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Abstract

This thesis develops a general and powerful statistical framework for the automatic detection
of spatial and space-time clusters. Our “generalized spatial scan” framework is a flexible, model-
based framework for accurate and computationally efficient cluster detection in diverse application
domains. Through the development of the “fast spatial scan” algorithm and new Bayesian cluster
detection methods, we can now detect clusters hundreds or thousands oftimes faster than previous
approaches. More timely detection of emerging clusters (with high detection power and low false
positive rates) was made possible by development of “expectation-based” scan statistics, which
learn baseline models from past data then detect regions that are anomalous given these expec-
tations. These cluster detection methods were applied to two real-world problem domains: the
early detection of emerging disease epidemics, and the detection of clusters of activity in fMRI
brain imaging data. One major contribution of this work is the development of the SSS system for
nationwide disease surveillance, currently used in daily practice by several state and local health
departments. This system receives data (including emergency departmentrecords and medication
sales) from over 20,000 stores and hospitals nationwide, automatically detects emerging clusters of
disease, and reports these results to public health officials. Through retrospective case studies and
semi-synthetic testing, we have shown that our system can detect outbreaks significantly faster than
previous disease surveillance methods.
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Chapter 1

Spatial cluster detection

1.1 Introduction

This thesis develops new statistical and computational methods for the automatic detection of spatial
and space-time clusters. The basic goal of cluster detection is to automatically detect regions of
space that are “anomalous,” “unexpected,” or otherwise “interesting.” These anomalous spatial
patterns could correspond to a variety of phenomena, depending on the application domain: we
may want to detect outbreaks of disease, clusters of stars or galaxies, brain tumors, deposits of
precious metals, or a multitude of other possibilities.

This work will focus on one very general formulation of the cluster detection problem: find-
ing regions of space where the values of some quantity (the “count”) are significantly higher than
expected, given some other “baseline” information. For example, in the public health domain, we
may wish to detect spatial clusters of disease cases (or some related observable quantity, such as
hospital visits or medication sales) that are indicative of an emerging epidemic.Our main emphasis
in this domain is prospective disease surveillance, with the goal of detecting emerging outbreaks of
disease as early as possible. In the brain imaging domain, we wish to detect clusters that correspond
to regions of increased or decreased brain activity. This could be usedto detect brain regions that
have been damaged by strokes or degenerative diseases, or to detectclusters of brain activity that
allow us to differentiate between cognitive tasks: for example, we could automatically determine
whether a person is reading a book or watching a movie, simply by monitoring functional magnetic
resonance imaging (fMRI) images of their brain activity. In both of these applications, we have two
main tasks. First, we must identify the locations, shapes, sizes, and other parameters of potential
clusters, i.e. pinpointing and characterizing those spatial areas which aremost relevant. Second, we
must determine whether each of these anomalous regions is due to a genuine and relevant cluster,
or simply a chance occurrence. In many application domains, both false positives (incorrectly re-
porting a cluster) and false negatives (failing to report a true cluster) have high costs: thus we want
to avoid detecting insignificant or irrelevant clusters, while maintaining high power to detect any
relevant clusters that do occur.

In other words, the goal of cluster detection is to answer two essential questions: is anything
interesting (or unexpected) going on, and if so, where? This task can bebroken down into two parts:
first figuring out what we expect to see, then determining which regions deviate significantly from
our expectations. In our typical formulation of the cluster detection problem,we are given a set of
pointssi in space, where each pointsi has an associatedcountci andbaselinebi. Both “counts”

9



10 CHAPTER 1. SPATIAL CLUSTER DETECTION

and “baselines” can be broadly defined, depending on the application domain under consideration.
For example, in the public health domain, the countci may represent the number of disease cases in
a given area, while the baseline might be the “at-risk” population of that area. Alternatively, rather
than being given the baselines in advance, we might have to infer these baselines from historical
data. In any case, our main goal is to detect spatial regionsS (each containing a set of one or more
locationssi) such that the counts insideS are significantly higher than expected, given the baselines.
For example, in the disease surveillance domain, these may correspond to areas of high disease rate
or high relative risk. This formulation allows us to be very flexible in how clusters are defined:
we can choose domain-appropriate quantities for the count and baseline,choose a set of regions
to search over, and incorporate either very general or very specificmodels of clusters and of the
baseline data as appropriate for the given domain. Though we have focused here on finding spatial
and spatio-temporal overdensities (higher than expected counts in spaceor space-time data), many
other types of spatial patterns (underdensities, overdispersion, spatial and temporal correlations,
etc.) may also be detectable using this general framework.

In addition to discovering these patterns, we wish to determine whether each such pattern issig-
nificantor if it is likely to have occurred by chance. To do so, we can either computethestatistical
significance(p-value) of potential clusters, or in a Bayesian setting, we can compute theposterior
probability of each cluster. In each of these cases, our method works byhypothesis testing: we test
the null hypothesisH0 of no clusters against a set of alternative hypothesesH1(S), each represent-
ing a cluster in some regionS, and find regions where an alternative hypothesis is likely (e.g. the
null hypothesis is rejected, or has low posterior probability). The models ofthe null and alternative
hypotheses are highly dependent on the application domain under consideration, but our methods
are sufficiently flexible to be used for a wide variety of such models. We typically create models
based on careful study of the application domain, derive the resulting score function (e.g. likelihood
ratio of the alternative vs. null hypothesis), and find the “most significant”regions (the regions with
the highest values of this score function). We then use techniques such as randomization testing to
compute the statistical significance of each such region, allowing us to tell which are likely to be
“true” clusters and which are likely to have occurred by chance. By using sufficiently rich models of
a domain, we can also distinguish between various causes of a statistically significant cluster in that
domain, enabling us to detect clusters due to “relevant” causes (such as adisease outbreak) while
eliminating clusters due to noisy data or a variety of other “irrelevant” factors.

The cluster detection problem presents both statistical and computational challenges. The statis-
tical challenge is to accurately detect relevant clusters, while keeping false positives to a minimum.
The computational challenge is to detect these clusters very rapidly even for massive real-world
datasets. To deal with these challenges, we have developed both new statistical methods, for better
and more accurate cluster detection, and new algorithmic techniques, for rapid and efficient detec-
tion of clusters. By integrating these novel spatial statistical methods and fast spatial algorithms, we
have created a powerful and general framework for automatic cluster detection. Most importantly,
this framework is sufficiently general to be usable for a wide variety of applications (ranging from
medicine and public health to astrophysics and neuroscience), and sufficiently flexible to be eas-
ily adapted to new application domains. Here we apply our framework to two critical, real-world
problems: the early detection of emerging disease epidemics, enabling more rapid epidemiological
response and thus potentially saving many lives, and the detection of clusters in medical images, for
purposes such as tumor detection and the monitoring of brain activity.
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In the remainder of this chapter, I discuss the problem of cluster detection inmore detail, and
motivate the statistical methodology that will be used to solve this problem. In Section 1.2, I present
several concrete examples of the cluster detection problem, focusing on applications to disease
surveillance and medical imaging. In Section 1.3, I compare cluster detection torelated problems
in machine learning and data mining, including clustering and anomaly detection. In Section 1.4, I
discuss the various issues that arise in cluster detection, and motivate the use of methods based on
thespatial scan statistic[78]. In Section 1.5, I present the spatial scan statistic in more detail, and
discuss some limitations of this approach. Finally, in Section 1.6, I describe the main contributions
of the thesis, and outline the structure of the remainder of this work. Parts ofthis chapter have been
adapted from our chapter in theHandbook of Biosurveillance[115]; I wish to thank my co-author
Andrew Moore and editor Michael Wagner for their contributions to this work.

1.2 Applications of cluster detection

Our discussion of cluster detection will focus primarily on two application domains, disease surveil-
lance and medical imaging. These domains are discussed in the following subsections, and consid-
ered in more detail in Chapters 6 and 7 respectively. Cluster detection is alsouseful in a variety
of other application domains, ranging from astrophysics to forest ecology. For example, in the as-
trophysical domain, we might want to find a region of space that contains a higher than expected
density of stars or galaxies with a given set of properties. Similarly, in forest ecology, we might
want to find areas with clusters of certain types of trees, or other plants and animals. In these do-
mains, we might use baseline information such as the total population of stars ortrees respectively,
adjusted for relevant covariates. Some other possible applications include the processing of radar
traces (e.g. for military surveillance and reconnaissance) and the detection of terrorist groups from
social network data. Many other possible application domains are discussed by Kulldorff [80], and
we also consider a variety of applications in our discussion of future work(Chapter 8).

1.2.1 Cluster detection in biosurveillance

One essential application of cluster detection is in the public health domain, with thegoal of de-
tecting anomalous clusters of disease cases. These methods may be used for a variety of purposes,
ranging from detection of a bioterrorist attack (an intentional release of apathogen such as an-
thrax or bubonic plague) to identifying environmental risk factors for diseases such as childhood
leukemia [122, 153, 88]. We focus primarily on the detection of emerging clusters of disease;
these outbreaks may be caused by a naturally occurring disease epidemic (e.g. influenza), bioter-
rorist attack (e.g. anthrax), or environmental hazard (e.g. radiation leak). Thus we wish to perform
prospective disease surveillance, analyzing public health data on a daily (or even hourly) basis with
the goal of detecting emerging outbreaks as quickly as possible. Timely detection of outbreaks
must be achieved while keeping the number of false alarms to a minimum, and thus wemust be
able to accurately distinguish between clusters corresponding to outbreaks and those corresponding
to other irrelevant causes. By detecting outbreaks rapidly and automatically, we hope to allow more
rapid epidemiological response (e.g. distribution of vaccines, public healthwarnings), potentially
reducing the rates of mortality and morbidity.

In disease surveillance, we are given the number of disease cases of some given type in each
spatial location on each day. In our typical surveillance task, we have count data aggregated at the
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zip code level for data privacy reasons. Thus we have a set of spatial locationssi, where eachsi

represents the longitude and latitude of a zip code centroid, and the corresponding countci may
represent the number of disease cases of a specific type (e.g. influenza). We must also have some
baseline informationbi indicating how many cases we expect to see in each zip code: this could
be the underlying at-risk population of the zip code (typically denoted bypi) or an expected count
inferred from historical data. We compare these approaches in detail in Chapter 2; as we show in
Chapter 4, the latter, expectation-based approach enables us to achievemore timely detection of
disease outbreaks than the traditional, population-based approach.

While cluster detection can be applied to monitoring for patterns of a specific disease, we of-
ten want to perform the more general task of disease-independent monitoring: detecting anomalous
clusters corresponding to any type of disease, including those of previously unknown diseases. Our
typical approach to this task issyndromic surveillance, where we monitor data corresponding to
disease symptoms. In this case, the countci for a given zip codesi can be the number of emergency
department visits with a given type of chief complaint (e.g. respiratory, gastrointestinal), the number
of over-the-counter medication sales of a specific type (e.g. cough and cold, fever), or some other
observable quantity (e.g. 911 calls, school and work absenteeism). By discovering regions with
abnormally high counts of some syndrome, we can detect any type of outbreak which causes that
syndrome. In addition to this increased generality, syndromic surveillance also allows us to achieve
more timely detection of outbreaks, since we can detect an outbreak even before a definitive diag-
nosis of any given outbreak type. The utility of syndromic surveillance, and the many challenges
associated with this task, are discussed in detail in Chapter 6.

As disease surveillance is a canonical example of the cluster detection task with great practical
utility, we focus primarily on this task throughout our work. We consider the many statistical and
computational challenges of cluster detection in this domain, and many of our solutions to these
challenges can also be directly applied to other application domains. We consider statistical issues
in Chapters 2, 4, and 5, presenting a general framework for cluster detection which can be applied
not only to disease surveillance but to many other domains. We consider computational issues in
Chapters 3 and 5, enabling us to develop general algorithms for accelerating the cluster detection
task and scaling it to large datasets. In Chapter 6, we provide a detailed discussion of disease
surveillance, and describe our SSS system, which is currently being usedin daily practice for spatial
surveillance of nationwide public health data.

1.2.2 Cluster detection in medical imaging

Automatic cluster detection has many possible applications in the medical imaging domain. One of
the most important such applications is the early detection of cancerous or pre-cancerous tumors.
For example, brain tumors may be detected from magnetic resonance imaging (MRI) data, or early
signs of breast cancer may be discovered from mammography data. Cluster detection methods
may also be useful in detecting other chronic health problems: for example, detecting diabetic
retinopathy (a leading cause of blindness) from retinal exams. In these application domains, we
may use several types of baseline data for comparison, including images previously taken from
the same patient or “aggregate” images created from many other patients; alternatively, a “purely
spatial” scan may be performed to detect high-density regions without reference to a baseline state.

In addition to the detection of abnormalities in structural images, we can also obtain useful in-
formation fromfunctional imaging. For example, functional magnetic resonance imaging (fMRI)
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can be used to measure blood flow in the brain, creating a three-dimensionalpicture of brain activity.
By detecting regions of increased or decreased brain activity, we couldautomatically discover areas
that have been damaged by strokes or by degenerative diseases suchas Alzheimer’s and Parkinson’s.
Another exciting application of cluster detection is the discovery of regions of brain activity corre-
sponding to different cognitive states. In this domain, our goals are to distinguish between subjects
performing different tasks, and to discover which regions of the brain are most active in performing
each task. For example, we may want to tell whether the subject is reading a book, or watching a
movie, based only on their fMRI image. For this task, we may compare the subject’s brain image
to an image of that subject’s brain under some “control condition” (such asfixating on a cursor), or
simply compare two experimental conditions.

A typical fMRI image is a64 × 64 × 14 grid1 of “voxels,” where the measured “activation”
of each voxel corresponds to the amount of activity in that region of the brain. Thus for fMRI
cluster detection tasks, we typically have a countci and a baselinebi for each voxelsi, where
ci corresponds to the measured amount of fMRI activation in that voxel under the experimental
condition, andbi corresponds to the measured amount of fMRI activation in that voxel under the
null or control condition. We note that fMRI data is typically three-dimensional, and we might
also want to use time as a fourth dimension, comparing sequences of fMRI “snapshots” under the
experimental and control conditions. Since the standard algorithmic framework for the spatial scan
assumes only two dimensions, this demonstrates the importance of developing efficient algorithms
for multidimensional spatial cluster detection. We discuss new algorithms for very fast detection of
multidimensional clusters in Chapter 3, and apply these to brain imaging in Chapter7.

1.3 Cluster detection and related problems

The cluster detection task is related to bothclusteringandanomaly detection, but is distinct from
each. Like clustering, the goal of cluster detection is to find “clusters” (groups of data points), but
rather than simply partitioning the entire dataset into groups, we search for spatial regions (each
containing some set of points) where some quantity is significantly higher than expected, adjusting
for quantities such as an underlying population or baseline. In clustering,the number of clusters is
often fixed, while in cluster detection one of the main goals is to accurately decide whether there are
anysignificant clusters, and if so, to compute where and how many clusters there are. In this respect,
cluster detection is more similar to anomaly detection: we are searching for groups of points with
counts that are sufficiently high to be “surprising” or “unexpected” under the assumption that no
clusters exist.

The difference between cluster detection and anomaly detection is that, while anomaly detection
typically focuses on single data points and asks whether each point is anomalous, cluster detection
focuses on finding spatial groups or patterns which are anomalous, even if each individual point in
the group might not be surprising on its own. For example, one typical (anduseful) approach to
anomaly detection is to learn a joint probability distribution over all features of the data, and then to
detect individual records which have low probability given the model. Thismethod has been used
for a variety of applications, such as biosurveillance and network intrusiondetection. A variety of
methods can be used to model the “normal” data, ranging from mixture models [45] to Bayesian net-

1Note that this was the available resolution of fMRI images for our experiments; other fMRI images may have higher
or lower spatial resolutions.
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works [160] to neural networks [17]. While these methods can detect individually anomalous data
points, much less work has been devoted to detecting anomalous groups or patterns. One exception
is What’s Strange About Recent Events (WSARE) [159, 160, 161], which detects anomalous asso-
ciation rules; however, this method does not take spatial locations or spatialproximity into account.
Thus cluster detection differs from traditional anomaly detection methods because it does not sim-
ply detect individually anomalous locations, but incorporates information from multiple locations
to detect anomalous regions of space.

We now return to the question of how cluster detection compares to clustering.As noted above,
clustering and cluster detection have very different goals (partitioning data into groups versus find-
ing statistically anomalous regions). However, some clustering methods, commonly referred to as
“density-based” clustering, partition the data based on the density of pointsin space. Thus, the
highest density partitions found by these methods will be areas with an excess of points, corre-
sponding to areas with a higher than expected countci in our model. As a result, these partitions
may correspond to the anomalous spatial regions that we are interested in detecting.

A variety of density-based clustering methods have been proposed. Twoof the most well-
known are DBSCAN [46] and CLIQUE [4], each of which works by finding small dense regions
and aggregating these high-density regions together in bottom-up fashion.DBSCAN searches for
points which have many other points nearby (at leastm points within distanceε, wherem andε are
user-specified input parameters), while CLIQUE aggregates points to a uniform grid and searches
for grid cells containing a high proportion of points (greater than some user-specified parameter
τ ). The set of all such “dense” points or cells is then used to form clusters: DBSCAN aggregates
nearby dense points, then also includes the other points in theε-neighborhood of these points, while
CLIQUE defines a cluster as a maximal set of connected dense cells. Manyother density-based
clustering approaches build on these two methods: MAFIA [59] is an extension of CLIQUE to non-
uniform grids, DENCLUE [68] is similar to DBSCAN but uses local maxima of thedensity function
as its starting points from which clusters are built, and STING [155] is a grid-based algorithm that
uses quadtree decomposition to efficiently approximate DBSCAN’s results. Han et al. [64] provide
an excellent survey of these and other clustering methods; another closely related method is bump
hunting [49], which uses a greedy heuristic search (iteratively removingor adding some portion of
the data such that density is maximized) to locate dense regions.

Density-based clustering approaches have some advantages over our(and other) cluster detec-
tion methods: they are fast to compute, have more flexibility in defining cluster shape, and are often
usable for massive and high-dimensional datasets. However, density-based clustering is not ade-
quate for the cluster detection task for a variety of reasons. First, we do not simply want to find
overdensities of counts, but also to draw substantial conclusions aboutthe regions we find: in par-
ticular, whether each region represents a significant cluster or is likely to have occurred by chance.
In fields such as disease surveillance, it is essential to minimize the number of false positives, while
maintaining high power to detect any true clusters (e.g. disease outbreaks)that arise. Thus hy-
pothesis testing (whether by statistical significance testing in a frequentist setting, or by computing
posterior probabilities of potential clusters in a Bayesian setting) is an essential part of the cluster
detection problem, but density-based clustering methods cannot give us this information.

Second, cluster detection methods attempt to draw conclusions about entire regions, rather than
aggregating single cells as in density-based clustering. This broader focus allows cluster detection to
be more sensitive for detecting small (but significant) changes in counts, ifthe effects are sufficiently
large in spatial extent. For example, our spatial scan methods are able to detect a 20% increase in



1.4. MOTIVATION FOR THE SPATIAL SCAN STATISTIC 15

the underlying disease rate of a region, while both clustering approachesand human observers may
have trouble with this task. The key is that, though none of the individual counts are sufficiently
elevated to be significant by themselves, the increase can be perceived when counts are aggregated
at the region level.

Finally, density-based clustering methods cannot deal adequately with spatially (and temporally)
varying baselines, because they are specific to the notion of density as number of points per unit
area.2 Adjusting for variable baselines is particularly essential for real-world disease surveillance,
where our expected counts will vary based on population, seasonal trends, and other covariates. Our
cluster detection approaches allow us to deal with counts and baselines in a principled probabilistic
framework, finding the global optimum of any score function (e.g. likelihoodratio statistic) that
distinguishes clusters from non-clusters, and thus identifying the most likelycluster given the counts
and baselines.

Thus, while density-based clustering and anomaly detection are closely related to the cluster
detection problem, neither of these methods are able to perform important aspects of the cluster de-
tection task, including aggregation of information across multiple spatial locations, finding whether
detected regions are significant, adjusting for varying baselines, and generalizing to the models and
statistics which are most appropriate for any given application domain. In theremainder of this the-
sis, we motivate and describe cluster detection approaches based on a generalization of thespatial
scan statistic[78], which enable us to achieve all of these desired criteria.

1.4 Motivation for the spatial scan statistic

Let us consider the example of disease surveillance, assuming that we aregiven the count (number
of disease cases)ci, as well as the expected count (meanµi and standard deviationσi), for each zip
codesi. How can we tell whether any zip code has a number of cases that is significantly higher
than expected? One simple possibility would be to perform a separate statisticaltest for each zip
code, and report all zip codes that are significant at some levelα. For example, we might want
to detect all zip codes with observed count more than three standard deviations above the mean
(p < .0013). However, there are two main problems with this simple approach. First, treating each
zip code separately prevents us from using information about thespatial proximityof adjacent zip
codes. For instance, while a single zip code with count two standard deviations higher than expected
might not be sufficiently surprising to trigger an alarm, we would probably beinterested in detecting
a cluster of adjacent zip codes each with count two standard deviations higher than expected. Thus,
the first problem with performing separate statistical tests for each zip codeis reduced power to
detect clusters spanning multiple zip codes: we cannot detect such increases unless the amount of
increase is so large as to make each zip code individually significant. A second, and somewhat
more subtle, problem is that ofmultiple hypothesis testing. We typically perform statistical tests
to determine if an area is significant at some fixed levelα, such asα = 0.05, which means that if
there is no abnormality in that area (i.e., the “null hypothesis” of no clusters istrue) our probability
of a false alarm is at mostα. A lower value ofα results in less false alarms, but also reduces our
chance of detecting a true cluster. Now let us imagine that we are searchingfor disease clusters

2While we could simply normalize the counts in a density-based clustering approach by dividing each count by its
associated baseline, this approach is inadequate because a given overdensity of counts (e.g. 10% higher than expected) is
more significant for larger values of count and baseline.
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in a large area containing 1000 zip codes, and that there happen to be no outbreaks today, so any
areas we detect are false alarms. If we perform a separate significance test for each zip code,
we expect each test to trigger an alarm with probabilityα = 0.05. But because we are doing
1000 separate tests, our expected number of false alarms is1000 × 0.05 = 50.3 Moreover, if
these 1000 tests were independent, we would expect to get at least one false alarm with probability
1 − (1 − 0.05)1000 ≈ 1. Of course, counts of adjacent zip codes are likely to be correlated, sothe
assumption of independent tests is not usually correct. The main point here, though, is that we are
almost certain to get false alarms every day, and the number of such false alarms is proportional to
the number of tests performed. One way to correct for multiple tests is the Bonferroni method [20]:
if we want to ensure that our probability of getting any false alarms is at mostα, we report only
those regions which are significant at levelα

N
, whereN is the number of tests. The problem with

the Bonferroni method is that it is too conservative, reducing the power of the test to detect true
clusters. In our example, withα = 0.05 andN = 1000, we only signal an alarm if a region’s
p-value is less than 0.00005, and thus only very obvious clusters can be detected.

As an alternative to this simple method, we can choose a set of regions to search over, where
each region consists of a set of one or more zip codes. We can define theset of regions based on
what we know about the size and shape of potential clusters; we can either fix the region shape and
size, or let these vary as desired. We can then do a separate test for each region rather than for each
zip code. This resolves the first problem of the previous method: assuming we have chosen the set
of regions well, we can now detect clusters whether they affect a single zip code, a large number
of zip codes, or anything in between. However, the disadvantage of this method is that it makes
the multiple hypothesis testing problem even worse: the number of regions searched, and thus the
number of tests performed, is typically much larger than the number of zip codes. In principle,
the number of regions could be as high as2Z , whereZ is the number of zip codes, but in practice
the number of regions searched is much smaller (because we want to enforce constraints on the
connectedness, size, and shape of regions). For example, if we consider circular regions centered
at the centroid of some zip code, with continually varying radius (assuming that a region contains
all zip codes with centroids inside the circle), the number of distinct regions isproportional toZ2.
For the example above, this would give us one million regions to search, creating a huge multiple
hypothesis testing problem; less restrictive constraints (such as testing ellipses rather than circles)
would require testing an even larger number of regions.

This method of searching over regions, without adjusting for multiple hypothesis testing, was
first used by Openshaw et al. [122] in their Geographical Analysis Machine (GAM). The GAM
searches for disease outbreaks by testing a large number of overlapping circles of fixed radius, and
drawing all of the significant circles on a map; Figure 1.1 gives an example of what the output of
the GAM might look like. Because we expect a large number of circles to be drawn even if there
are no outbreaks present, the presence of detected clusters is not sufficient to conclude that there is
an outbreak. Instead, the GAM can be used as a descriptive tool for outbreak detection: whether
any outbreaks are present, and the location of such outbreaks, must beinferred manually from the
number and spatial distribution of detected clusters. For example, in Figure 1.1, the large number of
overlapping circles in the upper right of the figure may indicate an outbreak, while the other circles
might be due to chance. The problem is that we have no way of determining whether any given
circle or set of circles is statistically significant, or whether they are due to chance and multiple

3This is true by linearity of expectation, regardless of whether the 1000 testsare independent.
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Figure 1.1: Example output of the Geographical Analysis Machine, with significant regions shown
as circles.

testing; it is also difficult to precisely locate those circles which are most likely to correspond to
true outbreaks. Besag and Newell [15] propose a related approach,where the search is performed
over circles containing a fixed number of disease cases; this approach also suffers from the multiple
hypothesis testing problem, but again is valuable as a descriptive method forvisualizing potential
disease clusters.

The scan statistic was first proposed by Naus [108] as a solution to the multiplehypothesis
testing problem. Let us assume we have a score of some sort for each region: for example the
Z-score,Z = c−µ

σ
. TheZ-score is the number of standard deviations that the observed countc is

higher than the expected countµ; a largeZ-score indicates that the observed number of cases is
much higher than expected. Rather than triggering an alarm if any region has Z-score higher than
some fixed threshold, we instead find the distribution of themaximumscore of all regions under the
null hypothesis of no clusters. This distribution tells us what we should expect the most alarming
score to be when the system is executed on data in which there are no clusters present (i.e. no
outbreaks, in the case of disease surveillance). Then we compare the score of the highest-scoring
(most significant) region on our data against this distribution to determine its statistical significance
(or p-value). In other words, the scan statistic attempts to answer the question, “If there were no
clusters, and we searched over all of these regions, how likely would webe to find any regions
that score at least this high?” If the analysis shows that we would be veryunlikely to find any
such regions under the null hypothesis, we can conclude that the discovered region is a significant
cluster. The main advantage of the scan statistic approach is that we can adjust correctly for multiple
hypothesis testing: we can fix a significance levelα, and ensure that the probability of having any
false alarms on a given day is at mostα, regardless of the number of regions searched. Moreover,
because the scan statistic accounts for the fact that our tests are not independent, it will typically
have much higher detection power than a Bonferroni-corrected method. In some applications, the
scan statistic results in a most powerful statistical test [78].
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Although the scan statistic focuses on finding the single most significant region, it can also be
used to find multiple regions: secondary clusters can be examined, and theirsignificance found,
though the test is typically somewhat conservative for these. The technical difficulty, though, is
finding the distribution of the maximum region score under the null hypothesis.Turnbull [146]
solved this problem for circular regions of fixed population, using the maximum number of cases in
a circle as the test statistic, and using the method of randomization testing (discussed below) to find
the statistical significance of discovered regions. The disadvantage of this approach is that it requires
a fixed population size circle, and thus a multiple hypothesis testing problem still exists if we want
to search over regions of multiple sizes or shapes. Similarly, Anderson andTitterington [8] propose
a scan statistic which searches over fixed size rectangles. Kulldorff andNagarwalla [88, 78] solved
the problem for variable size regions using a likelihood ratio test: the test statistic is the maximum
of the likelihood ratio under the alternative and null hypotheses, where thealternative hypothesis
represents clustering in that region and the null hypothesis assumes no clusters. We discuss their
method, the “spatial scan statistic,” in the following section.

1.5 Detailed description of the spatial scan statistic

The spatial scan statistic, first presented by Kulldorff and Nagarwalla [88, 78], is a powerful and
general method for spatial cluster detection. It is in common use by the public health commu-
nity for finding significant spatial clusters of disease cases, for purposes ranging from detection
of bioterrorist attacks to identification of environmental risk factors. For example, scan statis-
tics have been applied to find spatial clusters of chronic diseases such asbreast cancer [84] and
leukemia [69], as well as work-related hazards [83], West Nile virus [107] and various other types
of outbreak. Kulldorff has implemented the spatial scan statistic in his SaTScansoftware [87],
available at www.satscan.org, and this software is widely used in the public health domain.

In its original formulation, Kulldorff’s statistic assumes that we have a set ofspatial locations
si, and are given a countci and a populationpi corresponding to each location. For example, eachsi

may represent the centroid of a census tract, the corresponding countci may represent the number
of respiratory emergency department visits in that census tract, and the corresponding population
pi may represent the “at-risk population” of that census tract, derived from census population and
possibly adjusted for covariates. The statistic makes the assumption that eachobserved countci

is drawn randomly from a Poisson distribution with meanqipi, wherepi is the (known) at-risk
population of that area, andqi is the (unknown) risk, or underlying disease rate, of that area. The
risk is the expected number of cases per unit population: that is, we expect to see a number of cases
equal to the product of the population and the risk, but the observed number of cases may be more or
less than this expectation due to chance. Thus our goal is to determine whether observed increases
in count in a region are due to increased risk, or chance fluctuations. The Poisson distribution
is commonly used in epidemiology to model the underlying randomness of observed case counts,
making the assumption that the variance is equal to the mean. If this assumption is not reasonable
(i.e. counts are “overdispersed” with variance greater than the mean, or“underdispersed” with
variance less than the mean), we should instead use a distribution which separately models mean and
variance, such as the Gaussian or negative binomial distributions. We alsoassume that each count
ci is drawn independently, though the model can be extended to account forspatial correlations
between nearby locations.
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Figure 1.2: Evaluation of the score functionF (S) for the given regionS.

1.5.1 Kulldorff’s model

As discussed above, Kulldorff’s spatial scan statistic attempts to detect spatial regions where the
underlying disease ratesqi are significantly higher inside the region than outside the region. Thus
we wish to test the null hypothesisH0 (“the underlying disease rate is spatially uniform”) against
the set of alternative hypothesesH1(S): “the underlying disease rate is higher inside regionS than
outside regionS”. More precisely, we have:

H0: ci ∼ Poisson(qallpi) for all locationssi, for some constantqall.
H1(S): ci ∼ Poisson(qinpi) for all locationssi in S, andci ∼ Poisson(qoutpi) for all locationssi

outsideS, for some constantsqin > qout.

Note that the countsci and populationspi are known a priori, while the values of the disease rates
qin, qout, andqall are unknown; these latter values will be inferred from the data by maximum
likelihood estimation.

The test statistic that we use is the likelihood ratio, that is, the likelihood (denotedby Pr) of
the data under the alternative hypothesisH1(S) divided by the likelihood of the data under the null

hypothesisH0. This gives us, for any regionS, a score functionF (S) = Pr(Data| H1(S))

Pr(Data| H0)
. For

Kulldorff’s statistic, we obtainF (S) =
(

Cin

Pin

)Cin
(

Cout

Pout

)Cout
(

Call

Pall

)−Call

, if Cin

Pin
> Cout

Pout
, and

F (S) = 1 otherwise; this formula is derived in Chapter 2. In this equation,Cin andCout represent
the aggregate count

∑

ci inside and outside regionS, andPin andPout represent the aggregate
population

∑

pi inside and outside regionS, respectively. We also defineCall = Cin + Cout

andPall = Pin + Pout. See Figure 1.2 for an example of the evaluation ofF (S) for a region.
Kulldorff [78] proved that this likelihood ratio statistic is individually most powerful for finding a
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single region of elevated disease rate: for the given model assumptions (i.e. the hypothesesH0 and
H1(S) given above), for a fixed false alarm rate, and for a given set of regions searched, it is more
likely to detect the cluster than any other test statistic.

1.5.2 Finding the most significant regions

Given the above test statisticF (S), the spatial scan statistic method can be easily applied by choos-
ing a set of regionsS, calculating the score functionF (S) for each of these regions, and obtaining
the highest scoring regionS∗ and its scoreF ∗ = F (S∗). We can imagine this procedure as moving
a “spatial window” (like the rectangle drawn in Figure 1.2) all around the search area, changing
the size and shape of the window as desired, and finding the window which gives the highest score
F (S). Even though there are an infinite number of possible window positions, sizes, and shapes, we
only need to evaluate the score function a finite number of times, since any two regions containing
the same set of spatial locationssi will have the same score. The region with the highest score
F (S) is the “most significant region,” i.e. the region which is most likely to have beengenerated
under the alternative hypothesis rather than the null hypothesis, and thusthe region which is most
likely to be a cluster. We typically search over the set of all “spatial windows” of a given shape and
varying size, for example, circular regions [78], square regions [111], or rectangular regions [112].
Searching over a set of regions which includes both compact and elongated regions (e.g. rectan-
gles or ellipses) has the advantage of higher power to detect elongated clusters resulting from wind
dispersal of pathogens, but because the number of regions to searchis increased, this also makes
the scan statistic more difficult to compute. Computational issues are discussedin more detail in
Chapter 3.

1.5.3 Statistical significance testing

Once we have found the regions with the highest scoresF (S), we must still determine which of
these “potential clusters” are likely to be “true clusters” resulting from a disease outbreak, and which
are likely to be due to chance. To do so, we calculate the statistical significance (p-value) of each
potential cluster, and all clusters withp-value less than some fixed significance levelα are reported.
Because of the multiple hypothesis testing problem discussed above, we cannot simply compute
separately whether each region scoreF (S) is significant, because we would obtain a large number
of false positives, proportional to the number of regions searched. Instead, for each regionS, we
ask the question, “If this data set were generated under the null hypothesisH0, how likely would we
be to find any regions with scores higher thanF (S)?” To answer this question, we use the method
known asrandomization testing: we randomly generate a large number of “replicas” under the null
hypothesis, and compute the maximum scoreF ∗ = maxS F (S) of each replica. We typically use
Monte Carlo randomization [43] to generate these replicas, but permutation testing [60] can also be
used to test the null hypothesis of exchangeability of counts. More precisely, in the Monte Carlo
approach, each replica is a copy of the original search area that has the same population valuespi

as the original, but has each valueci randomly drawn from a Poisson distribution with meanCall

Pall
pi,

whereCall and Pall are respectively the total number of cases and the total population for the
original search area. Thus the assumption under the null hypothesis is that all counts are generated
with a uniform disease rate, equal to the observed disease rateq = Call

Pall
for the original dataset.

Once we have obtainedF ∗ for each replica, we can compute the statistical significance of any
regionS by comparingF (S) to these replica values ofF ∗, as shown in Figure 1.3. Thep-value of



1.5. DETAILED DESCRIPTION OF THE SPATIAL SCAN STATISTIC 21

Figure 1.3: Example of randomization testing for computing the statistical significance of regionS.
If seven of the 999 replicas have higher scores thanF (S), then thep-value ofS is 7+1

999+1 = 0.008.

regionS can be computed asRbeat+1
R+1 , whereR is the total number of replicas created, andRbeat is

the number of replicas withF ∗ greater thanF (S). If this p-value is less than our significance level
α, we conclude that the region is significant (likely to be a true cluster); if thep-value is greater
thanα, we conclude that the region is not significant (likely to be due to chance).We typically start
from the most significant regionS∗ and test regions in order of decreasingF (S), since if a region
S is not significant, no region with lowerF (S) will be significant. We note that the randomization
testing approach given here has the benefit of bounding the overall false positive rate: regardless of
the number of regions searched, the probability of any false alarms is bounded by the significance
levelα. Also, the more replications performed (i.e. the larger the value ofR), the more precise the
p-value we obtain; a typical value would beR = 999. However, since the run time is proportional
to the number of replications, this dramatically increases the amount of computation necessary.

We note that, if we could compute a closed-form distribution for the test statisticF ∗ under
the null hypothesis, this would allow much faster computation of statistical significance by making
randomization testing unnecessary. Much work has been done on deriving distributions of the one-
dimensional and two-dimensional scan statistics, typically assuming a fixed scan region and uniform
underlying measure. Examples of such work include Naus [108], Loader [97], and Alm [6, 7];
more details are given in Glaz et al. [57, 58]. Nevertheless, the distributionof the scan statistic
is not known in the general case of non-uniform underlying populationsand varying region size
and shape, and thus randomization testing is still necessary. Recent empirical results by Abrams
et al. [1] suggest that the null distribution of Kulldorff’s statistic is fit well by a Gumbel extreme
value distribution; thus they propose running a smaller number of replicationsunder the null (e.g.
R = 99) to find the mean and variance, and using the inferred Gumbel distribution to calculatep-
values. At present, however, we believe that our Bayesian spatial scan statistic, presented in Chapter
5, is the only known spatial scan method that does not require randomizationin the general case.

Another alternative to randomization testing would be to perform a separate significance test
for each spatial region, and then to correct for multiple hypothesis testing by using the Bonferroni
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correction [20], the False Discovery Rate (FDR) criterion [12], or oneof the many other methods
in the multiple testing literature. However, all of these methods either assume independence of
tests, or alternatively, are conservative bounds which hold for arbitrary dependencies. The spatial
scan performs tests for a large set of overlapping spatial regions, andthis overlap creates a complex
dependency structure for the multiple tests. As a result, methods that assume independent tests
are unable to bound the false positive rate, while bounds that hold for arbitrary dependencies are
far too conservative, resulting in reduced detection power. The use ofrandomization testing cor-
rectly accounts for the complex dependency structure, maximizing detection power while providing
provable bounds on false positive rate under the null.

1.5.4 Limitations of the spatial scan statistic

The spatial scan statistic is a powerful method for cluster detection, and as such it has the potential
to be a valuable tool for finding clusters not only in the public health context, but also in many
other application domains. However, the utility of the spatial scan for diseasesurveillance and its
applicability to other domains have been limited by several factors. First, the spatial scan requires
us to search over a huge set of regions for each of a large number of Monte Carlo replications. As
a result, this method does not scale well to large datasets: for many real-world applications, the
traditional spatial scan method is computationally infeasible. Even for moderate-sized datasets, the
spatial scan may take hours or days to run: for example, Kulldorff’s SaTScan software was unable
to run on a dataset with 600,000 records and 17,000 distinct spatial locations, and required four
hours to run on a smaller dataset with 60,000 records and 8,400 distinct spatial locations [114].
This lack of scalability limits the usefulness of spatial scanning to relatively smalldatasets and non-
time-critical applications; new computational methods must be developed to make the spatial scan
computationally feasible for large-scale surveillance tasks (e.g. nationwidedisease surveillance)
where rapid detection time is critical. Additionally, computational considerations limitthe types
of clusters that can be found: for example, Kulldorff’s algorithm [78] limitsthe search to compact
(circular) clusters, and has low power to detect elongated regions. A search over elongated regions
(e.g. rectangles) would take several weeks for nationwide public health data, which is far too slow
for our outbreak detection task. We solve these problems by proposing twodistinct algorithms
for making the spatial scan fast and scalable, enabling us to rapidly search over elongated and
multidimensional rectangular clusters. Our fast spatial scan, discussed inChapter 3, reduces the
search time per replication by only searching a small fraction of regions (those which might have
high scores) and proving that the other regions do not need to be searched. This results in speedups
of 100-1000x with no loss of accuracy, i.e. the fast spatial scan returns exactly the same region and
p-value as a näıve search over rectangles, but much faster. Our Bayesian spatial scan, discussed in
Chapter 5, avoids the need for randomization testing, thus only searching the original dataset rather
than the large number of replica datasets and also resulting in a 1000x speedup.

A second limitation of the spatial scan statistic is the inflexibility of its statistical model. Kull-
dorff [78] proposed binomial and Poisson scan statistic models, but did not consider how the scan
statistic might be generalized to an arbitrary application domain where these models might not be
accurate or appropriate. Most importantly, the traditional spatial scan approach is insufficient for
syndromic disease surveillance for several reasons. By assuming thatdisease counts will be pro-
portional to population under the null hypothesis of no outbreaks, the statistic fails to account for
spatial or temporal variation in the underlying disease rate. In practice, wesee large amounts of
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spatial variation (due to factors such as the age and health of the population, environmental hazards,
etc.) as well as temporal variation (due to day of week effects, seasonaltrends, holidays, weather,
promotional sales of medications, etc.) All of these factors lead to reduced detection power in the
disease surveillance domain; other application domains will also have a varietyof such confounding
factors and causes of “false positives” which impede our ability to accurately detect true clusters.
The traditional approach is not sufficiently flexible to model and incorporate these factors into the
cluster detection task. We solve this problem by proposing the “generalizedspatial scan” frame-
work discussed in Chapter 2, and we consider how many of the confounding factors can be included
as part of our models. All of our new statistics (e.g. the “expectation-based space-time scan statis-
tics” of Chapter 4, the “Bayesian scan statistic” of Chapter 5, and many others) are special cases
of this general framework which allow more accurate detection of relevantand useful clusters in
real-world application. These new statistics also allow us to address several other limitations of the
traditional method, by enabling us to incorporate prior information, combine multiple data streams,
and differentiate between “relevant” and “irrelevant” causes of a statistically significant cluster.

1.6 Contributions of this work

This work makes four main contributions to the state of the art in cluster detection: development of
a powerful and widely applicable statistical framework for detecting clusters, development of spa-
tial algorithms and data structures for very fast detection of clusters, application of these statistics
and algorithms to make real-world contributions to disease surveillance and brain imaging, and ex-
tension of the range of problems to which cluster detection methods can be applied. First, we have
developed thegeneralized spatial scanframework, a flexible, model-based framework for compu-
tationally efficient cluster detection in diverse application domains. One veryuseful application of
this framework is anexpectation-basedapproach, where we infer the expected count of each spa-
tial location from historical data using time series analysis, then find spatial regions with higher
than expected counts. For example, we can detect disease outbreaks bydaily monitoring of over-
the-counter drug sales, inferring how many sales we expect to see based on historical sales data,
and detecting regions where the recent sales are abnormally high. We have demonstrated that the
expectation-based disease surveillance approach can detect emergingepidemics faster than tradi-
tional methods. Even earlier detection was achieved by extending our framework to thespace-time
case, enabling us to detect clusters which may arise either quickly or gradually, and developing new
statistical techniques for detectingemerging clusters, where the effects of the cluster increase over
time.

A second contribution of this work is the development of thefast spatial scanalgorithm for
cluster detection, which incorporates new multi-resolution search methods anda novel spatial data
structure (the “overlap-kd tree”) to make cluster detection methods 100-1000x faster with no loss
of accuracy. This algorithm enables us to perform cluster detection in under an hour for massive
datasets which would otherwise require weeks of computation. The fast spatial scan has been in-
corporated into our generalized spatial scan framework, making this framework computationally
feasible (and very fast) for disease surveillance and many other real-world detection problems. By
extending the fast spatial scan to elongated clusters and multi-dimensional datasets, we have vastly
increased the set of application domains to which cluster detection methods can be applied; these ex-
tensions also enable us to perform fast space-time cluster detection and to use non-spatial attributes
(such as patient age and gender) as additional search dimensions. We believe that the overlap-kd
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tree data structure will also be useful for accelerating spatial search algorithms for a variety of other
problem domains.

A third contribution of this thesis is the development of a Bayesian cluster detection approach,
theBayesian spatial scan. This approach was shown to have higher power to detect clusters than the
typical frequentist hypothesis testing approach, as well as being hundreds of times faster (i.e. com-
parable in speed to the fast spatial scan). The Bayesian approach alsohas several other advantages
over the frequentist method: since it computes the posterior probability of each potential cluster, its
results are easy to interpret and visualize, and (as discussed in Chapter5) it can also be extended
more easily to the multivariate case.

In addition to developing general statistical and algorithmic methods for automaticcluster detec-
tion, we have applied these methods to make several important contributions to thedisease surveil-
lance and brain imaging domains. In retrospective case studies on known disease outbreaks, our
methods demonstrated impressive results: for example, we were able to detect an outbreak of gas-
troenteritis in Walkerton, Ontario, a full day faster than other automatic disease surveillance sys-
tems. Similar results were obtained in semi-synthetic testing, i.e. detection of simulatedoutbreaks
injected into real-world data. Through case studies in the brain imaging domain,we also demon-
strated the ability of the system to detect relevant clusters of brain activity. The most important
“applied” contribution of this thesis is the development and deployment of a system for nationwide
prospective disease surveillance. Every day, this system receives emergency department and over-
the-counter drug sales data from over 20,000 stores and hospitals nationwide, uses our automatic
cluster detection methods to find potential outbreaks of disease, and makes these results available
to state and local public health officials through a web-based graphical interface. We currently have
several public health departments using our software to help them detect epidemics, and their feed-
back has been valuable for the iterative development of our system and the underlying models and
methods. We are also working to integrate our cluster detection methods with several other systems
and methods for large-scale disease surveillance.

In the remainder of this thesis, I will discuss these statistical and algorithmic contributions in
more detail. Chapter 2 presents our generalized spatial scan framework for cluster detection, and
considers how this framework can be applied to detect useful and relevant clusters in real-world
application. Chapter 3 presents our fast spatial scan algorithm, and demonstrates that this algorithm
enables us to detect clusters 100-1000x faster on real datasets withoutany loss of accuracy. Chapter
4 extends our cluster detection methods to the detection of emerging space-time clusters, and shows
that these methods achieve accurate and timely detection of emerging outbreaksof disease. Chapter
5 describes our Bayesian spatial scan statistic, which allows us to incorporate prior knowledge and
observations of multiple data streams together in a principled probabilistic framework; we demon-
strate that this results in both higher detection power and much faster run time in practice. Chapters
6 and 7 apply our methods to two application domains, disease surveillance andbrain imaging,
and demonstrate that we can detect useful and relevant clusters in eachdomain. Finally, Chapter 8
concludes by discussing several important areas for future work.



Chapter 2

A general statistical framework for
cluster detection

2.1 Introduction

Spatial cluster detection has two main goals: to identify the locations, shapes, and sizes of poten-
tially anomalous spatial regions, and to determine whether each of these potential clusters is more
likely to be a “true” cluster or simply a chance occurrence. In other words, we wish to answer
the questions, is anything unexpected going on, and if so, where? This task can be broken down
into two parts: first figuring out what we expect to see, and then determining which regions de-
viate significantly from our expectations. For example, in the application of disease surveillance,
we examine the spatial distribution of disease cases, and our goal is to determine whether any re-
gions have sufficiently high case counts to be indicative of an emerging disease epidemic in that
area. Thus we first infer the baseline (e.g. at-risk population, or expected number of cases) for each
spatial location, then determine which (if any) regions have significantly morecases than expected.
While we could conceivably perform a separate statistical test for each spatial location, this simple
approach fails to account for the spatial proximity of locations, and suffers from a severe problem of
multiple hypothesis testing. As discussed in Chapter 1, if we were to perform a separate hypothesis
test at levelα for each spatial location, the total number of false positives that we expect would be
Y α, whereY is the total number of locations tested. For largeY , we are almost certain to get huge
numbers of false alarms; alternatively, we would have to use a thresholdα so low that the power of
the test would be drastically reduced.

To deal with these problems, Kulldorff [78] proposed the spatial scan statistic. This method
searches over a given set of spatial regions (where each region consists of a set of locations), finding
those regions which are most likely to be generated under the “alternative hypothesis” of clustering
rather than the “null hypothesis” of no clustering. A likelihood ratio test is used to compare these
hypotheses, and randomization testing is used to compute thep-value of each detected region, cor-
rectly adjusting for multiple hypothesis testing. Thus, we can both identify potential clusters and
determine whether each is significant.

Our recent work on spatial cluster detection has two main emphases: first, togeneralize Kull-
dorff’s spatial scan statistic to a larger class of underlying models, enabling us to derive useful and
accurate statistics for a wide variety of application domains, and second, to make these methods
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computationally tractable even for massive real-world datasets. Here we focus primarily on the first
goal, developing a general statistical framework which is applicable and useful for a wide variety of
application domains. Many of the statistics we derive are also computationally efficient, in that they
can be computed simply from some additive sufficient statistics of the region under consideration.
Moreover, we have integrated the “fast spatial scan” algorithms discussed in the next chapter into
this general framework, thus enabling both accurate and very fast cluster detection.

