
Iktara in ConCert: Realizing a Certified Grid
Computing Framework from a Programmer’s

Perspective

Bor-Yuh Evan Chang

June 2002
CMU-CS-02-150

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
of the senior thesis program.

Advisors:
Robert Harper
Frank Pfenning

The ConCert Project is supported by the National Science Foundation under grant
ITR/SY+SI 0121633: “Language Technology for Trustless Software Dissemination”.

Keywords: grid computing, grid programming, theorem proving, intuition-
istic linear logic, ConCert

Abstract

With the vast amount of computing resources distributed throughout the world
today, the prospect of effectively harnessing these resources has captivated the
imaginations of many and motivated both industry and academia to pursue
this dream. We believe that fundamental to the realization of this dream is
the establishment of trust between application developers and resource donors,
for donors often receive little or no direct reward for their contributions. The
ConCert project (to which this specific undertaking contributes) seeks to develop
the theoretical and engineering foundation for grid computing in such a trustless
setting based on the notion of certified code.

In this paper, we seek to drive an initial implementation of a real grid frame-
work from a programmer’s perspective. Specifically, we present a model for
programming the grid and a case study of a specific application, namely a the-
orem prover for intuitionistic linear logic (Iktara), that provides motivation for
and guides the design of such a programming model.

Contents

1 Introduction 2

2 Programming in ConCert 3
2.1 Types of Parallelism . 3
2.2 ML Interface . 3
2.3 Implementation . 6
2.4 Example: Merge Sort . 7
2.5 Simulator . 9

2.5.1 Interface . 9
2.5.2 Implementation . 10
2.5.3 Limitations . 11

3 Parallel Theorem Proving for Linear Logic 12
3.1 Why a Theorem Prover Application? 12
3.2 Bottom-Up Proof Search for Intuitionistic Linear Logic 13

3.2.1 Focusing . 14
3.2.2 Resource Management . 16
3.2.3 Removing Spurious Focusing 19

3.3 Parallelization . 22
3.4 Implementation . 23

3.4.1 Ordered Binary Decision Diagrams 23
3.4.2 Boolean Constraints . 24
3.4.3 Focusing . 26
3.4.4 ConCert Simulator Version 26

4 Conclusion 27

A Dynamic Semantics of Tasks 32

B Correctness of Focusing with Residuation 39

1

1 Introduction

In recent years, we have seen numerous organizations desperately seeking re-
source donors for applications from discovering a cure for AIDS [Fig00] to find-
ing larger and larger prime numbers [GIM96] to searching for extraterrestrial
intelligence [SET01]. Part of the difficulty in obtaining resources is establishing
trust between the distributed-application developer and the resource donors.
Because resource donors often receive little or no direct reward for their contri-
butions, they will certainly demand assurances of safety, security, and privacy.
Given the current environment where numerous malicious application develop-
ers populate the Internet and even benign developers have difficulty producing
safe and reliable software, this is to be expected.

Today, establishing this trust in the distributed-application developer is lim-
ited to relying on faith—based on the reputation of the developer or possibly
the reputation of some “quality assurance team” that endorses him. In addi-
tion, this faith must be reexamined each time the developer needs to pester
the donor to download and install a software upgrade at the possible risk of
the stability of his system. To address this issue, the ConCert project [Con01a]
seeks to develop the theoretical and engineering foundation for grid computing
in such a trustless setting. To this end, it has been proposed to use certifying
compilers to allow software developers to produce efficient machine code along
with checkable certificates that could be easily verified on behalf of the resource
donor. This would ensure the software’s compliance with policies specified by
the donor. We believe this is the best means to create a grid infrastructure that
allows distributed-application developers to propagate their software to as many
hosts as possible and maximize the exploitation of these resources. The vision
is to allow developers to “freely disseminate their software to willing hosts” and
to establish trust “via rigorous, mathematical proof of the security and privacy
properties of software” [Con01b].

We seek to develop an initial implementation of a real framework for the
distribution and verification of software. Such a development process aims to
inspire new ideas and to expose technical problems that both motivate further
theoretical work and provide a testbed for the implementation of such ideas. In
this paper, we focus on driving such a framework from a programmer’s perspec-
tive. We search for a reasonable and effective model for programming the grid
that will allow the development of as many applications as possible. In order
to better understand the design space of such a framework and programming
model, we perform a case study on a specific application, namely a parallel the-
orem prover for linear logic (Iktara1), that imposes a unique and guiding set of
requirements.

1Iktara is the name of a parallel theorem prover for intuitionistic linear logic developed as
part of this project. An Iktara is an ancient one-stringed instrument from northern India.

2

2 Programming in ConCert

A large part of our research is to develop techniques for programming grid appli-
cations. To this end, we have designed an imaginary (but we think reasonable)
interface for the initial ConCert framework in Standard ML (SML) [MTHM97].
In this section, we briefly discuss the types of parallelism that motivate the de-
sign of our programming interface. We then explain the interface and how we
arrived at it, discuss its implementation, and give a simple example. Finally,
we present a simulator for our proposed programming interface.

2.1 Types of Parallelism

Currently, the most widely known grid applications, such as SETI@home (Search
for Extraterrestrial Intelligence at Home) [SET01] and GIMPS (Great Internet
Mersenne Prime Search) [GIM96] can be characterized as highly parallel appli-
cations over an enormous data set. The type of parallelism used by applications
can be approximately characterized by the amount of communication between
threads of computation and the depth and width of the parallel computation.
Both these successful grid applications have the property that each thread of
computation is fairly independent of each other (i.e. have little or no commu-
nication between them) and have a branching structure that is very wide and
very shallow. Contrast this to parallel applications that are written for shared
memory machines that usually have high communication requirements between
threads of computation and often have narrower branching.

Given the non-homogeneous and failure-prevalent nature of the grid, we
also intend to target applications that have very little or no communication
requirements between threads of computation. However, we also seek to explore
the feasibility of the space of applications that use less embarrassingly parallel
algorithms, such as game tree search, than those used on grid networks today.
In order to explore this space, it is imperative to have a reasonable programming
model.

2.2 ML Interface

At a high level, a job is thought of as a whole program that is started and
injected into the network on the command-line. If jobs were the sole unit of
computation distributed on the network, then no additional programming con-
structs would be needed. Any language with a compiler capable of generating
binaries supported by the distribution architecture would be sufficient. In this
framework, we could likely implement some easily partitioned applications this
way. Of course, this method is unacceptable for applications that do not have
trivial branching and cumbersome even for programs that do.

We desire for the programmer to be able to expose the parallelism in his
application in a convenient but simple way. We draw on the idea of futures
from Multilisp [Hal85] and a similar construct in Cilk-NOW [BL97] for our

3

design. We refine the notion of a job to be composed of one or more tasks. A
task is then the unit of computation from the programmer’s point of view.

Figure 1 gives a ML signature for creating and managing tasks. It should
be noted that though it is convenient to express it in this way, we would not
actually be able to implement it in ML. In this regard, we might think of this as
a proposed language extension rather than a library. The interface is intended to
be minimalistic as to capture only the necessary constructs for programming the
grid. For some amount of realism, we require that code injected into the network
be closed, though we imagine that a language designed for grid computing could
arrange for this automatically.

structure CCStatus =
struct

datatype status =
Disabled

| Failed
| Finished
| Running
| Waiting

end; (* structure CCStatus *)

signature CCTASKS =
sig

(* an ’r task is a computation yielding a result of type ’r *)
type ’r task
exception InvalidTask

val inject : bool -> (’e -> ’r) * ’e -> ’r task
val enable : ’r task -> unit

val sync : ’r task -> ’r
val syncall : ’r task list -> ’r list
val relax : ’r task list -> ’r * ’r task list

val forget : ’r task -> unit
val status : ’r task -> CCStatus.status

end; (* signature CCTASKS *)

Figure 1: CCTASKS Signature

To place a task on the network,

inject : bool -> (’e -> ’r) * ’e -> ’r task

is used. A task can either be injected into the network ready to run or be injected
in a disabled state. A disabled task requires an explicit call to enable by some
other task to indicate the task is ready to run. The expression inject true
(c,e) indicates the given code c along with the initial environment e should
be used to create a task that is ready to run, while inject false (c,e) gives
a task that is initially disabled. See section 3.3 for a potential use of disabled
tasks.

4

Returning a result and receiving results from other tasks are the only form
of communication between tasks. This helps to enforce the restartable nature of
tasks, which will become important for implementing failure recovery. To obtain
a result from another task, one might use sync. The sync function blocks the
calling task until the desired result can be obtained from the network. There
are four possible states of the task from which we seek the result:

1. it has completed execution successfully, so the result is already known on
the network;

2. it is currently executing;

3. it has failed (or appears to have failed);

4. it has been disabled.

If scenario 1 is the case, then the result can be returned immediately to the
calling task. Otherwise, if scenario 2 is the case, then the calling task is blocked
until the other task finishes. If scenario 3 is the case, then a new process will
be started to restart the execution of that task (possibly on another node on
the network). Finally, if that task has been disabled (case 4), then the calling
task will be blocked until the task has been enabled to run. To receive results
from more than one task, syncall is provided as it can be implemented more
efficiently than the semantically equivalent successive calls to sync.

In the process of developing the theorem prover, we noticed that we desired
some ability to continue execution as soon as one result was ready from a set
of tasks. We propose a new construct relax that returns as soon as one result
is ready returning that result along with the remaining tasks. The usual usage
of relax would entail the consumption of all the results. In this regard, relax
should be thought of as having a conjunctive meaning analogous to syncall
except that the order of synchronization is relaxed. This construct implements
in ConCert the select-wrap idiom often seen in CML [Rep99] without requiring
the full generality of CML-like events. Also, notice that sync can be defined in
terms of either syncall or relax as shown below:

fun sync t = hd (syncall [t])
fun sync t = #1 (relax [t])

As an optimization, tasks can provide a hint to the scheduler that a particu-
lar task is no longer needed by using the forget function. Since the architecture
must deal with failures, the forget function is simply a special case of failure
in which a task fails deliberately. This means that if any result requests are
pending for the aborted task, the task may be restarted.

Lastly, we give the programmer the ability to query the status of any task
(i.e. whether it is running, is finished, is disabled, is waiting, or has failed).
This is not strictly necessary, but the programmer may be able to optimize his
application with this information.

For further description of this programming model, see appendix A for a
presentation of a dynamic semantics of these proposed language constructs.

5

2.3 Implementation

The implementation of such an interface has been coordinated with DeLap’s
work on the ConCert grid software [DeL02] that implements the code distribution
and verification infrastructure as we seek to map this high-level programming
language onto the low-level interface that ConCert provides. Similar to the Cilk-
NOW architecture [BL97], we impose the following invariants on every program
fragment:

1. the fragment is deterministic or in some notion each subsequent run is as
good as any other;

2. program fragments do not communicate except through explicit depen-
dencies;

3. once its dependencies are filled, a program fragment is able to run to
completion.

