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Abstract

We describe a system that enables services to scale to large numbers of clients, without the addition of new
server resources and without sacrificing service consistency. Our system best supports services that can be
decomposed into service objects that are typically accessed individually. Scalability is achieved by migrating
objects and outsourcing operation processing to the clients themselves. We present novel algorithms for
ensuring consistency of the service and for recovering objects if a client disconnects and leaves the latest
versions of objects unreachable. Our system outperforms a centralized service implementation when object
state (and thus object migration cost) is small, and when operations are compute-intensive (thus taking
advantage of client processing power). In addition, a client executing its own operations enables applications
in which the client is unwilling to send its operations elsewhere for processing, due to privacy concerns. We
demonstrate these advantages through the evaluation of a wide-area network traffic classification service
built using our system.
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1 Introduction

A typical centralized implementation of a service processes all client operations at a server. The resources at
the server thus become a significant factor in the service’s ability to scale to a large number of clients, partic-
ularly when client operations are compute-intensive. In this paper we explore an alternative implementation
strategy for services in which the service state can be decomposed into a collection of smaller objects such
that client operations are typically (though not necessarily always) executed on one object. The approach
we consider is to harness client resources into the implementation of the service, potentially permitting the
service to scale gracefully as the client population grows, without adding resources to the server. While
bearing conceptual similarities to peer-to-peer computing [1] (to which we compare in detail in Section 2),
the approach we consider to harness client resources is, to our knowledge, novel.

In a nutshell, our approach outsources operation processing to the clients themselves; we call this self-
service. For some types of operations, each involved object is migrated to the client and the client executes
its operation locally. This migration occurs within a tree of clients rooted at the server, to which the server
adds new clients as they connect. This tree need not be structured in any particular way, but rather can be
built as new clients connect so as to accommodate client attributes, e.g., so that only well-connected clients
have children, and geographically close clients reside in the same subtree. In addition to harnessing client
resources, our system offers the following features:

Strong concurrency semantics Operations, both on single objects and multiple objects, are implemented
with strong concurrency semantics. Specifically, our approach ensures serializability [44] for operations. An
ingredient in achieving these semantics is to serialize object migrations, i.e., so that an object is migrated to
a client only after the preceding client releases it. This incurs the additional latency of migrations between
operations—and so this approach is viable primarily when objects are not too large—but this migration
involves moving the object only at most the diameter of the tree. Moreover, object migration is required
only for certain types of operations; most importantly a read operation on a single object does not require
object migration.

Fault recovery If a client disconnects while holding an object, either because the client fails, because it can
no longer communicate with its parent, or because its parent disconnects, then operations that have recently
been applied to the object may be lost. However, the connected component of the tree containing the server1

can efficiently regenerate the last version of the object seen in that component when such a disconnection
is detected. In this way the server never loses control of objects comprising the service, and once an object
reaches a portion of the tree that stays connected (except for voluntary departures), all operations it reflects
become durable.

Client privacy Because each client applies its own operations locally, it need not reveal these operations
to the rest of the system, except to the extent that they are disclosed by the resulting object. This feature
is significant for services that build upon contributions of sensitive client data. In particular, a motivating
application for this work is the distributed construction of network traffic classifiers. These classifiers are
built from network packets and/or flow records, but asking organizations to turn over this information is a
significant social barrier. Organizations may be more willing to integrate their data into the classifier locally,
since the resulting classifier typically reveals less about its input than the raw data does.

Our approach is not intended for services with highly transient client populations, e.g., as many web
services might be, since this client churn might make tree formation and management a significant cost.
Moreover, our approach is vulnerable to malicious clients, since if an object is migrated to a malicious
client, the client could corrupt it. Consequently, our system is more suited to serving trusted clients or, with

1We do not address the failure of the server; we presume it is rendered fault-tolerant using standard techniques (e.g., [5]).
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the emergence of trusted platforms that permit the remote validation of a software platform [32, 41], only
clients that are running valid client software.

We report microbenchmarks for our system recorded on PlanetLab [7], though the microbenchmark
application involving only trivial operations is not well-suited to self-service. We therefore also report an
empirical evaluation of our approach using the aforementioned application involving the distributed con-
struction of network traffic classifiers. Our experiments demonstrate that self-service is compelling for this
type of application, e.g., yielding a full order of magnitude improvement in both operation latency and
throughput over a centralized implementation in an experiment involving 75 nodes. In addition, we reiter-
ate that our approach better protects client privacy for this application. We are also currently investigating
applications of self-service in other domains, including massively multi-player online games (e.g., [21]),
large scale scientific analysis (e.g., [29]) and distributed model construction for weather monitoring systems
(e.g., [43]).

2 Related work

Scalability, fault recovery and consistency have been studied for decades. Many systems have excelled at
two of these, but it appears to be harder to achieve them all. Below we discuss pairs of these properties and
the most relevant prior work of which we are aware that focuses on that pair. We show that self-service is a
different point in the design space of tradeoffs among these goals than has been explored previously.

Consistency and scalability Our design of self-service was influenced most directly by work in this space,
notably token-based distributed mutual exclusion protocols [35, 10]. These protocols allow nodes arranged
in a tree to locate and retrieve shared objects and perform operations atomically. Another example in
this space [24] presents a distributed hash table design that supports atomic operations. These approaches
achieve scalability and consistency, but do not address failures. Self-service can be viewed as an approach
that extends this category of research to recover from failures (though operations by clients that disconnect
may not be durable, see Section 3). Our work also enables consistent multi-object operations and optimiza-
tions for single-object reads that are not possible in the works from which we most closely build [35, 10].

Consistency and fault recovery Prior systems that have focused on consistency and fault recovery typically
take the form of cluster-based solutions in which object updates are processed at a cluster of machines
(e.g., [4]). Objects are either hosted on a single cluster or different clusters. Approaches that employ a single
cluster for updates—e.g., cluster-based internet services [39, 14] and dynamic web content distribution
networks [31, 30]—yield simple consistency protocols. But their “incremental scalability” [14] remains a
barrier, i.e., to support more clients, resources must be added to the cluster. Systems that host objects on
different clusters—such as peer-to-peer systems with explicit support for consistent updates (e.g., [36, 33,
45])—scale better, but typically do not support multi-object updates. Self-service is a different choice in this
design space: it overcomes “incremental scalability” by utilizing clients’ resources for update processing
while implementing consistent single- and multi-object update operations. However, it offers weaker fault
recovery than a well-designed cluster solution, which can fully mask failures of cluster nodes.

Fault recovery and scalability Mechanisms that achieve better than incremental scalability typically fall in
the category of peer-to-peer systems, e.g., [42, 34, 38, 47, 25]. Moreover, these systems necessarily provide
recovery from faults of unreliable peers. However, most applications of these peer-to-peer substrates either
support only read operations (e.g., [9, 12]) or support updates but with weak forms of consistency: Examples
of the latter class include peer-to-peer file systems that achieve only eventual consistency (e.g., [37, 40]) or
guarantee consistency for write operations (that overwrite the previous state) but not for more general update
operations (e.g., [28]). In [20], replica versioning provides probabilistic consistency guarantees. Even the
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database systems built over peer-to-peer technology of which we are aware (e.g., [18]) have sacrificed atom-
icity. Self-service is an alternative that better supports strong consistency and compute-intensive updates.

