
Uniquely Represented Data Structures for
Computational Geometry

Guy E. Blelloch 1 Daniel Golovin 2

Virginia Vassilevska 3

April 2008
CMU-CS-08-115

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present new techniques for the construction of uniquely represented data structures in a RAM,
and use them to construct efficient uniquely represented data structures for orthogonal range
queries, line intersection tests, point location, and 2-D dynamic convex hull. Uniquely represented
data structures represent each logical state with a unique machine state. Such data structures are
strongly history-independent. This eliminates the possibility of privacy violations caused by the
leakage of information about the historical use of the data structure. Uniquely represented data
structures may also simplify the debugging of complex parallel computations, by ensuring that
two runs of a program that reach the same logical state reach the same physical state, even if
various parallel processes executed in different orders during the two runs.

1Supported in part by NSF ITR grant CCR-0122581 (The Aladdin Center).
2Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center) and IIS-0121678.
3Supported in part by NSF ITR grant CCR-0122581 (The Aladdin Center) and a Computer Science Department

Ph.D. Scholarship.



Keywords: Unique Representation, Canonical Forms, History Independence, Oblivious Data
Structures, Ordered Subsets, Range Trees, Point Location, Convex Hull



1 Introduction
Most computer applications store a significant amount of information that is hidden from the ap-
plication interface—sometimes intentionally but more often not. This information might consist
of data left behind in memory or disk, but can also consist of much more subtle variations in the
state of a structure due to previous actions or the ordering of the actions. For example a simple
and standard memory allocation scheme that allocates blocks sequentially would reveal the order
in which objects were allocated, or a gap in the sequence could reveal that something was deleted
even if the actual data is cleared. Such location information could not only be derived by looking
at the memory, but could even be inferred by timing the interface—memory blocks in the same
cache line (or disk page) have very different performance characteristics from blocks in different
lines (pages). Repeated queries could be used to gather information about relative positions even if
the cache is cleared ahead of time. As an example of where this could be a serious issue consider
the design of a voting machine. A careless design might reveal the order of the cast votes, giving
away the voters’ identities.

To address the concern of releasing historical and potentially private information various no-
tions of history independence have been derived along with data structures that support these no-
tions [14, 20, 13, 7, 1]. Roughly, a data structure is history independent if someone with complete
access to the memory layout of the data structure (henceforth called the “observer”) can learn no
more information than a legitimate user accessing the data structure via its standard interface (e.g.,
what is visible on screen). The most stringent form of history independence, strong history inde-
pendence, requires that the behavior of the data structure under its standard interface along with
a sequence of randomly generated bits, which are revealed to the observer, uniquely determine its
memory representation. We say that such structures have a unique representation.

The idea of unique representations has also been studied earlier [27, 28, 2] largely as a theoret-
ical question to understand whether redundancy is required to efficiently support updates in data
structures. The results were mostly negative. Anderson and Ottmann [2] showed, for example, that
ordered dictionaries storing n keys require Θ(n1/3) time, thus separating unique representations
from redundant representations (redundant representations support dictionaries in Θ(log n) time,
of course). This is the case even when the representation is unique only with respect to the pointer
structure and not necessarily with respect to memory layout. The model considered, however, did
not allow randomness or even the inspection of secondary labels assigned to the keys.

Recently Blelloch and Golovin [4] described a uniquely represented hash table that supports
insertion, deletion and queries on a table with n items in O(1) expected time per operation and
using O(n) space. The structure only requires O(1)-wise independence of the hash functions
and can therefore be implemented using O(log n) random bits. The approach makes use of recent
results on the independence required for linear probing [22] and is quite simple and likely practical.
They also showed a perfect hashing scheme that allows for O(1) worst-case queries, although it
requires more random bits and is probably not practical. Using the hash tables they described
efficient uniquely represented data structures for ordered dictionaries and the order maintenance
problem [10]. This does not violate the Anderson and Ottmann bounds as it allows the keys to be
hashed, allows random bits to be part of the input, and considers performance in expectation (or
with high probability) rather than in the worst case. Very recently, Naor et. al. [19] developed a

1



second uniquely represented dynamic perfect hash table supporting deletions. Their construction
is based on the cuckoo hashing scheme of Pagh and Rodler [23], whereas the earlier construction
of [4] is based on linear probing.

In this paper we use these and other results to develop various uniquely represented structures in
computational geometry. (An extended abstract version of this paper appeared in the Scandinavian
Workshop on Algorithm Theory [5].) We show uniquely represented structures for the well studied
dynamic versions of orthogonal range searching, horizontal point location, and orthogonal line
intersection. All our bounds match the bounds achieved using fractional cascading [8], except that
our bounds are in expectation instead of worst-case. In particular for all problems the structures
support updates in O(log n log log n) expected time and queries in O(log n log log n + k) expected
time, where n is the number of supported elements and k is the size of the output. They use
O(n log n) space and use O(1)-wise independent hash functions. Although better redundant data
structures for these problems are known [16, 17, 3] (an O(log log n)-factor improvement), our data
structures are the first to be uniquely represented. Furthermore they are quite simple, arguably
simpler than previous redundant structures that match our bounds.

Instead of fractional cascading our results are based on a uniquely represented data structure
for the ordered subsets problem (OSP). This problem is to maintain subsets of a totally ordered
set under insertions and deletions to either the set or the subsets, as well as predecessor queries
on each subset. Our data structure supports updates or comparisons on the totally ordered set in
expected O(1) time, and updates or queries to the subsets in expected O(log log m) time, where
m is the total number of element occurrences in subsets. This structure may be of independent
interest.

We also describe a uniquely represented data structure for 2-D dynamic convex hull. For n
points it supports point insertions and deletions in O(log2 n) expected time, outputs the convex hull
in time linear in the size of the hull, takes expected O(n) space, and uses only O(log n) random
bits. Although better results for planar convex hull are known ([6]), we give the first uniquely
represented data structure for this problem.

Our results are of interest for a variety of reasons. From a theoretical point of view they shed
some light on whether redundancy is required to efficiently support dynamic structures in geome-
try. From the privacy viewpoint range searching is an important database operation for which there
might be concern about revealing information about the data insertion order, or whether certain
data was deleted. Unique representations also have potential applications to concurrent program-
ming and digital signatures [4].

2 Preliminaries
Let R denote the real numbers, Z denote the integers, and N denote the naturals. Let [n] for n ∈ Z
denote {1, 2, . . . , n}.

Unique Representation. Formally, an abstract data type (ADT) is a set V of logical states, a
special starting state v0 ∈ V , a set of allowable operations O and outputs Y , a transition function
t : V × O → V , and an output function y : V × O → Y . The ADT is initialized to v0,

2



and if operation O ∈ O is applied when the ADT is in state v, the ADT outputs y(v, O) and
transitions to state t(v, O). A machine model M is itself an ADT, typically at a relatively low
level of abstraction, endowed with a programming language. Example machine models include
the random access machine (RAM) with a simple programming language that resembles C, the
Turing machine (where the program corresponds to the finite state control of the machine), and
various pointer machines. An implementation of an ADT A on a machine model M is a mapping
f from the operations of A to programs over the operations of M. Given a machine model M,
an implementation f of some ADT (V, v0, t, y) is said be uniquely represented (UR) if for each
v ∈ V , there is a unique machine state σ(v) of M that encodes it. Thus, if we run f(O) on M
exactly when we run O on (V, v0, t, y), then the machine is in state σ(v) iff the ADT is in logical
state v.

Model of Computation & Memory allocation. Our model of computation is a unit cost RAM
with word size at least log |U |, where U is the universe of objects under consideration. As in [4],
we endow our machine with an infinite string of random bits. Thus, the machine representation
may depend on these random bits, but our strong history independence results hold no matter what
string is used. In other words, a computationally unbounded observer with access to the machine
state and the random bits it uses can learn no more than if told what the current logical state is. In
our performance guarantees we take probabilities and expectations over these random bits; we use
randomization solely to improve performance.

