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Abstract

Predicate abstraction is a major method for verification of software. However, the
generation of the abstract Boolean program from the set of predicates and the original
program suffers from an exponential number of theorem prover calls as well as from
soundness issues. This paper presents a novel technique that uses an efficient SAT
solver for generating the abstract transition relation of ANSI-C programs. The SAT-
based approach computes a more precise and safe abstraction compared to existing
predicate abstraction techniques.
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1 Introduction

It is widely believed that effective model checking [10] of software systems could
produce major enhancement in software reliability and robustness. However, the effec-
tiveness of model checking of such systems is severely constrained by the state space
explosion problem, and much of the research in this area is targeted at reducing the
state-space of the model used for verification. One principal method in state space re-
duction of software systems isAbstraction. Abstraction techniques reduce the program
state space by mapping the set of states of the actual system to an abstract, and smaller,
set of states in a way that preserves the actual behaviors of the system. Abstractions
are most often performed in an informal, manual manner, and require considerable
expertise.

Predicate abstraction[17, 12] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. It abstracts data by only keeping track of
certain predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. Verification of
a software system with predicate abstraction consists of constructing and evaluating
a finite-state system that is an abstraction of the original system with respect to a set
of predicates. The abstract program is created usingExistential Abstraction[9]. This
method defines the transition relation of the abstract program so that it is guaranteed to
be aconservativeover-approximation of the original program, with respect to the set
of specification predicates. Using a conservative abstraction, as opposed to anexact
abstraction, produces considerable reductions in the state space. The drawback of the
conservative abstraction is that when model checking of the abstract program fails it
may produce a counterexample that does not correspond to a concrete counterexample.
This is usually called aspurious counterexample. When a spurious counterexample is
encountered,refinementis performed by adjusting the set of predicates in a way that
eliminates this counterexample.

The abstraction refinement process has been automated by theCounterexample
Guided Abstraction Refinementparadigm [24, 8, 16], or CEGAR for short. This frame-
work is shown in Figure 1: one starts with a coarse abstraction, and if it is found that an
error-trace reported by the model checker is not realistic, the error trace is used to re-
fine the abstract program, and the process proceeds until no spurious error traces can be
found. The actual steps of the CEGAR loop follow theabstract-verify-refineparadigm
and depend on the abstraction and refinement techniques used. The steps are described
below in the context of predicate abstraction.

1. Program Abstraction. Given a set of predicates, a finite state model is ex-
tracted from the code of a software system and the abstract transition system is
constructed.

2. Verification. A model checking algorithm is run in order to check if the model
created by applying predicate abstraction satisfies the desired behavioral claim'.
If the claim holds, the model checker reports success (' true) and the CEGAR
loop terminates. Otherwise, the model checker extracts a counterexample and
the computation proceeds to the next step.
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Figure 1: The CEGAR Framework

3. Counterexample Validation. The counterexample is examined to determine
whether it is spurious. This is done by simulating the (concrete) program using
the abstract counterexample as a guide, to find out if the counterexample repre-
sents an actual program behavior. If this is the case, the bug is reported (' false)
and the CEGAR loop terminates. Otherwise, the CEGAR loop proceeds to the
next step.

4. Predicate Refinement.The set of predicates is changed in order to eliminate the
detected spurious counterexample, and possibly other spurious behaviors intro-
duced by predicate abstraction. Given the updated set of predicates, the CEGAR
loop proceeds to Step 1.

The efficiency of this process is dependent on the efficiency of theprogram ab-
stractionandpredicate refinementprocedures. While program abstraction focuses on
constructing the transition relation of the abstract program, the focus of predicate re-
finement is to define efficient techniques for choosing the set of predicates in a way
that eliminates spurious counterexamples. In both areas of research low computational
cost is a key factor since this is what enables the application of model checking to the
verification of realistic programs.

In this paper we focus on the application of predicate abstraction to the verification
of C programs. We present a novel technique that enables efficient abstraction (Step 1
of the CEGAR loop) of a program by using a SAT solver for generating the abstract
transition relation.

In previous work, including [2, 20, 4], the generation of the abstract Boolean pro-
gram from the C program and the set of predicates suffers from multiple problems:

1. The generation of the Boolean program is done by calling a theorem prover for
each potential assignment to the current and next state predicates. For the most
precise transition relation, this requires an exponential number of calls of the
theorem prover. Several heuristics are used to reduce this number. Some existing
tools avoid this large number of theorem prover calls by using a user-specified
maximum. After this specified number is reached, the tool adds all remaining
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transitions for which the theorem prover call was skipped. This is a safe over
approximation, but will yield a potentially large number of unnecessary spurious
counterexamples.

2. Existing work - with the exception of [6] - relies on general-purpose theorem
provers. Program variables are modeled as unbounded integer values, neglecting
a possible arithmetic overflow in the ANSI-C program. This can result in false
positive answers of the tool.

3. Existing tools only support a very limited range of operators, namely Boolean
operators, addition/subtraction, equality, and relational operators. Other ANSI-
C operators, such as multiplication and division, bit-wise operators, type con-
version operators, and shift operators are modeled by means of uninterpreted
functions. This limits the set of programs and properties that can be verified.

4. Existing tools only provide a limited support for pointer operations. In particular,
pointer arithmetic is not handled.

Contribution. This work proposes to use a SAT solver to generate the abstract
program. The potentially exponential number of theorem prover calls is replaced by an
enumeration on a single SAT instance.

