
The Simple Language Generator: Encoding
complex languages with simple grammars

Douglas L. T. Rohde

September, 1999
CMU-CS-99-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper introduces the design and use of the Simple Language Generator (SLG). SLG allows the user to construct
small but interesting stochastic context-free languages with relative ease. Although context-free grammars are con-
venient for representing natural language syntax, they do not easily support the semantic and pragmatic constraints
that make certain combinations of words or structures more likely than others. Context-free grammars for languages
involving many interacting constraints can become extremely complex and cannot reasonably be written by hand.
SLG allows the basic syntax of a grammar to be specified in context-free form and constraints to be applied atop
this framework in a relatively natural fashion. This combination of grammar and constraints is then converted into a
standard stochastic context-free grammar for use in generating sentences or in making context dependent likelihood
predictions of the sequence of words in a sentence.

This research was partially supported by NIMH Program Project Grant MH47566 Part 1 (M. Seidenberg, M. MacDon-
ald, D. Plaut co-PIs; J. McClelland, PD) and an NSF Graduate Fellowship. Correspondence may be sent to Douglas Rohde
(dr@cs.cmu.edu), School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA15213–3890,
USA.

Keywords: context free grammar, language generation, Carnegie Mellon University, SLG

1 Introduction

A common goal in the field of machine learning is the development of models that are able to capture the structure
of a language, be it a natural, human language or something more abstract. For example, one might wish to learn
the rules of grammaticality or use the language to comprehend and produce messages. Although it is often desirable
to work directly with a complete natural language, in studying the behavior of a particular learning method or in
comparing multiple strategies it is sometimes necessary to have at our disposal languages with well-understood and
easily controlled properties.

To produce such a language, we typically rely on a grammar which defines the legal strings, or sentences, it
contains. Agenerativegrammar is one that can produce those sentences. With most reasonable languages, it is usually
not very difficult to write a program to generate the language. However, one of the goals of many researchers is to
train a neural network, hidden markov model, or other learning method to predict each word in a sentence. In order to
evaluate such a model, we would need the theoretically correct predictions. Although there are many ways to generate
a language, most of them do not enable the rapid calculation of word-by-word predictions based on the grammar.

A simple yet fairly powerful form of grammar is the context-free grammar, or CFG (see Hopcroft & Ullman,
1979, for an introduction). By specifying probabilities thateach possibleproduction, or transition, in the grammar
is performed, we can control the distribution of sentences produced by a CFG. Thus we form a type of generative
grammar known as a stochastic context-free grammar, or SCFG. The advantage of the SCFG is that it has been the
subject of considerable analysis and we have reasonably fast algorithms for parsing and producing word predictions
using SCFGs.

Unfortunately, if one is interested in designing complex languages by hand, the SCFG can be rather cumbersome.
In order to produce a language of significant complexity, wherecomplexityis used in a non-technical sense, the
required grammar becomes long and complicated, involving considerable redundancy and a host of symbols, which
often have rather abstract relationships to the final language. In the SCFG, probabilities must be specified foreach
production in the grammar, but reasonable probabilities are difficult to determine by hand if the symbols involved
do not have clear mappings to well-understood properties of the intended language. Therefore, designing interesting
SCFG grammars by hand becomes quite impossible.

The goal of SLG or the Simple Language Generator, is to allow a human to specify relatively concise and intuitive
grammars which nevertheless define interesting languages. The grammar interpreted by SLG is similar in basic form
to an SCFG, but it allows the designer to specify additional constraints that alter the resulting language. The ability
to reuse constraints helps to eliminate redundancy. SLG can then convert the user’s grammar to a standard SCFG.
This process is known asresolvingthe grammar. Once we have obtained an SCFG which is equivalent to the original
grammar, albeit much longer and more complex, we can easily generate sentences in the language or produce optimal
word predictions.

This report explains the use of SLG and some of its inner workings. Section 2 describes the grammar specification
language. Section 3 explains the process by which constraints are resolved. Section 4 explains the process of reducing
or minimizing the size of grammars. Section 5 describes the method of converting grammars to Greibach Normal
Form and how this is used to produce word predictions. Section 6 mentions some possible future extensions to the
program and provides the address for downloading SLG. Finally, Appendix A explains the command-line arguments
used to control SLG.

2 The grammar

The grammar interpreted by SLG1 is a superset of a standard SCFG grammar. Therefore, any ordinary SCFG, and
hence any finite state machine, can be handled in a straightforward manner. One can view the process of generating a
sentence with an SCFG as the branching of an inverted tree. Each non-terminal symbol branches into the symbols in
its chosen production. The grammar is context-free because the branching of each symbol depends only on the symbol
itself and is unaffected by context, or the symbols around it. While CFGs are a convenient way to capture the syntax of
many languages, and have thus attracted the attention of linguists, if we are concerned with the frequency of sentences,
we must consider the semantics and pragmatics of natural languages, which play an important role in the choice of
productions. However, it is not possible to introduce this type of information into an SCFG without restructuring it,
which would destroy the nice, simple model of syntax.

1This report is based on SLG version 2.0.

What we would like to be able to do is to constrain the behavior of one symbol given the productions of one, or
more, other symbols in the tree. For example, when producing natural sentences, we might want to constrain the choice
of verb based the choice of subject or the choice of adjective based on the noun it is describing. Given a grammar and
a list of such constraints, it is possible, although not entirely straightforward, to generate sentences that satisfy both
the grammar and the constraints as long as the dependencies aren’t circular. However, given such a model, it would be
next to impossible to efficiently parse and generate word predictions. To do that, we would really like just a standard
SCFG. But as long as the region of the tree affected by each constraint is contained, we should be able to eliminate
the need for the constraints by restructuring just those portions of the grammar so that the constraint is effectively
embedded in the context-free productions. This is the role of SLG.

Defining an SLG constraint involves two steps. First, a constraint function is defined which specifies how the
choice of productions from the constraining symbol, or thesource, affect the choice of productions of the constrained
symbol, or thegoal. Then the constraint must be applied to each appropriate pair of source and goal. This isdone by
specifying which sub-tree or sub-trees are affected by the constraint. The sub-tree begins at theroot, or the symbol
which is the lowest mutual-ancestor of the source and goal. Typically, noun-phrases and verb-phrases appear in many
places in a natural language grammar. The ability to reuse a single subject-verb constraint function foreach pair
helps eliminate redundancy and segregate semantic/pragmatic information from syntactic information in the grammar.
Because resolving a constraint only involves altering the paths through the tree that start at the root and extend to the
source or goal, the use of constraints does not render the SLG grammar super-context-free in the theoretical sense.

