
Algorithms for abstracting and solving
imperfect information games

Andrew Gilpin
May 2009

CMU-CS-09-127

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Tuomas Sandholm, Chair

Avrim Blum
Geoff Gordon

Javier Peña
Bernhard von Stengel, London School of Economics

Copyright c© 2009 Andrew Gilpin

This research was supported in part by the National Science Foundation under ITR grants IIS-0121678 and
IIS-0427858, a Sloan Fellowship, and a Siebel Scholarship. We also acknowledge Intel Corporation and IBM
for their gifts.

Keywords: Computational game theory, artificial intelligence, equilibrium computa-
tion, automated abstraction, nonsmooth convex optimization, sequential games, repeated
games, imperfect information, poker AI.

To my parents.

Abstract

Game theory is the mathematical study of rational behavior in strategic environments. In
many settings, most notably two-person zero-sum games, game theory provides particu-
larly strong and appealing solution concepts. Furthermore, these solutions are efficiently
computable in the complexity-theory sense. However, in most interesting potential applica-
tions in artificial intelligence, the solutions are difficult to compute using current techniques
due primarily to the extremely large state-spaces of the environments.

In this thesis, we propose new algorithms for tackling these computational difficulties.
In one stream of research, we introduce automated abstraction algorithms for sequential
games of imperfect information. These algorithms take as input a description of a game and
produce a description of a strategically similar, but smaller, game as output. We present
algorithms that are lossless (i.e., equilibrium-preserving), as well as algorithms that are
lossy, but which can yield much smaller games while still retaining the most important
features of the original game.

In a second stream of research, we develop specialized optimization algorithms for find-
ing ε-equilibria in sequential games of imperfect information. The algorithms are based on
recent advances in non-smooth convex optimization and provide significant improvements
over previous algorithms for finding ε-equilibria.

Combining these two streams, we enable the application of game theory to games much
larger than was previously possible. As an illustrative example, we find near-optimal solu-
tions for four-round models of limit and no-limit Texas Hold’em poker, and report that the
resulting players won the most chips overall at the 2008 AAAI Computer Poker Competi-
tion.

i

ii

Acknowledgments

It would be a difficult task to overstate how influential my advisor, Tuomas Sandholm,
has been on my research career and life. I have had the singular privilege of working
with Tuomas for nine years, both in industry and in academia. It has been an amazingly
exhilarating and rewarding experience. Tuomas always demonstrated a strong patience
when communicating difficult concepts to me. When I interrupted him to confess that I did
not understand a particular topic (a common occurence), Tuomas was always able to find
an alternative explanation that somehow managed to transfer his knowledge to me. There
is zero probability that I would be earning a Ph.D., let alone writing this thesis, had it not
been for his influence.

Javier Peña has also been extremely influential on my research trajectory. Indeed, with-
out my collaboration with Javier, the second half of this thesis would not have happened.
Javier’s knowledge of continuous optimization is inspiring, and I am lucky that I was able
to learn from such an accomplished and talented mathematician.

Special thanks also goes to the rest of my committee: Avrim Blum, Geoff Gordon, and
Bernhard von Stengel. This thesis is undoubtably better as a result of each of your insights
and comments.

While at CMU I have benefited greatly from my interactions with the graduate students
and visitors in the Agent-Mediated Electronic Marketplaces lab. In particular, I would like
to thank David Abraham, Pranjal Awasthi, Mike Benisch, Felix Brandt, Vincent Conitzer,
Sam Ganzfried, Benoı̂t Hudson, Kate Larson, Alex Nareyek, Abe Othman, Paolo Santi,
Rob Shields, Troels Bjerre Sørensen, and Erik Zawadski. Elsewhere at CMU, I was lucky
to have had many enjoyable conversations, both social and research-oriented, with Nina
Balcan, George Davis, Paul Enders, Sam Hoda, Ryan Kelly, Ben Peterson, Peter Richter,
Aaron Roth, Mugizi Rwebangira, and John Turner.

Extra-special acknowledgments go to my friends and officemates for 7 years, Nina and
Doru Balcan. I will always fondly remember traveling with you and meeting your families
in Romania. Nina: Eşti o profesoara excelenta! Doru: Eşti o profesoara extraordinara!

The highlights of my time in graduate school mostly revolve around the many con-
ferences I attended, and the wonderful people that I have met from around the globe. In
particular, I want to acknowledge Moshe Babaioff, Navin Bhat, Liad Blumrosen, Ruggiero
Cavallo, Viet Dung Dang, Raj Dash, Felix Fischer, Kobi Gal, Enrico Gerding, Rica Go-
nen, Christian Guttman, Jason Hartline, Nick Jennings, Sébastien Lahie, Ron Lavi, Kevin
Leyton-Brown, Peter Bro Miltersen, Ahuva Mu’alem, Jigar Patel, Iyad Rahwan, Talal Rah-
wan, Gopal Ramchurn, Alex Rogers, Rahul Savani, and Troels Bjerre Sørensen.

iii

I have benefited greatly from having had the opportunity to TA under many talented
professors. At Washington University, this includes Christopher Gill, Will Gillett, David
Levine, Ron Loui, and Michael Plezbert. At CMU, this includes Anupam Gupta, Mike
Lewicki, Steven Rudich, and Tuomas Sandholm. Assisting with the teaching of your
courses was a fantastic learning experience.

I would like to thank the many professors who have had a particularly inspiring in-
fluence on my education. At Washington University, this includes Christopher Gill, Sally
Goldman, David Levine, Ron Loui, Robert Pless, Catalin Roman, Doug Schmidt, Subhash
Suri, Jonathan Turner, George Varghese, and Weixiong Zhang. At CMU, this includes
Egon Balas, Christos Faloutsos, Peter Lee, Francois Margot, Tom Mitchell, Andrew Moore,
Javier Peña, Tuomas Sandholm, and Danny Sleator.

My research direction was greatly influenced by the R&D team at CombineNet. In par-
ticular, I gratefully acknowledge the many interesting discussions I had at CombineNet with
Bryan Bailey, Egon Balas, Craig Boutilier, Rob Clarke, Andrew Fuqua, Sam Hoda, Tom
Kuhn, David Levine, George Nemhauser, David Parkes, Tuomas Sandholm, Rob Shields,
Yuri Smirnov, Subhash Suri, and Bill Walsh.

Equally important in helping me make it through graduate school are the world-class
administrators that work in the Computer Science Department at CMU. In particular, I
want to thank Sharon Burks, Deb Cavlovich, and Marilyn Walgora for doing an amazing
job in helping make the difficult journey through graduate school much smoother and more
enjoyable than it could have been. Also deserving of mention is Dave Livingston with
SCS Facilities for going out of his way to help make the construction of our computing
infrastructure much smoother.

Switching gears slightly, it would be impolite of me to neglect to mention a few other
groups of individuals who have done more than they will ever know in making my gradu-
ate school experience more enjoyable. Although they have no idea who I am, I would like
to thank the 2007 West Virginia University football team, the 2007-08 Huntington High
School basketball team, and the 2005 and 2008 Super Bowl Champion Pittsburgh Steel-
ers for providing me with greatly appreciated entertaining and inspiring distractions. My
memories of your achievements will always be intertwined with those of my own graduate
school achievements.

Helping me keep a normal life away from the computer were my many wonderful
friends: Bryan, Candace, Chris, Emily, George, Jennie, John, Lawrence, Lisa, Mary, Mike
B., Mike J., Mike M., Mike P., Paul, Randy, Rob, and Sam. For those whom I forgot, my
apologies. You know who you are.

I am extraordinarily lucky to have such a wonderful friendship with one particularly
remarkable person. Lauren, there is no doubt that your support, care, and patience have
had a major influence on my life, career, and this thesis. Thank you.

Finally, I am blessed with a wonderful family. Ann, Kate, Marty, Caroline, and Charlie:
Thank you for your constant love and support. Mom: thank you for (literally) showing me
how to earn a Ph.D. at CMU. Mom and Dad: Thank you for teaching me the important
lessons that are not covered in the classroom. This thesis is dedicated to you.

iv

Contents

I Introduction and Background 1

1 Overview 3
1.1 Introduction . 3

1.2 Poker and artificial intelligence . 5

1.3 Thesis statement . 5

1.4 Summary of thesis contribution . 6

1.5 Organization . 6

2 Game Theory 9
2.1 Extensive form games and perfect recall 9

2.2 Solution concepts . 11

2.3 Standard algorithms for finding equilibria 12

2.3.1 Algorithms for finding equilibria in normal form games 12

2.3.2 Algorithms for finding equilibria in extensive form games 13

2.3.3 Algorithmic approximations . 15

3 Poker 17
3.1 Poker rules and variants . 17

3.1.1 Texas Hold’em . 17

3.1.2 Rhode Island Hold’em . 19

3.2 Related research on poker . 19

II Automated Abstraction 23

4 Automated Abstraction Overview 25

v

5 Lossless Information Abstraction 27
5.1 Introduction . 27

5.2 Applications . 28

5.2.1 Application to Rhode Island Hold’em poker 29

5.3 Games with ordered signals . 30

5.3.1 Rhode Island Hold’em modeled as an ordered game 32

5.3.2 Information filters . 32

5.3.3 Strategies and Nash equilibrium 34

5.4 Equilibrium-preserving abstractions . 35

5.4.1 Nontriviality of generalizing beyond this model 45

5.5 GameShrink: An efficient algorithm for computing ordered game isomor-
phic abstraction transformations . 46

5.5.1 Efficiency enhancements . 49

5.6 Approximation methods . 50

5.6.1 State-space approximations . 50

5.6.2 Algorithmic approximations . 51

5.7 Related research . 52

5.8 Summary . 54

6 Lossy Information Abstraction 55
6.1 Introduction . 55

6.2 Stage-based sequential games . 55

6.2.1 Abstraction representation in stage-based sequential games 57

6.3 Lossy version of GameShrink . 58

6.3.1 GS1: Application of lossy GameShrink and real-time equilibrium
computation for the endgame in Texas Hold’em 60

6.4 Expectation-based automated abstraction using optimization 66

6.4.1 GS2: Application of expectation-based abstraction to Texas Hold’em 69

6.4.2 Evaluation . 70

6.5 Potential-aware automated abstraction . 72

6.5.1 Computing the abstraction for the first stage 74

6.5.2 Computing the abstraction for intermediate stages 75

6.5.3 Computing the abstraction for leaf stages 75

vi

6.5.4 GS3: Application of potential-aware abstraction and holistic game
solving to Texas Hold’em . 76

6.6 Strategy-based abstraction and results from the 2008 AAAI Computer Poker
Competition . 82

6.7 Evaluation of information-based abstraction algorithms 82

6.7.1 Comparing agents head-to-head 85

6.7.2 Comparing agents against equilibrium play 86

6.7.3 Comparing agents against their nemeses: Worst-case performance . 87

6.7.4 Evaluating abstractions based on estimating the value of the game . 88

6.7.5 Summary of experiments comparing information abstraction algo-
rithms . 89

6.8 Conclusions and future research . 89

7 Stage and Action Abstraction 91
7.1 Introduction . 91

7.2 Stage abstraction . 91

7.3 Action abstraction in limit poker . 93

7.4 Action abstraction in no-limit poker . 96

7.4.1 Betting model . 96

7.4.2 Reverse mapping . 99

7.4.3 Tartanian: Our first player for No-Limit Texas Hold’em 100

7.4.4 Tartanian2: Better action abstraction 104

7.5 Conclusions and future research . 105

III Equilibrium-Finding Algorithms 107

8 Gradient-Based Algorithms for Solving Zero-Sum Games 109
8.1 Introduction . 109

8.2 First-order methods . 110

8.3 Excessive gap technique . 111

8.3.1 Nice prox functions . 114

8.3.2 Experimental setup . 115

8.3.3 Experimental comparison of prox functions 115

8.3.4 Heuristics for improving speed of convergence 116

vii

8.4 Solving matrix games with O(log 1/ε) convergence 122

8.4.1 Iterated smoothing scheme for matrix games 124

8.4.2 The condition measure δ(A) . 126

8.4.3 Proof of Theorem 8 . 127

8.4.4 The subroutine smoothing for matrix games 128

8.5 Solving sequential games with O(log 1/ε) convergence 128

8.5.1 The subroutine smoothing for sequential games 129

8.5.2 ComplexSubproblem example . 133

8.6 Computational experiments on O(log 1/ε) algorithm 135

8.7 Summary . 137

9 Sampling for Speeding Up Gradient-Based Algorithms 139
9.1 Introduction . 139

9.2 Main idea . 139

9.3 Static sampling . 140

9.4 Dynamic sampling . 142

9.5 Summary . 144

10 Implementation of Gradient-Based Algorithms 147
10.1 Introduction . 147

10.2 Customizing the algorithm for stage-based sequential games 148

10.2.1 Addressing the space requirements 148

10.2.2 Speedup from parallelizing the matrix-vector product 149

10.3 Exploiting ccNUMA architecture . 150

10.3.1 Details of our approach . 151

10.3.2 Experiments . 151

10.4 Summary . 152

11 Solving Repeated Games of Imperfect Information 155
11.1 Introduction . 155

11.2 Preliminaries . 156

11.2.1 Complete-information zero-sum games 157

11.2.2 Incomplete-information zero-sum games 158

11.2.3 Repeated incomplete-information zero-sum games 159

viii

11.3 Examples . 161

11.3.1 Completely unrevealing strategy 161

11.3.2 Completely revealing strategy . 162

11.3.3 Partially revealing strategy . 163

11.4 Optimization formulation . 164

11.4.1 Derivation of the optimization formulation 165

11.4.2 Solving the formulation . 166

11.5 Finding the players’ strategies . 170

11.5.1 The informed player’s strategy . 170

11.5.2 The uninformed player’s strategy 171

11.6 Conclusions and future directions . 172

IV Summary 175

12 Summary 177

References 179

ix

x

List of Figures

5.1 Rhode Island Hold’em modeled as an ordered game. 33

5.2 GameShrink applied to a tiny two-person four-card poker game. 36

5.3 Illustration of Case 1 of Claim 1. 39

5.4 Illustration of Case 2 of Claim 1. 40

5.5 Example of a difficult game to abstract. 46

6.1 The initial abstraction tree of Texas Hold’em. 67

6.2 Abstraction tree for GS2’s Phase 1 equilibrium approximation. 69

7.1 First player’s empirical action probabilities. 93

7.2 Second player’s empirical action probabilities. 93

7.3 First player’s empirical action probabilities when facing a raise. 94

8.1 Comparison of the entropy and Euclidean prox functions. 116

8.2 Experimental evaluation of Heuristic 1. 118

8.3 Heuristic 2 applied at different intervals. 120

8.4 Steps 1 and 2 applied to Q1 and g1. 134

8.5 Steps 1 and 2 applied to Q and g. 135

8.6 Time taken for each algorithm to find an ε-equilibrium. 136

9.1 Duality gap versus time for varying levels of sampling. 141

9.2 Duality gap for the original game as a function of time. 142

9.3 Duality gap versus time for the original and dynamic sampling algorithms. . 144

10.1 Scalability of the matrix-vector product operation. 152

11.1 The stage games for the unrevealing example. 161

11.2 The average game where player 1 ignores her information in Figure 11.1. . 162

11.3 The stage games for the revealing example. 162

xi

11.4 The stage games for the partially-revealing example. 163

11.5 The average game where player 1 ignores her information in Figure 11.4. . 163

xii

List of Tables

3.1 Ranking of three-card poker hands, from highest to lowest. 20

6.1 Performance of GS2 against GS1, SparBot, and VexBot. 71

6.2 Experiments evaluating GS3 against static opponents. 78

6.3 Experiments evaluating GS3 against VexBot. 80

6.4 GS3’s performance in the 2007 AAAI Computer Poker Competition. 81

6.5 GS4’s performance in the 2008 AAAI Computer Poker Competition. 83

6.6 Head-to-head comparison of the algorithms 86

6.7 Expected payoff to each agent when playing against the optimal agent. . . 87

6.8 Expected payoffs to various agents when playing againt their nemesis. . . . 88

6.9 Comparison of the estimate of the value of the game 89

7.1 Evaluation of action abstraction in limit poker. 95

7.2 Tartanian’s performance in the 2007 AAAI Computer Poker Competition. . 104

7.3 Tartanian2’s performance in the 2008 AAAI Computer Poker Competition. 105

8.1 Problem sizes for the instances used in our experiments. 115

10.1 Memory requirements of the various algorithms. 149

10.2 Effect of parallelization for the Texas instance. 150

xiii

xiv

Part I

Introduction and Background

1

Chapter 1

Overview

1.1 Introduction

In settings with multiple, self-interested agents, the outcome for each individual agent de-
pends on the actions of the other agents in the system. Consequently, rational and optimal

strategies for each agent also depend on the other agents’ actions. In order for an agent to
achieve their best possible outcome it is necessary to take the other agents’ preferences and
strategies into account during the deliberation process.

Game theory is the mathematical framework that enables the study of rational behav-
ior in competitive multiagent environments. Inter alia, game theory defines solution con-

cepts that provide prescriptive behavior (i.e., strategies) for each agent. The Nash equilib-

rium [112] is the most prevalent such solution concept. In a Nash equilibrium, no agent has
any incentive to deviate to any other strategy.

In some settings, the algorithms for finding (or approximating) Nash equilibria are
straightforward. In fact, there has been an enormous amount of research on algorithms
for two-person perfect information games (sometimes called combinatorial games [9]). In
these games, applying minimax search (possibly with α-β-pruning) actually yields a Nash
equilibrium (assuming that the game tree is completely searched and no internal nodes are
replaced by leaves according to some evaluation function) [131]. Perhaps without realizing
it, the researchers that developed these algorithms were motivated by a line of reasoning
that is analogous to the reasoning behind the Nash equilibrium: the best action for one
agent largely depends on the best actions for the other agents. However, as we will discuss
below, these algorithms are not applicable to many interesting, real-world games.

Developing expert-level game-playing computer agents has long been a major focus

3

of the artificial intelligence (AI) community. The most notable successes include Chinook,
which defeated the checkers world champion Dr. Marion Tinsley in 1992 [139]; Deep Blue,
which defeated Garry Kasparov, the chess world champion in 1997; and TD-Gammon,
the best backgammon-playing program in the world [156]. (See [140] for a survey of
other AI success stories in game playing.) These are all very impressive applications of
AI techniques and have done much to advance the standing of AI in the wider science
community. However, each of these three games possess the property known as perfect

information, i.e., at any point in time, both players are fully informed about the state of
the world. In contrast, most interesting potential application areas of game theory have
the property of imperfect information: at most stages of the game, the players are only
partially informed about the state of the world. Examples include poker and most other card
games (in which each player does not know the cards held by the other players), economic
environments (in which each player does not know the other players’ preferences), and
adversarial robot environments (in which each robot does not know the locations and goals
of the other robots). Due to this informational difference, algorithms for perfect information
games are unhelpful when designing agents for games with imperfect information.

In the last 15 years, there has been a surge of research with the goal of developing the
theory and algorithms for finding equilibria in sequential games with imperfect informa-
tion [84, 160, 86, 85, 88, 87]. Among other breakthroughs, it is now well-known that one
can compute a Nash equilibrium in a two-person zero-sum sequential game with imperfect
information in time polynomial in the size of the game tree. The prescribed method for
solving this problem is to model the game as a linear program and solve for the equilibrium
using general-purpose linear programming tools. However, for most interesting applica-
tions in AI, these tools do not scale. In this thesis we present two complementary streams
of research to tackle this problem.

1. We introduce automated abstraction algorithms for sequential games of imperfect

information as a method for finding (nearly) equivalent, smaller representations of
games on which the equilibrium analysis may be carried out.

2. We improve the equilibrium finding algorithms themselves via the development of
specialized optimization algorithms for finding approximate equilibria in sequential

games of imperfect information.

Combining these approaches enables the application of game theory to games many
orders of magnitude larger than previously possible. In the remainder of this section, we

4

motivate our main application area (poker), give the thesis statement, and summarize the
research presented in the remainder of this document.

1.2 Poker and artificial intelligence

Poker is an enormously popular card game played around the world. The strategies em-
ployed by expert players can be extremely sophisticated [148]. A poker player cannot
succeed with just the ability to compute odds and probabilities; they also need to utilize
randomized (information-hiding) strategies that attempt to deceive the opponent. When
performing actions, successful poker players need to consider not only what possible pri-
vate information their opponent knows, but also what their own action reveals about their
own private information. Thus, players must speculate, counter-speculate, counter-counter-
speculate, etc., about what their actions are achieving and what they are revealing. Game
theory, via its various equilibrium concepts, is particularly well-suited to providing defini-
tive answers in these types of situations.

In addition to the challenging research issues presented by poker, it is a particularly
attractive testbed for computational game theory research. Unlike many other important
games with imperfect information (e.g. financial markets, business-to-business interac-
tions, political negotiations, legal disputes), there are no issues with the game model. Game
theory is capable of modeling the game precisely as it is played. Another motivation for
studying poker is that it represents a frontier of machine intelligence: while artificially in-
telligent agents have surpassed the skill level of humans in games such as chess, checkers,
and backgammon, poker remains a game where humans are superior.

For the above reasons, as well as many others, poker has been identified as an important
area of research for AI [15], and it is with these challenges in mind that we present this
thesis.

1.3 Thesis statement

Automated abstraction in conjunction with specialized equilibrium-finding al-

gorithms enables the construction of agents capable of intelligently performing

in large-scale sequential competitive environments of imperfect information.

5

1.4 Summary of thesis contribution

• We developed a provably lossless automated abstraction algorithm, GameShrink, for
sequential games of imperfect information. It enabled the computation of optimal
strategies for Rhode Island Hold’em poker, which at the time was the largest sequen-
tial game of imperfect information solved by over four orders of magnitude [58, 61].

• We developed approximation versions of GameShrink for performing information-
based abstraction in even larger games, as well as algorithms for action abstraction
and stage-based abstraction. These new algorithms have been used to develop a series
of players for heads-up limit and no-limit Texas Hold’em poker, the latest of which
are competitive with all known poker-playing programs [59, 60, 64, 65, 62].

• We developed specialized equilibrium-finding algorithms based on recent techniques
developed for non-smooth convex optimization. Our contribution includes both the-
oretical improvements and practical improvements. These algorithms have enabled
the solution of games four orders of magnitude larger than was previously possible
using state-of-the-art linear programming solvers [74, 56, 57].

• In a slightly tangential line of research, we investigate repeated games of imperfect
information. For two-person zero-sum games with lack of information on one side
(i.e. only one player is informed), we develop an algorithm for finding optimal strate-
gies [63].

1.5 Organization

The thesis is organized into four parts. The remainder of Part I presents the game theory
background used in this thesis (Chapter 2) and, since the primary application studied in this
thesis is poker, provides the relevant information about the game (Chapter 3).

Parts II and III discuss the thesis contribution. Part II discusses a range of automated
abstraction algorithms, including lossless information abstraction (Chapter 5), lossy infor-
mation abstraction (Chapter 6), and stage and action abstraction (Chapter 7).

Part III develops algorithms for equilibrium finding. In Chapter 8 we discuss gradient-
based equilibrium-finding algorithms, and show that our most advanced algorithm finds
an ε-equilibrium in O(log 1/ε) iterations, an exponential improvement over the prior best
algorithms in terms of the dependence on ε. Chapter 9 discusses a randomized sampling

6

methodology for speeding up the gradient-based algorithms, and Chapter 10 discusses a
number of systems-level techniques for further improving performance, including an im-
plementation designed for a particular supercomputing architecture. In Chapter 11 we shift
gears to study repeated games of imperfect information and discuss an equilibrium-finding
algorithm suitable for that class of games.

Part IV summarizes the thesis.

7

8

Chapter 2

Game Theory

In this section we review relevant definitions and algorithms from game theory. Game the-
ory is the mathematical study of decision-making in interactive, competitive environments.
The most basic assumption underlying the (classical) theory involves the embodiment of ra-
tionality in individual agents via utility-function-inducing preferences. Further, the players
are assumed to act in such as a way as to maximize their utility based on their knowledge
about the game. We do not further discuss these basic assumptions, nor detail the many
objections raised against them. The assumptions are standard. We simply present the basic
game theory that is used in this thesis. The models and solution concepts discussed in this
chapter mirrors the development of any standard game theory text (e.g., [120, 111]).

2.1 Extensive form games and perfect recall

Normal form games (often called matrix (resp. bimatrix) games in two-person zero-sum
(resp. non-zero-sum) games) are games in which each player simultaneously chooses an
action in their action set, and these choices deterministically determine the outcome of the
game. Although there is a deep theory for these games, and many interesting games that
naturally fit this model, they are not our main interest.

In this thesis, we are primarily interested in sequential games, in which players may
take moves after observing moves of chance (e.g., a roll of a die) and moves of the other
players. This model is much more powerful in terms of modeling capability as many real-
world games can be concisely represented in this model.1 This class of games is referred

1In principle, any finite sequential game can be represented in the normal form by considering cross
products of all possible contingency plans [91]. However, such representations lead to exponential increases

9

to as extensive form games and our definition of this class is standard:

Definition 1 An n-person game in extensive form is a tuple Γ = 〈I, V, E, P,H,A, u, p〉
satisfying the following conditions:

1. I = {0, 1, . . . , n} is a finite set of players. By convention, Player 0 is the chance
player.

2. The pair (V,E) is a finite directed tree with nodes V and edges E. Z denotes the

leaves of the tree, called terminal nodes. V \Z are decision nodes. N(x) denotes x’s

children and N∗(x) denotes x’s descendants.

3. P : V \ Z → I determines which player moves at each decision node. P induces a

partition of V \ Z and we define Pi = {x ∈ V \ Z |P (x) = i}.

4. H = {H0, . . . , Hn} where each Hi is a partition of Pi. For each of Player i’s

information sets h ∈ Hi and for x, y ∈ h, we have |N(x)| = |N(y)|. We denote

the information set of a node x as h(x) and the player who controls h is i(h).

5. A = {A0, . . . , An}, Ai : Hi → 2E where for each h ∈ Hi, Ai(h) is a partition

of the set of edges {(x, y) ∈ E |x ∈ h} leaving the information set h such that

the cardinalities of the sets in Ai(h) are the same and the edges are disjoint. Each

a ∈ Ai(h) is called an action at h.

6. u : Z → IRN is the payoff function. For x ∈ Z, ui(x) is the payoff to Player i in the

event that the game ends at node x.

7. p : H0 × {a ∈ A0(h) |h ∈ H0} → [0, 1] where
∑

a∈A0(h)

p(h, a) = 1

for all h ∈ H0 is the transition probability for chance nodes.

In this thesis we restrict our attention to games with perfect recall [93], which means that
players never forget information:

Definition 2 An n-person game in extensive form satisfies perfect recall if the following

two constraints hold:

in the size of the game and are not at all suitable for computational purposes [160].

10

1. Every path in (V,E) intersects h at most once.

2. If v and w are nodes in the same information set and there is a node u that precedes

v and P (u) = P (v), then there must be some node x that is in the same information

set as u and precedes v and the path taken from u to v is the same as from x to w.

A straightforward representation for strategies in extensive form games is the behavior

strategy representation. This is without loss of generality since Kuhn’s Theorem [93] states
that for any mixed strategy there is a payoff-equivalent behavioral strategy in games with
perfect recall. For each information set h ∈ Hi, a behavior strategy is σi(h) ∈ ∆(Ai(h))

where ∆(Ai(h)) is the set of all probability distributions over actions available at infor-
mation set h. A group of strategies σ = (σ1, . . . , σn) consisting of strategies for each
player is a strategy profile. We sometimes write σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) and
(σ′i, σ−i) = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn). By an abuse of notation, we will say Player i

receives an expected payoff of ui(σ) when all players are playing the strategy profile σ.

2.2 Solution concepts

Having defined the model of games we wish to consider, we now define the various solu-
tions of interest.

Definition 3 A strategy profile σ = (σ1, . . . , σn) for a game Γ = 〈I, V, E, P,H,A, u, p〉 is

a Nash equilibrium if ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all i ∈ I and all σ′i.

If the game happens to be two-person zero-sum, then a Nash equilibrium may be called
a minimax solution and satisfies the following additional properties.

1. If (σ1, σ2) is a minimax solution to a two-person zero-sum game Γ, and (σ′1, σ
′
2) is

also a minimax solution to Γ, then (σ1, σ
′
2) and (σ′1, σ2) are also minimax solutions

to Γ.

2. If (σ1, σ2) is a minimax solution to a two-person zero-sum game Γ, then u1(σ1, σ2) ≥
u1(σ1, σ

′
2) for all σ′2.

3. All convex combinations of minimax solutions for two-person zero-sum games are
also minimax solutions. (The set of minimax solutions forms a convex set.)

11

The first property means that there is no equilibrium selection problem. In many games
there are multiple equilibria, and there is no a priori reason to expect that an agent would
prefer to play one equilibrium over another. This issue weakens the strength of the pre-
dictive power of game theory in some settings. The second property means that equilibria
solutions in two-person zero-sum games are robust in that they don’t depend on what strat-
egy the opponent employs. The third property (convexity of the set of equilibria) will be of
importance when we design equilibrium-finding algorithms.

Due to computational limitations (and in particular the inherent finiteness of floating-
point arithmetic), we are often interested in the following slightly relaxed version of Nash
equilibrium:

Definition 4 A strategy profile σ = (σ1, . . . , σn) for a game Γ = 〈I, V, E, P,H,A, u, p〉 is

an ε-equilibrium if ui(σ′i, σ−i)− ui(σi, σ−i) ≤ ε for all i ∈ I and all σ′i.

In many algorithms, the parameter ε is specified as an input parameter and the algo-
rithm guarantees finding such an ε-equilibrium. For a small enough ε, these solutions are
acceptable in many domains.

2.3 Standard algorithms for finding equilibria

In this section we describe existing algorithms for finding Nash equilibria and ε-equilibria
in both normal form and extensive form games.

2.3.1 Algorithms for finding equilibria in normal form games

The Nash equilibrium problem for two-person zero-sum (matrix) games can be modeled
and solved as a linear program [36, 102, 32]. Linear programs are typically solved via
the simplex algorithm or interior-point methods. The simplex algorithm has exponen-
tial worst-case complexity, but runs efficiently in practice. Interior-point methods run in
polynomial time, and, increasingly, are also fast in practice. Other solution techniques
include learning-based approaches, such as fictitious play [25, 128] and experts-based ap-
proaches [50]. These approaches are more interested in the learning process itself rather
than in arriving at an equilibrium, and generally do not provide very good convergence
bounds. Most recently, the excessive gap technique was proposed as a method for solving
certain non-smooth convex optimization problems, and it has been applied to the problem

12

of finding ε-equilibria in matrix games [118, 117]. Finally, bundle-based methods have
recently been shown to be effective on some large poker games, including Rhode Island
Hold’em [106]. One drawback to those algorithms is that the memory usage increases ev-
ery iteration, and the time to solve each iteration increases with every iteration (although
there are heuristics that mitigate this).

There has been significant recent work on Nash equilibrium finding for two-person
non-zero-sum normal form games. Most interesting questions about optimal (for many
definitions of “optimal”) equilibria are NP-complete [55, 33]. An ε-equilibrium in a nor-
mal form game with any constant number of agents can be constructed in quasi-polynomial
time [98, 97], but finding an exact equilibrium is PPAD-complete even in a two-person
game [30], and even if the payoffs are in {0, 1} [1]. The most prevalent algorithm for
finding an equilibrium in a two-person bimatrix game is Lemke-Howson [95], but it takes
exponentially many steps in the worst case [137]. For a survey of equilibrium computation
in two-person games, see [161]. Recently, equilibrium-finding algorithms that enumer-
ate supports (i.e., sets of pure strategies that are played with positive probability) have
been shown efficient on many games [126], and efficient mixed integer programming algo-
rithms that search in the space of supports have been developed [136]. For more than two
players, many algorithms have been proposed, but they currently only scale to very small
games [70, 105, 126]. Progress has also been made on algorithms for finding equilibria
in restricted and/or structured games (e.g., [121, 10, 96, 21, 147]), as well as for finding
market equilibria (e.g., [43, 44, 78, 138]).

2.3.2 Algorithms for finding equilibria in extensive form games

Nash equilibria of two-person sequential games with perfect information can be found by
simply searching over the game tree.2 In computer science terms, this is done using mini-

max search (often in conjunction with α-β-pruning to reduce the search tree size and thus
enhance speed). Minimax search runs in linear time in the size of the game tree.3

The differentiating feature of games of imperfect information, such as poker, is that
they are not fully observable: when it is an agent’s turn to move, she does not have access

2This actually yields a solution that satisfies not only the Nash equilibrium solution concept, but a stronger
solution concept called subgame perfect Nash equilibrium [143].

3This type of algorithm has its limits, of course, particularly when the game tree is huge, but extremely
effective game-playing agents can be developed, even when the size of the game tree prohibits complete
search, by evaluating intermediate nodes using a heuristic evaluation and then treating those nodes as leaves
of the tree.

13

to all of the information about the world. In such games, the decision of what to do at a
point in time cannot generally be optimally made without considering decisions at all other
points in time (including ones on other paths of play) because those other decisions affect
the probabilities of being at different states at the current point in time. Thus the algorithms
for perfect information games do not solve games of imperfect information.

As discussed previously, one could try to find an equilibrium of a sequential game by
converting the normal form, but this is computationally intractable. However, by observing
that one needs to consider only sequences of moves rather than pure strategies, one arrives
at a more compact representation, the sequence form, which is linear in the size of the game
tree [130, 144, 84, 160]. For two-person zero-sum games, there is a polynomial-sized (in
the size of the game tree) linear programming formulation (linear complementarity in the
non-zero-sum case) based on the sequence form such that strategies for Players 1 and 2
correspond to primal and dual variables. Thus, the equilibria of reasonable-sized two-
person2- games can be computed using this method [160, 86, 88].4 However, this approach
still yields enormous (unsolvable) optimization problems for many real-world games, such
as poker.

The Nash equilibrium problem for two-person zero-sum sequential games of imperfect
information can be formulated using the sequence form representation [130, 84, 160] as the
following saddle-point problem:

max
x∈Q1

min
y∈Q2

〈Ay,x〉 = min
y∈Q2

max
x∈Q1

〈Ay,x〉. (2.1)

In this formulation, x is Player 1’s strategy and y is Player 2’s strategy. The bilinear
term 〈Ay,x〉 is the payoff that Player 1 receives from Player 2 when the players play the
strategies x and y. The strategy spaces are represented by Qi ⊆ R|Si|, where Si is the set
of sequences of moves of Player i, and Qi is the set of realization plans of Player i. Thus
x (y) encodes probability distributions over actions at each point in the game where Player
1 (2) acts. The set Qi has an explicit linear description of the form {z ≥ 0 : Ez = e}.
Consequently, as mentioned above, problem (2.1) can be modeled as a linear program
(see [160] for details). We will return to this formulation in Chapter 8 when we discuss
algorithms for solving it.

4Recently this approach was extended to handle computing sequential equilibria [90] as well [109].

14

2.3.3 Algorithmic approximations

As discussed above, the equilibrium problem for two-person zero-sum games can be mod-
eled as a linear program (LP), which can in turn be solved using the simplex method. This
approach has inherent features which we can leverage into desirable properties in the con-
text of solving games.

In the LP, primal solutions correspond to strategies of Player 2, and dual solutions cor-
respond to strategies of Player 1. There are two versions of the simplex method: the primal
simplex and the dual simplex. The primal simplex maintains primal feasibility and pro-
ceeds by finding better and better primal solutions until the dual solution vector is feasible,
at which point optimality has been reached. Analogously, the dual simplex maintains dual
feasibility and proceeds by finding increasingly better dual solutions until the primal solu-
tion vector is feasible. (The dual simplex method can be thought of as running the primal
simplex method on the dual problem.) Thus, the primal and dual simplex methods serve as
anytime algorithms (for a given abstraction) for Players 2 and 1, respectively. At any point
in time, they can output the best strategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the quality of the strate-
gies by examining the primal and dual solutions. (When using the primal simplex method,
dual solutions may be read off of the LP tableau.) Every feasible solution of the dual yields
an upper bound on the optimal value of the primal, and vice versa [32, p. 57]. Thus, without
requiring further computation, we get lower bounds on the expected utility of each agent’s
strategy against that agent’s worst-case opponent.

One problem with the simplex method is that it is not a primal-dual algorithm, that is,
it does not maintain both primal and dual feasibility throughout its execution. (In fact, it
only obtains primal and dual feasibility at the very end of execution.) In contrast, there
are interior-point methods for linear programming that maintain primal and dual feasibility
throughout the execution. For example, many interior-point path-following algorithms have
this property [163, Ch. 5]. We observe that running such a linear programming method
yields a method for finding ε-equilibria (i.e., strategy profiles in which no agent can increase
her expected utility by more than ε by deviating). A threshold on ε can also be used as a
termination criterion for using the method as an anytime algorithm. Furthermore, interior-
point methods in this class have polynomial-time worst-case run time, as opposed to the
simplex algorithm, which takes exponentially many steps in the worst case.

15

16

Chapter 3

Poker

Poker is an enormously popular card game. Every year, hundreds of millions of dollars
change hands at poker tables in casinos around the world. Increasingly, poker players
compete in online casinos, and television stations regularly broadcast poker tournaments.
Poker has been identified as an important research area in AI due to the uncertainty stem-
ming from opponents’ cards, opponents’ future actions, and chance moves, among other
reasons [15].

3.1 Poker rules and variants

There are many variations of poker. In this thesis, we work with two particular versions:
Texas Hold’em and Rhode Island Hold’em. We discuss each of these in the following two
subsections.

3.1.1 Texas Hold’em

Texas Hold’em itself has many variations. The main feature differentiating variations is the
betting structure. One type of betting structure is limit, in which players are only allowed to
bet a single fixed amount at each betting opportunity, and no-limit, in which players may bet
any amount up to their current bankroll.1 We first describe the rules of Texas Hold’em in
the context of a limit betting structure, and then we describe the no-limit betting structure.

1The third-most popular variant is pot-limit, in which players may bet any amount up to the current size
of the pot. We do not discuss pot-limit poker in this thesis.

17

The basic rules of two-player limit Texas Hold’em are as follows.2

Blinds Before any cards are dealt, the first player, called the small blind, contributes one
chip to the pot; the second player (big blind) contributes two chips.3

Deal Each player is dealt two hole cards from a randomly shuffled standard deck of 52
cards.

Pre-flop Next, the players participate in the first of four betting rounds, called the pre-flop.
The small blind acts first; she may either call the big blind (contribute one chip), raise
(three chips), or fold (zero chips). The players then alternate either calling the current
bet (contributing two chips), raising the bet (four chips), or folding (zero chips). In
the event of a fold, the folding player forfeits the game and the other player wins all
of the chips in the pot. Once a player calls a bet, the betting round finishes. The
number of raises allowed is typically limited to four in each round.

Flop The second round is called the flop. Three community cards are dealt face-up, and
a betting round takes place with bets equal to two chips. The big blind player is the
first to act, and there are no blind bets placed in this round.

Turn and River The third and fourth rounds are called the turn and the river. In each
round, a single card is dealt face-up, and a betting round similar to the flop betting
round takes place, but with bets equal to four chips (twice as much as in the flop
betting round).

Showdown The showdown occurs when the last betting round ends with neither player
folding. Each player uses the seven cards available (their two hole cards along with
the five community cards) to form the best five-card poker hand, where the hands are
ranked in the usual order. The player with the best hand wins the pot; in the event of
a tie, the players split the pot.

No-limit Texas Hold’em is played as above, but there is no limit on the number of chips
that may be bet as long as the bettor has that many chips available. In particular, a player
may go “all-in” and bet all of their remaining chips. In the event that a player is facing a
bet or a raise, if the player chooses to re-raise they must do so in an amount at least the size
of the existing bet or raise.

2It is straightforward to modify the rules of two-player Texas Hold’em to allow for multiple players. As
most prior work on poker, in our application of our abstraction algorithms we focus on the setting with two
players, called heads-up. However, our abstraction algorithms are applicable to the multiple player case.

3The monetary value of a chip is irrelevant. Thus, we refer only to the quantity of chips.

18

3.1.2 Rhode Island Hold’em

Rhode Island Hold’em poker was invented as a testbed for computational game play-
ing [146]. Its game tree has 3.1 billion nodes, and it shares many of the interesting compli-
cations present in Texas Hold’em. Although it has been solved optimally [61], it remains
useful in its intended role as a testbed. The rules of the game are as follows:

Ante Each player puts an ante of 500 chips into the pot.

Pre-flop Both players receive a single, face-down hole card. The players participate in one
betting round. The possible actions are check (not placing any money in the pot) or
bet (placing 1000 chips into the pot) if no bets have been placed. If a bet has been
placed, then the player may fold (thus forfeiting the game along with the chips in the
pot), call (adding chips to the pot equal to the last bet), or raise (calling the current
bet and making an additional bet). In Rhode Island Hold’em, the players are limited
to three bets each per betting round. (A raise equals two bets.) In the this betting
round, the bets are equal to 1000 chips.

Flop A community card is dealt face up. A betting round similar to the Pre-flop takes
place, but with bets equal to 2000 chips.

Turn A second community card is dealt face up. A betting round identical to the Flop takes
place.

Showdown If neither player folds, both players turn over their cards. The player with the
best 3-card poker hand wins the chips in the pot. The pot is split evenly if the players
have the same hand rank.

Table 3.1 contains the rankings of three-card poker hands, which are different than the
normal rankings of five-card poker hands.

3.2 Related research on poker

Almost since the field’s founding, game theory has been used to analyze different aspects
of poker [23, 159, 8, 92, 113, 7, 77, 80, 119, 69, 51, 35, 132, 133]. That early work was
limited to tiny games that could be solved by hand. In fact, most of that work was focused
on computing analytical solutions for various stylized versions of poker. For example,
one typical assumption in that line of work is that the cards are drawn uniformly at random

19

Hand Prob. Description Example
Straight flush 0.00217 3 cards w/ consecutive rank & same suit K♠, Q♠, J♠
Three of a kind 0.00235 3 cards of the same rank Q♠, Q♥, Q♣
Straight 0.03258 3 cards w/ consecutive rank 3♣, 4♠, 5♥
Flush 0.04959 3 cards of the same suit 2♦, 5♦, 8♦
Pair 0.16941 2 cards of the same rank 2♦, 2♠, 3♥
High card 0.74389 None of the above J♣, 9♥, 2♠

Table 3.1: Ranking of three-card poker hands, from highest to lowest.

from the unit interval, followed by a simple betting protocol. Although this approach seems
likely to be of use only for extremely small games, recently there has been renewed interest
in extending some of these models and determing analytical solutions from them with the
goal of applying them to certain situations in real poker games [46, 47, 4]. Simplified ver-
sions of poker have also been developed for illustrative examples in education [127]. From
a cognitive modeling and analysis perspective, poker has proved to be a fertile environment
for research [48, 26, 27].