Invariants 1 and 2 are intended to ensure that each fragment is restartable.
Running a program fragment multiple times should result in the same answer,
or if the programmer desires, an answer that is “as good as” any other answer he
might receive. This ensures that we can recover from failure by simply restarting
saved code. Invariant 3 is designed to simplify scheduling of program fragments
by clearly separating the program fragments that are waiting and the program
fragments that are running.

These invariants lead to the characterization of the smallest unit of compu-
tation in this formulation of the ConCert framework. In the Cilk-NOW termi-
nology, this is called a closure. To disambiguate this from other uses of this
term, we use the word cord. A cord consists of code, an environment, and a
set of dependencies on other cords. We can think of the dependencies as extra
arguments to the code. A cord is ready to run as soon as its dependencies have
been fulfilled. The scheduling and distribution of cords is described in DeLap’s
senior thesis [DeL02].

Because tasks can block waiting for results, tasks do not adhere to invari-
ant 3. However, we can compile tasks to cords by mapping the process of syncing
on a result to the termination of the current cord and then the re-spawning of
a new cord with an added dependency for the desired result. Thus, we can
consider a task as simply an abstraction for the programmer’s convenience, and
we can view a task as being represented by one or more cords during the life-
time of a task with exactly one active cord at any given moment. This task to
cord compilation process is very similar to a continuation passing style (CPS)
transformation.

Figure 2 gives a conceptual picture of these terms. Each box represents a
particular view on the unit of computation. In essence, a job is the unit of
computation from the grid-application user’s point of view, a task is the unit of
computation from the grid-application developer’s point of view, and a cord is
the unit of computation from the ConCert software’s point of view.

6

Task Task Task

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Job

Figure 2: Jobs, Tasks, and Cords. A job is injected into the network from
the command-line of some participating node. A job consists of several tasks
possibly running on different machines. Only one cord is active per task and
is the unit of computation scheduled and distributed. In the above diagram,
solid lines indicate the job/task/cord is running while dashed lines indicate the
job/task/cord has finished or has yet to run.

Work on a compiler for ML with these proposed extensions has begun but
is not yet complete as there are still open questions concerning the marshaling
of data and the low-level interface provided by the ConCert software is still
evolving. However, this is certainly a high priority item.

2.4 Example: Merge Sort

Below is a (hypothetical) example of a simple implementation of merge sort
that divides into three subproblems using the interface specified above. This is
done especially to highlight the use of the relax construct. Lines 6-31 contain
straightforward implementations of partitioning a list and merging two lists.
Now, focus your attention on lines 44-46 where tasks for the subproblems are
injected into the network. Then, in lines 50-56, we wait for these results. Notice,
we begin merging as soon as we have two sorted lists.

1 (* mergesort : int list * int -> int list *)

2 fun mergesort (nil, _) = nil

3 | mergesort ([x], _) = [x]

4 | mergesort (l, cutoff) =

5 let

6 (* partition : int * int list -> int list * int list * int list *)

7 fun partition (m, l) =

8 let

9 fun partition’ (_, nil) = (nil, nil)

10 | partition’ (0, k as x::t) = (nil, k)

7

11 | partition’ (n, x::t) =

12 let

13 val (l’,k’) = partition’ (n-1, t)

14 in

15 (x::l’, k’)

16 end

17

18 val (ll,lr) = partition’ (m, l)

19 val (lrl,lrr) = partition’ (m, lr)

20 in

21 (ll,lrl,lrr)

22 end

23

24 (* merge : int list * int list -> int list *)

25 fun merge (l, nil) = l

26 | merge (nil, k) = k

27 | merge (l as x::l’, k as y::k’) =

28 (case Int.compare (x,y) of

29 LESS => x::(merge (l’,k))

30 | EQUAL => x::y::(merge (l’,k’))

31 | GREATER => y::(merge (l,k’)))

32

33 val len = List.length l

34 val (lt,md,rt) = partition (len div 3, l)

35 in

36 if (len <= cutoff) then

37 merge (mergesort (lt,cutoff),

38 merge (mergesort (md,cutoff), mergesort (rt,cutoff)))

39 else

40 let

41 open CCTasks

42

43 (* Start sorting each partition *)

44 val t1 = inject true (mergesort, (lt, cutoff))

45 val t2 = inject true (mergesort, (md, cutoff))

46 val t3 = inject true (mergesort, (rt, cutoff))

47

48 (* Get the results of the three child tasks. Start

49 merging when two sorted lists have been received. *)

50 val (sort1, sort2) =

51 let

52 val (a, rest) = relax [t1, t2, t3]

53 val (b, [last]) = relax rest

54 in

55 (merge (a,b), sync last)

56 end

57 in

58 merge (sort1, sort2)

59 end

60 end

8

2.5 Simulator

To verify the usability of such a programming interface without depending on
the progress of the ConCert software, we have developed a simulator of the
network running on a single machine that provides functionality for the proposed
interface. The simulator may also be a useful development tool for ConCert
application developers to test their software in a controlled environment before
deploying to the network. Although the simulator aims to be as realistic as
possible, certain compromises had to be made as the simulator is developed
entirely in CML and runs on a single machine. In this section, we discuss the
implementation of the simulator and the points where we were forced to sacrifice
some amount of realism.

2.5.1 Interface

The simulator is written in Concurrent ML (CML) [Rep99] using the SML/NJ
compiler. The code is made available from the ConCert webpage [Con01a]. Ide-
ally, we would be able to implement the simulator ascribing to the signature
given in figure 1; however, as mentioned before, we cannot implement that sig-
nature directly in SML/CML. Figure 3 gives the modified version of the CCTASKS
signature. The most noticeable difference is that type task is monomorphic

signature CCTASKS = (* Modified for the Simulator *)
sig

type env
type result

type task (* "result" task *)
exception InvalidTask

val inject : bool -> (env -> result) * env -> task
val enable : task -> unit

val sync : task -> result
val syncall : task list -> result list
val relax : task list -> result * task list

val forget : task -> unit
val status : task -> CCStatus.status

val startSim : real -> (env -> result) * env -> result

end; (* signature CCTASKS *)

Figure 3: Modified CCTASKS signature for the simulator.

in that we have fixed types for the initial environment and result of each task:
type env and type result, respectively. This is due to the fact that we cannot
get at the compiled code or aggregate data with polymorphic types.

9

To start the simulation,

startSim : real -> (env -> result) * env -> result

is used. This is necessary as CML requires calling RunCML.doit before using
any CML constructs. The expression startSim p (c, e) starts the simulator with
code c and initial environment e as the initial task; parameter p specifies the
frequency of failures to be induced by the simulator where 0.0 ≤ p < 1.0.

2.5.2 Implementation

In this implementation, we use CML threads to model ConCert tasks (not Con-
Cert cords). This is due to an issue with using callcc/throw with CML, which
does make the simulation slightly less realistic but seems reasonable. There
are two kinds of CML threads running during the simulation: the threads that
model ConCert tasks and the threads that are used for bookkeeping (e.g. ID
servers, lock servers, and failure simulation).

The state of the simulation is managed by two global tables along with the
appropriate locking mechanisms: one that maps tasks to attributes about the
state of the task and one that maps CML thread IDs to tasks. This is clearly
a bit unrealistic as this state must be kept implicitly on the network via some
protocol and only local state on each host (e.g. work queues, etc.).

In the simulator, a task handle is simply a uniquely generated integer that
indexes into the global task state table. This differs from the ConCert framework
where we view task handles as a hash or digest of the code and the environment,
but since we cannot get at the compiled code itself within SML/CML, we are
unable to generate such a digest in the simulator. Dependencies amongst tasks
are modeled using CML ivars [Rep99], which are write-once communication
channels. This can be seen in the following fragment of functor CCTasksFn
that implements the signature given in figure 3:

10

functor CCTasksFn(structure T : sig

type env

type result

end)

:> CCTASKS where type env = T.env

and type result = T.result =

struct

type env = T.env

type result = T.result

type task = int (* unique identifier *)

structure TaskState :> ... =

struct

open SyncVar

type taskState =

{ tid : CML.thread id option, (* id of the thread that

represents the task *)

status : CCStatus.status, (* current status *)

closure : (env -> result) * env, (* the code and the env *)

out : result Msg ivar option (* where to send the ans *)

}
...

end

...

end

Note that taskState.out is the only connection to an active task. It is an
option type, for when a task fails, this field is updated to NONE to sever the link.
According to Reppy, CML threads are garbage collected if they are no longer
reachable by any communication channel [Rep99]. This is vital for us to ensure
that a “failed” task ends since CML does not provide any explicit kill primitive
on threads.

Failure simulation is done by a thread that periodically tells the scheduler
to forget a task. This marks the status of a task as Failed and issues a
FAILED message. In other words, the simulator informs itself when a “failure”
occurs. This is another place that is unrealistic as it side-steps the issue of
failure detection with which the ConCert software must deal. Concerning the
scheduling tasks in the simulator, we simply rely on the CML thread scheduler.

2.5.3 Limitations

The most obvious shortcoming of the simulator is the fixing of type env and
type result as described above. This cannot be avoided without developing a
compiler for at least core ML plus the proposed ConCert extensions for tasks.
It turns out not to be a severe limitation as the developer can create a datatype
that wraps the types of interest and dispatch based on the tag (at the cost of
a runtime check). For example, suppose the developer wants to use two kinds
of tasks in one application: one that returns a value of type real and one that

11

returns a value of type int, here is a possible definition for the argument to
CCTaskFn.

structure T =
struct
type env = (* ... the desired environment type ... *)
datatype result = Int of int | Real of real

end

Another limitation is that we have no way to enforce that the code given to
inject is closed (even at runtime) as per our assumption. Similarly, since
the simulator is written in CML, we have no way to ensure that data used in a
program, which runs on the simulator, will be marshalable. This is partly due to
our incomplete understanding about how to best implement marshaling. It is an
open question whether it is possible to design a type system to statically verify
the ability of a piece of data to be marshaled across the network. Lastly, global
effects visible to all tasks can be incurred by individual tasks. For example, the
update of a reference cell affects the memory of every task. As it stands today,
enforcing these requirements are left to the programmer’s discipline, which is
certainly less than ideal.

3 Parallel Theorem Proving for Linear Logic

As mentioned before, we hope to utilize the development process of a sub-
stantial application to guide the design of the initial ConCert framework and
programming model. In this section, we talk in more detail about the design
and implementation of such an application, namely a parallel theorem prover
for linear logic (Iktara). We discuss the motivation for choosing this application,
the core algorithmic ideas, and the parallelization of the algorithm.

3.1 Why a Theorem Prover Application?

We have chosen to build a bottom-up or subgoal reduction-based parallel the-
orem prover for linear logic for a number of reasons. The primary reason is
that this application should afford a different set of requirements compared to
traditional grid applications in that the parallel algorithm will have non-trivial
depth (similar to game-tree search) and the computation will be largely sym-
bolic rather than numeric. We would like to explore whether such a space of
applications can be made feasible on the grid. Secondarily, another advantage
of this particular application is that we can temporarily ignore the issue of a
malicious resource donor returning bogus answers. This is because the theorem
prover application can return a proof of the theorem in question, which can then
be verified easily. Lastly, there are few implementations of theorem provers for
linear logic, so developing one would be a contribution in itself.

