
Space Issues in Compiling with

Intersection and Union Types

Allyn Dimock

Harvard University

dimock@das.harvard.edu

Ian Westmacott

Boston University

ianw@bu.edu

Robert Muller

Boston College

muller@cs.bc.edu

Franklyn Turbak

Wellesley College

fturbak@wellesley.edu

J. B. Wells

Heriot-Watt University

jbw@cee.hw.ac.uk

Je�rey Considine

Boston University

jconsidi@bu.edu

September 2, 2000

Abstract

The CIL compiler for core Standard ML compiles whole programs using the CIL typed intermediate

language with ow labels and intersection and union types. Flow labels embed ow information in the

types and intersection and union types support precise polyvariant type and ow information, without

the use of type-level abstraction or quanti�cation.

Compile-time representations of CIL types and terms are potentially large compared to those for

similar types and terms in systems based on quanti�ed types. The listing-based nature of intersection

and union types, together with ow label annotations on types, contribute to the size of CIL types.

The CIL term representation duplicates portions of the program where intersection types are introduced

and union types are eliminated. This duplication makes it easier to represent type information and to

introduce multiple representation conventions, but incurs a compile-time space cost.

This paper presents empirical data on the compile-time space costs of using CIL. These costs can

be made tractable using standard hash-consing techniques. Surprisingly, the duplicating nature of CIL

has acceptable compile-time space performance in practice on the benchmarks and ow analyses that we

have investigated. Increasing the precision of ow analysis can signi�cantly reduce compile-time space

costs. There is also preliminary evidence that the ow information encoded in CIL's type system can

e�ectively guide data customization.

1 Introduction

Recent research has demonstrated the bene�ts of compiling with an explicitly typed intermediate language

(TIL) [Mor95, PJ96, TMC+96, PJM97, JS98, BKR98, TO98, FKR+99, CJW00, MWCG99, WDMT0X].

One bene�t is that explicit types can be used in compiler passes to guide program transformations and

select eÆcient data representations. Another advantage of using a TIL is that the compiler can invoke its

type checker after every transformation, greatly reducing the possibility of introducing errors. If strongly

typed intermediate languages are used all the way through the compiler to the assembly level (something we

do not yet do), the resulting object code is certi�ably type safe [Nec97, MWCG99]. Furthermore, types that

survive through the back end can be used to support run-time operations such as garbage collection [Tol94]

and run-time type dispatch [Mor95].

The bene�ts of using a TIL are not achieved without costs, which include the space needed to represent

the types at compile-time, the time to manipulate the types at compile-time, and the added complications

of transforming types along with terms. This report focuses on the compile-time space cost.

Using a naive type representation can incur huge space costs, even if types are only used in the compiler

front end for initial type checking. In the worst case, the tree representation of types in Standard ML (SML)

programs can have size doubly exponential in the program, and the DAG representation can be exponential

1

in the program size [Mit96]. Although we are mainly concerned with ordinary programs where the worst

case space complexity is not experienced, these ordinary programs often have types with impractically

large tree representations but acceptable DAG representations. So in practice, DAG representations of

types and other techniques are necessary to engineer types of tractable size. For example, the SML/NJ

compiler's FLINT intermediate language uses hash-consing, memoization, explicit substitutions, and de

Bruijn indices to achieve space-eÆcient implementation of types [SLM98]. The TIL compiler achieves type

sharing by binding all types to type variables, and then performing dead code elimination, hoisting and

common subexpression elimination on the types [Tar96, pp. 217{219]. The compiler must then preserve type

bindings across transformations, or else repeat the type-sharing transformations. Tarditi reports that the

representation size increase imposed by using types in TIL averages 5.15 times without this sharing scheme,

but only 1.93 times with sharing.

We have constructed a whole-program compiler for core SML based on a typed intermediate language

we call CIL1 Unlike FLINT and TIL, CIL has three features that make compile-time space issues potentially

more challenging to address than in other typed intermediate languages:

1. Listing-based types: The CIL type system can encode polyvariant ow analyses using polyvariant

ow types where labels on type constructors provide ow information and intersection and union types

provide polyvariant analysis. Intersection and union types can be viewed as �nitary (listing-based)

versions of in�nitary (schema-based) universal and existential types. For example, CIL uses

�id � ^ff1 : int��! int; f2 : real��! realg

to represent the SML type 8�:�! � instantiated at types int and real. Encoding polyvariant analyses,

which analyze a function multiple times relative to di�erent contexts of use, can introduce components

of intersection and union types that di�er only by ow information. For instance, when encoding

polyvariance, an innocuous type like int! int can balloon into something like:

_fg1 : int�
f1g
���
f3;4g
! int; g2 : ^fh1 : int�

f2g
��
f3g
! int; h2 : int�

f2g
��
f4g
! intgg.

In the notation � ���

! � , the annotation

�
 is a ow bundle in which � (resp.) conservatively approx-

imates the sites in a program that can be sources, or introduction points (resp. sinks, or elimination

points) for the values of a ow-annotated type.

Intersection and union types have several advantages over universal and existential types as a means

of expressing polymorphism [WDMT0X]: (1) by making usage contexts apparent, they support ow-

based customizations in a type-safe way; (2) �nitary polymorphism can type more terms than in�nitary

polymorphism; and (3) the listing-based nature of �nitary types avoids some complications in repre-

senting and manipulating quanti�ed types (see section 2.2). There is a space cost for these bene�ts:

the listing-based nature of �nitary types, in combination with ow annotations encoding �ner grained

types, can lead to CIL types are are much larger than those expressed via in�nitary types.

2. Duplicating term representations: CIL represents the introduction of intersection types by a

virtual record | a term that explicitly lists multiple copies of the same component term that di�er

only in their ow type annotations. For example, here is a CIL term that has the type �id de�ned

above:

^(f1 = �xint:x; f2 = �xreal:x).

Similarly, CIL represents the elimination of union types by a virtual case expression | a term that

explicitly lists multiple type-annotated versions of the same untyped term. Because it makes copies

of terms that di�er only in type annotations, we call CIL a duplicating representation. An advantage

of the duplicating approach is that type information for guiding customization decisions is locally

accessible in each copy of a duplicated term. An obvious disadvantage of this representation is the

duplicated term structure, which is potentially much larger than the more compact introduction and

elimination forms used for universal and existential types.
1\CIL" is an acronym for \Church Intermediate Language". The authors are members of of the Church Project

(http://www.cs.bu.edu/groups/church/) which is investigating the application of intersection and union types in compiling
higher-order typed languages.

2

3. Closure types exposing free variable types: CIL does not have universal or existential types

because these hide important information about contexts of use and encourage uniform data represen-

tations rather than customized ones [WDMT0X]. Assuming whole-program compilation, the �nitary

polymorphism a�orded by ow types is suÆcient to compile SML programs. In this respect, the CIL

SML compiler is similar to monomorphizing whole-program compilers [TO98, BKR98, CJW00]. How-

ever, existential types are particularly useful for abstracting over di�erences in free variables that are

exposed in typed closure representations for functions of the same source type [MMH96, MWCG99,

CWM98]. In the CIL compiler, these di�erences are reconciled by injecting the types of closures into a

union type and performing a virtual case dispatch at the application site [DMTW97]. In a type-erasure

semantics, these injections do not give rise to any run-time code. However, they can potentially cause

a blowup in compile-time space when many functions with di�erent free variables ow together.

