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Abstract

We present a new protocol for verifiably redistributing secrets from an(m,n) threshold sharing scheme to
an (m′, n′) scheme. Our protocol guards against dynamic adversaries. We observe that existing protocols
either cannot be readily extended to allow redistribution between different threshold schemes, or have vul-
nerabilities that allow faulty old shareholders to distribute invalid shares to new shareholders. Our primary
contribution is that in our protocol, new shareholders can verify the validity of their shares after redistribu-
tion between different threshold schemes.
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1 Introduction

Threshold cryptography protocols provide fundamental building blocks for secure distributed computation
and the safeguarding of secrets. The area of threshold cryptography has been studied extensively since its
introduction by Blakley and Shamir [Bla79, Sha79].

Two categories of threshold protocols,proactive secret sharing(PSS) protocols andsecret redistribution
protocols, provide enhanced protection againstdynamic adversaries([OY91]). PSS protocols [FGMY97a,
FGMY97b, FMY99, FMY01, HJKY95, HJJ+97, Rab98] protect against an adversary through periodic up-
dating of the shares, which renders old shares obtained by the adversary useless. In general, PSS protocols
retain the same threshold scheme before and after updating. Secret redistribution protocols protect against an
adversary through periodic redistribution of shares from an(m,n) threshold sharing scheme to an(m′, n′)
scheme [DJ97, FGMY97a], without requiring the intermediate reconstruction of the original secret.

To prevent faulty shareholders from corrupting the shares generated by a PSS or redistribution protocol,
the shareholders mustverify thevalidity of their shares after protocol execution (i.e., confirm that the shares
can be used to reconstruct the original secret). In PSS protocols, shareholders obtain verification information
during the initial distribution of shares, and update the information after updating the shares. In redistribution
protocols, new shareholders obtain verification information from the old shareholders.

We observe that the verification mechanisms in existing protocols have the following shortcomings:

• The mechanisms in PSS protocols cannot be readily extended to allow “updates” between different
threshold schemes or between disjoint sets of shareholders. Thus, these protocols cannot respond to
the permanent removal or addition of a shareholder.

• The mechanisms in redistribution protocols have vulnerabilities that allow a faulty old shareholder to
distribute invalid shares to new shareholders.

Our study is motivated by the application of redistribution protocols to survivable storage systems
[WBS+00, WBP+01]. A survivable storage system distributes shares of files (secrets) across a set of storage
servers. The system redistributes files to recover from the compromising of servers or to balance file access
loads upon the addition of new servers.

We present a new protocol forverifiable secret redistribution(VSR) from an(m,n) threshold scheme to
an(m′, n′) scheme. We base our protocol on Desmedt and Jajodia’s redistribution protocol [DJ97], in which
new shareholders generate shares fromsubsharesof old shares. We extend their protocol with Feldman’s
verifiable secret sharing (VSS) scheme [Fel87] to enable new shareholders to verify the validity of their
subshares (i.e., confirm that the subshares can be used to reconstruct old shares). However, we go beyond
a näıve extension, which does not enable new shareholders to verify that they have received subshares of
valid old shares. To achieve complete verification in our protocol, old shareholders broadcast a commitment
to the secret to the new shareholders. We prove that the new shareholders can generate valid new shares if
they can both verify the validity of the old shares and verify the validity of the subshares.

The primary contribution of our work is that in our protocol:

• New shareholders can verify the validity of their shares after redistribution between different threshold
schemes.

2 Related work

Blakley and Shamir invented secret sharing schemes independently. In Shamir’s(m,n) sharing scheme
[Sha79], the interpolation of anm − 1 degree polynomial fromm of n points yields a constant term in
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the polynomial that corresponds to the secret. In Blakley’s scheme [Bla79], the intersection ofm of n
vector spaces yields a one-dimensional vector that corresponds to the secret. Desmedt surveys other sharing
schemes [Des97].

Feldman’s VSS scheme [Fel87] is one of several to catch a dealer that attempts to distribute invalid
shares. Choret al present a scheme in which the dealer and shareholders perform an interactive secure
distributed computation [CGMA85]. Benaloh [Ben87], Gennaro and Micali [GJKR96, GM95], Goldreich
et al [GMW87], and Rabin and Ben-Or [Rab94, RBO89] propose schemes in which the dealer and share-
holders participate in an interactive zero-knowledge proof of validity; the scheme of Gennaro and Micali,
and that of Rabin and Ben-Or, is information-theoretically secure. Pederson [Ped91] presents a scheme, like
Feldman’s, in which the dealer broadcasts a non-interactive zero-knowledge proof to the shareholders. Beth
et al [BKO93] present a VSS scheme for monotone access structures based on finite geometries. Our VSR
protocol differs from previous VSS schemes in that the multiple “dealers” of the new shares (the old share-
holders) do not have the secret, and must use other information to generate a proof for the new shareholders.
Also, each new shareholder verifies the validity of the subshares distributed by the old shareholders, and
verifies the validity of the shares used by the old shareholders to generate the subshares.