2.1 Using the SLG grammar

S : NP VP "." |
{LegalIntVerb, NP N, VP VI} |
{LegalTrnVerb, NP N, VP VT};

VP : VI | VT OP (0.7) |
5 {LegalObject, VT, OP N} |

{LegalObject, VT, OP N2};
NP : the N;
OP : the N | the N and the N2 |

{DontRepeatObj, N, N2};
10 N | N2 : boy (0.3) | cat (0.3) | dog;

VI : barked | slept;
VT : bit | fed;

LegalIntVerb {
15 boy | cat : slept;

dog : barked (0.8) | slept;
}

LegalTrnVerb {
20 dog | cat ! fed;

}

LegalObject {
bit | fed : boy (0.6) | cat (0.2) | dog;

25 fed ! boy;
}

DontRepeatObj {
boy ! boy;

30 cat ! cat;
dog ! dog;

}

Figure 1: A grammar for producing simple sentences.

Figure 1 contains a sample SLG grammar, illustrating the syntax and many of the available features. The first 12
lines contain symbol definitions. A symbol definition begins with a list of the symbols to be defined, separated by|
characters. It is convenient to read the| character as “or”. A symbol name can consist of any string of characters
excluding white space and the following special characters:;|:, fg()! Alternately, a symbol name can be any
string enclosed in double quotes. This allows multi-word symbols and symbols using the special characters. The first
symbol defined becomes the start symbol.

Each of the symbols in the definition list will receive the same definition. That is, they will have the same set of

2

productions and will be theroot symbol for the same sets of constraints. It may not seem particularly useful to have
equivalent symbols, but it often comes in handy when one needs to apply different constraints to otherwise identical
symbols, and it can sometimes help make the grammar more clear. An example of a shared definition is that of “N |

N2” on line 10 of the grammar. Because we created two differentnouns non-terminals, we can distinguish between
them in the constraint on line 9.

Following the definition list is a colon and then a list ofproductionsand constraints, separated by| ’s. The
definition is terminated with a semicolon. A production is a string of symbols (separated by whitespace) followed by
an optional probability (prob.) enclosed in parentheses. The probabilities for all possible productions from a symbol
must sum to1:0. Any productions whose prob. is not specified will be given the same prob., which is calculated such
that the overall sum becomes1:0. Therefore, if three productions are defined and a prob. of0:6 is specified for the
first and no prob. is specified for the others, the other productions will default to0:2.

Constraints are enclosed in curly braces and consist of three parts. The first specifies the constraint function, which
must be defined separately. The second specifies thesource pathand the third specifies thegoal path. When a sentence
is generated with a CFG, we can view the process as the branching of a tree, beginning with the start symbol, which is
S in this case. Figure 2 illustrates the parse tree for a sentence generated by the example grammar.

the N

bit the and the

OP

NP

N N2

boy

VT

VP

cat

dog

S

Figure 2: Parse tree from the grammar with a source path shown in white and a goal path shown in black.

When a constraint is given in a symbol definition, the symbol currently being defined is called theroot of the
constraint. For example, the root of the constraint on line 9 isOP. Note that the root of a constraint need not be the
start symbol of the grammar. A constraint path consists of a series of symbols separated by whitespace. It matches a
path through the states in the parse tree which begins at the root symbol. Each of the symbols in the path must match
a symbol in the parse tree at the next level down. If either the source path or the goal path does not match a path in the
tree, the constraint does not apply.

In the case of the tree in Figure 2, the constraint “fLegalTrnVerb, NP N, VP VTg”, which has rootS, is applicable.
The source path is marked with white ovals and the goal path with black ovals. The last symbol in the source path is
called thesource, because it will be the source of the constraint. In this case, the source isN. The last symbol in the
goal path,VT, is called thegoal. A constraint is only valid if the first symbol on the source path is different from the
first symbol on the goal path and the two symbols appear together in at least one root production. Additionally, the
root symbol itself may not appear on the source or goal paths except as the first symbol.

The choice of production out of the source, or the production that the source symbol performs, will constrain
the choice of production out of the goal. It does this using the specified constraint function, which must be defined
separately. A function definition consists of the name of the function followed by a list of terms enclosed in curly
braces. Each term begins with a list of productions called thesource list. These must be valid productions out of the
source, as given by the definition of the source symbol. Note that the elements in this list areproductions, not just
symbol names. In the current example, all of these productions happen to consist of a single symbol, but in general it
is possible for constraints to involve more complex productions comprising a series of symbols. Following the source
list is either a colon or exclamation point and then thegoal list, which is a list of possible productions out of the goal
symbol.

If the character separating the source and goal lists is an exclamation point, rather than a colon, then the goal list
specifies productions whichcannotbe taken from the goal symbol if the source symbol produces one of the productions
in the source list. This is a convenient way to eliminate selected productions. For example, theLegalTrnVerb function

3

says that if the subject isdog or cat then the transitive verb cannot befed. Probabilities should not be specified when
using an exclamation point.

On the other hand, if the character separating the source and goal lists is a colon, the goal list specifies the only
legal productions from the goal symbol if the constraint term applies. In addition, probabilities can be specified for
the goal list productions that will modify the distribution of productions produced by the goal. The new distribution
does not replace the old one. Rather, itfilters the distribution. When one distribution filters another, the corresponding
terms are multiplied and the results re-normalized. For example, symbolN normally producesboy, cat, or dog with
respective probabilities of0:3, 0:3, and0:4. When filtered by the first term in theLegalObject function, which specifies
a distribution of0:6, 0:2, 0:2, the resulting distribution becomes0:5625, 0:1875, 0:25. Note that if a production has
prob. 0:0 in either distribution, it will have prob.0:0 in the result. If no probabilities are specified in the goal list, the
constraint will eliminate goal productions that are not listed but will not change the relative likelihood of the listed
productions.

Although it is usual foreach source production to appear in at most one term in a constraint function, it is sometimes
useful to define multiple terms for a production. For example, you might have one term that represents animals and
one that represents fierce things, both of which includedog. If a source production matches more than one term then
the goal productions are filtered byeach of the matching terms. The order in which filtering occurs does not matter.

Let us examine the constraints employed in the example grammar.LegalIntVerb is used to constrain the choices
of intransitive verbs given the subject of the sentence. Note that the constraining path in this constraint,NP N, will
always be matched because anS must produce anNP and anNP must produce anN. The constrained path,VP VI, may
not be matched because a verb phrase may contain a transitive verb rather than an intransitive one. If the constrained
path does match, then this constraint will affect the choices of intransitive verb based on the choice of noun for the
subject.

