
 

Selected Reports:
  Fall 1997 Software Systems Course

 

edited by Garth A. Gibson

 

C. Colohan, C. Rosenberg, G. Steffan;
D. Petrou, J. Milford; O. Cheiner, I. Derenyi;

J. Gao, S. Rao, P. Venable; D. Rohde, R. Romero, P. Wickline;
M. Mateas, K. Nigam; M. Budiu, R. Budiu

 

April 4, 1998
CMU-CS-98-103

 

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA  15213-3891

 

Abstract

 

This technical report contains seven final project reports contributed by sixteen participants in CMU’s Fall97
Systems Software introductory graduate course offered by professor Garth Gibson. This course studies the design and
analysis of operating systems and distributed systems through a series of background lectures, paper readings, guest
lectures and group projects. Projects were done in groups of two or three, required some kind of implementation and
evaluation pertaining to the classroom material, but with the topic of these projects left up to each group. Final reports
were held to the standard of a systems conference paper submission; a standard well met by the majority of the com-
pleted projects, albeit with less thoroughness in the related work category than is expected in most conferences.

The reports that follow cover a broad range of topics. Specifically, these reports describe implementations
and experimentation with: secure file systems when servers and administrators are untrusted; proportional share allo-
cation for processor scheduling and its interaction with kernel realities such as locks; eventually serializable repli-
cated databases with constant-order dependency checking; compressed file data structures optimized to specific
access patterns; atomic, shared object semantics for distributed computing in JAVA; transaction semantics for feder-
ated agent databases; and user-level file service offering enhanced memory caching for remote files.

All reports include implementations and experimentation. Two involve operating system kernel changes,
four use a middleware/library approach and one implements a client/server system. Three involve Linux specific
modifications, one is specific to FreeBSD, one extends JAVA programming, and one exploits MPI communications.
Evaluations include microbenchmark measurements, formal correctness evaluation, synthetic benchmarks, and more
than a couple specifically developed application codes.

While not all of these reports report definitely and positively, all involve novelty in either the systems
explored or the applications applied and all are worth reading.



 

Keywords

 

: Security and protection, Scheduling, Transaction processing, Data compaction and
compression, Distributed programming, Access methods.



 

Contents

 

Secure Sharing with Satan’s File System

 

Chris Colohan, Chuck Rosenberg, and Greg Steffan

 

...........................................................1

Proportional-Share Scheduling: Implementation and
Evaluation in a Widely-Deployed Operating System

 

David Petrou and John Milford

 

..........................................................................................17

Fault Tolerance in an Eventually-Serializable Data Service

 

Oleg Cheiner and Istvan Derenyi

 

......................................................................................29

Design and Evaluation of a Compressed File System

 

Jun Gao, Sanjay Rao, and Peter Venable

 

...........................................................................47

Dishrag: Distributed, Shared Objects in Java

 

Doug Rohde, Rick Romero, and Philip Wickline

 

................................................................59

Fighting Fire with Truth: a Concurrent Transactional Truth Maintenance System

 

Michael Mateas and Kamal Nigam

 

...................................................................................71

A User-Level File Service Based on Watchdogs

 

Mihai Budiu and Raluca Budiu

 

..........................................................................................81

 

Note: Pages are numbered in the lower-left corner of each page.



Project Final Report:

Secure Sharing with Satan's File System

Chris Colohan, Chuck Rosenberg, Greg Ste�an
Software Systems{December 15, 1997

Abstract

The Secure File System (SFS) is a mechanism which allows the secure sharing of data between
machines without direct or secure communication between them. This paper outlines the design of
the SFS �lesystem, and a prototype implementation. The performance of the system and the security
it o�ers are also analyzed. Finally, future directions and improvements are discussed.

1 Introduction

A brave new venture, Hell�re consulting has just been formed. It has three consultants: Joe Belial who
lives in LA, John Beelzebub from Toronto, and Joan Lucifer from Boston. They have just started coding
a new software project for a hot new client, and need a way of sharing their code over the Internet while
keeping it private. Joe has leased some storage space on a local Internet service provider, but he doesn't
trust the ISP to keep their �les secure. They want to be sure that only the three of them can read and
modify their source code | and so they turned to the Secure File System.

The Secure File System (SFS) is a layer built on top of traditional Unix �le systems which o�ers
some guarantees about the origin and accessibility of the �les contained on it. It does so making no
assumptions about the integrity of the �lesystem or administrators of the machine on which it resides.
Communication between users is minimized | public keys must be securely exchanged between users
once, and after that all communication is done through the �le system itself.

The goal of this project is to implement a shared secure �le system. Speci�cally, the implementation
ensures that a read of an encrypted �le is successful only if that �le was written by a trusted entity, and
that no entities other than the trusted group members can read the plain text contents of that �le.

