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Abstract

Define astatic algorithmto be an algorithm that computes some combinatorial property of its input consist-
ing of static,i.e., non-moving, objects. In this paper, we describe a technique for syntactically transforming
static algorithms intokinetic algorithms, which compute the statically computed property under motion,à
la kinetic data structures. Based on the properties of the transformation technique, we give an algorithm
for performing robust motion simulations with fixed-precision floating-point arithmetic. To evaluate the
practical effectiveness of the approach, we implement a library for performing the transformation, transform
a number of algorithms and give a detailed experimental evaluation. The results show that the technique
makes it easy to implement robust kinetic algorithms and delivers good performance in practice.
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1 Introduction

Since first proposed by Basch, Guibas, and Hershberger [9], manykinetic data structuresfor computing
combinatorial properties of moving object have been devised and analyzed (e.g., [5, 8, 6]). Some kinetic
data structures have also been implemented [10, 8, 14]. A kinetic data structure for computing a property can
be viewed as maintaining the proof obtained by running a static algorithm which computes that property.
Based on this connection between static algorithms and kinetic data structures, previous work developed
kinetic data structures bykinetizingstatic algorithms. In all previous approaches, the kinetization process is
performed manually.

This paper proposes the first technique for kinetizing static algorithms semi-automatically by applying
a syntactic transformation, presents techniques for robust kinetic simulations using finite-precision floating-
point arithmetic, and evaluates the effectiveness of the approach by considering a number of algorithms.
The transformation (Section 2) relies on self-adjusting computation [1], where (self-adjusting) programs can
respond to any change to their data (e.g., insertions/deletions into/from the input, changes to the outcomes
of comparisons) by running a general-purposechange-propagation algorithm. Once transformed into a self-
adjusting algorithm, an algorithm for computing a property of static objects can be kinetized by pairing it
with a kinetic event scheduler.

An important problem in motion simulation is ensuring robustness in the presence of numerical errors
that arise when computing the roots of certain polynomials, calledcertificate polynomials. These roots give
the failure times (events)at which the computed property may change. We describe a scheduling algorithm
that can guarantee robustness even with finite-precision floating-point arithmetic (Section 2.2). The main
idea behind our approach is to process the events that are closer than the smallest computable precision
together as a batch. In all previous work, events are processed one by one. This requires computing the
order of events exactly, by using numerical techniques based on exact and/or interval arithmetic [16, 15, 14].
It is well-known that these techniques can be expensive in practice. The reason for processing events one
by one is that events may be interdependent: processing one may invalidate another. Our approach is made
possible by the ability of the change-propagation algorithm to process interdependent events correctly. It is
not known if previously proposed approaches based on kinetic data structures can be extended to support
interdependent events (efficiently).

Our proposed approach also has important software engineering benefits. The approach enables compos-
ing kinetized algorithms (sending the output of one algorithm to another as input), and integrating dynamic
changes (insertions/deletions) and kinetic changes (changes to the outcomes of certificates) without making
any changes to the implementation. In previous work, these require implementing additional data structures
(e.g., chapter 9 in Basch’s thesis [8]). Guibas identifies both of these as important problems concerning the
implementation of kinetic data structures [13].

To evaluate the effectiveness of our approach, we implement a library for kinetizing static algorithms
(Section 3) and kinetize a number of algorithms (Section 4) by applying the proposed transformation tech-
nique. The kinetized algorithms, which we callkinetic (self-adjusting) algorithms, include the merge-sort
and the quick-sort algorithms, the Graham-Scan [12], merge-hull, quick-hull [7], ultimate [11] algorithms
for computing convex hulls, and Shamos’s algorithm for computing diameters [18]. Based on these appli-
cations, we perform an extensive experimental evaluation. The experiments show that kinetic algorithms
can process various kinds of changes efficiently and robustly. The results show that our implementation
has reasonably small constant-factor overheads by comparisons to a synthetic benchmark, and that kinetic
algorithms can be as much as three orders of magnitude faster than recomputing from scratch.



2 From Static to Kinetic Programs

We describe the transformation from static to kinetic algorithms, and present an algorithm for robust motion
simulation by exploiting certain properties of the transformation (Section 2.2). The asymptotic complexity
of kinetic algorithms can be determined by analyzing thestability of the program; we describe stability
briefly in Section 2.3.

2.1 The Transformation

The transformation of a static program (algorithm) into a kinetic program first requires transforming the
static program into a self-adjusting program, and then linking the self-adjusting program with a kinetic
scheduler.