Our approach to closure conversion is similar to that used by TIL-based compilers that remove higher-

order functions via defunctionalization [TO98, CJW00]. These maintain type correctness during

closure conversion by injecting closures with di�erent free variables that ow to the same application

site into a sum-of-product datatype, and performing a case analysis on the constructed value at the

application site. As in the CIL compiler, these compilers use ow analysis to customize the closure

datatypes for particular application sites. However, these ow analyses are not integrated into the

type system, and there is no distinction between virtual closure structures (which exist solely for the

purpose of type checking) and real closure structures (which will survive in the run-time code).

Taken together, listing-based types, duplicating term representations, and closure types that expose free

variable types raise the specter of compile-time space explosion at both the term and the type level. However,

preliminary experiments with a small benchmark suite indicate that standard hash-consing techniques are

able to keep the size of CIL types and terms tractable.

The main contribution of this paper are the following two observations:

1. Duplicating term representations are practical: Our experiments show that, for the ow analyses

that we have investigated, the space required for CIL terms in our benchmarks is always within a factor

of two of (and usually signi�cantly closer to) our estimate of a minimal size for a non-duplicating TIL.

This result is surprising, since we and many others expected the duplicating term representation to

have a signi�cantly higher space cost.

Before we obtained these results, we expected that it would be essential to develop a non-duplicating

term representation in which a single term schema somehow contains multiple ow type annota-

tions. For example, using the notation of [Pie91], �id could be expressed as something like: for � 2

fint; realg:�x�:x. Although this notation is more compact, it makes type information less accessible

and can be tricky to adapt to more complex situations [WDMT0X]. We have made preliminary investi-

gations into other representations, e.g., one based on the skeletons and substitutions of [KW99]. Based

on the empirical results presented here, we believe that developing a non-duplicating representation of

CIL may be not critical (though it may still be worthwhile). However, it remains to be seen whether

these results hold up in the presence of more polyvariant ow analyses.

2. Finer-grained ow analyses yield smaller types and terms: Our experiments indicate that

increasing the precision of ow analysis can signi�cantly reduce the compile-time space cost for CIL

ow types. Benchmarks require the most compile-time space for the least precise type-respecting ow

analysis (one that assumes that any function with a given monomorphic type can ow to any call site

applying a function with this type). This imprecision leads to union types for closures that are much

larger than necessary. More precise ow analyses can substantially reduce the size of these closure

types.

Flow analysis has similarly been used to reduce the size of closure types in monomorphizing and de-

functionalizing TIL compilers [TO98, CJW00]. However, previous work has not quanti�ed the bene�ts

of using ow analysis in this context nor studied the e�ects of di�erent ow analyses on compile-time

space.

In addition to our results about the tractability of compile-time space in the CIL compiler, we have

preliminary evidence that the compiler may be able to achieve one of its main design goals: avoiding

3

representation pollution when choosing customized data representations. Representation pollution occurs

when a source form is constrained to have an ineÆcient representation because it shares a sink with other

source forms using the ineÆcient represention. A complementary phenomenon occurs with pollution of sink

representations.

As an example of representation pollution, as well as some other issues that arise in a compiler based on

CIL, consider compiling the SML-like source term:

let f int!int = (�xint:x � 2)

in let gint!int = (�yint:y + aint)

in �
�
f @ 5; (if bbool then f else g) @ 7

�

In addition to several other forms, the above term contains two abstractions and two applications (de-

noted by the @ symbol). The abstraction (�xint:x � 2) ows to both application sites while the abstraction

(�yint:y + aint) ows only to the rightmost application site.

The diagram in �gure 1 gives an abstract depiction of a CIL compiler intermediate representation of the

above term that might emerge from the Type Inference / Flow Analysis (TI/FA) stage of the compiler.

V�
�1f3gx

int:x � 2; �1f4gx
int:x � 2

�
(�2f4gy

int:y + aint)

�^1 2 coerce

�
int�

f1g
��f4g! int; int�

f1;2g
���f4g! int

�
(�^2 2) coerce

�
int�

f2g
��f4g! int; int�

f1;2g
���f4g! int

�
2

2 @
f1g
3 5 if bbool then 2 else 2 2 @

f1;2g
4 7

Figure 1: A possible result of Type Inference / Flow Analysis.

The TI/FA stage (described in more detail in section 2.3) computes an approximation of the ow of values

between sources and sinks in the input term and represents the analysis in the output typing. The CIL

representation of the source term (�xint:x � 2) is a virtual tuple2 of the form:

^�
�1f3gx

int:x � 2; �1f4gx
int:x � 2

�

which contains one copy of the function for each of its consumption sites. The terms of the form (�^i 2) are

virtual tuple projections which select the ith component of a virtual tuple.

Although the duplicate components of a virtual tuple consume space at compile-time, they will share the

same run-time representation, and no space needs to be allocated for the virtual tuple at run-time. If the

compiler elects to customize the representations of the components of a virtual tuple, the virtual tuple will

be rei�ed into a real tuple that is explicitly represented in the run-time code. The compiler is designed so

that reifying virtual forms is type-safe.

The type of the �rst component of the virtual tuple is the type required for the function position of the

application site to which the function ows. The type on the second component of the virtual tuple does not

match that required at its application site so this component must be coerced to the correct type somewhere

along the ow path to the application site.

As representation decisions are made during subsequent stages of compilation, further duplication may

occur. Figure 2 depicts a possible output of the Flow Separation stage. This stage (described in more detail

in section 2.3) may introduce virtual forms wherever a function type needs to be transformed into multiple

representation types. In �gure 2, the Flow Separation stage has split the application site (2 @
f1;2g
4

7) into

two applications sites (h @
f1g

4
7) and (h @

f2g

4
7). These applications occur within a virtual case expression.

The functions formerly owing to the single application site are now injected into a union type. These virtual

variants both ow to the discriminant position of the virtual case expression. The virtual case dispatches on

the type of the discriminant to one of the two duplicate applications.

2A virtual tuple can be considered a virtual record whose �eld names are integers.

4

V�
�1f3gx

int:x � 2; �1f4gx
int:x � 2

�
�2f4gy

int:y + aint

�^1 2 �^2 2 if bbool then (in_1 2)
�
else (in_2 2)

�

2 @
f1g
3 5 case_2 bind h as (int�

f1g
��
f4g
! int)) h @

f1g

4
7;

(int�
f2g
��
f4g
! int)) h @

f2g

4
7

where � =
_h

int�
f1g
��f4g! int; int�

f2g
��f4g! int

i
.

Figure 2: A possible result of Flow Separation.

As with source splits, this kind of sink duplication has important consequences for the amount of space

consumed at compile-time. If the virtual variants and virtual case expressions are rei�ed in a subsequent

stage then this duplication will also have important consequences for the amount of space required for the

emitted object program. Observe that the sink duplication introduced by Flow Separation has eliminated

the need for both of the coercions present in �gure 1 and will usually reduce the sizes of ow sets. In general,

there are many trade-o�s between the amount of virtual duplication and subtype coercion. The trade-o�s

are very sensitive to the granularity of the ow analysis and to the representation customization strategy.

Our preliminary analysis indicates that a large percentage of virtual forms are rei�ed. This suggests

that the compiler is being e�ective at reducing representation pollution. However, this may be an artifact

of the \oversplitting" behavior of our current rei�cation algorithm. More work is necessary to evaluate the

customization capabilities of the CIL SML compiler. In a future report we expect to present a detailed study

of the run-time consequences of compiling with polyvariant ow types.

