
Network-Aware Partitioning of
Computation in Diamond

Alex Nizhner1 Larry Huston2

Peter Steenkiste Rahul Sukthankar3

June 2004

CMU-CS-04-148

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The Diamond storage architecture enables efficient interactive search of unindexed data by sup-
porting the execution of application-specific filter binaries directly at storage devices. This func-
tionality allows irrelevant objects to be discarded at the early stages of the search pipeline, thereby
reducing the load on the interconnect and the user’s workstation. In order to achieve efficient use
of resources under dynamic conditions, Diamond adaptively partitions computation among the
storage devices and the user’s host.
In this paper, we explore the behavior of Diamond systems in network-bound configurations.
We develop a performance model capturing the pertinent properties of a Diamond system; in
particular, we characterize the amount of network traffic generated as a result of evaluating a
Diamond query. Ultimately, we formulate a partitioning algorithm that provably minimizes the
amount of traffic injected into the network during the execution of a search under CPU time
constraints at processing stages.

1Alex Nizhner (nizhner@andrew.cmu.edu) is with the Information Networking Institute.
2Larry Huston is with Intel Research Pittsburgh.
3Rahul Sukthankar is with Intel Research Pittsburgh and the Robotics Institute.

Keywords: Active storage, dynamic partitioning, interactive search

1 Introduction

Diamond [4] is a storage architecture that enables interactive brute-force search of large collections
of unindexed data, permitting the user to quickly retrieve a small fraction of desired objects. Under
exhaustive search implemented with a traditional storage architecture, each data item passes from a
storage device to the user’s workstation over the interconnect; most of those items are subsequently
discarded at the users host. The vast quantities of data involved typically overload the interconnect
or the host processor. The Diamond architecture, on the other hand, is based on the concept of
early discard, where the majority of irrelevant data are discarded at the early stages of the search
pipeline. Early discard is made possible by the active storage abstraction and the execution of
application-specific code directly at storage devices (Figure 1).

A principal feature of the Diamond architecture is its dynamic adaptation to changing run-time
conditions precipitated by heterogeneous storage device configurations, hardware or interconnect
infrastructure updates, competing searches executing concurrently, and other factors. The current
Diamond prototype uses run-time measurements of pertinent system state to arrive at the most
efficient ordering of query elements, and to adaptively partition computation between the storage
devices and the host system. In this paper we concentrate on the latter problem.

The Diamond run-time continuously adjusts the amount of computation performed by pro-
cessing stages: work is re-distributed among the storage devices and the host as necessary in order
to ensure that processing elements are neither over-loaded nor under-utilized. In systems limited
by the capacity of the interconnect, such dynamic partitioning presents an additional problem—
namely, it becomes vital to minimize the amount of data exchanged between the storage devices
and the host workstation. The set of objects discarded at the storage device, and consequently the
amount of data transferred over the network, can vary drastically depending on which elements
of a query are applied to objects in the storage subsystem. The goal of this work is a run-time
mechanism for determining the elements of a query that are to be executed on a given object in
order to minimize the amount of network traffic generated, coupled with dynamic adaptation of
processing load. In the sections that follow, we derive an efficient solution to this problem.

The rest of this paper is organized as follows. Section 2 provides a brief discussion of related
work. Section 3 presents an overview of an idealized Diamond architecture and introduces the
assumptions and basic notation used throughout the paper. Section 4 builds on the notation
introduced in Section 3 to develop an analytical framework for the problem at hand. In Section 5,
we formally analyze the problem of network-aware partitioning, describe a partitioning algorithm
that minimizes the communication cost associated with a search and prove its optimality. Finally,
Section 6 summarizes the main contributions of this paper and discusses several directions for
future work.

2 Related Work

The problem we consider in this paper falls in the more general domain of automated distributed
partitioning. Here we mention some of the more relevant efforts in this area.

Abacus [1], a run-time system for data-intensive applications, automatically moves computation
between storage servers and clients in a cluster environment. Migration decisions in Abacus are
based on run-time observations and profiling of inter-object communication patterns and resource
usage. Coign [3] profiles the inter-component communication patterns of COM-based applications
and applies a graph-cutting algorithm offline to arrive at a static partitioning that minimizes

1

Disk

P
ro

ce
ss

or

F
ilt

er
 3

F
ilt

er
 1

F
ilt

er
 2

DiscardDiscard

D
is

k
Lo

gi
c

In
te

rc
on

ne
ct

M
em

or
y

In
te

rc
on

ne
ct

P
ro

ce
ss

or

Early Discard

Active Storage Devices Host Computer

Figure 1: Diamond Architecture

communication latency. River [2] adaptively balances the data rates in producer-consumer pairs,
allowing for efficient use of heterogeneous cluster resources.

Diamond shares many features of the above systems, particularly in the dynamic re-distribution
of computational load across the storage devices and the user’s host, and filter reordering based on
run-time observations of system state. Features that set our work apart are Diamond’s run-time
environment and programming model, tailored specifically for interactive search. The resulting
regularity of communication patterns in a Diamond system makes the hard problem of run-time
distributed partitioning at least partially tractable and analyzable, and allows certain optimality
guarantees to be made.

3 Diamond Overview

A Diamond query is represented as a searchlet—a piece of executable code comprised of a partially-
ordered set of filters, each of which may independently choose to discard an object. The filters in a
searchlet are evaluated sequentially in an order chosen by the Diamond run-time. The fraction of
objects passed by any given filter depends on the filter’s relative position in the evaluation order
and the set of objects passed by previously-evaluated filters, as shown in Figure 2. This fraction
is referred to as the filter’s conditional pass rate in [4]; the Diamond system provides facilities for
its run-time estimation. Our work assumes knowledge of the conditional pass rates of all filters in
a fixed ordering.

For each filter, the run-time environment maintains an estimate of its average computation
cost expressed in units of CPU time; we again assume knowledge of this average CPU cost in our
analysis. Additionally, each filter may compute some amount of intermediate state for each object
it passes, and communicate it to subsequent filters in the form of object attributes (in fact, filters
are sometimes designed for the sole purpose of computing such state, and perform no discard at
all). Likewise, a filter may remove a piece of state computed by an earlier filter. The Diamond
run-time maintains a running estimate of the average amount of metadata each filter adds to
objects it passes; below, we assume knowledge of this quantity as well.

