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Abstract

Visual inference is a complex and ambiguous problem, and these properties
have presented a significant obstacle to developing effective algorithms for
many visual tasks. In this thesis, I begin by developing a methodology for
statistical inference that is particularly suited for the complex tasks of visual
perception. The approach is based on Belief Propagation, a highly successful
inference technique that has lead to notable progress in a number of statis-
tical inference applications. Unfortunately, the computational complexity of
belief propagation allows it to be applied to only fairly simple statistical dis-
tributions, thus excluding many of the rich statistical problems encountered
in computer vision. In this thesis, I introduce a new technique to reduce the
computational complexity of belief propagation from exponential to linear in
the clique size of the underlying graphical model. These advancements allow
us to efficiently solve inference problems that were previously intractable.
I then apply this methodology to several visual tasks. In one example, I
develop a statistical approach to the problem of estimating 3D shape from
shading in a single image, a classic problem of computer vision that has been
a subject of research since the lunar surface studies of the 1920’s. Previous
approaches typically have worked by forming a deterministic model of im-
age formation and then attempting to invert this model. These approaches
struggled with the nonlinearity and ambiguity inherent in the problem; the
best algorithms were described as “generally poor” in a recent survey [109].
The statistical approach introduced here produces fairly convincing recon-
structions, and also offers several novel flexibilities that previous approaches
lack.
One difficulty faced by shape-from-shading and several other areas of com-
puter vision is the ambiguity inherent in the problem. To produce success-
ful statistical inference in an underconstrained problem, we must exploit a
strong statistical prior. While previous applications of belief propagation
could only be run using weaker, pairwise-connected models of spatial priors,
the efficient techniques introduced here make more sophisticated approaches
possible. Additionally, I address the issue of learning the parameters of spa-
tial priors, by leveraging the power of efficient belief propagation towards
efficient learning. These learned spatial priors are then applied successfully
to image denoising and shape-from-shading.
———————————————————



Contents

1 Introduction 2

2 Related Work 7
2.1 Statistics of natural 2D images . . . . . . . . . . . . . . . . . 7
2.2 Statistics of natural range images . . . . . . . . . . . . . . . 8
2.3 Statistics of natural 3D scenes . . . . . . . . . . . . . . . . . 9
2.4 Statistical Approaches to 3D Shape Inference . . . . . . . . . 14

2.4.1 Probabilistic Approaches to Shape From Shading . . . 14
2.4.2 Learning from Computer Generated Images . . . . . . 17
2.4.3 Objects of Known Category . . . . . . . . . . . . . . . 19
2.4.4 3D Shape Inference From Multiple Images . . . . . . . 19
2.4.5 Statistical Inference of the Gist of the Scene and Coarse

Shape Estimates . . . . . . . . . . . . . . . . . . . . . 20

3 Methods of Statistical Inference 24
3.1 Defining the Problem: A Statistical Approach to Depth Infer-

ence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Methods of Statistical Inference . . . . . . . . . . . . . . . . . 26
3.3 Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Convergent Loopy Belief Propagation . . . . . . . . . . . . . 31

4 Efficient Belief Propagation 34
4.1 Efficient Belief Propagation Using Linear Constraint Nodes . 35

4.1.1 Linear Constraint Nodes . . . . . . . . . . . . . . . . . 36
4.1.2 Linear Constraint Nodes and Projection Pursuit Den-

sity Estimation Methods . . . . . . . . . . . . . . . . 38
4.1.3 Hard Linear Constraint Nodes . . . . . . . . . . . . . 40

4.2 Nonlinear Constraint Nodes . . . . . . . . . . . . . . . . . . . 44

i



4.3 Transformed Variable Elimination . . . . . . . . . . . . . . . 45
4.3.1 Products of Linear Constraint Nodes . . . . . . . . . . 48
4.3.2 Embedding Additional Potentials . . . . . . . . . . . . 50
4.3.3 Sums of Linear Constraint Nodes . . . . . . . . . . . . 52

4.4 Message Representation for Belief Propagation . . . . . . . . 53
4.4.1 Parametric Message Representation . . . . . . . . . . 53
4.4.2 Particle-Based Message Representations . . . . . . . . 54
4.4.3 Histogram-Based Message Representations . . . . . . . 56

4.5 A Particle/Histogram Hybrid Approach . . . . . . . . . . . . 59
4.6 Convergent Belief Propagation . . . . . . . . . . . . . . . . . . 61
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Spatial Priors 64
5.1 Fields of Experts using Linear Constraint Nodes . . . . . . . 66
5.2 Fields of Experts using Particle/Histogram Hybrid Represen-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Shape From Shading 78
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Learning 89
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Methods of Learning MRF Parameters . . . . . . . . . . . . . 92
7.3 Optimizing MRFs for LBP Inference . . . . . . . . . . . . . . 96
7.4 Results for Image Denoising . . . . . . . . . . . . . . . . . . . 98
7.5 Results for Shape From Shading . . . . . . . . . . . . . . . . 105
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Conclusions 109
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ii



List of Figures

2.1 Using a database of coregistered range and color images, we showed
that brighter image regions are more likely to be closer to the ob-
server than dark regions. Given two pixels spaced sufficiently far
apart, an observer who guessing that the brighter pixel is the nearer
of the two will be right more than 56% of the time. This effect is
due to the effect of shadows in complex natural shapes, which often
contain concavities and object interiors. . . . . . . . . . . . . . . 10

2.2 a) An example image from our database. b) The correspond-
ing range image was subsampled to produce a low-resolution
depth map, and then (for illustration purposes) rendered to
create an artificial, computer-generated image. Next, a com-
puter algorithm was used to learn the statistical relationship
between the low-resolution 3D shape of b) and the 2D im-
age of a). This includes both shading and shadow (near-
ness/brightness correlation) cues. In this example, shadow
cues were stronger. This learned statistical relationship was
then extrapolated into higher spatial frequencies to estimate
the high-resolution 3D shape, shown in c). . . . . . . . . . . 12

2.3 As predicted by our statistical studies, V1 neurons that prefer
bright stimuli also tend to prefer near disparities. In this plot,
the preferred brightness of each neuron is plotted against its
preferred 3D disparity. . . . . . . . . . . . . . . . . . . . . . . 13

iii



2.4 For a Lambertian surface with known albedo, the conditional joint
distribution P (p, q|i) is highly nongaussian - all non-impossible val-
ues lie along a 1D manifold. In the figure, lighting is from (0, 1, 1),
and pixel intensity i = 0.85ρ, where ρ is surface albedo. Dark val-
ues are more likely, white regions are impossible. The distribution
pictured here assumes that all surface normal azimuths are equally
likely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The relative advantages of MAP and MMSE point estimates de-
pend on the distribution in question (see text for discussion). Sub-
figure c) shows an ambiguous 3D shape. A MAP estimator will
choose one of the two likely interpretations, whereas the MMSE
estimator will average the two together, resulting in a flat surface
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Illustrating how products of linear potential functions can ap-
proximate arbitrary functions. a) The target potential function to
be approximated: a two-dimensional mixture of Gaussians. Sub-
figures b) through e) show the target function approximated with
an increasing number of linear potential functions. Vectors ~vk were
chosen to manually to be evenly spaced. . . . . . . . . . . . . . 39

4.2 A factor graph that demonstrates the use of multiple resolution
inference for belief propagation. Each circle represents a variable at
one of three spatial scales, and each black square represents a hard
linear constraint factor node. Here, each hard linear constraint
node enforces that its upper neighbor is the block average of the
pixels in the next finer spatial scale. Wavelet and Laplacian image
pyramids are also possible. The methods of section 4.1.1 reduce
the number of operations required to compute belief propagation
messages in this network from O(M5) to O(M2). . . . . . . . . . 42

5.1 A factor graph used to perform image denoising using three 2× 2
Fields of Experts filters. Each variable node, shown here as circles,
represents the true image intensity at a given pixel. The three gray
squares represent factor nodes corresponding to the three 2 × 2
Fields of Experts filters. . . . . . . . . . . . . . . . . . . . . . . 65

iv



5.2 (Following page). Using higher-order Fields of Experts to perform
image denoising. a) A cropping from the original image (from [66]).
b) The original image with additive Gaussian noise of σ = 20. c)
The output of belief propagation over a pairwise-connected Markov
Random Field, similar to the model described in [21]. Pairwise
models tend to produce piecewise constant image regions [51]. d)
Denoising using the gradient descent algorithm employed by [73],
with three 2× 2 Fields of Experts filters learned from natural im-
ages. e) Results using the same 2×2 FoE model as d), except using
linear constraint nodes (the methods described in section 4.1) and
the graphical model of figure 5.1. Intensity values were chosen to
be the expected value of the estimated marginal. f) Results using
the same 2 × 2 FoE model as d) and e), except using the parti-
cal/histogram hybrid message representation discussed in section
4.5, and the factor graph of figure 5.3. . . . . . . . . . . . . . . 67

5.3 A factor graph for performing image denoising using three 2 × 2
Fields of Experts filters, where (unlike that of figure 5.1), each
of the three experts is combined into a single factor node (black
square) for each image patch. This factor graph is used in sec-
tion 5.2 using the particle/histogram hybrid message representa-
tion technique introduced in section 4.5. This is also the factor
graph used by Lan et. al. [51]. . . . . . . . . . . . . . . . . . . 76

6.1 Shape-from-shading factor graph for a 3×3 image. Variable nodes
are shown as circles, and factor nodes as shown as squares. Variable
nodes include nodes for p = ∂z

∂x and q = ∂z
∂y . Factor nodes include

Lambertian constraint nodes (gray), integrability constraint nodes
(black), and smoothness nodes (white). Light gray lines indicate
the borders between pixels. . . . . . . . . . . . . . . . . . . . . 79

v



6.2 (Following page). Comparing our SFS results (column b) with
previous energy-minimization approaches (columns c & d). Each
subfigure contains a 3D wire mesh plot of the surface (bottom)
and a rendering (top) of that surface from a light source at loca-
tion (1, 0, 1), using the Lambertian reflectance equation. a) The
original 128×128 surface [109]. The rendering in this column serves
as the input to the SFS algorithms in the next three columns. 1001
pixels in this image lie in black shadow. b) The surface recovered
using our linear constraint node approach. Good results (image
MSE < 226) were achieved in under 3 hours, the results in column
b were run to convergence (MSE = 108 in 24 hours). c) The sur-
face recovered using the energy minimization method described by
Lee and Kuo [55]. This algorithm performed best out of six SFS
algorithms reviewed in the survey paper [109]. d) The surface re-
covered using the method described by Zheng and Chellappa [110]
(which performed second-best in [109]). Our approach (column b)
offers a significant improvement over previous energy-minimization
methods. It is important to note that re-rendering the surface out-
put from our algorithm closely resembles the original input image
(the mean squared error of each re-rendering is listed above each
image). This means that the Lambertian constraint at each pixel
was satisfied, and that any error between the original and recov-
ered surface is purely the fault of the model of the prior probability
of natural 3D shapes that was used (in this case, only smoothness
was used). The code for the algorithms shown in c and d, as well
as the test image, were acquired through the authors of [109]. . . 80

vi



7.1 Factor graph used for learning pairwise MRF spatial priors for im-
age denoising. Each circle represents a variable node (here, a pixel
intensity), and each square represents a factor node for encourag-
ing smoothness. The black outline denotes that the factor graph is
connected as on a 2×2 torus. For a given set of potential functions,
this factor graph monitors the estimated marginals for three linear
image features: pixel intensity, horizontal derivative (∂I/∂x), and
vertical derivative (∂I/∂y). Marginals for pixel intensity are equal
to the beliefs at one of the variable nodes (here, we have chosen
the upper-left node). Marginals for the pixel derivative values are
estimated using two additional variable nodes, each of which is
connected to a factor node of cliquesize three, whose messages are
computed using linear constraint node techniques. . . . . . . . . 99

7.2 Marginals and potential functions for the learned pairwise-connected
MRF for natural images. The top row shows the empirical marginals
(light green) and the LBP-approximated marginals, or beliefs (dark
blue). The three linear features are the pixelwise image intensity,
the horizontal derivative of intensity, and the vertical derivative.
The bottom row shows the learned potential functions (dark blue).
Each derivative feature is fit with a Student-t distribution (light
green). The denoising results for the learned potential functions,
and also for the fitted Student-t distributions, are listed in table
7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 MRF spatial priors applied to image denoising. Note that these
priors are designed to be incorporated into a variety of other vi-
sual inference applications. a) The original image (from [61]).
b) The original image with additive Gaussian noise of σ = 20.
c) The output of belief propagation over a hand-designed pairwise-
connected Markov Random Field similar to the model described
in [21]. d) Denoising using three 2 × 2 Fields of Experts, using
the Particle/Histogram message representation. e) Pairwise MRF
with parameters learned using GIS and fit with Student-t distribu-
tions. f) Higher-Order MRF with parameters learned using GIS
and fit with Student-t distributions. . . . . . . . . . . . . . . . . 103

vii



7.4 Factor graph used for learning spatial priors for 3D surface shape.
Similar to the SFS factor graph in figure 5.1, this graph includes
variable nodes for the horizontal and vertical derivatives of depth
at each pixel, and the linear dependencies among these values
are enforced using hard linear constraint nodes of cliquesize four.
Marginals for horizontal and vertical derivatives of depth are equal
to the beliefs at one of the appropriate variable nodes (our choices
shown here in heavy outline). Marginals for the three second order
derivatives are monitored using a set of additional variable nodes.
Messages to and from these nodes are made efficient using the lin-
ear constraint node technique. Note that, like in figure 7.1, the
square outline surrounding the graph denotes that the nodes are
connected as on a torus. . . . . . . . . . . . . . . . . . . . . . . 104

7.5 a) The original 3D surface [109]. The rendering in this column
serves as the input to the SFS algorithms in the next two columns.
b) The surface recovered using the linear constraint node approach,
as in Chapter 6 (figure 6.2). Recall that hand-tuned Laplace dis-
tribution potential functions were used as a spatial prior for this
result. c) The surface recovered using the same linear constraint
node technique as b, except using spatial priors learned via GIS.
The errors listed here give the mean squared error of the final 3D
depth reconstruction. . . . . . . . . . . . . . . . . . . . . . . . 106

viii



List of Tables

5.1 Peak signal-to-noise ratio (PSNR), in decibels, for pairwise and
higher-order models, averaged over the ten images from the Berke-
ley segmentation database [61] used in [51]. PSNR is defined in
equation 5.4. For each belief propagation algorithm, a MAP point
estimate is approximated by choosing the maximal value of each
marginal, and a MMSE point estimate is taken by computing the
mean of each marginal. Denoising using linear constraint nodes
(LCNs) with 2 × 2 FoEs outperforms both belief propagation on
pairwise MRFs and gradient descent on identical FoEs. Using par-
ticle/histogram hybrid message representations (section 4.5) re-
sults in a small additional performance gain. . . . . . . . . . . . 69

5.2 Denoising results for five canonical denoising images (used in [66]).
Image noise σ = 10. BP using LCNs refers to belief propagation
using the linear constraint node computational shortcut. State
of the art denoising algorithms (bottom two rows) are also re-
ported. Note that these algorithms are designed especially for de-
noising, and would be difficult to use as a spatial prior for other
vision tasks like stereo, shape from shading, and others. All error
values are given in peak signal-to-noise ratio (equation 5.4). For
each belief propagation algorithm, only the MMSE point estimates
are given. Maximum marginal estimates were typically similar or
slightly worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Results as in table 5.3, except under noise with σ = 20. All error
values are given in peak signal-to-noise ratio (equation 5.4). . . . 70

ix



5.4 The (unnormalized) log-likelihood of each image reconstruction ac-
cording to the 2×2 FoE model. All values are given as log p̃(~I|~IN )×
10−5, where p̃(~I|~IN ) is given in equation 5.3. The values given
for the Berkeley Suite images show the mean unnormalized log-
likelihood for the ten images from the Berkeley segmentation database
[61] used in [51]. The four denoising algorithms shown here all seek
to optimize the same equation (i.e. equation 5.3 using the 2×2 FoE
model). In each case, belief propagation significantly outperforms
gradient descent. Thus, in addition to producing denoised images
with less error, belief propagation does a better job at finding the
optimum values of the FoE probability model. This means that
the improvement in performance is not due to peculiarities of the
FoE model. Also note that, according to the model, the denoised
images computed using belief propagation have greater likelihood
than the original image. This suggests that improving the model
is now more important than improving the method of optimization. 73

5.5 Results as in table 5.4, except under noise with σ = 20. All values
are given as log p̃(~I|~IN )× 10−5, where p̃(~I|~IN ) is given in equation
5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Peak signal-to-noise ratio (PSNR), in decibels, for previous de-
noising models as well as pairwise and higher-order models learned
using the efficient belief propagation techniques of section 4.1 com-
bined with GIS. Each value gives the PSNR averaged over the ten
images from the Berkeley segmentation database [61] used in [51].
PSNR is defined in equation 5.4. For each belief propagation al-
gorithm, a MAP point estimate is approximated by choosing the
maximal value of each marginal, and a MMSE point estimate is
taken by computing the mean of each marginal. All belief prop-
agation results were taken after 15 outerloop iterations (typically
roughly 35 innerloop iterations). . . . . . . . . . . . . . . . . . 101

x



Acknowledgements

I first and foremost must thank my advisor, Tai Sing Lee. His diverse inter-
ests and expertise have provided me with endless exciting opportunities and
a versatile background that would otherwise have required ten advisors to
acquire. Beyond this, I am grateful for his generosity as a mentor, both in
his perpetual guidance and commitment, and in allowing me the freedom to
forge some directions of my own. I have been very fortunate to work with
Tai Sing, and I will strive to emulate his advising style with my own students
in the future.

In addition, I am indebted to my thesis committee, for their thoughtful
questions and helpful comments. I thank my labmates Ryan Kelly, Tom
Stepleton, and Matt Smith for their generous help and support, and espe-
cially Jason Samonds, for his insightful collaboration and neuroscience exper-
tise. I also thank all those who helped me while collecting range data: Frank
Li, Kui Shen, Scott Marmer, and especially Mark Albert, who sacrificed
many sunny afternoons and predawn hours to scrambling around Pittsburgh
in search of perfect range data.

I also thank the faculty, students, and administrators that have helped
make CMU the exciting, collegial, and wondrous learning and research envi-
ronment that it is. Attending CMU and contributing to the amazing research
that goes on here has been a dream of mine since visiting as a child, while
my sister was choosing a college to attend. It has lived up to these wild
expectations.

I thank my parents, for all their encouragement, and for teaching me the
beauty in science.

Finally, I thank my wife, Sarah, for her undying support and understand-
ing. This thesis is dedicated to her.

xi



This research was sponsored by the National Science Foundation Gradu-
ate Research Fellowship Program, National Institute on Drug Abuse under
grant no. 1T90DA02276201, and the National Science Foundation under
training grant DGE-9987588. The views and conclusions contained in this
document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

xii



Chapter 1

Introduction

In the past decade, one of the greatest lessons learned by the artificial in-
telligence community is that when dealing with a complex and uncertain
universe, statistical approaches have a strong advantage. By being aware
of the variation of expected outcomes, statistical solutions to artificial in-
telligence problems are more robust in real-world situations. In the field of
computer vision specifically, statistical approaches such as Bayesian infer-
ence, markov random fields, and particle filtering have lead to significant
progress. In spite of these advances, statistical approaches to the inference
of depth in single images are still in their infancy. In fact, little is known
about the joint statistics of natural 3D shape and natural images.

The inference of 3D shape from single images has been a topic of serious
research for many decades. While many approaches have been suggested,
the great majority of these approaches have been based on physical models
of the interaction between light and surfaces. For instance, the problem of
inferring shape from surface shading is typically approached by starting with
a deterministic mathematical model of image formation, and then trying to
invert this model. Unfortunately, inverting the image formation process is
highly underconstrained. This forces us to revert to oversimplified models
of image formation which may be unrealistic in natural scenes. Various
assumptions about image formation parameters have to be made, such as
Lambertian surface reflectance, uniform albedo, and shadow-free, single point
source illumination. However, these assumptions are often violated in the real
world, and this leads to poor generalization for these algorithms.

Statistical approaches to inferring shape need not be constrained to a
single, simplified physical model of image formation. Instead, such an ap-
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proach will be aware of a distribution of shapes that could have resulted in a
particular image under a variety of likely lighting and reflectance conditions.
Rather than assuming unknown parameters to hold some typical value (like
assuming reflectance to be Lambertian, or albedo to be constant), a statisti-
cal approach can marginalize across unknown parameters to deduce the most
likely shape under unknown conditions.

Another advantage of statistical approaches to shape inference is that nat-
ural scenes may contain exploitable statistical regularities that are not readily
apparent from physical models of image formation. The natural world con-
tains many unexplored statistical properties, such as the natural geometry
of objects, distributions of the size and number of objects, the arrangements
of objects in space, regularities in the position of the observer, natural dis-
tributions of light, and the statistics of surface properties of those objects.
All of these properties may have regularities in the real world that could be
exploited by statistical inference algorithms. One simple example of such a
regularity is the tendency for light to come from above. This regularity is
highly exploited by the human visual system [72].

Additionally, methods of depth inference that invert physical models of
image formation are typically forced to neglect image formation phenomena
that are mathematically cumbersome or difficult to invert. Examples in-
clude cast shadows, diffuse lighting, interfacet reflection, and subsurface light
transport. Each of these phenomena are important in computer graphics for
rendering photorealistic images, and omitting them from a depth inference
algorithm invariable results in bias when that algorithm is applied to real
natural scenes. Perhaps more importantly, another fundamental drawback
of omitting these phenomena is that, while each of these aspects of image
formation is mathematically complex within a deterministic model, when
these phenomena are considered together they can result in robust statistical
trends that can be exploited for improved depth inference. In other words,
image formation phenomena that are too complex mathematically to incor-
porate in a deterministic framework can actually result in stochastic depth
cues that are beneficial to statistical depth inference techniques. One of my
earlier studies shows an example of this. Using a database of laser-acquired
range images, we have found that darker pixels tend to be farther away than
bright pixels [67]. Evidence suggested that this is due to the effect of shadow-
ing in complex natural scenes. Specifically, concavities and visible interiors
of complex objects are more likely to be in shadow. For this effect to be
significant, complex non-smooth 3D shapes, cast shadows, diffuse lighting,
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and interfacet reflection must all be present within the scene. Each of these
are aspects of image formation that are most often ignored by previous depth
inference approaches, and yet, together they produce helpful stochastic depth
cues that can be exploited in a statistical setting. Later we showed that, if
restricted to linear relationships between depth and intensity, these simple
shadow cues are often more powerful than shading cues in natural scenes for
inferring high-resolution 3D shape from single images [68]. This type of cue
was originally predicted to exist only for aerial photography scenes (viewed
from directly above) under cloudy conditions [52]. It has been the subject
of very few investigations. Shape from shading (SFS), on the other hand,
has been studied extensively. And yet, we were able to show that the more
obscure shadow cue was actually the stronger cue in a database of outdoor
images, all acquired under sunny conditions, and all taken with the camera
pointing towards the horizon. This type of discovery suggests that study-
ing the natural statistics of scenes is likely to reveal some surprising or even
counter-intuitive trends that would be difficult to predict theoretically using
physics-based models of image formation.

A fourth major advantage of developing Bayesian shape inference algo-
rithms for single images is that they can be readily integrated with other
sources of depth cues, such as multiple images (including stereo images and
motion), or high-level knowledge of the environment. Consider stereo cues.
Stereo vision is a powerful depth cue, and algorithms that extract depth from
stereo have become fairly successful. However, there are certain weaknesses
intrinsic to all stereo algorithms; weaknesses that monocular cues may help
to clarify. First, because image disparity is inversely proportional to distance,
the strength of the stereo cue diminishes quickly with distance [15]. Monoc-
ular cues such as shading do not suffer from this limitation. Also, solving the
stereo correspondence problem requires some trade-off between the ability to
confidently match two corresponding points in the stereo pair, and the size
of the image region used to characterize each point [14, 77]. Because of this,
shape estimates from stereo are often accurate in the low spatial frequencies,
but fail at inferring the fine, high frequency details of shape. Shading cues,
on the other hand, are still powerful in the high spatial frequencies. Because
of their naturally complementary qualities, there have been many attempts
to integrate stereo and shape from shading algorithms. However, this is still
an open problem. As we will discuss later on, Bayesian inference provides a
natural framework for the integration of these two cues.

In addition to advancing algorithms to infer depth, a greater understand-
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ing of natural scene statistics and statistical approaches to depth inference
might lead to insight into the way the human visual system solves these same
problems. The human brain evolved and developed under natural statistical
conditions, without any access to analytical, physical laws of light interaction.
Therefore, an understanding of statistical approaches to 3D shape inference
is of great relevance to uncovering the processes in the brain responsible for
surface inference. This approach has been advocated before. The notion that
human perception and behavior was best understood in the context of our
natural environment was advanced by Gibson in the 1960’s [25]. Since that
time, developments in the statistics of natural scenes have been highly useful
for understanding human perception in both psychology and in neuroscience.
By studying the statistics of natural images, researchers have developed ways
to process and encode natural images so as to maximize efficiency, either in
a metabolic sense, or in terms of information transmission. Neuroscientists
then showed that many of the basic properties of retinal ganglion cells and
V1 cortical neurons can be understood in terms of representing images effi-
ciently [17]. These insights are a promising beginning in unraveling how the
brain processes visual stimuli.

However, storing images efficiently is not an end-goal of the visual system.
Efficient encoding is only a subgoal that may be useful in accomplishing the
brain’s many visual tasks. The true purpose of the visual system is to infer
the underlying properties of an image: for example recognizing objects, infer-
ring depth, or estimating materials. Studying the statistics of images alone
cannot help us to understand how the brain accomplishes these goals. In
order to study these visual tasks in the context of the natural environment,
we will need to study both natural images and the ground-truth values of the
underlying scene properties. The inference of depth is a good first choice for
several reasons. First, natural range-images can be acquired by laser-scanner.
In contrast, many mid-level visual tasks have computational goals that are
more subjective in nature, such as scene segmentation, edge detection, or con-
tour completion. The availability of ground-truth 3D data facilitates both
meaningful statistical studies and the development and benchmarking of in-
ference algorithms. Another benefit to studying depth inference in the brain
is that signals corresponding to early forms of stereopsis (detecting matches
between the left and right eyes) occur early in the visual stream and are fairly
well understood. Having some early neural correlate of depth might prove
very helpful for neurophysiological studies designed to better understand the
3D spatial priors exploited by the brain [75], or to study how multiple depth

4



cues can be integrated [69].
The idea of the brain as an inference engine can be traced back to

Helmholtz’s unconscious inference theory of perception. More recently, as
statistical methods in machine learning advance, Bayesian inference has been
suggested as a general computational principle of the brain [56], or advanced
as a possible method for solving several visual tasks [82]. We hope that
the methods of statistical inference that we develop may be informative for
understanding what types of computations may take place in the brain.
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Chapter 2

Related Work

In this thesis, I develop a set of tools for statistical inference that are designed
to benefit many branches of computer vision, and extend to any application
that seeks to infer a value in a high-dimensional continuous space (such as the
space of images) given a complex and tightly coupled statistical distribution.
The applications I will examine here will surround the problem of monocular
depth inference, and in particular, the inference of shape from shading. One
goal of my research is to develop a flexible framework for visual inference
that will help to generalize shape-from-shading to apply to broader and less
restrictive classes of scenes. In this section, I review previous approaches to
depth inference, and in particular approaches that are statistical or proba-
bilistic in nature. I will begin with a look at studies of the statistics of 3D
shape.