The remainder of this paper is organized as follows. Section 2 provides an overview of the CIL compiler

for SML, section 3 presents space-related measurements for several standard benchmark programs at various

phases of compilation, and section 4 summarizes our conclusions and describes future work.

2 An Overview of the CIL Compiler

2.1 The Intermediate Language

To implement the features of core SML, CIL, extends the purely functional �CIL-calculus [WDMT0X] with

primitive datatypes, references, arrays, and exceptions. The syntax and typing rules of CIL are summarized

in appendix A. Although CIL is based on the �CIL-calculus, CIL itself is not a calculus. We have implemented

a semantics for CIL, but we have not written its formal counterpart. While we have proven formal properties

like standardization, subject reduction, and type soundness for �CIL-calculus, we have not yet established

any of these properties for CIL.

2.2 Type and Term Representations

To keep the space used storing types to a reasonable level, the CIL compiler uses hash-consing to represent

types as compact directed acyclic graphs instead of as trees. This is similar to the type representation in

the SML/NJ compiler's implementation of its FLINT intermediate language [SLM98]. One important issue

faced in FLINT is not an issue for CIL. FLINT types have higher-order features such as abstractions and

applications, i.e., a �-calculus inside the types. Because FLINT types are identi�ed modulo �-conversion,

and because eager �-normalization of types can lose sharing and do excess work, the hash-consing scheme for

FLINT types uses explicit substitutions [KR95] and a fancy memoization of substitution propagation steps.

Unlike FLINT, the CIL types do not have such higher-order features, so the CIL hash-consing of types is

simpler.

5

Sets of ow labels are often used by many types and/or terms. A single copy of each set is shared by

all uses. Using the duplicating representation for terms, two CIL term occurrences are rarely structurally

equivalent, so we do not use hash-consing for terms. However, the types and ow sets annotating terms are

hash-consed, as described above.

2.3 Compiler Architecture

The architecture of the CIL compiler, which has been presented previously [DMTW97], is summarized in

Figure 3. This section briey describes the compilation stages depicted in the �gure.

MLton

Defunctorizor

SML/NJ

Front End

FLINT

To CIL

Type/Flow

InferenceSML

Core

SML FLINT

Untyped

CIL CIL

Representation

Choices

Flow

Separation

Split

Rei�cation

Representation

Transformation

Code

Generation

(MLRISC)CIL CIL CIL CIL SPARC

�R

FS
�R

ST
R

Figure 3: Compiler Architecture.

Front End

In implementing the compiler, we took advantage of existing tools and other freely available SML compilers.

The CIL compiler uses the MLton source-to-source defunctorizesr [CJW00] as a prepass to convert SML

into Core SML. It then uses the front end of the SML/NJ 110.03 compiler (somewhat modi�ed) to produce

FLINT code. The FLINT code is translated to untyped CIL code, keeping datatype information on the side

to avoid reinference of recursive types.

Type Inference / Flow Analysis

The TI/FA stage accepts an untyped CIL term (plus some of the FLINT type information) as input and

returns a typed CIL term as output. The typed term encodes a ow analysis that is a conservative ap-

proximation of the run-time ow. The TI/FA module supports ow analyses that vary with respect to the

precision of the approximation.

To date, we have implemented six di�erent ow analyses. In this paper, we present data from two of

these: what we call typed source split and min type respecting. The typed source split analysis is an variant

of Banerjee's [Ban97] which gives precision similar to the combination of monomorphization and \simple"

ow analysis (a la [Hen92]) used in [TO98]. It introduces virtual tuples and virtual projections but neither

virtual variants nor virtual case forms.

The min type respecting analysis is the least precise ow analysis that is still type correct (cf. [JWW97]).

It conates the ow information on all values of the same ow erased type. For example, an abstraction of

type int ! int will be assumed to ow to every application site whose rator has this type. This analysis

models a monomorphizing compiler in which types carry no useful ow information.

We have also implemented a �ner analysis that splits on some variable occurrences. The other analyses

range in precision between the typed source split and min type respecting.

Representation Choices

The representation choices stage selects representations for a function that are adequate for each of the appli-

cation sites to which it ows. Four di�erent function representation choice strategies have been implemented.

6

The uniform strategy represents all functions with closure records of the type

�fcode : farg : �arg; env : �envg ! �body; env : �envg;

where the code �eld contains a closed one-argument function and the env �eld contains a record of the values

of the free variables of the function. A closure data structure is applied to an argument by projecting both

�elds from the closure record and applying the function from the code �eld to an argument record consisting

of (the closure conversion of) the actual argument packaged together with the projected environment.

The other three representation strategies generate specialized representations based on various conditions

detected in the term structure. Steckler and Wand [WS94] coined the term \selective" representation to refer

to representations of functions that do not include an environment component. A selective representation is

adequate for a closed function if the function ows only to call sites with compatible application protocols.

In [WS94], selective representations were disabled in the presence of representation pollution | i.e., when a

closed function shared a call site with some number of open functions.

The selective sink splitting strategy implemented in the CIL compiler generates a selective representation

when the function has no free variables. This representation is called \sink splitting" because if the function

shares call sites with open functions, the transformation framework will inject the function representations

into a sum type and the application site will be split into multiple sites governed by a case dispatch.

The selective source splitting strategy generates a selective representation for a closed function owing

to call sites that are not shared with open functions. Under this strategy, if a closed function shares some

application sites with other closed functions but shares other application sites with open functions, then

the framework will \split the source" by generating a record containing several copies of the function. The

appropriate representations are projected from the record somewhere along the ow path to the respective

call sites.

The �nal representation strategy inlines (possibly open) functions at the call site. The inlined represen-

tation of a function consists of the record containing the values of the function's free variables. It is possible

to specify many di�erent inlining heuristics. Currently, the inliner will select an inlined representation for

any non-recursive function owing to two or fewer call sites.

Flow Separation

The Flow Separation (FS) stage accepts as input a typed program and a ow-path-partitioning function.

The latter is supplied by the representation choices stage. It speci�es which ow paths can coexist in the

same ow bundles. For ow paths that cannot coexist in the same bundle, the Flow Separation phase will

introduce whatever coercions and virtual forms (i.e., union injections, case-unions, virtual tuples or virtual

tuple projections) are required to ensure that the result of the transformation will be well-typed. The Flow

Separation algorithm is speci�ed in [DMTW97].

Split Rei�cation

The Split Rei�cation (SR) phase accepts as input a typed term and a ow-path-partitioning function. This

phase rei�es whatever virtual forms are required to ensure that the result of the transformation is well-typed.

We refer to the rei�cation process as splitting as it causes the code generator to generate multiple copies

of a term, where without rei�cation, only one copy would have been produced. In general, the current

simple algorithm may split more than is necessary. Specifying and implementing a more eÆcient splitting

algorithm remains for future work.

Representation Transformation

The Representation Transformation (RT) stage accepts as input a typed term and a representation map

provided by the representation choices stage. It walks the term and installs the function representations

speci�ed by the map. One interesting aspect of the transformation is that the result of the transformation

may have a recursive type even though the source of the transformation has no recursion in either terms or

types.

7

Code Generation

The CIL compiler back end transforms typed CIL programs into assembly code for the SPARC processor.

It does not currently add any type annotations, or assertions, to the assembly code. The produced assembly

code is linked with a runtime library providing the environment in which CIL programs are executed. The

back end is based on MLRISC, a framework for building portable optimizing code generators [Geo97]. CIL

programs are translated into the MLRISC intermediate language, and the framework is specialized with CIL

conventions for each target architecture.3 MLRISC handles language-independent issues such as register

allocation and code emission.