Throughout our analysis, we focus our attention on an idealized Diamond pipeline shown in
Figure 1, consisting of k identical storage devices, a host computer, and an interconnect with a
constant bandwidth of R bytes per second. We assume, for simplicity, that the host computer can
process objects at the same rate as any of the storage devices. Cases where this assumption does
not hold are easily accounted for with appropriate adjustments to the constant k. Presently we do

2

p 2
Filter 2Filter 1

1p p
Filter 3

3

Figure 2: Searchlet Evaluation. The filters are applied, in sequence, to each object in the collection.
The order of evaluation is chosen by the Diamond run-time environment. In the ordering above, Filter 1
is evaluated first, and passes p1 of the objects to which it is applied. Filter 2 is evaluated next, passing
p2 of the objects passed by Filter 1; similarly, Filter 3 executes last, with a conditional pass rate of p3.

not consider multi-level hierarchies with intermediate processing nodes or heterogeneous storage
device pools, although our results can naturally generalize to such configurations.

It is understood that the algorithms presented here are used in the context of a more general
adaptive partitioning scheme whereby the computational resources of the system are kept appro-
priately utilized. Similarly, we rely on the existence of a scheme that determines an efficient filter
ordering as described in [4], and assume this ordering to be fixed for the purposes of this work.

We now summarize the notation and terminology used in subsequent sections. Consider a
sequence of filters F = (Fi | 0 ≤ i < n), which determines both a searchlet on n filters and a fixed
order in which those filters are evaluated. We associate the following parameters with each filter
Fi:

• ci: The average computational cost or running time.

• pi: The conditional pass rate (i.e., the fraction of passed objects among all those reaching Fi
in their transit through F).

• Mi: The average amount of meta-data added to passing objects.

• Di: The average amount of per-object data seen by Fi, given by S +
∑i−1

k=0Mi, where S is
the average object size.

These parameters (summarized in Table 1) determine the externally-visible behavior of a filter
sequence—that is, the set of objects discarded, the average evaluation time, and the intermediate
state carried by passing objects. The definition below will prove useful in the discussion that
follows.

Definition 1 Filter sequences F and F ′ are said to be equivalent if they have the the same ob-
servable effect on a given object, that is,

• both F and F ′ either pass the object or discard it;

• if F and F ′ pass the object, the amounts of meta-data generated by F and F ′ are the same;

• when executed to completion, F and F ′ exhibit identical running times.

The Diamond run-time may manipulate a filter sequence (e.g., by combining adjacent filters
into monolithic blocks) in order to reduce its network traffic footprint, as long as the externally-
visible behavior of the sequence is unchanged. In other words, the sequence must remain equivalent
to the original.

3

Table 1: Essential Notation
F An ordered sequence on n filters

Fi The filter at index i in F

ci The average running time of Fi
pi The conditional pass rate of Fi
Mi The average metadata due to Fi
Di The average per-object data seen by Fi

4 Performance Model

In this section, we describe a generalized model of filter sequence evaluation, and introduce a
collection of related analytical tools.

4.1 The Bypass Distribution

The partitioning algorithm described in [4] executes the filter sequence in its entirety on a fraction
of objects, and transmits the remaining fraction to the host unprocessed. In general, the evaluation
of a filter sequence on a given object need not complete at the storage device—it may be suspended
upon the evaluation of any filter and resumed at the host. For the purposes of analysis, each filter
can be treated as though configured to execute on some fraction of objects reaching it in their
transit through the sequence. We formalize this notion in terms of a bypass distribution, shown
conceptually in Figure 3.

Definition 2 A bypass distribution is a sequence of fractions bi ∈ [0, 1],≤ i < n assigned to
corresponding filters of a sequence F such that:

• A (1 − bi) fraction of objects reaching Fi are transmitted to the host along with their accu-
mulated metadata; evaluation resumes at the host starting with Fi, and

• Fi is evaluated at the disk on the remaining bi fraction of objects reaching it.

It should be emphasized that this model does not prescribe a particular implementation of
the Diamond run-time environment. Any evaluation strategy can be generalized in this fashion,
including dynamic ones in which bypass fractions are determined implicitly as a result of per-object
decisions.

As will become apparent in Section 5.4, bypass distributions under which contiguous sub-
sequences of filters are executed atomically are of particular interest. The original partitioning
algorithm in Diamond is a special case of this, with the entire searchlet executing to completion
on any given object, that is, with bi = 1 for i > 0.

Definition 3 Given a sequence F and a bypass distribution b, the subsequence

Fkm = (Fk, Fk+1, . . . , Fm | k ≥ 0, k ≤ m < n)

is said to comprise a filter group or execute atomically under b if bk+1 = · · · = bm = 1.

Note that we may construct a sequence F ′ equivalent to F by replacing Fkm with a single filter
which simply executes the filters in Fkm sequentially; for F ′, the filters in Fkm always execute
atomically.

4

Filter 1 Filter 2
b 1

1−b 1

b 2

1−b 2

1p p 2

Figure 3: Bypass-based Partitioning. Filter 1 executes on the fraction b1 of the ojects reaching
it, and of all those passes the fraction p1. The fraction 1 − b1 of all objects reaching Filter 1 are
transmitted to the host for processing. Similarly, Filter 2 executes on the fraction b1p1b2 of objects
that reach Filter 1, while the remaining objects passing Filter 1 are transmitted to the host.

4.2 Cost Functions

The assignment of a bypass distribution to a filter sequence determines a collection of related
cost metrics. Below, we express the on-disk and host computational costs, communication cost,
and overall object throughput associated with evaluating a sequence F as functions of a bypass
distribution b.