Subsequent to the development of the sequence form and linear programming-based
solution methodology methods [84, 130, 160], larger-scale game-theoretic approaches to
poker AI began to appear. Koller and Pfeffer [88] determined solutions to poker games
with up to 140,000 nodes using the sequence form and linear programming. The use of
abstraction and game-theoretic solutions as applied to Texas Hold’em appeared as early as
2000 in the undergraduate thesis of Takusagawa [154]. For Rhode Island Hold’em, game
theory-based solutions were developed using a lossy abstraction followed by linear pro-
gramming [146]. Another notable game-theoretic approach to Texas Hold’em was Spar-

Bot [14]. These early approaches used either expert-designed abstractions or simple forms
of heuristic abstraction.

More recently, other poker-playing programs that use automated abstraction followed
by equilibrium-finding have been developed [3, 79, 166, 165]. Those other approaches
differ from ours primarily in the abstraction and equilibrium-finding algorithms used.

In addition to game theory-based research, there has also been recent work in the area
of opponent modeling [18, 17, 19, 38, 15, 37, 13, 75, 152, 153, 141] in which a poker-
playing program attempts to identify and exploit weaknesses in the opponents. The oppo-
nent modeling-based poker-playing programs typically combine opponent modeling with
simulation-based tree search [18, 17, 19, 38, 15], and do not try to approximate game-

20

theoretic solutions. Another non-game-theoretic approach employs Bayesian techniques to
model inference and uncertainty in the game [89].

A no-limit poker tournament is a variant of poker in which play is repeated until all but
one of the players have lost all of their chips. Approaches to this problem have used action
abstraction (the only possible actions being to fold or go all-in) and card abstraction (suit
isomorphisms are applied to the pre-flop hands). Both two-player tournaments [110] and
three-player tournaments [53] have been studied. The focus of that research has been on
identifying near-optimal solutions to the final stages of the tournament when the blinds are
high relative to the number of chips that a player has. In contrast, our research is geared
towards a game when more complicated betting structures are needed and when the blinds
are low relative the number of chips (which is the typical situation encountered).

21

22

Part II

Automated Abstraction

23

Chapter 4

Automated Abstraction Overview

Game theory-based approaches to constructing agents for competitive environments have
emerged as a dominant methodology in many settings, such as poker. Determining how
to play game-theoretically requires solving for the equilibrium of the game. In two-person
zero-sum sequential games of imperfect information, this can be done in polynomial time
using linear programming [130, 86, 160], although general-purpose linear programming
solvers have limited scalability [61]. Recent research in equilibrium-finding technology for
two-person zero-sum games has led to dramatic increases in the scalability of equilibrium-
finding algorithms [74, 56, 165, 166, 106, 57], but it is still infeasible to scale to the size
of games that are encountered in practice. For example, the game tree of heads-up (i.e.,
two-player) limit Texas Hold’em poker has 1018 nodes making it far beyond the scalability
of the state-of-the-art equilibrium-finding algorithms. For two-person general-sum games
or games with more than two players, the need for abstraction is even more critical since
finding an equilibrium in those games is PPAD-complete [30].

To handle such massive game trees, a recent practical approach has emerged: automated
abstraction algorithms that take the rules of the game as input and generate a game that
is much smaller but still strategically similar (or, in some cases equivalent [61]) to the
original game. After finding an equilibrium for the abstracted game, one can map those
strategies back into a strategy for the original game. For example, since 2003 there has
been tremendous progress on developing computer programs for playing (both limit and no-
limit) heads-up Texas Hold’em poker, and all the leading programs are nowadays developed
using automated abstraction followed by equilibrium finding in the abstracted game [165,
166, 64, 65].

We have identified three high-level classes of abstraction that can be performed on

25

an imperfect-information sequential game. In the remainder of Part II of this thesis, we
develop algorithms and present experiments on each of these different classes.

1. Information abstraction. This type of abstraction filters the information signaled
to players by nature. For example, in poker this type of abstraction groups different
poker hands into the same “bucket”. Chapter 5 discusses our GameShrink algorithm
which performs abstraction in a way that allows one to find an equilibrium in the orig-
inal game. Chapter 6 describes four of our algorithms for information abstraction,
and presents experimental results comparing the performance of each of the algo-
rithms. We present both controlled experiments measuring the relative performance
of the algorithms as well as experiments comparing how well our poker-playing pro-
grams built using these algorithms compare against other programs built using a wide
variety of approaches.

2. Stage abstraction. Many games feature distinct stages. In poker, these stages corre-
sponded to betting rounds. Stage abstraction breaks the game into separate phases,
where each phase contains some number of the stages from the game. These phases
are solved separately and then “glued” back together. This process can have ill ef-
fects on the quality of the solution if it is not done carefully. In Section 7.2 we
describe our techniques for mitigating some of the problems encountered when us-
ing stage abstraction, and present experimental results demonstrating the value of the
techniques.

3. Action abstraction. This type of abstraction treats several distinct actions as the
same action. This is particularly useful in games where each player has a large—or
even infinite—number of actions at each information set. For example, in no-limit
Texas Hold’em poker, even after discretizing the betting actions to integral amounts,
each player can have as many as 1000 actions in certain information sets in a re-
stricted version where each player has 1000 chips. Sections 7.3 and 7.4 present
our techniques for action abstraction in imperfect-information sequential games, and
includes experiments measuring the performance impact of certain types of action
abstraction.

26

Chapter 5

Lossless Information Abstraction

5.1 Introduction

In this chapter, we begin our investigation of abstraction algorithms with the develop-
ment of an information-based lossless abstraction algorithm. Instead of developing an
equilibrium-finding method per se, we develop a methodology for automatically abstract-
ing games in such a way that any equilibrium in the smaller (abstracted) game corresponds
directly to an equilibrium in the original game. Thus, by computing an equilibrium in the
smaller game (using any available equilibrium-finding algorithm), we are able to construct
an equilibrium in the original game. The motivation is that an equilibrium for the smaller
game can be computed drastically faster than for the original game.

To this end, we introduce games with ordered signals (Section 5.3), a broad class of
games that has enough structure which we can exploit for abstraction purposes. Instead
of operating directly on the game tree (something we found to be technically challenging),
we introduce the use of information filters (Section 5.3.2), which coarsen the information
each player receives. They are used in our analysis and abstraction algorithm. By operating
only in the space of filters, we are able to keep the strategic structure of the game intact,
while abstracting out details of the game in a way that is lossless from the perspective of
equilibrium finding. We introduce the ordered game isomorphism to describe strategically
symmetric situations and the ordered game isomorphic abstraction transformation to take
advantange of such symmetries (Section 5.4). As our main equilibrium result we have the
following:

Theorem 2 Let Γ be a game with ordered signals, and let F be an information

filter for Γ. Let F ′ be an information filter constructed from F by one applica-

27

tion of the ordered game isomorphic abstraction transformation, and let σ′ be

a Nash equilibrium strategy profile of the induced game ΓF ′ (i.e., the game Γ

using the filter F ′). If σ is constructed by using the corresponding strategies of

σ′, then σ is a Nash equilibrium of ΓF .

The proof of the theorem uses an equivalent characterization of Nash equilibria: σ is
a Nash equilibrium if and only if there exist beliefs µ (players’ beliefs about unknown
information) at all points of the game reachable by σ such that σ is sequentially rational
(i.e., a best response) given µ, where µ is updated using Bayes’ rule. We can then use the
fact that σ′ is a Nash equilibrium to show that σ is a Nash equilibrium considering only
local properties of the game.

We also give an algorithm, GameShrink, for abstracting the game using our isomor-
phism exhaustively (Section 5.5). Its complexity is Õ(n2), where n is the number of nodes
in a structure we call the signal tree. It is no larger than the game tree, and on nontrivial
games it is drastically smaller, so GameShrink has time and space complexity sublinear in
the size of the game tree. We present several algorithmic and data structure related speed
improvements (Section 5.5.1), and we demonstrate how a simple modification to our algo-
rithm yields an approximation algorithm (Section 5.6).

5.2 Applications

Sequential games of imperfect information are ubiquitous, for example in negotiation and
in auctions. Often aspects of a player’s knowledge are not pertinent for deciding what
action the player should take at a given point in the game. Although in some simple situa-
tions some aspects of a player’s knowledge are never pertinent (likely indicating a poorly
constructed game model), in general, some aspects can be pertinent in certain states of
the game while they are not pertinent in other states, and thus cannot be left out of the
model completely. Furthermore, it may be highly non-obvious which aspects are pertinent
in which states of the game. Our algorithm automatically discovers which aspects are ir-
relevant in different states, and eliminates those aspects of the game, resulting in a more
compact, equivalent game representation.

One broad class of sequential games of imperfect information in which information may
or may not be pertinent in various stages of the game is sequential negotiation (potentially
over multiple issues). Another broad application area is sequential auctions (potentially
over multiple goods). For example, in those states of a 1-object auction where bidder A

28

can infer that his valuation is greater than that of bidder B, bidder A can ignore all his other
information about B’s signals, although that information would be relevant for inferring B’s
exact valuation. Furthermore, in some states of the auction, a bidder might not care which
exact other bidders have which valuations, but cares about which valuations are held by
the other bidders in aggregate (ignoring their identities). Many open-cry sequential auction
and negotiation mechanisms fall within the game model studied in this chapter (specified
in detail later), as do certain other games in electronic commerce, such as sequences of
take-it-or-leave-it offers [135].

Our techniques are in no way specific to an application. In fact, the main experiment
that we present in this chapter is on Rhode Island Hold’em poker. We chose a particular
poker game as the benchmark problem because it yields an extremely complicated and
enormous game tree, it is a game of imperfect information, it is fully specified as a game
(and the data is available), and it has been posed as a challenge problem by others [146]
(to our knowledge no such challenge problem instances have been proposed for electronic
commerce applications that require solving sequential games).

5.2.1 Application to Rhode Island Hold’em poker

As discussed in Chapter 3 Rhode Island Hold’em was invented as a testbed for computa-
tional game playing [146]. It was designed so that it was similar in style to Texas Hold’em,
yet not so large that devising reasonably intelligent strategies would be impossible. (The
rules of Rhode Island Hold’em were given in Section 3.1.2. In Section 5.3.1 we show how
Rhode Island Hold’em can be modeled as a game with ordered signals, that is, it fits in our
model.) We applied the techniques developed in this chapter to find an exact (minimax)
solution to Rhode Island Hold’em, which has a game tree exceeding 3.1 billion nodes.

Applying the sequence form to Rhode Island Hold’em directly without abstraction
yields a linear program with 91,224,226 rows, and the same number of columns. This is
much too large for (current) linear programming algorithms to handle. We used our Game-

Shrink algorithm to reduce this through lossless abstraction, and it yielded a linear program
with 1,237,238 rows and columns—with 50,428,638 non-zero coefficients. We then ap-
plied iterated elimination of dominated strategies, which further reduced this to 1,190,443
rows and 1,181,084 columns. (Applying iterated elimination of dominated strategies with-
out GameShrink yielded 89,471,986 rows and 89,121,538 columns, which still would have
been prohibitively large to solve.) GameShrink required less than one second to perform
the shrinking (i.e., to compute all of the ordered game isomorphic abstraction transfor-

29

mations). Using a 1.65GHz IBM eServer p5 570 with 64 gigabytes of RAM (the linear
program solver actually needed 25 gigabytes), we solved it in 7 days and 17 hours using
the interior-point barrier method of CPLEX version 9.1.2. We demonstrated our optimal
Rhode Island Hold’em poker player at the AAAI-05 conference [58], and it is available for
play on-line at http://www.cs.cmu.edu/˜gilpin/gsi.html.

While others have worked on computer programs for playing Rhode Island Hold’em [146],
no optimal strategy has been found before. At the time of our solution, this was the largest
poker game solved to date by over four orders of magnitude. We have since solved larger
games using gradient-based equilibrium-finding algorithms, as discussed in Part III of this
thesis.

5.3 Games with ordered signals

We work with a slightly restricted class of games, as compared to the full generality of the
extensive form. This class, which we call games with ordered signals, is highly structured,
but still general enough to capture a wide range of strategic situations. A game with ordered
signals consists of a finite number of rounds. Within a round, the players play a game on
a directed tree (the tree can be different in different rounds). The only uncertainty players
face stems from private signals the other players have received and from the unknown future
signals. In other words, players observe each others’ actions, but potentially not nature’s
actions. In each round, there can be public signals (announced to all players) and private
signals (confidentially communicated to individual players). For simplicity, we assume—
as is the case in most recreational games—that within each round, the number of private
signals received is the same across players (this could quite likely be relaxed). We also
assume that the legal actions that a player has are independent of the signals received. For
example, in poker, the legal betting actions are independent of the cards received. Finally,
the strongest assumption is that there is a partial ordering over sets of signals, and the
payoffs are increasing (not necessarily strictly) in these signals. For example, in poker, this
partial ordering corresponds exactly to the ranking of card hands.

Definition 5 A game with ordered signals is a tuple Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉
where:

1. I = {1, . . . , n} is a finite set of players.

2. G = 〈G1, . . . , Gr〉, Gj = (V j, Ej), is a finite collection of finite directed trees with

30

http://www.cs.cmu.edu/~gilpin/gsi.html

nodes V j and edges Ej . Let Zj denote the leaf nodes of Gj and let N j(v) denote the

outgoing neighbors of v ∈ V j . Gj is the stage game for round j.

3. L = 〈L1, . . . , Lr〉, Lj : V j \ Zj → I indicates which player acts (chooses an

outgoing edge) at each internal node in round j.

4. Θ is a finite set of signals.

5. κ = 〈κ1, . . . , κr〉 and γ = 〈γ1, . . . , γr〉 are vectors of nonnegative integers, where

κj and γj denote the number of public and private signals (per player), respec-

tively, revealed in round j. Each signal θ ∈ Θ may only be revealed once, and in

each round every player receives the same number of private signals, so we require∑r
j=1 κ

j+nγj ≤ |Θ|. The public information revealed in round j is αj ∈ Θκj and the

public information revealed in all rounds up through round j is α̃j = (α1, . . . , αj).

The private information revealed to player i ∈ I in round j is βji ∈ Θγj and the

private information revaled to player i ∈ I in all rounds up through round j is

β̃ji =
(
β1
i , . . . , β

j
i

)
. We also write β̃j =

(
β̃j1, . . . , β̃

j
n

)
to represent all private in-

formation up through round j, and
(
β̃′
j

i , β̃
j
−i

)
=
(
β̃j1, . . . , β̃

j
i−1, β̃

′j
i , β̃

j
i+1, . . . , β̃

j
n

)

is β̃j with β̃ji replaced with β̃′
j

i . The total information revealed up through round j,(
α̃j, β̃j

)
, is said to be legal if no signals are repeated.

6. p is a probability distribution over Θ, with p(θ) > 0 for all θ ∈ Θ. Signals are drawn

from Θ according to p without replacement, so if X is the set of signals already

revealed, then

p(x | X) =

{
p(x)P
y/∈X p(y)

if x /∈ X
0 if x ∈ X.

7. � is a partial ordering of subsets of Θ and is defined for at least those pairs required

by u.

8. ω :
r⋃
j=1

Zj → {over, continue} is a mapping of terminal nodes within a stage game

to one of two values: over, in which case the game ends, or continue, in which case

the game continues to the next round. Clearly, we require ω(z) = over for all z ∈ Zr.

Note that ω is independent of the signals. Let ωjover = {z ∈ Zj |ω(z) = over} and

ωjcont = {z ∈ Zj |ω(z) = continue}.

9. u = (u1, . . . , ur), uj :
j−1�
k=1

ωkcont × ωjover ×
j�

k=1

Θκk ×
n�
i=1

j�
k=1

Θγk → Rn is a utility

function such that for every j, 1 ≤ j ≤ r, for every i ∈ I , and for every z̃ ∈

31

j−1�
k=1

ωkcont × ωjover, at least one of the following two conditions holds:

(a) Utility is signal independent: uji (z̃, ϑ) = uji (z̃, ϑ
′) for all legal ϑ, ϑ′ ∈

j�
k=1

Θκk×
n�
i=1

j�
k=1

Θγk .

(b) � is defined for all legal signals (α̃j, β̃ji) and (α̃j, β̃′ji) through round j and a

player’s utility is increasing in her private signals, everything else equal:
(
α̃j, β̃ji

)
�
(
α̃j, β̃′ji

)
=⇒ ui

(
z̃, α̃j,

(
β̃ji , β̃

j
−i

))
≥ ui

(
z̃, α̃j,

(
β̃′
j

i , β̃
j
−i

))
.

We will use the term game with ordered signals and the term ordered game interchange-
ably.

5.3.1 Rhode Island Hold’em modeled as an ordered game

In this section we describe how Rhode Island Hold’em can be defined as an ordered game
in accordance with Definition 5. To make the definition of ordered games concrete, here
we define each of the components of the tuple Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 for Rhode
Island Hold’em. There are two players so I = {1, 2}. There are three rounds, and the stage
game is the same in each round so we have G = 〈GRI , GRI , GRI〉 where GRI is given in
Figure 5.1, which also specifies the player label L.

Θ is the standard deck of 52 cards. The community cards are dealt in the second and
third rounds, so κ = 〈0, 1, 1〉. Each player receives a single face down card in the first
round only, so γ = 〈1, 0, 0〉. p is the uniform distribution over Θ. � is defined for three
card hands and is defined using the ranking given in Table 3.1. The game-ending nodes ω
are denoted in Figure 5.1 by ω. u is defined as in the above description; it is easy to verify
that it satisfies the necessary conditions.

5.3.2 Information filters

In this subsection, we define an information filter for ordered games. Instead of completely
revealing a signal (either public or private) to a player, the signal first passes through this
filter, which outputs a coarsened signal to the player. By varying the filter applied to a
game, we are able to obtain a wide variety of games while keeping the underlying action

32

k b

K B

f c r

f c

F C R

F C

f c r

F C R

1

1 1

1

2 2

2 2ω

ω

ω

ω

ω

ω

Figure 5.1: Stage game GRI , player label L, and game-ending nodes ω for Rhode Island
Hold’em. The action labels denote which action the player is taking: k (check), b (bet), f
(fold), c (call), and r (raise). Lower case letters indicate player 1 actions and upper case
letters indicate player 2 actions.

space of the game intact. We will use this when designing our abstraction techniques.
Formally, an information filter is as follows.

Definition 6 Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game. Let Sj ⊆
j�

k=1

Θκk×
j�

k=1

Θγk be the set of legal signals (i.e., no repeated signals) for one player through round

j. An information filter for Γ is a collection F = 〈F 1, . . . , F r〉 where each F j is a function

F j : Sj → 2S
j

such that each of the following conditions hold:

1. (Truthfulness) (α̃j, β̃ji) ∈ F j(α̃j, β̃ji) for all legal (α̃j, β̃ji).

2. (Independence) The range of F j is a partition of Sj .

3. (Information preservation) If two values of a signal are distinguishable in round k,

then they are distinguishable for each round j > k. Let mj =
∑j

l=1 κ
l + γl. We

33

require that for all legal (θ1, . . . , θmk , . . . , θmj) ⊆ Θ and (θ′1, . . . , θ
′
mk
, . . . , θ′mj) ⊆

Θ:

(θ′1, . . . , θ
′
mk) /∈ F k(θ1, . . . , θmk)⇒ (θ′1, . . . , θ

′
mk , . . . , θ

′
mj) /∈ F j(θ1, . . . , θmk , . . . , θmj).

A game with ordered signals Γ and an information filter F for Γ defines a new game
ΓF . We refer to such games as filtered ordered games. We are left with the original game
if we use the identity filter F j

(
α̃j, β̃ji

)
=
{(
α̃j, β̃ji

)}
. We have the following simple (but

important) result:

Proposition 1 A filtered ordered game is an extensive form game satisfying perfect re-

call. (For the unfamiliar reader, the definition of games with perfect recall is given in

Appendix 2.1.)

A simple proof proceeds by constructing an extensive form game directly from the
ordered game, and showing that it satisfies perfect recall. In determining the payoffs in a
game with filtered signals, we take the average over all real signals in the filtered class,
weighted by the probability of each real signal occurring.

5.3.3 Strategies and Nash equilibrium

We are now ready to define behavior strategies in the context of filtered ordered games.

Definition 7 A behavior strategy for player i in round j of Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉
with information filter F is a probability distribution over possible actions, and is defined

for each player i, each round j, and each v ∈ V j \ Zj for Lj(v) = i:

σji,v :

j−1�
k=1

ωkcont ×Range
(
F j
)
→ ∆

{
w ∈ V j | (v, w) ∈ Ej

}
.

(∆(X) is the set of probability distributions over a finite set X .) A behavior strategy for

player i in round j is σji = (σji,v1
, . . . , σji,vm) for each vk ∈ V j \Zj where Lj(vk) = i. A be-

havior strategy for player i in Γ is σi = (σ1
i , . . . , σ

r
i). A strategy profile is σ = (σ1, . . . , σn).

A strategy profile with σi replaced by σ′i is (σ′i, σ−i) = (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn).

By an abuse of notation, we will say player i receives an expected payoff of ui(σ)

when all players are playing the strategy profile σ. Strategy σi is said to be player i’s best

34

response to σ−i if for all other strategies σ′i for player iwe have ui(σi, σ−i) ≥ ui(σ
′
i, σ−i). σ

is a Nash equilibrium if, for every player i, σi is a best response for σ−i. A Nash equilibrium
always exists in finite extensive form games [112], and one exists in behavior strategies for
games with perfect recall [93]. Using these observations, we have the following corollary
to Proposition 1:

Corollary 1 For any filtered ordered game, a Nash equilibrium exists in behavior strateges.

5.4 Equilibrium-preserving abstractions

In this section, we present our main technique for reducing the size of games. We begin by
defining a filtered signal tree which represents all of the chance moves in the game. The
bold edges (i.e. the first two levels of the tree) in the game trees in Figure 5.2 correspond
to the filtered signal trees in each game.

Definition 8 Associated with every ordered game Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 and

information filter F is a filtered signal tree, a directed tree in which each node corresponds

to some revealed (filtered) signals and edges correspond to revealing specific (filtered)

signals. The nodes in the filtered signal tree represent the set of all possible revealed filtered

signals (public and private) at some point in time. The filtered public signals revealed in

round j correspond to the nodes in the κj levels beginning at level
∑j−1

k=1

(
κk + nγk

)
and

the private signals revealed in round j correspond to the nodes in the nγj levels beginning

at level
∑j

k=1 κ
k +

∑j−1
k=1 nγ

k. We denote children of a node x as N(x). In addition, we

associate weights with the edges corresponding to the probability of the particular edge

being chosen given that its parent was reached.

In many games, there are certain situations in the game that can be thought of as be-
ing strategically equivalent to other situations in the game. By melding these situations
together, it is possible to arrive at a strategically equivalent smaller game. The next two
definitions formalize this notion via the introduction of the ordered game isomorphic rela-
tion and the ordered game isomorphic abstraction transformation.

Definition 9 Two subtrees beginning at internal nodes x and y of a filtered signal tree

are ordered game isomorphic if x and y have the same parent and there is a bijection

f : N(x)→ N(y), such that forw ∈ N(x) and v ∈ N(y), v = f(w) implies the weights on

the edges (x,w) and (y, v) are the same and the subtrees beginning at w and v are ordered

35

J1
J2

J2 K1

K1

K2

K2

c b

C B F B

f b

c b

C B F B

f b

c b

C

f b

B BF

c b

C

f b

B BF

c b

C B F B

f b

c b

C B F B

f b

c b

C

f b

B BF

c b

C

f b

B BF

c b

C

f b

B BF

c b

C

f b

B BF

c b

C B F B

f b

c b

C B F B

f b

0 0

0-1

-1

-1

-1

-1

-1

-1

-1-1

-1 -1

-1

-1

-1

-1

-1

-1

-1-1

-1 -1

-1

-1

-10 0

0

0 0

0

0 0

0

-1

-2

-2 -1

-2

-2 -1

-2

-2 -1

-2

-2 1

2

2 1

2

2 1

2

2 1

2

2

J1 K1 K2 J1 J2 K2 J1 J2 K1
1

1

1

1 1

1 1

1

2
2
2
2
2

2
2

2

{{J1}, {J2}, {K1}, {K2}}

{{J1,J2}, {K1}, {K2}}

c b

C B F B

f b

c b

C

f b

B BF

c b

C B F B

f b

J1,J2 K1 K2
1

1

c b

C

f b

B BF

c b

C B F B

f b

c b

C B F B

f b

c b

C B F B

f b

J1,J2
K1

K2

1

1

1

1

J1,J2 K2 J1,J2 K1

0 0

0-1

-1

-1

-1 -1

-1

-1

-2

-2 -1

-2

-2

2
2

2
2

2
2

-1

-1-1

-1

0 0

0

1

2

2

-1

-1-1

-1

0 0

0

1

2

2

c b

C B F B

f b

-1

-10 0

0

c b

B F B

f b

-1

-1-1

-2

-2

c b

C B F B

f b

0 0

0-1

-1

c b

C B F B

f b

J1,J2

J1,J2 J1,J2K1,K2

K1,K2

K1,K2

-1

-1

1

2

2

2
2

2
2

{{J1,J2}, {K1,K2}}

1

1 1

1

1/4 1/4 1/4 1/4

1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

1/4
1/41/2

1/3 1/3 1/3
1/32/3 1/32/3

1/2 1/2

1/3 2/3 2/3 1/3

Figure 5.2: GameShrink applied to a tiny two-person four-card (two Jacks and two Kings)
poker game. Next to each game tree is the range of the information filter F . Dotted lines
denote information sets, which are labeled by the controlling player. Open circles are
chance nodes with the indicated transition probabilities. The root node is the chance node
for player 1’s card, and the next level is for player 2’s card. The payment from player 2
to player 1 is given below each leaf. In this example, the algorithm reduces the game tree
from 113 nodes to 39 nodes.

36

game isomorphic. Two leaves (corresponding to filtered signals ϑ and ϑ′ up through round

r) are ordered game isomorphic if for all z̃ ∈
r−1�
j=1

ωjcont × ωrover, ur (z̃, ϑ) = ur (z̃, ϑ′).

Definition 10 Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game and let F be an

information filter for Γ. Let ϑ and ϑ′ be two information structures where the subtrees

in the induced filtered signal tree corresponding to the nodes ϑ and ϑ′ are ordered game

isomorphic, and ϑ and ϑ′ are at either level
∑j−1

k=1

(
κk + nγk

)
or
∑j

k=1 κ
k +

∑j−1
k=1 nγ

k

for some round j. The ordered game isomorphic abstraction transformation is given by

creating a new information filter F ′:

F ′j
(
α̃j, β̃ji

)
=

F j
(
α̃j, β̃ji

)
if
(
α̃j, β̃ji

)
/∈ ϑ ∪ ϑ′

ϑ ∪ ϑ′ if
(
α̃j, β̃ji

)
∈ ϑ ∪ ϑ′.

Figure 5.2 shows the ordered game isomorphic abstraction transformation applied twice
to a tiny poker game. Theorem 2, our main equilibrium result, shows how the ordered game
isomorphic abstraction transformation can be used to compute equilibria faster.

Theorem 2 Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game and F be an infor-

mation filter for Γ. Let F ′ be an information filter constructed from F by one application

of the ordered game isomorphic abstraction transformation. Let σ′ be a Nash equilibrium

of the induced game ΓF ′ . If we take σji,v
(
z̃, F j

(
α̃j, β̃ji

))
= σ′ji,v

(
z̃, F ′j

(
α̃j, β̃ji

))
, σ is a

Nash equilibrium of ΓF .

PROOF. For an extensive form game, a belief system µ assigns a probability to every deci-
sion node x such that

∑
x∈h µ(x) = 1 for every information set h. A strategy profile σ is

sequentially rational at h given belief system µ if

ui(σi, σ−i |h, µ) ≥ ui(τi, σ−i |h, µ)

for all other strategies τi, where i is the player who controls h. A basic result [104, Propo-
sition 9.C.1] characterizing Nash equilibria dictates that σ is a Nash equilibrium if and
only if there is a belief system µ such that for every information set h with Pr(h |σ) > 0,
the following two conditions hold: (C1) σ is sequentially rational at h given µ; and (C2)
µ(x) = Pr(x |σ)

Pr(h |σ)
for all x ∈ h. Since σ′ is a Nash equilibrium of Γ′, there exists such a

belief system µ′ for ΓF ′ . Using µ′, we will construct a belief system µ for Γ and show that
conditions C1 and C2 hold, thus supporting σ as a Nash equilibrium.

37

Fix some player i ∈ I . Each of i’s information sets in some round j corresponds to

filtered signals F j
(
α̃∗j, β̃∗ji

)
, history in the first j−1 rounds (z1, . . . , zj−1) ∈

j−1�
k=1

ωkcont, and

history so far in round j, v ∈ V j \ Zj . Let z̃ = (z1, . . . , zj−1, v) represent all of the player
actions leading to this information set. Thus, we can uniquely specify this information set
using the information

(
F j
(
α̃∗j, β̃∗ji

)
, z̃
)

.

Each node in an information set corresponds to the possible private signals the other
players have received. Denote by β̃ some legal

(F j(α̃j, β̃j1), . . . , F j(α̃j, β̃ji−1), F j(α̃j, β̃ji+1), . . . , F j(α̃j, β̃jn)).

In other words, there exists (α̃j, β̃j1, . . . , β̃
j
n) such that (α̃j, β̃ji) ∈ F j(α̃∗j, β̃∗ji), (α̃j, β̃jk) ∈

F j(α̃j, β̃jk) for k 6= i, and no signals are repeated. Using such a set of signals (α̃j, β̃j1, . . . , β̃
j
n),

let β̂′ denote (F ′j(α̃j, β̃j1), . . . , F ′j(α̃j, β̃ji−1), F ′j(α̃j, β̃ji+1), . . . , F ′j(α̃j, β̃jn)). (We will abuse
notation and write F ′j−i

(
β̂
)

= β̂′.) We can now compute µ directly from µ′:

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

if F j
(
α̃j, β̃ji

)
6= F ′j

(
α̃j, β̃ji

)
or β̂ = β̂′

p∗µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

if F j
(
α̃j, β̃ji

)
= F ′j

(
α̃j, β̃ji

)
and β̂ 6= β̂′

where p∗ =
Pr(β̂ | F j(α̃j ,β̃ji))

Pr(β̂′ | F ′j(α̃j ,β̃ji))
. The following three claims show that µ as calculated above

supports σ as a Nash equilibrium.

Claim 1 µ is a valid belief system for ΓF .

PROOF.[of Claim 1] Let h be player i’s information set after some history
(
F j
(
α̃j, β̃ji

)
, z̃
)

.

Clearly µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)
≥ 0 for all β̂ ∈ h. We need to show

∑

β̂∈h

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

= 1.

CASE 1. F j
(
α̃j, β̃ji

)
6= F ′j

(
α̃j, β̃ji

)
. From the construction of F ′, F j

(
α̃j, β̃ji

)
is ordered

game isomorphic to some F j
(
α̃′jβ̃′ji

)
with F j

(
α̃′jβ̃′ji

)
6= F j

(
α̃j, β̃ji

)
. Let h′ be player

i’s information set corresponding to the history
(
F j
(
α̃′j, β̃′ji

)
, z̃
)

. By the definition of
the ordered game isomorphism, there exists a perfect matching between the nodes in the
information set h and h′, where each matched pair of nodes corresponds to a pair of ordered

38

J1
J2

J2 K1 K2

c b

C B F B

f b

c b

C B F B

f b

c b

C

f b

B BF

c b

C

f b

B BF

c b

C

f b

B BF

c b

C

f b

B BF

0 0

0-1

1

-1

1

-1

1

-1

11

-1 -1

10 0

0

-1

-2

-2 -1

-2

-2 -1

-2

-2 -1

-2

-2

J1 K1 K2
1

1

1

1

2
2
2
2
2

2
2

2

{{J1}, {J2}, {K1}, {K2}} {{J1,J2}, {K1}, {K2}}

c b

C B F B

f b

c b

C

f b

B BF

c b

C B F B

f b

J1,J2 K1 K2
1

1

J1,J2

0 0

0-1

1

-1

1 1

-1

-1

-2

-2 -1

-2

-2

2
2

2
2

2
2

......
h h’ h’’

Figure 5.3: Illustration of Case 1 of Claim 1.

game isomorphic information structures. Since we have that F ′j
(
α̃j, β̃ji

)
= F ′j

(
α̃′j, β̃′ji

)
,

each edge in the matching corresponds to a node in the information set corresponding to
the history

(
F ′j
(
α̃j, β̃ji

)
, z̃
)

in ΓF ′; denote this information set by h′′. (See Figure 5.3.)

Thus, there is a bijection between h and h′′ defined by the perfect matching. Using this
matching:

∑

β̂∈h

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂∈h

µ′
(
F ′j−i

(
β̂
)
| F ′j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂′∈h′′

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

= 1.

CASE 2. F j
(
α̃j, β̃ji

)
= F ′j

(
α̃j, β̃ji

)
. We need to treat members of h differently depend-

ing on if they map to the same set of signals in ΓF ′ or not. Let h1 =
{
β̂ ∈ h | β̂ = F ′j−i

(
β̂
)}

and let h2 =
{
β̂ ∈ h | β̂ ⊂ F ′j−i

(
β̂
)}

. Clearly (h1, h2) is a partition of h. Let h′ be player

i’s information set corresponding to the history
(
F ′j
(
α̃j, β̃ji

)
, z̃
)

in ΓF ′ . We can create

a partition of h′ by letting h3 =
{
F ′j−i

(
β̂
)
| β̂ ∈ h1

}
and h4 =

{
F ′j−i

(
β̂
)
| β̂ ∈ h2

}
.

Cleary (h3, h4) partitions h′. (See Figure 5.4.) The rest of the proof for this case proceeds
in three steps.

STEP 1. In this step we show the following relationship between h1 and h3:

∑

β̂∈h1

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂∈h1

µ′
(
F ′j−i

(
β̂
)
| F ′j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂′∈h3

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

(5.1)

39

{{J1,J2}, {K1}, {K2}}

c b

C B F B

f b

c b

C

f b

B BF

c b

C B F B

f b

J1,J2
1

1

c b

C

f b

B BF

c b

C B F B

f b

c b

C B F B

f b

c b

C B F B

f b

J1,J2
K1 K2

1

1

1

1

J1,J2 K2 J1,J2 K1

0 0

0-1

1

-1

1 1

-1

-1

-2

-2 -1

-2

-2

2
2

2
2

2
2

-1

11

-1

0 0

0

1

2

2

-1

11

-1

0 0

0

1

2

2

c b

C B F B

f b

-1

10 0

0

c b

B F B

f b

-1

1-1

-2

-2

c b

C B F B

f b

0 0

0-1

1

c b

C B F B

f b

J1,J2

J1,J2 J1,J2K1,K2

K1,K2

K1,K2

1

-1

1

2

2

2
2

2
2

{{J1,J2}, {K1,K2}}

1

1 1

1h h’h1 h2

K1 K2 h3 h4

Figure 5.4: Illustration of Case 2 of Claim 1.

STEP 2. In this step we want to show a similar relationship between h2 and h4. In doing
so, we use the following fact: β̂ ⊂ β̂′ → F ′j−i

(
β̂
)

= β̂′. With this in mind, we can write:

∑

β̂∈h2

µ
(
β̂|F j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂∈h2

Pr
(
β̂|F j(α̃j, β̃ji)

)

Pr
(
F ′j−i(β̂)|F ′j(α̃j, β̃ji)

)µ′
(
F ′j−i(β̂)|F ′j(α̃j, β̃ji), z̃

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j(α̃j, β̃ji)

)

Pr
(
F ′j−i(β̂)|F ′j(α̃j, β̃ji)

) · µ′
(
F ′j−i(β̂)|F ′j(α̃j, β̃ji), z̃

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃j, β̃ji

))

Pr
(
β̂′|F j

(
α̃j, β̃ji

))µ′
(
β̂′|F ′j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂′∈h4

µ′
(
β̂′|F ′j

(
α̃j, β̃ji

)
, z̃
)∑

β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃j, β̃ji

))

Pr
(
β̂′|F j

(
α̃j, β̃ji

))

=
∑

β̂′∈h4

µ′
(
β̂′|F ′j

(
α̃j, β̃ji

)
, z̃
)

(5.2)

STEP 3. Using (5.1) and (5.2):
∑

β̂∈h

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂∈h1

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

+
∑

β̂∈h2

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂′∈h3

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

+
∑

β̂′∈h4

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

=
∑

β̂′∈h′

µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

= 1

40

In both cases we have shown
∑
β̂∈h

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

= 1. �

Claim 2 For all information sets h with Pr(h | σ) > 0, µ(x) = Pr(x | σ)
Pr(h | σ)

for all x ∈ h.

PROOF.[of Claim 2] Let h be player i’s information set after some history
(
F j
(
α̃j, β̃ji

)
, z̃
)

,

and fix some β̂ ∈ h. Let β̂′ = F ′j−i

(
β̂
)

. We need to show that µ(β̂|F j(α̃j, β̃ji), z̃) =

Pr(β̂ | σ)
Pr(h | σ)

. Let h′ be player i’s information set after history (F ′j(α̃j, β̃ji), z̃).

CASE 1. F j(α̃j, β̃ji) 6= F ′j(α̃j, β̃ji).

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

= µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

=
Pr
(
β̂′ | σ′

)

Pr (h′ | σ′)

=

Pr(β̂,F j(α̃j ,β̃ji))
Pr(β̂′,F ′j(α̃j ,β̃ji))

Pr
(
β̂′ | σ′

)

Pr(β̂,F j(α̃j ,β̃ji))
Pr(β̂′,F ′j(α̃j ,β̃ji))

Pr (h′ | σ′)

=
Pr
(
β̂ | σ

)

Pr (h | σ)

CASE 2. F j(α̃j, β̃ji) = F ′j(α̃j, β̃ji) and β̂ 6= β̂′.

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

=
Pr
(
β̃ | F j

(
α̃j, β̃ji

))

Pr
(
β̃′ | F ′j

(
α̃j, β̃ji

))µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

=
Pr
(
β̃ | F j

(
α̃j, β̃ji

))

Pr
(
β̃′ | F ′j

(
α̃j, β̃ji

))
Pr
(
β̂′ | σ′

)

Pr (h′ | σ′)

=
Pr
(
β̃ | F j

(
α̃j, β̃ji

))

Pr
(
β̃′ | F ′j

(
α̃j, β̃ji

))
Pr(β̃′ | F ′j(α̃j ,β̃ji))
Pr(β̃ | F j(α̃j ,β̃ji))

Pr
(
β̂ | σ

)

Pr (h | σ)

=
Pr
(
β̂ | σ

)

Pr (h | σ)

41

CASE 3. F j(α̃j, β̃ji) = F ′j(α̃j, β̃ji) and β̂ = β̂′.

µ
(
β̂ | F j

(
α̃j, β̃ji

)
, z̃
)

= µ′
(
β̂′ | F ′j

(
α̃j, β̃ji

)
, z̃
)

=
Pr
(
β̂′ | σ′

)

Pr (h′ | σ′)

=
Pr
(
β̂ | σ

)

Pr (h | σ)

Thus we have µ(x) = Pr(x | σ)
Pr(h | σ)

for all information sets h with Pr(h | σ) > 0. �

Claim 3 For all information sets h with Pr(h | σ) > 0, σ is sequentially rational at h

given µ.

PROOF.[of Claim 3] Suppose, by way of contradiction, that σ is not sequentially rational
given µ. Then, there exists a strategy τi such that, for some (F j(α̃j, β̃ji), z̃),

uji (τi, σ−i|F jα̃j, β̃ji), z̃, µ) > uji (σi, σ−i|F j(α̃j, β̃ji), z̃, µ). (5.3)

We will construct a strategy τ ′i for player i in ΓF ′ such that

uji (τ
′
i , σ
′
−i|F ′j(α̃j, β̃ji), z̃, µ′) > uji (σ

′
i, σ
′
−i|F ′j(α̃j, β̃ji), z̃, µ′),

thus contradicting the fact that σ′ is a Nash equilibrium. The proof proceeds in four steps.

STEP 1. We first construct τ ′i from τi. For a given F ′j
(
α̃j, β̃ji

)
, let

Υ =
{
F j
(
α̃j, β̃ji

)
| F j

(
α̃j, β̃ji

)
⊆ F ′j

(
α̃j, β̃ji

)}
(5.4)

and let
τ ′ji,v(F

′j(α̃j, β̃ji), z̃) =
∑

ϑ∈Υ

Pr
(
ϑ | F ′j(α̃j, β̃ji)

)
τ ji,v (ϑ, z̃) .

In other words, the strategy τ ′i is the same as τi except in situations where only the filtered
signal history is different, in which case τ ′i is a weighted average over the strategies at the
corresponding information sets in ΓF .

STEP 2. We need to show that uji (τ
′
i , σ
′
−i | F ′j(α̃j, β̃ji), z̃, µ′) = uji (τi, σ−i | F j(α̃j, β̃ji), z̃, µ)

for all histories (F j(α̃j, β̃ji), z̃). Fix (F j(α̃j, β̃ji), z̃), and assume, without loss of generality,
the equality holds for all information sets coming after this one in Γ.

CASE 1. F j(α̃j, β̃ji) 6= F ′j(α̃j, β̃ji). Let zj denote the current node of Gj and let Υ as in
(5.4).

42

uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
=
∑

β̂′∈h′

µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)

=
∑

β̂∈h

µ′
(
F ′j−i

(
β̂
))

uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, F ′j−i

(
β̂
))

=
∑

β̂∈h

µ
(
β̂
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, F ′j−i

(
β̂
))

=
∑

β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

τ ′ji,v

(
z̃, F ′j

(
α̃j, β̃ji

))
· uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, (z̃, v), F ′j−i

(
β̂
))

=
∑

β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

∑

ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j, β̃ji

))
τ ji,v (z̃, ϑ) ·

[
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, (z̃, v), F ′j−i

(
β̂
))]

=
∑

β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

∑

ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j, β̃ji

))
τ ji,v (z̃, ϑ) ·

[
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, (z̃, v), β̂

)]

=
∑

β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, (z̃, v), β̂

)
·

[∑

ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j, β̃ji

))
τ ji,v (z̃, ϑ)

]

=
∑

β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

τ ji,v

(
z̃, F j

(
α̃j, β̃ji

))
· uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, (z̃, v), β̂

)

=
∑

β̂∈h

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)

= uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)

CASE 2. F j(α̃j, β̃ji) = F ′j(α̃j, β̃ji). Let h1, h2, h3, and h4 as in the proof of Case 2 of
Claim 1. We can show

∑

β̂′∈h3

µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)
=
∑

β̂∈h1

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)

(5.5)

43

using a procedure similar to that in Case 1. We can show the following relationship between
h2 and h4:
∑

β̂′∈h4

µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

Pr
(
β̂ | F j

(
α̃j, β̃ji

))

Pr
(
β̂′ | F ′j

(
α̃j, β̃ji

)) · µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

µ
(
β̂
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

µ
(
β̂
) ∑

v∈Nj(zj)

τ ′ji,v

(
z̃, F ′j

(
α̃j, β̃ji

))
· uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, (z̃, v), β̂′

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

µ
(
β̂
) ∑

v∈Nj(zj)

τ ji,v

(
z̃, F j

(
α̃j, β̃ji

))
· uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, (z̃, v), β̂

)

=
∑

β̂′∈h4

∑

β̂∈h2
β̂⊂β̂′

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)

=
∑

β̂∈h2

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)
(5.6)

Using (5.5) and (5.6):

uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
=
∑

β̃′∈h′

µ′
(
β̃′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̃′

)

=
∑

β̂′∈h3

µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)
+
∑

β̂′∈h4

µ′
(
β̂′
)
uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, β̂′

)

=
∑

β̂∈h1

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)
+
∑

β̂∈h2

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)

=
∑

β̂∈h

µ
(
β̂
)
uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, β̂

)

= uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)

In both cases we have shown:

uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
= uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)
. (5.7)

STEP 3. We can show that

uji

(
σi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)
= uji

(
σ′i, σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
. (5.8)

44

using a procedure similar to the previous step.