2.1 Statistics of natural 2D images
Psychologists and neuroscientists (such as Hermann von Helmholtz, Horace
Barlow, and J.J. Gibson) have speculated throughout the past century about
the importance of natural scene statistics for human perception. However,
it was not until the late 1980’s that researchers began to map out the basic
statistical properties of natural images. Principal among these early studies
was the discovery of the scale invariance of natural images [22, 74]. This
means that images tend to have similar statistical properties when viewed
at different scales. One such property the power spectrum, which scale in-
variance predicts should take the form 1/f 2, where f is spatial frequency.
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This prediction is fairly robust in single images, and highly robust when es-
timated over large image ensembles. Other statistical properties also obey
laws of scale invariance, including the histograms of contrast within small
patches [74], the distributions of various linear filters [54]. The property
of scale invariance carries with it a whole family of statistical regularities.
Such statistical regularities help us to recognize what images are surprising
or salient, what images “should” look like (helpful when inferring obscured
or unseen regions of an image), and what types of images should our visual
systems be optimized for.

Another key discovery in the statistics of natural images is the prominence
of edges in natural images. One early observations was that histograms of
the response of linear filter tend to have highly kurtotic distributions, with
sharp peaks and heavy tails [38]. Independent component analysis revealed
edge-like gabor filters to be the most atomic elements of natural images [4].
Also, the joint distributions of neighboring wavelet coefficients were found to
be sharply stellated in a way that suggested the prevalence of edge features
such as extended edges and T-junctions [38].

One model that explains the bulk of these findings is the occlusion-based
“collage” model of natural images [54]. In this model, images are approxi-
mated by collections of piecewise-constant regions that occlude one another.
Sample images drawn from the collage model are constructed by repeatedly
dropping opaque shapes at random locations on the image, with the size
of each shape drawn from a certain distribution f(r). If f(r) = 1/r3, the
resulting images can be shown to be scale invariant.

2.2 Statistics of natural range images
Less is known about the statistics of natural range images. In the 1990’s,
the popularity of fractal models of natural phenomena lead researchers to
measure the fractal dimension of natural 3D range scans. These scans typi-
cally had fractal dimensions ranging from 2.0 to 2.6 (corresponding to power
spectra drop-off rates of 1/f 2.0 to 1/f 2.8 respectively) [1].

Later, a more complete study of the statistics of range images was per-
formed [37]. This study found that range images obey many laws of scale
invariance. It was also found that many of the statistical properties of re-
sembled those of natural images, and could also be explained by the collage
model. A third study of range image statistics found that the sizes of planar
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objects obeys a 1/r2.4 power-law, where r is the object radius [102]. This
finding may be related to the collage model, which predicts that the sizes of
objects in the visual plane, including any occluded portion, should follow a
1/r3 distribution.

2.3 Statistics of natural 3D scenes
Even less is known about the joint statistics of natural range and color im-
ages. The technology required to simultaneously acquire ground-truth range
images and coregistered color images has only recently become readily avail-
able. There are currently three databases of natural coregistered images and
range images being used for scientific study. One of these was collected by
Dale Purves [36], using a Riegl LMS-Z360 range scanner. This group focuses
primarily on explaining psychophysical phenomenon through range image
statistics. Although their has produced some results on the statistics of
range images [102], their work typically does not make use of the luminance
component of the database, or study the statistical relationship between light
and depth.

Another such database was collected in 2005 by Andrew Ng [76]. This
database has high-resolution color images (1704×2272), but only low-resolution
range data (86 × 107). This database was collected using a SICK 1D laser
range scanner, mounted on a motor to collect a 2D array of range scans. Their
SICK scanner had an operational range of 81 meters, as compared with the
300 meter range of the Riegl LMS-Z360. Because the color camera was a sep-
arate unit, they report some alignment errors between the range and color
data (±2 range units). Their work has focused on the inference of depth from
monocular images, specifically for obstacle detection in autonomous vehicles.
Monocular inference relates directly to our second aim, and we discuss their
work in more detail in the following section. However, their work emphasizes
performing inference without understanding the underlying statistics, and so
they have no results that model, explain, or analyze the statistics of natural
scenes directly.

Our own database was collected in June 2002, also using a Riegl LMS-
Z360 range scanner. We used this database in a series of studies to identify
statistical trends that exist in real 3D scenes, and which may provide insight
into how depth can be inferred from monocular cues, both in computer vision
and in the brain. One major finding from this work was the discovery that
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Figure 2.1: Using a database of coregistered range and color images, we showed
that brighter image regions are more likely to be closer to the observer than dark
regions. Given two pixels spaced sufficiently far apart, an observer who guessing
that the brighter pixel is the nearer of the two will be right more than 56% of the
time. This effect is due to the effect of shadows in complex natural shapes, which
often contain concavities and object interiors.

pixel distance and pixel darkness were significantly correlated (ρ = 0.23). In
[67], I demonstrated that this statistical effect is due to cast shadows: image
regions that lie within concavities and surface interiors are more likely to lie
in shadow, and they are also more likely to be farther from the observer than
points on object exteriors. This effect is especially powerful in

• foliage, where areas deeper and further into a tree or wooded area are
also darker due to shadowing

• piles of objects, where crevices between objects lie in shadow

• folds of fabric or other materials, where fold interiors lie in shadow

These same principles repeat often enough in nature to produce a small but
robust correlation between closeness and brightness. Figure 2.1 shows the
extent to which bright pixels tend to lie nearer the observer for outdoor,
sunlit natural scenes.

This finding serves as one example of how a statistical study can un-
cover trends in real scenes that may not be immediately obvious by studying
mathematical models of image formation, and yet can be exploited to achieve
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better depth inference. A correlation between nearness and brightness has
been predicted using mathematical models, but only for aerial photography
taken under perfectly diffuse lighting conditions [52]. Our results show that
the effect remains strong even for sunlit conditions under oblique lighting.
This result is much more difficult to model mathematically. Without statis-
tical investigations into these effects, the strength of the nearness/brightness
correlation for natural, non-aerial images would likely have been underesti-
mated.

In addition, the nearness/brightness correlation shows that some rela-
tionships between images and their underlying 3D shapes may be difficult to
exploit in a deterministic setting, but quite simple in a non-deterministic, or
statistical inference approach. In order for the nearness/brightness correla-
tion to be strong in natural outdoor scenes, complex 3D shapes, shadowing,
diffuse lighting, and inter-facet reflection must play a role. All of these phe-
nomena are very cumbersome mathematically, and deterministic models of
image formation that include these phenomena are highly difficult, or likely
even intractable to invert. Together, however, these image formation effects
combine to produce a statistical relationship that is maximally simple: an
absolute correlation between brightness and nearness. For a statistical ap-
proach to depth inference, such a depth cue should be trivial to exploit.

Later, we extended our analysis of the first order statistics of image/range
image pairs by studying how the relationship between shape and appearance
changes over scale [68]. A careful characterization of these statistical prop-
erties extended naturally to an algorithm to infer high-resolution 3D shape
from a sparse, low-resolution depth map and a full-resolution color image
(see figure 2.2). Such algorithms have applications in medical imaging and
robotic navigation. Using the low-resolution range data, we can learn the
monocular cues from the low-resolution data, and then extrapolate that re-
lationship into the higher spatial frequencies using our statistical model. The
resulting algorithm not only achieved state-of-the-art performance, but pro-
vided additional insight into the statistics of natural scenes. Our analysis
revealed that the majority of the algorithm performance was due to shadow
cues, while shading cues were of secondary importance. This discovery was
surprising to many in the field; shading has received much greater attention
in the past than shadow-based cues.

In addition to acting as a possible depth cue for 3D shape inference, our
discovery of the nearness/brightness correlation in natural scenes also pro-
vided insight into how depth is computed in the brain. This statistical finding
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a) Original Intensity
Image

b) Low-Resolution
3D Shape

c) Inferred High-
Resolution 3D Shape

Figure 2.2: a) An example image from our database. b) The corresponding
range image was subsampled to produce a low-resolution depth map, and
then (for illustration purposes) rendered to create an artificial, computer-
generated image. Next, a computer algorithm was used to learn the sta-
tistical relationship between the low-resolution 3D shape of b) and the 2D
image of a). This includes both shading and shadow (nearness/brightness
correlation) cues. In this example, shadow cues were stronger. This
learned statistical relationship was then extrapolated into higher spatial
frequencies to estimate the high-resolution 3D shape, shown in c).

provided an ecological explanation to a psychophysical phenomenon that had
been known since the time of Leonardo da Vinci, who stated that “Among
bodies equal in size and distance, that which shines the more brightly seems to
the eye nearer”. Later, psychophysicists validated da Vinci’s observations in
rigorous, controlled experiments, [2, 8, 86, 13, 20, 83, 91, 53, 100] where the
effect was sometimes referred to as the depth cue of relative brightness. Pre-
vious explanations for this perceptual effect were primarily psychological in
nature, and explained relative brightness as an artifact of perception rather
than as an adaptive behavior that exploits real properties the environment.
The prevailing explanation was that brighter image regions appeared larger
due to the irradiation of light (scattering in the atmosphere), and since larger
objects were more likely to be near, brighter objects would be perceived as
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Figure 2.3: As predicted by our statistical studies, V1 neurons that prefer
bright stimuli also tend to prefer near disparities. In this plot, the preferred
brightness of each neuron is plotted against its preferred 3D disparity.

nearer [86, 13]. Our findings provided an adaptive, ecological explanation for
relative brightness.

Given the simplicity of this statistical relationship, we expected that the
visual system should learn and exploit this cue fairly easily. Since early areas
of the visual cortex have access to both luminance signals and absolute depth
signals (via the comparison of left and right eye signals), we expected to find
this relationship encoded fairly early on in the visual stream, in areas V1
and V2. To test this hypothesis, we measured the luminance preferences
and depth preferences of 48 V1 cells in awake behaving macaque monkeys.
We found that a cell’s preferred brightness was correlated with its preferred
disparity (nearness) with a correlation coefficient of 0.39 (p = 0.01). See
figure 2.3.

This result demonstrates how studying the statistics of images together
with underlying, behaviorally relevant scene properties can be useful for un-
derstanding visual inference in the brain. It is worth noting that this is a
case where an understanding of natural statistics motivated the discovery of
a new neurophysiological phenomenon. This is unusual - while natural scene
statistics has been highly useful for understanding brain function, typically
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natural image statistics have only been used to explain neural phenomenon
that was already discovered. This discovery opens up a new avenue for ex-
ploring how multiple sources of information are combined in the brain, and
inference is achieved by the visual system in the face of uncertainty.

2.4 Statistical Approaches to 3D Shape Inference
As mentioned above, most monocular shape inference algorithms in the past
have worked by inverting simple models of image formation. However, there
have been some notable exceptions. In the next few sections, we will dif-
ferentiate between probabilistic and statistical approaches. We will refer to
an approach as probabilistic if it constructs an explicit model of the poste-
rior probability distribution P (Z|I). A method is statistical if it learns this
model from the statistics of natural scenes (although we will include methods
that learn from computer generated scenes in this category). Many classical
approaches to depth inference (shape from shading, stereo, etc) have been
formulated probabilistically.

2.4.1 Probabilistic Approaches to Shape From Shading

The problem of shape from shading (SFS) is to recover the 3D surface shape
given a single image, where it is assumed that:

• the scene is lit from a single light source

• the light source is infinitely far away

• the direction of illumination is known

• all surface materials are uniform in albedo (i.e. the scene is entirely
painted white)

• all surfaces are Lambertian (matte) in reflectance

For Lambertian materials, the image intensity at a point is given by

i(x, y) = max(0,
1 + pps + qqs√

1 + p2 + q2
√

1 + p2
s + q2

s

) (2.1)
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where N = (p, q, 1) is the surface normal vector, and S = (ps, qs, 1) is the
known illumination vector. While it is trivial to compute light intensity
from 3D shape, inverting equation 2.1 is difficult, partly because it is highly
nonlinear, and partly because the problem is underconstrained. Specifically,
for any given 2D image that satisfies the SFS constraints listed above, there
is potentially a very large number of possible 3D surfaces that are consistent
with that image. In other words, many 3D surfaces, when rendered according
to equation 2.1 under the known lighting direction S will result in the same
2D image.

Most SFS algorithms are not designed to handle the ambiguity inherent
in the problem. Typically, SFS algorithms require that the 3D shape of the
surface is known along the image border, or they implicitly assume that the
shape at the border is flat, or cyclic, or some other pre-assumed condition.
Knowing the shape along the image border removes a great deal (and in
some cases, all) of the ambiguity of SFS. When 3D shape along the image
border is not known, the results are quite poor, even for the best algorithms
[109]. The benefit of a probabilistic approach to SFS is that it allows us
to resolve the ambiguity of the problem by using spatial priors to select the
3D shape that is maximally likely among those that are consistent with the
image (according to equation 2.1). Unfortunately, the mathematical tools
for solving probabilistic formulations of SFS were not previously available.

There have been a number of approaches to solving SFS. Propagation
approaches work by spreading information from points with known surface
normal (such as points where i(x, y) = 1) to surrounding regions. Energy
minimization approaches formulate the SFS problem as a set of constraints
that penalize poor reconstructions, and then attempt to minimize that en-
ergy function [55, 110]. Linear approaches work by inverting linear approx-
imations to the Lambertian reflectance function [90]. More recently, a new
class of solutions has emerged that computes minimum viscosity solutions
of an eikonal equation that encodes the shape from shading problem. This
approach only works in cases when the lighting direction matches, or nearly
matches, the viewing direction (the lighting is from behind the camera). Sur-
veys of these approaches to SFS are given by Zhang et. al. [109] and Durou
et. al [19] (which includes minimum viscosity approaches).

Of these approaches, the energy minimization approach is the most rele-
vant here, because they can be formulated probabilistically. Energy functions
used for SFS problems typically have two components: an error term that
penalizes surfaces that do not match the image, and a prior term that penal-
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izes surface shapes judged to be unusual according to some heuristic, such
as smoothness. These energy functions are easy to formulate as a statistical
model of the posterior P (Z|I) ∝ P (I|Z)P (Z). In fact, on occasion, SFS en-
ergy functions are explicitly formulated this way [89, 40]. Unfortunately, the
energy functions that are typical of this approach are difficult to minimize
using traditional methods.

One interest in reviewing this literature is in determining how well these
methods can be generalized to handle natural scenes. In natural scenes, mul-
tiple or non-constant albedos, unknown reflectance functions, and other com-
plications will contribute to uncertainty in the distribution P (N |i), where N
is the surface normal, and i is the image intensity. Many energy minimiza-
tion approaches to SFS are solved using methods that rely heavily on the
deterministic nature of the reflectance function, or on its exact form. Also,
the ambiguity of shading in natural scenes will require that many additional
monocular depth cues be exploited. Methods of energy minimization that
work well in simpler models of P (Z|I) that capture only shading cues may
not work well for more sophisticated models of the 3D shape posterior of nat-
ural scenes. For example, many variational SFS techniques seek minima of
the energy functional by first applying the Euler equations from the calculus
of variations. Researchers have had success with these methods only for very
specific energy functionals; applying such methods to the more complex en-
ergy functionals of natural scenes would be discouragingly challenging from
a mathematical standpoint. The energy minimization technique from classic
SFS literature that shows the most potential for generalizing to inference in
monocular natural scenes is the conjugate gradient descent method and its
relatives. However, this method struggles with the local non-optimal min-
ima of the traditional SFS formulation. I discuss such approaches to MAP
estimation in section 3.2.

One particularly interesting application of gradient descent for statistical
approach to shape from shading was made by Andre Jalobeanu [40]. This ap-
proach uses a graphical Bayes net to invert a standard, Lambertian model of
image formation. Rather than learn a statistical model of the joint distribu-
tion of images and 3D surface shape, this algorithm uses a simple computer
graphics rendering algorithm to artificially generate an image from a set of
scene parameters (including surface shape, albedo, and lighting angle). For
a given surface shape and coloring, they can estimate the likelihood that the
observed image resulted from the hypothesized scene, p(I|Z), by comparing
the original image to the reconstructed image using a noise model. Using
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the Bayes rule and naturalistic priors of surface shape and albedo, the al-
gorithm can then estimate the a posteriori probability, p(Z|I). In order to
improve the initial shape estimate, the derivative of error (I − Iest[Z])2 with
respect to shape Z is derived analytically, and then evaluated for succes-
sively improving shape estimates. While this approach has had some success
with a restricted problem set (multiple viewpoint photographs of asteroid
surfaces and aerial views of rural landscapes), it is not clear if this approach
could work in natural scenes. Although this approach capitalizes on natu-
ral shape and reflectance priors, it does not fully benefit from the first two
advantages of statistical inference of depth mentioned in the introduction.
Like traditional shape from shading methods, it relies on the accuracy of
one simplified physical model of image formation to perform inference. The
rendering method used could be improved for greater accuracy. However, re-
alistic rendering of natural scenes is highly complicated. Occlusion, interfacet
reflection, secularities, and complex surface reflectance (for example, human
skin is often modeled as several layers of translucent material) and other so-
phisticated techniques are required for accurate scene rendering. However,
it is difficult to differentiate the error term for all but the most simplistic
rendering models.

2.4.2 Learning from Computer Generated Images

In 1988, Lehky and Sejnowski used a 3-layer neural network to learn a rela-
tionship between an image and the orientations and magnitudes of principle
curvatures of the underlying 3D shape [57]. The network was trained using
the back-propagation algorithm on a database of Lambertian-rendered ellip-
soids. The trained network performed well on scenes similar to the training
set. Neural network approaches to the full classical SFS problem have also
been attempted [5, 41]. A successful neural network approach to inferring
depth from single, natural images would need to overcome several drawbacks
of neural networks. Neural nets typically require a great deal of data to train.
Also, once trained, it can be difficult to understand and debug the learned
weights, which makes incremental progress difficult.

Knill and Kersten [42] describe a shape-from-shading technique where the
Widrow-Huff learning rule is used to learn a linear function (linear in I) to
approximate the MAP estimate Ẑ = maxZ P (Z|I). Linear approximations
of the Lambertian reflectance function provide a reasonable estimate under
oblique illumination conditions [64], and Knill’s method has the benefit of a
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fractal prior. However, many depth cues are highly nonlinear, such as tex-
ture and perspective, making this technique difficult to generalize to natural
scenes.

Another important example of learning shape-from-shading is VISTA (Vi-
sion by Image/Scene TrAining) [23]. VISTA has been applied to several
problems, including a shape-from-shading problem where the goal is to fac-
tor an image into a “reflectance” image (where each pixel corresponds to
surface albedo) and a range image. In general, VISTA uses a markov ran-
dom field, defined on a grid, where each node corresponds to a small square
patch of the scene. In the case of the SFS application, each node describes a
patch from both the reflectance and range images. Thus, each node is a 2n2

dimensional random vector. Two grids are used for the SFS example - one
whose nodes correspond to 8× 8 patches, and one with 16× 16 scene patch
nodes. The patches of adjacent nodes overlap by one or two pixels. This
allows VISTA to define the prior probability of a given scene by the degree
to which neighboring patches agree on their regions of overlap:

P (z, r) =
∏
i,j

exp(−|~di − ~dj|2/2σ2) (2.2)

where ~di is the region of overlap with patch j. VISTA differs from most other
MRF approaches in that instead of defining an explicit likelihood P (z, r|i),
VISTA uses a database of observed natural scenes. All range and reflectance
patches must come from this database of examples (called “exemplars”). The
likelihood is then defined by the agreement between the observed image patch
and the exemplar:

P (z, r|i) =
∏

patches

exp(−|~Iexemplar − ~Iobserved|2/2σ2) (2.3)

Training VISTA consists of generating 200,000 training images with known
range and reflectance images. Each training image is broken into 8 × 8 and
16 × 16 patches, and each patch is stored in a database. To infer shape
and reflectance from a single image, each node first selects a set of 10 or
20 candidate exemplars whose image patches agree with the observed image
patch. Loopy belief propagation is then used to select the configuration of
candidate patches that maximize the posterior probability.

VISTA was trained on computer generated scenes. Each scene was either
a flat surface painted with random ellipses, or a constant-albedo Lambertian
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surface formed by ellipsoidal bumps. All training and test images were lit
from the same direction - the network must be retrained for any change in
material or illumination parameters. In this simplified setting, the algorithm
succeeded in distinguishing between all-reflectance or all-shape input images.
However, the resulting range and reflectance images were often highly noisy.
This is one of the biggest drawbacks to the VISTA method: the space of pos-
sible natural scenes is extremely large, and vast numbers of example patches
would be required to adequately model it. This problem can only be expected
to worsen for natural scenes.

One other weakness of VISTA is that the compatibility function between
neighboring nodes is fairly weak. Bottom-up monocular depth cues can be
highly ambiguous, especially if they are computed over a small spatial win-
dow. Rewarding candidate pairs that appear similar over a narrow strip of
pixels is not strong enough to disambiguate these weak bottom-up cues.

2.4.3 Objects of Known Category

Finally, there is a wealth of literature dealing with 3D shape inference for
items of known object category. This includes 3D face reconstruction [3], con-
structing 3D models of building from satellite images (see [79] for a review),
and even ferns and trees [26]. The effectiveness of these methods typically lie
in the strength of their prior models and in simplifying assumptions that are
particular to their object category. Nevertheless, it is important to remain
aware of these approaches.

2.4.4 3D Shape Inference From Multiple Images

It is also potentially useful to examine probabilistic approaches to inferring
shape from multiple images. Bayesian approaches to stereo have proven
quite successful, using loopy belief propagation on a markov random field
grid [77, 82]. Similar probabilistic machinery has been used successfully for
photometric stereo [84]. One important difference between these techniques
and monocular shape inference is that, unlike monocular cues, both stereo
and photometric stereo are highly local cues. Consider photometric stereo.
In a shadowless Lambertian scene, just three images acquired under different,
known illuminations are sufficient to completely determine the surface nor-
mal at each point. In natural images, where surfaces may be non-Lambertian
or shadowed, the probability distribution over depth, P (N(x, y)|i1, . . . , in), is
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still highly constrained (i.e., the distribution has low entropy). For multi-view
stereo, the story is similar. Except within blank, textureless regions, likely
values of depth P (z(x, y)|i1, . . . , in) are highly constrained by the similarity
of pixels at different disparities. For both stereo and photometric stereo, be-
lief propagation serves primarily to incorporate a prior on 3D shape (such as
smoothness) into the posterior distribution. For inference based on monoc-
ular depth cues, belief propagation will be required to play a much harder
role. Even the most local monocular depth cues require significant nontrivial
interaction among neighboring image regions. For instance, using traditional
shape from shading methods, the intensity of a single pixel only restricts the
surface normal to lie along a one-dimensional manifold of possibilities, even
if the illumination properties, material reflectance, and albedo are all known.
Significant interactions with neighboring pixels are required to output surface
representations that are self-consistent (i.e. values of surface normals that
integrate to a unique range image). This places much greater computational
demands on the probabilistic machinery used to propagate local beliefs than
was necessary in the multiple image case.

2.4.5 Statistical Inference of the Gist of the Scene and Coarse
Shape Estimates

There have been a number of approaches that seek to infer the spatial “gist”
of a scene, or the basic 3D structure of the scene as a whole [88, 63]. These
works have shown that it is possible to infer basic spatial properties such
as the mean absolute depth in one case [88], and subjective global 3D scene
properties such as “openness”, “expansion”, “ruggedness”, and “roughness”
in another case [63]. The paper on the inference of mean absolute depth works
by measuring the energy of wavelet responses at different locations within the
image, and also the degree of correlation between wavelet responses across
the image. The dimension of this feature space is then reduced using PCA,
and a mixture of Gaussians is used to learn a probability distribution over
the joint distribution f(D, v), where D is absolute depth (as determined by
a panel of impartial subjects for each image), and v is the feature vector of
the image. Bayes rule and a model of the prior p(v) is then used to obtain
the expected absolute depth E[D|v]. The global 3D scene properties paper
[63] uses similar methods. These works show that global 3D structure of a
scene can be recovered using only a simple “spatial envelope” of the image.
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More recently, a group from Stanford has taken this approach a step
further [76]. Using similar texture-based cues, they infer a low-resolution (one
twentieth scale) depth-map from a single high-resolution image. Specifically,
86 × 107 range images are inferred for each 1704 × 2272 color image. Their
approach is similar to ours in that they use a database of real natural range
scans and color images to train their model. We have described their database
above (section 2.3). Their method divides each image into patches, and for
each patch i they take a variety of texture-based statistics by summing over
the square or absolute value of the output of filter Fn:

Ei(n) =
∑

(x,y)∈patch(i)

|I(x, y) ∗ Fn(x, y)|k (2.4)

for k = 1, 2. They use a portion of their database to train a set of parameters
in a jointly Gaussian multiscale Markov random field (MRF). The MRF
model includes two terms: a likelihood term that relates depth to the image
features, and a smoothness term that acts as a prior on 3D shape. The
likelihood term is exp((di − xTi θ)

2/2σ2
1) where di is the depth at patch i,

xi is the feature vector from the image, and θ and σ1 are parameters of
the model. The smoothness term is exp((di − dj)2/2σ2

2), where i and j are
neighboring patches, and σ2 is a parameter of the model. Learning σ2 allows
the smoothness of the inferred 3D surface to depend on the features of the
image. The model also has three scales, where depth at each scale is defined
to be the average of depths at each included patch from the next smaller scale.
The smoothness prior acts between neighboring patches at each depth. Using
a joint gaussian distribution allows them to solve for d in closed form and
compute the result very quickly. They also try a jointly Laplacian MRF, but
this yields little additional improvement.

The algorithm was then tested on the portion of the range database not
used for training. Average absolute-value error in the log-transformed range
images was 0.132, which corresponds to a multiplicative factor of 1.36. In
other words, a region with average log-error that is 10m away might be judged
to be 13.6m or 7.38m away. This can be compared to baseline algorithm in
which the output of the algorithm is always the mean range image (the aver-
age of all range images in the training portion of the database). The baseline
algorithm has an average log error corresponding to a 1.97 multiplicative
factor.

