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Abstract

We de�ne the formal semantics of expressive security-property language. The
language distinguishes safe from unsafe programs and can be enforced system-
atically using proof-carrying code. The soundness of an enforcement algorithm
is shown with respect to the language semantics.
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1 Introduction

A system for self-certi�ed code1 establishes that executing an untrusted, certi-
�ed program will satisfy a security property. The security property character-
izes which actions the host system permits the untrusted program to take; for
example, a host might require that a program execute less than one hundred in-
structions. A certi�ed program is a program packaged with a certi�cation that,
once checked, guarantees that the program will satisfy the security property.

Unfortunately, many systems for self-certi�ed code are implemented with-
out a security-property speci�cation; in such cases, it is diÆcult to determine
whether the implementation enforces the correct security property. For example,
checking whether a customized Java virtual machine enforces a resource-bound
security property amounts to verifying the entire virtual machine implementa-
tion. But even when systems for self-certi�ed code interpret explicit security-
property speci�cations, it is common for speci�cation languages to be relatively
inexpressive.

In this report, we present an algorithm that enforces a security property
according to its encoding in a formal language. Given a certi�ed program and
a security-property speci�cation, the algorithm determines whether program
will satisfy the security property. We prove the soundness of this algorithm
with respect to the formal semantics of the security-property language. The
security-property language is expressive enough to encode specialized security
properties (e.g., resource bounds, con�dentiality, access control). It is also de-
�ned mathematically so that characteristics of speci�c security properties can
be demonstrated, in addition to general properties of the language itself.

The enforcement algorithm is based on proof-carrying code (PCC) [NL96,
Nec97], a particularly exible form of self-certi�ed code. In particular, we ex-
tend the PCC symbolic evaluator to evaluate a security-property speci�cation
for each instruction of the untrusted program; a standard proof checker tests
the agent's certi�cation against the resulting veri�cation condition. In this re-
port, we do not address the important related question of how to automatically
instrument a program so that it satis�es a security-property speci�cation, nor
do we provide an algorithm for automatically certifying programs|we intend
to address these problems in the remainder of the �rst author's dissertation
research.

1.1 Security Properties

Let an execution be a state sequence of some system: for example, the trace of
a single program run. Following Alpern and Schneider [Sch99, AS85, AS86], a
security policy is a predicate on sets of executions. Each program has a set of
possible executions. A program satis�es a security policy if the security policy
holds for its execution set; a program violates a security policy if it does not

1We intend the term \self certi�ed" to exclude technologies based on a trusted third party,

such as \signed applets".
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satisfy the security policy. Security policies allow us to characterize prescribed
and proscribed behavior for an untrusted program.

A security property, on the other hand, is a predicate on executions|all
security properties can be regarded as security policies. A program satis�es
a security property if the property holds for each of its possible executions;
equivalently, a program satis�es a security property if its execution set is a
subset of the executions for which the property holds.

Some security properties are safety properties, others are liveness properties,
and some are neither. Informally, a safety property asserts that a speci�c \bad
thing" does not occur in an execution: if a safety property holds for an execution,
then it holds for each pre�x of the execution. A liveness property asserts that
a speci�c \good thing" will occur: if a liveness property does not hold for an
execution, then the execution is a pre�x of an execution for which the property
holds. For example, \each lock can be acquired only once" is a safety property,
while \all acquired locks must be released" is a liveness property. Alpern and
Schneider [AS85, Sch87] showed that all security properties are the conjunction
of a safety property and a liveness property. After this point, we will encounter
only security properties in this report.

1.2 Self-Certi�ed Code

Let an agent be a program that performs an operation on behalf of a system.
In this report we will focus on untrusted agents that a trusted system executes;
the user of the combined system determines what is trusted. For example, a
web browser is a trusted system that downloads an \applet" to extend its own
functionality; the applet is an untrusted agent2. Agents should not be trusted
because they can do harmful things to the system.

A system for self-certi�ed code establishes that an untrusted, certi�ed agent
will not violate a security property. The agent is packaged with annotations
that relate the program to the security property. The annotations comprise
a certi�cation that the agent satis�es the security property. The host checks
the agent and certi�cation without external trust relationships: in particular,
the host does not trust the provider of the agent. The certi�cation is encoded
in a formal language that demonstrates the acceptability of the agent after
a program analysis. Because precise program analysis is not decidable, the
checker is conservative in that it will only accept certi�ed programs, even if an
uncerti�ed program would not violate the security property during an actual
execution.

An enforcement mechanism prevents an agent from violating a security prop-
erty. Enforcement can be accomplished by certi�cation or by other means, such
as run-time monitoring or program instrumentation. For self-certi�ed code, the
enforcement mechanism checks the agent and its certi�cation. An enforcement
mechanism is sound with respect to a security property if it rejects all agents
that violate the security property. An enforcement mechanism is complete with

2We presume a cautious user who does not trust downloaded applets.
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Figure 1: Self-Certi�ed Code

respect to a security property if it accepts all agents that satisfy the security
property. An enforcement mechanism enforces the security property for which
it is both sound and complete.

Following the usual terminology [NL98b], a code producer transmits a certi-
�ed agent to a code consumer. The code consumer wants to execute the agent,
but does not trust that it satis�es a security property: a trusted enforcement
mechanism therefore checks the certi�ed agent. The code producer is typically a
software developer who arranges that the agent will satisfy the security property
and that the enforcement mechanism will accept it. The certi�cation is typi-
cally constructed for the agent by an automatic certi�cation mechanism, such
as a certifying compiler. For example, a code producer might publish an applet
on a web site that users download into their web browsers. Figure 1 illustrates
this process; in this �gure, the security property is coupled to the enforcement
mechanism.

Note that self-certi�ed code does not presume a trust relationship between
code producer and code consumer, or with any third party|this scheme con-
trasts with cryptographic code certi�cation (e.g., signed applets [GMPS97]),
which presumes that the code consumer trusts the code producer and only
doubts the authenticity of the agent. Self-certi�ed code is compatible with
cryptographic certi�cation (e.g., the signature might attest that the agent is
correct as well as harmless), but self-certi�ed code protects the code consumer
from defective agents in addition to malicious ones. Cryptographic certi�cation
requires the code consumer to trust the ability of the code producer, in addition
to his or her intentions.

Kozen [Koz99] contains further discussion of self-certi�ed code.

1.3 Approaches to Security-Property Speci�cation

1.3.1 Proof-Carrying Code

Proof-carrying code (PCC) [Nec97, Nec98, NL96, NL98b, NL98a] is form of self-
certi�ed code in which the code producer packages the agent with annotations
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and a formal proof3 that together demonstrate that it satis�es a speci�c se-
curity property. The code producer constructs the proof and encodes it in a
formal logic: the enforcement mechanism checks that the proof is valid, and
that it matches the agent and the security property. PCC deliberately places a
heavier burden on the code producer than on the code consumer (proof check-
ing is usually easier than proof discovery). PCC enables the code consumer
to enforce security properties that are not decidable: the code producer must
combine agents and proof generators such that valid proofs are possible. The
code producer can even construct proofs manually, but this approach is feasible
only for small programs.

Typical PCC implementations invoke a veri�cation-condition (VC) genera-
tor [Kin71] to derive a proposition from the agent and a built-in security prop-
erty. The code producer is obliged to show that the VC is valid under a set of
axioms and inference rules. The code consumer need not trust the code pro-
ducer, because the enforcement mechanism independently validates the proof.

Necula [Nec98] de�nes a security property according to the valid transitions
of a safe interpreter for an abstract assembly language. The VC generator is
based on the operational semantics of the safe interpreter, and he proves its
soundness in his dissertation. This approach anticipates limited parameteri-
zation, because the preconditions of dangerous instructions are uninterpreted
predicates on states. The corresponding predicate symbols are axiomatized to
encode security properties for instruction safety and memory safety. Necula de-
veloped sample safety properties for proscribing memory access, for sand-boxing
memory, and for abstract types.

1.3.2 Typed Assembly Language

The enforcement mechanism for typed assembly language (TAL) [MWCG98,
MCG+99, CM99] is a type checker that does not accept programs that vio-
late a security property; type annotations accompany agent instructions. A
TAL compiler translates a well-typed source program into a well-typed assem-
bly program. TAL has a potential performance advantage over PCC because
safety proofs are not present; however, a TAL type checker must reconstruct
type derivations from type annotations. Because PCC transmits complete type
derivations, it is practical even when reconstruction is prohibitively expensive.

The original TAL [MWCG98] de�nes a security property implicitly by the
type system of an assembly language. Walker [Wal99] developed a TAL type
system based on an arbitrary security automaton; Alpern and Schneider [AS86,
Sch99] invented security automata to encode security properties as formal au-
tomata. This version of TAL is novel because it separates the security property
from the enforcement mechanism, and because security automata are not tai-
lored to the type checker.

3Under the most general de�nition of PCC, the proof is any term of a formal system: thus,

typed assembly language could be considered PCC, if we regard type annotations as summary

type derivations. We prefer to identify this broader category as self-certi�ed code and reserve

PCC for systems based on proof terms of formal logics.
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Crary and Weirich [CW00] developed a TAL type system that enforces re-
source bounds. The compiler for this type system is automatic, but it must be
given a resource-bound annotation for each function. Crary, Walker, and Mor-
risett [CWM99] developed a TAL type system to enforce security properties
based on a capability [DvH66] calculus. This calculus can ensure the safety of
explicit deallocation. This enables an enforcement mechanism without a trusted
garbage collector|the inclusion of a garbage collector in the trusted computing
base is a drawback of many current enforcement mechanisms.

1.3.3 Safe Interpreters

For a safe interpreter, the agent language ensures that no security-property
violations can occur. On the one hand, the enforcement mechanism can check
the agent dynamically, in which case each operation is tested during execution;
on the other hand, it can check the agent statically, in which case all tests occur
before execution. It is common to see a hybrid of both techniques, because
static enforcement is typically both more eÆcient and less precise than dynamic
enforcement.

The Java virtual machine (JVM) [LY99] is a well-known enforcement mech-
anism for Java class �les, which we consider to be self-certi�ed code. Java class
�les contain instructions in the Java byte code language; the byte code veri�er

checks Java byte code statically. The JVM speci�cation [LY99] documents the
type-safety property of the byte-code veri�er, in addition to other run-time se-
curity checks; this speci�cation thus �xes the security property for Java byte
code. Determining precisely what security property the JVM enforces is a chal-
lenge, because of its informal prose speci�cation. Original implementations of
the JVM interpreted byte codes directly, but modern implementations translate
byte code into machine code.

The Java Language Speci�cation [GJS96] documents the Java Security Man-
ager, a trusted system that enforces access control. Permissions determine the
operations that a process can perform. The JVM manages permissions trans-
parently; although this approach is convenient in some respects, it restricts
optimizing compilers because of stack introspection [WBDF97].

The security property of the Java Development Kit (JDK) 1.2 Security
Model [GMPS97] is partially speci�ed through con�guration �les. A policy

�le speci�es which permissions an agent receives based on prede�ned attributes
(e.g., its origin or digital signature). Other researchers (e.g., PoET [ES00], J-
Kernel [HCC+97], Naccio [ET99]) have developed extensions for more expressive
security properties.

1.3.4 Software Fault Isolation

Software fault isolation (SFI) [WLAG93, ALLW96] instruments the agent so
that it cannot violate a built-in security property. We do not consider SFI self-
certi�ed code, because it does not use a certi�cation. SFI enforces a memory
safety property that the instrumentation tool implicitly de�nes. SFI is fully
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automatic because it can instrument any agent, regardless of code producer.
Unfortunately, SFI relies on run-time checks that entail run-time overhead and
preclude �ne-grain con�dentiality properties [ML97].

Security automata SFI implementation (SASI) is an SFI-based tool devel-
oped by Erlingsson and Schneider [ES99, ES00] for enforcing security properties
encoded in a security-automata language. Like security automata for TAL,
we consider SASI an important contribution, because it disentangles the se-
curity property from the enforcement mechanism. The dissimilarities between
these two mechanisms suggest that security automata are a universal security-
property representation.

1.4 Limitations of Current Approaches

Unfortunately, enforcement mechanisms often determine security properties,
rather than vice-versa. Such security properties (e.g., SFI [WLAG93]) are dif-
�cult to document independently; witness attempts to formalize the Java byte
code veri�er [SA99, FM98, O'C99]. In the absence of precise de�nitions, it is
impossible to establish rigorously that a security property prohibits malicious
behavior.

PCC and TAL are based on formal models, but it is often impossible to
change a security property without modifying the enforcement mechanism. For
example, Necula [Nec98] parameterizes his PCC by predicates for a memory
safety property, but a resource bound or con�dentiality property requires a
change to the code of the implementation.

Because of this rigidity, any work put into verifying an enforcement mech-
anism is lost when the security property is changed, because changes may in-
troduce bugs that are not in the formal model. Additionally, enforcing a set
of security properties requires a corresponding set of distinct implementations,
each of which must be veri�ed. Adding enforcement mechanisms increases the
size of the trusted computing base and makes the entire system harder to trust.

Consider, for example, a personal digital assistant (PDA) that downloads
agents for new functionality. A trusted enforcement mechanism for self-certi�ed
code checks the agents. Two agents are of interest:

� The alarm clock runs continuously, but only for brief intervals. It updates
a display each second and when a previously scheduled time arrives, it
emits a sound.

� The synchronizer runs to completion when the user activates it. The
synchronizer ensures that the PDA database is consistent with the user's
desktop database.

Figure 2 contains a diagram for this design. Each agent must satisfy a dis-
tinct set of security properties to be safe to run. A memory-safety security
property protects the operating system and libraries from corruption by defec-
tive or malicious agents. Additional resource-bound security properties limit the
system resources consumed by agents. The memory-safety security property is
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Figure 2: Safe PDA

common to all agents because it preserves the basic integrity of the system. The
resource-bound security properties, however, are tailored to a speci�c agent.

For our example, the alarm clock needs little memory to run, but runs con-
tinuously for an unlimited period of time. However, it is usually in a waiting
state between clock ticks. We thus assign the alarm clock the wait-frequency

security property that limits it to a small number of instructions before invoking
the wait system call. The small-heap-bound security property limits the alarm
clock to only a small amount of dynamic memory.

However, we assign the synchronizer a di�erent set of resource-bound secu-
rity properties. The instruction-bound security property requires the agent to
terminate after executing a number of instructions proportional to the size of the
PDA database. The large-heap-bound security property limits the synchronizer
to a large amount of dynamic memory. Because the synchronizer will terminate
after a �xed time, we know that its dynamic memory will be released soon.

The usual realization of this design would include an enforcement mechanism
for each security property. This approach has drawbacks, however, because
all enforcement mechanisms are in the trusted computing base. In addition,
implementations are relatively diÆcult to understand and change, and also tend
to depart from a speci�cation over time. The system designer is thus interested
in developing security properties as opposed to enforcement mechanisms ; ideally,
the enforcement mechanism is derived automatically from the security property.
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1.5 Goals for a Security-Property Language

To address the problems uncovered in Section 1.4, we have developed a security-
property language. A security-property language encodes security properties in a
concrete notation|each \program" of this language denotes a set of executions.
For any given concrete security property, we want to do the following:

� Understand it in terms of an abstract model

� Reason about it with respect to the language semantics

� Enforce it with a generic implementation

� Select (or unselect) it based on a particular agent

� Modify it independently of an implementation

The security-property language thus has the following goals:

Abstraction The language should be de�ned mathematically so that it speci-
�es precisely what actions a security property permits. A developer should
not need detailed knowledge of an enforcement mechanism.

Abstraction is a bene�t because the language semantics can be de�ned
without reference to an enforcement mechanism. Any enforcement mech-
anism that implements the language semantics will enforce the correct
execution set, so a developer need check only that the security property
has the desired characteristics. Most of the work put into verifying an en-
forcement mechanism can thus be leveraged by many security properties.
Figure 3 illustrates this point: the language semantics is the common in-
terface between reasoning about security properties and reasoning about
the enforcement mechanism.

In this report, we show the soundness of a particular enforcement mech-
anism: to ensure that this mechanism enforces a given security property,
one need show only that the security property has the desired charac-
teristics. For example, for an instruction-bound security property, show
that all executions permitted by the security property do not exceed the
intended length.

Expressiveness The security-property language should encompass specialized
security properties (e.g., beyond programming language type safety). For
example,

Resource bounds A resource bound limits consumption of system re-
sources (e.g., processor, memory). It is important for critical re-
sources (e.g., mutexes, input{output devices) to be released promptly
once acquired. Other applications (e.g., networking) must limit the
rate at which a resource is used.

8



Reasoning about
Memory Safety

Soundness of
Enforcement Mechanism

Formal Semantics

Resource Bounds
Reasoning about

Figure 3: Localized Reasoning

Protection Operating system protection mechanisms prevent access to
unauthorized resources [SG98, Lam71, WCC+74]. The JDK 1.2 Se-
curity Model [GMPS97] speci�es an access control mechanism; we
think that it is possible to encode the JDK 1.2 Security Model in our
security-property language.

Con�dentiality A con�dentiality property [DD77, ML97] is a conser-
vative approximation of an information ow policy that partitions
the agent into distinct security classes. A communication channel
is classi�ed by the highest security class to which a message may
belong. An enforcement mechanism prevents higher-security infor-
mation from owing to lower-security areas.

Modularity A modular security-property language supports independently
developed security properties, and enforces them without interference.
Speci�cally, if several security properties are enforced in combination, then
the permitted executions should be the intersection of the independent
execution sets. Thus, the soundness of an individual security property
should not depend on whether it is enforced in combination with other
security properties. Schneider [Sch99] identi�es similar goals for security
automata.

1.6 Our Approach

In this report, we present a speci�cation for a security-property language that
meets the goals identi�ed in Section 1.5. The formal language semantics assigns
an execution set to a security property. The semantics is de�ned in relation
to a formal model of a RISC machine. We de�ne formal models for the lan-
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Figure 4: Instruction-Bound Property Register

guage and machine to enable mathematical reasoning about algorithms and
security properties. Rigor is important for security because attackers will ex-
ploit enforcement-mechanism weaknesses|it is not suÆcient to �x bugs as they
are discovered.

We start from the operational semantics of an abstract RISC machine that
simulates a real processor. The trace semantics of the machine de�nes the
possible executions of a program based on initial conditions. The trace semantics
enables us to compare the execution set of a program with the execution set
of a security property. For example, returning to Section 1.4, we would show
that the executions of the alarm clock agent are a subset of the wait frequency
security property. We also model the system executing the agent to expose their
interaction|in particular, we elide the actions of the host system from agent
executions. The host system is de�ned by the agent procedures it calls, along
with the entry points it exports to the agent.

We encode component speci�cations of the security-property language in a
�rst-order logic; we selected this logic because it is simple to write speci�ca-
tions in, and because it is proven for self-certi�ed code. These speci�cations
can encode properties of individual machine states; to encode properties of ex-
ecutions, we enhance the machine model with property registers that record
relevant properties of previous states. Property registers thus summarize the
execution history prior to the current state. A speci�cation applies to the latest
state of an execution; to encode properties of earlier states, we refer to property
registers. For example, to encode the instruction-bound security property from
Section 1.4, we de�ne a property register n that is initially zero and is incre-
mented as each instruction is executed (see Figure 4). We check an execution
by comparing n with the instruction bound. Note that a property register can
be assigned any expression from the logic; thus, given a suÆciently expressive
logic, we can encode an entire execution history, and thereby represent any
safety property.

Property registers provide an intuitive model for encoding speci�cations for
executions. We select the attributes of interest for a given security property
and encode them directly. The imperative security-property language matches
the imperative machine. Concrete security properties resemble programs that
execute at every machine cycle. The imperative language model also suggests
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a strategy for program instrumentation: reserve memory locations for property
registers and update them according to the security property.

The property registers are e�ectively the current state of a security automa-
ton [AS86, Sch99]. A security automaton is a state machine that responds to
the actions of a target system; it enters a \bad" state when the target violates
its security property. In fact, concrete security properties can be interpreted as
security automata. Security automata are an attractive representation because
they are enforceable with di�erent mechanisms, and because they encompass all
safety properties [Sch99]. For example, to represent the instruction-bound secu-
rity property, we construct a sequence of automaton states of the same length
as the bound k (see Figure 5). The automaton transitions to a successor state
after executing an instruction; the successor of the kth state is the bad state.

We interpret security properties using a special symbolic evaluator; together
with a proof checker, this is the standard enforcement mechanism for PCC. The
symbolic evaluator interprets the programwith symbolic expressions substituted
for register values; a VC generator takes the output of the symbolic evaluator
to a proposition that is valid only if the program satis�es the security property.
We chose to use a VC generator because it is proven for PCC, and because
symbolic evaluators are suited to our security-property language. Because the
symbolic evaluator simulates each program instruction, we can simulate the
security property by evaluating it in conjunction with the program simulation.

We chose to use PCC because it has a small trusted computing base, and
because it can enforce complex security properties potentially without any run-
time overhead. Additionally, because the PCC proof checker does not require an
algorithm for discovering valid derivations, we need not constrain our security-
property language.

1.7 This Report

The purpose of this report is to show the soundness of an enforcement algorithm
for an expressive security-property language. Given a program and a security
property, the algorithm computes a veri�cation condition that is valid only if the
program does not violate the security property. For PCC, an agent certi�cation
constitutes a proof of the VC.

In the body of this report (Section 2 through Section 4), we stratify each
section into independent subsections that build only on preceding material. This
strategy is intended to make the individual subsections easier to comprehend.

The soundness of the VC generator is shown with respect to an abstract
machine model that we de�ne in Section 2; the machine model derives execu-
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tions from its operational semantics. Section 2 also contains a formal de�ni-
tion of our security-property language, including its operational semantics. In
Section 3, we specify a symbolic evaluator and a VC generator; the symbolic
evaluator intentionally resembles the operational semantics of the machine and
the security-property language.

The remaining section is devoted to proving the soundness of the VC gen-
erator. The soundness proof shows that if the VC is valid, then all executions
of the program are executions of the security property (in practice, we use a
standard proof checker to show that the VC is valid). The main body of the
proof is a series of lemmas that appear with supporting de�nitions in Section 4;
these appear in \bottom-up" order so that each proof is based only on proven
lemmas. Purely technical lemmas are relegated to the end of Section 4.

Appendix A contains examples of security properties written in our security-
property language. Appendix B contains a type system that ensures the internal
consistency of security properties, while Appendix C contains the semantics
of pattern matching and derived forms (these are deferred because they are
straightforward). Finally, in Appendix D, we collect the notation used in the
report|it may help to refer to this section as new notation is encountered.