Linear logic, as first formulated by Girard [Gir87], has been considered a
refinement of classical logic to incorporate reasoning about state. At the same

12

time, there are a number of applications in logic and functional programming
that are best expressed in an intuitionistic logic. We seek to develop a theorem
prover for a fragment of intuitionistic linear logic as described in Pfenning’s
course notes [Pfe01].

3.2 Bottom-Up Proof Search for Intuitionistic Linear Logic

For the sake of brevity, we assume the reader is familiar with Gentzen-style
sequent calculi, which will form the basis for our proof search algorithm. A
thorough treatment of the sequent calculus for intuitionistic linear logic is given
in [Pfe01]. The fragment of linear logic we shall consider is the propositional
fragment given by the following grammar:

Propositions A ::= P Atoms
| A1(A2 | A1 ⊗ A2 | 1 Multiplicatives

| A1 N A2 | > | A1 ⊕ A2 | 0 Additives
| A ⊃ B | !A Exponentials

where P stands for the syntactic category of atomic formulas. We write the
basic sequent as follows:

Γ; ∆ =⇒ A

where Γ contains unrestricted hypotheses and ∆ contains linear hypotheses. Γ
and ∆ are considered unordered collections (i.e. multisets). The formulas in
Γ are regarded as being preceded by the modal operator !, so the form above
corresponds to the more traditional linear logic sequent !Γ, ∆ =⇒ A.

The literature is not in complete agreement on terminology, but we refer
to bottom-up proof search as creating a derivation for a given judgment by
working upwards. At any point in the algorithm, we have a partial derivation
with subgoals yet to be shown at the top. At a high-level, we can summarize
our algorithm as follows. We select a judgment that has yet to be derived
and an inference rule by which that judgment could be inferred. There are
some instances where we must make a choice on how a rule is to be applied.
For example, we must choose how to split the hypotheses in the multiplicative
conjunction right rule (⊗R) as shown below.

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B ⊗R
Γ; (∆1, ∆2) =⇒ A ⊗ B

The premises of this chosen rule yield new judgments that remain to be derived.
This idea forms the basis of our algorithm, but the general formulation of the
sequent calculus is highly non-deterministic making proof search based solely
on this infeasible.

The first observation to remedy this is that some rules are invertible meaning
the premises are derivable whenever the conclusion is. Invertible rules can be
applied whenever possible without losing completeness. A classification of the
invertible and non-invertible rules is given in [Pfe01]. We also eliminate some

13

non-determinism by restricting our attention to propositional linear logic (al-
though extending to first-order logic should be straightforward using standard
unification techniques).

3.2.1 Focusing

Extending the observation about invertible rules, we utilize a refinement of
the sequent calculus to further reduce the non-determinism while remaining
sound and complete. This refinement, known as focusing, was first presented in
Andreoli’s seminal paper [And92] for classical linear logic. A thorough treatment
of focusing for intuitionistic linear logic has been presented in Pfenning’s course
notes [Pfe01] and Howe’s Ph.D. thesis [How98]. Pfenning’s system is a superset
of the system we present here with the addition of the quantifiers (∀, ∃), while
Howe’s system is very similar except that he does not consider the unrestricted
implication (⊃).

To describe the focusing system, we classify rules into strongly invertible,
weakly invertible, and non-invertible where weakly invertible rules are invertible
but have some constraint on the linear context. We will also use the following
definitions to separate propositions into distinct classes, which are based on the
terms first introduced by Andreoli [And92].

Right Asynchronous Phase.

Γ; ∆; (Ω, A) =⇒ B ⇑
(R

Γ; ∆;Ω =⇒ A(B ⇑

(Γ, A); ∆ =⇒ B ⇑
⊃R

Γ; ∆ =⇒ A ⊃ B ⇑
>R

Γ; ∆; Ω =⇒ > ⇑

Γ; ∆; Ω =⇒ A ⇑ Γ; ∆; Ω =⇒ B ⇑
NR

Γ; ∆; Ω =⇒ A N B ⇑

Γ; ∆; Ω ⇑=⇒ C C not right asynchronous
⇑R

Γ; ∆;Ω =⇒ C ⇑

Left Asynchronous Phase.

Γ; ∆; (Ω, A, B) ⇑=⇒ C
⊗L

Γ; ∆; (Ω, A ⊗ B) ⇑=⇒ C

Γ; ∆;Ω ⇑=⇒ C
1L

Γ; ∆; (Ω, 1) ⇑=⇒ C

Γ; ∆; (Ω, A) ⇑=⇒ C Γ; ∆; (Ω, B) ⇑=⇒ C
⊕L

Γ; ∆; (Ω, A ⊕ B) ⇑=⇒ C

0L
Γ; ∆; (Ω, 0) ⇑=⇒ C

(Γ, A); ∆;Ω ⇑=⇒ C
!L

Γ; ∆; (Ω, !A) ⇑=⇒ C

Γ; (∆, A); Ω ⇑=⇒ C A not left asynchronous
⇑L

Γ; ∆; (Ω, A) ⇑=⇒ C

Figure 4: Focusing Calculus - Asynchronous Phases

14

Definition 1 (Classification of Propositions)

• A is right asynchronous if the right rule of its top-level connective is
strongly invertible.
• A is left asynchronous if the left rule of its top-level connective is strongly

invertible.
• A is right synchronous if the right rule of its top-level connective is non-

invertible or only weakly invertible.
• A is left synchronous if the left rule of its top-level connective is non-

invertible or only weakly invertible.

This yields the following classification table:

Atomic P
Right Asynchronous A1 (A2, A1 N A2,>, A1 ⊃ A2

Left Asynchronous A1 ⊗ A2,1, A1 ⊕ A2,0, !A
Right Synchronous A1 ⊗ A2,1, A1 ⊕ A2,0, !A
Left Synchronous A1 (A2, A1 N A2,>, A1 ⊃ A2

Focusing can be broken down into two main phases, each with two sub-
categories—whether we are working on the left or the right. The first phase
breaks down all the asynchronous connectives. Since the order in which the
rules are applied does not matter, we fix the order by first breaking down the
goal and then the hypotheses from right to left. This eliminates much of the
“don’t-care non-determinism” in the sequent calculus, which corresponds to
our observation of invertible rules. The second phase is the focusing phase
where a synchronous proposition must be selected to be processed. Once the
synchronous proposition is selected, it must be broken down until we reach an
atomic or an asynchronous proposition.

Given this, we now have the following four judgments for each phase:

Right Asynchronous Γ; ∆; Ω =⇒ A ⇑
Left Asynchronous Γ; ∆; Ω ⇑=⇒ C

Right Focusing Γ; ∆ =⇒ A ⇓
Left Focusing Γ; ∆;A ⇓=⇒ C

where

Γ are unrestricted hypotheses and may contain arbitrary propositions
∆ are linear hypotheses and must contain only non-left asynchronous propositions
Ω are ordered linear hypotheses and may contain arbitrary propositions
A is an arbitrary proposition
C is a proposition that may not be right asynchronous

Figures 4 and 5 give the complete focusing calculus that describes the core
proof search algorithm recalling that proof search is viewed as proceeding bottom-
up. Soundness and completeness proofs of the focusing calculus with respect
to the ordinary sequent calculus for intuitionistic linear logic can be found in
Howe’s Ph.D. thesis [How98].

15

Decision.

Γ; ∆ =⇒ C ⇓ C not atomic
decideR

Γ; ∆; · ⇑=⇒ C

Γ; ∆; A ⇓=⇒ C
decideL

Γ; (∆, A); · ⇑=⇒ C

(Γ, A); ∆;A ⇓=⇒ C
decideL!

(Γ, A); ∆; · ⇑=⇒ C

Right Focusing Phase.

Γ; ∆1 =⇒ A ⇓ Γ; ∆2 =⇒ B ⇓
⊗R

Γ; (∆1, ∆2) =⇒ A ⊗ B ⇓
1R

Γ; · =⇒ 1 ⇓

Γ; ∆ =⇒ A ⇓
⊕R1

Γ; ∆ =⇒ A ⊕ B ⇓

Γ; ∆ =⇒ B ⇓
⊕R2

Γ; ∆ =⇒ A ⊕ B ⇓
No 0 right rule

Γ; ·; · =⇒ A ⇑
!R

Γ; · =⇒ !A ⇓

Γ; ∆; · =⇒ A ⇑ A not right synchronous
⇓R

Γ; ∆ =⇒ A ⇓

Left Focusing Phase.

Γ; ∆2; B ⇓=⇒ C Γ; ∆1 =⇒ A ⇓
(L

Γ; (∆1, ∆2); A(B ⇓=⇒ C

Γ; ∆; B ⇓=⇒ C Γ; · =⇒ A ⇓
⊃L

Γ; ∆; A ⊃ B ⇓=⇒ C

Γ; ∆; A ⇓=⇒ C
NL1

Γ; ∆;A N B ⇓=⇒ C

Γ; ∆;B ⇓=⇒ C
NL2

Γ; ∆; A N B ⇓=⇒ C
No > left rule

init
Γ; ·; A ⇓=⇒ A

Γ; ∆; A ⇑=⇒ C A not atomic and not left synchronous
⇓L

Γ; ∆; A ⇓=⇒ C

Figure 5: Focusing Calculus - Decision and Focusing Phases

3.2.2 Resource Management

Although focusing makes proof search much more feasible, a large source of
non-determinism remains in choosing the splitting of hypotheses in the multi-
plicative rules (such as ⊗R). It is simply unacceptable to “try” each possible
splitting. One possible solution is to try to use an input/output model of re-
source management due to Hodas and Miller [HM94] and also described in
Cervesato et al. [CHP00] and §5.3 of Pfenning’s notes [Pfe01]. However, this
only works if we have chosen to serialize proving subgoals in say a left-to-right
order. Since we may seek to parallelize this work, we choose a different method.
We choose to adapt the use of boolean constraints for resource distribution as
described by Harland and Pym [HP01] using ordered binary decision diagrams
(OBDDs) [Bry86, Bry92] to implement these boolean constraints.

16

Right Asynchronous Phase.

Γ; ∆; (Ω, A[1])
RM
=⇒ B ⇑

(R
Γ; ∆;Ω

RM
=⇒ A(B ⇑

(Γ, A); ∆
RM
=⇒ B ⇑

⊃R
Γ; ∆

RM
=⇒ A ⊃ B ⇑

>R
Γ; ∆; Ω

RM
=⇒ > ⇑

Γ; ∆; Ω
RM
=⇒ A ⇑ Γ; ∆; Ω

RM
=⇒ B ⇑

NR
Γ; ∆; Ω

RM
=⇒ A N B ⇑

Γ; ∆; Ω ⇑ RM
=⇒ C C not right asynchronous

⇑R
Γ; ∆;Ω

RM
=⇒ C ⇑

Left Asynchronous Phase.