In the remainder of this chapter, I present our general statistical methodology for spatial cluster
detection. In Section 2.2, I present the “generalized spatial scan” framework, and consider the
general issues and questions that arise in applying this framework to any specific problem domain.
In Section 2.3, I present four simple models which may be used within this framework, and derive
computationally efficient scan statistics for each model. These four models share several simplifying
assumptions, but differ in two respects: how the baseline information is interpreted (“expectation-
based” versus “population-based” approaches) and how counts are assumed to be generated. Finally,
in Section 2.4, I present three more complex models, which may be useful in domains where the
simplifying assumptions of Section 2.3 are not valid. Parts of this chapter havebeen adapted from
our paper in the 2005 KDD Workshop on Data Mining Methods for Anomaly Detection [113]. I
wish to thank my co-author Andrew Moore for his contributions to this work.

2.2 The generalized spatial scan framework

In this section, we present the “generalized spatial scan” framework for spatial cluster detection.
As is suggested by its name, this framework is a generalization of Kulldorff’s spatial scan statis-
tic [78] which allows much greater flexibility in the underlying models, statistics, and algorithms.
This has several important advantages over the original spatial scan. First, different application
domains require different models of the data, and rely on different typesof baseline information;
statistics that have high power to detect clusters in one domain might perform poorly in a different
application. Thus it is highly advantageous to have a framework where we can simply “plug in”
new domain models and derive statistics which are useful for detecting relevant clusters in the new
domain. Not only can we choose the models which are most appropriate (forinstance, deciding
whether to account for overdispersion and spatial correlation of counts), but we can also choose to
detect different types of clusters (for instance, clusters with higher than expected counts compared
to the counts outside the cluster, or compared to historical data). A second advantage of the general
framework is an iterative development approach: we can start out with simple models, putting these
techniques into daily practice in a new application domain, then examine the resulting clusters that
are detected. We can then adapt the model appropriately to increase detection power and reduce
false positives in that domain. Many real-world datasets contain a variety ofdata irregularities and
other unexpected and unmodeled phenomena, and thus simpler models might pick up these irregu-
larities rather than the clusters we are actually interested in detecting. By adjusting our models to
account for these phenomena, we can ensure reasonable false positive rates while still maintaining
high power to detect any real clusters which may occur. The final advantage of our general frame-
work is the careful consideration of tradeoffs between computational tractability and the relevance
of detected clusters. In addition to presenting a variety of statistics which areboth useful and com-
putationally tractable, we can also use the “fast spatial scan algorithm” discussed in Chapter 3 to
detect these clusters hundreds or thousands of times faster. Integrationof these fast algorithms into
the general framework not only makes our general cluster detection techniques more useful in real
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practice, but also extends the scope of our methods by allowing detection ofelongated, rotated, and
multi-dimensional clusters.

The generalized spatial scan framework consists of the following six steps:

1. Obtain data for a set of spatial locationssi.

2. Choose a set of spatial regions to search over, where each spatialregionS consists of a set of
spatial locationssi.

3. Choose models of the data underH0 (the null hypothesis of no clusters) andH1(S) (the
alternative hypothesis assuming a cluster in regionS).

4. Derive a “score function”F (S) based onH1(S) andH0.

5. Find the “most interesting” regions, i.e. those regionsS with the highest values ofF (S).

6. Determine whether each of these regions is “interesting,” either by performing significance
testing or calculating posterior probabilities.

We now consider each step of this framework in detail, giving some idea of therelevant decisions
that must be made when applying our methods to a new application domain. In Chapters 6 and 7,
we discuss two such application domains, disease surveillance and brain imaging; here we discuss
the methods more generally, considering those issues which apply to any domain.

2.2.1 Obtain data for a set of spatial locationssi

The spatial scan statistic assumes that we are given data for a set of spatial locationssi. Typically,
these locations are assumed to be points in somed-dimensional Euclidean space, with the coordi-
nates of each point given. In the disease surveillance domain, for example, we are typically given
data aggregated at the zip code level, and taking the latitude and longitude of the zip code centroid
gives us a point in two-dimensional space.1 In fMRI brain imaging, on the other hand, we are typ-
ically given activation data for a uniform64 × 64 × 14 grid of voxels, and thus each location is a
point (with integer coordinates) in three-dimensional space.

For each spatial locationsi, we must have two quantities, acountci, and abaselinebi. In the
disease surveillance domain, the count may represent the number of disease cases of some specific
type corresponding to spatial locationsi, while the baseline may represent some quantity such as
the expected number of cases of that type or the at-risk population. In anycase, the goal of our
method is to find regions where the counts are higher than expected, giventhe baselines.

We typically assume that the counts are given in advance, while the baselinesmay be either
given (e.g. population from census data) or inferred (e.g. from historical data or expert knowledge).
For example, one simple way of inferring baselines would be to estimate today’sexpected countbi

in a zip code by the mean daily count in that zip code over the pastD days. For many datasets,
more complicated methods of time series analysis should be used to infer baselines; for example,
in the over-the-counter drug sales data, we must account for both seasonal and day-of-week effects.

1Because a zip code is actually an irregular region in space rather than a single point, an alternative would be to
assume that cases are spread over the entire zip code area, either uniformly or according to some known distribution of
population.
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Various time series methods for inferring baseline values from historical data are considered in
Chapter 4.

Two typical approaches to obtaining baselines are thepopulation-based method, where we ex-
pect each count to beproportional to its baseline under the null hypothesis, and theexpectation-
based method, where we expect each count to beequal to its baseline under the null hypothesis.
As we discuss in Section 2.3, these two approaches require the use of different models and statis-
tics, and give different results under certain circumstances; here we focus on some possible ways of
obtaining baseline values for each approach.

In the population-based method, baselinesbi typically represent the underlyingpopulationof
locationsi. These populations could be obtained from census data, and may be adjusted for known
covariates to give an “at-risk” population. For example, Kleinman et al. usea generalized linear
mixed models approach to adjust population for day of week, seasonality, and other factors [76,
75]. Another possibility is to derive population estimates by measuring the valueof some other
“baseline” quantity, which we expect to be proportional to population regardless of whether the null
hypothesis is true. One example would be the sales of a product such as soda or bottled water. These
“activity-based” estimates of population have the disadvantages of highervariability and more noise,
but can deal with more rapid or short-term changes in population and availability (e.g. for seasonal
tourist destinations such as beach or ski resorts).

In the expectation-based method, each baselinebi typically represents theexpected countof lo-
cationsi under the null hypothesis of no clusters. These expected values are often derived from the
time series of historical data, forecasting the expected value of the current data using some method
of time series analysis. Another possibility is to obtain the expected count by monitoring some
“control” condition, which we expect to be generated from the same distribution under the null. In
brain imaging, for example, we can use subjects fixating on a cursor as a control condition, compar-
ing this to an experimental condition where subjects read words or view pictures. A third option is
to obtain expected counts using a combination of some measure of population and a constant of pro-
portionality; for example, the population could be derived from census oractivity-based estimates,
while the constant of proportionality could be derived from global historical data.

In Section 2.3, we discuss the population-based and expectation-based approaches in more de-
tail, and derive the appropriate models and score functions for each approach.

2.2.2 Choose a set of spatial regions to search over, where each spatial regionS con-
sists of a set of spatial locationssi

We want to choose a set of regions that corresponds well with the shapeand size of the clusters
we are interested in detecting. In general, the set of regions should cover the entire space under
consideration (otherwise we will have no power to detect clusters in non-covered areas) and adjacent
regions should overlap (otherwise we will have reduced power to detectclusters that lie partly in
one region and partly in another). We typically consider the set of all regions of some fixed shape
(e.g. circle, ellipse, rectangle), allowing the location and dimensions of that region to vary; what
shape to choose depends on both statistical and computational considerations. If we search too few
regions, we will have reduced power to detect clusters that do not closely match any of the regions
searched; for example, if we search over square or circular regions, we will have low power to detect
highly elongated clusters. On the other hand, if we search too many regions,our power to detect any
particular subset of these regions is reduced because of multiple hypothesis testing. Additionally,
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the runtime of the algorithm is proportional to the number of regions searched, and thus choosing
too large a set of regions will make the method computationally infeasible.

Our typical approach in epidemiological domains is to map the spatial locations to agrid, and
search over the set of all rectangular regions on the grid. Additionally, non-axis-aligned rectangles
can be detected by searching over multiple rotations of the data. The two main advantages of this ap-
proach are its ability to detect elongated clusters (this is important in epidemiologybecause disease
clusters may be elongated due to wind or water dispersion of pathogens) and also its computational
efficiency. Use of a grid structure allows us to evaluate any rectangular region in constant time, in-
dependent of the size of the region, using the well-known “cumulative counts” trick. Additionally,
we can gain huge computational speedups by applying the “fast spatial scan” algorithm, allowing
us to search many fewer regions without any loss of accuracy. Both the cumulative counts trick and
the fast spatial scan algorithm are discussed in Chapter 3.

2.2.3 Choose models of the data underH0 (the null hypothesis of no clusters) and
H1(S) (the alternative hypothesis assuming a cluster in regionS). Derive a
“score function” F (S) based onH1(S) and H0

These are perhaps the most difficult steps in our method, as we must choose models which are both
efficiently computable and relevant to the application domain under consideration. For our models
to be efficiently computable, the score functionF (S) should be computable as a function of some
additive sufficient statistics of the regionS being considered.2 Typically these statistics are the total
count of the region,C(S) =

∑

S ci, and the total baseline of the region,B(S) =
∑

S bi. If this is
not the case, the model may still be useful for small datasets, but will not scale well to larger sources
of data. For our models to be relevant, any simplifying assumptions that we makemust not reduce
our power to distinguish between the “cluster” and “no cluster” cases, to too great an extent. Of
course, any efficiently computable model is very unlikely to capture all of thecomplexity of the real
data, and these unmodeled effects may have either small or large impacts on detection performance.
Thus we typically use an iterative design process, beginning with very simplemodels, and examin-
ing their detection power (ability to distinguish between “cluster” and “no cluster”) and calibration
(number of false positives reported in day-to-day use). If a model hashigh detection power but poor
calibration, then we have a choice between increasing model complexity and artificially recalibrat-
ing the model (i.e. based on the empirical distribution of scores); however,if detection power is
low, then we have no choice but to figure out which unmodeled effects areharming performance,
and deal with these effects one by one. Some such effects (e.g. missing data) can be dealt with by
pre-processing, and others (e.g. clusters caused by single anomalouslocations) can be dealt with by
post-processing (filtering the set of discovered regions to remove thosecaused by known effects),
while others (such as overdispersion and correlation of counts) must actually be included in the
model itself. In Chapter 6, we discuss several of these effects present in the over-the-counter sales
data, and how we have dealt with each; here we focus on the general framework and then present
two simple and efficiently computable approaches.

As noted above, we must choose models of how the data is generated, both under the null
hypothesisH0 (assuming that no clusters are present) and under the set of alternativehypotheses
H1(S), each representing a cluster in some regionS. Once we have chosen these models, we must
make two choices regarding how to derive the corresponding statistics: whether to use afrequentist

2More precisely, we must haveF (S) = F (X1(S) . . . Xn(S)), where eachXj(S) =
P

si∈S f(ci, bi).
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or Bayesianapproach, and whether to usemaximum likelihoodor marginal likelihoodparameter
estimates.

The most common statistical framework for the spatial scan is a frequentist, hypothesis testing
approach. In this approach, assuming that the null hypothesis and eachalternative hypothesis are

point hypotheses (with no free parameters), we can use the likelihood ratioF (S) = Pr(Data| H1(S))

Pr(Data| H0)

as our test statistic. This likelihood ratio statistic represents the likelihood of the data assuming a
cluster in regionS, divided by the likelihood of the data assuming no clusters. A more interesting
question is what to do when each hypothesis has some parameter spaceΘ: let θ1(S) ∈ Θ1(S)
denote parameters for the alternative hypothesisH1(S), and letθ0 ∈ Θ0 denote parameters for the
null hypothesisH0. There are two possible answers to this question. In the more typical,maximum
likelihood framework, we use the estimates of each set of parameters that maximize the likelihood
of the data:

F (S) =
maxθ1(S)∈Θ1(S) Pr(Data| H1(S), θ1(S))

maxθ0∈Θ0 Pr(Data| H0, θ0)

In many cases, such as in Kulldorff’s statistic [78], this will lead to an individually most pow-
erful statistical test under the given model assumptions. We then performrandomization test-
ing using the maximum likelihood estimates of the parameters under the null hypothesis, θrep =
arg maxθ0∈Θ0 Pr(Data| H0, θ0), as discussed below. In themarginal likelihoodframework, on the
other hand, we instead average over the possible values of each parameter:

F (S) =

∫

θ1(S)∈Θ1(S) Pr(Data| H1(S), θ1(S))Pr(θ1(S))
∫

θ0∈Θ0
Pr(Data| H0, θ0)Pr(θ0)

This, however, makes randomization testing very difficult in the frequentist approach. An al-
ternative method (discussed in detail in Chapter 5) is a Bayesian approach, in which we use the
marginal likelihood framework to compute the likelihood of the data under each hypothesis, then
combine these likelihoods with the prior probabilities of an cluster in each regionS. Thus our test
statistic is the posterior probability of a cluster in each region:

F (S) =
Pr(Data| H1(S))Pr(H1(S))

Pr(Data)
∝ Pr(Data| H1(S))Pr(H1(S))

where Pr(H1(S)) is the prior probability of a cluster in regionS, and Pr(Data | H1(S)) is the
data likelihood assuming a cluster inS. The marginal likelihood of the data is typically difficult to
compute, but in Chapter 5, we present an efficiently computable Bayesian statistic using Poisson
counts and conjugate Gamma priors.

Thus we now have two efficiently computable approaches within our general framework: the
frequentist approach (using the likelihood ratio statistic with maximum likelihood parameter esti-
mates, and computing statistical significance by randomization), and the Bayesian approach (using
marginal likelihood). In Sections 2.3 and 2.4, we focus on the frequentist approach in more detail,
and give examples of how new and useful scan statistics can be derived. More examples of develop-
ing and applying new scan statistics within this framework are given in the discussion on space-time
statistics in Chapter 4.
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2.2.4 Find the “most interesting” regions, i.e. those regionsS with the highest values
of F (S)

Once we have decided on a set of regionsS to search, and derived a score functionF (S), the
“most interesting” regions are those that maximizeF (S). In the frequentist spatial scan framework,
these are the most significant spatial regions; in the Bayesian framework,these are the regions with
highest posterior probabilities. The simplest method of finding the most interesting regions is to
compute the score functionF (S) for every region. An alternative to this naı̈ve approach is to use
the fast spatial scan algorithms discussed in Chapter 3, which allow us to reduce the number of
regions searched, but without losing any accuracy. The idea is that, since we only care about the
most significant regions, i.e. those with the highest scoresF (S), we do not need to search a region
S if we can prove that it will not have a high score. Thus we start by examining large regionsS, and
if we can show that none of the smaller regions contained inS can have high scores, we do not need
to actually search each of these regions. Thus, we can achieve the same result as if we had searched
all possible regions, but by only searching a small fraction of these. Further speedups are gained by
the use of multiresolution data structures, which allow us to efficiently move between searching at
coarse and fine resolutions; we discuss these methods in detail in Chapter 3.

2.2.5 Determine whether each of these regions is “interesting,” either by performing
significance testing or calculating posterior probabilities

For the frequentist approach, once we have found the highest scoring regionsS, we must calcu-
late the statistical significance of each discovered region byrandomization testing. As discussed
in Chapter 1, our goal is to perform statistical significance testing in such a way that, if the dataset
has been generated under the null hypothesis (i.e. there are no clusterspresent), our probability
of incorrectly detecting any clusters is bounded by some constantα, regardless of the number of
regions tested. In other words, a region would be significant atα = .05 only if its score is so
high that 95% of the time under the null hypothesis,no region would have that high a score. In
order to bound the overall false positive rate in this way, we randomly create a large numberR of
replica datasets by sampling under the null hypothesisH0, given our maximum likelihood param-
eter estimatesθrep = arg maxθ0 Pr(Data| H0, θ0) for the null. For example, for Kulldorff’s scan
statistic, we generate counts independently fromci ∼ Poisson(qallbi), using the maximum likeli-
hood estimateqall = Call

Ball
from the original dataset. We then calculate the maximum region score

F ∗ = maxS F (S) for each replica dataset. Now, for each potential clusterS, we count the number
of replica datasetsRbeat with F ∗ higher thanF (S). From this, we can calculate thep-value of
regionS asp(S) = Rbeat+1

R+1 . Then all regionsS with p(S) < α are significant at levelα, while
all other regions are not significant. Since, for a given dataset, thep-value of regionS decreases
monotonically with increasing scoreF (S), we can start by testing only the highest scoring region
S∗ of the original dataset. If thep-value ofS∗ is less thanα, we can conclude that the discovered
region is unlikely to have occurred by chance, and is thus a significant spatial cluster; we can then
examine secondary clusters. Otherwise, no significant clusters exist.

For the Bayesian approach, on the other hand, no randomization testing is necessary. In-
stead, we can compute the posterior probability of each potential cluster by dividing its score
Pr(Data|H1(S))Pr(H1(S)) by the total probability of the data, Pr(Data) = Pr(Data|H0)Pr(H0)+
∑

S Pr(Data| H1(S))Pr(H1(S)). We can then report all clusters with posterior probability greater
than some predetermined thresholdPthresh, or simply “sound the alarm” if the total posterior prob-
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ability of all clustersS is sufficiently high (greater than some thresholdPalarm). Because we do
not need to perform randomization testing in the Bayesian method, we need only to search over
all regions for the original dataset, rather than the original dataset and alarge number (typically
R = 999) of replicas. Thus the Bayesian approach is approximately 1000x fasterthan the (näıve)
frequentist approach, as we show empirically in Chapter 5. However, wecan apply the fast spatial
scan described above to achieve similar speedups for the frequentist approach: in this case, we still
have to search over all replica datasets, but can do a much faster search on each. We compare the
speed of the fast frequentist and Bayesian approaches in detail in Chapter 5, and consider how these
two approaches might be combined to achieve real-time spatial cluster detectionin Chapter 8.

2.3 Some simple scan statistics

We now derive scan statistics for four different models, including Kulldorff’s original scan statistic,
using the general framework discussed above. In each case, the derived score function is obtained

using the likelihood ratioF (S) = Pr(Data| H1(S))

Pr(Data| H0)
, with maximum likelihood estimates of any free

parameters. All four of these models make several simplifying assumptions, including indepen-
dently distributed counts, uniform rates under the null, and a uniform cluster model. These assump-
tions enable us to derive score functionsF (S) that are efficiently computable as a function of some
sufficient statistics of regionS. The disadvantage, however, is that violations of these assumptions
will negatively impact our ability to detect clusters. As noted above, more complex models may be
necessary in such cases; some examples of these models are given in Section 2.4.

We now consider each of the three simplifying assumptions in more detail. First, we assume
that each location’s countci is drawn independently from some distribution Dist(θi, qi), whereθi

represents the set of baseline parameters of that location, andqi represents some underlying “rate”
parameter. This assumption is violated when counts are spatially correlated; one possible method of
accounting for these correlations is theregion-aggregated time series(RATS) approach discussed
in Chapter 4. Second, we make the assumption that the rate parameterqi is uniform under the null
hypothesis: if no clusters are present, then every location has the same rate q. Thus we assume
that any spatial variation in counts under the null (e.g. due to different underlying populations) is
accounted for by our baseline parametersθi, and our methods are designed to detect any additional
variation not reflected in these baselines. One difficulty with this is that we may pick up variations
that are statistically significant but not large enough to be interesting in practice. Thethresholded
scan statisticsdiscussed in Section 2.4, and theT-filter discussed in Chapter 6, are two possible
methods of dealing with this problem. Another difficulty is that we may pick up variations caused
by data irregularities in some single location (or a few locations). Methods of dealing with these
irregularities include theBernoulli-Poisson scan statisticdiscussed in Section 2.4, and theL-filter
discussed in Chapter 6. Our third assumption is a uniform cluster model, where the effect of a cluster
is to uniformly increase the expected counts within that cluster by some multiplicative constant (the
amount of increase is unknown). We have considered several models that allow for spatial and
temporal variation in rate: two such models are thenon-parametric scan statistic, discussed in
Section 2.4, and theemerging cluster scan statistic, discussed in Chapter 4.

In the remainder of this section, we make the three simplifying model assumptions discussed
above, and use these to derive simple and efficiently computable statistics. InSubsections 2.3.1
and 2.3.2, we consider two decisions that must be made when choosing a model: whether to use
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Figure 2.1: Population-based and expectation-based scan statistic approaches.

an “expectation-based” or “population-based” approach, and whatdistribution to assume. In Sub-
sections 2.3.3 and 2.3.4, we derive the expectation-based and population-based statistics under the
typical assumption of Poisson-distributed counts. Finally, in Subsections 2.3.5 and 2.3.6, we derive
the expectation-based and population-based statistics for Gaussian-distributed counts, allowing us
to model counts that can be overdispersed or underdispersed.

2.3.1 The expectation-based and population-based approaches

The spatial cluster detection task requires us to answer two main questions: is anything unexpected
going on, and if so, where? In order to both discover unexpected clusters and infer their locations,
we must first have some information about what we expect to see: this information is represented
by the baselinebi of each spatial locationsi. As discussed in Section 2.2, we may obtain baselines
from a variety of sources, including census population data, historical counts, or data from a control
group. The most important distinction we must draw is between two ways of interpreting these
baselines: thepopulation-basedapproach, where we expect counts to beproportional to baselines
under the null hypothesis of no clusters, and theexpectation-basedapproach, where we expect
counts to beequalto baselines under the null. These two approaches are illustrated in Figure 2.1. For
both approaches, we typically assume that each countci is generated from some distribution with
mean equal tobi times some unknown “rate” parameterqi, but the interpretations of the baselines
bi and ratesqi are very different in these two approaches.

In the population-based approach, the baselinesbi typically represent thepopulationcorre-
sponding to each spatial locationsi. This population can be either given (e.g. from census data)
or inferred (e.g. from sales data), and can be adjusted for any knowncovariates such as age of
population, risk factors, seasonality, and weather effects. The correspondingqi represents the “un-
derlying rate,” or expected ratio of count to baseline, for that location. For example, in disease
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surveillance, it is common to speak of the “underlying disease rate,” or expected number of disease
cases per unit population. Note that the underlying rateqi is an unknown quantity which is distinct
from the (known) “observed rate”ci

bi
, but we can use the observed rates to make statistical infer-

ences about the underlying rates. In the population-based approach,we wish to detect clustersS
where the observed rates aresignificantlyhigher insideS than outsideS, allowing us to conclude
with high probability that the underlying ratesqi are higher insideS than outsideS. Thus, for each
regionS with an observed rate that is higher inside the region than outside the region,we must
perform statistical testing to decide between two possible explanations: eithera) the underlying rate
is higher inside than outside, or b) the underlying rate is the same inside and outside, and the differ-
ence is due to chance. In the first case,S is a significant cluster, while in the second case,S is not
significant. More precisely, under the simplifying assumption of uniform rates, we wish to test the
null hypothesis that the rate is uniform everywhere (allqi are equal to some constantqall) against
the set of alternative hypotheses withqi = qin inside some regionS andqi = qout outsideS, for
some constantsqin > qout.

In the expectation-based approach, the baselinesbi represent theexpected countin each spatial
locationsi. These are typically inferred from the time series of previous counts, adjusting for any
relevant effects such as day-of-week and seasonality. The correspondingqi represents the underly-
ing “relative risk,” or ratio of actual count to expected count. Our goal,then, is to discover regions
with actual counts significantly greater than expected counts, or equivalently, observed relative risk
significantly greater than 1. Again, we must distinguish between significant clusters (where the
observed relative risk is large enough to conclude that the underlying relative risk is greater than
1) and non-significant regions (where we conclude that the underlyingrelative risk equals 1, and
the higher-than-expected counts are due to chance). More precisely,under the simplifying assump-
tion of uniform rates, we wish to test the null hypothesis thatqi = 1 everywhere against the set of
alternative hypotheses withqi = qin insideS andqi = 1 outsideS, for some constantqin > 1.

Whether to use an expectation-based approach or a population-based approach depends both
on the type and quality of data, as well as the types of clusters we are interested in detecting. As
noted above, the expectation-based approach should be used when wecan accurately estimate the
expected count in each spatial location, either based on a sufficient amount of historical data, or
based on sufficient data from a null or control condition; in these cases, expectation-based statistics
will have higher detection power than population-based statistics. On the other hand, if we only have
relative(rather than absolute) information about what we expect to see, a population-based approach
should be used. For example, we may expect twice as many counts in location Aas in location B, but
we may not know exactly what to expect in either location: in this case, population-based statistics
are appropriate. Similarly, if we have some historical data, but not enoughto accurately estimate
global trends (such as seasonal and day of week effects), it might bebetter to use a population-based
statistic since this approach is more robust to misestimation of the global expectation.

The expectation-based and population-based approaches also give very different results in two
important scenarios. First, if counts throughout the entire search regionare much higher than ex-
pected, the expectation-based approach will find these increases verysignificant. However, the
population-based approach will only find the increases significant if there is spatial variation in the
amount of increase: otherwise, no significant increase will be detected.As an extreme example,
consider a situation where every count is ten times its expected value: while theexpectation-based
approach would “sound the alarm” in response to this surprising data, the population-based ap-
proach would entirely ignore the increase (since theratio of counts inside and outside any subre-
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gion of the search area has remained constant). More commonly, the population-based approach
has somewhat reduced power for detecting clusters with large spatial extent. For example, if half
of the search region has a 20% increase in counts, this potential cluster would be compared to the
null hypothesis of a 10% increase in counts over the entire search region, and thus it appears to
be a much smaller (and potentially non-significant) increase. Whether to use the expectation-based
or population-based approach in this scenario depends on how we interpret the case of a global in-
crease: if we assume that such increases have resulted from large clusters (and are therefore relevant
to detect), the expectation-based approach should be used, but if we assume that such increases have
resulted from unmodeled and irrelevant global trends (and should therefore be ignored), then it is
more appropriate to use the population-based approach.

A second scenario where the two approaches differ is when the counts inone area are much
lower than expected, and the other counts are normal. The expectation-based approach would not
trigger an alarm in response to this situation, since no region counts are significantly higher than
expected. The population-based approach, on the other hand, would trigger an alert in the “normal”
counts because they are significantly higher (as compared to their underlying baselines) than the
other “low” counts. Thus in public health data, the population-based approach may trigger false
alarms in response to holiday effects that cause decreased counts (e.g.lower sales of over-the-
counter drugs) in a subset of the spatial locations. Again, whether to usethe expectation-based
or population-based approach in this scenario depends on what types of clusters are considered
interesting. If lower-than-expected counts in an area are assumed to be due to irrelevant factors that
do not affect our expectations of the other counts, the expectation-based approach should be used,
and if these decreases are assumed to be global trends that lower our expectations elsewhere, the
population-based approach is more appropriate.

2.3.2 The Poisson and Gaussian models

In addition to choosing between expectation-based and population-basedapproaches, we must also
choose a model of how the countsci are generated. In the public health domain, the most common
model is Poisson-distributed counts: we assume that each count (i.e. numberof disease cases)ci has
been drawn independently from a Poisson distribution with some (unknown)meanµi. This distri-
bution has been justified in several ways: as a discretization of a Poisson process (assuming constant
rate in time and/or space), as an approximation to the binomial (where each person becomes sick
with some probabilityp) for large population and low disease rate, or as an improvement over the
binomial for cases where each individual can be counted more than once(e.g. individuals can visit
the emergency room multiple times, or buy multiple units of medication). In general, the Poisson
model is appropriate for integer counts, assuming that the variance of the distribution is equal to the
mean. If counts are overdispersed (variance higher than mean) or underdispersed (variance lower
than mean), a different distribution should be used. Negative binomial distributions can be used
to model overdispersed counts, while more complex distributions such as the Conway-Maxwell-
Poisson [138] can be used to model counts which may be either overdispersed or underdispersed.
Since both of these distributions are more difficult to work with, we typically usethe Gaussian
distribution as an approximation when working with overdispersed or underdispersed counts.

In the brain imaging domain, the most common model is Gaussian-distributed counts: we as-
sume that each count (e.g. measured fMRI activation in the given region of the brain) has been
drawn independently from a Gaussian distribution with some (unknown) meanµi and standard de-
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viation σi. The Gaussian distribution has been justified in many contexts, since the sum of a large
number of i.i.d. random variables converges to a Gaussian. Moreover, inthe brain imaging domain,
usually preprocessing is done, and this preprocessing makes the data moreGaussian. Sometimes
the independence assumption is dropped, and this leads to theGaussian random fieldapproaches
discussed in Chapter 7. In general, the Gaussian distribution is appropriate for real-valued counts
when distributions are not skewed and have normal kurtosis (e.g. are not heavy-tailed). It is es-
pecially useful (as compared to the Poisson) when counts may be significantly overdispersed or
underdispersed. When using the Gaussian distribution for integer-valued counts (e.g. as the approx-
imation to a discrete distribution such as the Poisson or negative binomial), the Gaussian is generally
a close approximation when counts are sufficiently large.

For our simple models, we typically use either the Poisson or Gaussian distributions, because
each of these leads to efficiently computable score functionsF (S). In some cases, however, neither
of these models may be adequate, and we may wish to sacrifice some computational efficiency for
a more accurate and representative model of the data. In these cases, we can use models such as
the negative binomial for overdispersed integer counts, the Bernoulli-Poisson model for data with
irregularities at some individual locations, and the non-parametric scan statistic for data that is not
fit adequately by any known model. The Bernoulli-Poisson and non-parametric scan statistics are
discussed in Section 2.4.

For both the Poisson and Gaussian models, we typically assume that the mean ofeach distri-
bution is proportional to some known baselinebi, multiplied by an unknown rate parameterqi, and
then we use the observed counts to perform inference on theqi. In the expectation-based statistic,
we assumeqi = 1 (count equal to expectation) everywhere under the null, andqi > 1 (count greater
than expectation) in the affected region under the alternative hypothesis.In the population-based
statistic, we assumeqi to be uniform everywhere under the null, and greater inside the affected
region than outside under the alternative hypothesis.

2.3.3 Derivation of the Poisson expectation-based statistic

Let us first consider the simple expectation-based scan statistic discussedabove, under the assump-
tion that counts are independently Poisson distributed. In this case, we aregiven the baseline (or
expected count)bi and the observed countci for each spatial locationsi, and our goal is to determine
if any spatial regionS has counts significantly greater than baselines. Another way of asking this
question is, if each countci has been drawn from a Poisson distribution with mean proportional to
the expectationbi times the “relative risk”q, is there any region with relative risk greater than 1?
Thus we test the null hypothesisH0 against the set of alternative hypothesesH1(S), where:

H0: ci ∼ Poisson(bi) for all spatial locationssi.
H1(S): ci ∼ Poisson(qbi) for all spatial locationssi in S, andci ∼ Poisson(bi) for all spatial
locationssi outsideS, for some constantq > 1.

Here, the alternative hypothesisH1(S) has one parameter,q (the relative risk in regionS), and
the null hypothesisH0 has no parameters. Computing the likelihood ratio, and using the maximum
likelihood estimate for our parameterq, we obtain the following expression:

F (S) =
maxq>1

∏

si∈S Pr(ci ∼ Poisson(qbi))
∏

si 6∈S Pr(ci ∼ Poisson(bi))
∏

si
Pr(ci ∼ Poisson(bi))
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=
maxq>1

∏

si∈S Pr(ci ∼ Poisson(qbi))
∏

si∈S Pr(ci ∼ Poisson(bi))

Plugging in the equations for the Poisson likelihood, and simplifying, we obtain:

F (S) =
maxq>1

∏

si∈S
e−qbi (qbi)

ci

(ci)!
∏

si∈S
e−bi (bi)ci

(ci)!

=
maxq>1

∏

si∈S e−qbiqci

∏

si∈S e−bi

=
maxq>1 e−qBqC

e−B

whereC andB are the total count
∑

ci and total baseline
∑

bi of regionS respectively. We find
that the value ofq that maximizes the numerator isq = max(1, C

B
). Plugging in this value ofq, we

obtainF (S) =
(

C
B

)C
eB−C , if C > B, andF (S) = 1 otherwise. BecauseF (S) is a function only

of the sufficient statisticsC(S) andB(S), this function is efficiently computable: we can calculate
the score of any regionS by first calculating the aggregate count and baseline and then applying
the functionF . This approach can easily be extended to the case where counts are generated from
ci ∼ Poisson(q0bi), for a known constantq0, under the null hypothesis. In this case, we have

F (S) =
(

C
q0B

)C

eq0B−C if C > q0B, andF (S) = 1 otherwise.

As noted above, we can find the most significant spatial cluster by finding the region which
maximizesF (S). We can then perform statistical significance testing by randomization as dis-
cussed above, where each replica dataset has all counts generated under the null hypothesisci ∼
Poisson(bi), or ci ∼ Poisson(q0bi) in the more general case.

2.3.4 Derivation of the Poisson population-based statistic

Next we consider the derivation of Kulldorff’s spatial scan statistic [78]. As discussed in Chapter
1, this is a population-based method commonly used in disease surveillance, which also makes the
simplifying assumption of independent, Poisson distributed counts. However, Kulldorff’s statistic
assumes that the counts (i.e. number of disease cases) are distributed asci ∼ Poisson(qbi), where
bi is the (known) census population ofsi andq is the (unknown) underlying disease rate. We then
attempt to discover spatial regions where the underlying disease rateq is significantly higher inside
the region than outside. Thus we wish to test the null hypothesisH0 (“the underlying disease rate
is spatially uniform”) against the set of alternative hypothesesH1(S): “the underlying disease rate
is higher inside regionS than outsideS.” More precisely, we have the following:

H0: ci ∼ Poisson(qallbi) for all locationssi, for some constantqall.
H1(S): ci ∼ Poisson(qinbi) for all locationssi in S, andci ∼ Poisson(qoutbi) for all locationssi

outsideS, for some constantsqin > qout.

In this case, the alternative hypothesis has two free parameters (qin andqout) and the null hypoth-
esis has one free parameter (qall). Computing the likelihood ratio, and using maximum likelihood
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parameter estimates, we obtain:

F (S) =
maxqin>qout

∏

si∈S Pr(ci ∼ Poisson(qinbi))
∏

si 6∈S Pr(ci ∼ Poisson(qoutbi))

maxqall

∏

si
Pr(ci ∼ Poisson(qallbi))

Plugging in the equations for the Poisson likelihood, and simplifying, we obtain:

F (S) =
maxqin>qout

∏

si∈S
e−qinbi (qinbi)

ci

(ci)!

∏

si 6∈S
e−qoutbi (qoutbi)

ci

(ci)!

maxqall

∏

si

e−qallbi (qallbi)ci

(ci)!

=
maxqin>qout

∏

si∈S e−qinbi(qin)ci
∏

si 6∈S e−qoutbi(qout)
ci

maxqall

∏

si
e−qallbi(qall)ci

=
maxqin>qout e−qinBin(qin)Cine−qoutBout(qout)

Cout

maxqall
e−qallBall(qall)Call

whereCin andBin are the total count and baseline inside regionS, Cout andBout are the total
count and baseline outside regionS, andCall andBall are the total count and baseline everywhere.
We can then compute the maximum likelihood estimatesqin = Cin

Bin
, qout = Cout

Bout
, andqall = Call

Ball
,

if Cin

Bin
> Cout

Bout
, andqin = qout = qall = Call

Ball
otherwise. Plugging in these maximum likelihood

values, we obtain:F (S) =
(

Cin

Bin

)Cin
(

Cout

Bout

)Cout
(

Call

Ball

)−Call

, if Cin

Bin
> Cout

Bout
, andF (S) = 1

otherwise. Again, the score function can be computed efficiently, using thesufficient statistics of
regionS and the global sufficient statisticsCall andBall.

As in the expectation-based approach, we can find the most significant spatial cluster by find-
ing the region that maximizesF (S), and perform statistical significance testing by randomiza-
tion. In this case, however, each replica dataset has all counts generated under the null hypothesis
ci ∼ Poisson(qallbi), where we use the maximum likelihood estimateqall = Call

Ball
from the original

dataset.

2.3.5 Derivation of the Gaussian expectation-based scan statistic

We now consider an expectation-based scan statistic with Gaussian-distributed counts. In this case,
in addition to the observed countsci, we are given the expected countµi and the expected standard
deviationσi for each spatial locationsi. Our goal, as before, is to determine if any spatial regionS
has counts significantly greater than baselines. Assuming that each countci has been drawn from
a Gaussian distribution with mean proportional toµi times the relative riskq, and with standard
deviationσi, we must determine whether any region has relative risk greater than 1. Thus we test
the null hypothesisH0 against the set of alternative hypothesesH1(S), where:

H0: ci ∼ Gaussian(µi, σi) for all spatial locationssi.
H1(S): ci ∼ Gaussian(qµi, σi) for all spatial locationssi in S, andci ∼ Gaussian(µi, σi) for all
spatial locationssi outsideS, for some constantq > 1.

Notice that we have assumed that the variance of counts does not increase inside the clusterS;
similar statistics can be easily derived for cases where the variance increases. As before, the alter-
native hypothesisH1(S) has one parameter,q (the relative risk in regionS), and the null hypothesis
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H0 has no parameters. Computing the likelihood ratio, and using the maximum likelihoodestimate
for the parameterq, we obtain the following expression:

F (S) =
maxq>1

∏

si∈S Pr(ci ∼ Gaussian(qµi, σi))
∏

si 6∈S Pr(ci ∼ Gaussian(µi, σi))
∏

si
Pr(ci ∼ Gaussian(µi, σi))

=
maxq>1

∏

si∈S Pr(ci ∼ Gaussian(qµi, σi))
∏

si∈S Pr(ci ∼ Gaussian(µi, σi))

Plugging in the equations for the Gaussian likelihood, and simplifying, we obtain:

F (S) =
maxq>1

∏

si∈S
1

σi

√
2π

e
− (ci−qµi)

2

2σ2
i

∏

si∈S
1

σi

√
2π

e
− (ci−µi)

2

2σ2
i

=
maxq>1

∏

si∈S e
− (ci−qµi)

2

2σ2
i

∏

si∈S e
− (ci−µi)

2

2σ2
i

= max
q>1

∏

si∈S

exp

(

(ci − µi)
2 − (ci − qµi)

2

2σ2
i

)

= max
q>1

exp





1 − q2

2

∑

si∈S

µ2
i

σ2
i

+ (q − 1)
∑

si∈S

ciµi

σ2
i





= max
q>1

exp

(

1 − q2

2
B′ + (q − 1)C ′

)

whereB′ =
∑

si∈S
µ2

i

σ2
i

andC ′ =
∑

si∈S
ciµi

σ2
i

. These sufficient statisticsB′(S) andC ′(S) can be

interpreted as weighted sums of the expectationsµi and countsci respectively, where the weighting

of a locationsi is inversely proportional to the coefficient of variationσ2
i

µi
. We find that the max-

imum likelihood value ofq is q = max(1, C′

B′ ). Plugging in this value ofq, we obtainF (S) =

exp
(

(C′)2

2B′ + B′

2 − C ′
)

, if C ′ > B′, andF (S) = 1 otherwise. BecauseF (S) is a function only of

the sufficient statisticsC ′(S) andB′(S), we again have an efficiently computable score function.
As above, we can find the most significant spatial clusterS∗ by maximizingF (S), and perform

statistical significance testing by randomization. To do so, we generate eachreplica dataset by
drawing all counts from the null hypothesisci ∼ Gaussian(µi, σi).

2.3.6 Derivation of the Gaussian population-based scan statistic

Finally, we consider a population-based scan statistic with Gaussian-distributed counts. Again, we
are given the observed countci, expected countµi, and expected standard deviationσi for each
locationsi. But now we assume that the counts are distributed asci ∼ Gaussian(qµi, σi), whereq
is the underlying rate, and search for regions with significantly higher rateinside than outside. Thus
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we test the null hypothesisH0 against the set of alternative hypothesesH1(S), where:

H0: ci ∼ Gaussian(qallµi, σi) for all spatial locationssi, for some constantqall.
H1(S): ci ∼ Gaussian(qinµi, σi) for all spatial locationssi in S, andci ∼ Gaussian(qoutµi, σi) for
all spatial locationssi outsideS, for some constantsqin > qout.

Computing the likelihood ratio, and using the maximum likelihood estimates of the rate parame-
tersqin, qout, andqall, we obtain the following expression:

F (S) =
maxqin>qout

∏

si∈S Pr(ci ∼ Gaussian(qinµi, σi))
∏

si 6∈S Pr(ci ∼ Gaussian(qoutµi, σi))

maxqall

∏

si
Pr(ci ∼ Gaussian(qallµi, σi))

Plugging in the equations for the Gaussian likelihood, and simplifying, we obtain:

F (S) =
maxqin>qout

∏

si∈S exp
(

− (ci−qinµi)
2

2σ2
i

)

∏

si 6∈S exp
(

− (ci−qoutµi)
2

2σ2
i

)

maxqall

∏

si
exp

(

− (ci−qallµi)2

2σ2
i

)

We now letB′
in, B′

out, andB′
all represent the sums

∑ µ2
i

σ2
i

for si insideS, for si outsideS, and for

all si respectively. Similarly, we letC ′
in, C ′

out, andC ′
all represent the sums

∑ ciµi

σ2
i

for si insideS,

for si outsideS, and for allsi respectively. Then this expression simplifies to:

F (S) =
maxqin>qout exp

(

−1
2q2

inB′
in + qinC ′

in − 1
2q2

outB
′
out + qoutC

′
out

)

maxqall
exp

(

−1
2q2

allB
′
all + qallC

′
all

)

We can then compute the maximum likelihood estimatesqin =
C′

in

B′

in
, qout =

C′

out

B′

out
, andqall =

C′

all

B′

all
,

if C′

in

B′

in
>

C′

out

B′

out
, andqin = qout = qall =

C′

all

B′

all
otherwise. Plugging in these maximum likelihood

values, we obtain:F (S) = exp
(

(C′

in)2

2B′

in
+

(C′

out)
2

2B′

out
−

(C′

all
)2

2B′

all

)

, if C′

in

B′

in
>

C′

out

B′

out
, andF (S) = 1

otherwise. Again,F (S) is efficiently computable as a function of the sufficient statistics of region
S and the global sufficient statisticsC ′

all andB′
all.

As above, we can find the most significant spatial clusterS∗ by maximizingF (S), and perform
statistical significance testing by randomization. To do so, we generate eachreplica dataset by
drawing all counts from the null hypothesisci ∼ Gaussian(qallµi, σi), where we use the maximum

likelihood estimateqall =
C′

all

B′

all
from the original dataset.

2.4 More scan statistics

Many other likelihood ratio scan statistics are possible, including models with simultaneous attacks
in multiple regions and models with spatially varying (rather than uniform) rates. We believe that
some of these more complex model specifications may have more power to detectrelevant and
interesting clusters, while excluding those potential clusters which are not relevant to the application
domain under consideration. In this section, we briefly discuss three suchmethods which may be
useful for disease surveillance as well as other application domains. Each method deals with one
confounding factor which the simple models do not account for: the Bernoulli-Poisson scan statistic
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is robust to outliers, the thresholded scan statistics are robust to small fluctuations in the underlying
rate, and the non-parametric scan statistic is robust to skewed and heavy-tailed count distributions.
The cost of this greater flexibility is less computational efficiency: many of these statistics cannot
be expressed in terms of the sufficient statistics of a region. The main goal of this overview is to
demonstrate the generality and flexibility of our statistical framework, and its ability to be adapted
to domains where simpler models are inadequate. A more extensive exploration of these methods is
beyond the scope of this thesis, but will be addressed in further work.

2.4.1 The Bernoulli-Poisson scan statistic

In some application domains, use of the simple scan statistic models discussed above results in a
large number of false positives due tooutliers, or individual spatial locations with counts that are
much higher than expected. While in some cases we are interested in detecting such very localized
increases, it is more often the case that these increases are due to irregularities in the data or other
irrelevant causes. For example, in our monitoring of over-the-counter drug sales data, we often
see stores with large spikes in sales on a given day, due to bulk purchases, inventory movements,
promotional sales, or errors in data collection. We typically want to ignore these outliers (since they
are not indicative of a disease outbreak), and only detect clusters thataffect multiple locations in an
area.

In the Bernoulli-Poisson scan statistic, we assume that all countsci are Poisson distributed with
meansqibi, wherebi is the expected count andqi is the relative risk at locationsi. The difference
from the standard expectation-based Poisson scan statistic is that theqi are drawn from a noisy
distribution, with probabilityε of being equal to some “outlier value”oi. The value ofε must be
specified as an input parameter (0 < ε < 1

2 ), while theoi will be selected by maximum likelihood
parameter estimation. Thus we compare the null hypothesisH0 to the set of alternative hypotheses
H1(S), where:

H0: for all spatial locationssi, qi = 1 with probability1 − ε, andqi = oi with probabilityε.
H1(S): for all spatial locationssi in S, qi = q with probability1 − ε, andqi = oi with probability
ε, for some constantq > 1. For all spatial locationssi outsideS, qi = 1 with probability1 − ε, and
qi = oi with probabilityε.

We now compute the likelihood ratio statistic, using maximum likelihood estimates of all free pa-
rameters:

F (S) =
maxq>1

∏

si∈S max((1 − ε)Pr(ci ∼ Poisson(qbi)), εmaxoi
Pr(ci ∼ Poisson(oibi)))

∏

si∈S max((1 − ε)Pr(ci ∼ Poisson(bi)), εmaxoi
Pr(ci ∼ Poisson(oibi)))

=
maxq>1

∏

si∈S max((1 − ε)Pr(ci ∼ Poisson(qbi)), ε Pr(ci ∼ Poisson(ci)))
∏

si∈S max((1 − ε)Pr(ci ∼ Poisson(bi)), ε Pr(ci ∼ Poisson(ci)))

=
maxq>1

∏

si∈S max
(

(1−ε)e−qbi (qbi)
ci

(ci)!
, εe−ci (ci)

ci

(ci)!

)

∏

si∈S max
(

(1−ε)e−bi (bi)ci

(ci)!
, εe−ci (ci)ci

(ci)!

)

=
maxq>1

∏

si∈S max((1 − ε)e−qbi(qbi)
ci , εe−ci(ci)

ci)
∏

si∈S max((1 − ε)e−bi(bi)ci , εe−ci(ci)ci)
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The denominator may be calculated easily by computing the maximum of the expressions(1 −
ε)e−bi(bi)

ci andεe−ci(ci)
ci for each spatial locationsi. All locations where the latter expression

is larger are outliers under the null hypothesis. The numerator is more difficult to calculate, as
we must compute the maximum likelihood value of the relative riskq. To do so, we note that the
functionf(q) = (1 − ε)e−qbi(qbi)

ci is concave downward with a maximum atq = ci

bi
. Thus, for

eachsi, we can compute the interval (qmin, qmax) such thatf(q) > εe−ci(ci)
ci . We obtainqmin =

− ci

bi
W

(

0,−1
e

(

ε
1−ε

) 1
ci

)

, andqmax = − ci

bi
W

(

−1,−1
e

(

ε
1−ε

) 1
ci

)

, whereW (·) is Lambert’s

W function. We now form a single sorted listZ = 〈zj〉 containing all distinctqmin and qmax

values greater than 1. These represent all the distinct intervals we must consider forq: q ∈ [1, z1],
q ∈ [z1, z2], . . ., q ∈ [zn−1, zn], q ∈ [zn,∞]. For each interval, we compute which locations are
and are not outliers, then compute the optimal value ofq for that interval: q = C

B
restricted to

that interval, whereC andB are respectively the total count
∑

ci and total baseline
∑

bi of all
non-outliers. This allows us to find the optimal value ofq for regionS, the optimal set of outliers
under the alternative hypothesisH1(S), and the scoreF (S). As in the simple scan statistic models,
the most significant region is the one which maximizesF (S), and we can compute the significance
of this region by randomization. We create replica datasets by sampling underthe null hypothesis
ci ∼ Poisson(qibi), whereqi = 1 for all non-outliers andqi = ci

bi
for all outliers under the null.