My approach to the depth inference problem differs from this in several
important aspects. First, I am interested in inferring high-resolution surface
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Figure 2.4: For a Lambertian surface with known albedo, the conditional joint
distribution P (p, q|i) is highly nongaussian - all non-impossible values lie along a
1D manifold. In the figure, lighting is from (0, 1, 1), and pixel intensity i = 0.85ρ,
where ρ is surface albedo. Dark values are more likely, white regions are impossi-
ble. The distribution pictured here assumes that all surface normal azimuths are
equally likely.

data, including high-frequency 3D texture. Ultimately, this will require us to
incorporate many monocular depth cues in addition to texture-based cues,
including shading, shadow, perspective, and others. Multi-image cues, like
stereo and motion, should also be easy to integrate into the model. Secondly,
I do not expect that a jointly Gaussian or Laplacian model will be sufficiently
effective in capturing the complex interdependencies between color images
and surface shape, especially when non-texture-based cues are considered.
For instance, given a Lambertian surface of constant albedo, if the lighting
direction is known, the joint probability distribution between vertical slope
q and horizontal slope p has all of its weight along a curved 1D manifold
that corresponds to a level-set of the Lambertian equations (see figure 2.4).
This distribution is highly non-Gaussian. Thirdly, I feel that a strong range
prior is essential for successful inference of 3D surfaces. The smoothness
assumption is not enough to capture the complex statistics of natural 3D
surfaces. In Chapter 5, I describe our approach for modeling the priors of
surface shape. Finally, Saxena’s algorithm relies on some regularities specific
to their range image database. Each image in their database is of an open
indoor or outdoor scene, centered on the horizon. The algorithm learns a
different set of parameters for each row of the output range image. Thus, the
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algorithm implicitly requires prior knowledge of the inclination of each pixel.
This approach is well suited to the open scenes in their database, but may
fail at inferring the 3D shapes of individual objects. My goal, on the other
hand, is to develop a general depth inference approach that should work for
images of objects as well as open scenes.

Another recent work that seeks to infer coarse 3D geometric structure
from single images is Derek Hoiem’s work on Automatic Pop-up [34, 33]. In
[34], image regions are categorized into ground plane, sky, vertical surfaces
facing left, right, or towards the camera, non-planar porous surfaces (such as
foliage or wire fencing), and non-planar “solids” (e.g. people or tree trunks).
The algorithm works by first segmenting the image into small regions called
“super-pixels”, which are then grouped into larger regions. Then, each re-
gion is assigned a label according to the properties of the image within that
region, where label assignment is learned from a database of hand-labeled
images. Logistic regression Adaboost using decision trees are used to learn
the label-assignment likelihood function. Image cues include region intensity
and color, texture statistics, region location, size, and contour shape, and
line geometry statistics designed to relate to perspective cues (e.g. a line ori-
entation histogram, and statistics of the locations of line intersections within
the region). Labels are assigned using bottom-up image cues exclusively;
each label is assigned independently of its neighbors, and no computational
interaction is necessary between regions. Instead of complex recurrent com-
putations, the algorithm draws its strength from a good bottom-up image
segmentation. Even in [33], where the only categories are ground plane, ver-
tical, and sky, a reasonable coarse scene geometry is often produced in certain
scenes. Such successes illustrate the power of good localization of occlusion
contours.
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Chapter 3

Methods of Statistical Inference

As discussed in the introduction, a statistical approach to the depth inference
problem promises to offer several advantages over deterministic approaches.
A statistical approach should improve the generality and robustness of the al-
gorithm, allowing reasonable shape estimates to be inferred in a wider class
of images. A statistical approach can expoit stochastic depth cues which
were previously inaccessable or whose deterministic forms were too mathe-
matically cumbersome to manage. Statistical methods allow us to estimate
measures of confidence of various aspects of the reconstructed 3D surface,
rather than a single point-estimate alone. Finally, statistical approaches can
facilitate the combination of multiple cues, allowing conflicting evidence from
multiple sources to be resolved according to the confidence of each source.

In order for a statistical approach to depth inference to be successful, we
must have a method for statistical inference that is capable of finding likely
values within a joint probability distribution of shape and appearance that
is both very large and very complex. Most existing methods of statistical
inference are not equiped to handle the size and complexity of the problems
of depth inference discussed later in this thesis. In this section, I will begin
by briefly reviewing some previous relevant methods for statistical inference,
and the advantages and drawbacks of each. In section 3.3, I will present a
more in-depth look at belief propagation, a highly promising method of sta-
tistical inference that has lead to great progress in a number of applications.
Unfortunately, for problems with the level of complexity we wish to address,
belief propagation is intractible, requiring years of computation to solve even
highly restricted depth estimation problems such as shape-from-shading. In
chapter 4, I will introduce a technique that reduces the computational com-
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Figure 3.1: The relative advantages of MAP and MMSE point estimates depend
on the distribution in question (see text for discussion). Subfigure c) shows an
ambiguous 3D shape. A MAP estimator will choose one of the two likely inter-
pretations, whereas the MMSE estimator will average the two together, resulting
in a flat surface estimate.

plexity of belief propagation from exponential to linear in the clique size of
the underlying graphical model. These advancements will allow us to effi-
ciently solve inference problems that were previously unavailable to belief
propagation.

3.1 Defining the Problem: A Statistical Approach
to Depth Inference

I begin by describing the problem from the perspective of statistical inference.
Consider the space of all possible of images I. This space is extremely large,
and most of the possible images are meaningless. Such meaningless images
are less likely to be observed in nature than images depicting real objects.
We can imagine a probability distribution p(I) that represents the likelihood
of encountering each image in nature. Similarly, we can imagine a joint
probability distribution p(I, Z) over all pairs of images I and range images
Z. Ideally, to infer likely range images Z given an image I, we would like
to model the posterior distribution p(Z|I) = p(I, Z)/p(I). We could then
compute the optimal 3D scene estimate for a particular image by using one of
a number of loss functions, such as the mode of posterior (MAP, or maximum
a posteriori):

ZMAP = argmax
Z

p(Z|I) (3.1)
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or the mean of the posterior (MMSE, or minimum mean-squared error):

ZMMSE = E[Z|I] =

∫
Zp(Z|I)dZ (3.2)

In some applications, the MMSE estimator is regarded as superior to the
MAP estimator because the MAP estimator is insensitive to the degree of
uncertainty around the mode in the distribution. For example, in a single-
variate skewed distribution like the one in figure 3.1a, it often makes sense
to choose a point estimate that is to the right of the mode. The MMSE
estimator reports the center of mass of this distribution. However, this logic
depends on embedding the state space of possible configurations in a metric
space where weighted averages over different configurations are meaningful.
For ambiguous images, the posterior distribution is often highly bimodal
(as in figure 3.1b). One common example of a scene with ambiguous 3D
interpretation is the Necker cube (figure 3.1c). This cube can be perceived
as protruding out of the page, or receding into it. The MMSE estimator
averages over all likely 3D shapes, and thus reports a flat surface - a highly
unlikely result. The MAP estimate, on the other hand, must select one of
the two likely interpretations. Regardless of what point estimator we use, it
would be advantageous if some estimate of the uncertainty of the distribution
were also computed, in addition to a point estimate. Specifically, a MMSE
estimate with a set of marginals is more useful than a MMSE estimate alone.

3.2 Methods of Statistical Inference
The problem of statistical inference is central to artificial intelligence and
to computation in general. Unfortunately, in the general case, finding the
MAP or MMSE point estimate of a distribution is NP-Hard [80]. Thus, for
large, complex distributions like p(Z|I), approximate methods must be used
to estimate the MAP or MMSE points of a distribution.

One simple approach is to use a gradient descent algorithm on the pos-
terior distribution to find the MAP estimate. The problem is that gradient
descent can easily become stuck in local minima. This is a serious problem
for all but the most simple posterior distributions. Stochastic relaxation is
a similar technique where, at each iteration, the gradient is followed with
some probability proportional to temperature, T . Otherwise, some random
direction is followed. The advantage of stochastic relaxation is that, if the
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temperature is decreased slowly enough, you are guaranteed to find the global
maximum. Unfortunately, for a complex distribution this approach can be
prohibitively slow. Also, it can be difficult to determine how to control
the temperature. As mentioned in chapter 1, gradient descent and related
methods have been tried extensively for solving the problem of shape from
shading, but copious local minima appear to make this approach ineffective
[109].

A related approach is Markov chain Monte Carlo (MCMC) sampling.
In this family of algorithms, we seek to approximate the posterior distribu-
tion by generating a set of samples from this distribution. Sampling can be
used to compute a MAP estimate by simply selecting the sample with the
highest probability according to the model probability distribution. MMSE
and other estimators can also be approximated from a sample list. Unfor-
tunately, MCMC sampling can also be prohibitively slow, especially in very
high dimensional problems like 3D shape inference. What’s more, it is often
very difficult to determine if the algorithm has converged, or if some impor-
tant portion of the state space has not yet been explored by the stochastic
sampling algorithm.

One key insight that has been greatly helpful for statistical inference is to
exploit local structure within a probability distribution. Specifically, many
probability distributions can be factorized, or represented as a product of
potential functions, each of which ranges over only a small subset of variables
of the problem space ~X:

p( ~X) =
∏

φi(~xi) ~xi ⊂ ~X (3.3)

Graph cuts are one popular method for MAP estimation of factorized
distributions which have been successful in a variety of vision applications,
including stereo [45, 77] and photometric stereo [101]. However, for this
method to work, the potential functions in equation 3.3 must meet a set of
constraints [46]. Specifically, each potential function must be regular. For
potential functions of two variables, this means that for any three variable
states x1, x2, and α, we must have

φ(x1, x2) + φ(α, α) ≥ φ(α, x2) + φ(x1, α) (3.4)

Loosely speaking, this means that potential functions must not discourage
variables from being identical. Potential functions of four or more variables
may have additional constraints, as there is as of yet no known general
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method for constructing a graph for such potential functions. As I will show
in later sections, these constraints will interfere with the construction of a
strong shape prior (i.e. priors that describe more than just surface smooth-
ness), and also for the incorporation of shading cues.

3.3 Belief Propagation
Belief propagation is a method of computing the single-variate marginals for
each variable in a factor graph. The original formulation of belief propagation
was designed to work in factor graphs that have the form of a tree (they
contain no loops). In tree-strutured factor graphs, belief propagation is non-
iterative and exact: the marginals computed by this method are equivalent
to those computed using brute force:

p(xi) =
∑
X\xi

p(~x)

Later, a variant of belief propagation known as loopy belief propagation was
developed to apply to arbitrary factor graphs. Empirical success of loopy
belief propagation was demonstrated for a variety of applications, such as
decoding turbo-codes [48], image super-resolution [23], stereo [82] and pho-
tometric stereo [84].

Loopy belief propagation works by iteratively passing vector-valued mes-
sages along each edge of the factor graph according to the equations:

mt
i→f (xi) =

∏
g∈N (i)\f

mt−1
g→i(xi) (3.5)

mt
f→i(xi) =

∑
~xN (f)\i

φf (~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj)

 (3.6)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (3.7)

where f and g are factor nodes, i and j are variable nodes, and N (i) is the set
of neighbors of node i [29]. Here, bi(xi) is the estimated marginal of variable
i, meaning that

b(xi) ≈ p(xi) =
∑
X\xi

p(~x) (3.8)
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The expected value of ~X, or equivalently, the minimum mean-squared er-
ror (MMSE) point estimate, can be computed by finding the mean of each
marginal.

The above formulation of belief propagation is also known as sum-product
belief propagation. One other variant of belief propagation is max-product
belief propagation. The goal of max-product belief propagation is to compute
the “maximals” or “max-marginals” of the distribution:

b̂(xi) ≈ max
xj∈X\xi

P (X) (3.9)

Max-product belief propagation proceeds very similarly to sum-product be-
lief propagation, except that the summands in equation 3.6 are replaced by
maximums:

m̂t
i→f (xi) =

∏
g∈N (i)\f

m̂t−1
g→i(xi) (3.10)

m̂t
f→i(xi) = max

~xN (f)\i

φf (~xN (f)

) ∏
j∈N (f)\i

m̂t
j→f (xj)

 (3.11)

b̂ti(xi) ∝
∏

g∈N (i)

m̂t
g→i(xi) (3.12)

Once the maximals b̂ are estimated, the MAP point estimate can be approx-
imated by choosing the value of xi that maximizes its maximal b̂i(xi).

As we mentioned above, both forms of belief propagation give exact re-
sults in factor graphs without loops. When belief propagation was first ap-
plied to networks with loops, good results were often achieved [48, 62] without
any theoretical justification. Since that time, theoretical works have begun to
shed some light on which graphical models loopy belief propagation is likely
to work well for, and what the limits on its performance are. It was shown
that, for jointly Gaussian MRFs, if the sum-product algorithm converges,
the means of the computed posterior marginals (and thus the MMSE esti-
mate) are correct [94], even though the variances of those distributions are
often wrong. In the same paper, it was also shown that if the max-product
algorithm converges, the resulting MAP estimate will be a local maximum
of the true posterior distribution (even for non-Gaussian distributions). A
subsequent paper [95] improved this result by showing that the computed
MAP estimate must have a greater posterior probability than any estimate
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that can be computed by modifying the values of the MAP estimate in any
region of nodes, provided that region contain no loops.

Later, it was discovered that when the Sum-Product algorithm converges
(in pairwise-connected MRFs), the resulting marginals minimize the Bethe
free energy, which can be thought of as an approximate measure of the dis-
tance between a multivariate probability distribution and a set of marginals
[103]. Let p(X) be the actual joint probability distribution, and let {bij(xi, xj), bi(xi)}
be the set of pairwise and single-variate marginals designed to approximate
p(X) (typically referred to as “belief”).

In the case that all factors φij of equation 3.3 are bivariate (if the distri-
bution is a pairwise-connected MRF), the Bethe free energy is given by:

Dbethe({bij, bi}||p) =
∑
ij

∑
xi,xj

bij(xi, xj) ln

(
bij(xi, xj)

φij(xi, xj)

)
−
∑
i

(qi − 1)
∑
xi

bi(xi) ln bi(xi) (3.13)

where qi is the number of neighbors of node i. The Bethe free energy
generalizes naturally to arbitrary factor graphs (see [105] for more detail).
Technically, bij and bi are often referred to as “pseudo-marginals” instead of
marginals, because there is no guarantee that a joint distribution exists which
has such marginals. However, the set of pseudo-marginals is constrained by
normalization and marginalization constraints:∑

xi

bij(xi, xj) = bj(xj) (3.14)∑
xi

bi(xi) = 1 (3.15)

The Bethe free energy is an approximation of the Gibbs free energy, which for
probability distributions as defined in equation 3.3 is equal to the Kullback-
Leibler divergence

DKL(b||p) =
∑
x∈X

b(x) ln
b(x)

p(x)
(3.16)

where b(X) is the approximated joint probability distribution. Intuitively,
the first term of equation 3.13 sums up the KL divergence of each pairwise
marginal, and the second term compensates for over-counting the divergence
of the single-variate marginals.
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The connection between Bethe free energy and loopy belief propagation
was an important discovery, because it provided a theoretical justification
for the application of belief propagation on networks with loops. Secondly, it
provided a way to design improvements of loopy belief propagation by using
more accurate approximations of distance between a distribution and a set
of marginals, such as the more sophisticated Kikuchi energies [103, 104, 105].
Finally, the discovery of the connection between loopy belief propagation and
Bethe free energy allowed more robust algorithms to be designed, which guar-
antee convergence on a minima of Bethe free energy by seeking to minimize
the quantity directly [107, 29]. One method of convergent belief propagation
is discussed in greater length in section 3.4.

The principal computational expense of loopy belief propagation is the
multidimensional summation (in the case of MMSE) or maximization (in the
case of MAP) in messages from factor nodes to variable nodes (equation 3.6
or 3.11). Suppose factor node f has N adjacent variable nodes (including
i). To compute mt+1

f→i(xi), for each possible value of xi, we must sum over

a N − 1 dimensional array for each value of xi. This has a cost of O(MN),
where M is the number of possible values of each variable. A similar com-
putation must be computed for each edge at each factor node, for a total
computational cost of O(FNMN) for each iteration, where F is the total
number of factor nodes. For belief propagation to be tractable, MN must re-
main low. Because we are attempting to infer 3D shape, which is comprised
of many continuously-valued random variables, there is a limit as to how low
M can be. Because of this, N must be kept quite low. Most computer vision
applications of loopy belief propagation that infer non-binary valued scene
properties use a value of N no higher than 2 [23, 82, 84]. In Chapter 4, I in-
troduce a computational shortcut that reduces the complexity of computing
belief propagation messages from O(MN) to O(NM2), or from exponential
to linear in the size of each clique. This technique creates an opportunity to
apply a sophisticated and successful inference technique to complex statisti-
cal problems where belief propagation was previously intractable.

3.4 Convergent Loopy Belief Propagation
One of the biggest shortcomings of loopy belief propagation is that it is not
guaranteed to converge. Convergence becomes increasingly unlikely when the
factor graph contains many tight loops, or when potential functions are “high

30



energy,” or nearly deterministic [28]. The depth inference problems that we
will be considering later exhibit both of these problems, and empirically, they
often fail to converge using standard belief propagation, even using different
dampening, scheduling, or reweighting techniques.

Fortunately, it was recently discovered that when standard sum-product
loopy belief propagation converges, the resulting marginals minimize a quan-
tity from statistical physics known as the Bethe free energy [103]. This has
lead to the development of belief propagation algorithms that minimize the
Bethe free energy directly [106, 29], and do so while ensuring convergence.

In the examples presented here, we use the algorithm described in [29],
which modifies equations 3.5 and 3.6 by:

mt
i→f (xi) = mt−1

f→i(xi)
1−ni

ni

∏
g∈N (i)\f

mt−1
g→i(xi)

1
ni (3.17)

mt
f→i(xi) =

∫
~xN (f)\i

φ̃f
(
~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj) d~x (3.18)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi)

1
ni (3.19)

where ni = |N (i)|, the number of neighbors of variable node i. Initially, φ̃f
is set to equal φf . Each time the estimated beliefs in equation 3.19 converge,
φ̃f is updated according to

φ̃f (~xN (f)) = φf (~xN (f))
∏

j∈N (f)

bτj (xj)
nj−1

nj (3.20)

where bτj (xj) is the belief at variable node j the last time the algorithm
converged. The algorithm continues until bτj (xj) itself converges.

Not only does this approach guarantee convergence, but we have found
that the results are often superior to standard LBP when standard LBP does
converge.

One drawback to Heskes’ convergent algorithm is that it is not compatible
with max-product belief propagation. However, when maximum a-posteriori
point estimates are desired, we can achieve them using the approach proposed
by Yuille [106], which introduces a temperature T , and replaces the energy

function of equation 7.2 with
∏
φi(~xi)

1
T . As the algorithm converges, T is

reduced. As T approaches zero, the computed marginals will approximate
the “maximals” of max-product belief propagation.

31



Another method for improving the performance and convergence prop-
erties of the original belief propagation equation is to use tree reweighting
methods [92, 44, 87]. Tree-reweighted extensions to belief propagation ap-
ply to both sum-product belief propagation [92, 87] and max-product belief
propagation [44].
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Chapter 4

Efficient Belief Propagation

As discussed in Chapter 3, belief propagation is a powerful method of sta-
tistical inference that has contributed to great progress for a wide variety of
applications [48, 23, 82, 84, 51, 65, 93]. Unfortunately, the computational
complexity of belief propagation grows very quickly with the complexity of
the underlying factor graph, and it has previously been feasible only for
very simple statistical models. Specifically, computing belief propagation
messages is exponential in the size of the largest graph clique. This means
that for problems with many labels or real-valued variables, belief propaga-
tion methods have historically been limited to graphical models with only
pairwise interactions between variables. Unfortunately, pairwise connected
models are often insufficient to capture the full complexity of the joint distri-
bution of the problem. This is especially true in computer vision, where the
rich and complex statistical structure of natural images cannot be captured
by pairwise connected Markov Random Fields [38].

In this section, I introduce a series of methods that reduce the computa-
tional complexity of LBP, and make LBP feasible for wider classes of statis-
tical inference problems. In section 4.1, I propose a computational shortcut
that, for a wide class of potential functions, reduces the complexity of belief
propagation from exponential in clique size, to linear in clique size. This
technique allows the highly successful belief propagation algorithm to be ap-
plied to rich, complex statistical inference problems that will be instrumental
to solving problems related to depth-inference discussed in chapters 5 and 6.
This method is exact, and achieves efficient belief propagation without sac-
rificing accuracy. In sections 4.2 and 4.3, I demonstrate how this technique
can be applied to wider subclasses of potential functions. In section 4.4, I
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examine different methods of representing the messages of belief propagation,
which can effect the efficiency and performance of the algorithm. Finally, in
section 4.5, I propose a technique that allows belief propagation messages to
be computed efficiently for arbitrary potential functions. This most general
method is approximate, but can approximate belief propagation messages
arbitrarily well given sufficient resources.

4.1 Efficient Belief Propagation Using Linear Con-
straint Nodes

In this section, I introduce a new technique to compute belief propagation
messages in time linear with respect to clique size that works for a large class
of potential functions without resorting to approximation. This technique al-
lows us to apply powerful belief propagation methods to complex, real-valued
statistical inference problems that were previously intractible. For continu-
ous, real-valued random variables, the equations for belief propagation are

mt
i→f (xi) =

∏
g∈N (i)\f

mt−1
g→i(xi) (4.1)

mt
f→i(xi) =

∫
~xN (f)\i

φf
(
~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj) d~x (4.2)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (4.3)

This formulation is the same as in equations 3.5 through 3.7, except the
summations are replaced with integrands.

In practice, the integrals performed in belief propagation equation 4.2
typically cannot be computed or represented analytically. In these cases,
the beliefs bi(xi) and messages mi→f (xi) are often approximated by discrete
histograms. When messages are represented by histograms, the integrand
of equation 4.2 is replaced by a summand. Thus, the equations for belief
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propagation become:

mt
i→f (xi) =

∏
g∈N (i)\f

mt−1
g→i(xi) (4.4)

mt
f→i(xi) =

∑
~xN (f)\i

φf (~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj)

 (4.5)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (4.6)

and the algorithm proceeds as before. In the next several sections, we will
assume that messages are represented using discrete histograms. We will
continue to write the belief propagation equations in continuous form, so that
the error of discretization can be postponed for as long as possible. Later, in
section 4.4, I will discuss alternate methods of message representation, their
implications for belief propagation inference in networks with higher order
cliques, and ways of minimizing discretization error.

In this section, I will continue to use the simpler, original formulation
of loopy belief propagation, rather than the convergent variants discussed
in section 3.4. However, the methods we introduce in this section and in
following sections all generalize easily to these convergent variants. Later,
in section 4.4, I will discuss in more detail the implications of convergent
variants of belief propagation on the efficient computation and representation
of messages.

4.1.1 Linear Constraint Nodes

Consider potential functions of the form

φ(~x) = g(~x · ~v) (4.7)

where ~x and ~v are vectors of length N . Factor nodes of this form will be
referred to as Linear Constraint Nodes (LCNs). Normally, computing mes-
sages from such factor nodes takes O(MN) time. Here, we show that, using
a change of variables, this computation can be done in O(NM2) time. For
notational simplicity, we illustrate this using N = 4, although the method
extends easily to arbitrary N . For shorthand, let Mi ≡ mf→i and mi ≡ mi→f
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Then we have:

M1(x1) =

∫ ∫ ∫
g(v1x1 + v2x2 + v3x3 + v4x4)

m2(x2)m3(x3)m4(x4)dx2 dx3 dx4 (4.8)

=

∫ ∫ ∫
J g(v1x1 + y2)m2(

y2 − y3

v2

)

m3(
y3 − y4

v3

)m4(
y4

v4

)dy2 dy3 dy4 (4.9)

∝
∫
g(v1x1 + y2)

(∫
m2(

y2 − y3

v2

)(∫
m3(

y3 − y4

v3

)m4(
y4

v4

)dy4

)
dy3

)
dy2 (4.10)

where J is the (constant) Jacobian corresponding to the change of variables.
Since belief propagation messages are only defined up to a constant for most
variations of LBP, the Jacobian can be safely ignored in this case. Here we
have used the change of variables:

y4 = v4x4 (4.11)
y3 = v3x3 + y4 (4.12)
y2 = v2x2 + y3 (4.13)
J = 1/(v2v3v4) (4.14)

This allows us to perform each integrand one at a time. Since each of the
N −1 integrands depend only on two variables, each can be computed in
O(M2) time. In section 4.4.3, we provide more technical details on how to
compute these integrals for histogram-based message representations, and
show that the method of computing messages described here not only results
in a significant computational speed-up, but also lowers the discretization
error.

The transformation of variables used above works for any vector ~v. How-
ever, there are many possible transformations. Clever choice of the transfor-
mation of variables may allow one to reuse intermediate computations during
the computation of other messages, or to embed additional nonlinear poten-
tial functions of pairs of variables yi and yi+1 at no extra computational cost.
The choice of transformation of variables is discussed further in section 4.3.
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If vi = ±1 for all i, and messages are represented as uniform-width his-
tograms, then each integrand in equation 4.10 can be reduced to aO(M logM)
computation using discrete Fourier transforms as in [21]. Although we de-
scribe our approach for sum-product belief propagation, the same approach
is valid for max-product belief propagation. For max-product belief propa-
gation, each maximal in equation 4.10 can be closely approximated in linear
time using the distance transform methods described in [21].

4.1.2 Linear Constraint Nodes and Projection Pursuit Den-
sity Estimation Methods

Systems of linear constraint nodes, of the form

P (~x) ≈ P̃ (~x) =
K∏
k=1

gk(~x · ~vk) (4.15)

have been very successful in approximating multivariate, continuous proba-
bility distributions P (~x). Projection pursuit density estimation [24], Mini-
max Entropy and FRAME [112, 113], Products of Experts [30], and Fields
of Experts [73] all work by approximating distributions P (~x) as products of
linear constraint nodes (as in equation 4.15). Previously, performing infer-
ence over these graphical models typically required using gradient descent or
related methods. These approaches often struggled with local maxima. In
Chapter 5, I will show how the shortcut introduced in section 4.1.1 allows
us to perform inference in Fields of Experts using belief propagation. Our
results significantly outperform gradient descent based methods of optimiza-
tion.

Products of linear potential functions have several attractive features that
have lead to their success. Their factorized nature simplifies the problem of
learning parameters, and several powerful methods for learning parameters
gk and ~vk have been developed [30, 96, 85, 11]. Additionally, systems of linear
potential functions as in equation 4.15 are members of the exponential family
of probability density models [112]. One consequence of this is that when
the potential functions gk are learned so as to minimize the KL-divergence
between P (~x) and P̃ (~x)

DKL[P (~x)||P̃ (~x)] =

∫
P (~x) log

P (~x)

P̃ (~x)
d~x (4.16)
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a) Target Function b) 2 linear experts c) 4 linear experts

d) 6 linear experts e) 8 linear experts

Figure 4.1: Illustrating how products of linear potential functions can approxi-
mate arbitrary functions. a) The target potential function to be approximated: a
two-dimensional mixture of Gaussians. Subfigures b) through e) show the target
function approximated with an increasing number of linear potential functions.
Vectors ~vk were chosen to manually to be evenly spaced.