2 Semantics

The purpose of this section is to formalize the executions of an agent and a
security property so that we can relate them in the soundness proof. We can
also use the semantics to demonstrate that a given security property reects
our intended interpretation. Security properties are encoded in the language
Palladium, which we introduce in Section 2.3.

We �rst de�ne a simple machine model and show how program executions are
derived from this model. To derive security-property executions, we extend the
basic model to attach additional information to machine states; from extended
executions, we erase the extra information to recover the executions of a security
property. First, we introduce states and executions.

Based on Schneider [Sch99], an execution is a sequence of system states.
Given states sj : j � 0, an execution � is

s0 ! s1 ! s2 : : :

A step is a transition from a state to its successor. Given states s and s0, a step
A is

s! s
0

We use states for a variant of Necula's safe assembly language [Nec98]:

hi; �i

A state is a pair where i is the instruction counter, and � is the register environ-
ment. The register environment maps registers to their machine-word values.
Memory is represented by a single register mapping words to words.
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Instructions I ::= _r  n j _r1  _r2 eop _r3 j ra pc addw n

j cond cop _r; n j call n j ret
j _r1  M [ _r2] j M [ _r1] _r2 j Ann

Figure 6: PAL Abstract Syntax

2.1 Perilous Assembly Language

Our abstract machine interprets the perilous assembly language (PAL); PAL
is a variant of Necula's safe assembly language (SAL). PAL has the syntax of
SAL, but not its safety checks4. PAL is an e�ective machine model because
it resembles a real RISC processor. Necula provides translations from Alpha
and x86 assembly language to SAL which also apply to PAL. PAL interprets a
program �, which is an abstraction of a program stored in memory. � cannot
be changed by PAL instructions.

2.1.1 Abstract Syntax

Figure 6 contains a de�nition of the abstract syntax of PAL. PAL models the
instruction set of a RISC processor augmented with annotations (Ann) that
have no computational e�ect. The register mem contains the memory, and ra

is designated for return addresses. A variable _r ranges over general-purpose
registers (ri plus ra); r additionally ranges over mem.

The following program, for example, computes the factorial of register r0 in
register r2:

r1  1w // r1 is current counter
r2  1w // r2 is current product
r3  1w // r3 is always one
r4  r1 gtw r0 // r4 is nonzero i� r1 > r0
cond neq0w r4;3w // quit after all iterations
r2  r2 mulw r1
r1  r1 addw r3
cond truew r0;�5w // keep looping

1w is the machine word with the value 1; neq0w and truew are unary condi-
tionals; gtw, mulw, and addw are binary operators.

2.1.2 Operational Semantics

In this section, we de�ne the PAL operational semantics. A state transition

relation tells us how the machine transitions from state to state.

4We dispense with the SAL call history H, because PAL does not distinguish safe from

unsafe execution; a call history can be modeled by a security property. The SAL register move,

unconditional jump, and stack load/store instructions can be emulated by PAL instructions.
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� .hi; �i
m
! s0

m

�i s0

r  n hi _+ 1; �[r 7! n]i

r1  r2 eop r3 hi _+ 1; �[r1 7! J (eop)(�(r2); �(r3))]i

ra pc addw n hi _+ 1; �[ra 7! n _+ i _+ 1]i

cond cop r; n
hn _+ i _+ 1; �i if J (cop)(�(r)) 6= 0
hi _+ 1; �i if J (cop)(�(r)) = 0

call n hn; �i

ret h�(ra); �i

r1  M [r2] hi _+ 1; �[r1 7! �(mem)(�(r2))]i

M [r1] r2 hi _+ 1; �[mem 7! �(mem)[�(r1) 7! �(r2)]]i

Ann hi _+ 1; �i

Figure 7: PAL Transition Relation (� . s
m
! s0)

Agent	(hi; �i; s) i 2 Dom(�)

	;� . <�hi; �i
ma1

� . s
m
! s0 Agent	(s0; s

0)

	;� . s�>
ma4

� . s
m

! hi0; �0i i0 2 Dom(�)

	;� . s! hi0; �0i
ma2

� . s
m
! s0 i00 2 Dom(�)

Skip	(s
0; hi00; �00i)

	;� .s! hi00; �00i

ma3

Figure 8: PAL Step Derivation (	;� .A)

Figure 7 contains a schematic inference rule the state transition relation
m
!

(machine transitions are labeled with m). The judgment � . s
m
! s0 asserts that

the machine goes from state s to state s0 when executing program �. A register
environment � is a total function on the registers. �i denotes the instruction at
address i of program �.

The set of all machine words Uwd is a contiguous subset of the natural
numbers. Thus, unsigned arithmetic on words is modulo 2WdBit , whereWdBit is
the word size in bits; _+ denotes modular addition (+ is reserved for non-modular
addition). The two's complement sign bit is interpreted by signed operators (e.g.
multiplication, division) and conditionals. n denotes the mathematical value of
the numeric constant n, and i denotes the numeric constant for the number i.

The memory register mem contains a total function from words to words;
the set of all such functions is Umapw. �[r 7! v] denotes the environment �
except that r is mapped to v (see Section 2.2.2). The function J maps operator
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constants to their mathematical interpretations.
An agent program � is a sequence of procedures, each of which is a sequence

of instructions. Each procedure F has a base address i0 that is identi�ed with its
�rst instruction. Procedure address ranges must be disjoint. Dom(�) denotes
the instruction addresses of the program �. Note that if � is derived from some
representation in memory, then it should be unwritable, because this semantics
does not support self-modifying code.

Because a transition interprets �i (for a state hi; �i), PAL halts if i =2
Dom(�)|this represents abnormal termination, and models a run-time excep-
tion. The standard convention for normal termination is to execute ret with
ra set to its initial contents.

2.1.3 Step Semantics

From the machine transition relation we de�ne valid steps, and the transitive
closure of the step relation de�nes the valid executions.

There are three kinds step for PAL: a normal transition step, a special \start"
step, and a special \stop" step. A start step <�s marks s as an initial state,
and a stop step s0�> marks s0 as a �nal state. Start and stop steps delimit
executions, and transition steps delimit intermediate states.

For the step semantics, we explicitly model the trusted system invoking
the agent; the trusted system is the complete system except for the agent. In
implementations of this model, trusted systems are operating system kernels,
procedure libraries, or bare hardware (no physical boundary is necessary).

A trusted system 	 is de�ned by two binary relations. The skip relation
Skip	(s; s

0) represents the system calls or library procedures exported by 	 to
the agent. A transition to s triggers a temporary transfer of control to 	: s0

is a result state once control returns to the agent. Intermediate trusted states
are elided from the agent's execution so that 	 is not subject to a security
property5. Note that a single trigger state may have many return states to
model nondeterminism (e.g. input/output). The control transfer is normally
initiated by a procedure call to a designated address.

The agent relation Agent	(s; s
0) represents the possible agent executions for

	, safe or unsafe. The trusted system starts an agent in state s; the agent returns
control by a transition to state s0. Thus, s is a possible initial state and s0 is an
acceptable �nal state. There may be many s0 states for a single s state and 	
may de�ne several s states to reect di�erent entry points or initial conditions.
The instruction addresses skip, agent return, and the program must be disjoint:
thus, the trusted system and the untrusted agent must occupy distinct portions
of the address space. Skip trigger states and agent return states may be partial
to model run-time checks. Figure 9 illustrates representative transitions between
the trusted system and the untrusted agent.

Figure 8 contains inference rules for valid PAL steps; the judgment 	;� .A

asserts that A is a valid step when trusted system 	 executes agent program �.

5This is why the trusted system is \trusted".
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Trusted System 	

Agent	(s0; �) Skip	(si+1; sj) Agent	(�; sk+1)

: : : si+1 ! : : : sk+1 ! : : :
!

!
!

!
s0 ! : : :! si sj ! : : :! sk

�0 �i �j �k

Untrusted Agent �

Figure 9: PAL Trusted System/Untrusted Agent Transitions

A start step must contain an initial state of 	, but must also match an address
of �. A stop step is derived by a transition to a �nal state. A transition step is
an ordinary instruction transition, perhaps triggering a skip transition of 	.

2.1.4 Trace Semantics

Based on the step relation, we now de�ne the executions of an agent.
Figure 10 contains inference rules for deriving the .. judgment on executions:

read ..� as \execution � is permitted". Thus, the judgment 	;� ..� asserts
that � is an execution of agent � when executed by system 	. The inference
rules are the transitive closure of the step rules.

Any valid execution begins with the start symbol <�. For self-certi�ed code,
<� represents trusted execution that takes place before the agent is invoked, and
is thus is not relevant to the security property. Any valid, normally terminating

execution ends with the stop symbol �>: normal termination arises from a
transition back to 	. For self-certi�ed code, �> represents trusted execution
that takes place after the agent has terminated. Thus, both nonterminating
and aborted executions never reach �>. An execution is aborted when it fails a
run-time check.

To summarize Figure 10, all start steps are valid executions, and a transi-
tion or stop step may be added to a valid (unterminated) execution if the step
matches the �nal execution state. An execution is thus a sequence of states
delimited by <�, !, and �>, and, equivalently, a sequence of steps with overlap-
ping states. Figure 9 illustrates the agent/system transitions for the execution
<�s0 ! : : :! si ! sj ! : : :! sk�>.

Once an agent relinquishes control, its execution is marked with �>; nonter-
minating and aborted executions do not receive �>; we can thus demonstrate a
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	;� . <�s

	;� .. <�s
me1

	;� ..�s 	;� . s�>

	;� ..�s�>
me3

	;� ..�s 	;� . s! s0

	;� ..�s! s0
me2

Figure 10: PAL Execution Derivation (	;� ..�)

hierarchy of executions:

<�s0 ! s1 : : : sk�> terminated
<�s0 ! s1 : : : sk aborted
<�s0 ! s1 : : : nonterminating

In order for a valid execution to be in the agent's execution set, its start
and stop states must correspond according to the agent relation. The relation
Agent	;�(�) holds for executions whose stop states, if any, correspond to their
start states:

Agent	;�(� s)

Agent	;�(<�s�>) i� � . s
m
! s0 and Agent	(s; s

0)

Agent	;�(<�s � s
0�>) i� � . s0

m
! s00 and Agent	(s; s

00)

All aborted executions satisfy this relation, but an execution with a stop step
must satisfy the agent relation of the trusted system.

Note that valid executions may still be unsafe with respect to a security
property; PAL intentionally does not distinguish safe from unsafe executions
(this is the function of the security property). �	;� denotes the set of executions
of program � with respect to system 	; we use the permits judgment to de�ne
this set:

� 2 �	;� i� 	;� ..� and Agent	;�(�)

By de�ning �	;�, we can reason about the possible executions when 	
executes �. Later in this report, we will leverage the trace semantics to de�ne
the executions of a security property|systematically relating these execution
sets is the focus of this report. We are nearly ready to introduce the language
in which security properties are written; �rst, however, we de�ne a simple logic
that forms a \sublanguage" of the security-property language.

2.2 First-Order Logic

Security-property-language statements are based on �rst-order propositions.
Not coincidentally, the VC-generator results of Section 3 are encoded in the
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Expressions E ::= c j x j f(E1; : : : ; Ek) E 2 Exp

Propositions P ::= > j R(E1; : : : ; Ek) j E1 = E2 j E1 6= E2 P 2 Prop

j P1 ^ P2 j P1 � P2 j 8x : �:P1

Figure 11: Logic Abstract Syntax

same logic. The logic thus has a dual role: it is embedded in the security-
property language, but it is also the VC object language. This logic is the least
expressive such logic that suÆces for our security-property language and VC
generator: more expressive logics (e.g., higher-order logic) can be substituted if
they admit our fragment. A more expressive logic increases the expressiveness
of the security-property language.

2.2.1 Abstract Syntax

The abstract syntax of the logic is de�ned in Figure 11. Type constructors �
include wd, the type of machine words, and mapw, the type of maps from
words to words.

Expressions encompass constants, variables, and applications of constant
functions; the set of functions includes selection (selw) and update (updw) on
word maps. Note that PAL register identi�ers are chosen from the variables as
a technical convenience. The PAL meta-variable eop denotes a binary operator
(i.e., constant function) on words; the exact set of operators is determined by
the processor, but we presume the existence of modular addition (addw) and
subtraction (subw).

Logical connectives include conjunction and implication as well as truth
and applications of constant relations. Universal quanti�ers for all types are
available. Equality and inequality relations are polymorphic and are well-formed
for any single type. The PAL meta-variable cop denotes a unary conditional
(i.e., constant relation) on words; the exact set of conditionals is determined by
the processor, but the VC generator requires the conditionals to be closed under
complementation (e.g., (: <) � (�)). Note that we omit existential quanti�ers
to simplify proof-term representations as well as automatic theorem provers.

The free variables of an expression (FV(E)) or proposition (FV(P )) are
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de�ned in the customary way:

FV(c) = ;
FV(x) = fxg
FV(f(E1; : : : ; Ek)) = FV(E1) [ � � � [ FV(Ek)

FV(>) = ;
FV(R(E1; : : : ; Ek)) = FV(E1) [ � � � [ FV(Ek)
FV(E1 = E2) = FV(E1) [ FV(E2)
FV(E1 6= E2) = FV(E1) [ FV(E2)
FV(P1 ^ P2) = FV(P1) [ FV(P2)
FV(P1 � P2) = FV(P1) [ FV(P2)
FV(8x : �:P1) = FV(P1)r fxg

2.2.2 Model-Theoretic Semantics

In this section, we de�ne a model-theoretic semantics for the �rst-order logic;
because the logic is embedded in the security-property language, its semantics
grounds the language semantics.

We de�ne a modelM for the logic as follows:

M = hfU�g� ;J i

A set of values U� (a universe) is associated with each type symbol � ; the PAL
semantics (see Section 2.1.2) uses these universes. Uwd is an initial subrange of
the natural numbers. Umapw is the total functions from words to words. Con-
stants (including functions and relations) are assigned values by the denotation
function J . The notation for numeric constants abbreviates uses of J :

n = J (n) i = J (i)

Modular addition and subtraction similarly abbreviate constant functions:

i1 _+ i2 = J (addw)(i1; i2) i1 _{ i2 = J (subw)(i1; i2)

A valuation function assigns values to expressions; the valuation function
VM;� is de�ned in Figure 12; the environment � assigns values to free variables.
A validity judgment asserts that a given proposition holds; the validity judgment
M �� is de�ned in Figure 12. Because we de�ne only one model in this report,
we abbreviate the valuation function V�, and the validity judgment ��.
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E 2 domV� i� FV(E) � dom�

V�(c) = J (c)
V�(x) = �(x)
V�(f(E1; : : : ; Ek)) = J (f)(V�(E1); : : : ;V�(Ek))

�� P i� FV(P ) � dom�

and

8>>>>>>>><
>>>>>>>>:

J (R)(V�(E1); : : : ;V�(Ek)) 6= 0 if P � R(E1; : : : ; Ek)

V�(E1) = V�(E2) if P � E1 = E2

V�(E1) 6= V�(E2) if P � E1 6= E2

�� P1 and �� P2 if P � P1 ^ P2

�� P2 if �� P1 if P � P1 � P2

��[x7!v] P1 for all v 2 U� if P � 8x : �:P1

Figure 12: Logic Valuation and Validity

The interpretation function is de�ned over the standard constants as follows:

J (selw)(v; i) = v(i)
J (updw)(v; i1; i2) = v[i1 7! i2]

J (0w) = 0
J (1w) = 1
...

J (addw)(i1; i2) = (i1 + i2) mod 2WdBit

J (subw)(i1; i2) = (i1 + 2WdBit � i2) mod 2
WdBit

J (eq0w)(i) =

(
1 if i = 0

0 otherwise

J (neq0w)(i) =

(
1 if i 6= 0

0 otherwise

where function extension satis�es the following equations:

dom(v1[v2 7! v3]) = dom v1 [ fv2g

(v1[v2 7! v3])(v) =

(
v3 if v = v2

v1(v) otherwise
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2.2.3 Environments

An environment assigns values to the free variables of an expression or propo-
sition and is represented by a partial function from variables to values. Two
environments are equal when they have the same domain and they map each
variable of this domain to an identical value:

�1 = �2 i� dom�1 = dom�2 and
�1(x) = �2(x) for any x 2 dom�1

An environment is a subset of another environment when the smaller agrees
with the larger over its entire domain:

�1 � �2 i� dom�1 � dom�2 and
�1(x) = �2(x) for any x 2 dom�1

Environment operations include extension ([ 7!]), concatenation ([), and restric-
tion (r); the environment with an empty domain is �;:

dom(�1 [ �2) = dom�1 [ dom�2

dom(�[x 7! v]) = dom� [ fxg
dom(�rX) = dom�rX

dom�; = ;

(�1 [ �2)(x) =

(
�2(x) if x 2 dom�2

�1(x) otherwise

(�[y 7! v])(x) =

(
v if x = y

�(x) otherwise

(�rX)(x) = �(x)

Concatenation gives precedence to its right-hand operand. We abbreviate va-
lidity of a (closed) proposition by omitting the environment:

� P i� ��; P

Note that because PAL register identi�ers are variables, a register environ-
ment � is also a �. We identify a PAL state with an environment through the
notation �s:

�hi;�i = �[pc 7! i]

Environments play a crucial role in the language semantics; with the logic
de�ned, we introduce the language.

2.3 Palladium Security Properties

Each term of a security-property language denotes an execution set. The syntax
and semantics of our security-property language are de�ned mathematically; the
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semantics de�nes an execution set for each well-formed term. Based on the se-
mantics, properties of individual terms can be demonstrated, and characteristics
of the language itself can be established.

A security property �lters the executions of a system. A security-property
is by design unable to perturb the agent|it can only disallow certain execu-
tions. This property is essential to check an agent without actually executing
it. Checking an executing agent can be implemented by monitoring the agent
and aborting it as soon a safety property would be violated.

A security-property language can be de�ned without de�ning an enforcement
mechanism. If an enforcement mechanism implements the language semantics,
then a developer need verify only that a security property de�nes the correct
execution set. This is a mathematical process because the language is de�ned
mathematically; in Appendix A we demonstrate this technique.

In this section, we de�ne the security-property language Palladium. Palla-
dium is suitable for a symbolic evaluator or a safe interpreter. In Section 3 we
specify a VC-generator interpreter of this language, and in Section 4 its sound-
ness. Palladium expresses only safety properties, but in Section A.4 we discuss
the possibility of enforcing liveness properties.

2.3.1 Programming Model

The activity of developing a Palladium security property resembles program-
ming. In particular, the imperative language model entails dependencies on
run-time state and the order of evaluation rules is signi�cant. A security prop-
erty resembles a program for an agent reference monitor. We believe that non-
imperative security-property languages are also possible, but we think that an
imperative language suits an imperative machine.

Many security properties manipulate property registers, mutable locations
outside the machine that encode fragments of execution history. Property reg-
isters tailor an execution history to enable concise safety conditions.

Although we can picture a Palladium security property as a reference mon-
itor, such security properties can be enforced without any run-time overhead:
with PCC, for example, we can reason about property registers in the absence
of a concrete representation. The reference monitor is a visualization of execu-
tion sets: ensuring that a program is bounded by an execution set is a separate
matter. The property registers are a security-automaton state in the sense of
Schneider [Sch99]|Palladium is thus a concrete notation for security automata.

A Palladium security property is composed of declarations and rules. Dec-
larations introduce new language elements such as property registers; rules de-
termine the executions of the security property. A requirement rule speci�es a
precondition for a step based on a formal proposition; an evaluation rule assigns
a property register based on a formal expression.

We can de�ne a safe interpreter for Palladium by extending the trace se-
mantics. Picture the interpreter as a safety kernel [Rus89, WK95] or reference
monitor observing the agent, and picture the property registers as the kernel
state. An evaluation rule changes the kernel state; a requirement rule speci-
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...
r0=0

...
r0=9

...
r0=5

...
r0=1

...
r0=3

Safety
Kernel

n=4
...

Security
Property

Machine
State ...

Figure 13: Parameterized Safety Kernel

Sec. Prop. P ::= � j reg r̂ : � ;P P 2 SecProp

j require A2 ) P ;P j admit A2 ) P ;P
j eval A2 ) r̂ := E;P j new A2 ) r̂ : � ;P
j scs n2 ) r;P j ucs n2 ) r;P

Figure 14: Security-Property Abstract Syntax

�es when to abort the agent. Labeling the kernel a monitor suggests that it
should not a�ect the agent, other than to abort it|we prove this property in
Section 2.3.5.

Picture the kernel evaluating the security property at each agent step (see
Figure 13). Rules are evaluated in textual order: the kernel updates property
registers for evaluation rules, but it aborts the agent if a requirement rule fails.
A rule is guarded by a step pattern that restricts the steps to which it applies.
Patterns may have free variables to let a single rule serve as a schema.

Rules are given a sequential order to mimic a programming language; state
dependencies enhance expressiveness. Requirement rules are conjunctive to sup-
port local reasoning: whether a given requirement fails is not a function of other
requirements.

Given this intuition, we now de�ne Palladium.

2.3.2 Abstract Syntax

The abstract syntax of Palladium is de�ned in Figure 14. Types, expressions
and propositions are drawn from Section 2.2; P is a security-property term.

A declaration reg r̂ : � introduces property register r̂ with type � ; property-
register identi�ers are variables. All declarations must introduce distinct iden-
ti�ers. The^accent distinguishes property registers from machine registers.

A rule require A2 ) P is evaluated before a step if it matches the pattern
A2: the execution aborts if P does not hold. The 2 superscript distinguishes
a pattern for a step from a step. The proposition P may refer to property
registers, machine registers, and pattern variables. Property registers are given
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Registers r2 ::= _r j x j

Words n2 ::= n j x j

Instructions I2 ::= r2  n2 j r21  r22 eop r23 j ra pc addw n2

j cond cop r2; n2 j call n2 j ret
j r21  M [r22 ] j M [r21 ] r22

States s2 ::= proc n2 j I2 j &n2 j

Steps A2 ::= <�s2 j ! s2 j s2 ! j s2�> j
<�
! s2 j s2

�>
!

Figure 15: Pattern Abstract Syntax

values when the rule is evaluated: thus, the placement of an evaluation rule can
a�ect whether a requirement rule holds. Machine register values are taken from
the step according to the form of A2. For a step s ! s0, an entering pattern
! s2 uses s0, but a leaving pattern s2 ! uses s.

