representation in
their paper actually uses only O(log n) extra storage for an n-element list. The key to their design is
to carefully relax the degree constraint on the spines to allow a suitable storage redundancy, which
can in turn be used to absorb the propagation of structural changes due to splits and catenations.
We can view their design as an improvement upon the heterogeneous finger search trees [22] in
which splits and joins have an amortized time bound. (See Booth [4, Ch. 2], Mehlhorn [17] and
Kosaraju [16] for the analysis.) As we have pointed out in Section 4, the power of the hands also
comes from the inverted spine technique used in the heterogeneous finger search trees. However,
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instead of relaxing the degree constraint on the spines, we showed that it is possible to avoid the
splits and joins if we view the “inverted spine” by the way of the hands. This connection should
be relatively straightforward if we review our discussion of split in Section 5.5.

Remarks on practice. We would like to conclude with several remarks on issues that may
arise when the hands are used in practice. First, notice that the simultaneous maintainance of
the forward and backward hands is often not necessary. In applications like merging, only the
forward hand is needed and therefore we do not need to maintain Lps and the cross points on
Rps. Furthermore, even when an application requires the ability to perform finger searches in both
directions, we note that a new hand can be built on any node in only logarithmic time. Hence if
the number of direction change is small and we must maintain exactly one hand, it may be more
desirable to simply rebuild the hand at each direction change. Finally, we have included a brief
discussion in Appendix C on how the hands can be used to facilitate pre-fectching in databases.
While our in-order walk result is only a theoretical improvement, it will be interesting to see if the
space savings in the tree also translates to a cache performance gain that outweights the overhead
to maintain the hands.
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A Finger search pseudo-code

We provide the pseudo-code of the forward finger search algorithm on a complete BST we presented
in Sections 3.3 and 4 for reference.

ExtendRightLeftSpine(x, s)
1 if |s| = 0 (∗ atlas vs. the rest ∗)
2 then y ← x.right
3 else y ← s.Front().node.left
4 if y 6= nil
5 then s.Push((y,MakeDeque()))

CompleteRightLeftSpine(x, s)
1 if |s| = 0 (∗ atlas vs. the rest ∗)
2 then y ← x.right
3 else y ← s.Front().node.left
4 while y 6= nil
5 do s.Push((y,MakeDeque()))
6 y ← y.left

Increment()
1 (xcurr, scurr)← Rps.Pop()
2 if |Rps| > 0
3 then (xrp, srp)← Rps.Front()
4 ExtendRightLeftSpine(xrp, srp)
5 Rps.Prepend(scurr)

RootedSearch(b)
1 (xcurr, scurr)← Rps.Pop()
2 if |Rps| > 0
3 then (xrp, srp)← Rps.Front()
4 else (xrp, srp)← (xcurr,MakeDeque())
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5 while xcurr 6= nil
6 do (∗ restore invariants while descending ∗)
7 if b ≤ xcurr.Key
8 then (xrp, srp)← (xcurr,MakeDeque())
9 Rps.Push((xrp, srp))

10 xcurr ← xcurr.left
11 else ExtendRightLeftSpine(xrp, srp)
12 xcurr ← xcurr.right

ForwardSubTreeSearch(b)
1 (xcurr, scurr)← Rps.Pop()
2 (∗ ascend along the inverted spine ∗)
3 while |Rps| > 0 ∧ Rps.Front().node.key ≤ b
4 do (xcurr, scurr)← Rps.Pop()
5 Rps.Push((xcurr, scurr))
6 (∗ descend as in a binary tree search ∗)
7 RootedSearch(b)

BuildHand(T, b)
1 Rps←MakeDeque()
2 Rps.Push((T.root,MakeDeque()))
3 RootedSearch(b)

ObtainInitFinger(T )
1 BuildHand(T,−∞)

ForwardFingerSearch(b)
1 (∗ assumes hand is not at ∞ and xcurr.key < b ∗)
2 xcurr ← Rps.Front().node
3 if |Rps| ≥ 2
4 then (xrp, srp)← Rps.Front().next (∗ 2nd cell ∗)
5 if b ≤ xrp.key (∗ case (i) ∗)
6 then Increment()
7 ForwardSubTreeSearch(b)
8 return
9 (xrp, srp)← Rps.Pop() (∗ case (ii) and case (iii) ∗)

10 while |Rps| > 0 ∧ Rps.Front().node.key ≤ b
11 do (xrp, srp)← Rps.Pop()
12 Rps.Push((xrp, srp))
13 CompleteRightLeftSpine(xrp, srp)
14 Increment()
15 ForwardSubTreeSearch(b)

B Handling k-ary nodes

We only require a slight adjustment to the cells when we extend the hands to handle k-ary nodes.
In particular, instead of storing a pointer to a k-ary node x, we now also store the offset, which
indicates the sub-tree that contains the finger. For example, if the finger is under x[j], then x will
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appear on the Rps as (x, j) instead of just x. This is to reflect the fact that xj is the right parent
key. For concision, we will simply say xj in our discussion and a cell will be written as (xj , s). Here
we present the increment algorithm that has been adapted to handle k-ary nodes as an example of
how we can adapt our algorithms.