As an example of the computation of the Bernoulli-Poisson statistic, let us consider a region
with five locationssi, with (ci, bi) equal to(12, 10), (100, 3), (9, 11), (17, 10), and(22, 10) respec-
tively. Assumingε = 0.01, we find the intervals(qmin, qmax) equal to(0.43, 2.58), (24.2, 44.5),
(0.24, 1.94), (0.74, 3.27), and (1.07, 3.94) respectively. Thus we know that, under the null hy-
pothesisq = 1, the second and fifth locations are outliers. To find the optimal value ofq, we
must search the intervals[1, 1.07], [1.07, 1.94], [1.94, 2.58], [2.58, 3.27], [3.27, 3.94], [3.94, 24.2],
[24.2, 44.5], and[44.5,∞]. We obtain the optimal value in the interval[1.07, 1.94], where only the
second location is an outlier. In this case, we haveq = 12+9+17+22

10+11+10+10 = 1.46, with the resulting
scoreF (S) = 22.1. As the probability of outliersε increases, more locations become outliers:
for ε > .0825, the third location is also an outlier under the alternative hypothesis. Similarly, as ε
decreases, we have less outliers: the very anomalous location withci = 100 andbi = 3 is only a
non-outlier forε < 3× 10−73. Finally, we note that in the limit ofε → 0, the scoreF (S) converges
to that of the simple expectation-based Poisson scan statistic.

2.4.2 Thresholded scan statistics

Another potential source of false positives when simple scan statistics are used is slight variations
in the underlying rate parameterq. Our simple statistics attempt to detect any regions where the
rate is higher than expected: in the expectation-based approach, these are any regions where the
relative riskq > 1, and in the population-based approach, these are any regions where the rate
is higher inside the region than outside (qin > qout). For example, even a 1% increase in rate
will be detected if it corresponds to a large enough underlying population or baseline to make that
increase significant. However, in many applications, we are only interestedin regions where the
rate issubstantiallyincreased, so these slight fluctuations in rate can be thought of as statistically
but not practically significant. In practical applications such as disease surveillance, the simple scan
statistics often detect slight increases in count corresponding to a large spatial region, but these
regions are unlikely to be indicative of a “true cluster” (e.g. disease outbreak). It is more likely
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that the variations result from other, irrelevant factors such as model misspecification: we may have
underestimated the baseline for the given region, or failed to account forsome relevant covariates.
No matter how complex our model, there will always be some aspects of the real-world data that
we fail to account for, and we would like our statistics to be as robust to these as possible.

Our solution is to only detect clusters where the underlying rate is increasedby more than some
constantε ≥ 0. We term such methodsthresholded scan statistics, andε the detection threshold.
For the expectation-based statistic, we wish to detect regions where the relative risk q > 1 + ε,
and for the population-based statistic, we wish to detect regions where the rateqin > (1 + ε)qout.
For example,ε = 0.2 would correspond to detecting regions with more than 20% increases in rate,
while ε = 0 is equivalent to the simple scan statistics discussed above. A thresholded scan statistic
may be defined in a number of ways, depending on our answers to five distinct questions. First,
as noted above, we can define either expectation-based or population-based statistics. Second, we
must choose what sort of fluctuation in rates is allowable under the null hypothesis of no clusters.
This requires us to answer three questions: do we allow rates to fluctuate between1 − ε and1 + ε
or between 1 and1 + ε, do we allow fluctuations everywhere or only in a single region, and must
the amount of fluctuation be constant across locations or different for each location? Finally, we
must choose what sort of increase is allowable under the alternative hypothesisH1(S): we can ei-
ther assume a constant multiplicative increase, or a different amount of increase for each location in
the region. Here we consider one such statistic, which is expectation-based, allows counts to fluc-
tuate everywhere (and differently for each location) between 1 and1 + ε, and assumes a constant
multiplicative increase underH1(S). In this case, we compare the null hypothesisH0 to the set of
alternative hypothesesH1(S), where:

H0: ci ∼ Poisson(εibi) everywhere, where1 ≤ εi ≤ 1 + ε.
H1(S): ci ∼ Poisson(qεibi) inside regionS for some constantq > 1, andci ∼ Poisson(εibi)
outsideS, where1 ≤ εi ≤ 1 + ε.

For these models, we derive the following likelihood ratio statistic:

F (S) =
maxq>1

∏

si∈S max1≤εi≤1+ε Pr(ci ∼ Poisson(qεibi))
∏

si∈S max1≤εi≤1+ε Pr(ci ∼ Poisson(εibi))

=
maxq>1

∏

si∈S max1≤εi≤1+ε
e−qεibi (qεibi)

ci

(ci)!
∏

si∈S max1≤εi≤1+ε
e−εibi (εibi)ci

(ci)!

=
maxq>1

∏

si∈S max1≤εi≤1+ε e−qεibi(qεi)
ci

∏

si∈S max1≤εi≤1+ε e−εibi(εi)ci

The denominator of this expression can be computed easily by noting that the optimal value of
eachεi is ci

bi
restricted to the interval[1, 1 + ε]. The numerator is more difficult to calculate, as we

must compute the maximum likelihood value of the parameterq. To do so, we note that eachsi has
εi = ci

qbi
restricted to[1, 1+ε]. We will have1 ≤ ci

qbi
≤ 1+ε for the intervalq ∈ [qmin, qmax], where

qmin = ci

(1+ε)bi
andqmax = ci

bi
. We now form a single sorted listZ = 〈zj〉 containing all distinct

qmin andqmax values greater than 1. These represent all the distinct intervals we must consider
for q: q ∈ [1, z1], q ∈ [z1, z2], . . ., q ∈ [zn−1, zn], q ∈ [zn,∞]. For each intervalq ∈ [zj , zj+1],
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we can compute the optimal value ofq by dividing the locations into three groups: locations with
ci

bi
≤ zj , locations withci

bi
≥ (1 + ε)zj+1, and locations withzj < ci

bi
< (1 + ε)zj+1. For the

first set of locations, the optimal value ofεi will be 1 regardless of the value ofq. For the second
set of locations, the optimal value ofεi will be (1 + ε) regardless of the value ofq. For the third
set of locations, the optimal value ofεi will be ci

qbi
, and each location’s contribution to the score is

independent ofq. Thus, for values ofq restricted to[zj , zj+1], we have:

arg max
q

∏

max
1≤εi≤1+ε

e−qεibi(qεi)
ci

= arg max
q







∏

ci
bi
≤zj

e−qbiqci













∏

ci
bi
≥(1+ε)zj+1

e−(1+ε)qbi((1 + ε)q)ci













∏

zj<
ci
bi

<(1+ε)zj+1

e−ci

(

ci

bi

)ci







= arg max
q







∏

ci
bi
≤zj

e−qbiqci













∏

ci
bi
≥(1+ε)zj+1

e−(1+ε)qbiqci







= arg max
q

e−q(B1+(1+ε)B2)qC1+C2 =
C1 + C2

B1 + (1 + ε)B2

restricted to the interval[zj , zj+1]. In these equations,C1 andB1 are the total count
∑

ci and total
baseline

∑

bi for all locations with ci

bi
≤ zj , andC2 andB2 are the total count

∑

ci and total
baseline

∑

bi for all locations withci

bi
≥ (1 + ε)zj+1. Given the optimal value ofq for the interval,

we compute the scoreF (S) by setting allεi = ci

qbi
restricted to[1, 1 + ε]. Finally, we choose the

maximum score over all intervals to obtain the optimal value ofF (S).
As in the simple scan statistic models, the most significant region is the one which maximizes

F (S), and we can compute the significance of this region by randomization. We create replica
datasets by sampling under the null hypothesisci ∼ Poisson(εibi), where eachεi is equal toci

bi

restricted to the interval[1, 1 + ε].
In previous work, we proposed adiscriminativescan statistic model that computes the likelihood

ratio of the alternative hypothesisH1(S) to the null hypothesisH0(S) for a given regionS. One
discriminative version of the thresholded scan statistic, which we used in [118], compares the null
hypothesisH0(S): qin ≤ (1 + ε)qout to the alternative hypothesisH1(S): qin > (1 + ε)qout,
whereqin and qout are the underlying rates inside and outside regionS respectively. Thus we
have a thresholded statistic that is population-based, allows a constant rateincrease in a single
region under the null, and assumes a constant multiplicative increase underH1(S). While this
statistic is somewhat different from our generalized scan statistic framework (which assumes a
single composite null hypothesisH0 rather than a separate nullH0(S) for each region tested),
the discriminative thresholded scan statistic is efficiently computable, and it wasused successfully
to detect clusters in multidimensional disease surveillance and brain imaging datain [118]. The
thresholded scan statistic results presented in Chapters 3 and 7 rely on this version of the statistic;
we also plan to compare these results to the other thresholded scan statistic models discussed above.
For the discriminative thresholded scan statistic, we derive the likelihood ratiostatistic as follows:

F (S) =
maxqin>(1+ε)qout

∏

si∈S Pr(ci ∼ Poisson(qinbi))
∏

si∈G−S Pr(ci ∼ Poisson(qoutbi))

maxqin≤(1+ε)qout

∏

si∈S Pr(ci ∼ Poisson(qinbi))
∏

si∈G−S Pr(ci ∼ Poisson(qoutbi))



2.4. MORE SCAN STATISTICS 45

=

(

Cin

(1 + ε)Bin

)Cin
(

Cout

Bout

)Cout
(

Call

Ball + εBin

)−Call

if Cin

Bin
> (1 + ε)Cout

Bout
, where the counts and baselines are defined as in the Poisson population-

based statistic. Then the most significant region can be obtained by maximizingF (S), and we can
compute statistical significance by randomization under the null hypothesisH0(S).

2.4.3 The non-parametric scan statistic

As discussed above, our expectation-based scan statistics attempt to modelthe expected distribution
of counts for each spatial location under the null hypothesis of no clusters, then find regions where
the counts are higher than expected. The simple expectation-based statisticsassume that the counts
are generated by some parametric model, then learn the parameters of this model, typically from
historical data. For example, the Poisson expectation-based statistic learnsthe baseline (expected
count)bi for each spatial location, while the Gaussian expectation-based statistic learns both the
expected countµi and the expected varianceσi. The disadvantage of these model-based approaches
is that they rely heavily on our distributional assumptions: for example, the Poisson statistic cannot
account for overdispersion or underdispersion of counts, and neither Poisson nor Gaussian statistics
can account for heavy-tailed count distributions.

Our solution is anon-parametric scan statisticapproach, where we make no model assump-
tions on the distribution of counts, but instead use the empirical distribution of historical counts for
each spatial location. Let us assume that we have a countci and a time series of past countszt

i

(1 ≤ t ≤ T ) for each spatial locationsi. Furthermore, let us make three simplifying assumptions:
that the historical data contains no relevant clusters, that the time series of counts for each location
is stationary, and that counts are uncorrelated. Then under the null hypothesis of no clusters, we
expect that the current countci for each location will be drawn from the same distribution as the
historical countszt

i for that location. Thus we can define the empiricalp-valuePi for each spatial
locationsi to be the ratioTbeat+1

T+1 , whereTbeat is the number of historical countszt
i larger thanci.

Under the null hypothesis, and given the simplifying assumptions above, each location’s empirical
p-value will be asymptotically uniformly distributed on[0, 1]. We wish to detect regionsS where the
countsci are higher than expected, and thus where thePi are lower than expected. In other words,
we wish to test the null hypothesisH0 against the set of alternative hypothesesH1(S), where:

H0: Pi ∼ Uniform[0, 1] everywhere.
H1(S): Pi ∼ g(x) insideS, andPi ∼ Uniform[0, 1] outsideS, for some unknown probability
distributiong(x) with cumulative distributionG(x) satisfyingG(0) = 0, G(1) = 1, andG(α) ≥ α
for all 0 ≤ α ≤ 1.

To test this hypothesis, we use the “higher criticism” method of Donoho and Jin[37]. We first
compute the empiricalp-valuePi for each spatial location. For any constant0 < α < 1, we expect
eachPi to be less thanα with probabilityα under the null hypothesis, or with probability at least
α under any alternative hypothesisH1(S) such thatsi ∈ S. For a regionS, we can defineN(S)
to be the number of spatial locations inS, andNα(S) to be the number of spatial locations inS
with Pi < α. Then we expectNα(S) to be binomially distributed with meanαN(S) and variance
α(1 − α)N(S) underH0, and we expect the values ofNα(S) to be larger thanαN(S) under the
alternative hypothesisH1(S). Following [37], we can select a range ofα that we are interested in,



46 CHAPTER 2. A GENERAL STATISTICAL FRAMEWORK FOR CLUSTER DETECTION

αmin < α < αmax, and we can define the non-parametric scan statistic as follows:

F (S) = max
αmin<α<αmax

Nα(S) − αN(S)
√

α(1 − α)N(S)

As usual, we can compute the most significant regionS∗ by finding the maximum value ofF (S),
and calculate the statistical significance of this region by randomization testing.For the non-
parametric statistic, we can generate the empiricalp-values of the replica datasets directly, drawing
each value from the uniform distribution on[0, 1]. An alternative method of significance testing, in
keeping with the non-parametric approach, would be to compute the test statisticF ∗ = maxS F (S)
of the historical data for each time stept, then compute the empiricalp-value of the maximum
region score using these values.

To use the non-parametric scan statistic in practice, we must consider the simplifying assump-
tions above. Most importantly, we do not expect the time series of counts to bestationary in most
applications, but must adjust for covariates such as seasonal and day-of-week trends. Thus we must
apply the statistic to counts that have been adjusted for these and other relevant covariates. Addition-
ally, we can account for correlated counts by examining the pairwise correlations of the empirical
p-values: more precisely, we can add the quantity2

∑

si1
,si2

∈S(Pr(Pi1 < α, Pi2 < α) − α2) to the

variance of the binomial distribution forNα(S), and adjust the score functionF (S) accordingly.
Randomization testing can be performed by generating correlated counts orby using the empirical
p-value of the maximum score, as discussed above.



Chapter 3

Fast algorithms for spatial cluster
detection

3.1 Introduction

This chapter focuses on computational methods for rapid and efficient spatial cluster detection. Effi-
cient cluster detection algorithms are necessary for two reasons: first, because we are often search-
ing for clusters in huge spatial datasets, making naı̈ve methods computationally infeasible, and
second, because application domains such as disease surveillance require us to detect and respond
to clusters as soon as possible. When responding to an emerging outbreakof disease, every hour
of earlier detection has the potential to significantly reduce morbidity and mortalityrates [149].
There are three sources of “lag time” between the onset of an outbreak and the earliest time we
could possibly detect the outbreak: the time it takes patients to generate indicative data (i.e. visiting
emergency departments or buying over-the-counter drugs), the time to collect this data (e.g. by the
National Retail Data Monitor) and make it available for analysis, and the time it takes to analyze
the data and report results. For massive datasets, the lag time resulting fromdata analysis has the
potential to be huge, but faster algorithms will help to reduce this lag time. We typically receive
syndromic data on a daily or hourly basis, and thus we want to achieve “near real time” analysis,
processing data in minutes or hours rather than in days or weeks. Moreover, our algorithms should
be fast enough that multiple such analyses (e.g. different statistical models, or different data streams)
can be performed, giving public health officials a better situational awareness. An eventual goal of
this work is to enable real-time cluster detection and investigation, allowing public health officials
to explore multiple time series and perform multiple spatial scan queries “on the fly.” Our work
toward this goal is discussed in Chapter 8.

The centerpiece of my discussion of computational methods is the “fast spatial scan,” a new
multi-resolution search algorithm which allows us to perform the spatial scan hundreds or thou-
sands of times faster without any loss of accuracy. This algorithm relies ona new type of space-
partitioning data structure which we call the “overlap-kd tree,” and this datastructure might also be
useful for speeding up other spatial search algorithms. The fast spatial scan is presented in Section
3.3; before presenting this method, I provide an overview of the computational problem and describe
the standard “näıve” computational methods in Section 3.2. Finally, Section 3.4 presents results of
running the fast spatial scan on various public health and brain imaging datasets, and compares the
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fast spatial scan to other computational approaches. I also discuss computational methods further in
Chapter 4 (space-time scanning) and Chapter 5 (the Bayesian scan statistic).

Much of this chapter has been adapted from our papers in KDD 2004 [112], NIPS 2004 [118],
and the 2004 National Syndromic Surveillance Conference [119], as well as our chapters in the
Handbook of Biosurveillance[115] andSpatial and Syndromic Surveillance for Public Health[114].
I wish to thank my co-authors Andrew Moore, Maheshkumar Sabhnani, Francisco Pereira, and
Tom Mitchell, as well as editors Mike Wagner and Andrew Lawson, for theircontributions. The
fast spatial scan was first derived for the two-dimensional case in [112], and extended to the multi-
dimensional case in [118]; it was first presented to the public health communityin [114, 119]. We
also presented an earlier, approximate version of the fast spatial scan in[111, 110], but we focus
here on the exact, more efficient method presented in our later work.

3.1.1 Searching for elongated regions

Most of the previous approaches to cluster detection search forcompactclusters, such as circles
(e.g. Kulldorff [78]) or squares. One exception to this is the work of Kulldorff et al. [86], who
search over a subset of the elliptical clusters, but this method is computationally infeasible for even
moderately-sized datasets. Our fast spatial scan method, however, allows for rapid and efficient
detection ofelongatedclusters as well: we search over the space of rectangular clusters. Thisex-
tension is extremely important in epidemiological applications because disease clusters are often
elongated: airborne pathogens may be blown by wind, creating an ellipsoid “plume,” and water-
borne pathogens may be carried along the path of a river. In each of these cases, the resulting
clusters have high aspect ratios, and a test for compact clusters will have low power for detecting
the affected region. Detection of clusters with high aspect ratios is also important in brain imaging,
because of the “folded sheet” structure of the brain, and in astrophysics, because galaxies and other
astronomical objects may be elongated in shape.

While our discussion below focuses on finding “axis-aligned” rectangular regions, assuming
that data points have been aggregated to a grid, the fast spatial scan canbe easily extended to find
rectangular regions which are not aligned with the coordinate axes. One simple method of doing
this is to examine multiple “rotations” of the data, mapping each to a separate grid and computing
the most significant region and its score for each grid. In this case, we mustalso perform the same
rotations on each replica grid, and thus the complexity of the algorithm is multiplied by the number
of rotations. However, if we have information about relevant conditions such as wind direction or
the flow of a river, we can use this information to align the coordinate axes, reducing or avoiding
the need to examine multiple rotations.

3.1.2 Searching for multidimensional regions

In [118], we extended the fast spatial scan to multidimensional datasets, dramatically increasing the
scope of problems for which these techniques can be used. In addition to datasets with more than
two spatial dimensions (for example, functional magnetic resonance imaging data, which consists
of a 3D image of brain activity), we can also examine data with a temporal component, or where
we wish to take demographic information such as age and gender into account. For example, for
biosurveillance datasets (e.g. over-the-counter drug sales data), we can usetimeas a third, “pseudo-
spatial” dimension, in addition to the spatial dimensions of longitude and latitude. Searching for
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clusters in this three-dimensional space allows us to search forpersistent spatial clusters: spatial
regions where the counts are higher than expected for some length of time. As another example, we
can use gender and age decile as pseudo-spatial dimensions in the Emergency Department dataset,
and search for clusters in this four-dimensional space. This gives ourtest higher power to detect
outbreaks which affect different patient demographics to different extents. For example, if a disease
primarily strikes elderly males, we might find a cluster with gender = male and age decile≥ 6 in
some spatial region, and this cluster may not be detectable from the combined data. This method
accounts correctly for the multiple hypothesis testing resulting from testing different combinations
of genders and age groups; if we were to instead perform a separate test at levelα on each combi-
nation of gender and age decile, the overall false positive rate would be much higher thanα due to
multiple testing.

3.2 Computational issues in spatial scanning

In this section, we return to the question of what set of regions to search over (first considered in the
generalized spatial scan framework of Chapter 2), and discuss how to perform this search efficiently.
First, we note that the run time of the naı̈ve spatial scan can be approximated by the product of three
factors: the number of replicationsR, the average number of regions searched per replication|S|,
and the average time to search a regiont. The number of replicationsR is typically fixed in advance,
but we can stop early if many replicas beat the original search area (i.e. the maximum region scores
F ∗ of the replicas are higher than the maximum region scoreF ∗ of the original). If this happens,
it is clear that no significant clusters are present. The other two factors|S| andt depend on both
the set of regions to be searched and the algorithm used to search these regions. For a set ofM
distinct spatial locations in two dimensions, the number of circular or axis-aligned square regions
(assuming that the size of the circle or square can vary) is proportional toM3, while the number
of axis-aligned rectangular regions (assuming that both dimensions of the rectangle can vary) is
proportional toM4. For non-axis-aligned squares or rectangles, we must also multiply this number
by the number of different orientations searched. However, most algorithms only search a subset
of these regions: for example, Kulldorff’s algorithm [80] searches only circles centered at one of
theM spatial locations, and the number of such regions is proportional toM2, not M3. Another
possibility is to aggregate the spatial locations to a grid, either uniform or based on the distinct
spatial coordinates of the data points. For a two-dimensional,N × N grid, the number of axis-
aligned square regions is proportional toN3, and the number of axis-aligned rectangular regions
is proportional toN4. Whatever set of regions we choose, the simplest possible implementation
of the scan statistic is to search each of these regions by stepping through the M spatial locations,
determining which locations are inside and outside the region, computing the aggregate baselines
and counts, and applying the score function. Thus in this approach, we have|S| (number of regions
searched per replication) equal to the total number of distinct regions, and t (time to search a region)
proportional to the number of spatial locationsM .

There are several possible ways to improve on the runtime of this naı̈ve approach. First, we can
reduce the time to search a regiont, making this search time independent of the number of spatial
locationsM . We consider two possible methods for searching a region in constant time. The first
method, which we call “incremental addition,” assumes that we want to search over all regions of
a given type: for example, in the approach of Kulldorff [80], we want tosearch all distinct circular
regions centered at one of the spatial locations. To do so, we increase the region’s size incrementally,
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such that one new spatial location at a time enters the region; for each new location, we can add that
location’s count and baseline to the aggregates, and recompute the scorefunction. For example, in
Kulldorff’s method, for each locationsi we keep a list of the other locations, sorted from closest to
furthest away. Then we can search over theM distinct circular regions centered atsi by adding the
other points one at a time in order. Because the sorting only has to be done once (and does not have
to be repeated for each replication) this results in constant search time per region. In other words,
Kulldorff’s method requires time proportional toM2 to search over all of theM2 regions. This
must be done for each of theR replications, giving total search time proportional toRM2.

The second method assumes that points have been aggregated to anN × N grid, and that we
are searching over squares or rectangles. We can use the well-known“cumulative counts” tech-
nique to search in constant time per region. We first precompute a matrix of thecumulative counts
ccij =

∑

k=1...i

∑

l=1...j ckl in O(N2) operations, using dynamic programming. We can then com-
pute each region’s count by adding/subtracting at most four cumulative counts, and similarly for
baselines.1 Thus we can calculate the score of a region inO(1) by computing the countC and
baselineB, then applying the score functionF (C, B). As a result, we can perform the scan statistic
for gridded square or rectangular regions in time proportional toR times the number of regions,
i.e. RN3 or RN4 for square or rectangular regions respectively. We also note that the cumula-
tive counts technique can be used ind dimensions: in this case, we must add/subtract a number of
counts that scales exponentially with dimension but is still independent of the grid sizeN . Thus a
näıve search requires timeO(RNd+1) orO(RN2d) for d-dimensional hypercubes ord-dimensional
hyper-rectangles respectively.

Even if we can search in constant time per region, the spatial scan statistic is still extremely
computationally expensive, because of the large number of regions searched. For example, to search
over all rectangular regions on a256 × 256 grid, and perform randomization testing (assuming
R = 999 replications), we must search a total of 1.1 trillion regions, which would take 14-45
days on our test systems. This is clearly far too slow for real-time detection ofemerging disease
outbreaks. While one option is to simply search fewer regions, this reducesour power to detect
clusters. A better option is provided by the fast spatial scan algorithms discussed below, which
allow us to reduce the number of regions searched, but without losing anyaccuracy. The idea is
that, since we only care about the most significant regions, i.e. those with thehighest scoresF (S),
we do not need to search a regionS if we know that it will not have a high score. Thus we start
by examining large regionsS, and if we can show that none of the smaller regions contained in
S can have high scores, we do not need to actually search each of these regions. Thus, we can
achieve the same result as if we had searched all possible regions, but by only searching a small
fraction of these. Further speedups are gained by the use of multiresolution data structures, which
allow us to efficiently move between searching at coarse and fine resolutions. These methods are
able to search hundreds or thousands of times faster than an exhaustivesearch, without any loss of
accuracy (i.e. the fast spatial scan finds exactly the same region andp-value as exhaustive search).
As a result, these methods have enabled us to perform spatial scans on datasets such as nationwide
over-the-counter sales data, from over 20,000 stores in near real-time,searching for disease clusters
in minutes or hours rather than days or weeks.

1More precisely, we have
P

k=i1...i2

P

l=j1...j2
ckl = cci2,j2 − cci2,j1−1 − cci1−1,j2 + cci1−1,j1−1, wherecci,0 =

cc0,j = 0.
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3.3 The fast spatial scan algorithm

For the fast spatial scan, we consider the case in which data have been aggregated to ad-dimensional
grid. LetG be ad-dimensional grid of cells, with sizeN1×N2× . . .×Nd. Each cellsi ∈ G (where
i is a d-dimensional vector) is associated with acountci and abaselinebi. As discussed above,
the count of a cell might represent the number of disease cases occurring in that geographical area
over some time interval, while the baseline of that cell might represent an expected count (estimated
from past data) or at-risk population. Given these counts and baselines, our goal is to search over
all d-dimensional rectangular regionsS ⊆ G, and find regions where the total countC(S) =

∑

S ci

is higher than expected, given the baselineB(S) =
∑

S bi. In addition to discovering these high-
density regions, we must also perform statistical testing to determine whether these regions are
significant. Though we focus on finding the single, most significant region, the method can be
iterated (removing each significant cluster once it is found) to find multiple significant regions.

As discussed in the previous chapter, we can find the most significant region and itsp-value by
deriving a score functionF (S) based on the null and alternative hypotheses we wish to compare,
finding the regionS∗ with the maximum value ofF (S), and performing randomization testing to
calculate significance. We present a fast search algorithm which is applicable to a general function
F (S), whereF (S) is based on the total count of regionS, C(S) =

∑

S ci, and the total baseline
of regionS, B(S) =

∑

S bi. Thus we will often writeF (C, B), whereC andB are the count and
baseline of the region under consideration. In this discussion, we assumethat the score functionF
satisfies the following three intuitive properties:

1. For a fixed baseline, score increases monotonically with count:∂F
∂C

(C, B) ≥ 0 for all (C, B).

2. For a fixed count, score decreases monotonically with baseline:∂F
∂B

(C, B) ≤ 0 for all (C, B).

3. For a fixed ratioC
B

, score increases monotonically with count and baseline:∂F
∂B

(C, B) +
C
B

∂F
∂C

(C, B) ≥ 0 for all (C, B).

The first two properties state that an overdensity of counts is present when count is large relative
to baseline; thus score will be increased by either increasing the count ordecreasing the baseline.
The third property states, in essence, that an overdensity of counts is more significant when the
underlying count and baseline are large. As a simple example, a region where 20% of the population
is sick (C

B
= .20) might be very significant if it represented ten thousand sick people out of fifty

thousand, but not so significant if it represented five people, one of whom is sick. More generally,
smaller counts and baselines will typically result in higher variance in the ratioC

B
. For example,

assuming that counts are Poisson distributed with means proportional toB, the variance ofC
B

is
proportional to B

B2 = 1
B

. Thus a higher than expected ratio of count to baseline will be increased in
significance when count and baseline are large.

Here we present afast spatial scanalgorithm which is exact (always finds the correct value of
F ∗ and the corresponding regionS∗) and yet is much faster than naı̈ve search. The key intuition
is that, since we only care about finding the highest scoring region, we donot need to search over
every single rectangular region: in particular, we do not need to searcha set of regions if we can
prove that none of them can haveF (S) ≥ F ∗. As a simple example, if a given region has a very
low count, we may be able to conclude thatno subregion contained in that region can have a score
higher thanF ∗, and thus we do not need to actually compute the score of each subregion.Thus we
use a top-down,branch-and-boundapproach: we maintain the current maximum scoreF ∗ of the
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regions we have searched so far, calculate upper bounds on the scores of subregions contained in a
given region, andpruneregions whose upper bounds are less than the current value ofF ∗. When
searching a replica grid, we care only whetherF ∗ of the replica grid is greater thanF ∗(G). Thus
we can useF ∗ of the original grid for pruning on the replicas, and can stop searching areplica if we
find a region withF (S) > F ∗(G).

3.3.1 The overlap-kd tree data structure

Our top-down approach to cluster detection can be thought of as a multiresolution search of the
space under consideration: we search first at coarse resolutions (large regions), then at successively
finer resolutions (smaller regions) as necessary. This suggests that a hierarchical, space-partitioning
data structure such as kd-trees [13, 127], mrkd-trees [34], or quadtrees [48, 133] may be useful in
speeding up our search. However, our desire for an exact solution makes it difficult to apply these
data structures to our problem. In a kd-tree, each spatial region is recursively partitioned into two
disjoint “child” regions, each of which can then be further subdivided.The difficulty, however, is
that many subregions of the parent are not contained entirely in either child, but overlap partially
with each. Thus, in addition to recursively searching each child region, we must also search over
all of these “shared” regions at each level of the tree. Ford-dimensional data, there areO(N2d)
shared regions even at the top level of the tree (i.e. regions partially overlapping both halves of
grid G). Thus an exhaustive search over all such regions is too computationally expensive, and
a different partitioning approach is necessary. A second option would be to work in bottom-up
fashion, attempting to find the two “pieces” of the highest scoring region, one in each child, and
then merge the two. This approach fails because of the non-monotonicity of the score function: the
highest scoring region may have ahigherscore than either of its two pieces.

Here we improve on the top-down search idea by using a new data structure, the overlap-kd tree,
where the children of a region overlap. The idea of overlapping childrenis common in the literature,
and has been used in data structures including R-trees [62]. The difference is that our data structure
must be optimized for the task of searching over all regions to find the highestscoring region, rather
than dynamic insertion and deletion of spatial data. Since we cannot affordto do individual tree
searches for each region, an R-tree is too inefficient for our searchtask, and instead we consider a
new variant of the kd-tree with overlapping children.

An initial step toward the overlap-kd tree data structure can be seen by considering two divisions
of a two-dimensional rectangular spatial regionS: first, into its left and right halves (which we
denote byS1 andS2), and second, into its top and bottom halves (which we denote byS3 andS4).
Assuming thatS has sizek1 × k2, this means thatS1 andS2 have size1

2k1 × k2, andS3 andS4

have sizek1×
1
2k2. Considering these four (overlapping) halves, we can show that any subregion of

S either a) is contained entirely in (at least) one ofS1 . . . S4, or b) contains the centroid ofS. Thus
one possibility would be to searchS by exhaustively searching all regions containing its centroid,
then recursing the search on its four “children”S1 . . . S4. Again, there areO(N2d) “shared” regions
at the top level of the tree (i.e. regions containing the centroid of gridG), so an exhaustive search is
infeasible.

Our solution is a partitioning approach in which adjacent regions partially overlap, a technique
we call “overlap-multiresolution partitioning.” Again we consider the divisionof S into its left,
right, top, and bottom “children.” However, while in the discussion above each child contained
exactly half the area ofS, now we let each child containmorethan half the area. We again assume
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Figure 3.1: Overlap-multiresolution partitioning of regionS (for d = 2). Any subregion ofS either
a) is contained in someSi, i = 1 . . . 4, or b) containsSC .

that regionS has sizek1 × k2, and we choose fractionsf1, f2 > 1
2 . ThenS1 andS2 have size

f1k1 × k2, andS3 andS4 have sizek1 × f2k2. This partitioning (forf1 = f2 = 3
4 ) is illustrated in

Figure 3.1. Note that there is a regionSC common to all four children; we call this region thecenter
of S. The size ofSC is ((2f1 − 1)k1 × (2f2 − 1)k2), and thus the center has non-zero area. When
we partition regionS in this manner, it can be proved that any subregion ofS either a) is contained
entirely in (at least) one ofS1 . . . S4, or b) contains the center regionSC . Figure 3.1 illustrates each
of these possibilities.

This partitioning approach may be extended to arbitrary dimension, resulting ina novel data
structure which we term anoverlap-kd tree. The overlap-kd tree, like kd-trees and quadtrees, is a
hierarchical, space-partitioning data structure. The root node of the tree represents the entire space
under consideration (i.e. the entire gridG), and each other node represents a subregion of the grid.
Each non-leaf node of ad-dimensional overlap-kd tree has2d children, an “upper” and a “lower”
child in each dimension. For example, in three dimensions, a node has six children: upper and lower
children in thex, y, andz dimensions. The overlap-kd tree is different from the standard kd-tree
and quadtree in that adjacent regions overlap: rather than splitting the region in half along each
dimension, instead each child containsmorethan half the area of the parent region. In general, let
regionS have sizek1 × k2 × . . . × kd. Then the two children ofS in dimensionj (for j = 1 . . . d)
have sizek1 × . . . × kj−1 × fjkj × kj+1 × . . . × kd, where1

2 < fj < 1. Defining the centerSC

as the region common to all of these2d children, it can be proved (as in the two-dimensional case)
that any subregion ofS either a) is contained entirely in at least one ofS1 . . . S2d, or b) contains the
center regionSC . A picture of this partitioning in the three-dimensional case is given in Figure 3.2.

Now we can search all subregions ofS by recursively searchingS1 . . . S2d, then searching all
of the regions contained inS which contain the centerSC . Unfortunately, there may still be a large
number of such “outer regions”: at the top level there areO(N2d) regions contained in gridG which
contain its centerGC . However, since we know that each such region contains the large region GC ,
we can place very tight bounds on the score of these regions, often allowing us to prune most or all
of them. We discuss how these bounds are calculated in the following subsection. Thus the basic
outline of our search procedure (ignoring pruning, for the moment) is:

overlap-search(S)
{

call base-case-search(S)
define child regions S_1..S_2d, center S_C as above
call overlap-search(S_i) for i=1..2d
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Figure 3.2: Overlap-multiresolution partitioning of regionS (for d = 3). Any subregion ofS either
a) is contained in someSi, i = 1 . . . 6, or b) containsSC .

for all S’ such that S’ is contained in S and contains S_C,
call base-case-search(S’)

}

Now we consider how to select the fractionsfi for each call of overlap-search, and characterize
the resulting setΦ of regionsS on which overlap-search(S) is called. RegionsS ∈ Φ are called
gridded regions, and regionsS /∈ Φ are calledouter regions. We begin the search by calling overlap-
search(G). Then for each recursive call to overlap-search(S), where the size ofS is k1×. . .×kd, we
set eachfi based on the value ofki: fi = 3

4 if ki = 2r for some integerr, andfi = 2
3 if ki = 3× 2r

for some integerr. For simplicity, we assume that allNi are either a power of two, or three times a
power of two, and thus all region sizeski will fall into one of these two cases. For instance, if the
original gridG has size64 × 64, then the children ofG will be of sizes64 × 48 and48 × 64, and
the grandchildren ofG will be of sizes64 × 32, 48 × 48, and32 × 64. Repeating this partitioning
recursively down to regions of size 1 (or larger, if we so choose), weobtain the overlap-kd tree
structure. Ford = 2, the first two levels of the overlap-kd tree are shown in Figure 3.3. Note that
even though gridG has four child regions, and each of its child regions has four children,G has
only ten (not 16) distinct grandchildren, several of which are the child of multiple regions. The X’s
on the tree will be discussed later, and can be ignored for now.

The overlap-kd tree has several useful properties, which we present here without proof. First,
for every rectangular regionS ⊆ G, eitherS is a gridded region (contained in the overlap-kd tree),
or there exists a unique gridded regionS′ such thatS is an outer region ofS′ (i.e. S is contained in
S′, and contains the center region ofS′). This means that, if overlap-search is called exactly once
for each gridded region, and no pruning is done, then base-case-search will be called exactly once
for every rectangular regionS ⊆ G. In practice, we will prune many regions, so base-case-search
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X XXXX X

Figure 3.3: The first two levels of the two-dimensional overlap-kd tree. Each node represents a
gridded region (denoted by a thick rectangle) of the entire dataset (thin square and dots).

will be calledat most oncefor every rectangular region, and every region will be either searched or
pruned. The second nice property of our overlap-kd tree is that the total number of gridded regions
|Φ| is O((N log N)d) rather thanO(N2d). This implies that, if we are able to prune (almost) all
outer regions, we can find the most significant region inO((N log N)d) time. In fact, we may not
even need to search all gridded regions, so in many cases the search willbe even faster.

Before we consider how to calculate score bounds and use them for pruning, we must first deal
with an essential issue in searching overlap-kd trees. Since a child regionmay have multiple parents,
how do we ensure that each gridded region is examined only once, ratherthan being called recur-
sively by each parent? One simple answer is to keep a hash table of the regions we have examined,
and only call overlap-search(S) if regionS has not already been examined. The disadvantage of this
approach is that it requires space proportional to the number of griddedregions,O((N log N)d),
and spends a substantial amount of time doing hash queries and updates. Amore elegant solution
is what we calllazy expansion: rather than calling overlap-search(Si) on all the children of a region
S, we selectively expand only certain children at each stage, in such a waythat there is exactly one
path from the root of the overlap-kd tree to any node of the tree. One such scheme is shown in
Figure 3.3: if the path between a parent and child is marked with anX, lazy expansion does not
make that recursive call. No extra space is needed by this method; instead,a simple set of rules is
used to decide which children of a node to expand. A child is expanded if it has no other parents,
or if the parent node has the highestpriority of all the child’s parents. We give parents with lower
aspect ratios priority over parents with higher aspect ratios: for example, a 48 × 48 parent would
have priority over a64 × 32 parent if the two share a48 × 32 child. This rule allows us to perform
variants of the search where regions with very high aspect ratios are not included; an extreme case
would be to only search for squares, as in our earlier fast spatial scanwork [111]. Within an aspect
ratio, we fix an arbitrary priority ordering. Since we maintain the property that every node is ac-
cessible from the root, the correctness of our algorithm is maintained: every gridded region will be
examined (if no pruning is done), and thus every regionS ⊆ G will be either searched or pruned.
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3.3.2 Score bounds

We now consider which regions can bepruned(discarded without searching) during our multireso-
lution search procedure. First, given some regionS, we must calculate an upper bound on the scores
F (S′) for regionsS′ ⊂ S. More precisely, we are interested in two upper bounds: a bound on the
score ofall subregionsS′ ⊂ S, and a bound on the score of theouter subregions ofS (those re-
gions contained inS and containing its centerSC). We compare these to the maximum region score
F ∗ = max F (S) that we have found so far in our search. If the first bound is less than or equal to
the current value ofF ∗, we can prune regionS completely; we do not need to search any (gridded
or outer) subregion ofS. If only the second bound is less than or equal to the current value ofF ∗,
we do not need to search the outer subregions ofS, but we must recursively call overlap-search on
the gridded children ofS. If both bounds are greater than the current value ofF ∗, we must both
recursively call overlap-search and search the outer regions.

Score bounds are calculated based on various pieces of information about the subregions ofS,
including: upper and lower boundsbmax, bmin on the baseline of subregionsS′; an upper bound
dmax on the ratioC

B
of S′; an upper bounddinc on the ratioC

B
of S′ − SC ; and a lower bounddmin

on the ratioC
B

of S − S′. We also know the countC and baselineB of regionS, and the count
ccenter and baselinebcenter of regionSC .

We will focus here on finding an upper bound on the scores of all subregions ofS containing
the center ofS. (We can also upper bound the scores ofall subregions ofS as a special case, where
the baseline, count, and area of the center are zero.) To compute this bound, let cin andbin be the
count and baseline ofS′. To find an upper bound onF (S′), we must calculate the values ofcin and
bin which maximizeF subject to the given constraints:

1. cin−ccenter

bin−bcenter
≤ dinc

2. cin

bin
≤ dmax

3. C−cin

B−bin
≥ dmin

4. bmin ≤ bin ≤ bmax

While we could use convex programming to solve this maximization problem in the general
case, the properties of the score function make this task significantly easier, allowing us to calculate
the optimal values ofcin andbin. Since∂F

∂C
≥ 0, we know that the maximum value ofF for a given

bin occurs whencin is maximized subject to the constraints. We solve the first three constraints for
cin, giving uscin = min(C1, C2, C3), where:

C1 = dincbin − (dincbcenter − ccenter) = dincbin − Z1

C2 = dmaxbin

C3 = dminbin + (C − dminB) = dminbin + Z3

In the typical case,2 we havedmin ≤ dmax ≤ dinc, Z1 > 0, andZ3 > 0: this means thatcin = C1

for small bin, cin = C2 for moderatebin, andcin = C3 for largebin, as illustrated in Figure 3.4.

2We must also handle a variety of special cases where one or more of these inequalities are violated, and some
constraints may not be relevant. We omit the details of this case-by-case analysis.
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Figure 3.4: Maximizing countcin for a given baselinebin. Count must be less thanC1(bin), C2(bin),
andC3(bin).

Thus we can solve for the intersection pointsB12, B13, andB23, whereCi ≤ Cj for bin ≤ Bij ,
and we use these quantities to find the maximum allowable countcin for a givenbin. Solving the
equations, we find thatB12 = Z1

dinc−dmax
, B13 = Z1+Z3

dinc−dmin
, andB23 = Z3

dmax−dmin
. In the typical

case,3 we have0 < B12 ≤ B13 ≤ B23 < ∞. In this case, we use the values ofB12 andB23, and the
valueB13 is not needed. Then the countcin = ccenter + dinc(bin − bcenter) for bcenter ≤ bin ≤ B12,
cin = dmaxbin for B12 ≤ bin ≤ B23, andcin = dmaxB23 + dmin(bin − B23) for bin ≥ B23. This
is illustrated by Figure 3.5: the regionS is separated into four “layers” of differing rates (ratio of
counts to baseline). Starting from the inside, we have the center (with a known baselinebcenter and
countccenter), a layer of high ratedinc, a layer of moderate ratedmax, and a layer of low ratedmin.

Now we can writecin as a function ofbin, and thus the scoreF becomes a function of the single
variablebin. Where does the maximum of this function occur? Again we rely on propertiesof
the functionF (C, B), and a case-by-case analysis is necessary. In the typical casedinc > dmax >
ccenter

bcenter
, we know that the score increases with baseline in the “high rate” and “moderate rate” layers.

This follows from two properties of our score function:∂F
∂C

≥ 0 and∂F
∂B

+ C
B

∂F
∂C

≥ 0. In the high rate

layer, the ratio of counts to baselines forS′
(

cin

bin

)

increases fromccenter

bcenter
to dmax as we add more

baselines, so the scoreF is monotonically increasing with baseline. In the moderate rate layer,
the ratio of counts to baselines forS′ stays constant (atdmax) as baseline increases, so againF is
monotonically increasing. In the low rate layer, the ratio of counts to baselinesfor S′ decreasesas
baseline increases: in this case, since count and baseline are both increasing, the score may increase
or decrease. We assume that the score functionF has no local maxima in the interval(B23, B), and
thus that the maximum occurs either at(cin, bin) = (dmaxB23, B23) or at(cin, bin) = (C, B).4 We
are only interested in finding subregions with scoreshigher than the parent, so we can ignore the

3See previous note.
4Formally, we assume the following constraint on the first and second partials of F : F 2

BFCC + F 2
CFBB −

2FCFBFCB ≥ 0. This is true for a large class of functions, including Kulldorff’s statistic. If this constraint is vio-
lated, we must also calculateF (C, B) at each local maximum, which is not difficult if the number of maxima is small
and each maximum is easy to calculate.
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Figure 3.5: Division of regionS into layers of differing rate. In the typical case, subregionS′

includes all but the outer layer.

latter case. Thus our upper bound onF (S′) is F (cin, bin), wherebin = B23 andcin = dmaxbin.
The various special cases, where one or more of the inequalities above are violated, are handled
similarly using the intersection pointsB12, B13, andB23 as necessary. We also must adjust our
value ofbin if it violates the inequalitybmin ≤ bin ≤ bmax, adjustingcin accordingly given the rate
of the layers being added or subtracted.

3.3.3 Calculating bounds by quartering

We now consider how the bounds on baselines and rates (ratios of countto baseline) are obtained.
The simplest method of doing so is to use global values: first, we precompute the minimum and
maximum baselinesB and ratiosC

B
of all “small” regionsS in the grid, requiring timeO(Nd).

To do this, we first precompute the minimum and maximum baseline and rate of all single cells
si in the grid. We can also use the minimum and maximum baselines of a grid cell, together
with the minimum and maximum area of a region, to obtain boundsbmin andbmax. Slightly less
conservative bounds can be obtained using the assumption of a minimum region sizekmin, and these
can be used rather than the single square bounds when allowable. This gives us usable (though very
conservative) values fordmin, dmax, dinc, bmin, andbmax. These global bounds are inexpensive to
compute (we need only compute them once per grid), but result in very conservative estimates of
region scores.

Thus we use these bounds in our algorithm as a first pass which prunes many regions but also
leaves many unpruned. If a region survives this round of pruning, wecompute much tighter bounds
on region scores in a second pass, which is also more computationally expensive. To do so, we
obtain tighter bounds on the baselines and rates using a novel technique wetermquartering, then
use these constraints to boundF (S′) as above. We explain the quartering method for the two-
dimensional case (d = 2) but note that we have generalized this procedure to arbitrary dimension.

Given a regionS of sizek1 × k2, with a (non-zero) center regionSC , the first step of quartering
is to divideS into its four (non-overlapping) quadrantsS1 . . . S4, as in Figure 3.6. We now consider
eachSi separately, together with the quarter of the center (SCi) which overlaps that quadrant. For
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Figure 3.6: Quartering of regionS

each quadrant, we consider all rectanglesS′
i with one corner at the centroid ofS, and one corner

outsideSCi (i.e. on one of the dots in Figure 3.6). Note that there areO(k1k2) such rectangles, and
thus we can search over all of these regionsS′

i in quadratic time, as opposed toO(k2
1k

2
2) for näıve

search of allS′ ⊂ S containingSC .
Our search procedure is very simple: given a regionS′

i, let bin, cin, andAin denote its baseline,
count, and area; letbout, cout, andAout denote the baseline, count, and area ofSi − S′

i; and letbdif ,
cdif , andAdif denote the baseline, count, and area ofS′

i − SCi. We then calculate the rate (ratio
of count to baseline)d and the average baseline per cellbs for each ofS′

i, Si − S′
i, andS′

i − SCi:
din = cin

bin
, bs,in = bin

Ain
, and the other quantities (dout, ddif , bs,out, bs,dif ) are defined similarly.

We then setdmax equal to the maximum of alldin, dinc equal to the maximum of allddif , and
dmin equal to the minimum of alldout. Similarly, we take the minimum and maximum values of
bs,in, bs,out, andbs,dif ; we can use these to calculate boundsbmin andbmax once we are given the
minimum and maximum area ofS′. Then ratio of count to baseline is monotonic, so we know that
the ratio of the entire regionS′ is bounded by the maximum of the max-ratios and the minimum of
the min-ratios computed for all regionsS′

i. Baseline per square is also monotonic, so an identical
argument applies.