Our data structures are based on the solutions of several standard problems. For some of these
problems UR data structures are already known. The most basic structure that is required through-
out this paper is a hash table with insert, delete and search. The most common use of hashing in
this paper is for memory allocation. Traditional memory allocation depends on the history since
locations are allocated based on the ordering in which they are requested. We maintain data struc-
tures as a set of blocks. Each block has its own unique integer label which is used to hash the block
into a unique memory cell. It is not too hard to construct such block labels if the data structures and
the basic elements stored therein have them. For example, we can label points in Rd using their
coordinates and if a point p appears in multiple structures, we can label each copy using a combi-
nation of p’s label, and the label of the data structure containing that copy. Such a representation
for memory contains no traditional “pointers” but instead uses labels as pointers. For example for
a tree node with label lp, and two children with labels l1 and l2, we store a cell containing (l1, l2)
at label lp. This also allows us to focus on the construction of data structures whose pointer struc-
ture is UR; such structures together with this memory allocation scheme yield UR data structures
in a RAM. Note that all of the tree structures we use have pointer structures that are UR. Given
the memory allocation scheme above, the proofs that our data structures are UR are thus quite
straightforward, and we omit them.

Trees. Throughout this paper we make significant use of tree-based data structures. We note
that none of the deterministic trees (e.g., red-black, AVL, splay-trees, weight-balanced trees) have
unique representations, even not accounting for memory layout. We therefore use randomized
treaps [25] throughout our presentation.

3



Definition 2.1 (Treap) A treap is a binary search tree in which each node has both a key and a
priority. The nodes appear in-order by their keys (as in a standard binary search tree) and are
heap-ordered by their priorities, so that the each parent has a higher priority than its children.

We expect that one could also make use of skip lists [24] but we can leverage the elegant results
on treaps with respect to limited randomness. For a tree T , let |T | be the number of nodes in T ,
and for a node v ∈ T , let Tv denote the subtree rooted at v, and let depth(x) denote the length of
the path from x to the root of T .

Definition 2.2 (k-Wise Independence) Let k ∈ Z and k ≥ 2. A set of random variables is k-wise
independent if any k-subset of them is independent. A family H of hash functions from set A to
set B is k-wise independent if the random variables in {h(x)}x∈A are k-wise independent and
uniform on B when h is picked at random from H.

Unless otherwise stated, all treaps in this paper use 8-wise independent hash functions to generate
priorities. We use the following properties of treaps.

Theorem 2.3 (Selected Treap Properties [25]) Let T be a random treap on n nodes with priori-
ties generated by an 8-wise independent hash function from nodes to [p], where p ≥ n3. Then for
any x ∈ T ,

(1) E[depth(x)] ≤ 2 ln(n) + 1, so access and update times are expected O(log n)
(2) Given a predecessor handle, the expected insertion or deletion time is O(1)
(3) If the time to rotate a subtree of size k is f(k) for some f : N → R≥1 such that f(k) is
polynomially bounded, then the total time due to rotations to insert or delete an element is
O
(

f(n)
n

+
∑

0<k<n
f(k)
k2

)
in expectation. Thus even if the cost to rotate a subtree is linear in

its size (e.g., f(k) = Θ(k)), updates take expected O(log n) time.

Dynamic Ordered Dictionaries. The dynamic ordered dictionary problem is to maintain a set
S ⊂ U for a totally ordered universe (U,<). In this paper we consider supporting insertion, dele-
tion, predecessor (Pred(x, S) = max{e ∈ S : e < x}) and successor (Succ(x, S) = min{e ∈
S : e > x}). Henceforth we will often skip successor since it is a simple modification to prede-
cessor. If the keys come from the universe of integers U = [m] a simple variant of the Van Emde
Boas et. al. structure [29] is UR and supports all operations in O(log log m) expected time [4]
and O(|S|) space. Under the comparison model we can use treaps to support all operations in
O(log |S|) time and expected O(|S|) space. In both cases O(1)-wise independence of the hash
functions is sufficient. We sometimes associate data with each element.

Order Maintenance. The Order-Maintenance problem [10] (OMP) is to maintain a total order-
ing L on n elements while supporting the following operations:

• Insert(x, y): insert new element y right after x in L.
• Delete(x): delete element x from L.
• Compare(x, y): determine if x precedes y in L.

4



In previous work [4] the first two authors described a randomized UR data structure for the problem
that supports compare in O(1) worst-case time and updates in O(1) expected time. It is based on a
three level structure. The top two levels use treaps and the bottom level uses state transitions. The
bottom level contains only O(log log n) elements per structure allowing an implementation based
on table lookup. In this paper we use this order maintenance structure to support ordered subsets.

Ordered Subsets. The Ordered-Subset problem (OSP) is to maintain a total ordering L and a
collection of subsets of L, denoted S = {S1, . . . , Sq}, while supporting the OMP operations on L
and the following ordered dictionary operations on each Sk:

• Insert(x, Sk): insert x ∈ L into set Sk.
• Delete(x, Sk): delete x from Sk.
• Pred(x, Sk): For x ∈ L, return max{e ∈ Sk|e < x}.

Dietz [11] first describes this problem in the context of fully persistent arrays, and gives a solution
yielding O(log log m) expected amortized time operations, where m := |L| +

∑q
i=1 |Si| is the

total number of element occurrences in subsets. Mortensen [15] describes a solution that supports
updates to the subsets in expected O(log log m) time, and all other operations in O(log log m)
worst case time. In section 3 we describe a UR version.

3 Uniquely Represented Ordered Subsets
Here we describe a UR data structure for the ordered-subsets problem. It supports the OMP oper-
ations on L in expected O(1) time and the dynamic ordered dictionary problems on the subsets in
expected O(log log m) time, where m = |L| +

∑q
i=1 |Si|. We use a somewhat different approach

than Mortensen [15], which relied heavily on the solution of some other problems which we do
not know how to make UR. Our solution is more self-contained and is therefore of independent
interest beyond the fact that it is UR. Furthermore, our results improve on Mortensen’s results by
supporting insertion into and deletion from L in O(1) instead of O(log log m) time.

Theorem 3.1 Let m := |{(x, k) : x ∈ Sk}| + |L|. There exists a UR data structure for the
ordered subsets problem that uses expected O(m) space, supports all OMP operations in expected
O(1) time, and all other operations in expected O(log log m) time.

We devote the rest of this section to proving Theorem 3.1. To construct the data structure, we
start with a UR order maintenance data structure on L, which we will denote by L≤ (see Section 2).
Whenever we are to compare two elements, we simply use L≤.

We recall an approach used in constructing L≤ [4], treap partitioning: Given a treap T and
an element x ∈ T , let its weight w(x, T ) be the number of its descendants, including itself. For a
parameter s, let Ls[T ] = {x ∈ T : w(x, T ) ≥ s} ∪ {root(T )} be the weight s partition leaders of
T 1. For every x ∈ T let `(x, T ) be the least (deepest) ancestor of x in T that is a partition leader.
Here, each node is considered an ancestor of itself. The weight s partition leaders partition the

1For technical reasons we include root(T ) in Ls[T ] ensuring that Ls[T ] is nonempty.

5



The leaders,

in the gray

region

The partitions

are shown as 

white contiguous

regions

Figure 1: A depiction of the treap partitioning scheme.

treap into the sets {{y ∈ T : `(y, T ) = x} : x ∈ Ls[T ]}, each of which is a contiguous block of
keys from T . Figure 1 depicts the treap partitioning.

In the construction of L≤ [4] the elements of the order are treap partitioned twice, at weight s :=
Θ(log |L|) and again at weight Θ(log log |L|). The partition sets at the finer level of granularity are
then stored in UR hash tables. In the rest of the exposition we will refer to the treap on all of L as
T (L≤). The set of weight s partition leaders of T (L≤) is denoted by L[T (L≤)], and the treap on
these leaders by T (L[L≤]).

The other main structure that we use is a treap T containing all elements from the set L̂ =
{(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (L≤)]}. Treap T is depicted in Figure 2. It is partitioned
by weight s = Θ(log m) partition leaders. Each of these leaders is labeled with the path from the
root to it (0 for left, 1 for right), so that label of each v is the binary representation of the root to v
path. We keep a hash table H that maps labels to nodes, so that the subtreap of T on L[T ] forms a
trie. It is important that only the leaders are labeled since otherwise insertions and deletions would
require O(log m) time. We maintain a pointer from each node of T to its leader. In addition, we
maintain pointers from each x ∈ L[T (L≤)] to (x, 0) ∈ T .