Transforming a static program into a self-adjusting program relies on operations for creating, reading,
and writing modifiable references and for memoization. Amodifiable referenceor, modifiablefor short, is
a reference, whose contents ischangeable. Once a self-adjusting program executes, the contents of mod-
ifiables can be changed, and the computation can be updated by running achange-propagation algorithm.
The transformation involves two steps. First, the changeable (time-dependent) data are placed into mod-
ifiables. For the purposes of this paper, changeable data consists of all comparisons that involve moving
points, and the “next pointers” in the input list. Placing the outcomes of comparisons into modifiables en-
ables changing them as points move; placing the links into modifiables enables inserting/deleting elements
into/from the input. Second, the programmer inserts operations for modifiable references and memoization.
The transformation is aided by language techniques that ensures correctness [1, 2, 4].

Kinetizing a self-adjusting program requires replacing the comparisons in the program with certificate-
generating comparisons. In terms of programming, this is achieved by linking the program with a library that
provides certificate-generating comparisons. When executed, a certificate-generating comparison creates a
certificateconsisting of a boolean value and acertificate functionthat represents the value of the certificate
over time. When a certificate is created, itsfailure time is computed by finding the roots of its certificate
function, and the certificate is inserted into a priority queue, called thecertificate queuebased on its failure
times. Using the certificate queue, anevent schedulersimulates motion by repeatedly removing the earliest
certificate to fail, changing the value of the certificate (fromtrue to false or vice versa) and updating the
computation by running change propagation. As examples, Appendix A gives the code for self-adjusting
minimum andquick-hull applications.

The key difference between our approach and the previously proposed approaches is the use of change
propagation for adjusting computations to changes. Instead of requiring the design of a separate kinetic
data structure, the change-propagation algorithm takes advantage of the problem structure as expressed by
the static algorithm to update the output effectively. Since change-propagation is general purpose and can
handle any change to the computation, the approach guarantees some properties:

Theorem 1 (Properties of Kinetic (Self-Adjusting) Algorithms) Kinetic algorithms obtained by self-adjusting-
computation transformation satisfy the following properties:

• Integrated Changes: They can adjust to any change to their data including any combination of
changes to the input (a.k.a.dynamic changes), and changes to the outcomes of comparisons (a.k.a.kinetic
changes).

• Composibility: They are composable: iff(·) andg(·) are kinetic (self-adjusting) algorithms, then
so isf(g(·)).



Figure 1: The simulation time, the certificate failure intervals, and some safe times (upward arrows).

• Time Advancing: In a kinetic simulation with a kinetic (self-adjusting) algorithm, the simulation
time can be advanced from the current time to any time in the future. This requires first changing the
outcome of certificates that fail between the current time and t, and then running change propagation.

2.2 Robust Motion Simulation

Traditional approaches to motion-simulation based on kinetic data structures rely on computing the exact
order in which certificates fail. The reason for this is correctness. Since comparisons can be interdependent,
changing the outcome of one certificate can invalidate (delete) another certificate. Thus, if the failure order
of comparisons is not determined exactly, then the event scheduler can incorrectly process an evente1

prematurely, before the evente2 that invalidatese1. This can easily lead to an error because of violating
invariants maintained by a kinetic data structure. In general, determining the exact order of certificate failure
times requires exact arithmetic. Often, however, exact calculations can be avoided by using approaches
based on interval arithmetic. Much of the previous work on robust motion simulation focused on techniques
for determining the exact order of failure times by using numerical approaches [16, 15, 14].

We propose an algorithm for robust motion simulation that only requires fixed-precision floating-point
arithmetic. The algorithm takes advantage of the time-advancing property of kinetic algorithms (Theorem 1)
to perform change-propagation only at “safe” points in time at which the outcomes of certificates can be
computed precisely.

Definition 2 (Safe Time Point) Consider a complete kinetic simulation, where an interval that contains the
exact failure time of each certificate is computed. Let C be the set of certificates inserted into the event queue
throughout the simulation. We say that time t is safe, if t is not contained in the interval of any certificate
in C.