We additionally comment that client operation privacy is a feature of self-service that, to our knowledge,
is not addressed in the classes of systems discussed above.

3 Goals

Our system implements a service with a designated server and an unbounded number of clients. The pro-
cesses in the system include the clients and the server. In order to interact with the service, a client must join
the service; in doing so, it is positioned within a tree rooted at the server. A client can also voluntarily leave
the tree.

If a process loses contact with one of its children, e.g., due to the failure of the child or of the com-
munication link to the child, then the child and all other clients in the subtree rooted at the child are said to
disconnect. To simplify discussion, we treat the disconnection of a client as permanent, or more specifically,
a disconnected client may re-join the service but with a reinitialized state. In an execution, a client that joins
but does not disconnect (though it might leave voluntarily) is called a connected client.

The service enables clients to invoke operations on objects. These operations may be reads or updates.
Updates compute object instances from other object instances. An object instance o is an immutable struc-
ture with several fields, including an identifier field o.id and a version field o.version. We refer to object
instances with the same identifier as versions of the same object. We assume that any operation that pro-
duces an object instance o as output takes as input the previous version of the object, i.e., an object instance
o′ such that o′.id = o.id and o′.version + 1 = o.version.

It is convenient for discussion that each object instance and each operation be unique—e.g., the imple-
mentation could insert a “nonce” in each object instance and operation description. However, we emphasize
that this is only to simplify discussion and is not required in the system.

Our system ensures that operations are applied consistently. In particular, for any system execution,
there is a set of operations Durable that includes all operations performed by connected processes (and pos-
sibly some operations by clients that disconnect), such that the connected processes perceive the operations
in Durable (and no others) to be executed sequentially. More precisely, our system enforces serializabil-
ity [44]: All connected processes perceive the operations in Durable to be executed in the same sequential
order.

In addition to serializability, our algorithms ensure another important property (though we do not prove
it here), termed coherence [16]. Informally, coherence guarantees that all connected processes perceive
updates to each object individually, in the same sequential order. An important property of coherence is that
two distinct update operations involving the same object performed by the same process are perceived by all
processes to be in the order in which they were performed, i.e., coherence preserves local process order.

4 Self-Service operations

In this section we describe how update operations (those that produce a new object instance), multi-object
operations (those that take multiple objects as input) and single-object read operations are performed in our
system. We begin by describing a high-level abstraction in Section 4.1 that enables our solution, and then
discuss the implementation of that abstraction in Section 4.2. Section 4.3 describes how this implementation
enables update and multi-object operations, and the optimizations for single-object read operations.
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Figure 1: (a) distQ consists of processes a, b, c and d. (b) Process e adds itself to the end of distQ by sending
a retrieve request to d. (c) When a completes its operation on the object, it migrates the object to b and drops
off distQ.

4.1 distQ abstraction

For each object, processes who wish to perform operations on that object arrange themselves in a logical
distributed FIFO queue denoted distQ, and take turns according to their positions in distQ to perform those
operations. The process at the front of distQ is denoted as the head and the one at the end of distQ is
denoted as the tail. Initially, distQ consists of only one process—the server. When an operation is invoked
at a process p, p sends a retrieve request to the current tail of distQ. This request results in adding p to the
end of distQ, making it the new tail; see Figure 1-(b). When the head of distQ completes its operation, it
drops off the queue and migrates the object to the next process in distQ, which becomes the new head; see
Figure 1-(c). This distributed queue ensures that the object is accessed sequentially.

A process performs an operation involving multiple objects by retrieving each involved object via its
distQ. Once the process holds these objects, it performs its operation and then releases each such object to
be migrated to the process next in that object’s distQ.

Figure 2: Squares at each process represent its localQ; left-most square is the head and right-most is the tail.
The arrow in each square denotes the neighbor to which it points. Initially a has the object. e requests from
a and f requests from e. Finally a migrates the object to e.

4.2 distQ implementation

The core of our algorithm deals with the implementation of distQ per object. distQ for the object with
identifier id (henceforth, distQ[id ]) is implemented using a local FIFO queue p.localQ[id ] at every process
p. Elements of p.localQ[id ] are neighbors of p. Intuitively, p.localQ[id ] is maintained so that the head
and tail of p.localQ[id ] point to p’s neighbors that are in the direction of the head and tail of distQ[id ],
respectively. Initially, the server has the object and it is the only element in distQ[id ]. Thus, p.localQ[id ]
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at each client p is initialized with a single entry, p’s parent, the parent being in the direction of the server
(Figure 2-(a)).

When a process p receives a retrieve request for the object with identifier id from its neighbor q, it
forwards the request to the tail of p.localQ[id ] and adds q to the end of p.localQ[id ] as the new tail. This
ensures that the tail of p.localQ[id ] now points in the direction of the new tail of distQ[id ], which must be in
the direction of q since the latest retrieve request came from q; see Figures 2-(b) and 2-(c). When a process
p receives a migrate message containing the object, it removes the current head of p.localQ[id ] and forwards
the object to the new head of p.localQ[id ]. This ensures that the head of p.localQ[id ] points in the direction
of the new head of distQ[id ], see Figure 2-(d).

Pseudocode for this algorithm is shown in Figure 3. We use the following notation throughout for
accessing localQ: localQ.head and localQ.tail are the head and the tail. localQ.elmt[i] is the ith element
(localQ.elmt[1] = localQ.head). localQ.size is the current number of elements. localQ.removeFromHead()
removes the current head. localQ.addToTail(e) adds the element e to the tail. localQ.hasElements() returns
true if localQ is not empty.

Initialization of a process upon joining the tree is not shown in the pseudocode of Figure 3; we describe
initialization here. When a process p joins the tree, it is initialized with a parent p.parent (⊥ if p is the
server). Each process also maintains a set p.children that is initially empty but that grows as other clients
are added to the tree. For each object identifier id , p initializes a local queue p.localQ[id ] by enqueuing p
if p is the server and p.parent otherwise. In addition, for each object identifier id , the server p initializes its
copy of the object, p.objs[id ], to a default initial state.

Each process consists of several threads running concurrently. The global state at a process p that is
visible to all threads is denoted using the “p.” prefix, e.g., p.parent, p.children, p.localQ[ ] and p.objs[ ].
Variable names without the “p.” prefix represent state local to its thread. In order to synchronize these
threads, the pseudocode of process p employs a semaphore2 p.sem[id ] per object identifier id , used to
prevent the migration of object p.objs[id ] to another process before p is done using it. p.sem[id ] is initialized
to one at the server and zero elsewhere. In our pseudocode, we assume that any thread executes in isolation
until it completes or blocks on a semaphore.