The runtime library is written in C and provides memory management, exception handling, basis func-

tions and a foreign function interface for CIL programs at runtime. The runtime library currently manages

memory using the Boehm-Demers conservative garbage collector for C [Boe93]. CIL programs use stack-

allocated activation records, which have a layout similar to C stack frames. Basis functions are called through

the foreign function interface, which provides data and activation record conversions between CIL and foreign

languages.

CIL data representations are straightforward. Records, arrays, references, and strings are heap-allocated

and include size headers4. Exception identi�ers and all other constants are immediate. Injections may either

be immediate or heap allocated, depending on the number and type of summands in their type.

Recursive bindings are restricted to values, as de�ned in �gure 6 (see Appendix A). The extended notion

of value presented there ensures that terms bound to variables in recursive de�nitions can not diverge,

a�ect the store, or raise exceptions. Although input programs must adhere to SML restrictions on recursive

de�nitions (because we use the SML/NJ elaborator), compiler transformations may (and do) create recursive

de�nitions which bind extended values to variables. The extended value restriction allows the code generator

to use a two phase algorithm for recursive bindings: The �rst phase allocates memory for the values, while

the second phase �lls them in. The code generator does not yet optimize tail recursion.

3 Representation Measurements

Our interest in this paper is to determine whether CIL has acceptable compile-time space costs and to

evaluate how ow analysis and representation strategy combinations a�ect these costs. In this section we

present data indicating that CIL is tractable as a compiler intermediate language when used in conjunction

with a reasonably �ne-grained ow analysis.

3.1 Space Pro�les

We have tested the CIL SML compiler for most combinations of ow analyses and function representation

strategies on 23 kernels and small benchmarks taken from the O'Caml, TIL and SML/NJ benchmark suites.

In �gures 4 and 5, we present space pro�les for �ve representative benchmarks for two ow analyses and two

function representation strategies. We show data for the uniform function representation strategy to indicate

the amount of data needed to correctly closure convert functions without customizing representations. We

show the selective sink splitting strategy as an example of a strategy that customizes function representations.

The typed source splitting ow analysis is currently our most accurate analysis that does not split on variable

occurrences. The min type respecting ow analysis is included to show size bloat that can occur when ow

analysis provides no information beyond the type.

Each space pro�le shows intermediate representation size information at various CIL compiler stages.

The legend in Figure 4 explains how to interpret the data. Of particular importance is the position of the

horizontal tick mark found in the portion of the white bar representing the term size. The portion of the

white bar below the tick mark is our conservative estimate of the space that might be required for a non-

duplicating representation of the term. The position of the horizontal tick mark is computed as the term

size ignoring all but the leftmost branches of virtual records and virtual case expressions. Virtual record

3Although an advantage of the MLRISC framework is its portability, it still requires substantial work to port a code generator
based on MLRISC. For this reason we have concentrated only on the SPARC architecture to date.

4Such headers are currently unnecessary since we use conservative GC. But it is expected that in the future we will develop
customized memory management.

8

Strategy: uniform Strategy: selective sink splitting

FA: typed source split FA: min type respecting FA: typed source split FA: min type respecting

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: life. Vertical scale: 1,321,882 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: quad. Vertical scale: 65,831 bytes.

Legend:
Tick mark | at minimum size for

a non-duplicating representation.
F=size of FLINT code.
U=size of untyped CIL.
I =size of result of Type Inference / Flow Analysis.
S =size of result of Flow Separation.
R=size of result of Split Rei�cation.
T=size of result of Representation Transformation.
O=size of SPARC .o �le

=Size of term.

=Size of types.

=Size of strings and string lists.

=Size of label sets.

=Size of term and types for F.

Figure 4: Sizes of benchmark phases by strategy and ow analysis I

nodes and virtual case nodes are included in the count because they serve as markers for intersection type

introduction and union type elimination points. We assume that such markers would be required in any

non-duplicating representation. Virtual projection and virtual injection nodes and included to approximate

(resp.) the markers required for intersection type elimination and union type introduction forms. Finally,

the count also includes coercion nodes.5

The size information was gathered by adding a function to the SML/NJ runtime system which runs the

mark stage of the SML/NJ garbage collector using a particular object as the root. The function reports the

size of all marked objects that are reachable from the root object. We present all size information in bytes

rather than in type or term constructor nodes. We �nd that the average size of our type nodes and of our

term nodes for a given benchmark is generally in the range of 10 to 12 times the size of a machine word.

5An even more conservative approximation of the space required for a nonduplicating representation would be the size of
the type-erased term. We believe that this is unrealisitically small.

9

Strategy: uniform Strategy: selective sink splitting

FA: typed source split FA: min type respecting FA: typed source split FA: min type respecting

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: frank. Vertical scale: 6,422,539 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: �t. Vertical scale: 424,640 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: boyer2. Vertical scale: 1,930,314 bytes.

Figure 5: Sizes of benchmark phases by strategy and ow analysis II

3.2 Interpretation of the Space Pro�les

Interpreting the size of the untyped term

In most cases the untyped CIL code, U, is slightly larger than the typed FLINT code, F. This is due in part

to the fact that the CIL representation carries more information about records and datatypes than does the

FLINT representation. Of the benchmarks and kernels that we show, quad takes less space for untyped CIL

than for FLINT ; in all other cases the untyped CIL code is larger than the FLINT code.

The F and U columns are not quite comparable for several reasons. The F column overestimates the

size of the FLINT code in the sense that it includes the size of FLINT type information. FLINT and CIL

also di�er in terms of which basis functions are compiled with the program and which are pre-compiled in

the run-time system.

Columns F andU are independent of the ow analysis or the function representation strategy, but appear

in multiple graphs as reference points.

Interpreting the output of the Type Inference / Flow Analysis Stage

Column I shows the size of the typed and owed term output from the TI/FA stage. As illustrated by the

representative space pro�les, the TI/FA pass can expand the size of the term by introducing virtual nodes.

10

In monomorphic benchmarks, (e.g., boyer2, �t, and frank), term size is only increased by the addition

of coerce forms that indicate where subtyping is used. In benchmarks with polymorphic functions (e.g.,

life, and quad), the TI/FA stage makes one virtual copy (using ^) of each polymorphic function at each

ow-erased type at which the function is used.

In the two ow analyses shown, the distance of the tick mark from the top of the I bar reects the amount

of type polymorphism in the benchmark. In general, the tick mark indicates the amount of polyvariance of

the analysis, which, for some analyses, may be substantial even for monomorphic code.

Interpreting the output of the Flow Separation Stage

Column S shows the size of the output from the FS stage. The FS stage introduces whatever new virtual

constructs are required to ensure that the result of the (later) RT stage will be well-typed. For example,

abstractions that share a call site may have the same type, up to ow information, after the TI/FA stage,

but may di�er from each other in the number, name and types of free variables. The FS stage must create

types that di�er in structure as well as in ow information for these di�erent terms.

Under the uniform strategy, the growth in size from I to S is due only to di�erences in the environment

component of closures { di�erences that will not be reected in the object code. In other strategies, some of

the growth may be due to function representations that require di�erent object code.