4.2.1 CPU Cost

We first derive the average CPU time required in order to fully evaluate the sequence F—that
is, the expected time until an object is either discarded or presented to the user. Consider the
fraction of objects in the entire collection on which a given filter is evaluated. Filter F0 is applied
to every object. Filter F1, on the other hand, sees only p0 of those: that is, only the objects that
pass F0. Similarly, each successive filter is evaluated only on the objects that pass its predecessor.
CF , the average computational workload associated with evaluating the sequence F , is then given
by:

CF = c0 + p0c1 + p0p1c2 + · · ·+
(
n−2∏

i=0

pi

)
cn−1 (1)

With the assignment of a bypass distribution, the execution frequency of a filter at a storage
device is adjusted to account for its bypass fraction, and the bypass fractions of the preceding filters.
Thus, F0 executes on b0 of the total number of objects in the collection, and F1, accordingly, on
b0p0b1—that is, b1 of the objects passed by F0. The average “on-disk” running time of F under b
is therefore expressed as follows:

C(b) = b0c0 + b0b1p0c1 + b0b1b2p0p1c2 + · · ·+
(
n−1∏

i=0

bi

)(
n−2∏

i=0

pi

)
cn−1, (2)

where the i-th term in the summation corresponds to the incremental cost of evaluating Fi under
b. Note that CF = C(b) for b = (1, 1, . . . , 1).

The average additional CPU time required to complete the evaluation of F at the host is simply
the complement of the storage device CPU time C(b):

H(b) = CF − C(b) (3)

5

4.2.2 Network Cost

Next, we derive the expected amount of data emitted by the disk per object as a result of evaluating
F under b.

Let S be the average object size, and let Di, 0 ≤ i ≤ n be the amount of data that would be
injected into the network if filter Fi were chosen for bypass; i.e., Di = S +

∑i−1
k=0Mi. (Recall from

Section 3 that Mi represents the average amount of intermediate state added to objects by filter
Fi.) Consider the quantity Ni(b), the expected amount of data emitted given that F0, . . . , Fi−1

have executed and passed the object:

• With probability (1− bi), the evaluation of F results in the emission of Di bytes.

• With probability bi, Fi executes, resulting in 0 bytes in the event of discard, and Ni+1(b)
bytes otherwise.

Thus,

Ni(b) = bipiNi+1(b) + (1− bi)Di, (4)

with Nn(b) = Dn. N(b), the average per-object amount of data transferred over the interconnect,
is then given by N0(b), which expands to

N(b) =
n−1∑

k=0

[(
k−1∏

i=0

bi

)(
k−1∏

i=0

pi

)
(1− bk)Dk

]
+

(
n−1∏

i=0

bi

)(
n−1∏

i=0

pi

)
Dn

Note that the above expression consists of precisely n + 1 additive terms. Each of the first
n represents the average amount of data injected into the network in the event that the on-disk
evaluation of F stops at the given filter, weighted by the corresponding probability; in a similar
fashion, the final term corresponds to the event that an object passes through all of F at the disk.

For the special case where Mi � S, i ∈ {0, . . . , n− 1} (i.e., searchlets consisting of filters that
compute little intermediate state), we have

N(b) ' S

n−1∑

k=0

[(
k−1∏

i=0

bi

)(
k−1∏

i=0

pi

)
(1− bk)

]
+ S

(
n−1∏

i=0

bi

)(
n−1∏

i=0

pi

)

= SP,

where the quantity

P =
n−1∑

k=0

[(
k−1∏

i=0

bi

)(
k−1∏

i=0

pi

)
(1− bk)

]
+

(
n−1∏

i=0

bi

)(
n−1∏

i=0

pi

)

represents the fraction of objects escaping the disk.

4.2.3 Throughput

Let a bypass distribution b be given. In a system where the data collection is evenly distributed
among k identical storage devices, the storage subsystem emits k objects every C(b) seconds on

average, yielding a per-object time of C(b)
k . With a constant bandwidth of R bytes per second, the

6

interconnect transfers the average object in N(b)
R seconds. Finally, the host workstation takes an

average of H(b) seconds to process each arriving object.
Overall object throughput is then determined by that of the slowest stage of the search pipeline:

T (b) =
1

max
(
C(b)
k , N(b)

R ,H(b)
) (5)

5 CPU-Constrained Partitioning

We now turn our attention to the problem of determining a throughput-maximizing partitioning
of work among the storage devices and the host workstation, with a particular emphasis on con-
figurations limited by the speed of the interconnect. A Diamond system attempts to arrive at an
allocation of the workload to processing resources that ensures that neither the storage devices nor
the host are idle, resulting in a typically-nontrivial fraction of the computational workload being
assigned to each storage device. With run-time observation of transmit queue sizes as indicative of
processing resource utilization, this fraction can be numerically estimated, or determined implic-
itly by means of per-object decisions. Below, we make the simplifying assumption that a numeric
value of the computational workload is specified externally.

Definition 4 We define the computational workload or CPU time constraint assigned to a storage
device as the amount of CPU time the storage device is expected to devote to the average object.
This quantity can be expressed as βCF , β ∈ [0, 1], where CF is the expected total computational
workload. The assigned computational workload is specified in terms of the fraction β alone.

A storage device may satisfy this assignment in numerous ways, by choosing to evaluate certain
filters on some objects but not others. However, distinct evaluation (i.e., partitioning) strategies
that in the long run yield the same per-object computational expenditures can exhibit vastly
different network behavior—an unsurprising phenomenon that is due to the differences in filter
selectivities and the amounts of intermediate state produced. Clearly, in network-bound systems it
is crucial that the amount of traffic generated by an evaluation strategy be minimized. Somewhat
less obvious is the case of CPU-bound systems, where reducing the levels of network traffic is
beneficial due to the nontrivial CPU costs associated with transmitting data.