4.2.1 Retrieving one object

The routing of retrieve requests for objects is handled by the doRetrieveRequest function shown in Figure 3.
When p executes doRetrieveRequest(from, id , prog), it adds 〈from, prog〉 to the tail of p.localQ[id ] (line 2),
since from denotes the process from which p received the request for id . (prog has been elided from
discussion of localQ so far; it will be discussed in Section 4.3.) p then checks if the previous tail (lines 1, 3)
was itself. If so, it awaits the completion of its previous operation (line 4) before it migrates the object to
from by invoking doMigrate(id) (line 5, discussed below). If the previous tail was another process q, then p
sends (retrieveRequest : p, id) to q (line 7); when received at q, q will perform doRetrieveRequest(p, id ,⊥)
similarly (line 20). In this way, a retrieve request is routed to the tail of distQ[id ], where it is blocked until
the object is migrated to the requesting process. Note that p invokes doRetrieveRequest(from, id , prog) not
only when it receives a retrieve request from another process (line 20), but also to retrieve the object with
identifier id for itself.

Migrating an object with identifier id is handled by the doMigrate function shown in Figure 3. Since
the head of p.localQ[id ] is supposed to point toward the current location of the object with identifier id , p
must remove its now-stale head (line 8), and identify the new head q to which it should migrate the object
to reach its future destination (line 9). If that future destination is p itself, then p runs the program prog
(line 11) that was stored when p requested the object by invoking doRetrieveRequest(p, id , prog); again,

2To remind the reader, a semaphore s is a concurrency control primitive that represents a non-negative integer counter with two
atomic operations: V (s) increments s by one; P (s) blocks the calling thread while s = 0 and then decrements s by one [11].

5



doRetrieveRequest(from, id , prog) /* Invoked locally on request by from (from could be p). Run prog on completion */
1. 〈q, prog ′〉 ← p.localQ[id ].tail /* q made the last request for this object */
2. p.localQ[id ].addToTail(〈from, prog〉) /* The next request will be forwarded to from */
3. if q = p /* If I last requested this object ... */
4. P (p.sem[id ]) /* ... then wait till I am done using it */
5. doMigrate(id) /* ... and then initiate migration to the requesting process */
6. else /* If I am not the last process to request this object ... */
7. send (retrieveRequest : p, id) to q /* ... then forward the request to who last requested it (to reach tail of distQ[id ]) */

doMigrate(id) /* Invoked locally when migration is initiated by p, destined for p or goes through p */
8. p.localQ[id ].removeFromHead() /* This object’s owner does not lie toward the current head any more */
9. 〈q, prog〉 ← p.localQ[id ].head /* q requested this object, object will be migrated to q and so q is the new head */
10. if q = p /* If I requested this object ... */
11. prog /* ... then execute the program that was registered for my request */
12. else if q = p.parent /* If this object is for someone else who is toward my parent ... */

13. IDs ← {id ′ : id
p.Deps
=⇒ id ′} /* ... then find which other objects this object depends on */

14. Objs ← {p.objs[id ′] : id ′ ∈ IDs} /* ... collect all these objects */
15. DepSet ← p.Deps ∩ (IDs × IDs) /* ... and the dependency relations between them */
16. send (migrate : p.objs[id ],Objs,DepSet) to q /* ... migrate the object, copy objects it depends on and the dependencies to parent */
17. p.Deps ← p.Deps \DepSet /* ... finally remove the dependencies so same values not copied to the parent again */
18. else /* If this object is for someone else who is toward a child ... */
19. send (migrate : p.objs[id ], ∅, ∅) to q /* ... then no need to copy any other objects, just migrate this object */

Upon receiving (retrieveRequest : from, id) /* Request received for object with identifier id from another process from */
20. doRetrieveRequest(from, id ,⊥) /* Invoke doRetrieveRequest on from’s behalf with an empty program */

Upon receiving (migrate : o,Objs,DepSet) /* o being migrated that depends on copied objects Objs with relation DepSet */
21. p.objs[o.id] ← o /* Save the migrated object o */
22. foreach o′ ∈ Objs /* For each one of the copied objects ... */
23. p.objs[o′.id] ← o′ /* ... save the copied object */
24. p.Deps ← p.Deps ∪DepSet /* Update the local dependency relation with the one in the message */
25. doMigrate(o.id) /* Invoke doMigrate for the object with identifier id */

Figure 3: Object management pseudocode for process p

we defer discussion of prog to Section 4.3. Otherwise, p migrates the object toward that destination (line 16
or 19). If p is migrating the object to a child (line 19), then it need not send any further information. If p
is migrating the object to its parent, however, then it must send additional information (lines 13–16) that is
detailed in Section 4.2.2.

4.2.2 Object dependencies

There is a natural dependency relation⇒ (pronounced “depends on”) between object instances. First, define
o

op⇒ o′ if in an operation op, either op produced o and took o′ as input, or o and o′ were both produced by
op. Then, let ⇒ =

⋃
op

op⇒ . Intuitively, a process p should pass an object instance o to p.parent only
if all object instances on which o depends are already recorded at p.parent. Otherwise, p.parent might
receive only o before p disconnects, in which case atomicity of the operation that produced o cannot be
guaranteed. Thus, to pass o to p.parent, p must copy along all object instances on which o depends. Note
that copying has different semantics than migrating, and in particular copying an object instance does not
transfer “ownership” of that object.

Because each process holds only the latest version it has received for each object identifier, however,
it may not be possible for p to copy an object instance o′ upward when migrating o even if o ⇒ o′: o′ may
have been “overwritten” at p, i.e., p.objs[o′.id].version > o′.version. In this case, it would suffice to copy
p.objs[o′.id] in lieu of o′, provided that each o′′ such that p.objs[o′.id] ⇒ o′′ were also copied—but of course,
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o′′ might have been “overwritten” at p, as well. As such, in a refinement of the initial algorithm above, when
p migrates o to its parent, it computes an identifier set IDs recursively according to the following rules until
no more indices can be added to IDs: (i) initialize IDs to {o.id}; (ii) if id ∈ IDs and p.objs[id ] ⇒ o′, then
add o′.id to IDs . p then copies {p.objs[id ]}id∈IDs to its parent.

It is not necessary for each process p to track ⇒ between all object instances in order to compute the
appropriate identifier set IDs . Rather, each process maintains a binary relation p.Deps between object identi-
fiers, initialized to ∅. If p performs an update operation op such that an output p.objs[id ]

op⇒ p.objs[id ′], then
p adds (id , id ′) to p.Deps. (This will be further detailed in Section 4.3.) In order to perform doMigrate(id)
to p.parent, p determines the identifier set IDs as those indices reachable from id by following edges

(relations) in p.Deps—reachability is denoted
p.Deps
=⇒ in line 13 of Figure 3—and copies both Objs =

{p.objs[id ′]}id ′∈IDs (line 14) and DepSet = p.Deps ∩ (IDs × IDs) (line 15) along with the migrating
object (line 16). Finally, p updates p.Deps ← p.Deps \DepSet (line 17), i.e., to remove these dependencies
for future migrations upward.