Frankelet al [FGMY97b, FMY99, FMY01] and Rabin [Rab98] propose PSS protocols in which each
shareholder periodically distributes a subshare of its share to each of the other shareholders. Each share-
holder combines the received subshares to generate a new share. A drawback of these PSS protocols is
that the shareholders rely on commitments received during the initial distribution of the secret to verify the
validity that their generated shares, and thus one cannot redistribute between disjoint sets ofn shareholders.
Also, the commitments depend onm andn, and thus one cannot redistribute from an(m,n) to (m′, n′)
threshold scheme. Lastly, the protocols build upon specific threshold schemes, and may not be applicable to
a general class of schemes.

Desmedt and Jajodia [DJ97] present a secret redistribution protocol that does not require the intermedi-
ate reconstruction of the original secret. We present the details of their protocol in Sec. 3.2. Their protocol
allows redistribution between different threshold schemes, and between disjoint sets of shareholders. Unfor-
tunately, a compromised old shareholder in both protocols can undetectably distribute “subshares” of some
random value instead of subshares of a valid old share. New shareholders that use these “subshares” will
generate invalid new shares.

Frankelet al [FGMY97a], independently of Desmedt and Jajodia, present a (proactive) redistribution
protocol for shares of a private key in a public key cryptosystem. The protocol involves redistribution of
the key from an(m,n) to (m,m) threshold scheme, followed by redistribution to an(m′, n′) scheme. Each
old shareholder broadcasts a commitment to its share when it distributes the subshares. New shareholders
use the commitment to verify the validity of their subshares. However, nothing prevents a compromised old
shareholder from broadcasting a “commitment” to some random value. Thus, the protocol ultimately suffers
from the same shortcoming as that of Desmedt and Jajodia.

Other researchers present secret redistribution protocols that do not involve the physical redistribution
of shares. Blakleyet al consider threshold schemes thatdisenroll (remove) shareholders from the access
structure with broadcast messages [BBCM92]; the new shareholders are a subset of the old ones. Cachin
proposes a secret sharing scheme thatenrolls (adds) shareholders in the access structure after the initial
sharing [Cac95]; the new shareholders are a superset of the old ones. Blundoet alpresents a scheme in which
the dealer uses broadcast messages to activate different, possibly disjoint, authorized subsets [BCSV96].
Blundo’s scheme requires shareholders to have a share regardless of whether or not they are in the active
authorized subset, in contrast to Desmedt and Jajodia’s scheme. Our VSR protocol alters the threshold
scheme by physical redistribution of shares, and allows new shareholders to verify that they have valid
shares.

Herzberget al [HJKY95, HJJ+97] propose a PSS protocol for Shamir’s sharing scheme [Sha79] in
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which each shareholder periodically distributesupdate sharesto all other shareholders. Zhou, Schneider,
and van Renesse propose a PSS protocol for asynchronous, wide-area networks, and employ it in an on-line
certification authority [ZSvR00]. Our VSR protocol, unlike these PSS protocols, can redistribute shares to
arbitrary access structures. However, we assume that there exist reliable broadcast communication channels
among all participants and private channels between every pair of participants in our protocol, which Zhou
et alavoid in their asynchronous protocol.

3 Cryptographic building blocks

In this section, we outline the cryptographic protocols that form the building blocks for our VSR protocol.
We first summarize Desmedt and Jajodia’s secret redistribution protocol [DJ97] for linear secret sharing
schemes, and then summarize Feldman’s VSS scheme [Fel87].

3.1 Mathematical notation

An (m,n) linear threshold schemeis an algorithm for the distribution of shares of a secret to a set ofn
shareholders such that the secret is a linear combination of the shares of anym shareholders. We define a
secretk to be in setK of secrets, and each shareholderi to be in the setP (|P | = n) of shareholders. To
distributek, we generate a sharesi for eachi ∈ P with apolynomiala(i):

si = k +
m−1∑
l=1

ali
l (1)

wheresi is in the setSi of shares, andSi is in the setS of share sets. For linear threshold schemes,Si = Sj
for all i, j ∈ P. To reconstructk, we combinesi from all i in anauthorized subsetB (|B| = m) of P:

k =
∑
i∈B

ψi(si) (2)

ψi is a homomorphism fromSi toK; we aggregateψi into the setψ of homomorphisms. For linear threshold
schemes, the homomorphisms are multiplications by scalarsψi [DJ97]. All authorized subsetsB are in the
access structureΓP . We represent linear threshold schemes with the tuple{ΓP ,K,S, ψ}.

