
Survivability Analysis of Networked Systems

S. Jha1 J. Wing2

October 2000

CMU-CS-00-168

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper was submitted to the International Conference on Software

Engineering 2001, Toronto, May 12-19, 2001.

1Computer Sciences Department, University of Wisconsin, Madison, WI 53706.
2Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213.

This research is sponsored in part by the Defense Advanced Research Projects

Agency and the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel

Command, USAF, F33615-93-1-1330, and Rome Laboratory, Air Force Materiel Com-

mand, USAF, under agreement number F30602-97-2-0031 and in part by the National

Science Foundation under Grant No. CCR-9523972. The U.S. Government is autho-

rized to reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright annotation thereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily representing the of-

�cial policies or endorsements, either expressed or implied, of the Defense Advanced

Research Projects Agency Rome Laboratory or the U.S. Government.

Keywords: survivability, model checking, reliability analysis, cost analysis,
Markov Decision Processes, fault-tolerance, security

1

Abstract

Survivability is the ability of a system to continue operating despite the presence
of abnormal events such as failures and intrusions. Ensuring system survivabil-
ity has increased in importance as critical infrastructures have become heavily
dependent on computers. In this paper we present a systematic method for
performing survivability analysis of networked systems. An architect injects
failure and intrusion events into a system model and then visualizes the e�ects
of the injected events in the form of scenario graphs. Our method enables fur-
ther global analyses, such as reliability, latency, and cost-bene�t analyses, where
mathematical techniques used in di�erent domains are combined in a system-
atic manner. We illustrate our ideas on an abstract model of the United States
Payment System.

2

1 Introduction and Motivation

Increasingly our critical infrastructures are becoming heavily dependent on com-
puters. We see examples of such infrastructures in all domains, including medi-
cal, power, telecommunications, and �nance. Whereas automation provides so-
ciety with the advantages of e�cient communication and information sharing,
the pervasive, continuous use of computers exposes our critical infrastructures to
a wider variety and higher likelihood of accidental failures and malicious attacks.
Disruption of services caused by such undesired events can have catastrophic
e�ects, including loss of human life.

Survivability is the ability of a system to continue operating in the presence
of accidental failures or malicious attacks [7]. We use the term fault for both
accidental failures (e.g., a disk crash) and malicious attacks (e.g., a denial-of-
service attack). The precise semantics of continuous operation is application
dependent; it is related to critical services that the system provides. For ex-
ample, check clearing is a critical service of a banking system, and a survivable
banking system will continue providing this service despite the presence of faults.

In this paper we present a method for analyzing a networked system for
survivability. A networked system consists of nodes and links connecting the
nodes. Communication between the nodes occurs by passing messages over the
links. An event in the system can be either a user event (e.g., a user issues a
check), an internal event (e.g, a user's account is debited), a communication
event (e.g, sending a message between two banks), or a fault (e.g., a bank under
a malicious attack). A service is associated with a start event (e.g., a user issues
a check) and an end event (e.g., the check clears). The start event and the end
event correspond respectively to when \a service is issued" and when a \service
is �nished."

Our main goal is to provide information to the system architect during the
design phase, the early planning stage of the software lifecycle. With this in-
formation, the architect can weigh the pros and cons of decisions related to
survivability. The method we present in this paper, however, is just as suitable
for post facto analysis of existing systems.

Our method is general enough to support many di�erent types of analysis.
In this paper we focus on three speci�c kinds of questions.

Question 1: What is the e�ect of a fault?

Example: Imagine an architect is designing a power grid. He wants to know
the e�ect of an outage of a power plant located in upstate New York on cus-
tomers living hundreds of miles away in western Pennsylvania.
Answer (Fault-E�ect Analysis): Using our method the architect can visu-
alize the global e�ect of a local fault through a data structure that we call a
scenario graph. In our method, we automatically generate scenario graphs using
model checking.
Question 2: What is the reliability and latency of a service? Here, reliability is
de�ned as the probability that a service that has been issued will �nish. Latency
measures the expected time it takes a service to �nish.

1

Example: Suppose an architect designing a banking system wants to �nd out
the probability that a check issued actually clears.
Answer (Reliability and Latency Analysis): To �nd the reliability of the
banking system with respect to the check clearing service, we query an anno-
tated scenario graph. The architect �rst identi�es a set of \critical" elements in
the network, i.e., nodes and links whose failures would have a severe e�ect on
the provision of the service in question. He then assigns probabilities to each
fault (i.e., the failure of each node or link). Then, using our method, he can
automatically compute both the reliability and latency of the network.
Question 3: Given cost constraints, which network nodes/links should be up-

graded to maximize bene�t (e.g., reliability)?

Example: Suppose an architect is allowed to spend newly allocated funds to
upgrade a fraction of the network's links to newer links that are faster and more
reliable. Given the constraints imposed by his manager's limited budget, which
links should he choose to upgrade to maximize the network's reliability?
Answer (Cost-Bene�t Analysis): To perform a cost-bene�t analysis, we
further extend our annotated scenario graphs with additional cost information
related to upgrading the links. We then can automatically compute how to
maximize a given bene�t given a set of cost constraints.

Survivability analysis is fundamentally di�erent from analysis of properties
found in other areas (e.g., algorithm analysis of fault-tolerant distributed sys-
tems, reliability analysis of hardware systems, and \security" analysis of com-
puter systems). First, survivability analysis must handle a broader range of

faults than any of these other areas; we must minimally handle both acciden-
tal failures and malicious attacks. To achieve this goal our method allows an
architect to incorporate any arbitrary type of fault in the system model; how-
ever, we still allow distinctions among faults by assigning di�erent weights (e.g.,
probability of occurring, cost to repair, etc.) to each fault.