The growth in size from I to S depends on the accuracy of the ow analysis. In the min type respecting

ow analysis, the labels for all abstractions of a given (ow erased) type appear in the source label set for

each application site for that type. This requires the ow separator to introduce larger intersection and union

types, and to perform more virtual term duplication than would be required for a �ner ow analysis. This

is seen consistently throughout the data, with frank being the most dramatic example, and boyer2 being

the least dramatic. The growth in frank is due to a large number of curried (and higher-order) functions {

implying open functions requiring separation due to di�erences in free variables. In boyer2, all abstractions

are closed up to names of known functions6, so there are few free variables requiring separation. Most

abstractions in boyer2 are �rst order, so the number of ow-erased types that the ow separator needs to

convert is much smaller than other programs.

Interpreting the output of the Split Rei�cation Stage

Column R shows the size of the output from the SR stage, which rei�es some virtual constructs | splitting

them to take advantage of di�ering representations. The number of term and type nodes remains the same

because the transformation is merely changing virtual entities to real ones.7

Under the uniform strategy, the S and R columns show identical tick mark positions. This is expected

because we implement only a single function calling convention for the uniform strategy. Under the selec-

tive sink splitting strategy, the position of the tick mark may change upwards due to rei�cation of virtual

constructions: this is what we expect from splittings introduced to circumvent representation pollution and

to insert customized data representations. This is shown most dramatically in quad (a kernel repeatedly

applying a doubling function), in which all virtual constructs are rei�ed. In contrast, the �t benchmark

shows no pollution of function representations when compiled with the selective sink splitting strategy.

If we see even a little rei�cation for a strategy, we know that some part of the transformed program will

use a simpler representation. If this change is in an inner loop, then a single rei�cation may dramatically

a�ect program performance. To determine the e�ectiveness of a strategy, we need to show data about the

performance of the transformed programs | which is outside the scope of this paper.

Our current SR stage is quite simple: If it encounters two di�erent representations in a single virtual

construct, then it converts the virtual construct into the equivalent real construct. Our current splitting

algorithm can oversplit because it rei�es a virtual form whenever it contains components that require di�erent

representations. But given an n-way virtual form whose components require m < n di�erent representations,

the virtual form could be replaced with a real form containing m virtual forms. Oversplitting will result

in unnecessary duplicated code in the object �le. Oversplitting impacts the performance of the generated

6In the current version of the CIL compiler, known function names are treated as free variables. This will improve in future
versions.

7The size of the term component decreases slightly in some pro�les due to assymetries between virtual and real injections
in the current implementation (e.g., life, with strategy = selective sink splitting and ow analysis = min type respecting).

11

code when the m-way real form could be more eÆciently compiled than the n-way form. We have not yet

measured the amount of oversplitting arising from the current algorithm nor have we experimented with

other splitting algorithms.

Output of the Representation Transformation Stage

The type information in a closure converted term is larger than in the pre-converted term. This is visible in

the pro�les for all the benchmarks. Part of this growth is in the creation of types for the required closure

and argument records. Part of this growth is the creation of types for environments. In our framework,

programs with more open terms will experience more growth in types.

The introduction of closure and argument records and the passing of variables in environments causes an

increase in term size. In our implementation of closure conversion, the major increase in term size is from

projections from the environment: our implementation puts in a projection from the environment wherever

a free variable occurs. The creation and destructuring of closure and argument records will show di�erent

percentage e�ects in di�erent benchmarks depending on the relation of the number of abstractions and

applications to other term constructors.

The boyer2 benchmark has the highest ratio of closed to open terms, so its term size grows, essentially,

only by introduction of closure and argument records. In this case the growth in size is relatively small. In

contrast, �t has a high percentage growth.

The ratio of the size of the CIL representation to the size of a non-duplicating TIL can decrease in the

RT stage, but can never increase since types size can only grow, and since no more duplication is introduced

into the term at this stage.

Duplicating vs. nonduplicating intermediate representations

Columns I, S, R and T have tick marks showing a lower bound on the size of a typed and owed term in a

non-duplicating TIL. The position of the tick mark shows that in the benchmark programs presented (and

so far in all benchmarks that we have tried), the space used in CIL's duplicating term representation is never

more than twice our estimate for a non-duplicating representation. This is both surprising and encouraging.

However, it remains to be seen whether these results hold up in the presence of more polyvariant ow

analyses.

Coarse vs. �ne ow analysis

We have shown that the choice of ow analysis can greatly inuence the growth in term size needed to produce

well-typed function representations. The most dramatic example occurring in the benchmark frank, where,

for the uniform function representation strategy the min type respecting analysis resulted in a size after Flow

Separation 4.7 times the size of that produced using the typed source split analysis.

We have accumulated some data so far for a ow analysis using only equality constraints. This analysis is

intermediate in precision between typed source split and min type respecting, and more closely resembles the

former. As expected, pro�les generated using this analysis are intermediate between those for typed source

split than to the pro�les for min type respecting, and quite close to the pro�les for typed source split.

The cost of accurate closure types

The pro�les give us some idea as to the compile space cost of accurately representing closure types. With

uniform function representation and typed source split analysis the growth in size from the output of Type

Inference / Flow Analysis stage to the output of the Representation Transformation stage shows the space

needed for closure types and for virtual cases where multiple closures ow together. This growth ranges

from the size of RT output 1.28 times the size of TI/FA output for boyer2 to 2.86 times for quad. The

ratio of the types sizes is 1.02 for boyer2 and 3.13 for quad. quad is atypical, being a very small program

constructed to have relativly large types.

12

4 Conclusions and Future Work

We have shown that the amount of space used in compiling SML with CIL terms and types is practical

on our benchmarks for the more precise ow analyses that we have investigated. Most importantly, the

term sizes in our straightforward duplicating representation are never more than twice our underestimate of

term sizes using in a non-duplicating representation. Transformations that use type and ow information

on virtual terms to generate customized data representations would be more diÆcult to engineer in a non-

duplicating representation. A factor of less than two in space is acceptable to avoid further complicating the

transformations.

The typical non-trivial growth in size from the result of TI/FA to the result of RT is obviously undesirable,

and might be smaller in an intermediate representation that could hide environment types with an existential

quanti�er. This raises the question of whether the more precise type information calculated in the CIL

without 9 is useful in terms of transforming a program for better run-time performance. If not, we should

extend CIL with existential types.

Although the standard hash-consing technique sketched earlier is the one used to generate the statistics

for this paper, we have almost �nished changing to a new hash-consing scheme, which we expect to give much

better performance. The motivation for the new scheme is due to the combination of (1) the pervasive use of

recursive types in CIL and (2) the fact that the CIL type system identi�es recursive types with the in�nite

trees that result from unwinding them in�nitely. The new scheme represents types as directed graphs and

implements recursion using cycles. This will avoid any lack of sharing of di�erent �-equivalent representations

of recursive types by simply making the variable names go away completely. It will also avoid the need to

have type manipulation special-case the recursion form (which can currently appear anywhere). The new

scheme uses a method of incremental DFA minimization to maintain the invariant that each possible type is

represented by at most one node in the graph. This will allow constant-time type equality checking, which

our current hash-consing scheme does not support due to the possibility of di�ering representations of the

same recursive type.

Our new method of incremental DFA minimization to represent all types in the same graph is similar

to a method suggested by Mauborgne [Mau00], but was developed completely independently. Our method

needs O(n logn) space to store the types, while Mauborgne's needs O(n2 logn) space, where n is the number

of distinct types and some upper-bound on the arity of type constructors is assumed. Also, even in cases

where Mauborgne's method approaches linear space complexity, ours will typically use half as much space.