If p receives a migration from a child with copied objects Objs and copied dependencies DepSet , then
p saves Objs in p.objs (lines 22–23) and sets p.Deps ← p.Deps ∪DepSet (line 24).

4.3 Operation implementation

In order to achieve our desired concurrency semantics, for each object we enforce sequential execution of
all update and multi-object operations (Section 4.3.1) that involve that object. Fortunately, for many realistic
workloads, these types of operations are also the least frequent, and so the cost of executing them sequen-
tially need not be prohibitive. In addition, this sequential execution of update and multi-object operations
enables significant optimizations for single-object reads (Section 4.3.2) that dominate many workloads.

4.3.1 Update and multi-object operations

We first discuss how we use the mechanisms from Section 4.2 to invoke update and multi-object operations,
and then discuss operation durability.

Invoking operations Consider an update or multi-object operation op, and let id1, . . . , idk denote distinct
identifiers of the objects involved (read or updated) in the operation. In order to perform op, process p recur-
sively constructs—but does not yet execute—a sequence prog0, prog1, . . . , progk of programs as follows,
where “‖” delimits a program:

prog0 ← ‖ op;
NewDeps ← {(id , id ′) : p.objs[id ]

op⇒ p.objs[id ′]};
p.Deps ← p.Deps ∪NewDeps;
V (p.sem[id1]); . . . ; V (p.sem[idk]) ‖

prog i ← ‖ doRetrieveRequest(p, id i, prog i−1) ‖
Process p then executes progk. Note that progk requests idk and, once that is retrieved, progk−1 is executed
(at line 11 of Figure 3). This, in turn, requests idk−1, and so forth. Once id1 has been retrieved, prog0 is
executed. This performs op and then updates the dependency relation p.Deps (see Section 4.2.2) with the
new dependencies introduced by op. Finally, prog0 executes V operations on the semaphores for each of the
objects, permitting them to migrate to other processes. Viewing the semaphores p.sem[id1], . . ., p.sem[idk]
as locks and the V operations as releasing the locks, progk can be viewed as implementing strict two-phase
locking [2]. So, to prevent deadlock, id1, . . . , idk must be arranged (i.e., the “locks” must be obtained) in a
canonical order.

Update durability A process that performs an update operation can force the operation to be durable, by
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copying each resulting object instance o (and those on which it depends, see Section 4.2.2) to the server,
allowing each process p on the path to save o if p.objs[o.id].version < o.version. That said, doing so per
update would impose a significant load on the system, and so our goals (Section 3) do not require this.
Rather, our goals as stated require only that a process forces its updates to be durable when it leaves the tree
(Section 5.3), so that operations by a process that remains connected until it leaves are durable.

4.3.2 Single-object read operations

Due to the serial execution of update and multi-object operations, as described in Section 4.3.1, single-object
reads so as to achieve serializability [44] for all operations can be implemented with local reads. That is,
to perform an operation that involves reading a single object with identifier id , process p simply returns
p.objs[id ] immediately.

5 Tree management

To this point we have deferred discussion of joins, leaves and disconnections. Here we briefly describe the
join protocol we have implemented, and then detail how to adapt our algorithm to address disconnections
(Section 5.2) and processes leaving voluntarily (Section 5.3).

5.1 Joins

In order to join the service, a client contacts the root of the tree—the server. The server either adds the client
as its child and notifies it, or forwards the join request to an existing child. Each client that receives a join
request from its parent follows the same procedure.

This simple mechanism enables the server to perform any access control mechanisms desired by the
service. In addition, different application-specific tree construction policies can be implemented. In our
implementation, processes construct a k-ary balanced tree. Examples of other policies include clustering
clients in subtrees based on their geographical location, network proximity or shared interest in certain
service objects.

5.2 Disconnections

Recall that when a process loses contact with a child, all clients in the subtree rooted at that child are said
to disconnect. The child (or, if the child failed, each uppermost surviving client in the subtree), informs its
subtree of the disconnection, to enable clients to reconnect (after reinitializing) if desired. Of concern here,
however, is that some of these disconnected clients may have earlier issued retrieve requests for objects,
and for each such object with identifier id , the disconnected client may appear in distQ[id ]. In this case,
steps must be taken to ensure that the connected processes preceded by a disconnected process in distQ[id ]
continue to make progress. To this end, all occurrences of the disconnected clients in distQ[id ] are replaced
with the parent p of the uppermost disconnected client q, see Figure 4.

Choosing p to replace the disconnected clients is motivated by several factors: First, p is in the best
position to detect the disconnection of the subtree rooted at its child q. Second, as we will see below, in
our algorithm p need only take local actions to replace the disconnected clients; as such, this is a very
efficient solution. Third, in case the head of distQ[id ] is one of the disconnected clients, the object with
identifier id must be in the disconnected component. This object needs to be reconstituted using the local
copy at one of the processes still connected, while minimizing the updates by now-disconnected clients that
are lost. p is the best candidate since among the still-connected processes, p is the last to have saved the
object before it was migrated to the disconnected subtree (line 21, Figure 3). Note that in case of multiple

8



Figure 4: q loses contact with parent p and its subtree disconnects. p replaces disconnected clients in distQ
and reconstitutes the object so b and d can make progress.

simultaneous disconnections, only one connected process—that which has the object in its disconnected
child’s subtree—will reconstitute the object from its local copy, becoming the new head of distQ[id ].

The pseudocode that p executes when its child q disconnects is the childDisconnected(q) routine in
Figure 5. Specifically, p replaces all instances of q in p.localQ[id ] with itself and a “no-op” operation to
execute once p obtains the object (line 8–9 and 12–13). As such, any retrieve request that was initiated at a
connected process and blocked at a disconnected client is now blocked at p, see Figure 4-(b). For each of
these requests that are now blocked at p, p creates and run-enables a new thread (lines 10–11 of Figure 5) to
initiate the migration of p.objs[id ] to the neighbor following (this instance of) p in p.localQ[id ], once p has
the object. If the disconnected child was at the head of p.localQ[id ], then p reconstitutes the object simply
by making its local copy (which is the latest at any connected process) available (lines 5–6).

childDisconnected(q) /* Invoked at p when p’s child q disconnects */
1. p.children ← p.children \ {q} /* Remove q as a child */
2. foreach id /* For each object...*/
3. q′ ← p.localQ[id ].head /* ...save the current head of localQ */
4. Qreplace(id , q) /* ...run Qreplace for this object */
5. if q′ = q /* If the disconnected child was the head before Qreplace... */
6. V (p.sem[id ]) /* ...then make the object available, as I am the new head */

Qreplace(id , q) /* Invoked locally by p */
7. foreach i = 1, . . . , p.localQ[id ].size− 1 /* For each element of localQ, except the last */
8. if p.localQ[id ].elmt[i] = 〈q, ∗〉 /* If the element points to q (“∗” is wild-card)... */
9. p.localQ[id ].elmt[i] ← 〈p, ‖V (p.sem[id ])‖〉 /* ...change it to point to myself */
10. t ← new thread(‖P (p.sem[id ]); doMigrate(id)‖) /* ...create a thread that waits for object and then migrates it */
11. t.enable() /* ...run-enable the thread */
12. if p.localQ[id ].tail = 〈q, ∗〉 /* If the last element is the disconnected child... */
13. p.localQ[id ].tail ← 〈p, ‖V (p.sem[id ])‖〉 /* ...then replace it by myself; no need to start thread here */

