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Abstract

The goal of this paper is to demonstrate that inductive program synthesis
can be applied to learning domain-dependent control knowledge from plan-
ning experience. We represent control rules as recursive program schemes
(RPSs). An RPS represents the complete subgoal structure of a given prob-
lem domain with arbitrary complexity (e. g., rocket transportation problem
with n objects). That is, if an RPS is provided for a planning domain,
search can be omitted by exploiting knowledge of the domain. We pro-
pose the following steps for automatical inference of control knowledge: (1)
Exploring a problem with small complexity (e. g., rocket with 3 objects)
using an universal planning technique, (2) transforming the universal plan
into a �nite program, and (3) generalizing this program into an RPS. While
generalization can be performed purely syntactical, plan transformation is
knowledge dependent. Our approach to folding �nite programs into RPSs is
reported in detail elsewhere. In this report we focus on plan transformation.
We propose that inferring the data type underlying a given plan provides a
suitable guideline for plan-to-program transformation.





Contents

1 Introduction 3

2 Learning Control Rules from Plans 7

2.1 Optimal Universal Plans . . . . . . . . . . . . . . . . . . . . . 7

2.2 From Plans to Programs . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Planning with Control Rules . . . . . . . . . . . . . . 12

2.2.2 Learning Control Rules . . . . . . . . . . . . . . . . . 12

2.2.3 Generating a Finite Program for the Rocket-Domain . 14

2.3 Generalization-to-n . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Universal Planning with DPlan 21

3.1 A Short History of DPlan . . . . . . . . . . . . . . . . . . . . 21

3.2 Completeness of Backward Planning . . . . . . . . . . . . . . 23

3.3 Universal Plans as Sets of Optimal Plans . . . . . . . . . . . 26

3.3.1 Union of Optimal Plans . . . . . . . . . . . . . . . . . 26

3.3.2 Unions of Optimal Plans are DAGs . . . . . . . . . . . 27

3.3.3 The DPlan Algorithms . . . . . . . . . . . . . . . . . . 35

4 Transforming Plans into Programs 39

4.1 Transformation and Type Inference . . . . . . . . . . . . . . . 39

4.1.1 Plan Decomposition . . . . . . . . . . . . . . . . . . . 42

4.1.2 Data Type Inference . . . . . . . . . . . . . . . . . . . 43

4.1.3 Introducing Situation Variables . . . . . . . . . . . . . 45

4.2 Plans over Sequences of Objects . . . . . . . . . . . . . . . . 45

4.3 Plans over Sets of Objects . . . . . . . . . . . . . . . . . . . . 52

4.4 Plans over Lists of Objects . . . . . . . . . . . . . . . . . . . 57

4.4.1 Structural and Semantical List Problems . . . . . . . 57

4.4.2 Synthesizing Selection-Sort . . . . . . . . . . . . . . . 59

4.5 Plans over Complex Data Types . . . . . . . . . . . . . . . . 73

1



2 CONTENTS

4.5.1 Variants of Complex Finite Programs . . . . . . . . . 73
4.5.2 The Tower Domain . . . . . . . . . . . . . . . . . . . . 75
4.5.3 Tower of Hanoi . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions and Further Work 89

References 93

Appendix 97

A Implementation Details 99

A.1 Modules of DPlan . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Pstep-Data Structure . . . . . . . . . . . . . . . . . . . . . . 99
A.3 Global Structures for Plan Transformation . . . . . . . . . . . 100
A.4 Main Components of plan-transform.lsp . . . . . . . . . . 101

A.4.1 Plan Decomposition . . . . . . . . . . . . . . . . . . . 101
A.4.2 Data Type Inference . . . . . . . . . . . . . . . . . . . 102
A.4.3 Introduction of Situation Variables . . . . . . . . . . . 102

A.5 Number of MSTs in a DAG . . . . . . . . . . . . . . . . . . . 103
A.6 Extracting Minimal Spanning Trees from a DAG . . . . . . . 103
A.7 Regularizing a Tree . . . . . . . . . . . . . . . . . . . . . . . . 105

B Problem-Speci�c Details 107

B.1 TPlan Structure for Unstack . . . . . . . . . . . . . . . . . . . 107
B.2 The Rocket Domain . . . . . . . . . . . . . . . . . . . . . . . 108

B.2.1 A Lisp-Program for Rocket . . . . . . . . . . . . . . . 108
B.2.2 Interleaving at and inside . . . . . . . . . . . . . . . . 110

B.3 The Selection Sort Domain . . . . . . . . . . . . . . . . . . . 110
B.3.1 Sorting Lists with 3 Elements . . . . . . . . . . . . . . 110
B.3.2 Minimal Spanning Trees for 3-SelSort . . . . . . . . . 110

B.4 The Tower Domain . . . . . . . . . . . . . . . . . . . . . . . . 112
B.4.1 Assuming Subgoal-Independence . . . . . . . . . . . . 112
B.4.2 Universal Plan for the 4-Block Tower . . . . . . . . . . 114
B.4.3 Two Programs for Tower . . . . . . . . . . . . . . . . 114

List of Figures and Tables 119



Chapter 1

Introduction

During the last years, a number of e�cient domain-independent planning
algorithms have been proposed (e. g., Blum & Furst, 1997; Koehler, Nebel,
& Ho�mann, 1997; Kautz & Selman, 1998; Long & Fox, 1999; Bonet &
Ge�ner, 1999). Nevertheless, the problem of scaling-up such search-based
algorithms to complex real-world problems (e. g., the logistics domain with
many objects to transport from and to a large set of di�erent locations by
means of di�erent vehicles1) remains { due to the inherent complexity of
the planning task. The obvious remedy is to guide planning by domain spe-
ci�c control knowledge. For example, in the rocket one-way transportation
domain (Veloso & Carbonell, 1993) search for a solution can be speed-up
considerably, if the knowledge that all objects have to be loaded into the
rocket before it ies to its destination is provided. On the other hand,
providing planning systems with domain speci�c knowledge would require
to put more e�ort in pre-planning analysis and speci�cation of a domain
which is in conict with the idea of general-purpose planning systems. Con-
sequently, current research focusses on the automatic inference of domain
speci�c characteristics by static analysis of the current domain (Long & Fox,
2000) and on learning control rules from planning (Mart�in & Ge�ner, 2000).

In our work, we focus on learning domain speci�c control knowledge from
some initial planning experience. There are di�erent approaches addressing
control knowledge learning reported in literature: The earliest approaches
are concerned with learning linear macro-operators (Minton, 1985; Korf,
1985). Interest in this approach has decreased over the last decade { mainly
because of the utility problem (Minton, 1985). But new results in rein-

1see AIPS98 and AIPS00 planning competitions, http://www.cs.toronto.edu/

aips2000/
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4 CHAPTER 1. INTRODUCTION

forcement learning are promising { showing that more complex problems
are solvable and that planning can be speed-up considerably when applying
macros (Precup & Sutton, 1998). Learning linear macros, similar to other
incremental approaches to control knowledge learning (Borrajo & Veloso,
1996), aim at reducing the planning e�ort by providing guidelines to the
search engine, especially with respect to goal-ordering. In contrast, the goal
of our approach is to eliminate search completely.

An intuitive way to represent control knowledge of a domain are (func-
tional) programs: A recursive program2 represents the complete solution
strategy (i. e., subgoal-ordering) of a domain. Therefore, we propose to ap-
ply a technique of inductive program synthesis (Summers, 1977; Wysotzki,
1983; Schmid & Wysotzki, 1998) to control knowledge learning. Inductive
program synthesis algorithms learn recursive programs from a small set of
input/output examples. Learning is performed by a two-step process: in a
�rst step, I/O examples are transformed into a �nite program; in a second
step, the �nite program is generalized to a recursive program. This second
step is also called generalization-to-n and corresponds to programming by
demonstration (Cohen, 1998). While the mutual bene�t of combining plan-
ning and program synthesis is recognized in the deductive �eld (Manna &
Waldinger, 1987), there is only limited cross-fertilization of planning and
inductive program synthesis or other machine learning approaches: Shavlik
(1990) demonstrates how explanation-based learning (inductive logic pro-
gramming) can be applied to learning recursive concepts from problem solv-
ing examples; Shell and Carbonell (1989) show analytically and empirically
how iterative macros can reduce planning e�ort and point out that learning
iterative macros has to rely on generalization-to-n algorithms; Kalmar and
Szepesvari (1999) discuss learning and e�ciency of iterative macros in the
context of Markov decision problems; (Koza, 1992) applies genetic program-
ming to learning a functional program for solving the tower problem.

A di�erent learning approach is proposed by Mart�in and Ge�ner (2000):
Instead of recursive (or iterative) programs, decision lists representing gener-
alized policies are induced from example state-action pairs (see also Briese-
meister, Sche�er, & Wysotzki, 1996). While a recursive program generates
the complete transformation sequence for any given input state into a goal
state (e. .g., by means of an eval-apply-interpreter), the inferred rules are
applied \step-by-step": for a current state the appropriate rule is selected

2More precisely, in our work we synthesize sets of recursive functions. Synthesis is not

restricted to a given programming language { program terms are considered as elements

of some term algebra, instead. Therefore, we infer recursive program schemes (RPSs) and
if we talk of functions or programs we refer to RPSs.
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and applied, the resulting successor state is again checked against the rules
and so on.

Our overall approach to learning domain speci�c control knowledge from
some initial planning experience consists of three steps: First, a problem of
small complexity is explored by universal planning. For example, a plan for
the rocket one-way transportation problem is generated for three objects. A
plan cannot be generalized directly { it has �rst to be transformed into a
�nite program, that is, a conditional expression giving the action sequences
for transforming di�erent states into a state ful�lling the desired goals. This
�nite program is generalized to a recursive program, e. g., a macro solving
rocket problems for an arbitrary number of objects. In the following, we
will use the terms \control knowledge", \recursive macro", and \recursive
program" as synonyms.

In this paper, we focus on planning and plan transformation. Our work
covering the second step of program synthesis { generalization-to-n {, to-
gether with arguments in what way program synthesis can pro�t from in-
corporating planning techniques, is reported in detail elsewhere (Wysotzki,
1983; Schmid & Wysotzki, 1998; Schmid, M�uhlpfordt, & Wysotzki, 1999).
In the next chapter we give an overview over the principal components of our
approach { universal planning, plan transformation, and generalization-to-n
{ using the rocket domain for illustration. In chapter 3 we introduce our
universal planning system, in chapter 4 we present plan-transformation and
the resulting recursive programs for a variety of domains, and in chapter
5 we conclude with an evaluation of our approach and further work to be
done.
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Chapter 2

Learning Control Rules from

Plans

2.1 Optimal Universal Plans

Our planning system DPlan is designed as a tool to support the �rst step
of inductive program synthesis { generating �nite program traces for trans-
forming input examples into the desired output. Because our work is in
the context of program synthesis, planning is for deterministic and (small)
�nite domains1 only and completeness and optimality are of more concern
than e�ciency considerations. DPlan is a state-based, non-linear, total-
order backward planner. Our algorithm is named DPlan in reference to the
Dijkstra-algorithm, because it is single-source-shortest-paths algorithm with
the states ful�lling the top-level goals as source. DPlan is similar to univer-
sal planning (Schoppers, 1987; Cimatti, Roveri, & Traverso, 1998; Jensen
& Veloso, in press) and conditional planning (Peot & Smith, 1992; Borrajo
& Veloso, 1996): instead of a plan representing a sequence of actions trans-
forming a single initial state into a state ful�lling the top-level goals, DPlan
constructs a planning tree or graph, representing optimal action sequences
for all states belonging to the planning domain. A planning tree/graph rep-
resents the same information as a state-action table (Schoppers, 1987) but
in a more compact way. Plan construction is based on breadth-�rst search
and therefore works without backtracking. Because paths to nodes which
are already covered (by shorter paths) in the plan are not expanded (similar

1We currently work on an extension of DPlan to function application (\updates"), thus

that we can also deal with in�nite domains. This work is done by Marina M�uller in her
diploma thesis.
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8 CHAPTER 2. LEARNING CONTROL RULES FROM PLANS

to dynamic programming in A*), the algorithm is linear in the number of
states.2

The general idea of DPlan is to construct a plan which represents a
minimal spanning tree or DAG3 (Christo�des, 1975) of the (implicitly) given
state space with the goal state(s) as root. In the current implementation,
we present the complete set of states D as input. Planning problems are
de�ned in the following way:

De�nition 1 (Planning Problem) A planning problem P(O;D;G) con-
sists of a set of operators O, a set of problem states D, and a set of top-level

goals G. Operators are de�ned with preconditions ' and e�ects. E�ects are

given by ADD- and DEL-lists4 (A, D). Conditioned e�ects are given by

e�ect-preconditions 'i and e�ects Ai; Di. Currently, preconditions, e�ects

and goals are restricted to conjunctions of positive literals and variables are

existential quanti�ed only. In contrast to other planners, domain D is not

the set of constants occurring in a domain but the set of all possible states.

A state is a conjunction of atoms (instantiated positive literals).

An example for the speci�cation of a planning problem from the rocket

domain (Veloso & Carbonell, 1993) is given in table 2.1.5 The planning goal
is to transport two objects O1 and O2 from a place A to a destination B.
The transport vehicle (Rocket) can only be moved in one direction (A to B).
Therefore, it is important to load all objects before the rocket moves to its
destination. The resulting universal plan is given in �gure 2.1.

Plan construction is done by backward-operator application. A plan can
be executed by forward application of all operators on the solution path
from some initial state towards the root of the plan. Operator application is

2For optimal plan construction, it is not possible, to construct an algorithm with lower

e�ort. For example, HPSr* (Haslum & Ge�ner, 2000) is exponential in the number of

atoms (i. e. all instantiated literals in a domain!) to calculate a lower bound for the cost

to reach a state containing a set of atoms.
3A DAG { directed acyclic graph { represents the \union" of all optimal plans for a

problem, see chapter 3. Our notion of a planning graph { referring to minimal spanning

trees or DAGs { is di�erent from the planning graphs constructed by GRAPH-PLAN

algorithms (Blum & Furst, 1997): There, a planning graph is a DAG over atoms. Fur-
thermore, Graph-plan planning graphs do only represent a subset of possible states of a

problem.
4More precise, ADD and DEL are sets of literals.
5Usually, a domain speci�cation de�nes the operators (and maybe additional informa-

tion as types and axioms) and a problem speci�cation for a domain speci�es top-level

goals and an initial state. In the following, we will refer to operators and top-level goals
as domain speci�cation.
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Table 2.1: The Rocket Domain
D = f ((at O1 B) (at O2 B) (at O3 B) (at Rocket B)),

((inside O1 Rocket) (at O2 B) (at O3 B) (at Rocket B)),
((inside O2 Rocket) (at O1 B) (at O3 B) (at Rocket B)),

((inside O3 Rocket) (at O1 B) (at O2 B) (at Rocket B)),

((inside O1 Rocket) (inside O2 Rocket) (at O3 B) (at Rocket B)),
((inside O1 Rocket) (inside O3 Rocket) (at O2 B) (at Rocket B)),

((inside O2 Rocket) (inside O3 Rocket) (at O1 B) (at Rocket B)),

((inside O1 Rocket) (inside O2 Rocket) (inside O3 Rocket) (at Rocket B)),
((at O1 A) (at O2 A) (at O3 A) (at Rocket A)),

((inside O1 Rocket) (at O2 A) (at O3 A) (at Rocket A)),

((inside O2 Rocket) (at O1 A) (at O3 A) (at Rocket A)),
((inside O3 Rocket) (at O1 A) (at O2 A) (at Rocket A)),

((inside O1 Rocket) (inside O2 Rocket) (at O3 A) (at Rocket A)),

((inside O1 Rocket) (inside O3 Rocket) (at O2 A) (at Rocket A)),
((inside O2 Rocket) (inside O3 Rocket) (at O1 A) (at Rocket A)),

((inside O1 Rocket) (inside O2 Rocket) (inside O3 Rocket) (at Rocket A)) g

G = f(at O1 B), (at O2 B), (at O3 B)g O = fload, move-rocket, unloadg with

(load ?o ?l)

PRE f(at ?o ?l),
(at Rocket l)g

ADD f(inside ?o Rocket)g

DEL f(at ?o ?l)g

(move-rocket)

PRE f(at Rocket A)g

ADD f(at Rocket B)g

DEL f(at Rocket A)g

(unload ?o ?l)

PRE f(inside ?o Rocket),
(at Rocket l)g

ADD f(at ?o ?l)g

DEL f(inside ?o Rocket)g

de�ned for fully-instantiated operators o (actions). In the case of operators
with conditioned e�ects an instantiated operator is constructed for each
possible e�ect. As usual, operator de�nitions are given in a set-theoretical
way:

De�nition 2 (Operator Application) Forward application of an instan-

tiated operator (action) is de�ned as Res(S; o) = S n D [ A if ' � S;

backward application as Res�1(S; o) = S n A [ fD [ 'g if A � S. With

Res�1p (S; fo1 : : :ong) we represent \parallel" application of the set of all ac-

tions which ful�ll the application condition for state S resulting in a set of

predecessor states fS0
1 : : :S

0
ng.

Operator application does not include an admissibility check. That is,
whether an action generates a valid successor or predecessor state has to
be determined by a higher instance, namely the planning algorithm. Note,
that subtraction and union of sets are only commutative if these sets are
disjoint.
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The DPlan algorithm will be presented in chapter 3. In the following, we
will describe it informally: First, it is checked whether there is at least one
state in the set of all states D which ful�lls the top-level goals. If no state
S with G � S exists, planning terminates without success. If one such state
exists, this state is introduced as root of the universal plan. If more than
one state in D ful�lls G, G is introduced as root node and all states ful�lling
G are introduced as children with unlabeled edges (representing \empty"
actions). All states introduced in the plan are removed from D.

After constructing the root of the plan, DPlan proceeds recursively for
each leaf calculating all immediate predecessor states. The predecessors
are identi�ed by backward operator application Res�1p (S; fo1 : : : ong) where
fo1 : : : ong is the set of all instantiated operators ful�lling the application
condition for backward application (i. e., the Add-List of oi matches a subset
of S), and Res�1p (S; fo1 : : : ong) returns all predecessors of S. For each
admissible predecessor S0

ij , with o(S0
ij) = Si, o is introduced as edge and

S0
ij as child node. The state set D is used for calculating predecessors in

the following way: Free variables in an operator are instantiated only in
accordance with the states in D { that is, the number of action candidates
is restricted; only predecessors which are in D are accepted as admissible {
that is, inconsistent states (which never were members of D) as well as states
which are already included on higher levels of the plan (already removed
from D) are omitted.

The algorithm terminates successfully if D is empty. If D is not empty
and nevertheless there is no operator applicable which leads to a state in the
set of remaining states D, the graph (problem space) underlying the domain
D might be disconnected or contain uni-directional edges { that is, there
are some problem states from which the goal cannot be reached. This is for
example the case in the monkey domain: when the monkey climbs onto the
box and he is not at the position of the bananas he has reached a dead-end,
because the domain does not provide an \un-climb" operator.

DPlan constructs optimal action sequences: For each state in the uni-
versal plan the path starting at this node and ending at the root gives the
shortest possible sequence of actions transforming this state into the goal. If
a state can be transformed by alternative action sequences into a goal state,
the universal plan is a DAG (instead of a \real" tree). For the rocket problem
with three objects, there are, for example, 3! di�erent possible sequences to
unload the objects at B which are all of the same (shortest possible) length
(see �g. 2.1).

Using a prede�ned set of legal states (D) reduces the planning prob-
lem to extracting the set of optimal plans. Alternatively, DPlan can con-
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((AT O1 B) (AT O2 B) (AT O3 B) (AT R B))

((IN O1 R) (AT O2 B) (AT O3 B) (AT R B)) ((IN O2 R) (AT O1 B) (AT O3 B) (AT R B)) ((IN O3 R) (AT O1 B) (AT O2 B) (AT R B))

((IN O2 R) (IN O1 R) (AT O3 B) (AT R B))

((IN O3 R) (IN O1 R) (AT O2 B) (AT R B))

((IN O3 R) (IN O2 R) (AT O1 B) (AT R B))

((IN O3 R) (IN O1 R) (IN O2 R) (AT R B))

((AT R A) (IN O1 R) (IN O2 R) (IN O3) R)

((AT O1 A) (AT R A) (IN O2 R) (IN O3 R)) ((AT O2 A) (AT R A) (IN O1 R) (IN O3 R)) ((AT O3 A) (AT R A) (IN O1 R) (IN O2 R))

((AT O2 A) (AT O1 A) (AT R A) (IN O3 R))

((AT O3 A) (AT O1 A) (AT R A) (IN O2 R))

((AT O3 A) (AT O2 A) (AT R A) (IN O1 R))

((AT O3 A) (AT O1 A) (AT O2 A) (AT R A))

(UNLOAD O1) (UNLOAD O2) (UNLOAD O3)

(UNLOAD O2)
(UNLOAD O3)
(UNLOAD O1) (UNLOAD O3)

(UNLOAD O1)
(UNLOAD O2)

(UNLOAD O3)
(UNLOAD O2)

(UNLOAD O1)

(LOAD O1) (LOAD O2) (LOAD O3)

(LOAD O2)
(LOAD O3)
(LOAD O1) (LOAD O3)

(LOAD O1)
(LOAD O2)

(LOAD O3)
(LOAD O2)

(LOAD O1)

(MOVE-ROCKET)

Figure 2.1: Optimal Universal Plan for Rocket (in = inside, R = rocket)

struct universal plans from a prede�ned goal state (i. e., a complete state
description instead of a set of top-level goals) only. As a consequence, ad-
missibility of planning steps cannot be checked via D. Instead, we use

Res(Res�1(S; o); o)
?
= S as a criterium for admissibility (see chap. 3).

Alternatively to DPlan, each existing planning system (e. g., Prodigy,
Veloso et al., 1995) can be used to construct minimal spanning DAGs by
replacing the incorporated planning strategy (selection of one action for each
planning step) by an \exploration mode" where all applicable actions are
stored. Currently, some e�cient universal planning systems are developed
(MBP, Cimatti et al., 1998; UMOP, Jensen & Veloso, in press) which also
could be used alternatively to DPlan. But remember, that we perform
universal planning for learning recursive macros from some initial experience
when solving a problem of small complexity. Human problem solvers also
must invest much mental e�ort if they want to extract a general solution
strategy { for example for solving the Tower of Hanoi problem (Klahr, 1978).
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2.2 From Plans to Programs

2.2.1 Planning with Control Rules

Introducing control rules into planning has the advantage that the number of
match-select-apply cycles gets reduced by giving guidance in which sequence
planning goals are attacked. Providing the complete control structure of a
domain, as in the form of a recursive program, eliminates search completely.
For example, there might be a macro load-all which ful�lls the goal f(inside
ob1 Rocket), ... (inside obn Rocket)g for all objects at some given place.

Application of a recursive program is encapsulated (Shavlik, 1990). That
means, that until the program terminates no other primitive operators are
checked for applicability. Thereby the number of match-select-apply cycles
gets reduced by k if the load operator has to be applied k times. When a
(set of) recursive programs represent the complete control knowledge of a
domain (e. g., load-all, move-rocket, unload-all), the generated transforma-
tion sequences are optimal for each input state. If control knowledge covers
only subproblems of a domain (e. g., only load-all), optimality cannot be
guaranteed (c. f., Kalmar & Szepesvari, 1999): A recursive macro gener-
ates new goals for each application (e. g., loading of the next object) which
cannot be interleaved with other pending goals (e. g., moving the rocket).

2.2.2 Learning Control Rules

If there exists knowledge about the structure of a planning domain, this
knowledge can be incorporated into the domain speci�cation by pre-de�ning
control rules. The more interesting case is that such knowledge is acquired
automatically from some initial planning experience. In the following, we
will describe, how recursive macro-operators can be learned by exploring
a problem of small complexity. For example, we can generate a plan for
unloading three objects and generalize to unload-all. This is done by �rst
transforming the initial plan into a �nite program and than applying a
generalization-to-n algorithm.

We realize two strategies for control rule learning also proposed in re-
inforcement learning (Sun & Sessions, 1999): (1) incremental elemental-
to-composite learning and (2) simultaneous composite learning. In the �rst
case, the system is initially trained with simple tasks and the learned macros
afterwards can be used when solving/learning a complex task { learning
macros which contain other macros. In the second case, the system im-
mediately learns the complex task and has to perform the decomposition
autonomously (Wysotzki, 1983). For the rocket domain, application of the
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�rst strategy means that we �rst learn the load-all and unload-all macros
and use them in rocket. Application of the second strategy means, that we
identify sub-plans in rocket, generalize them separately, and replace these
sub-plans by the macro-name. In this report we focus on the second strat-
egy. Learning a recursive macro for the tower problem when a macro for
clearing a block is already known is described in (Wysotzki & Schmid, to
appear).