Figure 1 shows a hypothetical example and some safe times.
If the scheduler could determine the safe time points, then it would perform a robust simulation by re-

peatedly advancing the time to the next safetarget, i.e., the next safe time point. Since the outcomes of all
comparisons can be determined correctly at safe targets, such a simulation is guaranteed to be correct. It is
not possible, however, to know what targets are safe online, because this requires knowing all the future cer-
tificates. Our algorithm therefore selects a safe targett based on existing certificates and aborts when it finds
that t becomes unsafe. To determine ift becomes unsafe, the algorithm checks, during change propagation,
whether a certificate whose interval containst is created. Ift becomes unsafe, then change propagation is
aborted and the simulation is restarted at the nextδ-safe time greater thant (this ensures progress). Since
certificate failure times are the roots of the certificate polynomials, the algorithm is likely to abort if the
target is too close to a failure time. To minimize the number of aborts, the algorithm chooses targets that
areδ-safe, i.e.,δ away from a previous interval. More precisely, a timet is δ-safeif the intersection of the
interval (t − δ, t) and any existing interval is empty. To be effective,δ must be greater than the width of the
largest certificate interval.



2.3 Stability

The asymptotic complexity of change propagation with a kinetic algorithm can be determined by analyzing
thestabilityof the kinetic algorithm. Since this paper concerns experimental issues, we give a brief overview
of stability here and refer the reader to the first author’s thesis for further details [1]. The stability of an
algorithm is measured by computing the “edit distance” between the execution traces of the algorithm on
different inputs. For a class of computation, calledmonotone, the execution traces can be represented as
sets of the instructions executed by the algorithm, and the edit distance can be computed as the symmetric
set difference. For example, the stability of the merge sort algorithm under a change to the outcome of one
of the comparisons can be determined by computing the symmetric set difference of the set of comparisons
performed before and after this change. Elsewhere [1], we prove a stability theorem that states that, under
certain conditions, change-propagation takes time proportional to the edit distance between the traces of the
algorithm on the inputs before and after the change.

Many existing algorithms are either stable (often in a randomized sense) or can be made stable by
making small changes to their design [1]. Section 4 gives a more detailed description of the stability issues
in our applications.

3 Implementation

We implemented a library for transforming static algorithms into kinetic. The library consists of primitives
for creating certificates, event scheduling, and is based on a library for self-adjusting-computation. The
self-adjusting-computation library is described elsewhere [2, 3]. The implementation of the kinetic event
scheduler follows the description in Section 2.2; as a priority queue, a binary heap is used. For solving the
roots of the polynomials, the library relies on a degree-two solver based on standard floating-point arith-
metic. The solver performs standard floating-point arithmetic and makes no further accuracy guarantees.
The full code for the implementation and the code for the applications described below is available
athttp://ttic.uchicago.edu/˜umut/sting

4 Applications

Using our library for kinetizing static algorithms, we implemented a number of algorithms and kinetized
them. The algorithms include an algorithm for finding the minimum key in a list (minimum), thequick-sort
and themerge-sort algorithms, several convex hull algorithms includinggraham-scan [12], quick-hull [7],
merge-hull, the (improved)ultimate convex-hull algorithm [11], and an algorithm, calleddiameter, for
finding the diameter of a set of points [17]. The input to all our algorithms is a list of one or two dimensional
points. Each component of a point is a univariate polynomial of time with floating-point coefficients. In the
static versions of the algorithms, the polynomials have degree zero; in the kinetic versions, the polynomials
can have arbitrary degree depending on the particular motion represented.

To obtain an efficient kinetic algorithm for an application, we first implement a stable, static algorithm
for that application and then transform the algorithm into a kinetic algorithm using the techniques described
in Section 2.1. The transformation increases the number of lines by about 20% on average. Composibility
(Theorem 1) turns out to be important in our applications. For example, thequick-hull andultimate use
minimum to find the point furthest away from a line;diameter usesquick-hull to compute the convex
hull of the points, andminimum to find the furthest anti-podal pair;graham-scan usesmerge-sort to sort
its input.



Not every algorithm for solving a problem is stable (and thus not every kinetized algorithm is effi-
cient). For example, the straightforward list-traversal algorithm for computing the minimum of a list of
keys is not stable. We give a stable algorithm by using a random-sampling technique (this algorithm is
described in more detail in Appendix A). The other algorithms require small changes to ensure stabil-
ity: the quick-sort, quick-hull, graham-scan, anddiameter algorithms require no changes. The
merge-sort andmerge-hull algorithms require randomizing the split phase so that the input list is ran-
domly divided into two sets (by applying random sampling) instead of dividing in the middle. Theultimate

convex hull algorithm requires randomizing the elimination step so that points are paired randomly by using
a random-mate technique.

5 Experimental Results

We present an experimental evaluation of the approach. We give detailed experimental results for the
diameter application, give a summary of the results for other applications. We finish by comparing the
convex-hull algorithms and discussing the effectiveness of our robust scheduling algorithm.