For each basic block in the given program, our approach is to first construct a sym-
bolic representation of the concrete transition relation by applying symbolic simulation
techniques (similar to Currie et al. [14]). Next, we add the predicates in current and
next state form to the relation between variables, resulting in a Boolean formula. Fi-
nally, we enumerate symbolically on the values of the predicates, using a SAT solver.
When the abstract program needs to be refined, we use the same formula that we have
already created, together with the new set of predicates, to create the new abstraction.

The advantage of this technique is that the exponential number of theorem prover
calls is eliminated; instead, the possible assignments to the values of the predicates are
searched by the SAT solver. Modern SAT solvers are highly efficient, and allow a large
number of variables. This enables checking many more possible assignments, result-
ing in a more precise abstract transition relation, and eliminating redundant spurious
counterexamples.

Another advantage of our approach is that most ANSI-C constructs can be encoded
using CNF, which allows a wider range of programs. Integer operators are encoded
using bit vector operators, i.e., they take into account the potential arithmetic over-
flow. Thus, there are no false positive answers due to the inaccurate assumption that
the range of values of the variables is infinite. Moreover, pointer manipulation con-
structs, including pointer arithmetic, can also be supported. The only limitation is that
recursion and dynamic memory allocation are not allowed. This limitation cannot be
avoided, since the Boolean program is required to be finite. The symbolic simulation
technique we use is taken from Kroening et al. [22].

Related Work. Data abstraction techniques are widely used and they have been
explored by a large number of researchers [9, 15, 24, 26, 21]. Abstraction techniques
are often based on the abstract interpretation work of Cousot and Cousot [13] and re-
quire the user to give an abstraction function relating concrete datatypes to abstract
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datatypes. Earlier applications of the predicate abstraction type of the abstract inter-
pretation approach [17, 3, 12] require that the user identifies the set of predicates that
influence the verification property and utilize general-purpose theorem proving to com-
pute the abstract program. The user-driven discovery of relevant predicates makes them
less effective for large programs.

Recently, various decision procedures have been proposed to compute the set of
predicates for abstraction. The most common approach is to use error traces [8, 1] to
guide the predicate discovery. In Clarke et al. [8], the algorithm is based on BDD rep-
resentations of the program. This is a draw back for large programs, where transition
relation BDDs are commonly too large for efficient manipulation. The algorithm pre-
sented in the work of Ball et al. [1] uses an explicit state space representation but it is
restricted to safety properties.

The abstraction refinement loop was first introduced by Kurshan [24]. The localiza-
tion reduction technique defined in [24] produces an initial abstraction of the program
by ”freeing away” program variables that do not affect the verification property. The
values of “free” variables are defined nondeterministically, which results in an over-
approximation of the program behaviors. The unrealistic behaviors are eliminated from
the program by gradually refining the “free” variables back to their original values.

The CEGAR loop was introduced by Clarke et al. [8], who extended the work
of Kurshan [24] by defining a procedure for the systematic abstraction refinement.
Spurious error traces are used by the refinement decision procedure in order to ensure
that the new abstraction will not allow this counterexample.

Refinement-based predicate abstraction techniques seem to be the most success-
ful methods for model checking of software. Most model checkers designed to verify
programs written in general purpose programming languages (such as C or Java) im-
plement the CEGAR loop. The Microsoft model checking tool, SLAM [2], is primar-
ily designed to analyse device drivers by applying symbolic algorithms for automatic
predicate abstraction on sequential C programs. BOOP [4] is a re-implementation
of SLAM. BLAST is another software model checker for C programs that uses the
counterexample-driven automatic abstraction refinement to construct an abstract pro-
gram. The abstraction is constructed on-the-fly and only to the required precision [20].
The NASA Ames model checker, JavaPathFinder [5], developed for verifying Java
programs, was also reported to use heuristics for automated predicate abstraction and
refinement. In this tool predicate abstraction procedures are extended with some in-
formal abstraction arguments that allow the predicate abstraction to be used within the
class-instance of object-oriented languages. The CMU concurrent C model checker,
MAGIC [6], applies automatic compositional reasoning on programs with functions.
Moreover, MAGIC appears to be the only tool that invokes CEGAR over more than a
single abstraction refinement scheme.

Recently, there has been some work reported on the application of SAT solvers in
the process of constructing predicate abstraction and of its refining. Previously, the
application of SAT solvers during computation of predicate abstraction was conducted
only in the context of hardware verification in the work of Clarke et al. [11]. The focus
of [11], indeed, is the refinement of the initial approximate abstraction, and not the
construction of the abstraction itself. The approximate abstract model is constructed
by excluding certain implications from consideration. In contrast, we use a SAT solver
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to construct the exact abstract transition relation according to the provided set of pred-
icates, rather than an approximation of it.

Strichman et al. [7] use a SAT engine for identifying (or approximating) the mini-
mal set of predicates needed to eliminate a set of spurious counterexamples during re-
finement of abstract C programs. The predicate minimizing algorithm is implemented
in the MAGIC tool, which uses a theorem prover to compute predicate abstraction.

To our knowledge, the technique reported in this paper is the first effort to apply
a SAT engine for the actual construction of a predicate abstraction of software. The
reported technique is defined in the context of ANSI-C programs. However, the method
is general and can be applied to programs written in other imperative programming
languages.

The article is structured as follows: Section 2 discusses the details of constructing
a Boolean formula for the concrete transition relation. Section 3 describes how a SAT
solver is used to compute the abstraction. Section 4 gives some details about the im-
plementation of our ideas, and presents some experimental results. Finally, Section 5
summarizes the contributions of the article.