We store each subset Sk in its own treap Tk, also partitioned by weight s = Θ(log m) leaders.
When searching for the predecessor in Sk of some element x, we use T to find the leader ` in
Tk of the predecessor of x in Sk. Once we have `, the predecessor of x can easily be found by
searching in the partition of Sk associated with leader `, which is either {`} or is stored in an
O(log m)-sized subtree of Tk rooted at `. The exact details appear later. To guide the search for
`, we store at each node v of T the minimum and maximum Tk-leader labels in the subtree rooted
at v, if any. Since we have multiple subsets we need to find predecessors in, we actually store at
each v a mapping from each subset Sk to the minimum and maximum leader of Sk in the subtree
rooted at v. For efficiency, for each leader v ∈ T we store a hash table Hv, mapping k ∈ [q] to the
tuple (min{u : u ∈ L[Tk] and (u, k) ∈ Tv}, max{u : u ∈ L[Tk] and (u, k) ∈ Tv}), if it exists.

6



1001

100

10

1

10011

Leaders are 
labeled with 
their path 
from the root

 

The leaders 

       , in gray

(
)

Figure 2: Treap T storing L̂.

Recall Tv is the subtreap of T rooted at v. The high-level idea is to use the hash tables Hv to find
the right “neighborhood” of O(log m) elements in Tk which we will have to update (in the event
of an update to some Sk), or search (in the event of a predecessor or successor query). Since these
neighborhoods are stored as treaps, updating and searching them takes expected O(log log m) time.
We summarize these definitions, along with some others, in Table 1.

w(x, T ) number of descendants of node x of treap T
`(x, T ) the partition leader of x in T
L[T ] weight s = Θ(log m) partition leaders of treap T
Tk treap containing all elements of the ordered subset Sk, k ∈ [q]

T (L≤) the treap on L
T (L[L≤]) the subtreap of T (L≤) on the weight s = Θ(log m) leaders of T (L≤)

L̂ the set {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (L≤)]}
T a treap storing L̂
H hash table mapping label i ∈ {0, 1}m to a pointer to the leader of T with label i
Hv hash table mapping k ∈ [q] to the tuple (if it exists)

(min{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv}, max{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv})
Ix for x ∈ L, a fast ordered dictionary [4] mapping each k ∈ {i : x ∈ Si} to (x, k) in T
Jx for x ∈ L[T (L≤)], a treap containing {u ∈ L : `(u, T (L≤)) = x and ∃ i : u ∈ Si}

Table 1: Some useful notation and definitions of various structures we maintain.

We use the following Lemma to bound the number of changes on partition leaders.

Lemma 3.2 [4] Let s ∈ Z+ and let T be a treap of size at least s. Let T ′ be the treap induced
on the weight s partition leaders in T . Then the probability that inserting a new element into T or
deleting an element from T alters the structure of T ′ is at most c/s for some global constant c.

7



Note that each partition set has size at most O(log m). The treaps Tk, Jx and T , and the
dictionaries Ix from Table 1 are stored explicitly. We also store the minimum and maximum
element of each L[Tk] explicitly. We use a total ordering for L̂ as follows: (x, k) < (x′, k′) if
x < x′ or if x = x′ and k < k′.

OMP Insert & Delete Operations: These operations remain largely the same as in the order
maintenance structure of [4]. We assume that when x ∈ L is deleted it is not in any set Sk. The
main difference is that if the set L[T (L≤)] changes we will need to update the treaps {Jv : v ∈
L[T (L≤)]}, T , and the tables {Hv : v ∈ L[T ]} appropriately.

Note that we can easily update Hv in time linear in |Tv| using in-order traversal of Tv, assuming
we can test if x is in L[Tk] in O(1) time. To accomplish this, for each k we can store L[Tk] in a
hash table. Thus using Theorem 2.3 we can see that all necessary updates to {Hv : v ∈ T } take
expected O(log m) time. Clearly, updating T itself requires only expected O(log m) time. Finally,
we bound the time to update the treaps Jv by the total cost to update T (L[L≤]) if the rotation of
subtrees of size k costs k + log m, which is O(log m) by Theorem 2.3. This bound holds because
|Jv| = O(log m) for any v, and any tree rotation on T (L≤) causes at most 3s elements of T (L≤)
to change their weight s leader. Therefore only O(log m) elements need to be added or deleted
from the treaps {Jv : v ∈ T (L[L≤])}, and we can batch these updates in such a way that each
takes expected amortized O(1) time. However, we need only make these updates if L[T (L≤)]
changes, which by Lemma 3.2 occurs with probability O(1/ log m). Hence the expected overall
cost is O(1).

Predecessor & Successor: Suppose we wish to find the predecessor of x in Sk. (Finding the
successor is analogous.) If x ∈ Sk we can test this in expected O(log log m) time using Ix. So
suppose x /∈ Sk. We will first find the predecessor w of (x, k) in T as follows. (We can handle the
case that w does not exist by adding a special element to L that is smaller than all other elements
and is considered to be part ofL[T (L≤)]). First search Ix for the predecessor k2 of k in {i : x ∈ Si}
in O(log log m) time. If k2 exists, then w = (x, k2). Otherwise, let y be the leader of x in T (L≤),
and let y′ be the predecessor of y inL[T (L≤)]. Then either w ∈ {(y′, 0), (y, 0)} or else w = (z, k3),
where z = max{u : u < x and u ∈ Jy ∪ Jy′} and k3 = max{i : z ∈ Si}. Thus we can find w
in expected O(log log m) time using fast finger search for y′, treap search on the O(log m) sized
treaps in {Jv : v ∈ L[T (L≤)]}, and the fast dictionaries {Ix : x ∈ L}.

We will next find the predecessor w′ or the successor w′′ of x in L[Tk]. Note that if we have w′

we can find w′′ quickly via fast finger search, and vice versa. If w ∈ L[Tk] × {k}, then w = w′

and we can test this in constant time if we store the subtree sizes in the treaps Tk. So assume
w /∈ L[Tk]×{k}. We start from w and consider its leader `(w) in T . We first binary search on the
path P from the root of T to `(w) for the deepest node u′ such that Tu′ contains at least one node
from L[Tk]× {k}. (In particular, this means that this subtreap also contains a node (u, k) where u
is either the predecessor or successor of x in L[Tk]. If no node on the path has this property, then
Sk is empty.) The binary search is performed on the length of the prefix of the label of `(w). Given
a prefix α, we look up the node p with label α using H , and test whether Tp contains at least one
node from L[Tk]× {k} using Hp. If so, we increase the prefix length. Otherwise we decrease it.

8



Next use Hu′ to obtain umin = min{u : u ∈ L[Tk] and (u, k) ∈ Tu′} and umax = max{u : u ∈
L[Tk] and (u, k) ∈ Tu′}. Note that either (1) umax < x, or (2) umin > x, or (3) umin < x < umax.

In the first case, we claim that umax is the predecessor of x in L[Tk]. To prove this, note that the
predecessor of x in L[Tk] is the predecessor of w in L[Tk] under the extended ordering for L̂. Now
suppose for a contradiction that z 6= umax is the predecessor of w in L[Tk]. Thus umax < z ≤ w.
Clearly, z /∈ Tu′ , for otherwise we obtain a contradiction from the definition of umax. However, it is
easy to see that every node that is not in Tu′ is either less than umax or greater than w, contradicting
the assumption that umax < z ≤ w. In the second case, we claim that umin is the successor of x in
L[Tk]. The proof is analogous to the first case, and we omit it.

Thus, in the first two cases we are done. Consider the third case. We first prove that u′ = `(w)
in this case. Note that umin < x < umax implies umin ≤ w < umax. Since there is an element
of L[Tk] × {k} on either side of w in Tu′ , the child u′c of u′ that is an ancestor of w must have an
element of L[Tk]×{k} in its subtree. From the definition of u′, we may infer that u′c was not on the
`(w) to root path in T . Thus u′ is the deepest node on this path, or equivalently u′ = `(w). Given
that u′ = `(w) and umin ≤ w < umax, we next prove that at least one element of {umin, umax} is
within distance s = Θ(log m) of w in T . Note that because u′c /∈ L[T ], its subtree Tu′

c
has size

at most s. If u′c is the left child of u′, then umin is in this subtree as is w. The distance between
umin and w is thus at most s = Θ(log m) in T . If u′c is the right child of u′, then we may argue
analogously that umax and w are both in Tu′

c
and thus umax is within distance s of w.