We utilize a homomorphic commitment functionC(x) [Ben87, Fel87] that maps from plain-text to
cipher-text and is hard to invert.C(x) is such that:

C(a+ b) = C(a)C(b)
C(ax) = (C(a))x

(3)

3.2 Desmedt and Jajodia’s secret redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of shares of secrets from threshold sharing
schemes without requiring the intermediate reconstruction of the secret [DJ97]. For schemes that satisfy the
conditions in Fig. 1, we can use the protocol in Fig. 2 to redistribute shares. Suppose we have a setP of
shareholdersi that have sharessi of a secretk distributed with the scheme(ΓP ,K,S, ψ), and wish to redis-
tribute to a setP ′ of shareholdersj that have sharess′j distributed with a different scheme(Γ′P ′ ,K,S ′, ψ′).
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To achieve this, we select an authorized subsetB ∈ ΓP and use an intermediate scheme(Γ′P ′ ,Si, Ŝi, ψ̂i) to
distribute subshareŝsij of eachsi of i ∈ B to eachj ∈ P ′, where the set̂Si of sets of subshares is:

Ŝi =
{
Ŝij : j ∈ B′,B′ ∈ Γ′P ′

}
(4)

and the set̂ψi of homomorphisms from̂Si to Si is:

ψ̂i =
{
ψ̂ij : j ∈ B′,B′ ∈ Γ′P ′

}
(5)

If we treatŝij as being distributed by another intermediate scheme(ΓP ,S ′j , Ŝ ′j , ψ̂′j) (with Ŝj andψ̂j defined

similarly to Ŝi andψ̂i in Eqns. (4) and (5)), we can generates′j for eachj with the following equation:

s′j =
∑
i∈B

ψ̂′jiŝij (6)

The correctness of the protocol depends on a condition that the homomorphisms of the old, intermediate,
and new schemespseudo-commute. Homomorphismsψi, ψ̂ij , ψ′j , andψ̂′ji pseudo-commute if:

ψi ◦ ψ̂ij = ψ′j ◦ ψ̂′ji (7)

1. For a setP of shareholders, there exists a linear sharing scheme(ΓP ,K,S, ψ) such that eachi ∈ P has received a
sharesi ∈ Si ∈ S of k ∈ K.

2. For eachi ∈ P there exists an intermediate linear sharing scheme(Γ′P′ ,Si, Ŝi, ψ̂i) for the distribution of subshares
ŝij of si to eachj ∈ P ′.

3. For allx, y ∈ K, x+ y = y + x.

4. For eachi ∈ B ∈ ΓP andj ∈ B′ ∈ Γ′P′ , there exist homomorphismsψi, ψ̂ij , ψ′j , andψ̂′ji that pseudo-commute:

ψi ◦ ψ̂ij = ψ′j ◦ ψ̂′ji

Figure 1: Necessary conditions for the redistribution of shares from linear sharing schemes [DJ97].

Desmedt and Jajodia’s Secret Redistribution protocol:
To redistributek from the(m,n) scheme{ΓP , K, S, ψ} to the(m′, n′) scheme{ΓP′ , K, S ′, ψ′}:

1. Select an authorized subsetB ∈ ΓP . Use the intermediate scheme(Γ′P′ ,Si, Ŝi, ψ̂i) to distribute subshareŝsij of
each sharesi of i ∈ B to eachj ∈ P ′.

2. For eachj ∈ P ′, treatŝij as if distributed with another intermediate scheme(ΓP ,S ′j , Ŝ ′j , ψ̂′j), and generates′j :

s′j =
∑
i∈B

ψ̂′ji(ŝij)

Figure 2: Desmedt and Jajodia’s secret redistribution protocol for linear sharing schemes [DJ97].
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3.3 Feldman’s VSS scheme

Feldman presents a scheme that shareholders of a secret can use to verify the validity of their shares [Fel87].
Feldman assumes that there exists a homomorphic commitment functionC(x) that is hard to invert. Given
the threshold scheme{ΓP ,K,S, ψ}, the dealer of the secretk ∈ K, in addition to sending sharessi ∈ Si
to eachi ∈ P, broadcastsC(k) andC(a1) . . . C(am−1) (commitments of the coefficients of the polynomial
a(i) used to generatesi). Eachi then verifies thatsi is a valid share ofk with the following equation:

C(si) ≡ C(k)
m−1∏
l=1

C(al)i
l

(8)

Eqn. (8) follows from Eqn. (1) and the homomorphic properties ofC(x) in Eqn. (3). SinceC(x) is hard to
invert, noi can learnk from the broadcast ofC(k). We summarize Feldman’s scheme in Fig. 3.