(or equivalently, learned so as to maximize the log likelihood of the training
data), the single-variate marginals of P̃ (~x) projected onto each vector vk will
match those of the target distribution P (~x):∫

P (~x)δ(~x · ~vk − ρ)d~x =

∫
P̃ (~x)δ(~x · ~v − ρ)d~x ∀ρ, k (4.17)

Furthermore, of all probability distributions that share this property (those
that satisfy equation 4.17), P̃ (~x) will achieve the maximal possible entropy
[112]. Intuitively, this suggests that P̃ makes as few assumptions as possible
regarding features ~v′ that the model was not trained on.

Finally, we point out that, given enough linear potential functions, the
product of those potential functions can approximate any probability distri-
bution or desired nonlinear potential function arbitrarily well. Suppose we
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allow K to approach infinity. Then equation 4.15 becomes

log P̃ (~x) =

∫
|v|=1

g~v(~x · ~v)d~v (4.18)

Now consider the Radon transform

R[f(~x)](ρ,~v) =

∫
f(~x)δ(~x · ~v − ρ)d~x (4.19)

where ~v is constrained to be of unit norm. The adjoint of the Radon transform
[18] has the form

R†[ψ(ρ,~v)](~x) =

∫
|v|=1

ψ(~x · ~v,~v) d~v (4.20)

The Radon transform is invertible [18], and since the adjoint of an invert-
ible function is itself invertible, equation 4.20 is also invertible. This means
that we can always choose our potential functions g~v(ρ) in such a way that
P̃ (~x) = P (~x) exactly. Specifically, choosing g~v(ρ) = R†−1[logP (~x)] results in
a perfect reproduction of the target probability distribution P (~x). In prac-
tice, large values of K are often impractical. However, in our experience, all
but the most pathological probability density functions P (~x) can be approx-
imated well with only a small number of linear potential functions. In figure
4.1, we illustrate how a product of several linear potential functions can be
used to approximate an arbitrary function.

4.1.3 Hard Linear Constraint Nodes

A subclass of linear constraint nodes that is especially useful is the hard
linear constraint node. Hard linear constraint nodes have the form:

φ(~x) =

{
1 if ~x · ~v = 0
0 otherwise

(4.21)

or equivalently, hard linear constraint nodes have a nonlinearity g that is a
delta function. We refer to linear constraint nodes that are not of this form
as soft linear constraint nodes.

Hard linear constraint nodes are useful because they enforce linear de-
pendencies among the variable nodes in a graphical model. For example, a
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hard linear constraint node may enforce that variables a, b, and c obey the
relationship a + b = c. This ability to enforce linear dependencies means
that hard linear constraint nodes allow us to utilize overcomplete represen-
tations of the problem space ~X. Specifically, a factor graph that uses an
overcomplete representation is one that has more variable nodes than there
are degrees of freedom in the underlying probability distribution. When the
representation of ~X is overcomplete, then there must be linear dependencies
among the variables of ~X of the form ~x · ~v = 0. These dependencies must
be enforced to prevent computing estimates that are internally inconsistent.
Using standard belief propagation (equation 4.5), enforcing such constraints
would be intractable. Using the methods in equation 4.10, these constraints
can be efficiently enforced using a set of hard linear constraint nodes.

For any computational problem, finding the best way to represent the
problem state space is crucial; some problems can be solved much more eas-
ily given the right representation. A single complete representation forces
us to decide on only one representation, whereas overcomplete representa-
tions allow us to retain the benefits of multiple complete representations.
One example of the use of overcomplete representations is multi-scale ap-
proaches in computer vision, which have been very successful in several do-
mains. Another example can be found in the primate visual cortex, which is
overcomplete by a factor of at least 200:1 relative to retinal input.

In figure 4.2, we demonstrate how hard linear constraint nodes may
be used to exploit multiple-resolution techniques with belief propagation.
Multiple-resolution methods, and similar approaches such as wavelet-domain
processing and image-pyramid techniques, are all highly successful in com-
puter vision, and have contributed to algorithms for image denoising [66],
shape-from-stereo [98], motion [6], texture classification [59], region classifi-
cation [49], and segmentation [9]. Previous statistical inference approaches
that exploited multiple-resolution methods were limited to simple Gaussian
models or gradient descent optimization methods. The use of hard linear
constraint nodes makes multiple-resolution representations available to be-
lief propagation techniques.

Another example of an overcomplete representation often used in vision
is surface normal maps used to represent 3D surface shape. Such maps, or
“needle maps,” are typically represented using two values per pixel: p = ∂z

∂x

and q = ∂z
∂y

. For any real surface z(x, y), its gradient field must satisfy the
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Coarse Spatial Scale 

Fine Spatial Scale 

Figure 4.2: A factor graph that demonstrates the use of multiple resolution in-
ference for belief propagation. Each circle represents a variable at one of three
spatial scales, and each black square represents a hard linear constraint factor
node. Here, each hard linear constraint node enforces that its upper neighbor is
the block average of the pixels in the next finer spatial scale. Wavelet and Lapla-
cian image pyramids are also possible. The methods of section 4.1.1 reduce the
number of operations required to compute belief propagation messages in this
network from O(M5) to O(M2).

zero curl requirement, or equivalently,

∂

∂y

(
∂z

∂x

)
=

∂

∂x

(
∂z

∂y

)
(4.22)

∂

∂y
p =

∂

∂x
q (4.23)

In the computer vision literature, this equality also referred to as the integra-
bility constraint, which ensures that a surface’s normal map must integrate
to a valid surface z. When p and q do not satisfy this relationship, there
is no surface z(x, y) that is consistent with p and q. In discrete form, the
integrability constraint is equivalent to

p(x, y)− q(x, y) + q(x + 1, y)− p(x, y + 1) = 0 (4.24)

41



where

p(x, y) = z(x + 1, y)− z(x, y) (4.25)
q(x, y) = z(x, y + 1)− z(x, y) (4.26)

The integrability constraint can be enforced efficiently using a hard linear
constraint node of four variables. For many problems of 3D shape infer-
ence, representing shape using a surface normal map can be a great advan-
tage. Consider the classic problem of shape-from-shading, where the image
intensity at each point restricts the surface normal to lie along some one-
dimensional manifold, according to the Lambertian equation:

i(x, y) = max(0,
1 + pLp + qLq√

1 + p2 + q2
√

1 + L2
p + L2

q

) (4.27)

where Lp and Lq specify the lighting direction. This relationship between p
and q could be implemented as a pairwise clique in an overcomplete factor
graph with the integrability constraint enforced using hard linear constraint
nodes of clique-size four (as done in Chapter 6). Alternatively, the Lamber-
tian relationship could be enforced using cliques of size three in a complete
factor graph whose variable nodes represent depth at each pixel:

i(x, y) = max(0,
s(x, y)√

1 + L2
p + L2

q

) (4.28)

s(x, y) =
1 + (zx+1,y − zx,y)Lp + (zx,y+1 − zx,y)Lq√

1 + (zx+1,y − zx,y)2 + (zx,y+1 − zx,y)2
(4.29)

However, note that because absolute depth is completely ambiguous in shape-
from-shading, the computed marginals of z should be expected to be highly
uniform over a large range of depths. Even if an absolute depth is arbitrarily
chosen at one node, belief propagation is then charged with the task of prop-
agating this value to all nodes in the image. Since uncertainty compounds
over space, this measure would be ineffective outside of a small radius. Thus,
using an overcomplete representation in this case is essential.

Another useful application of hard linear constraint nodes is the ability
to aggregate over a set of local data to compute global features, such as
by summing over several variable nodes. For example, in [58], the authors
seek to infer the location and activity of a person from a stream of several
days worth of GPS coordinates. In order to place a prior over the number
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of times a given activity occurs in a single day, variable nodes representing
individual activities must be summed over. In [58], techniques similar to
hard linear constraint nodes are used to perform belief propagation efficiently,
where a tree of variable nodes is constructed, each node summing over two
children. The methods of this paper show that such a tree structure can
be replaced by a single hard linear constraint factor node, by setting ~v in
equation 4.7 to [−1, 1, 1, . . . , 1]. This would reduce the memory requirements
by half (without increasing the number of operations), and, for convergent
variants of belief propagation (discussed in section 3.4), would reduce the
number of iterations of belief propagation required. The results of this paper
also show how belief propagation can be made efficient for a much larger
class of potential functions, including other examples that can be used to
aggregate data across many variable nodes. For example, section 4.3, we
show how variable nodes that extract the maximum value from a stream of
local variable nodes can also be made efficient.

4.2 Nonlinear Constraint Nodes
We now extend our method to include potential functions of the form

φ(~x) = g(g1(x1) + · · ·+ gN(xN)) (4.30)

For the sake of brevity, we consider the case where N = 3, although the same
method works for cliques of arbitrary size. If gi is invertible for all i, then we
can apply a change of variables to equation 4.2 to get:

M1(x1) =

∫ ∫
g(g1(x1) + g2(x2) + g3(x3))

m2(x2)m3(x3)dx2 dx3 (4.31)

=

∫ ∫
J(x̂2, x̂3)g(g1(x1) + x̂2 + x̂3)

m2(g
−1
2 (x̂2))m3(g

−1
3 (x̂3))dx̂2 dx̂3 (4.32)

where we have applied the change of variables

x̂2 = g2(x2) (4.33)
x̂3 = g3(x3) (4.34)

J(x̂2, x̂3) =

(
∂

∂x̂2

g−1
2 (x̂2)

)(
∂

∂x̂3

g−1
3 (x̂3)

)
(4.35)
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The Jacobian J(x̂2, x̂3) can be absorbed into the messages by defining

m̂i(x̂i) = mi(g
−1
i (x̂i))

∂

∂x̂i
g−1
i (x̂i) (4.36)

and so we have

M1(x1) =

∫ ∫
g(g1(x1)+x̂2+x̂3)m̂2(x̂2)m̂3(x̂3)dx̂2dx̂3 (4.37)

We can then apply the methods of section 4.1.1 to get

M1(x1) ∝
∫
g(g1(x1)+y2)

∫
m̂2(y2−y3)m̂3(y3)dy3dy2 (4.38)

where we have made the change of variables y2 = x̂2 + x̂3 and y3 = x̂3.
If gi is not invertible, we can still apply the same technique if we integrate

equation 4.2 separately for each branch of g−1
i (xi). For example, if gi(xi) =

x2
i , simply integrate over the range (−∞, 0], and then over the range (0,+∞),

and add the two integrals together. gi(xi) has an inverse within both of these
ranges. If the inverse of gi(xi) has many branches, this approach may not
be feasible in practice. However, nonlinearities gi(xi) with a great many
branches are not expected to come up often in real-world applications.

Using these techniques, belief propagation can be performed efficiently
for a wide range of high dimensional potential functions. These include all
axis-aligned generalized Gaussian distributions and Gaussian Scale Mixtures,
which are popular for natural image models and denoising [66]. Since addi-
tional nonlinear potential functions of pairs of variables yi and yi+1 can be
embedded into equation 4.38 at no additional computational cost, many non
axis-aligned Gaussians and other potential functions can also be computed
efficiently using these methods.

4.3 Transformed Variable Elimination
The computational shortcuts introduced in the previous sections can be made
even more general, and to apply to an even larger class of potential functions.
In this section, we widen the class of potential functions that can benefit
from the efficient belief propagation techniques developed so far, and at the
same time, place these techniques in a broader computational framework that
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provides a different perspective into how these computational speed-ups are
achieved, and how these methods can be tailored to suit specific applications.

For higher-order cliques, the problem of computing messages

mt
f→i(xi) =

∑
~xN (f)\i

φf
(
~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj) (4.39)

is not unlike the problem of computing a single-variate marginal

Pi(xi) =
∑
X\xi

P (X) (4.40)

Thus, belief propagation exploits the factorization of a high-dimensional
probability distribution to decompose a difficult problem (exponential in the
dimensionality of X) into several easier, but similar problems (each exponen-
tial in N , the dimensionality of the clique).

When P (X) can be factorized (as in equation 7.2), single variate marginals
can be computed efficiently using the Variable Elimination Algorithm [108].
Note that this algorithm differs from belief propagation in that rather than
computing all single-variate marginals of a distribution the elimination algo-
rithm finds the marginal of only one variable. The variable elimination algo-
rithm works by choosing a variable xj ∈ X \ xi, and then summing over all
terms φk that depend on xj. For example, if P (X) = f1(x1, x2, x3)f2(x3, x4),
then eliminating the variable x4 would proceed as:

Pi(x1) =
∑
x2

∑
x3

∑
x4

f1(x1, x2, x3)f2(x3, x4) (4.41)

=
∑
x2

∑
x3

f1(x1, x2, x3)
∑
x4

f2(x3, x4) (4.42)

=
∑
x2

∑
x3

f1(x1, x2, x3)g(x3) (4.43)

The variable elimination process is repeated until all variables other than xi
have been eliminated. The computational complexity of the variable elimi-
nation algorithm depends on the structure of the factorization, and also on
the order of elimination chosen. When the order is optimal, the complexity
of the variable elimination algorithm is O(NMT+1), where M is the number
of states of each variable, and T is the treewidth of the Markov Random
Field (MRF) underlying the factorization of P (X) (see [7] for a review of
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the treewidth of a graph). Unless the graph is very dense, T + 1 is typically
less than the number of variable nodes in the graph, and so the variable
elimination algorithm represents a substantial improvement over brute force
summation to compute a single-variate marginal.

If it was possible to use the variable elimination algorithm to more effi-
ciently compute a belief propagation message (equation 4.39), then it also
would have been possible to further factorize the clique potential function
φf (xN (f)) into a product of smaller, more efficient potential functions. Thus,
we can assume that φf does not factorize, and so a direct application of the
variable elimination algorithm cannot help to make belief propagation more
efficient. The key insight of using linear constraint nodes is that by applying
a transform T to the space X \ xi we may be factorize the transformed po-
tential function, and so be able to apply variable elimination to an otherwise
unfactorable clique.

By framing the methods of section 4.1 in this way, we can illustrate how
these methods can be extended to a larger class of potential functions φf . So
far, the methods of this paper has focused on finding transforms of φf (xN (f))
that result in an underlying MRF in the form of a tree. A tree has a treewidth
of one. Thus, once a MRF is in tree form, variable elimination can be used
to compute the marginal of any node in O(NM2) time. It is also possible to
consider transforms T that transform the clique into other graphs of bounded
treewidth that still represent a computational advantage over brute force
summation. This allows us to improve the performance of a wider class of
potential functions φf .

Let us restrict ourselves for now to linear transforms T . Let M be the
inverse transform matrix, so that M~y = ~x, for ~x ∈ X. M must be an
invertible matrix, and it must preserve xi. Without loss of generality, we
assume that i = 1, and so the top row of M must be (1, 0, 0, ..., 0). Using
transform T , computing belief propagation messages now becomes

mt
f→i(x1) = mt

f→i(y1) (4.44)

= JM

∫
Y \y1

φf (M~y)
∏

j∈N (f)\i

mt
j→f (Mj∗ · ~y)d~y (4.45)

where JM is the Jacobian of M, and Mj∗ is the jth row of M. The goal of
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using a transform T is to choose a transform such that φ factorizes under T :

φf (~x) = φf (M~y) =

KY∏
i=1

φ
(i)
f (~yi) ~yi ⊂ ~Y (4.46)

The integrand in equation 4.45 specifies a MRF graph G with variable nodes
labeled y1 through yN . Each of the KY subsets ~yi must be fully connected
in G. Additionally, because of the incoming messages mt

j→f , for each row
Mj of M, the variables corresponding to the nonzero entries of Mj∗ must
also be fully connected in G. The computational cost of computing the
integral in equation 4.45 with messages represented as histograms will then
be O(NMTG), where TG is the treewidth of the graph G.

4.3.1 Products of Linear Constraint Nodes

To illustrate the flexibility of this approach, we will now use this analysis to
show that messages from a single factor node consisting of a product of K
linear experts can be computed in time O(NMK+1). Suppose the potential

function φf over clique ~X is:

φf (~x) =
K∏
k=1

fk(~x · ~v(k)) (4.47)

As described in section 4.1.2, one way to implement such a product of mul-
tiple linear constraints is by constructing a separate factor node for each
constraint fk (figure 5.1 is an example). Messages from those factors would
then be computed independently, each in O(NM2) time, using the methods
of section 4.1.1. Alternatively, these factor nodes can be combined into one,
and the methods of section 4.1.1 no longer apply. The underlying proba-
bility distributions represented by these two factor graphs are equivalent;
only their factorizations are different. Because belief propagation exploits
the structure of the factor graph to perform inference efficiently, the results
of belief propagation will depend on the shape of the factor graph even if the
underlying probability distribution is unchanged. As mentioned in section
3.3, when sum-product belief propagation converges, the resulting marginals
form a minima of the Bethe free energy, a quantity from statistical physics
which estimates the distance between the true multivariate probability dis-
tribution and the estimated single-variate marginals [103]. The quality of
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this approximation improves as larger cliques are grouped together [104]. As
an extreme example, consider that any probability distribution can be repre-
sented by a factor graph with a single factor node connected to each variable
node. Inference using belief propagation in such a graph would be exact,
but intractable. Conversely, splitting factor nodes into multiple factors typ-
ically improves belief propagation efficiency but reduces the quality of the
approximation. Thus, combining a product of multiple linear constraints
(as in equation 4.47) into a single factor node may cause belief propagation
to estimate marginals more accurately than using a separate factor node
for each linear constraints. Products of multiple linear constraints within
a single factor node are not eligible for the methods of section 4.1.1, but
using the transformed variable elimination methods of this section, we can
show how these messages can be computed in O(NMK+1) time. Assuming
that N << M , this represents a computational advantage over the original
brute-force approach as long as K + 1 < N .

Under transformation T , φf of equation 4.47 becomes

φf (~y) =
K∏
k=1

fk(M~y · ~v(k)) =
K∏
k=1

fk(~y · M′~v(k)) (4.48)

where M′ denotes the transpose of M. There are many transforms T that
can reduce the computation of messages from this factor node fromO(MN) to
O(NMK+1). Here, we will chooseM to be an upper-triangular band matrix
with bandwidth K + 1, with row M1∗ = (1, 0, ..., 0). Next, we constrain M
so that the vector M′~v(k) is zero everywhere except for elements 1 through
K + 1. Note that this ensures that under transform T , in the MRF G
underlying Y , yi and yj are only connected for |i− j| ≤ K. This ensures that
G has a treewidth of K.

The constraint that the vector M′~v(k) is only nonzero in elements 1
through K + 1 is equivalent to

M∗i · ~v(k) = 0 ∀k ≤ K, K + 1 < i ≤ N (4.49)

where M∗i is the ith column of M. By construction, column M is only
nonzero between elements i−K and i. Thus, we can achieve our constraint
by setting the (K+1)-element vector (M(i−K),i, ...,Mi,i) to be perpendicular

to (v
(k)
i−K , ..., v

(k)
i ) for all k ≤ K, and K < i ≤ N . Note that if the bandwidth

of M (and thus the treewidth of G) were any smaller, this constraint could
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not be satisfied. Also note that for K = 1, the transform described here
matches the example transform used as an example in section 4.1.1. For the
change of variables used in equation 4.9, M is given by

M =


1 0 0 0

0 1
v2

− 1
v2

0

0 0 1
v3

− 1
v3

0 0 0 1
v4

 (4.50)

M−1 =


1 0 0 0
0 v2 v3 v4

0 0 v3 v4

0 0 0 v4

 (4.51)

4.3.2 Embedding Additional Potentials

In section 4.1, we mentioned that a good choice of the transform of variables
may allow one to embed additional pairwise nonlinear potential functions at
no additional cost. We will explain that in more detail here. Suppose that
our factorized distribution P ( ~X) contains the factors φ1(~x) and φ2(~x), both
ranging over the same subset of variables ~x, where

φ1(~x) = g1(~x·~v) (4.52)
φ2(~x) = g2(~x·~v1, ~x·~v2) (4.53)

One approach is to implement φ1 and φ2 as two separate factor nodes in the
factor graph. However, this requires additional computation. Additionally,
unnecessarily separating overlapping factors can degrade the Bethe approx-
imation that underlies belief propagation, reducing accuracy [104]. Com-
bining these factors into a single factor node with potential φ1φ2 could be
advantageous.

Let M be a matrix that allows messages mt
φ1→1(xi) from φ1 to variable

node x1 to be computed in O(NM2) time (if ~x contains four variables, then
M is the matrix given by equation 4.50). Now suppose that v1 and v2 both
lie in the plane defined by two consecutive rows j and j + 1 of M−1. Then,
in the transformed space ~y =M−1~x, the MRF corresponding to φ2 consists
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of only a single connection joining variables yj and jj+1. This means that,
under the transformed space, the two potential functions φ1 and φ2 have
overlapping factor graphs. That allows us to combine φ1 and φ2 into one
factor node and still compute messages efficiently.

For example, consider the four-dimensional linear constraint node

φ1(~x) = g(v1x1 + v2x2 + v3x3 + v4x4) (4.54)

discussed in section 4.1. Using the change of variables given byM in equation
4.50, we can compute messages M1 = mf→1 efficiently according to

M1(x1) ∝
∫
g(v1x1 + y2)

(∫
m2(

y2 − y3

v2

)(∫
m3(

y3 − y4

v3

)m4(
y4

v4

)dy4

)
dy3

)
dy2 (4.55)

Now suppose that φ2(~x) = h(x3, x4). Both x3 and x4 lie on the plane spanned
by y3 = v3x3 + v4x4 and y4 = v4x4. That means that we can represent φ2(~x)
as

φ2(~x) = h(
y3 − y4

v3

,
y4

v4

) = ĥ(y3, y4) (4.56)

Thus, messages from the combined factor node φ1φ2 can be computed as

M1(x1) ∝
∫
g(v1x1 + y2)

(∫
m2(

y2 − y3

v2

)(∫
m3(

y3 − y4

v3

)m4(
y4

v4

)ĥ(y3, y4)dy4

)
dy3

)
dy2 (4.57)

In Chapter 6, this technique will be used for an application that infers
3D shape from a shaded image (see equation 6.10). The approach described
here makes it possible to to combine a hard linear constraint that enforced
the integrability of the surface:

φ1(~x) = δ((q1 − q2) + (p1 − p2)) (4.58)

with a spatial prior on the second order derivative of depth ∂2z
∂x∂y

:

φ2(~x) = exp(−|q1 − q2|
2b

) (4.59)
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4.3.3 Sums of Linear Constraint Nodes

It is also useful to note that some potential functions φf (~x) which cannot be
made more efficient under any transform T can be expressed as the sum of
some number of efficient potential functions. For example, we may find that

φf (~x) = φf1(~x) + φf2(~x) (4.60)

where φf1 and φf2 admit transforms that reduce each potential to a low-
treewidth MRF. In such cases, the belief propagation messages mf→i(xi) can
be computed by summing messages from φf1 and φf2:

mt
f→i(xi) = mt

f1→i(xi) +mt
f2→i(xi) (4.61)

Thus, if a potential is a sum of linear constraint nodes, messages mf→i(xi) can
be computed in time O(bNM2), where b is the number of terms in equation
4.60.

As an example, consider the hard constraint node that enforces that vari-
able xn is the maximum of several variable nodes:

xn = max
i
{x1, . . . , xn−1} (4.62)

φf (~x) = δ(xn −max
i
{x1, . . . , xn−1}) (4.63)

This type of constraint may be useful to extract a pertinent global feature
from a stream of variable nodes. The potential φf (~x) can be expressed as a
sum of n MRFs with treewidths of 1. To illustrate with N = 4:

φf (~x) = δ(x4 −max
i
{x1, x2, x3}) (4.64)

= H(x1 − x2)H(x1 − x3)δ(x4 − x1) +

H(x2 − x1)H(x2 − x3)δ(x4 − x2) +

H(x3 − x1)H(x3 − x2)δ(x4 − x3) (4.65)

where H is defined by

H(x) ≡
{

1 x > 0
0 otherwise

(4.66)

Each line of equation 4.65 is already in the form of a tree-shaped MRF; no
change of variables is needed. Specifically, if we set φf1(~x) to be the first line
of equation 4.65, then we can compute mf→i(x4) as:

mt
f→i(x4) = mt

f1→i(x4) +mt
f2→i(x4) +mt

f3→i(x4) (4.67)
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mt
f1→i(x4) =

∫ ∞
−∞

(∫ x1

−∞
m2(x2)dx2

)(∫ x1

−∞
m3(x3)dx3

)
δ(x4 − x1)m1(x1)dx1 (4.68)

4.4 Message Representation for Belief Propaga-
tion

For continuous random variables, the integrals of equation 4.8 or 4.10 typ-
ically cannot be computed analytically. In these cases, the beliefs bi(xi)
and messages mi→f (xi) are often approximated by discrete histograms. Dis-
cretization error can be a serious issue for histogram representations, espe-
cially for highly kurtotic or near-certain beliefs. These errors can propagate
across nodes and accumulate over iterations. Also, for some applications,
adequate covering of the variable space requires many bins. Even using the
techniques of section 4.1, a high value of message length M incurs a high
computational cost. In this section, we will discuss different methods of
representing messages, and how to reduce discretization error.

4.4.1 Parametric Message Representation

One method of representing belief propagation messages is to assume that
each message and belief can be well approximated with a Gaussian [84, 65].
However, for many applications, marginals are often highly non-Gaussian.
This is often the case in computer vision, where natural image statistics
have distributions which are highly kurtotic. Even more problematic are
random variables encoding the hidden underlying parameters of a scene, such
as 3D shape or surface material, which often have bimodal or multimodal
messages and beliefs. The shape-from-shading application of Chapter 6 and
the facial appearance model of [81] are two examples of applications of belief
propagation with highly multimodal messages and marginals. Among those
problems where the Gaussian approximation is effective, many can be solved
more simply using linear programming or gradient descent methods. For
these reasons, we will focus here on the more flexible histogram and particle-
based representations.
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4.4.2 Particle-Based Message Representations

Particle based belief propagation works by approximating each message by
a set of samples, or particles. Each particle is associated with a mean µ
and a weight w. Each message mi→f (xi) is represented with M particles,

with means {µ(m)
if }Mm=1 and weights {w(m)

if }Mm=1. In the case where the poten-
tial function φf is sufficiently simple, such as a small mixture of Gaussians,
mf→i(xi) can be approximated as:

mf→i(xi) ≈ m̃f→i(xi) =
M∑
m=1

w
(m)
fi φf (xi, ~µ

(m)
N (f)\i,f ) (4.69)

w
(m)
fi =

∏
j∈N (f)\i

w
(m)
jf (4.70)

where ~µ
(m)
N (f)\i,f is a vector composed of the mth particles from each message

m̃j→f such that j ∈ N (f) \ i [39]. If φf is not of a simple form, then it is
helpful to perform an additional step where we define m̃f→i(xi) by sampling
from equation 4.69, to simplify subsequent computations [81]. In this case,

let µ
(m)
fi be a sample drawn from φf (xi, ~µ

(m)
N (f)\i,f ). We can then approximate

m̃f→i(xi) as:

m̃f→i(xi) =
M∑
m=1

w
(m)
fi N (xi;µ

(m)
fi ,Λfi) (4.71)

where N (x;µ,Λ) is a Gaussian density function with mean µ and variance
Λ.