In essence, what are doing is bounding the baselines and rates for the piece of regionS′ con-
tained in each quadrant. Then we use the maximum and minimum values of these quantities to
bound the baselines and rates for all regionsS′. Another way to think of this is that we are cal-
culating bounds on baselines and rates for all the irregular (but rectangle-like) regions containing
the centerSC and consisting of one rectangle in each quadrant, as drawn in Figure 3.6;then these
quantities are also bounds on the baselines and rates of allrectangleswhich containSC . We do
not provide a formal proof here, but we note that the bounds on baselines and ratios derived by
quartering are exact (i.e. no rectangleS′ ⊂ S, such thatSC ⊆ S′, can have baseline or rate outside
these bounds) and that they are much tighter than the global bounds, allowing many more regions
to be pruned. However, as noted above, quartering is significantly more computationally expensive
than using the global bounds, taking time proportional to the volume of regionS, and thusO(Nd)
per region for large regions. This is why we first use the global boundsfor pruning outer regions,
and only use quartering on regions that this initial pruning does not eliminate.
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3.3.4 The algorithm

We now possess all of the algorithmic and statistical tools needed to present our algorithm in full.
The basic structure is similar to the top-down “overlap-search” routine presented above, with sev-
eral important differences. First, we use a best-first search (implemented using a pair of priority
queuesq1 andq2) rather than a recursive depth-first search. Our algorithm has two stages: in the
first stage we examine only gridded regions, and in the second stage we search outer regions if nec-
essary. In both stages, we prune regions whenever possible, calculating increasingly tight bounds
on subregions’ baselines and rates, and using these to calculate upper boundsFbound on F (S′) as
above. For the original grid, regions are pruned whenever they can be proven to have a score less
than the highest value ofF (S) found so far; for the replica grids, regions are pruned whenever they
can be proven to have a score less than the maximum score of the original grid (and also, we can
stop searching a replica immediately if we find a region with score higher than themaximum of the
original grid). We can also do this for the case where we are interested in finding thek-best regions
of the original grid; in this case, we can simply use the current value of thekth highest scoreF (S)
for pruning. For simplicity, we focus on searching the original grid, and finding the 1-best region, in
our presentation of the algorithm below. The first stage of our algorithm proceeds as follows, using
the (loose) global bounds on baselines and rates to calculateFbound:

Add G to q_1.
While q_1 not empty:

Get region S with highest F(S) from q_1.
If F(S) > F*, set S* = S and F* = F(S).
If F_bound(S’ in S) > F*,
add gridded children of S to q_1 (using "lazy expansion").

If F_bound(S’ in S containing S_C) > F*, add S to q_2.

Thus, after the first stage of our algorithm, we have searched or pruned all gridded regions
(requiring at mostO((N log N)d) time), and the currentS∗ is the gridded region with highest
F (S). q2 now contains the subset of gridded regions whose outer regions have not yet been pruned,
prioritized by their upper boundsFbound. The second stage of our algorithm proceeds as follows:

While q_2 not empty (and some S on q_2 has F_bound(S) > F*):
Get region S with highest F_bound(S) from q_2.
Use quartering to calculate tighter bounds on B(S) and C(S)/B(S).
Recalculate F_bound(S) using these bounds.
If F_bound(S) > F*, then search-outer-regions(S).

Now the only question left is how to perform the search-outer-regions procedure. We first note
that a hyper-rectangular region requires2d coordinates for specification: the minimum valuexi and
sizeki in each dimensioni. Thus a näıve search of the outer regions ofS could be done using2d
nested loops, stepping over each legal combination of these coordinates (i.e. such that the resulting
regionS′ is in S and containsSC). Our procedure is similar to this, except that we take several
more opportunities for pruning. Once we have fixed the values ofki(S

′) andxi(S
′) for a given

i, we can obtain a tighter bound onF (S′) by expandingthe center regionSC andcontractingthe
parent regionS such thatki(S) = ki(SC) = ki(S

′) andxi(S) = xi(SC) = xi(S
′). We then
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recalculate bounds on the baselines and rates for the newS andSC using quartering, and finally
recomputeFbound for the new parent and center. Only if the new value ofFbound is greater thanF ∗

do we need to loop overki+1 andxi+1 for that combination ofki andxi.
Thus the second stage of our algorithm can be seen as a series of “screens” that an outer region

must pass through if it is to be searched. The first screen is whether the parent region is taken off
q2 and examined, the second screen is whether the parent region passes the quartering test, the third
screen is whether the new parent region (formed afterk1 andx1 are fixed) passes the quartering test,
etc. We can show that the complexity of this procedure isO(N2d) if all our screens fail, and better
thanO(N2d) otherwise. Typically well over 90% of regions are eliminated at each screen, and thus
we search only a small fraction of possible regions.

We now examine the complexity of this procedure in the two-dimensional case, given a large
parent region (i.e. one containingO(N4) outer regionsS′). If the parent region does not pass the
first screen, we have spent onlyO(1) to search theseO(N4) regions; if the parent does not pass the
second screen, we have spent only theO(N2) time required by quartering. If the parent passes the
second screen, but none of the new parent regions pass through thethird and fourth screens, we have
spent onlyO(N2) × O(N) (for quartering, given eachk1 andx1) + O(N3) (for bounding scores,
given eachk1, x1, andk2) = O(N3) time. Thus only if all four screens fail will the algorithm have
O(N4) complexity.

3.4 Results

In our fast spatial scan work [112, 118], we have demonstrated that our fast spatial scan algorithm
achieves huge speedups over the naı̈ve approach both on real and simulated datasets, without any
loss of accuracy (i.e. our algorithm finds exactly the same region andp-value as the naı̈ve approach).
These results include:

• 450-4700x speedups on 2D Emergency Department datasets, for grid resolutions ranging
from 128 × 128 to 512 × 512 [112].

• 96-739x speedups on 2D OTC sales datasets, for grid resolutions ranging from128 × 128 to
256 × 256 [112].

• 7-148x speedups on 3D fMRI imaging datasets, for grid resolution of64 × 64 × 14 vox-
els [118].

• 235-325x speedups on 4D Emergency Department datasets, using patient’s gender (2 values)
and age decile (8 values) as pseudo-spatial dimensions and thus searching a128×128×2×8
grid [118].

• 48-1400x speedups on 3D OTC sales datasets, searching for persistent spatial clusters (i.e. us-
ing date of sale as a pseudo-spatial dimension with 8 values) and thus searching a128×128×8
grid [118].

We have also done preliminary work comparing our algorithm to Kulldorff’s SaTScan soft-
ware [87] (the current state of the art for detection of disease clusters) using Emergency Department
data. This comparison suggests that we can detect elongated disease clusters 10-100x faster than



62 CHAPTER 3. FAST ALGORITHMS FOR SPATIAL CLUSTER DETECTION

Table 3.1: Performance of algorithm, simulated datasets,N = 256. For each dataset, we give the
time in seconds to search the original grid and each replica grid, as well as the number of regions
searched. The speedup is the ratio of runtimes of the naı̈ve and fast approaches.

test method sec/orig speedup sec/rep speedup regions (orig) regions(rep)
all näıve 3864 x1 3864 x1 1.03B 1.03B

7x9, 0.01 fast 5.47 x706 1.68 x2300 100K 1.20K
11x5, 0.002 fast 21.72 x178 12.43 x311 1.03M 196K
4x3, 0.002 fast 42.96 x90 40.57 x95 2.59M 1.87M
no region fast 189.68 x20 110.25 x35 27.4M 12.7M

SaTScan can detect circular clusters, despite needing to search over amuch larger space of possible
clusters [114]. These results show that our method is sufficiently fast to be useful for the detection
of significant spatial clusters, even in cases where the datasets are too large for other approaches to
be feasible. We now present these results in detail in the following subsections.

3.4.1 Results for two-dimensional scan

We first describe results with artificially generated grids and then real-world case data. An artificial
grid is generated from a set of parameters (N , k1, k2, µ, σ, q′, q′′) as follows. The grid generator
first creates anN × N grid, and randomly selects ak1 × k2 “test region.” Then the baselinebi of
each grid cell (representing at-risk population) is chosen randomly froma normal distribution with
meanµ and standard deviationσ (baselines less than zero are set to zero). Finally, the count of each
grid cell is chosen randomly from a Poisson distribution with parameterqbi, where the disease rate
q = q′ inside the test region andq = q′′ outside the test region.

For all our simulated tests, we used grid sizeN = 256, and a background disease rate of
q′′ = .001. We tested for three different combinations of test region parameters (k1×k2, q′): (7×9,
.01), (11 × 5, .002), and (4 × 3, .002). These represent the cases of an extremely dense disease
cluster, and large and small disease clusters which are significant but not extremely dense. We also
ran a fourth test where no disease cluster was present, and thusq = .001 everywhere.

We used three different population distributions for testing: the “standard” distribution (µ =
104, σ = 103), and two types of “highly varying” populations. For the “city” distribution,we
randomly selected a10 × 10 “city region”: populations were generated withµ = 5 × 104 and
σ = 5×103 inside the city, andµ = 104 andσ = 103 outside the city. For the “high-σ” distribution,
we generated all populations withµ = 104 andσ = 5 × 103. For each combination of test region
parameters and population distribution, run times were averaged over 20 random trials. We also
ran an additional 90 trials (for a total of 110) to test accuracy, confirmingthat the algorithm found
the highest scoring region in all cases. We also recorded the average number of regions examined;
for our algorithm, this includes calculation of score bounds as well as scores of individual regions.
Separate results are presented for the original grid and for each replica; for a large number of random
replications (R = 999) the results per replica dominate, since total run time istorig + R(trep) to
search the original grid and perform randomization testing. See Table 3.1 for results.

Our first observation was that the run time and number of regions searched were not significantly
affected by the underlying population distribution; typically the three results differed by only 5-
10%, and in many cases test regions were foundfasterfor the highly varying distributions than the
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Figure 3.7: Emergency Department dataset. The left picture shows the baseline (population) distri-
bution and the right picture shows the counts. The most significant region isshown as a rectangle.

standard distribution. Thus Table 3.1, rather than presenting separate results for each population
distribution, presents the average performance over all three populationdistributions for each test.
This result demonstrates the robustness of the algorithm to highly non-uniform baselines; this is
very different than our previous work [111], where the algorithm wasseverely slowed by highly
varying baselines. The algorithm achieved average speedups rangingfrom 35x (for no test region),
to 2300x (for an extremely dense test region) as compared to the naı̈ve approach. We note that, for
the case of no test region, it is typically not necessary to run more than 10-20 randomizations before
concluding with high probability that the discovered region is not significant.For example, if four
or more of the first ten replicas beat the original grid, we know that this result will only occur 0.1%
of the time if the region is significant, so we can safely assume that the region is not significant.
Thus our true average “worst-case” results will be closer to the 95x speedup on small, significant
(but not extremely dense) test regions. Since the naı̈ve approach requires approximately 45 days for
a256 × 256 grid with R = 999, this suggests that our algorithm can complete the same task in less
than 12 hours.

We now discuss the performance of the algorithm on various real-world datasets. Our first test
set was a database of anonymized Emergency Department data collected from Western Pennsyl-
vania hospitals in the period 1999-2002. This dataset contained a total of 630,000 records, each
representing a single ED visit and giving the latitude and longitude of the patient’s home location to
the nearest 0.005 degrees (∼ 1

3 mile). These locations were mapped to three grid sizes:N = 128,
256, and 512. For each grid, we tested for spatial clustering of “recent” disease cases: the count
of a grid cell was the number of ED visits in that area in the last two months, and thebaseline of
a cell was the total number of ED visits in that cell in the entire four years of data. See Figure 3.7
for a picture of this dataset, including the highest scoring region. For each of these grids, our fast
algorithm found the same, statistically significant region (p-value 1/1000) as the naı̈ve approach.
The major difference, of course, was in runtime and number of regions searched (see Table 3.2).
Our algorithm found the most significant region of the original grids 22-24x faster than the naı̈ve
approach; however, much faster performance was achieved when searching the replica grids. The
algorithm achieved speedups increasing from 450x to 4700x as grid sizeincreased from 128 to 512.
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Table 3.2: Performance of algorithm, real-world datasets. For each dataset, we give the time in
seconds to search the original grid and each replica grid, as well as the number of regions searched.
The speedup is the ratio of runtimes of the naı̈ve and fast approaches.

test method sec/orig speedup sec/rep speedup regions (orig) regions(rep)
ED näıve 72 x1 68 x1 62.0M 62.0M

(N = 128) fast 3 x24 0.15 x453 5.12M 15.9K
ED näıve 1207 x1 1185 x1 1.03B 1.03B

(N = 256) fast 55 x22 1.2 x988 95.9M 74.7K
ED näıve 19146 x1 18921 x1 16.8B 16.8B

(N = 512) fast 854 x22 4.0 x4730 1.51B 120K
national OTC näıve 71 x1 77 x1 62.0M 62.0M
(N = 128) fast 2 x36 0.8 x96 682K 200K

national OTC näıve 1166 x1 1232 x1 1.03B 1.03B
(N = 256) fast 14 x96 2.8 x440 3.24M 497K

regional OTC näıve 78 x1 79 x1 62.0M 62.0M
(N = 128) fast 2 x39 0.6 x132 783K 101K

regional OTC näıve 1334 x1 1330 x1 1.03B 1.03B
(N = 256) fast 13 x103 1.8 x739 3.10M 168K

Our second test set was a nationwide database of retail sales of over-the-counter cough and cold
medication. Sales figures were reported by zip code; the data covered 5000 zip codes across the
U.S., with highest coverage in the Northeast. In this case, our goal was to see if the spatial distri-
bution of sales on a given day (2/14/2004) was significantly different than the spatial distribution of
sales a week before (2/7/2004), and to identify a significant cluster of increased sales if one exists.
Note that the population-based statistic used in this test adjusts for increasesor decreases in the total
number of sales; clusters are only detected if there is spatial variation in the amount of increase or
decrease. Thus we used the sales on 2/7 as our underlying baseline distribution, and the sales on
2/14 as our count distribution. We created four grids from this data, two using all of the national
data, and two using only data from the Northeast (where a greater proportion of zip codes report
sales data). For both “national” and “regional” over-the-counter data,we created grids of sizes
N = 128 andN = 256, converting each zip code’s centroid to a latitude and longitude. For each
of these four grids, our algorithm found the same statistically significant region (p-value 1/1000) as
the näıve approach, and achieved speedups of 96-132x on the128× 128 grids and 440-739x on the
256 × 256 grids.

Thus the algorithm found the most significant region in all of our simulated andreal-world tri-
als, while achieving speedups of at least 20x (and typically much larger) as compared to the naı̈ve
approach. This speedup is extremely important for the real-time detection of disease outbreaks: if a
system is able to detect an outbreak in minutes rather than days, preventivemeasures or treatments
can be administered earlier, decreasing rates of morbidity and mortality. We believe that our algo-
rithm will be useful for rapid detection of significant spatial clusters in a variety of other applications
as well.

3.4.2 Comparison to SaTScan

It is difficult to evaluate the computational speed of an algorithm in isolation, and thus a comparison
to other techniques in the literature is necessary. We note, however, that none of the prior algorithmic
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work on scan statistics allows for the efficient detection ofelongatedclusters; the detection of
compact clusters (e.g. circles or squares) is a significantly easier computational task, since there
is one less degree of freedom to search over. Thus the most accurate comparison is to the obvious
technique of näıvely searching all rectangles; this comparison was done in the previous section.
However, since no available software actually uses this “naı̈ve rectangles” approach, we feel that a
comparison to other techniques (though inexact at best) will be useful.

In particular, we focus on Martin Kulldorff’s SaTScan software [87].SaTScan represents the
current state-of-the-art in cluster detection, and is widely used in the epidemiological community.
We emphasize that this is not an “apples to apples” comparison: because ofthe inexactness of this
comparison and the inherent differences between the two methods of cluster detection, it is difficult
to draw general conclusions. In particular, there are three main differences between the methods.
First, as noted above, our algorithm searches for elongated clusters (inparticular, axis-aligned rect-
angles) while SaTScan searches for compact clusters (in particular, circles). Thus (assuming that
M is the number of distinct spatial locations) our algorithm must search over theO(M4) possi-
ble rectangles, while SaTScan must search over theO(M3) possible circles. Second, neither our
algorithm nor SaTScan actually searches over “all” of the regions of the given type (rectangles or
circles). SaTScan searches only circles centered at one of the data points, reducing the search space
to O(M2) regions. Our method, on the other hand, aggregates the data points to a uniformN × N
grid, and searches over theO(N4) gridded rectangular regions. Thus our method’s runtime is a
function of the grid resolutionN , while SaTScan’s runtime is a function of the number of spatially
distinct data pointsM . If each data point truly represents cases occurring at that precise spatial
location, we are losing some precision by aggregating points to a grid; however, this loss of pre-
cision is minimal for high grid resolutionsN . Also, in cases where data points are derived from
regions (e.g. representing a census tract or zip code by a point mass atthe center of that region)
then the assumption of discrete data points is itself somewhat inexact. Finally, both our method and
SaTScan use clever computational techniques to speed up performance:our pruning method allows
us to search only a small subset of theO(N4) gridded rectangular regions, while obtaining the same
results as if we had searched all of these regions. SaTScan, though it does not use pruning to speed
up the search (and thus, must actually search over all of theO(M2) regions), uses an “incremental
addition” technique which allows searching in constant time per region. We also achieve constant
search time per region, using the “cumulative counts” trick noted above.

As a simple comparison, we ran both our method and SaTScan on the Emergency Department
dataset discussed above. This dataset consisted of 630,000 records, of which the last 60,000 records
(recent data) were used as “counts” and the entire dataset was used as baselines. Since many records
corresponded to identical spatial locations, this gave us approximatelyM = 17, 000 distinct spatial
locations. We ran both our method and SaTScan on this dataset, using the samesystem (Pentium
4, 1800 MHz processor, 1 GB RAM) for each. For all runs, we used 999 Monte Carlo replications.
Our system found the most significant rectangular region in 11 minutes for a128 × 128 grid and
81 minutes for a256 × 256 grid, computing ap-value of 1/1000 in each case. SaTScan ran out of
memory and thus was unable to find the most significant circular region for thisdataset; in compar-
ison, our method requires very little memory (< 50 MB for grid sizes up to256 × 256). Thus we
instead ran SaTScan on one tenth of the data (60,000 records, 10,000 used as “count”), containing
M = 8, 400 distinct spatial locations. In this case, SaTScan found the most significantcircular
region in 4 hours; this suggests that (given sufficient memory) it would find the most significant
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circular region for the entire dataset in approximately 16.5 hours.5

We note that, for the smaller dataset, both methods found very similar spatial regions. SaTScan
found a circle with center coordinates (40.34 N latitude, 79.82 W longitude) and diameter 18.58 km,
with C = 2458, B = 8443, and a score (log-likelihood ratio) of 413.56. For a128 × 128 grid size,
our method found a rectangle with almost the same centroid (40.32 N latitude, 79.82 W longitude),
and size23.6 × 17.2 km. This slightly larger region hadC = 2599, B = 9013, and a score of
429.85. In this case, the most significant rectangular region has a low aspect ratio, so as expected,
the region and score are similar to that found by SaTScan. If, on the otherhand, the most significant
rectangular region has a high aspect ratio, we would expect our algorithm to find a region with a
significantly higher score.

We emphasize again that this comparison between our method and SaTScan is both preliminary
(testing only on a small sample of datasets) as well as inexact (because of the differences between
the algorithms discussed above). Thus we do not attempt to draw any general conclusions about the
relative speeds of the two methods; we note only that our “fast spatial scan” is able to find elongated
clusters in times comparable to (and in at least some cases, significantly fasterthan) the detection
of compact clusters by SaTScan. Since SaTScan is in wide use in the epidemiological community,
this demonstrates that the runtime of our method is sufficiently fast to be usefulfor the detection of
significant spatial clusters.

Finally, we note another recently developed method that allows fast approximate computation of
spatial scan statistics. Agarwal et al. [3] present a method of approximately computing Kulldorff’s
spatial scan statistic as a sum of linear discrepancy functions. This allows the scan statistic to be
computed (within additive errorε) for axis-aligned rectangles in timeO(1

ε
N3 log N). It is likely

that this method will also allow fast cluster detection, but at some cost in accuracy. In particular, we
are not guaranteed to find the most significant region, and also, the significance results obtained by
randomization will be less reliable. How much impact these factors have on the overall reliability
of cluster detection using their method has not yet been determined.

3.4.3 Results for multi-dimensional fast spatial scan

We now describe results of our fast spatial scan algorithm on three sets of multi-dimensional real-
world data: two sets of epidemiological data (from emergency department visits and over-the-
counter drug sales), and one set of fMRI brain imaging data. Before presenting these results, we
wish to emphasize three main points. First, the extension of scan statistics from two-dimensional
to d-dimensional datasets dramatically increases the scope of problems for which these techniques
can be used. As discussed above, in addition to datasets with more than two spatial dimensions
(for example, the fMRI data), we can also examine data with a temporal component (as in the OTC
dataset), or where we wish to take demographic information into account (asin the ED dataset).
Second, in all of these datasets, the use of thresholded scan statistics (discussed in Chapter 2) in-
stead of the classical scan statistic allows us to focus our search on smaller,denser regions rather
than slight (but statistically significant) increases over a large area. Third, as our results here will

5We ran the default version of SaTScan. This uses unique data locations of which there were 17,000 in the full dataset,
as candidate region centers. It is also possible to run SaTScan on a user-specified grid of candidate region centers. Perhaps
that mode might be faster? In fact, the number of unique centers in the experiments reported above is approximately equal
to the number of centers on a 128 by 128 grid, and considerably less thanthat in a 256 by 256 grid. Thus SaTScan would
not be accelerated by switching to a grid approach.
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demonstrate, the fast spatial scan gains huge performance improvements over the näıve approach,
making the use of the scan statistic feasible in these large, real-world datasets.

Our first test set was the database of anonymized Emergency Departmentdata collected from
Western Pennsylvania hospitals in the period 1999-2002, as discussed above. This dataset contains a
total of 630,000 records, each representing a single ED visit and givingthe latitude and longitude of
the patient’s home location to the nearest1

3 mile. Additionally, a record contains information about
the patient’s gender and age decile. Thus we map records into a four-dimensional grid, consisting
of two spatial dimensions (longitude, latitude) and two “pseudo-spatial” dimensions (patient gender
and age decile). This has several advantages over the traditional (two-dimensional) spatial scan.
First, our test has higher power to detect syndromes which affect differing patient demographics to
different extents. For example, if a disease primarily strikes male infants, wemight find a cluster
with gender = male and age decile = 0 in some spatial region, and this cluster may not be detectable
from the combined data. Second, our method accounts correctly for multiple hypothesis testing.
If we were to instead perform a separate test at levelα on each combination of gender and age
decile, the overall false positive rate would be much higher thanα. We mapped the ED dataset to
a 128 × 128 × 2 × 8 grid, with the first two coordinates corresponding to longitude and latitude,
the third coordinate corresponding to the patient’s gender, and the fourthcoordinate corresponding
to the patient’s age decile. We tested for spatial clustering of “recent” disease cases: the count
of a cell was the number of ED visits in that spatial region, for patients of thatage and gender,
in 2002, and the baseline was the total number of ED visits in that spatial region, for patients of
that age and gender, over the entire temporal period 1999-2002. To findsuch clusters, we used
the discriminative thresholded scan statistic discussed in Chapter 2, with values of the threshold
parameterε ranging from 0 to 1.0. For the classical scan statistic (ε = 0), we found a region of size
35 × 34 × 2 × 8; thus the most significant region was spatially localized but cut across all genders
and age groups. The region hadC = 3570 andB = 6409, as compared toC

B
= 0.05 outside

the region, and thus this is clearly an overdensity of counts. This was confirmed by the algorithm,
which found the region statistically significant (p-value 1/101). With the three other values ofε, the
algorithm found almost the same region (35 × 33 × 2 × 8, C = 3566, B = 6390) and again found
it statistically significant (p-value 1/101). For all values ofε, the fast scan statistic found the most
significant region hundreds of times faster than the naı̈ve spatial scan (see Table 3.3): while the
näıve approach required approximately 12 hours per replication, the fast scan searched each replica
in approximately 2 minutes, plus 100 minutes to search the original grid. Thus thefast algorithm
achieved speedups of 235-325x over the naı̈ve approach for the entire run (i.e. searching the original
grid and 100 replicas) on the ED dataset.

Our second test set was a nationwide database of retail sales of over-the-counter cough and cold
medication. Sales figures were reported by zip code; the data covered 5000 zip codes across the U.S.
In this case, our goal was to see if the spatial distribution of sales in a givenweek (February 7-14,
2004) was significantly different than the spatial distribution of sales during the previous week, and
to identify a significant cluster of increased sales if one exists. Since we wanted to detect clusters
even if they were only present for part of the week, we used the date (Feb. 7-14) as a third dimension.
This is similar to the retrospective space-time scan statistic of [82], which also uses time as a third
dimension. However, that algorithm searches over cylinders rather thanhyper-rectangles, and thus
cannot detect spatially elongated clusters. The count of a cell was takento be the number of sales
in that spatial region on that day; to adjust for day-of-week effects, the baseline of a cell was taken
to be the number of sales in that spatial region on the day one week prior (Jan. 31-Feb. 7). Thus
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Table 3.3: Performance of algorithm, multi-dimensional real-world datasets
test ε sec/orig sec/rep speedup regions (orig) regions (rep)
ED 0 6140 126 x235 358M 622K

(128 × 128 × 2 × 8) 0.25 6035 100 x275 352M 339K
(7.35B regions) 0.5 5994 102 x272 348M 362K

1.0 5607 79.6 x325 334M 336K
OTC 0 4453 195 x48 302M 2.46M

(128 × 128 × 8) 0.25 429 123 x90 12.2M 1.39M
(2.45B regions) 0.5 334 51 x210 8.65M 350K

1.0 229 5.9 x1400 4.40M < 10
fMRI 0 880 384 x7 39.9M 14.0M

(64 × 64 × 14) 0.01 597 285 x9 35.2M 10.4M
(588M regions) 0.02 558 188 x14 33.1M 6.65M

0.03 547 97.3 x27 32.3M 3.93M
0.04 538 30.0 x77 31.9M 1.44M
0.05 538 13.1 x148 31.7M 310K

we created a128 × 128 × 8 grid, where the first two coordinates were derived from the longitude
and latitude of that zip code, and the third coordinate was temporal, based onthe date. For this
dataset, the classical scan statistic (ε = 0) found a region of size123 × 76 from February 7-11.
Unfortunately, since the rateC

B
was only 0.99 inside the region (as compared to 0.96 outside) this

region would not be interesting to an epidemiologist. Nevertheless, the regionwas found to be
significant (p-value 1/101) because of the large total baseline. Thus, in this case, the classical scan
statistic finds a large region of very slight overdensity rather than a smaller,denser region, and
thus is not as useful for detecting epidemics. Forε = 0.25 andε = 0.5, the scan statistic found
a much more interesting region: a4 × 1 region on February 9 whereC = 882 andB = 240.
In this region, the number of sales of cough medication was 3.7x its expected value; the region’s
p-value was computed to be 1/101, so this is a significant overdensity. Forε = 1, the region found
was almost the same, consisting of three of these four cells, withC = 825 andB = 190. Again
the region was found to be significant (p-value 1/101). For this dataset, the naı̈ve approach took
approximately three hours per replication. The fast scan statistic took between six seconds and four
minutes per replication, plus ten minutes to search the original grid, thus obtaining speedups of 48-
1400x on the OTC dataset. We note that higher values of the thresholdε, in addition to focusing our
search on more relevant regions, also allow the fast spatial scan to do more pruning, thus achieving
significantly faster run times.

Our third and final test set was a set of fMRI data, consisting of two “snapshots” of a subject’s
brain under null and experimental conditions respectively. The experimental condition was from
a test by Mitchell et al. [103] where the subject is given words, one at atime; he must read these
words and identify them as verbs or nouns. The null condition is the subject’s average brain activity
while fixating on a cursor, before any words are presented. Each snapshot consists of a64×64×14
grid of voxels, with a reading of fMRI activation for the subset of the voxels where brain activity is
occurring. In this case, the count of a cell is the fMRI activation for thatvoxel under the experimental
condition, and the baseline is the activation for that voxel under the null condition. For voxels with
no brain activity, we haveci = bi = 0. For the fMRI dataset, the amount of change between
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activated and non-activated regions is small, and thus we used values ofε ranging from 0 to 0.05 as
suggested by the fMRI literature.

For the classical scan statistic (ε = 0) our algorithm found a23×20×11 region, and again found
this region significant (p-value 1/101). However, this is another example where the classical scan
statistic finds a region which is large (1

4 of the entire brain) and only slightly increased in count:
C
B

= 1.007 inside the region andC
B

= 1.002 outside the region. Forε = 0.01, we find a more
interesting cluster: a5 × 10 × 1 region in the visual cortex containing four non-zero voxels. For
this regionC

B
= 1.052, a large increase, and the region is significant atα = 0.1 (p-value 10/101)

though not atα = 0.05. Forε = 0.02, we find the same region, but conclude that it is not significant
(p-value 32/101). Forε = 0.03 andε = 0.04, we find a3 × 2 × 1 region with C

B
= 1.065, but this

region is not significant (p-values 61/101 and 89/101 respectively). Similarly, forε = 0.05, we find
a single voxel withC

B
= 1.075, but again it is not significant (p-value 91/101). For this dataset, the

näıve approach took approximately 45 minutes per replication. The fast scan statistic took between
13 seconds and six minutes per replication, thus obtaining speedups of 7-148x on the fMRI dataset.

Thus we have demonstrated (through tests on a variety of real-world datasets) that the fast mul-
tidimensional spatial scan statistic has significant performance advantagesover the näıve approach,
resulting in speedups up to 1400x without any loss of accuracy. This makes it feasible to apply
scan statistics in a variety of application domains, including the spatial and spatio-temporal detec-
tion of disease epidemics (taking demographic information into account), as well as the detection
of regions of increased brain activity in fMRI data.
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Chapter 4

Methods for space-time cluster detection

4.1 Introduction

This chapter extends our spatial cluster detection framework to the space-time case. While most of
the prior work on cluster detection is purely spatial in nature (e.g. [4, 78, 49]), it is clear that the time
dimension is an essential component of most cluster detection problems. Typically, we are inter-
ested in detecting clusters that areemergingin time, and our goal is to detect these emerging clusters
as early as possible. For example, in the public health domain, our goal may beto detect emerging
clusters of disease cases, which may be indicative of a naturally occurring disease outbreak (e.g. in-
fluenza), a bioterrorist attack (e.g. anthrax release), or an environmental hazard (e.g. radiation leak).
In any case, early detection of such disease clusters can lead to earlier public health response, poten-
tially saving many lives. In medical imaging, we may attempt to detect tumors or otherhazardous
growths, and early detection of such tumors may increase the patient’s chance of survival. Finally,
in military reconnaissance, the goal may be to monitor the strength and activity ofenemy forces,
and we may want to detect a buildup of troops that is indicative of an impending attack.

Kulldorff et al. [82] first proposed a variant of the spatial scan statisticfor detection of space-
time clusters, and applied scan statistics for prospective disease surveillance in [81]. The goal of the
space-time scan statistic is a straightforward extension of the purely spatial scan: to detect regions
of space-time where the counts are significantly higher than expected. Letus assume that we have
a discrete set of time stepst = 1 . . . T (e.g. daily observations forT days), and for each spatial
locationsi, we have countsct

i and baselinesbt
i representing the observed and expected number of

cases in the given area on each time step. Then there are two very simple waysof extending the
spatial scan to space-time: to run a separate spatial scan for each time stept, or to treat time as an
extra dimension and thus run a single multidimensional spatial scan in space-time (for example, we
could search over three-dimensional “hyper-rectangles” which represent a given rectangular region
of space during a given time interval). The problem with the first method is that,by only examining
one day of data at a time, we may fail to detect more slowly emerging clusters. The problem with
the second method is that we tend to find less relevant clusters: for prospective surveillance, we
want to detect newly emerging clusters, not those that have persisted fora long time. Thus, in order
to achieve better methods for space-time cluster detection, we must consider the question, “How is
the time dimension different from space?” We argue that there are three maindistinctions:

1. The concept of “now”. In the time dimension, the present is an important point of reference.
For example, in disease surveillance, we are typically only interested in clusters that are still “active”
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at the present time, and that have emerged within the recent past (e.g. within afew days or a week).
We do not want to detect clusters that have persisted for months or years, and we are also not
interested in those clusters which have already come and gone. The exception to this, of course, is if
we are performing a retrospective analysis, attempting to detect all space-time clusters regardless of
how long ago they occurred. The retrospective statistic searches overtime intervalstmin . . . tmax,
where1 ≤ tmin ≤ tmax ≤ T , while the prospective statistic searches over time intervalstmin . . . T ,
where1 ≤ tmin ≤ T , adjusting correctly for multiple hypothesis testing in each case. We focus
here on prospective analysis, since this is more relevant for our typicaldisease surveillance task.

2. “Learning from the past.” In the spatial cluster detection framework given in Chapter 2, we
typically assume that we have some baseline denominator data, such as an at-risk population, given
in advance. In the space-time framework, on the other hand, we must inferthe expected countsbt

i of
recent days from the time series of previous countsct

i, then use the expectation-based scan statistic
(discussed in Chapter 2) to find space-time clusters where the counts are higher than expected.
Thus the first major contribution of this chapter is an expectation-based space-time scan statistic
approach. Inferring expectations from previous counts has several advantages over the standard
method of relying on at-risk population: we can account for spatial variation in disease rate (due
to factors such as age and health of population and environmental hazards) as well as the variation
of disease rate over time (due to factors such as day of week and seasonality), and thus reduce the
number of false positives due to these sources of variation in the baseline rate.

3. The “arrow of time.” Time has a fixed directionality, moving from the past, through the
present, to the future. We are often interested in clusters whichemergeover time: for example, a
disease may start out having only minor impact on the affected population, then increase its impact
(and thus the observed symptom counts) either gradually or rapidly until it peaks. Based on this
observation, the second major contribution of this chapter is a variant of thespace-time scan statistic
designed for more rapid detection of emerging outbreaks. The idea is that rather than assuming (as
in the standard, “persistent” space-time scan statistic) that the disease rateq remains constant over
the course of an epidemic, we expect the disease rate to increase over time,and thus we fit a model
which assumes a monotonically increasing sequence of disease ratesqt at each affected time step
t in the affected region.1 We will show that this “emerging cluster” space-time scan statistic often
outperforms the standard “persistent cluster” approach.

Taking these factors into account, the prospective space-time scan statistichas two main parts:
inferring (based on past counts) what we expect the recent counts tobe, and finding regions where
the observed recent counts are significantly higher than expected. More precisely, given a “temporal
window size”W , we wish to know whether any space-time cluster within the lastW days has
countsct

i higher than expected. To do so, we first infer the expected countsbt
i = E

[

ct
i

]

for all
spatial locations on each recent dayt, T − W < t ≤ T , then use a space-time scan statistic to find
space-time clusters with higher than expected counts. These steps are described in detail below.

In the remainder of this chapter, I present our statistical and computationalmethods for the de-
tection of space-time clusters. Section 4.2 describes our framework for space-time cluster detection,
and how the generalized spatial scan framework can be adapted to the space-time case. Section 4.3
presents several variants of the space-time scan statistic, including methods for detecting persistent
clusters, emerging clusters, and parametrized clusters. Section 4.4 discusses the inference of base-
line values by time series analysis, Section 4.5 discusses computational considerations, and Section

1It is also possible to consider models where the disease rate varies not only in time but in space. Examples of models
with spatially varying disease rate are given in Chapter 2.
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4.6 discusses related work. Finally, I present results and discussion ofour space-time methods in
Sections 4.7 and 4.8.

Parts of this chapter have been adapted from our papers in KDD 2005 [120] and the 2005
National Syndromic Surveillance Conference [121], as well as a CMU technical report [109]. I
wish to thank my co-authors Andrew Moore, Maheshkumar Sabhnani, andKenny Daniel for their
contributions to this work. Additionally, parts of this chapter have been adapted from our chapter
in theHandbook of Biosurveillance[115]; I wish to thank my co-author Andrew Moore and editor
Michael Wagner for their contributions.

4.2 Space-time cluster detection

In the general case, we have data collected at a set of discrete time stepst = 1 . . . T (where timeT
represents the present) at a set of discrete spatial locationssi. For eachsi at each time stept, we are
given acountct

i, and our goal is to find if there is any regionS (set of locationssi) and time interval
(t = tmin . . . tmax) for which the counts are significantly higher than expected. Thus we mustfirst
decide on the set of spatial regionsS, and the time intervalstmin . . . tmax, that we are interested
in searching. In the scan statistics framework discussed below, we typicallysearch over the set of
all spatial regions of some given shape, and variable size. For simplicity, we assume here that the
spatial locationssi are aggregated to a uniform, two-dimensional,N × N grid G, and we search
over the set of all axis-aligned rectangular regionsS ⊆ G.2 This allows us to detect both compact
and elongated clusters, which is important since disease clusters may be elongated due to dispersal
of pathogens by wind, water, or other factors. For prospective surveillance, as is our focus here, we
care only about those clusters which are still present at the current timeT , and thus we search over
time intervals withtmax = T ; if we were performing a retrospective analysis, on the other hand, we
would search over alltmax ≤ T . We must also choose the size of the “temporal window”W : we
assume that we are only interested in detecting clusters that have emerged within the lastW days
(and are still present), and thus we search over time intervalstmin . . . T for all T −W < tmin ≤ T .

In the disease detection framework, we assume that the count (number of cases) in each spatial
regionsi on each dayt is Poisson distributed,ct

i ∼ Poisson(λt
i) with some unknown parameterλt

i.
Thus our method consists of two parts: time series analysis for calculating the expected number of
cases (or “baseline”)bt

i = E[ct
i] for each spatial region on each day, and space-time scan statistics

for determining whether the actual numbers of casesct
i in some regionS are significantly higher

than expected (givenbt
i) in the lastW days. The choice of temporal window sizeW impacts both

parts of our method: we calculate the baselinesbt
i for the “current” daysT − W < t ≤ T by time

series analysis, based on the “past” days1 ≤ t ≤ T −W , and then determine whether there are any
emerging space-time clusters in the lastW days.

Our space-time scan statistic method is much like the purely spatial method: we choose the
modelsH0 andH1(S, tmin), where the null hypothesisH0 assumes no clusters and the alternative
hypothesisH1(S, tmin) represents a cluster in spatial regionS starting at timetmin and continuing
to the present timeT . From our models, we can derive the corresponding score functionF (S, tmin)
using the likelihood ratio statistic, and then find the space-time cluster(S∗, t∗min) which maximizes
the score functionF . Finally, we can compute the statistical significance (p-value) of this space-
time cluster by randomization testing, as in the purely spatial approach. The performance of our

2Non-axis-aligned rectangles can be detected by examining multiple rotationsof the data, as in [112].
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space-time scan statistic method is affected by four main considerations: the size of the temporal
windowW , the type of space-time scan statistic used, the level on which the data is aggregated, and
the method of time series analysis. We discuss these considerations in detail below.

4.3 Space-time scan statistics

One of the most important statistical tools for cluster detection is thespatial scan statistic[88, 78,
80]. This method searches over a given set of spatial regions, findingthose regions which maximize
a likelihood ratio statistic and thus are most likely to be generated under the alternative hypothesis
of clustering rather than under the null hypothesis of no clustering. Randomization testing is used
to compute thep-value of each detected region, correctly adjusting for multiple hypothesis testing,
and thus we can both identify potential clusters and determine whether they are significant. The
standard spatial scan algorithm [80] has two primary drawbacks: it is extremely computationally
intensive, making it infeasible to use for massive real-world datasets, andonly compact (circular)
clusters are detected. In Chapter 3, we have addressed both of these problems by proposing the
“fast spatial scan” algorithm [112, 118], which can rapidly search for elongated clusters (hyper-
rectangles) in large multi-dimensional datasets. As noted above, we choosehere to search over
rectangular regions, using a space-time variant of the fast spatial scanas necessary to speed up our
search.

In its original, population-based formulation [88, 78], the spatial scan statistic does not take
time into account. Instead, it assumes a single countci (e.g. number of disease cases) for each
spatial locationsi, as well as a given baselinebi (e.g. at-risk population). Then the goal of the scan
statistic is to find regions where therate (or expected ratio of count to baseline) is higher inside the

region than outside. The statistic used for this is the likelihood ratioF (S) = Pr(Data| H1(S))

Pr(Data| H0)
, where

the null hypothesisH0 represents no clustering, and each alternative hypothesisH1(S) represents
clustering in some regionS. More precisely, underH0 we assume a uniform disease rateqall, such
thatci ∼ Poisson(qallbi) for all locationssi. UnderH1(S), we assume thatci ∼ Poisson(qinbi) for
all locationssi ∈ S, andci ∼ Poisson(qoutbi) for all locationssi ∈ G−S, for some constantsqin >
qout. From this, we can derive an expression forF (S) using the maximum likelihood estimates of

qin, qout, andqall: F (S) =
(

Cin

Bin

)Cin
(

Cout

Bout

)Cout
(

Call

Ball

)−Call

, if Cin

Bin
> Cout

Bout
, andF (S) = 1

otherwise, where “in,” “out,” and “all” are the sums of counts and baselines forS, G − S, andG
respectively. Then the most significant spatial regionS is the one with the highest scoreF (S); we
denote this region byS∗, and its score byF ∗. Once we have found this region by searching over the
space of possible regionsS, we must still determine its statistical significance, i.e. whetherS∗ is a
significant spatial cluster. To adjust correctly for multiple hypothesis testing, we find the region’s
p-value by randomization: we randomly create a large numberR of replica grids under the null
hypothesisci ∼ Poisson(qallbi), and find the highest scoring region and its score for each replica
grid. Then thep-value can be computed asRbeat+1

R+1 , whereRbeat is the number of replica grids with
F ∗ higher than the original grid. If thisp-value is less than some constantα (hereα = .05), we can
conclude that the discovered region is unlikely to have occurred by chance, and is thus a significant
spatial cluster; we can then search for secondary clusters. Otherwise, no significant clusters exist.

The formulation of the scan statistic that we use here is somewhat different, because we are
interested not in detecting regions with higher rates inside than outside, but regions with higher
countsthanexpected. This “expectation-based” framework is presented in Chapter 2, and webriefly
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review the approach here. Let us assume that baselinesbi represent the expected values of each count
ci; we discuss how to obtain these baselines below. Then we wish to test the nullhypothesisH0:
all countsci are generated byci ∼ Poisson(bi), against the set of alternative hypothesesH1(S): for
spatial locationssi ∈ S, all countsci are generated byci ∼ Poisson(qbi), for some constantq > 1,
and for all other spatial locationssi ∈ G − S, all countsci ∼ Poisson(bi). We then compute the
likelihood ratio:

F (S) =
Pr(Data| H1(S))

Pr(Data| H0)
=

maxq≥1
∏

si∈S Pr(ci ∼ Poisson(qbi))
∏

si∈S Pr(ci ∼ Poisson(bi))

=
maxq≥1

∏

si∈S(qbi)
cie−qbi

∏

si∈S bci

i e−bi
=

maxq≥1 qCine−qBin

e−Bin

Using the maximum likelihood estimate of the parameterq = max
(

1, Cin

Bin

)

, we obtain the score

functionF (S) =
(

Cin

Bin

)Cin

eBin−Cin , if Cin > Bin, andF (S) = 1 otherwise. As before, we search

over all spatial regionsS to find the highest scoring regionS∗. Then the statistical significance (p-
value) ofS∗ can be found by randomization testing as before, where the replica grids are generated
under the null hypothesisci ∼ Poisson(bi).

4.3.1 The 1-day space-time scan statistic

To extend this spatial scan statistic to the prospective space-time case, the simplest method is to use
a 1-day temporal window (W = 1), searching for clusters on only the present dayt = T . Thus
we wish to know whether there is any spatial regionS with higher than expected counts on dayT ,
given the actual countscT

i and expected countsbT
i for each spatial locationsi. To do so, we compare

the null hypothesisH0: cT
i ∼ Poisson(bT

i ) for all si, to the set of alternative hypothesesH1(S):
cT
i ∼ Poisson(qbT

i ) for all si ∈ S, for some constantq > 1, andcT
i ∼ Poisson(bT

i ) elsewhere.
Thus the statistic takes the same form as the purely spatial scan statistic, and weobtain: F (S) =
(

C
B

)C
eB−C , if C > B, andF (S) = 1 otherwise, whereC =

∑

si∈S cT
i andB =

∑

si∈S bT
i

denote the total count and total baseline of regionS on time stepT . Again, we search over all
spatial regionsS to find the highest scoring regionS∗ and its scoreF ∗. To compute thep-value,
we perform randomization testing as before, where each replica grid hascountscT

i generated from
Poisson(bT

i ) and all other countsct
i (t 6= T ) copied from the original grid.

4.3.2 Multi-day space-time scan statistics

While the 1-day prospective space-time scan statistic is very useful for detecting rapidly growing
outbreaks, it may have difficulty detecting more slowly growing outbreaks, as noted above. For
the multi-day prospective space-time scan statistics, we have some temporal window W > 1, and
must determine whether any outbreaks have emerged within the most recentW days (and are still
present). In other words, we wish to find whether there is any spatial region S with higher than
expected counts on daystmin . . . T , for someT − W < tmin ≤ T . To do so, we first compute
the expected countsbt

i and the actual countsct
i for each spatial locationsi on each dayT − W <

t ≤ T ; we discuss how the baselinesbt
i are calculated in the following section. We then search

over all spatial regionsS ⊆ G, and all allowable values oftmin, finding the highest value of the
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spatio-temporal score functionF (S, tmin). The calculation of this function depends on whether we
are searching for “persistent” or “emerging” clusters, as we discuss below. In any case, once we
have found the highest scoring region(S∗, t∗min) and its scoreF ∗, we can compute thep-value of
this region by performing randomization testing as before, where each replica grid has countsct

i

generated from Poisson(bt
i) for T − W < t ≤ T , and all other countsct

i copied from the original
grid.

Now we must consider how to compute the functionF (S, tmin). The standard population-based
method for computing the space-time scan statistic, proposed for the retrospective case by [82] and
for the prospective case by [81], builds on the Kulldorff spatial scan statistic [78] given above. As in
the purely spatial scan, this method assumes that baselinesbt

i are given in advance (e.g. population
in each location for each time interval), and that countsct

i are generated from Poisson distributions
with means proportional tobt

i. Then the goal is to find space-time clusters(S, tmin) where the rate
(ratio of count to baseline) is significantly higher inside the region than outside. As in the purely
spatial case, this can be adapted to our expectation-based framework, inwhich the goal is to find
space-time clusters where the observed countsct

i are higher than the expected countsbt
i. For the

“persistent cluster” case, we maintain the other major assumption of the standard model: that the
multiplicative increase in counts (“relative risk”) in an affected region remains constant through the
temporal duration of the cluster. For the “emerging cluster” case, we instead make the assumption
that the relative risk increases monotonically through the cluster’s duration. It is also possible to
assume a parametric form for the increase in relative risk over time (e.g. exponential or linear
increase), as we discuss below.

4.3.3 Persistent clusters

The test for persistent clusters assumes that the relative risk of a clusterremains constant over time;
as a result, the score function is very similar to the 1-day statistic, with sums takenover the entire
duration of a cluster rather than only a single day.

As noted above, we must search over all spatial regionsS and all values oftmin (whereT−W <
tmin ≤ T ), finding the maximum scoreF (S, tmin). For a given regionS and valuetmin, we
compare the null hypothesisH0: ct

i ∼ Poisson(bt
i) for all spatial locationssi and allT−W < t ≤ T ,

to the set of alternative hypothesesH1(S, tmin): ct
i ∼ Poisson(qbt

i) for si ∈ S andt = tmin . . . T ,
for some constantq > 1, andct

i ∼ Poisson(bt
i) elsewhere. Thus we can compute the likelihood

ratio:

F (S, tmin) =
maxq≥1

∏

Pr(ct
i ∼ Poisson(qbt

i))
∏

Pr(ct
i ∼ Poisson(bt

i))
=

maxq≥1
∏

(qbt
i)

ct
ie−qbt

i

∏

(bt
i)

ct
ie−bt

i

where the products are taken oversi ∈ S andtmin ≤ t ≤ T . This simplifies tomaxq≥1
qCe−qB

e−B ,
whereC andB are the total count

∑

si∈S

∑

tmin≤t≤T ct
i and total baseline

∑

si∈S

∑

tmin≤t≤T bt
i re-

spectively. Finally, using the maximum likelihood estimateq = max
(

1, C
B

)

, we obtainF (S, tmin) =
(

C
B

)C
eB−C if C > B, andF = 1 otherwise.