4 The VSR protocol

We present our verifiable secret redistribution protocol for secrets distributed with linear threshold schemes.
We represent the(m,n) and(m′, n′) schemes with{ΓP , K, S, ψ} and{ΓP ′ , K, S ′, ψ′} respectively. We
assume that there exists a homomorphic commitment functionC(x) that is hard to invert, and that there
exist reliable broadcast communication channels among all participants and private channels between every
pair of participants. We also assume that there are at mostn−m faulty old shareholders, thatm > n

2 , and
that there aren′ non-faulty new shareholders.

The initial distribution of a secret (INITIAL in Fig. 4) proceeds as in Feldman’s VSS scheme [Fel87].
The dealer of secretk ∈ K distributes sharessi ∈ Si to each shareholderi ∈ P, using the polynomiala(i)
(INITIAL step 1). The dealer also broadcastsC(k), C(a1) . . . C(am′−1), which eachi uses in Eqn. (8) to
verify the validity ofsi (INITIAL steps 2 and 3). If Eqn. (8) holds,i storessi andC(k) (INITIAL step 4).

Redistribution of the secret (REDIST in Fig. 4) proceeds as in Desmedt and Jajodia’s protocol [DJ97].
Eachi in an authorized subsetB ∈ ΓP uses an intermediate scheme{ΓP ′ , Si, Ŝi, ψ̂′} (with the polynomial
a′i(j)) to distribute subshareŝsij ∈ Ŝi of si to each shareholderj ∈ P ′ (REDIST step 1). Eachj then
generates the new shares′j (Eqn. (6), which is REDIST step 4). We may redistributek an arbitrary number
of times before we reconstruct it.

Feldman’s Verifiable Secret Sharing scheme:
To use the(m,n) threshold scheme{ΓP ,K,S, ψ} to distribute a secretk ∈ K:

1. For eachi ∈ P, use the polynomiala(i) = k + a1i + . . . + am−1i
m−1 to compute the sharesi = a(i) of k, and

sendsi to i over a private channel.

2. For eachi ∈ P, use commitment functionC(x) to generateC(k), C(a1), . . . , C(am−1), and broadcast them to all
i.

3. For eachi ∈ P, verify that:

C(si) ≡ C(k)

m−1∏
l=1

C(al)
il

If the condition holds,i broadcasts a “commit” message. Otherwise,i broadcasts an “abort” message.

Figure 3: Feldman’s VSS scheme for an(m,n) threshold scheme [Fel87].
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Verifiable Secret Redistribution protocol:
INITIAL : To use the(m,n) linear threshold scheme{ΓP ,K,S, ψ} to distribute a secretk ∈ K:

1. For eachi ∈ P, use the polynomiala(i) = k + a1i+ . . .+ am−1i
m−1 to compute the sharesi of k, and sendsi to

i over a private channel.

2. Use commitment functionC(x) to generateC(k), C(a1), . . . , C(am−1), and send them to alli ∈ P over the
broadcast channel.

3. For eachi ∈ P, verify that:

C(si) ≡ C(k)

m−1∏
l=1

C(al)
il

If the condition holds,i broadcasts a “commit” message. Otherwise,i broadcasts an “abort” message.

4. If all i ∈ P agree to commit, eachi storessi andC(k). Otherwise, they abort the protocol.

REDIST: To redistributek from the(m,n) scheme{ΓP , K, S, ψ} to the(m′, n′) scheme{ΓP′ , K, S ′, ψ′}:

1. For eachi ∈ B (B ∈ ΓP ), use the polynomiala′i(j) = si + a′i1j + . . .+ a′i(m′−1)j
m′−1 to compute the subshares

ŝij of si, and send̂sij to the correspondingj ∈ P ′ over a private channel.

2. For eachi ∈ P, use the commitment functionC(x) generateC(si), C(ai1), . . . , C(ai(m′−1)), and send them to all
j ∈ P ′ over the broadcast channel.

3. For eachj ∈ P ′, verify that:

∀i ∈ B : C(ŝij) ≡ C(si)

m′−1∏
l=1

C(ail)
jl

and:

C(k) =
∏
i∈B

C(si)
ψi

If the conditions hold,j broadcasts a “commit” message. Otherwise,j broadcasts an “abort” message.