For particle based belief propagation, the computational bottleneck lies
in computing {µ(m)

if }Mm=1 according to equation 4.4, which requires sampling
from m′i→f (xi), defined as:

m′i→f (xi) = ζfi(xi)
∏

g∈N (i)\f

m̃g→i(xi) (4.72)

ζfi(xi) =

∫
~xN (f)\i

φf (~x)d~x (4.73)

If m̃g→i(xi) is computed as in equation 4.71, this requires sampling from
a product of D − 1 mixtures of M Gaussians each, where D = |N (i)|.

53



A straight-forward sampling method would require interpreting m′i→f (xi) a
weighted mixture of MD−1 Gaussians, and sampling from that, which re-
quires O(MD) operations. Instead, [81] showed how Gibbs sampling could

be used to sample {µ(m)
if }Mm=1 from m′i→f (xi) in O(DκM2) steps, where κ is

the number of Gibbs sampling iterations required. Note that if m̃f→i(xi) is
computed as in equation 4.69, this step is made more difficult.

Particle-based belief propagation was originally developed for pairwise
connected MRFs using standard belief propagation. Both higher-order po-
tential functions and Heskes’ convergent belief propagation pose several ad-
ditional obstacles for nonparametric belief propagation. Graphs with higher-
order cliques tend to be more highly connected, and thus have higher values
of D. For instance, the denoising problem in Chapter 5 uses a network with
D = 12 (see figure 5.1). Particle-based belief propagation is typically con-
sidered impractical for D > 8 [39].

This problem is exacerbated by the adjustments made in convergent vari-
ations of belief propagation. As mentioned earlier, heavily connected graphs
typical of problems with high-order cliques, as well as graphs with high-
energy potential functions such as hard linear constraint nodes, all tend to
benefit greatly from convergent belief propagation. The greatest obstacle to
particle-based message representations imposed by convergent belief propa-
gation is the exponentiation of messages, as in equation 3.17. Thus, rather
than sampling µ

(m)
if from a product of D mixtures of M Gaussians (already

a challenging task), samples must be drawn from such a product raised to
an arbitrary, fractional exponent. One more difficulty in using particle-based
messages for convergent belief propagation is that the potential function φf
has been replaced with φ̃f (in equation 3.18), which requires sampling from a
product of more Gaussian mixtures. Thus, for convergent belief propagation,
equation 4.72 becomes

m′i→f (xi) = ζfi(xi)

(
bτi (xi)

m̃t
i→f (xi)

)nj−1

nj ∏
g∈N (i)\f

m̃t−1
g→i(xi)

1
ni (4.74)

Recall that each message m̃t−1
g→i is represented as a mixture of Gaussians.

Sampling from such a distribution would be quite challenging.
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4.4.3 Histogram-Based Message Representations

Particle-based representations benefit from the their flexible and dynamic
structure, which allow them to focus computational effort on the most likely
values of a probability distribution. One way to achieve similar flexibility of
representation without incurring the computational expense of sampling from
complex distributions is to use histograms with variable-width bins, where
each bin may have a different, possibly dynamic, width. Using variable-width
bin histograms, messages are approximated as:

mf→i(xi) ≈ m̂f→i(xi) =
M∑
m=1

w
(m)
fi

dβ
(m)
i

β
(m−1)
i

(xi) (4.75)

dβ1

β0
(x) ≡

{
1 x ∈ [β0, β1)
0 otherwise

(4.76)

Variable-width bin histograms have been used successfully to improve
the speed and performance of the join tree algorithm [47, 43]. Here we
show that such a representation, when applied to belief propagation, can
overcome the obstacles encountered in applying particle-based representa-
tions to Heskes’ guaranteed-convergent LBP variation [29], or to problems
with highly-connected graphs. We require that each message mi→f (xi) and
mf→i(xi) to and from a given variable node i must have the same bin edges

{β(m)
i }Mm=1. Because of this, and because histogram bins are non-overlapping

(unlike Gaussian kernels), both multiplication and exponentiation now be-
come trivial: ((

M∑
m=1

wm
dbm
bm−1

(xi)

)(
M∑
m=1

w′m
dbm
bm−1

(x)

))η

=
M∑
k=1

(wmw
′
m)η

dbm
bm−1

(x) (4.77)

Thus, equation 3.17 can be computed efficiently, even for high values of D:

mt
i→f (xi) ≈ m̂t

i→f (xi) (4.78)

m̂t
i→f (xi) ≡ m̂t

i→f (xi)
1−ni

ni

∏
g∈N (i)\f

m̂t−1
g→i(xi)

1
ni (4.79)
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=
M∑
m=1

(
w

(m)
fi

) 1−ni
ni

∏
g∈N (i)\f

(
w

(m)
gi

) 1
ni

dβ
(m)
i

β
(m−1)
i

(xi) (4.80)

Using linear constraint nodes, computing messages from factor to variable
nodes mf→i(xi) (as in equation 4.10) can be viewed as a series of convolutions
of scaled histograms. For the example in section 4.1.1, the first step is to
compute the integral

M3,4(y3) =

∫
m3(

y3 − y4

v3

)m4(
y4

v4

)dy4 (4.81)

= [m3(t/v3) ∗m4(t/v4)](y3) (4.82)

where ∗ denotes convolution. mf→i(xi) can be computed as

M2,3,4(y2) = [m2(t/v2) ∗M3,4(t)](y2) (4.83)
mf→i(xi) = [g(−t) ∗M2,3,4(t)](−v1x1) (4.84)

Consider the simplest case for computing M3,4(y3), where m3 and m4 are

represented by histograms with all bins of width 1 (β
(m)
3 = β

(m)
4 = m), and

v3 = v4 = 1, so that no scaling is required. Often, such a convolution of
histograms is approximated as a discrete convolution:

M̂3,4(y3) =
M∑
m=1

w
(m)
2,3

dβ
(m)
2,3

β
(m−1)
2,3

(xi) (4.85)

w
(m)
2,3 =

M∑
m′=1

w
(m−m′)
3 w

(m′)
4 (4.86)

β
(m)
2,3 = m (4.87)

However, this approximation can result in compounded discretization error.
For example, suppose that m3(x) = m4(x) =

d1
0(x). Then M3,4(y3) is a

piecewise linear function that is nonzero within the interval (−1, 2). How-
ever, using the approximation in equation 4.86, M̂3,4(y3) will be nonzero only
within [0, 1], because both m̂3 and m̂4 have only one nonzero bin. A reduc-
tion in discretization error can be achieved by discretizing M̂3,4(y3) after the
integration is performed:

w
(m)
2,3 =

1

Wm

∫ β
(m)
2,3

β
(m−1)
2,3

(∫
m̂3(

y3 − y4

v3

)m̂4(
y4

v4

)dy4

)
dy3 (4.88)

Wm = β
(m)
2,3 − β

(m−1)
2,3 (4.89)
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In the more general case, where {β(m)
i }Mm=0 and ~v are all arbitrary, an

approximation like equation 4.86 is more difficult. Thus, in general, equation
4.88 is both more accurate and more convenient.

Note that the brute-force O(MN) computation of an N dimensional in-
tegral of discrete histograms such as equation 4.5 would typically employ a
method similar to equation 4.86, where integration is performed after dis-
cretization. Thus, by using linear constraint nodes, we can reduce discretiza-
tion error in addition to saving time.

To implement equation 4.88, first observe that the product m̂3(
y3−y4
v3

)m̂4(
y4
v4

)
is equal to a 2D histogram under an affine transform. Equation 4.88 in-
tegrates this 2D function over a rectangular region. This is equivalent to
summing the areas of a set of four- to six-sided polygons, each weighted by

w
(m−m′)
3 w

(m′)
4 . It can be shown that the total number of such polygons cannot

exceed 3M2. Thus, equation 4.88 can be computed in O(M2) time.
At the start of the belief propagation algorithm, the locations of histogram

bin edges {bm}Mm=1 can be initialized based on local estimates of the marginal,
such as single-variate potential functions φ(xi). In the denoising example in
Chapter 5, the intensity value of each pixel has a single-variate Gaussian
potential function whose mean is the observed (noisy) pixel intensity. In this
case, we set {bm}Mm=1 so that each bin is equally likely under this Gaussian
distribution.

In some applications, such as the denoising application, it is sufficient to
hold these bin widths fixed throughout the belief propagation execution. In
other applications, if the range of values xi is especially large, or if messages
are expected to be very low in entropy, then it may be beneficial to adapt
the histogram bin edges to best represent the current beliefs. For Heskes’
convergent variation of belief propagation, this can be most conveniently
done when bi(xi) reaches convergence, and φ̃f is updated.

Several strategies are available for adjusting the bin locations of each
variable node. One approach is to simply delete low-likelihood bins and
split high-likelihood bins apart. This strategy is related to some previous
works that adaptively restrict the search space of belief propagation to only
those states with high predicted likelihoods [10]. Another strategy is to
run a special, single iteration of belief propagation where each bin is first
split into 2 or 3 bins. Following this high-resolution iteration, bins can be
recombined until only M bins remain. Recombination can be performed to
minimize either sum-squared error with the high-resolution message, or the
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KL-divergence (as used by [47] to combine two possibly multidimensional
histograms). Finally, if messages are expected to approximate a particular
functional form, one strategy is to fit the beliefs to some parametric function
and place the histogram bins to minimize error. In the denoising application
of Chapter 5, a small performance boost can be achieved by placing bins to
minimize KL-divergence with a Gaussian fitted to the latest beliefs. Despite
the Gaussian arrangement of bin edges, highly non-Gaussian distributions
may still be effectively represented by such a histogram. At the same time,
placing bins in this way allows belief propagation to focus computational
effort on the most likely and most interesting intensity values.

Regardless of the strategy used, if a variable node’s bin locations are
altered, it is never necessary to perform interpolation to find new values of bin
weights {w(m)

fi }Mm=1. Beliefs and messages can be retained using the original,
unaltered bin locations until the belief propagation algorithm updates that
variable node according to equations 4.4 through 4.6. During that update,
incoming messages can be constructed using the new bin locations.

Note that the locations of histogram bins for the intermediate messages
M̂3,4 and M̂2,3,4 can also be dynamically adapted. Similar strategies that are
available for adapting message bin locations are also available for setting the
bin locations of intermediate messages.

4.5 A Particle/Histogram Hybrid Approach
In this section, I propose a hybrid approach to message representation that
uses both a histogram and a particle representation to retain the benefits of
both systems. As in section 4.4.3, beliefs and messages are first represented
as variable-width histograms. All beliefs and messages associated with a
particular variable node share the same bin edges β:

mf→i(xi) ≈ m̂f→i(xi) =
M∑
m=1

w
(m)
fi

dβ
(m)
i

β
(m−1)
i

(xi) (4.90)

where the function
db
a(x) is 1 on the interval [a, b], and zero elsewhere. This

representation allows incoming messages at a variable node to be multiplied
together efficiently (as in equation 4.4). It also allows messages to be raised to
an arbitrary exponent, thus allowing convergent forms of belief propagation
to run efficiently.
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The shortcoming of the histogram approach is that for general potential
functions, the multi-dimensional summand of equation 4.5 requires O(MN)
operations. However, particle representations allow this integrand to be com-
puted efficiently using Monte Carlo integration. To achieve the benefits of
both representations, we also represent messages using samples. To compute
the integral in equation 4.2, we first draw a set of S samples {µ(s)

jf }Ss=1 from
each message m̂t

j→f (xj). Since m̂t
j→f is represented as a histogram, this is

both simple and efficient. Now, message mf→i(xi) can be approximated by:

m̃f→i(xi) =
S∑
s=1

φf (xi, ~µ
(s)
N(f)\i,f ) (4.91)

To avoid expensive Gibbs sampling when exponentiating messages or mul-
tiplying messages together, this message is next transformed into histogram
form m̂f→i(xi):

w
(n)
fi =

∫ β
(n)
i

β
(n−1)
i

m̃f→i(xi)dxi (4.92)

=
S∑
s=1

∫ β
(n)
i

β
(n−1)
i

φf (xi, ~µ
(s)
N(f)\i,f ) (4.93)

If φf is simple, it may be possible to compute this integral analytically.

Alternatively, methods can be devised to sample from φf (xi, ~µ
(m)
N(f)\i,f ), and

use the number of samples falling between β
(n−1)
i and β

(n)
i to compute w

(n)
fi .

For the results in this paper, we approximated the integrals in equation
4.93 by evaluating φf (xi, ~µ

(m)
N(f)\i,f ) only at the bin edges and midpoints and

integrating numerically using the trapezoid rule. This approximation should
be sufficient so long as φf is smooth, and the histogram bins are narrow.

Using this approach, belief propagation message updates are O(DM) for
messages mt

i→f (xi) (Eq. 4.4) and O(NMS) for messages mt
f→i(xi) (Eq. 4.2).

To attain a given level of quality of the estimate m̃t
f→i, the number of samples

S must be proportional to the variance of φf (~x).
Note that retaining both histogram and particle representations is not

necessary: messages and beliefs can either be stored in histogram form and
sampled only for the purpose of integration (Eq. 4.2), or messages can be
stored as particles and converted to histograms only for multiplication and
exponentiation (Eq. 4.4).
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The advantage of the histogram/particle hybrid representation is that,
unlike Linear Constraint Nodes, it can be applied to any potential function.
The disadvantage is that it is an approximate method, and the computed
messages contain more error. By alternating between two approximate mes-
sage representations, this method is vulnerable to both sampling and dis-
cretization error. Therefore, where the use of a single linear constraint node
is applicable, that approach is preferable.

Some potential functions can be approximated by the product of several
linear constraint nodes, all ranging over a single graph clique. This approach
is used by the popular model of natural image priors known as Fields of Ex-
perts [73]. Representing such a product of soft linear constraints as a single
factor node (rather than seperating each factor into its own factor node) im-
proves the Bethe free energy approximation employed by belief propagation.
However, a product of linear constraint nodes is not itself a linear constraint
node, and so the computational shortcuts of section 4.1 only apply when each
factor is represented using a seperate factor node. The particle/histogram
hybrid message representation, however, applies is both cases. Although the
hybrid message approach is approximate, the improvement to the Bethe ap-
proximation caused by combining factor nodes may overcome the additional
noise inherent in the sampling-based integration. For the problem of image
denoising using Fields of Experts, this question will be persued more fully in
Chapter 5.

4.6 Convergent Belief Propagation
Recall that the original formulation of belief propagation does not always
converge. In section 3.4, we mentioned a number of variants of belief prop-
agation that ensure the convergence of the algorithm. In the case of sum-
product belief propagation, these methods are guaranteed to converge to a
minima of the Bethe free energy. Convergence of regular belief propaga-
tion decreases in likelihood when the underlying factor graph has many tight
loops or potential functions with high energy (i.e. potential functions that
are deterministic or nearly deterministic) [28]. Some of the applications we
consider later in the thesis strongly exhibit both of these qualities, and in fact
do not converge for regular belief propagation. To overcome this problem we
will be using Heskes’ double-loop belief propagation algorithm [29]. The use
of such variants of belief propagation not only ensure convergence, but they
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also often result in superior minima of the Bethe free energy in those cases
when regular belief propagation does converge [29]. For these reasons, we
use this variant of belief propagation throughout the remaining chapters.

As described in section 3.4, there are several variants of belief propaga-
tion that ensure convergence, both for sum-product belief propagation ?? and
max-product belief propagation ??. For each of these variants, the computa-
tion of belief propagation messages (as in equation 3.6 or 3.11) is a central
step of the algorithm. Because the methods of this chapter describe how
to efficiently compute belief propagation messages, they are compatible with
each of these convergent variants, including Yuille’s CCCP [106], the double-
loop algorithms of Heskes’ et. al. [29], Teh and Wellings UPS [87], the
tree-reweighted sum-product belief propagation of Wainwright et. al. [92],
and Kolmogorov’s tree-reweighted max-product belief propagation [44].

Additionally, the choice of message representation, discussed in section
4.4, can interact significantly with the choice of belief propagation variant.
Each of the convergent variants of sum-product belief propagation requires
raising messages to some fractional exponent. Taking the exponent of mes-
sages that are represented in histogram form is computationally simple and
takes only O(M) time, i.e. linear in the number of histogram bins. Tak-
ing the exponent of a message represented by a set of particles is not at
all straightforward, and typically requires an expensive resampling method.
This is one benefit of the particle/histogram hybrid message representation
method discussed in section 4.5.

4.7 Conclusions
In this chapter, we have introduced a way to efficiently perform belief prop-
agation over large graph cliques, reducing computation from O(MN) to
O(NM2) for a wide variety of potential functions. We have shown how
these methods can be generalized in several ways to benefit a larger subclass
of potential functions. Additionally, we have developed methods for rep-
resenting belief propagation messages for continuous variables that remain
computationally efficient for highly connected graphs, convergent variants of
belief propagation, and the use of the computational shortcuts introduced
in this paper. These message representations allow discretization error to be
minimized while at the same time preserving computational efficiency.

The techniques introduced in this chapter open up a wealth of powerful,

61



higher-order statistical models for inference using belief propagation meth-
ods that would previously have been intractable. Belief propagation is a
promising framework of optimization for these models, because it often out-
performs gradient-based optimization methods by exploiting factorizations,
and by performing optimization within the much larger search space of single-
variate marginals, which is often less prone to local extrema. Computer vision
in particular stands to benefit greatly from higher order statistical models
due to the complex statistical structure of natural images and underlying im-
age properties. In chapters 5-7 I will present three applications in computer
vision which would have been intractible using standard belief propagation,
but can now be made efficient using the methods of this chapter.
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Chapter 5

Spatial Priors

Several state-of-the-art computer vision algorithms use belief propagation. A
number of these, including stereo [82], photometric stereo [84], shape-from-
shading (Chapter 6), image-based rendering [99], segmentation and matting
[93] work over a grid at the pixel level. These algorithms solve ambigu-
ous and underconstrained problems, where having a strong prior for images
or 3D shape is essential. However, the computational complexity of belief
propagation has constrained these algorithms to weak pairwise interactions
between neighboring pixels. These pairwise interactions capture the smooth-
ness properties of images, but they overlook much of the rich statistics of
natural scenes. Finding a way to exploit a stronger model of image pri-
ors using belief propagation could greatly enhance the performance of these
algorithms.

One promising recent model for capturing natural image statistics beyond
pairwise interactions is the Fields of Experts model (FoE), which provides a
way to learn an image model from natural scenes [73]. FoE has shown itself to
be highly effective at capturing complex image statistics by performing well
at image denoising and image inpainting (filling in holes) using a gradient
descent algorithm. The FoE model describes the prior probability of an image
as the product of several Student-t distributions:

p(~I) ∝ p̃(~I) =
∏
C

K∏
i=1

(
1 +

1

2
(~IC · ~Ji)2

)−αi

(5.1)

where C is the set of all (overlapping) n × n patches in the image, and ~Ji
is an n × n filter. The parameters ~Ji and αi are learned from a database of
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Figure 5.1: A factor graph used to perform image denoising using three 2 × 2
Fields of Experts filters. Each variable node, shown here as circles, represents
the true image intensity at a given pixel. The three gray squares represent factor
nodes corresponding to the three 2× 2 Fields of Experts filters.

natural images.
Recently, an attempt was made at performing inference in Fields of Ex-

perts models using loopy belief propagation, and the approach was tested on
an image denoising problem [51]. The authors showed that using three 2× 2
Fields of Experts filters yields a significant improvement over pairwise mod-
els. In their approach, the authors mitigate the computational complexity of
equation 3.6 by restricting the intensity at each pixel to lie within a range
defined by its immediate neighbors within the noisy image. Specifically, the
true intensity value of each pixel is assumed to lie between the brightest and
darkest of its nearest four neighbors within the noisy image, after a slight
Gaussian blur is applied. Thus, computational complexity of each message is
still O(MN), but M (the number of possible labels) is significantly reduced
(note that here, N = 4). One drawback of this approach is that it is par-
ticular to image denoising. In many problems requiring a strong image or
range image prior such as stereo and other depth inference algorithms, it can
be difficult to restrict the search space of each variable based solely on local
properties of the algorithm input. We seek to develop an implementation
of Fields of Experts for belief propagation that can be applied to arbitrary
image or range image inference problems.
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5.1 Fields of Experts using Linear Constraint Nodes

Using the methods of section 4.1, efficient belief propagation is possible in
higher-order Fields of Experts factor graphs without relying on simplifying
assumptions specific to image denoising. In this section, in order to demon-
strate the viability of this approach, we apply our methods to the image
denoising problem, using the same 2 × 2 filters as [51]. Although we use
image denoising as an example problem, note that this approach is not spe-
cific to image denoising, and can be used as a spatial prior for a variety of
computer vision applications.

In the denoising problem described here, we are given a natural image
(such as figure 5.2a) that has been corrupted with additive Gaussian noise of
known variance (such as figure 5.2b). The object is to remove this noise and
recover the original image. Using the Fields of Experts model, the conditional
probability of the denoised image ~I given the noisy image ~IN , is modeled by

p(~I|~IN) ∝ p̃(~I|~IN) (5.2)

p̃(~I|~IN) = p̃(~I)
∏
x,y

(
1

σ
√

2π
e(
~I(x,y)−~IN (x,y))2/(2σ2)

)
(5.3)

where the (unnormalized) prior p̃(~I) is the Fields of Experts model given in
equation 5.1. The Fields of Experts spatial prior is implemented according to
the factor graph in figure 5.1. The Gaussian likelihood is implemented as a
prior at each node, and requires no additional messages. Note that this model
is capable of performing denoising in a variety of other noise circumstances,
such as non-Gaussian or multiplicative noise.

Note that in the factor graph in figure 5.1, the observed, noisy pixel
values are not explicitly represented as variable nodes. Instead, the Gaussian
likelihood potential functions are absorbed into the factor nodes neighboring
each pixel, and therefore require no additional belief propagation messages.

In our implementation, each variable node’s beliefs and messages are rep-
resented using 16 bins. Bin edges are initialized so that each bin has equal
probability under the Gaussian distribution P (true intensity|noisy intensity),
and bins span the range of possible intensity values from 0 to 255. Results
are reported for the case where bin edges remain static during the inference
procedure, and also for the case where bin edges are occasionally updated
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Figure 5.2: (Following page). Using higher-order Fields of Experts to perform
image denoising. a) A cropping from the original image (from [66]). b) The orig-
inal image with additive Gaussian noise of σ = 20. c) The output of belief prop-
agation over a pairwise-connected Markov Random Field, similar to the model
described in [21]. Pairwise models tend to produce piecewise constant image re-
gions [51]. d) Denoising using the gradient descent algorithm employed by [73],
with three 2 × 2 Fields of Experts filters learned from natural images. e) Results
using the same 2 × 2 FoE model as d), except using linear constraint nodes (the
methods described in section 4.1) and the graphical model of figure 5.1. Intensity
values were chosen to be the expected value of the estimated marginal. f) Results
using the same 2× 2 FoE model as d) and e), except using the partical/histogram
hybrid message representation discussed in section 4.5, and the factor graph of
figure 5.3.

to minimize the KL-divergence between the histogram b̂i(xi) and a Gaus-
sian distribution fitted to the current beliefs. Intermediate messages (such
as M̂3,4(y3) and M̂2,3,4(y2)) were represented as histograms with 32 bins. Bin
edges for intermediate messages were chosen by first computing a histogram
of 96 bins, where edges were chosen to minimize the KL-divergence between
the convolution of two Gaussians fit to the two convolved input messages.
Then the most unlikely consecutive pairs of these bins were combined until
32 bins remained. We ran each image for 15 outer-loop iterations (15 updates
of φ̃f , as in equation 3.20) of the convergent belief propagation algorithm de-
scribed in section 3.4. On average, this required about 35 iterations of belief
propagation. The 2×2 Fields of Experts parameters used by our model were
the same as those in [51].

For comparison, we also tested 2× 2 Fields of Experts using the gradient
descent algorithm used in [73] (code available online). In each case, gradient
descent was run for 3000 iterations using a step-size of 0.1.

Sample results from our approach are shown in figure 5.2. We measured
the average peak signal to noise ratio (PSNR) for each algorithm over the
same set of 10 images from the Berkeley segmentation database [61] that was
used in [51]. Here, PSNR is defined by

PSNR = 20 log10(255/
√
MSE) (5.4)

where MSE is the mean squared error. These results are shown in table
5.1. In tables 5.1 and 5.1, we also show results for five canonical images from
denoising literature, as used by Portilla [66].
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a) Original Input b) Noisy Image (σ = 20) PSNR = 21.11

c) Pairwise MRF, BP PSNR = 27.03 d) 2× 2 FoE, Gradient Descent PSNR = 26.14

e) 2× 2 FoE, LCNs, MMSE PSNR = 28.81 f) 2×2 FoE, P/H Hybrid, MMSE PSNR = 28.89

(Caption on Previous Page)
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MAP MMSE
σ = 10 σ = 20 σ = 10 σ = 20

Noisy Input Images 28.13 22.11 28.13 22.11
Hand-tuned Pairwise MRF using belief propagation [51] 30.73 26.66 NA NA
2× 2 FoE using gradient descent (algorithm from [73]) 30.59 26.09 NA NA
2× 2 FoE using belief propagation (from [51]) 30.89 27.29 NA NA
2× 2 FoE using LCNs, Fixed Histograms 31.41 27.12 31.51 27.29
2× 2 FoE using LCNs & Adaptive Histograms 31.55 27.25 31.62 27.40
2× 2 FoE using Particle/Histogram Hybrids 31.72 27.52 31.79 27.66

Table 5.1: Peak signal-to-noise ratio (PSNR), in decibels, for pairwise and
higher-order models, averaged over the ten images from the Berkeley segmen-
tation database [61] used in [51]. PSNR is defined in equation 5.4. For each belief
propagation algorithm, a MAP point estimate is approximated by choosing the
maximal value of each marginal, and a MMSE point estimate is taken by comput-
ing the mean of each marginal. Denoising using linear constraint nodes (LCNs)
with 2× 2 FoEs outperforms both belief propagation on pairwise MRFs and gra-
dient descent on identical FoEs. Using particle/histogram hybrid message repre-
sentations (section 4.5) results in a small additional performance gain.

As shown in figure 5.2c, belief propagation over pairwise-connected Markov
random fields tends to produce piecewise constant results. A 2 × 2 Fields
of Experts model promises to correct this problem by modeling not only the
statistics of neighboring pixels, but whole blocks of four pixels. However, gra-
dient descent (fig. 5.2d) is unable to fully exploit this model, achieving signal-
to-noise ratios that do not exceed those of the pairwise-connected model using
belief propagation. Local minima encountered by gradient descent are likely
at fault. Figures 5.2e and 5.2f show the results of our approach, which out-
perform both pairwise connected MRFs and gradient descent over the same
statistical model (2× 2 FoEs) by over a decibel of PSNR.