The definition of theLegalIntVerb function specifies that if the subject isboy or cat then the intransitive verb must
beslept. However, if the subject isdog, then the intransitive verb will bebarked with prob. 0:8 andslept with prob.
0:2. TheLegalTrnVerb function is used to constrain the possible transitive verbs given the subject. If the subject is
eitherdog or cat, the transitive verb cannot befed. Therefore, it must bebit. Note thatboy is not listed in any of the
terms in the definition ofLegalTrnVerb. Therefore, if the subject isboy, the constraint has no effect and the transitive
verb will bebit or fed with equal likelihood.

The LegalObject function is used to constrain the choices of object given the transitive verb. The first term says
that if the verb isbit or fed, all nouns are possible, but their probabilities have been altered. The second term, however,
specifies that if the verb isfed, the object cannot beboy. In this case the prob. of the object becomingcat will be
3=7 and the prob. ofdog will be 4=7. Finally, theDontRepeatObj constraint eliminates the possibility of a compound
object consisting of the same noun twice, such as “. . . the dog and the dog”.

The amount or type of whitespace does not matter in the SLGgrammar file, except that any line starting with a#
will be treated as a comment.

2.2 Other features

One feature that has not yet been mentioned is the use of constraint wild-cards. The symbol names in the source and
goal path of a constraint may be replaced with a*. This will match any symbol and allows a single constraint to apply
to several paths. When resolving the grammar, the constraint will actually be turned into a set of constraints in which
the wild cards have been replaced by all possible combinations of symbol values.

Another useful feature is theepsilonproduction. A standard concept in CFGs, these are productions that generate
nothing and thus eliminate the current symbol from the tree. While these do not alter the theoretical power of the
grammar, their use can simplify grammars. Consider the two examples shown in Figure 3. These are equivalent
grammars that produce a noun-phrase containing an optional article and optional adjective before the noun. The first
grammar does not use epsilon productions and therefore must specify all four possible types of noun-phrase. The
second grammar uses epsilon productions, which are written as an empty pair of double-quotes, to make the article
and adjective optional while freeing the user from enumerating every possibility.

Finally, constraints may be given a priority which determines the order in which they will be resolved. By default,
if there are no other dependencies, constraints are handled in some arbitrary order when resolving the grammar.
However, sometimes the resolution process goes faster if certain constraints are resolved before others. The user can
influence the order of resolution by giving constraints a priority. By default, constraints have priority 0, but the priority
can be changed by placing a fourth field in the constraint specification, as inffoo, NP N, VP VT, 3g. The priority may

4

NP : N | ART N | ADJ N | ART ADJ N;
ART: the | a;
ADJ: green | putrid;

NP : ART ADJ N;
ART: "" | the | a;
ADJ: "" | green | putrid;

Figure 3: Using epsilon productions to simplify a grammar.

be negative. Higher priority constraints will be resolved first. For most grammars, this will have no noticeable effect
and is most useful if you would like to observe the intermediate stages of the resolution process under a particular
constraint ordering.

2.3 Limited cross-dependency

A main attraction to CFGs has been their ability to conveniently capture center-embedding, which is a common
feature of English and most other languages. A nested center-embedded sentence might have the general structureN1
N2 N3 V3 V2 V1, whereV1 depends onN1, V2 on N2, and so on. These are easily captured by CFGs. However, of
considerable interest and trouble to the linguistic community has been the existence of a few languages, most notably
Dutch and Swiss German, that permit cross-dependencies (Christiansen & Chater, in press), which have the general
structureN1 N2 N3 V1 V2 V3. These cannot in general be described by a CFG and, even if the depth of the embedding
is limited, are difficult to describe once agreement and semantic constraints are introduced.

S: N1 N2 N3 V1 V2 V3 |
{N-V, N1, V1} | {N-V, N2, V2} | {N-V, N3, V3};

N1 : dog | dogs | cat | cats;
N2 | N3 : dog | dogs | cat | cats | "" (0.8);
V1 | V2 | V3 : barks | bark | purrs | purr | "";

N-V {dog:barks; dogs:bark; cat:purrs; cats:purr; "":"";}

S: N NP V VP | {N-V, N, V} |
{NP-VP, NP, VP} | {N-V, NP N, VP V} |
{NP-VP, NP NP, VP VP} | {N-V, NP NP N, VP VP V};

N: dog | dogs | cat | cats;
V: barks | bark | purrs | purr;
NP: N NP | "" (0.8);
VP: V VP | "";

N-V {dog:barks; dogs:bark; cat:purrs; cats:purr;}
NP-VP {"":""; N NP:V VP;}

Figure 4: Two SLG grammars for limited cross-dependency.

However, cross-dependencies of limited depth are not too difficult to describe using an SLG grammar. Figure 4
shows two ways in which, in rather simplified form, one might write such a grammar. The first uses a flat representation
to explicitly allow up to three possible pairs. Three constraints are required to implement agreement. The use of
the epsilon production allowsN2 andN3 to be optional, and the constraints prevent the corresponding verbs from
appearing in the absence of the nouns. When resolved into an SCFG, this grammar requires 25 non-terminal symbols
and 124 productions.

The second example uses a nested structure, which may be more convenient and more linguistically reasonable in a
full grammar. In this case, two constraints are used for each possible depth of embedding. However, the grammar isn’t
entirely adequate since it could produce embeddings beyond depth two which would not be subject to the constraints.
The maximum depth of embedding could be bounded by introducing a path constraint, as mentioned in Section 6.