4. If all j ∈ P ′ agree to commit, eachj generatess′j :

s′j =
∑
i∈B

ψ̂′jiŝij

and storess′j andC(k). Otherwise, they abort the protocol.

Figure 4: Verifiable secret redistribution protocol for the redistribution of shares from an(m,n) to (m′, n′) threshold
scheme.

6



For the new shareholders to verify that their shares of the secret are valid after redistribution, we require
that two conditions,SHARES-VALID andSUBSHARES-VALID , hold. Recall that for linear threshold schemes,
homomorphismsψi are multiplications by scalarsψi. When alli ∈ B (B ∈ ΓP ) redistributesi to each
j ∈ P ′, all sj are valid shares ofk if:

SHARES-VALID :
k =

∑
i∈B ψisi

SUBSHARES-VALID :
∀i ∈ B,B′ ∈ ΓP ′ : si =

∑
j∈B′ ψ̂

′
ij ŝij

We define aNEW-SHARES-VALID condition. The condition holds if new shareholders have valid shares
of the secret. We prove in Sec. 4.3 thatNEW-SHARES-VALID holds if SHARES-VALID and SUBSHARES-
VALID hold. The definition ofNEW-SHARES-VALID follows from Eqn. (2) for{ΓP ′ , K, S ′, ψ′}:

NEW-SHARES-VALID :
k =

∑
j∈B′ ψ

′
js
′
j

We use Feldman’s VSS scheme to verify thatSUBSHARES-VALID holds in our protocol. The distribution
of ŝij from si (REDIST step 1) is an application of the scheme{ΓP ′ , Si, Ŝi, ψ̂′}. Thus, eachi ∈ B broadcasts
C(si) andC(ai1) . . . C(ai(m−1)), which eachj uses to verify the validity of̂sij (REDIST step 2).

The key insight embodied in our VSR protocol is that the naı̈ve extension of Desmedt and Jajodia’s
protocol with Feldman’s scheme does not in itself allow the new shareholders to verify thatNEW-SHARES-
VALID holds. The difficulty arises because Feldman’s scheme only verifies thatSUBSHARES-VALID holds,
which in the absence ofSHARES-VALID is insufficient to verify thatNEW-SHARES-VALID holds. Although
Desmedt and Jajodia observe that the linear properties of their protocol and the properties ofC(x) ensure
that eachj generates valid shares [DJ97], they implicitly assume that eachi ∈ B distributes subshares of
valid si. The VSS scheme simply allowsi ∈ B shareholder to prove that it distributed validŝij of some
value. However,i may have distributed “subshares” of some random value instead ofŝij of si. Thus, we
require a sub-protocol fori to prove that it distributed̂sij of si to j ∈ P ′.

To allow the new shareholders to verify thatSHARES-VALID holds, which together withSUBSHARES-
VALID verifies thatNEW-SHARES-VALID holds, the old shareholders in our protocol broadcast a commit-
ment to the secret.i ∈ B must therefore storeC(k) (received during INITIAL ) and later broadcast it to
j ∈ P ′. Recall that eachj receivessi from eachi to verify thatSUBSHARES-VALID holds. Once eachj
receivesC(k), it verifies thatsi is a valid share ofk with the following equation:

C(k) =
∏
i∈B

C(si)ψi (9)

Eqn. (9) follows from Eqn. (2) and the homomorphic properties ofC(x) in Eqn. (3). SinceC(x) is hard to
invert, noj can learnk from the broadcast ofC(k).

4.1 Assumptions about faulty shareholders

When we redistribute a secret from the scheme{ΓP ,K, S, ψ} to the scheme{ΓP ′ ,K, S ′, ψ′} with our VSR
protocol, we assume that at leastm of then shareholders inP and alln′ of the shareholders inP ′ are non-
faulty, and up ton −m of the remaining shareholders inP may be faulty. We denote faulty shareholders,
and the values they distribute, with over-bars. A non-faulty shareholderi ∈ P distributes valid subshares
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ŝij of its sharesi to all shareholdersj ∈ P ′ and broadcastsC(k) corresponding to secretk ∈ K. A faulty
shareholderi ∈ P may distribute invalid subsharesŝij or broadcastC(k) not corresponding tok.

We also assume that we do not know whichm of then shareholders inP are non-faulty. Suppose we
include a faulty shareholderi in our selection of authorized subsetB ∈ ΓP to participate in redistribution
(REDIST in Fig. 4). However, ifi distributesŝij , one of thej will detect the presence ofi since one

of Eqns. (8) or (9) will not hold. Alternatively, ifi broadcastsC(k), all j will detect the discrepancy
when non-faulty old shareholders broadcastC(k). Thus,i must participate in the protocol without fault
or risk detection. If we detect the presence ofi, we must restart redistribution with another set ofm old
shareholders. Unfortunately, we cannot identifyi with our protocol.