Encoding more ow analyses in CIL remains an important area for future work. Recent work has shown

that many standard ow analyses, such as k-CFA [Shi91, JW95, NN97] and the cartesian product argument-

based analysis [Age95] can be encoded into a type system with intersection and union types and ow labels

[PP99, AT00]. However, unlike CIL, these type systems have deep subtyping. We are exploring a translation

between deep and shallow subtyping that will allow us to employ these recent theoretical results in the

CIL compiler. We are eager to see how highly polyvariant ow analyses a�ect our results regarding the

duplicating term representation.

There are many areas for improvement in the CIL compiler as a whole. In particular we have developed

the framework for generating customized data representations, but work remains to be done in optimizing

those representations. Several existing algorithms can be more eÆciently implemented, such as the splitting

algorithm. The compiler can bene�t from many standard optimizations not yet implemented, as well as

non-standard ones, such as the complete removal of polymorphic equality. There are also opportunities for

improvement in the representation of the intermediate language. For example, we store record labels in the

terms without any sharing.

Finally, this report has focused only on compile-time space issues. In the future, we expect to report on

compile-time time complexity as well as run-time space- and time-complexity.

References

[Age95] O. Agesen. The Cartesian product algorithm. In Proceedings of ECOOP'95, Seventh European

Conference on Object-Oriented Programming, vol. 952, pp. 2{26. Springer-Verlag, 1995.
[AT00] T. Amtoft and F. Turbak. Faithful translations between polyvariant ows and polymorphic

types. In ESOP '00 [ESOP00], pp. 26{40.

13

[Ban97] A. Banerjee. A modular, polyvariant, and type-based closure analysis. In ICFP '97 [ICFP97].

[BKR98] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java bytecodes. In ICFP

'98 [ICFP98].

[Boe93] H.-J. Boehm. Space eÆcient conservative garbage collection. In Proc. ACM SIGPLAN '93

Conf. Prog. Lang. Design & Impl., pp. 197{206, 1993.

[CJW00] H. Cejtin, S. Jagannathan, and S. Weeks. Flow-directed closure conversion for typed languages.

In ESOP '00 [ESOP00], pp. 56{71.

[CWM98] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in type erasure semantics.

In ICFP '98 [ICFP98], pp. 301{312.

[DMTW97] A. Dimock, R. Muller, F. Turbak, and J. B. Wells. Strongly typed ow-directed representation

transformations. In ICFP '97 [ICFP97], pp. 11{24.

[ESOP00] Proc. European Symp. on Programming, vol. 1782 of LNCS. Springer-Verlag, 2000.

[FKR+99] R. Fitzgerald, T. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi. Marmot: An optimizing

compiler for Java. Technical Report 99-33, Microsoft Research, 1999.

[Geo97] L. George. MLRISC: Customizable and reusable code generators. Technical report, Bell Labs,

1997.

[Hen92] F. Henglein. Simple closure analysis. Technical Report D-193, DIKU, Mar. 1992.

[ICFP97] Proc. 1997 Int'l Conf. Functional Programming. ACM Press, 1997.

[ICFP98] Proc. 1998 Int'l Conf. Functional Programming. ACM Press, 1998.

[JS98] S. L. P. Jones and A. L. M. Santos. A transformation-based optimiser for Haskell. Science of

Computer Programming, 32(1{3):3{47, Sept. 1998.

[JW95] S. Jagannathan and S. Weeks. A uni�ed treatment of ow analysis in higher-order languages.

In Conf. Rec. 22nd Ann. ACM Symp. Princ. of Prog. Langs., pp. 393{407, 1995.

[JWW97] S. Jagannathan, S. Weeks, and A. Wright. Type-directed ow analysis for typed intermediate

languages. In Proc. 4th Int'l Static Analysis Symp., vol. 1302 of LNCS. Springer-Verlag, 1997.

[KR95] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitution. In 7th Int'l

Symp. Prog. Lang.: Implem., Logics & Programs, PLILP '95, vol. 982 of LNCS, pp. 45{62.

Springer-Verlag, 1995.

[KW99] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for �nite-rank intersec-

tion types. In Conf. Rec. POPL '99: 26th ACM Symp. Princ. of Prog. Langs., pp. 161{174,

1999.

[Mau00] L. Mauborgne. Improving the representation of in�nite trees to deal with sets of trees. In ESOP

'00 [ESOP00], pp. 275{289.

[Mit96] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[MMH96] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Conf. Rec. POPL

'96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

[Mor95] G. Morrisett. Compiling with Types. Ph.D. thesis, Carnegie Mellon University, 1995.

[MWCG99] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language.

ACM Trans. on Prog. Langs. and Systs., 21(3):528{569, may 1999.

[Nec97] G. C. Necula. Proof-carrying code. In POPL '97 [POPL97], pp. 106{119.

[NN97] F. Nielson and H. R. Nielson. In�nitary control ow analysis: A collecting semantics for closure

analysis. In POPL '97 [POPL97], pp. 332{345.

[Pie91] B. C. Pierce. Programming with intersection types, union types, and polymorphism. Technical

Report CMU-CS-91-106, Carnegie Mellon University, Feb. 1991.

[PJ96] S. L. Peyton Jones. Compiling Haskell by program transformation: A report from the trenches.

In Proc. European Symp. on Programming, 1996.

[PJM97] S. L. Peyton Jones and E. Meijer. Henk: A typed intermediate language. In Proc. First Int'l

Workshop on Types in Compilation, June 1997.

[POPL97] Conf. Rec. POPL '97: 24th ACM Symp. Princ. of Prog. Langs., 1997.

[PP98] J. Palsberg and C. Pavlopoulou. From polyvariant ow information to intersection and union

types. In Conf. Rec. POPL '98: 25th ACM Symp. Princ. of Prog. Langs., pp. 197{208, 1998.

Superseded by [PP99].

[PP99] J. Palsberg and C. Pavlopoulou. From polyvariant ow information to intersec-

tion and union types. A substantially revised version of [PP98]. Available at

http://www.cs.purdue.edu/homes/palsberg/paper/popl98.ps.gz, Feb. 1999.

14

[Shi91] O. Shivers. Control Flow Analysis of Higher Order Languages. Ph.D. thesis, Carnegie Mellon

University, 1991.

[SLM98] Z. Shao, C. League, and S. Monnier. Implementing typed intermediate languages. In ICFP '98

[ICFP98], pp. 313{323.

[Tar96] D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Compiler

for Standard ML. Ph.D. thesis, Carnegie Mellon University, Dec. 1996.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed

optimizing compiler for ML. In Proc. ACM SIGPLAN '96 Conf. Prog. Lang. Design & Impl.,

1996.

[TO98] A. P. Tolmach and D. Oliva. From ML to Ada: Strongly-typed language interoperability via

source translation. J. Funct. Prog., 8(4):367{412, 1998.

[Tol94] A. Tolmach. Tag-free garbage collection using explict type parameters. In Proc. 1994 ACM

Conf. LISP Funct. Program., pp. 1{11, 1994.

[WDMT97] J. B. Wells, A. Dimock, R. Muller, and F. Turbak. A typed intermediate language for ow-

directed compilation. In Proc. 7th Int'l Joint Conf. Theory & Practice of Software Development,

pp. 757{771, 1997. Superseded by [WDMT0X].

[WDMT0X] J. B. Wells, A. Dimock, R. Muller, and F. Turbak. A calculus with polymorphic and polyvariant

ow types. J. Funct. Prog., 200X. To appear. Supersedes [WDMT97].

[WS94] M. Wand and P. Steckler. Selective and lightweight closure conversion. In Conf. Rec. 21st Ann.