5

S : SP VI . (.25) | SP VT OP . |
{sub-intr, SP NP N, VI} | {sub-trns, SP NP N, VT} |
{trns-obj, VT, OP NP N} | {sub-obj, SP NP N, OP NP N} |
{intrans-ref, VI, SP RC VI};

SP | OP : NP | NP RC (.3) |
{sub-intr, NP N, RC VI} | {sub-trns, NP N, RC VT} |
{trns-obj, RC VT2, NP N};

RC : who VI | who VT OP | who SP VT2 |
{trns-obj, VT, OP NP N} | {sub-trns, SP NP N, VT2};

NP : ART ADJ N | {noun-art, N, ART} | {noun-adj, N, ADJ};

ART: "" | the | a;

ADJ: "" (0.6) | quick | happy | hungry | nasty | mangy | crazy | sleazy;

N : boy | boys | girl | girls | Mary | John | cat | cats | dog | dogs;

VI : walks | walk | bites | bite | eats | eat | barks | bark;

VT | VT2 : chases | chase | feeds | feed | sees | see | walks | walk | bites |
bite;

sub-intr {
boy | girl | Mary | John : walks | eats;
boys | girls : walk | eat;
cat | dog : walks | bites | eats | barks;
cats | dogs : walk | bite | eat | bark;
cat | cats ! bark | barks;

}

sub-trns {
boy | girl | Mary | John : chases | feeds | sees(.1) | walks;
boys | girls : chase | feed | see(.1) | walk;
cat | dog : chases | sees(.2) | bites;
cats | dogs : chase | see(.2) | bite;

}

trns-obj {
walk | walks : cat | cats | dog | dogs;
see | sees : cat | cats;

}

sub-obj {
Mary ! Mary;
John ! John;

}

intrans-ref {
walks | walk ! walks | walk;
bites | bite ! bites | bite;
eats | eat ! eats | eat;
barks | bark ! barks | bark;

}

noun-adj {
boy | boys | girl | girls | Mary | John ! mangy;
John | cat | cats | dog | dogs ! sleazy;

}

noun-art {
Mary | John : "";
boys | girls | cats | dogs ! a;
boy | girl | cat | dog ! "";

}

Figure 5: A more complex SLG grammar.

6

2.4 A larger example

Figure 5 shows a much more complex SLG grammar which produces some reasonably interesting English sentences.
Once it is resolved, this grammar produces an SCFG with 140 non-terminals and 442 productions, which is consider-
ably larger than the original grammar. Some sentences produced with this grammar are listed in Figure 6.

a dog bites the happy boys .
dogs who chase the hungry cat bite nasty girls who walk .
the crazy cat walks .
the hungry cats who walk chase the hungry dog who chases the crazy girls .
the mangy dogs who walk bite the quick dog .
a nasty cat who sees the mangy cats bites .
girls chase the sleazy girls .
hungry cats eat .
the nasty cats bite Mary .
the nasty cat who a crazy girl chases bites the crazy boys .

Figure 6: Sentences generated by the complex grammar.

3 Resolving the grammar

This section explains the process by which SLG takes a grammar involving constraints and transforms it into a gram-
mar in standard SCFG form. It does this byresolvingeach of the constraints. Resolving a constraint is a rather complex
process, but essentially involves splittingeach of the symbols along the source and goal paths into sub-symbols, which
correspond to terms or conjunctions of terms in the constraint function. The trick is correctly computing the production
probabilities.

3.1 Resolving a simple constraint

S: A B | A C | {foo, A, B};
A: i (0.5) | j (0.3) | k (0.2);
B: x (0.6) | y (0.4);

foo {
i : x (0.2) | y (0.8);
j | k : x;

}

Figure 7: An SLG grammar with one simple constraint.

Consider the grammar depicted in Figure 7. The source symbol produces eitherA B or A C, A producesi, j, or k, and
B producesx or y. However, whenS producesA B, the production out ofA should constrain the production out ofB.
The constraint function,foo, indicates that whenA produces ani, B will produce anx with probability (prob.)0:27273
and ay with prob.0:72727 (after filtering the baseB distribution). But ifA produces aj or k, B must producex.

To resolve the constraint, we start at the source symbol,A. A sub-symbol is created for each term or set of terms that
could be matched by a source production. In this case, no productions can match more than one term, but productioni
matches term 1 and productionsj andk match term 2. Therefore, two new symbols are created.A-1S0.1 only produces
i, thus matching term 1, andA-1S0.2 producesj or k, thus matching term 2. The relative frequency ofj andk should not
change, soA-1S0.1 will producej with prob.0:6 andk with prob.0:4. Thesource strengthof each of the sub-symbols
is the prob. that the original symbol,A, would have produced one of the productions in the sub-symbol. For example,
the source strength ofA-1S0.1 is the prob. thatA producesi, or 0:5. The source strength ofA-1S0.2 will be 0:2 + 0:3,
or 0:5 as well.

Now we take a step up towards the root. In this simple case, the source path was only one symbol long so we are
now at the root. Each root production that matches the constraint will be split. A production matches this constraint if
it contains at least oneA and oneB, so only the first constraint matches. ProductionA B will be replaced with a pair of
productions,A-1S0.1 B-1G0.1 andA-1S0.2 B-1G0.2. The prob. thatA-1S0.1 B-1G0.1 is used is equal to the product
of the original prob. ofA B, 0:5, and the source strength of sub-symbolA-1S0.1, also0:5. This is the prob. that the
original grammar would have produced ani, which is0:25. The prob. thatA-1S0.2 B.1G0.2 is produced is the product

7

of 0:5 and the source strength ofA-1S0.2, which is also0:25. Note that the overall prob. of producing aj, 0:3, has not
changed.

What remains is to define the newB sub-symbols,B-1G0.1 andB-1G0.2. B-1G0.1 is the version ofB that should
be produced when term 1 of the constraint is satisfied. Thus, the distribution forB-1G0.1 is the baseB distribution,
(0:6; 0:4), filtered by the first term offoo, (0:2; 0:8), which is be called theconstraining distribution. The resulting
distribution is (0:27273; 0:72727). B-1G0.2 must satisfy the second term offoo, which has a constraining distributionof
(1:0; 0:0), and therefore produces onlyx. Because symbolB itself is no longer used, the grammar reduction procedure
(Section 4) eliminates it. Figure 8 shows the resulting fully-resolved grammar. For such a simple example, the use of
the constraint didn’t actually help reduce the size of the grammar.

S: A-1S0.1 B-1G0.1 (0.25) | A-1S0.2 B-1G0.2 (0.25) | A C (0.5);
A: i (0.5) | j (0.3) | k (0.2);
A-1S0.1: i;
A-1S0.2: j (0.6) | k (0.4);
B-1G0.1: x (0.27273) | y (0.72727);
B-1G0.2: x;

Figure 8: The simple grammar with the constraint resolved.

3.2 Resolving a deeper constraint

S: A B | A A B | E | {foo, A C, B D};
A: C | C C | E;
C: i | j | k;
B: D | E;
D: x | y;

foo {
i | j : x (0.2) | y (0.8);
j : x;}

Figure 9: A grammar with a moderately complex constraint.