In this section we focus on identifying CPU-constrained partitioning strategies that minimize
the amount of data transferred over the interconnect. We begin with a look at the simple strategy
described in [4], which we will call the Naive partitioning strategy. Under Naive partitioning, the
Diamond run-time makes no per-filter decisions at all; instead, the entire filter sequence is evaluated
atomically on a fraction of objects corresponding to the fraction of the computational workload
assigned to the storage device. The remaining objects are processed similarly at the host. Intuition
suggests that this technique does not always minimize the load on the interconnect. Consider, for
example, a filter sequence in which a highly selective and computationally-inexpensive filter is
followed by a very expensive one which happens to pass most objects it sees, while computing
an intermediate representation of the objects for use by later filters in the sequence. As we will
show, Naive partitioning is indeed suboptimal in such cases. Conversely, we will see that Naive
partitioning can perform very well in the symmetric case, i.e., that of an expensive but not selective
filter followed by a cheap and selective one.

In the rest of this section, after introducing some necessary formalism, we examine another
partitioning strategy that sheds more light on our goal. We then derive a strategy that is optimal

7

in terms of network traffic footprint and compare its behavior to that of the other strategies on a
few representative filter sequences.

5.1 Filter Efficiency

Before proceeding further, we introduce some additional terminology in order to capture the notion
of the relative “desirability” of filters at which we hinted above.

Definition 5 We define δi, the output ratio of filter Fi, to be the per-object amount of data Fi
offers to subsequent filters relative to the amount of data Fi accepts, in proportion to its normalized
running time:

δi =
piDi+1 −Di

ci
CF

=
CF
ci

(piDi+1 −Di) (6)

Recall that Di represents the average amount of data carried by objects seen by Fi, and Di+1,
accordingly, is the amount of data carried by objects which Fi passes.

Low output ratios are thus more desirable than high ones—an inexpensive and selective filter
is expected to have a large negative output ratio, in contrast to the positive output ratio of a
filter that computes large amounts of intermediate state and discards few objects. As will become
apparent shortly, sequences in which filters are ordered from most to least efficient deserve special
recognition:

Definition 6 A filter sequence F is said to be concave if δi ≤ δi+1 for 0 ≤ i ≤ n− 2. Note that a
filter sequence that is not concave must contain a pair (Fk, Fk+1) with δk > δk+1. Such filter pairs
are referred to as convex.

Filters in a non-concave sequence can be thought of as participating in a producer-consumer
relationship, almost literally so in the case of filters designed for the purpose of computing in-
termediate state. One would expect that such convex pairs will be executed atomically under a
network-optimal partitioning: naturally, data ought to be consumed close to where it is produced.
In Section 5.4 we demonstrate that this is indeed the case.

5.2 The Bypass Distribution Function

In the discussion above, we had implicitly defined a filter sequence evaluation strategy satisfying
a CPU time constraint as a mapping from a fraction of the total computational workload to a
subsequence of filters evaluated on a given object at the storage device. In Section 4, we had
argued that the latter is naturally generalized in terms of a bypass distribution. We formalize this
concept as follows:

Definition 7 A partitioning algorithm on a filter sequence F is defined as a function BF that
maps all β ∈ [0, 1] to bypass distributions, with the additional property that

C(BF (β)) = βCF

We refer to the function BF as a bypass distribution function on the filter sequence F .

8

The quantity βCF represents the CPU time constraint. It is computed from β, the fraction
of the total workload assigned to the storage device; accordingly, the host system is assigned the
fraction (1− β), resulting in an average per-object CPU time expenditure of (1− β)CF . Thus, an
assigment of β = 0 dictates that all computation be performed at the host (achieved with a bypass
distribution in which the leading element is 0), whereas β = 1 requires that the storage device fully
process every object, corresponding to the bypass distribution b = (1, 1, . . . , 1). In this manner we
can express the Naive partitioning algorithm described above as the bypass distribution function
BN
F such that ∀β ∈ [0, 1], BN

F (β) = (β, 1, 1, . . . , 1).
Given β and a distribution function BF , throughput is not limited by the network if and only

if

N(BF (β))

R
≤ max

(
C(BF (β))

k
,H(BF (β))

)

= max

(
βCF
k

, (1− β)CF

)

= max

(
β

k
, 1− β

)
CF

Restated more formally, our challenge is the optimization problem of computing distribution
functions that minimize their associated network costs.

Definition 8 A bypass distribution function B∗F is called an optimal distribution function if ∀BF
and ∀β ∈ [0, 1],

N(B∗F (β)) ≤ N(BF (β))

Note that this definition implies neither the uniqueness nor the existence of B∗F for an arbitrary
filter sequence F . The latter will be demonstrated in Section 5.4.

5.3 Greedy Partitioning

We now revisit the hypothetical filter pair that we saw in the discussion of the Naive partitioning
strategy, a pair comprised of a highly desirable filter followed by a highly undesirable one. Our
intuition was that Naive partitioning was unlikely to perform well on such filter sequences: since
the second filter provides meager (if any) benefits in terms of data reduction while carrying a
nontrivial CPU time penalty, we could achieve much better results by executing the first filter
on as many objects as possible under the CPU time constraint, and immediately transmitting
the passing objects to the host. There we could evaluate the second filter without affecting the
interconnect at all. We expect that a partitioning strategy with such properties would be optimal
for this class of filter pairs; moreover, we expect that a similar approach of “greedily” executing
filters would generalize to all sequences in which the filters are ordered from most to least desirable
(that is, the concave sequences defined in Section 5.1). In this section, we formulate such a strategy
and confirm our intuition.

Consider a bypass distribution function BG
F (hereafter referred to as the Greedy distribution

function) characterized by the property that ∀β ∈ [0, 1] and b = BG
F (β), bi 6= 0 ⇒ bi−1 = 1

for i > 0. The Greedy distribution function satisfies the disk CPU constraint with the shortest
possible subsequence of the filter sequence F starting with filter F0. It is easy to see that there
exists a unique Greedy distribution function for any sequence F .

9

Let βi = βi−1 + ci−1

CF

∏i−2
k=0 pk for 1 ≤ i ≤ n, with β0 = 0; the quantity ci−1

∏i−2
k=0 pk corresponds

to the incremental cost of Fi−1 in the expansion of CF . (Note that βn = 1.) The fraction βi
represents the normalized cumulative CPU time associated with executing the sequence F until
filter Fi is reached. Let β ∈ [0, 1] be given, and let us choose Fk such that (F0, . . . , Fk) is the
shortest subsequence of F starting at F0 which can satisfy the CPU time constraint. BG

F (β) then
exhibits the following structure:

• bi = 1 for 0 ≤ i < k; that is, the filters F0, . . . , Fk−1 are evaluated at the storage device only.