To evaluate the performance of the approach, we report speedups compared to from-scratch execution.
The speedup measures show that the approach yields near linear speedups for all applications. In addition,
we report experiments with a synthetic benchmark that enables measuring the constant factors involved in
our implementation. We also tried to compare our implementation to the implementation of kinetic convex-
hulls by Basch et al [10]. Unfortunately, we could not compile their implementation on none of the various
systems that are available to us, because the implementation relies on depreciated libraries.

Experimental Setup.We ran our experiments on a 2.7GHz Power Mac G5 with 4 gigabytes of memory.
We compiled the applications with the MLton compiler using “-runtime ram-slop 1” option that directs
the run-time system to use all the available memory available on the system—MLton, however, can allocate
a maximum of about two gigabytes. Since MLton uses garbage collection, the total time depends on the
particulars of the garbage-collection system, we therefore report theapplication time, measured as the total
time minus the time spent for garbage collection (garbage collection is discussed elsewhere [3]). For the
experiments, we use a standard floating-point solver with the robust kinetic scheduler (Section 2.2). We
assume that certificate failure times are computed within an error of±10−10 and chooseδ = 2× 10−10.

Input Generation. We generate the inputs for our experiments randomly. For one-dimensional appli-
cations, we generate points uniformly at random between 0.0 and 1.0 and assign them velocities uniformly
at random between−0.5 and 0.5. For two-dimensional applications, we pick points from within the unit
square uniformly at random and assigning a constant velocity vector to each point where each component is
selected from the interval [0.5,0.5] uniformly at random.

Measurements. In addition to measuring various quantities such as the number of events in a kinetic
simulation, we run some specific experiments to take some specific measurements. For the purposes of
determining the constant-factors involved in our approach, we also perform experiments with a synthetic
benchmark designed to have the optimal asymptotic complexity for the considered application with a small
constant factor. These experiments are described below; throughout,n denotes the input size.

• Average time for an insertion/deletion: This is measured by applying a delete-propagate-insert-
propagate step to each point in the input. Each step deletes an element, runs change propagation,
inserts the element back, and runs change propagation. The average is taken over all propagations.1

1When measuring these operations, the kinetic event queue operations are turned off.



• Average time for a kinetic event: This is measured by running a kinetic simulation and averaging
over all events. For all applications except forgraham-scan and sorting applications, we run the
simulations to completion. For sorting andgraham-scan applications, we run the simulations for the
duration of 10× n events.

• Average time for an integrated dynamic change & kinetic event:This is measured by running a
kinetic simulation while performing one dynamic change at every kinetic event. Each dynamic change
scales the coordinates of a point by 0.8. We run the simulation for the duration of 2× n events such
that all points are scaled twice. The average is taken over all events and changes.

• Competitiveness-ConstantC with respect to a synthetic benchmark:To determine the effective-
ness of change propagation, we perform a kinetic simulation with the following synthetic benchmark
based on treaps. The (synthetic) benchmark initializes two treapsA andB to contain all the points in
the input. A kinetic simulation is then performed as usual but, at each event, some extra treap oper-
ations are performed. In particular, at each event the benchmark selects the nextK points from the
input and does a search for each point in treapA. For each pointp on the search path,K line-side tests
(for computational geometry algorithm) or key comparisons (for other algorithms) are performed. In
addition, for each test,p is deleted from treapB and inserted back again. We define thecompetitive-
ness constant, denotedC, for an algorithm to be the value ofC = K2 for which the time per event with
the synthetic benchmark is at least twice as much as the kinetic time per event (measured without the
benchmark).

The synthetic benchmark models a kinetic algorithm: one treap (B) models the kinetic event queue;
the other (A) models the kinetic algorithm. The benchmark requiresO(K2 log2 n) time for an input withn
points. The competitiveness constantC = K2 denotes the constant factor overhead for time per event during
a kinetic simulation with respect to a simpleO(log2 n) benchmark with treaps. Thus,C gives a measure
of the constant factors involved in our implementation with respect to a simple algorithm with equivalent
asymptotic complexity. We note that the synthetic benchmark could be parametrized with two constants
(one for each treap); we chose this model, because it is simpler.