4.3.4 Emerging clusters

While the space-time scan statistic for persistent clusters assumes that relative risk of a cluster re-
mains constant through its duration, this is typically not true in disease surveillance. When a disease
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outbreak occurs, the disease rate will typically rise continually over the duration of the outbreak un-
til the outbreak reaches its peak, at which point it will level off or decrease. Our main goal in the
epidemiological domain is to detect emerging outbreaks (i.e. those that have not yet reached their
peak), so we focus on finding clusters where the relative risk is monotonically increasing over the
duration of the cluster. Again, we must search over all spatial regionsS and all values oftmin

(whereT − W < tmin ≤ T ), finding the maximum scoreF (S, tmin). For a given regionS and
valuetmin, we compare the null hypothesisH0: ct

i ∼ Poisson(bt
i) for all spatial locationssi and all

T−W < t ≤ T , to the set of alternative hypothesesH1(S, tmin): ct
i ∼ Poisson(qtb

t
i) for si ∈ S and

t = tmin . . . T , for some monotonically increasing sequence of constants1 ≤ qtmin
≤ . . . ≤ qT ,

andct
i ∼ Poisson(bt

i) elsewhere. Thus we can compute the likelihood ratio:

F (S, tmin) =
max1≤qtmin

≤...≤qT

∏

Pr(ct
i ∼ Poisson(qtb

t
i))

∏

Pr(ct
i ∼ Poisson(bt

i))

=
max1≤qtmin

≤...≤qT

∏

(qtb
t
i)

ct
ie−qtb

t
i

∏

(bt
i)

ct
ie−bt

i

=
max1≤qtmin

≤...≤qT

∏

t=tmin...T qCt
t e−qtBt

e−B

whereCt andBt are the total count
∑

si∈S ct
i and the total baseline

∑

si∈S bt
i on dayt, andB is the

total baseline
∑

si∈S

∑

tmin≤t≤T bt
i as above.

Now, we must maximize the numerator subject to the monotonicity constraints on theqt. To do
so, letE = E1 . . . Ep be a partitioning oftmin . . . T into sets of consecutive integers, such that for
all t1, t2 ∈ Ej , qt1 = qt2 = Qj , and for allEj1 andEj2 , wherej1 < j2, Qj1 < Qj2 . In other words,
theEj define a partitioning oftmin . . . T into time periods where the relative risk is constant. Note
that theqt are uniquely defined by the partitionsEj and the ratesQj . We can then write:

F (S, tmin) =
maxE1...Ep max1≤Q1<...<Qp

∏

Ej
(Qj)

Cj e−QjBj

e−B

whereBj =
∑

si∈S

∑

t∈Ej
bt
i andCj =

∑

si∈S

∑

t∈Ej
ct
i. We now prove several lemmas which

will help us to simplify this expression.

Lemma 4.3.1 A necessary condition for(E, Q) to maximizeF (S, tmin) is thatQj =
Cj

Bj
for all j.

Proof Let us assume a fixed partitioningE = {Ej}, with strictly increasingQj , and ask whether
the Qj are optimal for thoseEj . We note that, in the absence of constraints on theQj , each

expressione−QjBj (Qj)
Cj is maximized atQj =

Cj

Bj
. Moreover, the score is convex with respect to

Qj . Thus, if someQj <
Cj

Bj
, we can increase the score by raising thatQj slightly (without changing

the ordering ofQj), so the givenQj are not optimal. Similarly, if someQj >
Cj

Bj
, we can increase

the score by lowering thatQj slightly (without changing the ordering ofQj), so the givenQj are

not optimal. Thus for theQj to be optimal, we must haveQj =
Cj

Bj
for all j.

Lemma 4.3.2 A necessary condition for(E, Q) to maximizeF (S, tmin) is that for all j1 < j2,
Cj1
Bj1

<
Cj2
Bj2

.
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Proof Otherwise eitherQj1 6=
Cj1
Bj1

, or Qj2 6=
Cj2
Bj2

, or Qj1 ≥ Qj2 . In the first two cases, the

condition of Lemma 4.3.1 is violated, so theQj are not optimal. In the third case, the restriction
that theQj are strictly increasing is violated, so theQj are not legal.

Thus we can write:

F (S, tmin) =
maxE1...Ep

∏

Ej
e−Cj

(

Cj

Bj

)Cj

e−B
= eB−C max

E1...Ep

∏

Ej

(

Cj

Bj

)Cj

where the partitioningE = {Ej} must satisfy the condition of Lemma 4.3.2, i.e. the ratiosCj

Bj
are

strictly increasing withj.
Finally, we give an algorithm which produces the optimal partitioningE = {Ej}. This method

uses a stack data structure, where each element of the stack representsa partitionEj by a 5-tuple

(tstart, tend, Cj , Bj , Qj). The algorithm starts by pushing the 5-tuple
(

T, T, CT , BT , max
(

1, CT

BT

))

onto the stack. Then for eacht, from T − 1 down totmin, we do the following:

temp = (t, t, C_t, B_t, max(1, C_t / B_t))
while (temp.Q >= stack.top.Q)

temp2 = stack.pop
temp = (temp.start, temp2.end, temp.C+temp2.C, temp.B +
temp2.B, max(1, (temp.C+temp2.C) / (temp.B+temp2.B)))

stack.push(temp)

We now prove that this method produces the unique optimal partitioningE and ratesQ, and thus
the values ofqt that maximize the score subject to the monotonicity constraints above.

Lemma 4.3.3 A necessary condition for the partitioningE to maximizeF (S, tmin) is that for each

Ej = t1 . . . t2, for all t such thatt1 ≤ t < t2, we have
P

k=t1...t Ck
P

k=t1...t Bk
≥

P

k=t+1...t2
Ck

P

k=t+1...t2
Bk

.

Proof Otherwise there exists someEj = t1 . . . t2, and somet such thatt1 ≤ t < t2, where
P

k=t1...t Ck
P

k=t1...t Bk
< Qj <

P

k=t+1...t2
Ck

P

k=t+1...t2
Bk

(note thatQj is a weighted average of the two ratios). We can

now increase the score by separatingEj into two partitionsEj1 = t1 . . . t andEj2 = t + 1 . . . t2,
whereQj1 is slightly less thanQj , andQj2 is slightly more thanQj (without otherwise changing
the order ofQj). ThusE is not optimal.

Lemma 4.3.4 A partitioningE satisfying the conditions of Lemmas 4.3.2 and 4.3.3 is unique, and
thus that partitioning is optimal.

Proof Assume two partitioningsE1 andE2 satisfying the conditions of Lemmas 4.3.2 and 4.3.3.
Consider the firstj such thatE1

j 6= E2
j . LetE1

j = t0 . . . t1 andE2
j = t0 . . . t2, assuming without loss

of generality thatt1 > t2. Now consider the firstk > j such thatE2
k = t3 . . . t4 andt4 ≥ t1. Thus

we havet0 ≤ t2 < t3 ≤ t1 ≤ t4. Let us writeµ(t0 . . . t2) =

P

k=t0...t2
Ck

P

k=t0...t2
Bk

and define the otherµ(·)

similarly. Applying the condition of Lemma 4.3.2 toE2, we knowµ(t0 . . . t2) < µ(t3 . . . t4). Also,
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if t2 +1 < t3, we knowµ(t0 . . . t2) < µ(t2 +1 . . . t3−1) < µ(t3 . . . t4). Applying the condition of
Lemma 4.3.3 toE2, we know that ift1 < t4, we haveµ(t3 . . . t1) ≥ µ(t3 . . . t4) ≥ µ(t1 + 1 . . . t4).
From these inequalities, we knowµ(t3 . . . t1) > µ(t0 . . . t3 − 1). But applying the condition of
Lemma 4.3.3 toE1, we knowµ(t0 . . . t3 − 1) ≥ µ(t3 . . . t1), which is a contradiction. Thus
the partitioning satisfying the conditions of Lemmas 4.3.2 and 4.3.3 is unique. Sincethese are
necessary conditions for optimality, and a unique partitioning satisfies these conditions, we know
that the partitioning is optimal.

Theorem 4.3.5 The method presented above maximizesF (S, tmin) subject to the monotonicity
constraints.

Proof We first note that the method satisfies the conditions of Lemma 4.3.1 (sinceQj =
Cj

Bj
for

each partitionEj), and Lemma 4.3.2 (since the while loop ensures the ordering ofQj). To show
that the method satisfies the condition of Lemma 4.3.3, we show that each new partition created by
the “merge step” temp = (temp.start, temp2.end,. . .) maintains this condition as an invariant. Let
Etemp = t0 . . . t1, andEtemp2 = t1 +1 . . . t2. We know thatEtemp andEtemp2 satisfy the condition
of Lemma 4.3.3, and we must show that the merged partitionEnew also satisfies this condition. In
other words, we are givenµ(t0 . . . j) ≥ µ(j +1 . . . t1) for all j (t0 ≤ j < t1), andµ(t1 +1 . . . j) ≥
µ(j + 1 . . . t2) for all j (t1 + 1 ≤ j < t2). We also know that temp.Q is at least temp2.Q, since
the merge step only takes place if this condition holds, soµ(t0 . . . t1) ≥ µ(t1 + 1 . . . t2). To show
that the merged partition satisfies the condition of Lemma 4.3.3, we must show thatµ(t0 . . . j) ≥
µ(j + 1 . . . t2) for all j (t0 ≤ j < t2). We know this is true forj = t1, but must also prove it
for j < t1 and j > t1. For j < t1, we haveµ(t0 . . . j) ≥ µ(t0 . . . t1) ≥ µ(j + 1 . . . t1) and
µ(t0 . . . t1) ≥ µ(t1 +1 . . . t2). Thusµ(t0 . . . j) ≥ µ(j +1 . . . t1) andµ(t0 . . . j) ≥ µ(t1 +1 . . . t2),
soµ(t0 . . . j) ≥ µ(j + 1 . . . t2) as desired. Forj > t1, we haveµ(t1 + 1 . . . j) ≥ µ(t1 + 1 . . . t2) ≥
µ(j + 1 . . . t2) andµ(t0 . . . t1) ≥ µ(t1 + 1 . . . t2). Thusµ(t0 . . . t1) ≥ µ(j + 1 . . . t2) andµ(t1 +
1 . . . j) ≥ µ(j + 1 . . . t2), soµ(t0 . . . j) ≥ µ(j + 1 . . . t2) as desired.

4.3.5 Parametrized clusters

Here we assume that the rate increases over the duration of the cluster according to some known,
parametrized distribution. We focus here on the case where the rate is exponentially increasing
(multiplied byφ on every time step). Similar expressions may be derived for the case of a linear
increase in rate (i.e. rate is increased by∆ on every time step).

In this case, we compare the null hypothesisH0: the rate equals 1 over all locations and times,
to the set of alternative hypothesesH1(S): the rate isφt−tmin+1 at timest = tmin . . . T in region
S, and equals 1 over all other locations and times. The likelihood ratio is:

F (S, tmin) =
maxφ≥1

∏

Pr(ct
i ∼ Poisson(bt

iφ
t−tmin+1))

∏

Pr(ct
i ∼ Poisson(bt

i))

=
maxφ≥1

∏

e−φt−tmin+1bt
i(φt−tmin+1)ct

i

∏

e−bt
i

=
maxφ≥1

∏T
t=tmin

e−φt−tmin+1Bt(φt−tmin+1)Ct

∏T
t=tmin

e−Bt
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= max
φ≥1

T
∏

t=tmin

e(1−φt−tmin+1)Btφ(t−tmin+1)Ct

whereBt =
∑

st
i∈S×t bt

i andCt =
∑

st
i∈S×t ct

i. Maximizing with respect toφ requires finding the
root of a polynomial of degreeT − tmin + 1; approximate (gradient) methods may also be used.

4.4 Inferring baseline values

In order to infer the baselinesbt
i for the “current” daysT − W < t ≤ T , we must consider two

distinct questions: on what level toaggregatethe data for time series analysis, and what method
of time series analysis to use. We consider three different levels of spatialaggregation, which we
term “building-aggregated time series” (BATS), “cell-aggregated time series” (CATS), and “region-
aggregated time series” (RATS) respectively. For the BATS method, we consider the time series for
each spatial location independently; for example, we may have a separate timeseries for each store
or hospital, or counts may be already aggregated at some level (e.g. zip code). For each of these
locationssi, we independently compute the baselinesbt

i (T − W < t ≤ T ) from the past countsct
i

(1 ≤ t ≤ T −W ), using one of the time series analysis methods below. Then whenever we calculate
F (S, tmin) for a region, we use the baselinesbt

i and countsct
i for each location in the region. The

CATS method first computes the aggregate countct
i for each cell of the gridsi ∈ G on each day

t, by summing counts of all spatial locations in that cell. Then the baselinesbt
i are computed

independently for each grid cellsi ∈ G, and whenever we calculateF (S, tmin) for a region, it is the
cell counts and baselines that we use to compute the score. Finally, the RATS method, whenever it
searches a regionS, aggregates the time series of countsCt(S) “on the fly” by summing counts of
all spatial locations in that region, computes baselinesBt(S) for the “current” daysT−W < t ≤ T ,
and applies the score functionF (S, tmin) to the resulting counts and baselines. This allows us to
account for spatial correlations between cells, because the resulting “region” time series is formed
by aggregating these correlated counts. However, the lack of a separate baseline per cell makes it
more difficult to perform significance testing, as discussed below.

Randomization testing must also be performed differently for each of the three levels of ag-
gregation. To generate a replica grid for BATS, we independently draw acount for each spatial
locationsi for each current dayt, using its baselinebt

i. To generate a replica grid for CATS, we
independently draw a count for eachcell of the gridsi ∈ G for each current dayt, using the cell
baselinebt

i. Finally, randomization testing for RATS is somewhat more difficult than for theother
methods, since we must produce cell counts from a correlated distribution.This can be done by
Gibbs sampling [55] or possibly generalized Monte Carlo significance testing[14], but the need to
perform sampling makes randomization much more computationally expensive. Another alterna-
tive would be to bound False Discovery Rate [12] or some other criterion rather than computing
statistical significance.

We also note that missing data is a potentially serious problem for all of these methods. For
BATS, we may use time series approaches which adjust for the presence of missing data; for CATS
and RATS, we must infer these missing values before aggregating data at the cell or region level.
For the over-the-counter drug sales data, our current best approach is an exponentially weighted
regression approach, applied to day-of-week adjusted counts; the adjustment is made by estimating
the proportion of weekly counts falling on each day, and normalizing by these factors.
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4.4.1 Time series analysis methods

For a given location, cell, or regionsi, our goal is to estimate the expected values of the “current”
counts,bt

i = E[ct
i], T − W < t ≤ T , from the time series of “past” countsct

i, 1 ≤ t ≤ T − W .
A variety of univariate time series methods may be used to infer these baselines, depending on how
we wish to deal with three questions: day of week effects, seasonal trends, and bias.

Many epidemiological quantities (for example, OTC drug sales) exhibit strong day of week
and seasonal trends. Here we consider three methods of dealing with dayof week effects: we can
ignore them,stratify by day of week (i.e. perform a separate time series calculation for each day
of the week), oradjust for day of week. To adjust for day of week, we assume that the observed
count on a given day is the product of an “actual” count and a constant dependent on the day of
week. Thus we compute the proportion of countsβi on each day of the week (i = 1 . . . 7). Then we
transform each past day’s observed count by dividing by7βi, do a single time series calculation on
the transformed past counts to predict the transformed current counts,and finally multiply by7βi

to obtain the predicted count for each current day. By adjusting instead of stratifying, more data is
used to predict each day’s count (potentially reducing the variance of our estimates), but the success
of this approach depends on the assumption of a constant and multiplicative day-of-week effect.

We also consider three methods of adjusting for seasonal trends: to use only the most recent
counts (e.g. the past four weeks) for prediction, to use all counts but weight the most recent counts
more (as is done in our exponentially weighted moving average and exponentially weighted linear
regression methods), and to use regression techniques to extrapolate seasonal trends to the current
data. For datasets with little or no seasonal trend, simple mean or moving average methods can be
sufficient, but for datasets with strong seasonality, these methods will lag behind the seasonal trend,
resulting in numerous false positives for increasing trends (e.g. sales ofcough and cold medication
at the start of winter) or false negatives for decreasing trends (e.g. cough and cold sales at the end of
winter). To account for these trends, we recommend the use of regression methods (either weighted
linear regression or non-linear regression depending on the data) to extrapolate the current counts.
Finally, we consider both methods which attempt to give an unbiased estimate of the current count
(e.g. mean of past counts), and methods which attempt to give a positively biased estimate of the
current count (e.g. maximum of past counts). As we show, the unbiasedmethods typically have
better detection power, but the conservatively biased methods have the advantage of reducing the
number of false positives to a more manageable level.

Here we consider a total of 10 time series analysis methods, including “allmax” (bt
i = maximum

count of last 28 days), “allmean” (bt
i = mean count of last 28 days), “stratmax” (bt

i = maximum
count of same day of week, 1-4 weeks ago), “stratmean” (bt

i = mean count of same day of week, 1-4
weeks ago), two exponentially weighted moving average methods (“stratEWMA” stratified by day
of week, “adjEWMA” adjusted for day of week), and two exponentially weighted linear regression
methods (“stratEWLR” stratified by day of week, “adjEWLR” adjusted for day of week). Our final
two methods are inspired by the recent work of Kulldorff et al. [85] on the“space-time permutation
scan statistic,” so we call them “stratKull” (stratified by day of week) and “allKull” (ignoring day

of week effects). In this framework, the baselinebt
i is computed as

P

t ct
i

P

i ct
i

P

t

P

i ct
i

, i.e. space and time

are assumed to be independent, so the expected fraction of all cases occurring in locationsi on
day t can be computed as the product of the fraction of all cases occurring in locationsi and the
fraction of all cases occurring on dayt. The problem with this method is that the current day’s
counts are used for prediction of the current day’sexpectedcounts. As a result, if there is a cluster
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on the current day, the baselines for the current day will also be higher, reducing our power to detect
the cluster. Nevertheless, the stratKull and all Kull methods do extremely well when detecting
localized clusters (where the increase in counts is noticeable for a small region, but the region is
small enough that the total count for the day is essentially unaffected).

We also note an interesting interaction between the level of aggregation and the method of time
series analysis. If the expected countsbt

i (T − W < t ≤ T ) are calculated as a linear combination
of past countsct

i (1 ≤ t ≤ T −W ), and the weights for each past dayt are constant from location to
location, then we will calculate the same baselines (and thus, the same scores)regardless of whether
we aggregate on the building, cell, or region level. This turns our to be true for most of the methods
we investigate: allmean, stratmean, stratEWMA, strat EWLR, all Kull, and stratKull. On the
other hand, if we choose different weights for each location (as is the case when we adjust for day
of week, as in adjEWMA and adjEWLR), we will calculate different baselines (and thus, different
scores) depending on our level of aggregation. Finally, we have verydifferent results for the “max”
methods (stratmax and allmax) depending on the level of aggregation, because the maximum is
not a linear operator. Since the sum of the maximum counts of each location (

∑

si∈S maxt ct
i)

is higher than the maximum of the sum (maxt

∑

si∈S ct
i), we always expect BATS to predict the

highest baselines, and RATS to predict the lowest baselines. For the results given below, we only
distinguish between BATS, CATS, and RATS aggregation for those methods where the distinction
is relevant (allmax, stratmax, adjEWMA, and adjEWLR).

4.5 Computational considerations

We begin by making two important observations. First, for any of the time seriesanalysis methods
given above, the baselinesbt

i (T − W < t ≤ T ) can be inferred from the past countsct
i (1 ≤

t ≤ T − W ) in O(T ). Second, we can compute the score functionF (S, tmin), for a given spatial
regionS and for allT − W < tmin ≤ T , in total timeO(W ), regardless of whether the persistent
or emerging scan statistic is used. This is obvious for the persistent statistic since we can simply
proceed backward in time, adding the cumulative countCt and cumulative baselineBt for each day
t, and recomputing the score. (We can accumulate these counts and baselines in O(W ) by using
the “cumulative counts” trick discussed in Chapter 3 for each of theW current days.) TheO(W )
complexity is less obvious for the emerging statistic, since adding any new dayt may result in up to
O(W ) pops from the stack. But each day ispushedonto the stack at most once, and thus the total
number ofpopsfor theW days is at mostW , giving total complexityO(W ), notO(W 2).

For the BATS method, our computation may be divided into three steps: first, wecompute base-
lines for each spatial location, requiring total timeO(NsT ), whereNs is the number of locations.
Second, we aggregate “current” store baselines and counts to the grid,requiring timeO(N2W )
whereN is the grid size. Third, we search over all spatio-temporal regions (S, tmin): for each such
region, we must compute the aggregate counts and baselines, and apply thescore functionF . As
noted above, we can do this inO(W ) per region, but since a naı̈ve search requires us to examine all
O(N4) gridded rectangular regions, the total search time isO(N4W ), bringing the total complexity
to O(NsT + N4W ). For CATS, we first aggregate all store baselines and counts to the grid,requir-
ing timeO(NsT + N2T ). Then we calculate baselines for each of theN2 grid cells, requiring total
time O(N2T ). Finally, we search over all spatio-temporal regions; as in BATS, this requires time
O(N4W ), bringing the total complexity toO(NsT +N2T +N4W ). For RATS, we first aggregate
all store baselines and counts to the grid (as in CATS), requiring timeO(NsT + N2T ). Then for
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each of theN4 regions we search, we must calculate the baselines for “current” days on the fly,
requiring timeO(T ), and compute the score function using the counts and baselines for current
days, requiring timeO(W ). Thus the total complexity isO(NsT + N4T ).

For large grid sizesN , theO(N4) complexity of searching over all spatial regions makes a naı̈ve
search over all such regions computationally infeasible. However, we can apply thefast spatial scan
discussed in Chapter 3, allowing us to find the highest scoring region and itsp-value while searching
only a small fraction of possible regions. In the purely spatial case, the fast spatial scan works by
using a multi-resolution, branch-and-bound search toprunesets of regions that can be proven to
have lower scores than the best region score found so far. We can easily extend this method to
the space-time case: given a spatial regionS, we must upper bound the scoresF (S′, tmin) for all
regionsS′ ⊆ S andT − W < tmin ≤ T . The simplest way of doing so is to compute separate
bounds on baselines and counts ofS′ for each time stept, using the methods given in Chapter 3,
then use these bounds to compute an upper bound on the score. It might also be possible to achieve
tighter bounds (and thus, better pruning) by enforcingconsistencyconstraints across multiple days,
i.e. ensuring thatS′ has the same spatial dimensions on each time step.

4.6 Related work

In general, spatio-temporal methods can be divided into three classes: spatial modeling techniques
such as “disease mapping,” where observed values are spatially smoothed to infer the distribution of
values in space-time [28, 16]; tests for a general tendency of the data to cluster [77, 101]; and tests
which attempt to infer the location of clusters [82, 81, 85]. We focus on the latter class of methods,
since these are the only methods which allow us to both answer whether any significant clusters
exist, and if so, identify these clusters. Three spatio-temporal cluster detection approaches have
been proposed by Kulldorff et al.: the retrospective and prospectivespace-time scan statistics [82,
81], and the space-time permutation scan statistic [85]. The first two approaches attempt to detect
persistent clusters, assuming that baselines are given based on census population estimates. The
retrospective statistic searches over all space-time intervals, while the prospective statistic searches
over those intervals ending at the present time. As noted above, these formulations make sense
for the case of explicitly given denominator data, and countsproportional to these baselines (e.g.
we expect a population of 10000 to have twice as many cases as a populationof 5000, but do
not know how many cases we expect to see). They are not appropriatefor the case where we
infer theexpected valuesof counts from the time series of past counts (e.g. based on past data,
we expect to see 40 cases in the first population and 15 cases in the second). Even if accurate
denominator data is provided, the retrospective and prospective statisticsmay pick up purely spatial
clusters resulting from spatial variation in the underlying rate (e.g. different parts of the country have
different disease rates), or purely temporal clusters based on temporal fluctuations in rate (seasonal
effects or long-term trends), and thus the detected clusters tend to be lessuseful for prospective
detection of emerging outbreaks.

The recently proposed “space-time permutation scan statistic” [85] attempts to remedy these
problems; like the present work, it allows baseline data to be inferred fromthe time series of past
counts. As noted above, baselines are calculated by assuming that casesare independently dis-
tributed in space and time, and a variant of the test for persistent clusters isused (searching for
regions with higher rate inside than outside). Then randomization testing is done by permuting
the dates and locations of cases. This method focuses on detectingspace-time interaction, and ex-
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plicitly avoids detecting purely spatial or purely temporal clusters. The disadvantages of this are
twofold. First, it loses power to detect spatially large clusters, because (as noted above) the current
day’s counts are used to estimate what the current day’s counts should be. In the most extreme case,
a spatially uniform multiplicative increase in disease rate over the entire search area would be com-
pletely ignored by this method, and thus it is unsafe to use for surveillance except in combination
with other methods. The second disadvantage is that if the count decreases in one spatial region
and remains constant elsewhere, this is detected as a spatio-temporal cluster. This results in false
positives in cases where stores in one area are closed and stores in a different area remain open: the
open stores are flagged as a cluster even if their counts have actually decreased.

All of the previously proposed space-time scan statistics are population-based: they often start
from census data, which gives an unadjusted populationpi corresponding to each spatial location
si. This population can then be adjusted for covariates such as the distributionof patient age and
gender, giving an estimated “at-risk population” for each spatial location.In a recent paper, Klein-
man et al. [75] suggest two additional, model-based adjustments to the population estimates. First,
they present a method for temporal adjustment (accounting for day of week, month of the year,
and holidays), making the populations larger on days when more visits are likely (e.g. Mondays
during influenza season) and smaller on days when fewer visits are likely (e.g. Sundays and holi-
days). Second, they apply a “generalized linear mixed models” (GLMM) approach, first presented
in Kleinman et al. [76], to adjust for the differing baseline risk in each census tract. This makes
the adjusted population larger in tracts which have a larger baseline risk, which makes sense since
a given number of observed cases should not be as significant if the observed counts in that region
are consistently high. These baseline risks are computed from historical data, i.e. the time series of
past counts in each census tract, using the GLMM version of logistic regression to fit the model.

Another possibility for inferring baselines is to make the assumption of independence of space
and time, as in [85]; this means that the expected count in a given region is equal to the total count
of the entire area under surveillance, multiplied by the historical proportion of counts in that region.
This approach is successful in detecting very localized outbreaks, butloses power to detect more
widespread outbreaks [120]. The reason for this is that a widespreadoutbreak will increase the total
count significantly, thus increasing the expected count in the outbreak region, and hence making the
observed increase in counts seem less significant. In the worst scenario, a massive outbreak which
causes a constant, multiplicative increase in counts across the entire area under surveillance would
be totally ignored by this approach; this is also true for many of the population-based methods,
since they only detect spatial variation in disease rate, not an overall increase in counts. If these
methods are used, we recommend using a purely temporal method in parallel to ensure that large-
scale outbreaks (as well as localized outbreaks) can be detected. Eitherway, the accurate inference
of expected counts from historical data is still an open problem, with different methods performing
well for different datasets and outbreak types.

Several other spatio-temporal cluster detection methods have also been proposed. Iyengar [74]
searches over “truncated rectangular pyramid” shapes in space-time, thus allowing detection of
clusters which move and grow (or shrink) linearly over time; the disadvantage is that this much
larger set of possible space-time regions can only be searched approximately. Assuncao et al. [9]
assume a spatio-temporal Poisson point process: the exact location of each point in time and space
is given, rather than aggregating points to discrete locations and intervals.A test statistic similar
to the space-time permutation scan statistic is derived, assuming a Poisson intensity function that is
separable in space and time.
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4.7 Results

We evaluated our methods on two types of simulated outbreaks, injected into real Emergency De-
partment and over-the-counter drug sale data for Allegheny County, Pennsylvania.3 First, we con-
sidered aerosol releases of inhalational anthrax (e.g. from a bioterrorist attack), produced by the
BARD (“Bayesian Aerosol Release Detector”) simulator of Hogan et al. [70]. The BARD simulator
takes in a “baseline dataset” consisting of one year’s worth of EmergencyDepartment records, and
the quantity of anthrax released. It then produces multiple simulated attacks, each with a random
attack location and environmental conditions (e.g. wind direction), and usesa Bayesian network
model to determine the number of spores inhaled by members of the affected population, the re-
sulting number and severity of anthrax cases, and the resulting number of respiratory Emergency
Department cases on each day of the outbreak in each affected zip code. Each simulated outbreak
can then be injected into the baseline ED dataset, and our methods’ detection performance can be
evaluated using the testing framework below.

Second, we considered a “Fictional Linear Onset Outbreak” (or “FLOO”), with a linear increase
in cases over the duration of the outbreak. A FLOO outbreak is a simple simulated outbreak defined
by a set of zip codes, a durationTfloo, and a value∆. The FLOO simulator then produces an
outbreak lastingTfloo days, witht∆ respiratory cases in each of the zip codes on dayt, 0 < t ≤
Tfloo/2, andTfloo∆/2 cases on dayt, Tfloo/2 ≤ t < Tfloo. Thus we have an outbreak where the
number of cases ramps up linearly for some period of time, then levels off. While this is clearly
a less realistic model than the BARD-simulated anthrax attack, it does have several advantages. It
allows us to precisely control the parameters of the outbreak curve (number of cases on each day),
allowing us to test the effects of these parameters on our methods’ detection performance. Also,
it allows us to perform experiments using over-the-counter drug sale dataas well as Emergency
Department data, while the BARD simulator only simulates ED cases.

We note that simulation of outbreaks is an active area of ongoing researchin biosurveillance.
The creation of realistic outbreak scenarios is important because of the difficulty of obtaining suf-
ficient labeled data from real outbreaks, but is also very challenging. State-of-the-art outbreak
simulations such as those of Buckeridge et al. [23], and Wallstrom et al. [154] combine disease
trends observed from past outbreaks with information about the current background data into which
the outbreak is being injected, as well as allowing the user to adjust parameters such as outbreak
duration and severity.

We now discuss our basic semi-synthetic testing framework, followed by a discussion of the
performance of our methods on each of the three main experiments (anthraxoutbreaks in ED data,
FLOO outbreaks in ED data, and FLOO outbreaks in OTC data).

4.7.1 Semi-synthetic testing

Our basic goal in the semi-synthetic testing framework is to evaluate detection performance: what
proportion of outbreaks a method can detect, and how long it takes to detectthese outbreaks. Clearly
these numbers are dependent on how often the method is allowed to “sound the alarm,” and thus we
have a tradeoff between sensitivity (i.e. ability to detect true outbreaks) and detection time on the

3All data was aggregated to the zip code level to ensure anonymity, giving 88 distinct spatial locations (zip code
centroids). The ED data contained an average of 40 respiratory cases/day, while the OTC data averaged 4000 sales of
cough and cold medication/day.
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Table 4.1: Summary of performance. Detection rate and average days to detect, 1 false posi-
tive/month, all datasets.

best median temporal spatial
dataset rate days rate days rate days rate days best method

BARD (0.125) 1.000 1.600 1.000 1.800 1.000 1.900 1.000 2.317 1-day, allmean
BARD (0.015625) 0.883 3.679 0.883 3.906 0.867 4.250 0.883 5.094 1-day, allmean
FLOO ED (1,20) 1.000 4.484 1.000 5.066 0.988 6.119 1.000 7.289 3-day emerging, stratEWMA
FLOO ED (2,20) 1.000 2.898 1.000 3.211 1.000 4.551 1.000 4.074 3-day emerging, stratEWMA
FLOO ED (4,14) 1.000 1.748 1.000 2.076 1.000 3.103 1.000 2.290 1-day, allmean

FLOO OTC (20,20) 1.000 3.891 0.595 7.621 0.315 7.358 0.260 8.910 1-day, stratKull
FLOO OTC (40,14) 1.000 2.319 0.981 4.609 0.240 4.667 0.232 6.082 1-day, stratKull
FLOO OTC (all1,14) 0.475 5.424 0.179 3.340 0.274 5.000 0.213 6.036 1-day, stratEWLR

one hand, and specificity (i.e. frequency of false positives) on the other. More precisely, our semi-
synthetic framework consists of the following components. First, given oneyear of baseline data
(assumed to contain no outbreaks), we run the space-time scan statistic for each day of the last nine
months of the year (the first three months are used to provide baseline data only; no outbreaks in this
time are considered). We thus obtain the highest scoring regionS∗, and its scoreF ∗ = F (S∗), for
each of these days. Then for each “attack” that we wish to test, we do the following. First, we inject
that outbreak into the data, incrementing the number of cases as above. Then for each day of the
attack, we compute the highest scoringrelevantregionS∗ and its scoreF ∗, where a relevant region
is defined as one which contains the centroid of all the cases injected that day. The reason that we
only allow the algorithm to search over relevant regions is because we do not want to reward it for
triggering an alarm and pinpointing a region which has nothing to do with the outbreak. We then
compute, for each dayt = 0 . . . Toutbreak (whereToutbreak is the length of the attack), the fraction
of baseline days (excluding the attacked interval) with scores higher than the maximum score of all
relevant regions on days 0 tot. This is the proportion of false positives we would have to accept in
order to have detected that outbreak by dayt. By repeating this procedure on a number of outbreaks,
we can obtain summary statistics about the detection performance of each method: we compute its
averaged AMOC curve [47] (average proportion of false positives needed for detection on dayt of
an outbreak), and for a fixed level of false positives (e.g. 1 false positive/month), we compute the
proportion of outbreaks detected and the average number of days to detection.

Note that this basic framework does not perform randomization testing, butonly compares
scoresof attack and baseline days. There are several disadvantages to this method: first, since
the baselinesbt

i for each day are different, the distribution of scores for each day’s replica grids
will be different, and thus the highest scoring regions may not correspond exactly to those with the
lowestp-values. A second disadvantage is that it does not tell us how to performcalibration: setting
thresholdp-values in order to obtain a fixed false positive rate in real data. This is discussed in more
detail below.

We tested a total of 150 methods: each combination of the three aggregation levels (BATS,
CATS, RATS), five space-time scan statistics (1-day, 3-day emerging, 3-day persistent, 7-day emerg-
ing, 7-day persistent) and the ten methods of time series analysis listed above.We compared these
methods against two simple “straw men”: a purely spatial scan statistic (assuminguniform under-
lying at-risk population, and thus setting the baseline of a region proportional to its area), and a
purely temporal scan statistic (analyzing the single time series formed by aggregating together all
spatial locations, using 1-day allmean). Since both the ED and OTC datasets were relatively small
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Table 4.2: Comparison of methods. Average days to detect, 1 false positive/month, all datasets.
BARD BARD FLOO ED FLOO ED FLOO ED FLOO OTC FLOO OTC FLOO OTC

method (0.125) (0.016) (1,20) (2,20) (4,14) (20,20) (40,14) (all1,14)
1-day 1.60 4.53 5.62 3.05 1.75 3.89 2.32 9.92

3-day persistent 1.75 4.58 4.53 2.93 1.94 4.02 2.61 11.61
3-day emerging 1.75 4.55 4.48 2.90 1.92 3.96 2.53 11.57
7-day persistent 1.80 4.67 4.73 3.06 2.01 4.35 2.83 11.89
7-day emerging 1.77 4.67 4.71 3.09 2.00 4.29 2.78 11.73

all max BATS 1.98 5.03 6.34 3.61 2.16 6.58 3.30 10.80
all max CATS 1.97 4.92 5.75 3.18 2.03 6.58 3.46 10.80
all max RATS 1.72 4.65 5.06 3.32 2.03 10.15 5.11 11.02

all mean 1.60 4.53 4.79 3.04 1.75 15.34 6.67 11.78
stratmax BATS 1.87 4.83 5.25 3.38 2.17 7.11 3.69 11.73
stratmax CATS 1.87 4.82 5.25 3.23 2.10 7.21 3.75 11.82
stratmax RATS 1.73 4.68 5.20 3.21 2.08 12.34 4.57 11.54

stratmean 1.75 4.63 4.68 3.04 1.99 15.92 6.46 11.67
stratEWMA 1.75 4.58 4.48 2.90 1.92 16.88 11.49 12.19
adj EWMA 1.68 4.55 4.65 2.92 1.89 16.58 7.56 11.84
stratEWLR 1.83 4.82 5.17 3.42 2.29 10.84 5.23 9.92
adj EWLR 1.75 4.67 5.24 3.12 2.03 10.19 4.36 10.78

all Kull 1.80 4.65 4.69 2.96 1.95 4.25 2.59 11.63
stratKull 1.75 4.68 4.53 2.92 1.94 3.89 2.32 10.89

in spatial extent (containing only records from Allegheny County), we used a small grid (N = 16,
maximum cluster size = 8), and thus it was not necessary to use the fast spatial scan. For larger
datasets, such as nationwide OTC data, a much larger grid size (e.g.N = 256) is necessary to
achieve adequate spatial resolution, and thus the fast spatial scan will bean important component
of our nationwide disease surveillance system.

For each outbreak type, we compared the detection performance of our methods to the two straw
men, and also determined which of our methods was most successful (Table4.1). Performance
was evaluated based on detection rate (proportion of outbreaks detected) at 1 false positive/month,
with ties broken based on average number of days to detect; we list both the performance of our
“best” spatio-temporal method according to this criterion, as well as a representative “median”
method (i.e. the 75th best method out of 150). We compare the methods in more detail in Table
4.2, giving each method’s average number of days to detection at 1 false positive/month, assuming
that undetected outbreaks were detected on dayToutbreak. For each of the five scan statistics, we
report performance assuming its best combination of time series analysis method and aggregation
level; for each of the ten time series analysis methods, we report performance assuming its best
scan statistic. Level of aggregation only made a significant difference for the all max and stratmax
methods, so we report these results separately for BATS, CATS, and RATS. For each outbreak, we
also construct AMOC curves of the “best,” “median,” purely temporal, and purely spatial methods;
we present three of these curves (one for each outbreak type) in Figure 4.1. We also discuss each
outbreak type in more detail below.

4.7.2 Anthrax outbreaks, ED data

For the anthrax outbreaks, we began with real baseline data for respiratory Emergency Department
visits in Allegheny County in 2002. We used this data to simulate epidemics using BARD at two
different levels of anthrax release: 0.125 (high) and 0.015625 (low).For each release amount, 60
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Figure 4.1: AMOC curves for three of the eight datasets. The four curves are for the best spatio-
temporal method (�), the median spatio-temporal method (◦), the purely temporal method (∗), and
the purely spatial method (+). Note that the purely temporal method, unlike the others, is not
required to pinpoint the region location, so its AMOC will be lower at the start of an attack (before
there are a sufficient number of cases to detect); this is purely a function of the testing methodology,
and does not imply better performance.

simulated epidemics were created. Separately for the high and low levels, we tested all methods,
forming an average AMOC curve for each over all simulated epidemics, andmeasuring detection
rate and average days to detect.

For the high release dataset, all of the methods tested were able to rapidly detect all 60 outbreaks.
For a fixed false positive rate of 1/month, every method detected all outbreaks (100% detection rate),
with average time to detection ranging from 1.6 to 2.067 days. The top method (1.6days to detect)
was the 1-day statistic using allmean, and half of all methods detected in 1.8 days or fewer. Since
the average delay from release to the first reported case was 1.18 days, these times were close to
ideal detection performance. All methods except allmax outperformed the purely temporal scan
statistic (100% detection rate, 1.9 days to detect), and all methods outperformed the purely spatial
scan statistic (100% detection rate, 2.317 days to detect). For this dataset, there was very little
difference between the best and worst performing methods, and thus it ishard to draw definitive
conclusions. Nevertheless, we observed that shorter temporal windows performed better (1-day was
best, 7-day was worst), and there were no significant differences between emerging and persistent
scan statistics. Looking at the outbreak curve for this epidemic, it is clear why this is the case: all
outbreaks have huge spikes in the number of cases starting on day 1 or 2,so there is no advantage
to having a longer window; and since there is essentially no “ramp-up” in the number of cases (just
the large spike, at which point the outbreak is obvious to any method) there isno advantage to the
emerging over persistent statistics. For time series analysis, the allmean method performed best,
followed by adjEWMA. This result is somewhat surprising, suggesting that the ED baselinedata
has very little day of week or seasonal trends.

Results on the low release dataset were similar, except for two differences resulting from the
amount of release. First, 7 of the 60 outbreaks were missed by all methods; these outbreaks con-
sisted of a very small number of cases (less than 5 in total), and as a result there was essentially
no signal to detect. The other 53 outbreaks typically produced a large andobvious spike in cases
(again, with very little ramp-up prior to the spike), though the delay between release and spike was
longer on average (2.6 days from release to first reported case). Again, the 1-day window was best,
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though the 3-day statistics performed almost as well, and allmean and adjEWMA were the top two
methods. Our spatio-temporal methods again outperformed the straw men, requiring 3.679 days to
detect (best) and 3.906 days to detect (median) at 1 false positive/month. This was substantially
better than the purely temporal and purely spatial methods, which required 4.250 and 5.094 days
respectively.

4.7.3 FLOO outbreaks, ED data

For the FLOOED outbreaks, we again began with the 2002 Allegheny County ED dataset. We
injected three types of FLOO attacks, assuming that only zip code 15213 (Pittsburgh) was affected:
(∆ = 4, Tfloo = 14), (∆ = 2, Tfloo = 20), and(∆ = 1, Tfloo = 20). Thus the first attack
has the fastest-growing outbreak curve (4t cases on dayt), and the third has the slowest-growing
outbreak curve (t cases on dayt). For each outbreak type, we simulated outbreaks for all possible
start dates in April-December 2002, and computed each method’s averageperformance over all
such outbreaks. All the spatio-temporal methods were able to detect all injected outbreaks at a rate
of 1 false positive/month; not surprisingly, median number of days to detectincreased from 2.076
for the fastest growing outbreak, to 5.066 for the slowest growing outbreak. All of these detection
times were more than one full day faster than the purely spatial and purely temporal methods,
with one exception (0.22 days faster than purely spatial for∆ = 4). Again, the allmean method
performed well (1-day allmean was the winner for∆ = 4, with a detection time of 1.748 days),
as did adjEWMA and stratEWMA (3-day emerging stratEWMA was the winner for∆ = 2 and
∆ = 1, with detection times of 2.898 and 4.484 days respectively). Our most interesting result
was the effect of the temporal window sizeW : for the fastest growing outbreak, the 1-day method
detected outbreaks 0.2 days faster than the 3-day and 7-day methods, but for the slowest growing
outbreak, both 3-day and 7-day methods detected outbreaks a full day faster than the 1-day method.
Emerging methods outperformed persistent methods for approximately 80% ofour trials, though
the difference in detection time was typically fairly small (0.02-0.10 days, depending on the time
series analysis method). We also observed that higher aggregation typically performed better for
the all max and stratmax methods (i.e. RATS performed best, and BATS worst).

4.7.4 FLOO outbreaks, OTC data

For the FLOOOTC outbreaks, we began with one year’s worth of data for retail sales of over-the-
counter cough and cold medication in Allegheny County, collected from 2/13/04-2/12/05. We in-
jected three types of FLOO attacks: for the first two, we again assumed thatonly zip code 15213 was
affected, but (since the overall numbers of OTC sales were much higherthan the overall numbers of
ED visits) we injected larger numbers of counts,(∆ = 40, Tfloo = 14) and(∆ = 20, Tfloo = 20).
For the third attack, we assumed thatall zip codes in Allegheny County were affected, using
(∆ = 1, Tfloo = 14) for each. For each outbreak type, we simulated outbreaks for all possible
start dates over the last nine months of our data, and computed each method’saverage performance
over all such outbreaks. Our first observation was that these attacks were substantially harder to
detect than in the ED data: for the two localized attacks, our median methods only detected 98.1%
and 59.5% of outbreaks for the faster-growing (∆ = 40) and slower-growing (∆ = 20) outbreaks
respectively. It appears that the main reason for this was the difficulty in accurately predicting the
OTC counts for the baseline days, as we observed huge differences inperformance between the var-
ious time series analysis methods. The data contained significant seasonal and day of week trends,
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as well as other irregularities (e.g. large spikes in sales in single stores, probably resulting from
promotions), and most of our methods were not entirely successful in accounting for these; nev-
ertheless, they performed much better than the purely spatial and purely temporal methods, which
only detected 23-32% of these outbreaks. Our second observation wasthat the stratKull method
performed remarkably well in predicting the localized outbreaks, detecting with 100% accuracy
in 2.32 and 3.89 days for∆ = 40 and∆ = 20 respectively; stratKull and all Kull detected the
∆ = 20 outbreaks over two days faster than any other methods. This suggests that those methods
were able to predict baselines for the non-attack days much more accurately than any of the other
time series analysis methods: using the current day’s counts to predict the current day’s baselines al-
lows accurate adjustment for seasonal trends, andif the attack is sufficiently localized, only slightly
reduces detection power. Clearly it would be better to have a method which correctly predicts the
trendswithoutusing the current day’s counts, but none of the methods discussed here were able to
do this. For the non-localized attack (cases added to every zip code), thepower of stratKull was
substantially reduced, and it was only able to detect 36% of outbreaks, while our best-performing
method (stratEWLR) detected 48%. And this is far from the worst case for stratKull: since dif-
ferent zip codes have different average sales, adding the same number of counts to each creates a
large amount of space-time interaction. If we had insteadmultipliedcounts in each zip code by the
same factor, stratKull would haveno power to detect this. We also note that the 1-day statistics
performed best for all three outbreak types on the OTC data, though the 3-day emerging statistics
performed almost as well. Again, emerging methods consistently outperformedpersistent methods,
and the difference in detection time was larger than on the ED data (typically 0.05-0.20 days). Fi-
nally, we note that the lower levels of aggregation (BATS and CATS) outperformed RATS for the
“max” methods; this is the opposite result from what we observed on the ED data.

Based on these conflicting results, it is difficult to recommend a single method for use on all
datasets and outbreak types. As shown above, the optimal temporal window size depends on how
fast the number of cases increases, with longer temporal windows appropriate for more slowly
growing outbreaks. The optimal temporal window is also affected by our desired tradeoff between
number of false positives and detection time: a lower acceptable false positive rate (and thus, longer
acceptable detection time) increases the optimal window size. For example, forthe FLOOED
(1,20) outbreak, the 3-day emerging statistic has the fastest time to detection ata rate of 1 false pos-
itive/month, while the 7-day emerging statistic has the fastest time to detection at a rate of 1 false
positive/year. As noted above, the emerging statistics consistently outperform the corresponding
persistent statistics, and while the amount of difference is not that large (0.02-0.20 days across all
outbreaks and methods), even slightly earlier detection may make a substantialdifference in the ef-
ficacy of outbreak response. It appears that the 3-day emerging statistic is a reasonable compromise
solution, at least for the set of outbreaks tested. It may also be a good idea to run emerging statistics
with different window sizes in parallel, for better detection of both fast-growing and slow-growing
outbreaks; optimal combination of detectors is an interesting and open research question. It is clear
that the best time series analysis method depends on the characteristics of thedataset, as well as
whether the outbreak is spatially localized or occupies a large spatial region: the stratKull method
is excellent for localized outbreaks, but should be used only in parallel with another method that can
detect large-scale outbreaks. For datasets with little seasonal trend, such as the ED data used here,
very simple mean and moving average methods are sufficient, but it is still an open question to find
a method which can accurately predict baseline counts for OTC data without using the current day’s
counts to predict the current day’s expectations.
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Table 4.3: Comparison of expectation-based and population-based scanstatistics. Days to detect
and proportion of outbreaks detected, 1 false positive/month.