The assumption that we do not know whichm shareholders inP are non-faulty bounds the relative
values ofm andn. We assume that we can detect discrepancies betweenC(k) andC(k) broadcast by
faulty and non-faulty shareholders inP respectively. However, if we were to select a group ofm faulty
shareholdersi inadvertently, then we would be unable to detect discrepancies if alli broadcastC(k). We
therefore require thatm > n

2 so eachB contains at least one non-faulty shareholder; ifm ≤ n
2 , n−m faulty

shareholders inP could conspire to reconstructk or deceive shareholders inP ′.
The requirement that alln′ shareholders inP ′ are non-faulty is reasonable if we view the purpose of

our VSR protocol as one of detecting faulty behavior by shareholders inP. This is analogous to one of the
assumptions underlying Feldman’s VSS scheme [Fel87], in which the shareholders are implicitly trusted to
store valid shares (and reject invalid shares) of a secret.

4.2 Computational cost

The computational cost for each new shareholder of verification in our VSR protocol (REDIST Step 3 in
Fig. 4) isO(mm′) multiplications andO(mm′) exponentiations, exclusive of the cost of the commitment
functionC(x). Consider redistribution from the scheme{ΓP , K, S, ψ} to the scheme{ΓP ′ , K, S ′, ψ′}.
Each new shareholderj ∈ P ′ performsm − 1 multiplications (B ∈ ΓP ; |B| = m) andm exponentiations
to verify thatSHARES-VALID holds (Eqn. (9)), for a total cost ofO(m); we do not include the (small) cost
of computing the powers ofi. Eachj also performsm′ − 1 multiplications (B′ ∈ ΓP ′ ; |B′| = m′) and
m′ − 1 exponentiations form old shareholdersi ∈ B to verify thatSUBSHARES-VALID holds (Eqn. (8)),
for a total cost ofO(mm′). Thus, the total cost for eachj to verify that both conditions hold isO(mm′)
multiplications andO(mm′) exponentiations, exclusive of the cost ofC(x).

4.3 Correctness

We prove thatNEW-SHARES-VALID holds after share redistribution ifSHARES-VALID and SUBSHARES-
VALID hold. We also show that Eqns. (8) and (9) verify thatSUBSHARES-VALID andSHARES-VALID hold.

Lemma 1 SUBSHARES-VALID holds if Eqn. (8) holds.

PROOF: Proved by Feldman [Fel87].�

Lemma 2 SHARES-VALID holds if Eqn. (9) holds.

PROOF: Assume that Eqn. (9) holds. It then follows thatSHARES-VALID holds from Eqn. (2) and the
homomorphic properties of the commitment functionC(x). �

Theorem 1 (VSR theorem) For the(m,n) linear threshold scheme{ΓP ,K, S, ψ} and the(m′, n′) scheme
{ΓP ′ , K, S ′, ψ′}, for all secretsk ∈ K, and for all authorized subsetsB ∈ ΓP , B′ ∈ ΓP ′ , NEW-SHARES-
VALID holds after redistribution ofk with the VSR protocol ifSHARES-VALID and SUBSHARES-VALID

hold.
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PROOF: Assume that bothSHARES-VALID andSUBSHARES-VALID hold. Then:

k =
∑
i∈B

ψisi (SHARES-VALID )

=
∑
i∈B

ψi

∑
j∈B′

ψ̂ij ŝij

 (SUBSHARES-VALID )

=
∑
i∈B

∑
j∈B′

ψiψ̂ij ŝij (ψi is a homomorphism)

=
∑
i∈B

∑
j∈B′

ψ′jψ̂
′
jiŝij (pseudo-commutativity of homomorphisms (Eqn. (7)))

=
∑
j∈B′

∑
i∈B

ψ′jψ̂
′
jiŝij (∀x, y ∈ K : x+ y = y + x)

=
∑
j∈B′

ψ′j

(∑
i∈B

ψ̂′jiŝij

)
(ψ′j is a homomorphism)

=
∑
j∈B′

ψ′js
′
j (Eqn. (6))

�
Our correctness proof mirrors that for Desmedt and Jajodia’s secret redistribution protocol [DJ97].

5 Specialization of the VSR protocol for Shamir’s sharing scheme

We present the specialization of our VSR protocol for Shamir’s sharing scheme [Sha79]. We first summarize
Shamir’s scheme, and then specialize our protocol for Shamir’s scheme. We present the specialization to
demonstrate the practical application of our VSR protocol, and to emphasize the need for new shareholders
to obtain the commitment to the secret for verification of their shares.