Γ; ∆; (Ω, A[1], B[1]) ⇑ RM
=⇒ C e = 1

⊗L
Γ; ∆; (Ω, (A ⊗ B)[e]) ⇑ RM

=⇒ C

Γ; ∆; Ω ⇑ RM
=⇒ C e = 1

1L
Γ; ∆; (Ω, 1[e]) ⇑ RM

=⇒ C

Γ; ∆; (Ω, A[1]) ⇑ RM
=⇒ C Γ; ∆; (Ω, B[1]) ⇑ RM

=⇒ C e = 1
⊕L

Γ; ∆; (Ω, (A ⊕ B)[e]) ⇑ RM
=⇒ C

e = 1
0L

Γ; ∆; (Ω, 0[e]) ⇑ RM
=⇒ C

(Γ, A); ∆; Ω ⇑ RM
=⇒ C e = 1

!L
Γ; ∆; (Ω, !A[e]) ⇑ RM

=⇒ C

Γ; (∆, A[1]);Ω ⇑ RM
=⇒ C A not left asynchronous e = 1

⇑L
Γ; ∆; (Ω, A[e]) ⇑ RM

=⇒ C

Figure 6: Focusing with Resource Management Calculus - Asynchronous Phases

Harland and Pym consider resource management for classical linear logic
in [HP01]. We seek to extend this notion to the intuitionistic case. It should
be noted that this notion of resource management is orthogonal to focusing
as discussed above and can be considered using the ordinary sequent calculus.
However, for our purposes, we will build upon the focusing calculus described
in the previous section. As in Harland and Pym, we do not require arbitrary
boolean expressions but only those given in the following grammar:

Boolean Expressions e ::= 0 | 1 | e · x | e · x
Constraints c ::= e = 0 | e = 1 | c1 ∧ c2 | >

where x is a boolean variable, · is boolean multiplication, and x is the boolean
complement of x. We now annotate linear hypotheses A with a boolean expres-
sion e as A[e]. We write exp(A) for the boolean expression associated with A
where appropriate. The linear contexts ∆ and Ω now contain these annotated
formulas as described below:

Unrestricted Contexts Γ ::= · | Γ, A
Linear Contexts ∆ ::= · | ∆, A[e]

Ordered Linear Contexts Ω ::= · | Ω, A[e]

17

Decision.

Γ; ∆
RM
=⇒ C ⇓ C not atomic ∀e ∈ exp(Ω).e = 0

decideR
Γ; ∆;Ω ⇑ RM

=⇒ C

Γ; ∆; A ⇓ RM
=⇒ C e = 1 ∀e′ ∈ exp(Ω).e′ = 0

decideL
Γ; (∆, A[e]); Ω ⇑ RM

=⇒ C

(Γ, A); ∆; A ⇓ RM
=⇒ C ∀e ∈ exp(Ω).e = 0

decideL!
(Γ, A); ∆; Ω ⇑ RM

=⇒ C

Right Focusing Phase.

Γ; ∆ · V
RM
=⇒ A ⇓ Γ; ∆ · V

RM
=⇒ B ⇓

⊗R
Γ; ∆

RM
=⇒ A ⊗ B ⇓

∀e ∈ exp(∆).e = 0
1R

Γ; ∆
RM
=⇒ 1 ⇓

Γ; ∆
RM
=⇒ A ⇓

⊕R1

Γ; ∆
RM
=⇒ A ⊕ B ⇓

Γ; ∆
RM
=⇒ B ⇓

⊕R2

Γ; ∆
RM
=⇒ A ⊕ B ⇓

No 0 right rule

Γ; ·; · RM
=⇒ A ⇑ ∀e ∈ exp(∆).e = 0

!R
Γ; ∆

RM
=⇒ !A ⇓

Γ; ∆; · RM
=⇒ A ⇑ A not right synchronous

⇓R
Γ; ∆

RM
=⇒ A ⇓

Left Focusing Phase.

Γ; ∆ · V ; B ⇓ RM
=⇒ C Γ; ∆ · V

RM
=⇒ A ⇓

(L
Γ; ∆; A(B ⇓ RM

=⇒ C

Γ; ∆; B ⇓ RM
=⇒ C Γ; · RM

=⇒ A ⇓
⊃L

Γ; ∆; A ⊃ B ⇓ RM
=⇒ C

Γ; ∆; A ⇓ RM
=⇒ C

NL1

Γ; ∆;A N B ⇓ RM
=⇒ C

Γ; ∆;B ⇓ RM
=⇒ C

NL2

Γ; ∆; A N B ⇓ RM
=⇒ C

No > left rule

∀e ∈ exp(∆).e = 0
init

Γ; ∆; A ⇓ RM
=⇒ A

Γ; ∆; A[1] ⇑ RM
=⇒ C A not atomic and not left synchronous

⇓L
Γ; ∆; A ⇓ RM

=⇒ C

Figure 7: Focusing with Resource Management Calculus - Decision and Focusing
Phases

where Γ and ∆ are considered unordered and Ω is ordered as before. We also
lift exp(−) over contexts, so exp(∆) yields the multiset of boolean expressions
associated with the formulas in ∆.

We interpret the focused resource sequents

Γ; A1[e1], . . . , Am[em]; Am+1[em+1], . . . , An[en] RM=⇒ C ⇑
Γ; A1[e1], . . . , Am[em]; Am+1[em+1], . . . , An[en] ⇑ RM=⇒ C

Γ; A1[e1], . . . , An[en] RM=⇒ C ⇓
Γ; A1[e1], . . . , An[en]; A ⇓ RM=⇒ C

as saying that we have resource Ai if ei = 1 or we do not have resource Ai

if ei = 0 for i = 1 . . . n. We can also view the focus formula A as implicitly
annotated with the boolean expression 1.

18

We now describe the changes to the focusing calculus to incorporate this style
of resource management. Loosely speaking, boolean constraints are introduced
by the multiplicative rules as in ⊗R:

Γ; ∆ · V RM=⇒ A ⇓ Γ; ∆ · V RM=⇒ B ⇓ ⊗R
Γ; ∆ RM=⇒ A ⊗ B ⇓

where ∆ = A1[e1], A2[e2], . . . , An[en], V = {x1, x2, . . . , xn} is a set of n new
boolean variables, and V is the set of the boolean expressions {x1, x2, . . . , xn}.
We define ∆ · V to be A1[e1 · x1], A2[e2 · x2], . . . , An[en · xn] and ∆ · V to be
A1[e1 · x1], A2[e2 · x2], . . . , An[en · xn].

For each left rule, we maintain that the principal formula must be con-
strained to 1 so that the application of the rule will contribute to the solution
of the boolean equation. At the initial sequent,

∀e ∈ exp(∆).e = 0
init

Γ; ∆; A ⇓ RM=⇒ A

we ensure that only the focus formula is a usable resource.
Figures 6 and 7 give the complete focusing calculus with resource manage-

ment. We view a derivation as carrying constraints c where each statement
of the constraint e = 0 or e = 1 constrains c such that c ← c ∧ (e = 0) or
c ← c ∧ (e = 1), respectively. In proof search, we begin with the initial con-
straint > and fail whenever the constraints become unsatisfiable.

3.2.3 Removing Spurious Focusing

The number of available hypotheses on which we can focus is often rather large,
and it appears that many of them do not need to be focused on. For exam-
ple, consider the following focusing sequent where P , Q, R, and S are atomic
propositions:

S; S ((Q N R), Q (P ; · ⇑=⇒ P

At this point, we must decide to focus on one of the formulas on the left (S,
S ((Q N R), or Q (P); however, by inspection, we see that in reality, we
must choose Q (P in order to find a proof. The proof tree by choosing Q (P
is shown below:

19

init
S; ·; P ⇓=⇒ P

init
S; ·; Q ⇓=⇒ Q

NL1
S; ·; Q N R ⇓=⇒ Q

init
S; ·; S ⇓=⇒ S

decideL!
S; ·; · ⇑=⇒ S

⇑R
S; ·; · =⇒ S ⇑

⇓R
S; · =⇒ S ⇓

(L
S; ·; S ((Q N R) ⇓=⇒ Q

decideL
S; S ((Q N R); · ⇑=⇒ Q

⇑R
S; S ((Q N R); · =⇒ Q ⇑

⇓R
S; S((Q N R) =⇒ Q ⇓

(L
S; S ((Q N R); Q(P ⇓=⇒ P

decideL
S; S ((Q N R), Q(P ; · ⇑=⇒ P

It appears that in the above example, the fact that the goal is atomic provides
some additional information that can aid in directing the choice of focus for-
mula. In the context of linear logic programming, this appears to be related the
notion of logic programming as goal-directed search where the focusing phase
corresponds to a procedure call [Pfe01].

In [CHP00], Cervesato, Hodas, and Pfenning presents a refinement of a
system for linear logic programming presented in Hodas and Miller [HM94] that
“compile” logic program procedures (i.e. focus formulas). This technique is
not as overwhelming beneficial in our theorem proving context, for we may
encounter connectives that are not left synchronous; however, it seems to be a
necessary optimization given that larger proofs will most certainly have many
assumptions in Γ and ∆.

In figure 8, we present an extension to the focusing system described in
section 3.2.1. We could certainly integrate this with the resource management
system in section 3.2.2, but we have chosen not to for the sake of clarity. To dis-
tinguish this new system from the original focusing system given in section 3.2.1,
we write the sequent arrows for this system as “ ·=⇒” rather than “=⇒”. We
also introduce the following two judgments:

A� P \ G A possibly entails goal P with residual subgoal G

Γ; ∆ ·=⇒ G ↑ residual subgoal G can be proven from Γ and ∆

where A stands for arbitrary formulas, P denotes atomic formulas, and G repre-
sents residual goals. The residual goals G are given by the following grammar:

Residual Goals G ::= P ′ ·= P | G ⊗ A | G1 ⊕ G2 | 0 | G ⊗! A | A (P

Note, we view ⊗! as a single binary connective as discussed in Pfenning’s
notes [Pfe01].

20

Decision.

Γ; ∆;A ⇓ ·
=⇒ C C not atomic

decideL
Γ; (∆, A); · ⇑ ·

=⇒ C

(Γ, A); ∆; A ⇓ ·
=⇒ C C not atomic

decideL!
(Γ, A); ∆; · ⇑ ·

=⇒ C

A � C \ G Γ; ∆
·

=⇒ G ↑ C atomic
decideL↑

Γ; (∆, A); · ⇑ ·
=⇒ C

A � C \ G (Γ, A); ∆
·

=⇒ G ↑ C atomic
decideL!↑

(Γ, A); ∆; · ⇑ ·
=⇒ C

Residuation.