More importantly, using the methods of section 4.1, belief propagation
can be performed efficiently in higher-order factor nodes without relying on
domain-specific approximations or simplifying assumptions. On a 2.2GHz
Opteron 275, our algorithm takes under two minutes for each iteration of
belief propagation on a 256× 256 image. By comparison, the method of [51]
took 16 minutes per iteration on a 3GHz Xeon, and benefited from a reduced
search space.

In addition to an improvement in running time, our approach also yielded
some improvement in quality over the more brute-force belief propagation ap-
proach used by Lan et. al. [51]. One difference between these two methods
is that, in order to reduce the search space of the problem, [51] relies on
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σ = 10 (PSNR = 28.13) boat peppers house lena barbara
2x2 FoE, Gradient Descent [73] 30.61 30.73 31.00 30.91 30.19
2x2 FoE, BP using LCNs, Fixed Histograms 32.30 32.84 33.70 33.35 30.43
2x2 FoE, BP using LCNs, Adaptive Histograms 32.28 32.85 33.71 33.34 30.24
2x2 FoE, Particle/Histogram Hybrid 32.32 33.03 33.88 33.46 30.54
5x5 FoE, Gradient Descent [73] 33.04 34.18 35.14 35.03 32.85
Portilla et. al. [66] 33.58 33.77 35.35 35.61 34.03

Table 5.2: Denoising results for five canonical denoising images (used in [66]).
Image noise σ = 10. BP using LCNs refers to belief propagation using the linear
constraint node computational shortcut. State of the art denoising algorithms
(bottom two rows) are also reported. Note that these algorithms are designed
especially for denoising, and would be difficult to use as a spatial prior for other
vision tasks like stereo, shape from shading, and others. All error values are given
in peak signal-to-noise ratio (equation 5.4). For each belief propagation algorithm,
only the MMSE point estimates are given. Maximum marginal estimates were
typically similar or slightly worse.

σ = 20 (PSNR = 22.11) boat peppers house lena barbara
2x2 FoE, Gradient Descent [73] 26.14 26.15 26.49 26.45 25.44
2x2 FoE, BP using LCNs, Fixed Histograms 28.77 28.98 30.53 30.30 25.93
2x2 FoE, BP using LCNs, Adaptive Histograms 28.81 29.09 30.46 30.31 25.47
2x2 FoE, Particle/Histogram Hybrid 28.89 29.29 30.53 30.25 25.77
5x5 FoE, Gradient Descent [73] 29.82 30.19 32.02 31.81 28.31
Portilla et. al. [66] 30.38 30.31 32.39 32.66 30.32

Table 5.3: Results as in table 5.3, except under noise with σ = 20. All error
values are given in peak signal-to-noise ratio (equation 5.4).

the assumption that pixel intensities in the original image should lie within
some range determined by their immediate neighbors in the noisy image. Be-
cause this assumption is only applicable for image denoising, and our interest
lies in developing spatial priors that can be used by any belief propagation
algorithm, our approach does not restrict the search space. This assump-
tion is violated by just under 10% of the pixels in the images tested, so
it is reasonable to ask if this assumption could account for the improve-
ment in performance achieved by our approach. However, when our linear
constraints node algorithm is forced to make this same assumption and re-
strict the search space for each pixel according to its neighbors, performance
improves slightly. For the suite of 10 Berkeley images tested in table 5.1,
restricting the search space as in [51] increased PSNR from 31.62 to 31.68 for
σ = 10 and from 27.40 to 27.57 for σ = 20. This improvement most likely re-
sults from focusing histogram bins on more likely intensity values. However,
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while this assumption may offer some small performance gain, it is important
to remember that such assumptions are not available for other applications
of spatial priors where belief propagation is more necessary, such as stereo
[82], photometric stereo [84], shape-from-shading (Chapter 6), image-based
rendering [99], segmentation, and matting [93].

If the assumption made by Lan et. al. [51] to reduce the search space is
not the cause of the performance gain of our approach, then it is most likely
due to the convergent variant of belief propagation [28] and nonparametric
message representations used by our approach. One reason that this perfor-
mance gain is of interest is that although the underlying statistical model of
natural images is identical between the two methods, the factor graph used
by [51] (shown in figure 5.3) is not identical to the one used by our method
(shown in figure 5.1). The graph used in [51] uses a single factor node for
all three 2 × 2 experts within a clique, whereas our method separates each
expert into its own factor node. By separating out these factors, the Bethe
free energy approximation used by belief propagation is degraded. The good
performance of our approach shows that this sacrifice in the quality of the
Bethe approximation was less than the advantages offered by convergent be-
lief propagation and variable width bin histograms. In section 5.2, I will show
how the particle/histogram hybrid message representation introduced in sec-
tion 4.5 can be used to perform efficient belief propagation in this original,
unseparated factor graph (figure 5.3). This results in a small improvement
in PSNR.

For the sake of comparison, we also present results for two state-of-the-
art denoising algorithms: 5 × 5 FoEs using gradient descent [73], and an
algorithm that uses Gaussian scale mixtures to model the joint distribution of
wavelet coefficients [66]. These algorithms are designed specifically for image
denoising; they cannot easily be adapted for use as spatial priors in more
complex algorithms like stereo, shape from shading, matting, and others.
We present them here in tables 5.2 and 5.3, for a sense of perspective.

Belief propagation computes the single-variate marginals of each pixel
value. The expected value of the denoised image, or the minimum mean-
squared error (MMSE) point estimate, can be computed by taking the mean
of each marginal. This approach usually yields the best results for our algo-
rithm. In table 5.1 we also show results for the intensity values that maximize
the marginal, or the “maximum marginal” (MM) point estimate. For fixed-
width histograms, a continuous MRF that approximates intensity using only
16 bins would typically show high discretization error for point estimates
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computed this way. By using variable width histograms, these quality of
these point estimates is nearly equal to MMSE results. As discussed in sec-
tion 3.4, maximum a posteriori (MAP) point estimates can be computed
using either non-convergent max-product belief propagation, or by perform-
ing annealing within convergent sum-product belief propagation [107]. For
problems with smooth, unimodal likelihood functions like image denoising,
using MAP point estimates is rarely beneficial.

In table 5.1, results using linear constraint nodes are presented both with
and without dynamic readjustment of histogram bin locations. In each case,
histogram bins are initialized so that each bin has an equal likelihood under
to the Gaussian likelihood function. In the dynamic case, bins are also ad-
justed after each outer-loop iteration, as described earlier. This procedure
takes negligible time, and yields a small but significant performance improve-
ment. For other applications, where initial estimates of the marginals may be
less accurate, or beliefs fluctuate more during inference (such as the shape-
from-shading algorithm described in Chapter 6), dynamic histogram bin edge
adjustments are more important to performance.

In addition to showing that LCNs allow belief propagation to efficiently
capture nonpairwise aspects of the statistics of natural scenes, we are also
interested in showing that belief propagation outperforms gradient descent
techniques at finding maximally likely images I that optimize p̃(~I|~IN) (equa-
tion 5.3). In tables 5.4 and 5.5, we show the unnormalized log likelihoods

log p̃(~I|~IN) for the denoised images computed by both gradient descent and
by our belief propagation approach. These algorithms both use the same
2 × 2 Fields of Experts model, and so both algorithms are attempting to
opimize the same energy function. Because the spatial prior P (~I) may not
be optimal, it is possible for an algorithm to achieve poor denoising results
dispite finding superior optima of p̃(~I|~IN). Tables 5.4 and 5.5 show that this
is not the case. All variants of belief propagtion with LCNs find denoised
images that are significantly more likely (according to the model) than those
chosen by gradient descent.

71



Berkeley
σ = 10 Suite boat peppers house lena barbara
Original Image -3.93 -26.62 -6.57 -6.40 -25.82 -27.84
Noisy Image -4.15 -28.25 -7.03 -6.92 -27.78 -29.25
2x2 FoE, Gradient Descent [73] -3.94 -26.65 -6.65 -6.52 -26.20 -27.79
2x2 FoE, BP using LCNs, Fixed Histograms -3.80 -25.70 -6.45 -6.31 -25.35 -26.73
2x2 FoE, BP using LCNs, Adaptive Histograms -3.80 -25.68 -6.44 -6.31 -25.33 -26.69
2x2 FoE, Particle/Histogram Hybrid -3.79 -25.64 -6.43 -6.30 -25.29 -26.68

Table 5.4: The (unnormalized) log-likelihood of each image reconstruction ac-
cording to the 2× 2 FoE model. All values are given as log p̃(~I|~IN )× 10−5, where
p̃(~I|~IN ) is given in equation 5.3. The values given for the Berkeley Suite images
show the mean unnormalized log-likelihood for the ten images from the Berkeley
segmentation database [61] used in [51]. The four denoising algorithms shown
here all seek to optimize the same equation (i.e. equation 5.3 using the 2 × 2
FoE model). In each case, belief propagation significantly outperforms gradient
descent. Thus, in addition to producing denoised images with less error, belief
propagation does a better job at finding the optimum values of the FoE probabil-
ity model. This means that the improvement in performance is not due to pecu-
liarities of the FoE model. Also note that, according to the model, the denoised
images computed using belief propagation have greater likelihood than the orig-
inal image. This suggests that improving the model is now more important than
improving the method of optimization.

5.2 Fields of Experts using Particle/Histogram Hy-
brid Representations

In section 5.1, I showed how, using the linear constraint nodes shortcut of
section 4.1, belief propagation could be made both efficient and effective for
graphical models that exploit the Fields of Experts spatial prior. In order for
the linear constraint node shortcut to be applicable, the three 2× 2 experts
used here needed to be represented as three separate factor nodes, as in
figure 5.1. Each of these factor nodes is a soft linear constraint node, and
thus available for the computational shortcuts of section 4.1. As mentioned
earlier, separating these factors into separate factor nodes does not affect the
probability distribution that is represented by the factor graph. However,
belief propagation is an approximate method, and the Bethe approximation
intrinsic to belief propagation is more accurate when the factors are combined
into one factor node per image patch, as in figure 5.3.

The histogram/particle hybrid representation introduced in section 4.5
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Berkeley
σ = 20 Suite boat peppers house lena barbara
Original Image -4.19 -28.44 -7.03 -6.85 -27.64 -29.66
Noisy Image -4.86 -33.39 -8.33 -8.25 -33.10 -34.04
2x2 FoE, Gradient Descent [73] -4.29 -29.29 -7.33 -7.21 -28.93 -30.18
2x2 FoE, BP using LCNs, Fixed Histograms -4.00 -27.89 -7.00 -6.87 -27.55 -28.88
2x2 FoE, BP using LCNs, Adaptive Histograms -3.99 -27.85 -6.99 -6.86 -27.52 -28.82
2x2 FoE, Particle/Histogram Hybrid -3.99 -27.79 -6.98 -6.84 -27.46 -28.82

Table 5.5: Results as in table 5.4, except under noise with σ = 20. All values are
given as log p̃(~I|~IN )× 10−5, where p̃(~I|~IN ) is given in equation 5.3.

can be applied to any potential function. However, unlike the linear con-
straint node computational shortcut, the histogram/particle hybrid repre-
sentation is approximate in the sense that it introduces additional error into
the belief propagation messages beyond the unavoidable discretization error.
Thus, while this technique can be applied directly to the factor graph of
figure 5.3, it is unclear whether improvement in the Bethe approximation
outweighs the error caused by sampling-based integration.

In this section, the histogram/particle hybrid representation was used to
perform belief propagation in the Fields of Experts denoising factor graph of
figure 5.3. We used the same FoE model as in section 5.1, which uses three 2×
2 linear experts. As in section 5.1, messages in histogram form contained 16-
bin, and bin edges were occasionally updated to minimize the KL-divergence
between the histogram b̂i(xi) and a Gaussian distribution fitted to the current
beliefs. Messages in particle form were represented using 50 samples per
message.

Results are shown in figure 5.2 and listed in tables 5.1 through 5.5. The
results using hybrid message representations show a small improvement over
the separated linear constraint node approach, suggesting that, in this case,
the approximation error of Monte Carlo integration was less than the im-
provement made to the Bethe approximation. Increasing the number of par-
ticles did not improve the results significantly, suggesting that the difference
in performance reflects the sacrifice in quality of the Bethe approximation
made by separating linear constraints into multiple factor nodes. In this
example, that difference appears to be small but not negligible.

It is important to point out that this result can be expected to vary
between different applications. The amount of error introduced by using
Monte Carlo integration techniques depends both on the number of samples
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used and also on the variance of the integrand:

φf (~x)
∏

mt
j→f (xj)

In the present application, the potential functions f is a smooth product of
three Student-t distributions, and the messages m tend to have a simple,
near-Gaussian, unimodal form. In this application, increasing the number of
particles did not significantly alter the results, suggesting that sampling error
was small. In other applications with more complex potentials, sampling
error could have been a much greater issue. The difference in the quality of
the Bethe approximation between the factor graphs of figures 5.1 and 5.3 is
more difficult to anticipate, but it can be expected to depend on number of
factors and the similarity between each potential function.

In the denoising application described here, computing each message us-
ing a histogram/particle hybrid representation takes slightly longer than us-
ing Linear Constraint nodes. However, because the hybrid representation
allows us to represent all three linear features in a single factor node, the
hybrid representation reduces the number of messages that must be com-
puted. In a 240×160 image, denoising required 57 seconds per iteration on a
3GHz Xeon, versus 96 seconds using Linear Constraint nodes. Convergence
typically required approximately 30 iterations.

5.3 Conclusions
A great many problems in computer vision aim to infer properties of real
scenes under highly ambiguous and underconstrained circumstances. For
these problems, an accurate probabilistic prior is paramount for success.
Many of these same problems also require sophisticated methods of statistical
inference. Approaches such as gradient descent and related methods often
have difficulty finding solutions on these more difficult problems of computer
vision. Belief propagation has provided a successful tool for solving many
of these problems, such as stereo [82], photometric stereo [84], shape-from-
shading (Chapter 6), image-based rendering [99], segmentation and matting
[93]. Because of the intense computational demands of belief propagation
through higher-order cliques, previous applications of belief propagation were
limited to pairwise-connected spatial priors. These pairwise priors often fail
to capture the rich statistical structure of real images. In this chapter, I
show how linear constraint nodes and particle/histogram hybrid message
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Figure 5.3: A factor graph for performing image denoising using three 2 × 2
Fields of Experts filters, where (unlike that of figure 5.1), each of the three experts
is combined into a single factor node (black square) for each image patch. This
factor graph is used in section 5.2 using the particle/histogram hybrid message
representation technique introduced in section 4.5. This is also the factor graph
used by Lan et. al. [51].

representations can make higher-order spatial priors, like Fields of Experts,
efficient. This advance promises to improve the inference results of a number
of computer vision applications.

To illustrate this technique, I apply belief propagation to the problem of
image denoising. Image denoising makes a good benchmark for the perfor-
mance of a spatial prior because it uses a simple Gaussian likelihood function
and it is easy to reproduce and compare results for different priors and differ-
ent inference techniques. Because of its simple Gaussian likelihood function,
image denoising can be solved efficiently using gradient descent and other
approaches. However, these approaches cannot generalize to applications
with more complex likelihood functions such as stereo, shape-from-shading,
image-based rendering, segmentation, and matting. Our goal is to develop
methods of exploiting powerful higher-order spatial priors using belief prop-
agation, which retains the ability to generalize to these more difficult visual
inference problems.

The linear constraint node techniques of Chapter 4 make it possible for us
to exploit the popular Fields of Experts spatial prior efficiently using belief
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propagation. When applied to image denoising, linear constraint nodes pro-
duced a sizeable speed increase over a previous approach to implement FoE
using belief propagation [51], and our approach had the additional benefit
that efficient inference did not come at the cost of sacrificing the ability to
generalize from image denoising to more complex problems of visual inference
(such as stereo or shape-from-shading).

As expected, belief propagation using the higher-order spatial priors of
the FoE model produced a significant improvement over belief propagation in
the hand-tuned pairwise MRFs of [21]. This improvement offered by higher-
order spatial priors may be of great benefit to a number of computer vision
tasks that seek to infer images or range images in ambiguous, uncertain
circumstances, including stereo [82], photometric stereo [84], shape-from-
shading (Chapter 6), image-based rendering [99], segmentation, and matting
[93].

It is also important to note that belief propagation using FoE significantly
outperformed gradient descent using the same FoE spatial prior. This con-
firms that, even for a smooth Gaussian likelihood function like that of image
denoising, where gradient descent methods can be expected to perform well,
belief propagation still offers a significant advantage.
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Chapter 6

Shape From Shading

Shape-from-shading (SFS) is a classic computer vision problem that has been
studied since photometric investigations of the lunar surface were performed
in the 1920s [35]. The goal of SFS is to recover the 3D surface shape given
a single image, where all light comes from a single, known direction, and the
surface is assumed to have a Lambertian (matte) reflectance and constant
albedo (no surface markings or colorations). Under these conditions, the im-
age can be computed from the 3D surface according to the Lambertian equa-
tion. Let N = (p, q, 1) be the surface normal vector, and let S = (ps, qs, 1)
be the known illumination vector. Then the Lambertian equation can be
written:

i(x, y) = max(0,
1 + pps + qqs√

1 + p2 + q2
√

1 + p2
s + q2

s

) (6.1)

Here we leave out known quantities of albedo and illumination strength. Note
that p = ∂z

∂x
, q = ∂z

∂y
, where z(x, y) is the surface depth-map. Because our

image is spatially discrete, we approximate these as p(x, y) = z(x+1, y) −
z(x, y) and q(x, y) = z(x, y+1)− z(x, y).

Our task is to try to invert this computation, to estimate z from i. One
reason that this is difficult is that the inverse is a highly nonlinear partial dif-
ferential equation. Another difficulty is that SFS is highly underconstrained:
for any given image i, there are many possible 3D surfaces z which satisfy
equation 6.1.

In figure 6.1, we show the factor graph that we propose for solving this
problem. This graph uses an overcomplete representation of surface shape:
for each pixel, there is a variable node for both p and q. Because the repre-
sentation is overcomplete, there are linear dependencies among the variables.
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Figure 6.1: Shape-from-shading factor graph for a 3 × 3 image. Variable nodes
are shown as circles, and factor nodes as shown as squares. Variable nodes in-
clude nodes for p = ∂z

∂x and q = ∂z
∂y . Factor nodes include Lambertian con-

straint nodes (gray), integrability constraint nodes (black), and smoothness nodes
(white). Light gray lines indicate the borders between pixels.

Specifically, an identity holds that

p(x, y)− q(x, y) + q(x+ 1, y)− p(x, y + 1) = 0 (6.2)

Failure to enforce these linear dependencies results in internally inconsistent
surface normals that violate the zero curl requirement, and thus do not inte-
grate to form a valid 3D surface. Recall that the zero curl requirement states
that

∂

∂y

(
∂z

∂x

)
=

∂

∂x

(
∂z

∂y

)
(6.3)

Satisfying these constraints has historically been problematic for SFS. Using
the methods of section 4.1, we can enforce these linear dependencies efficiently
using hard linear constraint nodes. These integrability constraint nodes are
shown in figure 6.1 as black squares. These integration nodes are similar to
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Figure 6.2: (Following page). Comparing our SFS results (column b) with pre-
vious energy-minimization approaches (columns c & d). Each subfigure contains
a 3D wire mesh plot of the surface (bottom) and a rendering (top) of that surface
from a light source at location (1, 0, 1), using the Lambertian reflectance equation.
a) The original 128×128 surface [109]. The rendering in this column serves as the
input to the SFS algorithms in the next three columns. 1001 pixels in this image
lie in black shadow. b) The surface recovered using our linear constraint node ap-
proach. Good results (image MSE < 226) were achieved in under 3 hours, the re-
sults in column b were run to convergence (MSE = 108 in 24 hours). c) The surface
recovered using the energy minimization method described by Lee and Kuo [55].
This algorithm performed best out of six SFS algorithms reviewed in the survey
paper [109]. d) The surface recovered using the method described by Zheng and
Chellappa [110] (which performed second-best in [109]). Our approach (column
b) offers a significant improvement over previous energy-minimization methods.
It is important to note that re-rendering the surface output from our algorithm
closely resembles the original input image (the mean squared error of each re-
rendering is listed above each image). This means that the Lambertian constraint
at each pixel was satisfied, and that any error between the original and recov-
ered surface is purely the fault of the model of the prior probability of natural 3D
shapes that was used (in this case, only smoothness was used). The code for the
algorithms shown in c and d, as well as the test image, were acquired through the
authors of [109].

those used in [65], except that here, the nonlinear nature of the SFS problem
prevents us from approximating the marginals and messages at each variable
as Gaussians. In fact, the marginals at each variable are often highly bimodal.
Thus, the methods of section 4.1 are required to perform belief propagation
at these nodes efficiently.

The square nodes shown in gray in figure 6.1 represent Lambertian con-
straint nodes. The potential function at these nodes is defined to be the joint
likelihood of p and q given image intensity i: φL(p, q) = P (p, q|i). Here, we
define P (p, q|i) = const whenever equation 6.1 holds, and zero otherwise.

φL(p, q) = δ

(
i(x, y)−max(0,

1 + pps + qqs√
1 + p2 + q2

√
1 + p2

s + q2
s

)

)
(6.4)

An example of a potential function φL(p, q) was shown in figure 2.4. Note
that, while we restrict ourselves to the Lambertian equation for this exam-
ple, any reflectance function could have been used to generate the potentials
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a) Original Image b) Linear Constraint Nodes
Mean Squared Error = 108

c) Lee & Kuo [55]
Mean Squared Error = 3390

d) Zheng & Chellappa [110]
Mean Squared Error = 4240

(Caption on Previous Page)
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φL(p, q). By substituting non-Lambertian reflectance functions, these po-
tentials could easily be changed to handle specular surfaces, or even scenes
with multiple or diffuse light sources. Furthermore, specifying nondetermin-
istic potentials φL(p, q) would allow us to perform inference when surface
reflectance, surface albedo, or lighting conditions are uncertain. This feature
is not typical of SFS formulations.

Shape from shading is a highly underconstrained problem. For any input
image, there exist many different 3D surfaces that render to the same image
under identical lighting. To see this, note that for a n × n image, there
are 2n(n + 1) variable nodes, but only n2 Lambertian constraints and n2

integrability constraints. That leaves 2n unconstrained dimensions. Each
surface within this large subspace is a valid solution. Additionally, for each
pixel that lies in shadow, the Lambertian constraint becomes an inequality at
that pixel, and so the number of degrees of freedom increases. In the 128×128
penny image in figure 6.2, 1001 pixels lie in black shadow. Thus, the set of
range images that re-render to an image identical to the input image defines
a space with up to 1257 dimensions. Any point in this subspace satisfies both
the Lambertian and the integrability constraints.

Many shape from shading methods handle this ambiguity by assuming
that the surface shape is known along the image border [109]. More recently,
Prados [71] has developed methods to recover the computing the maximal
surface, where each point is as close to the observer as possible. The as-
sumption that the surface is maximal can be interpreted as a type of spatial
prior, although it cannot be learned or adjusted, and it is not clear to what
extent real 3D scenes mirror this assumption. A bigger disadvantage of this
method is that it is limited to work only when the scene contains no at-
tached shadows; typically this restricts the light source to lie very close to
directly behind the camera. Both of these approaches to resolving ambiguity
work by introducing additional assumptions on scene parameters and further
restricting the types of images in which the algorithm can work.

Even without any additional constraints, SFS is already a highly re-
stricted problem domain, and is applicable only in highly specialized cases.
One goal of this thesis is to offer techniques to broaden, rather than constrict,
the subclass of scenes that can be approached using shape-from-shading tech-
niques.

A more flexible and robust approach to solving underconstrained prob-
lems is to learn or define a probabilistic shape prior p(z) that reflects the
likelihood that a given surface shape might occur in nature. Then we can
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select the 3D shape that maximizes this prior while still rendering to the orig-
inal input image. In shape-from-shading, this approach is known as energy-
minimization (e.g. [55], [110]). Unfortunately, due to the nonlinear nature
of the problem, local minima are a serious issue that have prevented energy-
minimization approaches from achieving adequate results [109]. Belief prop-
agation methods have proven themselves more robust to local minima, which
makes belief propagation a promising new approach to shape from shading.

Here, the 3D surface priors used here are modeled by a product of Laplace
distributions:

p(Z) ∝
∏
p,q

exp(−|p|+ |q|
σ1

) exp(−|∂p/∂x|+ |∂p/∂y|+ |∂q/∂y|
σ2

) (6.5)

Priors of the form exp(− |p|
σ1

) and exp(− |q|
σ1

) can be absorbed into the factor
nodes adjacent to each variable, and so they require no additional message
passing. Priors of the form exp(− |∂p/∂x|

σ2
) and exp(− |∂q/∂y|

σ2
) are implemented

using a set of pairwise-connected factor nodes. These nodes are shown as
white squares in figure 6.1.

Priors of the form exp(− |∂p/∂y|
σ2

) can be embedded into the integrability
hard linear constraint nodes at no additional computational cost. Specifically,
define the potential function for this clique as

φI(p1, p2, q1, q2) = δ ((p1−p2)− (q1−q2)) f(p1−p2) (6.6)
= δ ((p1−p2)− (q1−q2)) f(q1−q2) (6.7)

f(x) ≡ exp(−|x|
σ2

) (6.8)

then using the same change of variables used in equations 4.11 - 4.14, we can
compute outgoing messages as

Mp1(p1) =

∫∫∫
φI(p1, p2, q1, q2)mp2(p2)mq1(q1)mq2(q2)dp2 dq1 dq2 (6.9)

∝
∫
δ(p1 + y2)

(∫
mp2(y3 − y2)f(y3)(∫

mq1(y4 − y3)mq2(y4)dy4

)
dy3

)
dy2 (6.10)
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where the change of variables is now:

y2 = −p2 + y3 = −p2 − q1 + q2 (6.11)
y3 = −q1 + y4 = −q1 + q2 (6.12)
y4 = +q2 = +q2 (6.13)

This technique allows us to include within a linear constraint node of po-
tential f(~v · ~x) one or more additional potential function f ′(~v′ · ~x) where v′i
is either equal to vi or zero. This method is very useful at both reducing
the number of messages that must be computed per iteration, and also at
improving the Bethe approximation implicit in belief propagation.

In figure 6.2, we show the results of our SFS model. We also compare
our results with two previous energy-minimization methods [55, 110]. These
methods were the top two SFS algorithms studied in the 1999 survey [109].
Our approach offers a significant improvement over these methods. Further,
notice that the surface recovered by our method, when re-rendered under
the original lighting conditions, resembles the original input image almost
exactly. This means that our approach is able to find a 3D surface that
satisfies both the Lambertian equations and the integrability constraints. Of
those surfaces that satisfy these constraints, the algorithm is able to select one
that is considerably more “likely” than the original ground-truth 3D surface,
according to the surface prior model in equation 6.5. Further improvement
to the results of this approach can only be achieved by improving the model
of the 3D surface priors (equation 6.5).