1.1 Design Overview

Since our design is built in a layer on top of existing �le systems, all management of the media and all
mechanisms for the sharing of �les between machines are inherited from these �le systems. We assume
that the underlying �le system is unsecure. Because of this, our implementation does not guard against
the deletion or corruption of a �le by a super user on a remote �le system | however, we will be able to
detect tampering with �les. In addition, we assume that each local machine is a secure system | i.e., we
do not have to protect the local memory of a user's machine and we can assume that information stored
there is safe.

The system uses various encryption systems to protect the secure data and meta-data: a private-key
based encryption scheme is used to encrypt the data portion of the �le, a public-key encryption mechanism
is used for key management, and a signature mechanism is used for authentication. We assume that the
user's private key and other access related meta-data is stored in a secure and reliable way within the
user's local system.

To manage shared access, an access list is associated with each �le. The access list allows all enabled
users of a �le to know the identities of the corresponding trusted readers and writers, and provides them
with the key to decrypt its contents. A naive implementation would maintain an access list for each �le
| this would incur much overhead, and would also require the individual maintenance of each access
list. Furthermore, this approach does not mirror the way that shared �le systems are typically used: as
a means of exchanging data in a group of people working together. Our design overcomes these issues

1

1



and provides a sharing model which is more useful. We achieve this goal by introducing the notion of a
group, its administrator, and a mapping to the directories where the group is trusted.

A group is a set of users who have read/write access for a speci�c set of directories. Associated with
each group is an access list which contains a list of users in the group and the decryption key for all �les
owned by the group, which is encrypted under the public key for each authorized user. Each access list is
stored as an encrypted �le on the shared �le system, which we shall refer to as the group �le. Associated
with each group �le is a trusted administrator: a special user who is trusted with the maintenance of the
group �le.

Since each access list will be maintained by the group administrator, a regular user only needs to
maintain four pieces of information in his local system to gain access to a shared �le: his private key,
his public key, the root directory of the sub-tree associated with each group, and the public key of the
administrator of each group.

In our implementation, the group �le will reside in the root directory for the group, and all sub-
directories of the root directory for a group will inherit the group access of the root directory | e.g.,
/usr/marketing/reports inherits access from the root directory /usr/marketing. The use of a rooted
sub-tree eliminates the need to directly associate each sub-directory or �le with a group �le.

1.2 Course Material Relationships

This project involves the following material from the course: security and access control; authentication;
BAN logic; and �le systems.

2 Using SFS

This section presents an overview of how to set up and use our prototype of SFS.
The �rst thing that is required to use SFS is a shared volume between the machines of the SFS users.

This could be a NFS directory, an AFS directory, or any location shared by all of the SFS users. All of
the SFS users must be able to read and write this partition. In addition, the full pathnames of �les must
be the same on each user's machine (which means an NFS partition must have the same mount point).

To install SFS on a user's system, the new libc.so must be placed in the dynamic link path (such as
in /lib), and the executables must be placed in the command search path. Each user of SFS has to have
a private directory on their local machine which holds their private key as well as access information for
SFS. Once this directory is created, the SFS HOME environment variable must be set to point to it. To
generate a public/private key pair, each user must run the keys new utility. This utility generates an
RSA key pair using /dev/random as a source of a truely random seed. The user's public key can then
be printed using the keys list utility, and the public key must then be distributed to the other users of
SFS through a reliable channel.

Each user has to have a list of users and their public keys so that SFS can verify the origins of �les.
This list is stored in $SFS HOME/users.sfs, and is a list of user names and public keys. It is a plain text
�le, and can be created using a standard text editor. Each user also has a list of SFS �le systems that
they are participating in, which includes the administrator, full path of the �le system, and a version
number.

A new �le system is created by making a list of authorized users with their desired permissions,
and running the grp new utility. Each user has to create a �le $SFS HOME/groups.sfs which lists the
administrator, location, and version of each secure �le system.

Once this is done, the user can treat the secure �le system as any other �le system. Files that
are copied to or edited on the new �le system are automatically encrypted before being written to the
underlying �le system, and any �les that are read are automatically decrypted before reading them.

A number of tools are also provided for maintaining the SFS once it is created. els will list the
�les in the current directory including the correct (unencrypted) �le size, embedded nonce, and author.
grp copy allows the user list and permissions from one �le system to be used when creating another one.
revoke removes a user from the access list of a �le system, and re-encrypts all of the �les on the �le
system so that the user can no longer read or write them. After revoking access, the administrator must
inform all of the users of the �lesystem of the new group �le version number to ensure freshness and
avoid spoo�ng attacks.