·
=�

P ′ � P \ P ′ ·
= P

·
=R↑

Γ; · ·
=⇒ P

·
= P ↑

B � P \ G
(�

A(B � P \ G ⊗ A

Γ; ∆2
·

=⇒ G ↑ Γ; ∆1
·

=⇒ A ⇓
⊗R↑

Γ; (∆1, ∆2)
·

=⇒ G ⊗ A ↑

A � P \ G1 B � P \ G2

N�
A N B � P \ G1 ⊕ G2

Γ; ∆
·

=⇒ G1 ↑
⊕R1↑

Γ; ∆
·

=⇒ G1 ⊕ G2 ↑
Γ; ∆

·
=⇒ G2 ↑

⊕R2↑
Γ; ∆

·
=⇒ G1 ⊕ G2 ↑

>�
> � P \ 0

No 0 right rule

B � P \ G
⊃�

A ⊃ B � P \ G ⊗! A

Γ; ∆
·

=⇒ G ↑ Γ; · ·
=⇒ A ⇓

⊗!R↑
Γ; ∆

·
=⇒ G ⊗! A ↑

A not atomic and not left synchronous
⇓�

A � P \ A(P

Γ; ∆;A ⇑ ·
=⇒ P

(R↑
Γ; ∆

·
=⇒ A(P ↑

Figure 8: Focusing with Residuation Calculus

We begin by adding new decision rules for when the goal is atomic. The
decideL↑ rule

A� C \ G Γ; ∆ ·=⇒ G ↑ C atomic
decideL↑

Γ; (∆, A); · ⇑ ·=⇒ C

is viewed algorthimically as proceeding from left to right. It chooses a formula
from the linear context ∆ and passes it to the residuation judgment to produce
a residual subgoal G. We then proceed to prove G. There is also an analogous
rule for the unrestricted context Γ. It should be noted that the residuation
judgment is completely deterministic in that there exists a unique residual goal
G such that A � P \ G for every A and P . In addition, A � P \ G does
not actually depend on the shape of P (i.e. it is parametric in P), so we can

21

compile A to G independent of P . These judgments, in essence, replace the left
focusing judgment Γ; ∆;A ⇓=⇒ C when C is atomic. We also modify decideL
and decideL! slightly to only apply when C is not atomic.

To see where this is beneficial, consider the (� and ⊗R↑ rules:

B � P \ G
(�

A (B � P \ G ⊗ A

Γ; ∆2
·=⇒ G ↑ Γ; ∆1

·=⇒ A ⇓ ⊗R↑
Γ; (∆1, ∆2)

·=⇒ G ⊗ A ↑
If the focus formula is A (B, then A needs to be solved as a subgoal but only if
B possibly entails the goal P . Algorithmically, we should consider reading ⊗R↑
as proceeding left to right. Thus, we will not attempt to solve Γ; ∆1

·=⇒ A ⇓
unless there is a proof for Γ; ∆2

·=⇒ G ↑. We also view the ⊗!R↑ rule in the
same way. See appendix B for a proof of correctness for this system.

3.3 Parallelization

Examining figures 4 and 5, we can divide the possible parallelism into two cat-
egories: AND-parallelism and OR-parallelism. AND-parallelism can be found
when we generate a set of new subgoals that each need to be solved to suc-
ceed. The order in which the subgoals are solved is irrelevant, so we can try
to solve the subgoals in parallel. An example of such a rule is NR (figure 4).
OR-parallelism arises when there are several rules that can be applied (or sev-
eral ways we can apply a given rule) where solving one of the possible subgoals
would enable us to succeed. A simple example of this is the choice between
applying ⊕R1 or ⊕R2 (figure 5).

The next critical observation is that the focusing strategy concentrates much
of the non-determinism into the “decision” phase (the decideR, decideL, and
decideL! rules) so that there are several OR-parallel branches at this point (de-
pending on the size of the contexts). We presume that this is the place we can
get the most benefit from the grid architecture. Other places where we could
introduce parallelism grid may or may not be beneficial on the grid. An option
is to also parallelize using local threads.

Given these observations, we see that once we spawn tasks on the grid for
OR-parallel branches and once some task succeeds, we may want to terminate
the other tasks to save resources on the network since they are no longer needed.
This motivated the need for the forget primitive in our proposed language
extension.

A challenge with parallelizing a linear logic prover for the grid is dealing with
resource distribution as discussed in section 3.2.2. One possible parallelization
strategy is to have the subtasks communicate with each other as they use the
resources, but this seems infeasible in the grid setting as there should be low
communication between tasks. However, using boolean constraints, each sub-
goal can be solved independently returning the resources that were used. We
then check that the resource usage is consistent. One issue that arises if we
pursue this further is that there may be multiple proofs for the same goal using
different resources. One usage of resources may prevent the other branch from

22

succeeding. Furthermore, we do not have the ability to tell the subtask which
usage of resources will be acceptable a priori, so we must consider all possible
proofs of the sub-branch. To implement this, we would like to think of each task
returning multiple results or more specifically, a stream of results. One option
for implementation would be to return code representing a suspended task that
gives the next result if asked. Another option is to use disabled tasks, which
are introduced in section 2.2.

Modeling result streams is what we currently envision as the primary use
of disabled tasks. As described above, it appears that a substantial amount
of code will be shipped back and forth using the first option. An alternative
(with different drawbacks) would be for the subtask to inject a disabled task
that would compute the next result and return a much smaller piece of code
that would enable this disabled task if the next result in the stream is needed.
Though this method may reduce the amount of transmitted code, it has the
potential to add a substantial amount of bookkeeping to the underlying code
distribution and verification software (ConCert).

3.4 Implementation

We began the development of Iktara with a purely sequential version written
in SML [MTHM97] using the SML/NJ compiler. Then, we explored the paral-
lelization of the theorem proving algorithm by developing a concurrent version
using Concurrent ML (CML) [Rep99] that motivated much of the design of the
programming model discussed in section 2. Finally, a version was written using
the ConCert simulator described in section 2.5. The code for all three versions
is made available from the ConCert webpage [Con01a]. In this section, we de-
scribe the components that comprise the various versions of the theorem prover
and how they fit together. Figure 9 diagrams the modules of which the theorem
provers are comprised.

3.4.1 Ordered Binary Decision Diagrams

A standard implementation of ordered binary decision diagrams (OBDDs) [Bry86,
Bry92] was written in SML roughly following Andersen’s course notes on OB-
DDs [And97]. The key requirement for our implementation is that the data
structure must be marshalable, for we will need to be able to propagate OBDDs
across the ConCert network. This is facilitated by ensuring that the implemen-
tation adheres to a functional interface and that each OBDD can exist inde-
pendently of any other one. In the OBDD signature below, we state that the
boolean variables will simply be represented by ints and a set of binary boolean
operators is given in oper. OBDDs are initially built from either zero, one, or
mkVar. The function mkVar creates an OBDD that represents the boolean ex-
pression consisting of simply the given variable. To build more complex boolean
expressions, one uses not and apply. The function not yields the OBDD that
represents the negation of the given OBDD, while apply combines the two given
OBDDs with the given binary operator.

23

signature OBDD =
sig
type var = int
datatype oper = And | Or | Imp | BiImp | Xor | Nand | Nor

type obdd
val zero : obdd
val one : obdd
val mkVar : var -> obdd
val not : obdd -> obdd
val apply : oper -> obdd * obdd -> obdd
val eq : obdd * obdd -> bool
val toString : obdd -> string

end

As described in Andersen’s notes [And97], nodes are represented by integers
0, 1, 2, . . . with 0 and 1 reserved for the terminal nodes. We define the following
to describe variable nodes:

var(u) the variable name of node u
low(u) the node that is at the end of the 0-branch of node u
high(u) the node that is at the end of the 1-branch of node u

To represent OBDDs, we rely on two tables: T : u 7→ (i, l, h) that maps node
u to the variable node attributes (i, l, h) where var(u) = i, low(u) = l, and
high(u) = h. and H : (i, l, h) 7→ u that is inverse mapping of table T . The
significant difference between the description given in Andersen’s notes and the
implementation of structure Obdd :> OBDD is that rather than using a global
table of nodes, each OBDD contains its own table of nodes. This is at the cost
of memory as the nodes are no longer shared across OBDDs, but without this,
we would certainly not be able to marshal this structure.

3.4.2 Boolean Constraints

Using OBDDs, we develop a module that provides operations for implementing
the resource management system described in section 3.2.2. In the following
fragment of signature CONSTRAINTS, we specify one abstract type for boolean
expressions bexp, one abstract type for constraints constraints, and operations
for resource management:

24

signature CONSTRAINTS =

sig

structure Prop : PROP

structure Cxt : CXT

type bexp (* boolean expressions *)

val one : bexp

val zero : bexp

type linearCxt = (Prop.prop * bexp) Cxt.Cxt

type unrestrictedCxt = Prop.prop Cxt.Cxt

type constraints (* boolean constraints *)

val empty : constraints

val addConstraints : constraints * constraints -> constraints

val constrainExp : bexp * bool -> constraints

val distributeRes : linearCxt -> linearCxt * linearCxt

val verifyEmpty : linearCxt * constraints -> constraints option

val unsatisfiable : constraints -> bool

...

end

The boolean expressions e in section 3.2.2 are represented by values of type
bexp and constraints c are represented by values of type constraints. Let
peq denote the value of type bexp that represents the boolean expression e, pcq
denote the value of type constraints that represents the constraint c, and p∆q
denote the value of type linearCxt that represents the linear context ∆. Then,

one = p1q
zero = p0q

empty = p>q
addConstraints (c1, c2) = pc1 ∧ c2q

constrainExp (e1, true) = pe1 = 1q
constrainExp (e1, false) = pe1 = 0q

distributeRes ∆ = (p∆ · V q, p∆ · V q)

where |∆| = n, V is a set of new variables {x1, x2, . . . , xn}, and V = {x1, x2, . . . , xn}.
It is clear that distributeRes is used when applying ⊗R and (L (figure 7).
The function verifyEmpty is used to check the condition ∀e ∈ exp(∆).e = 0 in
rule init: ∀e ∈ exp(∆).e = 0

init
Γ; ∆; A ⇓ RM=⇒ A

25

Other places where this is used are in rules decideR, decideL, decideL!, 1R, and
!R. The function unsatisfiable c returns true if there exists no satisfying
assignment for the boolean variables in c or false otherwise. The implemen-
tation of the signature described above is straightforward by using OBDDs for
both boolean expressions and constraints.

3.4.3 Focusing

Since each version of the theorem prover will share much of the implementation
of the focusing phases as described in section 3.2, we attempt to separate the
core focusing phases from other parts of the theorem prover implementation.
We also seek to isolate each phase from every other one so that they can be
re-implemented independently. The datatype sequent distinguishes the five
focusing phases, which is used by the dispatcher to invoke the correct phase.
The functor FocusingFn(...) :> FOCUSING simply implements the focusing
phases as described in 3.2 in a purely sequential manner using SML with no
additional extensions.