The abstract syntax of patterns is de�ned in Figure 15. A step pattern
A2 contains a state pattern s2: a state matches a state pattern according to
its instruction counter, which can match an instruction pattern, a procedure
pattern, or a word constant. For example, the pattern ret matches a state
executing the ret instruction. The state pattern matches according to the
shape of the step pattern: if s matches s2, then

<�s matches <�s2 or
<�
! s2

s0 ! s matches ! s2 or
<�
! s2

s! s0 matches s2 ! or s2
�>
!

s�> matches s2�> or s2
�>
!

Thus, <�s2 matches start steps, s2�> matches stop steps,
<�
! s2 matches both

transition and start steps, and s2
�>
! matches both transition and stop steps.

A requirement rule asserts a bounded universal quanti�er over all steps: read
require A2 ) P as \for all steps matching A, P must hold." Equivalently, a
requirement rule asserts an always operator of temporal logic [Eme90].

An assumption rule admit A2 ) P is evaluated after a step if it matches A2:
the agent can then be aborted only if P holds. An assumption rule thus speci�es
a condition that the agent can assume for the future: if the assumption fails,
then no further requirements will be enforced. Assumption rules make it easier
to construct certi�ed agents. Trusted-procedure postconditions are encoded in
assumptions and provide proof-invariants for PCC when trusted procedures are
involved; the assumptions make it possible to prove that later requirements are
satis�ed. For example, an assumption rule might specify that the result of the
open procedure is a �le descriptor: later, we can show that an argument to put

is also a �le descriptor. Note that if an assumption always holds, then it has no
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semantic e�ect; if an assumption fails, it e�ectively weakens a security property.
An evaluation rule eval A2 ) r̂ := E is evaluated after a step if it matches

A2: the rule assigns r̂ the value of E. An expression is assigned a value in the
same way that a proposition is checked.

A rule new A2 ) r̂ : � is similar to an evaluation rule, except that the new
value of r̂ is an unspeci�ed function of the current step; the new value of r̂ can
be constrained using assumption rules. One use of this rule is to conditionally
assign a property register. For example, the following fragment assigns f zero
or one according to the value of k:

reg f : nat
reg k : nat

new ) f : nat
admit ) k � 10 � f = 0
admit ) k > 10 � f = 1

A rule scs n2 ) r admits that register r will be preserved by all trusted
calls matching n2. A rule ucs n2 ) r requires register r to be preserved by all
agent procedures matching n2.

As an illustrative example, consider a security property that allows up to 10
calls to the procedure put:

reg nPut : nat

eval <� ) nPut := 0
require call put!) nPut � 9
eval call put!) nPut := nPut+ 1

nPut is a property register that counts the number of times put has been
called; nPut is declared with a natural number type. The rule eval < � )
nPut := 0 speci�es that an execution begins without any calls to put (< �
matches at execution start). The rule require call put!) nPut � 9 speci�es
that any execution of the instruction call put can be preceded by up to 9 calls
to put. Finally, the rule eval call put !) nPut := nPut + 1 speci�es that
nPut is incremented for each call to put.

2.3.3 Operational Semantics

To de�ne the executions of a security property, we extended the semantics by
evaluating the security property at each step. But before de�ning security-
property evaluation, we �rst de�ne the e�ect of a single rule on a security-

property state.
Security-property states are triples hP ; �̂; qi, where P is the security property

being evaluated, �̂ is the current property-register environment, and q is one if all
prior assumptions have held. A property-register environment �̂ maps property
registers to values and is total on the property registers. The value of q is one
initially, and becomes zero only when an assumption fails. Figure 16 de�nes the
transition relation for security-property states ŝ.
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The security property is evaluated for each step: to evaluate a security
property P , we construct a state with P and make successive transitions until
P is empty. The judgment �;A. ŝ

s
! ŝ0 asserts that there is a transition from

state ŝ to state ŝ0 with respect to step A and program �. A large transition is its
reexive, transitive closure: the judgment �;A. ŝ

s�
! ŝ0 asserts that there is a

large transition from ŝ to ŝ0. Transitions are labeled with s and large transitions
are labeled with s�.

There is no transition if a requirement fails when all prior assumptions hold;
thus, a large transition gets \stuck" when an execution fails a requirement.
Because the security property must evaluate completely at each step, this e�ec-
tively aborts the execution.

The function New�(A; hP ; �̂; qi) returns a value v 2 U� for r̂ when P =
new A2 ) r̂ : � ;P 0. v is chosen so that no assumptions will fail in P 0, if such a
choice is possible. v depends only on the arguments to New to make security-
property evaluation deterministic; i.e., if both �;A. ŝ

s�
! ŝ1 and �;A. ŝ

s�
! ŝ2,

then ŝ1 = ŝ2.
The following lemma is useful later in this section:

Lemma 2.1 (Absence of Assumptions) �;A.hP ; �̂; qi
s�
! hP 0; �̂0; q0i

implies q0 = q if P contains no admit rules

Proof:

By induction on the derivation of �;A.hP ; �̂; qi
s�
! hP 0; �̂0; q0i

2

The judgment � .A2;A
pa

! �;� asserts that pattern A2 matches step A; the
substitution � binds the pattern variables of A2 (a substitution � maps variables
to expressions). The environment � binds the machine registers based on the
appropriate state of A. Pattern matching is standard, so the de�nition of this
judgment is relegated to Appendix C.

We have shown how property registers are updated by the security property
for a single step. In the next section, we attach property registers to PAL
states to link successive steps of an execution: each execution will then have a
\shadow" sequence of property register states.

2.3.4 Extended Step Semantics

In this section, we extend the PAL semantics to maintain property registers from
state to state. An extended state �s is a triple hs; �̂; qi where s is a PAL state, �̂
is the property-register environment for s, and q is one if all prior assumptions
have held. Figure 18 contains the step semantics for extended states. Extended
states carry �̂ and q between successive security-property evaluations.

The judgment 	;P ; � . �A asserts that �A is a valid extended step with respect
to 	, P , and �. Extended steps are PAL steps with extended states. Such a
step is valid if the corresponding PAL step is valid and if the security property
evaluates completely. The initial property register environment �̂P must be
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�;A.hreg r̂ : � ;P ; �̂; qi
s
! hP ; �̂; qi

s1

� .A2;A
pa

9

�;A.hP ; �̂; qi
s
! hP 0; �̂; qi

s3

P

require A2 ) P ;P 0

admit A2 ) P ;P 0

eval A2 ) r̂ := E;P 0

new A2 ) r̂ : � ;P 0

� .A2;A
pa

! �;�

�;A.hP ; �̂; qi
s
! hP 0; �̂0; q0i

s2

P Case �̂0 q0

require A2 ) P ;P 0 ��[�̂ �(P ) if q 6= 0 �̂ q

admit A2 ) P ;P 0 ��[�̂ �(P ) �̂ q

admit A2 ) P ;P 0 2�[�̂ �(P ) �̂ 0

eval A2 ) r̂ := E;P 0 v = V�[�̂(�(E)) �̂[r̂ 7! v] q

new A2 ) r̂ : � ;P 0 v = New�(A; hP ; �̂; qi) �̂[r̂ 7! v] q

Figure 16: Security-Property Transition Relation (�;A. ŝ
s
! ŝ0)

�;A. ŝ
s�
! ŝ

s�1
�;A. ŝ0

s�
! ŝ �;A. ŝ

s
! ŝ0

�;A. ŝ0
s�
! ŝ0

s�2

Figure 17: Security-Property Large-Transition Relation (�;A. ŝ
s�
! ŝ0)
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well-typed with respect to P and zero elsewhere:

�̂P(r̂) 2 U� for each r̂ : � 2 �P
�̂P(r̂) = 0 for each r̂ =2 dom�P

Finally, in order to check speci�cations, the notation ��s gives us an environ-
ment for an extended state:

�hs;�̂;qi = �s [ �̂

We can now connect extended steps to form extended executions.

2.3.5 Extended Trace Semantics

Extended executions are PAL executions with a property-register history. The
extended trace semantics follows the PAL trace semantics; an extended execu-
tion �� is a PAL execution of extended states. The judgment 	;P ; � .. �� asserts
that �� is a valid extended execution with respect to 	, P , and �.

The function b�c erases �̂ and q from a state or execution, and thereby
recovers a PAL state or execution:

bhs; �̂; qic = s b�c = �
b<�c = <�
b�� !c = b��c !
b���>c = b��c�>
b���sc = b��cb�sc

By erasing extended executions, we can recover the PAL executions that
are valid for a given security property. P(�	;�) is the execution set of P with
respect to 	 and �. An execution � is in P if � is the erasure of some �� which
is permitted by P :

b��c 2 P(�	;�) i� 	;P ; � .. �� and Agent	;�(b��c)

Thus � is safe with respect to P if �	;� � P(�	;�).
Note that by this de�nition, a security property includes the partial execu-

tions of all valid executions: thus, an agent can abort at any pre�x of a valid
execution. This is harmless for safety properties, because they are inherently
pre�x closed, but a di�erent strategy is needed to treat liveness properties.

We can now show that a security property cannot a�ect the agent; i.e., it
can introduce no new executions. P(�	;�) � �	;� for any P is a consequence
of the following theorem:

Theorem 2.1 (Transparency) 	;P ; � .. �� implies 	;� ..b��c

Proof:

By induction on the derivation of 	;P ; � .. ��
2

This implies that if � satis�es P , then P(�	;�) = �	;�. A �nal theorem is
useful for proving other theorems about speci�c security properties:
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	;� . <�s �;<�s .hP ; �̂P ; 1i
s�
! h�; �̂; qi

	;P ; � . <�hs; �̂; qi
ea1

	;� .A �;A.hP ; �̂; qi
s�
! h�; �̂0; q0i

	;P ; � . �A
ea2

A �A

s! s0 hs; �̂; qi ! hs0; �̂0; q0i

s�> hs; �̂; qi�>

Figure 18: Extended Step Derivation (	;P ; � . �A)

	;P ; � . <��s

	;P ; � .. <��s
ee1

	;P ; � .. ���s 	;P ; � . �s! �s0

	;P ; � .. ���s! �s0
ee2

	;P ; � .. ���s 	;P ; � . �s�>

	;P ; � .. ���s�>
ee3

Figure 19: Extended Execution Derivation (	;P ; � .. ��)
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Theorem 2.2 (Absence of Assumptions) 	;P ; � .. �� hs; �̂; qi
implies q = 1 if P contains no admit rules

Proof:

By induction on the derivation of 	;P ; � .. �� hs; �̂; qi using Lemma 2.1
2

3 Symbolic Evaluator/VC Generator

In this section, we de�ne a symbolic evaluator [NL98b] and a VC genera-
tor [Kin71] that interprets Palladium security properties. The symbolic eval-
uator is a program analysis based on symbolic executions. The VC generator
uses the symbolic executions to produce a proposition that is true only if the
program does not violate the security property. The symbolic evaluator restricts
the control ow of the program to make the analysis tractable (there are safe
programs with unsafe control ow that do not have valid VCs).

The principal diÆculty in constructing this algorithm is to reconcile the un-
structured, linear orientation of the security-property language with the struc-
tured, procedural orientation of the symbolic evaluator. The symbolic evaluator
treats branches specially to ensure that the analysis terminates even if the pro-
gram being analyzed does not. The security-property language, on the other
hand, treats all operations uniformly to realize a simple programming model.

For each operational judgment of Section 2, we de�ne a corresponding sym-
bolic judgment. A symbolic state, for example, simulates many distinct concrete
states. To ensure termination, each symbolic execution is only a fragment of
a complete execution|the fragments correspond roughly to basic blocks. The
VC generator constructs a VC from the set of symbolic executions that together
cover the entire program.

VC	;P;� is the VC of agent program � with respect to trusted system 	
and security property P . The soundness of the VC generator is asserted by the
following theorem:

Theorem 3.1 (Soundness) �	;� � P(�	;�) if � VC	;P;�

Proof:

for each � 2 �	;�

	;� ..� Agent	;�(�) Def. �	;�

	;P ; � .. �� b��c = � Lemma 4.40
� 2 P(�	;�) Def. P(�	;�)

2

That is, the program execution set is a subset of the security-property exe-
cution set if the VC is valid. The soundness proof is developed in Section 4 as
a series of lemmas, of which Lemma 4.40 is the conclusion.

In the remainder of this section, we specify the symbolic evaluator and the
VC generator. We start from a basic judgment on transitions and work our
way up to extended executions as in Section 2. Once the extended-execution
judgment is de�ned, we de�ne the VC generator.
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3.1 Transition Symbolic Evaluation

The symbolic evaluator interprets PAL instructions with symbolic expressions
for the contents of registers. In this section, we present symbolic inference rules
that mimic the PAL operational semantics. We use the special turnstile ~. to
distinguish symbolic from concrete judgments.

Two annotations are interpreted by the symbolic evaluator, but are ignored
by the concrete machine:

Annotations Ann ::= proc P; P 0; X j inv P;X

proc P; P 0; X is a procedure speci�cation that must be the �rst instruction of
each procedure. P is the precondition of the procedure, and P 0 is its post-
condition. The precondition must hold before the procedure is called, and the
postcondition will hold after it returns. The variable set X contains the ma-
chine registers and property registers that are changed by the procedure: all
other registers are preserved.

inv P;X is an invariant that must be the destination of every backwards
branch. P holds each time the invariant is executed. X contains the machine
registers and property registers that are changed by any cycle that includes the
instruction: all other registers are preserved.

The symbolic contents of a register is an expression of the logic. Symbolic

states t are pairs hi; �i where i is the instruction counter, and � is a register
substitution. A register substitution is a total map from machine register iden-
ti�ers to expressions6. We assign a variable to a register to let it stand for many
possible values; speci�cations encode universal properties of these values. A
symbolic state can be treated as a substitution using the notation �t:

�hi;�i = �[pc 7! i]

Figure 20 contains inference rules for the symbolic transition relation. Pro-
cedure calls, loop invariants, and conditional branches are not covered by this
relation because they have special steps. The judgment � ~. t

m
! t0 asserts that

there is a transition from state t to state t0 with respect to program �.

3.2 Steps and Speci�cations

Symbolic steps resemble concrete steps: <�t is a start step, t! t0 is a transition
step, and t�> is a stop step, but to delimit partial executions we introduce
two new steps. A head step �� t marks the start of a partial execution that
has no start step (i.e., it follows another partial execution). A tail step t ��
hpl1; : : : ; p

l

ki marks the end of a partial execution that has no stop step; plj is a
link speci�cation that determines a successor partial execution.

Link speci�cations enable us to treat transitions between symbolic execu-
tions uniformly and thereby evaluate the security property during symbolic

6Register substitutions can be systematically evaluated to register environments.

31



transformations. Link speci�cations contain context, transition, and abstrac-
tion speci�cations: the next paragraph outlines this relationship and a more de-
tailed discussion follows. These speci�cations encode symbolic transformations
that the VC generator can apply interpretively. The transformations typically
replace the contents of certain registers with fresh variables.

Link speci�cations de�ne the head states of successor executions that cover
the possible paths the program after the current execution. A link speci�cation
is comprised of a transition speci�cation and zero or more context speci�cations.
A transition speci�cation pt speci�es an abstraction operation and an optional
transition; it is comprised of an abstraction speci�cation and an optional target
address. A register is abstracted when it is assigned a fresh variable7. An ab-

straction speci�cation pa speci�es which machine registers and property registers
are abstracted. A context speci�cation pc speci�es a constraint for the \back-
ground" state of the symbolic evaluator; these constraints ensure that procedure
and loop speci�cations are consistent.

The transition speci�cation pt of link speci�cation hpt; pc1; : : : ; p
c

ki speci�es
the head state of a successor execution based on the current tail state. The
context speci�cations pc1; : : : p

c

k constrain the background of the successor.
A context speci�cation is comprised of an activation address and a transi-

tion speci�cation. A context speci�cation provides an implicit successor to any
execution with a tail state matching the activation address. For the context
speci�cation hi; pti, pt determines the implicit successor, and i is the activation
address. For example, a procedure-call context speci�cation is an abstraction
of the caller to which the procedure will return.

Transition speci�cations come in four di�erent varieties. idhpai speci�es that
the successor head state is an abstraction of the current tail state; pa speci�es the
abstraction operation. tolhpa; ii speci�es that the successor head state results
from a transition to address i after abstracting the tail state. torhi; pai is similar,
except that the transition comes before the abstraction operation. toshii is a
special case of tolhpa; ii in which all machine registers are abstracted.

Abstraction speci�cations come in two di�erent varieties. allhP; P 0i speci-
�es that all machine registers and property registers are abstracted; abstracted
registers are assigned variables that will be universally quanti�ed in the �nal
VC. P is required to hold in the unabstracted state, and P 0 is assumed to hold
in the abstracted state. In practice, P is either P 0 or >. In the �rst case, P
checks the unabstracted state to ensure that P 0 will hold for the abstracted
state. In the second case, P 0 is ensured by some other means. somehX;P; P 0i is
similar to allhP; P 0i, except that just the registers in X are abstracted.

We now employ speci�cations in deriving symbolic steps.

7Abstraction enables us to express general properties of speci�c program points because the

variable is a \stand in" for many possible run-time values. Think of abstraction as changing

the symbolic evaluator's perspective on a run-time value.
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3.3 Step Symbolic Evaluation

Figure 21 contains inference rules for valid symbolic steps. 	;� ~.B asserts
that B is a valid step with respect to 	 and �. The step rules require that
all transitions be within the program or to the trusted system, thus ensuring
that no execution will be abort because of an unde�ned instruction address. All
branches must be within a procedure so that procedure calls are identi�ed by
the call instruction. Note that rule ma

�
5 checks against an unspeci�ed security

property P : these checks should actually be part of the extended step rules, but
are shown here in the interest of brevity.

We assume that the skip and agent relations resemble procedure calls. In
particular, for a start step, ra must contain a corresponding stop address. In
addition, each skip source ra must contain the corresponding target address:

�(ra) = i0 if Agent	(hi; �i; hi
0; �0i)

�(ra) = i0 if Skip	(hi; �i; hi
0; �0i)

These assumptions ensure consistent calling conventions for agent entry points,
internal procedures, and system calls. Finally, we require each start to be paired
with at least one stop state by the Agent relation.

Two functions are used in the step rules. Jump�(i) is the set of addresses in
the same procedure as address i, and Ret�(i0) is the set of return-instruction
addresses in procedure i0:

i0 2 Jump�(i) i� i0 2 Dom�(i0) for some i0 such that i 2 Dom�(i0)
i 2 Ret�(i0) i� i 2 Dom�(i0) and �i = ret

The latter de�nition identi�es the exit points of a procedure.
Our choice of link speci�cations deserves discussion. Conditional branches

have a pair of links that follow both possibilities of the branch; each branch as-
sumes that the corresponding conditional holds. System calls (i.e., n 2 Skip(	))
abstract all machine registers; callee-save registers are declared by the security-
property scs rule. The e�ects of system calls on the property registers are
declared by the eval and new rules. Internal procedure calls (i.e., n 2 Proc(�))
�rst transition to the procedure base address; the precondition is then checked
and, after all registers are abstracted, the precondition is assumed and symbolic
evaluation resumes in the callee. A context speci�cation is constructed for each
callee ret instruction from the postcondition. Upon reaching a return instruc-
tion, all modi�ed registers are abstracted and the postcondition is assumed by
the caller at the instruction following the call. Note that because all registers
are abstracted, a given procedure need never be evaluated more than once (see
Section 3.7). Invariants are simpler than procedure calls: only a single condi-
tion is checked and assumed, and only modi�ed registers are abstracted; the
single context speci�cation applies to the head of the loop. A return instruction
requires no action unless it triggers a stop|internal returns are handled by the
context mechanism (see Section 3.7).
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�~.hi; �i
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�i �0
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r1  M [r2] �[r1 7! selw(�(mem); �(r2))]
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proc P; P 0; X �
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n _+ i _+ 1 2 Jump�(i)

� ~.hi; �i
m
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m
�
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Figure 20: PAL Symbolic Transition Relation (� ~. t
m
! t0)
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�i Case pl1 : : : plk

cond cop r; n

n _+ i _+ 1; i _+1 2 Jump�(i)
�n _+ i _+ 1 = inv : : :

if n _+ i _+ 1 < i _+ 1

htolhsomeh;;>; cop(r)i; n _+ i _+ 1ii
htolhsomeh;;>; (:cop)(r)i; i _+ 1ii

call n

n 2 Skip(	)
i _+ 1 2 Jump�(i)

�(ra) = i _+ 1

htoshi _+ 1ii

call n

n 2 Proc(�)
i _+ 1 2 Jump�(i)
�n = proc P; P 0; X

ra =2 X

�(ra) = i _+ 1
P ` P spec

P ` P 0 spec

htorhn; allhP; P ii; hi1; p
ti; : : : ; hik0 ; p

tii
where fi1; : : : ; ik0g = Ret�(n)
and pt = tolhsomehX;>; P 0i; i _+ 1i

ret �(ra) 6= n

inv P;X
i _+ 1 2 Jump�(i)
P ` P spec

hpt; hi; ptii
where pt = tolhsomehX;P; P i; i _+ 1i

Figure 21: PAL Symbolic Step Derivation (	;� ~.B)
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The de�nition of valid steps enables us to de�ne security-property evaluation.

3.4 Security-Property Symbolic Evaluation

In this section, we present symbolic evaluation rules that mimic the concrete
security-property rules. Evaluating security properties enables us to evaluate
extended steps, which, in turn, lead to extended executions.

The symbolic evaluator accumulates requirements and assumptions in a
proposition context ; a proposition context can be thought of as partial VC.
Proposition contexts are found in security-property states as well as extended
states. A proposition context Q resembles a proposition P , except that Q con-
tains a single \hole" � in its rightmost position. A proposition context can be
applied to a proposition or another proposition context|application substitutes
the operand for the hole:

�(Q) = Q

(P ^Q1)(Q2) = P ^Q1(Q2)
(P � Q1)(Q2) = P � Q1(Q2)
(8x : �:Q1)(Q2) = 8x : �:Q1(Q2)

�(P ) = P

(P1 ^Q)(P2) = P1 ^Q(P2)
(P1 � Q)(P2) = P1 � Q(P2)
(8x : �:Q)(P ) = 8x : �:Q(P )

A Q applied to a P is a P ; a Q applied to another Q is a also a Q.
The bound variables of a proposition context are exactly those that include

the hole in their scope:

BV(�) = ;
BV(P ^Q) = BV(Q)
BV(P � Q) = BV(Q)
BV(8x : �:Q) = fxg [ BV(Q)

Note that variables bound by component propositions are not considered.
Symbolic security-property states t̂ are triples hP ; �̂; Qi where P is the se-

curity property being evaluated, �̂ is the current property-register substitution,
and Q is the current proposition context. A property-register substitution �̂

maps property registers to expressions, and is total on the property registers.
Q accumulates requirements and assumptions as the security property is eval-
uated. For example, applying Q to P ^ � accumulates the requirement P : this
simulates the e�ect of a requirement rule.