2 A Boolean Formula for the Concrete Transition Re-
lation

This Section discusses the details of constructing a Boolean formula for the concrete
transition relation. The program is first partitioned into basic blocks, which are sequen-
tially composed assignments, and control flow statements, i.e.,if , while , goto and
so on.

We use bit-vector equations to capture the semantics of assignments. This implies
a different approach for control-flow statements and basic blocks. Since control-flow
statements do not change variable values (we remove side-effects from conditions in
a pre-processing step), they do not require equations. The abstraction of control state-
ments is therefore not described here, but is deferred to Section 3.2. For the rest of this
section we are only concerned with basic blocks.

Section 2.1 describes syntactic program transformations that are required to prepare
the basic block for the translation into a bit-vector equation. Section 2.2 gives details
on how assignments are translated into bit-vector equations using symbolic simulation
techniques. Section 2.3 presents details how this is done in the presence of pointers.
The translation described here is an adaptation of the method presented in [22, 23].
Section 2.4 shows the translation of the generated bit-vector equation system into a
Boolean formula, which is suitable for a SAT solver.

2.1 Preparation

For the rest of this section we assumeB is a basic block containingn statements
s1; : : : ; sn. This code has already been manipulated to remove function calls and empty
(skip) statements, so we can assume that eachsi is an assignment. We use the nota-
tion lhs(si) andrhs(si) for the left-hand side and right-hand side of the assignment,
respectively.
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Given an expressione, we useVars(e) to denote the set of variables referenced
by this expression. We use this notation also for assignments, so thatVars(si) =
Vars(lhs(si)) [ Vars(rhs(si)).

We first transformB into single assignment form, in which each variable is as-
signed to only once. In order to do so, we add auxiliary variables that record interme-
diate values. Letv be a variable andsi an assignment such thatv 2 Vars(si). Let
�(v; si) denote the number of assignments made to variablev within the basic block
prior to the statementsi. Formally,

�(v; s1) = 0

8i � 2 : �(v; si) =

�
�(v; si�1) + 1 : si�1 assigns tov
�(v; si�1) : otherwise

Definition 1 (�) Let si be an assignment that assigns to the variablev. Then the left-
most occurrence ofv in lhs(si) is renamed tov�(v;si)+1. All other occurrences ofv
are renamedv�(v;si). Any other variableu 2 Vars(si) such thatu 6= v is renamed
u�(u;si).

Lete denote any expression (whether a part of an assignment, a whole assignment,
a condition, etc). Then�(e) denotes the expression after this renaming.

Figure 2 gives an example of a simple block and its translation.

x = z * x;
y = x + 1;
x = x +
y;

�
�!

x1 = z0 * x 0;
y1 = x1 + 1;
x2 = x1 +
y1;

Figure 2: Translation of a basic block into its single assignment form.

In the following, we usev for a program variable (such asx in the example above)
andvj for one of its renamed versions (x0, x 1, x 2 in that example).

2.2 Translating assignments into bit-vector equations

We next define an equation�(si) for each assignment in the block, describing the effect
this assignment has on the (renamed) variables. In this sub-section we assume that the
program does not have any pointer variables; sub-section 2.3 will extend the method to
programs that manipulate pointers.

As an intermediate format, we use bit-vector equations. Besides the usual bit-wise
and arithmetic operators, we also consider the array index operator[ ], the structure
member operator, and the choice operator to be part of the logic. The choice operator
“?” is defined as:

c?a : b
4
=

�
a : c = 1
b : otherwise

6



Furthermore, we define thewith operator [18] for arrays and structures. It is also
considered part of the bit-vector logic.

Definition 2 (with operator for arrays) Let g be an expression of array type,i be an
integer expression, ande be an expression with the type of the elements ing. The
operatorwith takesg, i, ande and produces an array that is identical tog, except for
the content ofg[i] being replaced bye. Formally, letg0 be “g with [i] := e”, then

g0[j]
4
=

�
e : j = i

g[j] : otherwise

Definition 3 (with operator for structures) Let s be a variable of structure type,f
be a field name of this structure, ande be an expression matching the type of the field
f . The operatorwith takess, f , ande and produces a structure that is identical tos,
except for the content ofa:f being replaced bye. Formally, lets0 be “s with :f := e”
andj be a field name ofs, then

s0:j
4
=

�
e : j = f

s:j : otherwise

The translation of an assignment into a constraint is done using an auxiliary func-
tion `(l; r). It maps the expressionsl for the left hand side andr for the right hand side
into a constraint. It is defined recursively on the structure of the expressionl:

� If l is a symbolv, then`(l; r) is the equality of the left hand sidel and the right
hand sider.

`(v; r) := v = r

� If l is an array index expressiong[i] with array expressiong and index expression
i, then`(l; r) is applied recursively tog and a new right hand side which isg with
elementi changed tor.

`(g[i]; r) := `(g; g with [i] := r)

� If l is a structure member expressions:f with structure expressions and field
namef , we definè (l; r) in analogy to the previous case:

`(s:f; r) := `(s; s with :f := r)

Using this auxiliary function, the function�(si) is easily defined as

�(si) := `(lhs(si); rhs(si))

Our final bit-vector equation is the conjunction of the constraints generated:

^
i=1;:::;n

�(si)
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As a shorthand, letv denote the version of the variablev with index0, andv0 denote
the version of the variablev with the largest index, or formally

v := v0

v0 := v�(v;sn+1)

Note that for any variablev that is not assigned to,v0 is just another shorthand forv0.
This gives us a bit-vector equation system that defines a relationT (v; v0), wherev is
the vector of all variablesv, andv0 is the vector of all variablesv0. The relation is the
concrete transition relation of the blockB, i.e., the vectorv represents the state before
the execution of the basic block, andv0 represents the state after the execution of the
basic block. Every solution to this equation system represents a possible computation
of the basic block.