Diameter. Thediameter application first computes a convex hull of the points, then performs a lin-
ear scan of the convex hull to compute the antipodal pairs, and finds the pair that is furthest apart. Our
implementation ofdiameter usesquick-hull andminimum algorithms. Since the computation of the
convex-hull is the bottleneck, the performance ofdiameter is very similar to that ofquick-hull. We note
that Agarwal et al give a similar algorithm but provide no implementation [5]. Due to the similarity between
computing diameters and width of a point set, we expect a similar technique can be used to compute the
width of a point set.

Figure 2 shows the total time for a from-scratch run of the kineticdiameter algorithm for varying input
sizes. The figure shows that the kinetic algorithm is at most 5 times slower than the static algorithm for the
considered inputs—due to the event queue, asymptotic overhead of a kinetic algorithm isO(logn). Figure 3
shows the total time for complete kinetic simulations of varying input sizes—the curve seems slightly super-
linear. Figure 4 shows the average time for change propagation after an insertion/deletion for varying inputs.
Figure 5 shows the average time per kinetic event and the average time for an integrated dynamic change and
kinetic event. Both curves fitO(log2 n). These experimental results match best known asymptotic bounds
for the kinetic diameter problem [5].

To get a measure of how fast change propagation is, we compute the average speedup (Figure 6) as the
ratio of the average time for one kinetic event to the time for a from-scratch execution of the static version.
As can be seen, the speedup increases nearly linearly with the input size to exceed three orders of magnitude.
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Figure 7 shows the average time per event with the synthetic benchmark withK = 3 versus time per event
with a kinetic simulation. The result shows that the synthetic benchmark is more than twice slower. Thus,
the competitiveness factor fordiameter is equal toK2 = 9.

Other benchmarks. We report a summary of our results for other benchmarks at fixed inputs sizes.
Table 1 shows, for input sizes (“n”), the timings for from-scratch executions of the static version (“Static
Run”) and the kinetic version (“Kinetic Run”), the overhead, the average time for change propagation after
an insertion/deletion (“Insert/Delete”), and the speedup of change propagation computed as the average
time for an insertion/deletion divided by the time for recomputing from scratch using the static algorithm.
The overhead, defined as the ratio of the time for a kinetic run to the time for a static run, isO(logn)
asymptotically because of the certificate-queue operations. The experiments show that the overhead is about
9 on average for the considered inputs, but varies significantly depending on the applications. As can be
expected, the more sophisticated the algorithm, the smaller the overhead, because the time taken by the
library operations (operations on certificates, event queue, modifiables, etc.) compared to the amount of
“real” work performed by the static algorithm is small for more sophisticated algorithms. In terms of the time



Appli- n Static Kinetic Over- Insert Speedup
cation Run Run head Delete

minimum 106 0.8 8.0 10.5 1.6× 10−5 > 50000
merge-sort 105 1.3 9.7 7.4 3.6× 10−4 > 4000
quick-sort 105 0.3 9.8 31.6 3.7× 10−4 > 800

graham-scan 105 2.3 12.5 5.4 8.0× 10−4 > 3000
merge-hull 105 2.2 10.0 4.7 6.0× 10−3 > 300
quick-hull 105 1.1 5.0 4.7 2.1× 10−4 > 5000
ultimate 105 1.8 7.8 4.2 1.0× 10−3 > 1500
diameter 105 1.1 5.0 4.7 2.3× 10−4 > 5000

Table 1: From-scratch runs and dynamic changes.

Appli- n Static Simu- # # Ext. Per Per Int. Speedup C
cation Run lation Events Events Event Event

minimum 106 0.8 49.7 5.3× 105 9 9.3× 10−5 9.3× 10−5 > 8000 1
merge-sort 105 1.3 239.1 106 106 2.4× 10−4 9.8× 10−4 > 6000 4
quick-sort 105 0.3 430.9 106 106 4.3× 10−4 2.9× 10−2 > 700 9

graham-scan 105 2.3 710.3 106 38 7.1× 10−4 1.4× 10−3 > 3000 9
merge-hull 105 2.2 1703.6 6.8× 105 293 2.5× 10−3 7.4× 10−3 > 800 16
quick-hull 105 1.1 171.9 3.1× 105 293 5.6× 10−4 8.9× 10−4 > 2000 9
ultimate 105 1.8 1757.8 4.1× 105 293 4.3× 10−3 7.3× 10−3 > 400 25
diameter 105 1.1 184.4 3.1× 105 11 5.9× 10−4 8.7× 10−4 > 2000 9

Table 2: Kinetic simulations with (also with integrated dynamic changes).
for insertions/deletions, both sorting algorithms seem to perform similarly; the convex-hull algorithms can
be ranked from best to worst asquick-hull, graham-scan, ultimate, andmerge-hull; thediameter
application performs very similarly toquick-hull. As the “speedup” column shows change propagation
can be orders of magnitude faster than recomputing from scratch.