ACM Symp. Princ. of Prog. Langs., pp. 435{445, 1994.

A The Intermediate Language

Before presenting the language, it is important to briey explain some notation. In �gures 6 and 7, the

notation (P (i))ki=j, where P(i) is some expression mentioning i, stands for (P (j); P (j+1); : : : ; P (k�1); P (k)),

where P (x) means the result of replacing the symbol i in P (i) by x. The notations fP(i)gki=j and [P(i)]ki=j
are the same except for using di�erent delimiters. Similarly, the notation 8ki=j : P(i), where P (i) is some

proposition mentioning i, stands for (true ^ P (j) ^ P (j + 1) ^ � � � ^ P (k � 1) ^ P (k)).

Figure 6 presents the syntax of CIL (Church Intermediate Language). There are two levels of language,

untyped and typed, that are related by a notion of type erasure. The untyped language is necessary for

specifying the legality of virtual tuple forms (^(: : :)) and virtual case expression forms (case_), and also for

specifying the semantics of the language (not de�ned here). The syntax begins by de�ning contexts rather

than terms to avoid duplicating the de�nitions to obtain contexts. Contexts are needed to de�ne parallel

contexts and subterm occurrences (not de�ned in this paper), notions necessary in de�ning the semantics of

the language as well as algorithms in the compiler. Untyped terms are de�ned as holeless untyped contexts,

while type-annotated terms are type-annotated contexts whose type erasure is an untyped term.

The untyped contexts include constants (c), variables (x), primitive applications (pr(: : :)), abstractions

(�), applications (@), binding forms (let), recursive binding forms (letrec), record introduction (�), and

elimination (��) forms, variant introduction (�+), and elimination (case+) forms, exception tag creation

forms (newTag), exception introduction (injx) and elimination (casex) forms, and exception raising (raise)

and handling (handle) forms. Terms are identi�ed modulo reordering of �elds in records, bindings in letrec

forms, and clauses in case+ and casex forms. Records must not have two �elds with the same name and

letrec forms must not have two bindings with the same name. The newTag form handles SML exception

generativity by returning a new exception tag each time it is evaluated; these tags are used by the exception

introduction and elimination forms. The set Primop of primitive operators includes standard operators on

base types as well as operators for manipulating reference cells (mkRef , getRef , setRef) and arrays (not

shown).

The set UntValContext is a subset of UntContext designated as syntactic values. These are a

conservative approximation of the semantic values, those terms whose evaluation yields a value (and thus

does not go wrong or raise an exception) without allocating/inspecting/setting a reference cell for any possible

evaluation environment. The letrec form must bind variables only to syntactic values. This restriction is

suÆcient to allow de�ning a semantics for letrec that is consistent with call-by-value evaluation. The

restriction is more lenient than in SML, where let val rec only allows manifest abstractions. This lenience

15

Untyped Syntax

x; y; z 2 Variable c 2 Constant f 2 Field n 2 Nat = f0; 1; 2; : : :g p 2 Pos = Nat� f0g

pr 2 Primop ::= + j < j mkRef j getRef j setRef j : : :

Ĉ 2 UntContext ::= 2 j c j x j pr(Ĉi)
n
i=1 j �x:Ĉ j Ĉ1 @ Ĉ2 j let x = Ĉ1 in Ĉ2 j letrec fxi = D̂ig

n
i=1 in Ĉ

j �(fi = Ĉi)
n
i=1 j �

�
f
Ĉ j �+

f
Ĉ j case+ Ĉ0 bind x in ffi) Cig

p
i=1

j newTag j injx(Ĉ1; Ĉ2) j casex Ĉ0 bind x in fĈi) Ĉ0ig
n
i=1 else Ĉ

0
0

j raise Ĉ j Ĉ1 handle x in Ĉ2

D̂ 2 UntValContext ::= 2 j c j �x:Ĉ j �(fi = D̂i)
n
i=1 j �+

f
D̂ j let x = D̂1 in D̂2 j let x = D̂ in x

j letrec fxi = D̂ig
n
i=1 in D̂ j letrec fxi = D̂ig

n
i=1 in xj where 1 � j � n

M̂; N̂ 2 UntTerm = f Ĉ j 2 does not occur in Ĉ g

V̂ 2 UntValue = f D̂ j 2 does not occur in D̂ g

Syntax Shared between Types and Terms

l; k 2 Label = Nat ? 6= �; � Label

Types

o 2 BaseType ::= unit j int j char j real j : : :

� 2 TypeVariable

� 2 GuardedType ::= o
�

j �1 �

�
�

! �2 j �

�

ffi : �ig

n
i=1 j ^

�

ffi : �ig

p
i=1

j +
�

ffi : �ig

p
i=1

j _
�

ffi : �ig

p
i=1

j ref
�

[�] j exn j xtag

�

[�] j : : :

� 2 UnguardedType ::= � j tletrec f�i = �ig
n
i=1 in � j �

�; � 2 Type = f� j FV(�) = ?g

Type-Annotated Contexts

C 2 Context ::= 2
� j c

l

j x� j pr (R) ((Ki)Ci)

n
i=1 j �

l

x� :C j C1 @

�

k
C2

j let x� = C1 in C2 j letrec fx
�i
i = Cig

n
i=1 in C j coerce (�; �)C

j �
l

(fi = Ci)

n
i=1 j ��

f
(
�

k
) C j (�+

f
(l

) C)� j case+ (

�

k
) C0 bind x in (fi)

�i Ci)
p
i=1

j ^
l

(fi = Ci)

p
i=1 j �^

f
(
�

k
) C j (�_

f
(l

) C)� j case_ (

�

k
) C0 bind x in (fi)

�i Ci)
p
i=1

j newTag�(l

) j injx

�

k
(C1; C2) j casex C0 bind x in (Ci (

�i
ki
))�i C0i)

n
i=1 else C

0
0

j raise C j C1 handle x in C2

R 2 SourceBundle ::= � j
l

K 2 SinkBundle ::= Æ j
�

k

Type Erasure (a partial function from Context to UntContext)

j2� j � 2

���cl
��� � c jx� j � x jcoerce (�; �)Cj � jCj

��pr (R) ((Ki)Ci)ni=1
�� � pr(jCij)

n
i=1 jlet x� = C1 in C2j � let x = jC1j in jC2j

����l x� :C
��� � �x:jCj

���C1 @�k C2
��� � jC1j @ jC2j

��letrec fx�ii = Cig
n
i=1 in C

�� � letrec fxi = jCijg
n
i=1 in jCj; if 8ni=1: jCij 2 UntValContext

����l (fi = Ci)
n
i=1

��� � �(fi = jCij)
n
i=1

���^l (fi = Ci)
p
i=1

��� �
8<
:
D̂ if D̂ � jC1j � � � � � jCpj ;

unde�ned otherwise.�����f (
�

k
) C
��� � �

�
f
jCj

����^f (
�

k
) C
��� � jCj

���(�+f (l

) C)�

��� � �
+

f
jCj

���(�_f (l

) C)�

��� � jCj���case+ (
�

k
) C0 bind x in (fi)

�i Ci)
p
i=1

��� � case+ jC0j bind x in ffi) jCijg
p
i=1

���case_ (
�

k
) C0 bind x in (fi)

�i Ci)
p
i=1

��� �
8<
:
let x = jC0j in jC1j if jC1j � � � � � jCpj ;

unde�ned otherwise.���casex C0 bind x in (Ci (
�i
ki
))�i C0i)

n
i=1 else C

0
0

��� � casex jC0j bind x in fjCij) jCij
0gni=1 else jC0j

0

���newTag� (l)
��� � newTag

���injx�k (C1; C2)
��� � injx(jC1j ; jC2j)

jraise Cj � raise jCj

���Ĉ1 handle x in Ĉ2
��� � jC1j handle x in jC2j

Type-Annotated Terms and Values

M;N 2 Term = fC j the type erasure jCj 2 UntTerm g

V 2 Value = fC j the type erasure jCj 2 UntValue g

Figure 6: Syntax of CIL.