Second, events may be dependent on each other, especially fault events. In
contrast, for ease of analysis, most work in the fault-tolerant literature makes
the independence assumption: assume that abnormal events are independent.
We cannot make this assumption in analyzing systems for survivability. For
example, if a server crashes, then it is easier for a malicious intruder to spoof
the crashed server; the chance that an intruder will succeed in spoo�ng a server
depends on the event that the server crashes. Or, if an attacker learns how to
compromise one disk of a replicated server, then he can easily compromise the
replicas too; the chance of bringing down an entire service depends on the like-
lihood of success of the original attack. In our method we allow users to express
such dependencies. Representing dependence between events allows us to model
phenomena such as correlated attacks, where local attacks might not succeed,
but when they occur in tandem or in succession they can have a severe e�ect on
the system. Distributed denial-of-service attacks is an example of a correlated
attack (see CERT advisory CA-2000-0). Representing dependence also allows
us to handle cascading e�ects, where one fault triggers another, which then trig-
gers another, and so on. While it is cleaner to design a system to avoid cascading
e�ects (e.g., by using a strict locking protocol to avoid cascading aborts in a

2

transactional database), in practice it may be impossible to anticipate faults
induced by a system's environment that violates the assumptions made by the
system's original designer. Since survivability is of particular concern to those
building systems of systems, system architects will have to face the possibility
of cascading e�ects in their analysis.

Third, survivability analysis should also be service dependent. For example,
the architect for a banking system might choose to focus on the check clearing
service as being critical, although the banking system provides other services
such as accounting, auditing, and cash distribution; for a di�erent analysis, cash
distribution might be the critical service to focus on. Taking into consideration
the speci�c service a system is to provide enables more targeted analysis, which
is often amenable to fully automated support. Also a method that focuses the
architect's attention on speci�c services rather than the general system design
is likely to be more appreciated and better understood by the end customer
(who cares about the reliability of the applications' services). The analyses in
our method are all driven by the properties that the architect speci�es as they
relate to a critical service.

Finally, survivability analysis deals with multiple dimensions. It simulta-
neously deals with functional correctness (modeling the service itself), fault-
tolerance (modeling the e�ects of accidental failures), security (modeling the
e�ects of malicious attacks), reliability (the likelihood of a service �nishing),
performance (network latency), and cost. To achieve this goal, the analyti-
cal approach described in this paper combines several di�erent kind of analysis
techniques into one framework.

The next section introduces constrained Markov Decision Processes which
form the basis for reliability, latency, and cost-bene�t analysis. A general
overview of our method appears in Section 3. We describe a small example
based on the United States Payment System in Section 4, which we use as a
running example throughout the remainder of the paper. Section 5 provides ad-
ditional details related to each step in our method. Section 6 briey describes
a prototype tool Trishul that we have implemented based on our method, and
briey describes two case studies that we have performed. Sections 7 and 8
discuss related work and conclusions respectively.

2 Model of Computation

Our formal model is based on constrained Markov Decision Processes or simply
CMDPs. CMPDs are a generalization of Markov chains, where the transition
probabilities depend on the past history. CMDPs enable us to model history
dependent transition probabilities and provide a framework to perform cost-
bene�t analysis. Our exposition of CMDPs is based on Altman [2]. A CMDP
is 5-tuple hS;A; P; c; di where

� S is a �nite state space.

3

� A is a �nite set of actions. For a state s 2 S, A(s) � A is the set of actions
available at state s.

� P are transition probabilities, where Psas0 is the probability of moving
from state s to s0 if action a is chosen.

� c : (S � A) ! < is the immediate cost, i.e., c(s; a) denotes the cost of
choosing action a at state s. This cost will be related to the value function
to be minimized.

� d : (S � A)! <k is a k-dimensional vector of immediate costs. This will
be related to cost constraints.

A Markov Decision Process (MDP) is a CMDP without the last component d.
History at time t (denoted by ht) is the sequence of states encountered and

actions taken up to time t. A policy u takes into account the history ht and
determines the next action at time t. Speci�cally, ut(ajht) is the probability of
taking action a given history ht. A policy u de�nes a value function V u : S ! <,
where V u(s) is the expected cost of the actions taken if the CMPD uses policy
u and starts in state s (the cost c is used to de�ne expected cost). The technical
de�nition of V u can be found in [2]. Analogously, starting in state s let the
expected value of the immediate costs d under the policy u be denoted byDu(s).
Since the result of d is a k-dimensional vector, Du(s) is also a k-dimensional
vector of real numbers. Assume that we are also given a k-dimensional vector
C = (c1; � � � ; ck), where ci is the cost constraint on the i-th component of Du(s).
Our aim is to �nd a policy that minimizes the value function V u given the
constraint imposed by the vector C, or

Given an initial state s0 2 S, �nd a policy u that minimizes V u(s0)
subject to Du(s0) � C.

Remark: Do not confuse a Markov process with a Markov policy, which is a
policy where the probability of an action depends only on the current state of
the CMDP and not the entire history.