Increment()
1 (xj

curr, scurr)← Rps.Pop()
2 if j < k − 1
3 then Rps.Push(xj+1

curr, nil)
4 else if |Rps| > 0
5 then (xj

rp, srp)← Rps.Front()
6 ExtendRightLeftSpine(xj

rp, srp)
7 Rps.Prepend(scurr)

C In-order walk and databases

Typically we will not index every column in a database table. When a query involves columns that
are not indexed, we may need to scan the whole column. This corresponds to an in-order walk in
the B-tree that contains the actual table. The in-order walk algorithm in Section 3 is already an
improvement over the straightforward recursive solution asymptotically, since its O(1) time bound
is worst-case instead of amortized. However, it is not clear that in practice our algorithm will be
faster if we just use the simple implementation outlined in our pseudo-code.

We do want to briefly describe an observation about the hands and the idea of pre-fetching. In
particular, our in-order walk algorithm suggests a pre-fetching schedule that seems implementat-
able. We can lock the upper portion of the hands and all the nodes referenced by those cells in the
data cache (and as the height of the hand shrinks, we will also use pre-fetching to bring the lower
cells and their associated spine lists into the cache). This guarantees that accessing any cells in
that portion as well as the nodes referenced will not generate a cache miss. Also, we can use pre-
fetching in ExtendRightLeftSpine since the right-left spine srp will not be needed immediately.
Further, it is possible to do the eager walk “over-eagerly” by extending Invariant 3.2 to mandate
the full right-left spines to be stored for the top few cells. Finally, we can associate second level
spines to the cells in the spine lists. This corresponds to a very aggressive pre-fetching schedule
that guarantees all the nodes required in the near future are pre-fetched by the hands.

We note that, however, in practice more sophisticated trees are used in databases. For example,
B∗-trees is designed with fast scanning in mind. Since these trees use more space than a B-tree,
their cache performance may be worse than a simple B-tree with the hands. It will be interesting to
implement and benchmark the performance of using the hands and see what our theoretical result
would translate to in the real world.
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#(u), number of keys in u, 4
⊥⊥⊥ ≡ external node in node-store

search tree, 7∞ sentinel

leaf-store, 7

lefti(︀u⌋︀ ≡ ci(︀u⌋︀, 9⋃︀u, restrict to subtree rooted at u, 4
righti(︀u⌋︀ ≡ ci+1(︀u⌋︀, 9
ah(u) ≡ actual height of node u, 5
BR(h), bit-reversal sequence of h

bits, 45

ci(︀u⌋︀, the i-th child of u, 6
depth(u) ≡ depth of node u, 5
distA(x, y), rank distance between

x and y both in A, 18

f (n)-competitive, see competitive

analysis, competitiveness

i-th right child of u ≡ ci(︀u⌋︀, 8
keyi(︀u⌋︀, the i-th key of u, 6
left(︀u⌋︀, left child of u, 6
lg, binary logarithm, 3

mindep(︀u⌋︀, minimum reference

depth in ST(u)⋃︀u, 55
Nil, 6

refdep(︀u⌋︀, reference depth of u, 51
right(︀u⌋︀, right child of u, 6
root(︀T⌋︀, root of T, 6