Table 5 shows the timings for kinetic simulations. The “n” column shows the input size, “Simulation”
column shows the time for a kinetic simulation, the “# Events” and “# Ext. Events” columns show the
number of events and external events respectively, the “per Event” column shows the average time per
kinetic event. The “per int. ev.” column shows the average time for an integrated dynamic and kinetic
event. The “Speedup” column shows the average speedup computed as the ratio of time for a from-scratch
execution of the static version to the average time for an event. The “C” column shows the competitiveness
constant for each algorithm. The competitiveness-constant measures show that the change propagation has
relatively small constant factor overheads—the average competitiveness ratio (over all algorithms) is about
10. As the speedup column shows, the change propagation is orders of magnitude faster than re-computing
from scratch. The average speedup (over all algorithms) more than 2500.

The results show that, of sorting algorithms,merge-sort is more effective thanquick-sort; merge-sort
is two times faster for kinetic events, and nearly thirty times faster for integrated events. For the convex
hull-algorithms, we need a more detailed discussion but it is clear that thegraham-scan algorithm is not
effective, because it requires too many events (as it is sorting based)—note thatgraham-scan simulations
are not run up to completion. The results show that the performance properties of thediameter and the
quick-hull algorithms are similar as expected.

A comparison of convex hull algorithms.We compare thequick-hull, ultimate, andmerge-hull
algorithms based on theirresponsiveness, efficiencyandlocality. These properties help determine the effec-
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tiveness of kinetic algorithms [9]. For brevity and because it is not practical, we do not discussgraham-scan

in detail.
Figure 8 shows the time per event for the convex hull algorithms. The time per event measures the

responsivenessof a kinetic algorithm. As can be seen, from best to worst responsiveness, the algorithms
rank asquick-hull, merge-hull, andultimate. In a kinetic simulation, the total number of events
processed determines theefficiencyof an algorithm. In terms of efficiency the algorithms rank from best
to worst asquick-hull, ultimate, andmerge-hull (Table 5). The total time for a simulation gives a
measure of the effectiveness of a kinetic algorithm. Thequick-hull algorithm is the most effective. The
merge-hull andultimate algorithm differ slightly but are a factor of four slower thanquick-hull.

Kinetic algorithms can also be compared based on theirlocality [9], which is defined as the maximum
number of certificates that depend on any input point. The time for integrated dynamic and kinetic changes
(Figure 9) gives a measure of locality because a change to the coordinates of a point requires recomputing
all certificates that depend on that point. Forquick-hull andultimate integrated changes are slightly
slower than just kinetic changes. Formerge-hull integrated changes are about a factor of two slower. In
terms of their locality, the algorithms rank from best to worst asquick-hull, ultimate, andmerge-hull.

The results show that due to the sorting step, thegraham-scan algorithm is not suited for kinetic
simulations, whereasquick-hull appears to perform the best. One disadvantage ofquick-hull is that
it is difficult to prove asymptotic bounds for it—formerge-hull and ultimate bounds can be given.
If asymptotic complexity is important, then the experiments indicate thatmerge-hull algorithm is more
slightly more efficient thanultimate if no dynamic changes are performed. In the presence of dynamic
changes,ultimate will likely be more efficient.

Robustness.Our experiments rely on the robust scheduling algorithm described in Section 2.2. To deter-
mine the effectiveness of the approach, we performed additional testing by running kinetic simulations and
probabilistically verifying the output after each kinetic event. These experiments showed that the approach
ensures correctness for all inputs that we considered: up to 100,000 points with all applications.2 With com-
putational geometry algorithms, the scheduler performed no cold restarts. With sorting (andgraham-scan)
algorithms, there were ten restarts with 100,000 points—no restarts took place for smaller inputs. Since
sorting algorithms can process up toO(n2), this is not surprising.

As described in Section 2.2, the robust scheduling algorithm can process multiple certificates at once
to ensure correctness. We measured the number of certificates processed at each event to be less than 1.75
averaged over all our applications. The quantity increases quadratically with input size for sorting based

2These limits are due to memory limitations of the MLton compiler. We could run some applications with more than 300,000
points.



applications (the maximum is 3.0 withgraham-scan), but grows very slowly for other applications. We
note that both the number of restarts and the number of certificates can be further decreased by increasing
the precision of root computations.