Figure 22 contains inference rules for the security-property transition rela-
tion. The judgment �;B ~. t̂

s
! t̂0 asserts that there is a transition from state t̂

to state t̂0 with respect to program � and symbolic step B. The large-transition
judgment �;B ~. t̂

s�
! t̂0 represents the reexive, transitive closure of the transi-

tion relation.
Requirement and assumption rules accumulate propositions into the current

proposition context. An evaluation rule updates the current property-register
substitution. The new rule picks a fresh variable for the target register and
universally quanti�es it in the proposition context. All variables generated so
far are bound in the current proposition context.
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Figure 22: Security-Property Symbolic Transition Relation (�;B ~. t̂
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With security-property evaluation de�ned, we can now extend symbolic
states.

3.5 Extended-Step Symbolic Evaluation

To evaluate symbolic executions, we �rst need to extend symbolic steps. Ex-
tending symbolic states is similar to extending concrete states: extended states
are triples ht; �̂; Qi where t is the state being extended, �̂ is the current property-
register substitution, and Q is the current proposition context. The property-
register substitution and proposition context carry over from one extended state
to another by evaluating the security property for each step. An extended state
can be treated as a substitution using the notation ��t:

�ht;�̂;Qi = �t [ �̂

Figure 24 contains inference rules for valid extended symbolic steps; the
judgment 	;P ; � ~. �B asserts that �B is a valid extended step with respect to 	,
P , and �. The transition rule is a direct translation of the concrete transition
rule. The start rule resembles a procedure call, abstracting all registers and
placing a return address in ra. In this rule, i0 is the base address of an entry
point into the agent. Other rules are transcriptions of unextended rules.

The initial register substitution �� maps each machine register to a distinct
variable. The initial property-register substitution �̂P maps each property reg-
ister of P to a distinct variable not in ��. The null substitution �̂� maps all
property registers to zero:

�� = Gen;(Reg) �̂P = �̂� [GenFV(��)(dom�P) �̂�(r̂) = 0

These substitutions appear in initial states.
The extended step rules are based on abstraction functions. GenX0

(X) is
a substitution that maps each variable in X to a fresh variable not in X0;
implementations of this function must be idempotent:

GenX0
(X) = �

where dom � = X

and �(x) = y such that y =2 X0 [ XReg [ PReg
and �(x1) 6= �(x2) if x1 6= x2

AbsP(�1; �2) introduces universal quanti�ers for two substitutions. This
function is based on Abs�(�), which constructs a string of universal quanti-
�ers for all variables in the range of �; the context � (see Appendix B) assigns
types to these variables:

AbsP(�1; �2) = (Abs�Reg (�1))(Abs�P (�2))

Abs�(�) = 8y1 : �1 : : :8yk : �k:�
where y1; : : : ; yk = �(x1); : : : ; �(xk)
and x1 : �1; : : : ; xk : �k 2 �
and fx1; : : : ; xkg = fx 2 dom � \ dom� j �(x) 2 Varg
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Figure 24: Extended Symbolic Step Derivation (	;P ; � ~. �B)

Finally, GenP;X(�s) applies Gen to each substitution of a state and accumu-
lates the resulting universal quanti�ers:

GenP;X(hhi; �i; �̂; Qi) = hhi; � [ �1i; �̂ [ �2; Q(AbsP(�1; �2))i
where �1 = GenBV(Q)(X \ Reg)
and �2 = GenBV(Q)[FV(�1)(X \ dom�P)

Now we can derive extended symbolic executions|note that we have no use
for unextended symbolic executions.

3.6 Extended-Execution Symbolic Evaluation

Figure 25 contains inference rules for valid extended symbolic executions. The
judgment 	;P ; � e.. �� asserts that �� is a valid symbolic execution with respect to
	, P , and �. The start rule resembles a procedure call because we assume that
the trusted system uses the standard calling convention. The link-speci�cation
discussion for an internal procedure call (see Section 3.3) applies to this rule as
well, except that there is no extra transition. In this rule, i0 is the base address
of an external procedure. Other inference rules are transcriptions of concrete
inference rules.

3.7 VC Generator

The VC generator derives a proposition from a complete set of symbolic execu-
tions that is true only if the security property is satis�ed. This is accomplished
by combining the partial VCs of the symbolic executions. VC	;P;�, the VC of
�, is de�ned in Figure 27. A complete execution set is derived by transitive
closure from the start addresses of the trusted system.

An execution �� of � can be divided into fragments that correspond to the
symbolic executions of �. This correspondence is developed precisely Section 4;
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	;P ; � ~. <�hhi; �i; �̂; Qi �i = proc P; P 0; X

ra =2 X P ` P spec P ` P 0 spec
fi1; : : : ; ikg = Ret�(i) pt = idhsomehX;>; P 0ii

	;P ; � e.. <� hhi; �i; �̂; Qi �� hhidhallhP; P ii; hi1; pti; : : : ; hik; ptiii
ee
�
1

	;P ; � ~. �� �t

	;P ; � e.. �� �t ee
�
2

	;P ; � e.. �� �t 	;P ; � ~. �B

	;P ; � e.. �� �B
ee
�
3

�B

�t! �t0

�t�>
�t �� hpl1; : : : ; p

l

ki

Figure 25: Extended Symbolic Execution Derivation (	;P ; � e.. ��)
for now, think of a fragment as the value of some ��, given a suitable environment.
A single �� may correspond to many distinct fragments of a given ��.

3.7.1 Terminology

Each symbolic execution �� has a set of successor executions that represent
symbolic evaluation after ��. If �� corresponds to some fragment of ��, then some
successor ��0 of �� corresponds to an adjacent fragment of ��. The tail of �� may
correspond to the same concrete state as the head of ��0, or there may be an
intervening transition. The successor graph may contain cycles: cycles enable
us to account for an arbitrarily long ��. For example, we might break down ��
as follows:

��0z}|{
<��s0

��1z }| {
�s0 ! �s1 ! �s2 ! �s3 ! �s4 !

��2z }| {
�s5 ! �s6 ! �s7 !

��2z }| {
�s8 ! �s9 ! �s10 ! : : :

��0 corresponds to the start step; ��1 shares �s0 with ��0; ��2 is a loop body, so it
repeats for several successive fragments.

The VC generator starts with symbolic start steps that are trivial executions
that directly lead to successor states. These head states are in turn evaluated,
resulting in more executions, each of which specify their successors. This process
continues until there are no fresh executions to evaluate.

Successors are derived from abstract speci�cations to ensure that the set
of symbolic executions is �nite. For example, all procedure-call successors are
identical for a given procedure: the head state is based only on the procedure's
precondition to guarantee that all calls will converge.

Before discussing the VC generator itself, we introduce two concepts:

� A trace context C is a partial function from addresses to propositions.
Trace contexts comprise the background state of the symbolic evaluator
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and ensure that speci�cations are consistent. If C maps i to P , then evalu-
ation stops at program counter i and P is required to hold in place of fur-
ther symbolic evaluation. For example, when a procedure is evaluated, its
trace context contains its postcondition at each return instruction. When
a return is evaluated, we accumulate the postcondition as a requirement
instead of simulating a return.

� A trace schedule S is a set of trace context/symbolic execution pairs. If
hC; ��i is in S, then �� either has been evaluated, or is scheduled to be
evaluated with background C.

The VC generator maintains a set of completed traces S1 and a set of scheduled
traces S2; at each iteration, a trace is selected from S2 r S1 and evaluated.

The VC of a program is a conjunction of closed propositions. Each symbolic
execution is associated with a subterm proposition based on its proposition
contexts: each proposition context is a pre�x of the subterm; Q is a pre�x of
P if there is some P 0 such that P = Q(P 0). Thus, a subterm proposition is the
limit of a series of proposition contexts: this is the VC of an execution. Two
executions are independent when they have di�erent VCs8. The successor of
an execution �� may be independent of ��: this happens when all registers are
abstracted or when a trace context is matched; in these cases, the current VC
is complete and a new VC is started. Note that the start and stop steps of a
given entry point have the same VC.

We now describe the VC generator following the order of presentation in
Figure 26 and Figure 27. Figure 26 contains de�nitions for speci�cation evalua-
tion; we evaluate a speci�cation with respect to a trace context/tail state pair to
reach a (successor) trace context/head state pair. Figure 27 contains de�nitions
for generating VCs from trace schedules.

3.7.2 Speci�cation Evaluation

PreVCP(�t; p
a) is the VC that results from evaluating abstraction speci�cation pa

with respect to symbolic state �t; the result is the special symbol open if the VC
is not closed. Other PreVC functions are similar except that link speci�cations
evaluate to a sequence of VCs|one for each successor speci�cation. A VC
is closed when all registers are abstracted in its successor, thus making the
successor independent.

EvalP(hC; �ti; p
a) is the successor trace context/state pair of hC; �ti according

to the abstraction speci�cation pa. The successor state will be the head state
of a new symbolic execution, using the successor trace context as background.
Other Eval functions are similar except that link speci�cations evaluate to a
sequence of trace context/state pairs.

NeedP(�t; p
a) is a proposition that implies the assumptions introduced by

the abstraction speci�cation pa. It additionally implies that the registers not
abstracted by pa equal the corresponding registers of �t.

8The bound variables of independent executions have disjoint scopes.
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InP;�(�t; p
t) and OutP;�(�t; p

t) partially evaluate a transition speci�cation
with respect to �t. In evaluates transitions that occur before abstraction, and Out
evaluates transitions that occur after abstraction. ASp(pt) is the abstraction-
speci�cation subterm of transition speci�cation pt.

3.7.3 VC Generation

Conj�t(fP1; : : : ; Pkg) is the conjunction of P1; : : : ; Pk except that their common
pre�x is factored according to the proposition context of �t. This function \re-
joins" the VCs of multiple control paths. Trace	;P;�(fhC1; �t1i; : : : ; hCk; �tkig) is
a trace schedule for a set of trace context/state pairs. Each execution of the
result is derived from a head step for the corresponding state.

ClosedVCSP;�;�t(p
l;) is the set of closed VCs that result from evaluating pl

with respect to �t. Closed	;P;�(hC; �ti; p
l) is the trace schedule containing of the

independent successors that result from evaluating pl with respect to hC; �ti; sim-
ilarly, Open	;P;�(hC; �ti; p

l) is the trace schedule of non-independent successors.
VC	;P;�(hC; ��i) is the VC of �� with background C, and is a closed proposition

that is a subterm of the complete VC. VC	;P;�(S) is the VC of trace schedule
S (the conjunction of the VCs of the members of S).

Next	;P;�(hC; ��i) is the trace schedule of the independent successors of ��
with background C. Fix	;P;�(S1;S2) is the �xed point of S2, given that S1
and its successors are already in S2; the �xed point is found when S1 = S2.
The �xed point of a trace schedule S is those independent executions that are
reachable from members of S.
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PreVCP(ht; �̂; Qi; allhP; P
0i) = Q(�ht;�̂;Qi(P ))

PreVCP(�t; somehX;P; P 0i) = open

EvalP(hC; hhi; �i; �̂; Qii; allhP; P
0i) = h;; hhi; ��i; �̂P ; (AbsP(��; �̂P))(�hhi;��i;�̂P ;�i(P

0) � �)ii
EvalP(hC; ht; �̂; Qii; somehX;P; P 0i) = hC; ht0; �̂0; Q0(�ht0;�̂0;Q0i(P

0) � �)ii
where ht0; �̂0; Q0i = GenP;X(ht; �̂; Q(�ht;�̂;Qi(P ) ^ �)i)

NeedP(�t; allhP; P
0i) = P 0

NeedP(�t; somehX;P; P 0i) =
V
x2(Reg[dom�P )rX

x = ��t(x) ^ P
0

InP;�(hhi; �i; �̂; Qi; torhi
0; pai) = hhi0; �i; �̂0; Q0i if �; hi; �i ! hi0; �i ~.hP ; �̂; Qi

s�
! h�; �̂0; Q0i

InP;�(�t; p
t) = �t if pt 6= tor : : :

OutP;�(hhi; �i; �̂; Qi; tolhp
a; i0i) = hhi0; �i; �̂0; Q0i if �; hi; �i ! hi0; �i ~.hP ; �̂; Qi

s�
! h�; �̂0; Q0i

OutP;�(hhi; �i; �̂; Qi; toshi
0i) = hhi0; �0i; �̂0; Q0i if �; hi; �i ! hi0; �0i ~.hP ; �̂; Q(Abs�Reg (�))i

s�
! h�; �̂0; Q0i

where �0 = � [ � and � = GenBV(Q)(Reg)
OutP;�(�t; p

t) = �t if pt = id : : : or pt = tor : : :

ASp(toshii) = someh;;>;>i
ASp(pt) = pa if pt = idhpai or pt = tolhpa; ii or pt = torhi; pai

PreVCP;�(�t; p
t) = PreVCP(InP;�(�t; p

t);ASp(pt))
EvalP;�(hC; �ti; p

t) = hC0;OutP;�(�t
0; pt)i where hC0; �t0i = EvalP(hC; InP;�(�t; p

t)i;ASp(pt))
NeedP;�(�t; p

t) = NeedP(�t;ASp(p
t))

PreVCP;�(hhi; �i; �̂; Qi; hi
0; pti) = PreVCP;�(hhi

0; �i; �̂; Qi; pt)
EvalP;�(hC; hhi; �i; �̂; Qii; hi

0; pti) = EvalP;�(hC; hhi
0; �i; �̂; Qii; pt)

NeedP;�(�t; hi; p
ti) = NeedP;�(�t; p

t)

PreVCP;�(�t; hp
t; pc1; : : : ; p

c

ki) = hPreVCP;�(�t; p
t);PreVCP;�(�t

0; pc1); : : : ;PreVCP;�(�t
0; pck)i

where �t0 = InP;�(�t; p
t)

Eval0P;�(hC; �ti; hp
t; pc1; : : : ; p

c

ki) = hC
0[i1 7! NeedP;�(�t

0; pc1); : : : ; ik 7! NeedP;�(�t
0; pck)];OutP;�(�t

0; pt)i
if i1; : : : ; ik =2 dom C0

where hC0; �t0i = EvalP(hC; InP;�(�t; p
t)i;ASp(pt))

and hi1; p
t

1i; : : : ; hik; p
t

ki = pc1; : : : ; p
c

k

EvalP;�(hC; �ti; hp
t; pc1; : : : ; p

c

ki) = hhC00; �t
0
0i; : : : ; hC

0
k;
�t0kii

where hC0j ; �t
0
ji

=

(
Eval0P;�(hC; �ti; hp

t; pc1; : : : ; p
c

ki) if j = 0 or pcj = hi; p
ti for k = 1

EvalP;�(hC; InP;�(�t; p
t)i; pcj) otherwise

and hhi; �i; �̂; Qi = �t

Figure 26: Speci�cation Evaluation
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Conjht;�̂;Qi(fQ(P1); : : : ; Q(Pk)g) = Q(P1 ^ � � � ^ Pk)

Trace	;P;�(fhC1; �t1i; : : : ; hCk; �tkig) = fhC1;�� �t1 ��1i; : : : ; hCk;�� �tk ��kig
if 	;P ; � e.. �� �tj ��j for all j 2 f1; : : : ; kg

ClosedVCSP;�;�t(p
l; ) = f(PreVCP;�(�t; p

l))j j (PreVCP;�(�t; p
l))j 6= openg

Closed	;P;�(hC; �ti; p
l) = Trace	;P;�(f(EvalP;�(hC; �ti; p

l))j j (PreVCP;�(�t; p
l))j 6= openg)

Open	;P;�(hC; �ti; p
l) = Trace	;P;�(f(EvalP;�(hC; �ti; p

l))j j (PreVCP;�(�t; p
l))j = openg)

VC	;P;�(hC; �� ht; �̂; Qi�>i) = Q0(>) if �; t�> ~.hP ; �̂; Qi
s�
! h�; �̂0; Q0i

VC	;P;�(hC; �� �t �� hp
l

1; : : : ; p
l

kii) =

(
Q(��t(C(i))) if i 2 domC

Conj�t

�Sk

j=1 ClosedVCSP;�;�t(p
l

j ;[)VCSj

�
if i =2 domC and k > 0

where VCSj = fVC	;P;�(hC
0; ��0i) j hC0; ��0i 2 Open	;P;�(hC; �ti; p

l

j)g

and hhi; �i; �̂; Qi = �t

Next	;P;�(hC; �� �t�>i) = ;

Next	;P;�(hC; �� �t �� hp
l

1; : : : ; p
l

kii) =

(
; if i 2 domCSk

j=1Closed	;P;�(hC; �ti; p
l

j) [ Nextj otherwise

where Nextj =
S
hC0;��0i2Open	;P;�(hC;

�ti;pl

j)
Next	;P;�(hC

0; ��0i)

and hhi; �i; �̂; Qi = �t

Fix	;P;�(S1;S2) =

(
Fix	;P;�(S1 [ fhC; ��ig;S2 [ Next	;P;�(hC; ��i)) if hC; ��i 2 S2 r S1

S1 if S2 � S1

VC	;P;�(S) =
V
hC;��i2Fix	;P;�(;;S)

VC	;P;�(hC; ��i)

VC	;P;� = VC	;P;�(fh;; <�hhij ; �ji; �̂j ; Qji ��ji j 1 � j � kg)

if 	;P ; � e.. <�hhij ; �ji; �̂j ; Qji ��j and �j(ra) = i0j for all j 2 f1; : : : ; kg

and ` P sp where fhi1; i
0
1i; : : : ; hik; i

0
kig = fhi; i

0i j Agent	(hi; �i; hi
0; �0i)g

Figure 27: VC Generation
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3.8 Optimizations

The symbolic evaluator of this report can be optimized like Necula's symbolic
evaluator [Nec98]. These optimizations reduce the size of program VCs as well
as evaluation time, but are not incorporated here to simplify presentation.

A register move instruction

_r1  _r2

is encoded in PAL by

_r1  _r2 orw _r2

where orw is the logical \or" operator. Our symbolic evaluator could recognize
the above pattern and simply transfer the contents of _r2 to _r2.

An unconditional jump instruction

jump n

is encoded in PAL by

cond truew _r0; n

where truew is always true. Our symbolic evaluator could recognize the above
pattern and only include the branch target in the link-speci�cation set.

Necula's symbolic evaluator enforces a stack discipline to optimize local
stack-frame accesses. Essentially, the top stack frame is treated as a register
�le so that load and store can be treated as register assignments. Optimizing
our symbolic evaluator in this fashion is a more substantial undertaking, but we
believe it to be important for machine architectures with few registers.

The scs rule declares machine registers that are unchanged system calls.
When this rule is interpreted, we introduce an assertion that the register before
the call is equal to the register after the call; the new register always contains
a fresh variable. Instead of introducing the variable, we could propagate the
register unchanged across matching calls.

4 Soundness Proof

This section contains a sequence of lemmas and supporting de�nitions that prove
the soundness of the VC generator. This section has a \bottom-up" structure:
simplest de�nitions appear �rst, and from these, successively more complex
de�nitions are constructed. First, however, we overview the entire proof.

To show soundness, we must show that every program execution is a security-
property execution. Formally, we must show

�	;� � P(�	;�)

assuming that

� VC	;P;�
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To approach this, we show that for each execution in �	;�, there is an execu-
tion in P(�	;�). This amounts to showing that for each 	;� ..�, there is a
	;P ; � .. ��, such that �� erases to �.

The essence of the proof is in showing that for each unextended state, there
is a corresponding extended state; the extended execution is constructed from
these individual states. The validity of the VC ensures that security-property
checks succeed. Symbolic executions relate the VC to a concrete execution, and
thus constitute a \blueprint" for constructing the extended execution.

The symbolic evaluator substitutes logical variables for the concrete values
of a real execution; speci�cations assert abstract invariants on these variables.
For the proof, we must derive a concrete execution from symbolic ones: this
is accomplished by exhibiting an environment � that assigns concrete values to
the variables appearing in the symbolic execution; a concrete execution is the
value of a symbolic execution in �. We can de�ne a valuation function for simple
states (see Section 2.2.2), but extended states are more complicated, so we use
a simulation relation instead (see Section 4.4).

The remainder of this section follows this format: a prose description of a
de�nition or lemma is given, followed by its mathematical content (the prose
description is only illustrative). Note that proofs contain occasional judg-
ments from Appendix B (static semantics) and Appendix C (pattern matching).
Purely technical lemmas appear in Section 4.8.

Application of an inference rule is abbreviated \App.", and inversion is ab-
breviated \Inv." Inverting an inference rule asserts one or more of its premises

based on its conclusion. Inversion is possible when the inference rule for a judg-
ment can be identi�ed (e.g., only one rule is applicable), or, more generally,
when all possible rules have a common premise.

4.1 Substitutions

A substitution � maps variables to expressions; if we valuate each expression in
an environment �, we have an environment with the domain of �. The result
environment is the value of � in �:

De�nition 4.1 (Valuation)

1. � 2 domV� i� �(x) 2 V� for all x 2 dom �,

2. dom(V�(�)) = dom � for all � 2 domV�, and

3. V�(�)(x) = V�(�(x)) for all � 2 domV� and x 2 dom �

4.2 Steps

The value of a symbolic state is obtained from the value of its register substi-
tution; the value is a concrete state:

De�nition 4.2 (State Valuation)
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1. hi; �i 2 domV� i� � 2 V�, and

2. V�(hi; �i) = hi;V�(�)i for all hi; �i 2 domV�

� provides values for variables introduced by the symbolic evaluator: a single
symbolic state may evaluate to many distinct concrete states depending on �.