• bk = β−βk
βk+1−βk . The fraction of objects on which the filter Fk is evaluated at the storage device

is chosen so that the CPU time constraint is satisfied.

• bi = 0 for k < i < n; that is, none of the remaining filters are evaluated at the storage device.

We now examine the shape of N ◦ BG
F , the network cost of the Greedy distribution function,

illustrated in Figure 4. We observe that N ◦ BG
F is piecewise-linear in β, with linear segments

punctuated at points βi for 0 ≤ i ≤ n; furthermore, we note that N(BG
F (βi)) =

(∏i−1
k=0 pi

)
Di,

where Di, again, is the total amount of data associated with the average object immediately before
the execution of filter Fi. Each segment of N ◦BG

F naturally corresponds to a filter in the sequence
F : for β < βi, filter Fi is never evaluated at the storage device, whereas for β > βi+1 it is never
evaluated at the host. Moreover, the following holds for the slope si of each segment of N ◦BG

F :

si =
N(BG

F (βi+1))−N(BG
F (βi))

βi+1 − βi

=
CF

ci
∏i−1
k=0 pk

((
i∏

k=0

pi

)
Di+1 −

(
i−1∏

k=0

pi

)
Di

)

=
CF
ci

(piDi+1 −Di)

= δi

10

β 1 β 2 β 3 β 4

δ 0

δ 1

δ 2 δ 3

δ 4

β

F
GN(B ())β

0

S

1

Fδ (β)

Figure 4: The Greedy Distribution Function and Filter Output Ratios. The slope of the
segment of N ◦BG

F corresponding to filter Fi is precisely δi, the output ratio of Fi. The quantity δF (β)
is defined as the slope of the line connecting N(BG

F (0)) and N(BG
F (β)).

The shape of N ◦ BG
F thus permits a very natural graphical interpretation of the terminology

we defined in Section 5.1. In particular, the terms “concave” and “convex” are given their proper
geometric meaning, as shown in Figure 5.

We are now ready to prove the main result of this section, namely the optimality of Greedy
partitioning for concave filter sequences. As an analytical aid, we define the quantity δF (β) as the
slope of N ◦BG

F over the range [0, β]:

δF (β) =
N(BG

F (β))−N(BG
F (0))

β

=
N(BG

F (β))−D0

β

Claim 1 BG
F is an optimal distribution function for any concave filter sequence F .

Proof By induction on n:

• Base Case. The result holds trivially for one-filter searchlets.

• Inductive Step. Let β ∈ [0, 1] and a concave n-filter sequence F with n > 1 be given.
Consider a bypass distribution b such that C(b) = βCF . Of the total disk CPU budget βCF ,
filter F0 consumes b0c0 units, with the remaining βCF−b0c0

b0p0
units assigned to the subsequence

F ′ = (F1, . . . , Fn−1) with total cost CF ′ = CF−c0
p0

. The latter allocation translates into a

workload fraction of β′ = βCF−b0c0
b0p0CF ′

. F ′ is a concave sequence on n − 1 filters; applying

the inductive hypothesis yields that BG
F ′ is an optimal distribution function on F ′. With

11

β 1 β 2 β 3

δ 0

δ 1

δ 2 δ 3

β

F
GN(B ())β

0 1

S

(a) A concave sequence

β 1 β 2 β 3

δ 0

δ 3

δ 1

δ 2

β

F
GN(B ())β

0 1

S

(b) A non-concave sequence with convex pair (F1, F2)

Figure 5: Filter Sequence Classification. The Greedy distribution function allows an intuitive
graphical representation of filter sequence properties. The concave shape in (a) dictated by the mono-
tonic ascending ordering of output ratios, and similarly the convex shape formed by the pair (F1, F2)
in (b) give rise to the terminology used in this paper.

12

N(B∗F ′(0)) = p0D1, we have N(B∗F ′(β
′)) = p0D1 + β′δF ′(β′). Then:

N(b) = b0N(B∗F ′(β
′)) + (1− b0)D0

= b0(p0D1 + β′δF ′(β
′)) + (1− b0)D0

=
βCF
p0CF ′

δF ′(β
′) + b0

(
D0 +

c0

CF
δ0 −

c0

p0CF ′
δF ′(β

′)
)

+ (1− b0)D0

We show thatN(b) is a non-increasing function of b0. Consider first the expression βCF
p0CF ′

δF ′(β
′).

Since F ′ is concave, δF ′ is a non-decreasing function of β ′; β′, in turn, is a monotonically
decreasing function of b0. Next, let us examine the quantity

b0

(
D0 +

c0

CF
δ0 −

c0

p0CF ′
δF ′(β

′)
)

+ (1− b0)D0

Since F is concave, δ0 never exceeds δF ′(β
′), scaled to account for the fractional cost of F ′

in F . More formally,

δ0 ≤ CF
p0CF ′

δF ′(β
′)

c0

CF
δ0 ≤ c0

p0CF ′
δF ′(β

′)

c0

CF
δ0 −

c0

p0CF ′
δF ′(β

′) ≤ 0,

from which we have

D0 +
c0

CF
δ0 −

c0

p0CF ′
δF ′(β

′) ≤ D0

The final two terms in the expression for N(b) given above therefore also form a non-
increasing function of b0. It follows that N(b) is minimized only when b0 is maximized
under the CPU time constraint—that is, assigned according to BG

F .