2.3 Programs that use pointers

While other tools rely solely on static analysis techniques to determine the set of vari-
ables a pointer may point to, we also look at thepredicates. As will be evident in the
following, the size of the generated equation for a statement involving a pointerp is
linear in the number of objectsp may point to. Thus, it is desirable to keep this number
small. In a typical application there may be a large number of variables having the cor-
rect type as�p, while only a few thatp can actually point to. In order to minimize the
size of the equation generated we use all the information we can extract from the pro-
gram about the possible targets ofp. Using the (dynamic) information obtained from
the predicates, we can save a lot more than by merely using static points-to algorithms.

Before giving the formal definition, we motivate our construction as follows: When
a pointerp is dereferenced and the abstract state does not hold enough information to
guarantee thatp is a valid, active object, the abstract program must generate an ex-
ception. This is necessary to make the abstraction safe, i.e., the abstract program can
refrain from generating an exception only if it is guaranteed that the concrete pro-
gram does not generate an exception. For example, assume thatp may point to one
of fx; y; zg, while the set of predicates that involvep is f(p = &x); (p = &y)g. The
abstract program cannot distinguish betweenp pointing toz, orp beingNULL, or even
p pointing to some other illegal address. Wheneverp is dereferenced while both predi-
cates are false, the abstract program will generate an exception. This means that when
creating the abstract transition relation we can ignore the possibility ofp pointing toz,
and treat it in the same way as ifp wereNULL.

The concrete transition relation we generate therefore actually depends on the pred-
icates, and is already an abstraction of the concrete behavior.

Let�(p) denote the variablesp can legally point to (i.e., the variables with a com-
patible type). The variables in�(p) are variable namesbeforerenaming. We analyze
the set of predicatesP and extract a set�(p;P) � �(p) of variables for which the
predicates can imply thatp is pointing to. This information comes from predicates of
the formp = &x, p = &x+ i, p = q, and so on.

Definition 4 (�(p;P)) Let P = f�1; : : : ; �kg be the set of predicates. Then�(p;P)
is the set of variables that the predicates indicatep can point to. This set consists of
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the variablesv 2 �(p) for which there exists a truth assignment to the predicates such
that the resulting conjunction implies thatp holds the address ofv.

�(p;P)
4
= fv 2 �(p) j 9b1; : : : ; bk:(

^
i=1;:::;k

(bi $ �i)) (p = &v)g

A pointer dereference*p in an expression is replaced by a case split on all the vari-
ables that the predicates indicate the pointer can point to. Let�(p;P) = fv1; : : : ; vkg.
We replace every occurrence of*p with

(p==& v1) ? v1 : (p==& v2) ? v2 : ...(p==& vk) ? vk : ?

where? is a default value, which is never used. It is important to notice that&vi is
a constant value and does not get renamed, whilevi is a variable name and will be
added an index during the renaming process�. The end result is that when a pointer is
dereferenced in the right-hand side of an assignment, or in the index of an array on the
left-hand side, the correct value will be used. Note that it is not necessary to include
all variables in�(p), since we generate an exception ifp does not point to an object in
�(p;P).

The case where a pointer dereference appears on the left hand side of an assignment
is again handled by a transformation of the program, before renaming is applied. The
assignment*p = exp is capable of effecting any variable with the correct type. We
therefore replace this assignment with a series of assignments. For each variableu 2

�(p;P), we add an assignment of the following form:

u = (p==& u) ? exp : u;

Again, we may refrain from adding an assignment for any variable not in�(p;P) since
if p points to such a variable there will be an exception.

The transformed program does not have pointer dereferences, and can be translated
into an equation system using the� function presented in the previous section. Notice
that for the assignmentp = &x the rule for�(vj = exp) applies without change.
The address of a variable is treated as a value and is assigned into a variable with an
appropriate type.

An example of the process described above is given in Figure 3. The example gives
a basic block, the renamed version, and the resulting equation system.

2.4 Translating bit-vector equations into Boolean formulas

The translation of the bit-vector logic used to build the equation for the concrete transi-
tion relation is straight forward: we build a circuit representation, which is then trans-
lated into CNF. Several optimizations can be done at this level, in particular for arrays.
The result of this process is a CNF formulaT (v; v0) that is a symbolic representation
of the concrete transition relation.
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x = 5;
y = *p + 1;
*p = 2*y;

�

�!

x1 = 5;
y1 = ((p 0==&x) ? x1 : y 0) +
1;
x2 = (p 0==&x) ? 2* y1 : x 1;
y2 = (p 0==&y) ? 2* y1 : y 1;

�

�!

x1 = 5 ^

y1 = ((p0 = &x) ?x1 : y0) + 1 ^

x2 = (p0 = &x) ? 2 � y1 : x1 ^

y2 = (p0 = &y) ? 2 � y1 : y1

Figure 3: Example: Generation of the concrete transition relation. As an optimization,
we restrict the case splits done for pointers using information from the predicates. For
this example, assume the predicatesp = &x andp = &y.