If we extend the source and goal paths and allow multiple references to a source path symbol in a single production,
the process of resolving a constraint becomes more complex. Consider the grammar in Figure 9. The source path and
goal path of the constraint now have two symbols each. Additionally, S can produce a production with twoA’s andA
can produce a production with twoC’s. Finally, the productionj from C satisfies two constraints. Each of these factors
makes resolving the constraint more complex.

As before, we begin at the source symbol,C. Three sub-symbols will be created.C-1S0 produces onlyk, which
does not match any terms.C-1S0.1 producesi, which matches term 1.C-1S0.1.2 producesj, which matches both
terms. All three sub-symbols have a source strength of1=3. Now we step up the source path to symbolA. We
will have to create six sub-symbols forA to cover all possible combinations of terms that might be satisfied by its
productions. The first sub-symbol,A-1S1 should satisfy no terms. Therefore, its productions will beC-1S0, C-1S0
C-1S0, andE. The source strength of symbolA-1S1 is the sum of theproduction strengthsfor the three productions.
A production strength is the original prob. of the production multiplied by the source strengths of any sub-symbols in
the production. Thus, the production strength ofE is just1=3. The production strength ofC-1S0 is 1=3� 1=3 = 1=9

and the production strength ofC-1S0 C-1S0 will be 1=27. The total source strength ofA-1S1 will therefore be13=27.
This is the prob. that the symbolA would not have produced ani or aj. The prob. of each production inA-1S1 will be
the production strength divided byA-1S1’s source strength. In other words, the productions are normalized.

The second sub-symbol produced,A-1S1.1, should lead to productions that satisfy term 1 of the constraint function.
Thus, it should always produce aC sub-symbol which itself produces exactly onei. The productionE is therefore
dropped because it does not contain aC. ProductionC becomesC-1S0.1 with production strength1=9. ProductionC
C is split into two productions,C-1S0.1 C-1S0 andC-1S0 C-1S0.1, each with strength1=27. Thus, eitherA-1S1.1
producesi, i k, or k i. The overall source strength ofA-1S1.1 is 4=27. To take one more example, sub-symbolA-
1S1.2x1.2 should satisfy term 1 in two ways and term 2 in one way. Therefore, it must either producei j or j i. It will
have two productions,C-1S0.1 C-1S0.1.2 andC-1S0.1.2 C-1S0.1, each with strength1=27.

Now we step up to the root level,S. For each root production that contains at least oneA and aB, we will create a
sub-production foreach combination of terms that we could satisfy by replacing theA’s with variousA sub-symbols,

8

plus one production in whichB is replaced by a sub-symbol that doesn’t reach the goal. ProductionE will remain
unchanged, but productionA B will be replaced by seven productions.

The first of these isA B-1N1, whereB-1N1 is a newly created sub-symbol ofB that does not complete the goal
path and is therefore not subject to the constraint. In this case, the goal path isB D soB-1N1 cannot produce aD and
therefore produces justE. The goal prob. of symbolB is the prob. thatB produces a path reaching the goal. In this
case, it is the prob. that it producesD, or 1=2. The prob. of productionA B-1N1 will be weighted by one minus the
goal prob. and will thus be1=3� 1=2 = 1=6.

The other six sub-productions will be created by replacingA with one of its six sub-symbols and replacingB with
a sub-symbol that is guaranteed to reach the goal and, when it does, produces a goal whose productions have been
filtered by the constraining distribution determined by theA’s. The prob. of each production will be equal to the
product of the original production prob.,1=3, the prob. thatB reaches the goal,1=2, and the source strengths of the
sub-A symbols used. For example, productionA-1S1.2x1.2 B-1G1.2x1.2 has prob.1=3 � 1=2 � 1=27 = 0:00617.
SymbolB-1G1.2x1.2 will be created such that it produces a sub-symbol ofD whose distribution is filtered by term 1
twice and term 2 once. However, because term 2 eliminatesy, the term 1 filtering has no effect and this symbol just
producesx.

The sub-productions forA A B will be even more complex because there are twoA’s. In addition to the production
A A B-1N1 for whichB-1N1 doesn’t reach the goal, we must form a new production for every way that we can replace
the A’s by sub-A’s. In this case, that will result in1 + 6 � 6 = 37 productions. Foreach, a sub-B symbol will be
created that is guaranteed to reach the goal and is subject to the appropriate term filters.

After having resolved the constraint and reduced the grammar, the resulting SCFG requires 25 non-terminals and
85 productions. Therefore, assuming that the resulting grammar is what we intended, the use of the constraint reduced
the original grammar by a factor of about 6.

3.3 Resolving multiple constraints

The constraint resolution process becomes more complicated as we introduce multiple constraints, especially when
those constraints share many of the same symbols. Multiple constraints are resolved one at a time. In most cases, the
order of resolution does not matter. As we saw in the last section, when a constraint is resolved it generates a number
of sub-symbols. When we resolve a second constraint that uses some of those same symbols, the second constraint
must be applied to each sub-symbol as it would be applied to the original symbols. As you might well imagine, this has
the potential to result in an exponential growth in the number of symbols. Nevertheless, provided that the constraints
do not interact too much, fairly large grammars with hundreds of constraints can still be resolved.

The resolution process naturally handles many fairly difficult situations that can arise with multiple constraints.
For example, one might wonder what happens when constraints are circular. Consider the grammar in Figure 10.
ConstraintAB says that ifA producesale thenB must producebed. ConstraintBC says thatC must then becat, which,
through constraintCA forcesA to beawl and so on. A bit of thought should reveal that the only valid sentence in this
language isate big cow, which SLG correctly discovers. If we make the constraints totally circular and add the term
cow:ale to functionCA, SLG will complain that the start symbol is over-constrained and cannot produce anything.

S: A B C | {AB, A, B} | {BC, B, C} | {CA, C, A};
A: ale | awl | ate;
B: bed | bus | big;
C: cat | cry | cow;
AB {ale:bed; awl:bus; ate:big;}
BC {bed:cat; bus:cry; big:cow;}
CA {cat:awl; cry:ate;}

Figure 10: A grammar containing circular constraints.

Let us now turn to the problem of resolving two interacting constraints. Consider the grammar in Figure 11. This
contains two constraints,fAB, A, Bg andfDC, A D, B Cg, which we will refer to as constraints 1 and 2, respectively.
If constraint 1 is resolved first, we are left with the intermediate grammar shown in Figure 12. We can now resolve
constraint 2 as we did in the case of a single constraint, provided we treat the sub-A symbols asA and the sub-B
symbols asB. A-1S0.2 does not produce aD, so its production won’t be affected.A-1S0.1 only producesD, so we
will split it into two sub-symbols, one that produces a sub-D that always producesw and one that produces a sub-D
that always producesx. The productionA-1S0.1 B-1G0.1 will be split into three sub-productions,each with its own
sub-B-1G0.1, as discussed in Section 3.2.