3.4.4 ConCert Simulator Version

To test to the programming interface discussed in section 2.2, we develop a ver-
sion of the theorem prover for the ConCert simulator as described in section 2.5.
We set up the simulator as follows fixing type env and type result:

(* ConCert Simulator Interface *)
structure Task =
struct
type env = F.sequent * C.constraints
datatype result =

R of (C.constraints * ((env -> result) * env)) option
end
structure CCTasks = CCTasksFn(structure T = Task)

where F :> FOCUSING and C :> CONSTRAINTS. Type env specifies the sequent
to start proving and the current set of constraints. Type result indicates
whether or not it is successful; if it is successful, it gives the new constraints
indicating which resources were consumed and the code for a task to execute
if the overall goal cannot be proven. Ideally, we would like type result to
contain a suspended task

type result = (C.constraints * (unit -> CCTasks.task)) option,

but this is not possible as SML does not (yet) have mutually recursive modules.
As described in section 3.3, we inject a new task for each focus formula in

the decision phase. Thus, we write an implementation for the decision phase
specifically for the simulator that starts new subtasks and waits for the results.
To gather the results, we use relax to continue proving as soon as we get a
successful result. The other subtasks remain running as we may need their

26

results if the overall goal cannot be accomplished. The following code snippet
illustrates this use of relax:

let
val tsks = (* ... start subtasks ... *)

fun resultLoop (nil) = fc ()
| resultLoop (ts) =
let
open CCTasks
val (Task.R result, ts’) = relax ts

in
case result of
NONE => resultLoop ts’

| SOME (c,next) =>
let
fun fc’ = let val t = injectTask true next

in resultLoop (t::ts’) end
in
sc ((c,()), fc’)

end
end

in
resultLoop tsks

end

where sc and fc are the success and failure continuations, respectively.
It should be noted that in the current implementation, there is a little cheat

in that the code that is “shipped-back” as part of a successful result is not
closed (i.e. we rely on the SML compiler to build that closure). This could be
remedied by modifying the type of the failure continuations and restructuring
the code, but it is evident that some form of automation in closure converting
code is necessary.

4 Conclusion

We have discussed the aim of the ConCert project and how the development
process of an application, namely a theorem prover for linear logic, contributes
to ConCert. In this paper, we have presented a high-level view of what we
believe is a reasonable programming model for the ConCert framework, some
considerations in mapping this programming model to the ConCert grid soft-
ware, and an implementation of a simulator for the programming model. We
have then described in more detail the theorem proving algorithm we have im-
plemented in Iktara and how the algorithm can be parallelized. This then gives
a basis to motivate certain design choices in our programming model. Finally,

27

Cxt
:> CXT :> OBDD

ObddProp
:> PROP

LLProverCML
:> LLPROVER :> LLPROVER

LLProver
:> LLPROVER
LLProverCC

:> FOCUSING
Focusing

:> CONSTRAINTS
ConstraintsFn

structure

functor

Key

functor argument

Figure 9: Iktara modules. The round-edged boxes denote functors, the sharp-
edged boxes denote structures, and the arrows indicate some instantiation of
the functors.

we have presented the actual implementation details of Iktara and how it uses
the simulator.

In recent years, several workshops and conferences have emerged in the area
of grid computing such as GRID [Lee01] and CCGrid [BMR01]. Similarly, large
corporations have become involved with the development of grid architectures,
such as the endorsement of the Globus project [Glo02] by IBM and the creation
of the JXTA project [JXT01] by Sun Microsystems. The focus of such projects
has been the creation of large-scale architectures and toolkits with security based
on almost exclusively on authentication. Contrast this to ConCert’s view on se-
curity that is based at least in part on verifiable properties of code rather than
the identity of code producers and/or resource donors. A current project that
shares a similar view to ConCert is the Mobile Resource Guarantees project tak-
ing place at the University of Edinburgh and Ludwig-Maximilians-Universität
München [MRG02].

Future Work

In this section, we discuss some outstanding issues and some ideas for future
work.

Programming Model

� Clearly, we need to implement a compiler for the proposed task program-
ming interface.

� It is still open question what are the “right” semantics and the right

28

properties to be checked by the type system for tasks and the programming
constructs proposed in section 2.2 . For example, should the usage of tasks
be linear (i.e. should we ensure that a task is only synced on once)?

� Many open questions concerning the marshaling of data across the network
and how that affects the programming model remain. How do we verify
that or determine if a piece of data or code is marshalable? How much
automation should there be in closure conversion for marshaling? Since
communication is at a premium, presumably, the user would like to have
precise control what gets sent across the network. How do we instruct the
system to marshal modules? When do we cache data or code that has
been transmitted across the network?

� In the interface described in section 2.2, we present two constructs syncall
and relax that seem to have a conjunctive meaning. Should there be a dis-
junctive primitive? Note that a notion of disjunction can be implemented
in terms of relax and forget as follows:

(* select : ’r task list -> ’r *)
fun select tl =

let
val (r,tl’) = relax tl

in
app forget tl’;
r

end

Noting this, it seems clear that though the constructs we have proposed
(syncall and relax) are motivated by pragmatic reasons as discussed
in this paper, we should be able to decompose these into more primitive
constructs with a possibly better logical interpretation. We have some
initial ideas on this line, but they are still very preliminary.

� One might notice that in the description of our programming model, it
appears that tasks are never explicitly destroyed. A failed task may be
restarted if anyone desires its result. Implicit in our assumptions about
the network has been that tasks have some “natural” lifespan in that due
to the turbulent nature of the network, tasks will simply be forgotten by
everyone. More realistically, tasks need to be garbage-collected in some
manner. It is an open problem whether this can be done.

Simulator

� As discussed in section 2.5.3, there are limitations to the simulator. While
some are unavoidable, we would still like to find a better simulation envi-
ronment that relies less on programmers’ discipline. One possibility may
be to implement a simulator where a task or cord is modeled as a UNIX
process where the communication is done solely through TCP/IP sockets.

29

In some sense, injecting a task into the network is more similar to forking
a process than spawning a thread. This might more accurately model the
network and would require proper marshaling of code/data in order for
the program to work.

Theorem Prover

� As described in this paper, the theorem proving is not certifying in that it
does not generate proof terms. This is essential because we need to have
some method of ensuring that malicious resource donors are not giving
bogus answers. Along this front, we also need develop a type checker for
these proof terms.

� Currently, no front-end has been implemented for Iktara. Ideally, there
should be some concrete syntax for inputting formulas and some method
of displaying proofs.

� We would like to extend the theorem prover to first-order linear logic as
it appears that standard unification techniques would apply and would
likely enable us to feasibly prove some richer theorems.

� Most importantly, as we develop a compiler for the programming interface
described in section 2.2 and the ConCert grid software matures, we would
like have a version of the theorem prover running on the grid.

Acknowledgements

Foremost, I would like to thank my advisors Professor Robert Harper and Pro-
fessor Frank Pfenning for their insightful advice and teaching me much of what I
know today about logic and programming languages. I would also like to thank
the rest of the ConCert framework team, Tom Murphy, Margaret DeLap, and
Jason Liszka, for their comments and close collaboration. Also, I am grateful for
the helpful comments provided by Professor Pfenning, Professor Harper, Tom,
Margaret, and Mark Stehlik on preliminary drafts of this paper. Lastly, I would
like to acknowledge the helpful suggestions provided by other members of the
ConCert project.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in lin-
ear logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[And97] Henrik Reif Andersen. An introduction to binary deci-
sion diagrams. Course Notes on the WWW, 1997. URL:
http://www.itu.dk/people/hra/bdd97.ps.

30

[BL97] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable par-
allel computing on networks of workstations. In USENIX 1997 Annual
Technical Conference on UNIX and Advanced Computing Systems,
pages 133–147, 1997.

[BMR01] Rajkumar Buyya, George Mohay, and Paul Roe, editors. Cluster
Computing and the Grid - CCGrid 2001. IEEE Press, 2001.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691, Au-
gust 1986.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–318,
1992.

[CHP00] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient
resource management for linear logic proof search. Theoretical Com-
puter Science, 232(1–2):133–163, February 2000.

[Con01a] ConCert. Certified code for grid computing, project webpage, 2001.
URL: http://www.cs.cmu.edu/˜concert.

[Con01b] ConCert. Project description, 2001. URL:
http://www.cs.cmu.edu/˜concert/papers/proposal/proposal.pdf.

[DeL02] Margaret DeLap. Implementing a framework for certified grid com-
puting. Technical Report CMU-CS-02-151, Carnegie Mellon Univer-
sity, June 2002. Undergraduate honors thesis.

[Fig00] FightAIDS@home, 2000. URL: http://www.fightaidsathome.org.

[GIM96] GIMPS. The great internet mersenne prime search, 1996. URL:
http://www.mersenne.org.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Glo02] Globus. The Globus project, 2002. URL: http://www.globus.org.

[Hal85] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. In ACM Transactions on Programming Languages and
Systems, pages 7(4):501–538, October 1985.

[Har02] Robert Harper. Programming languages: Theory and
practice. Course Notes on the WWW, 2002. URL:
http://www.cs.cmu.edu/˜rwh/plbook/.

31

[HM94] Joshua S. Hodas and Dale Miller. Logic programming in a fragment
of intuitionistic linear logic. Journal of Information and Computa-
tion, 110(2):327–365, May 1994. Extended abstract appeared in the
Proceedings of the Sixth Annual Symposium on Logic in Computer
Science, Amsterdam, July 15-18, 1991.

[How98] Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics.
PhD thesis, University of St. Andrews, Scotland, 1998.

[HP01] James Harland and David Pym. Resource-distribution via boolean
constraints. To appear in ACM Transactions on Computational Logic,
October 2001.

[JXT01] JXTA. Project JXTA, 2001. URL: http://www.jxta.org.

[Lee01] Craig A. Lee, editor. Grid Computing - GRID 2001. Number 2242 in
Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2001.

[MRG02] MRG. Mobile resource guarantees, project webpage, 2002. URL:
http://www.dcs.ed.ac.uk/home/dts/mrg/.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

[Pfe01] Frank Pfenning. Linear logic. Course Notes on the WWW, 2001.
URL: http://www.cs.cmu.edu/˜fp/courses/linear/linear.ps.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge Uni-
versity Press, 1999.

[SET01] SETI@home. The search for extraterrestrial intelligence, 2001. URL:
http://setiathome.ssl.berkeley.edu.

A Dynamic Semantics of Tasks

In this section, we give dynamic semantics for the programming model de-
scribed in section 2.2 to aid in the understanding of the proposed language
extensions. We elide the static semantics (i.e. the type system) because we do
not (yet) assert anything stronger than what is suggested by the signature given
in figure 1. To specify the dynamic semantics, we use structured operational
semantics (SOS) in the style presented in Harper’s course notes [Har02]. To
present a reasonably realistic account in that some surface-level issues related
to marshaling are drawn out, we present this as an extension to an effect-free
core of ML plus references.

The language of expressions are extended as follows:

32

Expressions e ::= . . .
| l locations
| ref(e) create new cell
| !e dereference
| e1 := e2 update cell
| dt result destination for task t
| inject (e1, e2) inject task
| enable e enable task
| sync e sync task
| syncall e sync all tasks
| relax e relax on tasks
| forget e forget task
| status e status of task
| sv status values

where l ranges over locations, d ranges over destinations for the results of tasks,
t ranges over task handles, and sv ranges over statuses. Both l and t are infi-
nite sets of identifiers disjoint from variables, and as in standard practice, the
identifiers are allowed to α-vary (i.e. changing the name does not change its
identity).