3 Using SAT to Compute the Abstraction

3.1 The abstract transition relation for a basic block

LetP be the set of predicates, where each predicate is an expression over the (concrete)
program variables. Each predicate�i 2 P is associated with a Boolean variablebi that
represents its truth value. Let� denote the vector of predicates�i, andb denote the
vector of the Boolean variablesbi. These Boolean variables are the variables of the
Boolean program we are constructing. The predicates map a concrete statev into an
abstract stateb, and thus,�(v) is also called the abstraction function. GivenT (v; v0)
andP , we create an abstract transition relationB(b; b

0
) that is an existential abstraction

of a basic block of the C program.
Our goal is to replace a basic block with an expression that describes what happens

to the variablesb when this basic block is executed. We present a translation that is
accurate, i.e., it gives the transition relation as defined by existential abstraction, and
not an over-approximation of this transition relation, as other tools use.

Let T (v; v0) denote the CNF formula representing the concrete transition relation,
as defined in the previous section. The abstract transition relationB(b; b

0
) relates a

current stateb (before the execution of the basic block) to a next stateb
0

(after the
execution of the basic block). It is defined using� as follows:

�(b; b
0
; v; v0)

4
= (�(v) = b) ^ T (v; v0) ^ (�(v0) = b

0
) (1)

B(b; b
0
) () 9v; v0 : �(b; b

0
; v; v0) (2)

The concrete transition relationT maps a concrete statev into a concrete next state
v0, and the abstract transition relationB maps a corresponding abstract stateb into
a corresponding abstract next stateb

0
. The abstraction function� maps the concrete

states into abstract states. Put together, we get the classical abstraction connection:
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T (v; v0)

B(b; b
0

)
b

0

v v
0

b

��

Every satisfying assignment to (1) represents a concrete transition and its corre-
sponding abstract transition. We aim at obtaining all possible satisfying assignments to
the abstract variablesb andb

0
, i.e., the set

f(b; b
0
) j B(b; b

0
)g (3)

This set is obtained by modifying the SAT solver Chaff as follows: Every time a
satisfying assignment is found, the tool records the values of the literals corresponding
to the abstract variablesb andb

0
, and then adds a blocking clause in terms of these

literals that eliminates all satisfying assignments where these variables have the newly
found values. The literals in the blocking clauses all have a decision level, since the
assignment is complete. The solver then backtracks to the highest of these decision
levels and continues its search for further, different satisfying assignments. Thus, the
SAT solver is used to enumerate the set (3). This technique is commonly used in other
areas, for example in [27, 19]. Section 4 contains more details on how to efficiently
obtain the set of satisfying assignments.

As an example, consider the following basic block:

d=e;
e++;

whered ande are integer variables. Suppose the predicates�1 = d&1 and�2 = e&1
are given. The binary operator& is the bit-wise conjunction operator, i.e.,�1 holds if
and only ifd is odd, and�2 holds if and only ife is odd. The basic block is translated
into the following equation system, which represents the transition relation:

d1 = e0 ^ e1 = e0 + 1 (4)

By adding the required constraints according to equation (2) we get:

b1 = d0&1 ^ b2 = e0&1 ^

d1 = e0 ^ e1 = e0 + 1 (5)

b0
1
= d1&1 ^ b0

2
= e1&1

The satisfying assignments for this equation over the variablesb1, b01, b2, andb0
2

are:

b1 b2 b0
1

b0
2

0 0 0 1
0 1 1 0
1 0 0 1
1 1 1 0

In particular, the abstract Boolean program will never make a transition into a state that
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is contradictory in the sense that bothd ande (which is equal tod + 1 ) are odd. This
is unavoidable if a next state function is computed separately for each Boolean variable
bi, as done by many existing tools.

Consider the basic block above with the predicates�1 = e � 0 and�2 = e � 100,
and suppose thatx has 32 bits. The equation for the abstract transition relationB is:

b1 = e0 � 0 ^ b2 = e0 � 100 ^

d1 = e0 ^ e1 = e0 + 1 (6)

b0
1
= e1 � 0 ^ b0

2
= e1 � 100

The satisfying assignments for this equation over the variablesb1, b01, b2, andb0
2

are:

b1 b2 b0
1

b0
2

0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 1 0
1 1 1 1

Note that incrementing a positive number is not guaranteed to yield another positive
number because of the finite range (there is a transition from a state withb1 = 1 to a
state withb0

1
= 0).

3.2 The abstract transition relation for control-flow statements

Besides basic blocks, the concrete program also contains control flow statements such
asif andwhile . These statements take a condition as an argument and effect only
the control-flow (the program counter). We pre-process the program to remove all
side-effects from conditions. Since control-flow statements do not change the values
of variables, we do not require an equation system to represent them.

Assume we are abstracting a specific program counter locationl that evaluates a
conditionc and moves the program counter to locationlT if c holds andlF otherwise.
Our goal is to generate two sets of abstract transitions, a set of transitions that assign
lT to the program counter, and a set that assignslF . All of the transitions will leave the
abstract variablesb unchanged.

To abstractc we first traverse its syntactic structure to see whether there are any
sub-expressions that are also predicates inP . We replace any occurrence of a predicate
�i in c with the corresponding Boolean variablebi. Let c1 be the condition that results
from applying this transformation. Ifc1 references only Boolean variables then we are
done – this condition can be used in the abstract program. We then generate an abstract
statement that assigns the program counter withlT if c1(b) holds, andlF otherwise.

If, however,c1 still refers to some concrete variablesv, we use the SAT enumer-
ation engine in order to produce the set of abstract transitions that correspond to the
evaluation ofc.