STEP 4. Combining (5.3), (5.7), and (5.8), we have:

uji

(
τ ′i , σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
= uji

(
τi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)

> uji

(
σi, σ−i | F j

(
α̃j, β̃ji

)
, z̃, µ

)
= uji

(
σ′i, σ

′
−i | F ′j

(
α̃j, β̃ji

)
, z̃, µ′

)
.

Thus, σ′ is not a Nash equilibrium. Therefore, by contradiction, σ is sequentially rational
at all information sets h with Pr (h | σ) > 0. �

We can now complete the proof of Theorem 2. By Claims 1 and 2, we know that
condition C2 holds. By Claim 3, we know that condition C1 holds. Thus, σ is a Nash
equilibrium. �

5.4.1 Nontriviality of generalizing beyond this model

Our model does not capture general sequential games of imperfect information because it
is restricted in two ways (as discussed above): 1) there is a special structure connecting
the player actions and the chance actions (for one, the players are assumed to observe each
others’ actions, but nature’s actions might not be publicly observable), and 2) there is a
common ordering of signals. In this subsection we show that removing either of these
conditions can make our technique invalid.

First, we demonstrate a failure when removing the first assumption. Consider the game
in Figure 5.5.1 Nodes a and b are in the same information set, have the same parent (chance)
node, have isomorphic subtrees with the same payoffs, and nodes c and d also have similar
structural properties. By merging the subtrees beginning at a and b, we get the game on the
right in Figure 5.5. In this game, player 1’s only Nash equilibrium strategy is to play left.
But in the original game, player 1 knows that node c will never be reached, and so should
play right in that information set.

Removing the second assumption (that the utility functions are based on a common
ordering of signals) can also cause failure. Consider a simple three-card game with a deck
containing two Jacks (J1 and J2) and a King (K), where player 1’s utility function is based
on the ordering K � J1 ∼ J2 but player 2’s utility function is based on the ordering
J2 � K � J1. It is easy to check that in the abstracted game (where Player 1 treats J1 and
J2 as being “equivalent”) the Nash equilibrium does not correspond to a Nash equilibrium
in the original game.2

1We thank Albert Xin Jiang for providing this example.
2We thank an anonymous person for providing this example.

45

1/4
1/4 1/4

1/4

2 2 2

1

1

1 2 1 2 3 0 3 0

-10 10

1/2 1/4 1/4

2 2 2

1

1 2 3 0 3 0

a b

2 2 2 10-10
c

d

Figure 5.5: Example illustrating difficulty in developing a theory of equilibrium-preserving
abstractions for general extensive form games.

5.5 GameShrink: An efficient algorithm for computing
ordered game isomorphic abstraction transformations

In this section we present an algorithm, GameShrink, for conducting the abstractions. The
algorithm only needs to analyze the signal tree discussed above, rather than the entire game
tree.

We first present a subroutine that GameShrink uses. It is a dynamic program for com-
puting the ordered game isomorphic relation.3 Again, it operates on the signal tree.

Algorithm 1 OrderedGameIsomorphic? (Γ, ϑ, ϑ′)

1. If ϑ and ϑ′ are both leaves of the signal tree:

(a) If ur(ϑ | z̃) = ur(ϑ′ | z̃) for all z̃ ∈
r−1�
j=1

ωjcont × ωrover, then return true.

(b) Otherwise, return false.

2. Create a bipartite graph Gϑ,ϑ′ = (V1, V2, E) with V1 = N(ϑ) and V2 = N(ϑ′).

3. For each v1 ∈ V1 and v2 ∈ V2:

If OrderedGameIsomorphic? (Γ, v1, v2)

Create edge (v1, v2)

3Actually, this is computing a slightly relaxed notion since it allows nodes with different parents to be
considered ordered game isomorphic. However, the GameShrink algorithm only calls it with sibling nodes as
the arguments.

46

4. Return true if Gϑ,ϑ′ has a perfect matching; otherwise, return false.

By evaluating this dynamic program from bottom to top, Algorithm 1 determines, in
time polynomial in the size of the signal tree, whether or not any pair of equal depth nodes
x and y are ordered game isomorphic. The test in step 1(a) can be computed in O(1)

time by consulting the � relation from the specification of the game. Each call to Or-

deredGameIsomorphic? performs at most one perfect matching computation on a bipartite
graph with O(|Θ|) nodes and O(|Θ|2) edges (recall that Θ is the set of signals). Using the
Ford-Fulkerson algorithm [49] for finding a maximal matching, this takes O(|Θ|3) time.
Let S be the maximum number of signals possibly revealed in the game (e.g., in Rhode
Island Hold’em, S = 4 because each of the two players has one card in the hand plus there
are two cards on the table). The number of nodes, n, in the signal tree is O(|Θ|S). The
dynamic program visits each node in the signal tree, with each visit requiring O(|Θ|2) calls
to the OrderedGameIsomorphic? routine. So, it takes O(|Θ|S|Θ|3|Θ|2) = O(|Θ|S+5) time
to compute the entire ordered game isomorphic relation.

While this is exponential in the number of revealed signals, we now show that it is
polynomial in the size of the signal tree—and thus polynomial in the size of the game tree
because the signal tree is smaller than the game tree. The number of nodes in the signal
tree is

n = 1 +
S∑

i=1

i∏

j=1

(|Θ| − j + 1)

(Each term in the summation corresponds to the number of nodes at a specific depth of the
tree.) The number of leaves is

S∏

j=1

(|Θ| − j + 1) =

(|Θ|
S

)
S!

which is a lower bound on the number of nodes.4 For large |Θ| we can use the relation(
n
k

)
∼ nk

k!
to get (|Θ|

S

)
S! ∼

(|Θ|S
S!

)
S! = |Θ|S

and thus the number of leaves in the signal tree is Ω(|Θ|S). Therefore, O(|Θ|S+5) =

O(n|Θ|5), which proves that we can indeed compute the ordered game isomorphic relation
in time polynomial in the number of nodes, n, of the signal tree.

4Using the inequality
(
n
k

)
≥
(

n
k

)k
, we get the lower bound

(|Θ|
S

)
S! ≥

(
|Θ|
S

)S

S! = |Θ|S S!
SS .

47

The algorithm often runs in sublinear time (and space) in the size of the game tree
because the signal tree is significantly smaller than the game tree in most nontrivial games.
(Note that the input to the algorithm is not an explicit game tree, but a specification of the
rules, so the algorithm does not need to read in the game tree.) In general, if an ordered
game has r rounds, and each round’s stage game has at least b nonterminal leaves, then the
size of the signal tree is at most 1

br
of the size of the game tree. For example, in Rhode Island

Hold’em, the game tree has 3.1 billion nodes while the signal tree only has 6,632,705.

Given the OrderedGameIsomorphic? routine for determining ordered game isomor-
phisms in an ordered game, we are ready to present the main algorithm, GameShrink.

Algorithm 2 GameShrink (Γ)

1. Initialize F to be the identity filter for Γ.

2. For j from 1 to r:

For each pair of sibling nodes ϑ, ϑ′ at either level
∑j−1

k=1

(
κk + nγk

)
or
∑j

k=1 κ
k+∑j−1

k=1 nγ
k in the filtered (according to F) signal tree:

IfOrderedGameIsomorphic?(Γ, ϑ, ϑ′), thenF j (ϑ)← F j (ϑ′)← F j(ϑ)∪
F j (ϑ′).

3. Output F .

Given as input an ordered game Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉, GameShrink applies
the shrinking ideas presented above as aggressively as possible. Once it finishes, there
are no contractible nodes (since it compares every pair of nodes at each level of the signal
tree), and it outputs the corresponding information filter F . The correctness of GameShrink

follows by a repeated application of Theorem 2. Thus, we have the following result:

Theorem 3 GameShrink finds all ordered game isomorphisms and applies the associated

ordered game isomorphic abstraction transformations. Furthermore, for any Nash equi-

librium, σ′, of the abstracted game, the strategy profile constructed for the original game

from σ′ is a Nash equilibrium.

The dominating factor in the run time of GameShrink is in the rth iteration of the main
for-loop. There are at most

(|Θ|
S

)
S! nodes at this level, where we again take S to be the

48

maximum number of signals possibly revealed in the game. Thus, the inner for-loop exe-

cutes O
(((|Θ|

S

)
S!
)2
)

times. As discussed in the next subsection, we use a union-find data

structure to represent the information filter F . Each iteration of the inner for-loop possibly
performs a union operation on the data structure; performing M operations on a union-
find data structure containing N elements takes O(α(M,N)) amortized time per opera-
tion, where α(M,N) is the inverse Ackermann’s function [2, 155] (which grows extremely

slowly). Thus, the total time for GameShrink is O
(((|Θ|

S

)
S!
)2

α

(((|Θ|
S

)
S!
)2

, |Θ|S
))

.

By the inequality
(
n
k

)
≤ nk

k!
, this is O

(
(|Θ|S)2 α

(
(|Θ|S)2, |Θ|S

))
. Again, although this is

exponential in S, it is Õ(n2), where n is the number of nodes in the signal tree. Further-
more, GameShrink tends to actually run in sublinear time and space in the size of the game
tree because the signal tree is significantly smaller than the game tree in most nontrivial
games, as discussed above.

5.5.1 Efficiency enhancements

We designed several speed enhancement techniques for GameShrink, and all of them are
incorporated into our implementation. One technique is the use of the union-find data
structure [34, Chapter 21] for storing the information filter F . This data structure uses
time almost linear in the number of operations [155]. Initially each node in the signalling
tree is its own set (this corresponds to the identity information filter); when two nodes are
contracted they are joined into a new set. Upon termination, the filtered signals for the
abstracted game correspond exactly to the disjoint sets in the data structure. This is an effi-
cient method of recording contractions within the game tree, and the memory requirements
are only linear in the size of the signal tree.

Determining whether two nodes are ordered game isomorphic requires us to determine
if a bipartite graph has a perfect matching. We can eliminate some of these computations
by using easy-to-check necessary conditions for the ordered game isomorphic relation to
hold. One such condition is to check that the nodes have the same number of chances as
being ranked (according to �) higher than, lower than, and the same as the opponents. We
can precompute these frequencies for every game tree node. This substantially speeds up
GameShrink, and we can leverage this database across multiple runs of the algorithm (for
example, when trying different abstraction levels; see next section). The indices for this
database depend on the private and public signals, but not the order in which they were
revealed, and thus two nodes may have the same corresponding database entry. This makes
the database significantly more compact. (For example in Texas Hold’em, the database is

49

reduced by a factor
(

50
3

)(
47
1

)(
46
1

)
/
(

50
5

)
= 20.) We store the histograms in a 2-dimensional

database. The first dimension is indexed by the private signals, the second by the public
signals. The problem of computing the index in (either) one of the dimensions is exactly
the problem of computing a bijection between all subsets of size r from a set of size n and
integers in

[
0, . . . ,

(
n
r

)
− 1
]
. We efficiently compute this using the subsets’ colexicograph-

ical ordering [22]. Let {c1, . . . , cr}, ci ∈ {0, . . . , n − 1}, denote the r signals and assume
that ci < ci+1. We compute a unique index for this set of signals as follows:

index(c1, . . . , cr) =
r∑

i=1

(
ci
i

)
.

5.6 Approximation methods

Some games are too large to compute an exact equilibrium, even after using the presented
abstraction technique. In this section we discuss general techniques for computing approxi-
mately optimal strategy profiles. For a two-player game, we can always evaluate the worst-
case performance of a strategy, thus providing some objective evaluation of the strength
of the strategy. To illustrate this, suppose we know player 2’s planned strategy for some
game. We can then fix the probabilities of player 2’s actions in the game tree as if they
were chance moves. Then player 1 is faced with a single-agent decision problem, which
can be solved bottom-up, maximizing expected payoff at every node. Thus, we can objec-
tively determine the expected worst-case performance of player 2’s strategy. This will be
most useful when we want to evaluate how well a given strategy performs when we know
that it is not an equilibrium strategy. (A variation of this technique may also be applied
in n-person games where only one player’s strategies are held fixed.) This technique pro-
vides ex post guarantees about the worst-case performance of a strategy, and can be used
independently of the method that is used to compute the strategies in the first place.

5.6.1 State-space approximations

By slightly modifying the GameShrink algorithm we can obtain an algorithm that yields
even smaller game trees, at the expense of losing the equilibrium guarantees of Theorem 2.
Instead of requiring the payoffs at terminal nodes to match exactly, we can compute a
penalty that increases as the difference in utility between two nodes increases.

There are many ways in which the penalty function could be defined and implemented.
One possibility is to create edge weights in the bipartite graphs used in Algorithm 1, and

50

then instead of requiring perfect matchings in the unweighted graph we would require per-
fect matchings with low cost (i.e., only consider two nodes to be ordered game isomorphic
if the corresponding bipartite graph has a perfect matching with cost below some thresh-
old). Thus, with this threshold as a parameter, we have a knob to turn that in one extreme
(threshold = 0) yields an optimal abstraction and in the other extreme (threshold = ∞)
yields a highly abstracted game (this would in effect restrict players to ignoring all signals,
but still observing actions). This knob also begets an anytime algorithm. One can solve
increasingly less abstracted versions of the game, and evaluate the quality of the solution at
every iteration using the ex post method discussed above.

We further develop state-space approximation algorithms in Chapter 6 of this thesis.

5.6.2 Algorithmic approximations

In the case of two-player zero-sum games, the equilibrium computation can be modeled as a
linear program (LP), which can in turn be solved using the simplex method. This approach
has inherent features which we can leverage into desirable properties in the context of
solving games.

In the LP, primal solutions correspond to strategies of player 2, and dual solutions cor-
respond to strategies of player 1. There are two versions of the simplex method: the primal
simplex and the dual simplex. The primal simplex maintains primal feasibility and pro-
ceeds by finding better and better primal solutions until the dual solution vector is feasible,
at which point optimality has been reached. Analogously, the dual simplex maintains dual
feasibility and proceeds by finding increasingly better dual solutions until the primal solu-
tion vector is feasible. (The dual simplex method can be thought of as running the primal
simplex method on the dual problem.) Thus, the primal and dual simplex methods serve as
anytime algorithms (for a given abstraction) for players 2 and 1, respectively. At any point
in time, they can output the best strategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the quality of the strate-
gies by examining the primal and dual solutions. (When using the primal simplex method,
dual solutions may be read off of the LP tableau.) Every feasible solution of the dual yields
an upper bound on the optimal value of the primal, and vice versa [32, p. 57]. Thus, without
requiring further computation, we get lower bounds on the expected utility of each agent’s
strategy against that agent’s worst-case opponent.

One problem with the simplex method is that it is not a primal-dual algorithm, that is,
it does not maintain both primal and dual feasibility throughout its execution. (In fact, it

51

only obtains primal and dual feasibility at the very end of execution.) In contrast, there
are interior-point methods for linear programming that maintain primal and dual feasibility
throughout the execution. For example, many interior-point path-following algorithms have
this property [163, Ch. 5]. We observe that running such a linear programming method
yields a method for finding ε-equilibria (i.e., strategy profiles in which no agent can increase
her expected utility by more than ε by deviating). A threshold on ε can also be used as a
termination criterion for using the method as an anytime algorithm. Furthermore, interior-
point methods in this class have polynomial-time worst-case run time, as opposed to the
simplex algorithm, which takes exponentially many steps in the worst case.

We develop approximation algorithms for finding ε-equilibria in Part III of this thesis.

5.7 Related research

The main technique applied in this chapter is that of transforming large extensive form
games into smaller extensive form games for which an equilibrium can be computed. Then,
the equilibrium strategies of the smaller game are mapped back into the original larger
game. One of the first pieces of research addressing functions which transform extensive
form games into other extensive form games, although not for the purpose of making the
game smaller, was in an early paper [157], which was later extended [45]. In these papers,
several distinct transformations, now known as Thompson-Elmes-Reny transformations,
are defined. The main result is that one game can be derived from another game by a
sequence of those transformations if and only if the games have the same pure reduced

normal form. The pure reduced normal form is the extensive form game represented as a
game in normal form where duplicates of pure strategies (i.e., ones with identical payoffs)
are removed and players essentially select equivalence classes of strategies [91]. An ex-
tension to this work shows a similar result, but for slightly different transformations and
mixed reduced normal form games [83]. Modern treatments of this previous work on game
transformations have also been written [123, Ch. 6], [40].

The notion of weak isomorphism in extensive form games [29] is related to our notion of
restricted game isomorphism. The motivation of that work was to justify solution concepts
by arguing that they are invariant with respect to isomorphic transformations. Indeed, the
author shows, among other things, that many solution concepts, including Nash, perfect,
subgame perfect, and sequential equilibrium, are invariant with respect to weak isomor-
phisms. However, that definition requires that the games to be tested for weak isomorphism
are of the same size. Our focus is totally different: we find strategically equivalent smaller

52

games. Another difference is that their paper does not provide any algorithms.

Abstraction techniques have been used in artificial intelligence research before. In con-
trast to our work, most (but not all) research involving abstraction has been for single-agent
problems (e.g. [82, 101]). Furthermore, the use of abstraction typically leads to sub-optimal
solutions, unlike the techniques presented in this chapter, which yield optimal solutions. A
notable exception is the use of abstraction to compute optimal strategies for the game of
Sprouts [5]. However, a significant difference to our work is that Sprouts is a game of
perfect information.

One of the first pieces of research to use abstraction in multi-agent settings was the de-
velopment of partition search, which is the algorithm behind GIB, the world’s first expert-
level computer bridge player [66, 67]. In contrast to other game tree search algorithms
which store a particular game position at each node of the search tree, partition search
stores groups of positions that are similar. (Typically, the similarity of two game positions
is computed by ignoring the less important components of each game position and then
checking whether the abstracted positions are similar—in some domain-specific expert-
defined sense—to each other.) Partition search can lead to substantial speed improvements
over α-β-search. However, it is not game theory-based (it does not consider information
sets in the game tree), and thus does not solve for the equilibrium of a game of imperfect
information, such as poker.5 Another difference is that the abstraction is defined by an
expert human while our abstractions are determined automatically.

There has been some research on the use of abstraction for imperfect information
games. Most notably, Billings et al [14] describe a manually constructed abstraction for
the game of Texas Hold’em poker, and include promising results against expert players.
However, this approach has significant drawbacks. First, it is highly specialized for Texas
Hold’em. Second, a large amount of expert knowledge and effort was used in constructing
the abstraction. Third, the abstraction does not preserve equilibrium: even if applied to a
smaller game, it might not yield a game-theoretic equilibrium. Promising ideas for abstrac-
tion in the context of general extensive form games have been described in an extended
abstract [124], but to our knowledge, have not been fully developed.

5Bridge is also a game of imperfect information, and partition search does not find the equilibrium for
that game either. Instead, partition search is used in conjunction with statistical sampling to simulate the
uncertainty in bridge. There are also other bridge programs that use search techniques for perfect informa-
tion games in conjunction with statistical sampling and expert-defined abstraction [149]. Such (non-game-
theoretic) techniques are unlikely to be competitive in poker because of the greater importance of information
hiding and bluffing.

53

5.8 Summary

We introduced the ordered game isomorphic abstraction transformation and gave an al-
gorithm, GameShrink, for abstracting the game using the isomorphism exhaustively. We
proved that in games with ordered signals, any Nash equilibrium in the smaller abstracted
game maps directly to a Nash equilibrium in the original game.

The complexity of GameShrink is Õ(n2), where n is the number of nodes in the signal
tree. It is no larger than the game tree, and on nontrivial games it is drastically smaller, so
GameShrink has time and space complexity sublinear in the size of the game tree. Using
GameShrink, we found a minimax equilibrium to Rhode Island Hold’em, a poker game
with 3.1 billion nodes in the game tree—over four orders of magnitude more than in the
largest poker game solved previously.

To further improve scalability, we introduced an approximation variant of GameShrink,
which can be used as an anytime algorithm by varying a parameter that controls the coarse-
ness of abstraction. In Chapter 6 we develop several other improved approximation ab-
straction algorithms.

We also discussed how (in a two-player zero-sum game), linear programming can be
used in an anytime manner to generate approximately optimal strategies of increasing qual-
ity. The method also yields bounds on the suboptimality of the resulting strategies. In Part
III of this thesis we develop better approximation algorithms for finding ε-equilibria.

While our main motivation was games of private information, our abstraction method
can also be used in games where there is no private information. The method can be helpful
even if all signals that are revealed during the game are public (such as public cards drawn
from a deck, or throws of dice). However, in such games, expectiminimax search [108]
(possibly supplemented with α-β-pruning) can be used to solve the game in linear time in
n. In contrast, solving games with private information takes significantly longer: the time
to solve an O(n)× O(n) linear program in the two-person zero-sum setting, and longer in
more general games. Therefore, our abstraction method will pay off as a preprocessor in
games with no private information only if the signal tree of the game is significantly smaller
than the game tree.

54

Chapter 6

Lossy Information Abstraction

6.1 Introduction

In this chapter we continue our investigation of the first of the three classes of abstraction
under consideration in this chapter: information abstraction. In contrast to the previous
chapter, we now look at algorithms that yield approximate equilibria when solving the
abstracted game rather than exact equilibria. This is useful for games where the losslessly
abstracted game is still too large to solve.

6.2 Stage-based sequential games

The class of extensive form games is quite flexible. However, this flexibility inhibits the de-
velopment of abstractions algorithms since the structure in the games may be hard to detect.
(Examples illustrating the difficulty of developing abstraction algorithms for arbitrary ex-
tensive form games were discussed in Section 5.4.1.) For this reason, we instead introduce
and work with a more structured representation of games. The main benefit of our repre-
sentation is that it specifically encodes stages and information relevation. The base entity
in our model is an interaction, and this will be used as a component in the construction of
stage-based sequential games.

Definition 11 (Interaction) An n-person interaction is a tuple

Υ = 〈A,O,Φ〉

where:

55

• A = 〈A1, . . . , An〉 is a collection of action sets for each of the n agents.

• O = 〈O1, . . . , O|O|〉 is the finite set of outcomes for the interaction.

• Φ : A → ∆(O) specifies a probability distribution over outcomes given strategies

a ∈ A.

Interactions are capable of modeling arbitrarily complex strategic encounters. In par-
ticular, the strategy sets in Definition 11 may be finite or infinite. Thus, interactions can
model scenarios where players employ randomized strategies. In this sense, interactions
are at least as representative as both normal form and extensive form games, although the
outcomes in an interaction are not associated with any payoffs to the agents.1 We design a
game model composed of interactions which we study in this chapter and the next.

Definition 12 (Stage-Based Sequential Game) An n-person stage-based sequential game
is a tuple

Γ =
〈

Θ, p, T ,
{〈
κt, γt,Υt

〉}
t∈T ,Λ, u

〉

where:

1. Θ is a finite set of signals.

2. p is a joint distribution over the signals Θ.

3. T is a finite set of stages.

4. 〈κt, γt,Υt〉 is the stage interaction for stage t ∈ T : κt signals are revealed pub-

licly, γti signals are revealed privately to player i, and the players participate in the

interaction Υt. The signals are revealed probabilistically according to p.

5. Λ maps outcomes from the interactions to stages T ∪ {∅} where ∅ denotes a termi-

nating stage. Cycles are not permitted.

6. u = 〈u1, . . . , un〉 where each ui maps the history of outcomes and signals to a real-

valued utility for player i.

1This is not to say that interactions are a superior representation for certain games. In particular, repre-
sentation of an extensive form game with an interaction would lead to the same exponential increase as occurs
when representing an extensive form game as a normal form game.

56

Behavioral strategies for stage-based sequential games are defined similarly as for ex-
tensive form games. A strategy σi for player i specifies, for each stage t, for each outcome
in the stages up to that point, for each revelation of public information, and for each rev-
elation of player i’s private information, an action from player i’s action set in the current
stage’s interaction. Definitions of expected utility, Nash equilibrium, and ε-equilibrium
may be developed analagously as was done for extensive form games.

It is clear that every stage-based sequential game may be modeled as an extensive form
game. In addition, every extensive form game may be modeled as a stage-based sequential
game. At the very least, one may do this by defining a single-stage game where the inter-
action at that stage is the extensive form game. (However, such a game instance would not
be very useful in conjunction with our abstraction algorithms since the algorithms rely on
the structure in stage-based sequential game to operate effectively.)

The set of interactions {Υt}t∈T together with the stage transfer mapping Λ induces a
rooted directed acyclic graph. The set of paths in the graph beginning at the root are the
possible sequences of stages that can occur during a play of the game. We refer to this
graph as the stage graph and will use this later when we define our abstraction algorithms.
One important fact is that since the stage graph is a directed acyclic graph, it induces a
partial order over the stages.

6.2.1 Abstraction representation in stage-based sequential games

We represent information abstractions using information filters [61]. In Chapter 5, we
defined information filters in the context of ordered games. Here, we define information
filters in the context of stage-based sequential games (Definition 12).

Definition 13 (Information Filter) Let

Γ =
〈

Θ, p, T ,
{〈
κt, γt,Υt

〉}
t∈T ,Λ, u

〉

be an n-person stage-based sequential game. Let t̄ = 〈t1, . . . , tk〉, where tj ∈ T for each

tj ∈ t̄, be the sequence of k stages played up to one point in time. Let

S t̄ ⊆
�
t∈t̄

Θκt ×
�
t∈t̄

Θγti

be the set of legal signals (i.e., no repeated signals) revealed to player i through the se-

quence of stages t̄. An information filter for Γ is a collection F =
〈
F t̄1 , . . . , F t̄m

〉
contain-

ing all possible sequences of stages t̄j where each F t̄j is a function F t̄j : S t̄j → 2S
t̄j and

the range of F t̄ is a partition of S t̄.

57

An n-person stage-based sequential game Γ and an information filter F for Γ defines a
new game ΓF . We refer to such games as filtered stage-based sequential games.

Having described the needed framework for representing information abstractions, we
are now ready to present our information abstraction algorithms. In the rest of this chap-
ter we describe four of our information abstraction algorithms and present heads-up limit
Texas Hold’em poker-playing programs based on each of the algorithms. In Section 6.3 we
present a lossy version of our GameShrink lossless abstraction algorithm [61], and GS1, the
first of our poker-playing programs. In Section 6.4 we present an information abstraction
algorithm based on k-means clustering and integer programming, and describe GS2, the
next version of our poker-playing program based on that abstraction algorithm. The simi-
larity metric used in that algorithm is the expected probability of winning, and we refer to
it as the expectation-based algorithm. Section 6.5 presents a potential-aware extension of
the expectation-based algorithm, and the corresponding player, GS3. Section 6.6 discusses
strategy-based abstraction, and the corresponding player, GS4. Section 6.7 contains an ex-
tensive, controlled experimental comparison of the expectation-based and potential-aware
algorithms, along with a variant of the expectation-based algorithm.

6.3 Lossy version of GameShrink

In previous work [61] we described an algorithm, GameShrink, for performing lossless
(i.e. equilibrium-preserving) abstractions in a certain class of games. In that work, we
mentioned that GameShrink could be modified to function as a lossy version capable of
finding coarser-grained lossy abstractions. Here we describe that algorithm as it applies to
n-person stage-based sequential games.

The algorithm first performs a bottom-up pass on the stage graph to identify strategically-
similar information states. It then performs a top-down pass to merge information states.

Algorithm 3 GameShrink (Γ, i)

// Γ is the game, i is the player for whom we are computing an abstraction

1. Let similarity be a data structure mapping pairs of game states (defined by a stage

t ∈ T and signals θ and θ′ revealed to player i) to real values. Initialize the data

structure to be empty.

2. For each stage t ∈ T processed in bottom-up order:

58

(a) If t does not have outgoing edges in the stage graph, then for all pairs of signals

θ, θ′ that could have been revealed to player i:

i. Let V1 be the set of every possible revelation of signals θ−i for the the other

i players when player i has received θ.

ii. Let V2 be the set of every possible revelation of signals θ′−i for the the other

i players when player i has received θ′.

iii. Let E ⊆ V1 × V2 contain an edge (v1, v2) if v1 and v2 are compatible in

the sense that they correspond to game states in which the other players’

signals are consistent.

iv. For each (v1, v2) ∈ E, let w(v1, v2) be the average squared difference in

utility for player i when having seen signal θ in v1 versus θ′ in v2, where

the average is taken over all possible outcomes.

v. Let similarity(t, θ, θ′) be the weight of the minimum-weight perfect match-

ing in G.

(b) If t has outgoing edges in the stage graph, then for all pairs of signals θ, θ′ that

could have been revealed to player i up through the beginning of stage t ∈ T :

i. Let V1 be the set of possible pairs of game stages t̃ that can immediately

follow t and signal revelations θ̃ that can extend what has already been

revealed by θ.

ii. Let V2 be the set of possible pairs of game stages t̃′ that can immediately

follow t′ and signal revelations θ̃′ that can extend what has already been

revealed by θ′.

iii. Let E ⊆ V1 × V2 contain an edge (v1, v2) if v1 and v2 are compatible in

the sense that they correspond to pairs of game states in which the stage

games are the same player i’s signals are consistent.

iv. For each (v1, v2) ∈ E, let w(v1, v2) be equal to the corresponding value of

similarity(t̃, θ̃, θ̃′.

v. Let similarity(t, θ, θ′) be the weight of the minimum-weight perfect match-

ing in G.

3. Initialize F to be the identity filter for Γ.

4. For each stage t ∈ T processed in top-down order, and for all pairs of signals θ, θ′

that could have been revealed to player i, if similarity(t, θ, θ′) ≤ THRESHOLDt,

then

59

F (t, θ)← F (t, θ′)← F (t, θ) ∪ F (t, θ′).

5. Output F .

The THRESHOLDt parameter in Algorithm 3 specifies a tolerance for how strategically
different two game states can be to still be considered similar. (If THRESHOLDt = 0, the
algorithm yields a lossless abstraction.) This must be specified by the user of the algorithm,
and is how the size of the resulting abstraction is controlled. We discuss this further as we
describe the construction of GS1 using this abstraction algorithm.

6.3.1 GS1: Application of lossy GameShrink and real-time equilib-
rium computation for the endgame in Texas Hold’em

Using the above information abstraction as a component, we constructed GS1, our first
Texas Hold’em poker-playing program. GS1 solves the pre-flop and flop separately from
the turn and river. We discuss these two phases in Sections 6.3.1 and 6.3.1, respectively.

Strategy computation for the pre-flop and flop

GS1 computes the strategies for the pre-flop and flop offline. There are two distinct phases
to the computation: the automated abstraction and the equilibrium approximation.

For automatically computing a state-space abstraction for the first and second rounds,
we use the lossy version of the GameShrink algorithm described above.

We control the coarseness of the abstraction that GameShrink computes by a set of
parameters THRESHOLDt, one for each t ∈ T . The abstraction can range from lossless
(THRESHOLDt = 0), which results in an equilibrium for the original game, to complete
abstraction (THRESHOLDt =∞), which treats all nodes of the game as the same.

In the first betting round, there are
(

52
2

)
= 1326 distinct possible hands. However, there

are only 169 strategically different hands. For example, holding A♠A♣ is no different
(in the pre-flop phase) than holding A♦A♥. Thus, any pair of Aces may be treated sim-
ilarly.2 We run GameShrink with a threshold of 0 for the pre-flop stage, and GameShrink

automatically discovers these abstractions.
2This observation is well-known in poker, and in fact optimal strategies for pre-flop (1-round) Texas

Hold’em have been computed using this observation [142].

60

In the second round, there are
(

52
2

)(
50
3

)
= 25,989,600 distinct possible hands. Again,

many of these hands are strategically similar. However, applying GameShrink with the
threshold set to zero results in a game which is still too large for an equilibrium-finding
(LP) algorithm to handle. Thus we use a positive threshold that yields an abstraction that
has 2,465 strategically different hands.

To speedup GameShrink, we precomputed several databases. First, a handval database
was constructed. It has

(
52
7

)
= 133,784,560 entries. Each entry corresponds to seven cards

and stores an encoding of the hand’s rank, enabling rapid comparisons to determine which
of any two hands is better (ties are also possible). These comparisons are used in many
places by our algorithms.

To compute an index into the handval database, we need a way of mapping 7 in-
tegers between 0 and 51 to a unique integer between 0 and

(
52
7

)
− 1. We do this using

the colexicographical ordering of subsets of a fixed size [22] as follows. Let {c1, . . . , c7},
ci ∈ {0, . . . , 51}, denote the 7 cards and assume that ci < ci+1. We compute a unique index
for this set of cards as follows:

index(c1, . . . , c7) =
7∑

i=1

(
ci
i

)
.

We use similar techniques for computing unique indices in the other databases.

Another database, db5, stores the expected number of wins and losses (assuming a
uniform distribution over remaining cards) for five-card hands (the number of draws is
inferred from this). This database has

(
52
2

)(
50
3

)
= 25,989,600 entries, each corresponding

to a pair of hole cards along with a triple of flop cards. In computing the db5 database, our
algorithm makes heavy use of the handval database. The db5 database is used to quickly
compare how strategically similar a given pair of flop hands are. This enables GameShrink

to run much faster, which allows us to compute and evaluate several different levels of
abstraction.

By using the above precomputed databases, we are able to run GameShrink in about
four hours for a given abstraction threshold. Being able to quickly run the abstraction
computation allowed us to evaluate several different abstraction levels before settling on
the most accurate abstraction for which we could compute an equilibrium approximation.
After evaluating several abstraction thresholds, we settled on one that yielded an abstraction
that kept all the 169 pre-flop hands distinct and had 2,465 classes of flop hands.

Once we have computed an abstraction, we are ready to perform the equilibrium com-
putation for that abstracted game. In this phase of the computation, we are only considering

61

the game that consists of the first two betting rounds, where the payoffs for this truncated
game are computed using an expectation over the possible cards for the third and fourth
rounds, but ignoring any betting that might occur in those later rounds.3

Two-person zero-sum games can be solved via linear programming using the sequence
form representation of games. Building the linear program itself, however, is a non-trivial
computation. It is desirable to be able to quickly perform this operation so that we can apply
it to several different abstractions (as described above) in order to evaluate the capability of
each abstraction, as well as to determine how difficult each of the resulting linear programs
are to solve.

The difficulty in constructing the linear program lies primarily in computing the ex-
pected payoffs at the leaf nodes. Each leaf corresponds to two pairs of hole cards, three
flop cards, as well as the betting history. Considering only the card history (the betting his-
tory is irrelevant for the purposes of computing the expected number of wins and losses),
there are

(
52
2

)(
50
2

)(
48
3

)
≈ 2.8 · 1010 different histories. Evaluating each leaf requires rolling

out the
(

45
2

)
= 990 possible turn and river cards. Thus, we would have to examine about

2.7 · 1013 different combinations, which would make the LP construction slow (a projected
36 days on a 1.65 GHz CPU).

To speed up this LP creation, we precomputed a database, db223, that stores for each
pair of hole cards, and for each flop, the expected number of wins for each player (losses
and draws can be inferred from this). This database thus has

(
52
2

)(
50
2

)

2

(
48

3

)
= 14,047,378,800

entries. The compressed size of db223 is 8.4 GB and it took about a month to compute.
We store the database in one file per flop combination, and we only load into memory one
file at a time, as needed. By using this database, GS1 can quickly and exactly determine
the payoffs at each leaf for any abstraction. Once the abstraction is computed (as described
in the previous subsection), we can build the LP itself in about an hour. This approach
determines the payoffs exactly, and does not rely on any randomized sampling.

Using the abstraction described above yields a linear program with 243,938 rows,
244,107 columns, and 101,000,490 non-zeros. We solved the LP using the barrier method
of CPLEX. This computation used 18.8 GB RAM and took 7 days, 3 hours. GS1 uses
the strategy computed in this way for the pre-flop and flop betting rounds. Because our
approximation does not involve any lossy abstraction on the pre-flop cards, we expect the

3We used a more sophisticated technique for estimating payoffs of a truncated game in our construction
of GS2. We describe this technique in detail in Section 7.2.

62

resulting pre-flop strategies to be almost optimal, and certainly a better approximation than
what has been provided in previous computations that only consider pre-flop actions [142].

Strategy computation for the turn and river

Once the turn card is revealed, there are two betting rounds remaining. At this point, there
are a wide number of histories that could have occurred in the first two rounds. There are
7 possible betting sequences that could have occurred in the pre-flop betting round, and 9
possible betting sequences that could have occurred in the flop betting round. In addition
to the different betting histories, there are a number of different card histories that could
have occurred. In particular, there are

(
52
4

)
= 270,725 different possibilities for the four

community cards (three from the flop and one from the turn). The large number of histories
makes computing an accurate equilibrium approximation for the final two rounds for every
possible first and second round history prohibitively hard. Instead, GS1 computes in real-

time an equilibrium approximation for the final two rounds based on the observed history
for the current hand. This enables GS1 to perform computations that are focused on the
specific remaining portion of the game tree, and thus allows more refined abstractions to be
used in the later stages than if offline computation were used for the later stages (where the
game tree has exploded to be enormously wide).

There are two parts to this real-time computation. First, GS1 must compute an abstrac-
tion to be used in the equilibrium approximation. Second, GS1 must actually compute the
equilibrium approximation. These steps are similar to the two steps taken in the offline
computation of the pre-flop and flop strategies, but the real-time nature of this computation
poses additional challenges.

The problem of computing abstractions for each of the possible histories is made easier
by the following two observations: (1) the appropriate abstraction (even a theoretical loss-
less one) does not depend on the betting history (but does depend on the card history, of
course); and (2) many of the community card histories are equivalent due to suit isomor-
phisms. For example, having 2♠3♠4♠5♠ on the board is equivalent to having 2♣3♣4♣5♣
as long as we simply relabel the suits of the hole cards and the (as of yet unknown) river
card. Observation 2 reduces the number of abstractions that we need to compute (in prin-
ciple, one for each of the

(
52
4

)
flop and turn card histories, but reduced to 135,408).

Although GameShrink can compute one of these abstractions for a given abstraction

threshold in just a few seconds, we perform these abstraction computations off-line for
two reasons. First, since we are going to be playing in real-time, we want the strategy

63

computation to be as fast as possible. Given a small fixed limit on deliberation time (say,
15 seconds), saving even a few seconds could lead to a major improvement in strategy
quality. Second, we can set the abstraction threshold differently for each combination of
community cards in order to capitalize on the finest abstraction for which the equilibrium
can still be solved within a reasonable amount of time. One abstraction threshold may
lead to a very coarse abstraction for one combination of community cards, while leading
to a very fine abstraction for another combination. Thus, for each of the 135,408 cases,
we perform several abstraction computations with different abstraction parameters in order
to find an abstraction close to a target size (which we experimentally know the real-time
equilibrium solver (LP solver) can solve (exactly or approximately) within a reasonable
amount of time). Specifically, our algorithm first conducts binary search on the abstraction
threshold for round 3 (the turn) until GameShrink yields an abstracted game with about 25
distinct hands for round 3. Our algorithm then conducts binary search on the abstraction
threshold for round 4 (the river) until GameShrink yields an abstracted game with about
125 distinct hands for round 4. Given faster hardware, or more deliberation time, we could
easily increase these two targets.

Using this procedure, we computed all 135,408 abstractions in about one month using
six general-purpose CPUs.

Before we can construct the linear program for the turn and river betting rounds, we
need to determine the probabilities of holding certain hands. At this point in the game the
players have observed each other’s actions leading up to this point. Each player action
reveals some information about the type of hand the player might have.

Based on the strategies computed for the pre-flop and flop rounds, and based on the
observed history, we apply Bayes’ rule to estimate the probabilities of the different pairs
of hole cards that the players might be holding. Letting h denote the history, Θ denote the
set of possible pairs of hole cards, and s denote the strategy profile for all players, we can
derive the joint probability that the players hold hole cards θ ∈ Θ as follows:

Pr[θ | h, s] =
Pr[h | θ, s] · Pr[θ]

Pr[h | s] =
Pr[h | θ, s] · Pr[θ]∑
θ′∈Θ

Pr[h | θ′, s]

Since we already know Pr[h | θ, s] (we can simply look at the strategies, si, computed
for the first two rounds), we can compute the probabilities above. Of course, the resulting
probabilities might not be exact because the strategies for the pre-flop and flop rounds do
not constitute an exact equilibrium since, as discussed above, they were computed with-
out considering a fourth possible raise on the flop or any betting in rounds 3 and 4, and

64

abstraction was used.

Once the turn card is dealt out, GS1 creates a separate thread to construct and solve
the linear problem corresponding to the abstraction of the rest of that game. When it is
time for GS1 to act, the LP solve is interrupted, and the current solution is accessed to
get the strategy to use at the current time. When the algorithm is interrupted, we save the
current basis which allows us to continue the LP solve from the point at which we were
interrupted. The solve then continues in the separate thread (if it has not already found
the optimal solution). In this way, our strategy (vector of probabilities) keeps improving in
preparation for making future betting actions in rounds 3 and 4.

There are two different versions of the simplex algorithm for solving an LP: primal

simplex and dual simplex. The primal simplex maintains primal feasibility, and searches
for dual feasibility. (Once the primal and dual are both feasible, the solution is optimal.)
Similarly, dual simplex maintains dual feasibility, and searches for primal feasibility. (Dual
simplex can be thought of as running primal simplex on the dual LP.) When GS1 is playing
as player 1, the dual variables correspond to her strategies. Thus, to ensure that at any point
in the execution of the algorithm we have a feasible solution, GS1 uses dual simplex to
perform the equilibrium approximation when she is player 1. Similarly, she uses the primal
simplex algorithm when she is player 2. If given an arbitrarily long time to deliberate,
it would not matter which algorithm was used since at optimality both primal and dual
solutions are feasible. But since we are also interested in interim solutions, it is important
to always have feasibility for the solution vector in which we are interested. Our conditional
choice of the primal or dual simplex method ensures exactly this.

One subtle issue is that GS1 occasionally runs off the equilibrium path. For example,
suppose it is GS1’s turn to act, and the current LP solution indicates that she should bet;
thus GS1 bets, and the LP solve continues. It is possible that as the LP solve continues, it
determines that the best thing to have done would have been to check instead of betting. If
the other player re-raises, then GS1 is in a precarious situation: the current LP solution is
stating that she should not have bet in the first place, and consequently is not able to offer
any guidance to the player since she is in an information set that is reached with probability
zero. It is also possible for GS1 to determine during a hand whether the opponent has gone
off the equilibrium path, but this rarely happens because their cards are hidden. In these
situations, GS1 simply calls the bet. (Another technique for handling the possibility of
running oneself off the equilibrium path as mentioned above would be to save the previous
LP solution(s) that specified a behavior to use in the information set that now has zero
probability.)