9

S: A B | {AB, A, B} | {DC, A D, B C};
A | B: D | C;
D: w | x;
C: y | z;
AB {D: D (0.2) | C;

C: D (0.8) | C;}
DC {w: y (0.4) | z;

x: y (0.6) | z;}

Figure 11: A grammar with two interacting constraints.

S: A-1S0.1 B-1G0.1 (0.5) | A-1S0.2 B-1G0.2 (0.5) | {DC, A D, B C};
A-1S0.1: D;
B-1G0.1: D (0.2) | C (0.8);
A-1S0.2: C;
B-1G0.2: D (0.8) | C (0.2);
D: w | x;
C: y | z;
DC {w: y (0.4) | z;

x: y (0.6) | z;}

Figure 12: The grammar of Figure 11 after resolving constraint 1.

Figure 13 shows the final grammar, after resolving constraint 1 followed by constraint 2, in a short-hand notation.
Each of the four lines represents one production from the root symbol. Numbers preceding colons are probabilities and
brackets represent tree depth. For example, the second line indicates that, with 20% prob., a symbol will be produced
that produces another symbol that produces aw followed by a symbol that will produce a symbol that producesy 40%
of the time andz otherwise.

However, the situation would be more difficult if we had first resolved constraint 2 before constraint 1. Starting
with the grammar in Figure 11 and resolving constraint 2 would have left us in the state shown in Figure 14. We can
begin as usual by creating new symbols along the source path. However, we will not be able to simply create new goal
path symbols whose productions reflect the effect of the constraining distribution because each of the sub-B symbols
produces either aC or aD. We will not be able to change the relative frequency ofC andD simply by modifying the
production probabilities of the goal path symbols. In general, problems like these can occur all along the goal path
and can be due to the effects of many previous constraints.

To explain how this situation is resolved, we will have to be more explicit about what really goes on in resolving
the goal path and root of a constraint. We begin by defining two terms that relate to the sub-symbols that will be
created along the goal path. Thegoal distributionof a symbolB on the goal path is the weighted sum of distributions
generated by all goal symbols reachable fromB. That is, if we start withB and generate all possible ways of traveling
down the goal path to the goal (where we might be using sub-symbols created in resolving previous constraints), the
goal distribution will be the average of the production distributions of the goal and sub-goal symbols, weighted by the
probabilities of reaching those symbols. When we create a new sub-B symbol that is subject to a certain constraining
distribution, the new goal distribution of the sub-symbol should be equivalent to the original goal distribution filtered
by the constraining distribution. This is true of all symbols on the goal path. Thegoal strengthof the sub-B symbol is
the dot-product of the original goal distribution and the constraining distribution.

As before, the process of resolving constraint 1 starts by creating the new source path sub-symbols, and creating
sub-productions in the root symbol,S. The set of terms that are satisfied by the sub-A symbols in each of the new root
productions determines the constraining distribution for that production. Foreach sub-production, we will create a
new sub-B symbol whose goal distribution has been filtered by the constraining distribution. The new root productions
will be as follows:

0.5: [C] [0.8: D | 0.2: C]
0.2: [[w]] [[0.4: y | 0.6: z]]
0.2: [[x]] [[0.6: y | 0.4: z]]
0.1: [D] [D]

Figure 13: The grammar of Figure 11 after resolving both constraints, in a short-hand notation.

10

S: A B-1N1 (0.5) | A-1S1 B-1G1 (0.25) | A-1S1.1 B-1G1.1 (0.125) |
A-1S1.2 B-1G1.2 (0.125) | {AB, A, B};

A | B: D | C;
B-1N1: D;
A-1S1 | B-1G1: C;
A-1S1.1: D-1S0.1; D-1S0.1: w;
B-1G1.1: C-1G0.1; C-1G0.1: y (0.4) | z (0.6);
A-1S1.2: D-1S0.2; D-1S0.2: x;
B-1G1.2: C-1G0.2; C-1G0.2: y (0.6) | z (0.4);
AB {D: D (0.2) | C;

C: D (0.8) | C;}

Figure 14: The grammar of Figure 11 after resolving constraint 2.

A-2S0.1 B-1N1-2G0.1
A-2S0.2 B-1N1-2G0.2
A-1S1-2S0.2 B-1G1-2G0.2
A-1S1.1-2S0.1 B-1G1.1-2G0.1
A-1S1.2-2S0.1 B-1G1.2-2G0.1

If the goal path symbol,B, is actually the goal, creating a sub-symbol is easy. We just filter its distribution with
the constraining distribution. However, ifB is not the goal but is further up on the goal path, producing a constrained
sub-symbol is more complex. Let’s imagine that the symbol followingB on the source path isC. In order to create a
sub-B, we first recursively create a sub-C for eachB production that uses aC and replace the oldC with the constrained
one. The prob. of the production is scaled by the goal strength of the sub-C. Once all productions have been scaled,
their probabilities are renormalized as follows. First,each group of productions that derived from the same ancestor
production in the original grammar is normalized amongst itself so that the sum of probabilities in the group remains
the same. If any groups were eliminated, all production probabilities are then normalized across the board.

A similar process occurs in the root symbol. Once the new sub-B has been created, the prob. of the new root
production using it is scaled by the goal strength of the sub-B. When this has been done foreach new production, the
production probabilities are renormalized within groups, where a group is a set of sub-productions that share the same
ancestor in the original grammar and which have the same constraining distribution. If any groups died off because
they were over-constrained, the productions are normalized overall.

In the case of our example, productionA B-1N1, with prob. 0:5 was divided intoA-2S0.1 B-1N1-2G0.1 andA-
2S0.2 B-1N1-2G0.2. The constraining distribution for the former is (0:2:D 0:8:C) and for the latter is (0:8:D 0:2:C).
The initial goal distribution forB-1N1 was (1:0:D 0:0:C). Therefore, the goal strength ofB-1N1-2G0.1 was0:2 and the
goal strength ofB-1N1-2G0.2 was0:8. As a result, the final prob. of productionA-2S0.1 B-1N1-2G0.1 is 0:1 and the
final prob. of productionA-2S0.2 B-1N1-2G0.2 is 0:4.