Figure 5: Disconnection-handling at process p

5.3 Leaves

In order to voluntarily leave the tree, a client p must ensure that any objects in the subtree rooted at p are still
accessible to connected nodes, once p leaves. Furthermore, outstanding read and retrieve requests forwarded
through p must not block as a result of p leaving the tree.
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If p is a leaf node, then it simply serves any retrieve requests blocked on it, migrates any objects held at
p to its parent (Section 4.2), forces its updates to be durable (Section 4.3.1), and departs. If p is an internal
node then it forces its updates to be durable, and then arbitrarily chooses one of its children q and promotes
q. The promotion includes updating q’s state according to the state at p, and updating all other neighbors of
p to recognize q in p’s place.

Before promoting q, p notifies its neighbors (including q) to temporarily hold future messages destined
for p, until they are notified by q that q’s promotion is complete (at which point they can forward those
messages to q and replace all instances of p in their data structures with q). p then sends to q a promote
message containing p.parent, p.children, p.localQ[ ], p.objs[ ] and p.Deps. When q receives this message
it executes the pseudocode shown in Figure 6. The steps performed by q to assume p’s role are mostly
straightforward and include updating its objects (lines 2–3), parent (line 11), children (line 12), and object
dependencies (line 13).

Figure 6: Queue merge. Shaded and unshaded elements are parent’s and child’s neighbors (and self point-
ers), respectively. Dashed arrows are from a skipped element to the element in the other queue added next.
Elements between curved arrows are added to mergedQ in order.

The interesting part of q’s promotion is how it merges q.localQ[id ] with p.localQ[id ] for each id , so that
any outstanding retrieve requests for id that were blocked at p or q, or simply forwarded to other processes
by p or q or both, will make progress as usual when q’s promotion is complete; see Figure 6. To merge
p.localQ[id ] and q.localQ[id ], q begins with q.localQ[id ] if its head points to p and p.localQ[id ] otherwise.
q adds elements from the chosen queue, say p.localQ[id ], to a newly created mergedQ until an instance of
q is reached (line 19 of Figure 7), say at the ith index, i.e., p.localQ[id ].elmt[i] = q. The merge algorithm
then skips this ith element and begins to add elements from q.localQ[id ] until an instance of p is found.
This element is skipped and the algorithm switches back to p.localQ[id ] adding elements starting from the
(i + 1)st index. This algorithm continues until both queues have been completely (except for the skipped
elements) added to mergedQ . After merging the two queues, q replaces all occurrences of p in mergedQ by
itself, using Qreplace(id , p) defined in Figure 5.

This merging and subsequent Qreplace has the following effects: Any outstanding retrieve requests
that were initiated by p (represented by instances of p in p.localQ[id ]) now appear as initiated by q since
all instances of p from p.localQ[id ] are copied to mergedQ and then replaced by q. Retrieve requests that
were forwarded through p but not q now appear as forwarded through q as all elements in p.localQ[id ] are
added to mergedQ , except instances of q. Retrieve requests that were forwarded through q and not p appear
as before since q.localQ[id ] elements are all added to mergedQ , except instances of p. Finally, retrieve
requests that were forwarded through both p and q now appear as forwarded through only q, due to skipping
elements in p.localQ[id ] that point to q and vice-versa.

6 Correctness

Definition 1 (reads-from, →rf , →∗
rf ). An operation op reads from op′, denoted op′ →rf op, if op inputs an

object instance produced by op′. →∗
rf denotes the transitive closure of →rf .
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Upon receiving (promote :gParent , siblings, parentQ [ ],
parentObjs[ ], parentDeps) /* Message received by q from q.parent that is voluntarily leaving */

1. foreach id /* For each object...*/
2. if parentObjs[id ].version > q.objs[id ].version /* If the parent’s version is newer than my version... */
3. q.objs[id ] ← parentObjs[id ] /* ...then replace my instance with parent’s instance */
4. mergedQ [id ] ← ∅ /* Start with a fresh mergedQ */
5. if q.localQ[id ].head = 〈q.parent, ∗〉 /* If the head of my localQ points to my parent... */
6. doMerge(q.localQ[id ], parentQ [id ], /* ...then start the merge operation with my localQ */

q, q.parent,mergedQ [id ])
7. else /* If the head of my localQ does not point to my parent... */
8. doMerge(parentQ [id ], q.localQ[id ], /* ...then start the merge operation with parent’s localQ */

q.parent, q,mergedQ [id ])
9. q.localQ[id ] ← mergedQ [id ] /* Set localQ to the newly created mergedQ */
10. Qreplace(id , q.parent) /* Run Qreplace on the new localQ to replace parent with myself */
11. q.parent ← gParent /* The old grand-parent is now my parent */
12. q.children ← (q.children ∪ siblings) \ {q} /* Old siblings are now my children */
13. q.Deps ← q.Deps ∪ parentDeps /* Add parent’s object dependencies */

doMerge(localQ, localQ′, p, p′,mergedQ) /* Invoked locally to merge my localQ with parent’s localQ */
14. while localQ.hasElements() /* If there are more elements in the first queue... */
15. 〈r, prog〉 ← localQ.removeFromHead() /* ...then remove its head */
16. if r 6= p′ /* If the head does not point to the other process... */
17. mergedQ .addToTail(〈r, prog〉) /* ...then add this element to the tail of mergedQ */
18. else /* If the head points to the other process... */
19. doMerge(localQ′, localQ, p′, p,mergedQ) /* ...then skip this element and recurse with the other queue */

Figure 7: Pseudocode run at q for its promotion

Lemma 1. Let op1 and op2 denote distinct operations that output object instances o1 and o2, respectively,
where o1.id = o2.id and o1.version = o2.version. Then there are no operations op3 and op4 (distinct or
not) performed by connected processes such that op1 →∗

rf op3 and op2 →∗
rf op4.

Proof sketch: Among the connected processes, the localQ.tail pointers implement the Arrow protocol by
Demmer and Herlihy [10] (augmented to account for disconnections as described in Section 5.2). This
protocol ensures that per object identifier, migrations among connected processes occur serially. We do not
recount the proof of this fact here; interested readers are referred to, e.g., [10, 17, 22]. This fact implies
that there is a unique object instance bearing a particular identifier and version number that is retrieved by
connected processes.