2

2



3 Design

3.1 Data Structures

The secure �le system requires the user's private key and the access data for a group in order to access
a group �le{this information resides in the local, secure system. The access data for a group consists of
the absolute pathname of the root directory for that group, and the public key of the administrator of
the group. The local data structure for storing access data will have the following format:

DirectoryTreeName; User1 ;K1

DirectoryTreeName; User2 ;K2

DirectoryTreeName; User3 ;K3

The following describes each �eld: the DirectoryTreeName �eld maps a directory tree to a speci�c
group, the Usera �eld is the name of the group administrator and is used for informational purposes,
and Ka is the public key for the administrator (Usera).

The format for a group �le is as follows:

V ersionNumber

F ilename

User1; fKGgK1
;K1;WriteAccess1

User2; fKGgK2
;K2;WriteAccess2
Usera

Signature

The following describes each �eld: the V ersionNumber �eld is the current version number of the
group �le to provide freshness; the Filename �eld is the absolute pathname of the �le; for each user
(Useri) the group key (KG) is encrypted under his public key (Ki) and a ag (WriteAccessi) is speci�ed
describing his write permission for the group; the �eld Usera is the name of the administrator; and
Signature is a signed digest which veri�es the contents of the �le.

The format for a regular �le is as follows:

Nonce

F ilename

fDATAgKG
UserW

Signature

The following describes each �eld: the Nonce �eld is a unique value generated each time the �le is
written which can be used to provide freshness; the Filename �eld is the absolute pathname of the �le;
fDATAgKg is the data portion of the �le encrypted under the group key; UserW is the name of the user
who last wrote the �le; and Signature is a digest, signed by the last writer of the �le.

4 Security Evaluation

SFS attempts to provide some security where none existed before using a medium that can store data,
but o�ers no assurance of the integrity or security of the data. On this medium, a hostile attacker can:

� read any �les they like;

� alter �les as they please;

� erase �les;

� replace new versions of �les with old versions.

A BAN analysis provided in the appendix outlines the logic that leads us to these beliefs.
The principal design goal of SFS is to provide some security while eliminating the need for secure

and timely communication between the users of the �le system. Secure and timely communication could

3

3



be achieved either through a secure messaging protocol between users or through a centralized trusted
server | both of which would reduce the usability of the system if they were required. As a result of
this, absolute security has not been attained, and the system is still open to spoo�ng attacks due to the
lack of freshness in �les.

Since there is no communication between users, a reader of a �le has no way of knowing if what is
being read is the most recent version of the �le. This means that a hostile attacker could substitute
older versions of �les for newer version without being detected by anyone other than the original writer.
To solve this problem, a nonce is inserted in the SFS �le which is changed to a unique value every time
the �le is updated. If a writer of a �le communicated the nonce to a reader through an outside secure
channel, then the reader could be assured that the �le is fresh.

The same problem a�ects the group �les that list who is permitted to access a �le system. A hostile
attacker could replace a group list �le with an older version at any time. As a result, it is impossible to
revoke someone's access to a �le system | they could easily replace the new group �le with the old one,
meaning that users other than the administrator would continue to unknowingly share �les with that
user. Hopefully it is uncommon for a user's access to be revoked, so explicit communication with the SFS
users can be used to notify everyone of the revocation. To revoke someone's access, the entire �le system
is re-encrypted with new keys, and a new group �le is created that excludes the revoked user. A version
number is attached to the group �le, and the version is incremented every time a user is removed from
the group. To prevent the spoo�ng, the administrator has to notify all of the users of the �le system of
the new group version | once a user is using the new group version they no longer accept �les with an
earlier version number.

In addition to freshness attacks on SFS itself, there are a number of places where our prototype of
SFS has potential holes. Our prototype uses the IDEA algorithm for encrypting �le contents, MD5 for
computing digests of �les, and RSA for key distribution and signing digests. Any attacks on any of those
algorithms would also work on SFS.

Our prototype uses a single IDEA key to encrypt all of the �les in a �le system. This means that
there is a lot of data for a cryptanalysis attack on a single key. This could be prevented by limiting the
usage of a single key, and having multiple keys per �le system.

The regularity of the encrypted �les can also be useful for cryptanalysis. Our prototype encrypts �le
data as written, while compressing the �les before encrypting them would make the keys harder to crack
as well as conserving storage.

Currently, our prototype allows a symbolic link between a directory on a secure �le system and an
insecure �le system. This could be used to spoof secure �les and replace them with a directory of insecure
ones. We regard this as a bug in our prototype, but it also can make the secure �le system more usable.

5 Performance Evaluation

Our hypothesis as stated in the design document is the following: we can build a secure �le system
which allows sharing under encryption, but sacri�ces performance to do so. The following performance
evaluation will show that we have proven the hypothesis with performance degradation to spare. We will
investigate the overheads of the SFS system, as well as the performance on realistic benchmarks.