0.4: [C] [D]
0.1: [C] [C]
0.2: [[w]] [[0.4: y | 0.6: z]]
0.2: [[x]] [[0.6: y | 0.4: z]]
0.1: [D] [D]

Figure 15: The grammar of Figure 11 after resolving constraint 2 followed by constraint 1, in short-hand notation.

The resulting grammar, after both constraints have been resolved, is shown in Figure 15. It is equivalent to the
grammar in Figure 13, which was obtained by resolving the constraints in the opposite order, but does not have exactly
the same structure. If the first two productions in Figure 15 were combined, they would be equivalent to the first
production in Figure 13.

3.4 Constraint conflicts

S: A B | {foo, A B, B};
A: C B | {foo, C, B};
B | C: i | j;
foo {i: i (0.99) | j;

j: i (0.01) | j;}

Figure 16: A grammar containing a potential constraint conflict.

11

S: A-1S1.1 B-1G0.1 (0.5) | A-1S1.2 B-1G0.2 (0.5);
A-1S1.1: C B-1S0.1 | {foo, C, B};
B-1S0.1: i;
B-1G0.1: i (0.99) | j (0.01);
A-1S1.2: C B-1S0.2 | {foo, C, B};
B-1S0.2: j;
B-1G0.2: i (0.01) | j (0.99);

Figure 17: The grammar of Figure 16 after constraintY is resolved.

Although most pairs of constraints may be resolved in either order to the same effect, there is one situation in which
this is not possible. If the root and goal path of constraintX falls on either the source or goal path of constraintY,
thenX must be resolved beforeY. The reason is apparent if we consider the example in Figure 16. We will refer to
constraintffoo, C, Bg asX and to the other constraint asY. The source ofX, A, and its goal path,B, fall on the source
path ofY.

If we were to resolveY first, we would be left with the grammar shown in Figure 17. There are now two sub-A’s,
each with its own copy of constraintX. But each one produces a sub-B that either producesi or j. We cannot filter the
B’s goal distributions because they only produce a single symbol. Therefore, it is not possible to resolveX. However,
if we were to have resolvedX first, it would not have seriously affected the resolution ofY.

Therefore, whenever there is a constraint conflict of this type, the constraints are reordered so the proper constraint
is resolved first. However, if the ordering dependencies are circular, there is a problem. SLG gives the user the option
of ignoring such conflicts, but a better solution is to restructure the grammar so the constraint ordering is well defined.

4 Minimizing the grammar

The process of resolving the grammar creates many new symbols and productions, some of which may be superfluous.
Therefore, after resolution, the grammar is minimized to make it more compact. Because of the tradeoff between the
number of symbols and the number of productions, there is no clear definition of a minimal CFG, as there is with a
finite state machine. Nevertheless, a number of helpful steps can be taken.

1. Eliminating epsilon productions. The first step is to eliminate any epsilon productions from the grammar. This
uses a standard algorithm, described in Hopcroft and Ullman (1979), that has been adapted to properly handle
the probabilities in a SCFG. It begins by determining, foreach symbol, the prob. that the symbol produces only
epsilon. This uses an iterative procedure that terminates once the values have adequately settled. Ordinarily
this only takes a few iterations, but it could potentially settle rather slowly. It might be possible to formulate a
closed-form solution to the epsilon probabilities, but it may involve a system of non-linear equations.

Once the epsilon probabilities have been determined, foreach production that uses one or more symbols with a
non-zero prob. of producing epsilon and foreach subset of the epsilon-producing symbols in the production, a
sub-production is created in which those symbols are eliminated. The prob. of the sub-production is the product
of the original production prob., the epsilon probabilities of the symbols that were removed, and the probabilities
that the the symbols remaining do not reach epsilon.

2. Combining Equivalent Productions. This is a relatively simple step in which any pair of identical productions
in a symbol is combined into a single production. Also, any productions with0:0 prob. are removed.

3. Removing Unit Productions. A unit productionis a production that contains just one non-terminal. That is,
one non-terminal is simply replaced by another one. As shown in Hopcroft and Ullman (1979), if a grammar
uses unit productions, there is always an equivalent grammar that does not. Because this process can change the
structure of the grammar, it is only done whenaggressiveminimization is requested. Although Hopcroft and
Ullman (1979) mention an algorithm for removing unit productions in a CFG, it is not efficient for an SCFG.

The algorithm used in SLG iterates over the non-terminal symbols. Foreach symbol,A, it first removes any
self-unit productions, which are always unnecessary, and renormalizes the remaining productions inA. It then
searches in other symbols for any unit productions that useA. These productions are removed and replaced
with A’s productions, with their probabilities scaled by the prob. of the original production. Any newly created
equivalent productions or self-productions are then removed. When this process completes, all unit productions
will have been removed.

12

4. Removing Equivalent Symbols. The next step in minimization is to remove any symbols that have identical
sets of productions. The reduction process tends to create a lot of these. In order to do this efficiently, the
symbols are first sorted based on their productions. Then neighboring symbols are compared and duplicates
removed. Any references to the duplicate symbols within productions must be changed to refer instead to
the surviving symbol. Unless aggressive minimization is requested, two symbols which were generated from
different ancestor symbols during the reduction process are not considered equivalent.

Because replacing equivalent symbols can create equivalent productions, Step 2 must be repeated. This, in turn,
can create more equivalent symbols so Step 4 is run again. This continues until there are no more equivalent
symbols. This usually takes just a few iterations.

5. Removing Unreachable Symbols. Finally, any symbols that are not reachable from the start symbol, and could
therefore not participate in the grammar, are removed.

5 Word prediction

Although it is easy to generate sentences using any form of SCFG, in order to parse sentences and generate next-word
likelihood distributions, it is helpful to convert the grammar to a regular form. A number of algorithms have been
developed for parsing context-free languages, most notably the CYK algorithm (Hopcroft & Ullman, 1979). Most of
these require the grammar to be in Chomsky normal form, in which each production can either consist of a terminal
symbol or two non-terminal symbols. Although they are efficient for parsing whole sentences, these algorithms are
not well-suited to performing word-prediction given part of a sentence, particularly if we would like to do it iteratively
after each word in the sentence.