As a result, the existence of two object instances o1 and o2 with the same object identifier and version
number implies that at least one of op1 and op2, say op1, was performed by a client that disconnects.
Moreover, the process that performs op1 must disconnect prior to migrating o1 (or having it copied due to the
migration of an object instance that depends on o1) out of the subtree that disconnects. Otherwise, the lowest
connected ancestor in the tree, who reconstitutes the object following the disconnection, would reconstitute
o1 or a later version (see Section 5.2). So, o1 is never visible in the connected component containing the
server. This also implies that for each object instance o such that o ⇒ o1, o is not visible in the connected
component: if o is migrated (or copied) up to the connected component, then o1 (or a later version) must be
copied along with it (see Section 4.2.2). Therefore, none of the other object instances produced by op1 are
visible in the connected component, as each of these instances depends on o1. As a consequence, none of
the instances produced by op1 is ever read by a connected process and so op1 6→∗

rf op3.
Lemma 1 ensures that per object identifier, there is a unique sequence of object instances (ordered by

version number) that are visible to connected processes. In addition, Lemma 1 also provides an avenue
by which we can define the Durable set for our protocol, i.e., to consist of those update operations that
produce object instances visible to the connected processes and those read operations that observe those
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object instances.

Definition 2 (Durable). The set Durable is defined inductively to include operations according to the fol-
lowing two rules (and no other operations):

1. If op was executed at a connected process, then op ∈ Durable.

2. If op ∈ Durable and op′ →∗
rf op, then op′ ∈ Durable.

Below we prove that the operations in Durable are serializable, and as such they are durable (since
“losing” an update could violate serializability).

Multi-version Serializability theory Our system maintains multiple versions of the same object at the same
time (although not at the same process), therefore we argue the serializability of our algorithms using multi-
version serializability theory [3]. Multi-version serializability theory allows us to argue the serializability of
a set of operations through the acyclicity of a particular graph, called the multi-version serialization graph.

Definition 3 (→ver). The version precedence relation, denoted →ver, is defined for operations as follows:
For distinct operations opi, opj and opk, let opk read an object instance o produced by opj and opi

produce an object instance o′ such that o.id = o′.id. If o′.version < o.version then opi →ver opj , otherwise
opk →ver opi.

Definition 4 (Multi-version serialization graph). A multi-version serialization graph of a set S of operations,
denoted MVSG(S), is a directed graph whose nodes are operations in S and there is an edge from operation
opi to operation opj if opi →rf opj or opi →ver opj or both.

In order to prove that the set S of operations is serializable, it is both necessary and sufficient to prove
that MVSG(S) is acyclic [3, Theorem 5.4].

We prove the acyclicity of MVSG(Durable) in two steps: First we prove that its subgraph consisting
only of update and multi-object read operations (and the corresponding edges) is acyclic. We then prove that
adding single-object read operations and the corresponding edges to this acyclic subgraph does not introduce
any cycles.

Let Durable′ denote the subset of Durable consisting only of update and multi-object operations. In or-
der to prove the acyclicity of MVSG(Durable′), we describe a technique to assign timestamps to operations
in Durable′, and then prove that all edges in MVSG(Durable′) are in timestamp order. Since timestamp
order is acyclic, this proves the acyclicity of MVSG(Durable′). Note that these timestamps serve only to
argue about the order of operations and do not add functionality to our algorithms.

Assigning timestamps Let ts(op) denote the timestamp assigned to an operation op. Let input(op) and
output(op) denote the set of instances input to and produced by operation op, respectively. We assign
timestamps to update and multi-object operations such that for each pair of operations op1 and op2, if
op1 →rf op2 then ts(op1) < ts(op2). Timestamps with these properties can be assigned as follows: Store
a timestamp ts recent(o) for each object instance o. For each update or multi-object read operation op,
define maxTs(op) as:

maxTs(op) = max
o∈input(op)

ts recent(o)

Then assign the timestamp to op as follows:

ts(op) ← maxTs(op) + 1

The timestamp for each object instance involved in the operation op is updated as follows:
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∀o ∈ input(op)
⋃

output(op) : ts recent(o) ← maxTs(op) + 1

Let ID in (op) denote the set of identifiers of object instances input to an operation op, i.e., ID in(op) =
{o.id : o ∈ input(op)}.

Lemma 2. Let opi and opj be distinct update or multi-object read operations in Durable′ performed by pro-
cesses pi and pj , respectively, such that ID in(opi)

⋂
ID in(opj) 6= ∅. If for some id ∈ ID in(opi)

⋂
ID in(opj),

pi retrieves an instance o with o.id = id before pj retrieves an instance o′ with o′.id = id , then ts(opi) <
ts(opj).

Proof. Since updates and multi-object operations retrieve instances with the same identifier serially and
there is a unique sequence of instances with the same identifier (Lemma 1), pj cannot retrieve o′ before pi

invokes a V (pi.sem[id ]). This V (pi.sem[id ]) is performed only after pi completes opi (last statement of
prog0, see Section 4.3.1) and therefore, only after assigning ts recent(o′′) ← ts(opi), where o′′ is either o
or its newer version in case opi updates o. Since ts recent can only grow and opj is assigned a timestamp
greater than ts recent of all instances in input(opj), ts(opj) ≥ ts(opi) + 1.

Lemma 3. Let opi and opj be distinct operations in Durable′, such that opi →rf opj . Then ts(opi) <
ts(opj).

Proof. Let o be an object instance produced by opi at process pi and input by opj at process pj . pj can
retrieve o only after pi performs a V (pi.sem[o.id]), which is done after opi completes. Therefore, pi must
complete the retrieval of an instance with identifier o.id (the instance input to opi) before pj retrieves o as
input to opj , and so by Lemma 2, ts(opi) < ts(opj).

Lemma 4. Let opi and opj be distinct operations in Durable′, such that opi →ver opj . Then ts(opi) <
ts(opj).

Proof. opi →ver opj can be a result of one of the following two cases.
Case 1: opi, opj and opk are distinct operations performed by processes pi, pj and pk, respectively,

such that opk inputs instance o produced by opj , opi produces instance o′ and o′.id = o.id, o′.version <
o.version. Since instances with the same identifier are retrieved serially and form a unique sequence ordered
by version number (Lemma 1), pi must retrieve instance with identifier o′.id (for input to opi) before pj

does (for input to opj) and therefore by Lemma 2, ts(opi) < ts(opj).
Case 2: opi, opj and opk are distinct operations performed by connected processes, such that opi

inputs instance o produced by opk, opj produces instance o′ and o′.id = o.id, o′.version > o.version. Since
opi inputs a version earlier than the one produced by opj and object instances are retrieved serially and have
a unique sequence ordered by version number (Lemma 1), pi must have retrieved o before pj retrieved an
instance with identifier o′.id and performed opj . Hence, by Lemma 2, ts(opi) < ts(opj).

Theorem 1. MVSG(Durable′) is acyclic.

Proof. All edges in MVSG(Durable′) are in timestamp order (Lemmas 3 and 4) and timestamp order is
acyclic.