Example 2.1 Imagine a bakery where there can be at most 10 customers wait-
ing at any time. At each time the bakery manager has the option of having one
or two servers behind the counter. The state of the CMDP corresponds to the
number of servers behind the counter and the number of customers waiting.
The action at each state is to decide on how many servers should be behind the
counter. In Figure 1 we show a few transitions. Consider the transition from
state (S=1, C=m) to (S=2, C=m-1). The action label a = 2 on the transition
indicates that the manager decided to switch to two servers behind the counter.
The probability that a waiting customer leaves with his/her order is 0:5 or 0:75
depending on whether there are one or two servers behind the counter. Notice
that the probability that a customer gets serviced is higher when there are two
servers behind the counter. Therefore, the transition from state (S=1, C=m) to
(S=2, C=m-1) has probability 0.75. The rest of the transitions have a similar

4

[a=1,p=0.5]

[a=1,p=0.5]

[a=2,p=0.75]

[a=2,p=0.75]

[a=1,p=0.5][a=2,p=0.25]

[a=2,p=0.25]

[a=1,p=0.5]

S=1 S=1

S=2S=2

C=m

C=m C=m-1

C=m-1

S: number of servers

C: number of waiting customers

Figure 1: A Bakery

explanation. Given a state and an action, the probability that a customer is ser-
viced in the next time period determines the cost function c. For example, the
cost of the state action pair h (S=1, C=m), a=1 i is �0:5 because if an action
a=1 is chosen from the state the expected number of customers that are serviced
during the next time step is 0:5. Notice that the negative of the cost determines
the throughput, i.e., the expected number of customers that are serviced in the
next time period. The number of servers behind the counter determines the
cost function d, i.e., two servers cost more than one. The aim of the manager
is to maximize expected throughput (or minimize expected cost related to c)
given a constraint on the wages of the servers. Achieving this goal can be easily
seen as a problem of value maximization under cost constraints and naturally
�ts the CMDP framework. The optimal policy for this CMDP will indicate to
the bakery manager when to change the number of servers behind the counter.

3 The General Method

In this section we provide a brief overview of our method; Section 5 gives more
details about the techniques we use and our implementation. In steps 1, 2, and
3 we model the network, inject faults into our model, and specify survivability-
related properties. Then in steps 4, 5, and 6 we analyze the e�ects of faults,

5

perform reliability and latency analysis, and do cost-bene�t analysis|to parallel
answering the three kinds of questions posed in the introduction.

3.1 Step 1: Model the Network

First, the architect models a networked system, which can be done using one
of many formalisms. We choose to use state machines and we use them to
model both network nodes and links. We use shared variables to represent
communication between the state machines.

3.2 Step 2: Inject Faults

Both links and nodes may be faulty. With our state machine model of the
networked system, we need not make a distinction between nodes and links
when considering faults. That is, a link is simply a node that passes data
between two other nodes. Injecting a fault then requires �rst representing that
a fault has occurred and then determining the behavior of the faulty node for
each kind of fault that may occur. The exact behavior of a faulty node, speci�ed
by the architect, depends on the application.

To represent faults in our method, for each state machine representing a
node, we introduce a special variable called fault, which can range over a user-
speci�ed set of symbolic values. For example, the following declaration states
that there are three modes of operation for a node, representing whether it is
in the normal mode of operation, failed, or compromised by an intruder.

fault: f normal, failed, intruded g

Given this simple representation, we can then choose to specify the precise
behavior of the node in each mode of operation. For example, for any given
state we can specify that the machine makes a transition from the normal mode
of operation to one of the abnormal modes (failed or intruded) and further
specify what state the machine is in once such a transition occurs. We also have
the option of leaving state transitions completely nondeterministic.

3.3 Step 3: Specify Survivability Properties

The architect speci�es properties related to survivability using some kind of
formal logic. In our method, we use a temporal logic called Computation Tree

Logic (CTL), but other temporal logics such as Linear Time Logic [15] would
also be appropriate.

In this paper, we focus on two classes of survivability properties: fault and
service related. The �rst class captures properties of the networked system under
scrutiny when it enters a faulty state. The second class captures properties
speci�c to the system's services.

6

3.4 Step 4: Generate Scenario Graphs

Given a state machine model,M, of the networked system (with injected faults)
and a survivability property, P, we then generate a scenario graph, which is
a concise representation of a set of traces of M with respect to P. For fault
properties, a fault scenario graph represents all system traces that end in a faulty
state; for service properties, a service success (fail) scenario graph represents all
system traces in which an issued service successfully �nishes (fails to �nish).
An architect can use scenario graphs to visualize the e�ects of injected faults
on a certain service. (In the operational security literature, scenario graphs are
similar to attack state graphs [13].)

3.5 Step 5: Reliability and Latency Analysis

Once we have a scenario graph, we can perform further analyses, such as re-
liability and latency analysis. First, the architect speci�es the probabilities of
certain events of interest, such as faults, in the system. Since we do not assume
independence of events, we use a formalism based on Bayesian networks [14]
to specify the conditional probabilities of the events. We combine the speci�ed
probabilities with the scenario graph to obtain an MDP. We can then readily
compute reliability and latency by solving for optimal policies using the relevant
cost functions c, i.e., for reliability analysis the cost function is identically zero;
for latency analysis, it is a function of the times associated with making state
transitions.

An advantage of our method is that an architect need not specify probabil-
ities for all events; an MDP can have both probabilistic and nondeterministic
transitions.