Once we have obtained a node (unear, k) in T such that unear ∈ L[Tk] and (unear, k) is within
distance d = O(log m) of w in T , we find the predecessor w′ and successor w′′ of x in L[Tk] via
fast finger search on Tk using unear. Note that the distance between unear and the nearest of {w′, w′′}
is at most d. This is because if unear ≤ w′, then every element e of L[Tk] between unear and w′ must
have a corresponding node (e, k) ∈ Tu′

c
between (unear, k) and w, and there are at most d such

nodes. Similarly, if unear ≥ w′′, then every element e of L[Tk] between w′′ and unear must have a
corresponding node (e, k) ∈ Tu′

c
between w and (unear, k), and there are at most d such nodes. Note

that finding the predecessor and successor of x in Tk given a handle to a node in Tk at distance d
from x takes O(log(d)) time in expectation [25]. In this case, d = O(log m) so this step takes
O(log log m) time in expectation.

Once we have found w′ and w′′, the predecessor and successor of x in L[Tk], we simply
search their associated partitions of Sk for the predecessor of x in Sk. These partitions are both
of O(log m) size and can be searched in expected O(log log m) time. The total time to find the
predecessor is thus O(log log m) in expectation.

OSP-Insert and OSP-Delete: OSP-Delete is analogous to OSP-Insert, hence we focus on OSP-
Insert. Suppose we wish to add x to Sk. First, if x is not currently in any sets {Si : i ∈ [q]}, then
find the leader of x in T (L≤), say y, and insert x into Jy in expected O(log log m) time. Next,
insert x into Tk as follows. Find the predecessor w of x in Sk, then insert x into Tk in expected
O(1) time starting from w to speed up the insertion.

Find the predecessor w′ of (x, k) in T as in the predecessor operation, and insert (x, k) into
T using w′ as a starting point. If neither L[Tk] nor L[T ] changes, then no modifications to {Hv :
v ∈ L[T ]} need to be made. If L[Tk] does not change but L[T ] does, as happens with probability
O(1/ log m), we can update T and {Hv : v ∈ L[T ]} appropriately in expected O(log m) time

9



by taking time linear in the size of the subtree to do rotations. If L[Tk] changes, we must be
careful when updating {Hv : v ∈ L[T ]}. Let L[Tk] and L[Tk]

′ be the leaders of Tk immediately
before and after the addition of x to Sk, and let ∆k := (L[Tk]− L[Tk]

′) ∪ (L[Tk]
′ − L[Tk]). Then

we must update {Hv : v ∈ L[T ]} appropriately for all nodes v ∈ L[T ] that are descendants
of (x, k) as before, but must also update Hv for any node v ∈ L[T ] that is an ancestor of some
node in {(u, k) : u ∈ ∆k}. It is not hard to see that these latter updates can be done in expected
O(|∆k| log m) time. Moreover, E

[
|∆k| | x /∈ L[Tk]

′] ≤ 1 and E
[
|∆k| | x ∈ L[Tk]

′] = O(1), since
|∆k| can be bounded by 2(R+1), where R is the number of rotations necessary to rotate x down to
a leaf node in a treap on L[Tk]

′. This is essentially because each rotation can cause |∆k| to increase
by at most two. Since it takes Θ(R) time to delete x given a handle to it, from Theorem 2.3 we
easily infer E[R] = O(1). Since the randomness for Tk is independent of the randomness used for
T , these expectations multiply, for a total expected time of O(log m), conditioning on the fact that
L[Tk] changes. Since L[Tk] only changes with probability O(1/ log m), this part of the operation
takes expected O(1) time. Finally, insert k into Ix in expected O(log log m) time, with a pointer to
(x, k) in T .

Space Analysis. We now prove that our ordered subsets data structure uses O(m) space in ex-
pectation, where m = |L̂|. Table 1 lists the objects that that the data structure uses. The order
maintenance structure uses O(|L|) space. The hash table H , treap T , the collection of treaps
{Tk : k ∈ [q]}, and the collection fast dictionaries {Ix : x ∈ L} each use only O(m) space.
The collection {Jx : x ∈ L[T (L≤)]} uses only O(|L|) space. That leaves the space required by
{Hv : v ∈ L[T ]}. We claim these hash tables use O(m) space in expectation. To prove this, let
Xu,k be a random variable denoting the number of hash tables in {Hv : v ∈ L[T ]} that map k
to a tuple of the form (u, ∗) or (∗, u), where ∗ denotes a wildcard that matches all nodes or null.
(If Hv maps k the record (u, u), we may count that record as contributing two to Xu,k). The space
required for {Hv : v ∈ L[T ]} is then linear in the total number of entries of all hash tables, which
is
∑

u∈L

∑q
k=1 Xu,k. Clearly, if u /∈ Sk then Xu,k = 0. On the other hand, we claim that if x ∈ Sk

then E[Xu,k] = O(1), in which case E
[∑

u∈L

∑q
k=1 Xu,k

]
= O(m) by linearity of expectation.

Assume u ∈ Sk. Note that if u /∈ L[Tk], then Xu,k = 0, and Pr[u ∈ L[Tk]] = O(1/ log m) (the
probability of any node being a weight s leader is O(1/s), which is an easy corollary of Theo-
rem 2.3). Furthermore

E[Xu,k | u ∈ L[Tk]] ≤ E[depth of (u, k) in T ]
= O(log m)

It follows that
E[Xu,k] = E[Xu,k | u ∈ L[Tk]] · Pr[u ∈ L[Tk]]

= O(log m · 1
log m

)

= O(1)

4 Uniquely Represented Range Trees
Let P = {p1, p2, . . . , pn} be a set of points in Rd. The well studied orthogonal range reporting
problem is to maintain a data structure for P while supporting queries which given an axis aligned

10



box B in Rd returns the points P ∩ B. The dynamic version allows for the insertion and deletion
of points. Chazelle and Guibas [8] showed how to solve the two dimensional dynamic problem
in O(log n log log n) update time and O(log n log log n + k) query time, where k is the size of the
output. Their approach used fractional cascading. More recently Mortensen [17] showed how to
solve it in O(log n) update time and O(log n + k) query time using a sophisticated application
of Fredman and Willard’s q-heaps [12]. All of these techniques can be generalized to higher
dimensions at the cost of replacing the first log n term with a logd−1 n term [9].

Here we present a uniquely represented solution to the problem. It matches the bounds of the
Chazelle and Guibas version, except ours are in expectation instead of worst-case bounds. Our
solution does not use fractional cascading and is instead based on ordered subsets. One could
probably derive a UR version based on fractional cascading, but making dynamic fractional cas-
cading UR would require significant work2 and is unlikely to improve the bounds. Our solution
is simple and avoids any explicit discussion of weight balanced trees (the required properties fall
directly out of known properties of treaps).

Theorem 4.1 Let P be a set of n points in Rd. There exists a UR data structure for the orthogonal
range query problem that uses expected O(n logd−1 n) space and O(d log n) random bits, sup-
ports point insertions or deletions in expected O(logd−1 n · log log n) time, and queries in expected
O(logd−1 n · log log n + k) time, where k is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [4] and have each element store
a pointer to its successor for fast reporting. For simplicity we first describe the two dimensional
case. The remaining cases with d ≥ 3 can be implemented using standard techniques [9] if treaps
are used for the underlying hierarchical decomposition trees, as we describe below.

We will assume that the points have distinct coordinate values; thus, if (x1, x2), (y1, y2) ∈ P ,
then xi 6= yi for all i. (There are various ways to remove this assumption, e.g., the composite-
numbers scheme or symbolic perturbations [9].) We store P in a random treap T using the ordering
on the first coordinate as our BST ordering. We additionally store P in a second random treap T ′

using the ordering on the second coordinate as our BST ordering, and also store P in an ordered
subsets instance D using this same ordering. We cross link these and use T ′ to find the position
of any point we are given in D. The subsets of D are {Tv : v ∈ T}, where Tv is the subtree of
T rooted at v. We assign each Tv a unique integer label k using the coordinates of v, so that Tv is
Sk in D. The structure is UR as long as all of its components (the treap and ordered subsets) are
uniquely represented.

To insert a point p, we first insert it by the second coordinate in T ′ and using the predecessor of
p in T ′ insert a new element into the ordered subsets instance D. This takes O(log n) expected time.
We then insert p into T in the usual way using its x coordinate. That is, search for where p would
be located in T were it a leaf, then rotate it up to its proper position given its priority. As we rotate
it up, we can reconstruct the ordered subset for a node v from scratch in time O(|Tv| log log n).
Using Theorem 2.3, the overall time is O(log n log log n) in expectation. Finally, we must insert
p into the subsets {Tv : v ∈ T and v is an ancestor of p}. This requires expected O(log log n)
time per ancestor, and there are only O(log n) of them in expectation. Since these expectations

2We expect a variant of Sen’s approach [26] could work.