Lemma 5. Adding single-object read operations (and the corresponding edges) from Durable to the acyclic
MVSG(Durable′) does not introduce any cycles.
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Proof. Arbitrarily order the single-object read operations in Durable\Durable′, and consider inserting them
one-by-one in order, into Durable′. For a contradiction, let opi ∈ Durable \ Durable′ be the first single-
object read operation whose insertion results in a cycle. The insertion of opi adds the following edges:
A single reads-from edge from the update operation opk that produced the object instance o read by opi,
and a version precedence edge from opi to each update operation opj that produces an instance o′ with
o′.id = o.id and o′.version > o.version.

Assume for contradiction that these new edges and the node opi introduce a cycle in the multiversion
seralizability graph. This is possible only if there already exists a path from some such opj to opk. But there
also already exists a path from opk to opj in MVSG(Durable′) as opk →∗

rf opj : opj produces a newer
version of the instance output by opk and the retrievals are serialized for instances with the same identifier
(Lemma 1). Thus, there must already be a cycle (from opk to opj and back to opk) in MVSG(Durable′)
even before adding opi, a contradiction due to Theorem 1.

Theorem 2. Durable is serializable.

Proof. MVSG(Durable′) is acyclic (Theorem 1) and adding single-object read operations and the corre-
sponding edges to this subgraph does not introduce any cycles (Lemma 5). Therefore, MVSG(Durable) is
acyclic and thus Durable is serializable [3].

7 Evaluation

We evaluated the performance of our self-service system in two settings. First, we conducted experiments
on PlanetLab [7] (Section 7.2) to measure the throughput and latency of a trivial service in which operations
require no processing. These microbenchmarks illustrate the inherent costs of our implementation. However,
the self-service approach is poorly suited to a service with these characteristics. After all, harnessing client
resources to perform only trivial operations is of little use, and incurs the unnecessary overhead of object
migrations.

We thus performed a second evaluation (Section 7.3) of an application better suited to self-service—
and indeed that partially motivated it. This service enables the construction of network traffic models from
distributed data sources, and has characteristics that are better suited to self-service. In this evaluation
the self-service approach dramatically outperformed a centralized implementation. This service involves
computationally intensive operations, and as such it was not feasible to run these experiments on PlanetLab
due to the small CPU resources we were allocated: during the time we used PlanetLab, we saw an average
of 7-10% CPU available for our slice on most PlanetLab nodes. Therefore, we performed these experiments
on an isolated 75-node cluster.

7.1 Experimental system

Our self-service system is implemented in Java JDK 5.0 and consists of less than 1000 lines of code. The
following choices influenced system performance:

Object compression Large objects (objects in the application discussed in Section 7.3 can be a few megabytes)
are stored and transmitted in compressed form. The memory and bandwidth savings due to compression far
outweigh the small computation costs. We use the LZO compression library3, which is invoked from Java
through the Java Native Interface.

Deep copy reads A node makes a local, deep copy of an object before updating it, so it can serve reads while
the object is being modified. This improves the performance of reads when updates are computationally

3http://www.oberhumer.com/opensource/lzo/
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expensive—the setting targeted by self-service. If an object is not being modified, reads are served directly
from the object.

In-memory objects Objects are kept in memory in their compressed forms and are decompressed when
needed to perform operations.

To control the experiments and measure the overall system performance, we used a monitor that ran
on a dedicated machine and communicated with all nodes in an experiment. In each experiment, each
client joined the tree, notified the monitor when its join procedure was complete, performed read and update
operations and finally reported per-operation latency and the total number of operations performed to the
monitor. The monitor computed the average latency across all nodes and the overall system throughput—
operations per second performed by the system as a whole. Each experiment was repeated ten times with a
random node chosen as the server each time. Each client waited a random amount of time before sending
its join request to the server, resulting in a different tree configuration for each run.

Our experiments were characterized by certain parameters. Each experiment was conducted on nnodes

nodes, including all the clients and the server, arranged in a k-ary tree. Operations were performed on a
subset of the total nobjects shared objects. Each node performed nupdates update operations and as many
read operations as possible in this time (to keep the system loaded with reads throughout), before sending
results to the monitor. Nodes kept nplReads read and nplUpdates update operations outstanding at a time, i.e.,
after joining the tree each node initiated nplReads read and nplUpdates update operations each, in parallel.
Subsequent completion of an operation resulted in a new operation of the same type (read/update), until
nupdates update operations had been completed.

To evaluate multi-object updates we sampled the number of objects from a Gaussian distribution with
mean µobjsPerUp before each operation. Samples less than one were rounded to one and real numbers greater
than one were rounded to the closest integers. Reads in each experiment operated on single objects, since
multi-object reads are performed using the same protocol as updates. For each update and read, a node
sampled the needed number of objects uniformly at random, without replacement.

7.2 Microbenchmarks on PlanetLab

Experiments conducted on PlanetLab used Internet2, CAnet and university machines in the US and Canada.
Our first experiment used single-object operations with nupdates = 150 and nobjects = 100, while

varying nnodes ∈ {15, 25, 35, 45, 55}. We also used k = 5, which is a smaller degree than we would
suggest in practice, but we chose this so that the tree would gain depth as nnodes was increased. Figure 8
shows the results for updates with nplUpdates ∈ {5, 10} and for reads with nplReads = 30, to mimic a read-
intensive workload. The self-service throughput increased with an increase in the number of nodes, e.g.,
the update throughput for nplUpdates = 10 increased from 99.25 updates/second with 15 nodes to 242.38
updates/second with 55 nodes. Latency also increased as expected. The sharper latency increase between
nnodes = 25 and nnodes = 35 results from the growth in the maximum tree depth in a tree of degree k = 5.
Reads are local and performed very well.

Figure 9 shows microbenchmarks for multi-object operations. We used nnodes = 45, k = 5, nupdates =
150, nobjects = 100, nplReads = nplUpdates = 5 and varied µobjsPerUp ∈ {1, 2, 3, 4, 5}. Note that when
µobjsPerUp = 1, the number of objects per update could be one or more than one (as sampled) and so
this case is not the same as the single-object case. The update latency grows as the number of objects
per operation grows. This results from two factors: (i) each node retrieves the objects sequentially (see
Section 4.3.1); and (ii) the frequency of operations involving the same object increases with the number of
objects per operation, and so the number of operations that “conflict” grows.
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Figure 8: Microbenchmarks on PlanetLab. Mean latency/operation and throughput for updates (U) with
nplUpdates ∈ {5, 10} and for reads (R) with nplReads = 30.
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Figure 9: Microbenchmarks on PlanetLab with 45 nodes. Latencies and throughputs for updates (U) and
reads (R) against mean objects per update.

7.3 Network traffic classification service

As discussed previously, the microbenchmarks of Section 7.2 are pessimistic, in that a service with very
low-cost operations is one that is poorly suited to the strengths of self-service. In this section we evaluate
the implementation of a service that better represents the types of applications for which self-service was
designed, and that may be of independent interest. We briefly motivate and describe this service here.

Today, network traffic characterization is an area of active research, including techniques to classify
traffic as that of a particular application (e.g., see [26, 19] and the references therein) or as anomalous and
thus indicative of an attack (e.g., see [23, 46]). Our thesis is that models for performing this classification can
be built more effectively by aggregating contributions from many networks, rather than each administrator
constructing classifiers based on his own network’s traffic.