FLOO ED FLOO ED FLOO ED BARD ED BARD ED FLOO OTC FLOOOTC
method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)

population-based 1.859 3.324 6.122 1.733 3.925 3.582 5.393
(100%) (100%) (96%) (100%) (88%) (100%) (100%)

expectation-based 1.729 3.035 5.545 1.600 3.679 5.679 7.513
(100%) (100%) (99.6%) (100%) (88%) (61.6%) (44.0%)

4.7.5 Comparison of expectation-based and population-based approaches

We have shown that the expectation-based space-time scan statistic is able to rapidly and accurately
detect disease outbreaks, and that this approach outperforms both purely temporal and purely spatial
scan statistics. We now compare the expectation-based and population-based scan statistics on the
ED and OTC datasets, using the same method of estimating baselines for each (all mean, CATS,
no time series correction) and a 1-day temporal window. Based on our preliminary results (running
both methods on synthetic, purely spatial data), we expect that for a given, unbiased estimate of
the expected count, the expectation-based statistic will outperform the population-based statistic.
On the other hand, the population-based statistic will be more robust to a consistent global bias in
estimation (overestimating or underestimating the total count for each day). Tosee which method
performs better on the ED and OTC datasets, we compare the two methods for seven experiments,
as shown in Table 4.3. From these results, we can see that the expectation-based statistic outper-
forms the population-based statistic on all five runs for the ED dataset, by anaverage of 0.369
days (approximately nine hours). On the other hand, the population-based statistic outperforms
the expectation-based statistic by a large margin on the OTC dataset, detecting almost twice as
many outbreaks and two days faster. These results demonstrate that the expectation-based statistic
does well when we have accurate estimates of the expected counts, but poorly when the estimates
are not accurate. As we know from the above discussion, the allmean method does not account
well for seasonal trends, resulting in poor estimates of the expected counts for OTC data. The
population-based method is more robust to estimation errors than the expectation-based method,
but even better performance can be achieved by using the expectation-based approach with time
series analysis methods that account for seasonal trends, or by usingthe Bayesian cluster detection
methods of Chapter 5.

4.7.6 Effects of time series correction

As noted above, an exponentially weighted linear regression method is typically used to correct the
time series data before applying our space-time scan statistics. One factor that complicates the use
of this method, however, is that our input data streams (ED and OTC data) donot indicate whether
a given location’s data is missing, but simply return a zero count. Thus for the ED data, we do
not perform time series correction since we are unable to tell zero values from missing values. For
the OTC data, on the other hand, average counts are much larger, especially for cough and cold
sales. Thus we use a simple heuristic: if sales of all types are zero for a given store on a given day,
we assume that the data is missing and perform time series correction. As we show in Table 4.4,
time series correction makes a large difference for both population-basedand expectation-based
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Table 4.4: Comparison of corrected and uncorrected time series methods. Days to detect and pro-
portion of outbreaks detected, 1 false positive/month.

FLOO OTC FLOOOTC
method (40,14) (25,20)

population-based 2.745 3.977
(corrected) (100%) (100%)

population-based 3.582 5.393
(uncorrected) (100%) (100%)

expectation-based 5.627 7.797
(corrected) (86.7%) (55.6%)

expectation-based 5.679 7.513
(uncorrected) (61.6%) (44.0%)

methods: the expectation-based method improves from 53% to 71% of outbreaks detected, and
the population-based method can detect outbreaks over 1 day faster when time series correction is
performed.

4.7.7 Calibration

As noted above, our testing framework simply compares scores of the highest scoring regions on
each day, and computes AMOC curves; no randomization testing is done, and thus we do not
actually compute thep-value of discovered regions. Because our detection performance is high,
it is clear that the attacked regions would have lowerp-values than the highest scoring regions
on non-attacked days. But this does not answer the question of calibration: at what thresholdp-
value should we trigger an alarm? If non-attacked days were actually generated under the null
hypothesis, we could choose some levelα and be guaranteed that we will only trigger false alarms
that proportion of the time (e.g. once every 20 days forα = .05). However, our null hypothesis,
that each countct

i is generated by a Poisson distribution with meanbt
i, is clearly false, sincebt

i is
only an estimate of what we expectct

i to be, assuming that no outbreak is present. If this estimate
were unbiased and exactly precise (zero variance), then we would achieve a false positive rate of
α. In practice, however, this estimate can be both biased and highly imprecise.For any method of
calculating baselines that is approximately unbiased, but has non-zero variance (i.e. all of our time
series analysis methods except allmax and stratmax), we expect the proportion of false positives
to be greater thanα, since the scan statistic picks out any regions wherebt

i is an underestimate ofct
i.

The all max and stratmax methods, on the other hand, are conservatively biased (predicting values
of bt

i which overestimatect
i on average) but also have non-zero variances; thus they may result

in proportions of false positives either higher or lower thanα. To examine the calibration of our
methods, we calculated thep-value for each day in both the ED and OTC datasets (with no injected
attacks). We used a 3-day emerging scan statistic, BATS aggregation, with four different time series
analysis methods: two unbiased methods (adjEWLR and allmean) and two conservative methods
(all max and stratmax).R = 100 randomizations were performed, and we counted the proportion
of false positives atα = 0.01 andα = 0.05 for each method on each dataset. See Table 4.5 for
results.

As expected, we observe a large number of false positives in both datasets for the unbiased
methods. For the OTC dataset, we also have high false positive rates even for the conservative
methods. What conclusions can we draw from this? Because of the variance in our predictions,
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Table 4.5: Proportion of false positives

ED dataset OTC dataset
method α = .01 α = .05 α = .01 α = .05

adj EWLR 0.171 0.393 0.725 0.808
all mean 0.091 0.240 0.789 0.840
stratmax 0.000 0.025 0.275 0.344
all max 0.000 0.000 0.058 0.072

the baseline data, especially the OTC data, is not fit well by the null hypothesis. Nevertheless, the
likelihood ratio statistic (which serves as a sort of distance away from the null hypothesis) is very
successful at distinguishing between attacks and non-attacked days. So how can we calibrate the
statistic? One option would be to use an unbiased method with a much lower threshold α, but the
problem with this is that it would require a huge number of randomizations to determine whether
thep-value is less thanα. Another option would be to use a conservative method, but the problem
is that these methods not only record fewer false positives, but also areless able to detect a true
positive. In fact, as our results above demonstrate, the conservative methods typically have much
less power to distinguish attacks from non-attacked days for a given level of false positives, so this
is clearly not a good idea. A better option is to trigger alarms for a given threshold on thescore
rather than on thep-value, with that threshold learned from previous data (e.g. the year of ED and
OTC data used here). An even better solution might be to account for the uncertainty of our baseline
estimatesbt

i, as discussed below, and thus make our null hypothesis more accurately describe the
real data.

4.8 Conclusions

We have presented a new class of space-time scan statistics designed for the rapid detection of
emerging clusters, and demonstrated that these methods are highly successful on the task of rapidly
and accurately detecting emerging disease epidemics. We are currently working to extend this
framework in a number of ways. Perhaps the most important of these extensions is to account for
the imprecision in our baseline estimatesbt

i, using methods of time series analysis which not only
predict the expected values of the “current” counts but also estimate the variance in these estimates.
Our current difficulty is that we are testing the null hypothesis that all counts ct

i are generated from
the estimated valuesbt

i, but since these values are only estimates, the null hypothesis is clearly
false. As a result, as we demonstrated in the previous section, the standardrandomization testing
framework results in large numbers of false positives, i.e. on most non-attack days we still observe a
p-value less than 0.05. The combination of time series methods which account for imprecision of es-
timates, and scan statistics which use distributions that can account for mean and variance separately
(e.g. Gaussian or negative binomial distributions) should allow us to correct these problems. This
will also make the distinction between building-aggregated, cell-aggregated,and region-aggregated
time series methods more relevant, as the variance computations will be very different depending on
the level of aggregation. A second (and related) extension is accountingfor factors such as overdis-
persion and spatial correlation between neighboring counts. Our current methods assume that each
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spatial location, cell, or region has an independent time series of counts, and thus infer baselines
independently for each such time series. When we extend the model to distributions that model
mean and variance separately, we should be able to calculate correlations between time series of
neighboring spatial locations, and adjust for these correlations.

Finally, we are in the process of applying our spatio-temporal scan statisticsto nationwide over-
the-counter drug sales, searching for emerging disease outbreaks ona daily basis. Scaling up the
system to national data creates both computational issues (the use of the fast spatial scan is essential
for searching large grids) as well as statistical issues (dealing with irregularities in the data, such
as missing data, and increased sales resulting from product promotions).We are currently working
with state and local public health officials to ensure that the clusters we report correspond to relevant
potential outbreaks, thus rapidly and accurately identifying emerging outbreaks while keeping the
number of false positives low.



Chapter 5

Bayesian spatial cluster detection

5.1 Introduction

Spatial cluster detection has two main goals: to identify the locations, shapes, and sizes of potential
clusters, and to determine whether each potential cluster is more likely to be a “true” cluster or sim-
ply a chance occurrence. Thus we must compare the null hypothesisH0 of no clusters against some
set of alternative hypothesesH1(S), each representing a cluster in some region or regionsS. In the
standard frequentist setting, we compare these hypotheses by significance testing, computing the
p-values of potential clusters by randomization; here we propose a Bayesian framework, in which
we compute posterior probabilities of each potential cluster. Our primary motivating application is
prospective disease surveillance: detecting spatial clusters of disease cases resulting from a disease
outbreak. We perform surveillance on a daily basis, with the goal of finding emerging epidemics as
quickly as possible, while keeping the number of false positives low.

In this chapter, I present a new Bayesian approach to spatial cluster detection, the “Bayesian
spatial scan statistic,” and demonstrate that this method has several advantages over the standard
(frequentist) method. First, the Bayesian method allows us to incorporate prior information about
the size and shape of an cluster, and the impact of the cluster on the data stream being monitored.
Second, because randomization testing is unnecessary within the Bayesianframework, we can com-
pute the Bayesian scan approximately 1000x faster than the frequentist approach. Other advantages
of the Bayesian method include higher detection power and easier calibration, visualization, and
interpretation of results. Additionally, the method can be extended to a “multivariate Bayesian scan
statistic,” enabling us to combine inputs from multiple data streams and to differentiate between
different types of clusters (e.g. different types of outbreak in the disease surveillance case).

In Section 5.2, I review the frequentist spatial scan statistic and discuss some of its limitations,
and in Section 5.3, I present the new Bayesian spatial scan statistic. Sections 5.4 and 5.5 compare
the frequentist and Bayesian approaches with respect to detection power and computation time, and
Section 5.6 details some other advantages of the Bayesian approach. Finally, in Section 5.7, I discuss
extension of the Bayesian method to the multivariate case, and some of the potential advantages of
the multivariate framework.

Much of this chapter has been adapted from our papers in NIPS 2005 [116] and the 2005 Na-
tional Syndromic Surveillance Conference [117]. I wish to thank my co-authors Andrew Moore and
Gregory Cooper for their contributions to this work. Thanks also to Andrew Lawson, Mike Wagner,
and Artur Dubrawski for helpful feedback on the univariate and multivariate Bayesian approaches.

95



96 CHAPTER 5. BAYESIAN SPATIAL CLUSTER DETECTION

Finally, I wish to thank Gauri Datta and David Banks for suggesting the unbiased (UBayes) ap-
proach to prior selection, described in Section 5.3.

5.2 Review of the frequentist scan statistic

In the spatial surveillance setting, each day we have data collected for a set of discrete spatial
locationssi. For each locationsi, we have acount ci (e.g. number of disease cases), and an
underlyingbaselinebi. The baseline may correspond to the underlyingpopulationat risk, or may
be an estimate of the expected value of the count (e.g. derived from the time series of previous count
data). Our goal, then, is to find if there is any spatial regionS (set of locationssi) for which the
counts are significantly higher than expected, given the baselines. For simplicity, we assume here
that the locationssi are aggregated to a uniform, two-dimensional,N × N grid G, and we search
over the set of rectangular regionsS ⊆ G. This allows us to search both compact and elongated
regions, allowing detection of elongated disease clusters resulting from dispersal of pathogens by
wind or water.

One of the most important statistical tools for cluster detection is Kulldorff’sspatial scan statis-
tic [88, 78]. This method, described in detail in Chapters 1 and 2, searchesover a given set of
spatial regions, finding those regions which maximize a likelihood ratio statistic and thus are most
likely to be generated under the alternative hypothesis of clustering ratherthan the null hypothesis
of no clustering. Randomization testing is used to compute thep-value of each detected region, cor-
rectly adjusting for multiple hypothesis testing, and thus we can both identify potential clusters and
determine whether they are significant. Kulldorff’s framework assumes that countsci are Poisson
distributed withci ∼ Poisson(qbi), wherebi represents the (known) census population of cellsi

andq is the (unknown) underlying disease rate. Then the goal of the scan statistic is to find regions
where the disease rate is higher inside the region than outside. The statistic used for this is the

likelihood ratioF (S) = Pr(Data| H1(S))

Pr(Data| H0)
, where the null hypothesisH0 assumes a uniform disease

rateq = qall. UnderH1(S), we assume thatq = qin for all si ∈ S, andq = qout for all si ∈ G−S,
for some constantsqin > qout.

Once we have found the highest scoring regionS∗ = arg maxS F (S) of grid G, and its score
F ∗ = F (S∗), we must still determine the statistical significance of this region by randomization
testing. To do so, we randomly create a large numberR of replica grids by sampling under the null
hypothesis, and find the highest scoring region and its score for each replica grid. Then thep-value
of S∗ is Rbeat+1

R+1 , whereRbeat is the number of replicasG′ with F ∗ higher than the original grid.
The frequentist scan statistic is a useful tool for cluster detection, and is commonly used in

the public health community for detection of disease outbreaks. However, there are three main
disadvantages to this approach. First, it is difficult to make use of any priorinformation that we may
have, for example, our prior beliefs about the size of a potential outbreak and its impact on disease
rate. Second, the accuracy of this technique is highly dependent on the correctness of our maximum
likelihood parameter estimates. As a result, the model is prone to parameter overfitting, and may
lose detection power in practice because of model misspecification. Finally, the frequentist scan
statistic is very time consuming, and may be computationally infeasible for large datasets. A näıve
approach requires searching over all rectangular regions, both forthe original grid and for each
replica grid. Since there areO(N4) rectangles to search for anN × N grid, the total computation
time is O(RN4), whereR = 999 is a typical number of replications. In Chapter 3, we show
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how to reduce computation time by a factor of 20-2000x using the “fast spatial scan” algorithm;
nevertheless, we must still perform this faster search both for the original grid and for each replica.

We propose to remedy these problems through the use of a Bayesian spatialscan statistic. First,
our Bayesian model makes use of prior information about the likelihood, size, and impact of an out-
break. If these priors are chosen well, we should achieve better detection power than the frequentist
approach. Second, the Bayesian method uses amarginal likelihoodapproach, averaging over pos-
sible values of the model parametersqin, qout, andqall, rather than relying on maximum likelihood
estimates of these parameters. This makes the model more flexible and less prone to overfitting, and
reduces the potential impact of model misspecification. Finally, under the Bayesian model there is
no need for randomization testing, and (since we need only to search the original grid) even a näıve
search can be performed relatively quickly. We now present the Bayesian spatial scan statistic, and
then compare it to the frequentist approach on the task of detecting simulated disease epidemics.

5.3 The Bayesian scan statistic

Here we consider the natural Bayesian extension of Kulldorff’s scan statistic, moving from a Pois-
son to a conjugate Gamma-Poisson model. Bayesian Gamma-Poisson models are acommon rep-
resentation for count data in epidemiology, and have been used in diseasemapping by Clayton and
Kaldor [28], Mollié [105], and others. In disease mapping, the effect of the Gamma prior is topro-
duce a spatially smoothed map of disease rates; here we instead focus on computing the posterior
probabilities, allowing us to determine the likelihood that an outbreak has occurred, and to estimate
the location and size of potential outbreaks.

For the Bayesian spatial scan, as in the frequentist approach, we wish tocompare the null hy-
pothesisH0 of no clusters to the set of alternative hypothesesH1(S), each representing a cluster in
some regionS. We assume that the hypotheses are mutually exclusive: Pr(H0)+

∑

S Pr(H1(S)) =
1, where the sum is taken over a given set of regionsS. As before, we assume Poisson likelihoods,
ci ∼ Poisson(qbi). The difference is that we assume a hierarchical Bayesian model wherethe dis-
ease ratesqin, qout, andqall are themselves drawn from Gamma distributions. Thus, under the null
hypothesisH0, we haveq = qall for all si ∈ G, whereqall ∼ Gamma(αall, βall). Under the alter-
native hypothesisH1(S), we haveq = qin for all si ∈ S andq = qout for all si ∈ G−S, where we
independently drawqin ∼ Gamma(αin, βin) andqout ∼ Gamma(αout, βout). We discuss how the
α andβ priors are chosen below.

From this model, we can compute the posterior probabilities Pr(H1(S) | D) of an outbreak in
each regionS, and the probability Pr(H0 | D) that no outbreak has occurred, given datasetD:

Pr(H0 | D) = Pr(D | H0)Pr(H0)

Pr(D)
and Pr(H1(S) | D) = Pr(D | H1(S))Pr(H1(S))

Pr(D)
, where Pr(D) =

Pr(D | H0)Pr(H0) +
∑

S Pr(D | H1(S))Pr(H1(S)). We discuss the choice of prior probabilities
Pr(H0) and Pr(H1(S)) below. To compute the marginal likelihood of the data given each hypoth-
esis, we must integrate over all possible values of the parameters (qin, qout, qall) weighted by their
respective probabilities. Since we have chosen a conjugate prior, we can easily obtain a closed-form
solution:

Pr(D | H0) =

∫

Pr(qall ∼ Gamma(αall, βall))
∏

si∈G

Pr(ci ∼ Poisson(qallbi)) dqall
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Pr(D | H1(S)) =

∫

Pr(qin ∼ Gamma(αin, βin))
∏

si∈S

Pr(ci ∼ Poisson(qinbi)) dqin

×

∫

Pr(qout ∼ Gamma(αout, βout))
∏

si∈G−S

Pr(ci ∼ Poisson(qoutbi)) dqout

Since we have Poisson-distributed counts and a Gamma prior, the marginal likelihood is negative
binomial. Computing the integral, and lettingC =

∑

ci andB =
∑

bi, we obtain:

∫

Pr(q ∼ Gamma(α, β))
∏

si

Pr(ci ∼ Poisson(qbi)) dq =

∫

βα

Γ(α)
qα−1e−βq

∏

si

(qbi)
cie−qbi

(ci)!
dq

∝
βα

Γ(α)

∫

qα−1e−βqq
P

cie−q
P

bi dq =
βα

Γ(α)

∫

qα+C−1e−(β+B)q dq =
βα Γ(α + C)

(β + B)α+C Γ(α)

Thus we have the following expressions for the marginal likelihoods:

Pr(D | H0) ∝
(βall)

αall Γ(αall + Call)

(βall + Ball)αall+Call Γ(αall)

Pr(D | H1(S)) ∝
(βin)αin Γ(αin + Cin)

(βin + Bin)αin+Cin Γ(αin)
×

(βout)
αout Γ(αout + Cout)

(βout + Bout)αout+Cout Γ(αout)

The Bayesian spatial scan statistic can be computed simply by first calculating the scoreF (S) =
Pr(D | H1(S))Pr(H1(S)) for each spatial regionS, maintaining a list of regions ordered by score.
We then calculate Pr(D | H0)Pr(H0), and add this to the sum of all region scores, obtaining the
probability of the data Pr(D). Finally, we can compute the posterior probability Pr(H1(S) | D) =
Pr(D | H1(S))Pr(H1(S))

Pr(D)
for each region, as well as Pr(H0 | D) = Pr(D | H0)Pr(H0)

Pr(D)
. Then we can

return all regions with non-negligible posterior probabilities and the posterior probability of each.
We can also compute the overall probability of an outbreak, Pr(H1 | D) =

∑

S Pr(H1(S) | D) =
1 − Pr(H0 | D). Note that no randomization testing is necessary, and thus overall complexityis
proportional to number of regions searched, e.g.O(N4) for searching over axis-aligned rectangles
in anN × N grid.

5.3.1 Choosing priors

One of the most challenging tasks in any Bayesian analysis is the choice of priors. For any regionS
that we examine, we must have values of the parameter priorsαin(S), βin(S), αout(S), andβout(S),
as well as the region prior probability Pr(H1(S)). We must also choose the global parameter priors
αall andβall, as well as the “no outbreak” prior Pr(H0).

Here we consider the simple case of a uniform region prior, with a known prior probability of
an outbreakP1. In other words, if there is an outbreak, it is assumed to be equally likely to occur in
any spatial region. Thus we have Pr(H0) = 1−P1, and Pr(H1(S)) = P1

Nreg
, whereNreg is the total

number of regions searched. The parameterP1 can be obtained from historical data or estimated
by human experts. The model can also be easily adapted to a non-uniform region prior, taking into
account our prior beliefs about the size, shape, and location of outbreaks. For example, we could
use a non-uniform prior which penalizes highly elongated shapes basedon a geometric measure of
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compactness, as in Duczmal et al. [41, 39]. Alternatively, we could use an empirical Bayesapproach
in which the region prior is learned from data. One possible method would be toexamine theupper
level sets(all cells with ci

bi
> k for some thresholdk), gradually lower the thresholdk, and discover

what shapes emerge.
For the parameter priors, we assume that we have access to a large numberof days of past data,

during which no outbreaks are known to have occurred. We can then obtain estimated values of
the parameter priors under the null hypothesis by matching the first and second moments of each
Gamma distribution to their estimated values from historical data.1 In other words, we set the mean
and variance of the distribution Gamma(αall, βall) to the estimated mean and variance of the rate
parameterqall observed in past data:αall

βall
= Ê [qall], andαall

β2
all

= V̂ar [qall]. Solving forαall andβall,

we obtainαall =

“

Ê[qall]
”2

V̂ar[qall]
andβall = Ê[qall]

V̂ar[qall]
.

Since the values ofqall are not known for the historical data, we consider two possible meth-
ods of computing the estimated mean and variance ofqall. First, since the maximum likelihood
estimate ofqall is the ratio of total count to total baselineCall

Ball
, we can use the sample mean and

sample variance of this ratio as estimates of the distribution ofqall: Ê [qall] = Esample

[

Call

Ball

]

, and

V̂ar [qall] = Varsample

[

Call

Ball

]

. This results in an unbiased estimate of the mean ofqall, but a con-

servatively biased estimate (overestimate) of the variance ofqall. Thus we call this approach the
“conservative Bayes” (CBayes) method.

To obtain an unbiased estimate of the variance ofqall, we note that the observed variance ofCall

Ball

can be broken into the sum of two components, one resulting from the variation in Call

Ball
givenqall

and one resulting from the variation inqall. In other words, we have:

Var

[

Call

Ball

]

= E

[

Var

[

Call

Ball
| qall

]]

+ Var

[

E

[

Call

Ball
| qall

]]

= E

[

Var

[

Poisson(qallBall)

Ball
| qall

]]

+ Var

[

E

[

Poisson(qallBall)

Ball
| qall

]]

= E

[

qallBall

B2
all

]

+ Var

[

qallBall

Ball

]

= E

[

qall

Ball

]

+ Var [qall] = E

[

Call

B2
all

]

+ Var [qall]

Thus we set̂E [qall] = Esample

[

Call

Ball

]

as in the CBayes approach, but now we set the variance

V̂ar [qall] = Varsample

[

Call

Ball

]

−Esample

[

Call

B2
all

]

. We call this approach to prior selection the “unbiased

Bayes” (UBayes) method.
We have now described two methods for calculation of the global parameter priors,αall andβall.

The calculation of priorsαin(S), βin(S), αout(S), andβout(S) is identical except for two differ-
ences: first, we must condition on the observed rates inside or outside regionS respectively, and sec-
ond, we must assume the alternative hypothesisH1(S) rather than the null hypothesisH0. Repeat-

ing the above derivation for the “out” parameters, we obtainαout(S) =

“

Ê[qout(S)]
”2

V̂ar[qout(S)]
andβout(S) =

1Note that the current data is not used to estimate theα andβ. Thus our method differs from “empirical Bayes” meth-
ods that use the same data for estimating priors and computing likelihoods; nevertheless, our method is still “empirical”
in the sense that our priors are data-driven.
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Ê[qout(S)]

V̂ar[qout(S)]
. Then for the CBayes and UBayes methods, we haveÊ [qout(S)] = Esample

[

Cout(S)
Bout(S)

]

,

whereCout(S) andBout(S) are respectively the total count
∑

G−S ci and total baseline
∑

G−S bi

outside the region. For UBayes, we havêVar [qout(S)] = Varsample

[

Cout(S)
Bout(S)

]

− Esample

[

Cout(S)
B2

out(S)

]

,

and for CBayes, we havêVar [qout(S)] = Varsample

[

Cout(S)
Bout(S)

]

.

Our derivation for the “in” parameters is very similar, with one major difference: we must ac-
count for the impact of an outbreak on the disease rate inside regionS. Recall that our historical data
is assumed to have no outbreaks, and thus gives us an estimate of the prior distribution of disease
rate inside regionS when no outbreak is occurring. We assume that the outbreak will increaseqin by
a multiplicative factorm; to account for this in the Gamma distribution Gamma(αin, βin), we multi-

ply αin by m while leavingβin unchanged. Thus we obtainαin(S) =
m

“

Ê[qin(S)]
”2

V̂ar[qin(S)]
andβin(S) =

Ê[qin(S)]

V̂ar[qin(S)]
. Then for the CBayes and UBayes methods, we haveÊ [qin(S)] = Esample

[

Cin(S)
Bin(S)

]

,

whereCin(S) andBin(S) are respectively the total count
∑

S ci and total baseline
∑

S bi inside

the region. For UBayes, we havêVar [qin(S)] = Varsample

[

Cin(S)
Bin(S)

]

− Esample

[

Cin(S)
B2

in(S)

]

, and for

CBayes, we haveV̂ar [qin(S)] = Varsample

[

Cin(S)
Bin(S)

]

. Since we typically do not know the exact

value ofm, here we use a discretized uniform distribution form, ranging fromm = 1 . . . mmax at
intervals of∆m.2 Then scores can be calculated by averaging likelihoods over the distributionof
m.

5.3.2 Computational considerations

As discussed above, a naı̈ve approach to calculating the Bayesian spatial scan statistic requires us
to calculate the score functionF (S) = Pr(D |H1(S))Pr(H1(S)) for each spatial regionS. Thus, if
we search over the space of all axis-aligned rectangular regions in anN × N grid, we must search
O(N4) regions. As in Chapter 3, we can search each region inO(1) by preconstructing a grid of
the cumulative countsccij =

∑

k=1...i

∑

l=1...j ckl, and similarly for the baselines. Then the total
count or total baseline of a region may be calculated by adding/subtracting at most four cumulative
counts, regardless of the size of the region. Thus the total time to search anN × N grid G is
O(N4), and since in the Bayesian approach we do not need to do randomization testing, this is the
total complexity of our algorithm.

We can speed up our search by applying the “fast spatial scan” algorithm of Chapter 3, allowing
us to rapidly find the regionS∗ with the highest scoreF (S). The fast spatial scan uses a top-down,
branch-and-bound search to prune regions that cannot have the highest score, thus allowing us to
find S∗ while searching only a small fraction of regions. A novel multiresolution data structure
known as an overlap-kd tree enables efficient search, resulting in 20-2000x speedups on a variety of
real-world datasets.

However, two issues make it difficult to apply the fast spatial scan in the Bayesian framework.
First, we must ensure that the criteria of Chapter 3 hold: the score functionmust increase with the
total count of a region, decrease with the total baseline of a region, and (for a constant ratio of count
to baseline) increase with count and baseline. It can be proven that the likelihood Pr(D | H1(S))

2In our experiments, we usemmax = 3 and∆m = 0.2.
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meets these criteria, so for the uniform region prior given above, the score function will also meet
these criteria, and the fast spatial scan can be used. For non-uniformpriors, this may not be the
case, so we must adjust our upper bound accordingly. More precisely, in the non-uniform case, we
can find an upper bound ofF (S′) for all regionsS′ ⊂ S by upper bounding both the likelihood
Pr(D |H1(S

′)) and the prior Pr(H1(S
′)). Then we can prune a set of regionsS′ if the upper bound

onF (S′) is lower than the highest score found so far.
A second issue which complicates the application of the fast spatial scan method is that, in the

Bayesian framework, calculation of posterior probabilities requires us to compute and divide by the
likelihood of the data Pr(D), which necessitates computing the sum of scores for all spatial regions
S. This makes pruning difficult, since pruned regions may add a significant amount of probability
mass to the total. There are three possible solutions to this problem. First, we cando less pruning:
we can bound the maximum total contribution of a set of regionsS′ to the probability of the data,
and only prune these regions if their total probability is guaranteed to be small.A second solution
would be to assume an empirical Bayesian prior Pr(H1(S)) that is equal to zero for any region that
is pruned, and only gives probability to unpruned regions. In the uniform region prior case, we can
set Pr(H1(S)) = P1

nreg
if region S is searched, and Pr(H1(S)) = 0 if region S is pruned, where

nreg is the total number of regions searched (not pruned). A third alternativeis to work with the

posterior odds ratiosPr(H1(S) | D)

Pr(H0 | D)
= Pr(D | H1(S))Pr(H1(S))

Pr(D | H0)Pr(H0)
instead of the posterior probabilities.

This is useful because computation of the denominator Pr(D) is not required, and the regionS∗

with highest posterior odds ratio also has the highest posterior probability.Moreover, we can easily
compute a lower bound on the posterior probability of an outbreak given theposterior odds ratio:
for a region with a posterior odds ratio ofx, the posterior outbreak probability is at leastx1+x

. A
tighter lower bound may be achieved by maintaining a list of thek-best regions, giving a posterior
outbreak probability of at least

P

i=1...k xi

1+
P

i=1...k xi
.

5.4 Results: detection power

We evaluated the Bayesian and frequentist methods on two types of simulated respiratory out-
breaks, injected into real Emergency Department and over-the-counterdrug sales data for Allegheny
County, Pennsylvania. All data were aggregated to the zip code level to ensure anonymity, giving
the daily counts of respiratory ED cases and sales of OTC cough and coldmedication in each of 88
zip codes for one year.

For these datasets, we are given only a countct
i for each zip codesi for each dayt, and the

baselines are not known a priori. Thus we first infer the baselinesbt
i for each zip codesi for each

day t, using the mean count of the previous 28 days:bt
i = 1

28

∑

x=1...28 bt−x
i . We then use these

counts and baselines to compute the alpha and beta priors as above, using eight weeks of past data.

For example,̂E [qall] = Esample

[

Call

Ball

]

= 1
56

∑

t=t0−56...t0−1
Ct

all

Bt
all

, whereCt
all andBt

all denote the

total count and baseline respectively for dayt, andt0 denotes the current day. Zip code centroids
were mapped to a16 × 16 grid (i.e. all counts for each zip code were mapped to the grid cell
containing the centroid of that zip code), and all rectangles up to8 × 8 were examined.

We first considered simulated aerosol releases of inhalational anthrax (e.g. from a bioterrorist
attack), generated by the Bayesian Aerosol Release Detector, or BARD[70]. The BARD simulator
uses a Bayesian network model to determine the number of spores inhaled byindividuals in affected
areas, the resulting number and severity of anthrax cases, and the resulting number of respiratory
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Table 5.1: Days to detect and proportion of outbreaks detected, 1 false positive/month
FLOO ED FLOO ED FLOO ED BARD ED BARD ED FLOO OTC FLOOOTC

method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)
frequentist 1.859 3.324 6.122 1.733 3.925 3.582 5.393

(100%) (100%) (96%) (100%) (88%) (100%) (100%)
CBayesmax 1.740 2.875 5.043 1.600 3.755 5.455 7.588

(100%) (100%) (100%) (100%) (88%) (63%) (79%)
UBayesmax 1.710 2.848 4.875 1.633 3.679 5.461 7.588

(100%) (100%) (100%) (100%) (88%) (63%) (79%)
CBayestot 1.882 3.195 5.777 1.633 3.811 3.475 5.195

(100%) (100%) (100%) (100%) (88%) (100%) (100%)
UBayestot 1.847 3.184 5.516 1.633 3.811 3.475 5.195

(100%) (100%) (100%) (100%) (88%) (100%) (100%)

ED cases on each day of the outbreak in each affected zip code. Our second type of outbreak
was a simulated “Fictional Linear Onset Outbreak” (or “FLOO”), as in Chapter 4. A FLOO(∆, T )
outbreak is a simple simulated outbreak with durationT , which generatest∆ cases in each affected
zip code on dayt of the outbreak (0 < t ≤ T/2), then generatesT∆/2 cases per day for the
remainder of the outbreak. Thus we have an outbreak where the number of cases ramps up linearly
and then levels off. While this is clearly a less realistic outbreak than the BARD-simulated anthrax
attack, it does have several advantages: most importantly, it allows us to precisely control the slope
of the outbreak curve and examine how this affects our methods’ detection ability.

To test detection power, a semi-synthetic testing framework similar to Chapter 4 was used:
we first run our spatial scan statistic for each day of the last nine months of the year (the first
three months are used only to estimate baselines and priors), and obtain the score F ∗ for each
day. Then for each outbreak we wish to test, we inject that outbreak into thedata, and obtain the
scoreF ∗(t) for each dayt of the outbreak. By finding the proportion of baseline days with scores
higher thanF ∗(t), we can determine the proportion of false positives we would have to accept to
detect the outbreak on dayt. This allows us to compute, for any given level of false positives,
what proportion of outbreaks can be detected, and the mean number of days to detection. We
compare three methods of computing the scoreF ∗: the frequentist method (F ∗ is the maximum
likelihood ratioF (S) over all regionsS), the Bayesian maximum method (F ∗ is the maximum
posterior probability Pr(H1(S) | D) over all regionsS), and the Bayesian total method (F ∗ is the
sum of posterior probabilities Pr(H1(S) | D) over all regionsS, i.e. total posterior probability of
an outbreak). For the two Bayesian methods, we consider the CBayes andUBayes methods for
calculating priors, thus giving us a total of five methods to compare. In Table5.1, we compare these
methods with respect to proportion of outbreaks detected and mean number of days to detect, at
a false positive rate of 1/month. Methods were evaluated on seven types ofsimulated outbreaks:
three FLOO outbreaks on ED data, two FLOO outbreaks on OTC data, and two BARD outbreaks
(with different amounts of anthrax release) on ED data. For each outbreak type, each method’s
performance was averaged over 100 or 256 simulated outbreaks for BARD or FLOO respectively.
In Table 5.1, the best-performing methods for each dataset are shown in bold type; these include
the method with lowest average time to detection, as well as any method whose performance is not
significantly different (using a pairedt-test withα = .05).

In Table 5.1, we observe very different results for the ED and OTC datasets. For the five runs
on ED data, all four Bayesian methods consistently detected outbreaks faster than the frequentist
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method. This difference was most evident for the more slowly growing (harder to detect) outbreaks,
especially FLOO(1,20). Across all ED outbreaks, the Bayesian methods showed an mean improve-
ment of between 0.24 days (CBayestot) and 0.55 days (UBayesmax) as compared to the frequentist
approach; “max” methods performed substantially better than “tot” methods, and “UBayes” meth-
ods performed slightly better than “CBayes” methods. For the two runs on OTC data, on the other
hand, the CBayesmax and UBayesmax methods performed much worse (over two days slower)
than the frequentist method. On the other hand, the CBayestot and UBayestot methods again
outperformed the frequentist method, by an average of 0.15 days. We believe that the main reason
for these differing results is that the OTC data is much noisier than the ED data,and exhibits much
stronger seasonal trends. As a result, our baseline estimates (using meanof the previous 28 days)
are reasonably accurate for ED, but for OTC the baseline estimates will lagbehind the seasonal
trends (and thus, underestimate the expected counts for increasing trends and overestimate for de-
creasing trends). The “max” methods perform badly on the OTC data because a large number of
baseline days have the total posterior probability of an outbreak close to 1.In this case, the maxi-
mum region posterior varies wildly from day to day, depending on how much ofthe total probability
is assigned to a single region, and is not a reliable measure of whether an outbreak has occurred.
On the other hand, the total probability of an outbreak will still be (slightly) higher for outbreak
than non-outbreak days, so the “tot” methods can perform well on OTC aswell as ED data. Thus,
our main result is that the Bayesian methods CBayestot and UBayestot, which use the total pos-
terior probability of an outbreak to decide when to sound the alarm, consistently outperform the
frequentist method for both ED and OTC datasets.

5.5 Results: computation time

As noted above, the Bayesian spatial scan must search over all rectangular regions for the original
grid only, while the frequentist scan (in order to calculate statistical significance by randomization)
must also search over all rectangular regions for a large number (typically R = 999) of replica
grids. Thus, as long as the search time per region is comparable for the Bayesian and frequentist
methods, we expect the Bayesian approach to be approximately 1000x faster. In Table 5.2, we
compare the run times of the Bayesian and frequentist methods for searching a single grid and
calculating significance (p-values or posterior probabilities for the frequentist and Bayesian methods
respectively), as a function of the grid sizeN . We note that the speed of the various Bayesian
methods (CBayes vs. UBayes, “tot” vs. “max”) is essentially identical, so wedo not differentiate
between these in the table. All rectangles up to sizeN/2 were searched, and for the frequentist
methodR = 999 replications were performed. The results confirm our intuition: the Bayesian
methods are 900-1200x faster than the frequentist approach, for all values ofN tested. However,
the frequentist approach can be accelerated dramatically using the “fastspatial scan” algorithm
discussed in Chapter 3. Comparing the fast spatial scan to the Bayesian approach, we see that the
fast spatial scan scales better as a function of grid size: thus it is faster than the Bayesian approach
for sufficiently large grid sizes (N ≥ 256), but slower for smaller grids. Either method can search
a 256 × 256 grid, and calculate significance (p-values or posteriors respectively) in 10-12 hours,
as compared to months for the standard (naı̈ve frequentist) approach. Thus we now have two ways
to make the spatial scan computationally feasible for large datasets: to apply thefast spatial scan
discussed in Chapter 3, or to use the Bayesian framework presented here. For even larger grid sizes,
it may be possible to extend the fast spatial scan to the Bayesian framework:this would give us
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Table 5.2: Comparison of run times for varying grid sizeN
method N = 16 N = 32 N = 64 N = 128 N = 256

Bayesian (näıve) 0.7 sec 10.8 sec 2.8 min 44 min 12 hrs
frequentist (näıve) 12 min 2.9 hrs 49 hrs ∼31 days ∼500 days
frequentist (fast) 20 sec 1.8 min 10.7 min 77 min 10 hrs

the best of both worlds, searching only a single grid, and using a fast algorithm to do so. We are
currently investigating this potentially useful synthesis, and we discuss this possibility in more detail
in Chapter 8.

5.6 Discussion

We have presented a Bayesian spatial scan statistic, and demonstrated several ways in which this
method is preferable to the standard (frequentist) scan statistic approach.In Section 5.4, we demon-
strated that the Bayesian method, with a relatively non-informative prior distribution, consistently
outperforms the frequentist method with respect to detection power. Since the Bayesian framework
allows us to easily incorporate prior information about size, shape, and impact of an outbreak, it is
likely that we can achieve even better detection performance using more informative priors, e.g. ob-
tained from experts in the domain. In Section 5.5, we demonstrated that the Bayesian spatial scan
can be computed in much less time than the naı̈ve frequentist method, since randomization testing
is unnecessary. This allows us to search large grid sizes using a naı̈ve search algorithm, and even
larger grids might be searched by extending the fast spatial scan to the Bayesian framework.

We now consider three other arguments for use of the Bayesian spatial scan. First, the Bayesian
method has easily interpretable results: it outputs the posterior probability thatan outbreak has
occurred, and the distribution of this probability over possible outbreak regions. This makes it easy
for a user (e.g. public health official) to decide whether to investigate each potential outbreak based
on the costs of false positives and false negatives; this type of decision analysis cannot be done easily
in the frequentist framework. Another useful result of the Bayesian method is that we can compute
a “map” of the posterior probabilities of an outbreak in each grid cell, by summing the posterior
probabilities Pr(H1(S) |D) of all regions containing that cell. This technique allows us to deal with
the case where the posterior probability mass is spread among many regions,by observing cells
which are common to most or all of these regions. We give an example of sucha map in Figure 5.1.

Second, calibration of the Bayesian statistic is easier than calibration of the frequentist statistic.
As noted above, it is simple to adjust the sensitivity and specificity of the Bayesian method by setting
the prior probability of an outbreakP1, and then we can “sound the alarm” whenever posterior
probability of an outbreak exceeds some threshold. In the frequentist method, on the other hand,
many regions in the baseline data have sufficiently high likelihood ratios that noreplicas beat the
original grid; thus we cannot distinguish thep-values of outbreak and non-outbreak days. While
one alternative is to “sound the alarm” when the likelihood ratio is above some threshold (rather
than whenp-value is below some threshold), this is technically incorrect: because the baselines
for each day of data are different, the distribution of region scores under the null hypothesis will
also differ from day to day, and thus days with higher likelihood ratios do not necessarily have
lowerp-values. Third, we argue that it is easier to combine evidence from multiple detectors within
the Bayesian framework, i.e. by modeling the joint probability distribution. We arein the process
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Figure 5.1: Output of Bayesian spatial scan on baseline

OTC data, 1/30/05. Cell shading is based on posterior prob-

ability of an outbreak in that cell, ranging from white (0%) to

black (100%). The bold rectangle represents the most likely

region (posterior probability 12.27%) and the darkest cell is

the most likely cell (total posterior probability 86.57%). To-

tal posterior probability of an outbreak is 86.61%.

of examining Bayesian detectors which look simultaneously at the day’s Emergency Department
records and over-the-counter drug sales in order to detect emerging clusters, and we believe that
combination of detectors is an important area for future research. We discuss this “multivariate
Bayesian scan statistic” in more detail in the following section.

In conclusion, we note that, though both Bayesian modeling [28, 105] and (frequentist) spatial
scanning [88, 78] are common in the spatial statistics literature, this is (to the best of our knowl-
edge) the first model which combines the two techniques into a single framework. In fact, very little
work exists on Bayesian methods for spatial cluster detection. One notable exception is the litera-
ture on spatial cluster modeling [51, 94], which attempts to infer the location of cluster centers by
inferring parameters of a Bayesian process model. Our work differs from these methods both in its
computational tractability (their models typically have no closed form solution, socomputationally
expensive MCMC approximations are used) and its easy interpretability of results. Thus we believe
that this is the first Bayesian spatial cluster detection method which is powerful and useful, yet com-
putationally tractable. We are currently running the Bayesian and frequentist scan statistics on daily
OTC sales data from over 20,000 stores, searching for emerging disease outbreaks on a daily basis
nationwide. Additionally, we are working to extend the Bayesian statistic to fMRIdata, with the
goal of discovering regions of brain activity corresponding to given cognitive tasks [156, 163, 118].
We believe that the Bayesian approach has the potential to improve both speed and detection power
of the spatial scan in this domain as well.

5.7 The multivariate Bayesian scan statistic

We are currently working on a Bayesian multivariate cluster detection approach, the “multivariate
Bayesian scan statistic” (MBSS). The primary goal of this work is to combine multiple data sources
in a realistic statistical framework, in order to increase detection power and todistinguish between
potential causes of a detected cluster.

Let us consider an example where we are monitoring three streams of data: over-the-counter
sales of cough medication, over-the-counter sales of nasal decongestants, and respiratory emer-
gency department visits. A standard spatial scan approach would perform a separate statistical test
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Figure 5.2: A pictorial diagram of the multivariate Bayesian scan statistic, showing multiple input
streams and multiple types of outbreak.

for each of these data streams; this has the disadvantages of multiple testing (expected number of
false positives is proportional to number of data streams) as well as making itdifficult to inter-
pret any positive results. Our proposed approach instead simultaneously monitors all of the data
streams, computing the joint probability of all observed data under normal conditions and in the
presence of various types of spatially localized outbreak. This gives usincreased power to detect
outbreaks that affect multiple data streams: for example, an outbreak of influenza-like illness is
likely to increase the counts for all three streams (as well as other streams such as fever emergency
department visits and over-the-counter thermometer sales). Thus by simultaneously monitoring all
of these streams, we can detect an outbreak with proportionally smaller impacton the counts for
each individual stream, thus allowing detection closer to the onset of the disease. Additionally, this
simultaneous monitoring allows us to distinguish between different potential causes of a detected
cluster of disease cases. For example, we would expect an outbreak ofinhalational anthrax to affect
those streams monitoring cough and fever symptoms, but not to have a major impact on sales of
nasal decongestants, while influenza would lead to significant increasesin all three symptom types.

In the MBSS framework, we are given a set of outbreak typesO = {Ok}, k = 1 . . . K, and a
set of data streams{dm}, m = 1 . . .M . An example of such a model, with multiple outbreak types
and multiple data streams, is given in Figure 5.2. The outbreak types may be either specific illnesses
(influenza, anthrax, etc.) or non-specific syndromes (e.g. flu-like illness). The data streams may
include sources such as ED visits (with each stream representing a different chief complaint, e.g. res-
piratory) and OTC drug sales (with each stream representing a different product group, e.g. nasal
decongestants). We are also given a set of spatial regionsS to search, where eachS consists of a
different set of spatial locationssi. Finally, we are given the datasetD = {ct

i,m}, where eachct
i,m

is the count in spatial locationsi at timet for data streamdm. Our goal, then, is to compute the
posterior probability Pr(H1(S, Ok) | D) that each outbreak type has affected each spatial region,
given the multivariate datasetD.
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Applying Bayes’ Theorem, we obtain:

Pr(H1(S, Ok) | D) =
Pr(D | H1(S, Ok))Pr(H1(S, Ok) | Ok)Pr(Ok)

Pr(D)

Pr(H0 | D) =
Pr(D | H0)Pr(H0)

Pr(D)

In this equation, Pr(H0) is the prior probability of the null hypothesis (no outbreaks) and Pr(Ok) is
the prior probability that outbreak typeOk has occurred. To simplify our calculations, we assume
here that all outbreak types are mutually exclusive, and thus Pr(H0) +

∑

k Pr(Ok) = 1; multiple si-
multaneous outbreaks can be dealt with as separate hypotheses. The probability Pr(H1(S, Ok) |Ok)
is the prior probability that outbreak typeOk will affect a given spatial regionS. This distribution
can be different for different outbreak types: for instance, the location of outbreaks of cryptosporid-
iosis or other water-borne illnesses can be predicted based on water distribution information; and
we would expect a highly contagious disease such as avian influenza to affect a larger spatial area
than a wind-dispersed outbreak of inhalational anthrax. Again, we assume that an outbreak affects
exactly one spatial region, so we have

∑

S Pr(H1(S, Ok) | Ok) = 1. The most challenging part of
our method is to compute the probability of the data (i.e. joint probability of all data streams) given
each possible combination of outbreak and region, as well as the probabilityof the data under the
null hypothesis of no outbreaks. We discuss this part of the method in more detail below. Finally,
the normalizing factor Pr(D) can be computed by summing the products Pr(D | H)Pr(H) for each
hypothesisH.

To compute the probability of the data given the null hypothesisH0 or an alternative hypoth-
esisH1(S, Ok), we can use a Gamma-Poisson model as in the univariate Bayesian scan statistic
discussed above. We assume that each countct

i,m has been drawn from a Poisson distribution with
meanqt

i,mbt
i,m, wherebt

i,m is the “baseline” (or expected count) of streamm in spatial locationsi

at timet, andqt
i,m is the “relative risk.” Each baseline can be inferred from the time series ofpast

counts for the given stream and given spatial location, using one of the timeseries analysis methods
given in Chapter 4. These inferences can either be performed independently, or we can take into
account the correlation between streams in the same or nearby locations. Under normal conditions,
the relative riskqt

i,m is drawn from the Gamma prior distribution for that stream, Gamma(αm, βm),
which is learned from the time series of past counts as above.