Now, we extend the set of values to include locations, destinations, and
statuses. For convenience, we separate values into another category, resulting
values.

Resulting Values rv ::= . . .
| l locations
| sv status values

Values v ::= rv
| dt result destination for task t

Destinations d ::= M, rv waiting for result
| M, rv filled with result

Statuses sv ::= Disabled
| Failed
| Finished
| Running

We choose to leave out the status Waiting, for it clutters the specification
of the dynamic semantics without altering any behavior except the result of
status. In this formulation, rather than changing status from between Running
and Waiting, we leave the status at Running. We could imagine the status of
tasks changing implicitly as appropriate.

A memory M is a finite mapping from locations to values. We write M [l=v]
for the addition or update of location l to v in memory M .

33

Memories M ::= ·
| M, l=v

We define an abstract task as the initial memory and code (Ṁ, ė) along with
the current memory and expression to evaluate (sv, M, e). If the task fails, then
the current state is lost.

Tasks T ::= (Ṁ, ė)3(Running, M, e)
| (Ṁ, ė)3(Disabled, M, e)
| (Ṁ, ė)3Failed

Now, we define the grid G as a finite mapping from task handles t to abstract
tasks. We write the tasks on the grid as follows:

G = 〈t1:(Ṁ1, ė1)3(sv1, M1, e1)〉, . . . , 〈tn:(Ṁn, ėn)3(svn, Mn, en)〉

This yields the following stepping judgment:

G 7→ G′

which says that grid state G steps to grid state G′. We define a stepping
judgment between grids primarily by a stepping judgment between tasks plus
a few rules that describe the creation and termination of tasks. We write the
stepping judgment between tasks as follows:

T 7→t T ′

To not clutter the rules unnecessarily, we often leave off the initial memory and
code as it does not change during the execution of a task. For example, we write

(sv, M, e) 7→t (sv′, M ′, e′)

as an abbreviation for (Ṁ, ė)3(sv, M, e) 7→t (Ṁ, ė)3(sv′, M ′, e′).
We can view the grid making a step by non-deterministically choosing some

task t in G and then making a step in t as shown below:

T 7→t T ′

G, T 7→ G, T ′ (1)

where “G, T ” denotes the extension of grid state G with task T .
Now, consider a simple substitution semantics for the effect-free core of ML

augmented with M and sv in a straightforward manner. We now present the ad-
ditional rules for references and tasks. First, we give the rules for the reference-
related constructs.

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, ref(e)) 7→t (sv′, M ′, ref(e))
(2)

34

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, !e) 7→t (sv′, M ′, !e′)
(3)

(Running, M, e1) 7→t (sv′, M ′, e′1)

(Running, M, e1 := e2) 7→t (sv′, M ′, e′1 := e2)
(4)

(Running, M, e2) 7→t (sv′, M ′, e′2)

(Running, M, v1 := e2) 7→t (sv′, M ′, v1 := e′2)
(5)

l 6∈ dom(M)

(Running, M, ref(v)) 7→t (Running, M [l=v], l)
(6)

l ∈ dom(M)

(Running, M, !l) 7→t (Running, M, M(l))
(7)

l ∈ dom(M)

(Running, M, l := v) 7→t (Running, M [l=v], 〈〉) (8)

Now we consider the task-related constructs. We first present the compati-
bility rules.

(Running, M, e1) 7→t (sv′, M ′, e′1)

(Running, M, inject (e1, e2)) 7→t (sv′, M ′, inject (e′1, e2))
(9)

(Running, M, e2) 7→t (sv′, M ′, e′2)

(Running, M, inject (v1, e2)) 7→t (sv′, M ′, inject (v1, e
′
2))

(10)

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, enable e) 7→t (sv′, M ′, enable e′)
(11)

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, sync e) 7→t (sv′, M ′, sync e′)
(12)

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, syncall e) 7→t (sv′, M ′, syncall e′)
(13)

35

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, relax e) 7→t (sv′, M ′, relax e′)
(14)

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, forget e) 7→t (sv′, M ′, forget e′)
(15)

(Running, M, e) 7→t (sv′, M ′, e′)

(Running, M, status e) 7→t (sv′, M ′, status e′)
(16)

To inject a task into the network, we set its initial status as appropriate,
copy the memory, and apply the function to its argument. Note that once the
task is injected, the contents of to’s memory diverges from the contents of t’s
memory. The copying of memory is, in some sense, a kind of marshaling we
may want to consider. Considering this memory copying operation would be
intensive in implementation, it is not clear at this point whether or not we want
to do this.

to 6∈ dom(G) to 6= t v = (v1, v2)

G, 〈t:(Running, M, inject (true, v))〉
7→

G, 〈t:(Running, M, Mo, rv
to

)〉, 〈to:(M, v1 v2)3(Running, M, v1 v2)〉
(17)

to 6∈ dom(G) to 6= t v = (v1, v2)

G, 〈t:(Running, M, inject (false, v))〉
7→

G, 〈t:(Running, M, Mo, rv
to

)〉, 〈to:(M, v1 v2)3(Disabled, M, v1 v2)〉
(18)

We only enable disabled tasks; otherwise, we do nothing.

G, 〈t:(Running, M, enable Mo, rv
to

)〉, 〈to:(Disabled, Mo, eo)〉
7→

G, 〈t:(Running, M, 〈〉)〉, 〈to:(Running, Mo, eo)〉
(19)

svo 6= Disabled

G, 〈t:(Running, M, enable Mo, rv
to

)〉, 〈to:(svo, Mo, eo)〉
7→

G, 〈t:(Running, M, 〈〉)〉, 〈to:(svo, Mo, eo)〉

(20)

36

(Running, M, enable Mo, rv
to

) 7→t (Running, M, 〈〉) (21)

To receive the result from task to, we need to copy the memory from to
(i.e. Mo) to the memory of task t (i.e. M). We write [l′1/l1, . . . , l

′
n/ln]v as the

simultaneous substitution of l′1 for l1, l′2 for l2, . . ., and l′n for ln in v.

Mo = (l1=v1, . . . , ln=vn) l′1, . . . , l
′
n /∈ dom(M) θ = [l′1/l1, . . . , l

′
n/ln]

(Running, M, sync Mo, rv
to

)
7→t

(Running, M [l′1=θv1, . . . , l
′
n=θvn], θrv)

(22)

(Running, M, syncall nil) 7→t (Running, M, nil) (23)

Mo = (l1=v1, . . . , ln=vn) l′1, . . . , l
′
n /∈ dom(M) θ = [l′1/l1, . . . , l

′
n/ln]

(Running, M, syncall Mo, rv
to

:: r)
7→t

(Running, M [l′1=θv1, . . . , l
′
n=θvn], θrv :: syncall r)

(24)

Note that there is no possible step from a state evaluating relax nil.

Mo = (l1=v1, . . . , ln=vn) l′1, . . . , l
′
n /∈ dom(M) θ = [l′1/l1, . . . , l

′
n/ln]

(Running, M, relax Mo, rv
to

:: r)
7→t

(Running, M [l′1=θv1, . . . , l
′
n=θvn], (θrv, r))

(25)

(Running, M, relax Mo, rv
to

:: r)
7→t

(Running, M, let (v, r′) = relax r in (v, Mo, rv
to

:: r′))

(26)

Calling forget is simply an explicit indication of the failure of a task. When
a task fails, the memory and expression is lost. If the task has already completed,
then we simply forget the answer.

37

G, 〈t:(Running, M, forget Mo, rv
to

)〉, 〈to:(sv, Mo, eo)〉
7→

G, 〈t:(Running, M, 〈〉)〉, 〈to:Failed〉
(27)

(Running, M, forget Mo, rv
to

) 7→t (Running, M, 〈〉) (28)

The status is given by the state of the task.

G, 〈t:(Running, M, status Mo, rv
to

)〉, 〈to:(sv, Mo, eo)〉
7→

G, 〈t:(Running, M, sv)〉, 〈to:(sv, Mo, eo)〉
(29)

(Running, M, status Mo, rv
to

) 7→t (Running, M, Finished) (30)

Finally, when a task completes, the result is propagated and it disappears
from G. For notational convenience, we define lift substitutions θ over memories
and abstract tasks as follows:

θ(·) def
= ·

θ(M, l=v)
def
= (θM), l=θv

θ〈t:(Ṁ, ė)3(sv, M, e)〉 def
= 〈t:(θṀ , θė)3(sv, θM, θe)〉

G = 〈t1: · · ·〉, . . . , 〈ti−1: · · ·〉, 〈ti:(sv, Mi, rv)〉, 〈ti+1: · · ·〉, . . . , 〈tn: · · ·〉
θ = [Mi, rv

ti

/ Mo, rv
ti

]

G 7→ θ〈t1: · · ·〉, . . . , θ〈ti−1: · · ·〉, θ〈ti+1: · · ·〉, . . . , θ〈tn: · · ·〉
(31)

With the rules given above, failure is non-existent (except for user-specified
failure with forget). Also, there is no failure recovery. If we want to also model
random failure on the network, we can add the following:

(Running, M, e) 7→t Failed
(32)

assuming there is some way to effectively detect failures. To specify failure
recovery, we add the following rules that upon syncing restart tasks when nec-
essary.

38

G, 〈t:(Running, M, sync Mo, rv
to

)〉, 〈to:(Ṁo, ėo)3Failed〉
7→

G, 〈t:(Running, M, sync Mo, rv
to

)〉, , 〈to:(Ṁo, ėo)3(Running, Ṁo, ėo)〉
(33)

G, 〈t:(Running, M, syncall Mo, rv
to

:: r)〉, 〈to:(Ṁo, ėo)3Failed〉
7→

G, 〈t:(Running, M, syncall Mo, rv
to

:: r)〉, 〈to:(Ṁo, ėo)3(Running, Ṁo, ėo)〉
(34)

G, 〈t:(Running, M, relax Mo, rv
to

:: r)〉, 〈to:(Ṁo, ėo)3Failed〉
7→

G, 〈t:(Running, M, relax Mo, rv
to

:: r)〉, 〈to:(Ṁo, ėo)3(Running, Ṁo, ėo)〉
(35)

From this description, the issue related to garbage-collection of tasks as
described in the conclusion becomes more clear. We see that tasks that fail may
never get removed from the grid state G. Ideally, we would garbage collect a
task tf if it has failed and no destinations for tf exist; however, as noted before,
we do not know if there is a way to make this feasible.

B Correctness of Focusing with Residuation

In this section, we demonstrate the correctness of the system given in sec-
tion 3.2.3 by showing it is sound and complete with respect to the original
focusing system described in section 3.2.1.

Since this system is simply a restriction on the focusing calculus, soundness
is reasonably easy to show. This is expected as the intention of this system was
simply for optimizing the theorem proving algorithm.

39

Theorem 2 (Soundness of Residuation)

1. If Γ; ∆; Ω ·=⇒ C ⇑, then Γ; ∆; Ω =⇒ C ⇑.
2. If Γ; ∆; Ω ⇑ ·=⇒ C, then Γ; ∆; Ω ⇑=⇒ C.

3. If

(a) A� C \ G and Γ; ∆ ·=⇒ G ↑ where C is atomic,
then Γ; ∆; A ⇓=⇒ C.