16

Typing Rules

(hole)
� ` 2� : �

(const)

ConstType(c) = o

� ` c
l

: o

flg

(var)
� + fx:�g ` x� : �

(primapp)
8ni=0: � ` Ci : �i; PrimTypen(pr;K1; �1; � � � ; Kn; �n; R; �)

� ` pr (R) ((Ki)Ci)
n
i=1 : �

(letrec)
8ni=0: (� + fxj :�jg

n
j=1 ` Ci : �i); 8

n
i=1: (jCij � D̂i)

� ` letrec fx
�i
i = Cig

n
i=1 in C0 : �0

(coerce)
� ` C : �; � � �

� ` coerce (�; �)C : �
(let)

� + fx:�g ` C2 : �; � ` C1 : �

� ` let x� = C1 in C2 : �

(! intro)

� + fx:�g ` C : �

� ` �
l

x� :C : � �

flg
��

! �

(! elim)
� ` C1 : � �

�
��
fkg
! �; � ` C2 : �

� ` C1 @
�

k
C2 : �

(� intro)

8ni=1: � ` Ci : �i

� ` �
l

(fi = Ci)

n
i=1 : �

flg

ffi : �ig

n
i=1

(^ intro)
jC1j�� � ��jCnj�D̂; 8

p
i=1: � ` Ci : �i

� ` ^
l

(fi = Ci)

p
i=1 : ^

flg

ffi : �ig

p
i=1

(� elim)
� ` C : �

�

fkg
ffj : �jg

n
j=1; 1 � i � n

� ` ��
fi

(
�

k
) C : �i

(^ elim)
� ` C : ^

�

fkg
ffj : �jg

p
j=1; 1 � i � p

� ` �^fi (
�

k
) C : �i

(+ intro)
� ` C : �i; 1 � i � p; � � +

flg

ffj : �jg

p
j=1

� ` (�+
fi

(l

) C)� : �

(_ intro)
� ` C : �i; 1 � i � p; � � _

flg

ffj : �jg

p
j=1

� ` (�_fi (
l

) C)� : �

(+ elim)
� ` C0 : +

�

fkg
ffi : �ig

p
i=1; 8

p
i=1: � + fx:�ig ` Ci : �

� ` case+ (
�

k
) C0 bind x in (fi)

�i Ci)
p
i=1 : �

(_ elim)
� ` C0 : _

�

fkg
ffi : �ig

p
i=1; 8

p
i=1: � + fx:�ig ` Ci : �; jC1j � � � � � jCnj

� ` case_ (
�

k
) C0 bind x in (fi)

�i Ci)
p
i=1 : �

(xtag)
� ` newTag� (l

) : xtag

flg

[�]
(exn intro)

� ` C1 : xtag
�

fkg
[�]; � ` C2 : �

� ` injx
�

k
(C1; C2) : exn

(exn elim)
� ` C0 : exn; � ` C00 : �; 8

n
i=1: (� ` Ci : xtag

�i
fkig

[�i]; � + fx:�ig ` C
0
i : �)

� ` casex C0 bind x in (Ci (
�i
ki
))�i C0i)

n
i=1 else C

0
0 : �

(raise)
� ` C : exn

� ` raise C : �
(handle)

� ` C1 : �; � + fx:exng ` C2 : �

� ` C1 handle x in C2 : �

Primop Type Relations (a few example relation members)

PrimType2(+;
�1
k1
; int

�1
fk1g

;
�2
k2
; int

�2
fk2g

;
l

; int

flg

) PrimType1(mkRef ; Æ; �;
l

; ref

flg

[�])

PrimType1(getRef ;
�

k
; ref

�

fkg
[�]; �; �) PrimType2(setRef ;

�

k
; ref

�

fkg
[�]; Æ; �; l

;unit

flg

)

PrimType2(<;
�1
k1
; int

�1
fk1g

;
�2
k2
; int

�1
fk1g

;
l

;�

flg

ftrue : unit

�0

 0
; false : unit

�00

 00
g)

Subtyping Rules (a few example rules)

(!�)

� � �0; 0 �

� �
�
�

! � � � �

�0
�
 0
! �

(��)

� � �0; 0 �

�
�

ffi : �ig

n
i=1 � �

�0

 0
ffi : �ig

n
i=1

(ref�)

� � �0; 0 �

ref
�

[�] � ref

�0

 0
[�]

Figure 7: Typing rules of CIL.

17

provides more exibility in the CIL compiler, e.g., allowing the closures for recursively de�ned functions to

be recursive records.

The type syntax includes types for primitive data (o), functions (!), real records (�), virtual records (^),

real variants (+), virtual variants (_), reference cells (ref), exceptions (exn), and exception tags (xtag).

All types except exn are annotated with a ow bundle
�
 , where � is a set of source labels approximating

the de�nition sites for values having the type, and is a set of sink labels approximating the use sites for

values having the type. We treat tletrec forms as equivalent to their in�nite unwindings. For this to be

sensible, the bindings in a tletrec form are required to be elements of GuardedType, which guarantees

that all bound type variables appear underneath a type constructor other than tletrec.

Type-annotated contexts and terms are decorated with type and ow information. In addition to type-

and ow-annotated versions of the untyped terms, there are some additional constructs at the type-annotated

level: introduction (^) and elimination (�^) forms for virtual records, introduction (�_) and elimination

(case_) forms for virtual variants, and coercion forms (coerce) that perform explicit subtyping. The

components of a virtual record and the clauses of a virtual case expression are required to be the same

modulo type and ow annotations. This requirement is formalized by the de�nition of the type erasure

function, j : j, which maps type-annotated contexts to untyped contexts. Note that the bindings of a type-

annotated letrec term and the components of a virtual record introduction term must type erase to syntactic

values. The latter restriction is similar to the value restriction for polymorphism in SML.

Type-annotated primitive applications are decorated with an optional sink bundle for each operand

position and an optional source bundle. This allows distinguishing operand positions that act as sinks

(i.e., use the argument value) from those that do not, and distinguishing primitives that act as sources

(i.e., generate new values) from those that return existing values. For example: applications of arithmetic

operators like + are sinks for all operands and a source for the resulting value; mkRef is a source of a

reference cell but not a sink for its argument; getRef is a sink for the reference cell, but is not a source of

the return value; and setRef is a sink for the reference cell operand, but is not a sink for the value that is

the new cell contents.

The type-annotated syntax is designed so that well typed terms are isomorphic to typing derivation trees

generated by the typing rules in �gure 7. The (primapp) rule uses the PrimType relation, which for each

primitive operator encodes knowledge of the operand and result types as well as which operand positions

are sinks and whether the operator acts as a source. Representative clauses of the de�nition of PrimType

relation are given in �gure 7. The (coerce) rule uses a \shallow" subtyping relation � that allows adding

source labels and removing sink labels but requires any component types to be invariant. The shallow

subtyping restriction facilitates type-based program transformation in our framework; see [WDMT0X] for a

discussion.

18