5.4 Network-Optimal Partitioning

This section culminates our analysis with a description of a partitioning algorithm that minimizes
the communication cost of executing a search under a CPU time constraint. Again, we begin by
considering a sequence comprised of two filters with significantly different output ratios, e.g., a
highly selective yet computationally inexpensive filter coupled with the opposite—a filter with a
long running time that discards few objects. In the previous section, we have shown that Greedy
partitioning achieves optimal results when such a sequence is concave, that is, when the cheap
selective filter is evaluated first. Now we concentrate on the symmetric case of a convex pair.
Intuitively, Greedy partitioning is precisely the wrong approach for such sequences. For any given
object, evaluating both filters results in a much greater chance of discard than evaluating the first
filter only, and since the second filter is comparatively inexpensive, evaluating both atomically

13

on a slightly smaller fraction of objects generates a smaller overall amount of network traffic. As
mentioned previously, the filters in a convex pair can be thought of as participating in a producer-
consumer relationship, and separating the consumer from the producer is unlikely to be of value.
Thus, we expect Naive partitioning to be optimal for convex two-filter sequences.

The arguments in this section proceed as follows. First, we formally prove the argument
outlined above and establish that any network-optimal evaluation strategy must execute all convex
pairs in a filter sequence atomically. We then recursively extend the notion of a convex pair,
and demonstrate that all network-optimal evaluation strategies partition the filter sequence into
atomically-executing filter groups (Definition 3) such that no convex pairs remain, and the resulting
sequence of groups is concave. Finally, we apply the result of the preceding section to arrive at
Group-Greedy partitioning—an evaluation strategy optimal for any filter sequence, concave or
otherwise.

Before we begin, we must revisit the network cost function N defined in Section 4.2.2. The
introduction of the filter output ratio δi permits an alternative formulation of N which will be
useful in the discussion below:

N(b) = (1− b0)D0 + b0p0(1− b1)D1 + · · ·+ b0 · · · bn−1p0 · · · pn−1Dn

= D0 + b0(p0D1 −D0) + · · ·+ b0 · · · bn−1p0 · · · pn−2(pn−1Dn −Dn−1)

= D0 + b0
c0

CF
δ0 + b0b1p0

c1

CF
δ1 + · · ·+ b0 · · · bn−1p0 · · · pn−2

cn−1

CF
δn−1, (7)

where Di, as defined in Section 3, stands for the overall amount of data associated with the
average object immediately before the execution of filter Fi.

Claim 2 Let F be a sequence containing a convex filter pair (Fi, Fi+1). There exists an equivalent
sequence F ′ in which Fi and Fi+1 comprise a filter group and ∀β ∈ [0, 1], N(B∗F ′(β)) ≤ N(B∗F (β)).

Proof Let a sequence F with a convex pair (Fi, Fi+1) be given, and let b be an arbitrary bypass
distribution on F under which Fi and Fi+1 are not executed atomically—i.e., bi 6= 0 and bi+1 6= 1.
We will show that it is possible to construct a bypass distribution that achieves the same CPU
cost as b, at a lower network cost.

The quantity c′i = ci + pici+1 represents the contribution of (Fi, Fi+1) to CF . Consider the
bypass assignment b′ defined as follows (the arguments below also hold for the case where i = n−2):

• b′k = bk for 0 ≤ k < i

• b′i = bici+bibi+1pici+1

c′i
= bi

ci+bi+1pici+1

c′i

• b′i+1 = 1

• b′i+2 = bibi+1bi+2

b′i
= bi+2bi+1

c′i
ci+bi+1pici+1

• b′k = bk for i+ 2 < k < n

We first demonstrate that the construction of b′ is valid, that is, that b′ satisfies b′i ∈ [0, 1] for
0 ≤ i < n. Since 0 ≤ bi+1 < 1, we have ci + bi+1pici+1 < c′i, and consequently 0 ≤ b′i ≤ bi < 1.

For b′i+2, we make the observation that the expression bi+1
c′i

ci+bi+1pici+1
has no local extrema when

14

viewed as a function of bi+1, and, in particular, is monotonic in the range [0, 1]. At bi+1 = 0, the
expression evaluates to 0; at bi+1 = 1, it evaluates to 1, and therefore, 0 ≤ b′i+2 ≤ bi+2 ≤ 1. All
other bypass fractions in b′ are valid by construction.

Next, we note that b′ic
′
i = bici + bibi+1pici+1, and that b′ib

′
i+1b

′
i+2 = bibi+1bi+2: the former

implies that the contribution of (Fi, Fi+1) (which is a filter group under b′) to C(b′) is the same
as the pair’s joint contribution to C(b), whereas the latter shows that a similar relationship holds
among b and b′ for all filters Fk where k > i + 1. Since the filters Fk, 0 ≤ k < i clearly execute
with the same frequency under b′ as they do under b, we must have C(b′) = C(b).

Finally, consider the quantity Ni(b
′) − Ni(b). Using Equation 7 and applying the fact that

b′ib
′
i+1b

′
i+2 = bibi+1bi+2, we obtain

Ni(b
′)−Ni(b) = b′i

ci
CF

δi + b′ib
′
i+1pi

ci+1

CF
δi+1 − bi

ci
CF

δi − bibi+1pi
ci+1

CF
δi+1

=
bi
CF

(
ci + bi+1pici+1

c′i
ciδi

)
− bi
CF

(bi+1pici+1δi+1)− bi
CF

ciδi +

bi
CF

ci + bi+1pici+1

c′i
pici+1δi+1

=
bi

CF c′i
ciδi (bi+1pici+1 − pici+1)− bi

CF c′i
pici+1δi+1 (cibi+1 − ci)

=
bi(1− bi+1)picici+1

CF c
′
i

(δi+1 − δi)

Since (Fi, Fi+1) is convex, we have δi+1 < δi; consequently, Ni(b
′) − Ni(b) < 0, from which

it follows that N(b′) < N(b). This in combination with the above shows that, for any bypass
distribution b, one may construct a bypass distribution b′ under which Fi and Fi+1 comprise a
filter group, with the additional properties that C(b′) = C(b) and N(b′) ≤ N(b). The result
follows.

Claim 2 thus implies that an optimal partitioning algorithm on F must execute all convex
pairs in F atomically. We note that an atomically-executed pair is essentially a single filter, and
consequently may form a convex pair with another filter or filter group of F .