Note that the model of the 3D surface priors used in this section use the
same weak pairwise form that we improve upon in Chapter 5. An obvious
next step for this model is to learn Field of Experts filters for 3D surfaces,
and then apply these to our SFS model using the methods of Chapter 5. In
Chapter 7, we apply the efficient belief propagation methods of Chapter 4 to
the problem of learning MRF parameters, and then use this training method
to learn effective spatial priors for 3D shape that can be exploited by the
SFS approach shown here. Such a spatial prior might also be highly useful
for stereo [82], photometric stereo [84], and other forms of depth inference.

6.1 Conclusions
When convergent variations of belief propagation were first introduced, it
was unknown whether graphical models that diverge under traditional be-
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lief propagation could be satisfactorally solved by forcing convergence. One
common belief was that, for cases where belief propagation did not converge,
the Bethe approximation was likely to be poor anyway. Several studies had
suggested that graphical models for which traditional belief propagation does
not converge would give poor results for parameter values or initial condition
where convergence is reached [97]. As stated by Heskes [27] in his paper on
convergent belief propagation methods,

“Whether double-loop algorithms are worth the effort is an open
question . . . ”

The success of the shape-from-shading application given here should put
this question to rest. Even using a variety of different scheduling, dampen-
ing, and reweighting procedures, the model shown here does not converge
under traditional belief propagation, even for very simple input conditions.
Furthermore, we found that graphical models containing integrability nodes
typically diverge even when the initial conditions are correct but perturbed
only slightly; that is, at least some of the minima found by belief propagation
are unstable minima under traditional belief propagation. Thus, convergent
methods belief propagation are required for the SFS approach shown here.
It is not clear how large is the class of problems for which traditional belief
propagation does not converge but for which the Bethe approximation re-
mains viable, but it is now known that this class includes some important
real-world applications.

One of our primary goals in developing a statistical approach to solving
SFS was that a statistical approach should be generalizable in new ways to
more natural scenes and conditions. In addition to improved performance
on the classical SFS problem, the belief propagation approach shown here
has a very unique potential to generalize to less restrictive depth inference
scenarios.

First, as mentioned earlier, the methods described here are not limited to
Lambertian reflectance. The potential function φL used by the Lambertian
constraint nodes could easily be replaced by any other reflectance function.
In the more general case, we can define

φL(p, q) = δ
(
i(x, y)−R(p, q, ~L, ~V )

)
(6.14)

where ~L is the lighting vector and ~V is the viewing angle (typically defined to
be (0, 0, 1)). Thus, the inference of shape from shading can proceed even with
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more realistic surface material qualities, such as surfaces with some specular
component. In many previous approaches to SFS, the exact form of the
Lambertian reflectance function is intimately hardcoded into the inference
algorithm, so that altering the reflectance function of the surface is difficult
or impossible. Developing methods of SFS that are flexible in this way is an
important advantage.

Additionally, the classic formulation of shape-from-shading requires that
the scene is lit by only a single light source. This restriction can also be
relaxed in our approach. Again, by altering our potential function φL(p, q),
arbitrary lighting arrangements can be accommodated. Let illumination be
defined by a function L(~L) that gives the radiance of light coming in from

direction ~L. Then we can generalize φL(p, q) by:

φL(p, q) = δ
(
i(x, y)−R(p, q,L, ~V )

)
(6.15)

This allows for shape inference under multiple point light sources, diffuse
light sources, or other more natural arrangements. This level of flexibility is
very unusual among previous SFS approaches.

The statistical approach to SFS given here also allows us to handle un-
certainty in the illumination or surface reflectance properties. In the above
examples, the potential function φL has been deterministic, in the sense that
φL is constant when the surface normal is consistent with the shaded im-
age, and zero otherwise. The use of non-deterministic forms of φL would
not affect the computational requirements of belief propagation, and in fact,
lower-energy potentials may be expected to improve the convergence rate
[28]. In cases where the exact location of the light source is only known
approximately, or the exact reflectance properties of the surface is only ap-
proximately known, some fuzziness in the potential function φL may address
that uncertainty. In a very simple approach, we may consider defining

φL(p, q) = f
(
i(x, y)−R(p, q,L, ~V )

)
(6.16)

where f is some loss function, such as a Gaussian f(x) = exp(− x2

2σ2 ). Alter-

natively, we could imagine computing a distribution over R(p, q,L, ~V ) given
a distribution over L or over R. The ability to perform inference under un-
certainty can help bring shape-from-shading closer to handling more natural
scenes.
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As mentioned earlier, another benefit of the belief propagation approach
to SFS shown here is its ability to exploit strong models of spatial priors. In
the example in figure 6.2, the Lambertian and integrability constraints are
almost exactly satisfied. The 3D shape that is computed by the algorithm
is smoother (according to the simple, ad hoc Laplace-based spatial prior
of equation 6.5) than the original ground-truth 3D shape. The only way to
appreciably improve the output in this example is to improve the spatial prior
exploited by the algorithm. The flexible framework of belief propagation
over arbitrary factor graphs makes this easy to do. Higher order spatial
priors, such as the Fields of Experts model discussed in Chapter 5, can be
incorporated into this algorithm simply by adding connections to the existing
smoothness factors of figure 6.1. In Chapter 7, I address this possibility
further.

Finally, the flexible form of the statistical approach to SFS facilitates the
combination of multiple depth cues. For example, the ability to combine
shading and stereo cues has long been sought after [14, 68], since the limi-
tations of the two cues are thought to complement each other: stereo excels
at computing coarse shape features over a limited depth range, while shad-
ing works best at finding fine spatial features over an arbitrary depth range.
Stereo has been successfully solved using belief propagation for MRFs in the
past [82]. In fact, currently, the top seven stereo algorithms, as evaluated
according to the Middlebury stereo evaluation, all use belief propagation [78].
Combining the SFS factor graph of figure 6.1 with the underlying graphs of
these models should be straight-forward.

Other depth cues can be exploited in this framework as well. Cues that
inform the surface normal at a point, such as texture gradients, perspective
cues, and object-border cues, can all be implemented as pairwise factors over
the p and q node at a pixel, with the potential function φ(p, q|image) con-
ditioned on the image. Such potentials could be combined with the current
Lambertian potentials φL(p, q), which means that these extra cues would re-
quire no additional computation. The inference of 3D shape from texture
or perspective cues has historically been carried out in a deterministic set-
ting. However, a probabilistic approach can be handled straight forwardly,
by encoding texture gradients and off-parallel line cues as a set of local image
features Γ, and then defining a pairwise potential φ(p, q|Γ) that depends on
these features. Object border cues inform us that, along occlusion contours,
the surface normal of the nearer object must lie perpendicular to the view-
ing angle. One simple implementation of such a cue would simply require
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increasing the likelihood of oblique angles near strong image edges. A more
sophisticated approach to locating occlusion contours would be to explicitly
model occlusion edge locations within the factor graph, using techniques like
those described by Hoiem et. al. [32].
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Chapter 7

Learning

We now have a collection of methods that allow belief propagation to perform
efficient inference for continuous-valued MRFs with higher-order cliques. In
this chapter, we show how we can leverage these efficient inference methods
into efficient parameter learning techniques. Our goal in this chapter is not
only to improve the efficiency of parameter learning, but also to develop
a method of parameter learning that is especially suited to inference using
belief propagation. In section 7.1, we describe further our goals for a learning
method specifically suited to inference using belief propagation.

7.1 Motivation
Ambiguity is a very common problem faced by computer vision applications;
for any image or video input, there is often no unique interpretation. When
inferring 3D shape, scene segmentations, occlusion contours, surface material
types, or one of many other image properties, our goal is to choose the max-
imally likely interpretation. The shape-from-shading application of Chapter
6 is one example of this: for any given 2D image, many 3D surfaces will
render, under identical lighting conditions, to match that image. To resolve
this ambiguity, we must rely on strong spatial priors to weed out unlikely 3D
shapes and select the most likely 3D interpretation. In the example in figure
6.2, both the Lambertian and the integrability constraints were met almost
exactly; the only way to significantly improve the resulting shape output is to
improve the model for the prior probability of 3D shapes, P (Z). A number
of visual tasks are similarly underconstrained and ambiguous, such as stereo,
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image super-resolution, novel scene synthesis, segmentation, and matting.
One other property that these visual problems have in common is com-

plexity. the statistical relationships found in natural images and scenes are
rich, complex, and often difficult to exploit mathematically. For such prob-
lems, simpler optimization techniques often cannot be applied. As seen in the
shape-from-shading example, approaches like gradient descent often strug-
gles with local minima. Many of the applications listed above have been
approached using belief propagation with highly successful results, such as
stereo [82], photometric stereo [84], super-resolution [23], segmentation and
matting [93], and shape-from-shading (Chapter 6).

The ability to exploit rich spatial priors using belief propagation is there-
fore very important. In Chapter 5, we showed how linear constraint nodes
could be used to allow belief propagation applications to exploit three 2× 2
Fields of Experts (FoE) priors. We showed that image denoising using these
spatial priors produced a significant improvement over hand-tuned pairwise-
connected spatial priors. We also showed that belief propagation found a
significantly better maximum likely point estimate for the 2× 2 FoE model
than gradient descent.

Recall that Fields of Experts models the prior probability of an image as
the product of Student-t distributions:

p(~I) ∝
∏
C

K∏
i=1

(
1 +

1

2
(~IC · ~Ji)2

)−αi

(7.1)

where C is the set of all (overlapping) n × n patches in the image, and ~Ji
is an n × n filter [73]. In the original FoE paper, Roth and Black learned
24 5× 5 FoE filters. Denoising performed using gradient descent with these
large filters produces results that were comparable with the current state-of-
the-art [73, 66]. As shown in tables 5.2 and 5.3, using gradient descent, the
24 5× 5 outperform the 3 2 × 2 filters substantially, by about three to four
decibels.

The ability to exploit these larger filters using belief propagation would
be a great benefit to the many underconstrained applications that rely on
belief propagation mentioned above. However, each of the 5 × 5 FoE filters
that performed successful denoising in [73] correspond to a MRF with cliques
of size N=25 and D=25 factors per variable node. Even using the efficient
inference techniques described previously, belief propagation would be quite
slow for such a network. In order to develop a statistical prior that works
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efficiently under belief propagation, we must be more careful in our use of
resources.

In this chapter, our goal is to develop a method for learning spatial pri-
ors that will complement the specific requirements of belief propagation, by
squeezing the greatest benefit possible from small to moderate sized graph
cliques. We accomplish this in two ways. First, the original Fields of Experts
model assumed that the Student-t distribution is the best form for potential
functions over the linear features of images. This is based on the observation
that the empirical marginals of image features tend to resemble Student-t
distributions. However, there is no guarantee that potential functions should
resemble the empirical marginals; in fact the relationship between them is
highly complex, and it requires expensive learning algorithms to estimate po-
tential functions from an empirical distribution. Studies by Zhu and Mum-
ford [111] using lengthy Gibbs sampling procedures have shown that learning
arbitrary potential functions (represented by discrete histograms) for simi-
lar MRF models could result in non-trivial, and even inverted, potentials.
Our learning method relaxes the Student-t assumption, allowing arbitrary
potential functions to be learned over image features.

Secondly, most learning methods work by finding values for model pa-
rameters Θ that minimize the KL-divergence between the model distribution
P ( ~X|Θ) and the empirical distribution P0( ~X). However, in the applications
we discuss here, finding the exact values of the model distribution is compu-
tationally intractable; instead, we must rely on approximate methods such as
belief propagation. Belief propagation computes beliefs bi(xi) that approxi-

mate the marginals of P ( ~X|Θ). Specifically, the beliefs computed by belief

propagation minimize the Bethe free energy Dbethe({bi}||P ( ~X|Θ)) (equation
3.13). Since it is these beliefs that are the output of belief propagation, it

is the beliefs bi(xi), and not the exact marginals of P ( ~X|Θ), that we wish
to resemble the empirical distribution P0. Our method seeks to minimize
the distance between the estimated marginals bi(xi) and the empirical dis-
tribution P0. Thus, our learning procedure attempts to compensate for the
approximation inherent in the belief propagation procedure.

Finally, because our method takes advantage of the efficient belief propa-
gation methods described in Chapter 4, it is highly efficient, even for higher
order, non-pairwise factor nodes.
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7.2 Methods of Learning MRF Parameters
Suppose we have a factorized probability distribution of the form:

p( ~X) =
1

Z(Θ)

∏
φi(~xi,Θ) ~xi ⊂ ~X (7.2)

Z(Θ) =
∑
~X

∏
φi(~xi,Θ) (7.3)

where Θ is some vector that contains the parameters of the model. Here,
Z(Θ) is a normalization factor that causes p( ~X) to sum to one, also known
as the partition function. In the past, the objective for learning parameters
Θ has typically been to maximize the log likelihood (according to the model)
of the empirical data:

L = log

(
S∏
s=1

p( ~X(s))

)
(7.4)

where ~X(s) is one of S empirical datapoints. In our examples, empirical
datapoints will be natural images or natural range images.

The most common technique for learning MRFs for natural image priors
is Hinton’s Contrastive Divergence [31]. Contrastive Divergence is a way
of performing gradient descent on the log likelihood L of the model. This
gradient descent provides the update rule:

δθi = η

(
E

[
∂

∂θi
log p(~x)

]
p0

− E

[
∂

∂θi
log p(~x)

]
p

)
(7.5)

where p0 is the distribution of the empirical data, and p is the model dis-
tribution (as in equation 7.2). Traditionally, the rightmost term must be
approximated by using Gibbs sampling to generate a dataset of “fantasy”
images from the model distribution p. Gibbs sampling can be slow to con-
verge. Contrastive Divergence improves this approach by taking only one
or two iterations of Gibbs sampling. However, learning using Contrastive
Divergence for many parameters remains very computationally demanding.

Several statistical models of natural images can be trained using Con-
trastive Divergence. One popular example is the Fields of Experts (FoE)
model [73] discussed above and in Chapter 5. Both the original 5×5 experts
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and the 2× 2 experts used in Chapter 5 were trained using Contrastive Di-
vergence. Since the FoE model was developed, several additional techniques
have been developed for learning the FoE filters J and Student-t parame-
ters α [96, 85]. The assumption that the optimal potential functions can
be approximated using Student-t distributions is typically retained, because
learning a potential function with many parameters would be computation-
ally expensive.

One important subclass of MRF models is the log-linear, or maximum
entropy (ME) model. ME models are MRFs where each potential function
in equation 7.2 can be expressed as φi(~xi,Θ) = exp(θifi(~xi)). For ME models,
equation 7.5 simplifies to

δθi = η (E[fi(~x)]p0 − E[fi(~x)]p) (7.6)

Thus, when the parameters Θ are properly trained, the model’s marginals of
each feature fi must match those of the empirical distribution. Additionally,
of all probability distributions that share this property, the trained ME model
will achieve the maximum possible entropy [112]. Intuitively, this suggests
that the ME model makes as few assumptions as possible regarding features
that the model was not trained on.

Parameters for ME models can be trained by performing gradient de-
scent using equation 7.6 directly. Another popular approach is Generalized
Iterative Scaling (GIS) [16], which updates parameters according to the rule

δθi =
1

L
(log(E[fi(~x)]p0)− log(E[fi(~x)]p)) (7.7)

where L =
∑

i fi(~x). Both GIS and gradient descent require computing the
marginals of the features fi(~x) with respect to the model distribution. For
MRFs with higher-order cliques, computing these marginals has historically
been very expensive. Typically, computationally demanding Gibbs sampling
must be used to generate sample data from the model. However, using the
Linear Constraint Nodes techniques of Chapter 4,these marginals can now
be computed much more efficiently.

When the Student-t potential functions of FoE are generalized to arbi-
trary discrete histograms, it becomes the Minimax Entropy of Zhu, Wu, and
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Mumford [112]

p(~I) ∝
∏
C

K∏
i=1

fi(~IC · ~Ji) (7.8)

= exp

(∑
C

K∑
i=1

M∑
j=1

θi,j
dβ

(m)
i

β
(m−1)
i

(~IC · ~Ji)

)
(7.9)

For fixed filters J , the Minimax Entropy model is a ME model. Originally,
the parameters θi,j were trained using a demanding Gibbs sampling proce-
dure, and the filters J were selected from a predetermined set of candidates.
Later, Coughlan and Yuille applied GIS to learn the parameters of pairwise-
connected ME models (using derivative filters J with a support size of two
pixels) by using CCCP, a convergent form of belief propagation, to estimate
the filter marginals [12].

For learning arbitrary potential functions for FoE or minimax entropy
models, the GIS update equation (equation 7.7) can be simplified. For the

ith linear filter ~Ji, let ôi(xi) be the empirical marginal of that linear filter,
and let bi(xi) be the CCCP or LBP-approximated marginal of that linear
filter. Then the GIS update equation simplifies to:

δfi(xi) =
1

K
(log(bi(xi))− log(ôi(xi))) (7.10)

where K is the number of potential functions to be learned.
The use of belief propagation to estimate the marginals used during the

GIS procedure was given a formal justification by Teh and Welling [87].
These authors sought to solve a problem they call “generalized inference”,
which is to estimate the marginals of a factorized probability distribution
P ( ~X) =

∏
φi(~xi) while the marginals at some subset of nodes V is held fixed.

Specifically, they sought to compute a distribution Q( ~X) (or the marginals

of Q( ~X)) such that Q minimizes

Q = argmin
Q′

KL(Q′||P ) (7.11)

subject to the constraint that

Q(xi) = ôi(xi) ∀i ∈ V (7.12)

for some set of empirical marginals ôi(xi).
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When V is empty, generalized inference reduces to the more standard
inference of the form discussed in this thesis: computing the marginals of
a factorized distribution. Generalized inference can also be seen to be a
generalization of the learning problem. It can be shown that Q will have the
same factorization as P , so that

P ( ~X) =
K∏
i=1

φi(~xi) Q( ~X) =
K∏
i=1

φ′i(~xi) ~xi ⊂ ~X (7.13)

Thus, solving for Q requires computing the potential functions φ′i that make
the marginals Q(xi) match the empirical distributions ôi(xi). For example,
the problem of learning arbitrary potential functions for a FoE or Minimax
Entropy spatial prior model can be posed as a generalized inference problem.

One approach to solving generalized inference is to use GIS to learn the
potential functions for Q. However, as described above, GIS requires com-
puting the marginals of Q at each iteration, which can be very expensive.
When the marginals of Q cannot be computed exactly, belief propagation
might be used. However, the impact of using approximate marginals on the
GIS algorithm was unknown. One possibly more principled approach to the
generalized inference problem is to minimize the Bethe free energy between
a set of estimated marginals (or beliefs) {bi(xi)} and factorized distribution
P subject to the constraints that b(xi) = ôi(xi)∀i ∈ V . Teh and Welling
showed that the beliefs that minimize the Bethe free energy are equivalent
to the beliefs that would be computed by GIS if belief propagation were used
to estimate the marginals of Q at each iteration. Since the problem of gener-
alized inference is both a generalization of the inference problem and of the
learning problem, this finding provides an additional theoretical justification
for using belief propagation to estimate the marginals during GIS.

Using the computational shortcuts described in Chapter 4, we are now
able to efficiently use GIS and gradient descent methods (Eq 7.6) to learn
Minimax Entropy model potential functions in non-pairwise MRFs. In ad-
dition to permitting efficient training, this also allows us to learn arbitrary
potential functions for linear image features J without relying on a Student-t
assumption. Our goal is to maximize the benefit of MRFs with cliques of
moderate size, which can then serve as efficient spatial priors using belief
propagation in a wide range of computer vision algorithms. In section 7.3,
we describe how training MRFs with GIS and belief propagation can be fur-
ther refined to learn potential functions that are optimized specifically for
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inference with LBP by compensating for the approximation that is inherent
in LBP inference.

7.3 Optimizing MRFs for LBP Inference
Historically, methods for learning the parameters of MRF models have worked
by minimizing the KL divergence between the model distribution P ( ~X|θ) and

the empirical distribution P0( ~X). When inference is performed using belief

propagation, the marginals of P ( ~X|θ) cannot be computed exactly; they can
only be approximated. Thus, to minimize the error of belief propagation
inference, we should instead minimize the difference between the empirical
marginals and the approximate marginals computed by belief propagation.

When MRF parameters are learned by applying GIS with LBP-estimated
marginals, it is these approximate marginals, and not the exact marginals,
that are compared with the empirical marginals. The fixed points of GIS
(see equation 7.10) only occur where the approximate marginals match the
empirical marginals exactly. When marginals can be computed exactly, GIS
is guaranteed to converge to a fixed point of equation 7.10. However, in
the applications we will discuss in this chapter, when using LBP-estimated
marginals, GIS typically fails to converge, even when using very low learn-
ing rates η. One reason that this might happen is that there may be no
parameters Θ such that the LBP-estimated marginals match the empirical
marginals. When that is the case, the GIS algorithm with LBP-estimated
marginals will have no fixed points.

One possible solution is to consider guaranteed-convergent solutions to
the approximate generalized inference problem of Teh and Welling [87]. Teh
and Welling introduced such a convergent algorithm for generalized inference
called Unified Propagation and Scaling (UPS) that uses an approach similar
to the tree-based reparametrization techniques for convergent belief propa-
gation discussed in section 3.4 [92, 44]. Unfortunately, in the event that no
parameters Θ will cause the LBP-estimated marginals bi(xi) to match the em-
pirical marginals ôi(xi), UPS will not satisfy our original goals for a learning
algorithm. Ideally, we would want our learning procedure to find potential
functions so that the LBP-approximated marginals are as close as possible to
the empirical marginals. However, generalized inference constrains the infer-
ence procedure to force the estimated marginals bi(xi) to match the empirical
marginals ôi(xi) for nodes i in V . In the event that no parameters Θ make
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bi(xi) match ôi(xi), UPS will alter the results of the inference process, so that
the marginals estimated by UPS will not match the marginals estimated by
LBP. Since we will be performing inference with LBP, this is not ideal.

To solve our learning problem directly; to find MRF parameters Θ that
caused LBP-approximated beliefs bi(xi) to match empirical marginals ôi(xi)
as closely as possible, we would first choose some metric M({bi(xi)}||{ôi(xi)})
between two sets of marginals. This could be a sum of KL-divergences, or a
sum-squared error metric. Then, we would minimize this metric with respect
to Θ. If the approximated marginals were known to be exact, i.e.

bi(xi) =
∑
j 6=i

∑
xj

P ( ~X|Θ) =
∑
j 6=i

∑
xj

∑
k

exp(θkfk( ~X)) (7.14)

then bi would vary continuously with respect to Θ, and so we could differen-
tiate M({bi(xi)}||{ôi(xi)}) with respect to Θ. However, in general, bi(xi) will
not be exact. In that case, the LBP-approximated beliefs are the minima of
the Bethe free energy:

{bi} = argmin
{b′i}

Dbethe({b′i}||P ( ~X|Θ) (7.15)

Unfortunately, because Dbethe is not convex, the minima of Dbethe is not guar-
anteed to vary continuously with Θ. In fact, for the applications discussed
in this chapter, such as learning arbitrary potential functions for FoE im-
age priors, we have observed that the LBP-approximated beliefs sometimes
change quite dramatically for very small changes in Θ. This discontinuity
makes minimizing M({bi(xi)}||{ôi(xi)}) (which depends on the minima of
Dbethe) much more challenging.

When attempting to optimize a non-differentiable function, the typical
approach is to use derivative-free optimization techniques such as Powell’s
method or the Melder-Need downhill simplex method. However, the di-
mensionality of our search problem is problematic for these techniques; our
search-space has KM dimensions, where K is the number of potential func-
tions to be learned, and M is the number of histogram bins for each potential
function. Methods like Powell’s method or the Melder-Need method would
require KM evaluations just to initialize the search algorithm. Because each
evaluation requires waiting for belief propagation to converge, this would be
highly expensive.

One way to overcome the high computational expense of the standard
derivative-free optimization methods is to exploit the fact that the gra-
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dient of the data log-likelihood (equation 7.6) and the GIS update equa-
tion (equation 7.10) can be used as approximate derivatives for minimizing
M({bi(xi)}||{ôi(xi)}). In the next two sections, our approach to finding pa-
rameters Θ = {fi(xi)} that minimize M will work using this idea. Each
iteration will begin by updating the potential functions Θ according to a
dampened GIS update

f t+1
i (xi) = f ti (xi) +

1

ηK

(
log(bti(xi))− log(ôi(xi))

)
(7.16)

where η is some dampening coefficient, and f ti (xi) denotes the ith potential
function at iteration t. Then, LBP will be run using the updated poten-
tial functions f t+1

i (xi) to compute the new beliefs bt+1
i (xi). Next, we eval-

uate M({bt+1
i (xi)}||{ôi(xi)}). If M has increased, meaning that the LBP-

approximated marginals are less similar to the empirical marginals than at
iteration t, then the dampening coefficient η will be increased and f t+1

i will
be recomputed from equation 7.16. This forces the procedure to converge,
and ensures that the resulting potential functions fi(xi) will result in LBP-
approximated beliefs bi(xi) that resemble the empirical marginals ôi(xi) as
closely as GIS was able to find.

7.4 Results for Image Denoising
We now demonstrate the use of efficient belief propagation to learn MRF
parameters by training spatial priors for natural images. To compute the
marginals E[fi(~x)]p in equations 7.6 and 7.7, we use belief propagation within
a small MRF. To avoid boundary conditions, the borders of the MRF are
connected cyclically, as on a torus. As long as the MRF is larger than the
image features (to prevent nodes from passing messages to themselves), the
size of this torus does not affect the computed marginals. Thus, a 2 × 2
grid is sufficient in our case. In general, we can use the Linear Constraint
node techniques of Chapter 4 for cliques that hold only a single potential
function, and the particle/histogram hybrid approach (section 4.5) for cliques
that contain multiple experts. The ground-truth marginals E[fi(~x)]p0 were
computed offline from the 200 training images of the Berkeley segmentation
database [61].

Recently, empirical studies have found that second-order gradient descent
methods, such as L-BFGS, applied to equation 7.6 often outperform GIS
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Figure 7.1: Factor graph used for learning pairwise MRF spatial priors for im-
age denoising. Each circle represents a variable node (here, a pixel intensity), and
each square represents a factor node for encouraging smoothness. The black out-
line denotes that the factor graph is connected as on a 2×2 torus. For a given set of
potential functions, this factor graph monitors the estimated marginals for three
linear image features: pixel intensity, horizontal derivative (∂I/∂x), and vertical
derivative (∂I/∂y). Marginals for pixel intensity are equal to the beliefs at one of
the variable nodes (here, we have chosen the upper-left node). Marginals for the
pixel derivative values are estimated using two additional variable nodes, each
of which is connected to a factor node of cliquesize three, whose messages are
computed using linear constraint node techniques.

for learning parameters in ME models [60]. However, L-BFGS produced
comparatively poor results for our application. One major difference between
gradient descent methods and GIS for ME parameter learning is that GIS
minimizes error in the log-marginals, rather than the marginals themselves.
The histograms of natural image features are typically highly kurtotic, and
histogram bins in the tails are often many orders of magnitude less likely
than near-zero values. By minimizing error in the log-domain, GIS was able
to capture these highly unlikely features far more accurately than gradient
descent methods.