5.1 Shamir’s sharing scheme

Shamir presents an(m,n) sharing scheme based on polynomial interpolation [Sha79]. The secretk is in
Zp (p prime;p > n), and each shareholderi is in the setP (|P| = n). All mathematical operations are in
the finite fieldZp. To distributek, we select a polynomiala(i) with degreem− 1 and constant termk, and
generate a sharesi for eachi in P with a(i):

si = k + a1i+ . . . am−1i
m−1 (10)

wheresi ∈ Zp. To reconstructk, we recoverm coordinate pairs(i, si) of all i ∈ B, (where|B| = m and
B ∈ ΓSP ), and use the pairs in the Lagrange interpolation formula:

k =
∑
i∈B

bisi where bi =
∏

l∈B,l 6=i

l

(l − i)
(11)

We represent Shamir’s scheme with the tuple{ΓSP , Zp, {Zp}, ψS}, whereψi = bi andψi ∈ ψS .
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5.2 The VSR protocol for Shamir’s scheme

We present our VSR protocol for secrets distributed with Shamir’s sharing scheme [Sha79]. We represent the
(m,n) scheme with{ΓSP , Zp, {Zp}, ψS}, and the(m′, n′) scheme with{ΓSP ′ , Zp, {Zp}, ψ

′S}. We assume
that the computation of discrete logs in a finite field is intractable. As for the general VSR protocol, we
assume there exist reliable broadcast communication channels among all participants and private channels
between every pair of participants. We assume that there are at mostn − m faulty old shareholders, that
m > n

2 , and that there aren′ non-faulty new shareholders. We summarize the protocol in Fig. 5.
Redistribution of the secret (REDIST in Fig. 5) proceeds as follows. Eachi in an authorized subset

B ∈ ΓSP uses an intermediate scheme{ΓSP ′ , Zp, {Zp}, ψ
′S} (with the polynomiala′i(j)) to distribute

subshareŝsij ∈ Zp of their sharesi of secretk ∈ Zp to each shareholderj ∈ P ′S (REDIST step 1).
Eachj then generates the new shares′j (REDIST step 4):

s′j =
∑
i∈B

biŝij (12)

To allow the new shareholders to verify thatSHARES-VALID and SUBSHARES-VALID hold, the old
shareholders use the commitment function:

C(x) = gx (13)

whereg is a generator forZp:

∀b ∈ {1, . . . , p− 1} ∃a ∈ {1, . . . , p− 1} : ga ≡ b mod p (14)

The old shareholdersi ∈ B (B ∈ ΓSB) broadcast the commitment to the secretgk, sharesgsi , and coefficients
of the polynomialgai1 . . . gai(m′−1) (REDIST Step 2 in Fig. 5). The new shareholdersj ∈ P ′ then verify that
(REDIST Step 3):

gŝij ≡ gsi
m′−1∏
l=1

(ga
′
il)j

l
(15)

for eachi ∈ B, and

gk ≡
∏
i∈B

(gsi)bi where bi =
∏

l∈B,l 6=i

l

(l − i)
(16)

5.3 Discussion

To emphasize the shortcomings in the naı̈ve extension of Desmedt and Jajodia’s redistribution protocol
[DJ97] by Feldman’s VSS scheme [Fel87], we present an alternative verification mechanism for secret
redistribution for Shamir’s scheme [Sha79] that still requires the new shareholders to obtain the commitment
to the secret. Consider redistribution of a secretk from the scheme{ΓSP , Zp, {Zp}, ψS}to the scheme{ΓSP ′ ,
Zp, {Zp}, ψ

′S}. Suppose we knew the sharessi of the old shareholdersi ∈ B (B ∈ ΓSP ) and the coefficients
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Verifiable Secret Redistribution protocol for Shamir’s sharing scheme:
INITIAL : To use the(m,n) scheme{ΓSP , Zp, {Zp}, ψS} to distribute a secretk ∈ Zp:

1. For eachi ∈ P, use the polynomiala(i) = k + a1i + . . . + am−1i
m−1 to compute the sharessi of k, and sendsi

to i ∈ P over a private channel.

2. Useg to generategk, ga1 . . . gam−1 , and send them to alli ∈ P over the broadcast channel.

3. For eachi ∈ P, verify that:

gsi ≡ gk
m−1∏
l=1

(gal)i
l

If the condition holds,i broadcasts a “commit” message. Otherwise,i broadcasts an “abort” message.