6 Conclusion

This paper describes the first technique for kinetizing static algorithms by applying a syntactic transfor-
mation and gives a scheduling algorithm for robust kinetic simulations using fixed-precision floating-point
arithmetic. The effectiveness of the technique is evaluated by applying it to a number of algorithms and
performing an extensive experimental evaluation. The approach makes it possible to integrate dynamic and
kinetic changes, and compose kinetic algorithms without making any changes to their implementation. The
experimental results show that the approach enables correct simulations and performs well in practice.
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Figure 10: Minimum finding before and after inserting 1.

A Transforming a static program into a self-adjusting program

Static programs can be transformed into self-adjusting programs by means of a syntactic transformation.
The resulting self-adjusting programs are trivially kinetized by linking them with certificate-generating
comparisons and an event scheduler. The performance of change propagation under updates to the data
of a self-adjusting programs depends on the stability of the transformed static algorithm. This section gives
some detail about the transformation and considers an example where a static algorithm is not stable. A more
precise treatment of stability and the transformations, and more examples can be found in Acar’s thesis [1].

Giving an efficient kinetic algorithm to a problem involves first coming up with a stable algorithm and
then transforming that algorithm into a self-adjusting program. Many algorithms are already stable or can
be made stable by small changes. For example, an efficient algorithm for kinetic convex hulls can be given
by kinetizing the quick-hull algorithm. Although this algorithm is difficult to prove stable (as it is difficult
to prove efficient in the static case), experiments confirm that it is stable in practice (Section 5). The code
for self-adjusting/kinetic convex-hull is given in Figure 12. The transformation is described in more detail
below.

Sometimes, a straightforward algorithm that is efficient for the static problem is not stable. As an
example, consider the problem of finding the minimum key in a list. A straightforward solution is the
linear-scan algorithm that scans the list from the beginning to the end while maintaining the minimum of
keys visited so far. This algorithm is not stable, because it can compare the current minimum to many
keys—changing the minimum can require performing many comparisons. This problem can be solved
by a stable algorithm by using random sampling. The idea is to delete a random subset of the keys after
incorporating their minimum to their live neighbors. If, for example, each key is selected with probability say
0.5, then one application of this select-and-contract step reduces the length of the list by 0.5 in expectation.
It can be shown that after an expected logarithmic number of steps, the list is reduced to a single key that
holds the minimum of all keys. We show elsewhere that this algorithm is expectedO(logn)-stable under
insertions/deletions [1]. Using the stability theorem, this bounds yields an expected-O(logn) bound on
change propagation.

Figure 10 shows the traces for the executions of the algorithm on inputs that differ by the key1. The
figure highlights the data that differs between two traces—the change propagation algorithm will compute
the highlighted data after inserting the key1. The ordering of points can also be changed by changing the
outcomes of the comparisons performed in the execution. For example, the relative ordering of the keys 2



and 3 can be swapped. Running change propagation after such a change will propagate the new minimum
(which is now 3) through the computation.

The Transformation. The transformation of a static program into a self-adjusting program relies on
several operations for supporting modifiable references and memoization. Amodifiable referenceor, mod-
ifiable for short, is a reference that holds achangeablevalue. Modifiable references are created by the
mod operation, read by theread operation, and written by thewrite operation. In addition to modifiable
references, we assume alift operation for memoizing function calls.

The transformation involves two steps. First the programmer places the computation data that is ex-
pected to change over time (changeable data) into modifiables. Second, the program is updated by inserting,
mod read, write, lift operations. The transformation can be greatly aided by a type system that en-
sures that the operations are placed appropriately and safely. In other work, we describe type systems and
language techniques required to ensure safety [4, 2].

As an example, Figure 11 shows an implementation of the stable, static algorithm for computing the
minimum described in Section 2, and its self-adjusting/kinetic version. The programs are written in the ML
language (some slight sugaring is used to increase clarity). The pieces of code that needs to be inserted to
the static algorithm are underlined. For brevity, we use� to denote aread operation. The static program
takes as input a comparison functioncomp of typeα * α → bool and a listl of typeα list and returns
the minimum element in the list with respect tocomp. To transform the static program into the self-adjusting
program, the programmer changes the input type from an ordinary list into amodifiable lists. A modifiable
list is similar to an ordinary lists except that each “tail” is placed in a modifiable. This is similar to the
representation of linked lists in imperative languages such as C/C++. The programmer then changes the
type of the comparison function so that it returns a modifiable that contains the outcome instead of just the
outcome. This can be seen from the specified type of theminimum function. This completes the first step
of the transformation. The second step involves insertingmod, read, write, andlift operations. This
step is guided by the restriction that the value of a modifiable reference can only be accessed via aread,
and aread can only return a value through awrite. A write must take place within the context of amod.
These restriction enforce the notion that if a value if changeable, then any values computed based on the
values are also changeable. Finally certain functions are memoized by wrapping them with alift function.
The transformation is aided by a type system that ensures that the operations are placed appropriately and
safely [4, 2].