65

We present experimental results for GS1 in Section 6.4.2 when we compare its perfor-
mance with GS2, discussed next.

6.4 Expectation-based automated abstraction using opti-
mization

Algorithm 3, (the lossy version of GameShrink) discussed in the previous subsection,
suffers from three major drawbacks. (When GameShrink is used in the lossless—exact
rather than approximation—mode, these criticisms do not apply: it finds an equilibrium-
preserving abstraction. However, if one were to apply the lossless mode to Texas Hold’em,
the resulting LP would be way too large to solve.)

• The first, and most serious, is that the abstraction that GameShrink computes can be
highly inaccurate because the grouping of states is in a sense greedy. For example,
if GameShrink determines that state A is similar to state B, and then determines that
state B is similar to state C, it will group A and C together, despite the fact that A and
C may not be very similar. The quality of the abstraction can be even worse when a
longer sequence of such comparisons leads to grouping together extremely different
states. Stated differently, the greedy aspect of the algorithm leads to lopsided classes
where large classes are likely to attract even more states into the class.

• The second drawback to GameShrink is that there is no way to directly specify how
many classes the abstraction algorithm should yield (overall or at any specific betting
round). Rather, there is a parameter (for each stage) that specifies a threshold of how
different states can be and still be considered the same. If one knows how large an
LP can be solved, one cannot create an LP of that size by specifying the number of
classes in the abstraction directly; rather one must use trial-and-error (or some variant
of binary search applied to the setting of multiple parameters) to pick the similarity
thresholds (one for each betting round) in a way that yields an LP of the desired size.

• The third drawback to GameShrink is its scalability. In particular, the time needed
to compute an abstraction for a three-round truncated version of Texas Hold’em was
over a month. Furthermore, it would have to be executed in the inner loop of the
parameter guessing algorithm of the previous paragraph (i.e., once for each setting of
the parameters).

66

In this subsection we describe a new abstraction algorithm that eliminates these prob-
lems.

We introduce a new structure for our algorithm, which we call the abstraction tree.
For limit Texas Hold’em, the basic abstraction tree is initialized as follows. The root node
contains

(
52
2

)
= 1326 children, one for each possible pair of hole cards that a player may be

dealt. Each of these children has
(

50
3

)
children, each corresponding to the possible flops that

can appear after the two hole cards in the parent node have already been dealt. Similarly,
the nodes at the next two levels have 47 and 46 children corresponding to the possible turn
and river cards, respectively. Figure 6.1 provides an illustration.

This structure is by no means limited to poker. In terms of stage-based sequential games
(Definition 12), we can derive the abstraction tree by considering the possible revelation of
signals to one player as well as the possible stage games. (The abstraction tree for limit
Texas Hold’em is much simpler since the stage graph is a line graph.)

(52
2

)

(50
3

)

Pre-flop

Flop

Turn

River

47

46

Figure 6.1: The initial abstraction tree of Texas Hold’em.

Suppose we wish to limit the number of filtered signals in the first stage to K1. In Texas
Hold’em, this corresponds to grouping each of the

(
52
2

)
= 1326 different hands into K1

classes. We treat this as a clustering problem. To perform the clustering, we must first
define a metric to determine the similarity of two states. Letting (w, l, d) be the number
of possible wins, losses, and draws (based on the roll-out of the remaining signals), we
compute the state’s value as w+ d/2, and we take the distance between two states to be the
absolute difference between their values. This gives us the necessary ingredients to apply
the k-means clustering algorithm [103]:

Algorithm 4 k-means clustering

1. Create k centroid points in the interval between the minimum and maximum state

values.

67

2. Assign each state to the nearest centroid.

3. Adjust each centroid to be the mean of their assigned state values.

4. Repeat steps 2 and 3 until convergence.

This algorithm is guaranteed to converge, but it may find a local optimum. Therefore,
in our implementation we run it several times with different starting points to try to find a
global optimum. For a given clustering, we can compute the error (according to the value
measure) that we would expect to have when using the abstraction.

For the later stages of the game, we again want to determine what the best abstraction
classes are. Here we face the additional problem of determining how many children each
parent in the abstraction tree can have. How should the right to have K2 children (ab-
straction classes that have not yet been generated at this stage) be divided among the K1

parents? We model and solve this problem as a 0-1 integer program [114] as follows. Our
objective is to minimize the expected error in the abstraction. Thus, for each of the K1

parent nodes, we run the k-means algorithm presented above for values of k between 1 and
K2−K1. We denote the expected error when node i has k children by ci,k. We denote by pi
the probability of receiving a signal that is in abstraction class i (i.e., in parent i). Based on
these computations, the following 0-1 integer program finds the abstraction that minimizes
the overall expected error for the second level:

min
K1∑
i=1

pi
K2−K1∑
k=1

ci,kxi,k

s.t.
K1∑
i=1

K2−K1∑
k=1

kxi,k ≤ K2

K2−K1∑
k=1

xi,k = 1 ∀i

xi,k ∈ {0, 1}

The decision variable xi,k is set to 1 if and only if node i has k children. The first con-
straint ensures that the limit on the overall number of children is not exceeded. The second
constraint ensures that a decision is made for each node. This problem is a generalized
knapsack problem, and although NP-complete, can be solved efficiently using off-the-shelf
integer programming solvers (e.g., CPLEX solves this problem in less than one second at
the root node of the branch-and-bound search tree).

We repeat this procedure in a top-down fashion for the other stages of the game. We
refer to this algorithm as expectation-based abstraction.

68

As discussed, our technique optimizes the abstraction stage by stage, i.e., level by level
in the abstraction tree. A better abstraction (even for the same similarity metric) could
conceivably be obtained by optimizing all rounds in one holistic optimization. However,
that seems infeasible. First, the optimization problem would be nonlinear because the
probabilities at a given level depend on the abstraction at previous levels of the tree. Second,
the number of decision variables in the problem would be exponential in the size of the
initial abstraction tree (which itself is large), even if the number of abstraction classes for
each level is fixed.

6.4.1 GS2: Application of expectation-based abstraction to Texas Hold’em

We applied the expectation-based abstraction algorithm for constructing a Texas Hold’em
player called GS2.

In the first phase, we solve an LP that models the strategic interaction in the first three
rounds of the game, where the payoffs at the end of the third round are estimated based on
an expectation of the actions in the fourth round. Thus, this model is based on actions in
the entire game. (We describe the details of this payoff computation in Section 7.2.) We
perform this first phase computation offline.

Pre-flop

Flop

Turn

15

225

900

Figure 6.2: Abstraction tree for GS2’s Phase 1 equilibrium approximation.

Because the LP corresponding to this three-round version of Texas Hold’em is too large
to solve, we must employ abstraction techniques to reduce the size of the LP. Based on the
available computational resources for solving the LP, there is a limit to the number of strate-
gically different hands that can be considered in each round. Based on the computational
resources available to us, we determined we could handle up to 15 strategically different
hands in the first round, 225 in the second round, and 900 in the third round. Solving the
LP took 6 days and 70 gigabytes of RAM using the barrier method in CPLEX 10.0 (using
one 1.65 GHz CPU on an IBM p570 computer). Of course, as computing speed increases
over time and enables larger LPs to be solved, we can apply our algorithm to compute finer

69

abstractions.

Although the first phase computation outputs strategies for the first three rounds, we
only actually use the strategies it computes for the first two rounds. We don’t use the third-
round strategy for actual play because 1) it may be inaccurate because the fourth round was
modeled based on expectations rather than game theory, as discussed above, and 2) we can
use a finer abstraction if we compute the third-round strategy in real-time.

The strategies we use for the third and fourth rounds are computed in real-time while
the game is being played. We do this so that the reasoning can be specific to the situation
at hand (i.e., cards on the table and betting history); the mere number of such situations
precludes precomputing the answer to each one of them. Once the turn card appears at
the beginning of the third betting round, we compute an equilibrium approximation for the
remaining game. We do this as follows. First, we update the players’ hand probabilities
using Bayes’ rule on the Phase 1 strategies and the observed betting history. Second, we
use our automated abstraction algorithm to construct and solve a smaller LP. Here we are
considering 10 strategically different hands in the third round, and 100 in the fourth round.
This is based on computational experiments we performed to find the finest abstraction for
which we could usually solve (at least near-optimally) the corresponding LP in under one
minute.

For Phase 2, we compute a third and fourth-round abstraction using the same approach.
We do this separately for each of the

(
52
4

)
possible flop and turn combinations.4

6.4.2 Evaluation

We conducted a host of experiments against the Texas Hold’em programs GS1, SparBot,
and VexBot. We used the series competition format of the first AAAI Computer Poker
Competition (held in July 2006).5 In our experiments, our player competed with each of

4Most of the computation time of the abstraction algorithm is spent running the k-means clustering
algorithm. Our straightforward implementation of the latter could be improved by using sophisticated data
structures such as a kd-tree [122] or performing bootstrap averaging to find the initial clusters [39]. This
would also allow one to run the k-means clustering more times and thus have an even better chance of finding
the global optimum of any individual k-means clustering problem.

5One difference between our experiments and the format of the AAAI poker competition is that the
AAAI competition performed duplicate matches, in which the deck shuffles are stored for each match, and
replayed with the players’ roles reversed. Using this approach, if one player receives particularly lucky cards
during a match, this will be offset by the duplicate match in which the other player receives the lucky cards.
Unfortunately, we have not yet been able to run such experiments due to the fact that the other players are
only available in the Poker Academy software package, which does not support duplicate matches.

70

the other players in 50 1,000-hand series, where the players’ memories are reset before each
series (this resetting only affects Vexbot since the other players do not perform any opponent
modeling). The purpose of resetting the memories after each series is to give a learning bot
a fair amount of time to develop an exploitative strategy, but not a completely unrealistic
amount. 1,000 hands per series is more than reasonable since most games between humans
last for at most a few hundred hands [75]. The AAAI competition also used 1,000 hands
per series.

The results are presented in Table 6.1. Based on the winning records, our agent, gen-
erated using the techniques described above, outperforms the leading prior poker-playing
programs. For GS1 (the leading prior automatically generated agent for the game), this
result is statistically significant according to the sign test, with p-value 3.06 × 10−4. In
terms of overall chips won, our program beats the prior game theory-based players, GS1

and Sparbot, but loses to Vexbot by a small margin. The margin of victory over GS1 is sta-
tistically significant as the estimated variance of small bets won or lost per hand is±0.0268

small bets (i.e., two chips) per hand for 50,000 hands. However, the comparisons with
Sparbot and Vexbot are in effect statistical ties.

Opponent Series won Sign test Win rate of GS2

by GS2 p-value (small bets per hand)

GS1 38 of 50 3.06× 10−4 +0.0312

Sparbot 28 of 50 4.80× 10−1 +0.0043

Vexbot 32 of 50 6.49× 10−2 −0.0062

GS2 w/o improved abstraction 48 of 50 2.27× 10−12 +0.0287

and w/o estimated payoffs
GS2 w/o improved abstraction 35 of 50 6.60× 10−3 +0.0273

GS2 w/o estimated payoffs 44 of 50 3.24× 10−8 +0.0072

Table 6.1: Experimental results evaluating GS2 against GS1, Sparbot, and Vexbot, as well
as in self-play with various features removed.

Interestingly, our player has a better winning percentage against Vexbot than it does
against Sparbot; yet based on the win rate of average chips won and lost per hand, it per-
forms better against Sparbot. This is possibly due to the fact that Vexbot is able to exploit
a weakness in our player that enables it to win a large amount of chips on a few hands,
but those particular hands do not come up often enough to affect the match winning per-
centages. Another possibility is that our player is playing much more conservatively than
Vexbot, which enables it to obtain a better winning percentage, but it is not playing ag-

71

gressively enough on certain hands to capture a higher chip win rate. Exploring these
possibilities could potentially lead to further improvements in our player.

In addition to evaluating the performance of our player against existing players, out of
scientific interest we also wanted to measure the individual effect of our improved auto-
mated abstraction algorithm and our technique of estimating payoffs in a truncated game
(described in Section 7.2). The fourth row in Table 6.1 reports results from the comparison
between our player, and our player using the old version of the GameShrink algorithm (as
used in GS1) and without estimating the payoffs of the truncated game (but instead using
a uniform roll-out as in Sparbot and GS1). (Our technique for estimating payoffs of the
truncated game is discussion in Section 7.2.) The introduction of these two new techniques
is a clear winner, with a p-value for the winning percentage of 2.27 × 10−12 and even a
statistically significant win rate in terms of the number of chips won. The last two rows
of Table 6.1 report the performance boost that each of the two new techniques yields indi-
vidually. The improved automated abstraction algorithm produces a greater performance
gain than the technique of estimating payoffs in the truncated game, but each of the two
techniques yields a dramatic statistically significant improvement in performance.

6.5 Potential-aware automated abstraction

The algorithm described in the previous subsection was based on a myopic expected-value
computation, and used k-means clustering with integer programming to compute the ab-
straction. A state of the game was evaluated according to the probability of winning. The
algorithm clustered together states with similar probabilities of winning, and it started com-
puting the abstraction from the first round and then down through the card tree. This top-

down algorithm generated the abstraction for GS2.

That approach does not take into account the potential of game states. For example,
certain poker hands are considered drawing hands in which the hand is currently weak, but
has a chance of becoming very strong. An important type of drawing hand is one in which
the player has four cards of a certain suit (five are required to make a flush); at the present
stage the hand is not very strong, but could become so if the required card showed up later in
the game. Since the strength of such a hand could potentially turn out to be much different
later in the game, it is generally accepted among poker experts that such a hand should be
played differently than another hand with the same chance of winning, but without as much
potential to improve.6 However, if using the difference between probabilities of winning

6In the manual abstraction used in Sparbot, there are six buckets of hands where the hands are selected

72

as the metric for performing the clustering, the automated abstraction algorithm would
consider these two very different situations to be quite similar.

One possible approach to handling the problem that certain game states with the same
probability of winning may have different potential would be to consider not only the ex-
pected strength of a game state, but also its variance. In other words, the algorithm would
be able to differentiate between two states that have the same probability of winning, but
where one game state faces more uncertainty about what its final strength will be, while the
other game state’s strength is unlikely to change much. Although this would likely improve
the basic abstraction algorithm, it does not take into account the different paths of informa-

tion revelation that game states take in increasing or decreasing in strength. For example,
two game states could have similar means and variances, but one state’s strength may be
determined after one more step, while the other state needs two more steps before its final
strength is determined.

To address this, we introduce an approach where we associate with each state of the
game a histogram over future possible states. This representation can encode all the perti-
nent information from the rest of the game, such as the probability of winning, the variance
of winning, and the paths of information revelation. (In such a scheme, the k-means cluster-
ing step requires a distance function to measure the dissimilarity between different states.
The metric we use is the usual L2-distance metric. Given a finite set S of states where each
hand i is associated with histogram hi over the future possible states S , the L2-distance
between states i and j is dist(i, j) =

[∑
s∈S (hi(s)− hj(s))2] 1

2 .)

There are at least two prohibitive problems with the vanilla approach as stated. First,
there are a huge number of possible reachable future states, so the dimensionality of the
histograms is too large to do meaningful clustering with a reasonable number of clusters
(i.e., small enough to lead to an abstracted game that can be solved for equilibrium). Sec-
ond, for any two states at the same level of the game, the descendant states are disjoint.
Thus the histograms would have non-overlapping supports, so any two states would have
maximum dissimilarity and thus no basis for clustering.

For both of these reasons (and for reducing memory usage and enhancing speed), we
coarsen the domains of the histograms. First, instead of having histograms over individual
states, we use histograms over abstracted states (clusters), which contain a number of states

based on likelihood of winning and one extra bucket for hands that an expert considered to have high po-
tential [14]. In contrast, our approach is automated, and does its bucketing holistically based on a multi-
dimensional notion of potential (so it does not separate buckets into ones based on winning probability and
ones based on potential). Furthermore, its abstraction is drastically finer grained.

73

each. We will have, for each cluster, a histogram over clusters later in the game. Second,
we restrict the histogram of each cluster to be over clusters at the next level of the game
tree only (rather than over clusters at all future levels). However, we introduce a technique
(a bottom-up pass of constructing abstractions up the tree) that allows the clusters at the
next level to capture information from all later levels.

One way of constructing the histograms would be to perform a bottom-up pass of the
stage graph: abstracting those stages that are leaves in the stage graph, creating histograms
for parents of the leaf nodes nodes based on the leaf node clusters, then abstracting that
second level, and so on. This is indeed what we do to find the abstraction for the first stage.

However, for later betting stages, we improve on this algorithm further by leveraging
our knowledge of the fact that abstracted children of any cluster at levels above should
only include states that can actually be children of the states in that cluster. We do this by
multiple bottom-up passes, one for each cluster at the level above. For example, if a cluster
in the first stage of Texas Hold’em contains only those states where the hand consists of
two Aces, then when we are doing abstraction for the second stage, the bottom-up pass for
that first stage cluster should only consider future states where the hand contains two Aces
as the hole cards. This enables the abstraction algorithm to narrow the scope of analysis
to information that is relevant given the abstraction that it made for earlier levels. The
following subsections describe our abstraction algorithm in detail.

6.5.1 Computing the abstraction for the first stage

The first piece of the abstraction we compute is for the first stage. As discussed above,
we will have, for each set of signals that could be observed in the first stage, a histogram
over clusters of game states at stages that can follow the first stage. (These clusters are
not necessarily the same that we will eventually use in the abstraction for those stages,
discussed later.)

To obtain the clusters at the second (and lower) levels, we perform a bottom-up pass
of the stage graph as follows. Beginning with the stages that correspond to leaf nodes in
the stage graph, we cluster the possible signals into some small number of clusters7 based
on the probability of winning. Next, we proceed in a bottom-up order. For each stage and

7For our application to Texas Hold’em, the number of clusters at each stage was chosen to reflect the fact
that when clustering data, the number of clusters needed to represent meaningful information should be at
least the level of dimensionality of the data. So, the number of clusters at a certain stage should be at least as
great as the number of clusters at stages that follow.

74

for the possible revealed signals, we compute its histogram over the clusters at the next
stages, which we have already computed, and we cluster the possible signals into some
small number of clusters. Once we get to the first stage we perform k-means clustering on
these histograms to obtain the buckets that constitute our abstraction for the first stage. The
value of k is specified as an input to the algorithm and corresponds to how many buckets
we wish our abstraction to have in the first stage.

6.5.2 Computing the abstraction for intermediate stages

Just as we did in computing the abstraction for the first stage, we start by performing a
bottom-up clustering, beginning at the stages that correspond to leaves in the stage graph.
However, instead of doing this bottom-up pass once, we do it once for each bucket in the
first stage. Thus, instead of considering all possible signals in each pass, we only consider
those hands which contain as the first-stage signals those signals that are present in the
particular first-stage bucket we are looking at.

At this point we have, for each first-stage bucket, a set of second-level clusters. For
each first-stage bucket, we have to determine how many child buckets it should actually
have. For each first-stage bucket, we run k-means clustering on its second-round clusters
for several values of k. This yields, for each first-stage bucket and each value of k, an error
measure for that bucket assuming it will have k children. (The error is the sum of each data
point’s L2 distance from the centroid of its assigned cluster.)

As in the abstraction algorithm used by GS2, we formulate and solve an integer program
(IP) to determine how many children each first-round bucket should have (i.e., what k
should be for that bucket). The IP simply minimizes the sum of the errors of the level-1
buckets under the constraint that their k-values do not sum to more than K, where K is
specified as an input to the algorithm for each stage.

This process is repeated for all interior nodes of the stage graph.

6.5.3 Computing the abstraction for leaf stages

In game stages corresponding to leaf nodes in the stage graph, there is no need to use the
sophisticated clustering techniques discussed above since the players will not receive any
more information. Instead, we simply compute these final-stage abstractions based on each
hand’s probability of winning, exactly the way as was done for computing the abstraction
for GS2.

75

6.5.4 GS3: Application of potential-aware abstraction and holistic game
solving to Texas Hold’em

Before computing an abstraction, we need to determine the coarseness of the resulting
abstraction. Ideally we would compute an abstraction as fine-grained as possible. However,
we need to limit the fineness of the abstraction to ensure that we are able to compute an
equilibrium approximation for the resulting abstracted game.

One important aspects of the abstraction is the branching factor. One intuitively desir-
able property is to have an abstraction where the relative amount of information revealed in
each stage is similar to the relative amount revealed in the game under consideration. For
example, it would likely not be effective to have an abstraction that only had one bucket for
each of the first three rounds, but had 1000 buckets for the last round. Similarly, we don’t
want to have 100 buckets in the first round if we are going to only have 100 buckets in the
second, third, and fourth rounds, since then no new information would be revealed after the
first round.

One implication of this reasoning is that the branching factor going into the flop (where
three cards are dealt) should be greater than the branching factor going into the turn or river
(where only one card is dealt in each round). Furthermore, it seems reasonable to require
that the branching factor of the flop be at least the branching factor of the turn and river
combined, since more information is revealed on the flop than on the turn and river together.

Based on these considerations, and based on some preliminary experiments to deter-
mine the problem size we could expect our equilibrium-finding algorithm to handle, we
settled on an abstraction that has 20 buckets in the first round, 800 buckets in the second
round, 4,800 buckets in the third round, and 28,800 buckets in the fourth round. This
implies a branching factor of 40 for the flop, 6 for the turn, and 6 for the river.

The prior game-theory based players (GS1, GS2, and Sparbot) computed strategies by
first splitting the game into two phases, and then solving the phases separately and then
gluing together the separate solutions. In particular, GS1 considers rounds 1 and 2 in the
first phase, and rounds 3 and 4 in the second phase. GS2 considers round 1, 2, and 3 in the
first phase, and rounds 3 and 4 in the second phase. Sparbot considers rounds 1, 2, and 3
in the first phase, and rounds 2, 3, and 4 in the second phase. These approaches allow for
finer-grained abstractions than what would be possible if a single, monolithic four-round
model were used. However, the equilibrium finding algorithm used in each of those players
was based on standard algorithms for LP which do not scale to a four-round model (except
possibly for a trivially coarse abstraction).

76

Solving the (two) different phases separately causes important strategic errors in the
player (in addition to those caused by lossy abstraction). First, it will play the first phase
of the game inaccurately because it does not properly consider the later stages (the second
phase) when determining the strategy for the first phase of the game. Second, it does not
accurately play the second phase of the game because strategies for the second phase are
derived based on beliefs at the end of the first phase, which are inaccurate.8

Therefore, we want to solve for equilibrium while keeping the game in one holistic
phase. Using a holistic four-round model makes the equilibrium computation a difficult
problem, particularly since our abstraction is very fine grained. As noted earlier, standard
LP solvers (like CPLEX’s simplex method and CPLEX’s interior-point method) are insuf-
ficient for solving such a large problem. Instead, we used an implementation of Nesterov’s
excessive gap technique algorithm [117], which was recently specialized for two-person
zero-sum sequential games of imperfect information [74, 56]. This algorithm is a gradient-
based algorithm which requires O(1/ε) iterations to compute an ε-equilibrium, that is, a
strategy for each player such that his incentive to deviate to another strategy is at most ε.
This algorithm is an anytime algorithm since at every iteration it has a pair of feasible so-
lutions, and the ε does not have to be fixed in advance. After 24 days of computing on 4
CPUs running in parallel, the algorithm had produced a pair of strategies with ε = 0.027

small bets.

Experiments with GS3 against static opponents

We tested our player, GS3, against seven prior programs: BluffBot, GS2, Hyperborean,9

Monash-BPP, Sparbot, Teddy, and Vexbot. To our knowledge, this collection of opponents
represents the “best of breed” in heads-up limit Texas Hold’em computer poker players. It
includes all competitors from the 2006 AAAI Computer Poker Competition.

We also tested GS3 against two (self-explanatory) benchmark strategies: Always Call

and Always Raise. Although these last two strategies are completely predictable, it has been
pointed out that it is important to evaluate a player against a wide range of opponents [14].

BluffBot, GS2, Hyperborean, Monash-BPP, Sparbot, and Teddy are static players, that
is, each of them uses a mixed strategy that does not change over time.10 Of course, Always

8We address some of these shortcomings in Section 7.2, but the techniqes discussed there do not com-
pletely eliminate these problems.

9There are actually two versions of Hyperborean: Hyperborean-Bankroll and Hyperborean-Series. The
differences between those two players are not publicly available. We tested against both versions.

10Since no information about Bluffbot, Hyperborean, and Teddy is publicly available, we are statistically

77

Opponent Number of GS3’s Empirical 95% confidence
hands played win rate std. dev. interval

Always Call 50,000 0.532 4.843 [0.490, 0.575]
Always Raise 50,000 0.442 8.160 [0.371, 0.514]
BluffBot 20,000 0.148 1.823 [0.123, 0.173]
GS2 25,000 0.222 5.724 [0.151, 0.293]
Hyperborean-Bankroll 20,000 0.099 1.779 [0.074, 0.124]
Hyperborean-Series 20,000 0.071 1.812 [0.045, 0.096]
Monash-BPP 20,000 0.669 2.834 [0.630, 0.709]
Sparbot 200,000 0.033 5.150 [0.010, 0.056]
Teddy 20,000 0.419 3.854 [0.366, 0.473]

Table 6.2: Experiments evaluating GS3 against static opponents. The win rate is the aver-
age number of small bets GS3 won per hand. (The win rate against an opponent that always
folds is 0.75.) GS3 beats each opponent by a statistically significant margin.

Call and Always Raise are also static strategies.

Table 6.2 summarizes our experiments comparing GS3 with the eight static opponents.
One interpretation of the last column is that if zero is strictly below the interval, we can
reject the null hypothesis “GS3 is not better than the opponent” at the 95% certainty level.
Thus, GS3 beat each of the opponents with statistical significance.

The matches against Always Call and Always Raise were conducted within Poker Academy

Pro, a commercially available software package that facilitates the design of and experi-
mentation with poker-playing programs. We played these two strategies against GS3 for
50,000 hands. Unsurprisingly, GS3 beat these simple strategies very easily.

The matches against GS2 and Sparbot were also conducted within Poker Academy Pro.
GS3 outplayed its predecessor, GS2, by a large margin. Sparbot provided GS3 with the
toughest competition, but GS3 beat it, too, with statistical significance.

The matches against the other participants of the 2006 AAAI Computer Poker Compe-
tition beyond GS2 (BluffBot, Hyperborean, Monash-BPP, and Teddy) were conducted on
the benchmark server available for participants of that competition. One advantage of this
testing environment is that it allows for duplicate matches, in which each hand is played
twice with the same shuffle of the cards and the players’ positions reversed. (Of course, the
player’s memories are reset so that they do not know that the same hand is being played

evaluating GS3’s performance against them as though they were static.

78

a second time.) This reduces the role of luck, so the empirical standard deviation is lower
than it would be in a normal match. Each match against these four players consisted of
20,000 duplicate hands (40,000 total). An additional way of evaluating the players in the
AAAI competition is to split the experiment for each pair of competitors into 20 equal-
length series, and declare as the winner of the pair the player who wins a larger number
of the 20 series. Under that measure, GS3 beat each of the opponents 20-0, except for
Hyperborean-Bankroll, which GS3 beat 19-1, and Hyperborean-Series, which GS3 best
16-4.

Experiments with GS3 against a learning opponent, Vexbot

Vexbot does not employ a static strategy. It records observations about its opponents’ ac-
tions, and develops a model of their style of play. It continually refines its model during
play and uses this knowledge of the opponent to try to exploit his weaknesses [13].

Since Vexbot is remembering (and exploiting) information from each hand, the out-
comes of hands in the same match are not statistically independent. Also, one known
drawback of Vexbot is that it is possible for it to get stuck in a local minimum in its learned
model [12, 16]. Hence, demonstrating that GS3 beats Vexbot in a single match (regardless
of the number of hands played) is not significant since it is possible that Vexbot happened
to get stuck in such a local minimum. Therefore, instead of statistically evaluating the per-
formance of GS3 on a hand-by-hand basis as we did with the static players, we evaluate
GS3 against Vexbot on a match-by-match basis.

We conducted 20 matches of GS3 against Vexbot. The design of each match was ex-
tremely conservative, that is, generous for Vexbot. Each match consisted of 100,000 hands,
and in each match Vexbot started with its default model of the opponent. We allowed it to
learn throughout the 100,000 hands in each match (rather than flushing its memory every
so often as is customary in computer poker competitions). This number of hands is many
more than would actually be played between two players in practice. For example, the
number of hands played in each match in the 2006 AAAI Computer Poker Competition
was only 1,000.

The match results are summarized in Table 6.3. In every match, GS3 beat Vexbot by
a large margin, with a mean win rate of 0.142 small bets per hand. The 95% confidence
interval for the overall win rate is [0.133, 0.151].

One criticism that could possibly be made against the experimental methodology de-
scribed above is that we did not allow Vexbot to learn for some period before we started

79

recording the winnings. With this in mind, we also present (in the third column of Ta-
ble 6.3) GS3’s win rate over the last 10,000 hands only, which illustrates how well GS3

would perform if we allowed Vexbot to train for 90,000 hands before recording any win/loss
information. As can be seen from the data, GS3 still outperforms Vexbot, winning 0.147
small bets per hand on average, with a 95% confidence interval of [0.115, 0.179].

Small bets GS3 won per hand
Match # Over all 100k hands Over final 10k hands

1 0.129 0.197
2 0.132 0.104
3 0.169 0.248
4 0.139 0.184
5 0.130 0.150
6 0.153 0.158
7 0.137 0.092
8 0.147 0.120
9 0.120 0.092

10 0.149 0.208
11 0.098 0.067
12 0.153 0.248
13 0.142 0.142
14 0.163 0.169
15 0.165 0.112
16 0.163 0.172
17 0.108 -0.064
18 0.180 0.255
19 0.147 0.143
20 0.118 0.138

Mean: 0.142 0.147
Std. dev: 0.021 0.073
95% CI: [0.133, 0.151] [0.115, 0.179]

Table 6.3: Experiments against Vexbot. The third column reports GS3’s win rate over
10,000 hands after Vexbot is allowed to train for 90,000 hands.

80

Results from the 2007 AAAI Computer Poker Competition

GS3 competed in the 2007 AAAI Computer Poker Competition. Table 6.4 shows how GS3

fared against each of the competitors in the Equilibrium Competition.11 GS3 finished in
third place out of 16 entries, beating all but two of the entries in head-to-head competition.
GS3’s average winnings was second overall in the Equilibrium Competition.

Amount won by GS3
Opponent per hand ± std. dev.

Hyperborean07LimitEq1 -0.0320 ± 0.0030
IanBotLimit1 -0.0040 ± 0.0030

PokeMinnLimit1 0.1499 ± 0.0127
QuickLimit1 0.0729 ± 0.0069

GomelLimit2 0.1124 ± 0.0111
DumboLimitEq1 0.1597 ± 0.0084
DumboLimitEq2 0.1488 ± 0.0085

SequelLimit1 0.1396 ± 0.0072
SequelLimit2 0.1480 ± 0.0120

PokeMinnLimit2 0.1540 ± 0.0112
UNCCLimit1 0.4670 ± 0.0091
GomelLimit1 0.1065 ± 0.0104

LeRenardLimit1 0.1418 ± 0.0127
MonashBPPLimit1 0.4119 ± 0.0178

MilanoLimitEq1 0.4448 ± 0.0082

Average 0.1754 ± 0.0044

Table 6.4: Amount won by GS3 against each of the competitors in the 2007 AAAI Com-
puter Poker Competition, along with standard deviations.

11The full results of the Equilibrium Competition are available on-line at http://www.cs.

ualberta.ca/˜pokert/2007/results/summarylimiteq.html.

81

http://www.cs.ualberta.ca/~pokert/2007/results/summarylimiteq.html
http://www.cs.ualberta.ca/~pokert/2007/results/summarylimiteq.html

6.6 Strategy-based abstraction and results from the 2008
AAAI Computer Poker Competition

Our entry in the 2008 AAAI Computer Poker Competition, GS4, was similar to GS3. The
main difference was the use of strategy-based abstraction in which information abstraction
is performed based on an expectation of different hands being played similarly in equilib-
rium.

In the construction of GS4, we first solved a truncated three-round game that contained a
lossless abstraction of 169 buckets for the first betting round, 6,760 buckets for the second
betting round, and 54,080 for the third betting round. We used a simple fixed strategy
for play on the fourth round to compute the payoffs. We applied our implementation of
Nesterov’s excessive gap technique to find an approximate solution to this problem over 90
days. Using this solution, we then performed a bucketing of the pre-flop hands using the
L1 distance between strategy vectors as the similarity metric. The rest of the rounds were
abstracted using the potential-aware automated abstraction algorithm just as was done for
GS3. After again applying our equilibrium-finding algorithm, we were able to compute
near-optimal strategies for GS4.

The results for GS4 from the 2008 AAAI Computer Poker Competition are in Ta-
ble 6.5.12 Overall, GS4 had the highest win rate in terms of dollars won. However, it
had only 4 wins and 4 losses when compared pairwise to the other programs.

6.7 Evaluation of information-based abstraction algorithms

As we have described so far in this section, automated information abstraction algorithms
for sequential imperfect information games are a key component in developing competi-
tive game theory-based agents. However, prior research and the experiments presented in
this chapter so far did not investigate the relative performance of the different abstraction
algorithms. Instead, agents have only been compared under confounding effects such as
different granularities of abstraction and equilibrium-finding algorithms that yield different
accuracies when solving the abstracted game.

In this subsection we provide a systematic evaluation of the information abstraction
algorithms. Is one of them better than another? Does the answer depend on the granularity

12The full results of the Equilibrium Competition are available on-line at http://www.cs.

ualberta.ca/˜pokert/2008/results/.

82

http://www.cs.ualberta.ca/~pokert/2008/results/
http://www.cs.ualberta.ca/~pokert/2008/results/

Amount won by GS3
Opponent per hand ± std. dev.

Hyperborean08-Online -0.030 ± 0.012
Hyperborean08-Equilibrium -0.029 ± 0.009

Ian Fellows -0.020 ± 0.015
GGValuta -0.036 ± 0.009

PokeMinnLimit2 0.200 ± 0.018
PokeMinnLimit1 0.113 ± 0.016

GUS 0.695 ± 0.018
Dr. Sahbak 0.713 ± 0.007

Average 0.201 ± 0.007

Table 6.5: Amount won by GS4 against each of the competitors in the 2008 AAAI Com-
puter Poker Competition, along with standard deviations.

of the abstraction that is acceptable in the output (in practice this is constrained by the
scalability of the equilibrium-finding algorithm that will take the abstracted game as input)?
Furthermore, does the answer depend on whether the agent competes against another agent
developed using abstraction, against equilibrium play, or against its nemesis?

Rhode Island Hold’em is a two-person zero-sum game. Thus, the equilibrium prob-
lem can be formulated as a linear program whose size is linear in the size of the game
tree [130, 84, 160]. Although solving these linear programs becomes difficult in practice for
large games, the scalability is adequate for the abstracted games (even losslessly abstracted
ones) we discuss in this section. Hence, in our experimental evaluations, we test using op-
timal strategies for the abstracted games (rather than the approximately optimal strategies
guaranteed by other equilibrium-finding approaches, e.g., [56, 165, 166, 106, 57]). The
tractability of finding optimal strategies under all granularities of abstraction is important
because it allows us to isolate the performance of the abstraction from the performance
of the equilibrium-finding algorithm (because the latter is exact here). This is the reason
we use Rhode Island Hold’em—which is just under the threshold of what is solvable for
equilibrium exactly—as the testbed, instead of, say, Texas Hold’em.

We thus conduct experiments on Rhode Island Hold’em poker where all the confound-
ing effects can be controlled. We compare the algorithms against each other, against opti-
mal play, and against each agent’s nemesis. We also compare them based on the resulting
game’s value. Interestingly, for very coarse abstractions the expectation-based algorithms

83

are better, but for moderately coarse and fine abstractions the potential-aware approach
is superior. Furthermore, agents constructed using the expectation-based approaches are
highly exploitable beyond what their performance against the game’s optimal strategy
would suggest.

In our experiments, we fix the number of first-round buckets to be K1 = 13. This value
allows for an optimal bucketing at that level; it can be obtained by simply applying suit

isomorphisms. Since each agent only has one card and there are 13 different ranks, we can
find the optimal 13 buckets by simply grouping the hands according to rank and ignoring
the suit. Determining buckets for the second and third rounds is thus the main work of the
abstraction algorithms.

One idea that has appeared in the literature is to consider the square of the probability
of winning, rather than simply the probability [166]. The motivation is that the high-value
hands (those with the higher probability of winning) should be more finely abstracted than
the lower-value hands. Another motivating factor behind this approach is that it captures
some of the variance in poker hands. Thus, we consider a simple variant of the expectation-
based algorithm that instead uses the square of the probability of winning. To be precise,
we take the value of hand i to be vi = (wi+d/2)2. We refer to this algorithm as expectation

squared.13

In the rest of this subsection we present our experimental results comparing the expectation-
based (both the probability of winning and probability of winning squared variants) and
potential-aware abstraction algorithms while varying the granularity of the abstractions.
We denote an abstraction with K1 first-round buckets, K2 second-round buckets, and K3

third-round buckets with the stringK1-K2-K3. For example, the abstraction granularity 13-
25-125 has 13 first-round buckets, 25 second-round buckets, and 125 third-round buckets.
The abstraction granularities we consider range from coarse (13-25-125) to fine (13-205-
1774). At this fine granularity an equilibrium-preserving abstraction exists [61].

For two-person zero-sum sequential imperfect information games with perfect recall,
the equilibrium problem is to find a solution to

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy,

where Qi is the set of realization plans for agent i and A is the payoff matrix. The sets of
realization plans are derived from the sequence form representation of the game [84, 130,

13The resulting modified algorithm is slightly different than the one that has appeared previously [166]
since we are still using an integer program to allocate the buckets, which enables non-uniform bucketing. The
prior approach used fixed-size buckets.

84

160]. In our experiments, all payoff calculations are carried out exactly. This makes all of
our results statistically significant since there is no variance in the expectation computation.

Compared to the computation time for finding an equilibrium, the time needed by
the abstraction algorithms was insignificant, although the potential-aware algorithm takes
slightly longer than the expectation-based algorithm since the former is doing clustering in
the higher-dimensional space of histograms. We used CPLEX’s interior-point linear pro-
gramming solver for finding an exact equilibrium (up to numerical precision) of each of the
abstracted games.

In Rhode Island Hold’em, agent 2 has an advantage. (Intuitively, she has more infor-
mation when it is her turn to act.) Thus, to properly evaluate an agent’s performance, it is
necessary to consider that agent playing as both agent 1 and as agent 2 in turn. Where it is
relevant, in the presentation of our results we average the performance of an agent playing
each of the two roles.

We compared the agents constructed with the different information-based abstraction
algorithms using four different evaluation criteria. The following four subsections discuss
each of these.

6.7.1 Comparing agents head-to-head

The first criterion we use to compare the algorithms is to simply play the resulting strategies
against each other in the full, unabstracted version of Rhode Island Hold’em. Formally, if
(x1, y1) is the pair of strategies computed by the expectation-based algorithm and (x2, y2)

is the pair of strategies computed by the potential-aware algorithm, the expected payoff to
the expectation-based agent is

1

2
xT

1Ay2 −
1

2
xT

2Ay1.

As can be seen in Table 6.6, the potential-aware algorithm beats both expectation-based
algorithms for the abstraction granularities 13-50-250 and finer. However, interestingly,
there is a cross-over: the expectation-based algorithms beat the potential-aware algorithm
for the coarsest granularity 13-25-125. One hypothesis for why this is the case is that
the dimensionality of the temporary states used in the bottom-up pass in the third-round
(which must be smaller than the number of available second-round buckets in order for the
clustering to discover meaningful centroids) is insufficient for capturing the strategically
relevant aspects of the game. Another hypothesis is that since the potential-aware approach
is trying to learn a more complex model (in a sense, clusters of paths of states) and the

85

expectation-based model is trying to learn a less complex model (clusters of states, based
on mere probability of winning), the former requires a larger dimension to capture this
richness.

Granularity EB vs. EB2 EB vs. PA EB2 vs. PA
13-25-125 0.1490 16.6223 17.0938
13-50-250 -0.1272 -1.0627 -0.5200
13-75-500 0.1787 -8.5784 -8.4891

13-100-750 0.2340 -6.9880 -7.1448
13-125-1000 0.1713 -6.4130 -6.3567
13-150-1250 0.1813 -5.5707 -5.6879
13-205-1774 0.0000 -0.0877 -0.0877

Table 6.6: Head-to-head comparison of the algorithms against one another.

The expectation-based algorithms eventually perform almost as well as the potential-
aware algorithm when the abstraction granularity is 13-205-1774. The fact that the expec-
tation-based algorithms still lose shows that those algorithms are unable to find the optimal
abstraction even when enough buckets are allowed so that a lossless abstraction exists. (In
fact, at that granularity, expectation-based abstraction is only able to distinguish between
204 second-round buckets and 1748 third-round buckets. This immediately implies that
increasing the number of allowed buckets further does not improve its performance.) It is
also interesting that after the cross-over the advantage of the potential-aware approach first
increases and then decreases as both approaches get closer to optimal play as the allowed
abstraction granularity gets finer and finer.

Comparing probability of winning versus probability of winning squared, we see that
they perform similarly. Interesting, one does not dominate the other. For granularity 13-
25-125, EB beats EB2 head-to-head, but EB2 does better against PA than EB does. For
granularity 13-50-250, EB2 beats EB head-to-head, and EB2 does better against PA than
EB. For the other granularities, EB outperforms EB2 in both categories.

6.7.2 Comparing agents against equilibrium play

The second evaluation criterion is to play each of the abstractions against the optimal strat-
egy (i.e., equilibrium strategy) of the unabstracted game. If (x, y) is the pair of strategies
computed by one of the abstraction algorithms and (x∗, y∗) is the optimal pair of strategies

86

for the unabstracted game, the expected payoff to the abstracted agent is

1

2
xTAy∗ −

1

2
xT
∗Ay.

The results in Table 6.7 show that, as expected, the algorithms improve monotonically
against the optimal strategy as finer-grained abstractions are allowed. Furthermore, the
potential-aware algorithm has a better payoff than the expectation-based algorithm for gran-
ularity 13-50-250 and finer, and is optimal for the 13-205-1774 granularity, indicating that
the potential-aware algorithm finds the lossless abstraction. (In fact, we verified that it finds
the same abstraction as the GameShrink algorithm that finds lossless abstractions [61].) In
contrast, we see that the expectation-based algorithm never finds a lossless abstraction,
regardless of how fine an abstraction we allow it to make. This is due to the fact that some-
times two game states have exactly the same probability of winning, yet should be played
differently.