12



The conditionc(v) holds in an abstract stateb if and only if there is a concrete
statev such that the condition holds inv andv is mapped tob. To create the abstract
transition relation at this control location we need to produce the setposc of abstract
states from which there is a transition that assigns the program counter withlT :

posc = fb j 9v : c(v) ^ �(v) = bg (7)

The dual setnegc of abstract states from which there is a transition that assigns the
program counter withlF is not the negation ofposc. This is because a single abstract
state can correspond to both concrete states that satisfyc and concrete states that do
not. We are therefore required to generate the setnegc according to its definition:

negc = fb j 9v : :c(v) ^ �(v) = bg (8)

Both of these sets are computed using the SAT enumeration engine.
In practice, we are rarely required to use the SAT enumeration engine for control-

flow statements. The conditions ofif statements andwhile loops are often chosen as
Boolean predicates. Furthermore, most refinement algorithms will add these conditions
whenever they encounter a spurious counterexample that passes through this statement.

4 The Implementation

4.1 Minimizing the Number of Quantified Variables

The size of the set (3) described in the previous section can be exponential in the
number of predicates. However, in practice, a basic block usually mentions a very small
subset of all program variables. Thus, most Boolean program variables are usually
unchanged in the abstract version of the basic block. In particular, if a predicate uses
only variables that are not assigned to, the truth value of the predicate is guaranteed
not to change. We call the remaining predicates (the predicates that use variables that
get assigned into) theoutput predicates. Formally, these are the predicates�i such that
�i(v) 6= �i(v

0).
Furthermore, we try to detect which predicates can actually influence the next ab-

stract values of the output predicates. This is done by obtaining the set of variables that
are used in the assignments to variables that are mentioned in output predicates. We
call these predicates theinput predicates.

Example. As an example, consider the predicates�1 = i > 10 and�2 = j > 10.
Let the basic block consist only of the statement

i=j;

In this case,�1 is the only output predicate (asj is not modified) and�2 is the only
input predicate (asi is not mentioned in the right hand side).

As an optimization, we only obtain the projection of the set (3) to the input and out-
put predicates, whereb is restricted to contain only input predicates andb

0
is restricted

to only contain output predicates.
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4.2 Obtaining the Set of Satisfying Assignments

The problem of obtaining the set of satisfying assignments to a formula restricted to
a given subset of the variables corresponds to a quantification problem. LetS denote
the subset of variables. We obtain the set by enumeration on the variables inS using
a SAT solver. This method was suggested earlier for solving quantified formulae in
[29, 30]. In [25], our implementation algorithm was applied to predicate abstraction
for hardware and software systems. It outperformed BDDs on all software examples.
These results were obtained using arithmetic on integers however, not on bit-vectors.

The basic algorithm works as follows: when the SAT solver finds a satisfying as-
signment, it generates a blocking clause in terms of the variables inS. This blocking
clause is added to the clause data base and prohibits any further satisfying assignment
with the same values for the variables inS. After adding the clause to the CNF, the
algorithm performs backtracking to the highest decision level of any of the variables in
the blocking clause and continues the search for more satisfying assignments. Eventu-
ally, the additional constraints will make the problem unsatisfiable, and the algorithm
terminates. The blocking clauses added by the algorithm are a DNF representation of
the desired set.

Each DNF clause represents a hyper-cube, and is contained in the set of solutions.
The basic algorithm can be improved by heuristics that try to enlarge the cube repre-
sented by each clause. In [27], McMillan uses conflict graph analysis in order to enlarge
the cube. In [19], BDDs are used for the enlargement. However, these techniques are
beyond the scope of this article.

4.3 Using SMV to Check the Abstract Program

We use SMV [31] to verify the abstract program. The advantage of using SMV is
that the hyper-cubes representing the abstract transition relation can be passed to SMV
directly by means of theTRANSstatement. The control flow of the abstract program
(which matches the control flow of the concrete program) is realized by adding a pro-
gram counter variable. Each control flow location corresponds to a set of hyper-cubes.

For the second example in section 3, we obtain four cubes representing the six
satisfying assignments:

:b1 ^ b2 ^ :b0
1

^ b0
2

_ b1 ^ :b2 ^ :b0
1

^ b0
2

_ b1 ^ b0
1

^ :b0
2

_ b2 ^ b0
1

^ b0
2

Assuming the PC of this statement isx , this corresponds to the followingTRANS
statement:

TRANS PC=x -> (!b1 & b2 & !next(b1) & next(b2))
| ( b1 & !b2 & !next(b1) & next(b2))
| ( b1 & next(b1) & !next(b2))
| ( b2 & next(b1) & next(b2))

14



4.4 Simulating the Abstract Counterexample

If the Model-Checker detects that the property does not hold on the abstract program, it
generates a counterexample trace. This trace is then simulated on the concrete program
in order to determine whether the counterexample is spurious or not. Most existing
tools use a theorem prover such as Simplify for this task.

The disadvantage of using a general purpose theorem prover for the simulation of
the counterexample are similar to the disadvantages that arise during the computation
of the abstract transition relation: The set of operators is limited, and the theorem
prover may misjudge a counterexample to be real due to the lack of overflow detection.

The methodology that is used to obtain the concrete transition relation is also appli-
cable to simulate the counterexample: Following the control flow in the abstract trace,
we concatenate the corresponding basic blocks of the concrete program and apply the
symbolic simulation technique described earlier.

We then incrementally add the constraints that the control flow in the abstract trace
impose, i.e., the concretized versions of the control flow conditions. After adding a
new control flow condition as a constraint, we check the satisfiability of the equation
using SAT. If the equation is satisfiable, the abstract trace can be simulated so far. If it
is unsatisfiable, the abstract trace cannot be simulated and is therefore spurious.