We extend valuation to steps: the value of a symbolic step is obtained from
the value(s) of its component state(s); the value is a concrete step. Head and
tail steps are not valuable:

De�nition 4.3 (Step Valuation)

1. <�t 2 domV� i� t 2 domV�
t! t0 2 domV� i� t; t0 2 domV�
t�>2 domV� i� t 2 domV�

, and

2. �� t =2 domV�
t �� hpl1; : : : ; p

l

ki =2 domV�

, and

3. V�(B) =

8><
>:
<�V�(t) if B =<�t

V�(t)! V�(t
0) if B = t! t0

V�(t)�> if B = t�>

for all B 2 domV�

A jump within a procedure is within its program:

Lemma 4.1 (Jump Target) i0 2 Dom(�) if i0 2 Jump�(i)

Proof:

Consequence of applicable de�nitions
2

The value of a symbolic state substitution is the concrete state substitution
for the value of the symbolic state:

Lemma 4.2 (State-Substitution Valuation) V�(�t) = �V�(t)

if �t 2 domV�

Proof:

let t = hi; �i
V�(�hi;�i) = V�(�[pc 7! i]) Def. �t
= V�(�)[pc 7! V�(i)] Lemma 4.57
= V�(�)[pc 7! i] Def. V�
= �hi;V�(�)i Def. �s
= �V�(hi;�i) Def. 4:2

2

Variables that are not free in a state or step do not a�ect its valuation:

Lemma 4.3 (Left Valuation)
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1. V�1[�2(t) = V�1(t) if t 2 domV�1 and dom�1 \ dom�2 = ;, and

2. V�1[�2(B) = V�1(B) if B 2 domV�1 and dom�1 \ dom�2 = ;

Proof:

Consequence of Lemma 4.55, De�nition 4.2, and De�nition 4.3
2

The value of a state or step in a concatenation is the value of the state or
step in the right-hand environment, if such a value exists:

Lemma 4.4 (Right Valuation)

1. V�1[�2(t) = V�2(t) if t 2 domV�2 , and

2. V�1[�2(B) = V�2(B) if B 2 domV�2

Proof:

Consequence of Lemma 4.56, De�nition 4.2, and De�nition 4.3
2

Given a symbolic transition t
m

! t0, a concrete transition from the value of t
in some environment � results in the value of t0 in �:

Lemma 4.5 (Transition Simulation) V�(t
0) = s0

if �~. t
m
! t0 and � .V�(t)

m
! s0

Proof:

let t = hi; �i; t0 = hi0; �0i
V�(t) = hi;V�(�)i V�(t

0) = hi0;V�(�
0)i Def. 4:2

Case: �i = r1  r2 eop r3; i
0 = i _+ 1; �0 = �[r1 7! eop(�(r2); �(r3))];

s0 = hi _+ 1;V�(�)[r1 7! J (eop)(V�(�)(r2);V�(�)(r3))]i
V�(�)[r1 7! J (eop)(V�(�)(r2);V�(�)(r3))]
= V�(�)[r1 7! J (eop)(V�(�(r2));V�(�(r3)))] Def. 4:1
= V�(�)[r1 7! V�(eop(�(r2); �(r3)))] Def. V�(E)
= V�(�[r1 7! eop(�(r2); �(r3))]) = V�(�

0) Lemma 4.57

Case: �i = ra pc addw n; i0 = i _+ 1; �0 = �[ra 7! n _+ i _+ 1];
s0 = hi _+ 1;V�(�)[ra 7! n _+ i _+ 1]i

V�(�)[ra 7! n _+ i _+ 1] = V�(�)[ra 7! J (n _+ i _+ 1)] Def. i

= V�(�)[ra 7! V�(n _+ i _+ 1)] Def. V�

= V�(�[ra 7! n _+ i _+ 1]) = V�(�
0) Lemma 4.57

Other cases are similar to the �rst case
2

Given a symbolic step t ! t0, a concrete step from the value of t in some
environment � results in the value of t0 in �:

Lemma 4.6 (Next-Step Simulation) V�(t
0) = s0

if 	;�~. t! t0 and 	;� .V�(t)! s0

47



Proof:

let t = hi; �i; t0 = hi0; �0i

�~. t
m
! t0 i0 2 Jump�(i) Inv. ma

�
2

� .V�(t)
m
! s00 Inv. ma2;ma3

V�(t
0) = s00 Lemma 4.5

s00 = hi0;V�(�
0)i Def. 4:2

s0 = s00 Insp. of ma rules
2

4.3 Pattern Matching

This section is based on the pattern-matching semantics of Appendix C. The
domain of a pattern-variable substitution is the domain of the context in which
the pattern type checks; the free variables of the substitution are among the
machine registers:

Lemma 4.7 (Pattern Variables)

1. dom � = dom� if � ` A2
pat and � .A2;A

pa

! �;�, and

2. FV(�) � UReg if � .A2;A
pa

! �;�

Proof:

By inspection of the pattern well-formedness and match rules
2

The environment produced by a pattern-matching rule is de�ned only on
the machine registers:

Lemma 4.8 (Environment Domain)

1. dom� = XReg if � . s2; s
ps

! �;�, and

2. dom� = XReg if � .A2;A
pa

! �;�

Proof:

Item 1:
by inspection of the state match rules, � = �hi;�i for some i; �
dom(�hi;�i) = dom(�[pc 7! i]) Def. �s
= dom � [ fpcg = XReg Def. �[7!]

Item 2:
by inspection of the step match rules and item 1

2

If a symbolic state t matches a pattern s2 with respect to substitutions �1
and �2, then the value of t matches s2 with respect to �1 and the value of �2:

Lemma 4.9 (State Simulation) � . s2;V�(t)
ps

! �1;V�(�2)

if �~. s2; t
ps

! �1; �2 and t 2 domV�
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Proof:

Case: s2 = I2; t = hi; �i; �2 = �hi;�i

. I2; �i
pi

! �1 Inv. ps�2
� . I2; hi;V�(�)i

ps

! �1;�hi;V�(�)i App. ps2

� . I2;V�(hi; �i)
ps

! �1;�V�(hi;�i) Def. 4:2

� . I2;V�(hi; �i)
ps

! �1;V�(�hi;�i) Lemma 4.2
Other cases are similar

2

Lemma 4.10 is Lemma 4.9 for steps:

Lemma 4.10 (Step Simulation) � .A2;V�(B)
pa

! �1;V�(�2)

if �~.A2;B
pa

! �1; �2 and B 2 domV�

Proof:

Case: A2 =<�s2; B =<�t

�~. s2; t
ps

! �1; �2 Inv. pa�1
t 2 domV� Def. 4:3

� . s2;V�(t)
ps

! �1;V�(�2) Lemma 4.9

� . <�s2;<�V�(t)
pa

! �1;V�(�2) App. pa1

� . <�s2;V�(<�t)
pa

! �1;V�(�2) Def. 4:3
Case: A2 = s2�>;B = t�>
similar to previous case

Case: A2 =! s2; B = t0 ! t; s2 6= proc : : :

�~. s2; t
ps

! �1; �2 Inv. pa�1
t0; t 2 domV� Def. 4:3

� . s2;V�(t)
ps

! �1;V�(�2) Lemma 4.9

� .! s2;V�(t
0)! V�(t)

pa

! �1;V�(�2) App. pa1

� .! s2;V�(B)
pa

! �1;V�(�2) Def. 4:3
Cases A2 =! s2 or A2 = s2 ! are similar
Cases A2 =

<�
! s2 and A2 = s2

�>
! follow by induction

2

4.4 Security Properties

A security-property state is a pre�x if its proposition context is:

De�nition 4.4 (Pre�x State) hP ; �̂; Qi � P i� P = Q(P 0) for some P 0

Because the VC accumulates in the proposition context, this de�nition tells
us whether a given state leads to a given VC.

We would like to valuate security-property states, but a symbolic state does
not have determine a single concrete state. For example, the q component
can equally well be zero or nonzero. Instead, we assert that a symbolic state
simulates a concrete state. Simulation is with respect to an environment � and
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a proposition P : � assigns values to variables, and P is the VC of the current
symbolic execution.

For state hP ; �̂; Qi to simulate state hP ; �̂; qi, �̂must be the value of �̂ in some
environment �, and the remainder of P (after extracting Q) must be true in �.
The last requirement is waived if q is zero (this indicates that an assumption
has failed). Other parts of De�nition 4.5 are technical invariants:

De�nition 4.5 (State Simulation) hP ; �̂; Qi � hP ;V�(�̂); qi (P; �)
i�

1. � `� P sp for some �, � such that dom� � XReg [ PReg,

2. P = Q(P 0) for some P 0 such that q 6= 0 implies �� P
0, and

3. dom� � BV(Q) and BV(Q) \ (XReg [ PReg) = ;

The concatenation of derivable large steps is derivable:

Lemma 4.11 (Concatenation) �;A. ŝ0
s�
! ŝ0

if �;A. ŝ0
s�
! ŝ and �;A. ŝ

s�
! ŝ0

Proof:

By induction on the derivation of �;A. ŝ
s�
! ŝ0

2

After q goes to zero, we cannot get stuck:

Lemma 4.12 (Liberation) �;A.hP ; �̂; 0i
s�
! h�; �̂0; 0i for some �̂0

Proof:

By induction on the structure of P
2

Given a transition t̂
s
! t̂0, t̂0 contains the proposition context of t̂ as a pre�x.

So, t̂ is a pre�x of a proposition if t̂0 is:

Lemma 4.13 (Continuity)

1. Q0 = Q(Q1) for some Q1 if �;B ~.hP ; �̂; Qi
s
! hP 0; �̂0; Q0i

2. t̂ � P if �;B ~. t̂
s
! t̂0 and t̂0 � P

3. t̂0 � P if �;B ~. t̂0
s�
! t̂0 and t̂0 � P

Proof:

Item 1 by inspection of the security-property transition rules and Lemma 4.61

Item 2:
let t̂ = hP ; �̂; Qi; t̂0 = hP 0; �̂0; Q0i
Q0 = Q(Q1) Item 1
P = Q0(P 0) Def. 4:4
Q(Q1(P

0)) = (Q(Q1))(P
0) = Q0(P 0) = P Lemma 4.62
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t̂ � P Def. 4:4

Item 3 by induction on the derivation of �;B ~. t̂0
s�
! t̂0

2

There is a concrete transition ŝ
s
! ŝ0 for each symbolic transition t̂

s
! t̂0,

assuming that t̂ simulates ŝ and t̂0 is a pre�x of the simulation proposition. The
transition preserves simulation, but in an expanded environment:

Lemma 4.14 (Transition Simulation)

1. �;B ~. t̂
s
! t̂0 for B 2 domV� and t̂0 � P0, and

2. t̂ � ŝ (P0; �)

implies

1. �;V�0(B) . ŝ
s
! ŝ0 for some ŝ0; �0 such that � � �0, and

2. t̂0 � ŝ0 (P0; �
0)

Proof:

let t̂ = hP ; �̂; Qi; t̂0 = hP 0; �̂0; Q0i
ŝ = hP ; �̂; qi V�(�̂) = �̂ Def. 4:5
� `� P sp dom� � XReg [ PReg Def. 4:5
dom� � BV(Q) BV(Q) \ (XReg [ PReg) = ; Def. 4:5

Case: P = reg r̂ : � ;P 0; �̂0 = �̂; Q0 = Q

let �0 = �; ŝ0 = hP 0; �̂; qi

�;V�(B) . ŝ
s
! ŝ0 App. s1

�; r̂ : � `� P
0
sp Inv.

P0 = Q(P ) �� P if q 6= 0 Def. 4:5
P0 = Q0(P 0) Def. 4:4
P 0 = P Lemma 4.63
t̂0 � ŝ0 (P0; �

0) Def. 4:5

Cases � ~.A2;B
pa

9 are similar to previous case
Case: P = require A2 ) P1;P

0; �̂0 = �̂; Q0 = Q((�2 [ �̂)(�1(P1)) ^ �)
let �0 = �; ŝ0 = hP 0; �̂; qi

�~.A2;B
pa

! �1; �2 Inv. s�3
� .A2;V�(B)

pa

! �1;V�(�2) Lemma 4.10
dom(V�(�2)) = XReg Lemma 4.8
�2 ` A

2
pat �;�2 `� P1 prop Inv.

FV(�1(P1)) � (FV(P1)r dom �1) [ FV(�1) Lemma 4.53
� (FV(P1)r dom�2) [ UReg Lemma 4.7
� ((dom� [ dom�2)r dom�2) [UReg Lemma 4.66
� (dom�r dom�2) [ UReg
� ((XReg [ PReg)r dom�2) [ UReg � XReg [ PReg
� `� P

0
sp Inv.

P0 = Q(P ) �� P if q 6= 0 Def. 4:5
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P0 = Q0(P 0) Def. 4:4
(Q((�2 [ �̂)(�1(P1)) ^ �))(P

0) = Q((�2 [ �̂)(�1(P1)) ^ P
0) Lemma 4.62

�� (�2 [ �̂)(�1(P1)) ^ P
0 if q 6= 0 Lemma 4.63

��0 P
0 if q 6= 0 Def. ��

t̂0 � ŝ0 (P0; �
0) Def. 4:5

�� (�2 [ �̂)(�1(P1)) if q 6= 0 Def. ��
��[V�(�2[�̂) �1(P1) if q 6= 0 Lemma 4.60
�V�(�2[�̂) �1(P1) if q 6= 0 Lemma 4.49
�V�(�2)[V�(�̂) �1(P1) if q 6= 0 Lemma 4.58

�;V�(B) . ŝ
s
! ŝ0 App. s2

Case: P = admit A2 ) P1;P
0; �̂0 = �̂; Q0 = Q((�2 [ �̂)(�1(P1)) � �)

let �0 = �

� .A2;V�(B)
pa

! �1;V�(�2) See prev. case

let q0 =

(
q if �V�(�2)[V�(�̂) �1(P1)

0 otherwise

let ŝ0 = hP 0; �̂; q0i

�;V�(B) . ŝ
s
! ŝ0 App. s2

dom(V�(�2)) = XReg Lemma 4.8
FV(�1(P1)) � XReg [ PReg See prev. case
� `� P

0
sp Inv.

�� (�2 [ �̂)(�1(P1)) � P 0 if q 6= 0 See prev. case
�� P

0 if �� (�2 [ �̂)(�1(P1)) and q 6= 0 Def. ��
�� P

0 if �V�(�2)[V�(�̂) �1(P1) and q 6= 0 See prev. case
��0 P

0 if q0 6= 0
t̂0 � ŝ0 (P0; �

0) Def. 4:5
Case: P = eval A2 ) r̂ := E;P 0; �̂0 = �̂[r̂ 7! (�2 [ �̂)(�1(E))]; Q

0 = Q

let �0 = �

� .A2;V�(B)
pa

! �1;V�(�2) See prev. case
dom(V�(�2)) = XReg Lemma 4.8
FV(�1(E)) � XReg [ PReg See prev. case
V�(�̂

0) = V�(�̂)[r̂ 7! V�((�2 [ �̂)(�1(E)))] Lemma 4.57
= V�(�̂)[r̂ 7! VV�(�2)[V�(�̂)(�1(E))] See prev. case
let �̂0 = �̂[r̂ 7! VV�(�2)[�̂(�1(E))]; ŝ

0 = hP 0; �̂0; qi

�;V�(B) . ŝ
s
! ŝ0 App. s2

� `� P
0
sp Inv.

P0 = Q0(P 0) �� P
0 if q 6= 0 See �rst case

t̂0 � ŝ0 (P0; �
0) Def. 4:5

Case: P = new A2 ) r̂ : � ;P 0; y =2 BV(Q) [ XReg [ PReg ;
�̂0 = �̂[r̂ 7! y]; Q0 = Q(8y : �:�)

let v = New�(V�(B); ŝ); �
0 = �[y 7! v]

� .A2;V�(B)
pa

! �1;V�(�2) See prev. case
FV(�̂) � dom� y =2 dom� y =2 FV(�̂) Lemma 4.54
FV(�̂0) � FV(�̂) [ fyg � dom� [ fyg � dom�0 Lemma 4.51
�̂0 2 domV�0 Lemma 4.54
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V�0(�̂
0) = V�0(�̂)[r̂ 7! V�0(y)] Lemma 4.57

= V�0(�̂)[r̂ 7! v] Def. V�
= V�(�̂)[r̂ 7! v] Lemma 4.45, 4.55
let �̂0 = �̂[r̂ 7! v]; ŝ0 = hP 0; �̂0; qi
� � �0 Def. �1 � �2

V�0(B) = V�(B) Lemma 4.4

�;V�0(B) . ŝ
s
! ŝ0 App. s2

� `� P
0
sp Inv.

P0 = Q(P ) �� P if q 6= 0 Def. 4:5
P0 = Q0(P 0) Def. 4:4
(Q(8y : �:�))(P 0) = Q((8y : �:�)(P 0)) Lemma 4.62
= Q(8y : �:P 0) Def. Q(P )
�� 8y : �:P

0 if q 6= 0 Lemma 4.63
(��[y 7!v1] P

0 for all v1 2 U� ) if q 6= 0 Def. ��
v 2 U� Def. New
��0 P

0 if q 6= 0
dom�0 � BV(Q) [ fyg � BV(Q0) Def. BV(Q)
t̂0 � ŝ0 (P0; �

0) Def. 4:5
2

Lemma 4.15 is Lemma 4.14 extended to large transitions:

Lemma 4.15 (Large-Transition Simulation)

1. �;B ~. t̂0
s�
! t̂0 for B 2 domV�0 and t̂0 � P , and

2. t̂0 � ŝ0 (P; �0)

implies

1. �;V�0(B) . ŝ0
s�
! ŝ0 for some ŝ0; �0 such that �0 � �0, and

2. t̂0 � ŝ0 (P; �0)

Proof:

By induction on the derivation of �;B ~. t̂0
s�
! t̂0

let t̂0 = hP0; �̂0; Q0i; t̂
0 = hP 0; �̂0; Q0i

Case: P 0 = P0; t̂
0 = t̂0

let ŝ0 = ŝ0; �
0 = �0

�;V�0(B) . ŝ0
s�
! ŝ0 App. s�1

Case: P 0 6= P0
�;B ~. t̂0

s�
! t̂ �;B ~. t̂

s
! t̂0 Inv. s��2

t̂ � P Lemma 4.13
�;V�(B) . ŝ0

s�
! ŝ �0 � � t̂ � ŝ (P; �) I.H.

�;V�0(B) . ŝ
s
! ŝ0 � � �0 t̂0 � ŝ0 (P; �0) Lemma 4.14

V�0(B) = V�(B) Lemma 4.4

�;V�0(B) . ŝ0
s�
! ŝ0 App. s�2

�0 � �0 Def. �1 � �2

2
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4.5 Extended Steps

De�nition 4.6 is similar to De�nition 4.4:

De�nition 4.6 (Pre�x State) ht; �̂; Qi � P i� P = Q(P 0) for some P 0

De�nition 4.7 is similar to De�nition 4.5, except valuation must hold for
component states.

De�nition 4.7 (State Simulation) ht; �̂; Qi � hV�(t);V�(�̂); qi (P; �)
i�

1. P = Q(P 0) for some P 0 such that q 6= 0 implies �� P
0, and

2. dom� � BV(Q) such that BV(Q) \ (XReg [ PReg) = ;

Lemma 4.16 is Lemma 4.2 for extended states:

Lemma 4.16 (State-Substitution Valuation) V�(��t) = ��s if �t � �s (P; �)

Proof:

let �t = ht; �̂; Qi
�s = hV�(t);V�(�̂); qi Def. 4:7
V�(��t) = V�(�t [ �̂) Def. ��t
= V�(�t) [ V�(�̂) Lemma 4.58
= �V�(t) [ V�(�̂) Lemma 4.2
= ��s Def. ��s

2

A security-property state and an extended state with the same proposition
context are pre�xes of the same propositions:

Lemma 4.17 (Pre�x State) ht; �̂; Qi � P i� hP ; �̂; Qi � P

Proof:

Consequence of De�nition 4.4 and De�nition 4.6
2

Simulation of security-property states implies simulation of extended states,
and vice-versa:

Lemma 4.18 (State Simulation)

1. ht; �̂; Qi � hV�(t); �̂; qi (P; �) if hP ; �̂; Qi � hP ; �̂; qi (P; �) and t 2 domV�

2. hP ; �̂; Qi � hP ; �̂; qi (P; �) if ht; �̂; Qi � hs; �̂; qi (P; �) and ` P sp

Proof:

Consequence of De�nition 4.5 and De�nition 4.7
2

Given an extended step �t! �t0, �t is a pre�x of some proposition if �t0 is:
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Lemma 4.19 (Continuity) �t � P if 	;P ; � ~. �t! �t0 and �t0 � P

Proof:

Consequence of Lemma 4.13 and Lemma 4.17
2

Given a symbolic step �t! �t0 and a concrete step s! s0, there is a concrete
step �s ! �s0, provided that �t simulates �s, �s erases to s, and �t0 is a pre�x of
the simulation proposition. Furthermore, �t0 will simulate �s0 in an expanded
environment, and �s0 will erase to s0:

Lemma 4.20 (Transition Simulation)

1. 	;P ; � ~. �t! �t0 for �t0 � P and ` P sp,

2. �t � �s (P; �), and

3. 	;� .b�sc ! s0

implies

1. 	;P ; � . �s! �s0 for some �s0 such that b�s0c = s0, and

2. �t0 � �s0 (P; �0) for some �0 such that � � �0

Proof:

let �t = ht; �̂; Qi; �t0 = ht0; �̂0; Q0i; �s = hs; �̂; qi

	;�~. t! t0 �; t! t0 ~.hP ; �̂; Qi
s�
! h�; �̂0; Q0i Inv. ea�2

V�(t) = s V�(�̂) = �̂ Def. 4:7
	;� .V�(t)! s0 Def. b�sc
s0 = V�(t

0) Lemma 4.6
h�; �̂0; Q0i � P Lemma 4.17
hP ; �̂; Qi � hP ;V�(�̂); qi (P; �) Lemma 4.18
V�(t)! V�(t

0) = V�(t! t0) Def. 4:3

�;V�0(t! t0) .hP ;V�(�̂); qi
s�
! ŝ0 � � �0 Lemma 4.15

h�; �̂0; Q0i � ŝ0 (P; �0) Lemma 4.15
ŝ0 = h�; �̂0; q0i V�0(�̂

0) = �̂0 Def. 4:5
let �s0 = hs0; �̂0; q0i
V�0(t! t0) = V�(t! t0) V�0(t

0) = V�(t
0) Lemma 4.4

	;P ; � . �s! �s0 App. ea2

�t0 � �s0 (P; �0) Lemma 4.18
b�s0c = V�0(t

0) Def. b�sc
2

4.6 Extended Executions

�1 � � holds when �1 is an initial fragment �:

De�nition 4.8 (Pre�x Execution) �1 � � i� �1 �2 = � for some �2
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�s is an intermediate state of � if there is some �� that erases to a pre�x of �;
furthermore, �s must be the last state of �� if �� is shorter than �:

De�nition 4.9 (Intermediate State) Int	;P;�(�; �s)
i� 	;P ; � .. �� for some �� such that b��c � �

and b��c 6= � implies �� = ��0 �s for some ��0

The head state of a symbolic execution is the �rst state appearing in the
execution; similarly, the tail state is the last state:

De�nition 4.10 (Execution Head/Tail)

1. Head(��) = �t if �� =<��t ��0 or �� =�� �t ��0

2. Tail(��) = �t if �� = ��0 �t or �� = ��0 �t�> or �� = ��0 �t �� hpl1; : : : ; p
l

ki

The erasure of a concatenation is the concatenation of the erasures:

Lemma 4.21 (Concatenation Erasure) b��1 ��2c = b��1c b��2c

Proof:

By induction on the length of ��2
2

We can always �nd an extended execution for an unextended execution, once
q goes to zero:

Lemma 4.22 (Liberation) 	;P ; � .. ��0 for some ��0 such that b��0c = b��c s �
if 	;P ; � .. �� hs; �̂; 0i and 	;� ..b��c s �

Proof:

By induction on the length of �
2

The head of an execution is a pre�x if its tail is:

Lemma 4.23 (Continuity) Head(��) � P if 	;P ; � e.. �� and Tail(��) � P

Proof:

By induction on the derivation of 	;P ; � e.. ��
Case: �� =<��t �� hpl1; : : : ; p

l

ki
trivial

Case: �� =�� �t
trivial

Case: �� = ��1 �t! �t0

Tail(��) = �t0 Def. 4:10
	;P ; � e.. ��1 �t 	;P ; � ~. �t! �t0 Inv. ee�3
�t � P Lemma 4.19
Tail(��1 �t) � P Def. 4:10
Head(��1 �t) � P I.H.
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Head(��) � P Def. 4:10
Case: �� = ��1 �t�>
Tail(��) = �t Def. 4:10
	;P ; � e.. ��1 �t Inv. ee�3
Tail(��1 �t) � P Def. 4:10
Head(��1 �t) � P I.H.
Head(��) � P Def. 4:10

Case: �� = ��1 �t �� hp
l

1; : : : ; p
l

ki; ��1 6=<�
similar to previous case

2

Given a symbolic execution �� and concrete executions �� �s and b�� �sc�, sim-
ulation is preserved for an intermediate state provided that the head of �� sim-
ulates �s and the tail of �� is a pre�x of the simulation proposition. The tail of ��
will simulate the intermediate state in an expanded environment:

Lemma 4.24 (Execution Simulation)

1. 	;P ; � e.. �� such that Tail(��) � P and ` P sp,

2. Head(��) � �s (P; �), and

3. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies Tail(��) � �s0 (P; �0) for some �0 such that � � �0

Proof:

By induction on the derivation of 	;P ; � e.. ��
Case: �� =<��t �� hpl1; : : : ; p

l

ki
Head(��) = �t = Tail(��) Def. 4:10
let �s0 = �s; �0 = �

Int	;P;�(b�� �sc�; �s
0) Def. 4:9

Case: �� =�� �t
similar to previous case

Case: �� = ��1 �t1 ! �t0

Tail(��) = �t0 Def. 4:10
	;P ; � e.. ��1 �t1 	;P ; � ~. �t1 ! �t0 Inv. ee�3
�t1 � P Lemma 4.19
Tail(��1 �t1) � P Def. 4:10
Head(��1 �t1) � �s (P; �) Def. 4:10
Int	;P;�(b�� �sc�; �s1) I.H.
	;P ; � .. ��1 b��1c � b�� �sc� Def. 4:9
case: b��1c = b�� �sc�
let �s0 be such that b�s0c =2 b�� �sc�
Int	;P;�(b�� �sc�; �s

0) Def. 4:9
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case: b��1c 6= b�� �sc�
��1 = ��2 �s1 Def. 4:9
b�� �sc� = b��1c�1 Def. 4:8
Tail(��1 �t1) � �s1 (P; �1) � � �1 I.H.
�t1 � �s1 (P; �1) Def. 4:10
case: �1 = �
similar to case b��1c = b�� �sc�

case: �1 =! s0 �0

	;� .b�s1c ! s0 Inv. me2

	;P ; � . �s1 ! �s0 b�s0c = s0 �t0 � �s0 (P; �0) �1 � �0 Lemma 4.20
	;P ; � .. ��1 ! �s0 App. ee2

b��1c ! s0 � b�� �sc� Def. 4:8
Int	;P;�(b�� �sc�; �s

0) Def. 4:9
� � �0 Def. �1 � �2

case: �1 = �>
(hypothetically)
	;� .b�s1c�> Inv. me3

� .b�s1c
m
! s0 Inv. ma4

let ht1; �̂1; Q1i = �t1; hi1; �1i = t1; ht
0; �̂0; Q0i = �t0; hi0; �0i = t0

	;�~. t1 ! t0 Inv. ea�2
�~. t1

m
! t0 i0 2 Jump�(i1) Inv. ma

�
2

i0 2 Dom(�) Lemma 4.1
i0 =2 Stop(	) Def. Stop(	)
V�1(t1) = b�s1c Def. 4:7
s0 = V�1(t

0) Lemma 4.5
i0 2 Stop(	) Inv. ma4

contradiction
Case: �� = ��1 �t1�>
Tail(��) = �t1 Def. 4:10
	;P ; � e.. ��1 �t1 	;P ; � ~. �t1�> Inv. ee�3
Tail(��1 �t1) � P Def. 4:10
Head(��1 �t1) � �s (P; �) Def. 4:10
Int	;P;�(b�� �sc�; �s

0) I.H.
b�s0c 2 b�� �sc� implies Tail(��1 �t1) � �s0 (P; �0) and � � �0 I.H.
b�s0c 2 b�� �sc� implies Tail(��) � �s0 (P; �0) and � � �0 Def. 4:10

Case: �� = ��1 �t1 �� hp
l

1; : : : ; p
l

ki; ��1 6=<�
similar to previous case

2

4.7 VC Generator

A junction is required between VCs P1 and P2 when we transition from P1 to
P2 during abstraction-speci�cation evaluation. If the PreVC is not open, then
it must match P1 and P2 must be valid; otherwise, there is no transition and
P1 must be P2:
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De�nition 4.11 (VC Junction)

1. Junct(P; P1; P2) i� P1 = P and � P2

2. Junct(open; P1; P2) i� P1 = P2

A speci�cation is satis�ed with respect to state �s0 if we can show that all its
assumptions are valid in �s0. Additionally, �s0 must agree with a reference state �s
for all unabstracted registers. The reference state is useful because sometimes we
can only show simulation up to �s, but must proceed from �s0 (e.g., Lemma 4.28):

De�nition 4.12 (Satis�ed Speci�cation)

1. SatP(hhi; �i; �̂; qi; hhi; �
0i; �̂0; q0i; pa)

i� q0 � q and ��hhi;�0i;�̂0;q0i P
0

and �hhi;�0i;�̂0;q0i(x) = �hhi;�i;�̂;qi(x) for all x 2 X
0

where pa = allhP; P 0i and X 0 = ;
or pa = somehX;P; P 0i and X 0 = (Reg [ dom�P)rX

2. SatP;�(hhi; �i; �̂; qi; �s
0; torhi0; pai)

i� �; hi; �i ! hi0; �i .hP ; �̂; qi
s�
! h�; �̂0; q0i and q0 6= 0

implies SatP(hhi
0; �i; �̂0; q0i; �s00; pa) for all �̂0, q0

where �s00 =

(
hhi0; �i; �̂0; q0i if �s0 = hhi; �i; �̂; qi

�s0 otherwise

SatP;�(�s; �s
0; pt) i� SatP(�s; �s

0;ASp(pt)) if pt 6= tor : : :

3. SatP;�(hhi; �i; �̂; qi; �s
0; hi0; pti) i� SatP;�(hhi

0; �i; �̂; qi; �s0; pt)

4. SatP;�(�s; hp
t; pc1; : : : ; p

c

ki) i� SatP;�(�s; �s; p
t)

A speci�cation is available with respect to a state if we can transition to the
target address:

De�nition 4.13 (Available Speci�cation)

1. Avail	;�(s; idhp
ai) always

Avail	;�(hi; �i; tolhp
a; i0i)

i� 	;� ..� hi; �i�0 and �0 6= � implies ! hi0; �i � �0 for all �; �0

Avail	;�(s; toshi
0i)

i� 	;� ..� s �0 and �0 6= � implies ! hi0; �0i � �0 for some �0 for all �; �0

Avail	;�(hi; �i; torhi
0; pai)

i� 	;� ..� hi; �i�0 and �0 6= � implies ! hi0; �i � �0 for all �; �0

2. Avail	;�(s; hi; p
ti) i� Avail	;�(s; p

t)

3. Avail	;�(s; hp
t; pc1; : : : ; p

c

ki) i� Avail	;�(s; p
t)

A trace context C is enabled with respect to a trace schedule S if for every
state �s that validates a proposition of C, we can �nd an intermediate state that
is simulated by the head state of some ��0 in S; furthermore, the trace context
for ��0 must also be enabled with respect to S:
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De�nition 4.14 (Enabled Context) Enab	;P;�(C;S; �)
i� CFV(C) � dom� and for all �s; ��; � such that

1. ��[��s C(i) where hhi; �i; �̂; qi = �s, and

2. 	;P ; � .. �� �s and 	;� ..b�� �sc�

it follows that

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies

(a) Head(��0) � �s0 (P 0; �0) for P 0 = VC	;P;�(hC
0; ��0i) and some �0

and some hC0; ��0i 2 S such that 	;P ; � e.. ��0, and
(b) either C0 = C and �0(x) = �(x) for all x 2 CFV(C)

or Enab	;P;�(C
0;S 0; �0) for some S 0 � S

where CFV(C) =
�S

i2dom C
FV(C(i))

�
r (XReg [ dom�P)

The pre�x property is preserved by speci�cation evaluation; the head and
tail states of an execution are pre�xes of its VC:

Lemma 4.25 (Continuity)

1. �t � P if �t0 � P 0 such that Junct(PreVCP(�t; p
a); P; P 0)

where hC0; �t0i = EvalP(hC; �ti; p
a)

2. �t � P if OutP;�(�t; p
t) � P

3. �t � P if �t0 � P 0 such that Junct(PreVCP;�(�t; p
t); P; P 0)

where hC0; �t0i = EvalP;�(hC; �ti; p
t)

4. �t � P if �t0 � P 0 such that Junct(PreVCP;�(�t; p
c); P; P 0)

where hC0; �t0i = EvalP;�(hC; �ti; p
c)

5. Tail(��) � VC	;P;�(hC; ��i)

6. Head(��) � VC	;P;�(hC; ��i)

Proof:

Item 1 by cases using De�nition 4.11 and def. PreVC/Eval
Item 2 by Lemma 4.13 and by def. Out
Item 3 by cases using items 1 and 2, Lemma 4.13, and def. PreVC/Eval
Item 4 by item 3 and by def. PreVC/Eval
Item 5 by cases using Lemma 4.13 and def. Conj
Item 6 by item 5 and by Lemma 4.23

2

The enabled status of a trace context is preserved by expansion:

Lemma 4.26 (Enabled Context)
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1. Enab	;P;�(C;S; �) and �0(x) = �(x) for all x 2 CFV(C)
implies Enab	;P;�(C;S; �

0)

2. Enab	;P;�(C;S; �) and � � �0 implies Enab	;P;�(C;S; �
0)

3. Enab	;P;�(C;S; �) and S � S
0 implies Enab	;P;�(C;S

0; �)

Proof:

Item 1 by De�nition 4.14 and Lemma 4.49
Item 2 by De�nition 4.14 and item 1
Item 3 by De�nition 4.14

2

The �xed point of a trace schedule contains itself; �xed points are closed
under reachable executions; �xed points are idempotent:

Lemma 4.27 (Fixed-Point Closure)

1. S1 [ S2 � Fix	;P;�(S1;S2),

2. hC; ��i 2 S2 r S1 implies Next	;P;�(hC; ��i) � Fix	;P;�(S1;S2), and

3. Fix	;P;�(S1;Fix	;P;�(S1;S2)) � Fix	;P;�(S1;S2)

if Fix	;P;�(S1;S2) is �nite

Proof:

Item 1 by induction on the size of Fix	;P;�(S1;S2)r S1
Item 2 by item 1
Item 3 by induction on the size of Fix	;P;�(S1;S2)r S1 using item 2

2

The following lemmas through Lemma 4.33 show that simulation is preserved
by speci�cation evaluation:

Lemma 4.28 (Abstraction-Speci�cation Evaluation)

1. �t0 � P 0 such that Junct(PreVCP(�t; p
a); P; P 0) and ` P sp

where hC0; �t0i = EvalP(hC; �ti; p
a), and

2. �t � �s (P; �) such that SatP(�s; �s
0; pa)

implies �t0 � �s0 (P 0; �0) for some �0 such that C0 6= ; implies C0 = C and � � �0

Proof:

(sketch)
Case: pa = allhP1; P

0
1i

� (AbsP(��; �̂P))(�hhi;��i;�̂P ;�i(P
0
1) � P 02) where P

0
2 is the suÆx of P 0

by De�nition 4.11 and def. PreVC/Eval
���s0 P

0
1 by De�nition 4.12

let dom�0 = FV(��) [ FV(�̂P )
let �0(��(r)) = �0(r) for all r 2 Reg and �0(�̂P(r̂)) = �̂0(r̂) for all r̂ 2 dom�P
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V�0(��) = �0 and V�0(�̂P ) = �̂0 by def. V
��0 �hhi;��i;�̂P ;�i(P

0
1) � P 02 by def. �

��0 P
0
2 by def. �

�t0 � �s0 (P 0; �0) by De�nition 4.7
Case: pa = somehX;P1; P

0
1i

�� (AbsP(�1; �2))(�ht0;�̂0;Q0i(P
0
1) � P 02) if q 6= 0 where P 02 is the suÆx of P 0

by De�nition 4.11, De�nition 4.7, and def. PreVC/Eval/Gen
q0 � q, ���s0 P

0
1, and ��s0 (x) = ��s(x) for all x 2 (Reg [ dom�P)rX

by De�nition 4.12
let �0 = �[y1 7! �0(r1); : : : ; yk 7! �0(rk); y

0
1 7! �̂0(r̂1); : : : ; y

0
k0 7! �̂0(r̂k0 )]

where fr1; : : : ; rkg = dom �1, fr̂1; : : : ; r̂k0g = dom �2

and y1 = �1(r1); : : : ; yk = �1(rk); y
0
1 = �2(r̂1); : : : ; y

0
k0 = �2(r̂k0 )

V�0(�
0) = �0 and V�0(�̂

0) = �̂0 by def. V
��0 �ht0;�̂0;Q0i(P

0
1) � P 02 if q 6= 0 by def. �

��0 P
0
2 if q 6= 0 by def. �

�t0 � �s0 (P 0; �0) by De�nition 4.7
2

Lemma 4.29 (Incoming-Transition Evaluation)

1. �t0 � P such that ` P sp where �t0 = InP;�(�t; p
t),

2. �t � �s0 (P; �) such that SatP;�(�s0; �s; p
t) and Avail	;�(s; p

t)
and pt = tor : : : implies �s = �s0 where hs; �̂; qi = �s, and

3. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0 such that pt 6= tor : : : implies �s0 = �s, and

2. b�s0c 2 b�� �sc� implies

(a) �t0 � �s1 (P; �
0) for some �s1 such that �s0 = �s implies �s1 = �s0

and some �0 such that � � �0, and

(b) SatP(�s1; �s
0;ASp(pt)) where �s1 is a function of �s0, p

t, P, and �

Proof:

(sketch)
Case: pt = tor : : :
�t0 � �s0 (P; �0) by def. In and Lemma 4.15
q0 6= 0 implies SatP(�s

0; �s0;ASp(pt)) by De�nition 4.12
	;P ; � .. �� �s! �s0 by applying ea2 and ee2 using De�nition 4.13
apply Lemma 4.22 if q0 = 0
otherwise, Int	;P;�(b�� �sc�; �s

0) by De�nition 4.9
Other cases by De�nition 4.9, De�nition 4.12, and def. In
(letting �s1 = �s0; �s

0 = �s; �0 = �)
2
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Lemma 4.30 (Outgoing-Transition Evaluation)

1. �t0 � P such that ` P sp where �t0 = OutP;�(�t; p
t),

2. �t � �s (P; �) such that pt 6= tor : : : implies Avail	;�(s; p
t)

where hs; �̂; qi = �s, and

3. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies �t0 � �s0 (P; �0) for some �0 such that � � �0

Proof:

(sketch)
Case: pt = tol : : :
�t0 � �s0 (P; �0) by def. Out and Lemma 4.15
	;P ; � .. �� �s! �s0 if � 6= � by applying ea2 and ee2 using De�nition 4.13
Int	;P;�(b�� �sc�; �s

0) by De�nition 4.9
Case: pt = tos : : :

let �1 be � with new vars mapped to values from �0 such that V�1(�
0) = �0

hP ; �̂; Q(Abs�Reg (�))i � hP ;V�1(�̂); qi (P; �1) by def. Out, �, and Abs
�t0 � �s0 (P; �0) by Lemma 4.15
	;P ; � .. �� �s! �s0 if � 6= � by applying ea2 and ee2 using De�nition 4.13
Int	;P;�(b�� �sc�; �s

0) by De�nition 4.9
Other cases by De�nition 4.9, and def. Out (letting �s0 = �s)

2

Lemma 4.31 (Transition-Speci�cation Evaluation)

1. �t0 � P 0 such that Junct(PreVCP;�(�t; p
t); P; P 0) and ` P sp

where hC0; �t0i = EvalP;�(hC; �ti; p
t),

2. �t � �s0 (P; �) such that SatP;�(�s0; �s; p
t) and Avail	;�(s; p

t)
and pt = tor : : : implies �s = �s0 where hs; �̂; qi = �s, and

3. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies �t0 � �s0 (P 0; �0) for some �0

such that C0 6= ; implies C0 = C and � � �0

Proof:

By Lemma 4.29, Lemma 4.28, and Lemma 4.30 using def. PreVC/Eval
2
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Lemma 4.32 (Context-Speci�cation Evaluation)

1. �t0 � P 0 such that Junct(PreVCP;�(�t; p
c); P; P 0) and ` P sp

where hC0; �t0i = EvalP;�(hC; �ti; p
c),

2. �t � �s0 (P; �) such that SatP;�(�s0; �s; p
c) and Avail	;�(s; p

c)
and pt 6= tor : : : where pc = hi0; pti and hs; �̂; qi = �s, and

3. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies �t0 � �s0 (P 0; �0) for some �0

such that C0 6= ; implies C0 = C and � � �0

Proof:

By Lemma 4.31 using De�nition 4.12 and def. PreVC/Eval
2

Lemma 4.33 (Link-Speci�cation Evaluation)

1. 	;P ; � e.. <��t �� hpl0; : : : ; plki or 	;P ; � ~. �t �� hpl0; : : : ; p
l

ki
for pl 2 fpl0; : : : ; p

l

kg and hhC
0
0;
�t00i; : : : ; hC

0
k0 ;

�t0k0ii = EvalP;�(hC; �ti; p
l)

and ` P sp,

2. CFV(C) � dom� and for all j 2 f0; : : : ; k0g,

(a) �t0j � P 0j such that Junct((PreVCP;�(�t; p
l))j ; Pj ; P

0
j), and

(b) �t � �s (Pj ; �)

3. SatP;�(�s; p
l) and Avail	;�(s; p

l) where hs; �̂; qi = �s, and

4. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies

(a) �t00 � �s0 (P 00; �
0) for some �0 such that CFV(C00) � dom�0, and

(b) either Enab(i00) for all i00 2 dom C00
or C � C00 and � � �0 and Enab(i00) for all i00 2 domC00 r domC

where Enab(i00) i� for all �s00; ��00; �00 such that

1. ��0[��s00 C
0
0(i

00) where �s00 = hhi00; �00i; �̂00; q00i, and

2. 	;P ; � .. ��00 �s00 and 	;� ..b��00 �s00c�00
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it follows that

1. Int	;P;�(b��
00 �s00c�00; �s000) for some �s000, and

2. b�s000c 2 b��00 �s00c�00 implies

(a) �t0j � �s000 (P 0j ; �
000) for some j 2 f0; : : : ; k0g and some �000, and

(b) j = 0 implies �000(x) = �0(x) for all x 2 CFV(C00)
j 6= 0 and C0j 6= ; implies C0j = C and � � �000

Proof:

(sketch)
	;P ; � .. ��1 such that b��1c � b�� �sc�
by Lemma 4.29, De�nition 4.9, and def. PreVC/Eval/Eval0

Case: b��1c 6= b�� �sc�; ��1 = ��2 �s2
�t10 � �s1 (P0; �1) by Lemma 4.29 (where �t10 = InP;�(�t; p

t))
�t20 � �s2 (P

0
0; �2) by Lemma 4.28 (where hC20 ; �t

2
0i = EvalP(hC; �t

1
0i;ASp(p

t)))
Int	;P;�(b��2 �s2c�1; �s

0) by Lemma 4.30
case: b�s0c 2 b��2 �s2c�1; q2 6= 0
�t00 � �s0 (P 00; �

0) by Lemma 4.30
let hi1; p

t

1i; : : : ; hik0 ; p
t

k0i = pc1; : : : ; p
c

k0

for each j 2 f1; :::; k0g and all �s00; ��00; �00

such that ��0[��s00 C
0
0(ij), 	;P ; � .. ��00 �s00, and 	;� ..b��00 �s00c�00

SatP;�(�s2; �s
00; pcj) and ptj 6= tor : : : by def. Eval/Eval0 and Lemma 4.34

Avail	;�(s
00; pcj) by Lemma 4.35

case: pcj = hi; p
ti; k = 1

Int	;P;�(b��
00 �s00c�00; �s000) by def. In/Eval and Lemma 4.32

case: b�s000c 2 b��00 �s00c�00

�t00 � �s000 (P 0j ; �
000) by Lemma 4.32

�000(x) = �0(x) for all x 2 CFV(C00) by def. Eval/Need/In/Gen
case: pcj 6= hi; p

ti or k 6= 1
Int	;P;�(b��

00 �s00c�00; �s000) by def. Eval, Lemma 4.29, and Lemma 4.32
case: b�s000c 2 b��00 �s00c�00

�t0j � �s000 (P 0j ; �
000) by Lemma 4.32

Enab(ij) for each j 2 f1; :::; k0g
case: q2 = 0
apply Lemma 4.22 (choosing �s0 such that b�s0c =2 b�� �sc�)

2

Only the following four lemmas depend on our speci�c choices for tail-step
speci�cations|all other lemmas hold for all possible speci�cations.