(b) Γ; ∆; B ⇓ ·=⇒ C where C is not atomic, then Γ; ∆; B ⇓=⇒ C.

4. If Γ; ∆ ·=⇒ C ⇓, then Γ; ∆ =⇒ C ⇓.
Proof: By simultaneous induction on the structure of the derivations of Γ; ∆; Ω ·=⇒
C ⇑, Γ; ∆; Ω ⇑ ·=⇒ C, Γ; ∆; B ⇓ ·=⇒ C, and Γ; ∆ ·=⇒ C ⇓ and the structure of
A. Since the rules for right asynchronous, left asynchronous, right focusing, and
left focusing phases when the goal is non-atomic are the same in both systems,
those cases are straightforward. The decideR, decideL, and decideL! cases are
also similarly direct. We show in detail the remaining cases.

Case: R =
R′

A� C \ G

R′′

Γ; ∆ ·=⇒ G ↑ C atomic
decideL↑

Γ; (∆, A); · ⇑ ·=⇒ C

By i.h. (3a) on R′ and R′′,
D

Γ; ∆; A ⇓=⇒ C , so we construct

F =
D

Γ; ∆; A ⇓=⇒ C
decideL

Γ; (∆, A); · ⇑=⇒ C

Case: R =
R′

A� C \ G

R′′

(Γ, A); ∆ ·=⇒ G ↑ C atomic
decideL!↑

(Γ, A); ∆; · ⇑ ·=⇒ C

By i.h. (3a) on R′ and R′′,
D

(Γ, A); ∆; A ⇓=⇒ C , so we construct

F =
D

(Γ, A); ∆; A ⇓=⇒ C
decideL!

(Γ, A); ∆; · ⇑=⇒ C

Case: A = P where P is atomic, so P � C \ P
·= C where C is atomic.

Thus, G = P
·= C and Γ; ∆ ·=⇒ P

·= C, but then ∆ must be · and P must
be C for Γ; ∆ ·=⇒ P

·= C. Therefore, we construct

F = init
Γ; ·; A ⇓=⇒ A

40

Case: A = A1 (A2, so

D
A2 � C \ G

(�
A1 (A2 � C \ G ⊗ A1

and
E1

Γ; ∆2
·=⇒ G ↑

E2
Γ; ∆1

·=⇒ A1 ⇓ ⊗R↑
Γ; (∆1, ∆2)

·=⇒ G ⊗ A1 ↑
where C is atomic.

By i.h. (3a) on D and E1, we have D′ :: Γ; ∆2; A2 ⇓=⇒ C, and by i.h. (4)
on E2, we have E ′ :: Γ; ∆1 =⇒ A1 ⇓. Thus, we construct

F =
D′

Γ; ∆2; A2 ⇓=⇒ C
E ′

Γ; ∆1 =⇒ A1 ⇓
(L

Γ; (∆1, ∆2); A1 (A2 ⇓=⇒ C

Case: A = A1 N A2, so

D1

A1 � C \ G1

D2

A2 � C \ G2
N�

A1 N A2 � P \ G1 ⊕ G2

where C is atomic.

Subcase:
E

Γ; ∆ ·=⇒ G1 ↑ ⊕R1↑
Γ; ∆ ·=⇒ G1 ⊕ G2 ↑

By i.h. (3a) on D1 and E , we have
D′

Γ; ∆; A1 ⇓=⇒ C . Thus, we con-
struct

F =
D′

Γ; ∆; A1 ⇓=⇒ C
NL1

Γ; ∆; A1 N A2 ⇓=⇒ C

Subcase:
E

Γ; ∆ ·=⇒ G2 ↑ ⊕R2↑
Γ; ∆ ·=⇒ G1 ⊕ G2 ↑

By i.h. (3a) on D2 and E , we have
D′

Γ; ∆; A2 ⇓=⇒ C . Thus, we con-
struct

F =
D′

Γ; ∆; A2 ⇓=⇒ C
NL2

Γ; ∆; A1 N A2 ⇓=⇒ C

41

Case: A = A1 ⊃ A2, so

D
A2 � C \ G ⊃�

A1 ⊃ A2 � C \ G ⊗! A1

and
E1

Γ; ∆ ·=⇒ G ↑
E2

Γ; · ·=⇒ A1 ⇓ ⊗R↑
Γ; ∆ ·=⇒ G ⊗ A1 ↑

where C is atomic.

By i.h. (3a) on D and E1, we have D′ :: Γ; ∆; A2 ⇓=⇒ C, and by i.h. (4) on
E2, we have E ′ :: Γ; · =⇒ A1 ⇓. Thus, we construct

F =
D′

Γ; ∆; A2 ⇓=⇒ C
E ′

Γ; · =⇒ A1 ⇓ ⊃L
Γ; ∆; A1 ⊃ A2 ⇓=⇒ C

Case: A is not atomic and not left synchronous, so

A not atomic and not left synchronous ⇓�
A� C \ A (C

and
D

Γ; ∆; A ⇑ ·=⇒ C
(R↑

Γ; ∆ ·=⇒ A (C ↑
where C is atomic.

By i.h. (2) on D′, we have
D′

Γ; ∆; A ⇑=⇒ C . Thus, we construct

F =
D′

Γ; ∆; A ⇑=⇒ C A not atomic and not left synchronous ⇓L
Γ; ∆; A ⇓=⇒ C

2

To show completeness, we will need a lemma that states that the compilation
process is completely deterministic.

Lemma 3 (Determinacy of Residuation) For any formula A and atomic for-
mula P , A� P \ G for some G. Specifically,

1. If A is atomic, then G = A
·= P .

2. If A = A1 (A2, then G = G′ ⊗ A for some G′.

3. If A = A1 N A2, then G = G′
1 ⊕ G′

2 for some G′
1 and G′

2.

4. If A = >, then G = 0.

5. If A = A1 ⊃ A2, then G = G′ ⊗! A for some G′.

6. If A is not atomic and not left synchronous, then G = A (P .

Proof: By straightforward induction on the structure of A. 2

42

Theorem 4 (Completeness of Focusing with Residuation)

1. If Γ; ∆; Ω =⇒ A ⇑, then Γ; ∆; Ω ·=⇒ A ⇑.
2. If Γ; ∆; Ω ⇑=⇒ C, then Γ; ∆; Ω ⇑ ·=⇒ C.

3. If Γ; ∆; A ⇓=⇒ C where

(a) C is atomic and A� C \ G, then Γ; ∆ ·=⇒ G ↑.
(b) C is not atomic, then Γ; ∆; A ⇓ ·=⇒ C.

4. If Γ; ∆ =⇒ A ⇓, then Γ; ∆ ·=⇒ A ⇓.

Proof: By simultaneous induction on the structure of the derivations of Γ; ∆; Ω =⇒
C ⇑, Γ; ∆; Ω ⇑=⇒ C, Γ; ∆; A ⇓=⇒ C, and Γ; ∆ =⇒ A ⇓. Since the rules for
right asynchronous, left asynchronous, right focusing, and left focusing phases
when the goal is non-atomic are the same in both systems, those cases are
straightforward. The decideR case is also similarly direct. We show in detail
the remaining cases.

Case: F =
F ′

Γ; ∆; A ⇓=⇒ C
decideL

Γ; (∆, A); · ⇑=⇒ C

Subcase: C is atomic. By the determinacy of residuation (lemma 3),
A� C \ G for some G. Thus, by i.h. (3a) on F ′, Γ; ∆ ·=⇒ G ↑.

Subcase: C is not atomic. By i.h. (3b) onF ′, we have
D

Γ; ∆; A ⇓ ·=⇒ C ,
so we construct

R =
D

Γ; ∆; A ⇓ ·=⇒ C
decideL

Γ; (∆, A); · ⇑ ·=⇒ C

Case: F =
F ′

(Γ, A); ∆; A ⇓=⇒ C
decideL!

(Γ, A); ∆; · ⇑=⇒ C

Analogous to the previous case.

Case: F =
F ′

Γ; ∆2; B ⇓=⇒ P
F ′′

Γ; ∆1 =⇒ A ⇓
(L

Γ; (∆1, ∆2); A (B ⇓=⇒ P

and A (B � P \ G′ where P is atomic.

43

By the determinacy of residuation (lemma 3), G′ = G ⊗ A. By inver-
sion, B � P \ G. By i.h. (3a) on F ′ and i.h. (4) on F ′′, we have
D :: Γ; ∆2

·=⇒ G ↑ and E :: Γ; ∆1
·=⇒ A ⇓, so we construct

R =
D

Γ; ∆2
·=⇒ G ↑

E
Γ; ∆1

·=⇒ A ⇓ ⊗R↑
Γ; (∆1, ∆2)

·=⇒ G ⊗ A

Case: F =
F ′

Γ; ∆; B ⇓=⇒ P
F ′′

Γ; · =⇒ A ⇓ ⊃L
Γ; ∆; A ⊃ B ⇓=⇒ P

and A ⊃ B � P \ G′ where P is atomic.

Analogous to the previous case except use ⊗!R↑ to construct R.

Case: F =
F ′

Γ; ∆; A ⇓=⇒ P
NL1

Γ; ∆; A N B ⇓=⇒ P

and A N B � P \ G′ where P is atomic.

By the determinacy of residuation (lemma 3), G′ = G1 ⊕ G2. By inversion,
A� P \ G1. By i.h. (3a) on F ′, we haveD :: Γ; ∆ ·=⇒ G1 ↑, so we construct

R =
D

Γ; ∆ ·=⇒ G1 ↑ ⊕R1↑
Γ; ∆ ·=⇒ G1 ⊕ G2

Case: F =
F ′

Γ; ∆; B ⇓=⇒ P
NL2

Γ; ∆; A N B ⇓=⇒ P

and A N B � P \ G′ where P is atomic.

Analogous to the previous case except use ⊕R2↑ to construct R.

Case: F = init
Γ; ·; P ⇓=⇒ P

and P � P \ G′ where P is atomic.

By the determinacy of residuation (lemma 3), G′ = P
·= P . We simply

construct

R =
·=R↑

Γ; · ·=⇒ P
·= P

44

Case: F =
F ′

Γ; ∆; A ⇑=⇒ P A not atomic and not left synchronous ⇓L
Γ; ∆; A ⇓=⇒ P

and A� P \ G′ where P is atomic.

By the determinacy of residuation (lemma 3), G′ = A (P . By i.h. (2) on
F ′, we have D :: Γ; ∆; A ⇑ ·=⇒ P , so we construct

R =
D

Γ; ∆; A ⇑ ·=⇒ P
(R↑

Γ; ∆ ·=⇒ A (P ↑
2

Theorem 5 (Correctness of Focusing with Residuation)
Γ; ∆; Ω =⇒ A ⇑ if and only if Γ; ∆; Ω ·=⇒ A ⇑.

Proof: Direct by theorems 2 and 4. 2

45