There are di�erent approaches for learning recursive programs from ex-
amples. The most prominent of them are grammar inference (Sakakibara,
1997), genetic programming (Koza, 1992), inductive logic programming
(ILP) (Muggleton & De Raedt, 1994; Flener & Yilmaz, 1999), and in-
ductive synthesis of functional programs (Summers, 1977; Wysotzki, 1983;
Le Blanc, 1994; Schmid & Wysotzki, 1998). We choose the \classical" func-
tional approach for several reasons: Functional programs { in contrast to
logic programs { represent control ow explicitly, that is, for learning control
strategies, it is more straight-forward to infer functional programs. Genetic
programming and most ILP approaches rely on search in hypothesis space
(i. e., the set of syntactical correct programs or horn clauses) to generate
a program which is complete (covers all positive examples) and consistent
(covers no negative example) or a program satisfying some evaluation rule.
Since a universal plan already contains crucial information about the struc-
ture of the searched for transformation rules, we prefer an approach which
exploits this structure over (blind or heuristically guided) search. The clas-
sical approach o�ers a clear separation of (1) rewriting I/O examples to
�nite program terms and (2) generalization over these terms (\folding").
Approaches to grammar inference address this second step { inferring a re-
cursive program from terms: a set of transformation rules (for generating a
language) is inferred from a set of positive examples (words). While most
grammar inference algorithms are proposed for regular grammars, recursive
programs correspond to context-free tree grammars (Schmid et al., 1999).
That is, the input examples (words) have to be terms.

While the second step of inductive program synthesis can be performed
(nearly) by purely syntactical pattern matching, the �rst step is knowledge-
dependent6 . The result of rewriting I/O examples { i. e., the form and
complexity of the �nite program { is completely dependent on the back-
ground knowledge (here: prede�ned functions and predicates) provided for
the rewrite-system. Additionally, the outcome depends on the used rewrite-

6Rewriting of I/O examples to terms corresponds roughly to the concept of \saturation"
in inductive logic programming (Flener & Yilmaz, 1999).
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strategy { i. e., even for a constant set of background knowledge rewriting
can result in di�erent programs. Theoretically, there are in�nitely many
possible ways to represent a �nite program which describes how input ex-
amples can be transformed in the desired output. Because generalizability
depends on the form of the �nite program, this �rst step is the bottleneck
of program synthesis. Here program synthesis is confronted with the crucial
problem of AI and cognitive science { problem solving success is determined
by the constructed representation (Kaplan & Simon, 1990).

We propose to use planning to realize rewriting of I/O examples. In-
puts correspond to problem states, outputs to states ful�lling the desired
goals, and transformation from input to output is realized by calculating
the optimal action sequence. The resulting minimal spanning tree or DAG
already represents the structure of the searched-for program, i. e., it gives
an ordering of operator applications. Nevertheless, the plan cannot be gen-
eralized directly, but some transformation steps are needed to generate a
�nite program which than can be input to a generalization-to-n algorithm.
We will address plan transformation in detail in chapter 4. For now, we will
illustrate our approach with the rocket example.

2.2.3 Generating a Finite Program for the Rocket-Domain

Our general idea for plan transformation is to infer the data type which is
underlying the universal plan. The idea to make planning more e�cient by
inferring \types" from plan structures which can be used as guideline when
solving new planning tasks is also exploited by Long and Fox (2000). Before
we can infer the underlying data structure for the rocket plan given in �gure
2.1, the planning graph has to be decomposed into \uniform" sub-plans
for unload-all, move-rocket (a single step), and load-all (see �g. 2.2).

Data type inference is done for each sub-plan. For both sub-plans
(unload-all and load-all) there is a single root and a single leaf node and
the sets of actions along all (six) possible paths from root to leaf are equal.
From this observation we can conclude that the actual sequence in which
the actions are performed is irrelevant, i. e., the underlying data structure
of both sub-plans is a set. The (sub-) plan can be collapsed to one path.
In chapter 4, we will propose that each plan can be captured by one of the
basic data types sequence, set, or list or combinations (e .g. set of lists) of
them; and we will give criteria from which these types can be inferred from
the structure of the universal plan.

Associated with each data type are informations for how the initial value
can be obtained and which constructor and selector functions have to be
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(b) "move-rocket"

(c) "load-all"

(a) "unload-all"

       (single step)

((AT O1 B) (AT O2 B) (AT O3 B) (AT R B))

((IN O1 R) (AT O2 B) (AT O3 B) (AT R B)) ((IN O2 R) (AT O1 B) (AT O3 B) (AT R B))

((IN O2 R) (IN O1 R) (AT O3 B) (AT R B))

((IN O3 R) (IN O1 R) (AT O2 B) (AT R B))

((IN O3 R) (IN O1 R) (IN O2 R) (AT R B))

(UNLOAD O2)(UNLOAD O1)

(UNLOAD O2)
(UNLOAD O3)
(UNLOAD O1) (UNLOAD O3)

(UNLOAD O1)

(UNLOAD O3)
(UNLOAD O2)

(UNLOAD O1)

((IN O3 R) (AT O1 B) (AT O2 B) (AT R B))

((IN O3 R) (IN O2 R) (AT O1 B) (AT R B))

(UNLOAD O2)

(UNLOAD O3)

((AT O1 A) (AT R A) (IN O2 R) (IN O3 R)) ((AT O2 A) (AT R A) (IN O1 R) (IN O3 R)) ((AT O3 A) (AT R A) (IN O1 R) (IN O2 R))

((AT O2 A) (AT O1 A) (AT R A) (IN O3 R))

((AT O3 A) (AT O1 A) (AT R A) (IN O2 R))

((AT O3 A) (AT O2 A) (AT R A) (IN O1 R))

((AT O3 A) (AT O1 A) (AT O2 A) (AT R A))

(LOAD O1) (LOAD O2) (LOAD O3)

(LOAD O2)
(LOAD O3)
(LOAD O1) (LOAD O3)

(LOAD O1)
(LOAD O2)

(LOAD O3)
(LOAD O2)

(LOAD O1)

((AT R A) (IN O1 R) (IN O2 R) (IN O3) R)

((AT R A) (IN O1 R) (IN O2 R) (IN O3) R)

((IN O3 R) (IN O1 R) (IN O2 R) (AT R B))

(MOVE-ROCKET)

Figure 2.2: Sub-Plans of Rocket

introduced. For the rocket example the following steps are performed:

� The initial set is constructed by collecting all arguments of the ac-
tions along the path from root to leaf. That is, the initial value for the
set can be I = fO1; O2; O3g { when the left-most path of a sub-plan
is kept. (If the involved operator has more than one argument, for ex-
ample (unload <obj> <place>), the constant arguments are ignored.)

� A \generalized" predicate { corresponding to the empty-test for a
data type { is invented by generalizing over all literals in the root-
node with an element of the initial set I as argument. That is, for the
unload-all sub-plan, the new predicate is p = (at� hobjSeti B) with

(at� hobjSeti B) =

8<
:

true if 8o 2 objSet : (at o B)
holds in the current state

false otherwise:

The original literals are replaced by p.
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� The arguments of the generalized predicate are rewritten using the
prede�ned rest-selector. We have the following replacements for the
unload sub-plan (given from root to leaf):
(at�fO1; O2; O3g B) == (at�fO1; O2; O3g B)

(at�fO1; O2g B) ! (at�(rstfO1; O2; O3g) B)

(at�fO1g B) ! (at�(rst(rstfO1; O2; O3g)) B)

(at�f g B) ! (at�(rst(rst(rstfO1; O2; O3g))) B).
The arguments of the actions are rewritten using the prede�ned pick-
selector:
(unload O1) ! (unload(pickfO1; O2; O3g))

(unload O2) ! (unload(pick(rstfO1; O2; O3g)))

(unload O3) ! (unload(pick(rst(rstfO1; O2; O3g)))).
Note, that we de�ne pick and rst deterministical (e. g. as head/tail or
last and butlast).

The transformed sub-plan for unload-all is given in �gure 2.3.a.
Introduction of a data type is crucial for generating a generalizable pro-

gram term. A program term represents the order of operator-application
as well as the order of the objects of the program's domain (Manna &
Waldinger, 1975). For example, a program over natural numbers as fac-

torial incorporates the knowledge, that the numerical argument is reduced
by one at each step and that 0 is the smallest element; a program over lists
as reverse incorporates the knowledge, that the list is reduced by one ele-
ment at each step and that the empty list is the smallest element (Summers,
1977). The universal plan gives us an order over operations, introducing a
data type additionally provides an explicit representation of the order over
the objects.

After introducing a data type into the plan, there is only one additional
step necessary to interpret the plan as a program { introducing a situa-

tion variable (see c. f., Manna & Waldinger, 1987). Now the plan can be
read as a nested conditional expression (see �g. 2.3.b).

While a planning algorithm applies an instantiated operator to a state
currently in working-memory, interpretation of a (functional) programming
term depends only on the instantiated parameters (values) of this term. In-
troducing a situation variable s in the plan makes it possible to treat a state
as valuated parameter of an expression. That is, the primitive operators
(load, unload, move-rocket) are now applied to the set of literals with which
parameter s is currently instantiated.

Plan transformation for the rocket problem results in the following pro-
gram structure
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((AT* (O1 O2 O3) B))

((AT* (RST (O1 O2 O3)) B))

((AT* (RST (RST (O1 O2 O3))) B))

((AT* (RST (RST (RST (O1 O2 O3)))) B))

(UNLOAD (PICK (O1 O2 O3)))

(UNLOAD (PICK (RST (O1 O2 O3))))

(UNLOAD (PICK (RST (RST (O1 O2 O3)))))

s

ifs

ifs

if

Ω

if

s

(AT* (RST (O1 O2 O3)) B s)

(AT* (RST (RST (RST (O1 O2 O3)))) B s)

(AT* (O1 O2 O3) B s)

(AT* (RST (RST (O1 O2 O3))) B s)

(UNLOAD (PICK (RST (RST (O1 O2 O3)))) s)

(UNLOAD (PICK (RST (O1 O2 O3))) s)

(UNLOAD (PICK (O1 O2 O3)) s)

(a) (b)

Figure 2.3: Introduction of the Data Type Set (a) and Resulting Finite
Program (b) for the Unload-All Sub-Plan of Rocket (
 denotes \unde�ned")

(rocket oset s) = (unload-all oset (move-rocket (load-all oset s)))

where unload-all and load-all are recursive functions which were generated
by our generalization-to-n algorithm from the corresponding �nite programs.
Note, that the parameters involve only the set of objects { this information
is the only one necessary for control, while locations (A, B) and transport-
vehicle (Rocket) are additional information necessary for the dynamics of
plan construction.

2.3 Generalization-to-n

Now we want to describe the second step of program synthesis { generalization-
to-n. In contrast to the classical approach and to inductive logic program-
ming, our generalization-to-n algorithm is not restricted to a given program-
ming language (Prolog or Lisp). Instead, we regard programs as elements
of some arbitrary term algebra. That is, we synthesize recursive program
schemes (RPSs) (Courcelle & Nivat, 1978; Wysotzki, 1983) and thereby we
can deal with list and number problems which are typically considered in
program synthesis in the same way as with planning problems (blocks-world,
puzzles, transportation problems). An RPS can be mapped to a recursive
program in some programming language by interpreting the symbols in ac-
cordance to the speci�cation of this language.

Input in the generalization algorithm is a �nite program term which is
element of some term algebra:

De�nition 3 (Finite Program) A �nite program is a term tS 2M(V; F[
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). M is a term algebra over variables V and function symbols F with 

as the unde�ned (empty) term.

Let us consider the �nite program for unloading objects constructed above.
Written as a term, this �nite program is:

(IF (AT* OSET B S)

S

(UNLOAD (PICK OSET) S

(IF (AT* (RST OSET) B S)

S

(UNLOAD (PICK (RST OSET)) S

(IF (AT* (RST (RST OSET)) B S)

S

(UNLOAD (PICK (RST (RST OSET))) S

(IF (AT*

(RST (RST (RST OSET)))

B

S)

S

OMEGA)))))))

with M(foset,sg,fb, at*, unload, pick, rst, if-then-else, 
g). The term can
be valuated and interpreted in the usual way: oset can be instantiated by a
set of objects { e. g., (O1 O2 O3) as in the planning problem above { s is a
situation variable. Conditioned expressions are represented as (if x y z) with
x as boolean expression, y as term which is evaluated if x is true and z as
term which is evaluated if x is false. The constant b represents a location; the
predicate (at* oset b s) was introduced in section 2.2.3 above. The operator
(unload o s) corresponds to the operator de�ned in table 2.1, rewritten for
situation calculus (Manna & Waldinger, 1987): instead of being applied to
the current state in working memory, it is applied on the set of literals with
which variable s is instantiated. The selector functions pick and rst are
de�ned above. Symbol 
 (OMEGA) denotes the \unde�ned" term. For the
unload-all program, the plan gives no information what to do if more than
three objects are involved ((AT* (RST (RST (RST OSET))) B S) is not
true).

Output of the generalization algorithm is a recursive program scheme:

De�nition 4 (Recursive Program Scheme) An RPS is a pair h�; ti with
� = hTi(v1 : : :vn) = ti j i = 1 : : :ni is a system of equations (\subroutines")

and t 2M is the \main program"; ti and t are elements of the extended term

algebra M(V; F [�) with V as set of variables, F as set of function symbols
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(with f i 2 F we denote functions with arity i), and � as set of function

variables (names of user de�ned functions); Ti 2 �, and v1 : : : vn 2 V .

If Ti is contained in ti, the equation de�nes a recursive function; ti can also
contain further Tj 's, that is, make use of other functions.

An RPS generalizing the unload term given above is � = h (unload-all

oset s) = (if (at* oset B s) s (unload (pick oset) (unload-all (rst oset) s)))

i with t = (unload-all oset s) for some constant set oset and some set of
literals s.7

For program synthesis we reverse the idea of determining the semantic
of a recursive function as its smallest �x-point (Wysotzki, 1983; Schmid
& Wysotzki, 1998)8: from a given sequence of unfoldings we want to ex-
trapolate the minimal recursive program scheme which can generate these
unfoldings.9

De�nition 5 (Folding of a �nite program) A �nite program tS can be

folded into a recursive program scheme i� it can be decomposed into a se-

quence T (0) = 
, T (l) = tr(T
(l�1)

[t=v] =m) with l = 1 : : :n, T (n) = tS of partial

transformations which successively cover a larger amount of inputs.

For our example we have:

T
(0) = 


T
(1) = (if (at � oset b s) s (unload (pick oset) 
))

T
(2) = (if (at � oset b s) s (unload (pick oset) (if (at � (rst oset) b s) s (unload (pick (rst oset)) 
))))

T (3) = (if (at � oset b s) s (unload (pick oset) (if (at � (rst oset) b s) s (unload (pick (rst oset))

(if (at � (rst(rst oset)) b s) s (unload (pick (rst(rst oset))) 
))))))

T
(4) = (if (at � oset b s) s (unload (pick oset) (if (at � (rst oset) b s) s (unload (pick (rst oset))

(if (at � (rst(rst oset)) b s) s (unload (pick (rst(rst oset))) (if (at � (rst(rst(rst oset))) b s) s 
)))))))

= tS

with tr = (if (at* oset b s) s (unload (pick oset) m)) and substitution
[(rst oset) =oset]. Because T (l) = (if (at* oset b s) s (unload (pick oset)

7For the abstract terms, as used in the de�nitions, we use the pre�x-notation f(xi).

For the concrete programs, we use a list-notation (f xi), representing control knowledge

as LISP-programs.
8For an introduction to �x-point semantics, see (Field & Harrison, 1988).
9The idea of reversing a deductive approach for inductive inference is also used in

inductive logic programming with the concept of inverse resolution (Flener & Yilmaz,
1999).
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T
(l�1)
(rst oset)=oset]

)) holds for all T 's we can fold tS and obtain the RPS given

above10.
With our method we can infer tail recursive structures (for-loops), lin-

ear recursive structures (while-loops), tree-recursive structures and combi-
nations thereof. For details about the formal background, the synthesis
algorithm, its scope and complexity, see (Schmid & Wysotzki, 1998).

Recursive functions for unloading and loading objects are:

(unload-all oset s) =

(if (at* oset B s)

s

(unload (pick oset) (unload-all (rst oset) s))

)

(load-all oset s) =

(if (inside* oset Rocket s)

s

(load (pick oset) (load-all (rst oset) s))

)

which are integrated in the \main" program (rocket oset s) given above.
Further generalization over the constants { location (B) and vehicle (Rocket)
{ is possible. After parametrizing over these constants, the load-all and
unload-all functions can be included in a class of transportation domains, as
generalized control knowledge!

The load-all function assumes an in�nite capacity of the vehicle. To take
capacity restrictions into account, these information must be given to the
planning system (as (max-capacity x)) and we must include (current-load x)

as resource variable (Koehler, 1998).

10For T (4) the mapping is only partial because the last operator call is missing. But we
allow that 
 maps every term.



Chapter 3

Universal Planning with

DPlan

3.1 A Short History of DPlan

The original idea of using universal planning as initial step for inductive
program synthesis was presented in Wysotzki (1987): sets of basic programs
and axioms are used to construct a kind of conditional plan with top-level
goals as root-node; ordering of dependent goals was realized by backtracking
over plan construction. From 1995 to 1997 we explored (implemented and
tested) several strategies for generating �nite programs by planning: the
approach proposed in Wysotzki (1987) was implemented in di�erent versions
by Ute Schmid, by Baback Paradian and by Olaf Brandes (see Parandian,
Schmid, & Wysotzki, 1995; Schmid, Brandes, & Wysotzki, 1997).

Furthermore, we investigated combining forward search with decision
tree learning: One approach is to generate optimal plans for each possible
initial state of a domain with small complexity. Initial states then are repre-
sented as feature vectors where the set of all di�erent literals occurring over
states are used as features with value 1 if this literal occurs in a state de-
scription and value 0 otherwise. Each initial state is associated with the (or
an) optimal action sequence for transforming it into a goal state. A decision
tree algorithm (CAL2, see Unger & Wysotzki, 1981) is used to generate a
classi�cation program. Transforming such a program into a �nite program
�t for generalization-to-n involves the same problems as discussed above
(see sect. 2.2) along with some additional problems: First, the decision tree
does not necessarily represent an order over the number of transformations
involved: it is possible that the �rst attribute already branches to a leaf

21
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representing the most complex transformation sequence. Second, there is
no interleaving between actions and conditions which have to be ful�lled
before executing these actions which is typical for recursion (see for exam-
ple the �nite program for unload-all in chap. 1), but instead, all conditions
necessary to execute the complete transformation sequence are checked �rst
(along a path in the decision tree) and the transformation sequence is exe-
cuted completely afterwards. A possible way to split such compound actions
is discussed in Wysotzki (1983)1.

A second forward-search approach is presented in (Briesemeister et al.,
1996).2 Here an initial state is transformed into a goal state by forward
search. Each state on the optimal path is associated with the following
action and the state-action pairs are used to construct a decision tree with
literals as features and (single) actions as leaves. A new problem is solved
by feeding the initial state into the decision tree, executing the action given
at the leaf of the path, thereby generating a new state, which again is input
into the decision tree and so on, until a goal state is reached. If a state
cannot be classi�ed by the current decision tree, search is invoked again and
the decision tree is expanded by incremental learning.

This approach is a good alternative to the one described in this report.
The crucial di�erence between the universal planning/plan-transformation
and the forward planning/decision-tree approach is that the �rst results
in control knowledge represented as a set of recursive functions while the
second results in control knowledge represented as state-features/action as-
sociations. Recursive functions represent the subgoal structure of a domain
as well as the sequence of transformation steps in an explicit way, while
feature/action associations represent the control ow indirectly, similar to
production rules in a production system. The second approach has the ad-
vantage that learning can be performed incrementally { using example input
states from problems of one domain {, while the �rst approach relies on the
complete exploration of a domain for a problem of small size.

In 1998 we came up with the �rst version of DPlan as a state-based non-
linear backward-planner constructing universal plans. This �rst algorithm,
its formalization, proofs of completeness and correctness are presented in
(Schmid, 1999). DPlan1.0 works for STRIPS-like domain speci�cations ex-
tended to binary conditioned e�ects. The generated universal plan is a min-
imal spanning tree. That is, for domains with sets of optimal solutions only

1This work is not documented in a paper. The documented program together with

some examples can be obtained from Ute Schmid
2This approach is nearly identical to work of Mart�in and Ge�ner (2000).
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one alternative is calculated for each possible state. DPlan1.0 was extended
over the last year by several people in several ways:

� Domain speci�cation in PDDL, STRIPS + general conditioned ef-
fects (see report of the student project \Extending DPlan To an ADL-
subset" by Janin Toussaint, Ulrich Wagner, and Hakan Ilicik, 1999).

� Constructing universal plans without a prede�ned set of states (see
report of the student project \Universal Planning without state sets"
by Michael Christmann and Stefan R�onnecke, 1999).

� Preliminary work on plan construction using control knowledge repre-
sented as recursive macros (see report of the student project \Planning
with recursive macros", Mischa Neumann and Ralf Ansorg, 1999).

� Extending DPlan to function application (M�uller, 2000) { making it
possible to plan problems involving manipulation of numbers (as water
jug) and dealing with typical programming problems (as sorting of
lists).

The modules of DPlan and the global data structure for storing plans are
given in appendix A.

In this chapter we will present two aspects of DPlan which are not
reported elsewhere: (a) a necessary restriction for state-based backward-
planning, and (b) the extension of DPlan1.0 from generating minimal span-
ning trees to generating minimal spanning DAGs, representing the union of
all optimal plans of a problem domain.

3.2 Completeness of Backward Planning

Universal planning necessarily has to rely on backward operator application,
because no initial state is given. State-based backward planning has some
inherent restrictions which we will describe in the following. We repeat the
de�nitions for forward and backward operator application given in de�nition
2:

Res(S; o) = S nD [ A if ' � S

Res�1(S; o) = S nA [ fD [ 'g if A � S:
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For forward-application, nD and [A are only commutative for A \D = ;3.
When we delete literals before adding literals, as de�ned above, we guarantee
that everything given in the ADD-list is really given for the new state.

Completeness and soundness of backward-planning means that the fol-
lowing diagram has to commute:

S == Res(S0; o)
# "

Res�1(S; o) == S0

If Res�1(S; o) results in S0 = Res(S0; o) for all S, backward planning is
sound. If for all S0 with Res(S0; o) = S it holds that Res�1(S; o) = S,
backward planning is complete. In the following we will proof that these
propositions hold with some restrictions.

For backward-planning to be sound, each sequence Sgoal
o�1
�

�! S has to
be a valid transformation sequence for S into a state ful�lling the top-level
goals. That is, the following proposition has to hold for all S belonging to
the domain: If Res�1(S; o) = S0 then Res(S0; o) = S. This only holds for
some restrictions:

Res(Res�1(S; o); o)
?
= S

Res(Res�1(S; o); o) =

= Res�1(S; o) nD [ A with ' � Res�1(S; o)

= fS nA [ fD [ 'gg nD [ A

with ' � fS nA [ fD [ 'gg and A � S

= fS [ fD [ 'gg nD with ' � fS nA [ fD [ 'gg

= fS [Dg nD if ' � S [D

= S if S \D = ;:

The �rst restriction ' � S [D means for forward-planning from S0 to
S, that ' holds after operator application if it is not explicitly deleted. In
backward-planning ' is introduced as subgoals which have to hold in S0.
This restriction seems unproblematic. The second restriction S \ D = ;

means for forward-planning from S0 to S that S contains no literal from the
DEL-list. For backward-planning all literals from the DEL-list are added

3In PDDL A\D = ; is always true: the e�ects are given in a single list with DEL-e�ects
as negated literals. An expression (and p (not p)) represents a contradiction!
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and S has contained none of these literals. This restriction is in accordance
with the de�nition of legal operators. Thus, soundness of DPlan is given. In
general, soundness of backward-planning can be guaranteed by introducing
an admissibility check for each constructed predecessor: For a new con-
structed state S0 it can be checked that S0 = Res(S0; o). If forward operator
application does not result in S, the constructed predecessor is considered
as not admissible and not introduced in the plan.

For backward-planning to be complete, we have to guarantee that we �nd
a valid transformation sequence if such a sequence exists. For our universal
planner that means, that plan � must contain all states S which can be
transformed to a state ful�lling the top-level goals. That is, the following
proposition has to hold: If Res(S0; o) = S then Res�1(S; o) = S0. This only
holds for some restrictions:

Res�1(Res(S0; o); o)
?
= S0

Res�1(Res(S0; o); o) =

= Res(S0; o) nA [ fD [ 'g with A � Res(S0; o)

= (S0 nD [ A) nA [ fD [ 'g

with A � (S0 nD [ A) and with ' � S0

= S0 nD [ fD [ 'g with ' � S0ifS0 \A = ;

= S0 [ ' with ' � S0 if D � S0

= S0:

The �rst restriction S0 \ A = ; means that DPlan can only consider
states which does not already contain something which is added by an ap-
plicable operator. The second restriction D � S0 means that DPlan can only
consider states which contain all literals which are deleted by an applicable
operator. While this is a real source of incompleteness, we are still looking
for a meaningful domain where these cases occur. As long as DPlan works
on D as set of all states of a domain, incompleteness can be overcome { with
a loss of e�ciency { by constructing predecessors in the following way:

Res�1(S; o) = S nA� [ fD� [ 'g

for all combinations of subsets A� of A and D� of D if A � S.
Thus, all possible states containing subsets of D and A with the special

case of inserting all literals from D and deleting all literals from A, would
be constructed and admissibility could be checked as usual via occurrence
in D. If working with D as set of constants of the domain (i. e., without
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a prede�ned state set), admissibility can only be checked by introducing
domain axioms.

With the introduction of arbitrary conditional e�ects as allowed in PDDL,
additional restrictions arise.4

Currently, we feel no need to extend our algorithm to overcome the
restrictions given above, because these restrictions hold for a lot of bench-
mark problems, as for example used in the last planning competition (AIPS
2000). A planner which also uses backward search with similar restric-
tions is HSPr* (Haslum & Ge�ner, 2000): For S \ A 6= ; and S \ D = ;:
Res�1(S; o) = S nA [ '.