Corollary For every filter sequence F , there exists an equivalent concave sequence F c such that
∀β ∈ [0, 1], N(B∗F c(β)) ≤ N(B∗F (β)).

Proof Let a sequence F be given. The result holds trivially if F is concave. Otherwise, we may
choose a convex filter pair (Fi, Fi+1); by Claim 2, we may collapse (Fi, Fi+1) into an atomically-
executing filter group (as shown in Figure 6) to yield an equivalent sequence F ′ with one fewer
filter than F and an optimal distribution function whose network cost never exceeds that of the
optimal distribution function of F . Repeating this process eventually produces a concave sequence
F c—if none of the intermediate sequences are concave, the process terminates with a one-filter
sequence that is concave by definition. Since the network cost of the optimal distribution function
of each successive sequence is always below or equal to that of its predecessor, the result follows.

15

β 1 β 2 β 3

δ 0

δ 3

δ 1

δ 2

β

F
GN(B ())β

0 1

S

δ 12

Figure 6: Collapsing Convex Pairs. The filters in a convex pair (F1, F2) are effectively “col-
lapsed” into a single monolithic filter by the prescription of bypass assignments that ensure their atomic
execution. Geometrically, the resulting filter is represented by a linear segment connecting the points
corresponding to β1 and β3 on the plot of N ◦ BG

F . Since the pair (F1, F2) is convex, N ◦ BG
F of the

“new” sequence is strictly below that of the original on the interval (β1, β3).

Claim 2 and its Corollary imply that under any optimal distribution function, the filter se-
quence F is evaluated in such a way that collapsing designated filter groups into monolithic filters
produces a concave sequence. Applying Claim 1, we see that every filter sequence F has an op-
timal distribution function given by BG

F c , obtained by applying the Greedy distribution function
to the sequence of filter groups produced according to the Corollary. We will refer to it as the
Group-Greedy distribution function, and denote it by BU

F .

5.5 Group-Greedy Partitioning

In this section, we formulate an algorithm for computing the Group-Greedy distribution function
at run time, and examine the behavior of Group-Greedy partitioning on a few representative filter
sequences.

The Group-Greedy distribution function can be constructed by applying the Greedy distri-
bution function to the concave sequence obtained via the algorithm outlined in the proof of the
Corollary to Claim 2. Since it is precisely the proper grouping of filters that ensures the optimal-
ity of Group-Greedy partitioning, we concentrate on an efficient algorithm for determining this
optimal grouping. We use the following property in its run-time implementation.

Claim 3 For each filter group Fkm = (Fk, Fk+1, . . . , Fm) of F that corresponds to a single filter
of F c, δkm ≤ δkj for k ≤ j ≤ m.

Proof The result can be seen to hold by a simple inductive argument. A filter group Fkm of F
corresponding to a single filter of F c and consisting of more than one filter is comprised of two

16

01 for i = 0 to n− 1
02 δmin =∞
03 jmin = 0
04

05 for j = i+ 1 to n

06 δij =
N(BGF (βj))−N(BGF (βi))

βj−βi
07

08 if δij < δmin

09 δmin = δij
10 jmin = j
11

12 mark group(i, jmin − 1)
13 i = jmin

Figure 7: Identifying the Optimal Filter Grouping

sub-groups Fkl and Flm that form a convex pair. It follows that Fkm < Fkl; the argument is then
applied to the sub-groups Fkl and Flm.

Starting with k = 0, the filter group Fkm is identified by selecting Fm such that δkm ≤ δki for
k ≤ i < n. The process repeats with k = m+ 1 until Fm = Fn−1 is selected. The pseudo-code for
this algorithm is given in Figure 7.

Given a partitioning of F into appropriate filter groups as specified above, b = BU
F (β) is

constructed as follows. A filter group Fij is chosen such that βi ≤ β < βj+1. Then,

• bk = 1 for 0 ≤ k < i; in other words, filters preceding the group Fij in the sequence execute
at the storage device only.

• bi = β−βi
βj+1−βi (the group Fij is evaluated at the storage device on a fraction of objects chosen

so as to satisfy the CPU time constraint).

• bk = 1 for i < k ≤ j, in order to ensure the atomic execution of Fij .

• bk = 0 for j < k < n, i.e., none of the remaining filters are evaluated at the storage device.

Below, we qualitatively examine the network behavior of Group-Greedy partitioning, and com-
pare it to that of the Greedy and Naive strategies.

5.5.1 Evaluation Methodology

We use the average number of bytes per object injected into the network by a storage device as
the primary means of evaluating the performance of a partitioning strategy. The filter sequences
we examine fall into three categories: all concave sequences, for which we’ve shown the Greedy
policy to be optimal, non-concave sequences for which Naive partitioning achieves optimal results,
and all remaining non-concave sequences.

In the latter two cases, we use filters written for the Diamond SnapFind application [4]. The
two searchlets used were profiled on a set of 2000 digital images (with an average size of roughly

17

300 kilobytes) yielding estimates of selectivity, running time, and average amount of metadata
generated for each of the filters. We focus only on the running-time-optimal filter ordering. The
concave sequence used in the former case, on the other hand, is fully synthetic, with the pertinent
parameters chosen so as to mimic the structure of a concave sequence. The average object size
was arbitrarily set to 100 bytes, and no filter adds data to processed objects.

In all cases, we show the conditional pass rate, the average running time, and the average
amount of per-object metadata generated for each of the filters. Comparisons are performed by
simply computing N ◦BF (the average amount of data emitted by a storage device) for the Naive,
Greedy, and Group-Greedy distribution functions on each of the sequences for a range of values of
β.

5.5.2 Concave Sequences

The sequence used here is shown in Table 2, and the network footprint of the three evaluation
strategies in Figure 8. As expected, Greedy partitioning is optimal for this sequence, and performs
identically to Group-Greedy for all values of β. (Note that for concave sequences, Group-Greedy
evaluation in fact reduces to Greedy.) Naive partitioning performs quite poorly; the shape of
N ◦ BN

F is always a straight line connecting the points corresponding to β = 0 and β = 1, and is
guaranteed to lie above the graph of N ◦BG

F for concave sequences.