We will begin by learning the parameters of a pairwise-connected MRF
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Empirical and LBP-Approximated Marginals for Learned Pairwise Priors
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Figure 7.2: Marginals and potential functions for the learned pairwise-
connected MRF for natural images. The top row shows the empirical marginals
(light green) and the LBP-approximated marginals, or beliefs (dark blue). The
three linear features are the pixelwise image intensity, the horizontal derivative of
intensity, and the vertical derivative. The bottom row shows the learned potential
functions (dark blue). Each derivative feature is fit with a Student-t distribution
(light green). The denoising results for the learned potential functions, and also
for the fitted Student-t distributions, are listed in table 7.1.

of the form

p(I) =
∏
x,y

fp(I(x, y))fh(I(x, y)−I(x+ 1, y))fv(I(x, y)−I(x, y + 1)) (7.17)

Potential functions were represented as discrete histograms; 32 bins for fp
(to match the number of bins used during inference), and 101 bins for fh and
fv (chosen arbitrarily). This MRF can be seen as a minimax entropy model
with three linear features: a horizontal derivative, a vertical derivative, and
the delta function (i.e. a prior over the intensity at a single pixel). For each
of these linear features, beliefs (i.e. LBP-approximated marginals) are mon-
itored by performing belief propagation on the torroidally connected factor
graph in figure 7.1). For each of the two derivative features, an additional
variable node was inserted into the pairwise-connected MRF to measure the
beliefs for those linear features. A hard linear constraint node of clique-size
3 was used to enforce the linear relationship between these “monitor” nodes
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MAP MMSE
σ = 10 σ = 20 σ = 10 σ = 20

Noisy Input Images 28.13 22.11 28.13 22.11
Hand-tuned Pairwise MRF using belief propagation [51] 30.73 26.66 NA NA
2× 2 FoE using gradient descent (algorithm from [73]) 30.59 26.09 NA NA
2× 2 FoE using belief propagation (from [51]) 30.89 27.29 NA NA
2× 2 FoE using LCNs, Fixed Histograms 31.41 27.12 31.51 27.29
2× 2 FoE using LCNs & Adaptive Histograms 31.55 27.25 31.62 27.40
2× 2 FoE using Particle/Histogram Hybrids 31.72 27.52 31.79 27.66
Pairwise MRF, GIS Learned Parameters 31.85 28.03 31.81 27.69
Higher-Order MRF, GIS Learned Parameters 32.17 28.07 32.10 28.03
Pairwise MRF, Learned Parameters fit with Student-t 32.17 28.07 32.10 28.03
Higher-Order MRF, Learned Parameters fit with Student-t 32.19 28.20 32.25 27.98
Full 5× 5 FoE using gradient descent (algorithm from [73]) 32.57 28.51 NA NA

Table 7.1: Peak signal-to-noise ratio (PSNR), in decibels, for previous denoising
models as well as pairwise and higher-order models learned using the efficient
belief propagation techniques of section 4.1 combined with GIS. Each value gives
the PSNR averaged over the ten images from the Berkeley segmentation database
[61] used in [51]. PSNR is defined in equation 5.4. For each belief propagation
algorithm, a MAP point estimate is approximated by choosing the maximal value
of each marginal, and a MMSE point estimate is taken by computing the mean
of each marginal. All belief propagation results were taken after 15 outerloop
iterations (typically roughly 35 innerloop iterations).

and their neighboring pixel nodes. The addition of these additional nodes do
not affect the beliefs computed by convergent belief propagation.

For each iteration of GIS, LBP was allowed to run for 50 outerloops of
5 innerloops each. This was more than enough to ensure convergence. GIS
required under 30 iterations (evaluations of the beliefs bti(xi)) to converge,
taking under 20 seconds total on a 3GHz Xeon.

The learned potential functions and the resulting LBP-approximated
marginals are shown in figure 7.2. Next, to demonstrate the effectiveness of
this learned spatial prior, image denoising was performed using this trained
pairwise MRF. Again, while image denoising serves as a useful test case to
evaluate image priors, the true power of this spatial prior is its ability to
be exploited for more complex, ambiguous visual tasks that require belief
propagation for good performance, such as shape-from-shading (Chapter 6),
stereo [82], photometric stereo [84], image-based rendering [99], segmentation
and matting [93]. Denoising results are given in table 7.1. Previous attempts
at image denoising using pairwise-connected MRFs have resulted in blocky,
piecewise-constant image regions (see figure 7.3c). Using parameters learned
via GIS and belief propagation, pairwise-connected MRFs not only overcome
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this limitation, but they also outperform the 2 × 2 FoE model using belief
propagation described in Chapter 5.

This is an important finding, because pairwise-connected MRFs remain
highly popular as spatial priors in a variety of computer vision applications.
Even using the efficient methods of belief propagation mentioned earlier,
pairwise-connected MRFs are considerably faster than models with larger
cliques. For a 240× 160 image, each iteration of belief propagation required
38 seconds for the pairwise MRF, versus 57 seconds for 2×2 FoE. Also, belief
propagation in pairwise MRFs tends to converge in fewer iterations. This
can be a great advantage when performing inference over MRFs with more
complex likelihood functions.

Next, we demonstrate our learning methods for MRFs with higher-order,
non-pairwise cliques. Based on observations that derivative filters make ef-
fective features for spatial priors [112, 85], we add second order derivative
features to our pairwise model. One way to do this by adding two additional
variable nodes per pixel: P nodes that represent horizontal derivatives of
image intensity, and Q nodes representing vertical derivatives. Hard linear
constraint nodes (see section 4.1.3) of clique-size 3 are used to enforce the
linear dependencies between P and Q nodes and pixel nodes. The prior prob-
ability of an image under this model is

∏
fp(ps)fq(qs)fi(ps−pt)fj(qs− qt) for

neighboring pairs of P and Q nodes. Thus, neighboring P and Q nodes are
connected within the MRF. Note that this overcomplete MRF matches the
one used for shape-from-shading in Chapter 6, and thus may prove useful
in improving 3D surface estimates. Performing image denoising using these
learned parameters resulted in further improvement over the trained pairwise
model. Results are listed in table 7.1.

In the introduction, we described three advantages of the learning meth-
ods used in this chapter: improved speed due to the use of linear constraint
nodes, the ability to learn arbitrary potential functions instead of assum-
ing that potential functions obey a Student-t distribution, and the ability
to learn potential functions that compensate for the approximation that is
inherent to loopy belief propagation. It is natural to ask which of these last
two advantages explains the improved performance (despite smaller clique
sizes) of the trained MRFs described above. To answer this question, we
fit each learned potential function (other than the potential over single-pixel
intensity, fp(I(x, y)) with a Student-t distribution. For the learned pairwise
MRF, those fits are shown in figure 7.2. We then repeated the image de-
noising experiments using these Student-t potential functions. The result

101



a) Original Image b) Noisy Image (σ = 20)
PSNR = 21.11

c) Pairwise MRF as in [21]
PSNR = 23.83

d) 2×2 FoE, P/H Hybrid
PSNR = 25.86

e) Learned Pairwise MRF
PSNR = 26.19

f) Higher Order Cliques
PSNR = 26.42

Figure 7.3: MRF spatial priors applied to image denoising. Note that these
priors are designed to be incorporated into a variety of other visual inference
applications. a) The original image (from [61]). b) The original image with ad-
ditive Gaussian noise of σ = 20. c) The output of belief propagation over a
hand-designed pairwise-connected Markov Random Field similar to the model
described in [21]. d) Denoising using three 2 × 2 Fields of Experts, using the
Particle/Histogram message representation. e) Pairwise MRF with parameters
learned using GIS and fit with Student-t distributions. f) Higher-Order MRF with
parameters learned using GIS and fit with Student-t distributions.
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Figure 7.4: Factor graph used for learning spatial priors for 3D surface shape.
Similar to the SFS factor graph in figure 5.1, this graph includes variable nodes for
the horizontal and vertical derivatives of depth at each pixel, and the linear de-
pendencies among these values are enforced using hard linear constraint nodes
of cliquesize four. Marginals for horizontal and vertical derivatives of depth are
equal to the beliefs at one of the appropriate variable nodes (our choices shown
here in heavy outline). Marginals for the three second order derivatives are mon-
itored using a set of additional variable nodes. Messages to and from these nodes
are made efficient using the linear constraint node technique. Note that, like in
figure 7.1, the square outline surrounding the graph denotes that the nodes are
connected as on a torus.

was a significant improvement. Numerical results are given in table 7.1, and
example denoised images are shown in figure 7.3 e and f.

This improvement in quality shows that the good performance of the
trained MRFs in this chapter was most likely due to the ability of GIS with
LBP-approximated marginals to compensate for the approximation that is
inherent to loopy belief propagation. It also suggests that, in this case, the
ability to learn arbitrary potential functions for each linear image feature
permitted too many parameters, and allowed the learning procedure to over-
fit the data. In other applications with more complex empirical marginals,
however, the ability to learn arbitrary, non-parametric potential functions
may outweigh the cost of learning many parameters.
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7.5 Results for Shape From Shading
As described in Chapter 6, the problem of Shape from Shading is highly
underconstrained. Even under known lighting conditions and known surface
reflectance properties, any given 2D image is completely consistent with a
large number of possible 3D surfaces. In order to choose the most likely of
these, we must first form an accurate model of what 3D shapes are most
common in natural scenes. We must be able to train and exploit a strong
spatial prior. This situation is the same for all depth inference scenarios.
Stereo, photometric stereo, shape from texture and other depth cues all re-
quire accurate spatial priors to

In this section, I use GIS, combined with efficient belief propagation using
linear constraint nodes, to learn a spatial prior model for natural 3D surface
shapes. For the sake of comparison, I will learn potential functions for the
same five linear features that were used in chapter 6. Recall that in chapter
6, the spatial prior utilized hand-tuned Laplace distributions over five linear
features: the horizontal and vertical first derivatives ∂z/∂x and ∂z/∂y, and
also the three second-order derivatives ∂2z/∂x2, ∂2z/∂x∂y, and ∂2z/∂y2. In
this section, I will use GIS to learn potential functions over these same five
linear features.

To compute empirical marginals for each of these features, I used a suite
of 28 images that was previously studied before in [68]. These scenes were
chosen to each contain one a single object or surface type, such as statutes,
building facades, rocky terrain, and foliage. This environment more closely
matches the test images used for SFS, such as the penny image used in
Chapter 6.

The results of the Shape from Shading algorithm using learned potentials
are shown in figure 7.5. These learned priors reduce the mean squared error of
the reconstructed surface slightly, from 36.78 to 35.38. While this constitutes
some improvement, there is still a significant difference between the estimated
shape and the ground-truth. This is especially true in the lower spatial
frequencies of depth, where shading information is less informative, and small
variations in local surface normals can accumulate to form gradual sloping
deviations. It should be noted that even using hand-tuned Laplace priors, the
SFS algorithm in figure 7.5b is successful in producing a reconstructed 3D
shape with fairly natural smoothness properties, and so we cannot expect
to see very large improvements. Our own acute perceptions of 3D shape
when viewing the 2D penny image is at least partially a result of direct
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a) Original Image b) Linear Constraint Nodes
Depth Mean Squared Err = 36.78

c) Learned Spatial Priors
Depth Mean Squared Err = 35.38

Figure 7.5: a) The original 3D surface [109]. The rendering in this column serves
as the input to the SFS algorithms in the next two columns. b) The surface re-
covered using the linear constraint node approach, as in Chapter 6 (figure 6.2).
Recall that hand-tuned Laplace distribution potential functions were used as a
spatial prior for this result. c) The surface recovered using the same linear con-
straint node technique as b, except using spatial priors learned via GIS. The errors
listed here give the mean squared error of the final 3D depth reconstruction.

experience with its subject matter. This level of accuracy would be difficult
to capture with a local 3D spatial prior. Without personal experience of the
penny’s 3D shape, it could be argued that the sharp depth discontinuity at
the upper-right border of the penny is less likely, a priori, that the smooth
reconstruction computed by the algorithm in figure 7.5c.

7.6 Conclusions
In this chapter, I have shown that learning using GIS with belief propagation
offers a significant speed advantage over sampling methods for learning the
potentials functions of maximum entropy graphical models. This advantage
is made possible by the ability of belief propagation to compute not only
MAP or MMSE point estimates of a probability distribution, but also entire
marginals over single variables. The ability to compute marginals is a seldom-
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mentioned advantage that belief propagation has over other sophisticated
inference techniques, such as graph cuts. This ability is a great advantage
when it comes to learning parameters.

Training potential functions using GIS is fast enough that repeated ap-
plications may allow the image features ~vi to be learned as well, either by
feature selection from a set of predetermined candidates, or by following gra-
dient descent. Efficient parameter learning may also benefit the training of
conditional random fields [50], where a separate set of potential functions
must be trained for different values of the input.

Another major advantage of the learning methods described here is that
they allow us to learn parameters of a MRF that compensate for the approx-
imation that is inherent to the use of belief propagation. Belief propaga-
tion finds a set of “beliefs” bi(xi) for a MRF P ( ~X|θ) that approximate the
true marginals pi(xi) of P . Most learning procedures work by searching for
parameters θ that minimize the KL-divergence between the MRF distribu-
tion P ( ~X|θ) and some empirical distribution P0( ~X). For learning potential
functions over linear features, it can be shown that this is equivalent to find-
ing potential functions such that the true marginals pi(xi) of P ( ~X|θ) match

the true marginals ôi(xi) of the empirical distribution P0( ~X). Because be-
lief propagation computes only approximate marginals, this means that the
marginals bi(xi) that are the result of belief propagation inference may not
match the empirical marginals ôi(xi). To minimize the error of belief propa-
gation, a better strategy is to minimize the divergence between the empirical
marginals ôi(xi) and the approximate marginals bi(xi) that are the result of
belief propagation. This is the strategy employed by the learning methods
described here.

When belief propagation is applied to MRFs trained using the methods
of this chapter, the result is a significant improvement over previous training
methods. Using this learning approach, even a simple pairwise MRF, can
be trained to outperform the 2 × 2 FoE model trained using Contrastive
Divergence [31]. This is an important finding, because pairwise MRFs are far
simpler to implement than higher-order cliques, and also significantly more
efficient in terms of speed and memory. In the example presented here, the
pairwise MRF was nearly twice as fast as the 2×2 FoE, even using the efficient
methods of Chapter 4. Previous to the results presented here, pairwise MRFs
were thought to be highly limited as a model for spatial priors, capable only
of results similar to those of figure 7.3c. The discovery that pairwise MRFs
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can produce effective spatial priors could prove important for efficient visual
inference for ambiguous problems, such as stereo or novel scene synthesis.

It is important to note that pairwise MRFs have significantly fewer pa-
rameters than the 2 × 2 FoE model. Pairwise MRFs have only two cliques
per pixel, each of size two, whereas the 2×2 FoE model has three cliques per
pixel, each of size four. In fact, the pairwise MRF can be seen as a submodel
of the 2× 2 FoE: for some choice of linear features and potentials, the 2× 2
FoE can be made to emulate any pairwise MRF. It is significant, then, that
pairwise MRFs trained using our method outperform the richer 2 × 2 FoE
model trained using Contrastive Divergence.

Another contribution of this chapter is the ability to use GIS with belief
propagation to efficiently learn parameters for higher-order cliques. These
higher-order models are better able to capture the rich statistical structure
present in natural images and 3D scenes. We demonstrate this by using
higher-order MRFs, trained using GIS with LBP, for image denoising, and
show an improvement over the trained pairwise models. In fact, the denoising
results produced by these higher-order models come surprisingly close to
the specialized state-of-the-art methods of image denoising [66, 73] which
cannot be generalized to be used as spatial priors for more complex inference
tasks such as stereo or shape-from-shading. For some images in the testing
suite, belief propagation in the trained higher-order MRFs actually surpassed
the performance of these state-of-the-art methods. The ability to exploit
a spatial prior of this caliber for stereo, shape-from-shading, novel scene
synthesis, super-resolution, segmentation, and matting may yield significant
improvements in each of these applications.
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Chapter 8

Conclusions

The problem of inferring underlying scene properties such as 3D shape from
images is both complex and underconstrained. To solve these problems effec-
tively, sophisticated statistical inference techniques must be developed to si-
multaneously resolve ambiguity and handle complex statistical relationships.
This thesis proposes a mathematical framework for statistical inference that
can efficiently handle ambiguous yet complex higher-order statistical rela-
tionships, making it well suited to handle difficult visual inference tasks. I
then apply this methodology to three central issues related to the depth in-
ference: the inference of shape from shading, the use of strong spatial priors,
and the ability to train statistical models from empirical data.

These three tasks were chosen to be representative of the issues faced by
depth inference problems in general, as well as other visual inference tasks.
In order to infer 3D shape or other scene properties from an image, it is
necessary to exploit visual cues, to resolve ambiguity by using strong spatial
priors, and preferably, to be able to learn both priors and cues from real
scenes. The applications presented in this thesis are representative of these
goals.

Some of the applications presented in this thesis were also chosen as
particularly difficult example problems, to demonstrate the ability of the
approach to scale to more general inference problems. For example, one
potential weakness of belief propagation is that the Bethe approximation is
expected to deteriorate for MRFs with many tight loops and for cliques with
high-energy deterministic or nearly-deterministic potentials [28]. The shape-
from-shading application in Chapter 6 faced both of these problems. Other
depth inference cues, such as stereo, occlusion contours, texture, perspective,
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or shadow, are not nearly so deterministic. In fact, for more natural scenes,
which include uncertain surface reflectances and lighting conditions, shading
cues will also become less deterministic than the Lambertian constraint of the
classic problem definition of shape-from-shading. Belief propagation should
perform better for these lower-energy cues. The fact that belief propaga-
tion performed so well for classic SFS is suggestive that belief propagation
with linear constraint nodes should provide an adequate framework for more
realistic depth inference scenarios.

Shape from shading also provides a good test of our depth inference frame-
work because it is known to be a very difficult inference problem. The prob-
lem of SFS has been studied since the 1920s, when astronomers sought to
understand the surface of the moon [35]. Since then, the problem has received
considerable attention from the field of computer vision. Despite years of re-
search, previous state-of-the-art methods for solving SFS are still regarded
as unsatisfactory. In a 1999 survey, Zhang et. al. [109] conclude that:

“All the SFS algorithms produce generally poor results when
given synthetic data . . . ”

In contrast, the LBP with linear constraint nodes approach of Chapter 6 is
quite successful at inferring a plausible 3D surface to match the input image.
In particular, the surface inferred via belief propagation satisfies both the
Lambertian and the integrability constraints nearly perfectly, meaning that
when rendered under illumination conditions identical to the input surface,
the resulting image matches the input image almost exactly. For previous
SFS approaches, the rendering of the inferred surface only barely resembles
the coarse features of the input image.

The ability of belief propagation with linear constraint nodes to solve SFS
effectively is one of the central points of this thesis. However, perhaps even
more important is the ability of this approach to generalize to include more
depth cues, to exploit stronger spatial priors, and to scale to handle scenes
and situations considerably more general than those demanded by the strict
requirements of the original problem definition of SFS.

In the time since the 1999 survey by Zhang et. al. [109], the study
of SFS has primarily focused on special cases that reduce the ambiguity of
the problem by further restricting the subclass of scenes that are eligible
for analysis [71]. Algorithms have been developed to solve SFS as long as
the single-point illumination source occupies the same point in space as the
camera [70]. This constraint is in addition to the standard constraints already

109



imposed by classical SFS. Other SFS methods require that no point in the
image lie in attached shadow, which means that no surface normal is greater
than 90 degrees from the illumination angle [71].

The viewpoint of this thesis is that further constraining the SFS problem
is moving in the wrong direction. The requirements imposed by classical
SFS on which scenes are eligible for analysis is already restrictive enough
to make real-world applications difficult to come by. The ambiguity of the
SFS problem cannot be ignored forever. Instead of restricting the prob-
lem domain until SFS is unambiguous or “well-posed”, real progress on SFS
will require developing methods that allow reasoning under uncertainty; to
use modern statistical inference techniques that can simultaneously handle
complex mathematical relationships as well as underconstrained, ambiguous
circumstances. It is more important to work to generalize SFS in ways that
allow us to relax the stiff restrictions imposed by the classical formulation
of SFS than to seek out ways of restricting it further. The approach to SFS
presented in this thesis not only achieves ground-breaking performance on
classical SFS problems, but it also promises to generalize to considerably
more flexible depth inference scenarios. The SFS approach presented in this
thesis can be generalized in straightforward ways to handle non-Lambertian
surface reflectance, to work in lighting conditions other than single point-
source lighting, such as multiple light sources or diffuse lighting, to exploit
multiple depth cues, and to exploit strong spatial priors

The remaining two applications presented in this thesis, the use of higher-
order spatial priors and learning, are both designed to facilitate generalizing
SFS and also to improve other depth-inference and scene property inference
problems, such as stereo, photometric stereo, novel scene synthesis, segmen-
tation, and matting. All of these visual inference problems are highly am-
biguous in nature, and each of them requires selecting the most probable
configuration from large volumes of plausible choices. Resolving such ambi-
guity requires exploiting a strong prior. In the context of SFS, recall that
for any given 2D input image, there can be huge number of possible 3D
surfaces which all render, under lighting conditions identical to the input
scene, to match the input image exactly. In fact, the dimensionality of the
space of surfaces that are consistent with the input image can be as large as
W + H + S, where W and H are the image width and height, respectively,
and S is the number of pixels that lie in attached shadow. The only method
for choosing one 3D surface from this high-dimensional space is to exploit
a strong spatial prior, P (Z), that identifies which 3D surfaces are likely to
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exist in real scenes. Recall that the SFS algorithm in Chapter 6 was able
to find a 3D surface that matched the input image nearly exactly, meaning
that the computed 3D surface lies in that (W +H + S)− dimensional space
of surfaces consistent with the input image. The only way to improve the
output of this algorithm is to improve the spatial prior P (Z) exploited by
the algorithm.

Exploiting strong, higher-order spatial priors is precisely the subject of
Chapter 5. Higher-order spatial priors have been developed in connection
with image denoising [66, 73] in the past. However, exploiting such strong
priors from within the statistical inference framework of belief propagation
has historically been problematic due to the exponential running time of
computing belief propagation messages through large MRF cliques. Chapter
5 shows how these problems can be overcome using the linear constraint
node technique introduced in Chapter 4. The ability to exploit strong spatial
priors without relying on weaker inference methods such as gradient descent
(as used by Roth et. al. to perform denoising [73]) may be of significant
benefit to a variety of visual inference tasks such as SFS, stereo, novel scene
synthesis, segmentation, and matting.

The issue of strong spatial priors was explored further in Chapter 7, which
described how belief propagation and the computational shortcuts of Chapter
4 could be used not only for inference, but also for learning the parameters
of graphical models from empirical data. The learning methods of Chapter
7 allow spatial priors to be learned efficiently from natural scenes. Further-
more, by minimizing the error of the output of belief propagation, rather
than minimizing the error of the idealized MRF, MRFs trained using the
methods of Chapter 7 can compensate for the approximation that is inher-
ent to the belief propagation method of inference. This presents a significant
advantage over other learning methods, and the spatial priors trained using
these methods significantly outperform models trained using previous state
of the art methods such as contrastive divergence [31]. Remarkably, even a
simple pairwise-connected MRF, when trained using the methods of Chapter
7, can outperform considerably more sophisticated spatial prior models such
as 2 × 2 Fields of Experts that were trained using contrastive divergence.
We show how strong spatial priors trained using these techniques produce
a significant advantage for image denoising and also for shape from shad-
ing. Again, these strong spatial priors can also extend to several other visual
inference problems such as stereo novel scene synthesis, segmentation, and
matting.
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Ultimately, the ability to train MRFs efficiently will be useful not only
for learning strong spatial priors, but also for learning data likelihood from
natural scenes. As described in the introduction, little is known about the
statistics of natural 3D scenes. Many previous approaches to the inference
of 3D shape have been based on physical models of image formation that
rely on untested parameters, assumptions, and oversimplifications. Realistic
depth inference for natural images will require studying 3D shapes in real
3D scenes, measuring what depth cues really exist in nature, measuring their
relative strength, and estimating their parameters and exact forms from real
scenes. The technical capability to study the joint statistics of natural images
and their underlying 3D shapes is only now becoming feasible. Using laser-
acquired range images with coregistered color images such as our database
(described in section 2.3 and used in section 7.5), we will be able to measure
from real 3D scenes what statistical trends actually exist in natural environ-
ments. Statistical learning techniques like those presented in Chapter 7 will
then help to exploit these empirical trends from the probabilistic framework
of graphical models. Then, using the methods outlined in this thesis, we can
approach the problem of inferring 3D structure in general natural scenes.

8.1 Future Work
In the short term, I will continue to work on statistical methods for the
inference of 3D shape. I will develop ways to extend my existing techniques to
unrestricted natural images. This includes exploiting stronger spatial priors
and integrating additional monocular depth cues, such as occlusion, shadow,
texture, and perspective. The inference of depth from monocular cues is a
very difficult problem, one which I expect to be a subject of active ongoing
research for several decades.

I also intend to continue work to develop the machine learning tools that
can best achieve these aims. The efficient approaches to statistical inference
and parameter learning I have developed can be extended in several ways to
tackle harder problems more efficiently. Additionally, the machine learning
techniques I have developed in the process of completing this thesis have
promising applications to several computer vision problems, such as super-
resolution, novel scene synthesis, stereo, segmentation, and matting. I hope
to expand my research in all of these areas.

I will also continue to explore the statistical regularities of natural scenes.
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The study of the joint statistics of natural scenes is a wide open field, and
one that promises to yield insights into both computer vision and visual
neuroscience. Future projects include the study of occlusion contours, and
how their stochastic geometry changes over scale. A better understanding
of occlusion will help to develop algorithms that can be applied to cluttered
scenes with multiple 3D surfaces.

Finally, I will continue to explore how statistical inference can be achieved
in the brain. Already, for much of the work described in this thesis, I am
involved in analogous projects aimed at exploring how visual inference occurs
in the brain. Just as I explore the use of spatial priors in Chapters 5 and
7, I am also working to understand how spatial priors are used the brain
to disambiguate shape-from-stereo in visual area V1 [75]. Just as I consider
ways in which multiple depth cues can be integrated in Chapter 6, I also
work to understand how stereo and shadow cues are combined in the brain,
by recording and analyzing the response of V1 neurons to stereo and shadow
cues [69]. Ongoing and exciting developments in machine learning techniques,
as well as new methods for understanding neurological function, are opening
up rich new avenues for interdisciplinary research, and I am fortunate to be
in a position to explore these new areas.
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