11



are computed over independent random bits, they multiply, for an overall time bound of O(log n ·
log log n) in expectation. Deletion is similar.

Predecessor
of p under 
x-coordinate
ordering.

Successor 
of q under 
x-coordinate
ordering.

Node set W is the
path from p' to q'.

Node set V consists
of the roots of the
shaded subtrees.

Input points P with 
range query box (p,q), 
inside a vertical stripe.

q'p'

p

q

p'

q'

path W

Figure 3: Answering 2-D range query (p, q). Path W together with the shaded subtrees contain the
nodes in the vertical stripe between p′ and q′.

To answer a query (p, q) ∈ R2 × R2, where p = (p1, p2) is the lower left and q = (q1, q2) is
the upper right corner of the box B in question, we first search for the predecessor p′ of p and the
successor q′ of q in T (i.e., with respect to the first coordinate). Please refer to Figure 3. We also
find the predecessor p′′ of p and successor q′′ of q in T ′ (i.e., with respect to the second coordinate).
Let w be the least common ancestor of p′ and q′ in T , and let Ap′ and Aq′ be the paths from p′

and q′ (inclusive) to w (exclusive), respectively. Let V be the union of right children of nodes
in Ap′ and left children of nodes in Aq′ , and let S = {Tv : v ∈ V }. It is not hard to see that
|V | = O(log n) in expectation, that the sets in S are disjoint, and that all points in B are either
in W := Ap′ ∪ {w} ∪ Aq′ or in ∪S∈SS. Compute W ’s contribution to the answer, W ∩ B, in
O(|W |) time by testing each point in turn. Since E[|W |] = O(log n), this requires O(log n) time
in expectation. For each subset S ∈ S, find S ∩ B by searching for the successor of p′′ in S, and
doing an in-order traversal of the treap in D storing S until reaching a point larger than q′′. This
takes O(log log n+|S∩B|) time in expectation for each S ∈ S, for a total of O(log n·log log n+k)
expected time.

To bound the space required, note that each point p is stored in depth(p) + 1 subsets in the
ordered subsets instance D, where depth(p) is the depth of p in treap T . Since E[depth(p)] =
O(log n), we infer that E[

∑
v |Tv|] = O(n log n), and so D uses O(n log n) space in expectation.

Since the storage space is dominated by the requirements of D, this is also the space requirement
for the whole data structure.

12



Extending to Higher Dimensions. We show how to support orthogonal range queries for d ≥ 3
dimensions by reducing the d-dimensional case to the (d − 1)-dimensional case. That is, we
complete the proof Theorem 4.1 via induction on d, where the base cases d ∈ {1, 2} are proven
above. So assume Theorem 4.1 is true in the (d−1)-dimensional case. Let P ⊂ Rd be the input set
of n points as before, and suppose the dimensions are labeled {1, 2, . . . , d}. Store P in a random
treap T using the dth coordinate of the points to determine the BST ordering, and a fresh 8-wise
independent hash function to generate priorities. (Using fresh random bits implies that certain
random variables are independent, and hence the expectation of their product is the product of
their expectations. This fact aids our analysis considerably.) For each node v ∈ T , maintain a
(d − 1)-dimensional uniquely represented range tree data structure Rv on the points in Tv, where
the point (x1, x2, . . . , xd) is treated as the (d − 1)-dimensional point (x1, x2, . . . , xd−1). Inserting
a point p then involves inserting p into T and modifying {Rv : v ∈ T} appropriately. Deleting a
point is analogous. We can bound the running time for these operations as follows.

Inserting p into T takes O(log n) time. We will also need to update Rv for each v that is an
ancestor of p in T , by inserting p into it. Note that p has expected O(log n) depth by Theorem 2.3,
and we can insert p into any Rv in expected O(logd−2 n·log log n) time by the induction hypothesis,
Thus we can update {Rv : v is an ancestor of p in T} in expected O(logd−1 n · log log n) time.
(Here we have used the fact that the depth of p and the time to insert p into some fixed Rv are
independent random variables.) Finally, inserting p into T will in general have involved rotations,
thus requiring significant changes to some of the structures Rv for nodes v that are descendants of
p in T . However, it is relatively easy to see that we can rotate along an edge {u, v} and update Ru

and Rv in expected time
O
(
(|Tu|+ |Tv|) logd−2 n · log log n

)
using the induction hypothesis. Using Theorem 2.3 with rotation cost f(k) = O(k logd−2 n ·
log log n) then implies that these rotations take a total of O(logd−1 n · log log n) expected time.
(Here we rely on the fact that for any fixed u and v, |Tu| and the time to update Rv are independent.)
This yields an overall running time bound for insertions of expected O(logd−1 n · log log n) time.
The same argument applies to deletions as well.

Queries in higher dimensions resemble queries in two dimensions. Given a d-dimensional box
query (p, q), we find the predecessor p′ of p in T and the successor q′ of q in T . Let w be the
least common ancestor of p′ and q′ and let Ap′ and Aq′ be the paths from p′ and q′ (inclusive) to w
(exclusive), respectively. Let V be the union of right children of nodes in Ap′ and left children of
nodes in Aq′ . For each v ∈ Ap′ ∪ {w} ∪Aq′ , test if v is in box (p, q). This takes O(d log n) time in
expectation, which is O(logd−1 n) for d ≥ 2. Finally, issue a query (p̄, q̄) to each Rv for each v ∈
V , where x̄ is the projection of x onto the first (d− 1) dimensions, so that if x = (x1, . . . , xd) then
x̄ = (x1, . . . , xd−1). The results of these queries are disjoint, each takes O(logd−2 n · log log n+ k)
time in expectation by the induction hypothesis, and and there are O(log n) of them in expectation.
Since the query times (conditioned on the set of points stored in each structure Rv) and the number
of queries made are independent random variables, the total running time is O(logd−1 n·log log n+
k) in expectation, where k is the size of the output.

We now show that the space usage of our data structure is O(n logd−1 n) in expectation. As
before, we proceed by induction on d. Assume that the space usage is O(n logd−2 n) in expectation

13



for a (d−1)-dimensional point set. The space usage is dominated by the structures {Rv : v ∈ T},
which by the induction hypothesis and linearity of expectation require

O

(∑
v∈T

|Tv| logd−2 |Tv|

)
which is O

(∑
v∈T

|Tv| logd−2 n

)

space in expectation, where T is a random treap. Computing the expectation over the choice of
random treap, the space usage is thus bounded by

E

[∑
v∈T

|Tv| logd−2 n

]
= E

[∑
v∈T

|Tv|

]
· logd−2 n

However treaps have expected logarithmic subtree size [25], so E
[∑

v∈T |Tv|
]

=
∑

v∈T E[|Tv|] =∑
v∈T O(log n) = O(n log n). The total space required is therefore O(n logd−1 n).

5 Horizontal Point Location & Orthogonal Segment Intersec-
tion

Let S = {(xi, x
′
i, yi) : i ∈ [n]} be a set of n horizontal line segments. In the horizontal point

location problem we are given a point (x̂, ŷ) and must find (x, x′, y) ∈ S maximizing y subject to
the constraints x ≤ x̂ ≤ x′ and y < ŷ. In the related orthogonal segment intersection problem we
are given a vertical line segment s = (x, y, y′), and must report all segments in S intersecting it,
namely {(xi, x

′
i, yi) : xi ≤ x ≤ x′i and y ≤ yi ≤ y′}. In the dynamic version we must additionally

support updates to S. As with the orthogonal range reporting problem, both of these problems can
be solved using fractional cascading and in the same time bounds [8] (k = 1 for point location and
is the number of lines reported for segment intersection). Mortensen [16] improved orthogonal
segment intersection to O(log n) updates and O(log n + k) queries.

We extend our ordered subsets approach to obtain the following results for horizontal point
location and range reporting.

Theorem 5.1 Let S be a set of n horizontal line segments in R2. There exists a uniquely repre-
sented data structure for the point location and orthogonal segment intersection problems that uses
O(n log n) space, supports segment insertions and deletions in expected O(log n · log log n) time,
and supports queries in expected O(log n · log log n + k) time, where k is the size of the output.
The data structure uses O(log n) random bits.

5.1 The Data Structures
We will first obtain a hierarchical decomposition D of the plane into vertical slabs (in a manner
akin to segment trees) using a random treap T on the endpoints E of segments in S. The treap T
uses the natural ordering on the first coordinate to determine the BST ordering. For a, b ∈ R2 with
a = (ax, ay) and b = (bx, by), we let [a, b] denote the vertical slab {(x, y) : ax ≤ x ≤ bx, y ∈ R}.