3.3 Universal Plans as Sets of Optimal Plans

In the following we will introduce the basic concepts for constructing optimal
universal plans.5

3.3.1 Union of Optimal Plans

De�nition 6 (Plan) An plan for transforming a state S0 into a state Sn
ful�lling the top-level goals is de�ned as a transformation sequence (S0; S1) : : :
(Si; Si+1) : : :(Sn�1; Sn) with � = fS0; : : :Sng as set of all states contained

in the plan and Si � Sj as order over � where Si < Sj holds if Si occurs

before Sj in the plan. The distance between two states in the plan l(Si; Sj)
is de�ned as length of the transformation sequence from Si to Sj. With

p(Si) 2 N we denote the \level" at which a state occures in the plan. The

relation Si < Sj describes a total order over �: there is a smallest ele-

ment S0, the relation is antisymmetric and transitive and for each Si with

i = 0 : : :n� 1 there exists an Sj with Si < Sj . In the following, � denotes a

plan, that is, a set of states together with the order relation induced by the

transformation sequence.

De�nition 7 (Optimal Plan) A plan � is optimal, if for each pair of

transformations (Si; Sm); (Sm; Sj) there does not exist a state Sk 6= Sm with

(Si; Sk); (Sk; Sj) where l(Si; Sk) < l(Si; Sm) or l(Sk; Sj) < l(Sm; Sj). In the

following, � refers to optimal plans if not stated otherwise and <� denotes

the ordering over �.

4These restrictions are discussed in the report of the student project by Janin Toussaint,

Ulrich Wagner, and Hakan Ilicik.
5The concepts and notations are based on (M�adler, 1992).
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For optimal univeral planning we want to construct the union of all opti-
mal plans for transforming arbitrary states into a state ful�lling the top-level
goal. In the following we interpret a sequence (S0; S1) ! : : : (Si; Si+1) !
: : : (Sn�1; Sn) as a backward-chain where S0 is a state ful�lling the top-level
goals. In general, there might be di�erent states ful�lling the top-level goals.
The following de�nitions are restricted to unique goal-states for reasons of
clarity. In the DPlan algorithm we work on an extension of these de�nitions
discussed below. An explicit enumeration of all optimal plans for the rocket
domain with two objects is given in table 3.1.

De�nition 8 (Union of Optimal Plans) A set �� is the union of all op-

timal plans �i starting at a �xed node S0 if the following propositions hold:

� The elements of each optimal plan �i from S0 to some arbitrary state

Sn are elements of ��.

� If Si < Sj holds for �i then it also holds for ��.

� l�i
(Si; Sj) = l��(Si; Sj) for all Si; Sj 2 �i.

The union of the total ordered sets �i with S0 as smallest element results

in a complete partial order <�� over �
�: S0 < Si forall Si 2 �� (existance

of a least element), and for each increasing sequence S1 < S2 < : : : < Si
in �� there exists a least upper bound (completeness). (The order is partial

because there can be elements in �� which only occur in a single optimal

plan �i, that is, no relation between these elements and elements of other

optimal plans is de�ned.)

A consequence from these propositions is, that if some Si occurs at level
p(Si) in an optimal plan �i then it occurs at exactly the same level in ��.
That is, it is not possible that another optimal plan �j from S0 to Si exists
where Si is reached earlier or later. In the �rst case, �i would not be an
optimal plan, in the second case �j would not be an optimal plan. The union
of optimal plans is illustrated in �gure 3.1. The union of all optimal plans
for the rocket domain with three objects is given in �gure 2.1 in chapter 1.

3.3.2 Unions of Optimal Plans are DAGs

Another perspective on optimal universal plans can be gained by using graph
theoretical concepts: A problem domain implies a problem graph (structure
of the state space). We can show that the union of all optimal plans for a
given goal-state corresponds to a \minimal spanning" directed acyclic graph
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Table 3.1: The Set of All Optimal Plans for the Rocket Domain
�1 = ((at O1 B) (at O2 B) (at Rocket B))

�2 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))

�3 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))

�4 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))

�5 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))

�6 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))

�7 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))

�8 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO1A)
 � ((at O1 A) (inside O2 Rocket) (at Rocket

A))

�9 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO1A)
 � ((at O1 A) (inside O2 Rocket) (at Rocket

A))

�10 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO2A)
 � ((at O2 A) (inside O1 Rocket) (at Rocket

A))

�11 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO2A)
 � ((at O2 A) (inside O1 Rocket) (at Rocket

A))

�12 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO1A)
 � ((at O1 A) (inside O2 Rocket) (at Rocket

A))
(loadO2A)
 � ((at O1 A) (at O2 A) (at Rocket A))

�13 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO1A)
 � ((at O1 A) (inside O2 Rocket) (at Rocket

A))
(loadO2A)
 � ((at O1 A) (at O2 A) (at Rocket A))

�14 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO2A)
 � ((at O2 A) (inside O1 Rocket) (at Rocket

A))
(loadO1A)
 � ((at O1 A) (at O2 A) (at Rocket A))

�15 = ((at O1 B) (at O2 B) (at Rocket B))
(unloadO2B)

 � ((inside O2 Rocket) (at O1 B) (at Rocket B))
(unloadO1B)

 � ((inside O1 Rocket) (inside O2

Rocket) (at Rocket B))
(move�rocket)

 � ((inside O1 Rocket) (inside O2 Rocket) (at Rocket A))
(loadO2A)
 � ((at O2 A) (inside O1 Rocket) (at Rocket

A))
(loadO1A)
 � ((at O1 A) (at O2 A) (at Rocket A))
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Figure 3.1: Union of Optimal Plans

(MSDAG), which can be extracted from the problem graph. We introduce
the concept of an MSDAG as an extension of the concept of minimal span-
ning trees (Dijkstra, 1959).

De�nition 9 (Problem Graph) A problem graph G = (V;R) is given by

a set of nodes V representing problem states, edges R � V � V representing

operator applications. For an edge (vi; vj) 2 R mappings �, !: R! V give

the starting/ending node: �(vi; vj) = vi, !(vi; vj) = vj.

When only presented with a set of top-level goals, a set of initial states, and
a set of operators (as usual in planning and problem solving), the problem
graph is only implicitely given. But each application of an operator results
in a node-edge-node path which is contained in this problem graph. The
same is true for universal planning (where no initial states are given). As an
example, the problem graph for the tower problem6 is given in �gure 3.2.

De�nition 10 (Minimal Spanning Tree) A minimal spanning tree T�
of a problem graph G = (V;R; �;!) is de�ned as

� T� = (W;S) is a partial graph of G, T� � G with W = V and S � R.

� T� is a tree (that is, a directed acyclic graph where each node has

maximally one predecessor).

� � : W ! R is an evaluation of edges r 2 R. The �-value of T�
is de�ned as �(T�) =

P
r2T�

�(r). T� is a minimal spanning tree if

6The tower problem will be discussed in detail in chapter 4.
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Figure 3.2: Problem Graph for the Tower Problem

�(T�) = minf�(T ) j T is spanning tree of Gg.

For the special case of unevaluated edges (each edge has identical costs),

we have: �(T�) = kSk and a spanning tree is always a minimal span-

ning tree.

In the following we add the following restriction to this de�nition:

De�nition 11 (Minimal Spanning Tree with Fixed Root) There ex-

ists a �xed node S0 in G corresponding to the goal-state and a minimal

spanning tree of G has to represent this state as root.

We can write (minimal spanning) trees as lists in the following way:

De�nition 12 (Representing Trees as Lists) A tree can be represented

as

tree = leaf j node(edge1(tree) : : :edgen(tree)):

In our case, leaf and node represent problem states and edge actions. We

de�ne x 2 tree to be true if x is contained in the set of nodes of a tree and

false otherwise.



3.3. UNIVERSAL PLANS AS SETS OF OPTIMAL PLANS 31

The given restriction on minimal spanning trees reduces the number of min-
imal spanning trees of a problem graph. A minimal spanning tree with
�xed root can be extracted from an (implicitly given) problem graph by the
following procedure:

Algorithm 1 (Construction of a Minimal Spanning Tree �)
� Use the goal state as root of �

� Recurse for each leaf S of �

{ Calculate the set of all di�erent predecessor states

fSi j Res
�1(S; oi) = S0

ig of S with S0
i 62 �

{ Extend S to S(o1(S
0
1) : : :on(S

0
n))

� Terminate (for each leaf S) if fSi j Res
�1(S; oi) = S0

ig � � or if

fSi j Res
�1(S; oi) = S0

ig = ;.

Algorithm 1 constructs optimal plans because for each node only such
predecessors are included in � which are not already contained in � and
because the algorithm is based on a breadth-�rst strategy.

If there is no unique minimal spanning tree with �xed root for a problem,
algorithm 1 constructs only a subset of all optimal plans. As an example, see
�gure 3.3 showing one of 36 possible minimal spanning trees for the rocket
problem with three objects (3! possible sequences of unloading combined
with 3! possible sequences of loading).

Lemma 1 (Minimal Spanning Tree as Subset of ��)

For a given problem, the set of nodes of the minimal spanning tree � is iden-

tical to the set of nodes in ��. The edges (Si; Sj) (represented as S(o(S0))
in alg. 1) de�ne an order Si < Sj and 8(Si; Sj) 2 � : (Sj ; Sj) 2 ��. But

there might exist relations Si < Sj in �� which are not given in �. That is
� = �� and f(Si; Sj) 2<�g � f(Si; Sj) 2<Pi�g.

Proof 1 (Lemma 1)

� j��j = j�j (� contains exactly the nodes in ��):

�� contains all states of a problem domain which are elements of opti-

mal plans starting from a goal state. � is constructed inductively by

alg. 1. It contains the state ful�lling the top-level goals (instantiation)

and it all states which are reachable from these states (recursion) in

accordance with the de�nition of Res�1(S; o).



32 CHAPTER 3. UNIVERSAL PLANNING WITH DPLAN

((
A

T
 O

1 
B

) 
(A

T
 O

2 
B

) 
(A

T
 O

3 
B

) 
(A

T
 R

O
C

K
E

T
 B

))

((
IN

SI
D

E
R

 O
1)

 (
A

T
 O

2 
B

) 
(A

T
 O

3 
B

) 
(A

T
 R

O
C

K
E

T
 B

))
((

IN
SI

D
E

R
 O

2)
 (

A
T

 O
1 

B
) 

(A
T

 O
3 

B
) 

(A
T

 R
O

C
K

E
T

 B
))

((
IN

SI
D

E
R

 O
3)

 (
A

T
 O

1 
B

) 
(A

T
 O

2 
B

) 
(A

T
 R

O
C

K
E

T
 B

))

((
IN

SI
D

E
R

 O
2)

 (
IN

SI
D

E
R

 O
1)

 (
A

T
 O

3 
B

) 
(A

T
 R

O
C

K
E

T
 B

))
((

IN
SI

D
E

R
 O

3)
 (

IN
SI

D
E

R
 O

1)
 (

A
T

 O
2 

B
) 

(A
T

 R
O

C
K

E
T

 B
))

((
IN

SI
D

E
R

 O
3)

 (
IN

SI
D

E
R

 O
2)

 (
A

T
 O

1 
B

) 
(A

T
 R

O
C

K
E

T
 B

))

((
IN

SI
D

E
R

 O
3)

 (
IN

SI
D

E
R

 O
2)

 (
IN

SI
D

E
R

 O
1)

 (
A

T
 R

O
C

K
E

T
 B

))

((
A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

3)
 (

IN
SI

D
E

R
 O

2)
 (

IN
SI

D
E

R
 O

1)
)

((
A

T
 O

3 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

2)
 (

IN
SI

D
E

R
 O

1)
)

((
A

T
 O

2 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

3)
 (

IN
SI

D
E

R
 O

1)
)

((
A

T
 O

1 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

3)
 (

IN
SI

D
E

R
 O

2)
)

((
A

T
 O

2 
A

) 
(A

T
 O

3 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

1)
)

((
A

T
 O

1 
A

) 
(A

T
 O

3 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

2)
)

((
A

T
 O

1 
A

) 
(A

T
 O

2 
A

) 
(A

T
 R

O
C

K
E

T
 A

) 
(I

N
SI

D
E

R
 O

3)
)

((
A

T
 O

1 
A

) 
(A

T
 O

2 
A

) 
(A

T
 O

3 
A

) 
(A

T
 R

O
C

K
E

T
 A

))

(U
N

L
O

A
D

 O
3)

(U
N

L
O

A
D

 O
2)

(U
N

L
O

A
D

 O
1)

(U
N

L
O

A
D

 O
3)

(U
N

L
O

A
D

 O
2)

(U
N

L
O

A
D

 O
3)

(U
N

L
O

A
D

 O
3)

(M
O

V
E

R
)

(L
O

A
D

 O
1)

(L
O

A
D

 O
2)

(L
O

A
D

 O
3)

(L
O

A
D

 O
1)

(L
O

A
D

 O
2)

(L
O

A
D

 O
1)

(L
O

A
D

 O
1)

Figure 3.3: A Minimal Spanning Tree for the Rocket Domain
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� (Si; Sj) 2<�! (Si; Sj) 2<�� (The order of states implied by � cor-

responds to the order of states with respect to their level in optimal

plans):

follows from the construction of � by alg. 1.

� For a leaf node S in the minimal spanning tree � there might exist a

Res�1(S; o) = S0 but no edge from S to S0. If S0 is already contained

in an optimal plan with l(S0) � l(S) then (S; S0) 62<�� . But, if l(S
0) =

l(S)+ 1 then (S; S0) is contained in <�� but not in <� (no edge from

S to S0)!

The extension of algorithm 1 to construct the union of all optimal plans
of a domain as de�ned in de�nition 8 is obvious: If Res�1(S; o) = S0 with
l(S0) = i and S0 is already in � as predecessor to some other Sp at level
i, than an edge from S to S0 is introduced. Again, the argumentation for
sets of optimal plans holds: If S0 would already be contained at a higher
level j < i in �, than Res�1(S; o) = S0 does not belong to an optimal plan!
Because now there are edges (Sp; S

0) and (S; S0) in �, � is no longer a tree,
but a graph! This graph is still directed (from the goal state as root to
predecessors) and contains no cycles.

De�nition 13 (Minimal Spanning DAG) A MSDAG D� of a problem

graph G = (V;R; �; !) is de�ned as

� D� = (W;S) is a partial graph of G, D� � G with W � V and S � R.

� D� is a directed acyclic graph (that is, it is weakly connected and it

contains no path with a cycle).

Furthermore, for D� the following restriction holds: For each edge

(w;w0) 2 S; l(w) + 1 = l(w0).

� � : W ! R is an evaluation of edges r 2 R. The �-value of D�

is de�ned as �(D�) =
P

r2D�
�(r). D� is a MSDAG if �(D�) =

minf�(D) j D is directed and acyclic partial graph of G g.

For the special case of unevaluated edges (each edge has identical costs),

we have: �(D�) = kSk.

� Again, we restrict MSDAGs to a �xed root-node, corresponding to the

goal-state of a problem domain.

We can write (minimal spanning) DAGs as lists in the following way:
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De�nition 14 (Representing DAGs as Lists) A DAG can be represen-

ted as

dag = leaf j node(edge1(dag1) : : :edgen(dagn)):

In our case, leaf and node represent problem states and edge actions. For

the list representation, a node can be contained more than once at a �xed

level of the DAG, that is, the roots of some dagi may be identical. We de�ne

x 2 dag to be true if x is contained in the set of nodes of a DAG and false

otherwise.

Now algorithm 1 can be modi�ed to constructing an MSDAG:

Algorithm 2 (Construction of a MSDAG �)
� Use the goal state as root of �

� Recurse for each leaf S of �

{ Calculate the set of all di�erent predecessor states

fSi j Res
�1(S; oi) = S0

ig of S with

S0
i 62 � or l(S0

i) = l(Res�1(S; oi))

{ Extend S to S(o1(S
0
1) : : :on(S

0
n))

� Terminate (for each leaf S) if fSi j Res
�1(S; oi) = S0

ig � � or if

fSi j Res
�1(S; oi) = S0

ig = ;.

In contrast to a minimal spanning tree, the MSDAG constructed by algo-
rithm 2 is unique and corresponds to the set of optimal plans ��.

Lemma 2 (Correspondence of MSDAG and ��)

For a given problem, the set of nodes of the MSDAG � is identical to the

set of nodes in ��. The edges (Si; Sj) (represented as S(o(S0)) in alg. 2)

de�ne an order Si < Sj and 8(Si; Sj) : (Si; Sj) 2 �, (Sj ; Sj) 2 ��.

Proof 2 (Lemma 2)

� j��j = j�j (� contains exactly the nodes in ��):

�� contains all states of a problem domain which are elements of opti-

mal plans starting from a goal state. � is constructed inductively by

alg. 2. It contains the state ful�lling the top-level goals (instantiation)

and it all states which are reachable from these states (recursion) in

accordance with the de�nition of Res�1(S; o).
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Figure 3.4: A Graph, Its Minimal Spanning Trees, and Its Minimal Spanning
DAG with Node 1 as Prede�ned Root

� (Si; Sj) 2<�! (Si; Sj) 2<�� (The order of states implied by � cor-

responds to the order of states with respect to their level in optimal

plans):

follows from the construction of � by alg. 2.

� (Si; Sj) 2<�, (Si; Sj) 2<�� :

If (Si; Sj) 2<� then Res(Si; o) = Sj belongs to an optimal action

sequence because of the construction of � by algorithm 2 and l(Si) +
1 = l(Sj) holds in ��.

If l(Si) + 1 = l(Sj) holds in �� then (Si; Sj) 2<� because of the

construction of � by algorithm 2.

If there exists a unique minimal spanning tree with the goal state(s) as
root for the problem graph underlying a planning domain, the minimal DAG
corresponds to this tree; if there exists a set of minimal spanning trees with
the goal state(s) as root, the DAG represents the set-theoretical union of
these trees with the restriction that identical states have to occur at identical
levels of the minimal spanning trees which are uni�ed. An example is given
in �gure 3.4. Because we construct plans starting with the goal state(s), the
root of a MSDAG is �xed.

3.3.3 The DPlan Algorithms

In the following, a more detailed description of the algorithms for construct-
ing sets of optimal plans is given. An extended representation of algorithm
1 for constructing a minimal spanning tree is given as algorithm 3, an ex-
tended representation of algorithm 2 for constructing a minimal spanning
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DAG is given as algorithm 4. For algorithm 3, a full formalization, proofs
of termination, soundness, and optimality are given in Schmid (1999).7

Algorithm 3 ( DPlan MST-Algorithm 1)

� Input: a planning problem P(O;D;G)

� Output: minimal spanning tree � for P, or ?

1. Initialization (root of �):
Let SG = fSi j i = 0 : : : n; Si 2 D and G � Sig

� if SG = ;: � = ?

� if kSGk = 1: � = S for SG = fSg, D = D n SG

� else (more than one state ful�lling the top-level goals): � = G(S1 : : : Sn)

(a term/tree with the top-level goals as root and all states ful�lling G as

children) for SG = fS1; : : : ; Sng, D = D n SG

2. Tree expansion (if � 6= ?):

For all leafs Si of �: calculate all di�erent predecessors S0ij with Res�1(Si; oij) =
S0ij and S0ij 2 D8 where oij is an instantiated operator from O

�(Si) = Si(oi1(S
0
i1) : : : oin(S

0
in)) (a sub-term/sub-tree where node Si has children

S0i1 : : : S
0
in with the connecting edges labeled with actions oi1 : : : oin), D = DnfS0ijg

3. Termination: D = ; or no leaf in � can be expanded

Because the algorithms only di�er at one (crucial!) step, we can describe
them together: Input in the algorithm is a planning problem as de�ned in
de�nition 1, output is a minimal spanning tree or the MSDAG of a prob-
lem. Remember, that the minimal spanning tree of a problem might not
be unique, that is, the output is only a subset of the set of optimal plans
�� while the MSDAG corresponds to the set of optimal plans. First, it is
checked whether there is at least one state in the set of all states D which
ful�lls the top-level goals. If no state S with G � S exists, planning ter-
minates without success. If one such state exists, this state is introduced
as root of the plan. If more than one state in D ful�lls G, G is introduced
as root node and all states ful�lling G are introduced as children with un-
labeled edges (representing \empty" actions). All states introduced in the
plan (that is for the �rst step all states ful�lling the goal) are removed from
D.

Algorithm 4 ( DPlan MSDAG-Algorithm)

� Input: a planning problem P(O;D;G)

7The termination proof given there holds only for a restricted set of domains, see
sect. 3.2.

8Calculation of di�erent predecessors is guaranteed by removing all children of a state

Si immediately from D, that is, before the children of the next state on the same tree-level
are calculated.
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� Output: minimal spanning DAG � for P, or ?

1. Initialization (root of �):

Let SG = fSi j i = 0 : : : n;Si 2 D and G � Sig

� if SG = ;: � = ?

� if kSGk = 1: � = S for SG = fSg

� else (more than one state ful�lling the top-level goals): � = G(S1 : : : Sn)

(a term/tree with the top-level goals as root and all states ful�lling G as
children) for SG = fS1; : : : ; Sng

2. DAG expansion (if � 6= ?):

For all di�erent leafs Si of �: calculate all predecessors S0ij with Res�1(Si; oij) =
S0ij and S0ij 2 D where oij is an instantiated operator from O

�(Si) = Si(oi1(S
0
i1) : : : oin(S

0
in)) (a sub-term/sub-tree where node Si has children

S0i1 : : : S
0
in with the connecting edges labeled with actions oi1 : : : oin)

9 D = DnfS0ijg

3. Termination: D = ; or no leaf in � can be expanded

After constructing the root node, DPlan proceeds recursively for each leaf
calculating all immediate predecessor states. The predecessors are identi�ed
by backward operator application Res�1p (S; fo1 : : :ong) where fo1 : : : ong is
the set of all instantiated operators ful�lling the application condition for
backward application (that is, the Add-List of oi matches a subset of S),
and Res�1p (S; fo1 : : : ong) returns all potential predecessors of S. In general,
a predecessor S0

ij is admissible if o(S0
ij) = Si. In DPlan, admissibility is

checked via look-up in the state-setD. After a state is accepted as admissible
predecessor and included in the plan, it is removed from D.

The algorithms for constructing a universal plan (alg. 3) vs. a MSDAG
(alg. 4) di�er on the time when a predecessor is removed from D. For
algorithm 3, a state S0

ij is removed from D immediately after it is included
in the plan. For algorithm 4 all predecessors for all leafs of the current plan
are calculated and removed afterwards. Therefore, identical states might
occur at the same level of the plan which are \uni�ed" to one node. That is,
when expanding the next level of the plan only di�erent states are regarded.

The algorithm terminates successfully with a minimal spanning tree or
DAG if D is empty. If D is not empty and nevertheless there is no operator
applicable which leads to a state in the set of remaining states D, the graph
(problem space) underlying the domain D might be disconnected or contain
uni-directional edges.

9There can be identical S0ij on a given level of � which were produced from the same

parent state with a di�erent action or from di�erent parent states. A state which occurs

more than once is expanded only once. D is reduced after a level of � is expanded
completely.
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Chapter 4

Transforming Plans into

Programs

4.1 Transformation and Type Inference

Now we come back to our central goal { learning domain speci�c control
knowledge from plans. Control knowledge is represented as sets of recursive
functions (recursive program schemes). Our general approach { as outlined
in chapter 2 { is, to explore a domain by universal planning, to transform
the plan into a (set of) �nite program(s) and to generalize over the �nite
program(s) (see �g. 4.1). While plan construction and generalization-to-n
are straight-forward and can be dealt with by domain-independent, generic
algorithms, plan transformation is knowledge dependent and therefore the
bottleneck of our approach.

Starting point for plan transformation is a complete and correct universal
plan. The result of plan transformation is a �nite program term. The com-
pleteness and correctness of this program can be checked by using each state
in the original plan as input to the �nite program and check (1) whether
the interpretation of the program results in the goal state and (2) whether
the number of operator applications corresponds to the number of edges
on the path from the given input state to the root of the plan. Of course,
because generalization-to-n is an inductive step, we cannot guarantee the
completeness and correctness of the inferred recursive program. The recur-
sive program could be empirically validated by presenting arbitrary input
states of the domain.

In chapter 2 we gave the motivation for plan transformation. In the
following we will describe the method in detail. Plan transformation consists

39
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Domain Specification
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Finite Program(s)
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Scheme
Recursive Program 

CONTROL KNOWLEDGE LEARNING

DOMAIN EXPLORATION

Figure 4.1: Induction of Recursive Functions from Plans

of three steps, which we will describe below:

Plan Decomposition: If a universal plan consists of parts with non-over-
lapping actions, the plan is splitted into sub-plans.
In this case, the following transformation steps are performed for each
sub-plan separately and a term giving the structure of function-calls
is generated from the decomposition structure.

Data Type Inference: The ordering underlying the objects involved in
action execution is generated from the structure of the plan. From
this order, the data type of the domain is inferred.

Introduction of Situation Variables: The plan is re-interpreted in sit-
uation calculus and rewritten as nested conditional expression.

The given universal plan represents the optimal transformation sequences
for each state of the �nite problem domain for which the plan was con-
structed. To execute a plan, the current input state can be searched in
the planning graph by depth-�rst or breadth-�rst search starting from the
root and the actions along the edges from the current input state to the
root can be extracted (Schmid, 1999). If the universal plan is transformed
into a �nite program, the �nite program can be executed by by a functional
eval-apply interpreter. For each input state, the resulting transformation
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sequence should correspond exactly to the sequence of actions associated
with that state in the universal plan.