If all control flow conditions found in the abstract trace are added and the equation
is still satisfiable, the abstract trace can be simulated on the concrete program, and thus,
a bug has been found. The tool then prints out the concrete trace. The values of the
concrete variables can be obtained directly from the satisfying assignment.

In comparison to the concrete program, the control flow conditions are small. Thus
only few clauses and variables are added to the CNF in each step. We use therefore an
incremental SAT solver in order to preserve the information learned by the SAT solver
between the satisfiability checks.

4.5 Verifying properties of the program

The setup described so far can be used to check reachability of code locations, as done
by other tools such as SLAM, BLAST or BOOP. In addition to that, we check several
safety properties such as array bounds and user defined assertions.

The ANSI-C standard stipulates that at any point in the program one can insert an
assert statement that specifies a Boolean condition. For example, the program

x = y;
y = y + 1;
assert(y > x);

asserts that after the two assignmentsy will be greater thanx . This assertion fails
if incrementingy results in an overflow. Assertions are placed in the program as a
specification of correctness. In order to verify the program we must determine that the
condition in the assertion is true in all possible executions.

When creating the abstract program we translate everyassert(C) statement,
whereC is a Boolean condition, by abstracting the conditionC. This is done using the
same method that we use for the conditions of “if” and “while” statements, as described
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in section 3.2.
In addition to user specified assertions we verify several basic correctness proper-

ties of the program.

� Whenever a basic block contains a dereference�p of a pointer variablep, we
check that the pointer cannot be pointing to an illegal address. Let�(p;P) be the
set of variables for which the predicates can imply thatp is pointing to (Defini-
tion 4). We then check that

_
v2�(p;P)

(p = &v)

is valid by abstracting the expression as as described in section 3.2.

� Whenever a basic block contains a reference to an element of an array we make
sure that the array boundaries are not violated. If the expressiona[i] appears in
the basic block (wherei may be any integer expression), and the arraya is of
lengthn, we check

(i < n) ^ (i � 0)

for validity.

� Whenever the basic block contains an expression that performs division, i.e., an
expression of the formx=y (wherey can be any numeric expression) we make
sure that the divisor is not zero.

4.6 Experimental Results

We applied the SAT-based abstraction approach to abstraction and verification of sev-
eral C programs.

4.6.1 SHA

We used a program taken from the Digital Signature Standard (DSS). Under the DSS,
communication among remote parties is enabled using digital signatures. The digital
signature is computed using two inputs: 1) a delivery message of the communication
instance; and 2) a private key of a public/private key pair. We verified the C implemen-
tation of the DSS Secure Hash Algorithm (SHA) [28].

The SHA computes a part of the DSS digital signature called the message digest.
The hashing algorithm computes the message digest by generating a 160-bit repre-
sentation of the delivery message. The hashing procedure is designed to assure that
the digest is statistically unique. The implementation makes extensive use of bit-wise
operators and also division.

The code contains calls toabort() in places an unexpected condition, e.g., an
arithmetic error happens. These calls can be considered an implicit property. We re-
place these calls byassert(0) , i.e., we prove that these program-locations are not
reachable. The reachability of one of these locations depends on the result of a di-
vision: the code divides a 32-bit variablet by 20, and then checks that the result is
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switch ( t / 20 )
f

case 0:
TEMP2 = ( (B AND C) OR (˜B AND D) );
TEMP3 = ( K_1 );
break;

case 1:
TEMP2 = ( (B XOR C XOR D) );
TEMP3 = ( K_2 );
break;

case 2:
TEMP2 = ( (B AND C) OR (B AND D) OR (C AND D) );
TEMP3 = ( K_3 );
break;

case 3:
TEMP2 = ( B XOR C XOR D );
TEMP3 = ( K_4 );
break;

default:
assert(0);

g

Figure 4: Excerpt from a SHA implementation. The assertion depends on the result of
a division

between 0 and 3 using aswitch statement. If the result is any other value (default
case),abort() is called (figure 4). The property holds as the range oft is limited
appropriately.

Given one predicate for each of the four possibleswitch cases, our tool generates
an abstract transition relation that is consistent (at most one of the four, mutually exclu-
sive predicates holds) and strong enough to show the property (at least one of the four
predicates holds). The overall run-time (including preparation and the SMV run) is 24
seconds on a 2 GHZ machine, most of which is spent within the SAT solver. All related
predicate abstraction tools generate an abstraction that lacks at least the last property,
i.e., that the result of the division is one of 0 to 3.

4.6.2 ASN1 Data Structures in OpenSSL

OpenSSL comes with an implementation of ASN1 data structures for managing cer-
tificates. The code contains a similar case split as done in the SHA example: Using an
if-then-else construct, individual bits of a variablej are tested. The variable has type
signed int . Previously, the integer is assigned the value of an unsigned char array
member. The array member is known to be non-zero. The code assumes that therefore
one of the first eight bits must be set (figure 5).

Given predicates that the array member is non-zero and one predicate for each of
the branching guards, our tool generates an abstract transition relation which forces
that exactly one of these predicates is true, which allows the modelchecker to show
that the assertion is not reachable.
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int ret,j,bits,len;
. . .

j=a->data[len-1];
if (j & 0x01) bits=0;
else if (j & 0x02) bits=1;
else if (j & 0x04) bits=2;
else if (j & 0x08) bits=3;
else if (j & 0x10) bits=4;
else if (j & 0x20) bits=5;
else if (j & 0x40) bits=6;
else if (j & 0x80) bits=7;
else f bits=0; assert(0); g /* should not happen */

Figure 5: Excerpt from an implementation of ASN1 data structures from OpenSSL.
Proving the assertion requires a bit-vector decision procedure. The assertion is not part
of the original code.