3.6 Step 6: Cost-Bene�t Analysis

In this step we transform the MDP from Step 5 into a CMDP. First we enhance
the MDP's set of actions A with actions corresponding to decisions that an
architect has to make. For example, these additional actions might correspond
to upgrading links to produce a more reliable/faster system, and the architect
must decide which links to upgrade. Each added action has a cost; the architect
wants to simultaneously minimize cost and maximize some bene�t (e.g., relia-
bility). Thus, we also associate costs with these actions and provide constraints
on these costs (i.e., specify the function d in the de�nition of CMDPs). The op-
timal policy corresponding to the CMDP so constructed provides the architect
with the optimal decision under the speci�ed cost constraints.

4 Example

We consider a simpli�ed model of the United States Payment System, depicted
in Figure 2. There are three levels of institutions: Federal Reserve Banks at
the top, money centers in the middle, and small banks at the bottom. If two

7

banks are connected to the same money center, then transactions between them
are handled by the money center; there is no need to go through the Federal
Reserve Banks. For a detailed description of the system see [11].

To illustrate the architecture, suppose a customer A writes a $50 check to
customer C so that the check has a source address Bank-A and destination ad-
dress Bank-C. The following steps occur for the issued check to clear:

1� Bank-A and Bank-C are not connected through a money center, so the check
is then sent to a money center connected to Bank-A. In this case, let's choose
money center MC-1.
2� The check is then transferred to the Federal Reserve Bank closest to MC-1,
in this case FRB-2.
3� The check is then transferred to the Federal Reserve Bank that has jurisdic-
tion over Bank-C, in this case FRB-3.
4� The check �nally makes it way to Bank-C through the money center MC-3.

In Figure 2 the path of the check is shown using dot-dashed lines.

Banks

MC-2 MC-3

FRB-2

FRB-1

FRB-3

MC-1

Path of the check

Bank-A Bank-B Bank-C

Link-A-1

Link-A-2

Link-B-1

Link-B-3

Link-C-3

Centers
Money

Federal Reserve

Banks

Figure 2: United States Payment System

5 Detailed Description

We now present the details of each step in our method in more detail, illustrating
them with the check clearing example.

8

5.1 Step 1: Model the Network

We model each node and link in the system as a �nite state machine, and the
entire networked system as the composition of these machines. In our imple-
mentation, we use the model checker NuSMV [1], and hence we use NuSMV's input
language to describe the state machines representing a given system. Using
this o�-the-shelf model checker makes it convenient for us at later steps in our
method to perform further global analyses; NuSMV's output lets us automatically
derive information that we would otherwise have to reconstruct.

In our banking example, we use state machines to model the banks, the
money centers, the Federal Reserve Banks, and the links. Each element in
the banking infrastructure corresponds to a MODULE description in NuSMV and
communication is achieved by parameter passing. We make some simplifying
assumptions in the model of our system: (1) There is just one user who issues
checks; the source and destination address of these checks are decided nondeter-
ministically, i.e., the source address can be banks A, B, or C, and similarly for
the destination; (2) There is only one check active at any time, and the exact
amount of the check is irrelevant.

5.2 Step 2: Inject Faults

Next we inject faults in our model by including a special state variable (fault)
with each state machine to indicate the mode of operation. We modify the
speci�cation of each state machine to take into consideration its faulty modes
of operation.

In our banking example, what faults we inject and how we handle them in
our model are based on the following assumptions:

� The only network elements that can be faulty are (1) links between the banks
and the money centers; and (2) small banks, representing that penetration by
a malicious intruder has occurred (i.e., fault = intruded). No other links or
institutions may become faulty and banks cannot fail accidentally.
� When a link is faulty, it blocks all messages and consequently no message
ever reaches the recipient.
� Links may become faulty at any time. Thus, in our �nite state machine
model of a link, we allow a nondeterministic transition to the state where fault
is equal to failed. The third value intruded for the variable fault is not used
in this case.
� Banks can sense a faulty link and route the checks accordingly.

These assumptions show how we take into consideration the semantics of the
application; e.g., we are implicitly assuming that Federal Reserve Banks are
impenetrable and links between them are highly reliable and secure.

Our model reects the following behavior. Under the normal mode of oper-
ation, a bank receives a check (nondeterministically issued by the user) with its
source address. Depending on the destination address of the issued check, the
bank either clears it locally or routes it to the appropriate money center. For ex-

9

ample, if a check with source address A and destination address B is issued, then
it is sent to the money center MC-1 and then sent to bank B. On the other hand,
a check with source address A and destination address C has to clear through
the Federal Reserve Banks (as in Figure 2). If a bank is faulty, then checks
are routed arbitrarily by the intruder (thereby ignoring the check's destination
address). A bank can then at any time nondeterministically transition from the
normal mode (fault=normal) to the intruded mode (fault=intruded). Once
the bank is faulty it stays in that state forever.

The precise behavior of a faulty node depends on the application, but two
types of behaviors under failure conditions are common. In the case of a stuck-at
fault the node becomes stuck, i.e., it accepts no input on its channel and conse-
quently produces no output. A node with a Byzantine fault exhibits completely
nondeterministic behavior, i.e., accepts any inputs and produces arbitrary out-
puts. A Byzantine fault can also be used to model an intruded node.

5.3 Step 3: Specify Survivability Properties

In this step, we specify survivability properties in CTL, a logic chosen for con-
venience since the model checker we use accepts CTL speci�cations. Although
CTL is a rich logic and allows us to express a variety of properties, we focus on
two classes of survivability properties: fault and service related.