The searched for �nite program is already implicitely given in the plan
and we have to extract it by plan transformation. A plan can be considered
as a �nite program for transforming a �xed set of inputs into the desired
output by means of applying a total ordered sequence of actions to an initial
state, resulting in a state ful�lling the top-level goals. A plan constructed
by backward search with the state(s) ful�lling the top-level goals as root,
can be read top-down as: IF the literals at the current node are true in a

situation THEN you are done after executing the actions on the path from

the current node to the root ELSE go to the child node(s) and recur.1 Our
goal is to extract the underlying program structure from the plan. To in-
terpret the plan as a program term, states are re-interpreted as boolean
operators. All literals of a state description which are involved in transfor-
mation (the \footprint", see Veloso, 1994) are rewritten with the predicate
symbol as boolean operator introducing a situation variable as additional
argument. Additionally, the actions are extended by a situation variable,
thus, the current (partial) description of a situation can be passed through
the transformations. Finally, additional nodes only containing the situation
variable are introduced for all cases, where the current situation ful�lls a
boolean condition. In this case, the current value of the situation variable
is returned.

We de�ne plans as programs in the following way:

De�nition 15 (Plan as Program) Each node S (set of literals) in plan

� is interpreted as conjunction of boolean expressions B. The planning tree

can now be interpreted as nested conditional: IF B(s) THEN t1 ELSE t2
with t1; t2 == s j o(�(s)), where s is a situation variable, o the action given

at the edge from B to a child node, and �0 as sub-plan with this child node

as root.

The restriction to binary conditions \if-then-else" is no limitation in expres-
siveness. Each n-ary condition can be rewritten as nested binary condition:

(cond (x1 t1) (x2 t2) (x3 t3) : : : (xn tn)) ==

(if x1 t1 (if x2 t2 (if x3 t3 (if : : : (if xn tn 
))))).

If the plan results in a term IF B(s) THEN s ELSE o(�(s)), the problem
is linear, if then- and else- part involve operator application, the problem
is more complex (resulting in a tree recursion). We will see below, that for

1An interpreter function for universal plans is given in (Wysotzki & Schmid, to appear).
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some problems a complex structure can be collapsed into a linear one as a
result of data type introduction.

For information about the global data structures and central components
of the algorithm, see appendix A. In the following we will describe the three
steps of plan transformation in an abstract way. The subsequent sections
give illustrations for some example domains.

4.1.1 Plan Decomposition

As an initial step the plan might be decomposed in uniform sub-plans:

De�nition 16 (Uniform Sub-Plan) A sub-plan is uniform if it contains

only �xed, regular sequences of operator-names ho1 : : :oni with n � 1.

The most simple uniform sub-plan is a sequence of steps where each
action involves an identical operator-name (see �g. 4.2.a). It could also be
possible, that some operators are applied in a regular way { for example
drill-hole{polish-object (see �g. 4.2.b). Single operators or regular sequences
can alternatively occur in more complex planning structures (see �g. 4.2.c).
A plan can contain uniform sub-plans in several ways: The most simple way
is, that the plan can be decomposed level-wise (see �g. 4.3.a). In general,
sub-plans can occur at any position in the planning structure as subgraphs
(see �g. 4.3.b).

We have only implemented a very restricted mode for this initial plan
decomposition: single operators and level-wise splitting (see appendix A).
A full implementation of decomposition involves complex pattern-matching,
which we realize in a later step, when identifying sub-programs in our ge-
neralization-to-n approach2. Level-wise decomposition can result in a set of
\parallel" sub-plans which might be composed again during later planning
steps. Parallel sub-plans occur, if the \parent" sub-plan is a tree, i. e.,
it terminates with more than one leaf. Each leaf becomes the root of a
potential subsequent sub-plan.

In the current implementation, we return the complete plan, if di�erent
operators occur at the same level. A reasonable minimal extension (avoiding
complex pattern-matching) would be, to search for sub-plans ful�lling our
simple splitting criterium at lower levels of the plan. But up to now, this
case only occurred for complex list problems (as tower with 4 blocks, see

2Sub-program identi�cation in �nite programs and generalization to a set of recursive
equations is done by Martin M�uhlpfordt in his diploma thesis.



4.1. TRANSFORMATION AND TYPE INFERENCE 43

(o1 ...)

(o1 ...)

(o1 ...)

(o1 ...)

(o1 ...)

(o1 ...)

(o1 ...)

(o2 ...)

(o2 ...)

(o2 ...)

(o1 ...) (o1 ...)

(o1 ...) (o1 ...)

(a) (b) (c)

Figure 4.2: Examples of Uniform Sub-Plans

below) and in such cases, a minimal spanning tree is extracted from the
plan.

If decomposition results in more than one sub-plan, an initial skele-
ton for the program structure is generated over the names of the sub-plan,
which are initially associated with the partial plans and �nally with recur-
sive functions. If generalization-to-n succeeded, the names are extended by
the associated lists of parameters. For example, a structure (p1 (p2 (p3)))

could be completed to (p1 arg1 (p2 arg2 arg3 (p3 (arg 4 s)))) where the last
argument of each sub-program pi is a situation variable. For all arguments
argi, the initial values as given in the �nite program are known.3

4.1.2 Data Type Inference

The central step of plan transformation is data type inference.4 The struc-
ture of a (sub-) plan is used to generate an hypothesis about the underlying

3Parameters and initial values are generated in the generalization-to-n algorithm, see

Schmid et al., 1999.
4Concrete and abstract data types are for example introduced in (Ehrig & Mahr, 1985).
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Figure 4.3: Uniform Plans as Subgraphs

data type. This hypothesis invokes certain { data type speci�c { concepts
which subsequently are tried to identify in the plan and certain rewrite-steps
which are to be performed on the plan. If the data type speci�c concepts
cannot be identi�ed from the plan, plan transformation fails.

De�nition 17 (Data Type) A data type � is a collection of data items,

with designated basic items ? (together with a \bottom"-test) and operations

(constructors) such that all data items can be generated from basic items by

operation-application. The constructor function determines the structure of

the data type with bot < c(x; bot) < c(x0; c(x; bot)) : : :. If x is empty or

unique, the data type is simple and the (countable, in�nite) set of elements

belonging to � is totally ordered. The structure of data belonging to complex

types is usually a partial order. For complex types, additionally selector

functions el(c(x; s)) = x and rs(c(x; s)) = s are de�ned.

The data type hypotheses are checked against the plan ordered by in-
creasing complexity:

� Is the plan a sequence of steps (no branching in the plan)?
Hypothesis: Data Type is Sequence
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� Does the plan consist of paths with identical sets of actions?
Hypothesis: Data Type is Set

� Is the plan a tree?
Hypothesis: Data Type is List or compound type

� Is the plan a DAG?
Hypothesis: Data Type is List or compound type.

Data type inference for the di�erent plan structures is discussed in detail
below. After the plan is rewritten in accordance to the data type, the
order of the operator-applications and the order over the domain objects
are represented explicitly.

Explicit order over the domain objects is achieved by replacing object
names by functional expressions (selector functions) referring to objects in
an indirect way. Referring to objects by functions f(t), where t is a ground
term (a constant, as the the bottom-element, or a functional expression over
a constant) makes it possible to deal with in�nite domains while still using
�nite, compact representations (Ge�ner, 1999). For example, (pick oset)

can represent a speci�c object in an object list of arbitrary length.

4.1.3 Introducing Situation Variables

In the �nal step of plan transformation, the remaining literals of each state
and the actions are extended by situation variable s as additional argument
and the plan is rewritten as an conditioned expression as de�ned in de�nition
15. An abbreviated version of the rewriting-algorithm is given in appendix
A.5

4.2 Plans over Sequences of Objects

A plan which consists of a sequence of actions (without branching) is as-
sumed to deal with a sequence of objects. For sequences, there has to be
a single bottom element, which is identi�able from the top-level goal(s) to-
gether with the goal-predicate(s) as bottom-test. The total order over domain
objects is de�ned over the arguments of the actions from the top (root) of
the sequence to the leaf.

5This �nal step is currently only implemented for linearized plans.
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De�nition 18 (Sequence) Data type sequence is de�ned as:

seq = ? j c(seq) with

null(seq) =

�
true if seq = ?

false otherwise:

For a plan { or sub-plan { with hypothesized data type sequence, data
type introduction works as described in algorithm 5.

Algorithm 5 (Introducing Sequence)

� If the plan starts at level 0:

{ If the plan is not a single step:

� If there is a single top-level goal (ga1 : : : an) set bottom-test to p, else
fail.6

� Set type to seq.

� Generate the sequence:
Collect the argument-tuple of each action along the path from the root

to the leaf.

If the tuple consists of a single argument, keep it
otherwise, remove all arguments which are constant over the sequence.

� If the sequence consists of single elements and if each element occurs as

argument of g,
proceed with sequence = (e0 : : : em) and set bottom to e0

else fail.

� Construct an association list ((e1(succe0)) : : : (em(succ
m�1e0))).

For (e0; e1) check, whether the state on level 1 contains a predicate

q(args) with e0; e1 2 args at positions (pose01q) and (pose11q) if yes,

proceed, else fail.
For each (ei; ei+1) of the sequence with i = 1 : : :m check whether

q(args) with ei; ei+1 2 args exists at level i+ 1 with (posei; i+ 1; q) =

(pose01q) = pi and pos(ei+1; i+ 1; q) = pos(e1; 1; q) = pj .
If yes, generate a function (succei) = ej if (q args) with ei at pi in q

and ej at pj in q

else fail.

� Introduce data type sequence into the plan:

For each state, keep only bottom-test predicate (gargs)

Replace arguments of g and of actions by (succie0) in accordance to the
association list.

{ If the plan is a single step: identify bottom-test and bottom as above, reduce

states to the bottom-test predicate.

6This step can be extended to multiple goals, if the sequence is generated �rst. Then,
there has to be one remaining constant occurring as argument of the same predicate as the

constants involved in the sequence. This predicate has to occur in the set of goal-predicates

and is selected as bottom-test predicate. The remaining constant which is argument of
this predicate in the goal and which is not involved in rewriting is identi�ed as bottom.
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� If the plan starts at a level > 0: an \intermediate" goal has to be identi�ed;

afterwards, proceed as above.

For the application of an inferred recursive control rule, an additional
function for identifying successor-elements from the current state has to be
provided as described in algorithm 5. The program code for generating this
function is given in �gure 4.4.

; pattern for getting the succ of a constant

; pred has to be replaced by the predicate-name of the rewrite-rule

; x-pos has to be replaced by a list-selector (position of x in pred)

; y-pos dito (position of y = (succ x) in pred)

; sharp-quote #' defines a function

; function-call with (funcall <name> ...)

(setq succ-pattern '(defun succ (x s)

(cond ((null s) nil)

((and (equal (first (car s)) pred)

(equal (nth x-pos (car s)) x))

(nth y-pos (car s))

)

(T (succ x (cdr s)))

)))

; use a pattern for calculating the successor of a constant from a

; planning state (succ-pattern) and replace the parameters for the

; current problem

; this function has to be saved so that the synthesized program

; can be executed

(defun transform-to-fct (r)

; r: ((pred ...) (y = (succ x)))

; pred = (first (car r))

; find variable-names x and y and find their positions in (pred ...)

; replace pred, x-pos, y-pos

(setq r-pred (first (car r)))

(setq r-x-pos (position (second (third (second r))) (first r)))

(setq r-y-pos (position (first (second r)) (first r)))

(nsubst (cons 'quote (list r-pred)) 'pred

(nsubst r-x-pos 'x-pos (nsubst r-y-pos 'y-pos succ-pattern)))

)

Figure 4.4: Generating the Successor-Function for a Sequence

Unstacking Objects

A prototypical example for plans over a sequence of objects is unstacking
objects { either to put all objects on the ground or to clear a speci�c object
located somewhere in the staple. The domain speci�cation and a plan for
unstack are given in �gure 4.5.
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D = f ((clear O1) (clear O2) (clear O3)) ,
((on O2 O3) (clear O1) (clear O2)),

((on O1 O2) (on O2 O3) (clear O1)) g

G = f(clear O3)g

O = funstackg with

(unstack ?x)

PRE f(clear ?x), (on ?x

?y)g

ADD f(clear ?y)g

DEL f(on ?x ?y)g

(works also for the single
PRE f(clear ?x)g)

((CLEAR O1) (CLEAR O2) (CLEAR O3))

((ON O2 O3) (CLEAR O1) (CLEAR O2))

((ON O1 O2) (ON O2 O3) (CLEAR O1))

(UNSTACK O2)

(UNSTACK O1)

Figure 4.5: The Unstack Domain and Plan

The protocol of plan-transformation is given in �gure 4.6. After iden-
tifying the data type sequence, the crucial step is the introduction of the
successor-function: (succ x) = y � (on y x) which represents the \block lying
on top of block x". While such functions are usually prede�ned (Manna &
Waldinger, 1987; Ge�ner, 1999), we can infer them from the universal plan.
The \constructively" rewritten plan (data type sequence is introduced) is
given in �gure 4.7, and the �nite program in �gure 4.8. The transformation
information stored for the �nite program is given in appendix B.

The �nite program written as a term is

(IF (CLEAR O3 S)

S

(UNSTACK (SUCC O3 S)

(IF (CLEAR (SUCC O3 S) S)

S

(UNSTACK (SUCC (SUCC O3 S) S)

(IF (CLEAR (SUCC (SUCC O3 S) S) S)

S

OMEGA))))).

An RPS generalizing the unstack term is � = h (unstack-all o s) = (if (clear

o s) s (unstack (succ o s) (unstack-all (succ o s) s))) i with t = (unstack-rec

o s) for some constant o and some set of literals s. The executable program
is given in �gure 4.9.

Plans consisting of a linear sequence of operator applications over a se-
quence of objects in general result in generalized control knowledge in form
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+++++++++ Transform Plan to Program ++++++++++

1st step: decompose by operator-type

Single Plan

(SAVE SUBPLAN P1)

(P1)

-----------------------------------------------

2nd step: Identify and introduce data type

(INSPECTING P1) Plan is linear

(SINGLE GOAL-PREDICATE (CLEAR O3))

Plan is of type SEQUENCE

(SEQUENCE IS O3 O2 O1)

(IN CONSTRUCTIVE TERMS THAT 'S (O2 (SUCC O3)) (O1 (SUCC (SUCC O3))))

Building rewrite-cases:

(((ON O2 O3) (O2 = (SUCC O3))) ((ON O1 O2) (O1 = (SUCC O2))))

(GENERALIZED RULE IS (ON |?x1| |?x2|) (|?x1| = (SUCC |?x2|)))

Storage as LISP-function

Reduce states to relevant predicates (footprint)

((CLEAR O3))

((CLEAR (SUCC O3)))

((CLEAR (SUCC (SUCC O3))))

Show Constructive Plan? y

Use GRAPHLET? y

Save graphlet-input to <name>: cplan-unstack

transforming to graphlet syntax... please wait...

transformation ok, now I call graphlet... please wait...

-----------------------------------------------

3rd step: Transform plan to program

Show Plan as Program? y

Save xtree-input to <name>: term-unstack

>>>> You can adjust the window now

Saving this window takes a moment...

Save as gif? y

wrote to term-unstack.gif

---------------------------------------------------------

T

Figure 4.6: Protocol for Unstack
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((CLEAR O3))

((CLEAR (SUCC O3)))

((CLEAR (SUCC (SUCC O3))))

(UNSTACK (SUCC O3))

(UNSTACK (SUCC (SUCC O3)))

Figure 4.7: Introduction of Data Type Sequence in Unstack

Figure 4.8: Finite Program for the Unstack Domain
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; Complete recursive program for the UNSTACK problem

; call (unstack-all <oname> <state-description>)

; e.g. (unstack-all 'O3 '((on o1 o2) (on o2 o3) (clear o3)))

; --------------------------------------------------------------------

; generalized from finite program generated in plan-transform

(defun unstack-all (o s)

(if (clear o s)

s

(unstack (succ o s) (unstack-all (succ o s) s))

) )

(defun clear (o s)

(member (list 'clear o) s :test 'equal)

)

; inferred in plan-transform

(DEFUN SUCC (X S)

(COND ((NULL S) NIL)

((AND (EQUAL (FIRST (CAR S)) 'ON)

(EQUAL (NTH 2 (CAR S)) X))

(NTH 1 (CAR S)))

(T (SUCC X (CDR S)))))

; explicit implementation of "unstack"

; in connection with DPlan: apply unstack-operator on state $s$ and return

; the new state

(defun unstack (o s)

(cond ((null s) nil)

((and (equal (first (car s)) 'on) (equal (second (car s)) o))

(cons (cons 'clear (list (third (car s)))) (cdr s))

)

(T (cons (car s) (unstack o (cdr s))))

))

Figure 4.9: LISP-Program for Unstack
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Table 4.1: Linear Recursive Functions

(unstack-all x s) == (if (clear x) s (unstack (succ x) (unstack-all (succ x) s)))
(factorial x) == (if (eq0 x) 1 (mult x (factorial (pred x))))
(sum x) == (if (eq0 x) 0 (plus x (sum (pred x))))
(expt m n) == (if (eq0 n) 1 (mult m (expt m (pred n))))
(length l) == (if (null l) 0 (succ (length (tail l))))
(sumlist l) == (if (null l) 0 (plus (head l) (sumlist (tail l))))
(reverse l) == (if (null l) nil (append (reverse (tail l)) (list (head l))))
(append l1 l2) == (if (null l1) l2 (cons (head l1) (append (tail l1) l2)))

of linear recursive functions. In standard programming domains (over num-
bers, lists), a large group of problems is solvable by functions of this recursion
class. Examples are given in table 4.1.

It is simple and straight-forward to generalize over linear plans. For
this plans of problems, our learning strategy provides complete and correct
control rules. As a result, planning can be avoided completely and the trans-
formation sequence for solving an arbitrary problem involving an arbitrary
number of objects can be solved in linear time!

4.3 Plans over Sets of Objects

A plan which has a single root and a single leaf where the set of actions
for each path from root to leaf are identical is assumed to deal with a set
of objects. For sets, there has to be a complex data object which is a set of
elements (constants of the planning domain), a bottom-element { which is
inferred from the elements involved in the top-level goals {, a bottom-test
which has to be an inferred predicate over the set, and two selectors { one
for an element of a set (pick) and one for a set without some �xed element
(rst). The partial order over sets with maximally three elements is given
in �gure 4.10 { this order corresponds to the sub-plans for unload or load
in the rocket domain. If pick and rst are de�ned deterministically (e. g. by
list-selectors), the partial order gets reduced to a total order.

De�nition 19 (Set) Data type set is de�ned as:

set = ? j c(e; set) with

empty(set) =

�
true if set = ?

false otherwise
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pick(set) = some e 2 set

rst(set) = set n e for some e 2 set.

Because the complex data object is inferred from the top-level goals (occur-
ring in the root of the plan), we typically infer an \inverted" order { with
the largest set (containing all objects which can be element of set) as bottom
element and c(e; set) == rst(set) as a de-structor.

For a plan { or sub-plan { with hypothesized data type set, data type
introduction works as described in algorithm 6. Because we collapse such a
plan to one of the set of paths as described in section 2.2.3, this algorithm
completely contains the case of sequences (alg. 5). Note, that collapsing
plans with underlying data type set corresponds to the idea of \commutative
pruning" as discussed in (Haslum & Ge�ner, 2000).

Algorithm 6 (Introducing Set)

� Collapse plan to one path (implemented as: take the \leftmost" path).

� Generate a complex data object: like Generate Sequence in alg. 5.

sequence = (e1 : : : em) is interpreted as set and bottom is instantiated with CO =
(e1 : : : em).

A function for generating CO from the top-level goals (make-co) is provided.

� A generalized predicate (g* args) with CO 2 args is constructed by collecting all
predicates (g args) with o 2 CO ^ o 2 args and replacing o by CO. For a plan

starting at level 0, g has to be a top-level goal and all top-level goals have to be

covered by g�; for other plans, g has to be in the current root node.

� A function for testing whether g� holds in a state is generated as bottom-test.

� Introduce the data type into the plan:

For each state keep only bottom-test predicate (g* args) with CO0 � CO 2 args.
Introduce set-selectors for arguments of g� by replacing CO0 by (rsti CO) and

afterwards replacing action-arguments by (pick(rsti CO)) with (rsti CO) occurring

as argument of g� of the parent-node.
(pick set) and (rstset) are prede�ned by car and cdr.

{ }

{e2}{e1} {e3} 

{e2,e3}{e1,e3}{e1,e2}

{e1,e2,e3}

Figure 4.10: Partial Order of Set
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The program code for make-co, generating the bottom-test, and for pick,
and rst referred to in algorithm 6 is given in �gure 4.11.

The rocket domain as example for a plan over a set of objects was dis-
cussed in detail in section 2.2.3. The protocol of plan-transformation is given
in �gure 4.12.

The recursive functions for loading and unloading all objects in some
arbitrary order learned from the four-object rocket problem (see sect. 2.2.3)
can be of use in many transportation problems, as for example the logistics
domain7 which is still one of the most challenging domains for planning
algorithms (see the AIPS planning competitions 1998 and 2000).

For the rocket domain our system can learn the complete and correct
control rules. All problems of this domain can now be solved in linear time.
A small aw is, that generalization-to-n assumes in�nite capacity of the
transport vehicle and does not take into account capacity as an additional
constraint. To get more realistic, we have to include a resource variable8

for the load operator. The resulting rec-load function have to involve an
additional condition:

(load-all oset c s) =

(if (or (eq0 c) (empty oset))

s

(load (pick oset) (load-all (rst oset) (prec c) s))).

A further extension of the domain would be, to take into account di�erent
priorities for objects to be transported. This would involve an extension of
pick, selecting always the object with highest priority, that is, the control
function would follow a greedy-algorithm.

A Lisp-program representing the control knowledge for the rocket domain
is given in appendix B together with a short discussion about interleaving
the inside and at predicates.

7The logistics domain de�nes problems, where objects have to be transported from dif-

ferent places in and between di�erent cities, using trucks within cities and planes between
cities.

8Dealing with resource-variables is possible with the DPlan-system extended to func-

tion applications, as done in the diploma thesis by Marina M�uller. Currently we cannot
generate disjunctive boolean operators in plan transformation.
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; make-co

; -------

; collect all objects covered by goal-preds p corresponding to the

; new predicate p*

; the new complex object is referred to as CO

; f.e. for rocket: (at o1 b) (at o2 b) --> CO = (o1 o2)

; how to make the complex object CO: use the pattern of the new

; predicate to collect all objects from the current top-level goal

;; use for call of main function, f.e.: (rocket (make-co ..) s)

;; newpat has to be got from the current MAIN-program!

(defun make-co (goal newpat)

(cond ((null goal) nil)

((string< (string (caar goal)) (string (car newpat)))

(cons (nth (position 'CO newpat) (car goal))

(make-co (cdr goal) newpat)))

))

; rest(set) (implemented as for lists, otherwise pick/rest would not

; --------- be guaranteed to be really complements)

;; named rst because rest is build-in

(defun rst (co)

(cdr co)

)

; pick(set)

(defun pick (co)

(car co)

)

; is newpred true in the current situation?

;; used for checking this predicate in the generalized function

;; f.e. (at* CO Place s)

;; newpat has to be replaced by the newpred name (f.e. at*)

;; pname has to be replaced by the original pred name (f.e.at)

(setq newpat '(defun newp (args s)

(cond ((null args) T)

((and (null s) (not(null args))) nil)

((and (equal (caar s) pname)

(intersection args (cdar s)))

(newp (set-difference args (cdar s)) (cdr s)))

(T (newp args (cdr s)))

))

)

(defun make-npfct (patname gpname)

(subst patname 'newp (nsubst (cons 'quote (list gpname)) 'pname newpat))

)

Figure 4.11: Functions inferred/provided for Set
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+++++++++ Transform Plan to Program ++++++++++

1st step: decompose by operator-type

Possible Sub-Plan, decompose...

(SAVE SUBPLAN #:P1)

Possible Sub-Plan, decompose...

(SAVE SUBPLAN #:P2)

Single Plan

(SAVE SUBPLAN #:P3)

(#:P1 (#:P2 (#:P3)))

Show Decomposed Plan(s)? n

-----------------------------------------------

2nd step: Identify and introduce data type

(INSPECTING #:P1) Plan is of type SET

Unify equivalent paths...

Introduce complex object (CO)

(CO IS (O1 O2 O3))

A function for generating CO from a goal is provided: make-co

Generalize predicate...

(NEW PREDICATE IS (#:AT* CO B))

Generate a function for testing the new predicate...

New predicate covers top-level goal -> replace goal

Replace basic predicates by new predicate...

Introduce selector functions...

((((O1 O2) (RST (O1 O2 O3))) ((O1) (RST (RST (O1 O2 O3))))

(NIL (RST (RST (RST (O1 O2 O3))))))

((O3 (PICK (O1 O2 O3))) (O2 (PICK (RST (O1 O2 O3))))

(O1 (PICK (RST (RST (O1 O2 O3)))))))

RST(CO) and PICK(CO) are predefined (as cdr and car).

(INSPECTING #:P2) Plan is linear

Plan consists of a single step

(SET ADD-PRED AS INTERMEDIATE GOAL (AT ROCKET B))

(INSPECTING #:P3) Plan is of type SET

Unify equivalent paths... [... see P1]

Generalize predicate...

(NEW PREDICATE IS (#:INSIDER* CO))

Generate a function for testing the new predicate...