We can satisfy a context speci�cation in a state if we can show that its Need
is valid in the state:

Lemma 4.34 (Satis�ed Context Speci�cation)

1. 	;P ; � e.. <�ht; �̂; Qi �� hpl1; : : : ; plki or 	;�~. t �� hpl1; : : : ; p
l

ki
for hpt; pc1; : : : ; p

c

k0i 2 fp
l

1; : : : ; p
l

kg and hi
0; pti 2 fpc1; : : : ; p

c

k0g, and
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2. ��[�hhi0;�0i;�̂0;q0i NeedP;�(
�t; hi0; pti) such that V�(��t) = �hhi;�i;�̂;qi

and dom� \ (XReg [ PReg) = ; and q0 � q

implies SatP;�(hhi; �i; �̂; qi; hhi
0; �0i; �̂0; q0i; hi0; pti) and pt 6= tor : : :

Proof:

(sketch)
pt = idhsomehX;P; P 0ii or pt = tolhsomehX;P; P 0i; i00i by inspection
���s0 P

0 by def. Need/�
for each x 2 (Reg [ dom�P)rX

V�[��s0 (x) = V�[��s0 (��t(x)) by def. �
��s0(x) = �hhi0;�i;�̂;qi(x) by def. V

SatP(hhi
0; �i; �̂; qi; �s0; somehX;P; P 0i) by De�nition 4.12

SatP;�(hhi; �i; �̂; qi; �s
0; hi0; pti) by De�nition 4.12

2

If a context speci�cation is satis�ed with respect to a state hs0; �̂0; q0i, then
it is available with respect to s0:

Lemma 4.35 (Available Context Speci�cation)

1. 	;P ; � e.. <�hhi; �i; �̂; Qi �� hpl1; : : : ; plki or 	;�~.hi; �i �� hpl1; : : : ; p
l

ki
for hpt; pc1; : : : ; p

c

k0i 2 fp
l

1; : : : ; p
l

kg and hi
0; pti 2 fpc1; : : : ; p

c

k0g, and

2. SatP;�(hhi0;V�(�)i; �̂; qi; hhi
0; �0i; �̂0; q0i; hi0; pti)

implies Avail	;�(hi
0; �0i; hi0; pti)

Proof:

(sketch)
Case: pt = idhsomehX;>; P 0ii
trivial

Case: i0 2 Ret�(n); n 2 Proc(�); i _+ 1 2 Jump�(i); ra =2 X; �(ra) = i _+ 1;
pt = tolhsomehX;>; P 0i; i _+ 1i

SatP(hhi
0; �i; �̂; qi; �s0; somehX;>; P 0i) by De�nition 4.12

�hhi0;�i;�̂;qi(ra) = i _+1 by De�nition 4.12 and def. V
for all �0; � such that 	;� ..�0 hi

0; �0i� and � 6= �
� =! s00 �0 or � = �> by inspection
� .hi0; �0i

m
! s000 by inverting me and ma rules

s000 = hi _+ 1; �0i by inspecting m rule
! hi _+ 1; �0i � � by def. Skip, Stop, and by inspecting ma rules

Avail	;�(hi
0; �0i; hi0; pti) by De�nition 4.13

Case: �i = inv P;X; i _+1 2 Jump�(i); p
t = tolhsomehX;P; P i; i _+ 1i; i0 = i

similar to previous case
2

A link speci�cation is satis�ed with respect to any state for which we can
show availability and simulation:

Lemma 4.36 (Satis�ed Link Speci�cation)
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1. 	;P ; � e.. <��t �� hpl1; : : : ; plki or 	;P ; � ~. �t �� hpl1; : : : ; p
l

ki
and ` P sp,

2. hC0; �t0i = (EvalP;�(hC; �ti; p
l))0 for pl 2 fpl1; : : : ; p

l

kg
such that �t0 � P 0 and Junct((PreVCP;�(�t; p

l))0; P; P
0),

3. �t � hs; �̂; qi (P; �) for q 6= 0, and

4. Avail	;�(s; p
l)

implies SatP;�(hs; �̂; qi; p
l)

Proof:

(sketch)
Case: �i = cond cop r; n; n _+ i _+ 1; i _+1 2 Jump�(i);

pl1 : : : p
l

k = htolhsomeh;;>; cop(r)i; n _+ i _+ 1ii
htolhsomeh;;>; (:cop)(r)i; i _+ 1ii

case: pl = htolhsomeh;;>; cop(r)i; n _+ i _+ 1ii
for all �0; � such that 	;� ..�0 s � and � 6= �
! hn _+ i _+ 1;V�(�)i � � by De�nition 4.13 (where �t = hhi; �i; �̂; Qi)
J (cop)(V�(�)(r)) 6= 0 by inspecting me, ma, and m rules

���s cop(r) by def. � (where �s = hs; �̂; qi)
SatP;�(�s; p

l) by De�nition 4.12
case: pl = htolhsomeh;;>; (:cop)(r)i; i _+ 1ii
similar to previous case

Case: �i = call n; pl = htoshi _+ 1ii
SatP;�(�s; p

l) by De�nition 4.12
Case: �i = call n;P ` P1 spec; pl = htorhn; allhP1; P1ii; p

c

1; : : : ; p
c

k0i

for all �̂0, q0 s.t. �; hi;V�(�)i ! hn;V�(�)i .hP ; �̂; qi
s�
! h�; �̂0; q0i and q0 6= 0

P = Q0(�hhn;�i;�̂0;Q0i(P1)) by def. In/PreVC and De�nition 4.11
h�; �̂0; Q0i � h�; �̂0; q0i (P; �0) by Lemma 4.15
��0 �hhn;�i;�̂0;Q0i(P1) by De�nition 4.5
��hhn;V�(�)i;�̂0 ;q0i

P1 by Lemma 4.18 and Lemma 4.16

SatP;�(�s; p
l) by De�nition 4.12

Case: �i = ret is impossible for k > 0
Case: �i = inv P1; X;P ` P1 spec; pl = htolhsomehX;P1; P1i; i _+ 1i; pci
P = Q(��t(P1) ^ P2) by def. PreVC/Eval/In/Gen and De�nition 4.11
�� ��t(P1) by De�nition 4.7 and def. �
���s P1 by Lemma 4.16
SatP;�(�s; p

l) by De�nition 4.12
Case: P ` P1 spec; pl = hidhallhP1; P1ii; p

c

1; : : : ; p
c

k0i
similar to previous case

2

A link speci�cation is available with respect to the value of an associated
symbolic state:

Lemma 4.37 (Available Link Speci�cation)

	;P ; � e.. <�ht; �̂; Qi �� hpl1; : : : ; plki or 	;�~. t �� hpl1; : : : ; p
l

ki
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for k > 0 and ` P sp

implies Avail	;�(V�(t); p
l) for some pl 2 fpl1; : : : ; p

l

kg

Proof:

Similar to proof of Lemma 4.35
2

Simulation is preserved by evaluation for all executions of a given VC:

Lemma 4.38 (Trace Simulation)

1. 	;P ; � e.. �� such that ` P sp,

2. � VC	;P;�(hC1; ��1i) for all hC1; ��1i 2 S1 such that Next	;P;�(hC; ��i) � S1,

3. Head(��) � �s (P; �) for P = VC	;P;�(hC; ��i) and Enab	;P;�(C;S2; �)
and Cov	;P;�(S2;S1), and

4. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies

1. Int	;P;�(b�� �sc�; �s
0) for some �s0, and

2. b�s0c 2 b�� �sc� implies

(a) Head(��0) � �s0 (P 0; �0) for P 0 = VC	;P;�(hC
0; ��0i) and some �0

and some hC0; ��0i 2 S1 such that 	;P ; � e.. ��0, and
(b) Enab	;P;�(C

0;S 02; �
0) for some S 02 such that Cov	;P;�(S

0
2;S1)

where Cov	;P;�(S2;S1)
i� either hC; ��i 2 S1 or Next	;P;�(hC; ��i) � S1 for all hC; ��i 2 S2

Proof:

By induction on the length of �
Well-foundedness comes from each non-start use of the IH being preceded by the
evaluation of a link speci�cation or context speci�cation that makes a transition
(the latter indirectly through an enabled context).

(sketch)
	;P ; � .. ��1 such that b��1c � b�� �sc� by Lemma 4.24 and De�nition 4.9
Case: b��1c 6= b�� �sc�; ��1 = ��2 �s1
Tail(��) � �s1 (P; �1) by Lemma 4.24
case: q1 6= 0; �� = ��1 �t1�>
	;P ; � .. ��2 �s1�> by applying ea2 and ee3 using Lemma 4.15 and def. VC
Int	;P;�(b�� �sc�; �s

0) by De�nition 4.9 (choosing �s0 such that b�s0c =2 b�� �sc�)
case: q1 6= 0; �� = ��1 �t1 �� hp

l

1; : : : ; p
l

ki; i1 2 dom C
	;P ; � .. ��0 such that b��0c � b��2 �s1c�1
by De�nition 4.9 using De�nition 4.14, Lemma 4.26, and def. VC

case: b��0c 6= b��2 �s1c�1; ��
0 = ��01 �s

0

Head(��0) � �s0 (P 0; �0) by De�nition 4.14
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Enab	;P;�(C
0;S 02; �

0) by Lemma 4.26 or De�nition 4.14
apply IH if hC0; ��0i =2 S1

case: q1 6= 0; �� = ��1 �t1 �� hp
l

1; : : : ; p
l

ki; i1 =2 dom C; k > 0
Avail	;�(s1; p

l) for pl 2 fpl1; : : : ; p
l

kg by Lemma 4.37
let hhC00; �t

0
0i; : : : ; hC

0
k0 ;

�t0k0ii = EvalP;�(hC; �t1i; p
l)

for each j 2 f0; : : : ; k0g
let P 0j = VC	;P;�(hC

0
j ;�� �t

0
j ��

0
ji)

let Pj =

(
(PreVCP;�(�t1; p

l))j if (PreVCP;�(�t1; p
l))j 6= open

P 0j otherwise

�t1 � �s1 (Pj ; �1) by De�nition 4.7 and def. VC/Conj/Open/Closed/�
SatP;�(�s1; p

l) by Lemma 4.36
	;P ; � .. ��0 such that b��0c � b��2 �s1c�1 by De�nition 4.9 using Lemma 4.33
let S 02 = S2 [ fhC

0
0;�� �t

0
0 ��

0
0i; : : : ; hC

0
k0 ;�� �t

0
k0 ��

0
k0 ig

case: b��0c 6= b��2 �s1c�1
�t00 � �s0 (P 00; �

0) by Lemma 4.33
for all �s00; ��00; �00 s. t. ��0[��s00 C

0
0(i

00), 	;P ; � .. ��00 �s00, and 	;� ..b��00 �s00c�00

Int	;P;�(b��
00 �s00c�00; �s000)

by def. Enab(i00) or by Lemma 4.26 and De�nition 4.14
Enab	;P;�(C

0;S 02; �
0) by De�nition 4.14

apply IH if (PreVCP;�(�t1; p
l))0 = open

case: q1 = 0
apply Lemma 4.22 (choosing �s0 such that b�s0c =2 b�� �sc�)

2

We can exhibit an execution �� for any execution � for which we have a
symbolic execution of a closed trace schedule that simulates a state erasing to
a state in �:

Lemma 4.39 (Trace Completion)

1. 	;P ; � e.. �� such that ` P sp,

2. � VC	;P;�(hC1; ��1i) for all hC1; ��1i 2 S1 such that Next	;P;�(hC; ��i) � S1
and Fix	;P;�(;;S1) = S1,

3. Head(��) � �s (P; �) for P = VC	;P;�(hC; ��i) and Enab	;P;�(C;S2; �)
and Cov	;P;�(S2;S1), and

4. 	;P ; � .. �� �s and 	;� ..b�� �sc�

implies 	;P ; � .. ��0 for some ��0 such that b��0c = b�� �sc�

Proof:

By induction on the length of � using Lemma 4.38 and Lemma 4.27
Well-foundedness comes from each use of the IH being preceded by an appeal
to Lemma 4.38, which makes at least one transition unless � is empty.

2

We can exhibit an execution �� for any execution �, given a valid VC for the
program of �:
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Lemma 4.40 (Trace Construction) � VC	;P;� and 	;� ..�

implies 	;P ; � .. �� for some �� such that b��c = �

Proof:

(sketch)
	;P ; � e.. <��t �� by def. VC
let dom�0 = FV(��) [ FV(�̂P )
let �0(��(r)) = �(r) for r 2 Reg r frag and �0(�̂P(r̂)) = �̂P(r̂) for r̂ 2 dom�P
V�0(�) = � and V�0(�̂P) = �̂P by def. V
VC	;P;�(hC; �� �t�>i) = (AbsP(�; �̂P ))(P1) by def. VC and rule ea

�
1

��0 P1 by def. �
�t � �s (P; �) by De�nition 4.7 and Lemma 4.15
let S1 = Fix	;P;�(;; fh;; <�hhij ; �ji; �̂j ; Qji ��ji j 1 � j � kg)
	;P ; � .. �� and b��c = � by Lemma 4.39

2

4.8 Technical Properties

The proofs of these lemmas are relatively direct, so they are not reproduced
here.

4.8.1 Environments

Lemma 4.41 (Subsumption) �1 [ �2 = �2 if dom�1 � dom�2

Lemma 4.42 (Limited Commutativity) �1 [ �2 = �2 [ �1
if dom�1 \ dom�2 = ;

Lemma 4.43 (Associativity) (�1 [ �2) [ �3 = �1 [ (�2 [ �3)

Lemma 4.44 (Hiding) (�1 r dom�2) [ �2 = �1 [ �2

Lemma 4.45 (Singleton Concatenation) �[x 7! v] = � [ �;[x 7! v]

Lemma 4.46 (Left Valuation) V�1[�2(E) = V�1(E)
if E 2 domV�1 and FV(E) \ dom�2 = ;

Lemma 4.47 (Left Validity) ��1[�2 P i� ��1 P

if FV(P ) � dom�1 and FV(P ) \ dom�2 = ;

Lemma 4.48 (Right Valuation) V�1[�2(E) = V�2(E) if E 2 domV�2

Lemma 4.49 (Right Validity) ��1[�2 P i� ��2 P

if FV(P ) � dom�2
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4.8.2 Substitutions

Lemma 4.50 (Basic Properties)

1. �1 [ �2 = �2 if dom �1 � dom �2,

2. �1 [ �2 = �2 [ �1 if dom �1 \ dom �2 = ;,

3. (�1 [ �2) [ �3 = �1 [ (�2 [ �3),

4. (�1 r dom �2) [ �2 = �1 [ �2, and

5. �[x 7! E] = � [ �;[x 7! E]

Lemma 4.51 (Extension Free Variables)

FV(�[x 7! E]) � FV(�) [ FV(E)

Lemma 4.52 (Application Free Variables, Expressions)

FV(�(E)) � (FV(E)r dom �) [ FV(�)

Lemma 4.53 (Application Free Variables, Propositions)

FV(�(P )) � (FV(P )r dom �) [ FV(�)

Lemma 4.54 (Valuation Domain) � 2 domV� i� FV(�) � dom�

Lemma 4.55 (Left Valuation) V�1[�2(�) = V�1(�)
if � 2 domV�1 and FV(�) \ dom�2 = ;

Lemma 4.56 (Right Valuation) V�1[�2(�) = V�2(�) if � 2 domV�2

Lemma 4.57 (Extension Valuation) V�(�[x 7! E]) = V�(�)[x 7! V�(E)]
if �[x 7! E] 2 domV�

Lemma 4.58 (Concatenation Valuation) V�(�1 [ �2) = V�(�1) [ V�(�2)
if �1 [ �2 2 domV�

Lemma 4.59 (Application Valuation) V�(�(E)) = V�[V�(�)(E)
if � 2 domV� and E 2 dom(� [ V�(�))

Lemma 4.60 (Application Validity) �� �(P ) i� ��[V�(�) P ,

if � 2 domV� and FV(P ) � dom(� [ V�(�))

4.8.3 Proposition Contexts

Lemma 4.61 (Identity) Q(�) = Q

Lemma 4.62 (Associativity) (Q1(Q2))(P ) = Q1(Q2(P ))

Lemma 4.63 (Operand Inference) P1 = P2 if Q(P1) = Q(P2)

Lemma 4.64 (Application Bound Variables)

BV(Q1(Q2)) = BV(Q1) [ BV(Q2)
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4.8.4 Other

Lemma 4.65 (Expression Free Variables)

FV(E) � dom� if � `� E : �

Lemma 4.66 (Proposition Free Variables)

FV(P ) � dom� if � `� P prop
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A Examples

In this appendix, we exhibit representative Palladium security properties.

A.1 Resource Bounds

A.1.1 Instruction Counting

The following security property is a basis counting instructions:

reg nInstr : nat

eval <� ) nInstr := 0
eval !) nInstr := nInstr+ 1

There is a single property register, nInstr, which counts the number of in-
structions executed. The �rst rule speci�es that nInstr is zero when an agent
starts executing. The second rule speci�es that nInstr is incremented for each
instruction. nInstr is declared as a natural number to avoid machine-word
overow.

The cost of an execution is obtained from nInstr. Thus, the rule

require !) nInstr � n

requires that an agent execute at most n instructions.
This technique extends to other cumulative properties of executions (e.g.,

memory accesses, system calls). Given a valid proof, such a security property
can be enforced by PCC with no run-time overhead.

To con�rm our intuition about the above security property P , we �rst de�ne
the length of an execution as its transition count:

j <�sj = 0
j� ! sj = j�j+ 1
j��> j = j�j

j <��sj = 0
j�� ! �sj = j��j+ 1
j���> j = j��j

It is easy to show that j��j = jb��cj.
Given the usual model for the natural numbers, we can now show that

nInstr contains the length of the execution:

Lemma A.1 (Instruction Count) 	;P ; � .. �� �s implies ��s(nInstr) = j�� �sj

Proof:

By induction on the derivation of 	;P ; � .. �� �s

let hs; �̂; qi = �s
Case: �� =<�
	;P ; � . <��s Inv. ee1

�;<�s .hP ; �̂P ; 1i
s�
! h�; �̂; qi Inv. ea1

�̂ = �̂P [nInstr 7! 0] Inv. s�; s
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��s(nInstr) = (�s [ �̂)(nInstr) = 0 = j <��sj Def. ��s;[; j��j
Case: �� = ��0 �s0 !
	;P ; � .. ��0 �s0 	;P ; � . �s0 ! �s Inv. ee2

��s0(nInstr) = j��0 �s0j I.H.
let hs0; �̂0; q0i = �s0
�; s0 ! s .hP ; �̂0; q0i

s�
! h�; �̂; qi Inv. ea2

�̂ = �̂0[nInstr 7! V�[�̂0(nInstr+ 1)] Inv. s�; s
��s(nInstr) = (�s [ �̂)(nInstr) = V�[�̂0(nInstr+ 1) Def. ��s;[
= �̂0(nInstr) + 1 = ��s0 (nInstr) + 1 = j��0 �s0j+ 1 Def. V ;[; ��s
= j��0 �s0 ! �sj Def. j��j

2

From this lemma, it follows that no execution exceeds the instruction bound:

Theorem A.1 (Instruction Bound) � 2 P(�	;�) implies j�j � n

Proof:

	;P ; � .. �� b��c = � Def. P(�	;�)
Case: �� = ��0 �s0 ! �s
let hs0; �̂0; q0i = �s0; hs; �̂; qi = �s
q = 1 Theorem 2.2
�; s0 ! s .hP ; �̂0; q0i

s�
! h�; �̂; qi Inv. ea2

��[�̂ nInstr � n Inv. s�; s
V�[�̂(nInstr) � V�[�̂(n) Def. �
�̂(nInstr) � n Def. V ;[
��s(nInstr) � n Def. ��s
j��j � n Lemma A.1

Case: �� =<��s
similar to previous case

Case: �� = ��0 �s0 ! �s�>
j��0 �s0 ! �sj � n See prev. case
j��j � n Def. j��j

Case: �� =<��s�>
similar to previous case

2
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A.1.2 Mutex Usage

The following security property tracks which locks are held by an agent:

reg arg : wd
reg locks :mapw

admit <� ) 8n : wd:selw(locks; n) = 0w

eval ! proc acquire) arg := r0
require ! proc acquire) selw(locks; arg) = 0w

eval proc acquire!) locks := updw(locks; arg;1w)

eval ! proc release) arg := r0
require ! proc release) selw(locks; arg) = 1w

eval proc release!) locks := updw(locks; arg;0w)

Locks are identi�ed by machine words (e.g., resource descriptors, pointers to
data structures). A lock is in one of two states: acquired or released. The trusted
procedure acquire acquires the lock in register r0, taking it from the released
state to the acquired state. release is its inverse, taking a lock from acquired
to released. We adopt a strict interface: attempts to acquire an acquired lock
or release a released lock are invalid.

This security property de�nes two property registers: locks maps lock iden-
ti�ers to one or zero, according to whether a lock is acquired or released, re-
spectively. arg saves the argument lock so that it is available in procedure
postconditions.

The �rst and third evaluation rules specify that arg saves r0 for trusted-
procedure calls. The requirement rules formalize the preconditions of the trusted
procedures: a lock to be acquired must be released, but a lock to be released
must be acquired9. The second and fourth evaluation rules formalize the state
changes that result from calls to the trusted procedures.

To require that a program eventually release all locks, use the rule

require �>) 8n : wd:selw(locks; n) = 0w

This rule requires the locks register to be returned to its original state|note
that this requirement may be diÆcult to prove due to aliasing. We might also
want to specify that the agent not abort with unreleased locks.

A.2 Essential Safety

Necula [Nec98] speci�es a generic safety policy for his abstract machine based
on three kinds of constraints: instruction safety, system-call safety, and partial
correctness.

� Instruction safety limits the use of dangerous instructions based on a
machine-state predicate.

9We assume that a type-safety property checks for invalid locks.
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� System-call safety constrains calls to the trusted system.

� Partial correctness speci�es the input/output behavior of the agent.