Fault Related Properties

Suppose we want to express the property that it is not possible for a node N to

reach a certain unsafe state if the network starts from one of the initial states.
The precise semantics of an unsafe state depends on the application. Let the
atomic proposition unsafe represent the property that node N is in an unsafe
state. We can then express the desired property in CTL as follows:

AG(:unsafe)

which says that for all states reachable from the set of initial states it is true

that we never reach a state where unsafe is true. The negation of the property
is

EF(unsafe)

which is true if there exists a state reachable from the initial state where unsafe
is true; in other words if the network starts in one of the initial states it is
possible to reach an unsafe state. The atomic proposition unsafe can stand for
a property as complex as we desire. It could mean that a certain critical node
has entered an undesirable state (e.g., a critical valve is open in a nuclear power
plant), or it could mean that a certain unauthorized operation occurred at a
critical node. For example, if a node represents a computer protecting a criti-
cal resource, it could represent the fact that somebody without the appropriate
authority has logged onto the computer. The precise nature of a faulty state
depends on the example at hand.

Service Related Properties

10

Many networked systems are built for distributed applications. For these cases
we want to make sure that if a node N issues a service, then the service eventu-
ally �nishes executing. Let the atomic proposition start express that a service
was started, and �nished express that the transaction is �nished. The temporal
logic formula given below expresses that for all states where a service starts and

all paths starting from that state there exists a state where the service always

�nishes, or in other words a service issued always eventually �nishes.

AG(start ! AF(�nished))

For the banking example, we would like to verify that a check issued is always
eventually cleared. This can be expressed in CTL as

AG(checkIssued ! AF(checkCleared))

We can also analyze the e�ect of a compromised node (say N). Suppose we
have modeled the e�ect of a malicious attack on node N (see discussion on
injecting faults). Now we can check whether the desired properties are true
in the modi�ed networked system. If the property turns out to be true, the
network is resistant to the malicious attack on the node N . This type of analysis
is useful in determining vulnerable or critical nodes of a network with respect
to a certain service. Using this analysis, if a node is found to be vulnerable or
critical for a given service to complete, then the system administrator can deploy
sophisticated intrusion detection algorithms for that node or bolster the security
infrastructure around it. Thus our analysis can help identify the critical nodes
in a networked system and therefore help determine whether it is survivable
with respect to desired properties of a given service.

5.4 Step 4: Generate Scenario Graphs

We automatically construct scenario graphs via model checking. When a spec-
i�ed property is not true in a given model, a model checker will produce a
counterexample, i.e., a trace or a scenario that leads to a �nal state that does
not satisfy the property. (Details of model checking, e.g., see [5], are not needed
to understand our method.) We exploit this functionality of model checkers to
generate scenario graphs; i.e., a scenario graph is a compact representation of
all the traces that are counterexamples of a given property 1. For example,
suppose we want to check whether during the execution of a networked system
a certain event (e.g., bu�er overow) never happens. If the property is not true
(i.e., bu�er overow can happen), the scenario graph encapsulates all sequences
of states and transitions that lead the system to a state where a bu�er overow
occurs.

Scenario graphs depict ways in which a network can enter an unsafe state
or ways in which a service can fail to �nish. Scenario graphs encapsulate the

1Identifying the fragment of CTL such that all counterexamples to the formulas in this

fragment form a �nite graph is not a trivial problem. Fortunately, the two types of formulas

we consider have this property.

11

e�ect of local faults on the global behavior of the network. If the architect
models malicious attacks, the scenario graph is a compact representation of all
the threat scenarios of the network, i.e., a set of sequences of intruder actions
that lead the network to an unsafe state.

Fault Scenario Graphs

Recall that we can express the property of the absence of an unsafe reachable
state as:

AG(:unsafe)

If this formula is not true, it means that there are states that are reachable from
the initial state that are faulty.

We briey describe the construction of a scenario graph. Assume that we are
trying to verify using model checking whether the speci�cation of the network
satis�es AG(:unsafe). Usually, the �rst step in model checking is to determine
the set of states Sr that are reachable from the initial state. After having deter-
mined the set of reachable states, the algorithm determines the set of reachable
states Sunsafe that have a path to an unsafe state. The set of states Sunsafe is
computed using �x-point equations [5]. Let R be the transition relation of the
network, i.e., (s; s0) 2 R i� there is a transition from state s to s0 in the net-
work. By restricting the domain and range of R to Sunsafe we obtain a transition
relation Rf that encapsulates the edges of the scenario graph. Therefore, the
scenario graph is G = (Sunsafe ; Rf), where Sunsafe and Rf represent the nodes
and edges of the graph respectively. In symbolic model checkers, like NuSMV,
the transition relation and sets of states are represented using binary decision

diagrams (BDDs) [4], a compact representation for boolean functions. All the
operations described above can be easily performed using BDDs. The BDD
for the transition relation Rf is a succinct representation of the edges of the
fault scenario graph. Since BDDs are capable of representing a large number of
nodes, very large scenario graphs can be computed using our method.

Service Success/Fail Scenario Graphs

In the case of services, we are interested in verifying that every service started
always eventually �nishes. Recall that we express this property in CTL as

AG(start ! AF(�nished))

Since we allow several nodes to be faulty, in our experience we �nd that most of
the time this property fails to hold. Thus more interestingly, during the model
checking procedure, we derive two graphs: a service success scenario graph and
a service fail scenario graph. The success scenario graph captures all the traces
in which the service �nishes; the fail scenario graph, all the traces in which the
service fails to �nish. These scenario graphs are constructed using a procedure
similar to the one described for the fault scenario graphs.