4. If all i ∈ P agree to commit, eachi storessi andgk. Otherwise, they abort the protocol.

REDIST: To redistributek from the(m,n) scheme{ΓSP , Zp, {Zp}, ψS} to the(m′, n′) scheme{ΓSP′ , Zp, {Zp}, ψ
′S}

1. For eachi ∈ B (B ∈ ΓSP ), use the polynomiala′i(j) = si + a′i1j + . . .+ a′i(m′−1)j
m′−1 to compute the subshares

ŝij of si, and send̂sij to the correspondingj ∈ P ′ over a private channel.

2. For eachi ∈ P, useg to generategsi , ga
′
i1 . . . g

a′
i(m′−1) , and send them to allj ∈ P ′ over the broadcast channel.

3. For eachj ∈ P ′, verify that:

∀i ∈ B : gŝij ≡ gsi
m′−1∏
l=1

(ga
′
il)j

l

and:

gk ≡
∏
i∈B

(gsi)bi where bi =
∏

l∈B,l6=i

l

(l − i)

If the conditions hold,j broadcasts a “commit” message. Otherwise,j broadcasts an “abort” message.

4. If all j ∈ P ′ agree to commit, eachj generatess′j :

s′j =
∑
i∈B

biŝij

and storess′j andgk. Otherwise, they abort the protocol.

Figure 5: Verifiable secret redistribution protocol for the redistribution of shares from Shamir’s(m,n) sharing
scheme [Sha79] to Shamir’s(m′, n′) scheme.
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of the polynomialai(j) used byi to distribute the subsharesŝij of si. We could then interpolate them′ − 1
degree polynomial that a central dealer could have used to distribute sharess′j of k to new shareholders
j ∈ P ′ directly:

s′j =
∑
i∈B

biŝij (Eqn. (6))

=
∑
i∈B

bi

(
si + a′i1j + . . .+ a′i(m′−1)j

m′−1
)

(REDIST Step 1 in Fig. 5)

=
∑
i∈B

bisi +
∑
i∈B

bia
′
i1j + . . .+

∑
i∈B

bia
′
i(m′−1)j

m′−1 (Eqn. (11))

= k +

(∑
i∈B

bia
′
i1

)
j + . . .+

(∑
i∈B

bia
′
i(m′−1)

)
jm
′−1 (Eqn. (11))

(17)

We might be tempted to use a new check similar to that in Feldman’s VSS scheme to verify the validity
of the shares held by new shareholders. Suppose eachi ∈ B broadcasts the same information as they did in
the specialized VSR protocol (REDIST Step 2 in Fig. 5). Eachj ∈ P ′ then verifies thats′j is a valid share of
k with the following equation:

gs
′
j = gkg(

∑
i∈B bia

′
i1)j . . . g

(∑
i∈B bia

′
i(m′−1)

)
jm
′−1

(18)

Eqn. (18) follows from Eqn. (17) and the homomorphic properties of exponentiation. Since finding discrete
logs is intractable, noj can learnk from the broadcast ofgk.

Even though the new check in Eqn. (18) appears similar to that of Feldman’s VSS scheme in Eqn. (8)
(with C(x) = gx), it is subtly different from our use of Feldman’s scheme to verify thatSUBSHARES-VALID

holds. More specifically, in our use of Feldman’s scheme a single old shareholderi ∈ B proves to then′

new shareholdersj ∈ P ′ that it distributed valid subshares. In the new check suggested by Eqn. (18), the
m shareholdersi ∈ B prove that they distributed valid subshares of valid shares to then′ new shareholders
j ∈ P ′. To use Feldman’s scheme, we require that eachi broadcast only the commitments to the shares
gsi and coefficients of the polynomialgai1 . . . gai(m′−1) . For j to use the new check, we require that eachi
broadcast in addition the commitment to the secretgk (as required in our VSR protocol in Sec. 4).

6 Summary and future work

We have presented a protocol to verifiably redistribute shares of secrets between different threshold schemes.
We proved that new shareholders have valid shares after redistribution ifSHARES-VALID andSUBSHARES-
VALID hold, and have given the corresponding verifications. We showed that our protocol guards against
faulty behavior by up ton − m of the old shareholders provided thatm > n

2 . In our presentation, we
assumed that there exist commitment functions that are hard to invert, and that there exist reliable broadcast
communication channels among all participants and private channels between every pair of participants.
The primary contribution of our work is that in our protocol, new shareholders can verify the validity of
their shares after redistribution between different threshold schemes.

As part of our future work, we will investigate ways to identify faulty old shareholders during redistribu-
tion, and to relax the bounds on the number of non-faulty new shareholders. We are currently implementing
our protocol as part of the Carnegie Mellon PASIS survivable storage system [WBP+01, WBS+00] to eval-
uate its performance costs.
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