Granularity EB Payoff EB2 Payoff PA Payoff
13-25-125 -25.0312 -25.0807 -41.7910
13-50-250 -19.6519 -19.2139 -18.2612
13-75-500 -15.4708 -15.3714 -10.5562

13-100-750 -11.9801 -12.0462 -5.4248
13-125-1000 -9.3718 -9.3465 -3.2392
13-150-1250 -6.8172 -6.9536 -1.5770
13-205-1774 -0.0877 -0.0877 0.0000

Table 6.7: Expected payoff to each agent when playing against the optimal agent.

6.7.3 Comparing agents against their nemeses: Worst-case performance

The third criterion examines the expected worst-case performance of the algorithms. This is
done by computing a best response strategy—i.e., a nemesis—for each of the two strategies,
and then playing each strategy against its nemesis. If (x, y) is the strategy pair computed
by one of the abstraction algorithms, the expected worst-case payoff is

1

2
min
v∈Q2

xTAv +
1

2
max
u∈Q1

uTAy.

Table 6.8 shows that the performance guarantees of each of the algorithms improve as
finer abstraction is allowed. Again, the potential-aware algorithm outperforms the expecta-

87

tion-based algorithms for abstraction granularities 13-50-250 and finer, but the expectation-
based algorithm provides a better bound for the coarsest granularity. The expectation-based
algorithm using winning probability does better than the variant using winning probability
squared.

Granularity EB Payoff EB2 Payoff PA Payoff
13-25-125 -160.527 -163.527 -204.022
13-50-250 -134.406 -134.946 -125.972
13-75-500 -97.970 -99.145 -68.238
13-100-750 -68.888 -72.218 -45.124

13-125-1000 -44.761 -47.334 -24.200
13-150-1250 -29.556 -31.212 -12.067
13-205-1774 -0.429 -0.429 > -0.001

Table 6.8: Expected payoffs to various agents when playing againt their nemesis.

The fact that the payoff to PA is not exactly zero in the 13-205-1774 case is due to
numerical rounding issues. Interior-point methods, such as the one used in the experiments,
are not exact. An exact algorithm would require rational arithmetic (instead of floating-
point arithmetic) which would be completely impractical.

6.7.4 Evaluating abstractions based on estimating the value of the game

Our fourth and final criterion evaluates the abstraction algorithms based on their ability to
predict the value of the game. (Computing an accurate value may be useful, for example,
to determine the fairness of the game.) If (x, y) is the strategy pair computed by one of the
abstraction algorithms, the value estimate is simply given by xTAy. Table 6.9 displays the
results.

The expectation-based algorithms provide a better estimate of the value for the coars-
est abstraction granularity, but the potential-aware algorithm provides a better estimate for
all finer granularities. The error in the estimations of both algorithms decreases monoton-
ically as the granularity increases, but, interestingly, the estimated values do not change
monotonically.

88

EB EB2 PA
Granularity Value Error Value Error Value Error

13-25-125 -68.8710 4.6723 -69.1463 4.9476 -56.9853 7.2134
13-50-250 -59.6962 4.5024 -59.5952 4.6035 -62.2535 1.9452
13-75-500 -60.1006 4.0981 -59.9381 4.2606 -59.8614 4.3373

13-100-750 -60.3524 3.8462 -60.3941 3.8046 -63.8007 0.3980
13-125-1000 -61.6250 2.5737 -61.6343 2.5644 -63.9787 0.2200
13-150-1250 -61.8371 2.3615 -61.8717 2.3270 -64.0957 0.1030
13-205-1774 -64.2361 0.0374 -64.2361 0.0374 -64.1987 0.0000

Table 6.9: Comparison of the estimate of the value of the game given by the algorithms.
The estimated value and distance from the actual value (error) of the payoff estimated by
each agent are shown.

6.7.5 Summary of experiments comparing information abstraction al-
gorithms

We performed a systematic comparison of automated abstraction algorithms for sequen-
tial imperfect information games. We examined three algorithms for information-based
abstraction: expectation-based (EB), expectation squared (EB2), and potential-aware (PA).
Our experiments, conducted using the game of Rhode Island Hold’em poker—in order to
isolate the abstraction issues from confounding effects—examined four criteria. The results
were consistent across all four.

For extremely coarse abstractions, EB and EB2 outperformed PA. As the abstraction
becomes finer, PA becomes best, and is optimal if a fine enough abstraction is allowed.

Interestingly, agents generated using EB are substantially more exploitable (by a neme-
sis and by an optimal equilibrium-based player) than the head-to-head comparisons against
potential-aware abstraction would suggest. EB2 is even worse in this sense.

6.8 Conclusions and future research

In this chapter we investigated lossy information-based abstraction, which filters the infor-
mation revealed to the players. We developed four increasingly sophisticated and effective
algorithms that take into account strategically-relevant aspects of the game, and we per-
formed a controlled experiment to pinpoint where the different algorithms demonstrate the

89

best performance.

There are numerous directions for future research. The abstraction algorithms presented
in this chapter are non-monotonic in the sense that increasing the fineness of the granularity
of the abstraction does not necessarily lead to an increase in the quality of the solution. This
was also observed in a recent paper [162]. One interesting line of research would be to
investigate the capability of designing a monotonic abstraction algorithm, one that would
guarantee that the quality of the resulting strategies improve as the abstraction becomes
larger. Alternatively, it may be possible that the complexity of such an algorithm is as
difficult as the equilibrium-finding problem itself.

Another related direction for future research concerns the development of abstraction
algorithms with ex ante guarantees which would take the form of a user specifying a op-
timality tolerance, and the abstraction algorithm would output an abstraction that yielded
strategies within that tolerance. Again, it may be the case that the complexity of such an
algorithm is as difficult as the equilibrium-finding problem itself.

90

Chapter 7

Stage and Action Abstraction

7.1 Introduction

In this chapter we examine two more families of abstraction: stage abstraction, discussed
in Section 7.2, and action abstraction, discussed in Sections 7.3 and 7.4.

7.2 Stage abstraction

Another type of abstraction that has been found to be useful is stage abstraction. This type
of abstraction is potentially useful when the game is so large that performing the necessary
amount of information abstraction to make equilibrium computation feasible would be so
severe that the resulting strategies would perform very poorly.

A straightforward method of stage abstraction simply solves two halves of the game
separately. The payoffs of the first half are computed assuming some “default” behavior
for the rest of the game. For example, in both Sparbot [14] and GS1 (Section 6.3), the
payoffs that are computed for the leaf nodes at the end of the truncated game (Phase 1)
are based on the betting history leading to that node and the expected value of winning that
hand assuming that no more betting takes place in later rounds (i.e. the payoffs are averaged
over the possible fourth-round cards drawn uniformly at random, and assuming that neither
player bets in the final round). The second half of the game is solved using beliefs about
imperfect information updated (according to Bayes’ rule) based on the strategies that are
computed for the first half. This simple method does not allow for the strategy analysis of
the first half of the game to take into consideration the strategic situations that exist in the

91

second half. This will clearly lead to sub-optimal strategies.

In this section, we present an improved technique for estimating the payoffs of the
truncated game by simulating the actions in the remaining portion of the game. This allows
the equilibrium-finding algorithm to take into account the entire game tree while having
to explicitly solve only a truncated version. This section covers the idea in the context of
Texas Hold’em.

Instead of ignoring the fourth-round betting, we in effect incorporate it into the trun-
cated game tree by simulating the betting actions for the fourth round (using reasonable
fixed randomized strategies for the fourth round), and then using these payoffs as the pay-
offs in the truncated game. This is intended to mitigate the negative effects of performing
an equilibrium analysis on a truncated game.

At the beginning of the fourth round, each player has two hole cards and there are five
community cards on the table. Letting (w, l, d) be the number of possible wins, losses,
and draws for a player in that situation, we compute the hand’s value using the formula
w − l + d/2. For hands in the fourth round, this gives a value in the interval [−990, 990].
Using the history from 343,513 games of Sparbot in self-play (of which 187,850 went to
the fourth round), we determined the probability of performing each possible action at each
player’s turn to act as a function of the hand value.1 To illustrate this, Figures 7.1–7.3 show
these smoothed probabilities for three particular points to act.

Of course, since these probabilities are only conditioned on the hand value (and ignore
the betting history in the first three rounds), they do not exactly capture the strategy used
by Sparbot in the fourth round. However, conditioning the probabilities on the betting
history as well would have required a vast number of additional trials, as well as much
more space to store the result. Conditioning the actions on hand value alone is a practical
way of striking that trade-off.

We presented experimental results for this technique in Table 6.1. The addition of this
technique led to a statistically significant improvement in our player.

1To mitigate the fact that 187,850 training examples do not densely cover all possible hand values, we
bucketed hand values by rounding them to the nearest multiple of 25, and then smoothed by replacing each
bucket’s value by the average of it and both of its neighbors.

92

Figure 7.1: First player’s empirical action probabilities (for checking and betting) as a
function of hand strength at the beginning of the fourth betting round.

Figure 7.2: Second player’s empirical action probabilities (for folding, calling, and raising)
as a function of hand strength for the fourth betting round after the first player has bet.

7.3 Action abstraction in limit poker

In action abstraction, different actions in the original game are treated as a single action
in the abstracted game. This type of abstraction is particularly useful in games where each

93

Figure 7.3: First player’s empirical action probabilities (for folding, calling, and raising)
as a function of hand strength for the fourth betting round after the first player has bet and
the second player has raised.

player has a large—or even infinite—number of actions at each information set. In the case
of limit poker, we evaluate an action abstraction technique that simply limits the number
of bets a player may make in a betting round (Section 7.3). In no-limit poker, the space of
betting actions is much richer, and a more sophisticated approach is needed. We describe a
betting model and associated reverse mapping in Section 7.4. We also describe Tartanian,
our game theory-based player for heads-up no-limit Texas Hold’em which uses this action
abstraction technique, in Section 7.4.3.

In this section, we examine the effects of a particular form of action-based abstraction.
In standard Rhode Island Hold’em, there is a limit of 3 bets in a single betting round. For a
given information abstraction granularity, we can obtain a much smaller, and hence much
easier to solve, equilibrium problem if we instead limit the agents to at most 1 or 2 bets in
each round.

In limit Texas Hold’em, there is a limit of 4 bets in a single betting round. In the
developement of prior game theory-based agents for Texas Hold’em, one common tech-
nique for decreasing the size of the game tree has been to consider only 3 bets instead of
4 [14, 59, 60]. The experiments in this section are designed to examine the effects of this
type of abstraction.

In our experiment for measuring the effects of limiting the number of bets in the

94

Payoff Against Equilibrium Payoff Against Nemesis
Granularity 1 Bet 2 Bets 3 Bets 1 Bet 2 Bets 3 Bets

13-25-125 -73.816 -44.154 -41.791 -359.566 -201.750 -204.022
13-50-250 -52.004 -22.162 -18.261 -365.047 -137.742 -125.972
13-75-500 -44.320 -15.324 -10.556 -310.879 -83.411 -68.238
13-100-750 -41.400 -9.396 -5.425 -312.997 -60.067 -45.124

13-125-1000 -39.532 -7.560 -3.239 -301.066 -44.699 -24.200
13-150-1250 -38.532 -5.806 -1.577 -298.511 -35.214 -12.067
13-205-1774 -37.311 -4.409 0.000 -293.850 -26.160 >-0.001

Table 7.1: Performance of potential-aware abstraction against an optimal strategy and
against each agent’s nemesis for varying numbers of bets. The first column gives the ab-
straction granularity used by the agent.

abstracted game, we computed equilibrium strategies for abstractions of Rhode Island
Hold’em poker. Each abstracted game used potential-aware abstraction for information-
based abstraction and the number of bets was limited to 1, 2, or 3. Table 7.1 displays the
results.

Unsurprisingly, having the actual number of bets (3) in the action model is almost al-
ways better than having a fewer number of bets (1 or 2). (The one exception discovered
in the experiments is the case where an agent has the extremely coarse-grained 13-25-125
abstraction and could have 2 versus 3 bets. This exception only holds under the method
of comparison based on performance against the nemesis.) What is interesting is that the
relative performance of the the agents with different numbers of bets becomes more impor-
tant as the information abstraction becomes finer-grained. This is true both for measuring
the payoff against an equilibrium strategy in the unabstracted game as well as for mea-
suring the payoff against the agent’s nemesis. This suggests that the action abstraction
becomes increasingly important (in relative terms) as the information abstraction becomes
finer grained.

Another point of interest is that there is a tradeoff between action abstraction and in-
formation abstraction. For example, given the choice between having an optimal (lossless)
information abstraction and an action abstraction model that contains an additional bet but a
worse information abstraction (13-25-125), it was almost always better to have the optimal
information abstraction, at least with respect to measuring performance against an agent
playing an equilibrium strategy. The one exception to this is the case in which an agent is

95

using an optimal information abstraction (13-205-1774) and 1 bet in the action model ver-
sus the case of the coarse 13-25-125 information abstraction and 2 bets in the action model.
When measuring performance using the payoff against a nemesis, it is better to have the
coarser-grained information abstraction but with 2 bets in the action model.

7.4 Action abstraction in no-limit poker

The most immediate difficulty encountered when moving from limit to no-limit Texas
Hold’em is in the development of a betting model. In limit Texas Hold’em, the players
only ever have at most three possible actions available to them (fold, call, or raise). This
small branching factor in the action sequences allows the model builder to include all pos-
sible actions in the model of the game used for the equilibrium analysis.2

In no-limit Texas Hold’em, on the other hand, the number of actions available to the
players can be huge. For example, when the small blind makes his first action, he can
fold, call, or raise to any (integral) amount between 4 and 1000, for a total of 999 possible
actions. (If the bets were not limited to be integral amounts then the branching factor would
actually be infinite.) Information sets (decision points) with high degree occur elsewhere in
the game tree as well. Even if bets are limited to integers, the size of the unabstracted game
tree of no-limit heads-up Texas Hold’em where each player has 1000 chips is approximately
1071 nodes, compared to “only” 1018 nodes in the limit variant.

In the remainder of this section, we discuss the design of our discretized betting model.
This consists of two pieces: the choice of which bet amounts we will allow in our model
(Section 7.4.1) and the mapping of actions in the real game back to actions in our abstracted
game (Section 7.4.2).

7.4.1 Betting model

Although there are potentially a huge number of actions available to a player at most points
of the game, in practice among human players, a few bets occur much more frequently than
others. These include bets equal to half of the size of the current pot, bets equal to the size
of the current pot, and all-in bets. We discuss each of these in turn.

2Of course an abstraction of the playing cards is still necessary in models of limit Texas Hold’em intended
for equilibrium analysis.

96

• Bets equal to half of the size of the current pot are good value bets3 as well as good
bluffs. When a player has a strong hand, by placing a half-pot bet he is giving the
opponent 3:1 pot odds.4 For example, if a half-pot bet is placed on the river, then
the opponent only needs to think that he has a 25% chance of winning in order for a
call to be “correct”. This makes it a good value bet for the opponent who has a good
hand.

Half-pot bets also make good bluffs: they only need to work one time in three in
order for it to be a profitable play. This bet size is advocated by many poker experts
as a good-size bet for bluffing [71].

• Bets equal to the size of the current pot are useful when a player believes that he is
currently “in the lead”, and does not wish to give the opponent a chance to draw out
to a better hand (via the additional cards dealt later on in the hand). By placing a pot
bet, the player is taking away the odds that the opponent would need to rationally
call the bet—with almost any drawing hand, that is, a hand that is not good currently,
but has the potential to improve with additional cards. (Half-pot bets are also good
for this purpose in some situations.) It is usually not necessary to bet more than this
amount.

Pot bets are particularly useful pre-flop when the big blind, who will be out of posi-

tion (i.e., acting first) in later betting rounds, wishes to make it more expensive for
the small blind to play a particular hand.

• In most situations it is a bad idea to go all-in because if the opponent makes the call,
he most likely has the better hand, and if he does not make the call, then nothing
(or very little) is gained. However, this is a commonly used move (particularly by
beginners). In some situations where the pot is large relative to the players’ remaining
chips, it makes more sense to employ the all-in move.

Another good reason for including the all-in bet in the model is that it provides a level
of robustness in the model. This aspect will be discussed further in Section 7.4.2.

There are also a few bets that are particularly poor or redundant actions, and therefore
we do not include them in our betting model in order to keep it relatively small, thus gaining

3A bet is considered a value bet if the player placing the bet has a strong hand and aims to bet in a way
that will entice the opponent into calling the bet. This increases the size of the pot, thus increasing the amount
that the player placing the bet will likely win.

4Pot odds is the ratio of the current size of the pot to the current amount that a player needs to call. They
are often used by human players as a guide for making decisions of whether to call or fold.

97

computational tractability.

• Making bets that are small relative to the pot are usually a bad idea. When facing
such a bet, the opponent has terrific pot odds to make a call. Since the opponent can
make the call with almost any hand, not much information about the opponent’s hand
is revealed. Also, since the bet is so small, it is not of much value to a player with a
strong hand.

• Once a player’s quantity of remaining chips is small relative to the pot, he is in a situ-
ation known as pot-committed. When facing a subsequent bet of any size, the player
will be facing great pot odds and will almost surely be compelled to call (because he
can call with whatever he has left, even if that amount is drastically smaller than the
pot). In this sense, a rational player who is pot-committed is basically in the same
situation as a player who went all-in already. Thus bets that lead to pot-committed
situations are, in a sense, nearly redundant. Therefore, in order to reduce the action
space for computational tractability, we advocate not allowing bets that put the player
in a pot-committed situation. Similarly, we advocate not allowing bets that put the
opponent in a pot-committed situation if he calls.

• In theory, the players could go back and forth several times within a betting round.
However, such a sequence rarely occurs in practice. The most common sequences
involve just one or two bets. In order to keep the betting model small, we advocate a
cap of three bets within a betting round.5

Taking all of the above considerations into account, we designed our betting model to
allow for the following actions:

1. The players always have the option of going all-in.

2. When no bets have been placed within a betting round, the actions available to the
acting player are check, bet half the pot, bet the pot, or go all-in.

3. After a bet has been placed within a betting round, the actions available to the acting
player are fold, call, bet the pot, or go all-in.

5After we developed our betting model, we observed that allowing an unlimited number of bets (in
conjunction with a minimum bet size of half the pot) only increases the size of the betting model by 15%.
Therefore, in future versions of our player, we plan to relax this constraint.

98

4. If at any point a bet of a certain size would commit more than half of a player’s stack,
that particular bet is removed from the betting model (except for all-in bets).

5. At most three bets (of any size) are allowed within any betting round.

The above model could most likely be improved further, particularly with the incorpo-
ration of a much larger body of domain knowledge. However, since our research agenda is
that of designing game-independent solving techniques, we avoid that approach where pos-
sible. We propose as future research a more systematic automated approach to designing
betting abstractions—and more generally, for discretizing action spaces in games.

7.4.2 Reverse mapping

Once the betting model has been specified and an equilibrium analysis has been performed
on the game model, there still remains the question of how actions in the real game are
mapped into actions in the abstracted game. For example, if the betting model contains
half-pot bets and pot bets, how do we handle the situation when the opponent makes a bet
of three-fourths of the pot? In this section we discuss several issues that arise in developing
this reverse mapping, and discuss the different design decisions we made for Tartanian.

One idea is to map actions to the nearest possible action in terms of amount contributed
to the pot. For example, if the betting model contains half-pot bets and pot bets, and the
opponent bets four-fifths of the pot, we can treat this (in our model) as a pot-size bet. (Ties
could be broken arbitrarily.) However, this mapping can be subject to exploitation. For
example, consider the actions available to the small blind player after the initial blinds have
been posted. At this point, the small blind has contributed one chip to the pot and the big
blind has contributed two chips. According to our betting model, the options available to
the small blind are to fold (adding zero chips), call (one chip), half-pot bet (three chips), pot
bet (five chips), or all-in (999 chips). Clearly, there is a huge gap between contributing five
chips and 999 chips. Suppose that the opponent in this situation actually contributes 500
chips. In absolute distance, this is closer to the pot bet than it is to the all-in bet. However,
the bet is so large relative to the pot that for all practical purposes it would be more suitably
treated as an all-in bet. If the opponent knows that we treat it as a five-chip bet, he can
exploit us by using the 500-chip bet because we would call that with hands that are too
weak.6

6The experimental results we present for Tartanian reflect the performance of a version of our player that
used this simplistic mapping rule. There we discuss situations in which this mapping led to weak play.

99

Another possible way of addressing the interpolation problem would be to use ran-
domization.7 Suppose an action is played where a player contributes c chips to the pot.
Suppose that the closest two actions in the betting model correspond to actions where the
player contributes d1 and d2 chips, with d1 < c < d2. We could then randomly select the
first action in the betting model with probability p = 1− c−d1

d2−d1
and select the second action

with probability 1 − p. This would help mitigate the above-mentioned example where a
500-chip bet is treated as a pot-size bet. However, this would still result in it being treated
as a pot-size bet about half of the time.

Instead of using the absolute distances between bets for determining which actions are
“closest”, we instead advocate using a relative distance. Again considering the situation
where the opponent contributes c chips and the two surrounding actions in the model con-
tribute d1 and d2 chips, with d1 < c < d2, we would then compare the quantities c

d1
and

d2

c
and choose the action corresponding to the smallest quantity. In the example where the

small blind contributes 500 chips in his first action, the two quantities would be 500
5

= 100

versus 999
500

= 1.998. Hence, according to this metric, our reverse mapping would choose
the all-in bet as desired.

7.4.3 Tartanian: Our first player for No-Limit Texas Hold’em

In Tartanian, we use the same automated abstraction algorithm as we used for GS3. The
number of buckets we allow for each level are the inputs to the algorithm. We used 10
buckets for the first round, 150 for the second round, 750 for the third round, and 3750 for
the fourth round. These numbers were chosen based on estimates of the size of problem
that our equilibrium-finding algorithm, described below, could solve to high accuracy in a
reasonable amount of time.

Once the discretized betting model and reverse mapping have been designed, and the
card abstraction has been computed, we are ready to perform the final step, equilibrium
computation. As we did with GS3, we use our implementation of Nesterov’s excessive

gap technique algorithm [117], which was recently specialized for two-person zero-sum
sequential games of imperfect information [74, 56].

The most performance-critical operation in executing the excessive gap technique al-
gorithm is the matrix-vector product operation. Thus, having custom software developed
specifically for this purpose is important for the overall performance of the algorithm. We
developed a tool for automatically generating the C++ source code for computing the re-

7A similar randomization technique has been proposed previously for mitigating this problem [3].

100

quired matrix-vector product based on an XML description of the game.

As mentioned above, the most intensive portion of the EGT algorithm is in computing
matrix-vector products xTA and Ay. For small games, or games where the structure of the
strategy space is quite simple, the source code for computing this product could be written
by hand. For larger, more complicated games, the necessary algorithms for computing the
matrix-vector product would in turn be more complicated. Developing this code by hand
would be a tedious, difficult task—and it would have to be carried out anew for each game
and for each betting discretization.

We can see two alternatives for handling this problem. The first, and most obvious,
is to have a tree-like representation of the betting model built in memory. This tree could
be built from a description of the game. Then, when the matrix-vector product operation
is needed, a general algorithm could traverse this tree structure, performing the necessary
computations. However, the performance of this algorithm would suffer some since there
is the overhead of traversing the tree.

A second approach, which offers better performance, is to generate the C++ source code
automatically for the game at hand. This eliminates the need for a tree-like representation
of the betting model. Instead, for each node of the tree we simply have one line of source
code which performs the necessary operation.

For this approach to work, we need some way of specifying a betting model. We ac-
complish this with our Betting Model Language (BML), an XML-based description of all
possible betting models for no-limit Texas Hold’em. Listing 7.1 contains a snippet of the
BML file used by our player.

The BML file consists of a <round> section for each betting round (only parts of the
first betting round are shown in Listing 7.1). Within each <round>, there are <decision>
entries and <leaf> entries. The <decision> entries specify the actions available to
each player at any stage of the game, as well as specifying certain indices (given via the
number key) which are used by the equilibrium-finding algorithm for accessing appropri-
ate entries in the strategy vectors.

The <leaf> entries encode the payoffs that occur at terminal sequences of the game.
When a <leaf> has type equal to ’fold’, then it contains a payoff value which
specifies the payoff to player 1 in that case. Similarly, when a <leaf> has type equal
to ’showdown’, then it contains a potshare value which specifies the amount of chips
that each player has contributed to the pot so far. (Of course, the actual payoffs in show-

101

� �
<bml name=’CustomBetting’>

<round number=’1’>
<decisions>

<decision player=’2’ sequence=’’ parent=’-1’>
<action name=’F’ number=’0’ />
<action name=’C’ number=’1’ />
<action name=’R1’ number=’2’ />
<action name=’A’ number=’3’ />

</decision>
<decision player=’1’ sequence=’C’ parent=’-1’>

<action name=’k’ number=’0’ />
<action name=’r1’ number=’1’ />
<action name=’a’ number=’2’ />

</decision>
<decision player=’2’ sequence=’Ca’ parent=’1’>

<action name=’F’ number=’19’ />
<action name=’C’ number=’20’ />

</decision>
<decision player=’1’ sequence=’A’ parent=’-1’>

<action name=’f’ number=’32’ />
<action name=’c’ number=’33’ />

</decision>
<!-- other decisions omitted... -->

</decisions>
<leaves>

<leaf seq1=’2’ seq2=’19’ type=’fold’
sequence=’CaF’ payoff=’2.0’ />

<leaf seq1=’2’ seq2=’20’ type=’showdown’
sequence=’CaC’ potshare=’1000.0’ />

<leaf seq1=’32’ seq2=’3’ type=’fold’
sequence=’Af’ payoff=’-2.0’ />

<leaf seq1=’33’ seq2=’3’ type=’showdown’
sequence=’Ac’ potshare=’1000.0’ />

<!-- other leaves omitted... -->
</leaves>

</round>
<!-- other rounds omitted... -->

</bml>� �
Listing 7.1: A snippet of the BML for our first-round betting model. The r1 action
indicates a pot-size bet.

down leaves also depend on the players’ cards.)

Listing 7.2 contains a snippet of C++ code produced by our software for translating
BML into C++. As can be seen, the code is very efficient as each leaf of the game tree is
processed with only a few instructions in one line of code each.

102

� �
void TexasMatrixNoLimit::multvec_helper_round1_fold

(Vec& x, Vec& b, unsigned int i,
unsigned int j, double prob) {

b[i + 2] += x[j + 19] * prob * 2.0; // CaF
b[i + 32] += x[j + 3] * prob * -2.0; // Af
/* other payoffs omitted... */

}

void TexasMatrixNoLimit::multvec_helper_round1_showdown
(Vec& x, Vec& b, unsigned int i, unsigned int j,
double prob, double win) {
b[i + 2] += x[j + 20] * win * prob * 1000.0; // CaC
b[i + 33] += x[j + 3] * win * prob * 1000.0; // Ac
/* other payoffs omitted... */

}� �
Listing 7.2: A snippet of the automatically-generated C++ code for computing the matrix-
vector product.

Tartanian participated in the no-limit category of the 2007 AAAI Computer Poker
Competition. Each of the 10 entries played head-to-head matches against the other 9 play-
ers in Doyle’s no-limit Texas Hold’em poker. Each pair of competitors faced off in 20
duplicate matches of 1000 hands each. A duplicate match is one in which every hand
is played twice with the same cards, but the players are switched. (Of course, the play-
ers’ memories are reset so that they do not remember the hands the second time they are
played.) This is to mitigate the element of luck inherent in poker since if one player gets a
particularly lucky hand, then that will be offset by giving the other player that same good
hand.

Table 7.2 summarizes the results.8 Tartanian placed second out of the ten entries. The
ranking system used in this competition was instant runoff bankroll. In that system, the
total number of chips won or lost by each program is compared to all of the others. The
entrant that loses the most is eliminated and finishes in last place; this ranking process
iterates until there is a single winner.

Once the ranking process had only three remaining entries (Tartanian, BluffBot, and
Hyperborean), 280 more duplicates matches were held in order to obtain statistical sig-
nificance. Based on this total of 300 duplicate matches, Tartanian beat Hyperborean by
0.133± 0.039 small bets, but lost to BluffBot by 0.267± 0.032.

8The full competition results are available on the web at http://www.cs.ualberta.ca/

˜pokert/.

103

http://www.cs.ualberta.ca/~pokert/
http://www.cs.ualberta.ca/~pokert/

Amount won by Tartanian
Opponent per hand ± std. dev.

BluffBot20NoLimit1 -0.166 ± 0.074
Hyperborean07NoLimit1 -0.079 ± 0.148

SlideRuleNoLimit1 0.503 ± 0.148
GomelNoLimit1 3.161 ± 0.597
GomelNoLimit2 0.124 ± 0.467
MilanoNoLimit1 1.875 ± 0.377

ManitobaNoLimit1 4.204 ± 0.323
PokeMinnNoLimit1 -42.055 ± 0.606
ManitobaNoLimit2 5.016 ± 0.192

Average -3.046 ± 0.170

Table 7.2: Amount won by Tartanian against each of the competitors in the 2007 AAAI
No-Limit Computer Poker Competition, along with standard deviations.

An interesting phenomenon was that Tartanian’s performance against PokeMinn was
significantly worse than against any other opponent—despite the fact that PokeMinn fared
poorly in the competition overall. We manually investigated the hand histories of this
match-up and observed that PokeMinn had a tendency to place bets that were particularly
ill-suited to our discretized betting model. For example, a common bet made by PokeMinn

was putting in 144 chips pre-flop. As mentioned in Footnote 6, the version of our player in
the competition was using the simplistic absolute rounding mapping and so it would treat
this as a pot-size bet. However, it actually makes much more sense to treat this as an all-in
bet since it is so large relative to the size of the pot. We expect that our improved rounding
method based on relative distances, described in Section 7.4.2, will appropriately handle
this.

7.4.4 Tartanian2: Better action abstraction

Our entry in the 2008 AAAI Computer Poker Competition, Tartanian2, differed from Tar-

tanian in three ways. The first was that we used a finer-grained abstraction. The second
was that we were able to run our equilibrium-finding algorithm longer and thus obtained
an ε-equilibrium with a smaller ε. The third was that we used a slightly different action
abstraction scheme. In particular, we modeled the following actions in the game.

104

1. The players always have the option of going all-in.

2. When no bets have been placed within a betting round, the actions available to the
acting player are check, bet half the pot, bet the pot, or go all-in.

3. After a bet has been placed within a betting round, the actions available to the acting
player are fold, call, raise two-thirds the value of the pot, or go all-in.

4. If at any point a bet of a certain size would commit more than half of a player’s stack,
that particular bet is removed from the betting model.

5. Any number of bets are allowed within any betting round.

The performance of Tartanian2 in the competition is summarized in Table 7.3. Overall,
Tartanian2 won the largest number of chips, although in head-to-head competition it only
defeated one of the other three opponents.

Amount won by Tartanian2
Opponent per hand ± std. dev.

BluffBot 3.0 -0.611 ± 0.091
Hyperborean08 -0.625 ± 0.091

Ballarat 5.371 ± 0.223

Overall 1.378 ± 0.091

Table 7.3: Amount won by Tartanian2 against each of the competitors in the 2008 AAAI
No-Limit Computer Poker Competition, along with standard deviations.

7.5 Conclusions and future research

We presented Tartanian, a game theory-based player for heads-up no-limit Texas Hold’em
poker. To handle the huge strategy space of no-limit poker, we created a discretized betting
model that attempts to retain the most important actions in the game. This also raised the
need for a reverse model. Second, as in some prior approaches to game theory-based poker
players, we employed automated abstraction for shrinking the size of the game tree based
on identifying strategically similar card situations. Third, we presented a new technique
for automatically generating the performance-critical portion of equilibrium-finding code

105

based on data describing the abstracted game. The resulting player is competitive with the
best existing computer opponents.

Throughout, we made many design decisions. In this research so far, we have made
educated guesses about what good answers are to the many questions. In particular, the de-
sign of the discretized betting model (and reverse model) and the choice of the number of
buckets for each level of the card abstraction were largely based on our own understanding
of the problem. In the future, we would like to automate this decision-making process (and
hopefully get better answers). Some concrete paths along these lines would be the develop-
ment of an automated discretization algorithm for the betting model. This could attempt to
incorporate a metric for the amount that is lost by eliminating certain strategies, and use this
to guide its decisions as to what strategies are eliminated from the model. Another research
direction involves developing a better understanding of the tradeoffs between abstraction
size and solution quality. We would also like to understand in a more principled way how
to set the number of buckets for the different levels of the abstracted card tree.

106

Part III

Equilibrium-Finding Algorithms

107

Chapter 8

Gradient-Based Algorithms for Solving
Zero-Sum Games

8.1 Introduction

In this chapter, we present a new gradient-based algorithm for finding an ε-equilibrium in
two-person zero-sum games. It applies to matrix games as well as sequential games of
imperfect information. The Nash equilibrium problem for a two-person zero-sum game
can be formulated as a saddle-point problem, which can in turn be cast as a linear program
(LP). However, for many interesting instances of games, such as those that arise in real
poker, these LPs are enormous and unsolvable via standard algorithms such as the simplex
or interior-point methods.

To address this computional challenge, some alternative algorithms have been devel-
oped and have been shown to be effective in finding ε-equilibria, where neither player
can benefit more than ε by deviating. These include an algorithm based on regret mini-
mization [166] (which has iteration-complexityO (1/ε2)) and iterative bundle-based meth-
ods [165, 106].

In this chapter we present algorithms based on Nesterov’s [117, 118] first-order smooth-
ing techniques. The main strengths are their simplicity and low computational cost of each
iteration. Our first algorithm, based on Nesterov’s excessive gap technique [117], finds
an ε-equilibrium within O(1/ε) iterations. In contrast, interior-point methods find an ε-
equilibrium within O(ln(1/ε)) iterations [163], but do not scale to large games due to
memory requirements. With this observation in mind we also present an iterated version
of Nesterov’s smoothing technique for nonsmooth convex optimization [118] that runs in

109

O(κ(A) ln(1/ε)) iterations. In terms of ε, the iteration complexity is thus the same as that
of interior-point methods and exponentially better than that of prior first-order methods.
The complexity also depends on a certain condition measure, κ(A), of the payoff matrix A.
Unlike interior-point methods, we inherit the manageable memory usage of prior first-order
methods. So, our algorithm scales to large games and small ε.

8.2 First-order methods

Assume Q ⊆ Rn is a compact convex set and f : Q → R is convex. Consider the convex
optimization problem

min{f(x) : x ∈ Q}. (8.1)

This chapter is concerned with first-order methods for solving a particular form of prob-
lem (8.1). The defining feature of these methods is that the search direction at each main
iteration is obtained using only first-order information, such as the gradient or subgradient
of the function f . This feature makes their computational overhead per iteration extremely
low, and hence makes them attractive for large-scale problems.

The complexity of first-order methods for finding an approximate solution to (8.1) de-
pends on the properties of f and Q. For the setting where f is differentiable and ∇f , the
gradient of f , is Lipschitz1 and continuous, Nesterov [115] proposed a gradient-based al-
gorithm with convergence rate O(1/

√
ε). In other words, within O(1/

√
ε) iterations, the

algorithm outputs a value x ∈ Q such that f(x) ≤ f(x′) + ε for all x′ ∈ Q, including
the optimal one. We refer to this algorithm as Nesterov’s optimal gradient algorithm since
it can be shown that for that smooth class of problems, no gradient-based algorithm has
asymptotically faster convergence. A variant by Lan, Liu, and Monteiro [94] also features
O(1/

√
ε) convergence and outperformed Nesterov’s original algorithm in experiments.

For the setting where f is non-differentiable, subgradient algorithms are often used.
They have complexity Θ(1/ε2) [68]. However, this pessimistic result is based on treating
f as a black box, whose value and subgradient are available through an oracle. For a
function f with a suitable structure, Nesterov [117, 118] devised a first-order method with
convergence rate O(1/ε).2 The method is based on a smoothing technique. The idea is

1Recall that a function f is Lipschitz with constant L if |f(x)− f(y)| ≤ L‖x− y‖ for all x and y in the
domain of f .

2First-order algorithms have also proven to be effective for finding approximate solutions to large-scale
LPs [11] and to large-scale nonlinear convex programs [150]. These approaches use O(1/ε2) iterations on
non-smooth problems. (For a special class of continuously differentiable minimization problems (which is

110

that the structure of f can be used to construct a smooth function with Lipschitz gradient
that resembles f . Then, a gradient algorithm (for example, Nesterov’s optimal gradient
algorithm) applied to the smooth function yields an approximate minimizer for f .

8.3 Excessive gap technique

One particular smoothing technique which we adapt in this section is Nesterov’s excessive

gap technique (EGT) [117]. It is a primal-dual gradient algorithm where the primal and
dual functions, f and φ, are smoothed by adding a strongly convex and concave term to
the minimization and maximization expressions that define them. Furthermore, across it-
erations of the algorithm, the amount of smoothing is reduced so that the smoothed primal
and dual functions approach the original ones.

We now describe EGT in detail, specialized to extensive form games. For i ∈ {1, 2},
assume that Si is the set of sequences of moves of player i and Qi ⊆ RSi is the set of

realization plans of player i [160]. Further, assume that di is a strongly convex function on
Qi, that is, there exists σi > 0 such that

di(α~z + (1− α)~w) ≤ αdi(~z) + (1− α)di(~w)− 1

2
σiα(1− α)‖~z − ~w‖2 (8.2)

for all α ∈ [0, 1] and ~z, ~w ∈ Qi. The largest σi satisfying (8.2) is the strong convexity

parameter of di. Without loss of generality, assume that min~z∈Qi di(~z) = 0.

We use the prox functions d1 and d2 to smooth the non-smooth primal and dual func-
tions, f and φ, as follows. For µ1, µ2 > 0 consider

fµ2(~x) := max
~y∈Q2

{〈A~y, ~x〉+ µ2d2(~y)}

and
φµ1(~y) := min

~x∈Q1

{〈A~y, ~x〉 − µ1d1(~x)} .

Because d1 and d2 are strongly convex, it follows [117] that fµ2 and φµ1 are smooth. Weak
duality implies f(~x) ≤ φ(~y) for all ~x ∈ Q1, ~y ∈ Q2. Consider the following related
excessive gap condition:

fµ2(~x) ≥ φµ1(~y). (8.3)

very different from our non-differentiable setting) the first-order algorithm presented by Smola et al. [150]
runs in O(ln(1/ε)) iterations.)

111

Let Di := max~z∈Qi di(~z). If µ1, µ2 > 0, ~x ∈ Q1, ~y ∈ Q2 and (µ1, µ2, ~x, ~y) satisfies (8.3),
then Lemma 3.1 of [117] guarantees

0 ≤ φµ1(~y)− fµ2(~x) ≤ µ1D1 + µ2D2. (8.4)

This suggests the following strategy to find an approximate solution to (10.1): generate a
sequence (µk1, µ

k
2, ~x

k, ~yk), k = 0, 1, . . ., with µk1 and µk2 decreasing to zero as k increases,
while maintaining the loop invariants that ~xk ∈ Q1, ~yk ∈ Q2, and (µk1, µ

k
2, ~x

k, ~yk) satisfies
(8.3). As µk1 and µk2 approach zero, the quantity µ1D1 + µ2D2 approaches zero, and thus
the strategies ~xk and ~yk approach a solution to (10.1).

The building blocks of our algorithms are the mapping sargmax and the procedures
initial and shrink, which we will now define. Let d be a strongly convex function with
a convex and compact domain Q ⊆ Rn. We define sargmax(d, ·) : Rn → Q as

sargmax(d,~g) := argmax
~x∈Q

{〈~g, ~x〉 − d(~x)}. (8.5)

By Lemma 5.1 of [118], the following procedure initial finds a starting point (µ0
1, µ

0
2, ~x

0, ~y0)

that satisfies the excessive gap condition (8.3). The notation ‖A‖ indicates an appropriate
operator norm (see [118] and Examples 1 and 2 for details).

Algorithm 5 initial(A, d1, d2)

1. µ0
1 := µ0

2 := ‖A‖√
σ1σ2

2. ~̂y := sargmax
(
d2,~0

)

3. ~x0 := sargmax
(
d1,

1
µ0

1
A~̂y
)

4. ~y0 := sargmax
(
d2,∇d2

(
~̂x
)

+ 1
µ0

2
AT~x0

)

5. Return (µ0
1, µ

0
2, ~x

0, ~y0)

The following procedure shrink enables us to reduce µ1 and µ2 while maintaining
(8.3).

Algorithm 6 shrink(A, µ1, µ2, τ, ~x, ~y, d1, d2)

1. ~̆y := sargmax
(
d2,− 1

µ2
AT~x

)

112

2. ~̂y := (1− τ)~y + τ ~̆y

3. ~̂x := sargmax
(
d1,

1
µ1
A~̂y
)

4. ~̃y := sargmax
(
d2,∇d2

(
~̆y
)

+ τ
(1−τ)µ2

AT~̂x
)

5. ~x+ := (1− τ)~x+ τ~̂x

6. ~y+ := (1− τ)~y + τ ~̃y

7. µ+
2 := (1− τ)µ2

8. Return (µ+
2 , ~x

+, ~y+)

By Theorem 4.1 of [117], if the input (µ1, µ2, ~x, ~y) to shrink satisfies (8.3) then so does
(µ1, µ

+
2 , ~x

+, ~y+) as long as τ satisfies τ 2/(1 − τ) ≤ µ1µ2σ1σ2/‖A‖2. Consequently, the
iterates generated by procedure EGT below satisfy (8.3). In particular, after N iterations,
Algorithm EGT yields points ~xN ∈ Q1 and ~yN ∈ Q2 with

0 ≤ max
~x∈Q1

〈A~yN , ~x〉 − min
~y∈Q2

〈A~y, ~xN〉 ≤ 4 ‖A‖
N

√
D1D2

σ1σ2

. (8.6)

Algorithm 7 EGT(A, d1, d2)

1. (µ0
1, µ

0
2, ~x

0, ~y0) = initial(A, d1, d2)

2. For k = 0, 1, . . .:

(a) τ := 2
k+3

(b) If k is even: // shrink µ2

i. (µk+1
2 , ~xk+1, ~yk+1) := shrink(A, µk1, µ

k
2, τ, ~x

k, ~yk, d1, d2)

ii. µk+1
1 := µk1

(c) If k is odd: // shrink µ1

i. (µk+1
1 , ~yk+1, ~xk+1) := shrink(AT,−µk2,−µk1, τ, ~yk, ~xk, d2, d1)

ii. µk+1
2 := µk2

Notice that Algorithm EGT is a conceptual algorithm that finds an ε-solution to (10.1).
It is only conceptual because it requires computing the mappings sargmax(di, ·) (several
times at each iteration), and there is no algorithm for solving them for arbitrary prox func-
tions di. Consequently, the choice of d1 and d2 is critical for implementing Algorithm EGT.
This will be discussed in the next subsection.