In our banking example, issuing a check corresponds to the start of a service.
The scenario graph shown in Figure 3 shows the e�ect of link failures on the
check clearing service for a check issued with source address Bank-A and desti-
nation address Bank-C (the start event is labeled as issueCheck(Bank-A,Bank-
C) in the �gure). The event corresponding to sending a check from location

12

L1 to L2 is denoted as sendCheck(L1,L2). The predicates up(Link-A-2) and
down(Link-A-2) indicate whether Link-A-2 is up or down. Recall that we allow
links to fail nondeterministically. Therefore, an event sendCheck(Bank-A,MC-
2) is performed only if Link-A-2 is up, i.e., up(Link-A-2) is the pre-condition for
event sendCheck(Bank-A,MC-2). If a pre-condition is not shown, it is assumed
to be true. Note that a fault in a link can also be construed as an intruder taking
over the link and shutting it down. From the graph it is easy to see that a check
clears if Link-A-2 and Link-C-3 are up, or if Link-A-2 is down and Link-A-1
and Link-C-3 are up. We modi�ed the model checker NuSMV to produce such
scenario graphs automatically.

For realistic examples scenario graphs can be extremely large. Therefore,
it is not feasible to enumerate all the scenarios or traces corresponding to a
scenario graph. We developed a querying process by which an architect can
select a subset of scenarios. First an architect identi�es events of interest in the
network; then, using these events as alphabet symbols, the architect provides a
regular expression to specify the traces of interest. Consider the scenario graph
shown in Figure 3 and this regular expression for the alphabet �:

�? sendCheck(FRB-2,FRB-3) �?

This query captures the architect's interest in all traces where the check is
transferred from FRB-2 to FRB-3, as denoted by the event sendCheck(FRB-
2,FRB-3). A trace that satis�es the regular expression is shown by a dotted line
in Figure 3.

5.5 Step 5: Reliability and Latency Analysis

Once we have generated scenario graphs, we can perform reliability and latency
analysis. First, we need to incorporate probabilities of various events into a
given scenario graph to produce an MDP; then using the MDP we compute
reliability and latency by calculating the value function corresponding to the
optimal policy.

We �rst explain this analysis using the banking example and then provide a
formal explanation. Let the boolean state variable A1 indicate whether Link-A-
1 is up, so A1 corresponds to Link-A-1's being down. Analogously, A2 and C3
are the boolean variables corresponding to Link-A-2's and Link-C-3's being up.
In general an event will be associated with a boolean variable and the negation
of the variable will denote that the event did not occur; we will use the boolean
variable and the event it represents synonymously, e.g., event A1 corresponds
to Link-A-1's being up.

We now explain how we handle dependencies between events. Assume that
event A2 is dependent on A1 and there are no other dependencies. Let P (A1)
and P (C3) both be 1

2
where P (A1) and P (C3) are the probabilities of Link-A-1

and Link-C-3 being up. The probability of event A2 depends on the event A1,
and we give its conditional probability as

P (A2jA1) = 1
2

P (A2jA1) = 1
4

13

issueCheck(Bank-A,Bank-C)

sendCheck(Bank-A,MC-2)

sendCheck(MC-2,FRB-1)

sendCheck(FRB-1,FRB-3)

sendCheck(FRB-3,MC-3)

sendCheck(MC-3,Bank-C)

debitAccount

sendCheck(Bank-A,MC-1)

sendCheck(MC-1,FRB-2)

sendCheck(FRB-2,FRB-3)

down(Link-A-2) &
up(Link-A-1)

up(Link-C-3)

up(Link-A-2)

1/2

1/4

3/8
[1]

[1]

[2]

[2]

[1]

[1]

[1]

[1]

[3]

Figure 3: A Simple Scenario Graph

14

reecting that if Link-A-1 is down, it is more likely that Link-A-2 will go down.
In general, if an event A depends on the set of events fA1; � � � ; Akg, then the
probability of A has to speci�ed for each possible case in the set of events
fA1; � � � ; Akg. For example, if A depends on fA1; A2g, then P (AjA1 ^ A2),
P (AjA1 ^ A2), P (AjA1 ^ A2), and P (AjA1 ^ A2) have to be speci�ed. This
technique is the Bayesian network formalism.

In our example, �rst we have to compute the probability of the two events A2
and A2^A1. These events correspond to events up(Link-A-2) and down(Link-
A-2) & up(Link-A-1) in the scenario graph. The probabilities for these events
are derived below.

P (A2) = P (A2jA1)P (A1) + P (A2jA1)P (A1)

=
1

4
(1�

1

2
) +

1

2
�
1

2

=
3

8

P (A2^A1) = P (A2jA1)P (A1)

= (1 � P (A2jA1))P (A1)

=
1

4

We add these probabilities (shown inside little boxes) to the relevant edges
of the scenario graph in Figure 3. Since we might assign probabilities to only
some events (typically faults) and not others, we obtain a structure that has
a combination of purely nondeterministic and probabilistic transitions. In our
banking example, the architect might assign probabilities only to events cor-
responding to faults; the user of the banking system still nondeterministically
issues checks. Intuitively, nondeterministic transitions are actions of the envi-
ronment or the user, and probabilistic transitions correspond to moves of the
adversary. If we view nondeterministic transitions as actions, the structure ob-
tained after incorporating probabilities into the scenario graph is an MDP. (In
the distributed algorithms literature [12], structures that have a combination of
nondeterministic and probabilistic transitions are called concurrent probabilistic

systems.)
We now explain the algorithm to compute reliability and latency by �rst

considering a property about services. Recall that we are interested in the
following property:

AG(start! AF(�nished))

Let G be the service success scenario graph corresponding to this property.
Suppose each edge s ! s0 in G has a cost c(s ! s0) associated with it. Now
the goal of the environment, which is assumed to be malicious, is to devise an
optimal policy or equivalently choose nondeterministic transitions in order to
minimize reliability or maximize latency. A value function V assigns a value
V (s) for each state s in the scenario graph. Next we describe an algorithm
to compute the value function V ? corresponding to this optimal policy. This

15

algorithm is called policy iteration in the MDP literature. (Later we explain how
the value function can be interpreted as worst case reliability or latency.) In the
initial step, V (s) = 1 for all the states that satisfy the property �nished, and
for all other states s we assume that V (s) = 0. A state s is called probabilistic if
transitions from that state are probabilistic. A state is called nondeterministic

if it is not probabilistic. For all states s that satisfy �nished the value V (s) is
always 1; and for all other states the value function is updated as follows:
� If s is nondeterministic then

V (s) = min
s02succ(s)

c(s! s0) + V (s0)

� If s is probabilistic then

V (s) =
X

s02succ(s)

p(s; s0)(c(s! s0) + V (s0))

In the equations given above, succ(s) is the set of successors of state s and
p(s; s0) is the probability of a transition from state s to s0. Intuitively speaking,
a nondeterministic move corresponds to the environment choosing an action to
minimize the value. The value of a probabilistic state is the expected value of
the value of its successors. Starting from the initial state, the value function V

is updated according to the equations given above until convergence.
After the above algorithm converges, we end up with the desired value func-

tion V ?. Let s0 be the initial state of the scenario graph.

� If the cost, c, associated with the edges is zero, then V ?(s0) is the worst

case reliability metric corresponding to the given property, i.e., the worst case
probability that if a service is issued it will eventually �nish.
� If the cost, c, associated with the edges correspond to negative of the latency,
then the value �V ?(s0) corresponds to the worst case latency of the service, i.e.,
the worst case expected �nishing time of a service. Notice that in this setting
minimizing cost corresponds to maximizing latency.

Consider the scenario graph shown in Figure 3. The worst case reliability
using our algorithm is (1

2
� 3
8
) + (1

2
� 1
4
) = 5

16
. That is, the worst case probability

that a check issued by Bank-A on Bank-C is cleared is 5
16
. Latency in days

for all the events is shown in Figure 3 inside square brackets, e.g., latency of
the event sendCheck(FRB-3,MC-3) is 2 days. The worst case latency using our
algorithm computes to be 4 days.

5.6 Step 6: Cost-Bene�t Analysis

Finally, we add more cost information and extend our MDP to a CMDP. Again,
we will explain this analysis using the running example �rst. Suppose an ar-
chitect wants to upgrade some links to improve the overall robustness of the
system. Three links Link-A-1, Link-A-2, and Link-C-3 are candidates for being

16

upgraded. Assume that if Link-A-1 and Link-C-3 are upgraded then the prob-
abilities P (A1) and P (C3) increase to 3

4
respectively. If Link-A-2 is upgraded

then the probability of Link-A-2 being up is given below.

P (A2jA1) = 3
4

P (A2jA1) = 3
8

If the links are not upgraded, then the probabilities do not change. In addition
to the actions corresponding to the nondeterministic transitions, three extra ac-
tions (corresponding to upgrading Link-A-1, Link-A-2, and Link-C-3) are added
to the action set, A, of the MDP that was constructed previously. Moreover,
assume that the architect has a cost constraint so that only two links can be
upgraded. Therefore, in this case we obtain a CMDP, where the cost of up-
grading the links is expressed by the cost function d (Section 2). Algorithms
for �nding optimal policies in the case of CMDPs exist but are complicated [2].
Fortunately, our problem is easier because the decisions to upgrade the links are
static, i.e., do not depend on the state of the system. In this case the optimal
decision can be found by solving an auxiliary integer programming problem.
With each of the three links Link-A-1, Link-A-2, and Link-C-3 we associate 0-1
variables xA1, xA2 and xC3. Intuitively, xA1 = 1 indicates that Link-A-1 has
been upgraded. Now the worst case reliability is a function of xA1, xA2, and
xC3. We denote this by Rel(xA1; xA2; xC3). Our aim is to maximize the worst
case reliability Rel(xA1; xA2; xC3) subject to the constraint that at most two
links can be upgraded, i.e.,

xA1 + xA2 + xC3 � 2

This is a non-linear integer programming problem. Although the problem in its
full generality is hard, several heuristics for solving these class of problems have
been studied [16]. For our example, Figure 4 lists the worst-case reliability for
the three possible cases. It is clear that the best option is to upgrade Link-A-1
and Link-C-3.

xA1 = 1 and xA2 = 1 7
16

xA1 = 1 and xC3 = 1 39
64

xA2 = 1 and xC3 = 1 9
16

Figure 4: Table of Three Cases

6 Status

We built a tool Trishul based on the ideas presented in this paper. We im-
plemented all the basic algorithms. We are �nishing the graph visualization
component and a customized editor.