New predicate is set as goal!

Replace basic predicates by new predicate...

Introduce selector functions... [... see P1]

Show Constructive Plan(s)? n

-----------------------------------------------

3rd step: Transform plan to program

Show Plan(s) as Program(s)? n

Figure 4.12: Protocol of Transforming the Rocket Plan
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Table 4.2: Structural Functions over Lists

(a) (map f l) == (if (empty l) nil (cons (f (head l)) (map f (tail l))))
(inc l) == (if (empty l) nil (cons (succ (head l)) (inc (tail l))))

(b) (reduce f b l) == (if (empty l) b (f (head l) (reduce f b (tail l))))
(sumlist l) == (if (null l) 0 (plus (head l) (sumlist (tail l))))
(rec-unload oset s) == (if (empty oset) s

(unload (pick oset) (rec-unload (rst oset) s)))
(c) (�lter p l) == (if (empty l) nil

(if (p (head l)) (cons (head l) (�lter p (tail l))) (�lter p (tail l))))
(odd-els l) == (if (empty l) nil

(if (odd (head l)) (cons (head l) (�lter (tail l))) (�lter (tail l))))
(member e l) == (if (empty l) nil

(if (equal (head l) e) e (member e (tail l))))

4.4 Plans over Lists of Objects

4.4.1 Structural and Semantical List Problems

List-problems can be divided in two classes: (a) problems which involve no
knowledge about the elements of the list, and (b) problems which involve
such knowledge. Standard programming problems of the �rst class are for
example reversing a list, attening a list, or incrementing elements of a
list. Problems, where some operation is performed on every element of a
list can be characterized by the higher-order function (map f l). Other list
problems which can be solved purely structurally are calculating the length
of a list or adding the elements of a list of numbers. Such problems can be
characterized by the higher-order function (reduce f b l). The unload and
load problems discussed above fall into this class if each object involved has
a unique name and if pick and rst are realized in a deterministic way. A
third class of problems follow (�lter p l), for example the functions member,
or odd-els. This class already involves some semantic knowledge about the
elements of a list { represented by the predicate p in �lter and by the equal
test in member. Table 4.2 illustrates structural list-problems.

Structural list problems can be dealt with by an algorithm nearly identi-
cal to algorithm 6 dealing with sets. Because the only relevant information
is the length of a list, the partial order can be reduced to a total order (see
�g. 4.13). Generating a total order results in linearizing the problem. The
extraction of a unique path in the plan is slightly more complicated as for
sets and is discussed below.
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(1 2) (1 3)(1 1) (2 2)

(1 1 1) 

(1 1 1 1)

(1 4) (2 1) (2 3) (2 4)

(1 2 3 4)

(2)(1) (4)(3)

nil

nil

(x1 x2)

(x1 x2 x3)

(x1 x2 x3 x4)

(x1)

Figure 4.13: Partial Order of List

De�nition 20 (List) Data type list is de�ned as:

list = nil j cons(e; list) with

null(list) =

�
true if list = nil

false otherwise

head(cons(e,list)) = e

tail(cons(e,list)) = list

Algorithm 7 (Introducing List (* is discussed in detail below))

� *Collapse plan to one path.

� Generate a complex data object CO = (e1 : : : em).

A function for generating CO from the top-level goals (make-co) is provided.

� A generalized predicate (g* args) with CO 2 args is constructed by collecting all

predicates (g args) with o 2 CO ^ o 2 args and replacing o by CO. For a plan

starting at level 0 g has to be a top-level goal and all top-level goals have to be

covered by g�; for other plans g has to be in the current root node.

� A function for testing whether g� holds in a state is generated as bottom-test.

� Introduce the data type into the plan:
For each state keep only bottom-test predicate (g � args) with CO0 � CO 2 args.

Introduce list-selectors by replacing CO0 by (taili CO) and afterwards replacing

action-arguments by (head(taili CO)) with (taili CO) occurring as argument of g�
of the parent-node.
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While functions over lists involving only structural knowledge are easy
to infer with our approach { as shown for the rocket domain {, this is not
true for the second class of problems. A proto-typical example for this class
is sorting: for sorting a list, knowledge about which element is smaller (or
larger) than another is necessary. That synthesizing functions involving
semantic knowledge is notoriously hard is discussed at length in the ILP
literature (Flener & Yilmaz, 1999; Le Blanc, 1994).

Currently, we approach transformation for such problems by the steps
presented in algorithm 8. We do not claim, that this strategy is applicable
to all semantic problems over lists. We developed this strategy from ana-
lyzing and implementing plan transformation for the selection sort problem,
which is described below. We will describe how semantic knowledge can be
\detected" by analyzing the structure of a plan. For the future, we plan to
investigate further problems and try to �nd a strategy which covers a class
as large as possible.

Algorithm 8 (Dealing with Semantic Information in Lists)

� Extracting a path (identifying list structure):

{ Extracting a minimal spanning tree from the DAG: The plan is a DAG, but
the structure does not ful�ll the set-criterium de�ned above. Therefore, we

cannot just select one path, but we have to extract one deterministic set of

transformation sequences. For purely structural list-problems every minimal
spanning tree is suitable for generalization. For problems involving semantic

knowledge only some of the minimal spanning trees can be generalized.

{ Regularization of the tree: Generating plan levels with identical actions by

shifting nodes downward in the plan and introducing edges with \empty" or

\id" actions.

{ Collapsing the tree: Unifying identical subtrees which are positioned at the

same level of the tree.

� If there are still branches left (identifying semantical criterium for elements):

{ Identify a criterium for classifying elements.

{ Unify branches by introducing list as argument into operator using the cri-
terium as selection-function.

� Proceed using algorithm 7.

4.4.2 Synthesizing Selection-Sort

A Plan for Sorting Lists

The speci�cation for sorting lists with 4 elements is given in table 4.3. In
the standard version of DPlan described in this report we only allow for
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ADD-DEL-e�ects and we do not discriminate between static predicates (as
greater than, being not a�ected by operator application) and uid predi-
cates. Note that it is enough to specify the desired position of three of the
four list-elements in the goal, because positioning three elements determines
the position of the fourth. A more natural speci�cation (for DPlan with
functions) is given in table 4.4. This second version allows for plan con-
struction without using a set of prede�ned states. Information (like which
element is on which position in the list or what number is greater than an-
other) can simply be \read" from the list by applying prede�ned (LISP-)
functions. The de�nition of the swap-operator determines whether the prob-
lem is solved by bubble-sort or by selection-sort. In the �rst case, swap is
applied to neighbor elements where the �rst is greater than the other; in the
second case, the �rst condition is omitted. Note, that for �nding operator-
sequences for sorting a list by an ascending order by backward planning, the
greater condition is reverse!

The universal plan is given in �gure 4.14. For sorting a list of 4 elements,
there exist 24 states. Swapping elements with the restrictions given for
selection sort results in 72 edges. Please note, that we represent plans for
sorting abbreviated, writing [1 2 3 4 ] instead of ((isc p1 1) (isc p2 p) (isc

p3 3) (isc p4 4)) and so on. Sorting lists of three elements is illustrated in
appendix B.

Di�erent Realizations of Selection Sort

To make the transformation steps more intuitive, we �rst discuss functional
variants of selsort (see tab. 4.5): The �rst variant is a standard implemen-
tation with two nested for-loops. The outer loop processes the list l (more
exactly, the array) from start (s) to end e, the inner loop (function smpos)
searches for the position of the smallest element in l, starting at index (1+s)
where s is the current index of the outer loop. The for-loops are realized as
tail-recursions.

There is some conict between a tail-recursive structure { where some
input state is transformed step-wise to the desired output { and a plan {
representing a sequence of actions from the goal to some initial state. Our
de�nition of a plan as program implies a linear recursion (see def. 15). The
second variant of selection sort overcomes this discrepancy: For a list l

with starting index s and last index e, it is checked, whether l is already
sorted from s to a current index c which is initialized with e and step-
wise reduced. If yes, the list is returned, otherwise, it is determined which
element at positions (c : : :e) should be swapped to position (1 � c). The
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Table 4.3: Speci�cation of SelSort (isc stands for \(is-content position ele-

ment)", gt stands for \greater than" and is static)
D = f ((isc p1 1) (isc p2 2) (isc p3 3) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 1) (isc p2 2) (isc p3 4) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 1) (isc p2 3) (isc p3 2) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 1) (isc p2 3) (isc p3 4) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 1) (isc p2 4) (isc p3 2) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 1) (isc p2 4) (isc p3 3) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 2) (isc p2 1) (isc p3 3) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 2) (isc p2 1) (isc p3 4) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 2) (isc p2 3) (isc p3 1) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 2) (isc p2 3) (isc p3 4) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 2) (isc p2 4) (isc p3 1) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 2) (isc p2 4) (isc p3 3) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 3) (isc p2 1) (isc p3 2) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 3) (isc p2 1) (isc p3 4) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 3) (isc p2 2) (isc p3 1) (isc p4 4) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 3) (isc p2 2) (isc p3 4) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 3) (isc p2 4) (isc p3 1) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 3) (isc p2 4) (isc p3 2) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 4) (isc p2 1) (isc p3 2) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 4) (isc p2 1) (isc p3 3) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 4) (isc p2 2) (isc p3 1) (isc p4 3) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),
((isc p1 4) (isc p2 2) (isc p3 3) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 4) (isc p2 3) (isc p3 1) (isc p4 2) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)),

((isc p1 4) (isc p2 3) (isc p3 2) (isc p4 1) (gt 4 3) (gt 4 2) (gt 4 1) (gt 3 2) (gt 3 1) (gt 2 1)) g

G = f(isc p1 1) (isc p2 2) (isc p3 3)g

O = fswapg with

(swap ?p ?q)

PRE f(isc ?p ?n1) (isc ?q ?n2) (gt ?n1 ?n2)g

ADD f(isc ?p ?n2) (isc ?q ?n1)g

DEL f(isc ?p ?n1) (isc ?q ?n2)g
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Table 4.4: Speci�cation of SelSort Using Functions (A full description of plan-

ning with functions can be found in the diploma thesis of Marina M�uller)
(define (domain list-domain)

(:action swap

:parameters (?i ?j ?X)

:precondition ()

:effect

((change (?X in (list ?x) (to (swap ?i ?j ?X)))

))

:post (((list ?X))

(> (nth ?j ?X) (nth ?i ?X)))

))

(define (problem sort-list)

:domain 'list-domain

:variables ((?i :range (0 2)) (?j :range (0 2)))

:goal ((list [ 1 2 3 4]))

)

(defun swap (p1 p2 l)

(cond ((< p1 p2)

(substitute (nth p1 l) (nth p2 l)

(substitute (nth p2 l) (nth p1 l) l :start p1 :end p2)

:start p2 :end (1+ p2)) )

(T

(substitute (nth p2 l) (nth p1 l)

(substitute (nth p1 l) (nth p2 l) l :start p2 :end p1)

:start p1 :end (1+ p1)) )

))
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Table 4.5: Functional Variants for Selection-Sort

; (1) Standard: Two Tail-Recursions

(defun selsort (l s e)

(if (= s e)

l

(selsort (swap s (smpos s (1+ s) e l) l) (1+ s) e)

))

(defun smpos (s ss e l)

(if (> ss e)

s

(if (> (nth s l) (nth ss l))

(smpos ss (1+ ss) e l)

(smpos s (1+ ss) e l)

)))

; (2) Realization as Linear Recursion

; c is ``counter'', starting with last list-position e

(defun lselsort (l c s e)

(if (sorted l s c)

l

(swap* (1- c) c e (lselsort l (1- c) s e))

))

(defun swap* (s from to l)

(swap s (smpos s from to l) l)

)

(defun sorted (l from c)

(equal (subseq l from c) (subseq (sort (copy-seq l) '<) from c))

)

; (3) Explicit definition of order (gl is list of pos-key pairs)

; e.g. gl = ((3 4) (2 3) (1 2) (0 1)) --> sorted l = (1 2 3 4)

(defun llselsort (gl l)

(if (lsorted gl l)

l

(lswap* (car gl) (llselsort (cdr gl) l))

))

(defun lsorted (gl l)

(cond ((null gl) T)

((equal (second (car gl)) (car l)) (lsorted (cdr gl) (cdr l)))

(T nil)

))

(defun lswap* (g l)

(swap (first g) (position (second g) l) l)

)
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== ((isc p1 1) (isc p2 2) (isc p3 3) (isc p4 4))

[4321][2431][4132][3412][2314][1342][4213][3241][3241][3124][2143]

[4312][2341][3421][2413][4123][1342]

[4231][1324][1432][3214][2134][1243]

[1234]

(swap p3 p4) == (S P1 P2) (S P1 P3) (S P2 P3) (S P1 P4)(S P2 P4)(S P3 P4)

(S P1 P3) (S P2 P3) (S P1 P4) (S P2 P4)(S P3 P4) (S P2 P1)(S P3 P2) (S P4 P2) (S P2 P3)(S P1 P2) (S P1 P4)

(S P1 P4) (S P2 P4)(S P3 P4) (S P1 P4)(S P3 P4)(S P2 P4) (S P2 P3)(S P1 P3)(S P1 P4) (S P2 P1) (S P2 P4)(S P3 P2) (S P2 P1)(S P2 P3)(S P4 P2)(S P1 P2) (S P1 P4)(S P1 P2) (S P4 P3)(S P3 P1)

(S P1 P2) (S P1 P3)
(S P2 P4) (S P2 P4)

(S P4 P3)
(S P3 P4) (S P1 P4)

(S P1 P2)

(S P2 P3) (S P1 P4) (S P3 P2)

(S P3 P1)

(S P4 P3)

(S P3 P4) (S P1 P3)

(S P1 P3)

(S P2 P4)

(S P2 P1)

(S P2 P1)

(S P3 P2)

(S P1 P2)(S P4 P2)

(S P4 P3)

(S P1 P3)

(S P3 P4)

(S P1 P4)

(S P4 P1)
(S P4 P3)

(S P3 P1)(S P3 P2)(S P1 P3)

(S P2 P4)

(S P2 P3)(S P1 P3)

(S P1 P4)

Figure 4.14: Plan for SelSort (states are represented abbreviated)

inner loop is replaced by an explicit selector-function. We will see below,
that this corresponds to selecting one of several elements represented at
di�erent branches on the same level of the plan.

The second variant corresponds closely to the function we can infer
from the plan, it can be inferred from a plan generated by using function-
application.9 A plan constructed by manipulating literals contains no knowl-
edge about numbers as indices in a list and order relations between numbers.
Looking back at plan transformation for rocket, we introduced a \complex
object" oset which guided action application in the recursive unload and
load function. Thus, for sorting, we can infer a complex object from the
top-level goals which determine which number should be at which position
of the list. The third variant gives an abstract representation of the function
which we can infer automatically from the plan in �gure 4.14. This function
is more general than standard selection sort, because now lists can be sorted
in accordance to any arbitrary order relation speci�ed in parameter gl!

9Our investigation of plan transformation for plans involving function-application is
still at the beginning.
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[2 4 3 1]

(S P1 P4)

(S P1 P3)

(S P1 P2)(S P1 P4)(S P1 P2)

(S P1 P3)

(S P2 P4)

(S P2 P3)

(S P1 P4)

(S P1 P3)

(S P1 P2)

[2 3 4 1][4 3 1 2][3 1 4 2]

(S P1 P3)

(S P1 P4)(S P1 P2)

(S P3 P4)

[1 2 3 4]

[2 1 3 4] [4 2 3 1][3 2 1 4] [1 3 2 4]

[3 1 2 4] [2 3 1 4]

[1 4 3 2]

[4 3 2 1] [4 1 3 2] [3 4 1 2]

(S P1 P2)

(S P2 P4)

(S P1 P3)

[3 4 2 1]

[2 1 4 3]

[2 4 1 3]

(S P1 P4)

(S P1 P2) (S P1 P4)

(S P1 P3) (S P2 P3)

[4 2 1 3] [3 2 4 1] [1 4 2 3] [1 3 4 2]

[1 2 4 3]

[4 1 2 3]

Figure 4.15: A Minimal Spanning Tree Extracted from the SelSort Plan

Inferring the Function-Skeleton

The plan given in �gure 4.14 is not decomposed by the initial decomposition
step, because the complete plan involves only one operator { swap. The plan
is a DAG, but it does not ful�ll the criterium for sets of objects. Therefore,
extraction of one unique set of optimal plans is done by picking oneminimal

spanning tree from the plan (see sect. 3.3).

The plan for sorting lists with three elements (see appendix B) consists
of 3! = 6 nodes and 9 edges. It contains 9 di�erent minimal spanning trees
(see also appendix). Not all of them are suitable for generalization: Three
of the nine trees can be \regularized" (see next transformation step below).
If we don't have information for picking a suitable minimal spanning tree,
we have to extract a tree, try to regularize it and backtrack if regularization
fails. For 9 candidates with 3 suitable solutions, this is feasible. But for the
sorting of 4 element list, there exist 24 nodes, 72 edges and more than a
million possible minimal spanning trees with only a small amount of them
being regularizable (see appendix A for calculation of number of minimal
spanning trees). Currently, we pre-calculate the number of trees contained
in the DAG and if the number exceeds a given threshold t (say 500), we only
generate the �rst t trees. One possible but unsatisfying solution would be to
parallelize this step, which is possible. We plan to investigate whether tree-
extraction and regularization can be integrated into one step. This would
solve the problem in an elegant way. One of the regularizable minimal
spanning trees for sorting four elements is given in �gure 4.15.
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The algorithm for extracting a minimal spanning tree from a DAG is
given in alg. 9, the corresponding program fragment in appendix A.

Algorithm 9 (Extract an MST from a DAG)

� Input: a dag with edges (nm) annotated by the level of the node

� Initialization: t == root(dag) (minimal spanning tree)

� For l = 0 to maxlevel� 1 DO:

{ Partition all edges (n m) from nodes n at level l to nodes m at

level l + 1 into groups with equal end-node m:

p = ff(n1 m1)(n2 m1) : : :(nkm1)g; : : :f(n
0
1 ml) : : :(n

0
k0 ml)gg.

{ Calculate the Cartesian product between sets in p: Cart = p1 �

p2 � : : :� pl.

{ Generate trees t0 = t [ c, for all c 2 Cart.

The original plan represented how each of the 24 possible lists over 4
(di�erent) numbers can be transformed into the desired goal (the sorted list)
by the set of all possible optimal sequences of actions. The minimal spanning
tree gives a unique sequence of actions for each states. For collapsing a tree
into a single path, this tree has to be regular10:

De�nition 21 (Regular Tree) An edge-labeled tree t with edges (n m)
from nodes n to nodesm is regular, if for each level l = 0 : : :maxlevel�1 the
subtrees for each node n f(n m1); (n m2); : : :(n mk)g consist of id-identical

label-sets with label �= label0 if label = label0 or label = id.

The minimal spanning tree is tried to be transformed into a regular tree,
using algorithm 10. The program fragment for tree-regularization is given in
appendix A. A tree is regularized by pushing all edges labeled with actions
occurring also on the next level of the tree down to this level. The starting
node of such an edge is \copied" and an id-edge is introduced between the
original and the copied starting node. Note, that an edge can be shifted
more than once. If the result is a regular tree according to de�nition 21,
plan-transformation proceeds, otherwise, it fails.

Algorithm 10 (Regularization of a Tree)

� Input: an edge-labeled tree

10This de�nition to regular trees is similar to the de�nition of redundant attributes in

decision trees (Unger & Wysotzki, 1981): If a node has only identical subtrees, the node
and all but one subtree are eliminated from the tree.
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(S P1 P4) (S P1 P2)

[4 2 3 1][3 2 1 4][2 1 3 4][2 4 3 1]

[(ID ID) 1 2 3 4]

(S P1 P3)

[3 4 1 2][2 3 1 4][3 1 2 4][3 2 4 1][4 2 1 3] [4 1 3 2][4 3 2 1]

(S P2 P4)

ID(S P3 P4)

(S P2 P4) ID

(S P1 P2)(S P1 P2)(S P1 P3) (S P1 P4) (S P1 P3)

(S P2 P3)

((ID) 1 2 4 3)

(S P1 P2)(S P1 P3) (S P1 P2)

[4 1 2 3]

[1 4 3 2]

(S P1 P4)(S P1 P3)

[2 4 1 3]

(S P2 P3) ID

(S P1 P4)(S P1 P4) (S P1 P2) (S P1 P3)

[1 2 4 3]

[1 4 2 3]

[3 4 2 1][3 1 4 2] [4 3 1 2] [2 3 4 1][2 1 4 3]

[1 3 4 2]

(S P1 P4)

[1 2 3 4]

[(ID) 1 2 3 4]

[1 3 2 4]

Figure 4.16: The Regularized Tree for SelSort

� For l = 0 to maxlevel� 2 DO:

{ Construct a label-set LSl for all edges (n m) from nodes n on

level l to nodes m on level l+1 and a label-set LSl+1 for all edges
(o p) from nodes o on level l+ 1 to nodes p on level l+ 2.

{ IF LSl+1 � LSl shift all edges (ns ms) 2 LSl \ LSl+1 one level

and introduce edges (ns ns) with label \id" from level l to the

shifted nodes ns on level n + 1.

� Test if the resulting tree is regular.

The regularized version of the minimal spanning tree for selsort is given
in �gure 4.16. The structure of the recursion to be inferred is now already
visible in the regularized tree: The \parallel" subtrees have identical edge-
labels and the states share a large overlap, as visualized in �gure 4.17.

Inferring the \Semantic" Selector Function

Although the selsort plan could be reduced successfully to a regular tree
with identical subtrees, the plan is still not linear. The remaining subtree as
shown in �gure 4.17 still contains branches. But this branches again share
a regularity:

� ((isc p1 1) (isc p2 2) (isc p3 3)) ! (swap p3 p4)

� ((isc p1 1) (isc p2 2)) ! (swap p2 fp3,p4g)

� ((isc p1 1)) ! (swap p1 fp2,p3,p4g)
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(SWAP P1 P2)

(SWAP P1 P3)

sss

(SWAP P1 P4)

(SWAP P3 P4)

((isc p1 1))

ID

((isc p1 1)) ((isc p1 1))

(SWAP P2 P3)
(SWAP P2 P4)

((isc p1 1) (isc p2 2))

ID

((isc p1 1) (isc p2 2))

((isc p1 1) (isc p2 2) (isc p3 3))

Figure 4.17: The Skeleton of SelSort in the Regularized Tree
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that is, on each level the �rst argument of swap is constant. From the
instantiations of the second argument we can infer the complex object:
COS = fp4g < fp3; p4g < fp2; p3; p4g. Note, that the numbers associated
with positions are not recognized as numbers. Another minimal spanning
tree extracted from the plan, would result in a di�erent pattern, for example
fp2g < fp4; p2g < fp1; p4; p2g which is generalizable in the same way as we
will describe in the following.

The data object which �nally will become the recursive parameter is
constructed along a path in the plan (as described for rocket). On each level
in the plan, the argument(s) of an action can be characterized relative to
the object involved in the parent node. Now, we have to introduce a selector
function for an argument of an action involving actions on the same level
of the plan with the same parent node. That is the searched for function
has to be de�ned with respect to the children of the action. Remember,
that this is a backward plan and that a child-node is input to an action.
As a consequence, the selector function has to be applied to the current

instantiation of the list (situation).

The searched for function for selecting one element of the candidate
elements represented in the second argument of swap has to be de�ned
relative to the information available at the current \position" in the plan.
That is, the literals of the parent node and the �rst argument of the swap
operator can be used to decide which element should be swapped in the
current (child) state. For example, for (swap p3 fp4g), we have (sel COS) =
P4 from ((isc p1 1) (isc p2 2) (isc p3 4) (isc p4 3)). The �rst argument of
swap occurs in (isc p3 3) of the parent node. The position to be selected
{ p4 { is related to (isc p4 3) in the child node. This observation leads to
the hypothesis: For (swap pos (sel COS)), (sel COS) = posS with (isc pos

key) 2 parent and (isc posS key) 2 current. Because the element which has
to be at the position represented by the �rst argument of swap has to be
known when swap is executed, the hypothesis is extended to:

(swap* (pos (isc p3 3)) (sel (key (isc p3 3)) s))

(sel 3 s) = (pos (�nd (isc X 3) s))

s = ((isc p1 1) (isc p2 2) (isc p3 4) (isc p4 3))

(pos (isc x y)) = (third (isc x y))

(key (isc x y)) = (second (isc x y)).
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Constructing this hypothesis presupposes, that the plan-transformation
system has prede�ned knowledge about how to access elements in lists.11

Written as Lisp-functions, the general hypothesis is:

(defun swap* (fp s)

(pswap (ppos fp) (sel (pkey fp) s) s) )

(defun sel (k s)

(ppos (car

(mapcan #'(lambda(x) (and (equal (pkey x) k) (list x))) s) )))

where pswap is the swap function prede�ned in the domain speci�cation and
ppos and pkey select the second/third element of a list (isc x y).12

The generalized swap*-function is tested for each swap-action occurring
in the plan. Because it holds for all cases, plan-transformation can proceed.
If the hypothesis would have failed, a new hypothesis had to be constructed.
If all hypotheses fail, plan-transformation fails. For the selsort plan, only
the hypothesis introduced above is possible.

The rest of plan-transformation is straight-forward: The regularized tree
is reduced to a single path, unifying branches by replacing the swap action
by swap* (see �g. 4.18). Note, that in contrast to the rocket problem, this
path already contains \id" branches which will constitute the \then" case
for the nested conditional to which the plan is �nally transformed.