113

8.3.1 Nice prox functions

Assume Q is a convex and compact set. We say that a function d : Q → R is a nice prox

function for Q if it satisfies the following three conditions:

1. d is strongly convex and continuous everywhere in Q and is differentiable in the
relative interior of Q;

2. min{d(~z) : ~z ∈ Q} = 0;

3. The mapping sargmax(d, ·) : Rn → Q is easily computable. For example, it has a
closed-form expression.

As a building block for prox functions for the space we are interested in, we first review
two examples of nice prox functions for the simplex

∆n := {~x ∈ Rn : ~x ≥ 0,
n∑

i=1

xi = 1}.

Example 8.3.1 Consider the entropy function d(~x) = lnn +
∑n

i=1 xi lnxi. The function

d is strongly convex and continuous in ∆n and min~x∈∆n d(~x) = 0. It is also differentiable

in the relative interior of ∆n. It has strong convexity parameter σ = 1 for the L1-norm in

Rn, namely, ‖~x‖ =
∑n

i=1 |xi|. The corresponding operator norm, ‖A‖, for this setting is

simply the largest absolute value of any entry in A. Finally, the mapping sargmax(d,~g)

has the easily computable expression

sargmax(d,~g)j =
egj
n∑
i=1

egi
.

Example 8.3.2 Consider the (squared) Euclidean distance to the center of ∆n, that is,

d(~x) = 1
2

∑n
i=1

(
xi − 1

n

)2. This function is strongly convex, continuous and differentiable

in ∆n, and min~x∈∆n d(~x) = 0. It has strong convexity parameter σ = 1 for the Euclidean

(L2) norm, namely, ‖~x‖ = (
∑n

i=1 |xi|2)
1/2. The corresponding operator norm, ‖A‖, for

this setting is the spectral norm of A, that is, the largest singular value of A. Although the

mapping sargmax(d,~g) does not have a closed-form expression, it can easily be computed

in O(n log n) steps [31].

In order to apply Algorithm EGT to problem (10.1) for sequential games we need nice
prox functions for the realization setsQ1 andQ2 (which are more complex than the simplex
discussed above in Examples 1 and 2). This problem was recently solved by Hoda, Gilpin,
and Peña [74]:

114

Theorem 4 Any nice prox function ψ for the simplex induces a nice prox function for a

set of realization plans Q. The mapping sargmax(d, ·) can be computed by repeatedly

applying sargmax(ψ, ·).

8.3.2 Experimental setup

In the experiments of this paper we benchmark on five poker games ranging from relatively
small to very large. We chose these problems because we wanted to evaluate the algo-
rithms on real-world instances, rather than on randomly generated games (which may not
reflect any realistic setting). Table 8.1 provides the sizes of the test instances. The first three
instances, 10k, 160k, and RI, are abstractions of Rhode Island Hold’em poker [146] com-
puted using the GameShrink automated abstraction algorithm [61]. The first two instances
are lossy (non-equilibrium preserving) abstractions, while the RI instance is a lossless ab-
straction. The Texas and GS4 instances are lossy abstractions of Texas Hold’em poker.

Name Rows Columns Non-Zero Entries
10k 14,590 14,590 536,502

160k 226,074 226,074 9,238,993

RI 1,237,238 1,237,238 50,428,638

Texas 18,536,842 18,536,852 61,498,656,400

GS4 299,477,082 299,477,102 4,105,365,178,571

Table 8.1: Problem sizes (when formulated as a linear program) for the instances used in
our experiments.

Due to the enormous size of the GS4 instance, we do not include it in the experiments
that compare better and worse techniques within our algorithm. Instead, we use the four
smaller instances to find a good configuration of the algorithm, and we use that configura-
tion to tackle the GS4 instance. We then report on how well those resulting strategies did
in the AAAI-08 Computer Poker Competition.

8.3.3 Experimental comparison of prox functions

Our first experiment compared the relative performance of the prox functions induced by
the entropy and Euclidean prox functions described in Examples 1 and 2 above. Figure 8.1
shows the results. (Heuristics 1 and 2, described later, and the memory saving technique

115

described later, were enabled in this experiment.) In all of the figures, the units of the
vertical axis are the number of chips in the corresponding poker games.

10-2
10-1
100
101
102
103

0 1 2 3 4 5 6
Time (hours)

10k

Entropy
Euclidean

100

101

102

103

0 2 4 6 8 10 12
Time (hours)

160k

Entropy
Euclidean

101

102

103

104

0 2 4 6 8 10 12
Time (hours)

RI

Entropy
Euclidean

101

102

0 12 24 36 48 60 72
Time (hours)

Texas

Entropy
Euclidean

Figure 8.1: Comparison of the entropy and Euclidean prox functions. The value axis is the
gap ε.

The entropy prox function outperformed the Euclidean prox function on all four in-
stances. Therefore, in the remaining experiments we exclusively use the entropy prox
function.

8.3.4 Heuristics for improving speed of convergence

Algorithm EGT has worst-case iteration-complexityO(1/ε) and already scales to problems
much larger than is possible to solve using state-of-the-art linear programming solvers (as
we demonstrate in the experiments later in this paper). In this section we introduce two
heuristics for further improving the speed of the algorithm, while retaining the guaranteed
worst-case iteration-complexityO(1/ε). The heuristics attempt to decrease µ1 and µ2 faster
than prescribed by the basic algorithm, while maintaining the excessive gap condition (8.3).
This leads to overall faster convergence in practice, as our experiments will show.

116

Heuristic 1: Aggressive µ reduction

The first heuristic is based on the following observation: although the value τ = 2/(k + 3)

computed in step 2(a) of Algorithm EGT guarantees the excessive gap condition (8.3),
this is potentially an overly conservative value. Instead we can use an adaptive procedure
to choose a larger value of τ . Since we now can no longer guarantee the excessive gap
condition (8.3) a priori, we are required to do a posterior verification which occasionally
necessitates an adjustment in the parameter τ . In order to check (8.3), we need to compute
the values of fµ2 and φµ1 . To that end, consider the following mapping smax, a variation
of sargmax. Assume d is a prox function with domain Q ⊆ Rn. We define smax(d, ·) :

Rn → R as
smax(d,~g) := max

~x∈Q
{〈~g, ~x〉 − d(~x)}. (8.7)

It is immediate that smax(d, ·) is easily computable provided sargmax(d, ·) is. Notice that

φµ1(~y) = µ1 smax(d1,
1

µ1

A~y)

and
fµ2(~x) = −µ2 smax(d2,−

1

µ2

AT~x).

To incorporate Heuristic 1 in Algorithm EGT we extend the procedure shrink as follows.

Algorithm 8 decrease(A, µ1, µ2, τ, ~x, ~y, d1, d2)

1. (µ+
2 , ~x

+, ~y+) := shrink(A, µ1, µ2, τ, ~x, ~y, d1, d2)

2. While µ1 smax(d1,
1
µ1
A~y+) > −µ2 smax(d2,

−1
µ+

2

AT~x+) // τ is too big

(a) τ := τ/2

(b) (µ+
2 , ~x

+, ~y+) := shrink(A, µ1, µ2, τ, ~x, ~y, d1, d2)

3. Return (µ+
2 , ~x

+, ~y+, τ)

By Theorem 4.1 of [117], when the input (µ1, µ2, ~x, ~y) to decrease satisfies (8.3), the
procedure decrease will halt.

Figure 8.2 demonstrates the impact of applying Heuristic 1. (For this experiment,
Heuristic 2, described later, was not used. The memory saving technique, also described
later, was used.) On all four instances, Heuristic 1 reduced the gap significantly. On the
larger instances, this reduction was an order of magnitude.

117

10-2
10-1
100
101
102
103

0 1 2 3 4 5 6
Time (hours)

10k

No Heuristics
Heuristic 1

100

101

102

103

0 2 4 6 8 10 12
Time (hours)

160k

No Heuristics
Heuristic 1

101

102

103

104

0 2 4 6 8 10 12
Time (hours)

RI

No Heuristics
Heuristic 1

101

102

103

0 12 24 36 48 60 72
Time (hours)

Texas

No Heuristics
Heuristic 1

Figure 8.2: Experimental evaluation of Heuristic 1. The value axis is the gap ε.

Heuristic 2: Balancing and reduction of µ1 and µ2

Our second heuristic is motivated by the observation that after several calls to the decrease
procedure, one of µ1 and µ2 may be much smaller than the other. This imbalance is unde-
sirable because the larger one contributes the most to the worst-case bound given by (8.4).
Hence after a certain number of iterations we perform a balancing step to bring these values
closer together. The balancing consists of repeatedly shrinking the larger one of µ1 and µ2.

We also observed that after such balancing, the values of µ1 and µ2 can sometimes be
further reduced without violating the excessive gap condition (8.3). We thus include a final
reduction step in the balancing heuristic.

This balancing and reduction heuristic is incorporated via the following procedure. (We
chose the parameter values (0.9 and 1.5) based on some initial experimentation.)

Algorithm 9 balance(A, µ1, µ2, τ, ~x, ~y, d1, d2)

1. While µ2 > 1.5µ1 // shrink µ2

(µ2, ~x, ~y, τ) := decrease(A, µ1, µ2, τ, ~x, ~y, d1, d2)

2. While µ1 > 1.5µ2 // shrink µ1

118

(µ1, ~y, ~x, τ) := decrease(AT,−µ2,−µ1, τ, ~y, ~x, d2, d1)

3. While 0.9µ1 smax(d1,
1

0.9µ1
A~y) ≤ −0.9µ2 smax(d2,

−1
0.9µ2

AT~x)

// decrease µ1 and µ2 if possible

(a) µ1 := 0.9µ1

(b) µ2 := 0.9µ2

4. Return (µ1, µ2, ~x, ~y, τ)

We are now ready to describe the variant of EGT with Heuristics 1 and 2.

Algorithm 10 EGT-2

1. (µ0
1, µ

0
2, ~x

0, ~y0) = initial(A, d1, d2)

2. τ := 0.5

3. For k = 0, 1, . . .:

(a) If k is even: // Shrink µ2

i. (µk+1
2 , ~xk+1, ~yk+1, τ) := decrease(A, µk1, µ

k
2, τ, ~x

k, ~yk, d1, d2)

ii. µk+1
1 = µk1

(b) If k is odd: // Shrink µ1

i. (µk+1
1 , ~yk+1, ~xk+1, τ) := decrease(−AT, µk2, µ

k
1, τ, ~y

k, ~xk, d2, d1)

ii. µk+1
2 = µk2

(c) If k mod 100 = 0 // balance and reduce

(µk1, µ
k
2, ~x

k, ~yk, τ) := balance(A, µk1, µ
k
2, τ, ~x

k, ~yk, d1, d2)

Because Heuristic 2 is somewhat expensive to apply, we experimented with how of-
ten the algorithm should run it. (We did this by varying the constant in line 3(c) of Al-
gorithm EGT-2. In this experiment, Heuristic 1 was turned off, but the memory-saving
technique, described later, was used.) Figure 8.3 shows that it is always effective to use
Heuristic 2 at least some, although the optimal frequency at which Heuristic 2 should be
applied varies depending on the instance.

119

10-1

100

101

102

103

0 1 2 3 4 5 6
Time (hours)

10k

No Heuristics
10 Iterations

100 Iterations

100

101

102

103

104

0 2 4 6 8 10 12
Time (hours)

160k

No Heuristics
10 Iterations

100 Iterations

101

102

103

104

0 2 4 6 8 10 12
Time (hours)

RI

No Heuristics
10 Iterations

100 Iterations

 60
 70
 80
 90

 100
 110
 120

0 12 24 36 48 60 72
Time (hours)

Texas

No Heuristics
2 Iterations

10 Iterations

Figure 8.3: Heuristic 2 applied at different intervals. The value axis is the gap ε.

Theoretical complexity of excessive gap technique with heuristics (EGT-2)

We next show that Algorithm EGT-2 has the same overall speed of convergenceO(1/ε) of
Algorithm EGT. The main ingredient in the proof is the following estimate of the reduction
of µ1 or µ2 each time decrease is called.

Proposition 5 Each call to decrease in Algorithm EGT-2 reduces µi to µ+
i = (1− τ)µi,

for i ∈ {1, 2} and τ ∈ (0, 1), so that

1

µ+
i

≥ 1

µi
+

√
σ1σ2

4
√

2‖A‖
. (8.8)

PROOF. By symmetry it suffices to prove (8.8) for i = 1. Since µ+
i = (1− τ)µi, inequality

(8.8) is equivalent to
τ

1− τ ≥
√
σ1σ2

4
√

2‖A‖
µ1. (8.9)

From the construction of decrease and Theorem 4.1 of [117] it follows that τ ≥ τmax

2

where τmax ∈ (0, 1) satisfies
τ 2

max

1− τmax

=
µ1µ2σ1σ2

‖A‖2
. (8.10)

120

Notice that µ1µ2σ1σ2

‖A‖2 ≤ 1 because both µ1 and µ2 decrease monotonically and initially they
are both equal to ‖A‖√

σ1σ2
. Hence from (8.10) it follows that τmax ∈ (0, 2/3). Therefore, since

τ ≥ τmax

2
, to show (8.9) it suffices to show

τmax

1− τmax

≥
√
σ1σ2√
2‖A‖

µ1. (8.11)

By step 3(c) in Algorithm EGT-2, the values µ1 and µ2 satisfy

µ1

2
≤ µ2 ≤ 2µ1. (8.12)

From (8.10) and (8.12) we obtain

µ2
1σ1σ2

2‖A‖2
≤ τ 2

max

1− τmax

≤
(

τmax

1− τmax

)2

, (8.13)

and (8.11) follows. �

We now obtain a complexity bound for Algorithm EGT-2 analogous to the bound (8.6)
for Algorithm EGT.

Theorem 6 After N calls to decrease , Algorithm EGT-2 returns a pair ~xN ∈ Q1, ~y
N ∈

Q2 satisfying

0 ≤ max
~x∈Q1

〈A~yN , ~x〉 − min
~y∈Q2

〈A~y, ~xN〉 ≤ 12
√

2‖A‖
N

(D1 +D2)√
σ1σ2

. (8.14)

PROOF. From Proposition 5, it follows that after N calls to decrease , the iterates ~xN ∈
Q1, ~y

N ∈ Q2 satisfy the excessive gap condition for µN1 , µ
N
2 with

1

µN1
+

1

µN2
≥ 1

µ0
1

+
1

µ0
2

+

√
σ1σ2N

4
√

2‖A‖
>

√
σ1σ2N

4
√

2‖A‖
. (8.15)

From (8.12) and (8.15) we get

2 + 1

µNi
≥
√
σ1σ2N

4
√

2‖A‖
, for i ∈ {1, 2}. (8.16)

Since ~xN ∈ Q1, ~y
N ∈ Q2 satisfy the excessive gap condition for µN1 , µ

N
2 , inequalities (8.4)

and (8.16) yield

0 ≤ max
~x∈Q1

〈A~yN , ~x〉 − min
~y∈Q2

〈A~y, ~xN〉 ≤ µN1 D1 + µN2 D2 ≤
12
√

2‖A‖(D1 +D2)√
σ1σ2N

.

�

121

From Theorem 6 it follows that afterN = O(1/ε) calls to decrease Algorithm EGT-2

returns a pair ~xN ∈ Q1, ~y
N ∈ Q2 satisfying

0 ≤ max
~x∈Q1

〈A~yN , ~x〉 − min
~y∈Q2

〈A~y, ~xN〉 ≤ ε.

However, the appropriate measure of the overall computational work in Algorithm EGT-2 is
the number of calls to the subroutine shrink . Each call to decrease requires one call to
shrink plus an extra call to shrink whenever τ needs to be reduced. Hence the total
number of calls to shrink is N plus the total number of reductions in τ throughout the al-
gorithm. Since τ is reduced by 1/2 each time, the total number of reductions in τ is exactly
equal to log2(0.5/τN). From inequality (8.13), we get τN = Ω(µN1) = Ω(µN2) = Ω(ε), so
the number of extra calls to shrink is O(log(1/ε)). Therefore the total number of calls to
shrink in Algorithm EGT-2 is O(1/ε) +O(log(1/ε)) = O(1/ε).

8.4 Solving matrix games with O(log 1/ε) convergence

In this section we describe a smoothing method for the min-max matrix game problem

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy (8.17)

where ∆m := {x ∈ Rm :
∑m

i=1 xi = 1, x ≥ 0} is the set of mixed strategies for a player
with m pure strategies. The game interpretation is that if player 1 plays x ∈ ∆m and player
2 plays y ∈ ∆n, then 1 receives payoff −xTAy and 2 receives payoff xTAy.

Nesterov [118] formulated a first-order smoothing technique for solving for each agent’s
strategy in a matrix game separately. We present that idea here, but applied to a formulation
where we solve for both players’ strategies at once.

Problem (8.17) can be rewritten as the primal-dual pair of nonsmooth optimization
problems

min{f(x) : x ∈ ∆m} = max{φ(y) : y ∈ ∆n}
where

f(x) := max
{
xTAv : v ∈ ∆n

}
,

φ(y) := min
{
uTAy : u ∈ ∆m

}
.

For our purposes it will be convenient to cast this as the primal-dual nonsmooth convex
minimization problem

min{F (x, y) : (x, y) ∈ ∆m ×∆n}, (8.18)

122

where
F (x, y) = max

{
xTAv − uTAy : (u, v) ∈ ∆m ×∆n

}
. (8.19)

Observe that F (x, y) = f(x)−φ(y) is convex and min{F (x, y) : (x, y) ∈ ∆m×∆n} = 0.
Also, a point (x, y) ∈ ∆m ×∆n is an ε-solution to (8.17) if and only if F (x, y) ≤ ε.

Since the objective function F (x, y) in (8.18) is nonsmooth, a subgradient algorithm
would be appropriate. Thus, without making any attempt to exploit the structure of our
problem, we would be faced with a worst-case bound on a subgradient-based algorithm
of O(1/ε2). However, we can get a much better bound by exploiting the structure of our
problem as we now show.

The following objects associated to Equation (8.18) will be useful later. Let

Opt := Argmin{F (x, y) : (x, y) ∈ ∆m ×∆n}

be the set of all optimal solutions and let dist : ∆m ×∆n → R be the distance function to
the set Opt, i.e.,

dist(x, y) := min{‖(x, y)− (u, v)‖ : (u, v) ∈ Opt}.

Let (ū, v̄) ∈ ∆m ×∆n and µ > 0. Consider the following smoothed version of F :

Fµ(x, y) = max
{
xTAv − uTAy − µ

2
‖(u, v)− (ū, v̄)‖2 : (u, v) ∈ ∆m ×∆n

}
. (8.20)

Let (u(x, y), v(x, y)) ∈ ∆m×∆n denote the maximizer in (8.20). This maximizer is unique
since the function

xTAv − uTAy − µ

2
‖(u, v)− (ū, v̄)‖2

is strictly concave in u and v [118]. It follows from [118, Theorem 1] that Fµ is smooth
with gradient

∇Fµ(x, y) =

[
0 A

−AT 0

][
u(x, y)

v(x, y)

]
,

and ∇Fµ is Lipschitz with constant ‖A‖
2

µ
.3 Let

D := max

{‖(u, v)− (ū, v̄)‖2

2
: (u, v) ∈ ∆m ×∆n

}
.

Nesterov’s optimal gradient algorithm applied to the problem

min{Fµ(x, y) : (x, y) ∈ ∆m ×∆n} (8.21)
3‖A‖ denotes the matrix norm of matrix A which is associated with some vector norm. We will use

the Euclidean norm (L2-norm) for which it can be shown that ‖A‖ =
√
λ(ATA) where λ(M) denotes the

largest eigenvalue of matrix M .

123

yields the following algorithm. Assume (x0, y0) ∈ ∆m ×∆n and ε > 0 are given.

smoothing(A, x0, y0, ε)

1. Let µ = ε
2D

and (w0, z0) = (x0, y0)

2. For k = 0, 1, . . .

(a) (uk, vk) = 2
k+2

(wk, zk) + k
k+2

(xk, yk)

(b) (xk+1, yk+1) =

argmin

{
∇Fµ(uk, vk)

T((x, y)− (uk, vk)) +
‖A‖2

2µ
‖(x, y)− (uk, vk)‖2 : (x, y) ∈ ∆m ×∆n

}

(c) If F (xk+1, yk+1) < ε Return

(d) (wk+1, zk+1) =

argmin

{
k∑

i=0

i+ 1

2
∇Fµ(ui, vi)

T((w, z)− (ui, vi)) +
‖A‖2

2µ
‖(w, z)− (x0, y0)‖2 : (w, z) ∈ ∆m ×∆n

}

Proposition 7 Algorithm smoothing finishes in at most

k =
2
√

2 · ‖A‖ ·
√
D · dist(x0, y0)

ε

first-order iterations.

PROOF. This readily follows from [94, Theorem 9] applied to the prox-function

d(u, v) =
1

2
‖(u, v)− (ū, v̄)‖2,

which we used for smoothing in Equation (8.20). �

Note that the vectors ū, v̄ can be any vectors in ∆m and ∆n. In our implementation,
we take these vectors to be those corresponding to a uniformly random strategy.

8.4.1 Iterated smoothing scheme for matrix games

We are now ready to present the main contribution of this chapter. The new algorithm is a
simple extension of Algorithm smoothing. At each iteration we call the basic smoothing
subroutine with a target accuracy. Between the iterations, we reduce the target accuracy by
γ > 1. Consider the following iterated first-order method for minimizing F (x, y).

124

iterated(A, x0, y0, γ, ε)

1. Let ε0 = F (x0, y0)

2. For i = 0, 1, . . .

• εi+1 = εi
γ

• (xi+1, yi+1) = smoothing(A, xi, yi, εi+1)

• If F (xi+1, yi+1) < ε halt

While the modification to the algorithm is simple, it yields an exponential speedup with
respect to reaching the target accuracy ε:

Theorem 8 Each call to smoothing in Algorithm iterated halts in at most

2
√

2 · γ · ‖A‖ ·
√
D

δ(A)
(8.22)

first-order iterations, where δ(A) is a finite condition measure of the matrix A.

Algorithm iterated halts in at most

ln(2‖A‖/ε)
ln(γ)

outer iterations, that is, in at most

2
√

2 · γ · ‖A‖ · ln(2‖A‖/ε) ·
√
D

ln(γ) · δ(A)
(8.23)

first-order iterations.

By setting γ = e ≈ 2.718... above gives the bound

2
√

2 · e · ‖A‖ · ln(2‖A‖/ε)
√
D

δ(A)
.

It can be shown that this is the optimal setting of γ for the overall complexity bound in
Theorem 8.

For the proof of Theorem 8, we need to introduce the condition measure δ(A).

125

8.4.2 The condition measure δ(A)

In this subsection we develop the technical results necessary for showing our main com-
plexity result. We define the condition measure of a matrix A as

δ(A) = sup
δ

{
δ : dist(x, y) ≤ F (x, y)

δ
∀(x, y) ∈ ∆m ×∆n

}
.

Notice that δ(A) can be geometrically visualized as a measure of “steepness” of the func-
tion F (x, y). We can relate this to κ(A) by defining κ(A) := ‖A‖/δ(A). The following
technical lemma shows that δ(A) > 0 for all A.

Lemma 9 Assume A ∈ Rm×n and F is as in (8.19). There exists δ > 0 such that

dist(x, y) ≤ F (x, y)

δ
for all (x, y) ∈ ∆m ×∆n. (8.24)

PROOF. Since the function F : ∆m × ∆n → R is polyhedral, its epigraph epi(F) =

{(x, y, t) : t ≥ F (x, y), (x, y) ∈ ∆m ×∆n} is polyhedral. It thus follows that

epi(F) = conv{(xi, yi, ti) : i = 1, . . . ,M}+ {0} × {0} × [0,∞)

for a finite set of points (xi, yi, ti) ∈ ∆m ×∆n ×R+, i = 1, . . . ,M. Therefore F can be
expressed as

F (x, y) = min

{
M∑

i=1

tiλi :
M∑

i=1

(xi, yi)λi = (x, y), λ ∈ ∆M

}
. (8.25)

Since min {F (x, y) : (x, y) ∈ ∆m ×∆n} = 0, we have min {ti, i = 1, . . . ,M} = 0. With-
out loss of generality assume t1 ≥ t2 ≥ · · · ≥ tN > 0 = tN+1 = · · · = tM . We assume
N ≥ 1 as otherwise Opt = ∆m × ∆n and (8.24) readily holds for any δ > 0. Thus
Opt = conv{(xi, yi) : i = N + 1, . . . ,M}. Let

δ :=
tN

max{‖(xi, yi)− (x, y)‖ : i = 1, . . . , N, (x, y) ∈ Opt}
=

tN
max{‖(xi, yi)− (xj, yj)‖ : i = 1, . . . , N, j = N + 1, . . . ,M}

We claim that δ satisfies (8.24). To prove this claim, let (x, y) ∈ ∆m×∆n be any arbitrary
point. We need to show that dist(x, y) ≤ F (x, y)/δ. Assume F (x, y) > 0 as otherwise
there is nothing to show. From (8.25) it follows that

(x, y) =
M∑

i=1

(xi, yi)λi, F (x, y) =
M∑

i=1

tiλi =
N∑

i=1

tiλi

126

for some λ ∈ ∆M . Let µ :=
∑N

i=1 λi > 0, and let λ̃ ∈ ∆N be the vector defined by putting
λ̃i := λi/µ, i = 1, . . . , N. In addition, let (x̂, ŷ) =

∑N
i=1(xi, yi)λ̃i =

∑N
i=1(xi, yi)λi/µ ∈

∆m ×∆n, and (x̃, ỹ) ∈ Opt be as follows

(x̃, ỹ) :=

M∑

i=N+1

(xi, yi)λi/(1− µ) if µ < 1

(xM , yM) if µ = 1

Then (x, y) = µ(x̂, ŷ) + (1− µ)(x̃, ỹ) and consequently

‖(x, y)− (x̃, ỹ)‖ = µ‖(x̂, ŷ)− (x̃, ỹ)‖

= µ

∥∥∥∥∥
N∑

i=1

λ̃i((xi, yi)− (x̃, ỹ))

∥∥∥∥∥

≤ µ
N∑

i=1

λ̃i‖(xi, yi)− (x̃, ỹ)‖

≤ µmax {‖(xi, yi)− (x, y)‖ : i = 1, . . . , N, (x, y) ∈ Opt}
= µtN

δ
.

To finish, observe that

F (x, y) =
N∑

i=1

tiλi = µ
N∑

i=1

tiλ̃i ≥ µtN .

Therefore,
dist(x, y) ≤ ‖(x, y)− (x̃, ỹ)‖ ≤ µtN/δ ≤ F (x, y)/δ.

�

8.4.3 Proof of Theorem 8

By construction, for each i = 0, 1, . . . we have

dist(xi, yi) ≤
εi

δ(A)
=
γ · εi+1

δ(A)
.

The iteration bound (8.22) then follows from Proposition 7.

After N outer iterations Algorithm iterated yields (xN , yN) ∈ ∆m ×∆n with

F (xN , yN) < εN =
F (x0, y0)

γN
≤ 2‖A‖

γN
.

Thus, F (xN , yN) < ε for N = ln(2‖A‖/ε)
ln(γ)

and (8.23) follows from (8.22).

127

8.4.4 The subroutine smoothing for matrix games

Algorithm smoothing involves fairly straightforward operations except for the solution of
a subproblem of the form

argmin

{
1

2
‖(u, v)‖2 − (g, h)T(u, v) : (u, v) ∈ ∆m ×∆n

}
.

This problem in turn separates into two subproblems of the form

argmin

{
1

2
‖u‖2 − gTu : u ∈ ∆m

}
. (8.26)

Problem (8.26) can easily be solved via its Karush-Kuhn-Tucker optimality conditions:

u− g = λ1 + µ, λ ∈ R, µ ∈ Rm
+ , u ∈ ∆m, u

Tµ = 0.

From these conditions it follows that the solution to (8.26) is given by

ui = max{0, gi − λ}, i = 1, . . . ,m,

where λ ∈ R is such that
∑m

i=1 max {0, (gi − λ)} = 1. This value of λ can be computed
in O(m ln(m)) steps via a binary search in the sorted components of the vector g.

8.5 Solving sequential games with O(log 1/ε) convergence

Algorithm iterated and its complexity bound can be extended to sequential games. The
Nash equilibrium problem of a two-player zero-sum sequential game with imperfect infor-
mation can be formulated using the sequence form representation as the following saddle-
point problem [84, 130, 160]:

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy. (8.27)

In this formulation, the vectors x and y represent the strategies of players 1 and 2 respec-
tively. The strategy spaces Qi ⊆ RSi , i = 1, 2 are the sets of realization plans of players 1
and 2 respectively, where Si is the set of sequences of moves of player i.

The approach we presented for equilibrium finding in matrix games extends to sequen-
tial games in the natural way: recast (8.27) as a nonsmooth convex minimization problem

min{F (x, y) : (x, y) ∈ Q1 ×Q2}, (8.28)

128

for
F (x, y) = max{xTAv − uTAy : (u, v) ∈ Q1 ×Q2}. (8.29)

Algorithms smoothing and iterated extend to this context by replacing ∆m and ∆n

withQ1 andQ2, respectively. Proposition 7 and Theorem 8 also extend in the same fashion.
However, the critical subproblem in the subroutine smoothing becomes more challenging,
as described next.

8.5.1 The subroutine smoothing for sequential games

Here we describe how to solve each of the two argmin subproblems of smoothing in the
sequential game case. Each of those two subproblems decomposes into two subproblems
of the form

argmin

{
1

2
‖u‖2 − gTu : u ∈ Q

}
, (8.30)

where Q is a set of realization plans.

Our algorithm for this is a generalization of the solution approach described above for
the case Q = ∆k. In order to describe it, we use some features of the sets of realization
plans in the sequence form representation of sequential games. A detailed discussion of
the sequence form can be found in [160]. Recall that an extensive form sequential game is
given by a tree, payoffs at the leaves, chance moves, and information sets [120]. Each node
in the tree determines a unique sequence of choices from the root to that node for each one
of the players. Under the assumption of perfect recall, all nodes in an information set u of
a player define the same sequence σu of choices.

Assume U is the set of information sets of a particular player. For each u ∈ U let Cu
denote the set of choices for that player. Then the set of sequences S of the player can be
written as

S = {∅} ∪ {σuc : u ∈ U, c ∈ Cu}

where the notation σuc denotes the sequence of moves σu followed by the move c. A
realization plan for this player is a non-negative vector x : S → R that satisfies x(∅) = 1,

and
−x(σu) +

∑

c∈Cu

x(σuc) = 0

for all u ∈ U .

It is immediate that the set of realization plans of the player as above can be written in

129

the form
{x ≥ 0 : Ex = e}

for some (1 + |U |) × |S| matrix E with entries {0, 1,−1} and the (1 + |U |)-dimensional
vector e = (1, 0, . . . , 0)T. It also follows that sets of realization plans are complexes. A
complex is a generalization of a simplex, and can be recursively defined as follows:

(C1) The empty set ∅ is a complex.

(C2) Assume Qj ⊆ Rdj for j = 1, . . . , k are complexes. Then the following set is a
complex

{(
u0, u1, . . . , uk

)
∈ Rk+d1+···+dk : u0 ∈ ∆k, u

j ∈ u0
j ·Qj, j = 1, . . . , k

}
.

(The operation u0
j ·Qj multiplies all elements of Qj by u0

j .)

(C3) Assume Qj ⊆ Rdj for j = 1, . . . , k are complexes. Then the following set (their
Cartesian product) is a complex

{(
u1, . . . , uk

)
∈ Rd1+···+dk : uj ∈ Qj, j = 1, . . . , k

}
.

Note that any simplex is a complex: ∆k is obtained by applying (C2) withQj = ∅, j =

1, . . . , k.

Given a complex Q ⊆ Rd and a vector g ∈ Rd, define the value function vQ,g : R+ →
R as

vQ,g(t) := min

{
1

2
‖u‖2 − gTu : u ∈ t ·Q

}
.

It is easy to see that vQ,g is differentiable in R+. Let λQ,g = v′Q,g and let θQ,g be the
inverse function of λQ,g. It is easy to see that λQ,g is strictly increasing in R+. In particular,
its minimum value is λQ,g(0). The function θQ,g can be defined in all of R by putting
θQ,g(λ) := 0 for all λ ≤ λQ,g(0). Finally, define the minimizer function uQ,g : R+ → Q as

uQ,g(t) := argmin

{
1

2
‖u‖2 − gTu : u ∈ t ·Q

}
.

The recursive algorithm ComplexSubproblem below computes the functions vQ,g, λQ,g, θQ,g,
and uQ,g for any given complexQ. In particular, it computes the solution uQ,g(1) to the sub-
problem (8.30). The algorithm assumes that eitherQ is as in (C2) and g =

(
g0, g1, . . . , gk

)
∈

Rk+d1+···+dk , or Q is as in (C3) and g =
(
g1, . . . , gk

)
∈ Rd1+···+dk .

ComplexSubproblem(Q, g)

130

1. If Q is as in (C2) then

(a) For i = 1, . . . , k let λ̃i : R+ → R and θ̃i : R→ R+ be

λ̃i(t) := t− g0
i + λQi,gi(t), θ̃i := λ̃−1

i .

(b) Let θQ,g :=
∑k

i=1 θ̃i and λQ,g := θ−1
Q,g

(c) Let uQ,g : R+ → Q be
uQ,g(t)

0
i := θ̃i(λQ,g(t))

and
uQ,g(t)

i := uQi,gi
(
uQ,g(t)

0
i

)

for i = 1, . . . , k.

2. If Q is as in (C3) then

(a) Let λQ,g :=
∑k

i=1 λQi,gi and θQ,g = λ−1
Q,g

(b) Let uQ,g : R+ → Q be
uQ,g(t)

i := uQi,gi(t)

for i = 1, . . . , k.

While we presented Algorithm ComplexSubproblem in recursive form for pedagog-
ical reasons, for efficiency purposes we implemented it as a dynamic program. The im-
plementation first performs a bottom-up pass that computes and stores the functions λQ,g.
Subsequently a top-down pass computes the components of the minimizer uQ,g(t).

Theorem 10 Algorithm ComplexSubproblem is correct. In addition, the function λQ,g is

piecewise linear. Furthermore, if Q is as in (C2) or is as in (C3), then the total number of

breakpoints B(Q, g) of λQ,g is at most

k∑

i=1

max{B(Qi, gi), 1}.

If the breakpoints of λQi,gi are available, then the breakpoints of λQ,g can be constructed

in

O(B(Q, g) ln(B(Q, g)))

steps, i.e., this is the run time of Algorithm ComplexSubproblem.

131

PROOF. First, assume that Q is as in (C2). Then the value function vQ,g(t) can be written
as

vQ,g(t) = min

{
1

2

∥∥u0
∥∥2 −

(
g0
)T
u0 +

k∑

j=1

vQj ,gj
(
u0
j

)
: u0 ∈ t ·∆k

}
. (8.31)

This is a constrained optimization problem in the variables u0. Its Karush-Kuhn-Tucker
optimality conditions are

u0
j − g0

j + λQj ,gj
(
u0
j

)
= λ+ µj,

λ ∈ R, µ ∈ Rk
+,

u0 ∈ t ·∆k, µTu0 = 0.

(8.32)

By basic differentiability properties from convex analysis (see, e.g. [73, Chapter D]), it
follows that λQ,g(t) = v′Q,g(t) is precisely the value of λ that solves the optimality condi-
tions (8.32). From these optimality conditions, we get u0

j = θ̃j(λ), j = 1, . . . , k for the
functions θ̃j constructed in step 1 of Algorithm ComplexSubproblem. Hence

t =
k∑

j=1

u0
j =

k∑

j=1

θ̃j(λ).

Therefore, θQ,g =
∑k

j=1 θ̃j. This shows the correctness of Steps 1.a and 1.b of Algorithm
ComplexSubproblem. Finally, the correctness of Step 1.c follows from (8.31) and (8.32).

On the other hand, if Q is as in (C3) then the value function vQ,g(t) can be decoupled
as follows

vQ,g(t) =
k∑

i=1

min

{
1

2

∥∥ui
∥∥2 −

(
gi
)T
ui : ui ∈ t ·Qi

}
=

k∑

i=1

vQi,gi(t). (8.33)

This yields the correctness of Steps 2.a and 2.b.

The piecewise linearity of λQ,g readily follows from the correctness of Algorithm Com-
plexSubproblem. As for the number of breakpoints, consider first the case when Q is as
in (C2). Observe that the number of breakpoints of θ̃i is the same as that of λ̃i, which is
either the same as that of λQi,gi (if Qi 6= ∅) or 1 (if Qi = ∅). To get the bound on B(Q, g),
note that the total number of breakpoints of λQ,g is the same as that of θQ,g, which is at
most the sum of the number of breakpoints of all θ̃i, i = 1, . . . , k. The breakpoints of θQ,g
can be obtained by sorting the breakpoints of all of the θi together. This can be done in
O(B(Q, g) ln(B(Q, g))) steps. In the case when Q is as in (C3) the number of breakpoints

132

of λQ,g is at most the sum of the number of breakpoints of all λi, i = 1, . . . , k. The break-
points of λQ,g can be obtained by sorting the breakpoints of all of the λi together. This can
be done in O(B(Q, g) ln(B(Q, g))) steps.

�

8.5.2 ComplexSubproblem example

We include a simple example to illustrate Algorithm ComplexSubproblem, as well as the
use of our recursive definition of complexes. For simplicity of the example, let Q1 = ∆2

and Q2 = ∅. Then applying the recursive definition of complexes, (C2), we get that Q is
the set {(

u0, u1
)

: u0 ∈ ∆2, u
1 ∈ u0

1 ·Q1

}
.

In a sequential game corresponding to this set of realization plans, the player first chooses
among actions a0

1 and a0
2, with probabilities u0

1 and u0
2, respectively, and conditioned on

choosing action a0
1, the player may be asked to choose among actions a1

1 and a1
2, which are

played with probabilities u1
1/u

0
1 and u1

2/u
0
1, respectively. (Note that there is no u2 in the

above equation since Q2 = ∅, i.e., if the agent plays a0
2, he will have no further actions.)

The complex Q can also be written as {x ≥ 0 : Ex = e} for

E =

[
1 1 0 0

−1 0 1 1

]
, e =

[
1

0

]
.

Now, given input vector g1 ∈ R2, we define the value function for Q1 as

vQ1,g1

(
u0

1

)
:= min

{
1

2

∥∥u1
∥∥2 −

(
g1
)T
u1 : u1 ∈ u0

1 ·Q1

}
.

Then, as was done in the proof of Theorem 10, we can write the value function for Q as

vQ,g(t) := min

{
1

2

∥∥u0
∥∥2 −

(
g0
)T
u0 + vQ1,g1

(
u0

1

)
: u0 ∈ t ·∆k

}

for g = (g0, g1) ∈ R4. This is the problem that ComplexSubproblem is trying to solve in
our example.

We first demonstrate the algorithm as it executes ComplexSubproblem(Q1, g
1), i.e.,

the bottom of the recursion. Since Q1 has no “sub-complexes”, we have

λ̃1(t) := t− g1
1,

λ̃2(t) := t− g1
2.

133

The equations are graphed on the left in Figure 8.4. Step 1 of the algorithm constructs the
θ̃i functions to be the inverse of the λ̃i(t) functions. Once these inverses are computed,
Step 2 of the algorithm adds the θ̃i functions to obtain the θQ1,g1 function, which is in turn
inverted to construct the λQ1,g1 function. This process of inverting, adding, and inverting
again has a more intuitive description in the form of a “horizontal addition” operation on
the λ̃i functions. In such an operation, two functions are added as normal, except we flip the
axis of the graph so that the x-axis and y-axis are switched. This operation is illustrated in
Figure 8.4. The graph on the left in Figure 8.4 contains the λ̃i(t) functions. These functions
are “horizontally added” to obtain λQ1,g1 on the right in Figure 8.4.

t

λ̃1(t)

λ̃2(t)

−g1
1

−g1
2

λ(Q1, g
1)(t)

t

Figure 8.4: An illustration of Steps 1 and 2 of Algorithm ComplexSubproblem applied to
Q1 and g1.

At non-bottom parts of the recursion (λQ,g in our example) we construct the piecewise
linear functions similarly, except that we have to take into account subsequent actions using
the piecewise linear functions (function λQ1,g1(t) in our example) already computed for the
nodes below the current node in the recursion tree:

λ̃1(t) := t− g0
1 + λQ1,g1(t),

λ̃2(t) := t− g0
2

The “horizontal addition” operation for this case is depicted in Figure 8.5.

Since λQ1,g1(t) and λQ,g are piecewise linear, our implementation simply represents
them as a set of breakpoints, which are represented by solid circles in Figures 8.4 and 8.5.

134

t

λ̃1(t)

λ̃2(t)

−(g0
1 + g1

2)

−g0
2

λQ,g(t)

t

Figure 8.5: An illustration of Steps 1 and 2 of Algorithm ComplexSubproblem applied to
Q and g.

Given that we have finally constructed the piecewise linear function at the root, we can
determine the values of u0 and u1 that solve the optimization problem in (8.30) as described
in Step 3 of Algorithm ComplexSubproblem. Specifically, we first take t = 1 and solve
for u0. To do this, we evaluate λQ,g(1). Then we find the values of u0

1 and u0
2 such that

λ̃1(u0
1) = λQ,g(1),

λ̃2(u0
2) = λQ,g(1).

This last operation is straightforward since the functions in question are monotonically
increasing and piecewise linear.

Once we have computed u0
1, we can evaluate λQ1,g1(u0

1) and find u1
1 and u1

2 that satisfy

λ̃1(u1
1) = λQ1,g1(u0

1),

λ̃2(u1
2) = λQ1,g1(u0

1).

Again, this operation is easy due to the functions being monotonically increasing and piece-
wise linear. This completes the execution of Algorithm ComplexSubproblem on our ex-
ample.

8.6 Computational experiments on O(log 1/ε) algorithm

In this section we report on our computational experience with our new method. We com-
pared our iterated algorithm against the basic smoothing algorithm. We tested the algo-
rithms on matrix games as well as sequential games.

135

10-2

10-1

100

101

102

10-2 10-3 10-4 10-5

T
im

e
(s

)

ε

10x10 Matrix Games
iterative

smoothing

100

101

102

103

104

10-2 10-3 10-4 10-5

T
im

e
(s

)

ε

100x100 Matrix Games
iterative

smoothing

101

102

103

104

105

10-1 10-2 10-3

T
im

e
(s

)

ε

1000x1000 Matrix Games
iterative

smoothing

10-1
100
101
102
103
104

10-2 10-3 10-4

T
im

e
(s

)

ε

Sequential Game 81
iterative

smoothing

102

103

104

105

104 103 102

T
im

e
(s

)

ε

Sequential Game 10k
iterative

smoothing

102

103

104

105

106

103 102 101

T
im

e
(s

)

ε

Sequential Game 160k
iterative

smoothing

Figure 8.6: Time taken (in seconds) for each algorithm to find an ε-equilibrium for various
values of ε.

For matrix games, we generated 100 games of three different sizes where the payoffs are
drawn uniformly at random from the interval [−1, 1]. This is the same instance generator
as in Nesterov’s [118] experiments.