14



The decomposition has as its root the whole plane; for concreteness we may imagine it as the
vertical slab [(−∞, 0), (+∞, 0)]. A node [a, b] inD has children [a, c] and [c, b] if c = (cx, cy) ∈ E
is the highest priority node in T such that ax < cx < bx. Note that the decomposition tree D has
nearly the same structure as T . To obtain the structure ofD from T , it suffices to add nodes to T so
that the root has degree two, and every other original node in T has degree three. It will be useful
to associate each node v ∈ T with a node v̄ ∈ D, as follows: label the nodes of T and D as in a
trie, and for u ∈ T and w ∈ D let w = ū iff u and w have the same label.

Each [a, b] ∈ D also has an associated subset of line segments in S, which we denote by
S[a,b]. In particular, line segment (x, x′, y) ∈ S is associated with [a, b] if [a, b] ⊆ [x, x′] and for
all ancestors [a′, b′] of [a, b], [a′, b′] * [x, x′]. Note that s ∈ S may be associated with as many
as O(log n) nodes in D, in expectation. We store the sets {S[a,b] : [a, b] ∈ D} in an ordered
subsets structure, using the natural order on the second coordinate as our total order. As with range
searching we also keep a treap T ′ on S ordered by the second coordinate which is used to insert
new elements into the ground set L of the ordered subset structure.

To answer a point location query on a point p = (x, y), first search for the narrowest slab
[a, b] ∈ D with a ≤ x ≤ b. Let P be the path from this node to the root of D. Insert y into L
of the OSP instance (using T ′) and for each [a, b] ∈ P , search S[a,b] for the predecessor of y using
ordered subsets. Of these |P | segments, return the highest one.

To answer a segment intersection query on a vertical segment (x, y, y′), find the path P as in
a point location query for (x, y). For each [a, b] ∈ P , search S[a,b] for the successor si of y, and
report in order all segments in S[a,b] from si to the greatest segment at height at most y′.

To insert a segment (x, x′, y), insert (x, y) and (x′, y) into the treap T . As (x, y) and (x′, y) are
rotated up to their correct positions, modify D accordingly and construct the sets S[a,b] of newly
created slabs [a, b] from scratch. We construct a set S[a,b] as follows. For each descendant e of
a or b in T , determine if the segment with endpoint e is associated with [a, b] in constant time.
If so, insert the segment into S[a,b]. In order to guarantee that this procedure correctly constructs
S[a,b], we show the following: Every segment associated with [a, b] in D has an endpoint that is a
descendant of either a or b in T . See Claim 5.2 for the proof.

Finally, we may need to insert (x, x′, y) into sets S[a,b] for slabs [a, b] that were not affected
by the insertions of x and x′ into T and the corresponding modifications to D. To find the sets to
modify, find the path P from (x, y) to (x′, y) in T , and consider S[a,b] for each [a, b] that is a child
of some node in {v̄ : v ∈ P}. For each, test in constant time if the new segment should be added
to it, and add it accordingly. Deletion is similar.

5.2 The Analysis
We start with the running time for queries. Note that the decomposition tree D has nearly the
same structure as T . To obtain the structure of D from T , it suffices to add nodes to T so that
the root has degree two, and every other original node in T has degree three. Thus the path P
has expected logarithmic length and can be found in logarithmic time. Performing the O(|P |)
predecessor queries takes expected O(|P | log log n) time. In a point location query, finding the
maximum height result takes O(|P |) time for a total of expected O(log n · log log n) time. For a
segment intersection query, if there are k[a,b] segments in S[a,b] intersecting the query segment, we

15



a

b
A

B C

a

b

A B

C

[p,q]

[p,b] [b,q]

[p,a] [a,b]

[p,q]

[a,q]

[b,q]

[p,a]

[a,b]

Figure 4: Rotation of the decomposition D and treap T about edge {a, b}, starting with slab [p, q].

can report them in expected time O(log log n + k[a,b]) by either performing fast finger searches in
the treap T[a,b] which stores S[a,b] (thus finding the successor of a node in expected O(1) time), or
by storing pointers at each treap node v ∈ T[a,b] to its successor. The total expected time is thus
O(|P | log log n +

∑
[a,b]∈P k[a,b]). Since each segment in the answer appears in exactly one set

S[a,b], this total is O(log n · log log n + k).
We now analyze the running time for insertions. We first bound the cost to insert (x, y) and

(x′, y) into T , do rotations in D, and create S[a,b] for newly created slabs. Note that this costs the
same as updating T , up to constant factors, if the cost to rotate a subtree of size z is z log log n.
Thus, by Theorem 2.3 the update time per insertion is O(log n · log log n) in expectation. Next we
bound the cost to update S[a,b] for preexisting slabs [a, b]. Let P be the path from (x, y) to (x′, y) in
T . It is easy to prove using Theorem 2.3 that the expected length of P is O(log n). Thus the total
time to make these updates is again O(log n · log log n) in expectation. The analysis for deletions
is similar.

Finally we consider the space usage. Using Claim 5.2 and the definition of segment association,
it is not difficult to prove that a segment with endpoints e and e′ can be associated with at most
|Pe,e′| slabs, where Pa,b is the path from a to b in T . Since this is logarithmic in expectation, we
conclude that each segment is stored at most O(log n) times in expectation. Since treaps and our
ordered subset structure take linear space in expectation, the total space usage is thus O(n log n)
in expectation.

Claim 5.2 In the data structure of section 5.1, every segment associated with [a, b] in D has an
endpoint that is a descendant of either a or b in T .

Proof: Fix a segment s = (x, x′, y) with endpoints e = (x, y), e′ = (x′, y). Let P be the treap path
from e to e′, and let T ′ be the subtree of T containing P and all descendants of nodes in P . Suppose
for a contradiction that s is associated with [a, b] but neither of its endpoints is a descendant of a or
b. Thus [a, b] ⊆ [x, x′] and for all ancestors [a′, b′] of [a, b], [a′, b′] * [x, x′]. Let a = (ax, ay) and
b = (bx, by). Since s is associated with [a, b], this implies x < ax ≤ bx < x′. Note that [a, b] ∈ D
implies that one of {a, b} is a descendant of the other in T . Suppose b is a descendant of a (the
other case is symmetric). We consider two cases: a ∈ T ′ and a /∈ T ′.

In the first case, clearly a /∈ P , so a must be a descendant of some node v ∈ P . Then if
c = (cx, cy) is the parent of a, then either cx < ax or cx > bx, since otherwise [a, b] would not be in

16



D. However, c ∈ T ′, thus x < cx < x′, and so either [a, c] or [c, b] contains [a, b] and is contained
in [x, x′], a contradiction.

In the second case, a /∈ T ′. By assumption, neither e nor e′ is a descendant of a, and x <
ax < x′, so there must be a treap node d with x < dx < ax with higher priority than both a and
e, and a node d′ with ax < d′x < x′ with higher priority than both a and e′. However, a must
be a descendant of at least one node in {d, d′}, and P must pass through ancestors of both d and
d′ (where each node is included among its own ancestors), contradicting the case assumption that
a /∈ T ′.

6 Uniquely Represented 2-D Dynamic Convex Hull
In this section we obtain a uniquely represented data structure for maintaining the convex hull
of a dynamic set of points S ⊂ R2. The convex hull of S is defined as the minimal convex set
containing S. The vertices of the convex hull of S are those points which cannot be written as
convex combinations of the other points in S. For our purposes, the convex hull is represented by
an ordered set consisting of the vertices of the convex hull. (For concreteness we may define the
ordering as starting with the point with minimum x-coordinate and proceeding in clockwise order
about the centroid of S.) To ease exposition, we will refer to this representation as the convex hull,
and refer to the minimal convex set containing S as the interior of the convex hull.

Our approach builds upon the work of Overmars & Van Leeuwen [21]. Overmars & Van
Leeuwen use a standard balanced BST T storing S to partition points along one axis, and likewise
store the convex hull of Tv for each v ∈ T in a balanced BST. In contrast, we use treaps in both
cases, together with the hash table in [4] for memory allocation. Our main contribution is then to
analyze the running times and space usage of this new uniquely represented version, and to show
that even using only O(log n) random bits to hash and generate treap priorities, the expected time
and space bounds match that of the original version up to constant factors. Specifically, we prove
the following.