Placing the tail into modifiables enables inserting/deleting elements into/from the list after an execution
completes. Placing the comparisons into modifiables enables changing the outcomes of the comparisons;
this in turn enables simulating motion via change propagation.

Figure 12 shows the self-adjusting/kinetic version for the quick-hull algorithm obtained by applying the
transformation to the static quick-hull algorithm. The code relies on some primitives on modifiable lists such
asfilter, and a module that supplies the geometric primitives specified by thePOINT signature. Note that
the outcome of the comparisons specified by thePOINT signature all have return typemod. This indicates
that their values can change over time. These operations generate the certificates. The algorithm relies on
theminimum function (Figure 11) for finding the furthest point away from the current split line. This use is
enabled by the composibility of self-adjusting/kinetic algorithms.



type α list = nil

| cons of α * α list

minimum :: (α * α → bool) → α list → α

fun minimum comp l =

let

fun halfList l =

let

hash = Hash.new ()

fun run(v,l) =

case l of

nil ⇒ (v, nil)

| cons(h,t) ⇒

let min =

if comp(h,v) then h

else v

in if (hash h = 0) then

(min,t)

else

run(min,t))

end

fun half l =

case l of

nil ⇒ nil

| cons(h,t) ⇒

let (v,t’) = run (h,t)

in

cons(v, half t’)

end

in half l end

fun comb l =

if (length l < 2) then

case l of nil ⇒ raise Empty

| cons(h, ) ⇒ h)

else comb (halfList l))

in comb l end

type α modlist = NIL

| CONS of α * (α modlist mod)

minimum :: (α * α → bool mod ) → α modlist → α

fun minimum comp l =

let

fun halfList l =

let

hash = Hash.new ()

fun run(v,l) = l � c

case c of

NIL ⇒ write (v, NIL)

| CONS(h,t) ⇒ comp (h,v) � b

let min =

if b then h

else v

in if (hash h = 0) then

(min,t)

else

run(min,t))

end

fun half c =

case c of

NIL ⇒ NIL

| CONS(h,t) ⇒ lift (h,t) (fn m ⇒

let p = mod (m � (fn t ⇒ run (h,t))

in p � (fn (v,t’) ⇒

cons(v, half t’))

end

in l � (fn c ⇒ half c) end

fun comb l = mod ((length l) � (fn b ⇒

if b then

case l of NIL ⇒ raise Empty

| CONS(h, ) ⇒ write h)

else comb (halfList l)))

in comb l end

Figure 11: The static algorithm for minimum finding and its kinetic version.



signature POINT =

sig

type t

val aboveLine : (t * t) → t → bool mod

val furthest : (t * t) → (t *t) → bool mod

val minX : (t * t) → bool mod

val maxX : (t * t) → bool mod

end

structure P: POINT = struct ... end

structure QuickHull =

struct

fun split (rp1, rp2, ps, hull) =

fun splitM (p1, p2, ps, hull) =

let val l = filter (P.aboveLine (p1,p2)) ps

in l � (fn cl ⇒

case cl of

NIL ⇒ write (CONS(p1,hull))

| CONS(h,t) ⇒

let val rmax = minimum (P.furthest (p1,p2)) l

val rest = mod (rmax � (fn max ⇒ splitM (max,p2,l,hull)))

in rmax � (fn max ⇒ splitM (p1,max,l,rest)) end))

end

in rp1 � (fn p1 ⇒ rp2 � (fn p2 ⇒ splitM (p1,p2,ps,hull))) end

fun qhull l =

mod ((length< (l, 2)) � (fn b ⇒

if b then write NIL

else let val min = minimum (select P.minX) l

val max = minimum (select P.maxX) l

val lowerHull = mod (split(max,min,l, mod (write NIL)))

in split (min, max, l, lowerHull) end))

end

Figure 12: Self-Adjusting/Kinetic Quick Hull. Changes to the static algorithm are underlined.