On the other hand, if an outbreak is present, the relative risks within the affected area will be
drawn from a different Gamma prior with higher mean value. Each outbreak type will affect dif-
ferent data streams to different degrees, and some data streams may not be affected. The parameter
prior distributions for each outbreak type can either be learned from available outbreak data, or
estimated based on expert knowledge of that outbreak. Because a conjugate prior is used, we can
derive a closed form solution for the marginal likelihood of the data under each hypothesis, effi-
ciently computable as a function of the aggregate counts, aggregate baselines, and parameter priors,
as above. We can then combine these likelihoods with the prior probabilities in order to obtain the
posterior probability of each hypothesis.

As discussed in the following chapter, a number of other methods have beenproposed in the
biosurveillance literature for combining multiple data streams. However, these methods generally
do not take spatial information into account, and do not allow discrimination between multiple types
of outbreak. One exception is the work of Cooper et al. on PANDA [30],which models both anthrax
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and influenza, and uses emergency department records and over-the-counter medication sales to
distinguish between these two types of outbreak. Our MBSS work differs from PANDA because it
focuses on detecting spatial clusters of disease from aggregated data,while PANDA uses a Bayesian
network representation and person-specific models but does not explicitly consider spatial data.



Chapter 6

Application to disease surveillance

6.1 Introduction

Epidemiologists have been analyzing biosurveillance data spatially since the seminal work of John
Snow on the disease cholera [141]. During an 1854 epidemic of cholera inLondon, Snow discov-
ered spatial clustering of cholera deaths around a single water pump. Thisenabled him to discover
that cholera is caused by contaminated water, and to halt the epidemic by closing the contaminated
pump. Since Snow’s work, spatial statistical methods have come to play an increasingly large role in
disease surveillance [44, 91]. In particular, spatial scan statistics [78]have become a well-used and
thriving analytic method, owing in large part to the popularity of Martin Kulldorff’s SaTScan soft-
ware [87] in the public health community. Scan statistics have also been incorporated into several
other experimental biosurveillance systems such as RODS [145], ESSENCE [98], BioSense [99],
and many others [66, 167].

In this chapter, I will discuss the spatial disease surveillance task in more detail, and describe
our new SSS (Spatial Scan Statistics) surveillance system. The SSS system was developed by my-
self and colleagues at the Auton Laboratory (Carnegie Mellon University) and RODS Laboratory
(University of Pittsburgh), and is based on the new spatial cluster detection methods presented in
this dissertation. This system enables us to monitor nationwide public health data (e.g. emergency
department visits and over-the-counter drug sales) on a daily basis, searching for emerging out-
breaks of disease. Every day, SSS receives data from over 20,000stores and hospitals nationwide,
uses our automatic cluster detection methods to find potential outbreaks of disease, and makes these
results available to public health officials through a web-based graphical interface. We currently
have several public health departments using our software to help them detect epidemics, and their
feedback has been valuable for the iterative development of our systemand the underlying models
and methods. I am also working to integrate our cluster detection methods with several other sys-
tems for large-scale disease surveillance, in order to address not only spatial surveillance but other
aspects of the disease surveillance task.

Before presenting the SSS system in Section 6.4 of this chapter, I will discuss the role of spatial
disease surveillance in early detection of disease outbreaks. Section 6.2 discusses the importance
of early detection and the need for spatial and syndromic surveillance, and Section 6.3 discusses
the many challenges inherent in the spatial surveillance task. Sections 6.5 and 6.6 present results
of the deployed SSS system. Section 6.5 discusses our experiences running the system for daily
prospective surveillance, and presents some of the most interesting clusters detected. Section 6.6
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is a detailed case study based on retrospective analysis of the Walkerton gastrointestinal outbreak.
Finally, Section 6.7 presents a general overview of the biosurveillance literature, focusing primarily
on spatial methods.

While many members of the Auton Laboratory and RODS Laboratory played significant roles
in the development of the SSS system, I would most like to thank Maheshkumar Sabhnani for his
efforts in implementing the system and developing the user interface. Additionally, I am grateful to
Michael Wagner and the RODS Laboratory for their efforts in data collection and for making this
data available to us. The description of the SSS system presented here hasbeen adapted from our
papers in ADKDD 2005 [131] and the 2005 National Syndromic Surveillance Conference [132].
I wish to thank my co-authors Maheshkumar Sabhnani, Andrew Moore, Michael Wagner, Rich
Tsui, and Jeremy Espino for their contributions to these papers. Also, parts of this chapter have
been adapted from our chapter in theHandbook of Biosurveillance[115]; I wish to thank my co-
author Andrew Moore and editor Michael Wagner for their contributions.Finally, analysis of the
Walkerton outbreak was performed in collaboration with Rick Davies and the ECADS collaborators;
the discussion here has been adapted from our paper in the 2005 National Syndromic Surveillance
Conference [32] and our paper [33].

6.2 Importance of spatial surveillance for early outbreak detection

Early detection of disease outbreaks is important for several reasons.First, we must deal with the
very real, and scary, possibility of a bioterrorist attack– an intentional release of a deadly pathogen
such as anthrax, smallpox, or bubonic plague. In 2001, letters containinganthrax spores were sent
to various senate and media offices, causing five deaths. The World HealthOrganization (WHO)
estimates that a large quantity (e.g. 100 kg) of aerosolized anthrax, released over a major city such
as Washington, D.C., could kill between 1 million and 3 million people, and hospitalizemillions
more. A potentially even greater threat is that posed by emerging infectious diseases such as Severe
Acute Respiratory Syndrome (SARS) or avian influenza. WHO has stated that avian influenza
could lead to a global human pandemic, resulting in between 2 million and 7 million fatalities.
This is widely considered to be a conservative estimate, and other estimates have put the number of
potential fatalities as high as 150 million. A third reason for early detection is thatit enables better
epidemiological responses to many commonly occurring outbreaks (such asseasonal influenza and
gastrointestinal outbreaks) which kill or hospitalize many thousands of people every year. Finally,
we can detect and respond to patterns of symptoms due to other factors, such as environmental
pollution, which may not be directly caused by pathogens.

We focus here on the case of a bioterrorist anthrax attack, and consider why early detection is
important. Inhalational anthrax is a highly virulent disease: left untreated,it has approximately a
95% chance of being fatal within 2-3 weeks. However, anthrax is a treatable disease, and the ear-
lier an affected patient is treated (e.g. with ciprofloxacin or other powerfulantibiotics), the greater
the chance of survival. Meselson et al. [102] estimate that there is a “window of opportunity” of
approximately four days within which it is possible to mitigate the effects of an attack. Patients
treated within the incubation period (the first 3-4 days, before any symptomsare present) have only
a 1% chance of mortality, while the mortality rate climbs to 45% or higher once the patient becomes
symptomatic. Early detection of an anthrax outbreak can lead to earlier treatment, both for indi-
viduals with early-stage symptoms, and also for those individuals who are currently asymptomatic
but are likely to have been affected. One estimate, from DARPA, is that a two-day improvement in
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detection time over our current capabilities could reduce fatalities by a factorof six. Additionally,
as Wagner et al. [149] note, improvements of even an hour over our current outbreak detection ca-
pabilities could reduce the economic impact of a bioterrorist anthrax attack byhundreds of millions
of dollars. Thus early detection of anthrax could dramatically reduce the cost of the outbreak to
society, both in money and in lives. For contagious diseases such as SARSor avian influenza, early
detection and response could also dramatically reduce the spread of disease, reducing the number of
individuals affected and possibly preventing a full-scale outbreak. Finally, early detection of bioter-
rorist attacks might have wide-ranging national security benefits, including capture of terrorists and
prevention of further attacks.

While early detection of outbreaks is important, it is also difficult to achieve. The most common
mode of detection (waiting for some astute physician to notice the outbreak and report it to public
health) is often very slow, because the early-stage symptoms of many serious diseases are non-
specific. For example, the early symptoms of anthrax are flu-like, including cough and fever. Thus
a physician is unlikely to be able to distinguish anthrax from influenza without results of tests such
as a chest X-ray, and the physician is unlikely to call for such tests unlesshis suspicion has already
been aroused. If the physician noticed a large increase in the number of patients reporting some
set of symptoms, this might arouse suspicion, but since each individual physician or hospital only
sees a small subset of the affected population, this indication of the outbreakmight come too late
to be useful. As a result, we could see over a week of lag time between the onset of symptoms
from anthrax exposure and a definitive diagnosis of anthrax. On the other hand, individuals affected
by the anthrax outbreak might display a number of early-stage behaviors which, when viewed in
the aggregate, might be indicative of an outbreak. For example, an affected individual might buy
over-the-counter drugs, including cough/cold and fever medications; he might be absent from work
or school, and might visit a doctor, clinic, hospital, or emergency department. If a large number
of individuals were affected in the same locale, we would observe increases in aggregate quantities
such as the number of over-the-counter drugs sold or hospital visits. From these increases, we could
infer that an outbreak was occurring, as well as pinpointing the affectedregion. Additionally, based
on the population and region affected, and the symptom types indicated by these increases, we could
infer a probability distribution over possible causes of the outbreak. By implementing a surveillance
system to perform these tasks rapidly and automatically, we can receive early warnings of potential
outbreaks with little or no human effort.

Thus one main argument of this dissertation is that we can achieve very earlydetection of out-
breaks by gathering syndromic (or symptom) data, and automatically identifyingemerging spatial
clusters of symptoms. In collaboration with the RODS Laboratory at the University of Pittsburgh,
we are currently gathering daily, nationwide health data including emergencydepartment visits and
over-the-counter drug sales; we can then apply the automatic cluster detection methods discussed
above to identify clusters that are indicative of emerging outbreaks. We focus on the tasks of detect-
ing outbreaks and pinpointing their locations; the task of differentiating between different types of
outbreak is more difficult, but in Chapter 5, we presented some initial steps in this direction based
on the multivariate Bayesian scan statistic (MBSS).

6.3 Challenges of spatial disease surveillance

While spatial disease surveillance has great potential as an analytical method for early detection of
outbreaks, we must deal with many challenges to make these methods useful for real-world data.
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In particular, we focus here on the monitoring of emergency department (ED) and over-the-counter
drug sales (OTC) data. We consider many potential phenomena in these datastreams which may
cause either false positives (detection of clusters which are not epidemiologically relevant) or false
negatives (failure to detect a true outbreak), and potential means of dealing with each of these
phenomena. Some of these solutions have been built into our current implementation of the SSS
system, as discussed in the following section, while others have been deferred to future versions of
the system. We note that this discussion focuses only on the statistical and modeling challenges of
applying our methods in the real world; a separate challenge is the computational problem of scaling
our methods to massive nationwide datasets containing millions of records. Computational issues,
and our approach to developing scalable and computationally efficient cluster detection methods,
are discussed in detail in Chapter 3.

We can roughly divide the challenges of spatial disease surveillance into three groups: chal-
lenges related to data acquisition, challenges related to modeling “normal” baseline data (including
all of the phenomena which may cause clusters but are not epidemiologically relevant), and chal-
lenges related to modeling outbreaks (and other “relevant” clusters). We discuss each of these
challenges in detail in the following subsections.

6.3.1 Challenges of data acquisition

It is clear that even sophisticated models and methods will fail if the data provided is not sufficiently
complete or reliable. As an extreme example, we will be completely unable to detectan outbreak
if its effects are not present in the monitored data, either because we do not have any data for that
region of the country, or because we are not monitoring the affected datastreams. Our colleagues
at the RODS Laboratory are working hard to increase the proportion of the country covered by our
data feeds; we currently have high coverage on the East and West Coasts but lower coverage in the
center of the United States.

Data irregularities are another serious problem, as many of these irregularities cause significant
anomalies in the data which would be picked out by any anomaly detection algorithms. Irregularities
in the OTC data were a major source of false positives in our early use of theSSS system, but have
been reduced significantly by improvements to the National Retail Data Monitor.However, many
irregularities are still present in the ED data we receive.

A third, and typically less serious, problem is that of missing data. Data are missing when a
store fails to report the current day’s OTC sales, or when a hospital fails to report the current day’s
ED visits. We have developed methods to impute the values of missing counts, using exponentially
weighted linear regression or other methods of time series analysis to infer theexpected counts
under the assumption that no outbreak is occurring. Based on this conservative assumption, our
power to detect an outbreak is reduced if many of the corresponding dataare missing, but we are
unlikely to encounter any false positives due to missing data. Our methods fordealing with missing
data are discussed in Chapter 4.

As a final example of the challenges of obtaining the right data, we note that the power of our
methods can be reduced due to disparities between the set of “clusters” weare searching and the
population which was actually affected by the outbreak. For example, searching over only compact
regions might cause us to miss elongated clusters, or searching over too coarse a resolution might
cause us to miss very small (but epidemiologically relevant) clusters. As another example, if home
zip codes are the only data in an emergency department’s records, then anattack on a downtown
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office location might not appear as a spatial cluster. It is possible that appropriate use of commuting
statistics [24, 40] can help in this case. Finally, if an outbreak only affects one segment of the
population (e.g. children), our power to detect is reduced if we do not segment the population
appropriately.

6.3.2 Modeling baseline data

A second set of challenges is posed by modeling “baseline data,” i.e. the behavior of the monitored
ED and OTC data streams when no outbreaks are occurring. In our earlyexperiences of apply-
ing cluster detection to over-the-counter pharmacy data, it was immediately clear that simplistic
assumptions in the underlying model can lead to false alarms: there are many non-disease-related
reasons for clusters of over-the-counter medication purchases to occur. As a result, we must con-
sider the many ways in which the real data does not correspond to our model assumptions, and
either adjust the model or clean the data accordingly.

For example, day-of-week and seasonal trends must be incorporatedinto our time series anal-
ysis methods in order to obtain accurate baseline estimates of expected counts. If these trends are
not accurately predicted, we will have increased likelihood of false positives when baselines are
underestimated, and increased likelihood of false negatives when baselines are overestimated. A
major difficulty relates to the fact that we are using inferred baseline valuesto perform anomaly
detection, while our simplistic model treats these values as known rather than inferred. As a result,
our anomaly detection methods will pick out not only real anomalies, but also regions where the
baseline values have been underestimated. One way of dealing with this problem is to use conser-
vative baseline values (e.g. intentionally overestimate baselines by some margin). For example, we
could use the maximum (rather than mean) counts in historical data, or we couldadd some number
of standard deviations to the inferred mean. A second approach would beto use the unbiased base-
line values, but to “dial down” the sensitivity of the method by only reporting the most significant
(highest scoring) clusters, and recalibrating their statistical significancebased on the historical dis-
tribution of maximum scores. A third approach would be to account for the extra variance resulting
from the inferred baselines (for example, using a t-distributed scan statisticrather than a Poisson or
Normal), but this results in a more complicated statistic that is harder to efficiently compute.

More generally, our current statistics are likely to have an increased false positive rate due to
many sources of model misspecification. Iterative improvements to the underlying model can reduce
false positives due to many of these sources. For example, our currentmodels assume a spatially
uniform relative risk under the null hypothesis: this means that any spatialvariation in risk should be
reflected in the underlying baselines. An alternative would be to allow some variation in risk under
the null to account for unmodeled, spatially-varying effects. Additionally,our current models do
not account for spatial and temporal correlations, though the RATS aggregation method discussed in
Chapter 4 is one way to deal with spatially correlated data. Using time series analysis methods such
as ARIMA would be one way to deal with temporal autocorrelation. Finally, thetypical Poisson
model does not account for overdispersed data, though our Gaussian scan statistic model (derived
in Chapter 2) can account for overdispersion. In practice, we find that OTC data (but not ED data)
is highly overdispersed, requiring the use of a method that can account for overdispersion.

Finally, we consider some of the many phenomena which may cause clusters in ED and OTC
data but are not epidemiologically relevant. One such phenomenon is promotional sales of over-
the-counter medications: in this case, a store or chain sells large numbers of units not because



114 CHAPTER 6. APPLICATION TO DISEASE SURVEILLANCE

people are sick, but because the medications are on sale. Our data feedsspecify promoted versus
non-promoted sales, so we can either filter out clusters due to promotions, or explicitly model the
effects of a promotion on the counts of affected stores. A related phenomenon, which accounted
for many false positives in early runs of our SSS system, was large spikesin the sales of individual
stores. These spikes could have been due to promotions, to bulk purchases by a single buyer (e.g. a
chain of hotels), or to inventory movements. One way of dealing with these spikes would be to
count the number of transactions rather than the number of units sold, but this information is not
currently available to us. Instead we consider two possible methods of dealing with single-store
spikes: filtering out regions with increases resulting from a single store, and explicitly modeling
single-store spikes. We discuss the filtering of single store increases (the“L-filter”) in the following
section, and the use of a Bernoulli-Poisson store model in Chapter 2.

Other epidemiologically irrelevant clusters may be caused by unmodeled covariates; many of
these false positives can be avoided by directly including the appropriate covariate as part of our
model. A simpler, though less accurate, alternative is to filter out clusters resulting from these factors
as a post-processing step. Examples of such covariates include holidays (typically counts drop
during a major holiday, but are increased before and after the holiday),socio-demographic effects
(in certain areas, sales may exhibit trends corresponding to social security checks or other monthly
income sources), and weather (cough and cold sales are increased bycold weather; also, people tend
to stock up on medications before and after severe weather). Another interesting effect, discussed in
more detail in Section 6.5, is increased counts due to temporary movements of population: this could
include populations displaced by severe weather (e.g. the devastation of New Orleans caused by
Hurricane Katrina) or temporary population increases in popular tourist destinations. These effects
could be dealt with directly if the populations were known, or indirectly by normalizing counts
using sales of a baseline product such as soda or bottled water. Finally, some clusters of symptoms
may correspond to already-known causes, whether known outbreaks(e.g. seasonal influenza) or
environmental causes (e.g. wildfires in California). We want to be able to model expected counts
resulting from known causes in order to detect other outbreaks which are simultaneously occurring.
For example, we should be able to detect an anthrax attack even if it takes place in a region already
affected by seasonal influenza. The use of the multivariate Bayesian (MBSS) approach should help
us to model known outbreaks and distinguish these from other relevant clusters.

6.3.3 Challenges of modeling outbreaks and other relevant clusters

A third set of challenges is posed by modeling of outbreaks and other “relevant” clusters. We are
typically not focused on detecting a specific type of outbreak, but insteadwe want to be able to
detect any outbreak including those of previous unknown diseases. Asa result, we focus on the
modeling of “baseline” data as discussed above, and want to detect any significant increases in
counts as compared to the baseline. Our use of spatial scan statistics does make some assumptions
about the clusters we want to detect: most importantly, that they are spatially localized (i.e. we
want to detect a spatial region of increased counts). Epidemics that display no spatial clustering
will not be detected by spatial surveillance. Additional assumptions may be made by the individual
statistics being used: for example, our persistent cluster statistic assumes a constant relative risk over
the course of an outbreak, while the emerging cluster statistic assumes a monotonically increasing
relative risk. Both methods assume that the relative risk due to an outbreak is spatially uniform
in the affected region, but other statistics can be derived to allow spatially varying relative risk. In
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addition to these “general” detectors which find any significant deviations from the background data,
we could also derive models for specific outbreak types that we are interested in detecting (e.g. avian
influenza, anthrax). More accurate models of individual outbreak types could be included within
the multivariate Bayesian scan statistic approach, giving us higher power todetect these specific
outbreaks without reducing our power to detect more general outbreakpatterns.

All of these factors present new and challenging opportunities for bettermodeling of ED and
OTC data, and continued iterative improvements of our models and methods will improve our ability
to differentiate real outbreaks from false positives. We note that even our current, simple methods
(implemented within the SSS system discussed in Section 6.4) are able to provide useful information
and to distinguish real outbreaks from false positives. This ability is demonstrated in our discussion
of prospective surveillance using the SSS system (Section 6.5) and our retrospective analysis of the
Walkerton gastroenteritis outbreak (Section 6.6).

6.4 Description of the SSS system for spatial disease surveillance

In this section, we present Spatial Scan Statistics (SSS), a new system forspatial disease surveil-
lance. The SSS system was created in collaboration with Maheshkumar Sabhnani, Andrew Moore,
Michael Wagner, Rich Tsui, and Jeremy Espino [131, 132], and implementsmany of the cluster de-
tection methods discussed in this thesis. The SSS software is available for download from the Auton
Laboratory website (www.autonlab.org), and the RODS Laboratory website (rods.health.pitt.edu).

Our current implementation of the SSS system monitors sales of over-the-counter (OTC) med-
ications from over 20,000 stores throughout the nation. We can also use this system to monitor
Emergency Department (ED) visits from thousands of hospitals nationwide,though at this point our
ED data feeds are not quite as reliable. Thus our current implementation focuses on using the OTC
sales for automatic detection of outbreaks, and ED data is used as a secondary source to investigate
potential outbreaks. Monitoring is performed on a daily basis (currently withone day of lag time
from the date of sale), enabling us to rapidly detect emerging clusters of disease. We are currently
working to reduce the lag time, as well as to improve the quality of the ED data received. While
our eventual goal is to simultaneously monitor and combine information from multipledata streams
using the multivariate Bayesian scan statistic (MBSS) approach, our current system instead relies
on the frequentist, expectation-based scan statistics discussed in Chapter4, using the fast spatial
scan algorithm of Chapter 3 to speed up our search as necessary.

The main purpose of our SSS system is to provide a tool for the automatic detection of emerging
disease outbreaks. By providing intelligent algorithms to detect outbreaks ina timely manner, we
hope to reduce the human and economic costs of outbreaks, whether due toa bioterrorist attack
or a naturally occurring epidemic. A second purpose of our SSS system isto demonstrate that
the general cluster detection techniques discussed in this thesis can achieve high performance not
only on simulated data but on real public health data. In order to detect useful clusters in real-
world data, we must cope with the many factors that make OTC and ED data difficult to model,
including seasonal and day-of-week trends, missing data, and covariates such as weather, holidays,
and promotional sales. Some of these modeling issues are incorporated into the current system,
while others have been deferred to future versions of SSS.

Another challenge of building the SSS system results from the generality of our detection task.
Our goal is to present public health users with all of the “interesting” clusters resulting from any
phenomena of which they should be made aware, but to suppress any “uninteresting” clusters that
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are not epidemiologically relevant. Thus we typically do not have any specific model of what an
outbreak looks like, and we also may not have models of the many “uninteresting” phenomena
which may result in false positives. While we have enumerated (and considered possible solutions)
for many of these phenomena in the previous section, this list is unlikely to be exhaustive, and more
phenomena are likely to arise when incorporating other data sources into our models. One possible
solution is provided by the multivariate Bayesian (MBSS) approach, in whichwe can specify a
separate, scenario-based model for each outbreak type and for each uninteresting phenomenon,
then combine these into a single model which enables us to differentiate betweeninteresting and
uninteresting clusters. Nevertheless, construction of all of these models islikely to be a time-
consuming task requiring large amounts of expert knowledge, and it is extremely unlikely that even
an expert will be able to identify and develop all the necessary models fromscratch. Our eventual
goal is to learn these models automatically from user feedback, but this is an extremely challenging
learning task. A more immediate goal is to provide a tool that not only shows the detected clusters
to the expert users, but also allows them to investigate and provide feedback on these clusters. This
feedback loop can then be used for iterative refinement of our models and methods, leading to
continual improvement of our detection and investigation tools and providing valuable insights into
the complex process of disease outbreak detection.

Our system searches for spatio-temporal patterns in the over-the-counter drug sales from phar-
macies, groceries, and other stores throughout the United States. Givensome search region (which
can be a city, county, state, or even the entire country), the algorithm firstmaps this search region to
a uniform, rectangularN ×N grid. It then searches over all axis-aligned rectangular regions on the
grid, in order to find regions that have shown a recent anomalous increase in sales. As discussed in
Chapter 4, our algorithm has two parts, first inferring the expected (baseline) sales for each grid cell
and then detecting regions that show high deviation in sales from the estimated baselines. These
detected regions are labeled as alerts– clusters of increased OTC sales that may indicate disease
outbreaks. We use several variants of the expectation-based scan statistic for emerging clusters,
including different temporal windows sizesW and different methods of time series analysis; more
details of these methods are given in Chapter 4. Given our limited ability to distinguish clusters
caused by outbreaks from clusters with other causes, we present selected alerts to public health of-
ficials only after they have been filtered by some simple rules to remove unimpressive anomalies.
We can then incorporate the public health feedback to improve the performance of our system.

6.4.1 System overview

In Figure 6.1, we present an overview of our SSS system for prospective disease surveillance. This
system can be divided into three major components: input (automatically gathering nationwide
hospital and pharmacy data), analysis (performing automatic cluster detection on the input data
streams), and output (making the detected clusters available for investigationby public health users).
We now consider each component of this system in more detail.

Input to the SSS system is provided by the National Retail Data Monitor (NRDM), developed
and operated by the RODS Laboratory at the University of Pittsburgh. The NRDM, described
in detail in [148, 150], receives daily OTC data from the national and local vendors. This data
consists of daily store level sales of 9000 OTC products used for the symptomatic treatment of
infectious diseases. The NRDM groups individual product sales into 18groups of similar products
(e.g. baby/child electrolytes, cough/cold, thermometers, stomach remedies, and internal analgesics).
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Figure 6.1: Overview of the SSS system.

Figure 6.2: Examples of a) day-of-week and b) seasonal trends in over-the-counter sales data.

We receive data from the NRDM (from over 20,000 stores nationwide) ona daily basis, with a one-
day delay from the date of sale. Each record includes the store ID, its corresponding zip code, date
of sale, and units sold for a particular syndrome. In addition to receiving the current day’s counts
(number of units sold in each product group) for each store, we also obtain and process the past
three months of data (around 5.5 million records) to estimate the baseline (i.e. number of sales we
would expect to see) for each store. For space-time statistics with a larger temporal window, we
also use the counts and baselines for up to seven days prior to the current day.

As discussed in the previous section, there are various challenges with estimating the store
baseline sales. First, there are strong seasonal and weekly trends in theOTC data. Figure 6.2 shows
a sample weekly trend in pediatric electrolyte sales. Sales on a typical Mondayand Tuesday tend
to be higher than on Friday and Saturday. The weekly trend exhibits spatialvariation, depending
on many unmodeled factors such as region of the country, urban or rural community, etc. Figure
6.2 also shows a sample seasonal trend in cough and cold medication sales. Average daily sales in
the month of March were approximately 5000 units higher than in April. We havealso noticed a
sudden rise in sales for days following a national holiday. We address theseasonal and day-of-week
trends by incorporating them into the baseline time series analysis. Missing dataprovides another
challenge: the current data storage schema does not differentiate between missing data (i.e. stores
that have not reported sales for a specific date by the time of analysis) andzero counts (i.e. stores
that sold zero units on that date). To deal with this limitation, we assume that data are missing only
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if a store reports no sales for all product categories. If a store has zero counts for some product
categories and non-zero counts for others, the zero counts are assumed to result from zero sales
rather than from missing data. We infer all missing data points from the time seriesof counts for
that location, using the exponentially weighted linear regression technique described in Chapter
4. Once the time series has no missing data, any reasonable univariate time series algorithm that
accounts for day-of-week and seasonal trends can be applied to estimate recent baseline sales; see
Chapter 4 for more details.

After we receive and pre-process the past three months of national OTC data, we define multiple
search regions with differing resolution: in addition to performing a scan ofthe entire country, we
also perform scans in individual states or counties. This provides scanresults specifically tailored
to interested state and local health departments; additionally, scanning over multiple resolutions
ensures that we detect large-scale anomalies as well as clusters that aremore spatially localized but
still epidemiologically relevant. As noted above, the search region is mapped toa rectangular two-
dimensional grid of sizeN × N . We need to know the store locations in order to map them onto
the grid cells; however, due to data privacy concerns, we do not haveaccess to the exact longitude
and latitude of each store. Instead, we are given the zip code containing each store, and use the
longitude and latitude of the zip code centroid to populate the grid cells.

The search algorithm then scores every possible axis-aligned rectangular region using the recent
baselines (expected counts) and observed counts in the region. Baseline values can be aggregated
either for individual stores (the “building-aggregated time series” method, or BATS) for individual
grid cells (the “cell-aggregated time series” method, or CATS), or on-the-fly for an entire search
region (the “region-aggregated time series” method, or RATS). Additionally, a variety of methods
are used for time-series analysis. Details on the aggregation techniques and time series analysis
methods are given in Chapter 4. We also perform significance testing on thescore of each region by
randomization. This helps us remove anomalous regions that could be explained as being generated
by chance. Thek-best regions (i.e. those significant regions with the highest scores, and therefore
the lowestp-values) are reported as possible disease outbreaks.

Once we have this set of potential outbreak regions, we perform two simplepost-processing
steps (“filters”) to remove regions due to uninteresting phenomena. We initiallysaw many false
positives resulting from “single store” anomalies: individual stores with large spikes in sales on a
given day. Two possible explanations for these single store anomalies arebulk purchases by a single
buyer (e.g. restocking by a hotel, clinic, etc.) or promotional sales. We addressed this issue by only
reporting those regions that have shown increased counts due to multiple stores: in other words, we
filter out a region if removing any single store from that region would causeits score to become
insignificant. This “location filter” (L-filter) is a simple, conservative method of dealing with un-
modeled single-store phenomena. Other possible solutions would be to use theBernoulli-Poisson
model described in Chapter 2, or to produce detailed models of each individual single-store phe-
nomenon. Second, we also saw many false positives due to slight increases in counts corresponding
to a large spatial region. Any increase in disease rate, no matter how small, becomes statistically
significant if it corresponds to a large enough underlying population or baseline; however, most
public health officials are only interested in substantial increases in diseaserate, so these slightly
increased rates can be thought of as statistically, but not epidemiologically,significant. These in-
creases could result from model misspecification, unmodeled covariates,or underestimates of the
baseline for the given region. In order to make a simple adjustment for suchpotentially unmodeled
fluctuations in day-to-day counts, we also apply a conservative “threshold filter” (T-filter), which
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Figure 6.3: Screen shot of the SSS viewer application, investigating a potential alert in Indiana.

Figure 6.4: Screen shot of a user web page for SSS.

assumes that the baselines were underestimated by some specified amount (e.g. 10-15%). If both
the “single-store” adjusted score and the “threshold” adjusted score are still significant, we report
the region as a potential outbreak.

Once we have established the set of alerts to report, we must make these alerts available for
investigation by the public health users. User testing for early versions of our system revealed that
it was insufficient to present users with detected clusters without providing tools for investigation
of these clusters. Thus we developed a web-based graphical interface which enables users to inves-
tigate, manage, and provide feedback on alerts. More precisely, our interface consists of two parts.
First, we developed the SSS viewer tool, which allows users to investigate an alert by browsing the
data on a GIS map and by “drilling down” into region-level and store-level timeseries data. A screen
shot of the viewer tool is shown in Figure 6.3. Second, we developed the SSS web interface, which
enables users to manage and track multiple alerts. The web interface also provides easy opportuni-
ties for users to provide and view feedback on individual alerts. This feedback has two functions:
sharing the workload of investigating alerts between different end users, and providing us (the SSS
developers) with user feedback on which alerts were genuine and whichwere uninteresting or due
to non-outbreak reasons. A screen shot of the web interface is shownin Figure 6.4.

The current version of the web interface allows users to view alerts, rank their importance, add
feedback comments, and give suggestions. Users can also search foralerts using different criteria,
such as zip code, score, observed counts, and expected counts. Additionally, users can add their
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Figure 6.5: Alert in Columbus, OH, resulting from a possible GI outbreak. The left figure shows
the increase in pediatric electrolyte sales detected by SSS, and the right figure shows a confirmatory
increase in GI Emergency Department visits.

custom-defined input scripts to the pool of scripts that run daily. Users can set their own grid
resolution, change baseline evaluation time series method, set aggregation level, etc. By enabling
users to create their own input scripts and to give feedback on the resulting alerts, we hope to learn
what results and settings are most relevant to real users in the surveillance task. This feedback will
help us better manage these alerts and distinguish true outbreaks more efficiently. In the future,
we also plan to provide more features (e.g. tracking of previously reported alerts for post analysis
purposes) to the end users, thus improving their ability to investigate and manage alerts.

Finally, we plan to give users improved capability for ad hoc browsing and analysis of multiple,
multivariate time series using the new TCUBE tool, currently under developmentby Maheshkumar
Sabhnani and other colleagues in the Auton Laboratory [130]. By combining this tool with SSS,
we hope to give users the flexibility to perform any desired investigations while also focusing their
attention on the clusters that we believe to be most relevant.

6.5 SSS in practice: prospective surveillance and clusters detected

We now discuss our experiences running the SSS system for prospective surveillance of the nation-
wide OTC sales data. We have been running the SSS system daily on OTC datasince late 2003.
Initially, the system reported a large number of false positives, making it difficult for users to focus
on the most relevant clusters. Two main improvements enabled us to significantlyreduce the false
positive rate. First, improvements in the data quality provided by the National Retail Data Monitor
reduced the number of false positives due to data irregularities. Second,adding the post-processing
filters discussed above enabled us to remove many false positives that were statistically significant
according to our model but clearly did not correspond to actual outbreaks. We now obtain between
10 and 20 alerts per week. Some of these alerts can be diagnosed as likely tobe due to data irreg-
ularities or model misspecifications, while others are of potential epidemiological relevance. These
potentially relevant clusters then require further investigation, either by our team or by public health
users, to determine whether or not the detected cluster corresponds to anactual outbreak or other,
irrelevant phenomena. Because of limited manpower, our team was unable toinvestigate many such
clusters, especially those that occurred in regions where we were not incontact with state and lo-
cal public health departments. Nevertheless, we were able to discover a number of interesting and
potentially relevant clusters, both due to disease outbreaks and due to other phenomena.
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Figure 6.6: Alert in Salt Lake City, UT, resulting from an early outbreak ofseasonal influenza. The
figure shows the increase in cough/cold medication sales detected by SSS.

On January 25, 2006, the SSS system detected a spike in the sales of pediatric electrolytes near
Columbus, Ohio. This increase is shown in Figure 6.5. We first did some preliminary investigation
of the cluster using the SSS viewer tool. This investigation revealed that the increase emerged
gradually over the course of January 23-25, was not limited to a single store or chain, was not due to
promotional sales, and did not affect other categories of OTC sales. Asa result of our preliminary
investigation, we hypothesized that this increase resulted from a small, localized gastrointestinal
outbreak starting January 23rd. Because we are not currently in contact with Ohio health officials,
we were unable to obtain a definitive confirmation of this potential outbreak. However, we were
able to obtain and analyze emergency department records for this area. As shown in Figure 6.5,
gastrointestinal emergency department visits were also significantly increased between January 23
and 27, peaking on the 25th. Other types of ED visits were not significantly increased. This evidence
supports our hypothesis of a small and localized GI outbreak.

Another relevant cluster that we found corresponded to an early, unusually severe outbreak of
seasonal influenza that took place in the Salt Lake City area of Utah in November 2003. Our system
observed the first signal of this outbreak on November 5, detecting an increase in cough and cold
OTC sales in the Salt Lake City area. As shown in Figure 6.6, cough and coldsales remained
high throughout November, triggering more alerts on the 12th, 14th, and 15th. Note that we also
observe a false positive on September 15, which appears to have been due to a database error (we
also observed many other false positives across the nation on this date). Such database errors were
common in 2003 and 2004, but are now much less common due to improvements in theNRDM. It
is also interesting to note that a more detailed study of the Utah outbreak, conducted by the RODS
Laboratory and available on their website, suggests that the outbreak could have been detected
sooner (possibly as early as October 25) by focusing on pediatric cough and cold sales. According
to the RODS case study, the outbreak was visible from ED chief complaint monitoring (respiratory
and constitutional categories) around November 7, suggesting that monitoring of OTC sales enabled
more timely detection of this outbreak than ED visits.

Another potentially relevant cluster that we found does not directly correspond to a disease
outbreak, but instead was due to an environmental hazard. Between October 21 and November 4,
2003, a series of major, uncontrolled wildfires in southern California caused seriously degraded air
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Figure 6.7: Two alerts in Riverside, CA, resulting from the 2003 wildfires, on October 21 and
October 29 respectively. Both figures show increases in cough/cold medication sales detected by
SSS.

Figure 6.8: Alert showing increased sales in tourist destinations over Memorial Day weekend, 2005.
SSS reported several alerts, including the highlighted alert in Rehoboth Beach, Delaware.

quality, leading to widespread increases in cough and cold medication sales.Our SSS system first
detected the wildfires on October 21, the day that the fires started; we saw alarge number of alerts
throughout southern California. One such alert, in the Riverside area,is shown in Figure 6.7. We
also saw many alerts in southern California between October 29 and October31, corresponding to
the period of worst air quality from the fires. One such alert, also in the Riverside area, is shown
in Figure 6.7. It is interesting to note that OTC cough and cold medications are not an effective
cure for respiratory problems due to smoke inhalation, but we were nevertheless able to pick up
substantial evidence of the regions affected by smoke from the fires based on the patterns of cough
and cold sales.

As a final example, we show one cluster detected by SSS that we do not consider to be epi-
demiologically relevant. During the 2005 Memorial Day weekend, we noted a large number of
detected clusters along the eastern coast of the United States. Figure 6.8 displays one such cluster,
in Rehoboth Beach, Delaware. Further investigation revealed that these alert regions corresponded
to popular tourist destinations, especially beach resort areas. Thus it was clear that the combina-
tion of a long holiday weekend and warm weather led to a temporary increasein population due to
an influx of tourists, resulting in increased OTC sales as well as increasedED visits. These false
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positives demonstrate the need to model and suppress clusters resulting from temporary population
shifts. As noted in Section 6.3, two ways to deal with such clusters are to measure and adjust for
population, if such information is available, or otherwise to normalize by total sales or sales of a
baseline product.

Many of the epidemiologically irrelevant causes of clusters discussed in Section 6.3 have also
been observed in the OTC data, including sales trends due to inclement weather (such as hurricanes
in Florida). Although these are interesting results, they underscore the difficulty of determining
which increases in sales are due to real outbreaks, and which increases are due to a variety of other
unmodeled factors.

6.6 SSS case study: The Walkerton GI outbreak

Disease surveillance systems should be evaluated in a real-world setting before recommending their
widespread deployment. This evaluation is difficult to accomplish prospectively, because disease
outbreaks occur sporadically and are difficult to anticipate. Additionally, establishment of ground
truth for evaluation is very difficult in prospective mode. However, evaluation of disease surveil-
lance systems can be accomplished retrospectively using historical data from known and well-
characterized outbreaks. We focus here on one such case study, anoutbreak of gastroenteritis in
Walkerton, Ontario, and examine the effectiveness of our SSS system for early detection of this
outbreak.

The Walkerton outbreak occurred in the Grey-Bruce area of Ontario in May 2000, centered in
the town of Walkerton, and resulted in an estimated 2321 cases of gastroenteritis. Eventually 1346
of these cases were individually identified. Of the 1346 identified cases, 65 individuals required hos-
pitalization, 27 developed hemolytic-uremic syndrome, and six died. The firstcalls to the region’s
public health unit raising concern of an outbreak were made on Friday, May 19. This detection
was made by an astute (and lucky) physician, who happened to observe multiple cases of pediatric
bloody stools, a rare enough occurrence to trigger his suspicion. The first effective intervention was
a presumptive boil water advisory issued on Sunday, May 21.

Our study of the Walkerton outbreak [32, 33] was conducted as a research protocol with human
research ethics board approval from the University of Ottawa Heart Institute, the South Bruce Grey
Health Center and the Owen Sound Hospital. Our investigating group (the “ECADS collaborators”)
was led by Dr. Rick Davies of the Ottawa Heart Institute. With the assistance ofthe local hospitals,
hospital corporations and Public Health Unit, we accessed electronic healthrecords data (including
free-text chief complaint, age, gender, and demographic data) from 392,699 ER visits made to 10
hospitals in the Grey-Bruce Region of Ontario from January 1, 1999 untilDecember 31, 2001. Five
of the 10 hospitals brought their electronic systems online during 1999 and could only provide data
for part of that year; data were complete for all 10 hospitals for 2000 and 2001.

Free-text chief complaints were categorized into syndromes of interest using a version of the
RODS (Real-time Outbreak and Disease Surveillance) system [145], provided to us by the CNPHI
(Public Health Agency of Canada) and QUESST (Ministry of Health and Long Term Care of On-
tario) projects. A processed data set containing 1) the categorized chiefcomplaint, 2) the hospital
visited, 3) town of residence, 4) gender and 5) age group was used for subsequent analyses, which
were done at the University of Ottawa Heart Institute and at the Auton Laboratory, Carnegie Mellon
University.
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Table 6.1: Results of spatial scan using the SSS software. SSS was able to detect the Walkerton
outbreak on May 19.

Date Most significant cluster Score False positive rate
May 16 11 cases, not near Walkerton 1.28 48.5%
May 17 7 cases, in and near Walkerton0.38 79.9%
May 18 3 cases, not near Walkerton 2.87 20.4%
May 19 15 cases, in Walkerton 15.1 0.1%
May 20 33 cases, in Walkerton 42.1 0%
May 21 45 cases, in Walkerton 58.5 0%

While our complete study [33] describes a wide variety of methods used to detect and char-
acterize the Walkerton outbreak, we focus here on automatic detection usingour SSS system, and
compare this system to several other methods, UNALERT (univariate time series analysis) and
WSARE (What’s Strange About Recent Events) [159, 160, 161]. Foreach method, we wish to
measure the relationship between timeliness of detection (which day the Walkerton outbreak could
have been detected) and false positive rate (the proportion of false alarms in the three years of base-
line data). For a given day of the outbreak, the false positive rate is defined as the percentage of
non-outbreak days that were found to be more significant than that outbreak day. In other words,
this is the percentage of false positives we would have had to accept in order to have detected the
Walkerton outbreak on the given day.

Thus we used the SSS software to conduct a spatial scan focusing on cases classified as GI for
the entire Grey-Bruce region, for each of the five days before the boilwater advisory. In Table 6.1,
we present the results of this scan. For each day, we indicate the location of the most significant
cluster detected, its scoreF (S), and the resulting false positive rate needed for detection. We also
show screen shots of the SSS software runs for May 19 and May 21 in Figure 6.9. Our results
demonstrate that the spatial scan would have identified an abnormality in Walkerton on May 19
(two days before the boil water advisory) with a false positive rate of 0.1%(one false positive in the
three years of data). We also note that the cluster in Walkerton on May 17 maybe a preliminary
indicator of the outbreak, but it was not significant enough to trigger an alert, unless we were willing
to accept a false positive every 1.25 days. However, if we had accessto other data sources (such
as over-the-counter drug sales), it may have been possible to automaticallydetect the Walkerton
outbreak on the 17th.

We compared the SSS detection results to two other methods: univariate time series analysis
(using a standard control chart) and What’s Strange About Recent Events (WSARE). Our results
indicate that, if we performed univariate analysis on the time series of total GI visits for all Grey-
Bruce hospitals, we would not have been able to detect the Walkerton outbreak until May 20. Thus
SSS was able to detect a full day faster than univariate analysis, demonstrating that the spatial scan
can achieve more timely detection as well as pinpointing the location of an outbreak. Similarly,
WSARE was able to detect the Walkerton outbreak on May 20 with a false positive rate of 1.4%.
Comparing WSARE to SSS, we note that SSS was able to detect the Walkerton outbreak one day
earlier than WSARE. The tradeoff, of course, is that WSARE is a more general detector, and can
detect a wider range of outbreak types and other anomalous patterns. For example, the anomalous
pattern found by WSARE on May 20 was, “Normally 0.2% of all records areGI syndromes from



6.7. RELATED WORK IN BIOSURVEILLANCE 125

Figure 6.9: Results of running SSS on the Walkerton gastroenteritis outbreak. The left figure shows
the most significant cluster on May 19, consisting of 15 cases in Walkerton.The right figure shows
the most significant cluster on May 21, consisting of 45 cases in Walkerton.

Walkerton, but recently 5.8% of all records are GI syndromes from Walkerton.” This is a clear
indication that WSARE found a pattern that was directly relevant to the Walkerton GI outbreak,
specifying both the outbreak type and approximate location.

In conclusion, the Walkerton outbreak ultimately resulted in six deaths and caused thousands
to become ill. Our study [33] shows that surveillance of emergency room chief complaints would
have provided important information regarding this outbreak, and might have advanced its detection
by as much as several days. An additional benefit is provided by the automatic detection and char-
acterization of outbreaks by tools such as SSS, reducing the burden of this surveillance on public
health. We demonstrated that SSS was able to automatically detect the Walkerton outbreak on May
19, two days before the boil water advisory. Though the outbreak was actually detected on the 19th
by an astute physician, we note several important observations. First, SSS was able to detect on the
19th with only one false positive in the three years of data, while false positives due to physicians
reporting unusual symptoms are much more common. Second, the physician’sdetection relied on
much more specific information (multiple cases of pediatric bloody stools) which was unavailable
to SSS; if the same physician had not examined all of these cases, or if they had not been sufficient
to trigger his suspicion, the outbreak would not have been detected as quickly. Finally, it is likely
that incorporation of other data sources (such as over-the-counter drug sales) would have enabled
us to automatically detect the outbreak several days earlier.

6.7 Related work in biosurveillance

As noted above, our work is most closely related to the spatial and space-timescan statistics ap-
proaches of Kulldorff [78, 81]. These methods were discussed in detail, and compared to our new
approaches, in the previous chapters; here we describe other methodsfor spatial and syndromic
surveillance. Unlike the approaches based on scan statistics, which both detect clusters and pin-
point their spatial location, the other spatial methods in the literature either do not find specific clus-
ters, or do not evaluate the statistical significance of discovered clusters. More general overviews
of the literature on spatial and syndromic biosurveillance can be found in thebooks by Lawson et
al. [91, 95], Elliott et al. [44], and Wagner et al. [147]. In addition to thespatial cluster detection
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methods discussed above, these methods include general and focused clustering methods, disease
mapping approaches, and spatial cluster modeling, as well as a variety of non-spatial methods. We
discuss each of these areas in the following subsections.

We note that, with a few exceptions such as the Bayesian mixture modeling techniques of Law-
son and Clark [90, 93] and Gangnon and Clayton [51], none of these methods attempt to model the
locations and spatial extents of clusters, nor are any judgments made (i.e. bystatistical significance
testing) as to whether the resulting variations in risk are due to chance. Nevertheless, the wider
literature on disease mapping and modeling has several advantages over scan statistics, including
the ability to directly model correlations and both fixed and random effects.

6.7.1 General clustering and space-time interaction

General clustering methods are hypothesis testing methods which test for a general tendency of the
data to cluster. In other words, these methods attempt to answer the question,“Is this data set more
spatially clustered than we would expect?” Such methods do not identify specific clusters, but in-
stead give a single result of “spatially clustered” or “not spatially clustered.” These methods are use-
ful if we want to know whether anything unexpected is going on, but do not care about the specific
locations of unexpected events. Examples of such methods include Whittemoreet al. [157], who use
the mean distance between all pairs of cases as a test statistic, and Bonetti and Pagano [19], who use
the interpoint distance distribution (M -statistic) to measure the amount of clustering. Tango [143]
proposes a quadratic form test, comparing the numbers of observed andexpected counts weighted
by a covariance matrix. Several other methods test for general clustering in data with non-uniform
populations, by combining case information with information about unaffectedindividuals (con-
trols) drawn from the underlying population. These methods typically ask thequestion, “are cases
closer to other cases than they are to non-cases”? Cuzick and Edwards[31] consider several test
statistics based on thek nearest neighbors of each case. Anderson and Titterington [8] propose an
“integrated squared distance” statistic based on non-parametric density estimation: the test statistic
is the squared difference between density estimates for cases and controls, integrated over the test
region. Similarly, Diggle and Chetwynd [36] compare the second moments of thecase and control
distributions.