Data type introduction works as described for rocket (for set and struc-
tural list problems): a complex object CO = ((isc p1 1) (isc p2 2) (isc p3

3)) and a generalized predicate (isc* CO) for the bottom-test is inferred.
The state-nodes are rewritten using the rest-selector tail on CO. The head
selector is introduced in the actions: (swap*(head (taili CO)). The resulting
recursive function is:

(defun pselsort (pl s)

(if (isc* pl s)

11In the current implementation we provide this knowledge only partially. For example,

we can select an element x 2 arg from a list (p arg), as needed to construct the de�nition of
succ for sequences. That is, we can construct pos and key. For constructing the de�nition

for sel, we need additionally the selection of an element of a list of literals which follows

a given pattern. This can be realized with the �lter-function mapcan. But up to know, we
did not implement such complex selector functions.

12The second condition (list x) for mapcan is due to the de�nition of this functor in

Lisp. Without this condition, the functor returns T or nil, with this condition, it returns
a list of all elements ful�lling the �lter-condition (equal (pkey x) k).
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((isc p1 1) (isc p2 2) (isc p3 3))

((isc p1 1) (isc p2 2))

((isc p1 1))

(swap* (isc p2 2))

(swap* (isc p3 3))

(swap* (isc p1 1))

s

s

s

id

id

Figure 4.18: Introduction of a \Semantic" Selector Function in the Regu-
larized Tree

s

(swap* (head pl)

(pselsort (tail pl) s)

) ))

Note, that head and tail here correspond to last and butlast. But, because
lists are represented as explicit position-key pairs, pselsort transforms lists
s to lists sorted according to the speci�cation derived from the top-level goals
given in pl independent of the transformation sequence! The Lisp-program
realizing selection sort is given in �gure 4.19.

Concluding Remarks on List Problems

Transforming the selsort plan into a �nite program involved to critical steps:
(1) extracting a suitable minimal spanning tree from the plan and (2) intro-
ducing a \semantic" selector function. The inferred complex object repre-
sents the number of elements which are already on the goal position. This is
in analogy to the rocket problem, where the complex object represented how
many objects are already at the goal-destination (at location B for unload-
all or inside the rocket for load-all). Plan transformation results in a �nal
program which can be generalized to a recursive sort function sharing crucial
characteristics with selection sort. But the function, inferred by our system
di�ers from standard selection sort in two aspects: First, the recursion is
linear, involving a \goal" stack. The nested for-loops (two tail-recursions)
of the standard function are realized by a single linear recursive call. Of
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; Complete Recursive Program for SelSort

; for lists represented as literals

; pl is inferred complex object, e.g. ((p1 1) (p2 2) (p3 3))

; s is situation (statics can be omitted),

; e.g. ((isc p1 3) (isc p2 1) (isc p3 4) (isc p4 2))

(defun pselsort (pl s)

(if (isc* pl s)

s

(swap* (head pl)

(pselsort (tail pl) s)

)))

(defun swap* (fp s)

(pswap (ppos fp) (sel (pkey fp) s) s) )

(defun sel (k s)

(spos (car

(mapcan #'(lambda(x) (and (equal (skey x) k) (list x))) s)

)))

(defun isc* (pl s)

(subsetp pl (mapcar #'(lambda(x) (cdr x)) s) :test 'equal))

; selectors for elements of pl (p k)

(defun ppos (p) (first p))

(defun pkey (p) (second p))

; selectors for elements of s (isc p k)

(defun spos (p) (second p))

(defun skey (p) (third p))

; head and tail realized as last and butlast

; (from the order defined in the plan, alternatively: car cdr)

(defun head (l) (car (last l)))

(defun tail (l) (butlast l))

; explicit implementation of add-del effect

; in connection with DPlan: application of swap-operator on s

; "inner" union: i=j case

(defun pswap (i j s)

(print `(swap ,i ,j ,s))

(let ((ikey (skey (car(remove-if #'(lambda(x) (not (equal i (spos x)))) s))))

(jkey (skey (car(remove-if #'(lambda(x) (not (equal j (spos x)))) s))))

(rsts (remove-if #'(lambda(x) (or (equal i (spos x))

(equal j (spos x)))) s))

)

(union (union (list (list 'isc i jkey))

(list (list 'isc j ikey)) :test 'equal)

rsts :test 'equal)

))

Figure 4.19: LISP-Program for SelSort
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course, the function for selecting the current position is itself a loop: the
literal list is searched for a literal corresponding to a given pattern by an
higher-order �lter function.

We demonstrated plan transformation for a plan for lists with four el-
ements. From a list with three elements, evidence for the hypothesis for
generating the semantic selector function would have been weaker (involv-
ing only the actions from level 1 to 2 in the regularized tree). An alternative
approach to plan transformation, involving knowledge about numbers, is de-
scribed for a plan for three-element lists in (Wysotzki & Schmid, to appear).
In general, there are three backtrack-points for plan transformation:

� Generating \semantic" functions:
If a generated hypothesis for the semantic function fails or if generali-
zation-to-n fails, generate another hypothesis.

� Extracting a minimal spanning tree from a plan:
If plan transformation or generalization-to-n fails, select another min-
imal spanning tree.

� Number of objects involved in planning:
If plan transformation or generalization-to-n fails, generate a plan,
involving an additional object. (A plan has to involve at least three
objects which \construct" the recursive parameter for generalization-
to-n to succeed, see Schmid et al., 1999.)

Because plan generation has exponential e�ort (all possible states of a do-
main for a �xed number of objects have to be generated and the number of
states can grow exponentially relative to the number of objects) and because
the number of minimal spanning trees might be enormous, generating a �-
nite program suitable for generalization is not e�cient in the general case.
To reduce backtracking e�ort, we hope to come up with a good heuristic for
extracting a \suitable" minimal spanning tree in the future. One possibility
mentioned above is, to try to combine tree extraction and regularization.

4.5 Plans over Complex Data Types

4.5.1 Variants of Complex Finite Programs

The usual way, to classify recursive functions, is to divide them into di�erent
complexity classes (Hinman, 1978; Odifreddi, 1989). In complexity theory,
the semantics of a recursive function is under investigation. For example,
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Table 4.6: Structural Complex Recursive Functions

Alternative Tail Recursion
(max m l) == (if (null l) m

(if (> (head l) m) (max (head l) (tail l)) (max m (tail l))))
Tree Recursion
(�b x) == (if (= 0 x) 0 (if (= 1 x) 1 (plus (�b (- x 1)) (�b (- x 2)))))
�-Recursion
(ack x y) == (if (= 0 x) (1+ y) (if (= 0 y) (ack (1- x) 1) (ack (1- x) (ack x (1- y)))))

�bonacci is typically implemented as tree-recursion (see tab.4.6), but it be-
longs to the class of linear problems { meaning, the �bonacci-number of a
number n can be calculated by a linear recursive function (see Field & Har-
rison, 1988, pp. 454). In our approach to program synthesis, complexity is
determined by the syntactical structure of the �nite program, based on the
structure of a universal plan. The unfolding13 of all functions in table 4.6
results in a tree structure. Interpretation of max always involves only one
of the two tail-recursive calls (that is, the function is linear). Interpretation
of �b results in two new recursive calls for each recursive-step (resulting in
an e�ort O(2n)). The Ackermann-function (ack) is the classic example for
a not primitive-recursive function with exponential growth { each recursive
call results in y + x new recursive calls.

For plan transformation, on the other hand, semantics is taken into ac-
count to some extend: As we saw above, plans are linearizable if the data
type underlying the plan is a set or a list. For the case of list problems
involving semantic attributes of the list elements, it depends on the com-
plexity of the involved \semantic" functions whether the resulting recursion
is linear or more complex. Currently, we do not have a theory of \lineariz-
ability" of universal plans, but clearly, such a theory is necessary to make
our approach to plan transformation more general. A good starting point
for investigating this problem, should be the literature on the transforma-
tional approach to code optimization in functional programming (Field &
Harrison, 1988).

There are two well-known planning domains, for which the underlying
data type is more complex than sets or lists: Tower of Hanoi and building a
Tower of alphabetically sorted blocks in the blocks-world domain. The tower

13The unfold rules for recursive functions are for example presented in (Schmid &
Wysotzki, 1998).
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Table 4.7: Speci�cation of Tower for Three Blocks

D = f ((on a b) (on b c) (ct a)),

((on b c) (ct a) (ct b)),
((ct a) (ct b) (ct c)),

((on b a) (on a c) (ct b)),

((on c a) (on a b) (ct c)),
((on a c) (on c b) (ct a)),

((on b c) (on c a) (ct b)),

((on c b) (on b a) (ct c)),
((on a b) (ct a) (ct c)),

((on a c) (ct a) (ct b)),

((on b a) (ct b) (ct c)),
((on c a) (ct b) (ct c)),

((on c b) (ct a) (ct c)) g

((ont x) (\on table") can
be used additionally)

G = f(on A B) (on B C) g

O = fput, puttableg with

(put ?x ?y)

PRE f(ct ?x) (ct ?y)g

; !

ADD f(on ?x ?y)g

DEL f(ct ?y)g

f(on ?x ?z)g !

ADD f(ct ?z)g

DEL f(on ?x ?z)g

(puttable ?x)

PRE f(ct ?x) (on ?x ?y)14g

ADD f(ct ?y)g

DEL f(on ?x ?y)g

problem is a set of lists problem and used as one of the benchmark problems
for planners. The hanoi problem is a list of lists problem (the \outer" list is
of length 3 for the standard 3 peg problems). For both domains, the general
solution procedure to transform an arbitrary state into a state ful�lling the
top-level goals is { at least at �rst glance { more complex than a single
linear recursion. Up to now we cannot fully automatically transform plans
for such complex domains into �nite programs. In the following, we will
discuss possible strategies.

4.5.2 The Tower Domain

A Plan for Three Blocks

The speci�cation of the three-block tower problem is given in table 4.7. The
unstack domain described above as example for a problem with underlying
sequential data type is a sub-domain of this problem: the puttable opera-
tor is structurally identical to the unstack operator. The put operator has
a conditional e�ect where the ADD-DEL-lists associated with the empty
condition are executed in every case.

For the 3-block problem, the universal plan is a unique minimal spanning
tree (see �g. 4.20). Note, that for the tower sorted in reverse order to
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((ON A B) (ON B C) (CT A))

((CT B) (ON B C) (CT A))

((CT C) (ON B A) (CT B))((CT C) (CT B) (CT A))

((ON C B) (CT C) (ON B A))((ON C A) (CT C) (CT B)) ((ON C B) (CT C) (CT A)) ((ON A B) (CT C) (CT A)) ((ON A C) (CT B) (CT A))

((ON B C) (ON C A) (CT B)) ((ON A C) (ON C B) (CT A)) ((ON C A) (ON A B) (CT C)) ((ON B A) (ON A C) (CT B))

(PUT A B)

(PUT B C) (PUT B C)

(PUTTABLE C)(PUTTABLE A)(PUTTABLE A)(PUTTABLE C)(PUTTABLE C)

(PUTTABLE B) (PUTTABLE A) (PUTTABLE C) (PUTTABLE B)

Figure 4.20: Plan for Tower with Three Blocks

the goal order of the blocks the transformation sequence is shorter by one
action because after the base of the tower C was put on the table, B can
immediately put on C without putting it on the table �rst. Consequently,
the control knowledge for solving the tower domain should guarantee that
put is always preferred to puttable if already a partial goal tower exists and
if the next block for the goal tower is clear.

Assuming Subgoal-Independence

A �rst strategy for extracting control knowledge for the tower domain is
described in (Wysotzki & Schmid, to appear): In contrast to the simulta-

neous composite learning strategy described in this report, an incremental

strategy is used15: It is assumed, that the control knowledge for clearing an
arbitrary block is already available as a clear-macro:

clear(x,s)=ct(x,s)(s,putt(f(x),clear(f(x),s))).

Note, that clear immediately returns the current state s, if ct(x) already
holds in s, i. e., ct(x) 2 s.

Furthermore, it is assumed, that the subgoals for having a block x on
a block y (on x y) and for having a block x clear (ct x) are independent.16

Therefore, if the top-level goal (on a b) is regressed to application of the

15In (Wysotzki & Schmid, to appear) additionally to the incremental strategy a simul-

taneous strategy is discussed.
16Note, that this independency assumption corresponds to linear planning: It is as-

sumed, that all subgoals of an operator can be ful�lled before the next top-level goal

is attacked. Linear planning is incomplete, as was demonstrated for example with the
well-investigated Sussman-anomaly (Russell & Norvig, 1995).
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put-operator, its preconditions ((ct a) (ct b)) are immediately associated
with the clear-macro, resulting in a linear plan:

(on a b) (on b c)
(put a b)�(clear a)�(clear b)

�!

(on b c)
(put b c)�(clear b)�(clear c)

�! s.

The recursive programwhich can be inferred presupposing subgoal-independence
is given in appendix B. For some domains, it is possible to identify indepen-
dent predicate sets by analyzing the operator speci�cations (for example the
TIM-analysis for the planner STAN, see Long & Fox, 1999). In contrast, the
puttable-actions in the universal plan generated using only primitive opera-
tors, are generated after the put-actions! We need the plan for constructing
a tower of four blocks, to detect, that put and puttable can be interleaved17!

Simultaneous Composite Learning for Tower

Initial plan decomposition for the 3-block tower plan results in two sub-plans
{ a sub-plan for put-all and a sub-plan for puttable-all. The put-all sub-plan
is a regular tree as de�ned above. The only level with branching is for actions
(put B C) and the plan can be immediately reduced to a linear sequence.
Consequently, we introduce the data type list with complex object CO =

(A B C) and bottom-test (on* (A B C)). The generalized put-all function
is structurally analogous to load-all from the rocket domain:

(put-all olist s) ==

(if (on* olist s)

s

(put (first olist) (second olist) (put-all (tail olist) s))

)

where first and second are implemented as last and second-last, or
olist gives the desired order of the tower in reverse order.

For the puttable sub-plan we have one fragment consisting of a single
step { (puttable C) { for the reversed tower and a set of four sequences:

� A < C < B

17Note, that we use \interleaving" here in a more general sense than in the planning

literature: When we speak of interleaved types of operators, this might not necessarily

imply interleaving of goals. During plan construction we used a non-linear technique
allowing for goal interleaving.
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� B < C < A

� B < A < C

� C < A < B

with (ct x) as bottom-test and the constructor (succ x) = y for (on y x)

as introduced above for linear plans. An obvious strategy compatible with
our general approach to plan transformation would be to select one of this
sequences and generalize a clear-all function identical to the unstack-all func-
tion discussed above. It remains the problem of selecting the block which
is to be unstacked { that is, we have to infer the bottom-element from the
goal-set (ct a) (ct b) (ct c). As described for sorting, we have to generate a
semantic selector function which is not depended of the parent-node, but of
the current state.18

We have the following examples for constructing the selector function:

((on b c) (on c a)): (sel (A B C)) = A

((on a c) (on c b)), ((on c a) (on a b)): (sel (A B C)) = B

((on b a) (on a c)): (sel (A B C)) = C

that is, for the complex object (ABC) we always have to select the element
which is the base of the current tower.

If we model the tower domain by explicit use of an ontable predicate,
this predicate can be used as criterium for the selector function. Without
this predicate, we can introduce (on* CO) { already generated for put-all
{ and select the last element of the list. The resulting tower function than
would be:

(tower olist x) ==

(put-all olist (clear-all (sel s))

(sel s) == (last (make-olist s)).

With the described strategy, the problem got reduced to an underlying
data type list with a semantic selector function. This control rule generates
correct transformation sequences for towers with arbitrary numbers of blocks
with the desired sorting of blocks speci�ed by olist, which is generated
from the top-level goals. But, it does not for all cases generate the optimal

transformation sequences!

18Note, that for selsort we introduced a selector in the basic operator swap. Here we
introduce a selector in the function clear-all which is already a recursive generalization!
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Figure 4.21: Abstract Form of the Universal Plan for the Four-Block Tower

We still have not included the single-step case in the tower function. For
the 3-block plan, we could come up with the discriminating predicate (on c

b):

(tower olist x) ==

(put-all olist (if (on c b s)

(puttable c s)

(clear-all (sel s))

) )

which generates incorrect plans for larger problems, for example for the
state ((on c b) (on b a) (on a d) (ct c))!

For both variants of tower a generate-and-test strategy would discover
the aw: For the �rst variant, it would be detected that for ((on c b) (on b

a) (ct a)) an additional action (puttable b) would be generated which is not
included in the optimal universal plan. For the second variant, all states
of the 3-block plan are covered correctly { the faulty condition would only
be detected when checking larger problems. But, with only one special case
of a reversed tower in the three-block plan every other hypothesis would be
highly speculative. Therefore, we now will investigate the four-block plan.

The universal plan for the four-block tower problem is a DAG with 73
nodes and 78 edges, thus we have to extract a suitable minimal spanning
tree. Because the plan is rather larger, we present an abstract version in
�gure 4.21 and a summary for the action sequences for all 33 leaf nodes in
table 4.8.

For the four-block problem, we have 15 sequences needing to put all
blocks on the table and 8 cases with shorter optimal plans (only counting
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Table 4.8: Transformation Sequences for Leaf-Nodes of the Tower Plan for
Four Blocks

15 4-towers, needing 3 puttable actions
( (on a b) (on b d) (on d c) (ct a)) (PUTTABLE A) (PUTTABLE B) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on a c) (on c b) (on b d) (ct a)) (PUTTABLE A) (PUTTABLE C) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on a c) (on c d) (on d b) (ct a)) (PUTTABLE A) (PUTTABLE C) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on a d) (on d b) (on b c) (ct a)) (PUTTABLE A) (PUTTABLE D) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on b a) (on a d) (on d c) (ct b)) (PUTTABLE B) (PUTTABLE A) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on b c) (on c a) (on a d) (ct b)) (PUTTABLE B) (PUTTABLE C) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on b c) (on c d) (on d a) (ct b)) (PUTTABLE B) (PUTTABLE C) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on b d) (on d a) (on a c) (ct b)) (PUTTABLE B) (PUTTABLE D) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)

( (on c a) (on a b) (on b d) (ct c)) (PUTTABLE C) (PUTTABLE A) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on c a) (on a d) (on d b) (ct c)) (PUTTABLE C) (PUTTABLE A) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)

( (on c b) (on b a) (on a d) (ct c)) (PUTTABLE C) (PUTTABLE B) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on c b) (on b d) (on d a) (ct c)) (PUTTABLE C) (PUTTABLE B) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)

( (on d a) (on a b) (on b c) (ct d)) (PUTTABLE D) (PUTTABLE A) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on d b) (on b a) (on a c) (ct d)) (PUTTABLE D) (PUTTABLE B) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on c d) (on d a) (on a b) (ct c)) (PUTTABLE C) (PUTTABLE D) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)

((put c d) (puttable a) also possible)
6 4-towers, needing 2 puttable actions

( (on a d) (on d c) (on c b) (ct a)) (PUTTABLE A) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on b d) (on d c) (on c a) (ct b)) (PUTTABLE B) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)

( (on c d) (on d b) (on b a) (ct c)) (PUTTABLE C) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on d a) (on a c) (on c b) (ct d)) (PUTTABLE D) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on d b) (on b c) (on c a) (ct d)) (PUTTABLE D) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)

( (on d c) (on c a) (on a b) (ct d)) (PUTTABLE D) (PUT C D) (PUTTABLE A) (PUT B C) (PUT A B)
((put c d) BEFORE (puttable a)!)

2 4-towers, needing 4 actions
( (on b a) (on a c) (on c d) (ct b)) (PUTTABLE B) (PUTTABLE A) (PUT B C) (PUT A B)

( (on d c) (on c b) (on b a) (ct d)) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
(sorted tower, 0 actions is root of plan)

5 2-tower pairs, needing 2 puttable actions
( (on a c) (on b d) (ct a) (ct b)) (PUTTABLE B) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on a c) (on d b) (ct a) (ct d)) (PUTTABLE D) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)

( (on a d) (on b c) (ct a) (ct b)) (PUTTABLE A) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on b c) (on d a) (ct b) (ct d)) (PUTTABLE D) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)

( (on a b) (on d c) (ct a) (ct d)) (PUTTABLE D) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
((put c d) (puttable a) also possible)

5 2-tower pairs, needing 1 puttable actions
( (on a d) (on c b) (ct a) (ct c)) (PUTTABLE A) (PUT C D) (PUT B C) (PUT A B)
( (on b a) (on d c) (ct b) (ct d)) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on b d) (on c a) (ct b) (ct c)) (PUTTABLE B) (PUT C D) (PUT B C) (PUT A B)
( (on c a) (on d b) (ct c) (ct d)) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
( (on c b) (on d a) (ct c) (ct d)) (PUTTABLE D) (PUT C D) (PUT B C) (PUT A B)
(2 2-tower pairs, needing no (put c d) action
( (on a b) (on c d) (ct a) (ct c)) (PUTTABLE A) (PUT B C) (PUT A B)
( (on b a) (on c d) (ct b) (ct c)) (PUT B C) (PUT A B)
are no leafs)



4.5. PLANS OVER COMPLEX DATA TYPES 81

leaf nodes) { in contrast to 5 to 1 cases for the 3-block tower. Additionally,
we have not only one possible partial tower (with 2 or more blocks stacked)
but also a two-tower case (with two towers consisting of two blocks). Only
one path in the plan makes it necessary to interleave put and puttable: if D
is on top and C immediately under it. There are four cases, where puttable
has to be performed only two times before the put actions are applied and
one case, where puttable has to be performed only once. For one case, only
two puttables and tow puts have to be applied. For the case of pairs of
towers, all three put-actions have to be performed for each leaf, puttable has
to performed once or twice.

The underlying data type is now not just a list, but a more complicated
structure, where for example (D C A B) < D A B C! Currently, we do
not see an easy way to extract all conditions for generating optimal action
sequences from the universal plan. Either, we have to be content with the
correct but suboptimal control rules inferred from the three-block plan, or we
have to rely on incremental learning. A program which covers all conditions
for generating optimal plans is given in appendix B.

One path, we want to investigate in the future is, to model the domain
speci�cation in a slightly di�erent way { using only a single operator (put
block loc) where loc can be a block or the table. This makes the universal
plan more uniform. There is no longer the decision to take, which operator
to apply next. Instead, the decision whether a block is put on another block
or on the table can be included in the \semantic" selector function.

Set of Lists

Some deeper insight in the structure of the tower problem might be gained by
analyzing the analogous abstract problem. The sequence of number of states
in dependence of the number of blocks is given in table 4.9. This sequence
corresponds to the number of sets of lists: a(n)=(2n-1)a(n-1) - (n-1)(n-

2)a(n-2). For n � 1 it is the row sum of the \unsigned Lah-triangle" (see
for example, Knuth, 1992). The corresponding formula is exp(x=(1� x)).19

The tower problem is related to generating the power-set of a list with
mutually di�erent elements (see table 4.10). But, while for powerset di�erent
sequences of elements are not included, they have to be partially included for
tower: f(a) (b c) (b)g is equal to f(b) (a) (b c)g but not to f(a) (c b) (b)g.
A program generating all di�erent sets of lists (that is towers) can be easily

19The identi�cation of the sequence was researched by Bernhard Wolf. More background

information can be found at http://www.research.att.com/cgi-bin/access.cgi/as/

njas/sequences/eisA.cgi?Anum=000262.
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Table 4.9: Growth of the Number of States for Tower
# blocks 1 2 3 4 5

# states 1 3 13 73 501

# blocks 6 7 8 9 10

# states 4051 37633 394353 4596553 58941091

#blocks 11 12 13 14 15

# states 824073141 12470162233 202976401213 3535017524403 65573803186921

#blocks 16 : : :

# states 1290434218669921 : : :

Table 4.10: Power-set of a List, Set of Lists

(defun powerset (l) (pset l (1+ (length l)) (list (list nil))))

(defun pset (l c ps)

(cond ((= 0 c) nil)

(T (union ps (pset l (1- c) (ins-el l ps)))) ))

(defun ins-el (l ps)

(cond ((null l) nil)

(T (union (mapcar #'(lambda(y) (adjoin (car l) y)) ps)

(ins-el (cdr l) ps) :test 'setequal)) ))

; for set of lists :test 'equal

(defun setequal (s1 s2) (and (subsetp s1 s2) (subsetp s2 s1)))

generated from powerset by changing :test 'setequal to :test 'equal

in ins-el. The tower domain is the inverse problem to set of lists: we want
to integrate a set of lists into a single, sorted list using as few operations
as possible. The (puttable x) operator corresponds to removing an element
from a list and generating a new one-element list (cons (car l) nil), the
(put x y) operator corresponds to removing an element from a list an putting
it in front of another list (cons (car l1) l2). A program generating a list
of sorted numbers is given in appendix B.

Concluding Remarks on Tower

Inference of generalized control knowledge for the tower domain was inves-
tigated also in the context of two alternative approaches. One of these ap-
proaches is genetic programming (Koza, 1992). Within this approach, given
primitive operators of some functional programming language together with
rules for the correct generation of terms, for a set of input/output examples
and an evaluation function (representing knowledge about \good" solutions)
a program covering all I/O examples correctly is generated by search in the



4.5. PLANS OVER COMPLEX DATA TYPES 83

Table 4.11: Program for Constructing a Tower Generated by Genetic Pro-
gramming
(EQ (DU (MT CS)~(NOT CS)) (DU (MS NN)~(NOT NN)))

\equal (

do move-to-table(x) until not(current-stack),

do move-to-stack(next-necessary-block) until not(next-necessary-block)

)"

where next-necessary-block is identi�ed from a list giving the goal-ordering.