SP(u)⇑ SP(x), solid path

containing u⇑x, 47
ST(u)⇑ ST(x), auxiliary tree

containing x, 49

AA-trees, 17(a, b)-tree, 16
access

competitive definition, 19

operational definition, 20

in competitive analysis↝, 18

access sequence, 18

competitive definition, 19

operational definition, 20

auxiliary tree, 48

B-tree, 16↝cache-oblivious..., 17↝hysterical..., 17↝weak..., 16

balancing↝fragile..., 16↝robust..., 16

binarization

of heterogeneous red-black

tree↝, 38

of (2, 4)-tree↝, 17

binary search tree

...algorithm, 42

...model, 42

bit-reversal sequence, 45

cache-oblivious B-tree↝, 17

catenation

of degree-balanced search tree↝, 15

of heterogeneous red-black

tree↝, 37

cells, 96

competitive analysis, 18

access↝, 18

competitiveness, 19

serve↝, 18

cross cell, 97

dashed pointer

in reference tree↝, 47

in tangolike tree↝, 49

degree-balanced search tree, 2

catenation↝, 15

delete↝, 13

insert↝, 13

join↝, 15↝level-linked..., 24

search↝, 12

split↝, 15

delete

in degree-balanced search tree↝, 13

in heterogeneous red-black

tree↝, 37

demotion

of key↝, 14

dictionary operation, 12

difference, see merging

difference coding, 31

dynamic finger↝, 21

dynamic finger budget

competitive definition, 19

operational definition, 21

dynamic finger property

competitive definition, 19

operational definition, 21

of heterogeneous red-black

tree↝, 37

dynamic finger tree, 22

dynamic optimality conjecture, 42

end boxed subtree, 113

excision

of homogeneous finger search

tree↝, 41

exit key, 26

exit node, 25
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external memory model, 16

external node

leaf-store, 7

external node↝, 4

external nodes

node-store, 7

external position, 4

finger, 21↝dynamic..., 21

...pointer, 22↝static..., 22

finger search, 18, 22

in heterogeneous red-black

tree↝, 38

finger search tree, 22↝homogeneous..., 40

fission

of node↝, 13

fragile balancing↝, 16

fusion

of node↝, 14

γ codes, 31

height

of a tree, 5

heterogeneous decomposition, 66,

76

heterogeneous height, 71, 80

heterogeneous red-black tree↝, 34

binarization↝, 38

catenation↝, 37

delete↝, 37

dynamic finger property↝, 37

finger search↝, 38

insert↝, 37

join↝, 36

search↝, 35

split↝, 37

heterogeneous spine, 73, 82

homogeneous finger search tree↝,

40

excision↝, 41

hysterical B-tree↝, 17

improved tango trees, 56

inner, 68

inner spine representation, 76

insert

in degree-balanced search tree↝, 13

in heterogeneous red-black

tree↝, 37

interleave bound, 45

internal node, 6

internal node↝, 4

intersection, see merging

inversion, 29

inverted spine↝, 34

invisible, 77

join

of degree-balanced search tree↝, 15

of heterogeneous red-black

tree↝, 36

junction, 4

key

...demotion, 14↝primary..., 74

...promotion, 13↝secondary..., 74

...space, 18

leaf, 4

leaf-decomposed, 140

leaf-store, 6

left-leaning red-black tree↝, 17

length, of a path in a search tree, 10

level pointer, 24

level-linked degree-balanced

search tree↝, 24

locality of reference↝spatial..., 33↝temporal..., 33

marked root bit↝, 49

merging, of disjoint sorted lists, 28

node↝external..., 4

...fission, 13

...fusion, 14↝internal..., 4↝over-full..., 13↝under-full..., 14

node-store, 6

nonpreferred child, see preferred

child

nonpreferred subtree, see preferred

subtree

nontrivial bit, 141

outer, 68

over-full node↝, 13

parent pointer, 24

parent stack, 12

peer, 11

poketrees, 57

preference, 44

preferred

...child, 46

...leaf, 47

...subtree, 46

primary key↝, 74

promotion

of key↝, 13

rank

insert and delete, 20

key, 18

search, 20

...distance, 18

red-black tree, 17↝heterogeneous..., 34↝left-leaning..., 17

reference depth, 46

reference tree, 44

dashed pointer↝, 47

solid pointer↝, 47

reorganization tree, 43

...cost model, 43

robust balancing↝, 16

root, 4

root bit, 49, 141↝marked..., 49

root solid path, 47

root-start, 12

scanning

access sequence, 27

algorithm, 24

search
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in degree-balanced search tree↝, 12

in heterogeneous red-black

tree↝, 35

search sequence, 20

secondary key↝, 74

sentinel, 20

serve

in competitive analysis↝, 18

sibling, 11

skew, 110

skewness, 113

solid path, 47

solid path decomposition, 48

solid pointer

in reference tree↝, 47

in tangolike tree↝, 49

spatial locality of reference↝, 33

spine

↝inverted..., 34

spine prefix stack, 97

split

of degree-balanced search tree↝, 15

of heterogeneous red-black

tree↝, 37

static finger↝, 22

static finger budget, 21

static finger property, 21

strictly bitonic, 52

subtends, 77

support, 71

switch, 44

in solid path decomposition,

50

tangolike tree, 42

dashed pointer↝, 49

solid pointer↝, 49

temporal locality of reference↝, 33

terminal bit, 7

terminating key, 20

triplet representation, 37

trivial bit, see nontrivial bit

turn key, 35(2, 4)-tree, 16
binarization↝, 17(2, 3)-tree, 16

unbounded binary search, 23

under-full node↝, 14

unified property, 64

union, see merging

update

operational definition, 20

weak B-tree↝, 16

working set number, 33

working set property, 33
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