We are thus building a service through which networks can contribute labeled traffic records toward
the construction of classifiers for network traffic. In this application the server is run by some coordination
center (e.g., CERT/CC), the clients are various networks that contribute records and the shared objects are
the classifiers. We envision a number of such classifiers, parameterized by application (HTTP, BitTorrent,
etc.), transport (TCP, UDP, etc.), and/or attack attributes (“attack” vs. “normal”). The classifiers that our
service supports are Support Vector Machines (SVMs) [8], a popular learning mechanism used for classi-
fication and regression and that are particularly well-suited to data with many features. More specifically,
we use a variant of traditional SVMs called incremental SVMs [15, 6] that allow the models to be con-
structed incrementally as new contributions are received. SVMs have previously been used to characterize
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network traffic [13, 27], though not in a distributed setting. Our implementation uses the LIBSVM library4

to construct SVM models from raw data.

7.3.1 Experiment setup

Since we used our service for performance evaluation, we tried to construct SVMs as realistically as possible,
and for this purpose we needed network traffic records from which to build these SVMs. We used the
KDD Cup 1999 intrusion detection dataset5 as raw data. This data consists of labeled connection records,
each consisting of 41 features related to the connection including the application protocol, the transport
protocol, protocol flags, connection length, “attack” vs. “normal”, etc. We formatted and scaled this raw
data according to LIBSVM’s requirements and then divided it among the clients.

We found SVM training on this data to be sufficiently computationally intensive that it was not feasible
to perform these experiments on PlanetLab. Instead we used a 75-node rack consisting of Intel Pentium 4
2.8GHz machines, each with 1GB of memory and an Intel PRO/1000 network interface card. The machines
were connected with an HP ProCurve Switch 4140gl specified with a maximum throughput of 18.3Gbps. In
this configuration, one of the 75 machines was used as the server; other nodes acted as clients. Each client
performed nupdates update operations, each operation updating a classifier with b new records at that client.

We compared the performance of our self-service implementation of this service against the same
service built using a centralized implementation, which we optimized to the best of our ability. This im-
plementation served read and update operations using different threads, so reads were not queued behind
computationally expensive updates. To update a classifier, a client sent b connection records to the server
who updated the corresponding classifier with this data. The server responded to a read operation by sending
the requested classifier back to the client. The optimizations discussed for the self-service implementation—
compressing objects, serving reads from deep copies and keeping objects in memory—were preserved in
the centralized implementation.

7.3.2 Results

Our first experiment evaluated single-object operations using nnodes = 75, nupdates = 150, nobjects = 50,
and b = 500. For the self-service implementation we chose k = 5. We varied nplReads = nplUpdates ∈
{1, 5, 10, 15, 20}. Figure 10 plots the results for all cases. Our experiments showed that self-service
throughput was much higher and latency much lower than the centralized case for both updates and reads—
e.g., for nplReads = nplUpdates = 20, the self-service implementation performed 127.48 updates/second
at 3.7 secs/update, whereas the centralized server could only manage 5.37 updates/second at 153.37 sec-
onds/update. Update throughput (in either implementation) did not increase due to the compute intensive
nature of updates (the CPUs could manage only so much computation regardless of the number of parallel
operations being requested by each client). Self-service update latencies increased with more parallel op-
erations since this increased per-object collisions. In the centralized server case, however, even updates to
different objects competed with each other for server CPU, yielding far worse performance. The contention
at the centralized server also impacted read processing. In contrast, read throughput in the self-service im-
plementation increased with an increase in parallel operations, since (single-object) reads are served locally.

Next we conducted experiments with multi-object operations. In this application, an example of a
multi-object operation would be updating two models with the same traffic records, e.g., models for TCP
and HTTP traffic. Thus, a multi-object operation updates all the models involved using the same data.
Here we used nnodes = 75, nupdates = 150, nobjects = 50, nplReads = nplUpdates = 5 and b = 500.
We varied µobjsPerUp ∈ {1, 2, 3, 4, 5}. Figure 11 plots the results. This experiment showed that even for

4http://www.csie.ntu.edu.tw/˜cjlin/libsvm
5http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Figure 10: Building traffic models on 75 nodes: Latencies and throughputs for self-service updates (Self-
U) and reads (Self-R), and centralized updates (Cent.-U) and reads (Cent.-R) for nplReads = nplUpdates ∈
{1, 5, 10, 15, 20}.
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Figure 11: Building traffic models on 75 nodes: Latencies and throughputs for self-service updates (Self-U)
and reads (Self-R) and centralized updates (Cent.-U) and reads (Cent.-R) against mean objects per update.

multi-object operations where the self-service implementation needed to sequentially retrieve objects, it still
performed much better than the centralized server that had to perform all the processing itself. For example,
for µobjsPerUp = 5 self-service performed 11.99 updates/second at 14.8 seconds/update compared to only
2.34 updates/second at 116.2 seconds/update by the centralized service. Reads in the centralized server case
performed much worse than the self-service local reads. However, the centralized server reads did not suffer
as much as they did in the previous experiment (Figure 10) since per-operation processing (e.g., connection
establishment) at the server was amortized in multi-object operations.

Our final experiment showed the effect of an increasing number of nodes on the latency and through-
put of read and update operations; see Figure 12. For this experiment we used single-object operations
with nupdates = 150, nobjects = 50, nplReads = nplUpdates = 5, and b = 500, and varied nnodes ∈
{10, 20, . . . , 70}. The centralized server’s performance (both latency and throughput) suffered drastically
as the number of clients increased, whereas the self-service sustained its performance much better. For
example as the nodes increased from 10 to 70, the centralized server’s throughput decreased from 9.58 to
6.65 updates/second and the latency increased from 3.4 seconds/update to 38.9 seconds/update. In contrast,
for the same increase in nnodes, the self-service throughput increased from 82.5 updates/second to 147.67
updates/second without a very large increase in latency (from 0.42 to 1.38 seconds/update). The self-service
update throughput did not increase much more since adding nodes also resulted in more per-object colli-
sions.
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Figure 12: Building traffic models on 75 nodes: Latencies and throughputs for self-service updates (Self-U)
and reads (Self-R), and centralized updates (Cent.-U) and reads (Cent.-R) against the number of nodes.

8 Conclusion

We presented a self-service approach to implementing highly scalable services without the need to add to
server resources and while providing strong consistency semantics. Our approach is well-suited to services
where state can be decomposed into small objects that are typically accessed individually, operation pro-
cessing is compute intensive and client churn is low. Our algorithms allow objects to be migrated to clients
so clients can perform their own operations, enabling the service to scale gracefully and in the process,
preserving clients’ privacy. Update operations are serialized while efficient single-object read operations
are supported. Clients may join, leave or disconnect from the service. In case of disconnects, the service
recovers objects whose latest versions are left unreachable. We demonstrated these advantages through the
evaluation of a large-scale network traffic classification service built using self-service, which convincingly
outperformed a centralized implementation.
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