Table 4.12: Control Rules for Tower Inferred by Decision List Learning
A1: PUT-ON ((ong = ons) ^ (8on�1g :holding) ^ clears)

A2: PUT-ON-TABLE (holding)

A3: PICK ((8on�g :(ong = ons)) ^ (8ong:clears) ^ clears)

A4: PICK (:(on�g = on�s) ^ (8ons:(8on
�1
g :clears)) ^ clears)

A5: PICK (:(ong = ons) ^ (8on �g :(on
�
s = ons)) ^ clears)

A6: PICK (:(ong = ons) ^ (8ons:(8on
�1
s :clears)))

\evolution space" of programs. The program generated by this approach is
given in table 4.11. It corresponds to the \linear" program discussed above.
Because always �rst all blocks are put on the table and afterwards the tower
is constructed, the program does not generate optimal transformation se-
quences for all possible cases.

The second approach, introduced by Mart�in and Ge�ner (2000), infers
rules from plans for sample input states. The domain is modelled in a
concept language (AI knowledge representation language) and the rules are
inferred with a decision list learning approach. The resulting rules are given
in table 4.12. For example, rule A3 represents the knowledge, that a block
should be picked up if it's clear, and if its target block is clear and \well-
placed". With these rules, 95:5% of 1000 test problems were solved for
5-block problems and 72:2% of 500 test problems were solved for 20-block
problems. The generated plans are about two steps longer than the opti-
mal plans. The authors could show, that after a selective extension of the
training set by the input states for which the original rules failed to gener-
ate a correct plan, a more extensive set of rules is generated for which the
generated plans are about one step longer than the optimal plans.

Our approach di�ers from these two approaches in two aspects: First,
we do not use example sets of input/output pairs or of input/plan pairs but
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we analyze the complete space of optimal solutions for a problem of small
size. Second, we do not rely on incremental hypothesis-construction, using
examples, where the hypothesis fails to guide its modi�cation, but we aim at
extracting the control knowledge from the given universal plan by exploiting
the structural information contained in it. Although we failed up to now
to generate optimal rules for tower, we could show for sequence, set, and
list problems, that with our analytical approach we can extract correct and
optimal rules from the plan.

There is a trade-o� between optimality of the policy versus (a) the ef-
�ciency of control knowledge application and (b) the e�ciency of control
knowledge learning. As we can see from the program presented in appendix
B and from the (still non-optimal!) control rules in table 4.12, generating
minimal action sequences might involve complex tests which have to be per-
formed on the current state. In the worst case, these tests again involve
recursion, for example, a test, whether already a \well-placed" partial tower
exists (test subtow in our program). Furthermore, we demonstrated, that
the suboptimal control rules for tower could be extracted quite easily from
the 3-block plan, while automatic extraction of the optimal rules from the 4-
block plan involves complex reasoning (for generating the tests for \special"
cases).

4.5.3 Tower of Hanoi

Up to now, we did not investigate plan transformation for the Tower of
Hanoi. Thus, we will make just some more general remarks about this
domain. It is often claimed, that hanoi is a highly arti�cial domain, and
that the only isomorphic domains are hand-crafted puzzles, as for example
the monster problems (Simon & Hayes, 1976; Cl�ement & Richard, 1997).
I want to point out, that there are solitaire (\patience") games, which are
isomorphic to hanoi.20 One of these solitaire-games (freecell) was included
in the AIPS-2000 planning competition.

The domain speci�cation for hanoi is given in table 4.13. The resulting
plan is a unique minimal spanning tree, which is already regular (see �gure
4.22). This indicates, that data type inference and resulting plan transfor-
mation should be easier than for the tower problem. While hanoi with three

discs contains more states than the three-block tower domain (27 to 13) the
actions for transforming one state into another are much more restricted.

20We plan to conduct a psychological experiment in the domain of problem solving by

analogy, demonstrating, that subjects who are acquainted with playing patience games
perform better on hanoi than subjects with no such experience.
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Table 4.13: Speci�cation for Hanoi
States are represented by the literals (on disc loc) and (ct loc) where loc is either a disc
or a peg. Furthermore, static literals (smaller loc disc) are used, which are necessary to

constrain the move operator to legal moves.
G = f(on d3 p3) (on d2 d3) (on d1 d2) g

O = fmoveg with

(move ?d ?from ?to)

PRE f(on ?d ?from) (ct ?d) (smaller ?to ?d) (ct ?to)g

ADD f(on ?d ?to) (ct ?from)g

DEL f(on ?d ?from) (ct ?to)g

The number of states for hanoi is 3n. The minimal number of moves when
starting with a complete tower on one peg is 2n�1. Up to now, there seems
to be no general formula to calculate the minimal number of moves for an
arbitrary starting state { that is, one of the nodes of the universal plan.21

Tower of Hanoi is a puzzle investigated extensively in arti�cial intelli-
gence as well as in cognitive psychology since the 60ies. In computer science
classes, Tower of Hanoi is used as a prototypical example for a problem
with exponential e�ort. Coming up with e�cient algorithms (for restricted
variants) of the Tower of Hanoi problem is still ongoing research (Atkinson,
1981; Pettorossi, 1984; Walsh, 1983; Allouche, 1994; Hinz, 1996). As far as
we survey the literature, all algorithms are concerned with the case, where a
tower of n discs is initially located at a prede�ned start peg (see for example
table 4.14). In general, hanoi is �-recursive already for the restricted state
where the initial state is �xed and only the number of discs are variable with
the structure hanoi �move � hanoi. A standard implementation, as shown
in table 4.14 is as tree-recursion.

We are interested in learning a control strategy starting with an arbitrary
initial state (see program in table 4.15).

21see: http://forum.swarthmore.edu/epigone/geometry-puzzles/twimclehmeh/

7oen0r212cwy@forum.swarthmore.edu, open question from Februar 2000
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Figure 4.22: Plan for Hanoi
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Table 4.14: A Tower of Hanoi Program

; (SETQ A '(1 2 3) B NIL C NIL) (start) OR

; (hanoi '(1 2 3) nil nil 3)

(DEFUN move (from to)

(COND ( (NULL (EVAL from)) (PRINT (LIST 'PEG from 'EMPTY)) )

( (OR (NULL (EVAL to))

(> (CAR (EVAL to)) (CAR (EVAL from)) ))

(SET to (CONS (CAR(EVAL from)) (EVAL to)) )

(SET from (CDR (EVAL from)) )

)

( T (PRINT (LIST 'MOVE 'FROM (CAR(EVAL from))

'TO (CAR(EVAL to)) 'NOT 'POSSIBLE)))

)

(LIST(LIST 'MOVE 'DISC (CAR (EVAL to)) 'FROM from 'TO to)) )

(DEFUN hanoi (from to help n)

(COND ( (= n 1) (move from to) )

( T ( APPEND

(hanoi from help to (- n 1))

(move from to)

(hanoi help to from (- n 1))

) ) ) )

(DEFUN start () (hanoi 'A 'B 'C (LENGTH A)))
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Table 4.15: A Tower of Hanoi Program for Arbitrary Starting Constellations
(DEFUN ison (disc peg)

(COND ( (NULL peg) NIL)

( (= (CAR peg) disc) T)

( T (ison disc (cdr peg)))))

(DEFUN on (disc from to help)

(COND ( (ison disc (eval from)) from)

( (ison disc (eval to)) to)

( T help)))

; whichpeg: peg on which the current disc is NOT lying and peg which

; is not current goal peg

(DEFUN whichpeg (disc peg)

(COND ( (or (and (equal (on disc 'A 'B 'C) 'B) (equal peg 'C))

(and (equal (on disc 'A 'B 'C) 'C) (equal peg 'B)) ) 'A)

( (or (and (equal (on disc 'A 'B 'C) 'A) (equal peg 'C))

(and (equal (on disc 'A 'B 'C) 'C) (equal peg 'A)) ) 'B)

( (or (and (equal (on disc 'A 'B 'C) 'A) (equal peg 'B))

(and (equal (on disc 'A 'B 'C) 'B) (equal peg 'A)) ) 'C) ))

(DEFUN topof (peg)

(COND ( (null (car (eval peg))) nil) ( T (car (eval peg))) ))

(DEFUN clearpeg (peg)

(COND ( (null (car (eval peg))) T) ( T nil) ))

(DEFUN cleartop (disc)

(COND ( (and (equal (on disc 'A 'B 'C) 'A) (= (car A) disc)) T)

( (and (equal (on disc 'A 'B 'C) 'B) (= (car B) disc)) T)

( (and (equal (on disc 'A 'B 'C) 'C) (= (car C) disc)) T)

( T nil)))

(DEFUN gmove (disc peg)

(COND ( (= disc 0) (PRINT (LIST 'NO 'DISC)))

( (equal (on disc 'A 'B 'C) peg)

(PRINT (LIST 'Disc disc 'IS 'ON 'PEG peg)) )

( (OR (clearpeg peg) (> (topof peg) disc))

(PRINT (LIST 'MOVE 'DISC disc

'FROM (on disc 'A 'B 'C)

'TO peg ) )

(SET (on disc 'A 'B 'C) (CDR (eval (on disc 'A 'B 'C))))

(SET peg (CONS disc (EVAL peg)))

)

( T (PRINT (LIST 'MOVE 'FROM disc 'ON peg 'NOT 'POSSIBLE)))))

(DEFUN ghanoi (disc peg)

(COND ( (and (= disc 1) (equal (on disc 'A 'B 'C) peg)) T )

( T (COND

( (equal (on disc 'A 'B 'C) peg) (ghanoi (- disc 1) peg) )

( (and (not (equal (on disc 'A 'B 'C) peg))

(not (and (cleartop disc) (clearpeg peg)))

(> disc 1)) (ghanoi (- disc 1) (whichpeg disc peg)) )

)

(gmove disc peg)

(COND ((> disc 1) (ghanoi (- disc 1) peg))) )))

(DEFUN n-of-discs (p1 p2 p3) (+ (LENGTH p1) (+ (LENGTH p2) (LENGTH p3))))

; ghanoi: "largest" Disc x Goal-Peg --> Solution Sequence

(DEFUN gstart () (ghanoi (n-of-discs A B C) 'C))



Chapter 5

Conclusions and Further

Work

We reported work in progress in the context of a larger project on combin-
ing planning and inductive program synthesis. The focus of this paper was
on transformation of plans into �nite programs which can be folded into
recursive functions by a generalization-to-n technique. Our approach relies
on exploiting the structural information given in a plan. In contrast to tech-
niques where generalized rules are constructed incrementally over problem
solving experience (Veloso et al., 1995) or from training examples (Koza,
1992; Mart�in & Ge�ner, 2000), our starting point is a universal plan repre-
senting the complete knowledge for transforming the complete set of states
from a small problem space into a state ful�lling the top-level goals.

We introduced data type inference as crucial step for plan transforma-
tion: a universal plan already represents the control structure of the searched
for program explicitly containing the shortest transformation sequences for
each input into the desired output. For constructing a program term, addi-
tional knowledge about the data type which is manipulated by the program
is needed { that is, the order of the elements belonging to this type together
with selector-functions for accessing components of complex data types. We
demonstrated, that information about the data structure underlying a prob-
lem domain is already contained in the universal plan and can be extracted
by analyzing the structure of the plan. For problems which are solvable by
purely structural manipulations, data type extraction is su�cient for gen-
erating a program term. For example, for unstacking some block in a stack
of blocks, knowledge about the blocks lying on top of that block (as color
or weight) is not necessary. For problems, where semantic characteristics of

89
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the involved objects determine the transformation sequence, preliminary to
data type inference a \semantic" selector function has to be inferred from
the plan. This selector function determines which subset of a set of elements
can be used as argument to an operator in a given context! For example,
when sorting a list of elements using a swap-operator, the element to be
swapped to the current position can always be the one with the smallest
value contained in the list right of the current position (as described for
selsort in the last chapter).

Transportation domains as rocket, have a natural extension to taking
into account characteristics of objects: if there are more objects than can be
loaded into the rocket, these objects might be selected by some criteria (as
value or weight; leading to a greedy-algorithm). While data type inference,
introducing the data type into the plan and rewriting the plan into a �nite
program are fully implemented, we are still at the beginning of formalizing
and implementing the generation of semantic selector functions. A possible
approach might be the use of decision trees to extract the relevant (possibly
context dependent) attributes to classify data objects as positive or negative
candidates for operator-arguments.

We discussed e�ciency concerns throughout the paper, but we did not
perform empirical studies to compare planning e�ort with application of
domain speci�c control rules. If we can extract generalized control rules
from a plan, search can be omitted completely for all possible problems
of this domain and the e�ort of generating the optimal solution sequence
corresponds to the e�ort of executing the recursive function(s) { e. g., 2n+1,
i. e. a linear e�ort, for the rocket problem with n objects, in contrast to a
worst case e�ort of n2 (loading each of the objects alone and driving to the
destination, loading pairs of objects, : : : ) for plan generation.

The costs for learning recursive functions are necessarily high: �rst a
domain has to be explored by planning, than the planning graph has to be
transformed into a �nite program, and �nally the �nite program has to be
generalized. Planning e�ort is linear in the number of states { which can
be already high for three-object problems, e. g. 27 for the Tower of Hanoi
problem with three discs. Generalization over �nite programs has expo-
nential e�ort in the worst case (the problem cannot be generalized and all
hypotheses for folding have to be generated and tested). E�ort of plan trans-
formation depends on the complexity of the provided background knowledge
and the incorporated strategies. But because we start program construction
not from the scratch { as typical in inductive program synthesis and ge-
netic programming (Koza, 1992) { but using planning together with the
knowledge about legal operators as guideline, we can keep the amount of
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background knowledge and the e�ort of search for a generalizable program
comparatively low. While we use only knowledge about data structures,
Shavlik (1990) for example has to prede�ne a set of 16 rules for synthesiz-
ing a blocks-world problem. While we have only to transform an already
given plan, Koza (1992) has to enumerate all possible programs which can
be composed from a given set of primitive operators to synthesize the tower
program.

Our work contributes to planning research, providing a learning tech-
nique to make domain-independent planning more e�cient without making
domain modelling more sophisticated. After the rise of a generation of more
e�cient planning strategies in the 90ies (Blum & Furst, 1997; Koehler et al.,
1997; Kautz & Selman, 1998), inference of domain speci�c control knowl-
edge to scale-up planning further, is one of the rising research topics (Mart�in
& Ge�ner, 2000; Long & Fox, 2000, 1999; McCluskey & Porteous, 1997).

Furthermore, we propose that our work provides some useful inside for
knowledge based software engineering: One of the most successful systems
which assist program development for complex domains is KIDS (Smith,
1990). The system gains its power from cleverly hand-crafted program
schemes { like divide-and-conquer { which are re�ned in accordance to a
current speci�cation. The schemes are provided by human experts which
have a deep understanding of program structures and a long experience in
program development. Our learning approach can be viewed as a model for
how such schemes can be extracted from experience. If we have more insight
into the cognitive processes responsible for generating expertise, this knowl-
edge can be used to make expertise more available and more transparent to
a larger group of program developers in teaching or in interactive support
systems.

Finally, we believe, that our works contributes to the research on cog-
nitive models of skill acquisition. Here, learning is generally modelled by
\chunking" already prede�ned rules (see the ACT production system archi-
tecture, Anderson & Lebiere, 1998) { similar to the early work on linear
macros in planning (Minton, 1985). As a consequence, in a production sys-
tem as ACT, for more complex problems rules interact over a stack of open
goals, while the strategy for the sequence of rule applications is \hidden" in
the interpreter. Transforming this approach to human problem solving, it
has to be assumed that a human keeps track of the still open goals by storing
a goal stack in working memory! If, on the other hand, humans are able
to extract the generalized rule or solution scheme from some problem solv-
ing experience, as it is for example discussed for the Tower of Hanoi, they
have the control knowledge for deciding what operator to apply when ex-
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plicitly available and can use it to generate the solution sequence. Current
empirical work in the domain of high-school algebra shows that students
do better, if they infer a generalized solution scheme from a small exam-
ple rather than when they are presented with the scheme �rst (Koedinger
& Anderson, 1998). Our program synthesis technique demonstrates how a
generalized strategy can be learned from experience. It addresses one of
the original questions of the early cognitive psychology { how rules can be
extracted from unstructured perception (c. f., the language acquisition de-

vise, Chomsky, 1959). A second aspect of human learning and expertise for
which no adequate models exist in cognitive psychology is the development
of perceptual chunks (Koedinger & Anderson, 1990). We propose, that data
type inference addresses this question: For example, for the rocket prob-
lem, the size of the set (and not some �xed sequence) of objects which are
at the starting location is the relevant information unit for estimating how
many steps are needed until the rocket can move to its destination. We
do not claim that our approach models cognitive processes adequately or
in any way similar to human information processes, but we believe that it
provides a useful analytical framework { describing what initial information
is needed to and what algorithmic strategies are necessary to automatically
infer perceptive chunks and problem solving strategies.
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Appendix A

Implementation Details

A.1 Modules of DPlan

� dplan.lsp: main program
construction of minimal spanning tree (dplan calls (ms-tree <current-state>))
or dag (dplan calls (ms-tree <current-state>)), plan is saved in
plan-steps as list of pstep-structures;

� plan-dstruc.lsd: global data structure pstep, see below

� ps-back.lsp: calculating the pre-image of the current state (match
and backward operator application)
function (apply-rules <current-state>) is called from dplan, re-
turns list of new pstep's

� showplan.lsp: graphical and term output of plans
function (show plan-steps) is called from dplan; graphs can be dis-
played with graphlet, trees can be displayed with xterm

A.2 Pstep-Data Structure

(defstruct pstep

instop ; instantiated operator, cf. puttable(A)

parent ; parent node: in backward planning successor of instop

; input in ps-back "state"

child ; child node: in backward planning predecessor of instop

; constructed in ps-back

prec ; instantiated preconditions of operator

; for conditioned operators: union of global and specific

99



100 APPENDIX A. IMPLEMENTATION DETAILS

; precondition

add ; instantiated add-list

del ; instantiated del-liste

nodeid ; identifier

level ; level in the ms-dag

)

A pstep is generated in ps-back.lsp, nodeid and level are instantiated
in dplan.

A.3 Global Structures for Plan Transformation

; input from dplan.lsp is a plan saved in plan-steps as a list of psteps

; global variables

(setq subplanlist nil) ; list of all transformed subplans

; (special case: one subplan)

(setq planstruc nil) ; structure of global plan (subtrees replaced by

; subplan names)

(setq mstlist nil) ; list of possible minimal spanning trees

; (backtrack-point for dags which are not sets!)

; .....................................................................

; new structure for transformed plan (one for each subplan)

; initial generation in decompose

(defstruct tplan

pname ; name of plan (decompose)

suplan ; plan as structure (plan-steps) (decompose)

coplan ; plan with data types and relevant predicates

term ; plan as term

ptype ; type of the plan (singleop, seq, set, list)

newdat ; *newly constructed datastructure (a list/set of objects)

newpred ; *newly constructed predicate (if newdat =/= nil) as pattern

npfct ; *function definition for new predicate

goalpred ; goal-predicate (might be newpred)

bottom ; bottom-element (might be newdat)

passocs ; const/constr rewrite pairs

pafct ; function definition for the rewriting

pparams ; input parameters

pvalues ; initial values

)

;; newdat, newpred, npfct are not filled for ptype = singleop and ptype = set

;; newpred: p* (... CO ...) with CO as place-holder for complex object

;; maybe additional constant arguments

;; f.e.: (at* CO B) for rocket

;; bottom == newdat (-> newdat might be superfluous)
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A.4 Main Components of plan-transform.lsp

Plan transformation is implemented in plan-transform.lsp. The main
function is (plantransform <plan>):

� Input: plan as list of psteps from dplan.lsp

� (decompose plan):
initial decomposition; generation and initialization of the global vari-
ables subplanlist (list of tplan structures), planstruc (sub-plan
structure as term of sub-plan names)

� (intro-type subplanlist):
data type inferece for each sub-plan, successively �lling the slots of
tplan

� ptransform subplanlist):
introducing situation variables and rewriting into conditional expres-
sion

� Output: transformation information as given in subplanlist and
planstruc; tplan.term is passed to the generalization-to-n algorithm
for each sub-plan; planstruc is extended from sub-plan names to ar-
guments and rewritten into a \main" program

A.4.1 Plan Decomposition

Please note: Extracts from the program are given in an abbrevi-

ated pseudo-Lisp notation, omitting implementation details!

; call decompose with complete plan and level = 0 (root)

(decompose plan level) ==

(mapcar $\lambda$x.(r-dec-p (get-first-op plan lv) x lv) (partition plan))

(get-first-op plan level) ==

get the set first operator-symbol at the upper-most level of the plan

(partition plan) == for each root of ``plan'', return its subplan

(r-dec-p op plan lv) ==

(let ((dlv (disag-level op plan))

(pname (gensym "P")))

(cond ((not dlv) (save-subplan pname plan)) ; single plan

; subplan

((> dlv lv) (save-subplan pname (get-suplan dlv plan))
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(decompose (append (make-root (1- dlv) plan)

(rest-suplan dlv plan))

dlv)

)

(T ; (= dlv lv) ; different operators

(save-subplan pname plan) ; at one level

) ; currently not treated by decomposition

))

(disag-level op plan) ==

returns the level in ``plan'' on which appears for the first time a

different operator-name than ``op''

(save-suplan pname plan) ==

generate a new tplan-structure and instantiate the slots pname with

``pname'' and suplan with ``plan'' (see appendix for tplan-structure)

(get-suplan dlv plan) ==

return a partial plan from the current top-level to level ``dlv''

(make-root lv plan) == get the leaf of the newly generated subplan

(rest-suplan dlv plan) ==

return the remaining plan with level ``dlv'' as new top-level

A.4.2 Data Type Inference

The algorithms for data type inference are discussed in detail in chapter 4.

A.4.3 Introduction of Situation Variables

For each subplan:

(rewrite-to-term coplan) ==

(list 'if (intro-s (first-state coplan))

's (r-rewrite (rest coplan)) )

(intro-s e) == extend e by an argument ``s''

(r-rewrite coplan) ==

(cond ((null cp) 'omega)

(T (append (intro-s (first-op coplan))

(list (list 'if

(intro-s (first-state coplan))

's (r-rewrite (rest coplan)) )))))
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A.5 Number of MSTs in a DAG

To calculate the number of minimal spanning trees in an DAG, we can use
formula

Qn
i=0 ci, multiplying the number of alternative choices ci on each

level i. For the sorting of three elements, we have: 1 � 1 � 9 = 9, with a single
option for the root and the �rst level and 9 di�erent options for the third
level. To calculate the number of options on a level, the connective structure
of the DAG has to be know. The di�erent alternatives on one level can be
calculated as described for the construction of minimal spanning trees. For
sorting lists with 4 elements we have: 1 � 1 � 52488 � 46656 = 2:448:880:128!

To omit the explicit calculation of options per level, an upper bound
estimate is

ci =

�
ai
ni

�

with ai as number of arcs from level i � 1 to level i and ni as number of
nodes on level i.

We cannot provide a formula for calculating the proportion of regular-
izable trees to all trees, because regularizability depends on the identity of
edge-labels which is variable between domains.

A.6 Extracting Minimal Spanning Trees from a

DAG

; lst is tree until lv (initially: root) ; sp is all plan-steps on levels > lv

(defun extract-trees (lst sp lv)

(let* ((tvec (number-of-msts 1 sp (1+ lv)))

(tcnt (reduce '* tvec)))

(print `(There are * ,tvec = ,tcnt minimal spanning trees))

(fresh-line)

(cond ((> tcnt 576) (write-string "How many trees? <number> ")

(setq k (read-number))

(fresh-line)

(extract-msts (list lst) sp (1+ lv) k))

(T (write-string "Generate all alternatives")

(fresh-line)

(extract-msts (list lst) sp (1+ lv) tcnt))

)))

(defun extract-msts (lst sp lv k)

(print `(Include next level ,lv))

(let ((lp (remove-if #'(lambda(x) (/= lv (pstep-level x))) sp))

(rp (remove-if #'(lambda(x) (= lv (pstep-level x))) sp)))
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(cond ((null lp) nil)

((null rp) (first-k k (lift

(mapcar #'(lambda(x) (pmerge lst x)) (all-combs lp k)))))

; in the last step this is only a "throw-away" of

; already calculated trees!