4.6.3 MD2 Message-Digest Algorithm

Similar to the SHA algorithm, the MD2 message-digest algorithms computes a hash of
a given message. RFC 1319 gives a reference implementation in ANSI-C. A part of it
is shown in figure 6. The algorithm makes extensive use of a permutation that is given
as an array. In the first part, the result of the previous iteration is used as array index
for the next iteration. The second part uses the bit-wise xor of the result of the previous
iteration and a part of the message as array index.

We verify that these lookups do not violate the bounds of thePI SUBSTarray.
As the variablet is of an unsigned integer type, only the upper array bound can
be violated, i.e., the predicatet<256 must hold in the first part, and the predicate
(block[i]ˆt)<256 must hold in the second part of the algorithm. For each of
the four code locationst is modified in, the SAT solver easily discovers that these
predicates indeed are true in the next state.

4.6.4 Pointer Arithmetic in JPEG Decoder

For efficiency reasons, many programs use pointer arithmetic instead of array index
expressions within loops. As an example, consider the code in figure 7: The code per-
forms discrete cosine transformation using a loop that iterates through an array of 64
elements. Each loop iteration processes one row, which corresponds toDCTSIZE=8
array elements. Thus, iteration numberctr accesses the elementsdata[8*(7-
ctr)] to data[8*(7-ctr)+7] . In order to avoid this computation for each array
access, the code uses a pointer that points todata[8*(7-ctr)] . This pointer is
then used to access the individual elements.

In order to prove that the pointer access happens within the array bounds, we use
the predicatesdataptr==&data[8*(7-ctr)] , ctr>=0 , andctr<DCTSIZE .
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static unsigned char PI_SUBST[256] =
...

;

static void MD2Transform (state, checksum, block)
unsigned char state[16];
unsigned char checksum[16];
unsigned char block[16];
f

unsigned int i, j, t;
unsigned char x[48];

/* Form encryption block from state, block, state ˆ block.
*/

MD2_memcpy ((POINTER)x, (POINTER)state, 16);
MD2_memcpy ((POINTER)x+16, (POINTER)block, 16);
for (i = 0; i < 16; i++)

x[i+32] = state[i] ˆ block[i];

/* Encrypt block (18 rounds).
*/

t = 0;
for (i = 0; i < 18; i++) f

for (j = 0; j < 48; j++)
t = x[j] ˆ= PI_SUBST[t]; /* t must be <= 255 */

t = (t + i) & 0xff;
g

/* Save new state */
MD2_memcpy ((POINTER)state, (POINTER)x, 16);

/* Update checksum.
*/

t = checksum[15];
for (i = 0; i < 16; i++)

t = checksum[i] ˆ= PI_SUBST[block[i] ˆ t]; /* t must be <= 255 */

/* Zeroize sensitive information.
*/

MD2_memset ((POINTER)x, 0, sizeof (x));
g

Figure 6: Excerpt from an the reference implementation of the MD2 algorithm.

jpeg_fdct_ifast (DCTELEM * data)
f

...
DCTELEM *dataptr;
int ctr;
...

/* Pass 1: process rows. */

dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) f

tmp0 = dataptr[0] + dataptr[7];
...

dataptr += DCTSIZE; /* advance pointer to next row */
g
...

Figure 7: Excerpt from an JPEG decoder.
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5 Conclusion

This paper presented a new method to compute the predicate abstraction of an ANSI–C
program. This new method replaces the use of theorem provers with the use of a SAT
solver. We suggest that SAT-based predicate abstraction outperforms the approaches
that use theorem provers since enumeration on a single SAT instance can substitute a
potentially exponential number of the theorem prover calls. The advantages are par-
ticularly pronounced when the number of abstract transitions is significantly smaller
than the number of possibilities that need to be checked. Furthermore, since modern
SAT solvers allow for the evaluation of a large number of possible assignments to the
abstract program variables, the application of a SAT engine results in a more precise
transition relation of the abstract program compared to the abstraction produced by
using theorem provers. This results in eliminating some unrealistic behaviors of the
abstract program that otherwise would be introduced during the over-approximations
of the abstract transition relation computed using a theorem prover.

Model checking a more precise abstract program, therefore, exhibits a smaller num-
ber of redundant spurious counterexamples. As a result, a smaller number of the CE-
GAR loop iterations is required until the verification property is confirmed or refuted.
The latter fact is of high value to practical software verification since the validation
of counterexamples and predicate refinement (Steps 3 and 4 of the CEGAR loop) are
computationally expensive. Our approach, therefore, simplifies (if not enables) the ap-
plication of model checking to the verification of large-scale programs by eliminating
analysis and refinement of redundant counterexamples.

Another contribution of the SAT-based abstraction technique is that most ANSI-
C constructs can be handled during the program abstraction. This differs from other
model checking approaches that operate only on a small subset of the C language.
Our approach enables model checking of realistic programs by supporting the more
complex features of C, such as multiplication/division, pointers, bit-wise operations,
type conversion and shift operators.

A notable advantage of the SAT-based abstraction technique is that it can be reused
within the CEGAR loop without any changes to do the error trace simulation and pred-
icate refinement used in the loop.

In the future, we plan to use the ideas presented here in other parts of the CEGAR
loop. That is, we would be interested to use the SAT enumeration engine to conduct
predicate discovery for the refinement of the abstracted program. We also plan to im-
plement the abstraction of floating point arithmetic, as well as to extend the technique
to the verification of concurrent programs.
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