17

We also �nished two major case studies: an extended banking system and a
bond trading oor. Our model of the banking system is much more complicated
than the simpli�ed example presented in this paper. For example, we handle
protocols such as Fedwire and SWIFT (used for transfer of funds and transmit-
ting �nancial messages respectively) that we did not show here2. The entire
banking system model is about 2,000 lines of NuSMV code. The scenario graph
has about 25,000 nodes and computing reliability and latency takes only a few
minutes.

We also modeled and analyzed the system architecture of a bond trading
oor of a major investment company in New York 3. The model is about
10,000 lines of NuSMV code and has about 100 state variables. Our tool found
several attacks. Two of these attacks were considered serious by the architects.
One attack enabled a junior trader to acquire a head trader's password. The
second attack enabled a junior trader to obtain sensitive information from the
company's database, i.e., a junior trader could �nd out the nature of the pending
trades. Not surprisingly, we gained valuable experience during this case study.
The most cumbersome part of the modeling process was the fault injection phase
because the nature of the faults injected was heavily dependent on the security
policies and technologies deployed at that node. We plan to automate the fault
injection process in the near future.

7 Related Work

Survivability is a fairly new discipline, and viewed by many as distinct from the
traditional areas of security and fault-tolerance [7]. The Software Engineering
Institute uses a method for analyzing the survivability of network architectures
(called SNA) and conducted a case study on a system for medical information
management [8]. The SNA methodology is informal and meant to provide gen-
eral recommendations of \best practices" to an organization on how to make
their systems more secure or more reliable. In contrast, our method is for-
mal and leverages o� automatic veri�cation techniques such as model checking.
Other papers on survivability can be found in the Proceedings of the Information

Survivability Workshop [10].
Research on operational security by Ortolo, Deswarte, and Kaaniche [13] is

closest to Step 4 of our method. Their attack state graphs are similar to our
scenario graphs. However, since we use symbolic model checking to generate
scenario graphs, represented by BDDs, we can handle extremely large graphs.
Moreover, in our method a scenario graph corresponds to a particular service;
in contrast their graph corresponds to a global model of the entire system. We
are currently investigating how to incorporate concepts and analysis techniques
presented in their paper [13]. into our method.

Fault injection is a well-known technique in the fault tolerance community.

2We thank Joe Ahearn of CSFB for clarifying the details of these two protocols.
3Due to the propriety nature of the case study we are in the process of \sanitizing" the

model so we can publish the results at a later date.

18

We allow the designer to specify any kind of fault, and thus we can consider a
wider class of faults. Moreover, we allow fault events to be dependent and thus
can model correlated attacks. Computing reliability is also not new. There is a
vast amount of literature on verifying probabilistic systems and our algorithm
for computing reliability draws on this work [6]. The novelty in our work is the
systematic combination of di�erent techniques into one method.

8 Summary of Contributions and Future Work

Survivability has become increasingly important with society's increased depen-
dence on critical infrastructures run by computers. In this paper, we presented
in a single framework a systematic method for analyzing a networked system
for survivability. A fundamental contribution of our work is to use constrained
Markov Decision Processes as the sole underlying mathematical model for this
framework. A second contribution is the natural integration of a set of analy-
sis techniques from disparate communities into this framework: model checking
(popular in computer-aided veri�cation) , Bayesian network analysis (popular
in arti�cial intelligence), probabilistic analysis (popular in hybrid systems and
queueing systems), and cost-bene�t analysis (popular in decision theory). In
combination, these techniques let us provide a multi-faceted view of the net-
worked system. This holistic view of a system is at the core of achieving surviv-
ability for the system's critical services.

There are several directions for future work. First, we plan to �nish the
prototype tool that supports our method. We are working on several case stud-
ies, including protocols used in an electronic commerce system. Since for real
systems, scenario graphs can be very large, we plan to improve the display and
query capabilities of our tool so architects can more easily manipulate its out-
put. Finally, to make the fault injection process systematic, we are investigating
how best to integrate operational security analysis tools such as COPS [9] into
our method.

References

[1] Nusmv: a new symbolic model checker. http://afrodite.itc.it:1024/ nusmv/.

[2] E. Altman. Constrained Markov Decision Processes. Chapman and Hall,
1998.

[3] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scien-
ti�c, 1995.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., C-35(8):677{691, Aug. 1986.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

19

[6] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri-
�cation. Journal of ACM, 42(4):857{907, 1995.

[7] R. Ellison, D. Fisher, R. Linger, H. Lipson, T. Longsta�, and N. Mead.
Survivable network systems: An emerging discpline. Technical Report
CMU/SEI-97-153, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, November 1997.

[8] R. Ellison, R. Linger, T. Longsta�, and N. Mead. Survivability network
system analysis: A case study. IEEE Software, 16/4, July/August 1999.

[9] D. Farmer and E. Spa�ord. The cops security checker system. In Proceed-

ings Summer Usenix Conference, 1990.

[10] In Information Survivability Workshop, ISW, October 1998.
http://www.cert.org/research/isw98.html.

[11] J. Knight, M. Elder, J. Flinn, and P. Marx. Summaries of three criti-
cal infrastructure applications. Technical Report CS-97-27, Department
of Computer Science, University of Virginia, Charlottesville, VA 22903,
December 1997.

[12] N. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized
distributed algorithms. In Proceedings PODC, pages 314{323, 1994.

[13] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative
evaluation tools for monitoring operational security. IEEE Transactions on

Software Engineering, 25/5:633{650, Sept/Oct 1999.

[14] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.

[15] A. Pnueli. A temporal logic of concurrent programs. Theoretical Comput.

Sci., 13:45{60, 1981.

[16] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998.

20