Theorem 6.1 Let n = |S|. There exists a uniquely represented data structure for 2-D dynamic
convex hull that supports point insertions and deletions in O(log2 n) expected time, outputs the
convex hull in O(k) time, where k is the number of points in the convex hull, reports if a query
point is in the convex hull or in its interior in O(log k) expected time, finds the tangents to the
convex hull from an exterior query point in O(log k) expected time, and finds the intersection of
the convex hull with a query line in O(log k) expected time. Furthermore, the data structure uses
O(n) space in expectation and requires only O(log n) random bits.

Our Approach. We will discuss how to maintain only the upper convex hull, the lower convex
hull is kept analogously. Let U ⊆ R2 be the universe of possible points, S be our set of points,
and N be an upper bound on the number of points to be stored. We maintain a top level random
treap T on the points, using an 11-wise independent hash function h : U → [N3] to generate
priorities, and using the natural ordering on the x-coordinates of the points as the key-ordering.
That is, (x, y) < (x′, y′) in the key ordering iff x < x′. (For simplicity, we will assume no two

17



points have the same x-coordinate, and that no three points are collinear.) Let V [Tv] denote the
points in Tv. Each node v stores a point p ∈ S as well as the convex hull of V [Tv]. This convex
hull is itself stored in a modified treap on V [Tv], which we call Hv. Each treap in {Hv : v ∈ T}
obtains key priorities from the same 8-wise independent hash function g : U → [N3], and they all
use the same key-ordering as T . We will also maintain with each node u in each Hv pointers to its
predecessor and successor in Hv according to the key ordering. Abusing notation slightly, we will
call these pointers pred(u) and succ(u). Maintaining these pointers during updates is relatively
straightforward, so we omit the details.

Insertions. Suppose we are currently storing point set S, and insert point p. First we identify the
leaf position l that p would occupy in T if it had priority −∞, and then rotate it up to its proper
position (given its priority h(p)). We then must recompute Hv for all v in the path P from l to
the root of T . For v ∈ P that are ancestors of p, we need only add p to Hv as described below.
For each v ∈ P that is either p and one of its descendants, we must merge the convex hulls of v’s
children, and then add v to the result.

Adding a Point. We first consider adding a point u to Hv, assuming that u is not already in
Hv. First, we can determine if u is in the upper convex hull of V [Tv] in expected O(log |Hv|) as
follows. Find the nodes a := max{w : w < u} and b := min{w : w > u}, which takes expected
O(log |Hv|) time. Then do a line side test to see if u is above or on line segment (a, b). Point u
is in the hull if and only if u is above or on (a, b), otherwise not. If u is not in the hull, we leave
Hv unchanged. If u is in the hull, we must find the points x and y such that the upper hull is
{w ∈ Hv : w ≤ x} ∪ {u} ∪ {w ∈ Hv : w ≥ y}. Once these are found, we can split Hv at x and y,
join the appropriate pieces, and add u to get the upper hull in O(log |Hv|) time.

We now discuss how to find x. Finding y is analogous. Let line(p, q) denote the line con-
taining points p and q. Given a point w < u, we can conclude that x ≤ w if u is above or on
line(w, succ(w)). Additionally, we can conclude that x ≥ w if u is below line(pred(w), w). Thus
we can do a binary search for x by traversing the path from the root to x in Hv. Since we have the
pointers to find succ(·) and pred(·) in constant time, it follows that we can find x in O(depth(x))
time, where depth(x) is the depth of x in Hv. By Theorem 2.3, E[depth(x)] ≤ 2 ln(|Hv|) + 1, so
adding a point takes expected O(log |Hv|) time.

The total time spent in adding points is O(log2 n) in expectation. To see this, note that each
addition takes O(log n) time in expectation, and there are at most the depth of l in T of them.
Theorem 2.3 states that depth(l) is O(log n) in expectation. Finally, depth(l) is independent of
the time taken for any point additions, since the former depends on h and the latter on g, so the
expectation of their product is the product of their expectations.

Merging Two Upper Hulls. When rotating up the newly inserted point p in T , we must recom-
pute Hv for each v involved in a rotation. We do this by merging the hulls of the children of v,
say u and w, and then add v as described above. We can do this so that the expected time for all
merges when adding a point to the top-level treap is O(log n). Our approach mimics that of [21].

Suppose we want to merge the hulls of the children of v, say u and w, and then add v as
described above. We initially begin with Hu and Hw such that all of the points in the former are

18



smaller than all the points in the latter. We must find the bridge between them, that is, the pair of
points (x, y) such that the upper hull of V [Tu] ∪ V [Tw] is {q ∈ Hu : q ≤ x} ∪ {q ∈ Hw : q ≥ y}.
Once we find x and y, two splits and a join immediately gives us the treap representation of the
desired upper hull in O(log |V [Tv]|) expected time.

To find the bridge (x, y), we start with a guess (x0, y0) = (root(Hu), root(Hw)). We iteratively
develop improved guesses (xt, yt), maintaining the invariant that xt is an ancestor of x and yt is
an ancestor of y. In each step, we replace at least one of {xt, yt} with one of its children to get
(xt+1, yt+1), being careful to maintain the invariant. Clearly, after depth(x) + depth(y) steps, we
find the bridge.

xt yt

xt

xt+1

yt
yt+1

xt = xt+1
yt

yt+1

yt
yt+1

xt yt xt yt

xt = xt+1

(a) (b) (c)

Figure 5: Finding the bridge. Both the convex hull and treaps storing them are displayed, with the
bridge nodes in black. To test the current guess for the bridge (thick dotted line), we employ line-
side tests. The thin dotted lines denote lines of interest in each of the three cases. Nodes marked
“X” are discovered not to be in the bridge.

To compute (xt+1, yt+1) from (xt, yt), we first find pred(xt), pred(yt), succ(xt), and succ(xt).
Then, line-side tests can be used to find an improving move. Figure 5 shows three of four cases,
where the forth case is identical to case (b) if we swap the role of xt and yt. More specifically, we
apply the following tests in order.

1. Test if line(pred(xt), xt) is below yt (or equivalently, if line(pred(xt), yt) is above xt). If so,
we may infer that x < xt in the BST order, and thus we set xt+1 to be the left child of xt.
This is the case in Figure 5(a).

2. Test if line(yt, succ(yt)) is below xt (or equivalently, if line(xt, succ(yt)) is above yt). If so,
we may infer that y > yt in the BST order, and thus we set yt+1 to be the right child of yt.
This is the case in Figures 5(a) and 5(b).

3. If neither of the above tests allowed us to make progress (i.e., line(pred(xt), xt) is above
yt and line(yt, succ(yt)) is above xt), then test if line(xt, yt) is below either succ(xt) or
pred(yt). If so, arbitrarily select a vertical line l such that all points in Hu are to the left of
l and all points in Hw are to the right of it. Let z0 be the intersection of line(xt, succ(xt))
and l, and let z1 be the intersection of line(pred(yt), yt) and l. If z0 is above z1, then we may

19



infer x > xt and set xt+1 to be the right child of xt. Otherwise, we may infer y < yt and set
yt+1 to be the left child of yt, as is the case in Figure 5(c).

If no three points are collinear and none of these tests make any progress, then we may infer that
we have found the bridge, i.e., x = xt and y = yt. Though we omit the proof of this fact, Figure 6
illustrates some of the relevant cases, and is suggestive of how the proof goes. See [21] for further
details.

In each case above, we may eliminate points in the shaded oval from consideration.

If test #2 passes, If test #1 passes, 

A possible scenario for test #3.

If then
but 

and 

Another possible scenario for test #3.

If then
but 

and 

Figure 6: Illustrations of some of the cases encountered, with proof sketches.

In expectation, there are E[depth(x) + depth(y)] = O(log |V [Tv]|) steps to find the bridge,
and each step takes O(1) time using the pointers for pred(·) and succ(·). Since treaps provide
expected logarithmic time insertions even if tree rotations take linear time, and the cost to merge is
independent of the top level treap’s structure, the expected time for all merges when adding a point
to the top-level treap is O(log n).

Deletions. To delete a point p, we rotate p down to its correct leaf position l (by treating it as
though its priority were −∞), then cut the leaf. We must then update Hv and H ′

v for each v on
the path from l to the root. Working our way up, and recomputing Hv and H ′

v by merging their
children’s corresponding treaps, and then adding v itself, we can update all the necessary entries in
O(log2 n) expected time. The running time argument is similar to that for insertions, and we omit
it here.