The method used by SLG relies on a grammar in Greibach normal form, in which each production must begin
with a terminal. With the grammar in this form, it is relatively easy to perform word prediction. As the sentence is
processed, from left to right, the parser keeps a list of every possible continuation with their associated probabilities.
The continuations are in the form of a terminal followed by one or more other symbols. It is therefore easy to
generate a distribution of next words. When the next word is processed, continuations not starting with that word
are discarded. The first word is dropped fromeach remaining continuation and, if the new first symbol is anon-
terminal, new continuations are created with the first symbol replaced by each of its productions. While, in theory,
this algorithm could generate an exponentially large list of continuations for a highly ambiguous grammar, in practice
it does quite well on pseudo-natural languages. Natural languages tend to be only mildly ambiguous, especially if
semantic constraints are enforced. If there were too much ambiguity, we would not be able to understand them.

5.1 Converting an SCFG to Greibach normal form

In order to convert an SCFG to Greibach normal form (GNF), the algorithm described in Hopcroft and Ullman (1979)
was adapted to handle production probabilities. The algorithm need not start with a grammar in Chomsky normal
form, but we will relax the restriction that all symbols following the first terminal in a GNF production must be non-
terminals. Figure 18 shows a modified version of the first step of the algorithm, indicating how the probabilities of
new productions should be calculated to maintain equivalence. Probabilities are listed in parentheses followingeach
production. The notationPQ refers to the prob. of productionQ being generated by its parent symbol.

Once this step is complete, it will be the case that, for all productions,Q, of the formAi ! Aj, i will be less
thanj. Therefore, we can eliminate all such productions by replacing them with all productions formed by replacing
Aj with one of its productions,R. The prob. of the new production will bePQ � PR. As long as we start with the
last symbol and work to the first, we will never introduce a new production that starts with a non-terminal. A similar
process can then be performed to replace all productions of the formBi ! Aj. Because there can be noBi ! Bj

productions, all productions will now begin with a terminal symbol.

6 Discussion

SLG is intended to help users design interesting context-free languages. It is especially useful in creating training
environments for machine learning experiments. Without using constraints, it is still a convenient tool for working with
stochastic context-free and regular languages, and includes a number of new algorithms for transforming grammars.

13

1 for k 1 to m do
2 for j 1 to k � 1 do
3 for each production,Q, of the formAk ! Aj� do
4 for each production,R, of the formAj ! � do
5 add productionAk ! �� (PQ � PR)

6 remove productionAk ! Aj�

7 x 0

8 for each production,Q, of the formAk ! Ak� do
9 x x+ PQ

10 for each production,Q, of the formAk ! Ak� do
11 add productionBk ! � (PQ � (1� x)=x)

12 add productionBk ! �Bk (PQ)

13 remove productionAk ! Ak�

14 for each production,Q, of the formAk ! �, where� doesn’t begin withAk do
15 add productionAk ! �Bk (PQ � x=(1� x))

Figure 18: A modified version of Figure 4.9 of Hopcroft and Ullmann (1979) indicating how to handle production
probabilities in converting to GNF.

However, the use of constraints can greatly simplify the writing of pseudo-natural languages by separating the syntax of
the underlying grammar from semantic and pragmatic influences and allowing important contingencies to be carefully
controlled.

Although the method for specifying SLG constraints is quite powerful, it does have some limitations and there are
several possible extensions that may improve it. Currently, all of the constraints for a particular root symbol must be
satisfied. Therefore they essentially form a logical conjunction. The grammar could be more flexible if it allowed an
arbitrary boolean formula of constraints to be specified foreach symbol. For example, one might specify that constraint
A and constraint B must apply or constraint C may apply. If we had a language with adjectives and compound nouns,
we might wish to produce phrases such as “the happy dog and the sad dog” or “ the happy dog and the happy boy”,
but not “the happy dog and the happy dog”, which would be redundant. We could do this by specifying that either
the nouns must differ or the adjectives must differ. In the current implementation, this is possible, but much less
convenient.

Another shorthand that may be useful is the addition of single-path constraints. That is, one might filter the
productions of a goal symbol at the end of a particular path out of the root symbol, but not in a way contingent on
context. These would be helpful in simplifying many grammars and could be used to bound the depth of recursion.

SLG is written in C and should compile on most systems. The source for the latest version is available at
http://www.cs.cmu.edu/˜dr/Projects/SLG/slg.tar.gz

References
Christiansen, M. H., & Chater, N. (in press). Toward a connectionist model of recursion in human linguistic performance.Cognitive

Science.

Hopcroft, J. E., & Ullman, J. D. (1979).Introduction to automata theory, languages, and computation.Reading, MA: Addison-
Wesley Publishing.

14

A SLG Usage

SLG handles two types of files,grammar filesandsymbol files. Grammar files typically have a .slg extension and
contain an SLG grammar. The sample grammar files described in this report are included with the source distribution
in theExamples/ directory.

In order to use a grammar, it must beresolved, or converted to standard SCFG form. SLG can then write a symbol
file, which stores the symbols and transitions in the grammar in compressed computer-readable form. The symbol file,
which normally ends with extension.sym, can later be loaded into SLG to avoid repeating the conversion process.

Finally, if a grammar is to be used to make probability predictions, it must be in Greibach Normal Form. Once a
grammar has been converted to GNF, it is common to give its symbol file the extension.gnf to distinguish it from a
.symfile containing a grammar that is not in GNF.

usage: slg [commands]

-h displays this message
-v num sets the verbosity level. 0 = silent, 3 = maximum, 1 = default
-r num sets the random number generator seed value
-i seeds the random number generator based on the time (done automatically at startup)
-d string sets the symbol separator for sentence output

-c file loads an SLG file and resolves it to a SCFG
-a toggles whether cleanup is aggressive. If so, the basic parse tree may be rearranged to compress the

grammar. (default: false)
-j toggles the removal of unused terminals when converting an SLG file (default: true)
-y num sets the constraint sensitivity. 2, the default, will cause an error if constraints conflict. 1 will produce

a warning and 0 will be silent.
-s prints the grammar to stdout in legible format
-l lists the terminal symbols in the order in which their probabilities appear (alphabetical)
-o file saves the current grammar in a binary symbol file
-f file loads a new grammar from a binary symbol file
-g converts the grammar to Greibach normal form

-n num generates sentences using the current grammar
-k num generates sentences and gives the word predictions
-p file reads sentences and gives their word predictions
-m num sets the max number of words per sentence for -n and -k (-1)
-t toggles whether -n with verbosity ¿= 2 will produce parse trees in long or short format (default:

short).
-w toggles whether -p and -k display the prediction of the first word ineach sentence (default: yes)
-e toggles whether -p and -k display the prediction following the last word ineach sentence (default:

no)
-x num calculates the number of parses possible with this grammar that don’t go below the specified depth

15