In this section, we show how this safety policy is encoded in Palladium10.
Instruction safety is de�ned in terms of the relations Safeeop (one for each

eop), Safecop (one for each cop), SafeRd, and SafeWr. An operator relation
holds when it is safe to perform the corresponding operation; the memory re-
lations hold when it is safe to read or write memory. Using these relations, we
encode instruction safety as follows:

require  n1 eop n2!) Safeeop(n1; n2) for each eop

require cond cop n1; !) Safecop(n1) for each cop

require  M [n1]!) SafeRd(mem; n1)
require M [n1] n2!) SafeWr(mem; n1; n2)

There is one rule for each eop and cop.
Each trusted system call i has a precondition Prei, a postcondition Post i,

and a set of callee-save registers CS i. We encode system-call safety as follows:

require ! proc i) Prei for each i 2 Skip(	)

scs i) r for each i 2 Skip(	) and r 2 CS i
new proc i!) r̂ : �r̂ for each i 2 Skip(	) and r̂ =2 CS i
admit proc i!) Post i for each i 2 Skip(	)

where �r̂ is the type of property register r̂.
Similarly, each agent entry point i has a precondition Prei, a postcondition

Post i, and a set of callee-save registers CS i. We encode partial correctness as
follows:

admit <�proc i) Pre i for each i 2 Start(	)

ucs i) r for each i 2 Start(	) and r 2 CS i
require proc i�>) r̂ = Er̂ for each i 2 Start(	) and r̂ 2 CS i
require proc i�>) Post i for each i 2 Start(	)

where Er̂ is the initial value of property register r̂.

A.3 Security Automata

We can encode the simplest kind of security automata [Sch99] directly in Pal-
ladium. Note that Palladium security properties are themselves encodings of
more general security automata (see Section 1.6).

Let a �nite deterministic security automaton11 A be a triple

hQ; q0; Æi

10Note that we do not encode control-ow safety, because it is built into our VC generator;

additionally, we do not enforce a stack discipline.
11In general, security automata can be nondeterministic over a countable set of states.
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where

Q � N n f0g is the �nite set of states
q0 2 Q is the initial state
Æ 2 Q� State ! Q [ f0g is the transition function

The states of an automaton are identi�ed with a �nite subset of the natural
numbers; zero is reserved for the \bad" state. If an execution would cause a
transition to the bad state, then it is aborted at that point.

We assume that Æ can be represented as follows:

s21 ) q1
P1! q01

...

s2k ) qk
Pk! q0k

Rule j speci�es that the automaton changes from state qj to state q0j when
entering a machine state matching pattern s2j , but only if Pj holds. Exactly
one rule must be applicable for any given automaton state/machine state pair.
For example, the following rule speci�es a transition from state 1 to state 2 if
anything is loaded from address 20:

r  M [r0]) 1
r0=20
! 2

Æ is thus de�ned by the following equation:

Æ(q; s) =

8><
>:
q01 if q = q1 and � . s21 ; s

ps

! �1;�1 and ��1 �1(P1)
...

q0k if q = qk and � . s2k ; s
ps

! �k;�k and ��k �k(Pk)

Given this representation of Æ, we encode the security property PA as follows:

reg q : nat
reg qp : nat

eval <� ) qp := q0

eval ! ) qp := q

new
<�
! ) q : nat

admit
<�
! s21 ) (qp = q1 ^ P1) � q = q01

...

admit
<�
! s2k ) (qp = qk ^ Pk) � q = q0k

require
<�
! ) q 6= 0

A.4 Liveness Properties

Borrowing a technique from Alpern and Schneider [AS89], we can use our VC
generator to enforce certain liveness properties. Note that this example may be

80



of only theoretical interest, because in practice we can use a real-time property
to approximate a liveness property. Informally, a real-time property asserts that
a speci�c \good thing" will happen after a �nite time bound: these properties
are pre�x closed and therefore safety properties.

To enforce a liveness property of the form \eventually P", we require the
agent to supply a variant function from states to integers whose value is less than
one only after the target condition is satis�ed; the variant function must decrease
across each procedure call and branch. The target condition is a predicate on
extended states that holds when the last state of an execution satis�es the
property. The agent encodes the variant function as an expression E with free
variables among the registers; P is constructed similarly and holds once the
target condition is satis�ed.

To require that the variant decreases, we use the following security property:

reg v : int

eval <� ) v := E

require ! cond cop ; ) E < v for each cop

require ! call ) E < v

eval ! cond cop ; ) v := E for each cop

eval ! call ) v := E

There are two rules for each cop. We save the most recent variant in the property
register v and check that it decreases by the time we reach the next branch.

The following rules ensure that the property is eventually satis�ed:

require ! cond cop ; ) E � 0 � P for each cop

require ! call ) E � 0 � P

require �>) P

require ! proc abort) P for each such procedure

abort is a trusted procedure that always aborts the agent; this procedure is
invoked to signal that the agent is unable to continue: for example, if the
agent is instrumented to check array bounds, abort is called when a check
fails. To ensure that the agent satis�es the target condition, we prohibit it from
calling any aborting procedure until the condition is satis�ed. Note that this
requirement makes automatic certi�cation very diÆcult.

Note that this technique depends on speci�c properties of the enforcement
mechanism: the usual dynamic enforcement mechanism would abort the agent
at a zero variant and leave the target condition unsatis�ed. Although the execu-
tion set of the security property is pre�x closed and therefore a safety property,
our enforcement mechanism only accepts agents whose actual executions are a
strict subset of this set. We argue this as follows: prior to satisfying the target
condition, in�nite loops are disallowed by the variant function and aborts are
disallowed by precondition; because the agent cannot loop forever and cannot
abort, it must eventually terminate normally, and thus must satisfy the target
condition. The set of normally terminating agent executions is not pre�x closed,
and is thus not a safety property.
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Note also that we can extend this technique to more general classes of se-
curity properties if we can encode a given property as one or more B�uchi au-
tomata [Tho90] in Palladium. Given a set of pairs of positive and negative
automata (see Section 4.3 of Alpern and Schneider [AS89]), we assume that one
or more property registers represent the state of each automaton. Let P+

i hold
when positive automaton i is in an accepting state, let P�i hold when negative
automaton i is in an accepting state, and let E�i be the agent-supplied variant
for negative automaton i. We derive a partial security property for each i:

reg vi : int

eval <� ) vi := E
�

i

require ! ) P
+
i _ (vi � E

�

i ^ (P
�

i � vi > E
�

i ))

eval ! ) vi := E
�

i

require �>) P
�

i � P
+
i

require ! proc abort) P
�

i � P
+
i

We use a disjunction instead of the equivalent implication for clarity.
It is possible to extend Palladium to encode execution sets that are not pre�x

closed and thereby increase its expressive power. Such a language could encode
some liveness properties directly, but we have not extended Palladium because
it is not clear if such a language would be practical.

B Static Semantics

This appendix contains a simple type system for checking the consistency of
Palladium security properties. The type system catches simple compositional
errors and should be a front-end �lter for enforcement mechanisms.

B.1 First-Order Logic

Figures 28 through 31 contain a standard type system for the �rst-order logic.
Because the logic is a sublanguage of Palladium, this type system is a component
of the Palladium type system.

A signature � assigns types to constants (including functions and relations);
Figure 28 contains inference rules for well-formed signatures (` � sig). A con-
text � assigns types to variables (e.g., the free variables of a term); Figure 29
contains rules for well-formed contexts (`� � cont).

We also de�ne signatures for our machine model:

�mapw = selw :mapw�wd! wd;updw :mapw�wd�wd!mapw

�Lit = 0w : wd;1w : wd; : : :
�Eop = addw : wd�wd! wd; subw : wd�wd! wd; : : :

�Cop = eq0w : 2wd;neq0w : 2wd; : : :
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as well as contexts for the machine registers:

�UReg = r0 : wd; : : : ; rUMax : wd; ra : wd
�Reg = �UReg ; mem :mapw

�XReg = �Reg ; pc : wd

To ensure that each register environment � is well typed, we require the initial
� and the skip relation of 	 to be well typed in �Reg .

In Figure 30, we assign types to expressions; the judgment � `� E : � is
read \expression E has type � in context � and signature �." Finally, Figure 31
contains rules for well-formed propositions (� `� P prop).

B.2 Patterns

Figures 32 through 34 contain rules for well-formed patterns. For example,
the judgment � ` A2

pat asserts that the step pattern A2 is well-formed with
respect to �. � assigns types to the pattern variables of A2.

B.3 Palladium

Figure 35 contains rules for well-formed security properties. The judgment
� `� P sp asserts that P is well formed with respect to � and �. � assigns
types to the registers appearing free in component terms of P .

To type check speci�cations, we need the types of property registers. The
context �P contains the register declarations of P :

�� = �
�reg r̂:� ;P = �P ; r̂ : �
�require A2)P ;P = �P
�admit A2)P ;P = �P

�eval A2)r̂:=E;P = �P
�new A2)r̂:� ;P = �P
�scs n2)r;P = �P
�ucs n2)r;P = �P

Thus, dom�P is the property registers of P .
A security property is well formed if it is well formed in the machine signa-

tures and context:

�XReg `�mapw;�Lit ;�Eop;�Cop
P sp

` P sp

Programs are annotated with speci�cations for procedures and loops. A
speci�cation is well formed if it is well formed in the machine signatures and
context, as well as the property-register context:

�XReg ;�P `�mapw;�Lit ;�Eop;�Cop
P prop

P ` P spec
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` � sig

` � sig c =2 dom�

` �; c : � sig

` � sig f =2 dom�

` �; f : �1 � � � � � �k ! � sig

` � sig R =2 dom�

` �; R : 2�1������k sig

Figure 28: Well-Formed Signatures (` � sig)

` � sig

`� � cont

`� � cont x =2 dom�

`� �; x : � cont

Figure 29: Well-Formed Contexts (`� � cont)

`� � cont c : � 2 �

� `� c : �

`� � cont x : � 2 �

� `� x : �

`� � cont f : �1 � � � � � �k ! � 2 � � `� E1 : �1 : : : � `� Ek : �k
� `� f(E1; : : : ; Ek) : �

Figure 30: Expression Types (� `� E : � )

`� � cont R : 2�1������k 2 � � `� E1 : �1 : : : � `� Ek : �k
� `� R(E1; : : : ; Ek) prop

`� � cont

� `� > prop

� `� E1 : � � `� E2 : �

� `� E1 = E2 prop

� `� E1 : � � `� E2 : �

� `� E1 6= E2 prop

� `� P1 prop � `� P2 prop

� `� P1 ^ P2 prop

� `� P1 prop � `� P2 prop

� `� P1 � P2 prop

�; x : � `� P1 prop

� `� 8x : �:P1 prop

Figure 31: Well-Formed Propositions (� `� P prop)
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� ` r pat � ` n pat x : wd ` x pat � ` pat

Figure 32: Well-Formed Atomic Patterns (� ` r2 pat and � ` n2 pat)

`� �1;�2 cont �1 ` r
2
pat �2 ` n

2
pat

�1;�2 ` I
2
pat

I2

r2  n2

cond cop r2; n2

`� �1;�2 cont �1 ` r
2

1 pat �2 ` r
2

1 pat

�1;�2 ` I
2
pat

I2

r21  M [r22 ]

M [r21 ] r22

� ` n2 pat

� ` I2 pat

I2

ra pc addw n2

call n2

`� �1;�2;�3 cont �1 ` r
2

1 pat �2 ` r
2

2 pat �3 ` r
2

3 pat

�1;�2;�3 ` r
2

1  r22 eop r23 pat

� ` ret pat

Figure 33: Well-Formed Instruction Patterns (� ` I2 pat)

� ` n2 pat

� ` proc n2 pat

� ` n2 pat

� ` &n2 pat

� ` s2 pat

� ` A2
pat

A2

<�s2

s2�>

! s2

s2 !
<�
! s2

s2
�>
!

Figure 34: Well-Formed State and Step Patterns (� ` s2 pat and � ` A2
pat)
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`� � cont

� `� � sp

�; r̂ : � `� P sp

� `� reg r̂ : � ;P sp

�2 ` A
2
pat �1;�2 `� P prop �1 `� P sp

�1 `� require A2 ) P ;P sp

�2 ` A
2
pat �1;�2 `� P prop �1 `� P sp

�1 `� admit A2 ) P ;P sp

�2 ` A
2
pat r̂ : � 2 �1 �1;�2 `� E : � �1 `� P sp

�1 `� eval A2 ) r̂ := E;P sp

�2 ` A
2
pat r̂ : � 2 �1 �1 `� P sp

�1 `� new A2 ) r̂ : � ;P sp

�2 ` n
2
pat �1 `� P sp

�1 `� scs n2 ) r;P sp

�2 ` n
2
pat �1 `� P sp

�1 `� ucs n2 ) r;P sp

Figure 35: Well-Formed Security Properties (� `� P sp)
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C Pattern Matching and Derived Forms

In this appendix, we de�ne pattern matching and derived forms.

C.1 Semantics

Figures 36 through 39 contain inference rules for pattern matching. For ex-

ample, the judgment . I2; I
pi

! � asserts that instruction I matches instruc-
tion pattern I2 with substitution � binding the pattern variables of I2. The

judgment � . s2; s
ps

! �;� is similar, except that the environment � binds the

registers of s. In the step judgment � .A2;A
pa

! �;�, � is selected according
to whether A2 is an \entering" or \leaving" pattern. Judgments are labeled pn

for atomic patterns, pi for instruction patterns, ps for state patterns, and pa for
step patterns.

We de�ne substitution operations that are analogous to environments:

�1 = �2 i� dom �1 = dom �2 and
�1(x) = �2(x) for any x 2 dom �1

�1 � �2 i� dom �1 � dom �2 and
�1(x) = �2(x) for any x 2 dom �1

dom(�[x 7! E]) = dom � [ fxg
dom(�1 [ �2) = dom �1 [ dom �2

dom(� rX) = dom � rX

dom �; = ;

(�[x 7! E])(y) =

(
E if y = x

�(y) otherwise

(�1 [ �2)(x) =

(
�2(x) if x 2 dom �2

�1(x) otherwise

(� rX)(x) = �(x)

The free variables of a substitution are the free variables of its expressions:

FV(�) =
[

x2dom �

FV(�(x))

We apply a substitution to an expression or a proposition by substituting ex-
pressions for (free) variables:

�(c) = c

�(x) =

(
�(x) if x 2 dom �

x otherwise

�(f(E1; : : : ; Ek)) = f(�(E1); : : : ; �(Ek))
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�(>) � >
�(R(E1; : : : ; Ek)) � R(�(E1); : : : ; �(Ek))
�(E1 = E2) � �(E1) = �(E2)
�(E1 6= E2) � �(E1) 6= �(E2)
�(P1 ^ P2) � �(P1) ^ �(P2)
�(P1 � P2) � �(P1) � �(P2)
�(8x : �:P1) � 8y : �:(�[x 7! y])(P1)

where y =2 FV(�) [ FV(P1)

C.2 Symbolic Evaluation

Figures 40 and 41 contain pattern-matching rules for symbolic states and steps.
These rules are similar to the corresponding concrete rules.

C.3 Derived Forms

Two security-property rules are de�ned by rewriting. Figure 42 contains the
de�nition of these derived forms. We assume that the skip relation of 	 does not
make reentrant calls to �; a more sophisticated mechanism is needed to handle
reentrant calls. Note that the calling convention of the symbolic evaluator (see
Section 3) implies that skips are not reentrant.
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. r; r
pn

! �;

pn1
.x; r

pn

! �;[x 7! r]
pn2

. ; r
pn

! �;

pn3

. n;n
pn

! �;

pn4
.x;n

pn

! �;[x 7! n]
pn5

. ;n
pn

! �;

pn6

Figure 36: Atomic Pattern Matching (.n2;n
pn

! � and . r2; r
pn

! �)

. r2; r
pn

! �1 .n2;n
pn

! �2

. I2; I
pi

! �1 [ �2
pi2

I2 I

r2  n2 r  n

cond cop r2; n2 cond cop r; n

. r21 ; r1
pn

! �1 . r22 ; r2
pn

! �2

. I2; I
pi

! �1 [ �2
pi1

I2 I

r21  M [r22 ] r1  M [r2]

M [r21 ] r22 M [r1] r2

.n2;n
pn

! �

. I2; I
pi

! �
pi3

I2 I

ra pc addw n2 ra pc addw n

call n2 call n

. r21 ; r1
pn

! �1 . r22 ; r2
pn

! �2 . r23 ; r3
pn

! �3

. r21  r22 eop r23 ; r1  r2 eop r3
pi

! �1 [ �3 [ �3
pi4

.ret; ret
pi

! �;

pi5

Figure 37: Instruction Pattern Matching (. I2; I
pi

! �)

.n2;n
pn
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� . proc n2; hi; �i
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! �

� . I2; hi; �i
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.n2;n
pn

! �
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! �;;�s
ps4

Figure 38: State Pattern Matching (� . s2; s
ps

! �;�)

89



� . s2; s
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� .A2;A
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! �;�
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A2 A Case

<�s2 <�s
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2 ;A
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� .A2;A
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! �;�
pa2

A2 A �i s Case

! proc n2 hi; �i ! s0 call n hn; �i

proc n2 ! hi; �i ! hi0; �0i ret hi; �0i

proc n2 ! hi; �i ! hi0; �0i call n hn; �0i i0 6= n

Figure 39: Step Pattern Matching (� .A2;A
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! �;�)
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pn
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� ~.proc n2; hi; �i
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Figure 40: Symbolic State Pattern Matching (� ~. s2; t
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! �1; �2)
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pa

! �1; �2
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�
1

A2 B Case

<�s2 <�t

! s2 t0 ! t s2 6= proc : : :

s2 ! t! t0 s2 6= proc : : :
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1 ;B
pa

! �1; �2

�~.A2

2 ;B
pa

! �1; �2
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�
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<�s2
<�
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! s2
<�
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s2�> s2
�>
!

s2 ! s2
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�~.A2;B
pa

! �1; �2
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�
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! proc n2 hi; �i ! t0 call n hn; �i

proc n2 ! hi; �i ! hi0; �0i ret hi; �0i

proc n2 ! hi; �i ! hi0; �0i call n hn; �0i i0 6= n

Figure 41: Symbolic Step Pattern Matching (� ~.A2;B
pa

! �1; �2)

P1;
scs n2 ) r;
P2

=)

P1;
reg r̂s : � ;
eval ! proc n2 ) r̂s := r;
admit proc n2 !) r = r̂s;
P2

where r : � 2 �Reg
and r̂s =2 dom�P1 [ dom�P2

P1;
ucs n2 ) r;
P2

=)

P1;
reg r̂s : � ;
eval <�proc n2 ) r̂s := r;
require proc n2�>) r = r̂s;
P2

where r : � 2 �Reg
and r̂s =2 dom�P1 [ dom�P2

Figure 42: Security-Property Derived Forms
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D Notation

D.1 First-Order Logic

Types Type is �nite � 2 Type

Constants Con is �nite c 2 Con

Fun � Con f 2 Fun

Rel � Con R 2 Rel

Variables Var is countable x; y 2 Var

Variable Sets VarSet = 2Var X 2 VarSet

Values U =
S
� U� v 2 U

Environments Env = Var * U � 2 Env

Signatures � ::= � j �; c : � j �; f : �1 � � � � � �k ! � j �; R : 2�1������k

Contexts � ::= � j �; x : �

Var \ Con = ;

D.2 PAL

Literals Lit � Con n 2 Lit

Operators Eop � Fun eop 2 Eop

Cop � Rel cop 2 Cop

Registers UReg = fr0; : : : ; rUMax ; rag _r 2 UReg

Reg = UReg [ fmemg r 2 Reg

XReg = Reg [ fpcg � Var

Values Uwd = fi 2 N j 0 � i < 2WdBitg i 2 Uwd
Umapw = Uwd ! Uwd

Register Env. REnv = Reg ! U � 2 REnv

States State = Uwd �REnv s 2 State

Procedures F ::= � j F; I

Agent Programs � ::= � j �; hi0; F i

Steps A ::= <�s j s! s0 j s�>

Executions � ::= � j <� j � ! j ��> j �s
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wd;mapw 2 Type

selw;updw 2 Fun

0w;1w; : : : 2 Lit

addw; subw 2 Eop

eq0w;neq0w 2 Cop

i 2 Start(	) i� Agent	(hi; �i; s) for some �; s
i 2 Skip(	) i� Skip	(hi; �i; s

0) for some �; s0

i 2 Stop(	) i� Agent	(s; hi; �i) for some s; �

i0 2 Proc(�) i� hi0; F i 2 � for some F
i0 + i 2 Dom(�) i� hi0; F i 2 � and i < jF j for some F
i0 + i 2 Dom�(i0) i� hi0; F i 2 � and i < jF j for some F
�i0+i = I i� hi0; F i 2 � and Fi = I for some F

Dom(�) \ Skip(	) = ;
Dom(�) \ Stop(	) = ;
Skip(	) \ Stop(	) = ;

D.3 Palladium

Property Registers PReg � Var ; PReg \ Reg = ; r̂ 2 PReg

Property-Reg. Env. PEnv = PReg ! U �̂ 2 PEnv

Sec.-Prop. States PState = SecProp � PEnv � f0; 1g ŝ 2 PState

Extended States EState = State � PEnv � f0; 1g �s 2 EState

Substitutions Sub = Var * Exp � 2 Sub

Extended Steps �A ::= <��s j �s! �s0 j �s�>

Extended Executions �� ::= � j <� j �� ! j ���> j ���s
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D.4 Symbolic Evaluator/VC Generator

Register Sub. RSub = Reg ! Exp � 2 RSub

Prop.-Reg. Sub. PRSub = PReg ! Exp �̂ 2 PRSub

Symbolic States SState = Uwd �RSub t 2 SState

Sym. S.-P. States PSState = SecProp � PRSub � CProp t̂ 2 PSState

Sym. Ext. States ESState = SState � PRSub � CProp �t 2 ESState

Trace Contexts TCont = Uwd * Prop C 2 TCont

Trace Schedules TSched = 2TCont�ESExec S 2 TSched

Abstraction Spec. pa ::= allhP; P 0i j somehX;P; P 0i

Transition Spec. pt ::= idhpai
j tolhpa; ii j toshii j torhi; pai

Context Speci�cations pc ::= hi; pti

Link Speci�cations pl ::= hpt; pc1; : : : ; p
c

ki

Symbolic Steps B ::= <�t j t! t0 j t�>
j �� t j t �� hpl1; : : : ; p

l

ki

Proposition Contexts Q ::= � j P ^Q j P � Q j 8x : �:Q Q 2 CProp

Extended Sym. Steps �B ::= <��t j �t! �t0 j �t�>
j �� �t j �t �� hpl1; : : : ; p

l

ki

Ext. Sym. Executions �� ::= � �� 2 ESExec

j <� j �� ! j ���>
j �� j �� �� hpl1; : : : ; p

l

ki
j �� �t
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