(T (extract-msts (first-k k

(lift (mapcar #'(lambda(x) (pmerge lst x))

(all-combs lp k))))

rp (1+ lv) k)

))) )

(defun pmerge (lst e)

(cond ((null lst) (list e)) ; should never occur

((flatlst lst) (join lst e))

(T (mapcar #'(lambda(x) (join x e)) lst))

))

(defun all-combs (lp k)

(let* ((dc (make-sset (mapcar #'(lambda(x) (pstep-child x)) lp)))

(lcs (child-split lp dc k))

(tlcs (mapcar #'(lambda(x) (generate-trees x (1- (length x)))) lcs)))

(cart-product (car tlcs) (cdr tlcs) k)

))

(defun child-split (lp dc k)

(cond ((null dc) nil)

(T (cons (first-k k (remove-if #'(lambda(x)

(not (setequal (pstep-child x) (car dc)))) lp) )

(child-split lp (cdr dc) k)))

))

(defun generate-trees (lp cnt)

(cond ((< cnt 0) nil)

(T (setq cur-lp (copy-plan lp))

(cons (nth cnt cur-lp)

(generate-trees lp (1- cnt))))

))

(defun cart-product (fst rst k)

(cond ((null rst) fst)

(T (cart-product (first-k k (comb fst (car rst))) (cdr rst) k))

))

(defun comb (f r)

(cond ((null f) nil)

(T (append (mapcar #'(lambda(x) (join (car f) x)) r)

(comb (cdr f) r)))

))
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A.7 Regularizing a Tree

(defun regularize-tree (mst lv)

(let ((cur (remove-if #'(lambda(y) (/= lv (pstep-level y))) mst))

(nxt (remove-if #'(lambda(y) (/= (1+ lv) (pstep-level y))) mst))

)

(cond ((null cur) nil)

((null nxt) mst)

(T (let ((opsetcl (mapcar #'(lambda(x) (pstep-instop x)) cur))

(opsetnl (mapcar #'(lambda(x) (pstep-instop x)) nxt)))

(cond ((subsetp opsetnl opsetcl :test 'equal)

(regularize-tree (smerge (lv-shift cur opsetnl)

mst) (1+ lv)))

(T (regularize-tree mst (1+ lv)))

))) ) ) )

(defun lv-shift (cur opsetnl)

(cond ((null cur) nil)

((member (pstep-instop (car cur)) opsetnl :test 'equal)

(setf nc (copy-pstep (car cur)))

(setf (pstep-parent nc)

(id-insert (pstep-parent (car cur))))

(setf (pstep-level nc) (1+ (pstep-level (car cur))))

(cons

(make-pstep

:instop 'id

:parent (pstep-parent (car cur))

:child (id-insert (pstep-parent (car cur)))

:nodeid (+ 1000 (pstep-nodeid (car cur)))

:level (pstep-level (car cur))

)

(cons nc (lv-shift (cdr cur) opsetnl)))

)

(T (cons (car cur) (lv-shift (cdr cur) opsetnl)))

))

(defun id-insert (s)

(cond ((null s) nil)

((idlist (car s)) (cons (cons 'id (car s)) (cdr s)))

(T (cons '(id) s))

))

(defun idlist (l)

(cond ((null l) T)

((equal 'id (car l)) (idlist (cdr l)))

(T nil)

))
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; if pstep-child of new is equal to a pstep-child in old -> keep new

; (has higher level)

; if pstep-child without "idlist" is equal to a pstep-child in old

; and both are on the same level -> keep old (the one which has

; no or a shorter "idlist")

; ==> parent-node for the nodes in nw with pstep-child of new as

; parent has to be set to "old" parent!

; these nodes are still in new because of the sequence of

; node construction in lv-shift!

(defun smerge (nw old)

(cond ((null nw) old)

((member (car nw) old :test 'node-equal)

(smerge (cdr nw) (cons (car nw)

(remove-if #'(lambda(x) (node-equal

(car nw) x)) old))))

((member (car nw) old :test 'level-equal)

(smerge (old-parent (car nw) (cdr nw) old) old))

(T (smerge (cdr nw) (cons (car nw) old)))

))

(defun node-equal (s1 s2)

(and (= (length (find-if #'(lambda(x) (idlist x)) (pstep-child s1)))

(length (find-if #'(lambda(x) (idlist x)) (pstep-child s2)))

)

(setequal (remove-if #'(lambda(x) (idlist x)) (pstep-child s1))

(remove-if #'(lambda(x) (idlist x)) (pstep-child s2))

)) )

(defun level-equal (s1 s2)

(and (setequal (remove-if #'(lambda(x) (idlist x)) (pstep-child s1))

(remove-if #'(lambda(x) (idlist x)) (pstep-child s2))

)

(= (pstep-level s1) (pstep-level s2))

))

; if smerge keeps the old state, then the new-state with cld as parent

; has to keept the corresponding old parent

(defun old-parent (cld sl old)

(cond ((null sl) nil)

((setequal (pstep-child cld) (pstep-parent (car sl)))

(cons (update-par (copy-pstep (car sl))

(pstep-child (find-if #'(lambda(x)

(level-equal cld x)) old))) (cdr sl)))

(T (old-parent cld (cdr sl) old))

))

(defun update-par (sl ud) (setf (pstep-parent sl) ud) sl)



Appendix B

Problem-Speci�c Details

B.1 TPlan Structure for Unstack

#S(TPLAN :PNAME P1

:SUPLAN

(#S(PSTEP :INSTOP NIL :PARENT NIL

:CHILD

((CLEAR (SUCC (SUCC O3))) (CLEAR (SUCC O3))

(CLEAR O3))

:PREC NIL :ADD NIL :DEL NIL :NODEID 0 :LEVEL 0)

#S(PSTEP :INSTOP (UNSTACK (SUCC O3))

:PARENT

((CLEAR (SUCC (SUCC O3))) (CLEAR (SUCC O3))

(CLEAR O3))

:CHILD

((ON O2 O3) (CLEAR (SUCC (SUCC O3)))

(CLEAR (SUCC O3)))

:PREC ((ON O2 O3) (CLEAR O2)) :ADD ((CLEAR O3))

:DEL ((CLEAR O2) (ON O2 O3)) :NODEID 1 :LEVEL 1)

#S(PSTEP :INSTOP (UNSTACK (SUCC (SUCC O3)))

:PARENT

((ON O2 O3) (CLEAR (SUCC (SUCC O3)))

(CLEAR (SUCC O3)))

:CHILD

((ON O1 O2) (ON O2 O3) (CLEAR (SUCC (SUCC O3))))

:PREC ((ON O1 O2) (CLEAR O1)) :ADD ((CLEAR O2))

:DEL ((CLEAR O1) (ON O1 O2)) :NODEID 2 :LEVEL 2))

:COPLAN

(#S(PSTEP :INSTOP NIL :PARENT NIL :CHILD ((CLEAR O3))

:PREC NIL :ADD NIL :DEL NIL :NODEID 0 :LEVEL 0)

#S(PSTEP :INSTOP (UNSTACK (SUCC O3)) :PARENT ((CLEAR O3))

:CHILD ((CLEAR (SUCC O3)))

:PREC ((ON O2 O3) (CLEAR O2)) :ADD ((CLEAR O3))

:DEL ((CLEAR O2) (ON O2 O3)) :NODEID 1 :LEVEL 1)

#S(PSTEP :INSTOP (UNSTACK (SUCC (SUCC O3)))

:PARENT ((CLEAR (SUCC O3)))

:CHILD ((CLEAR (SUCC (SUCC O3))))

:PREC ((ON O1 O2) (CLEAR O1)) :ADD ((CLEAR O2))

107
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:DEL ((CLEAR O1) (ON O1 O2)) :NODEID 2 :LEVEL 2))

:TERM

(IF (CLEAR O3 S)

S

(UNSTACK (SUCC O3) S

(IF (CLEAR (SUCC O3) S)

S

(UNSTACK (SUCC (SUCC O3)) S

(IF (CLEAR (SUCC (SUCC O3)) S) S OMEGA)))))

:PTYPE SEQ :NEWDAT NIL :NEWPRED NIL :NPFCT NIL

:GOALPRED (CLEAR O3) :BOTTOM O3

:PASSOCS ((O2 (SUCC O3)) (O1 (SUCC (SUCC O3))))

:PAFCT

(DEFUN SUCC (X S)

(COND ((NULL S) NIL)

((AND (EQUAL (FIRST (CAR S)) 'ON)

(EQUAL (NTH 2 (CAR S)) X))

(NTH 1 (CAR S)))

(T (SUCC X (CDR S)))))

:PPARAMS NIL :PVALUES NIL)

For sequences, the slots newdat, newpred, and npfct are not required. The
slots pparams and pvalues are �lled after generalization-to-n.

B.2 The Rocket Domain

Please note, that most information for synthesizing control knowledge for
rocket is given throughout the text, in chapters 2 and 4.

B.2.1 A Lisp-Program for Rocket

; Control Knowledge for ROCKET

; ----------------------------

; call for example (rocket '(o1 o2 o3) '((at o1 a) (at o2 a) (at o3 a) (at rocket a)))

; or, including generation of oset

; (start-r '((at o1 b) (at o2 b) (at o3 b)) '((at o1 a) (at o2 a) (at o3 a) (at rocket a)))

; predefined set-selectors

(defun pick (oset) (car oset) )

(defun rst (oset) (cdr oset) )

; generalized predicates inferred during plan transformation

(DEFUN AT* (ARGS S)

(COND ((NULL ARGS) T)

((AND (NULL S) (NOT (NULL ARGS))) NIL)

((AND (EQUAL (CAAR S) 'AT)

(INTERSECTION ARGS (CDAR S)))

(AT* (SET-DIFFERENCE ARGS (CDAR S)) (CDR S)))

(T (AT* ARGS (CDR S)))))
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(DEFUN INSIDE* (ARGS S)

(COND ((NULL ARGS) T)

((AND (NULL S) (NOT (NULL ARGS))) NIL)

((AND (EQUAL (CAAR S) 'INSIDE)

(INTERSECTION ARGS (CDAR S)))

(INSIDE* (SET-DIFFERENCE ARGS (CDAR S)) (CDR S)))

(T (INSIDE* ARGS (CDR S)))))

; explicit operator application

; in combination with DPlan, the add-del-lists are applied to s

(defun unload (o s)

(print `(unload ,o ,s))

(cond ((null s) nil)

((member o (car s) :test 'equal) (cons (list 'at o 'b) (cdr s)))

(T (cons (car s) (unload o (cdr s)))) ))

(defun loadr (o s)

(print `(load ,o ,s))

(cond ((null s) nil)

((member o (car s) :test 'equal)

(cons (list 'inside o 'rocket) (cdr s)))

(T (cons (car s) (loadr o (cdr s)))) ))

(defun move-rocket (s)

(print `(move-rocket ,s))

(cond ((null s) nil)

((equal (car s) '(at rocket a)) (cons (list 'at 'rocket 'b) (cdr s)))

(T (cons (car s) (move-rocket (cdr s)))) ))

; generalized control rules

; abstraction from destination (B) (for at*) and vehicle (Rocket) (for inside*)

(defun unload-all (oset s)

(if (at* oset s)

s

(unload (pick oset) (unload-all (rst oset) s)) ))

(defun load-all (oset s)

(if (inside* oset s)

s

(loadr (pick oset) (load-all (rst oset) s)) ))

(defun rocket (oset s) (unload-all oset (move-rocket (load-all oset s))) )

; "meta"-function, generating the set of objects to be transported

; from the top-level goals

(defun start-r (g s) (rocket (make-co g '(at* CO x)) s))

(defun make-co (goal newpat)

(cond ((null goal) nil)

((string< (string (caar goal)) (string (car newpat)))

(cons (nth (position 'CO newpat) (car goal))

(make-co (cdr goal) newpat))) ))
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((ISC P1 1) (ISC P2 2) (ISC P3 3))

((ISC P1 2) (ISC P2 1) (ISC P3 3)) ((ISC P1 3) (ISC P2 2) (ISC P3 1)) ((ISC P1 1) (ISC P2 3) (ISC P3 2))

((ISC P1 3) (ISC P2 1) (ISC P3 2)) ((ISC P1 2) (ISC P2 3) (ISC P3 1))

(SWAP P2 P3)(SWAP P1 P3)(SWAP P1 P2)

(SWAP P2 P3)(SWAP P1 P3) (SWAP P1 P3)(SWAP P1 P2)(SWAP P2 P3) (SWAP P1 P2)

Figure B.1: Universal Plan for Sorting Lists with Three Elements

B.2.2 Interleaving at and inside

The generalized predicates (at* oset B) and (inside* oset Rocket) are complements. If all
objects are at a location, no object is inside the vehicle and vice versa. The unload-all
function presupposes, that all objects in oset are inside the rocket and the load-all function
presupposes, that all objects in oset are at the current location. The constrcution of a

complex object from the plan is driven by the top-level goals (or for a sub-plan by the
predicates in its root-node). After transforming both sub-plans into �nite programs and

generalizing over them, it becomes clear, that both subplans share the parameter oset
whith initial value (o1 o2 o3).

Analyzing the relationship between the objects in the at*-set and the inside*-set,

could lead to an alternative implementation of these generalized predicates: (at* oset l)

is true, if no object is inside the rocket, that means, if for (inside* oset rocket) the oset is

empty (s contains no literal (inside o rocket)); and analogous for (inside* oset rocket).

B.3 The Selection Sort Domain

B.3.1 Sorting Lists with 3 Elements

Note, that in constructing the universal plan, it is random whether (swap p q) or (swap q

p) is the �rst instantiation. Because the operator is symmetric, both applications result

in an identical state. Only the �rst application is integrated in the plan. Restriction

of swapping only from smaller positions to larger ones (or the other way round) can be

done by extending state speci�cations by ((gt P3 P2) (gt P3 P1) (gt P2 P1)) and the

application-condition of the swap-operator to ((isc p n1) (isc q n2) (gt n1 n2) (gt

q p)).

B.3.2 Minimal Spanning Trees for 3-SelSort

From the 9 minimal spanning trees of the 3-sort problem, three are generalizable to the

selsort program: namely, all trees where the branching factor is as regular as possible (i.e.

3 to 2 vs. 3 to 1).
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Figure B.2: Minimal Spanning Trees for Sorting Lists with Three Elements
(trees in the last column are generalizable)
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B.4 The Tower Domain

B.4.1 Assuming Subgoal-Independence

; abstract representation of control knowledge

;G(n,n,s) = tow(n,n)(s, putt1(n,s))

;G(i,n,s) = tow(i,n)(s,put1(i,s(i),G(s(i),s,n)))

;put1(i,s(i),s) = put(i,s(i),clear(i,clear(s(i),s)))

;putt1(i,s)=putt(i,clear(i,s))

;clear(x,s)=ct(x,s)(s,putt(f(x),clear(f(x),s)))

; main: G(1,n,s)

; ------------------------------------------------------------------

; call (G 1 maxblock s)

; s for maxblock = 3

; ((on 1 2) (on 2 3) (ct 1) (ont 3))

; ((on 1 3) (on 3 2) (ct 1) (ont 2))

; ((on 2 1) (on 1 3) (ct 2) (ont 3))

; ((on 2 3) (on 3 1) (ct 2) (ont 1))

; ((on 3 1) (on 1 2) (ct 3) (ont 2))

; ((on 3 2) (on 2 1) (ct 3) (ont 1))

; ((on 1 2) (ct 1) (ct 3) (ont 2) (ont 3))

; ((on 1 3) (ct 1) (ct 2) (ont 2) (ont 3))

; ((on 2 1) (ct 2) (ct 3) (ont 1) (ont 3))

; ((on 2 3) (ct 2) (ct 1) (ont 1) (ont 3))

; ((on 3 1) (ct 3) (ct 2) (ont 1) (ont 2))

; ((on 3 2) (ct 3) (ct 1) (ont 1) (ont 2))

; ((ct 1) (ct 2) (ct 3) (ont 1) (ont 2) (ont 3))

; some s for maxblock > 3

; ((on 4 2) (on 2 1) (on 1 3) (ct 4) (ont 3))

; ((on 2 5) (on 5 1) (on 4 3) (ct 2) (ct 4) (ont 1) (ont 3))

; ------------------------------------------------------------------

; this would also give true if block n is ont and there are

; unsorted blocks above it!

(defun tow (i n s)

(cond ((eq i n) (cond ((member (cons 'ont (list n)) s :test 'equal)

(print `(tower ,@s)) T)

(T nil)

) )

(T (cond ((and

(member (cons 'on (list i (1+ i))) s :test 'equal)

(tow (1+ i) n s)) T)

(T nil)

) ) ))

(defun putt1 (i s) (puttable i (clear i s)))

(defun put1 (i s) (put i (1+ i) (clear i (clear (1+ i) s))) )
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(defun clear (x s)

(cond ((member (cons 'ct (list x)) s :test 'equal)

(print `(block ,@(list x) is clear now)) s)

(T (print 'puttable-call-by-clear)

(puttable (f x s) (clear (f x s) s))) ))

(defun put (x y s)

(print s)

(cond ((null s) (print 'error-in-put) nil)

((and (member (cons 'ct (list x)) s :test 'equal)

(member (cons 'ct (list y)) s :test 'equal)

) (print `(put ,@(list x) on ,@(list y) in,@s)) (exec-put x y s))

(T (print 'error-in-put-xy-not-clear) nil) ))

(defun exec-put (x y s)

(cond ((null s) nil)

((and (equal (first (car s)) 'ont) (equal (second (car s)) x))

(exec-put x y (cdr s)))

((and (equal (first (car s)) 'on) (equal (second (car s)) x))

(cons (cons 'ct (list (third (car s)))) (exec-put x y (cdr s)))

)

((and (equal (first (car s)) 'ct) (equal (second (car s)) y))

(cons (cons 'on (list x y)) (exec-put x y (cdr s)))

)

(T (cons (car s) (exec-put x y (cdr s)))) ))

(defun puttable (x s)

(cond ((null s) (print 'error-in-puttable) nil)

((member (cons 'ct (list x)) s :test 'equal)

(print `(puttable ,@(list x) in ,@s)) (exec-puttable x s))

(T (print 'error-in-puttable-x-not-clear) nil) ))

(defun exec-puttable (x s)

(cond ((null s) (print 'x-maybe-already-on-table) nil)

((and (equal (first (car s)) 'on) (equal (second (car s)) x))

(cons (cons 'ct (list (third (car s))))

(cons

(cons 'ont (list (second (car s))))

(cdr s)))

)

(T (cons (car s) (exec-puttable x (cdr s)))) ))

(defun f (x s)

(cond ((null s) nil)

((and (equal (first (car s)) 'on) (equal (third (car s)) x))

(second (car s)))

(T (f x (cdr s))) ))

(defun G (i n s)
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(print `(G ,@(list i) ,@(list n) ,@s))

(cond ((eq i n) (cond ((tow i n s) s) ; G(n,n,s)

(T (putt1 n s))

) )

(T (cond ((tow i n s) s) ; G(i,n,s), i < n

(T (put1 i (G (1+ i) n s)))

) ) ))

B.4.2 Universal Plan for the 4-Block Tower

The graphics for the universal plan are too large to be included here. They
can be viewed online: Use DPlan to generate the graphic output or request
the x�g- or eps-�le from the author!

In general, the tower plan could contain actions (put x y) where x is
a larger block than y (for example, to reach (ct d) from a state ((on b d)

(ct a) (ct b) (ct c)) the optimal universal plan can either contain (puttable

b) or (put b a)). A restriction to \ordered" put-actions can be reached by
presenting put before puttable in the problem speci�cation { because DPlan
applies operators top-down.

B.4.3 Two Programs for Tower

; TOWER-1; call e.g. (tower '(a b c d) '((on a d) (on d c) (on c b) (ct a)))

(defun tower (olist s)

(if (subtow olist s)

s

(if (and (ct (first olist) s) (subtow (cdr olist) s))

(put (first olist) (second olist) s)

(if (and (singleblock olist) (ot (first olist) s))

(clear-all (first olist) s)

(if (and (singleblock olist) (ct (first olist) s))

(puttable (first olist) s)

(if (singleblock olist)

(puttable (first olist) (clear-all (first olist) s))

(if (and (ct (first olist) s) (on* (cdr olist) s))

(put (first olist) (second olist) (clear-all (second olist) s))

(if (ct (first olist) s)

(put (first olist) (second olist) (tower (cdr olist) s))

(put (first olist) (second olist) (clear-all (first olist)

(tower (cdr olist) s)))

))))))))

; clear-all macro

(defun clear-all (o s )

(if (ct o s)
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s

(puttable (succ o s) (clear-all (succ o s) s ) )) )

(defun succ (x s)

(cond ((null s) nil)

((and (equal (first (car s)) 'on)

(equal (nth 2 (car s)) x))

(nth 1 (car s)))

(T (succ x (cdr s)))))

(defun singleblock (l) (null (cdr l)))

; correct subtower?

(defun subtow (olist s) (and (ct (car olist) s) (on* olist s)))

; tower contains a currect subtower?

(defun on* (olist s)

(cond ((null olist) T) ; should not happend

((and (null (cdr olist)) (ot (car olist) s)) T)

((member (list 'on (first olist) (second olist)) s :test 'equal)

(on* (cdr olist) s))

(T nil) ))

; given

(defun ct (o s) (member (list 'ct o) s :test 'equal))

; given as (ontable x) OR (here) inferred from state

(defun ot (o s)

(null (mapcan #'(lambda(x) (and (equal 'on (first x))

(equal o (second x))

(list x))) s) ))

; explicit application of put-operator

(defun put (x y s )

(cond ((null s) (print `(put ,x ,y))

nil)

((equal (car s) (list 'ct y)) (cons (list 'on x y) (put x y (cdr s) )))

((and (equal (first (car s)) 'on)

(equal (second (car s)) x))

(cons (list 'ct (third (car s))) (put x y (cdr s) )))

(T (cons (car s) (put x y (cdr s) )))

))

; explicit application of puttable-operator

(defun puttable (x s )

(cond ((null s) (print `(puttable ,x))

nil)

((and (equal (first (car s)) 'on)

(equal (second (car s)) x)) (cons (list 'ct (third (car s)))

(puttable x (cdr s) )))

(T (cons (car s) (puttable x (cdr s) )))

))
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; TOWER-2 ;Building a list (tower) of sorted numbers (blocks)

; Ute Schmid Dec 4 97

; -----------------------------------------------------------------

; Representation: each partial tower as list

; Input: list of lists

; Examples for the three blocks world

; ((1 2 3))

; ((2 3) (1))

; ((1) (2) (3))

; ((2 1) (3))

; ((3 2 1))

; ((1 2) (3))

; ((1 3) (2))

; ((3 1) (2))

; ((3 2) (1))

; ((1 3 2))

; ((2 3 1))

; ((2 1 3))

; ((3 1 2))

; -----------------------------------------------------------------

; help functions

; ---------------

; flattens a list l

(defun flatten (l)

(cond ((null l) nil)

(T (append (car l) (flatten (cdr l))))

))

; x+1 = y?

(defun onedif (x y) (= (1+ x) y))

; blocks world selectors

; ----------------------

; topmost block of a tower

(defun topof (tw) (car tw))

; bottom block (base) of a tower

(defun bottom (tw) (car (last tw)))

; next tower

; f.e. ((2 1) (3)) -> (2 1)

(defun get-tower (l) (car l))

; tops of all current towers

(defun topelements (l) (sort (map 'list #'car l) #'>))

; topblock with highest number

(defun greatest (l) (car (topelements l)))



B.4. THE TOWER DOMAIN 117

; topblock mit second highest number

(defun scndgreatest (l) (cadr (topelements l)))

; label of the block with the highest number

(defun maxblock (l)

(cond ((null l) 0)

(T (car (sort (flatten l) #'>)))

))

(defun get-all-no-towers (l max)

(cond ((null l) nil)

((and (equal (bottom (car l)) max) (sorted (get-tower l)))

(get-all-no-towers (cdr l) max))

((single-block (get-tower l)) (get-all-no-towers (cdr l) max))

(T (cons (car l) (get-all-no-towers (cdr l) max)))

))

(defun find-greatest (max l)

(cond ((null l) max)

((> (topof max) (topof (car l))) (find-greatest max (cdr l)))

(T (find-greatest (car l) (cdr l)))

))

; find incorrect tower containing highest element

(defun greatest-no-tower (l)

(cond ((null l) nil)

(T (find-greatest (car (get-all-no-towers l (maxblock l)))

(cdr (get-all-no-towers l (maxblock l)))))

))

; blocksworld predicates

; ----------------------

; is tower only a single block?

(defun single-block (tw) (= (length tw) 1))

; exist two partial towers which top elements differ only by one?

(defun exist-free-neighbours (l) (onedif (scndgreatest l) (greatest l)))

; exists a correct partial tower?

; f.e. (2 3) or (B C)

(defun exists-tower (l)

(cond ((null l) nil)

((and (equal (bottom (get-tower l)) (maxblock l))

(sorted (get-tower l))) T)

(T (exists-tower (cdr l)))

))

; is block x predecessor to top of a tower?
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(defun successor (x tw)

(cond ((null tw) T)

((onedif x (car tw)) T) ;(successor x (cdr tw)))

(T nil)

))

; is tower sorted?

(defun sorted (tw)

(cond ((null tw) T)

((successor (car tw) (cdr tw)) (sorted (cdr tw)))

(T nil)

))

; exists only one tower?

(defun single-tower (l) (null (cdr l)))

; goal state?

(defun is-tower (l) (and (single-tower l) (sorted (get-tower l))))

; ------------------------------------------------------------------

; blocksworld operators

; ---------------------

; put x on y

(defun put (x y l)

(cond ((null l) (print 'put) (print x) (print y)

nil)

((equal (caar l) x) (cond ((not (null (cdar l)))

(append (list (cdar l)) (put x y (cdr l))))

(T (put x y (cdr l)))))

((equal (caar l) y) (cons (cons x (car l)) (put x y (cdr l))))

(T (cons (car l) (put x y (cdr l))))

))

; puttable x

(defun puttable (x l)

(cond ((null l) nil)

((equal (caar l) x) (print 'puttable) (print x)

(cons (list x) (cons (cdar l) (cdr l))))

(T (cons (car l) (puttable x (cdr l))))

))

; ------------------------------------------------------------------

; main function

; -------------

(defun tower (l)

(cond ((is-tower l) l)

((and (exists-tower l)

(exist-free-neighbours l))

(tower (put (scndgreatest l) (greatest l) l)))

(T (tower (puttable (topof (greatest-no-tower l)) l)))

))
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