5.5.3 Non-Concave Sequences

Naive partitioning is network-optimal for the sequence listed in Table 3(a). This searchlet contains
a color histogram detector trained on a black patch (the filter pure_black) and a face detector
(faces); these are the only filters that perform discard. Both rely on the filter RGB to compute
common RGB representations of the images (roughly equivalent in size to the images themselves).
Additionally, pure_black uses another representation of the images computed by HISTO_II, while
faces depends on the work performed by INTEGRATE; both HISTO_II and INTEGRATE add roughly
three times the image size worth of metadata to images processed.

Figure 9(a) shows the performance of the three evaluation strategies on this sequence. We see
that the first two filters roughly quadruple the size of the objects they process before any of those
objects are discarded by the subsequent filters. (Note that this is precisely the reason why we
did not use a SnapFind searchlet to illustrate the case of concave sequences: all SnapFind filters
rely on RGB, making the first filter in any sequence decidedly unselective and the construction of
a concave sequence impossible.) Because of this explosion of effective object size and the modest
selectivities of pure_black and faces, evaluating the entire sequence atomically is more efficient
than any other grouping. In practice, Naive partitioning can be nearly optimal for searchlets
containing “helper” filters such as RGB that must be executed early in any ordering.

However, this is not the case with the three-filter sequence listed in Table 3(b). This se-
quence consists of a highly selective and comparatively inexpensive color histogram detector
bright_yellow, and the considerably more expensive texture detector grass, both of which de-
pend on the image representation computed by RGB. The optimal grouping determined by the
Group-Greedy algorithm therefore separates grass from the atomically-executing pair RGB and
bright_yellow. Neither the Greedy nor the Naive evaluation strategy can arrive at such a par-
titioning, and thus achieve sub-optimal results. As we can see in Figure 9(b), the Group-Greedy
strategy outperforms both.

18

Table 2: A Concave Sequence
Fi pi ci Mi

F0 01 0.4000 1.000 0.00

F1 01 0.5000 20.000 0.00

F2 01 0.7000 40.000 0.00

F3 01 0.9000 60.000 0.00

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

av
er

ag
e

by
te

s
pe

r
ob

je
ct

beta

naive
greedy

group-greedy

Figure 8: A Concave Sequence. The plot of bytes transmitted per object as a function of β for the
Group-Greedy distribution function overlaps with that of Greedy for all values of β. This is expected,
since the Greedy distribution function is optimal for concave sequences.

Table 3: Non-Concave Sequences
Fi pi ci Mi

RGB 0.9948 3366.902 456544.83

HISTO II 1.0000 12386.135 813215.17

pure black 0.4531 2734.575 0.00

INTEGRATE 1.0000 13727.378 914023.46

faces 0.2184 251173.865 0.00

MERGE 1.0000 42.295 0.00

(a) A Naive-optimal sequence

Fi pi ci Mi

RGB 0.9995 3042.961 430282.90

bright yellow 0.0563 6640.882 0.00

grass 0.4495 206166.397 0.00

(b) A Naive- and Greedy-suboptimal sequence

19

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

by
te

s
pe

r
ob

je
ct

beta

naive
greedy

group-greedy

(a) A Naive-optimal sequence

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

by
te

s
pe

r
ob

je
ct

beta

naive
greedy

group-greedy

(b) A Naive- and Greedy-suboptimal sequence

Figure 9: Non-Concave Sequences. The Greedy distribution function is suboptimal for non-
concave sequences. The sequence in (a) shows the case where Naive partitioning performs as well as
Group-Greedy; this behavior is due to the vast amounts of meta-data generated by the first two filters
in the sequence. Group-Greedy outperforms both Naive and Greedy partitioning on the sequence in
(b), since only the nontrivial grouping of the first two filters yields optimal results.

20

6 Summary and Future Work

In this paper, we have explored the problem of network-sensitive partitioning of work in Diamond,
an active-storage-based interactive search architecture. We have developed a performance model
capturing the key run-time properties of Diamond query evaluation. Finally, we have presented
a partitioning algorithm guaranteed to minimize the amount of data injected into the network
during the execution of a search under CPU time constraints imposed on storage devices.

In the future, we plan to extend our model in support of heterogeneous storage device con-
figurations, as well as multi-level distributed search hierarchies involving intermediate processing
nodes. Additionally, we plan to investigate the impact of filter ordering on the network behavior of
Diamond systems; so far, we had been assuming a fixed ordering optimized for CPU time. A related
challenge is that of dynamically distinguishing bottlenecks in the search pipeline—specifically, the
ability to identify network-bound searches. When the network is determined to be the bottleneck,
the Diamond run-time could trade CPU time for bandwidth by discarding computed state, or
adjusting the filter ordering policy appropriately.

References

[1] Amiri, K., Petrou, D., Ganger, G. R., and Gibson, G. A. Dynamic function placement for data-
intensive cluster computing. In 2000 USENIX Annual Technical Conference: San Diego, CA, USA,
June 18–23, 2000 (Berkeley, CA, USA, 2000), USENIX, Ed., USENIX, pp. 307–322.

[2] Arpaci-Dusseau, R. H., Anderson, E., Treuhaft, N., Culler, D. E., Hellerstein, J. M.,
Patterson, D., and Yelick, K. Cluster I/O with River: Making the fast case common. In Proceedings
of the Sixth Workshop on Input/Output in Parallel and Distributed Systems (Atlanta, GA, May 1999),
ACM Press, pp. 10–22.

[3] Hunt, G. C., and Scott, M. L. The coign automatic distributed partitioning system. In Proceedings
of the 3rd Symposium on Operating Systans Design and Implementation (OSDI-99) (Berkeley, CA,
Feb. 22–25 1999), Usenix Association, pp. 187–200.

[4] Huston, L., Sukthankar, R., R. Wickremesinghe, M. S., Ganger, G., Riedel, E., and
Ailamaki, A. Diamond: A storage architecture for early discard in interactive search. In Proceedings
of USENIX File and Storage Technologies (2004).

21