The Convex Hull Queries. To obtain the convex hull we simply do an in-order traversal of Hr,
where r is the root of T . This clearly takes time linear in the size of the hull.

20



To determine if a query point p is in the convex hull, we simply search Hr for it, where r is
the root of T . To determine if p is in the interior of the convex hull, find the predecessor uup and
successor vup of p in the upper hull. Then find the predecessor ulow and successor vlow of p in the
lower hull. Then p is in the interior of the convex hull if and only if line(uup, vup) is above p and
line(ulow, vlow) is below p. Given random treaps containing the upper and lower convex hulls, both
of these queries clearly take expected O(log k) time, where k is the number of points in the convex
hull.

Finding the tangents to the convex hull from an exterior query point p involves searching the
treap storing the convex hull, where lines side tests involving a candidate node u and its predecessor
and successors allow one to determine whether a tangent point is in the left or right subtree of u in
constant time. Determining the intersection of the convex hull with a query line is similar. Both
queries can thus be done in expected O(log k) time. We omit the details on how to guide the
searches, and instead refer the reader to [21].

Space Usage. The top level treap T clearly requires only n − 1 pointers. Most of the space
required is in storing {Hv : v ∈ T}. We store these treaps functionally, so storing Hv requires
only O(log |V [Tv]|) pointers in expectation. Specifically, suppose v has children u and w. Given
Hu and Hw, storing Hv requires storing a split path in each of Hu and Hw, and the insertion path
for v. Each of these requires O(log |V [Tv]|) pointers in expectation [25]. Thus the total space is
O(
∑

v log |V [Tv]|) in expectation, and we need to bound E[log |V [Tv]|] for each v. By Lemma 6.2
E[log |V [Tv]|] = O(1) for each v, so the total space usage is O(n) in expectation.

Lemma 6.2 A treap T on n nodes with priorities drawn from an 11-wise independent hash func-
tion h : U → {0, 1, . . . , r} with r ≥ n3 satisfies E[log |Tv|] = O(1). Furthermore, Pr[|Tv| = k] =
O(1/k2) for all 1 ≤ k < n and Pr[|Tv| = n] = O(1/n).

Proof: It is easy to prove that probability of a collision on priorities is at most
(

n
2

)
/r < 1/2n. In

this case, we use the trivial bound |Tv| ≤ n to show that

E[log |Tv|] ≤ log(n)/2n + E[log(|Tv|) | no collisions].

So assume there are no collisions on priorities. Let S be the set of points in T . A useful lemma due
to Mulmuley [18] implies that h satisfies the d-max property (see definition 6.3) if h is (3d+2)-wise
independent, and thus h satisfies the d-max property for d ≤ 3.

Now consider the probability that |Tv| = k for some k. Relabel the nodes {1, 2, . . . , n} by their
key order. Note that |Tv| = k if and only if the maximal interval I containing v such that v has
the maximum priority in I has size |I| = k. If k = n, then by the 1-max property Pr[|Tv| = n] =
O(1/n). So suppose k < n, and further suppose I = [a : b] := {a, a+1, . . . , b}. Then either a−1
has priority higher than v, or a− 1 does not exist, and similarly with b + 1. If a− 1 does not exist
and |I| = k, then h(k + 1) > h(v) > max{h(i) : i ∈ I and i 6= v}, which occurs with probability
O(1/k2) by the 2-max property. The case that b + 1 does not exist is analogous. If both a− 1 and
b + 1 exist, then min{h(a − 1), h(b + 1)} > h(v) > max{h(i)|i ∈ I and i 6= v}. By the 3-max
property, this occurs with probably O(1/k3).

21



Taking a union bound over all intervals I ⊂ [1 : n] of length k that contain v, we obtain

Pr[|Tv| = k] = O(1/k2)

Thus E[log |Tv|] =
∑n

k=1 Pr[|Tv| = k] · log(k) =
∑n−1

k=1 O( log k
k2 ) + O( log n

n
) = O(1)

Definition 6.3 (d-max property) A finite collection X of random variables has the d-max prop-
erty iff there is some constant c such that for any subset ofX and for any enumeration X1, X2, . . . , Xm

of the elements of that subset, we have

Pr[X1 > X2 > · · · > Xd > max{Xi | i > d}] ≤ c/md

where md :=
∏d−1

i=0 (m− i).

7 Conclusions
We have introduced uniquely represented data structures for a variety of problems in computa-
tional geometry. Such data structures represent every logical state by a unique machine state and
reveal no history of previous operations, thus protecting the privacy of their users. For example,
our uniquely represented range tree allows for efficient orthogonal range queries on a database
containing sensitive information (e.g., viral load in the blood of hospital patients) without reveal-
ing any information about what order the current points were inserted into the database, whether
points were previously deleted, or what queries were previously executed. Uniquely represented
data structures have other benefits as well. They make equality testing particularly easy. They may
also simplify the debugging of parallel processes by eliminating the conventional dependencies
upon the specific sequence of operations that led to a particular logical state.

References
[1] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M. Woo. Dynamizing static

algorithms, with applications to dynamic trees and history independence. In Proc. SODA,
pages 531–540, 2004.

[2] A. Andersson and T. Ottmann. New tight bounds on uniquely represented dictionaries. SIAM
Journal of Computing, 24(5):1091–1103, 1995.

[3] G. E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection, and
range reporting. In Proc. SODA, 2008.

[4] G. E. Blelloch and D. Golovin. Strongly history-independent hashing with applications. In
48th Annual IEEE Symposium on Foundations of Computer Science, pages 272–282. IEEE,
October 2007.

22



[5] G. E. Blelloch, D. Golovin, and V. Vassilevska. Uniquely represented data structures for
computational geometry. In Algorithm Theory - SWAT 2008, 11th Scandinavian Workshop
on Algorithm Theory, Gothenburg, Sweden, July 2-4, 2008, Proceedings., Lecture Notes in
Computer Science. Springer, 2008. to appear.

[6] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. FOCS, pages 617–626,
2002.

[7] N. Buchbinder and E. Petrank. Lower and upper bounds on obtaining history independence.
In Proc. CRYPTO, pages 445–462, 2003.

[8] B. Chazelle and L.J. Guibas. Fractional cascading. Algorithmica, 1:133–196, 1986.

[9] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry:
algorithms and applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[10] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc. STOC, pages
365–372, 1987.

[11] P. F. Dietz. Fully persistent arrays. In Proc. WADS, pages 67–74, 1989.

[12] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. Journal of Computer and System Sciences, 48(3):533–551, 1994.

[13] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. Rocke. Characterizing history
independent data structures. Algorithmica, 42(1):57–74, 2005.

[14] D. Micciancio. Oblivious data structures: applications to cryptography. In Proc. STOC, pages
456–464, 1997.

[15] C. W. Mortensen. Fully-dynamic orthogonal range reporting on RAM. In Technical report
TR-2003-22 in IT University Technical Report Series, 2003.

[16] C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line segment inter-
section reporting in logarithmic time. In Proc. SODA, pages 618–627, 2003.

[17] C. W. Mortensen. Fully dynamic orthogonal range reporting on RAM. SIAM J. Comput.,
35(6):1494–1525, 2006.

[18] K. Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms.
Prentice-Hall, Englewood Cliffs, 1994.

[19] M. Naor, G. Segev, and U. Wieder. History-independent cuckoo hashing. In ICALP, page to
appear, 2008.

[20] M. Naor and V. Teague. Anti-presistence: history independent data structures. In Proc.
STOC, pages 492–501, 2001.

23



[21] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput.
Syst. Sci., 23(2):166–204, 1981.

[22] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with constant independence. In Proc. STOC,
pages 318–327, 2007.

[23] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[24] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–
676, 1990.

[25] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464–497, 1996.

[26] S. Sen. Fractional cascading revisited. Journal of Algorithms, 19(2):161–172, 1995.

[27] L. Snyder. On uniquely representable data structures. In Proc. FOCS, pages 142–146, 1977.

[28] R. Sundar and R. E. Tarjan. Unique binary search tree representations and equality-testing of
sets and sequences. In Proc. STOC, pages 18–25, 1990.

[29] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical Systems Theory, 10:99–127, 1977.

24


	1 Introduction
	2 Preliminaries
	3 Uniquely Represented Ordered Subsets
	4 Uniquely Represented Range Trees
	5 Horizontal Point Location & Orthogonal Segment Intersection
	5.1 The Data Structures
	5.2 The Analysis

	6 Uniquely Represented 2-D Dynamic Convex Hull
	7 Conclusions