For sequential games, we used the benchmark instances 81, 10k, and 160k which
have been used in the past for benchmarking equilibrium-finding algorithms for sequential
imperfect-information games [56]. These instances are all abstracted versions of Rhode
Island Hold’em poker [146], and they are named to indicate the number of variables in
each player’s strategy vector.

Figure 8.6 displays the results. Each graph is plotted with ε on the x-axis (using an
inverse logarithmic scale). The y-axis is the number of seconds (using a logarithmic scale)
needed to find ε-equilibrium for the given ε. The matrix game graphs also display the
standard deviation.

In all settings we see that our iterated algorithm indeed outperforms the smoothing al-
gorithm (as the worst-case complexity results would suggest). In fact, as the desired accu-
racy increases, the relative speed difference also increases.

We also tested a version of our iterated smoothing algorithm that used the Lan et al. [94]
variant of Nesterov’s algorithm for smooth optimization (subroutine smoothing). The
only difference in that subroutine is in Step 2(d) of smoothing. Although the guarantee
of Theorem 8 does not hold, that version performed almost identically.

136

8.7 Summary

We presented new algorithms for finding ε-equilibria in two-person zero-sum games. They
apply to both matrix and sequential games. In one algorithm, we adapt Nesterov’s excessive
gap technique to the problem of finding equilibria in two-person zero-sum games. We
present heuristics which speed up the basic version of the algorithm, and we prove that the
worst-case theoretical guarantees still hold when we use our heuristics.

We described another algorithm that has convergence rate O(κ(A) ln(1/ε)), where
κ(A) is a condition measure of the matrix A. In terms of the dependence on ε, this matches
the complexity of interior-point methods and is exponentially faster than prior first-order
methods. Furthermore, our algorithms, like other first-order methods, uses dramatically
less memory than interior-point methods, indicating that it can scale to games much larger
than previously possible.

Our O(log 1/ε) scheme supplements Nesterov’s first-order smoothing method with an
outer loop that lowers the target ε between iterations (this target affects the amount of
smoothing in the inner loop). We find it surprising that such a simple modification yields
an exponential speed improvement, and wonder whether a similar phenomenon might oc-
cur in other optimization settings as well. Finally, computational experiments both in ma-
trix games and sequential games show that a significant speed improvement is obtained in
practice as well, and the relative speed improvement increases with the desired accuracy
(as suggested by the complexity bounds).

137

138

Chapter 9

Sampling for Speeding Up
Gradient-Based Algorithms

9.1 Introduction

First-order (i.e., gradient-based) methods for solving two-person zero-sum sequential games
of imperfect information are important tools in the construction of game theory-based
agents. The computation time per iteration is typically dominated by matrix-vector prod-
uct operations involving the payoff matrix A. In this chapter we describe a randomized
sampling technique that approximates A with a sparser matrix Ã. Then an approximate
equilibrium for the original game is found by finding an approximate equilibrium of the
sampled game. We experimentally evaluate both static and dynamic sampling.

9.2 Main idea

The basic idea of gradient-based algorithms as applied to convex optimization problems is
to estimate a good search direction based on information that is local to the current solution.
Then, the algorithms take a step in a direction related to the gradient (different variants
choose the exact direction and step size differently), and repeat the process from the new
solution. As discussed above, the matrix-vector product is a crucial component of these
algorithms. In this chapter we develop a faster algorithm for estimating the matrix-vector
product, and hence estimating the gradient.

The specific technique we develop is based on sampling. In a game, there are random

139

moves by nature that occur throughout the game. (In poker, these correspond to deals of
cards.) Instead of exhaustively evaluating all possible sequences of moves by nature, we
can instead estimate this expectation by sampling a much smaller number of sequences.

For a given game, let Θ denote the possible sequences of chance moves. In the sequence
form representation of zero-sum games, each leaf in the game tree corresponds to a non-
zero entry in the payoff matrix A. Each leaf also corresponds to a particular sequence of
chance moves. Thus, we can partition the non-zero entries of A into a collection of non-
overlapping matrices {Aθ}θ∈Θ and we can calculate the matrix-vector product as a sum of
products of these matrices:

Ay =
∑

θ∈Θ

Aθy.

Instead of evaluating Aθy for all θ ∈ Θ, we can estimate Ay by evaluating the products
only for a small, randomly-sampled subset Θ̃ ⊂ Θ:

Ay ≈
∑

θ∈Θ̃

zθAθy.

The zθ in the above equation are normalization constants that depend on the specific sam-
pling performed, and are computed by simply making sure that the sampled probabilities
sum to one.

Having described the sampling technique, there remains the question of how to lever-
age it in gradient-based equilibrium-finding algorithms. We address this question in the
following two subsections.

9.3 Static sampling

In this section we describe a simple approach to incorporating sampling in gradient-based
equilibrium-finding algorithms. The purpose of this subsection is primarily to illuminate
the behavior of sampling algorithms rather than develop a strong algorithm. The main idea
is to simply perform a single sampling with a fixed proportion of sampling up front, and
then apply the equilibrium-finding algorithm using this sampling for the matrix. Specifi-
cally:

Step 1 Randomly generate the sample Θ̃ ⊂ Θ so that |Θ̃| = dp|Θ|e where p ∈ (0, 1) is the
proportion of sampling that is specified as input.

Step 2 Run the gradient-based algorithm, but replace all matrix-vector products with the
sampled version.

140

For this algorithm, we performed experiments on Rhode Island Hold’em poker [146], a
benchmark problem for evaluating game-theoretic algorithms. Although it has been solved
optimally [61], it remains useful as a test problem. The gradient-based algorithm used was
the excessive gap technique for sequential games [117, 74], including both of the published
heuristics for speeding it up and the decomposed matrix representation [56].

Figure 9.1 displays the results. Each of the plots shown is a log-log plot displaying
data from running the algorithm with the amount of sampling specified as input ranging
between 0.5% and 64%. Each plot contains two lines. The top line displays the real gap for
a given point in time. The bottom line displays the gap in the sampled game—i.e., the gap
under the (incorrect) assumption that the game being solved actually is the sampled matrix.

100

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

0.5% Sampling

100

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

1% Sampling

100

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

2% Sampling

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

4% Sampling

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

8% Sampling

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

16% Sampling

101

102

103

104

101 102 103 104 105

G
ap

Time (seconds)

32% Sampling

101

102

103

104

101 102 103 104 105
G

ap
Time (seconds)

64% Sampling

Figure 9.1: Duality gap versus time for varying levels of sampling. The solid, bottom line
in each graph indicates the duality gap for the game corresponding to the sampled game.
The dotted, top line in each graph indicates the duality gap for the original game. The
effects of overfitting are indicated by a separation of the curves. As the level of sampling
increases, the effect of overfitting takes longer to manifest.

Divergence of the two lines provides evidence of overfitting. In fact, in the plots with
the smallest amount of sampling, we see that the gap actually increases after some time.
This is very strong evidence of overfitting. The figures provide a clear trend showing that
for larger amounts of sampling, the effects of overfitting take longer to appear.

Figure 9.2 provides another view of a subset of the data from Figure 9.1. This plot
illustrates the selective superiority of using various levels of sampling. Using a relatively
small amount of sampling (4%) initially provides the best performance. However, as the
effects of overfitting begin to manifest, it becomes better to use an increased amount of
sampling (16%) even though that initially provides worse performance. Finally, it becomes

141

best to use an even larger amount of sampling (64%). (There are of course intermediate
levels of sampling that could be performed. We omitted these from the graph to enhance
the readability.)

102

103

104

101 102 103 104

A
ct

ua
l G

ap

Time (seconds)

4% Sampling
16% Sampling
64% Sampling

Figure 9.2: Duality gap for the original game as a function of time, for varying levels of
sampling. Initially, the best performance is achieved using the smallest level of sampling.
As time increases, and the effects of overfitting appear, the best performance is achieved
using an increased amount of sampling.

This observation suggests an algorithm where we dynamically change the level of sam-
pling based on properties observed at run-time. We discuss such an algorithm next.

9.4 Dynamic sampling

To avoid the problem of overfitting, we develop a dynamic sampling procedure that at-
tempts to detect the occurrence of overfitting and then increases the level of sampling.

The detection of overfitting could conceivably be done in a number of ways. In this
initial investigation, we adopt a fairly simple rule: if the actual gap, as measured every
50 iterations, ever increases, we consider this to be overfitting. We only do this every 50
iterations, rather than every iteration, for two reasons. First, computing the actual gap is ex-

142

pensive since it requires performing two matrix-vector products in the full (i.e., unsampled)
game—precisely the problem we are trying to avoid. Second, for the gradient-based algo-
rithms we are using, the actual gap does not decrease monotonically. It is quite common
for the value to fluctuate a bit from iteration to iteration. However, over a longer period,
such as 50 iterations, this non-monotonicity is unlikely to be observed (unless, of course,
overfitting is occurring).

Once we detect overfitting, we increase the amount of sampling that is performed and
resume running the gradient-based algorithm as follows.

Step 1 Initialize p = 0.01 and initialize (x, y) arbitrarily.

Step 2 Randomly generate the sample Θ̃ ⊂ Θ so that |Θ̃| = dp|Θ|e.

Step 3 Run the gradient-based algorithm starting at (x, y) until overfitting is detected (if
p = 1 then run the gradient-based algorithm indefinitely).

Step 4 Let p← min{2p, 1}.

Step 5 Go to Step 2.

So, in each phase, we double the level of sampling. It would certainly be reasonable to
implement other strategies for increasing the amount of sampling as well. One could also
use other criteria for triggering the next level of sampling, for example, if the sampled gap
diverges too much from the actual gap. We leave the investigation of such other techniques
for future research.

Figure 9.3 shows the results from running our dynamic sampling algorithm on a large
instance of an abstraction of Heads-Up Limit Texas Hold’em poker. This problem in-
stance is much larger than the Rhode Island Hold’em, and the relative amount of time spent
performing the matrix-vector product is even larger, which should make our technique par-
ticularly effective. As can be seen in the plot, this is the case. For example, to reach a gap
of 20 using the non-sampled version of the algorithm takes 32 hours. The sampled version
only takes 3.7 hours to achieve the same actual gap.

The curve for the dynamic sampling algorithm has a noticeable “jump”. This cor-
responds to the time when the algorithm detects overfitting and increases the amount of
sampling. The underlying gradient-based algorithm must perform some modifications to
the current strategies in order to continue. In our experiments we are using Nesterov’s
excessive gap technique for the gradient-based algorithm and we have to modify the start-
ing solution to ensure that the excessive gap condition is satisfied (see [117] for details).

143

100

101

102

103

102 103 104 105

A
ct

ua
l G

ap

Time (seconds)

Dynamic sampling versus non-sampled

Dynamic sampling
Non-sampled

Figure 9.3: Duality gap versus time for the original non-sampling approach and the dy-
namic sampling approach.

This change in (x, y) causes the jump. Fortunately, the algorithm recovers from the jump
quickly.

9.5 Summary

Sampling has been applied in the context of a regret-minimization approach to equilibrium-
finding algorithms [166]. As is the case in our approach, that prior approach also sampled
from the moves of nature. However, the use of that sampling was to estimate regret. In
contrast, our sampling is used for approximating the result of a matrix-vector product for
the purpose of estimating a gradient.

Another difference is that the prior approach performed a new sampling at each itera-
tion. In contrast, we perform a single sampling up front, and only perform a new sampling
when we increase the amount of sampling performed in the dynamic sampling variant of
our approach.

We have also implemented a version in which we perform a new sampling at each iter-
ation. However, that version performed quite poorly in our initial experiments, indicating

144

that conducting a new sampling at each iteration is not appropriate for use in conjunction
with gradient-based algorithms.

We also conducted exploratory experiments where our algorithm re-sampled (with the
same level of sampling) every few iterations. That approach was ineffective at reducing the
actual gap.

145

146

Chapter 10

Implementation of Gradient-Based
Algorithms

10.1 Introduction

As discussed previously, for two-player zero-sum sequential games of imperfect informa-
tion the Nash equilibrium problem can be formulated using the sequence form representa-
tion [130, 84, 160] as the following saddle-point problem:

max
x∈Q1

min
y∈Q2

〈Ay,x〉 = min
y∈Q2

max
x∈Q1

〈Ay,x〉. (10.1)

When applying gradient-based algorithms to the above formulation (for example, using the
algorithm of Chapter 8), the main computational bottleneck is in computing the matrix-
vector products Ay and ATx. In this chapter, we take advantage of the structure of the
problem to improve the performance of this operation both in terms of time and mem-
ory requirements. As a result, we are able to handle games that are several orders of
magnitude larger than games that can be solved using conventional linear programming
solvers. For example, we compute approximate solutions to an abstracted version of Texas
Hold’em poker whose LP formulation has 18,536,842 rows and 18,536,852 columns, and
has 61,450,990,224 non-zeros in the payoff matrix. This is more than 1,200 times the
number of non-zeros in the Rhode Island Hold’em problem mentioned above. Since con-
ventional LP solvers require an explicit representation of the problem (in addition to their
internal data structures), this would require such a solver to use more than 458 GB of mem-
ory simply to represent the problem. On the other hand, our algorithm only requires 2.49
GB of memory.

147

10.2 Customizing the algorithm for stage-based sequen-
tial games

The bulk of the computational work at each iteration of a gradient-based algorithm consists
of some matrix-vector multiplications x 7→ ATx and y 7→ Ay. These operations are by far
the most expensive, both in terms of memory (for storing A) and time (for computing the
product).

10.2.1 Addressing the space requirements

To address the memory requirements, we exploit the problem structure to obtain a concise
representation for the payoff matrix A. This representation relies on a uniform structure
that is present in poker games and many other games. For example, the betting sequences
that can occur in most poker games are independent of the cards that are dealt. This con-
ceptual separation of betting sequences and card deals is used by our automated abstraction
algorithms. Analogously, we can decompose the payoff matrix based on these two aspects.

The basic operation we use in this decomposition is the Kronecker product, denoted by
⊗. Given two matrices B ∈ Rm×n and C ∈ Rp×q, the Kronecker product is

B ⊗ C =

b11C · · · b1nC
...

bm1C · · · bmnC

 ∈ Rmp×nq.

For ease of exposition, we explain the concise representation in the context of Rhode
Island Hold’em poker [146], although the general technique applies much more broadly.
The payoff matrix A can be written as

A =

A1

A2

A3

whereA1 = F1⊗B1, A2 = F2⊗B2, andA3 = F3⊗B3 +S⊗W for much smaller matrices
Fi, Bi, S, and W . The matrices Fi correspond to sequences of moves in round i that end
with a fold, and S corresponds to the sequences in round 3 that end in a showdown. The
matrices Bi encode the betting structures in round i, while W encodes the win/lose/draw
information determined by poker hand ranks.

Given this concise representation of A, computing x 7→ ATx and y 7→ Ay is straight-
forward, and the space required is sublinear in the size of the game tree. For example,

148

in Rhode Island Hold’em, the dimensions of the Fi and S matrices are 10 × 10, and the
dimensions of B1, B2, and B3 are 13× 13, 205× 205, and 1,774× 1,774, respectively—in
contrast to the A-matrix, which is 883,741× 883,741. Furthermore, the matrices Fi, Bi, S,
and W are themselves sparse which allows us to use the Compressed Row Storage (CRS)
data structure (which stores only non-zero entries).

The data instances we performed the tests on are described in Table 8.1.

Table 10.1 clearly demonstrates the extremely low memory requirements of the EGT
algorithms. Most notably, on the Texas instance, both of the CPLEX algorithms require
more than 458 GB simply to represent the problem. In contrast, using the decomposed pay-
off matrix representation, the EGT algorithms require only 2.49 GB. Furthermore, in order
to solve the problem, both the simplex and interior-point algorithms would require addi-
tional memory for their internal data structures.1 Therefore, the EGT family of algorithms
is already an improvement over the state-of-the-art (even without the heuristics).

Name CPLEX IPM CPLEX Simplex EGT
10k 0.082 GB > 0.051 GB 0.012 GB
160k 2.25 GB > 0.664 GB 0.035 GB
RI 25.2 GB > 3.45 GB 0.15 GB
Texas > 458 GB > 458 GB 2.49 GB

Table 10.1: Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX
Simplex, and EGT algorithms. CPLEX requires more than 458 GB for the Texas instance.

10.2.2 Speedup from parallelizing the matrix-vector product

To address the time requirements of the matrix-vector product, we can effectively paral-
lelize the operation by simply partitioning the work into n pieces when n CPUs are avail-
able. The speedup we can achieve on parallel CPUs is demonstrated in Table 10.2. The
instance used for this test is the Texas instance described above. The matrix-vector prod-
uct operation scales linearly in the number of CPUs, and the time to perform one iteration of
the algorithm (using the entropy prox function and including the time for applying Heuristic
1) scales nearly linearly, decreasing by a factor of 3.72 when using 4 CPUs.

1The memory usage for the CPLEX simplex algorithm reported in Table 10.1 is the memory used after 10
minutes of execution (except for the Texas instance which did not run at all as described above). This algo-
rithm’s memory requirements grow and shrink during the execution depending on its internal data structures.
Therefore, the number reported is a lower bound on the maximum memory usage during execution.

149

CPUs matrix-vector product EGT iteration
time (s) speedup time (s) speedup

1 278.958 1.00x 1425.786 1.00x
2 140.579 1.98x 734.366 1.94x
3 92.851 3.00x 489.947 2.91x
4 68.831 4.05x 383.793 3.72x

Table 10.2: Effect of parallelization for the Texas instance.

10.3 Exploiting ccNUMA architecture

There has lately been a rapidly accelerating trend in computer architecture towards systems
with many numbers of processors and cores. At the highest end of the computing spec-
trum, this is illustrated by the development of the cache-coherent Non-Uniform Memory

Access (ccNUMA) architecture. A NUMA architecture is one in which different processors
access different physical memory locations at different speeds. Each processor has fast
access to a certain amount of memory (near it in practice), but if it accesses memory from
another physical location the memory access will be slower. However, all of the memory
is addressable from every processor.

A NUMA architecture is cache-coherent if the hardware makes sure that writes to mem-
ory in a physical location are immediately visible to all other processors in the system. This
greatly simplifies the complexity of software running on the ccNUMA platform. In fact,
code written using standard parallelization libraries on other platforms will usually work
without modification on a ccNUMA system. However, as we will discuss in Section 10.3.1,
to fully take advantage of the performance capabilities of the hardware, our matrix-vector
multiplication algorithm for games needs to be redesigned somewhat. Since the matrix-
vector product accounts for such a significant portion of the time (this is true even when
using sampling as discussed in the previous section), developing an algorithm that scales
well in the number of available cores could have a significant impact in practice.

In Section 10.3.1 we describe our implementation of a parallel matrix-vector product
algorithm specialized for the ccNUMA architecture. We present experimental results in
Section 10.3.2.

150

10.3.1 Details of our approach

Processors in a ccNUMA system have fast access to local memory, and slower access to
memory that is not directly connected. Thus, it would be ideal for every processor to
primarily access data from its local memory bank. The ccNUMA system maps virtual
memory to physical memory based on which processor first writes to a particular memory
location. Thus, a common technique when developing software for a ccNUMA platform
is to include an initialization step in which all of the threads are created, and they allocate
their own memory and write initialization values to every memory location.

We use this approach in our algorithm. Given that we have access to N cores, we parti-
tion the matrix into N equal-size pieces and communicate to each thread which segment of
the matrix it should access. Then each thread allocates its own memory and loads the per-
tinent information describing its submatrix. Thus, each thread will have the most pertinent
data loaded in the physical memory closest to the core on which it is running.

This approach may not be as effective if the memory requirements are severe. The
machine we use in our experiments, for example, has 8 GB of fast (local) memory for every
4 cores. Thus, if there is a requirement for more than 2 GB per core, then the memory will—
by necessity—have to be stored on non-adjacent memory banks, hampering performance.
For the problem sizes in which we are presently interested, these memory limits are large
enough—given that we use the decomposed matrix representation developed in [56]. (To
be specific, the size of the matrix representation of the abstracted Texas Hold’em instance
used in these experiments is 16GB overall, and it gets divided equally among the cores.
Therefore, if we have at least 8 cores at our disposal, the memory image of each entire
4-core block fits in the block’s fast 8GB memory.)

10.3.2 Experiments

We developed and tested our algorithm on a ccNUMA machine with 768 cores and 1.5 TB
RAM. Due to the high demand for computing time on this valuable supercomputer, it is
currently difficult to gain access to large segments of time, or a large number of cores at
any given time. Thus, in our experiments we only present results where our software is
using up to 64 cores. In the future, as ccNUMA machines become more prevalent, we plan
to evaluate our approach on even greater numbers of cores.

We tested the time needed for computing a matrix-vector product for an abstracted
instance of Texas Hold’em poker. We compared our algorithm against the standard par-

151

allelization approach that does not take into account the unique physical characteristics of
the ccNUMA architecture. Figure 10.1 displays the results. Our new approach is always
faster, and at 64 cores it is more than twice as fast.

 0

 5000

 10000

 15000

 20000

 25000

 4 8 16 24 32 40 48 56 64

T
im

e
(s

ec
on

ds
)

Number of Cores

Scalability of Matrix-Vector Product

Original
Our Method

Figure 10.1: Computation time needed for one matrix-vector product computation as the
number of available cores increases.

10.4 Summary

For poker games and similar games, we introduced a decomposed matrix representation
that reduces storage requirements drastically. We also showed near-perfect efficacy of par-
allelization on a uniform-memory access architecture with four processors. For a non-
uniform memory access architecture, we showed promising (but not linear) scalability up
to 64 processors. Overall, our techniques enable one to solve orders of magnitude larger
games than the prior state of the art.

Although current general-purpose simplex and interior-point solvers cannot handle prob-
lems of more than around 106 nodes [61], it is conceivable that specialized versions of
these algorithms could be effective. However, taking advantage of the problem structure in
these linear programming methods appears to be quite challenging. For example, a single

152

interior-point iteration requires the solution of a symmetric non-definite system of equa-
tions whose matrix has the payoff matrix A and its transpose AT in some blocks. Such a
step is inherently far more complex than the simple matrix-vector multiplications required
in gradient-based algorithms. On the upside, overcoming this obstacle would enable us to
capitalize on the superb speed of convergence of interior-point methods. We leave the study
of these alternative algorithms for Nash equilibrium finding as future work.

153

154

Chapter 11

Solving Repeated Games of Imperfect
Information

11.1 Introduction

As discussed throughout this thesis, an important topic in computational game theory is the
study of algorithms for computing equilibrium strategies for games. Without such algo-
rithms, the elegant game theory solution concepts would have little to offer in the way of
guidance to designers and implementers of game-theoretic agents. On the contrary, equip-
ping agents with these algorithms would enable them to use strategies that are determined
by a game-theoretic analysis. In many games—including all finite two-person zero-sum
games—such strategies are optimal for the agent regardless of the opponents’ actions.

Most work on algorithms for equilibrium-finding (including the work discussed until
now in this thesis) has focused on the non-repeated setting in which a game is played only
once. However, most agent interactions happen many times. For example, participants
in a market will likely encounter the same buyers and sellers repeatedly (hence the im-
portance of reputation). In this chapter, we explicitly study a setting that models repeated
interactions.

In addition to encountering one another multiple times, agents are typically endowed
with some private information about the state of the world, that is, which game is being
played. As does most prior work, we model this private information by treating the game
as one of incomplete information. What makes the work in this chapter unique is that
we address computational considerations in repeated games of incomplete information, in
which the agents’ private information may be revealed over time—possibly inadvertently—

155

by their actions.

One stream of related research on algorithms for repeated games falls under the cate-
gory of multiagent learning (e.g., [52, 99, 24, 76]) which is usually applied either when
the rules of the game are unknown (e.g., when a player is initially completely uninformed
about the payoffs of the game) or when directly solving for good strategies is too difficult in
a computational sense [134]. In the setting we study in this chapter, both players know the
rules of the game, and we demonstrate that it is not computationally infeasible to compute
optimal strategies.

A closely related piece of work is due to Littman and Stone [100] who designed an
algorithm for finding Nash equilibria in repeated games. That work studied the setting
where both players know which stage game is being repeated. In our setting, the key
difference is that only one of the players knows that.

In this chapter we study a model of repeated interaction known as two-person zero-sum

repeated games of incomplete information. We first review the necessary theory (Sec-
tion 11.2) and present some illustrative examples (Section 11.3) of this class of games.
Following that, for the case where one player is informed about the state of the world and
the other player is uninformed, we derive a non-convex mathematical programming formu-
lation for computing the value of the game (Section 11.4.1). This is a complicated opti-
mization problems for which standard optimization algorithms do not apply. We describe
and analyze a novel efficient algorithm for solving this problem to within arbitrary accuracy
in Section 11.4.2. In Section 11.5.1 we demonstrate how the solution to our optimization
problem yields an optimal strategy for the informed player. We also give an algorithm for
the uninformed player to play optimally, in Section 11.5.2. Finally, in Section 11.6 we
conclude and present some open problems.

11.2 Preliminaries

In this section we review the definitions and concepts on which we will build. We first
review in Section 11.2.1 some basic game theory for two-person zero-sum games with
complete information (in which both players are fully informed about which game is being
played). In Section 11.2.2 we review single-shot two-person zero-sum games with incom-
plete information (in which the players are only partially informed about the game being
played). We conclude this section with the relevant theory of infinitely-repeated two-person
zero-sum games with incomplete information (Section 11.2.3).

156

The material in this section is largely based on Aumann and Maschler’s early work
on the subject [6]. Myerson provides a textbook introduction [111] and Sorin provides a
thorough treatment of two-person zero-sum repeated games [151].

11.2.1 Complete-information zero-sum games

A two-person zero-sum game with complete information is given by A ∈ Qm×n with
entries Aij .1 In this game, player 1 plays an action in {1, . . . ,m} and player 2 simultane-

ously plays an action in {1, . . . , n}. If player 1 chooses i and player 2 chooses j, player 2
pays player 1 the amount Aij . In general, the players may employ mixed strategies which
are probability distributions over the available actions, denoted ∆m and ∆n, respectively,
where

∆m =

{
p ∈ Rm :

m∑

i=1

pi = 1,p ≥ 0

}

and similarly for ∆n. If x ∈ ∆m and y ∈ ∆n, player 2 pays player 1 the quantity xAy in
expectation, where we take x to be a row vector and y to be a column vector.

Player 1, wishing to maximize the quantity xAy, while knowing that player 2 is a
minimizer, faces the following optimization problem:

max
x∈∆m

min
y∈∆n

xAy. (11.1)

Similarly, player 2 faces the problem

min
y∈∆n

max
x∈∆m

xAy. (11.2)

The celebrated minimax theorem states that the values of these two problems are equal and
can be simultaneously solved [158]. Hence, we may consider the problem of solving the
following equation:

max
x∈∆m

min
y∈∆n

xAy = min
y∈∆n

max
x∈∆m

xAy.

If (x̄, ȳ) are solutions to the above problem then we say that (x̄, ȳ) are minimax solutions

and we define the value of the game v(A) = x̄Aȳ. (It is easy to see that (x̄, ȳ) also satisfy
the weaker solution concept of Nash equilibrium, although in this chapter we focus on the
stronger minimax solution concept.)

1We have already discussed complete information zero-sum games previously in this thesis. We repeat the
presentation here to emphasize the relationship between the complete information theory and the incomplete
information theory.

157

We can reformulate player 1’s problem (11.1) as the following linear program:

max{z : z1− xA ≤ 0,x1 = 1,x ≥ 0} (11.3)

where 1 is the all-ones column vector of appropriate dimension. Similarly, player 2’s prob-
lem can be formulated as:

min{w : w1− Ay ≥ 0,1Ty = 1,y ≥ 0}. (11.4)

Thus, we can find minimax solutions for both players in polynomial time using linear pro-
gramming.2

Later in this chapter we also consider the average game which is given by a set of
K possible games Â = {A1, . . . , AK} with Ai ∈ Qm×n, and a probability distribution
p ∈ ∆K . The possible games Â are common knowledge, but neither player knows which
game is actually being played. The actual game is chosen according to p. Without knowing
the actual game, but knowing the distribution, both players play strategies x ∈ ∆m and
y ∈ ∆n. When the game Ai is drawn, player 2 pays player 1 xAiy. Hence, the expected
payment made in this game is

K∑

i=1

pixA
iy =

K∑

i=1

x(piA
i)y = x

(
K∑

i=1

piA
i

)
y.

Thus the average game is equivalent to playing the matrix game given by A =
∑K

i=1 piA
i

and we can compute the value of the average game using linear programming as applied to
the matrix game A. We define the value of the matrix game as

v(p, Â) = v

(
K∑

i=1

piA
i

)
.

11.2.2 Incomplete-information zero-sum games

A two-person zero-sum game with incomplete information is given by matrices Akl ∈
Qm×n for each k ∈ {1, . . . , K} and l ∈ {1, . . . , L}. In this game, k is drawn according
to some common-knowledge distribution p ∈ ∆K and the value k is communicated to
player 1 (but not player 2). Similarly, l is drawn according to some common-knowledge
distribution q ∈ ∆L and is communicated to player 2 only. Having learned their respective

2We note that (11.3) and (11.4) are duals of each other and hence the strong duality theorem of linear
programming can be used to prove the minimax theorem. See [32, pp. 230–233] for more details on the
relationship between linear programming and zero-sum games.

158

private values of k and l, both players play mixed strategies xk and yl yielding the expected
payment xkAklyl from player 2 to player 1. Given the probability distributions p and q and
strategies X = {x1, . . . ,xK} and Y = {y1, . . . ,yL}, the expected payment made in the
game is

m∑

i=1

n∑

j=1

K∑

k=1

L∑

l=1

pkqlA
kl
ijx

k
i y

l
j.

There is a linear programming formulation for finding minimax solutions for two-person
zero-sum games with incomplete information [125], but we do not describe it here as we
do not need it in this chapter.

11.2.3 Repeated incomplete-information zero-sum games

A repeated two-person zero-sum game with incomplete information is defined by the same
data as the single-shot setting described above, but the game is played differently. As
before, k is drawn according to p ∈ ∆K and communicated to player 1 only, and l is drawn
according to q ∈ ∆L and communicated to player 2 only. Now, however, the game Akl is
repeated. After each stage i, the players only observe each other’s actions, si1 and si2. In
particular, the payment Akl

si1s
i
2

in each round i is not observed. (If it were, the players would
quickly be able to “reverse engineer” the actual state of the world.)

The class of games described in the previous paragraph are two-person zero-sum re-
peated games with lack of information on both sides, since both players 1 and 2 are unin-
formed about some aspect of the true state of the world. In this chapter, we limit ourselves
to two-person zero-sum repeated games with lack of information on one side. In this setting,
player 1 (the informed player) is told the true state of the world. Player 2, the uninformed

player, is not told anything, i.e., we assume |L| = 1. We must consider this more specific
class of games for several reasons.

• The first reason is that the notion of value in games with lack of information on
both sides is unclear. There are two approaches to studying the repeated games in
this model. The first is to consider the n-stage game, denoted Γn, and its value v(Γn)

(which clearly exists since Γn is finite), and then determine limn→∞ v(Γn), if it exists.
(Observe that Γ1 is the same as the game described in Section 11.2.2.) The second
approach is to consider the infinitely-repeated game, denoted Γ∞, and determine its
value v(Γ∞) directly, if it exists. In two-person zero-sum repeated games with lack
of information on one side, both limn→∞ v(Γn) and v(Γ∞) exist and are equal, so
either approach is suitable [6]. However, there are games with lack of information on

159

both sides for which v(Γ∞) does not exist (although it is known that limn→∞ v(Γn)

exists [107]).

• The second reason involves the choice of modeling payoffs in repeated games with
incomplete information. As discussed above, the players do not observe the payoffs
in each stage. How then does one even evaluate a player’s strategy or consider the
notion of value? It is customary to consider the mean-payoff, so we say that after the
N -th stage, player 1 receives a payoff

1

N

N∑

i=1

Aklsi1si2

from player 2.

As an alternative to the mean-payoff model, one could also study the seemingly more
natural λ-discounted game Γλ as λ→ 0. This game is repeated infinitely many times
and player 1 receives the payoff

∞∑

i=1

λ(1− λ)i−1Aklsi1si2

from player 2. It can be shown that

v(Γ∞) = lim
n→∞

v(Γn) = lim
λ→0

v(Γλ)

where v(Γ∞) exists [151, Lemma 3.1]. Since, as discussed in the previous point,
this condition holds for games with lack of information on one side, we have that the
value of the game is the same regardless of which payoff metric we choose.

Given this flexibility in choice of payoff measure, we simply restrict ourselves to
studying the mean-payoff game for computational reasons.

• Finally, as we will elaborate in Section 11.4, our optimization approach for comput-
ing optimal strategies in the game depends heavily on a characterization of equilib-
rium strategies that unfortunately only holds for games with lack of information on
one side.

In summary, we limit ourselves to the one-sided lack of information setting for various
conceptual and computational reasons. Developing concepts and algorithms for the more
general two-sided setting is an important area of future research which we discuss further
in Section 11.6.

160

11.3 Examples

Before describing our algorithms for computing both the value and optimal strategies for
games in our model, we discuss some classical examples that illustrate the richness and
complexity of our model.

In any repeated game with incomplete information, the players must take into account
to what extent their actions reveal their private information, and to what extent this reve-
lation will affect their future payoffs. In the following three subsections, we present three
examples where the amount of information revelation dictated by the optimal strategy dif-
fers. The first two examples are due to Aumann and Maschler [6] and the third is due to
Zamir [164].

11.3.1 Completely unrevealing strategy

Our first example is given in Figure 11.1. There are two possible states of the world, A
and B, and each is chosen by nature with probability 0.5. The true state of the world is
communicated to player 1.

State A
L R

U 1 0

D 0 0

State B
L R

U 0 0

D 0 1

Figure 11.1: The stage games for the unrevealing example. If the state of the world is State
A, then the game on the left is played. Otherwise, the game on the right is played.

Consider what happens if player 1, after being informed that the true state is A, plays
U every time. (This is a weakly dominant strategy for player 1 in the state A game.)
Eventually it will occur to player 2, who is observing player 1’s actions, that player 1 is
playing U because the players are in state A and player 1 is hoping to get the payoff of 1.
Observing this, player 2 will switch to playing R, guaranteeing a payoff of 0.

A similar line of reasoning in the case of state B appears to demonstrate that player 1
can only achieve a long-term payoff of 0 as player 2 will eventually figure out what actual
game is being played. However, somewhat unintuitively, consider what happens if player
1 ignores her private signal. Then no matter what strategy player 1 uses, player 2 will not
be able to infer the game being played. In fact, it as if the players are playing the average

161

game in Figure 11.2. In this game, both players’ (unique) optimal strategy is to play both of
their actions with probability 0.5, for an expected payoff of 0.25. Thus player 1 achieves an
average expected payoff of 0.25, compared to the payoff of 0 that she would get if player
2 were able to infer the actual game from player 1’s action history. Note that player 1’s
strategy is completely non-revealing since player 2 will never be able to determine the true
state of the world based on player 1’s actions.

L R

U 1/2 0

D 0 1/2

Figure 11.2: The average game corresponding to the case where player 1 ignores her private
information in the game in Figure 11.1.

Although we do not prove it here, the above strategy for player 1 is optimal. Intuitively,
if player 1 were to slightly alter her strategy to take advantage of her private information,
player 2 would observe this and would then deviate to the unique best response to player
1’s altered strategy. Thus, any advantage player 1 could possibly get would be short-term,
and would not be nearly enough to compensate for the long-term losses that player 2 would
be able to inflict.

11.3.2 Completely revealing strategy

Our second example is given in Figure 11.3. Again, there are two possible states of the
world, A and B, and each is chosen by nature with probability 0.5. The true state of the
world is communicated to player 1.

State A
L R

U -1 0

D 0 0

State B
L R

U 0 0

D 0 -1

Figure 11.3: The stage games for the revealing example. If the state of the world is State
A, then the game on the left is played. Otherwise, the game on the right is played.

Here, a payoff of 0 is clearly the best player 1 can hope for, and this outcome can
be achieved using the following strategy: “Always play D if the state of the world is A;

162

otherwise always play U”. No matter what strategy player 2 uses, player 1 obtains a payoff
of 0. Since this is the highest possible payoff, this is clearly an optimal strategy. Note that
this strategy is completely revealing since player 2 will be able to determine the true state
of the world.

11.3.3 Partially revealing strategy

Our third example is given in Figure 11.4. Again, there are two possible states of the world,
A and B, and each is chosen by nature with probability 0.5. The true state of the world is
communicated to player 1.

State A
L M R

U 4 0 2

D 4 0 -2

State B
L M R

U 0 4 -2

D 0 4 2

Figure 11.4: The stage games for the partially-revealing example. If the state of the world
is State A, then the game on the left is played. Otherwise, the game on the right is played.

If, as in the first example, player 1 completely ignores her private information, the
game reduces to the one in Figure 11.5. In this case, player 2 can always play R and thus
guarantee a payout of at most 0.

State A
L M R

U 2 2 0

D 2 2 0

Figure 11.5: The average game corresponding to the case where player 1 ignores her private
information in the game in Figure 11.4.

If, on the other hand, player 1 completely reveals her private information, then player
2 will have the following optimal strategy: “Always play M if the inferred state is A;
otherwise always play L”. Again, player 2 is able to guarantee a maximum payout of 0.

Suppose player 1 now employs the following strategy: “If the state of the world is A,
then with probability 0.75 always play U , otherwise always playD; if the state of the world
is B, then with probability 0.25 always play U , otherwise always play D”. Suppose further

163

that player 2 knows this strategy. If player 2 observes that player 1 is always playing U ,
then player 2 can infer that

Pr[A|U] =
Pr[U |A]Pr[A]

Pr[U]

=
Pr[U |A]Pr[A]

Pr[U,A] + Pr[U,B]

=
0.75 · 0.5

0.5 · 0.75 + 0.5 · 0.25

=
3

4
.

Hence, player 2 is faced with the decision problem

L M R

U 3 1 1

and so can do by best by achieving a payout of 1. A similar computation shows the same
is true if player 2 observes player 1 to always be playing D. Therefore, player 1 achieves a
payoff of 1, which is better than she would have done had she either completely revealed her
private information or completely ignored her private information. By partially revealing

this information, she has boosted her payoff.

11.4 Optimization formulation

In this section, we review Aumann and Maschler’s theorem for characterizing the value
of two-person zero-sum repeated games with lack of information on one side. Unfortu-
nately, this theorem does not include an algorithm for actually computing the value. Us-
ing this characterization we derive a non-convex optimization problem for computing the
value of the game (Section 11.4.1). Non-convex optimization problems are in generalNP-
complete [54] so there is little hope of employing a general-purpose algorithm for solving
non-convex optimization problems. Instead, we give a specialized algorithm that computes
the value of the game to within additive error ε for any given target accuracy ε > 0 (Sec-
tion 11.4.2). For games with a constant number of world states (but with a non-constant
number of actions available to the players) we can compute such a solution in time polyno-
mial in the number of actions and 1

ε
.

164

11.4.1 Derivation of the optimization formulation

Consider the two-person zero-sum game with incomplete information given by matrices
Ak ∈ Qm×n for k ∈ {1, . . . , K}, and let p∗ ∈ ∆K be the probability with which k is
chosen and communicated to player 1. (This is a game with lack of information on one
side only, so player 2 does not receive any information about the true state of the world.)
Denote the infinitely-repeated version of this game as Γ∞. We are interested in computing
v(Γ∞).

Recall the average game which for some p ∈ ∆K has payoff matrix

A(p) =
K∑

i=1

piA
i.

As discussed in Section 11.2.1, the value of this game is v(p, A) = v(A(p)) and can be
computed using LP. In what follows we omit A when it can be inferred from context, and
instead simply discuss the value function v(p).

Consider now the concavification of v(p) with respect to p, that is, the point-wise
smallest (with respect to v(·)) concave function that is greater than v for all p ∈ ∆K .
Letting v′ ≥ v denote that v′(p) ≥ v(p) for all p ∈ ∆K , we can formally write

cav v(p) = inf
v′
{v′(p) : v′ concave, v′ ≥ v} .

Aumann and Maschler’s surprising and elegant result [6] states that v(Γ∞) = cav v(p).
Our goal of computing v(Γ∞) can thus be achieved by computing cav v(p).

A basic result from convex analysis [28] shows that the convex hull of an n-dimensional
set S can be formed by taking convex combinations of n+ 1 points from S. Hence, the K-
dimensional point (p, cav v(p)) can be represented as the convex combination of K + 1

points (pi, v(pi)), i ∈ {1, . . . , K + 1}. (Note that p is (K − 1)-dimensional, not K-
dimensional.) In particular, for any (p, cav v(p)), there exists α ∈ ∆K+1 and points

{(
p1, v

(
p1
))
, . . . ,

(
pK+1, v

(
pK+1

))}

such that

p =
K+1∑

i=1

αip
i

and

cav v(p) =
K+1∑

i=1

αiv(pi).

165

Hence, we can rewrite the problem of computing cav v(p) as the following optimization
problem:

max
K+1∑

i=1

αiv(pi)

(P1) such that
K+1∑

i=1

αip
i = p

pi ∈ ∆K for i ∈ {1, . . . , K + 1}
α ∈ ∆K+1

A solution to Problem P1 therefore yields the value of Γ∞. Unfortunately, this does
not immediately suggest a good algorithm for solving this optimization problem. First, the
optimization problem depends on the quantities v(pi) for variables pi. As discussed in
Section 11.2.1, the value v(pi) is itself the solution to an optimization problem (namely
a linear program), and hence a closed-form expression is not readily available. Second,
the first constraint is non-linear and non-convex. Continuous optimization technology is
much better suited for convex problems [116], and in fact non-convex problems are NP-
complete in general [54]. In the following subsection, we present a numerical algorithm
for solving Problem P1 with arbitrary accuracy ε.3

11.4.2 Solving the formulation

Our algorithm is closely related to uniform grid methods which are often used for solv-
ing extremely difficult optimization problems when no other direct algorithms are avail-
able [116]. Roughly speaking, these methods discretize the feasible space of the problem
and evaluate the objective function at each point. Our problem differs from the problems
normally solved via this approach in two ways. The first is that the feasible space of Prob-
lem P1 has additional structure not normally encountered. Most uniform grid methods have

3Unfortunately, our algorithm cannot solve Problem P1 exactly, but rather only to within additive error
ε. However, this appears unavoidable since there are games for which the (unique) optimal play of player
1 involves probabilities that are irrational numbers. An example of such a game is due to Aumann and
Maschler [6, p. 79–81]. This immediately implies that there does not exist a linear program whose coefficients
are arithmetically computed from the problem data whose solution yields an optimal strategy to Problem P1
since every linear program with rational coefficients has a rational solution. Furthermore, any numerical
algorithm will not be able to compute an exact solution for similar reasons. Note that this is very different
from the case of two-person zero-sum games in which optimal strategies consisting of rational numbers as
probabilities always exist.