Closely related to the tests of “general” clustering are tests for space-time interaction. These
tests answer the question of whether there is space-time clustering of events, even after adjusting
for purely spatial and purely temporal clustering. In other words, space-time interaction is present
when points that are close together in time also tend to be close together in space, and vice-versa.
The two best-known tests for space-time interactions are the Knox [77] andMantel [101] tests. The
Knox test requires specification of threshold values for “closeness” intime and space (i.e. two points
are close together in space if their spatial distance is less thands, and close together in time if their
temporal distance is less thandt). Then spatial and temporal distances are computed for each pair
of points, and if many points that are “close” in time are also “close” in space and vice-versa then
space-time interaction is present. Mantel’s test is a generalization of the Knoxtest which computes
the product of functions of the temporal and spatial distances for each pair of points, and uses the
sum of these products as a test statistic. Baker [10] extends the Knox testto cases where the values
of the critical parameters that define “closeness” in space and time are unknown. Kulldorff [79]
proposes an extension of the Knox test which adjusts for shifts over time in the distribution of the
underlying population of individuals. Finally, Rogerson [129] combines a“local” variant of the
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Knox test with cumulative sum methods in order to detect “emerging” space-timeinteraction by
prospective surveillance.

6.7.2 Focused tests for detection of increased risk near a prespecified source

Focused clustering methods are hypothesis testing methods which, given a prespecified spatial lo-
cation, attempt to answer the question, “Is there an increase in risk in areasnear this location?”
These methods can be used to examine potential environmental hazards, for example, testing for an
increased risk of lung cancer near a coal-burning power plant. Since the locations are specified in
advance, these methods are primarily used to test locations that have been identified by other means.
This is different than spatial scan methods, which are used to discover and pinpoint significant clus-
ters without a priori knowledge of their locations. Reviews of the literature on focused clustering
include Hills and Alexander [67] and Bithell [18], as well as the chapters inLawson et al. [91] and
Elliott et al. [44].

Many tests for focused clustering have been proposed, with differentassumptions about the
distribution of relative risk near the focus. Besag and Newell [15] test for “hot-spot clustering,”
assuming a constant increase in relative risk for locations within some distance of the focus, and
using the population radius containing a given number of cases as their teststatistic. The tests of
Waller et al. [152] and Lawson [89] assume that relative risk varies as1 + k

d
, wherek is constant

andd is the distance from the focus. For example, Waller’s test statistic is the sum ofthe deviations
of observed incidence in each location from its expectation under the null, weighted by the amount
of exposure. Diggle [35] instead assumes that relative risk decreasesexponentially with distance to
the focus, and proposes a test for case/control data based on this assumption. Finally, Stone [142]
proposes a non-parametric test which assumes that relative risk is monotonically decreasing with
distance to the focus.

6.7.3 Disease mapping

Disease mapping approaches have the goal of producing a spatially smoothed map of the variation in
disease risk. For example, a very simple disease mapping approach might plot the observed disease
rate (number of observed cases per unit population) in each area; moreadvanced approaches use
a variety of Bayesian models and other spatial smoothing techniques to estimate the underlying
risk of disease in each area. These methods do not explicitly identify clusterlocations, but disease
clusters may be inferred manually by identifying high-risk areas on the resulting map. Nevertheless,
no hypothesis testing is typically done, so we cannot draw statistical conclusions as to whether
these high risk areas have resulted from true disease clusters or from chance fluctuations.1 Disease
mapping is discussed in detail in Lawson et al. [92, 91] and Elliott et al. [44].

Breslow and Day [21] consider various methods of smoothing data for disease mapping, in-
cluding kernel smoothing and kernel density estimation. Their methods do notassume any under-
lying model of the data, and are most useful for exploratory data analysis. Other disease mapping
approaches are model-based, enabling statistical analysis and testing forareas of significantly in-
creased risk. A variety of hierarchical models have been proposed: the top level of the hierarchy typ-
ically assumes that counts are Poisson distributed with mean proportional to a known expected count

1More precisely, while Bayesian disease mapping methods can produce the posterior probability of elevated risk at
each individual spatial location, they cannot draw statistical conclusionsabout the cluster as a whole.



128 CHAPTER 6. APPLICATION TO DISEASE SURVEILLANCE

multiplied by an unknown relative risk. The second level of the hierarchy may assume that risks are
drawn from a Gamma distribution, as in Clayton and Kaldor [28] and Mollié [104], who use empir-
ical Bayes methods to estimate these risks. Alternatively, the log relative risk can be modeled using
a Gaussian distribution, as in Waller et al. [151] and Mollié [105]. This latter representation has the
advantage of being able to represent both fixed and random effects: for example, the log relative
risk θi can be modeled as a vector of random effects withθi ∼ Gaussian(µ, σ) and non-informative
hyperpriors. These models can be simulated using Markov Chain Monte Carlo (MCMC) methods,
sampling from the posterior probability distribution, as in Besag et al. [16] and Clayton and Bernar-
dinelli [29]. The disadvantage of these “fully Bayesian” approaches isthat MCMC may be slow
to converge to the true posterior, and it may be hard to confirm when convergence has occurred.
An alternative would be to estimate the unknown vector of hyperparameters using maximum likeli-
hood: such “empirical Bayesian” approximations may produce reasonable estimates of the relative
risks, but may fail to account for model uncertainty. In any case, the model-based disease mapping
approaches enable us to account for overdispersion of cases and other sources of heterogeneity.
Spatial correlation can also be included by incorporating an additional, spatially structured ran-
dom effect term. An alternative method of accounting for correlations is given by Wolpert and
Ickstadt [73, 158], who propose a hierarchical random field model with spatially correlated counts.

6.7.4 Spatial cluster modeling

Spatial cluster modeling methods attempt to combine the benefits of disease mappingand spatial
cluster detection, by constructing a probabilistic model in which the underlyingclusters of disease
are explicitly represented. A typical approach is to assume that cases aregenerated by some un-
derlying process model which depends on a set of cluster centers, where the number and locations
of cluster centers are unknown. Then we attempt to simultaneously infer all the parameters of the
model, including the cluster centers and the disease risks in each area. Thus precise cluster locations
are inferred, and while no formal significance testing is done, the method is able to compare models
with different numbers of cluster centers, giving an indication of both whether there are any clusters
and where each cluster is located. One typical disadvantage of such methods is computational: the
underlying models rarely have closed-form solutions, and the Markov Chain Monte Carlo meth-
ods used to approximate the model parameters are often computationally intensive. Examples of
such methods include Lawson et al. [90, 93] and Gangnon and Clayton [51]. For a more detailed
discussion of spatial cluster modeling, see Lawson and Denison [94].

In the Lawson and Clark model [93], the intensity of disease cases is expressed as a product of
the overall disease rate, the population at risk, and a spatially-varying relative risk function. This
relative risk function is parameterized in terms of an unknown number of clustersκ, a corresponding
set ofκ cluster locations, and further parameters corresponding to the risk decay around clusters. All
of the model parameters are inferred simultaneously: since the number of components is unknown,
reversible jump Markov Chain Monte Carlo sampling is used [61]. The model can also be adapted
to aggregated data by setting the expected count in a region equal to the integral over that area of
the intensity function, and covariates and random effects can also be included.

A second type of spatial cluster modeling approach is based on mixture models;examples of
such approaches include Schlattmann and Böhning [134] and Richardson and Green [128]. In
these models, the dataset is assumed to consist of cases, each of which is drawn from one of an
unknown number of mixture components. These methods enable explicit modeling of population
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heterogeneity, as different mixture components may have very differentproperties. Both the number
of components, and the properties of each component, are inferred using either empirical Bayes or
Markov Chain Monte Carlo.

Finally, Gangnon and Clayton consider a range of methods which span the space from scan
statistics [53, 52] to Bayesian cluster modeling [51, 54]. In [53, 52], theyconsider three methods:
a weighted scan statistic, the weighted average of likelihood ratios (WALR), and the maximum
weighted average of likelihood ratios containing a given cell (WALRS). Allthree of these meth-
ods can be thought of as approximations to our Bayesian spatial scan statistic: the weighted scan
statistic is a maximum a-posteriori estimate of the most probable cluster, the WALR statistic is an
approximation of the total posterior probability of an outbreak, and the WALRS statistic is an ap-
proximation of the total posterior probability of an outbreak containing a given cell. We believe
that the use of the full Bayesian model, and the exact calculation of posterior probabilities given the
model, is preferable to any of these approximations. In later work, Gangnon and Clayton also con-
sider a hierarchical Bayesian model [51, 54], but use a different prior distribution (based on Markov
Connected Component Fields), and the result is a model which cannot be computed efficiently but
only approximated by simulation.

6.7.5 Non-spatial surveillance methods

Syndromic surveillance includes a wide variety of methods for early detectionof disease epidemics.
Excellent surveys of the literature on syndromic surveillance are given inthe Handbook of Bio-
surveillance[147], as well as the review papers by Wagner et al. [149], Mandl etal. [100], and
Buckeridge et al. [22]. Here we briefly consider some of the many methods for syndromic surveil-
lance that do not explicitly take spatial data into account. Many of these methods are based on time
series analysis; we consider here both univariate and multivariate methods.

Univariate temporal methods consider a single time series, and signal alerts when the current
count is significantly higher than its historical expectation. The simplest suchmethod is the She-
whart chart [137], which alerts whenever the current count is more than some number of standard
deviations from its mean. Other variants of the control chart track the smoothed count, using ei-
ther a moving average (MA) or exponentially weighted moving average (EWMA) [71]. Cumulative
sum (CUSUM) methods [123, 72] consider the accumulated deviation from the mean over multiple
time steps, and signal alerts when the accumulated deviation is sufficiently large. These methods
have some useful theoretical properties, including bounds on their frequency of alerts under the null.
Many other regression models can be used for forecasting the currentcounts. These methods include
the Generalized Linear Mixed Models (GLMM) approach of Kleinman et al. [76] and the cyclical
regression model of Serfling [136]. ARIMA and other standard time series analysis methods [63], as
well as newer approaches based on wavelet decomposition [168], canalso be used for forecasting.
Le Strat and Carrat [96] used Hidden Markov Models (HMMs) to monitor influenza-like illnesses
and poliomyelitis. Similarly, Kalman filters can be used for temporal outbreak detection [65]. One
advantage of HMMs and Kalman filters over other temporal methods is that theyallow explicit
representation and modeling of disease state (i.e. which diseases, if any, are occurring).

In many time series monitoring domains, multivariate signals have been considered. The sim-
plest (and most common) multivariate equivalent of a control chart is the Hotelling T 2 method.
This method learns the joint distribution on a set of signals from historical data, then alerts if the
current multivariate signal is sufficiently far from its expectation. This allows us to detect when
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any of the individual signals, or the relationship between these signals, deviate significantly. Many
other multivariate methods have been developed, including multivariate versions of the EWMA and
CUSUM methods. These are all very general and useful methods for determining whether any of
several data streams deviate from normal conditions; however, unlike thespatial scan statistic, none
of these methods are able to provide spatial information about the size, shape, and location of poten-
tial outbreaks. A detailed description and comparison of multivariate methods isgiven by Burkom
et al. [25, 26, 27].

Another class of methods for multivariate biosurveillance uses association rule mining to search
for unusually frequent patterns in public health data (such as over-the-counter drug sales). For
example, DuMouchel [42] developed empirical Bayes screening to search for frequent multi-item
associations. This method can be used to detect unusual patterns of medication sales indicative of
an epidemic, for example, an increase in the number of patients who bought both anti-diarrheal and
fever medications.

Finally, Bayesian networks are another useful tool for multivariate biosurveillance, as they al-
low efficient representation and inference of the relationships between large numbers of variables.
Bayesian networks have been used within biosurveillance in a number of contexts, including What’s
Strange About Recent Events [160, 161], which searches for anomalous patterns in recent records
using a Bayesian network to infer the background model, and PANDA [30], which builds a huge net-
work representing every person residing in a city and uses this network toinfer whether an anthrax
attack has occurred.



Chapter 7

Application to brain imaging

7.1 Introduction

In this chapter, we apply our cluster detection methods to the analysis of brainimaging data. We fo-
cus here onfunctional imaging, which measures brain activity, and thus our task is to detect clusters
which correspond to regions of increased or decreased brain activity. For example, we might want
to detect regions of the brain that have been damaged by strokes or by a variety of neurodegenerative
diseases, including Alzheimer’s and Parkinson’s. Here we focus on anapplication in cognitive neu-
roscience, in which the main goal is to detect clusters of brain activity that allow us to differentiate
between cognitive states. Thus we want to distinguish between subjects performing different cogni-
tive tasks (for example, reading a book versus watching a movie), and to determine which areas of
the brain are most active in performing each task. In this cluster detection task, we analyze data pro-
duced by functional magnetic resonance imaging (fMRI). An fMRI scanner measures the changes
in blood oxygenation resulting from neural activity in a subject’s brain: three-dimensional “snap-
shots” of the subject’s brain activity are taken at regular intervals (typically every 1-3 seconds) while
the subject is performing a cognitive task or receiving some stimulus inside the scanner [165, 163].
Worsley [163] notes that the fMRI response to a stimulus is delayed and dispersed by about six sec-
onds, which can be modeled by convolution of the stimulus pattern with a hemodynamic response
function consisting of a sharp peak followed by a slight drop below the normal activation level.
Thus we can detect clusters of brain activity by finding regions of the brain that show significantly
increased activation in response to the presentation of the stimulus.

This task can be mapped directly into our general statistical framework for cluster detection:
at each time stept, we have a three-dimensional grid consisting of64 × 64 × 14 voxelssi, where
the measured “activation” of each voxel corresponds to the amount of activity in that region of the
brain.1 We can use this activation directly as the countct

i corresponding to spatial locationsi at
time stept, or we can first pre-process the data by normalizing and smoothing. Thusone possibility
would be to use the entire sequence of fMRI images produced for a givensubject and stimulus,
inferring the baseline level of activation for each voxel from historicaldata (i.e. the previous counts
ct
i), and detecting regions where the voxels have increased activation. Inour results below, we

consider an even simpler version of the fMRI cluster detection task, wherewe compare a single

1As noted above,64 × 64 × 14 was the maximum spatial resolution of fMRI images available for our experiments.
Other fMRI images may have128 × 128 × 14 or higher resolutions.
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brain image taken from the subject after receiving the experimental stimulus (corresponding to the
peak of the subject’s hemodynamic response) to another image taken after the subject receives a
“control” stimulus (again corresponding to the peak of response). Thuswe can use the measured
activation of each voxel in the “experimental” image as our set of countsci, and the measured
activation of each voxel in the “control” image as our set of baselinesbi. Then we can detect clusters
of brain activity that are activated by the experimental stimulus by finding regionsS = {si} where
the countsci are significantly higher than expected, given the baselinesbi.

As in the disease surveillance domain, a variety of confounding factors make it difficult to de-
tect clusters in brain images. One difficulty is temporal variation in the measuredactivation due
to the phenomenon of fMRI drift [140], which can be caused by instabilitiesin the fMRI scanner
or changing physiological responses of subjects. A second difficulty isthe challenge of model-
ing the non-linear hemodynamic response function [165]. Third, while Gaussian distributions are
often used to model fMRI activation, our results suggest that these distributions are not normally
distributed, often having lower kurtosis (lighter tails) than would be expectedfrom a Gaussian dis-
tribution. Finally, huge challenges are presented by differences across subjects. As Wang et al. [156]
note, different subjects’ brains have substantially different sizes andshapes, and different subjects
may generate different spatial patterns of brain activation given the samecognitive state. Further-
more, an individual subject’s response may differ between trials based on physiological state and
mental distraction, and in some cases we may detect no signal because the subject did not attend
to the stimulus. Solutions to all of these domain-specific challenges are beyondthe scope of this
thesis, though many of them have been considered in the related work discussed below. We be-
lieve that many of these challenges can be addressed within our cluster detection framework, as in
the disease surveillance domain, by a combination of pre-processing (to deal with irregularities in
the data), post-processing (to filter out irrelevant regions), and the iterative development of more
complex models which are appropriate to the brain imaging domain.

In the remainder of this chapter, I consider the application of our cluster detection methods to
finding clusters of increased brain activity in fMRI data. The main purposeof this brief exposition is
to demonstrate the applicability of our methods to brain imaging: our fast multidimensional spatial
scan makes these methods computationally feasible, and the flexibility of our statistical framework
enables us to detect useful and relevant clusters of brain activity. In Section 7.2, I present our
preliminary results in the brain imaging domain, reviewing the speed results discussed in Chapter 3
and considering the quality of the clusters found. Finally, in Section 7.3, I present an overview of the
fMRI brain imaging literature, focusing on cluster detection. Parts of this chapter have been adapted
from our paper in NIPS 2004 [118]. I wish to thank my co-authors Andrew Moore, Francisco
Pereira, and Tom Mitchell for their contributions to this work. Additionally, I am extremely grateful
to Tom Mitchell and his group for making their fMRI brain imaging data available tous.

7.2 Results

Our first results in the brain imaging domain were presented in Chapter 3, where we demonstrated
that our fast multidimensional spatial scan algorithm was able to detect clusters 7-148x faster than
the näıve spatial scan approach. This speedup makes it computationally feasible toperform cluster
detection using the spatial scan on brain imaging data, reducing the run time from weeks to hours.

We now consider the regions found by our scans, and whether these correspond to useful and
relevant clusters of brain activity. As noted above, the purely spatial fMRI cluster detection task
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Table 7.1: Clusters of brain activity detected in fMRI data, “word versus baseline” task. All detected
clusters were found to be significant (p < .05) using the discriminative thresholded scan statistic
with ε = .01.

subject cluster coordinates area of brain
08170 (20-24, 34-43, 13) visual cortex
08179 (16-17, 40-42, 12-13) visual cortex
08179 (24, 56, 10) unknown, possibly noise
08179 (11-14, 22-25, 12-13) Broca’s area
08179 (44-45, 22-23, 11-12) Broca’s area (opposite side)
08179 (40-42, 28-30, 13) Wernicke’s area

consists of a three-dimensional grid of voxels. For each voxel, we havea countci and a baseline
bi, whereci corresponds to the measured amount of fMRI activation in that voxel under the ex-
perimental condition, andbi corresponds to the measured amount of fMRI activation in that voxel
under the null or control condition. We used data from an experiment by Mitchell et al. [103] where
the subject is given words, one at a time, and must read these words and identify them as verbs
or nouns. We considered two tests: the easier “word versus baseline” task, where the goal was to
distinguish subjects reading a word from the baseline condition of that subject fixating on a cursor,
and the harder “noun versus verb” task, where the goal was to distinguish whether the subject was
reading a noun or a verb. In each case, we detected significant clusters of increased brain activity
using the discriminative thresholded scan statistic discussed in Chapter 2, withvalues of the detec-
tion thresholdε ranging from 0 to 0.05. As noted in Chapter 3, the classical scan statistic (ε = 0)
was unable to find relevant clusters, instead detecting large regions (e.g.1

4 of the entire brain) that
were only slightly increased in count. When we used a larger threshold value, our statistics de-
tected smaller regions with more substantial increases, and some of these regions may correspond
to relevant clusters of brain activity.

We first attempted the more difficult “noun versus verb” task, searching for clusters with more
than 1% increase in activation (ε = .01) in data from six different subjects. Our results were
inconsistent, with no regions found in four of the six subjects. While the othertwo subjects did have
significant regions of activity, our domain expert was unable to identify these as corresponding to
relevant areas of the brain. Thus we considered the simpler “word versus baseline” task, focusing
on these two subjects. In this task, we were able to find relevant regions, as identified by our domain
expert; a list of these regions and the corresponding functional areasof the brain is shown in Table
7.1. For both subjects, we detected significant clusters of activity in the visual cortex. For one
subject, this was the only significant region detected, while the other subjectalso had significant
clusters in the language centers of the brain (Broca’s and Wernicke’s areas). These clusters make
sense given the nature of the experimental task; however, more data is needed before we can draw
conclusive cross-subject comparisons.

While a detailed consideration of the brain imaging domain is beyond the scope ofthis thesis,
future work will address a number of aspects of this domain. Our main goal will be to improve the
detection power of our methods to obtain consistent cross-subject results, both for simple tasks such
as the “word versus baseline” task, and for more challenging tasks suchas the “noun versus verb”
task. First, we plan to compare our current, purely spatial approach to thespace-time approach
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discussed above: we believe that using data from the entire sequence offMRI images rather than
only a single image will increase detection power, as will the use of our expectation-based scan
statistics. Second, we must derive models and statistics that are most appropriate for this applica-
tion domain, perhaps using a thresholded Gaussian statistic which accounts for spatial correlations
between adjacent voxels. Further performance gains may be achieved by incorporating the hemo-
dynamic response function directly into our models (using a parametrized space-time scan statistic
as discussed in Chapter 4), as well as accounting for confounding factors such as fMRI drift.

7.3 Related work in brain imaging

We now provide a brief overview of the literature on cluster detection in fMRIdata. As noted
above, two of the main goals of cluster detection in the brain imaging domain are to differentiate
between subjects performing different cognitive tasks, and to find whichregions of the brain are
most active in performing each task. It is also possible to differentiate between cognitive states
without performing cluster detection, though these methods will not pinpoint therelevant regions
of the brain. For example, Mitchell et al. [103, 156] have considered a general, classifier-based ap-
proach for distinguishing cognitive states. These approaches train a Gaussian Näıve Bayes classifier
to predict the subject’s cognitive state given their observed fMRI data, and are able to achieve high
accuracies for tasks including “reading a sentence versus viewing a picture,” “reading ambiguous
versus non-ambiguous sentences,” and “reading words in differentsemantic categories.” In [156],
classifiers were trained across multiple subjects, enabling accurate generalization across subjects in
these discrimination tasks. While these are impressive results, we focus here on methods which will
identify significant clusters of brain activity rather than simply performing classification of fMRI
images, thus revealing which areas of the brain are indicative of the differences between cognitive
states. We do not attempt to perform cross-subject generalization, but we believe that this is an
important area for future work.

As noted by Perone Pacifico et al. [126], a common approach to identifyingactivated voxels in
fMRI images is to perform a separate hypothesis test for each voxel (typically after applying some
method of spatial smoothing) and to report all voxels that are significant atsome levelα. A variety of
such tests have been proposed, ranging from Kolmogorov-Smirnov tests[5] to nonlinear regression
in a Bayesian framework [56]. One of the most common methods for finding clusters of activity,
known as “statistical parametric mapping” [50], uses generalized linear models to predict the activ-
ity of each voxel given the stimulus. In all of these cases, because separate statistical tests are being
performed on thousands of voxels, some adjustment for multiple hypothesis testing is necessary,
for example the use of permutation tests [11] or random field theory (as discussed below) to esti-
mate the null distribution of the maximum value of the test statistic. Because statisticalsignificance
is tested on a per-voxel basis, clusters of brain activity must be inferredby grouping individually
significant voxels, and no per-cluster false positive rate is guaranteed. One recent exception to this
statement is the work of Perone Pacifico et al. [126], who use a random field approach to bound
the proportion of false clusters discovered, and apply their method to the traditional scan statistic
(maximizing the number of points in a two-dimensional window) and to analysis of fMRI images.
Nevertheless, their results cannot be used for the more general spatialscan statistic approaches that
we consider here, including detection of clusters with variable size and shape, as well as the use of
flexible, model-based score functions.
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Another well-known method of detecting clusters in fMRI data was originated by Worsley et
al. [164, 166, 163]. This method, first used for analysis of positron emission tomography (PET)
data in [164] and generalized to other types of brain imaging data in [166], detects clusters by first
smoothing the data to make it approximately Gaussian, allowing simplet or F test statistics to be
used. To account for spatial correlation between voxels, arandom fieldapproach is used [163]:
we first compute the test statistic for each voxel, forming an imageT (s) of test statistics for the
activation, then choose a thresholdt, and declare as activated all points whereT (s) > t. The
thresholdt can be computed by using the Euler characteristic of random fields, which approximates
the p-value of the global maximumT (s). The advantage of this approach is that a simple exact
expression has been obtained for the expected Euler characteristic when no activation is present:
this distribution was calculated for Gaussian random fields by Adler [2] andfor many other types
of random field by Worsley [162]. As a result, we can directly obtain thep-value of the maximum
value of the test statistic without performing randomization testing.

Random field approaches have both advantages and disadvantages ascompared to spatial scan-
ning: like our Bayesian spatial scan, no randomization testing is necessary, and thus rapid detection
of significant clusters can be performed. Additionally, the random field approaches explicitly ac-
count for the correlation structure of the data. However, because onlysingle voxels are tested, these
approaches cannot bound the per-cluster false positive rate. Additionally, the assumption of a fixed
correlation structure limits detection to compact clusters of a given size (based on the smoothing
bandwidth) and a fixed shape. Siegmund and Worsley [139] extend the random field method to sig-
nals of unknown width by maximizing a Gaussian random field inN +1 dimensions (N dimensions
for the location plus one dimension for the width). Nevertheless, this method still cannot search over
varying cluster shapes as in the spatial scan approach. Finally, because of the need to compute the
distribution of the Euler characteristic, random field methods cannot be used for general score func-
tions F (S). On the other hand, our generalized spatial scan framework enables usto efficiently
compute the most significant regions (and theirp-values) for a wide range of score functions, thus
giving us the flexibility to choose those models and statistics which are most appropriate for a given
application domain.
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Chapter 8

Conclusions and future work

8.1 Introduction

In this thesis, I have presented a variety of methods for accurate and computationally efficient clus-
ter detection in diverse application domains. Our methods improve on the previous state of the art
in several aspects. First, they exhibit higher accuracy and better ability todetect relevant clusters
while excluding irrelevant clusters (Chapter 4). Second, they are much more computationally ef-
ficient, typically achieving two to three orders of magnitude speedup (Chapters 3 and 5). Third,
our generalized framework (Chapter 2) expands the scope of applications to which cluster detection
techniques can be applied, and fourth, we can incorporate information such as prior knowledge and
multiple data streams to further improve detection power (Chapter 5).

As discussed in Chapter 1, the spatial scan is a powerful statistical method with high potential
utility for a variety of application domains. However, the usability of this method had been restricted
in practice by both computational intractability (making it infeasible for use on massive real-world
datasets) and a lack of modeling flexibility (making it unable to distinguish relevant from irrelevant
clusters in real-world application). In this thesis, I have proposed a variety of techniques which
make spatial scanning both practical and useful for massive datasets in real application domains.

Using the generalized spatial scan framework we developed in Chapter 2,we considered several
ways of making scan statistics more accurate and thus more useful in practice. Our expectation-
based scan statistic approach (discussed in Chapters 2 and 4) enables us to account for the spatial
and temporal variation in the underlying model, by learning expected counts from the time series of
previous data then finding spatial clusters with higher than expected counts. Further improvements
were gained by extending this model to a space-time scan statistic, and developing new statistics
for the detection of emerging and persistent clusters, as discussed in Chapter 4. The generality of
our framework also allows us to create new, computationally efficient statisticsthat can account
for other aspects of the domain model: for example, Gaussian scan statistics that can account for
overdispersion of counts, or thresholded scan statistics that can avoid detecting statistically but not
practically significant clusters. As discussed in Chapter 6, many other aspects of an application
domain can be dealt with either by preprocessing (e.g. to deal with missing data) or postprocessing
(e.g. filtering out irrelevant regions), further increasing our detectionpower. Finally, our Bayesian
scan statistics (discussed in Chapter 5) can incorporate prior information about the size, shape, and
impact of clusters, leading both to higher detection power and more easily interpretable results.

Within our generalized spatial scan framework, we considered two ways of making the spatial
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scan computationally feasible and very fast for applications involving verylarge datasets (such as
monitoring nationwide public health data). Our “fast spatial scan” algorithm, presented in Chapter
3, accelerates the spatial scan between 100-1000x without any loss of accuracy (i.e. it finds exactly
the same clusters andp-values as a naı̈ve scan). This enables us to run the algorithm in under 20
minutes, instead of taking days, on nationwide data. In the public health domain,we must discover
and report emerging outbreaks of disease as quickly as possible, so thisspeedup is essential for the
practical utility of spatial scan for outbreak detection. An alternative methodof speeding up the
spatial scan is given in Chapter 5: our Bayesian cluster detection method eliminates the need for
randomization testing, thus enabling a 1000x speedup over the naı̈ve frequentist approach.

In addition to advancing the state of the art in cluster detection methods, we also focused on
applying these methods to detect useful and relevant clusters in severalapplication domains. Chap-
ters 4-6 applied our cluster detection techniques to the early detection of disease outbreaks from
public health data, such as emergency department records and over-the-counter drug sales data. We
demonstrated high detection power for both semi-synthetic tests (synthetic outbreaks injected into
real baseline data) and retrospective analysis of known disease outbreaks. Chapter 6 also described
how we put these techniques into real-world practice: our SSS tool is currently performing nation-
wide disease surveillance on a daily basis, and has already demonstrated itsability to detect useful
and relevant clusters in practice. Chapter 7 applied our techniques to fMRI brain imaging data, with
the goal of finding clusters of brain activity that can distinguish between different cognitive states.
While this work is still in the early stages, I presented some simple “proof of concept” results
demonstrating that our methods can rapidly detect relevant clusters of brain activity. In addition to
continuing our work in these two application domains, we are also in the process of extending and
applying these methods for many other domains. Some of these applications include:

• Detection of terrorist groups, using the Bayesian spatial scan statistic to combine probabilistic
link and group data with our analysis of individual suspects.

• Network intrusion detection, searching for patterns indicative of an attack.

• Detection of anomalous spatial patterns in container shipping data.

• Tumor detection from medical imaging data, including the detection of brain tumorsfrom
structural MRI data and breast cancer from mammography data.

• Combination of data from multiple noisy sensors, e.g. to analyze water quality data.

Many of these applications pose new and interesting challenges, including modeling of the relevant
features of each domain, application of our methods to link and network data,and combination of
multiple data streams. We are also extending this work in a number of other ways,and some of the
most interesting extensions are discussed in the following section.

8.2 Future work

We now briefly consider six important directions for future work: extension of our methods to
multiple data streams and multiple cluster models, real-time detection and investigation ofclusters,
incorporation of other types of data, detection of irregular clusters, tracking disease state over time,
and automatic learning of relevant versus irrelevant clusters from userfeedback. Each of these
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extensions has the potential to dramatically improve the generality and utility of ourmethods in
real-world practice, as we discuss in the following subsections.

8.2.1 Extension to multiple data streams

As discussed in Chapter 5, one of the most important extensions of our method is the multivariate
Bayesian scan statistic (MBSS), which allows us to combine information from multiple data streams
in a principled Bayesian framework. In the disease surveillance domain, thiswill accomplish two
main goals: increasing our power to detect outbreaks that affect multiple streams, and enabling
us to differentiate between multiple potential causes of an outbreak. More generally, the MBSS
framework allows us to consider many potential causes of an observed cluster, both relevant causes
(such as a disease outbreak) and irrelevant causes (such as weather or promotional sales). Then by
proposing a separate, scenario-based generative model for each type of cluster, we can distinguish
between the different causes and decide which clusters are and are not relevant. As discussed below,
we hope to eventually automate the learning of these models based on user feedback. The MBSS
method outputs the joint posterior probability distribution over all possible regions and causes, given
all streams of data; thus it not only identifies and pinpoints potential clusters but also explains them
in terms of its causal models. We believe that the extension to multiple streams and multiple cluster
models will make this method valuable for a wide variety of application domains. Implementation
of MBSS is in progress, and we discuss this method in more detail in Chapter 5.

8.2.2 Real-time cluster detection and investigation

As discussed above, our “fast spatial scan” and “Bayesian spatial scan” methods each enable us
to perform automatic cluster detection in under one hour (instead of days orweeks) for massive
real-world datasets. It is likely that the fast spatial scan can be made evenfaster in future work,
and we are considering several ways to accomplish this, including more aggressive forms of region
pruning, simultaneous testing for multiple clusters and multiple parameter values, better use of
cached statistics, and several detailed implementation issues. The fast spatial scan can also be
efficiently parallelized, since each of theR = 1000 replications can be performed in parallel, and
there are also multiple opportunities for parallel computation within each replication.

An even more exciting avenue for future work arises from the fact that the fast spatial scan and
Bayesian scan achieve their speedups in very different ways: the fast spatial scan reduces the time
per replication by 100-1000x, while the Bayesian scan eliminates the need for multiple replications
(thus searching only a single grid instead of 1000). By combining these two methods as discussed
in Chapter 5, it should be possible to create a method which searches only a single grid but does so
using a fast search rather than a naı̈ve search. We estimate that this combination should reduce the
run time to under two minutes for national-level data. Even larger speedups should be possible by
incorporating the new Time Series Aggregation Cube (TCUBE) technology under development by
the Auton Laboratory [130]: by enabling much faster aggregation of time series data, this cached
data structure should reduce scan time to a matter of seconds.

Our eventual goal is to be able to detect clustersin real timeeven for massive datasets. This
will allow near-instantaneous notification of emerging clusters (e.g. diseaseepidemics), especially
if data is made available incrementally and continuously streamed into the system. Moreover, users
(such as public health officials) will be able to run large numbers of querieson a “point, click,
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and compute” basis, enabling them to rapidly obtain all the information they needto investigate,
evaluate, and respond to detected clusters. As discussed in Chapter 6, Maheshkumar Sabhnani and I
are working to combine our SSS cluster detection system with a viewer tool based on TCUBE, thus
enabling ad hoc browsing and spatial analysis of data from multiple, multivariate time series. This
will give the user the capability to rapidly and easily investigate the clusters found by SSS, as well
as performing any other desired investigations. As I discuss further below, a longer-term goal is to
automate much or all of the process of cluster detection and investigation, requiring only top-level
guidance from human users.

8.2.3 Extension to other data types

Our current multidimensional spatial scan approach takes as input a set of countsci and baselinesbi

associated with spatial locationssi, where eachsi corresponds to a point ind-dimensional Euclidean
space. This allows us to scan over records with any real-valued attributes, whether these are spatial
attributes such as latitude and longitude, or other attributes such as time, age, height, and weight.
Our scan returns hyper-rectangular regions corresponding to ranges of each attribute and containing
all si within these ranges.

For computational efficiency, our current method discretizes each real-valued attribute uni-
formly into a user-specified number of buckets, thus creating ad-dimensional grid structure. This
discretization makes it easy to handle ordered categorical values (e.g. age deciles, movie ratings)
as well as real-valued attributes. However, the discretization of real-valued attributes risks losing
detection power and spatial precision when it aggregates distinct spatial locations into a single grid
cell. In some applications, such as brain imaging, the data we receive has already been aggregated
to a grid structure. But in other applications, such as disease surveillance, we receive information
about the exact coordinates of each data point and would like to maintain this level of precision.
In this case, we can map points to anon-uniform grid, drawing grid lines corresponding to the dis-
tinct spatial coordinates of our data points in each dimension. An extreme version of this would
be to have a grid of sizeM1 × M2 × . . . × Md, whereMi is the number of distinct coordinates in
dimensioni. Since this would create grids of overly large size for most realistic datasets, we can
“round” coordinates which are close to each other to the same value, allowing us to reduce the size
of the grid as desired (with the tradeoff being decreased precision). One problem with this approach
is that the resulting grid is likely to be very “sparse,” containing many grid cellswith low or even
zero counts. Thus a search of all gridded regions (even one accelerated by the fast spatial scan tech-
niques discussed above) may waste valuable time by searching regions which are spatially distinct
but contain identical sets of data points. Our solution to this problem was to propose asmart näıve
approach for iterating over all distinct axis-aligned rectangular regions. This technique uses an “in-
cremental addition” algorithm somewhat similar to Kulldorff’s method for searching over circles;
it should be significantly faster than a naı̈ve gridded approach when the grid is sparse, but since
no pruning is done, it must actually search over all of the distinct rectangles. We are also working
to extend ourfast spatial scanpruning approach to non-aggregate data: our proposed approach is
to use an overlap-kd tree withlocal gridding (creating a different resolution of non-uniform grid
at each node of the tree), pruning regions when possible, and using thesmart näıve approach on
regions that cannot be pruned.

Thus we have considered how to search over multidimensional data with real-valued and ordered
discrete-valued attributes. We now consider how to deal with unordered discrete-valued attributes:



8.2. FUTURE WORK 141

the difficulty here is that we can no longer focus our search on ranges of the attribute, but must
consider all of the exponentially many combinations of attribute values as distinct regions. One pos-
sibility would be to make some sort of simplifying assumption, e.g. assuming that a cluster contains
no more thank distinct values of the attribute. It is also possible that, for attributes with relatively
few values, that cached data structures such as TCUBE (discussed above) and AD-trees [106] will
make it possible to search exhaustively over all sets of values. For all ofthese data types, we must
think carefully about how to estimate the baselines or expected counts for each record or range of
attributes. One possible approach may be to use Bayes Nets as an underlying probabilistic model,
building on prior work by Schneider and Moore [135]. This may also allow integration of our work
with the What’s Strange About Recent Events (WSARE) methods of Wong etal. [159, 160, 161].

One eventual goal of our work is to develop general methods for finding those patterns in data
which are most significant, relevant, or anomalous. We plan to achieve this bya generalization of
cluster detection, in which we search for subsets of the data which are different from their expecta-
tion (or from the rest of the data) in some similar way, as if all of these records had been affected by
some common (but possibly unknown) process. In a Bayesian framework, we can combine the prior
probability that a process has affected a particular set of records with the data likelihood given this
process and affected “group,” and use machine learning methods to infer the type and parameters of
the underlying process. This method extends cluster detection, in that the “group” is not limited to
a spatial region (or spatially proximate set of points) but can represent any portion of the attribute
space or any subset of records. Additionally, searching over groups has several advantages over
the typical method of searching for individual “anomalous” points: we candetect subtler trends
which would not be obvious from any single record, as well as finding sets of records which are not
individually anomalous, but have interesting patterns of interaction.

8.2.4 Detection of irregular clusters

While our discussion above has focused on detecting either axis-aligned or rotated rectangular clus-
ters, it may also be useful to extend our methods to the detection of irregularlyshaped clusters. For
example, given data for a set of zip codes, we might want to search overall regionsS containing a
connected set of zip codes, including both rectangular and non-rectangular regions. Scanning over
irregular regions would give us higher power to detect clusters with areas that cannot be approxi-
mated by a (rotated) rectangle. Additionally, scanning over connected regions allows us to perform
cluster detection in a general metric space (given only the connections anddistances between ad-
jacent points), rather than requiring the points to be embedded in somed-dimensional Euclidean
space. This enables us to apply the spatial scan to link and network datasets, and many other
datasets that are not “spatial” in the traditional Euclidean sense.

However, it is clear that the set of all connected regions will be very large for most practical
applications, making it computationally infeasible to search over all such regions. Additionally, we
might believe that some such regions are much more likely to be clusters than others: for example,
we might believe that clusters are unlikely to be highly irregular in shape, or that they are likely
to follow the shape of a river or highway. Thus any method of searching for irregular clusters
must answer two questions: what subset of regions to search, and howto weight the likelihoods of
these regions. In the frequentist setting, we can search for the regionsthat maximize a penalized
likelihood ratio statistic, and calculate the statistical significance of these regions by randomization.
For example, Duczmal et al. [41] assume that compact clusters are more likely than highly elongated
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clusters, and thus they use a penalized statistic that multiplies the likelihood ratio bya measure of
the cluster’s compactness. In the Bayesian setting, on the other hand, we can weight regionsS by
assigning them different prior probabilities Pr(H1(S)), ensuring that Pr(H0)+

∑

S Pr(H1(S)) = 1.
We now consider three possible ways of choosing which subset of regions to search: using

natural features of the domain, scanning some set of “not-too-irregular” regions, or searching only
those regions that are most likely to be potential clusters. We are currently investigating several
variants of the spatial scan that use natural features to choose scan regions. As one example (joint
work with Maheshkumar Sabhnani and Andrew Moore), we can run a spatial scan along a river or
highway. This method enables us to detect outbreaks that are carried by water, by airborne release
from a moving vehicle, or by human-to-human transmission along a transportation route. In this
case, we scan over the set of regionsS = (x1, x2, d) consisting of all points within distanced of
some point on the river between starting pointx1 and ending pointx2, wherex1, x2, andd are all
allowed to vary. Another possibility would be to group the zip codes by water pressure zone and
use these as our set of scan regions; this method is being used in joint workwith Vahan Grigoryan,
Maheshkumar Sabhnani, and Mike Wagner.

Another option is to choose some subset of the connected regions consisting of clusters that
are “not too irregular.” These methods decide which regions to search based only on the spatial
distribution of locations. For example, the “flexible scan statistic” of Tango and Takahashi [144]
searches over connected regionsS consisting of some locationsi and some (possibly empty) subset
of its K − 1 nearest neighbors. This algorithm is only feasible for small to medium clustersizes, as
its run time is over one week forK > 30. We are investigating another method which first forms a
hierarchical clustering of the spatial locations, then scans over all nodes in the resulting hierarchy of
regions. This method is somewhat similar to Kulldorff’s tree-based scan statistic [83], but learns the
hierarchy from data rather than being provided with this hierarchy in advance. Because the number
of regions searched scales only linearly with the number of locations, this method is very fast even
for large datasets, but detection power will be substantially reduced for any clusters that cut across
our partition of the space. To improve detection power, at the expense of increased computation
cost, we can search connected regions consisting of pairs (or larger sets) of nodes that are nearby in
the hierarchy.

The final class of methods for irregular cluster detection attempt to focus thesearch on those
regions which are most likely to be clusters. As noted by Patil and Taillie [124], these methods take
one of two approaches: to perform a heuristic search over the set of connected regions using some
stochastic optimization method, or to use some preprocessing step to identify a subset of candidate
regions to search. Duczmal et al. [38, 39] propose two heuristic search methods (using simulated
annealing and genetic algorithms respectively) which enable them to find a connected region that
approximately maximizes the penalized likelihood ratio statistic. Because heuristic methods are
used, convergence to the most significant cluster is not guaranteed, and this may also affect the
precision of the resultingp-value. Patil and Taillie [124, 125] instead perform an exhaustive search
over a subset of the connected regions. This subset is computed by finding all distinctupper level
setsof the graph, where an upper level set consists of all locations with rate higher than some
threshold. They then search over the connected components of the upper level sets. We are currently
investigating another method (joint work with Maheshkumar Sabhnani) which uses a discriminative
random field (DRF) to identify potential clusters then searches only over these clusters. This method
differs from the others because it relies heavily on the ability of the DRF to find relevant clusters;
the resulting scan may be over a very small number of potential clusters or none at all.
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We note that all of these “focused search” methods choose a differentset of clusters to search
for each dataset, and thus for each replica dataset if randomization testing isperformed. This has
two effects: first, because the search must be performed again for each replica, computationally
expensive search methods will lead to very large run time. Second, any bias or variance in the
search method will lead to imprecision in the calculatedp-value, and a large number of replicas
may be necessary. Nevertheless, thep-value is asymptotically unbiased (i.e. uniformly distributed
on [0, 1] under the null) as long as no distinction is made between original and replica datasets in
our search. We could avoid this issue by using the Bayesian spatial scan,but in this case we must
decide whether to condition the prior probability of attack on the number of regions found, and this
decision depends on the properties of our focused search method.

8.2.5 Tracking disease state over time

In disease surveillance, it is important not only to detect potential clusters of disease but also to in-
vestigate and evaluate these clusters. One necessary tool for public health users is to be able totrack
the detected clusters over time: for example, they might want to examine the current progression of
a previously detected cluster, or look back in time to find other clusters that overlap with the current
cluster. We are in the process of implementing these tools (using the new TCUBEstructure for
computationally efficient time series aggregation and analysis) and adding them to our SSS cluster
detection software. Nevertheless, these methods of tracking clusters aread hoc investigation tools,
and do not improve our ability to detect clusters. On the other hand, we might be able to achieve
better detection power by drawing inferences about the underlying disease state in each spatial lo-
cation, and tracking this disease state over time. One possible approach would be to use a separate
hidden Markov model (HMM) for each location, using the current and past observations (counts and
baselines) to infer the most likely sequence of disease states for the current and previous time steps.
Brigham Anderson is currently working on a multivariate HMM model for disease surveillance,
and one of our long-term goals is to combine this method with spatial scan, thus creating a method
which can both track disease state and take spatial information into account. An even more powerful
approach might be to move from the HMM approach to one which incorporates a Markov random
field (MRF) or hidden Markov random field (HMRF). This would allow us to model the probabilis-
tic relationships between adjacent spatial locations, enabling us to accountfor spatial correlation
and to explicitly model the spread of disease.

8.2.6 Automatic learning from user feedback

As discussed above, the multivariate Bayesian scan statistic approach will allow us to discriminate
between relevant and irrelevant clusters by incorporating probabilistic models of each potential
cause of a cluster. One challenge is that the number of potential causes maybe very large, including
both a variety of relevant causes (e.g. different outbreak types in the disease surveillance domain)
and a variety of irrelevant causes (e.g. inclement weather). It would take huge amounts of an expert’s
time and knowledge to model each of these potential causes, and many such causes may not be
recognized until they are observed in practice. Thus we need some way of quickly and easily
adapting our models, without imposing an undue burden on human users. One possibility is to learn
the causal modelsautomaticallyfrom user feedback. The idea is that users can classify detected
clusters into groups by labeling them as corresponding to one of a given set of causes, some of
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which are labeled as relevant and some as irrelevant. A model for each potential cause is learned
automatically from the labeled examples corresponding to that cause. An initialset of causes can
be provided in advance, but the system’s utility would be increased by usingour anomaly detection
methods to automatically propose new causal models when none of the pre-existing causes are able
to explain the data.

One eventual goal of this work is to generalize our cluster detection methodsinto a general and
widely applicable system for the automatic discovery of relevant patterns. Our proposed system
combines pattern detection and investigation with two forms of model learning: learning a model
of the environment from observation, and learning a model that discriminates“relevant” from “ir-
relevant” patterns using human feedback. We combine these techniques in an iterative process
consisting of four stages. In thedetectionstage, the system automatically detects potentially inter-
esting subsets of the data, using the general pattern detection techniques discussed above to find
subsets of the observed data which are sufficiently anomalousas a groupto invalidate its current
environmental model. In theinvestigationstage, the system applies a given set of “tools” (e.g. statis-
tical tests) to gather more information about each detected pattern; patterns that are not sufficiently
“robust” or “significant” may be discarded at this stage. In theexplanationstage, the system pro-
poses hypotheses as to potential causes of each pattern. A new hypothesis can be derived from the
data using our Bayesian data mining methods: in addition to detecting an anomalousgroup, these
methods can infer a possible process that explains the anomaly with high probability. We can also
obtain hypotheses from the current relevance model (which consists ofa set of potential causes
of anomalies, each labeled as relevant or irrelevant), and determine whether any of these might
be sufficient to explain the anomalous group. More statistical tests can be used to compare these
hypotheses (e.g. examining how well the pattern generalizes to other, held out data), enabling the
system to choose a “best” hypothesis for each pattern. At this stage, we can discard patterns that
can be “explained away” as being due to some irrelevant cause.

The final, and most interesting, stage of our system ismodel revisionvia incorporation of hu-
man feedback. In order to maximize the autonomy of the system, and minimize the burden on its
human “supervisor,” we use anactive learningframework in which the system chooses a small set
of potentially relevant patterns and presents these for the human to critique.As in the standard
active learning task, the system must choose between “exploitation” (presenting patterns that are
most likely to be relevant) and “exploration” (presenting patterns that will improve the system’s
ability to discriminate between relevant and irrelevant). However, the system’s queries consist of a
detected patternrather than an individual data point: each pattern includes an anomalous group of
points, the system’s explanatory hypothesis as to the cause of this anomaly, and the results of the
investigations performed to verify this hypothesis. The response to these queries can also be more
complex: in addition to deciding whether the pattern is “relevant” or “irrelevant,” the human can
also “correct” the system’s work in several ways, such as proposing anew hypothesis of what is
causing the anomaly, or modifying the anomalous group by adding or removingdata points. In ad-
dition to enabling the system to update its relevance model, this feedback may alsorequire revising
the environment model, and possibly changing the set of investigation tools and their parameters.
For example, if the system incorrectly identifies a group as anomalous, it mustcorrect this miscon-
ception by generalizing its environment model to a larger hypothesis space,incorporating both the
original model and the system’s best hypothesis explaining the anomalous group. Our work toward
this general system for pattern discovery is still in the early stages, but webelieve it has the potential
to make a significant contribution to disease surveillance and many other application areas.
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