166

a hyper-rectangle as the feasible space. In contrast, our feasible space is the product of sev-
eral simplices of different dimension, which are related to each other via a non-convex
equality constraint (the first constraint in Problem P1). Second, evaluating the objective
function of Problem P1 is not straightforward as it depends on several values of v(pi)

which are themselves the result of an optimization problem.

As above we consider a game given by K matrices Ak, but now for simplicity we
require the rational entries Akij to be in the unit interval [0, 1]. This is without loss of
generality since player utilities are invariant with respect to positive affine transformations
and so the necessary rescaling does not affect their strategies.

Our algorithm for solving Problem P1 within additive error ε proceeds as follows.

Procedure SolveP1

1. Let C = d1
ε
e.

2. Let Z(C) =
{(

d1

C
, . . . , dK

C

)
: di ∈ N,

∑K
i=1 di = C

}
. Denote the points of Z(C) as

p1, . . . ,p|Z(C)|.

3. For each point pi ∈ Z(C), compute and store v(pi) using linear program (11.3).

4. Solve linear program P2:

max

|Z(C)|∑

i=1

αiv(pi)

(P2) such that

|Z(C)|∑

i=1

αip
i ≤ p

α ∈ ∆|Z(C)|

5. Output the value of linear program P2 as an approximation of the value of the game.

We now analyze the above algorithm. We first recall the following classic fact about
the value function v(P).

Lemma 11 v(p) is Lipschitz with constant 1, that is,

|v(p)− v(p′)| ≤ ‖p− p′‖∞.

167

PROOF. This is immediate in our case since we assume that all entries of A are in the range
[0, 1]. �

Before presenting our main theorem, we present a technical lemma which shows that
our discretization (i.e., our design of Z(C), is sufficiently refined. The proof is immediate
from the definition of Z(C) and is omitted.

Lemma 12 Let p ∈ ∆K , ε > 0, and C = dK
ε
e. There exists q ∈ Z(C) such that

‖p− q‖∞ ≤
1

C
.

Theorem 13 Let v(Γ∞) be the value of the infinitely-repeated game and let v∗ be the value

output by the above algorithm with input ε > 0. Then

v(Γ∞)− v∗ ≤ ε.

PROOF. We only need to show that there exists a feasible solution to the linear program
P2 whose objective value satisfies the inequality (the optimal answer to the linear program
could be even better). Let ᾱ, p̄1, . . . , p̄K+1 be optimal solutions to Problem P1. We con-
struct a feasible solution α to linear program P2 as follows. For each i ∈ {1, . . . , K + 1},
choose pj ∈ Z(C) such that ‖p̄i − pj‖∞ is minimized (breaking ties arbitrarily) and set
αj = ᾱi. Assign η(i) = j. Leave all other entries of α zero. Let N = {i : αi > 0} be the
index set for the positive entries of α and let

v =

|Z(C)|∑

i=1

αiv(pi).

Clearly, this is a lower bound on the objective value of linear program P2. Now we can

168

write:

v(Γ∞)− v =
K+1∑

i=1

ᾱiv
(
p̄i
)
−
|Z(C)|∑

i=1

αiv
(
pi
)

=
K+1∑

i=1

ᾱiv
(
p̄i
)
−
∑

i∈N

αiv
(
pi
)

=
K+1∑

i=1

ᾱiv
(
p̄i
)
−

K+1∑

i=1

αη(i)v
(
pη(i)

)

=
K+1∑

i=1

ᾱiv
(
p̄i
)
−

K+1∑

i=1

ᾱη(i)v
(
pη(i)

)

=
K+1∑

i=1

ᾱi
[
v
(
p̄i
)
− v

(
pη(i)

)]

≤
K+1∑

i=1

ᾱi
∥∥p̄i − pη(i)

∥∥
∞

≤
K+1∑

i=1

ᾱi
1

C
=

1

C
≤ ε

The first inequality is by Lemma 11, the second inequality is by Lemma 12, and the third
inequality is by the definition of C. �

We now analyze the time complexity of our algorithm. We first state a simple lemma.

Lemma 14 For C = d1
ε
e the set

Z(C) =

{(
d1

C
, . . . ,

dK
C

)
: di ∈ N,

K∑

i=1

di = C

}

defined in step 2 of the above algorithm satisfies

|Z(C)| =
(
C +K − 1

K − 1

)
≤ (C + 1)K .

We analyze our algorithm in terms of the number of linear programs it solves. Note that
each linear program is solvable in polynomial-time, e.g., by the ellipsoid method [81] or by
interior-point methods [163]. Step 3 of the algorithm clearly makes |Z(C)| calls to a linear
program solver. By Lemma 14, we have |Z(C)| ≤ (C + 1)K . Each of these linear program
has m+ 1 variables and n+ 1 constraints, where m and n are the numbers of actions each
player has in each stage game.

Similarly, the linear program solved in step 4 of the algorithm also has at most |Z(C)| ≤
(C + 1)K variables. Hence we have:

169

Theorem 15 The above algorithm solves (C+ 1)K linear program that are of size polyno-

mial in the size of the input data, and solves one linear program with (C + 1)K variables.

Therefore, for a fixed number of possible states K, our algorithm runs in time polyno-
mial in the number of actions available to each player and in 1

ε
.

11.5 Finding the players’ strategies

In this section, we demonstrate how we can use the output of our algorithm to construct
the player’s strategies. The strategy of player 1 (the informed player) can be constructed
explicitly from the values of the variables in the linear program P2 solved in our algorithm.
Player 2 (the uninformed player) does not have such an explicitly represented strategy.
However, we can use existing approaches (in conjunction with the output from our algo-
rithm) to describe a simple algorithmic procedure for player 2’s strategy.

11.5.1 The informed player’s strategy

As alluded to in the examples, player 1’s optimal strategy is of the following form. Based
on the revealed choice of nature, player 1 performs a type-dependent lottery to select some
distribution q ∈ ∆K . Then she always plays as if the stage game were the average game
induced by a distribution that does not reveal the true state of the world to player 2.

Let α,p1, . . . ,pK+1 be solutions to Problem P1. The following strategy is optimal for
player 1 [6].

Let k ∈ {1, . . . , K} be the state revealed (by nature) to player 1. Choose
i ∈ {1, . . . , K + 1} with probability

αip
i
k

pk

where p = {p1, . . . , pk} is the probability that natures chooses state k. Play
the mixed equilibrium strategy corresponding to the average game given by
distribution pi in every stage.

Thus the informed player is using her private information once and for all at the very begin-
ning of the infinitely-repeated game, and then playing always as if the game were actually
the average game induced by the distribution pi. The strength of this strategy lies in the fact

170

that player 2, after observing player 1’s strategy, is unable to determine the actual state of
nature even after learning which number i player 1 observed in her type-dependent lottery.

This surprisingly and conceptually simple strategy immediately suggests a similar strat-
egy for player 1 based on the output of our algorithm. Let α be a solution to linear program
P2 solved during the execution of our algorithm, let {p1, . . . ,p|Z(C)|} = Z(C), and let k
be the actual state of nature. The strategy is as follows: “Choose i ∈ {1, . . . , |Z(C)|} with
probability

αip
i
k

pk
.

Play a mixed equilibrium strategy to the average game corresponding to the distribution
pi in every stage thereafter”. Using reasoning completely analogous to the reasoning of
Aumann and Maschler [6], this strategy guarantees player 1 a payoff of at least v(Γ∞)− ε.
(If we were able to solve Problem P1 optimally then we would have ε = 0.)

11.5.2 The uninformed player’s strategy

We now describe how player 2’s strategy can be constructed from the solution to our al-
gorithm. Unlike in the case of player 1, there is no concise, explicit representation of the
strategy. Rather the prescription is in the form of an algorithm.

The driving force behind this technique is Blackwell’s approachability theory [20]
which applies to games with vector payoffs.4 The basic idea is that player 2, instead of
attempting to evaluate her expected payoff, instead considers her vector payoff, and then
attempts to force this vector payoff to approach some set.

Because cav v(p) is concave, there exists z ∈ RK such that

K∑

i=1

pizi = cav v(p)

and
K∑

i=1

qizi ≥ cav v(q), ∀q ∈ ∆K .

Let S =
{
s ∈ RK |s ≤ z

}
. Blackwell’s approachability theorem states that there exists a

strategy for player 2 such that for any strategy of player 1, player 2 can receive a vector
payoff arbitrarily close (in a precise sense) to the set S. Since S can be interpreted as the

4We do not include a full description of this theory here. Complete descriptions are provided by Myer-
son [111, pp. 357–360], Sorin [151, Appendix B], or Blackwell’s original paper [20].

171

set of affine functions majorizing v(p) (and, hence, majorizing cav v(p)), then player 2
can force a payout arbitrarily close to the payoff that player 1 guarantees.

Following from the above discussion, we can state the following optimal strategy for
player 2. For each stage n and each i ∈ K, let uin be player 2’s payout to player 1 (given
that the state of the world is actually i). Now define

win =

∑n
j=1 u

i
j

n

to be player 2’s average payoff vector to player 1. In stage 1 and in any stage n where
wn = (w1

n, . . . , w
K
n) ∈ S, let player 2 play an arbitrary action (this is acceptable since so

far player 2 is doing at least as well as possible). At stage n where wn 6∈ S, let player 2
choose her move according to a distribution y satisfying

min
y∈∆n

max
x∈∆m

K∑

i=1

(
win−1 − εi(wn−1)

)
xAiy (11.5)

where ε(wn−1) is the (unique) point in S that is closest to wn−1. Blackwell’s approacha-
bility theorem [20] states that player 2’s vector payoff converges to S regardless of player
1’s strategy.

The above discussion thus shows how player 2, using the information output by our
algorithm, can be used to generate a strategy achieving the optimal payoff. In each stage,
at most all that is required is solving an instance of Equation 11.5, which can be solved in
polynomial time using linear programming.

11.6 Conclusions and future directions

In this chapter we studied computational approaches for finding optimal strategies in re-
peated games with incomplete information. In such games, an agent must carefully weigh
the tradeoff between exploiting its information to achieve a short-term gain versus carefully
concealing its information so as not to give up a long-term informed advantage. Although
the theoretical aspects of these games have been studied, this is the first work to develop
algorithms for solving for optimal strategies. For the case where one player is informed

about the true state of the world and the other player is uninformed, we derived a non-
convex mathematical programming formulation for computing the value of the game, as
well as optimal strategies for the informed player. We then described an algorithm for solv-
ing this difficult optimization problem to within arbitrary accuracy. We also described a

172

method for finding the optimal strategy for the uninformed player based on the output of
the algorithm.

Directions for future research are plentiful. This chapter has only analyzed the case of
one-sided information. Developing algorithms for the case of lack of information on both
sides would be an interesting topic. However, this appears difficult. For one, the notion of
the value of the game is less well understood in these games. Furthermore, there is no obvi-
ous optimization formulation that models the equilibrium problem (analogous to Problem
P1). Other possible directions include extending this to non-zero-sum games [72] as well
as to games with many players. Again, these tasks appear difficult as the characterizations
of equilibrium strategies become increasingly complex.

Yet another possible algorithmic approach would be to tackle the problem via Fenchel
duality (Rockafellar [129] is a standard reference for this topic). Fenchel duality has been
employed as an alternative method of proving various properties about repeated games [41,
42]. In particular, the Fenchel biconjugate of v(p) yields cav v(p). Given the close rela-
tionship between Fenchel duality and optimization theory, an intriguing possibility would
be to use Fenchel duality to derive an improved optimization algorithm for the problem
studied in this chapter.

The class of games we study is a special case of the more general class of stochastic

games [145]. That class of games allows for a much richer signaling structure (rather
than the limited signaling structure we consider in which only the players’ actions are
observable), as well as transitioning to different stage games based on the choices of the
players and possible chance moves. Developing a solid algorithmic understanding of the
issues in those richer games is another important area of future research.

173

174

Part IV

Summary

175

Chapter 12

Summary

In this thesis we presented several algorithms for abstracting and solving sequential imper-
fect information games.

On the abstraction side, we investigated three broad families of abstraction: information

abstraction, action abstraction, and stage abstraction. Our abstraction techniques apply to
n-person general-sum games. Within information abstraction, we developed both lossless
and lossy abstraction algorithms. In the context of lossless abstraction, we introduced the
ordered game isomorphic abstraction transformation. Our lossless abstraction algorithm,
GameShrink, exhaustively applies the transformations and we used it to solve Rhode Island
Hold’em poker, a game tree with more than 50 million nodes. At the time of our solving
this game, it was the largest sequential imperfect information game solved by over four
orders of magnitude. In the context of lossy information-based abstraction, we developed
four increasingly sophisticated and effective algorithms that take into account strategically-
relevant aspects of the game. The first algorithm is a relaxation of our GameShrink lossless
abstraction algorithm. The second algorithm applies k-means clustering and integer pro-
gramming to find optimized, balanced abstractions. The third algorithm extends the second
algorithm to incorporate potential into the metric for identifying strategically similar states.
The fourth algorithm makes use of strategy-based abstraction. We performed controlled
experiments to identify where each of the algorithms are best applicable.

In the context of no-limit Texas Hold’em poker, we developed and applied action ab-
straction for discretizing the huge action space. In addition to developing this action ab-
straction, we also developed a method for mapping real-world actions into our model’s
representation of actions.

We evaluated all of our abstraction algorithms in the context of poker, and our algo-

177

rithms have led to the creation of poker-playing programs that are among the very best in
the world. In the 2008 AAAI Computer Poker Competition, the latest versions of our limit
and no-limit Texas Hold’em programs won the most chips overall.

On the equilibrium-finding side, we developed new algorithms for finding ε-equilibria
in two-person zero-sum games. In one algorithm, we adapted Nesterov’s excessive gap
technique to the equilibrium-finding problem, and we introduced heuristics which speed
up the algorithm in practice, while not sacrificing the theoretical worst-case guarantees of
the basic algorithm. Our experiments indicate an order of magnitude in speed improvement
through the use of our heuristics.

We also presented a gradient-based algorithm for finding ε-equilibria that is expo-
nentially faster than the prior gradient-based algorithms in terms of its dependence on ε.
The worst-case number of iterations needed to find an ε-equilibria for that algorithm is
O(log 1/ε) which matches the worst-case guarantees of memory-intensive interior-point
methods.

On the implementation side, we developed a novel matrix representation technique that
dramatically reduces the memory requirements of our gradient-based algorithms. The key
insight in this technique was the separation of player actions from informational signals.
We developed a sampling technique that allows us to find ε-equilibria even more rapidly,
and as an orthogonal technique we also developed parallelization schemes that allow our
algorithm to take advantage of the modern supercomputing architecture ccNUMA. All of
these techniques apply to all of the gradient-based algorithms we discussed in this thesis.

In a slightly tangential research direction, we also developed an equilibrium-finding al-
gorithm for the particular case of repeated games of imperfect information with asymmetric
information.

178

Bibliography

[1] Tim Abbott, Daniel Kane, and Paul Valiant. On the complexity of two-player win-
lose games. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), 2005.

[2] Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Annalen,
99:118–133, 1928.

[3] Rickard Andersson. Pseudo-optimal strategies in no-limit poker. Master’s thesis,
Umeå University, May 2006.

[4] Jerrod Ankenman and Bill Chen. The Mathematics of Poker. ConJelCo LLC, 2006.

[5] David Applegate, Guy Jacobson, and Daniel Sleator. Computer analysis of sprouts.
Technical Report CMU-CS-91-144, Carnegie Mellon University, 1991.

[6] Robert J. Aumann and Michael Maschler. Repeated Games with Incomplete Infor-
mation. MIT Press, 1995. With the collaboration of R. Stearns. This book contains
updated versions of four papers originally appearing in Report of the U.S. Arms Con-
trol and Disarmament Agency, 1966–68.

[7] Richard Bellman. On games involving bluffing. Rendiconti del Circolo Matematico
di Palermo, 1(2):139–156, 1952.

[8] Richard Bellman and David Blackwell. Some two-person games involving bluffing.
Proceedings of the National Academy of Sciences, 35:600–605, 1949.

[9] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your
Mathematical Plays. Academic Press, New York, 1983.

[10] Nivan A. R. Bhat and Kevin Leyton-Brown. Computing Nash equilibria of action-
graph games. In Proceedings of the 20th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI), Banff, Canada, 2004. AUAI Press.

[11] Daniel Bienstock. Potential Function Methods for Approximately Solving Linear
Programming Problems. Kluwer International Series, Dordrecht, 2002.

[12] Darse Billings. Algorithms and Assessment in Computer Poker. PhD thesis, Univer-
sity of Alberta, 2006.

179

[13] Darse Billings, Michael Bowling, Neil Burch, Aaron Davidson, Rob Holte, Jonathan
Schaeffer, Terrance Schauenberg, and Duane Szafron. Game tree search with adap-
tation in stochastic imperfect information games. In Proceedings of the 4th Interna-
tional Conference on Computers and Games (CG), pages 21–34, Ramat-Gan, Israel,
July 2004. Springer-Verlag.

[14] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer,
Terence Schauenberg, and Duane Szafron. Approximating game-theoretic optimal
strategies for full-scale poker. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2003.

[15] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The chal-
lenge of poker. Artificial Intelligence, 134(1-2):201–240, 2002.

[16] Darse Billings and Morgan Kan. A tool for the direct assessment of poker decisions.
ICGA Journal, 29(3):119–142, 2006.

[17] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent mod-
eling in poker. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 493–499, Madison, WI, 1998.

[18] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Poker as an
experimental testbed for artificial intelligence research. In Proceedings of Canadian
Society for Computational Studies in Intelligence, 1998.

[19] Darse Billings, Lourdes Peña, Jonathan Schaeffer, and Duane Szafron. Using prob-
abilistic knowledge and simulation to play poker. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), Orlando, FL, 1999.

[20] David Blackwell. An analog of the minmax theorem for vector payoffs. Pacific
Journal of Mathematics, 6:1–8, 1956.

[21] Ben Blum, Christian R. Shelton, and Daphne Koller. A continuation method for
Nash equilibria in structured games. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003. Morgan
Kaufmann.

[22] Béla Bollobás. Combinatorics. Cambridge University Press, Cambridge, 1986.

[23] Émile Borel. Traité du calcul des probabilités et ses applications, volume IV of
Applications aux jeux des hazard. Gauthier-Villars, Paris, 1938.

[24] Ronen Brafman and Moshe Tennenholtz. A near-optimal polynomial time algorithm
for learning in certain classes of stochastic games. Artificial Intelligence, 121:31–47,
2000.

[25] George W. Brown. Iterative solutions of games by fictitious play. In Tjalling C.
Koopmans, editor, Activity Analysis of Production and Allocation, pages 374–376.
John Wiley & Sons, 1951.

180

[26] Kevin Burns. Heads-up face-off: On style and skill in the game of poker. In Style
and Meaning in Language, Art, Music, and Design: Papers from the 2004 Fall Sym-
posium, pages 15–22, Menlo Park, California, 2004. AAAI Press.

[27] Kevin Burns. Pared-down poker: Cutting to the core of command and control. In
Proceedings of the IEEE Symposium on Computational Intelligence and Games,
pages 234–241, Colchester, UK, 2005.

[28] C. Carathéodory. Uber den Variabiletätsbereich der Fourier’schen Konstanten
von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico de
Palermo, 32:193–217, 1911.

[29] André Casajus. Weak isomorphism of extensive games. Mathematical Social Sci-
ences, 46:267–290, 2003.

[30] Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash equilibrium. In
Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS),
2006.

[31] Fabian A. Chudak and Vania Eleutério. Improved approximation schemes for linear
programming relaxations of combinatorial optimization problems. In IPCO, pages
81–96, Berlin, Germany, 2005.

[32] Vasek Chvátal. Linear Programming. W. H. Freeman and Company, New York, NY,
1983.

[33] Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equi-
libria. Games and Economic Behavior, 63(2):621–641, 2008.

[34] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, second edition, 2001.

[35] William H. Cutler. An optimal strategy for pot-limit poker. American Mathematical
Monthly, 82:368–376, 1975.

[36] George Dantzig. A proof of the equivalence of the programming problem and the
game problem. In Tjalling Koopmans, editor, Activity Analysis of Production and
Allocation, pages 330–335. John Wiley & Sons, 1951.

[37] Aaron Davidson. Opponent modeling in poker: Learning and acting in a hostile
environment. Master’s thesis, University of Alberta, 2002.

[38] Aaron Davidson, Darse Billings, Jonathan Schaeffer, and Duane Szafron. Improved
opponent modeling in poker. In Proceedings of the 2000 International Conference
on Artificial Intelligence (ICAI’2000), pages 1467–1473, 2000.

[39] Ian Davidson and Ashwin Satyanarayana. Speeding up k-means clustering by boot-
strap averaging. In IEEE Data Mining Workshop on Clustering Large Data Sets,
2003.

181

[40] Boudewijn P. de Bruin. Game transformations and game equivalence. Technical
note x-1999-01, University of Amsterdam, Institute for Logic, Language, and Com-
putation, 1999.

[41] B. De Meyer. Repeated games, duality and the central limit theorem. Mathematics
of Operations Research, 21:237–251, 1996.

[42] B. De Meyer and D. Rosenberg. “Cav u” and the dual game. Mathematics of Oper-
ations Research, 24:619–626, 1999.

[43] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the complexity of
equilibria. In Proceedings of the 34th Annual ACM Symposium on the Theory of
Computing, pages 67–71, 2002.

[44] Nikhil R. Devanar, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani.
Market equilibrium via a primal-dual-type algorithm. In Proceedings of the 43rd
Annual Symposium on Foundations of Computer Science, pages 389–395, 2002.

[45] Susan Elmes and Philip J. Reny. On the strategic equivalence of extensive form
games. Journal of Economic Theory, 62:1–23, 1994.

[46] Chris Ferguson and Thomas S. Ferguson. On the Borel and von Neumann poker
models. Game Theory and Applications, 9:17–32, 2003.

[47] Chris Ferguson, Tom Ferguson, and Céphas Gawargy. Uniform(0,1) two-person
poker models, 2004. Available at http://www.math.ucla.edu/˜tom/
papers/poker2.pdf.

[48] Nicholas V. Findler. Studies in machine cognition using the game of poker. Com-
munications of the ACM, 20(4):230–245, 1977.

[49] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, Princeton, NJ, 1962.

[50] Yoav Freund and Robert Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999.

[51] Lawrence Friedman. Optimal bluffing strategies in poker. Management Science,
17(12):764–771, 1971.

[52] Drew Fudenberg and David Levine. The Theory of Learning in Games. MIT Press,
1998.

[53] Sam Ganzfried and Tuomas Sandholm. Computing an approximate jam/fold equilib-
rium for 3-agent no-limit Texas hold’em tournaments. In International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), 2008.

[54] Michael Garey and David Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

182

http://www.math.ucla.edu/~tom/papers/poker2.pdf
http://www.math.ucla.edu/~tom/papers/poker2.pdf

[55] Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity
considerations. Games and Economic Behavior, 1:80–93, 1989.

[56] Andrew Gilpin, Samid Hoda, Javier Peña, and Tuomas Sandholm. Gradient-based
algorithms for finding Nash equilibria in extensive form games. In 3rd International
Workshop on Internet and Network Economics (WINE), San Diego, CA, 2007.

[57] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with
O(log(1/ε)) convergence for ε-equilibrium in games. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2008.

[58] Andrew Gilpin and Tuomas Sandholm. Optimal Rhode Island Hold’em poker. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
1684–1685, Pittsburgh, PA, 2005. AAAI Press / The MIT Press. Intelligent Sys-
tems Demonstration.

[59] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player
via automated abstraction and real-time equilibrium computation. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 1007–1013, 2006.

[60] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for
imperfect information games, with application to Texas Hold’em poker. In Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
1168–1175, 2007.

[61] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect informa-
tion games. Journal of the ACM, 54(5), 2007.

[62] Andrew Gilpin and Tuomas Sandholm. Expectation-based versus potential-aware
automated abstraction in imperfect information games: An experimental comparison
using poker. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2008. Short paper.

[63] Andrew Gilpin and Tuomas Sandholm. Solving two-person zero-sum repeated
games of incomplete information. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2008.

[64] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-aware au-
tomated abstraction of sequential games, and holistic equilibrium analysis of Texas
Hold’em poker. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2007.

[65] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit
Texas Hold’em poker player: Discretized betting models and automatically gen-
erated equilibrium-finding programs. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2008.

[66] Matthew L. Ginsberg. Partition search. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 228–233, Portland, OR, 1996. AAAI Press.

183

[67] Matthew L. Ginsberg. GIB: Steps toward an expert-level bridge-playing program.
In Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI), Stockholm, Sweden, 1999. Morgan Kaufmann.

[68] J.-L. Goffin. On the convergence rate of subgradient optimization methods. Mathe-
matical Programming, 13:329–347, 1977.

[69] A. J. Goldman and J. J. Stone. A symmetric continuous poker model. Journal of
Research of the National Institute of Standards and Technology, 64(B):35–40, 1960.

[70] Srihari Govindan and Robert Wilson. A global Newton method to compute Nash
equilibria. Journal of Economic Theory, 110:65–86, 2003.

[71] Dan Harrington and Bill Robertie. Harrington on Hold’em Expert Strategy for No-
Limit Tournaments, Vol. 1: Strategic Play. Two Plus Two, 2004.

[72] Sergiu Hart. Nonzero-sum two-person repeated games with incomplete information.
Mathematics of Operations Research, 10:117–153, 1985.

[73] Jean-Baptiste Hirriart-Urruty and Claude Lemaréchal. Fundamentals of Convex
Analysis. Springer-Verlag, Berlin, 2001.

[74] Samid Hoda, Andrew Gilpin, and Javier Peña. Smoothing techniques for computing
Nash equilibria of sequential games. Available at Optimization Online, 2008.

[75] Bret Hoehn, Finnegan Southey, Robert C. Holte, and Valeriy Bulitko. Effective
short-term opponent exploitation in simplified poker. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 783–788, July 2005.

[76] Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic
games. Journal of Machine Learning Research, 4:1039–1069, 2003.

[77] R. Isaacs. A card game with bluffing. American Mathematical Monthly, 62:99–108,
1955.

[78] Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating market equilib-
ria. In Proceedings of the 6th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), 2003.

[79] Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing robust
counter-strategies. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 2007.

[80] S. Karlin and R. Restrepo. Multi-stage poker models. In Contributions to the Theory
of Games, volume 3 of Annals of Mathematics Studies, Number 39, pages 337–363.
Princeton University Press, Princeton, New Jersey, 1957.

[81] Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Math.
Doklady, 20:191–194, 1979.

184

[82] Craig A. Knoblock. Automatically generating abstractions for planning. Artificial
Intelligence, 68(2):243–302, 1994.

[83] Elon Kohlberg and Jean-Francois Mertens. On the strategic stability of equilibria.
Econometrica, 54:1003–1037, 1986.

[84] Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum
games in extensive form. Games and Economic Behavior, 4(4):528–552, October
1992.

[85] Daphne Koller and Nimrod Megiddo. Finding mixed strategies with small supports
in extensive form games. International Journal of Game Theory, 25:73–92, 1996.

[86] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computa-
tion of equilibria for extensive two-person games. Games and Economic Behavior,
14(2):247–259, 1996.

[87] Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and
solving games. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI), pages 1027–1034, Seattle, WA, 2001.

[88] Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic
problems. Artificial Intelligence, 94(1):167–215, July 1997.

[89] K. Korb, A. Nicholson, and N. Jitnah. Bayesian poker. In Proceedings of the 15th
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 343–350,
Stockholm, Sweden, 1999.

[90] David M. Kreps and Robert Wilson. Sequential equilibria. Econometrica,
50(4):863–894, 1982.

[91] H. W. Kuhn. Extensive games. Proc. of the National Academy of Sciences, 36:570–
576, 1950.

[92] H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games, volume 1 of Annals of Mathematics
Studies, 24, pages 97–103. Princeton University Press, Princeton, New Jersey, 1950.

[93] H. W. Kuhn. Extensive games and the problem of information. In H. W. Kuhn and
A. W. Tucker, editors, Contributions to the Theory of Games, volume 2 of Annals of
Mathematics Studies, 28, pages 193–216. Princeton University Press, Princeton, NJ,
1953.

[94] Guanghui Lan, Zhaosong Lu, and Renato D. C. Monteiro. Primal-dual first-order
methods with O(1/ε) iteration-complexity for cone programming, 2006. Available
at Optimization Online.

[95] Carlton Lemke and J. Howson. Equilibrium points of bimatrix games. Journal of
the Society of Industrial and Applied Mathematics, 12:413–423, 1964.

185

[96] Kevin Leyton-Brown and Moshe Tennenholtz. Local-effect games. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJCAI), Aca-
pulco, Mexico, 2003. Morgan Kaufmann.

[97] Richard Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games
using simple strategies. In Proceedings of the ACM Conference on Electronic Com-
merce (ACM-EC), pages 36–41, San Diego, CA, 2003. ACM.

[98] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games
with applications to complexity theory. In Proceedings of the Annual Symposium on
Theory of Computing (STOC), pages 734–740, Montreal, Quebec, Canada, 1994.

[99] Michael Littman. Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML), pages 157–
163, 1994.

[100] Michael Littman and Peter Stone. A polynomial-time Nash equilibrium algorithm
for repeated games. In Proceedings of the ACM Conference on Electronic Commerce
(ACM-EC), pages 48–54, San Diego, CA, 2003.

[101] Chao-Lin Liu and Michael Wellman. On state-space abstraction for anytime evalu-
ation of Bayesian networks. SIGART Bulletin, 7(2):50–57, 1996. Special issue on
Anytime Algorithms and Deliberation Scheduling.

[102] R. Duncan Luce and Howard Raiffa. Games and Decisions. John Wiley and Sons,
New York, 1957. Dover republication 1989.

[103] J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In 5th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, Berkeley, California, 1967. University of California Press.

[104] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green. Microeconomic Theory.
Oxford University Press, New York, NY, 1995.

[105] Richard D. McKelvey and Andrew McLennan. Computation of equilibria in finite
games. In H. Amann, D. Kendrick, and J. Rust, editors, Handbook of Computational
Economics, volume 1, pages 87–142. Elsevier, 1996.

[106] H. Brendan McMahan and Geoffrey J. Gordon. A fast bundle-based anytime algo-
rithm for poker and other convex games. In Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics (AISTATS), San Juan, Puerto
Rico, 2007.

[107] Jean-Franois Mertens and Shmuel Zamir. The value of two-person zero-sum re-
peated games with lack of information on both sides. International Journal of Game
Theory, 1:39–64, 1971.

186

[108] Donald Michie. Game-playing and game-learning automata. In L. Fox, editor, Ad-
vances in Programming and Non-Numerical Computation, pages 183–200. Perga-
mon, New York, NY, 1966.

[109] Peter Bro Miltersen and Troels Bjerre Sørensen. Computing sequential equilibria
for two-player games. In Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 107–116, Miami, FL, 2006. SIAM.

[110] Peter Bro Miltersen and Troels Bjerre Sørensen. A near-optimal strategy for a heads-
up no-limit Texas Hold’em poker tournament. In International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), 2007.

[111] Roger Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
Cambridge, 1991.

[112] John Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36:48–49, 1950.

[113] John F. Nash and Lloyd S. Shapley. A simple three-person poker game. In H. W.
Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games, volume 1,
pages 105–116. Princeton University Press, Princeton, NJ, 1950.

[114] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1999.

[115] Yurii Nesterov. A method for unconstrained convex minimization problem with rate
of convergence O(1/k2). Doklady AN SSSR, 269:543–547, 1983. Translated to
English as Soviet Math. Docl.

[116] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

[117] Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM
Journal of Optimization, 16(1):235–249, 2005.

[118] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103:127–152, 2005.

[119] Donald J. Newman. A model for “real” poker. Operations Research, 7:557–560,
1959.

[120] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
1994.

[121] Christos Papadimitriou and Tim Roughgarden. Computing equilibria in multi-player
games. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 82–91, Vancouver, BC, Canada, 2005. SIAM.

[122] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geo-
metric reasoning. In Knowledge Discovery and Data Mining, pages 277–281, 1999.

187

[123] Andrés Perea. Rationality in extensive form games. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2001.

[124] Avi Pfeffer, Daphne Koller, and Ken Takusagawa. State-space approximations for
extensive form games, July 2000. Talk given at the First International Congress of
the Game Theory Society, Bilbao, Spain.

[125] J.-P. Ponssard and Sylvain Sorin. The L-P formulation of finite zero-sum games with
incomplete information. International Journal of Game Theory, 9:99–105, 1980.

[126] Ryan Porter, Eugene Nudelman, and Yoav Shoham. Simple search methods for
finding a Nash equilibrium. Games and Economic Behavior, 63(2):642–662, 2008.

[127] David H. Reiley, Michael B. Urbancic, and Mark Walker. Stripped-down
poker: A classroom game with signaling and bluffing, February 2005.
Working paper. Available at http://economics.eller.arizona.edu/
downloads/working_papers/Econ-WP-05-11.pdf.

[128] Julia Robinson. An iterative method of solving a game. Annals of Mathematics,
54:296–301, 1951.

[129] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[130] I. Romanovskii. Reduction of a game with complete memory to a matrix game.
Soviet Mathematics, 3:678–681, 1962.

[131] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition, 2003.

[132] M. Sakaguchi. A note on the disadvantage for the sente in poker. Mathematica
Japonica, 29:483–489, 1984.

[133] M. Sakaguchi and S. Sakai. Partial information in a simplified two person poker.
Mathematica Japonica, 26:695–705, 1981.

[134] Tuomas Sandholm. Perspectives on multiagent learning. Artificial Intelligence,
171:382–391, 2007.

[135] Tuomas Sandholm and Andrew Gilpin. Sequences of take-it-or-leave-it offers: Near-
optimal auctions without full valuation revelation. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), 2006.

[136] Tuomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-integer program-
ming methods for finding Nash equilibria. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), pages 495–501, Pittsburgh, PA, 2005. AAAI
Press / The MIT Press.

188

http://economics.eller.arizona.edu/downloads/working_papers/Econ-WP-05-11.pdf
http://economics.eller.arizona.edu/downloads/working_papers/Econ-WP-05-11.pdf

[137] Rahul Savani and Bernhard von Stengel. Exponentially many steps for finding a
Nash equilibrium in a bimatrix game. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), pages 258–267, Rome, Italy, 2004. IEEE
Computer Society Press.

[138] Herbert E. Scarf. The approximation of fixed points of a continuous mapping. SIAM
Journal of Applied Mathematics, 15:1328–1343, 1967.

[139] Jonathan Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, New York, 1997.

[140] Jonathan Schaeffer. The games computers (and people) play. In Marvin V.
Zelkowitz, editor, Advances in Computers, volume 50, pages 189–266. Academic
Press, 2000.

[141] Terence Conrad Schauenberg. Opponent modelling and search in poker. Master’s
thesis, University of Alberta, 2006.

[142] Alex Selby. Optimal heads-up preflop poker, 1999.
http://www.archduke.demon.co.uk/simplex/.

[143] Reinhard Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-
frageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 12:301–324, 1965.

[144] Reinhard Selten. Evolutionary stability in extensive two-person games – correction
and further development. Mathematical Social Sciences, 16:223–266, 1988.

[145] Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sci-
ences, 39:1095–1100, 1953.

[146] Jiefu Shi and Michael Littman. Abstraction methods for game theoretic poker. In
CG ’00: Revised Papers from the Second International Conference on Computers
and Games, pages 333–345, London, UK, 2002. Springer-Verlag.

[147] Satinder P Singh, Vishal Soni, and Michael P Wellman. Computing approximate
Bayes-Nash equilibria in tree-games of incomplete information. In Proceedings of
the ACM Conference on Electronic Commerce (ACM-EC), pages 81–90, New York,
NY, 2004. ACM.

[148] David Sklansky. The Theory of Poker. Two Plus Two Publishing, fourth edition,
1999.

[149] Stephen J. J. Smith, Dana S. Nau, and Thomas Throop. Computer bridge: A big win
for AI planning. AI Magazine, 19(2):93–105, 1998.

[150] Alexander J. Smola, S. V. N. Vishwanathan, and Quoc Le. Bundle methods for
machine learning. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), Vancouver, Canada, 2007.

189

[151] Sylvain Sorin. A First Course on Zero-Sum Repeated Games. Springer, 2002.

[152] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch,
Darse Billings, and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In
Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence
(UAI), pages 550–558, July 2005.

[153] Nathan Sturtevant, Martin Zinkevich, and Michael Bowling. Prob-maxn: Opponent
modeling in n-player games. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 1057–1063, Boston, MA, 2006.

[154] Ken Takusagawa. Nash equilibrium of Texas Hold’em poker, 2000. Undergraduate
thesis, Stanford University.

[155] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

[156] Gerald Tesauro. Temporal difference learning and TD-gammon. Communications
of the ACM, 38(3), 1995.

[157] F. Thompson. Equivalence of games in extensive form. RAND Memo RM-759, The
RAND Corporation, January 1952.

[158] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[159] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, 1947.

[160] Bernhard von Stengel. Efficient computation of behavior strategies. Games and
Economic Behavior, 14(2):220–246, 1996.

[161] Bernhard von Stengel. Computing equilibria for two-person games. In Robert Au-
mann and Sergiu Hart, editors, Handbook of game theory, volume 3. North Holland,
Amsterdam, The Netherlands, 2002.

[162] Kevin Waugh, Dave Schnizlein, Michael Bowling, and Duane Szafron. Abstrac-
tion pathology in extensive games. In Proceedings of the Eighth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2009.

[163] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA,
1997.

[164] S. Zamir. Repeated games of incomplete information: Zero-sum. In R. J. Aumann
and S. Hart, editors, Handbook of Game Theory, Vol. I, pages 109–154. North Hol-
land, 1992.

[165] Martin Zinkevich, Michael Bowling, and Neil Burch. A new algorithm for generat-
ing equilibria in massive zero-sum games. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 2007.

190

[166] Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Re-
gret minimization in games with incomplete information. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NIPS), 2007.

191

	I Introduction and Background
	1 Overview
	1.1 Introduction
	1.2 Poker and artificial intelligence
	1.3 Thesis statement
	1.4 Summary of thesis contribution
	1.5 Organization

	2 Game Theory
	2.1 Extensive form games and perfect recall
	2.2 Solution concepts
	2.3 Standard algorithms for finding equilibria
	2.3.1 Algorithms for finding equilibria in normal form games
	2.3.2 Algorithms for finding equilibria in extensive form games
	2.3.3 Algorithmic approximations

	3 Poker
	3.1 Poker rules and variants
	3.1.1 Texas Hold'em
	3.1.2 Rhode Island Hold'em

	3.2 Related research on poker

	II Automated Abstraction
	4 Automated Abstraction Overview
	5 Lossless Information Abstraction
	5.1 Introduction
	5.2 Applications
	5.2.1 Application to Rhode Island Hold'em poker

	5.3 Games with ordered signals
	5.3.1 Rhode Island Hold'em modeled as an ordered game
	5.3.2 Information filters
	5.3.3 Strategies and Nash equilibrium

	5.4 Equilibrium-preserving abstractions
	5.4.1 Nontriviality of generalizing beyond this model

	5.5 GameShrink: An efficient algorithm for computing ordered game isomorphic abstraction transformations
	5.5.1 Efficiency enhancements

	5.6 Approximation methods
	5.6.1 State-space approximations
	5.6.2 Algorithmic approximations

	5.7 Related research
	5.8 Summary

	6 Lossy Information Abstraction
	6.1 Introduction
	6.2 Stage-based sequential games
	6.2.1 Abstraction representation in stage-based sequential games

	6.3 Lossy version of GameShrink
	6.3.1 GS1: Application of lossy GameShrink and real-time equilibrium computation for the endgame in Texas Hold'em

	6.4 Expectation-based automated abstraction using optimization
	6.4.1 GS2: Application of expectation-based abstraction to Texas Hold'em
	6.4.2 Evaluation

	6.5 Potential-aware automated abstraction
	6.5.1 Computing the abstraction for the first stage
	6.5.2 Computing the abstraction for intermediate stages
	6.5.3 Computing the abstraction for leaf stages
	6.5.4 GS3: Application of potential-aware abstraction and holistic game solving to Texas Hold'em

	6.6 Strategy-based abstraction and results from the 2008 AAAI Computer Poker Competition
	6.7 Evaluation of information-based abstraction algorithms
	6.7.1 Comparing agents head-to-head
	6.7.2 Comparing agents against equilibrium play
	6.7.3 Comparing agents against their nemeses: Worst-case performance
	6.7.4 Evaluating abstractions based on estimating the value of the game
	6.7.5 Summary of experiments comparing information abstraction algorithms

	6.8 Conclusions and future research

	7 Stage and Action Abstraction
	7.1 Introduction
	7.2 Stage abstraction
	7.3 Action abstraction in limit poker
	7.4 Action abstraction in no-limit poker
	7.4.1 Betting model
	7.4.2 Reverse mapping
	7.4.3 Tartanian: Our first player for No-Limit Texas Hold'em
	7.4.4 Tartanian2: Better action abstraction

	7.5 Conclusions and future research

	III Equilibrium-Finding Algorithms
	8 Gradient-Based Algorithms for Solving Zero-Sum Games
	8.1 Introduction
	8.2 First-order methods
	8.3 Excessive gap technique
	8.3.1 Nice prox functions
	8.3.2 Experimental setup
	8.3.3 Experimental comparison of prox functions
	8.3.4 Heuristics for improving speed of convergence

	8.4 Solving matrix games with O(log1/) convergence
	8.4.1 Iterated smoothing scheme for matrix games
	8.4.2 The condition measure (A)
	8.4.3 Proof of Theorem 8
	8.4.4 The subroutine smoothing for matrix games

	8.5 Solving sequential games with O(log1/) convergence
	8.5.1 The subroutine smoothing for sequential games
	8.5.2 ComplexSubproblem example

	8.6 Computational experiments on O(log1/) algorithm
	8.7 Summary

	9 Sampling for Speeding Up Gradient-Based Algorithms
	9.1 Introduction
	9.2 Main idea
	9.3 Static sampling
	9.4 Dynamic sampling
	9.5 Summary

	10 Implementation of Gradient-Based Algorithms
	10.1 Introduction
	10.2 Customizing the algorithm for stage-based sequential games
	10.2.1 Addressing the space requirements
	10.2.2 Speedup from parallelizing the matrix-vector product

	10.3 Exploiting ccNUMA architecture
	10.3.1 Details of our approach
	10.3.2 Experiments

	10.4 Summary

	11 Solving Repeated Games of Imperfect Information
	11.1 Introduction
	11.2 Preliminaries
	11.2.1 Complete-information zero-sum games
	11.2.2 Incomplete-information zero-sum games
	11.2.3 Repeated incomplete-information zero-sum games

	11.3 Examples
	11.3.1 Completely unrevealing strategy
	11.3.2 Completely revealing strategy
	11.3.3 Partially revealing strategy

	11.4 Optimization formulation
	11.4.1 Derivation of the optimization formulation
	11.4.2 Solving the formulation

	11.5 Finding the players' strategies
	11.5.1 The informed player's strategy
	11.5.2 The uninformed player's strategy

	11.6 Conclusions and future directions

	IV Summary
	12 Summary
	References