All of our timing measurements were performed on the local system hard disk. The local disk system
was chosen over a remote �lesystem like AFS to remove the variability in timing that would result from
unpredictable AFS loads. Application timings were performed with command line timing. Function call
timings were performed with specially written test software which utilized the system interval timer. In
all cases, the measurement result reported is the result of averaging at least �ve measurements together.
In the case of the function call timing, error bars are also reported which are +/- a standard deviation.

The overhead of the SFS system includes the storage of metadata in each encrypted �le, performing
encryption and decryption, using twice the memory to store a �le (to encrypt to and from). As shown in
Figure 1, the size of the metadata overhead is constant, with a size of roughly 170 bytes depending on
the length of the absolute path name.

When an encrypted �le is opened under SFS, the entire �le is read into memory and decrypted. This
adds signi�cant overhead to the opening of �les, as shown in Figure 2. For unencrypted �les, SFS is about
10 times slower than with SFS disabled due to having to read con�guration �les. For large encrypted
�les, the slowdown is signi�cant since decryption is fairly computationally intensive. Figure 3 shows that

4

4



Table 1: Slowdown of SFS on benchmarks.

Benchmark Slowdown

co 38.7
make 7.19
latex 6.85

Table 2: Slowdown of SFS on co for varying number of users.

Number of Users Slowdown

1 38.7
10 40.2
100 44.3

opening then closing the �le performs similarly. These two experiments indicate that SFS will perform
poorly for applications which open and close �les without doing any work on them.

Since the entire encrypted �le is read into memory on open, reading the �le should be signi�cantly
faster. Figure 4 shows the performance of SFS when �les are opened and then read to completion. For
large �les, the overhead of reading con�guration �les is almost completely hidden. However, for large
encrypted �les the overhead of decrypting the �le is still dominant.

When writing to an encrypted �le, SFS bu�ers the entire �le in memory. When the �le is closed,
SFS performs encryption and writes the �le out with one system call. As shown in Figure 5, writing a
large encrypted �le in blocks under SFS can outperform an writing to an unencrypted �le, since only one
system call is made to write the �le. Normally, many system calls would be made on each block.

The throughput of SFS is given in Figure 6. Here SFS on encrypted �les performs from about 20 to
100 times worse than with SFS disabled, depending on �le size.

To measure the performance of SFS under simple usage conditions, we copied �les to, from and within
an encrypted directory. Figure 7 shows the slowdown of SFS relative to SFS disabled. When copying
without encryption, the slowdown of SFS varies from 1 to 5 times, with the exception of a perturbation
for the 100 byte �le. When copying to or from an encrypted directory slowdown varies from 5 to 25 times,
and when copying within an encrypted directory slowdown varies from 5 to 40 times. All copies involving
encryption have a peak slowdown for 10KB to 100KB �les, since encryption dominates for these �le sizes.
For �les greater than 100KB the slowdown improves due to the fewer numbers of system calls for writing.
For large encrypted �les the performance degrades again since SFS requires twice the memory for the �le
(to encrypt/decrypt), and thus the memory requirement approaches the cache size (64MB).

We now investigate the performance of SFS on several realistic workloads: co|an RCS check out
of 41 �les (the source for SFS); make| compiling SFS with gcc; and latex|compiling the SFS design
document. As shown in Table 1, co achieves a slowdown of nearly 40 times when checking-out into an
encrypted directory. This slowdown is large because co does little work on the �les, it simply reads and
writes them. make and latex have similar slowdowns of around 7 times when compiling in an encrypted
directory.

Finally, we investigate the performance of SFS when varying the number of sharing users in a group.
As shown in Table 2, slowdown for co increases slightly when the number of users varies from 1 to 100.
This is due to the overhead of reading a large access list for every �le read.

6 Prototype Implementation

The prototype which we have prepared of SFS under Linux demonstrates the feasibility of the security
design. The prototype was created by altering libc.so, so that dynamically linked executables on the
system would have their �le related system calls intercepted and redirected through the SFS code. In

5

5



particular, whenever a �le is open()ed, it is checked to see if it is on SFS. If it is not, it is passed on
to the OS, and all future calls on that �le descriptor are also passed to the OS to handle. If the �le
is on SFS, then the �le is read and decrypted into a memory bu�er, and all future calls are redirected
to the memory bu�er. When the �le is closed, then it is encrypted and written back to the underlying
�le system. Ideally, the encryption and decryption should be transparent to applications. So the SFS
e�ectively operates as a layer on top of any existing �le system, allowing it to be used to enhance the
security of a wide variety of con�gurations.

Due to time constraints, not every �le related system call was fully implemented in SFS, but a subset
robust enough for a signi�cant set of Unix tools to work was completed. Of the tools we tested, the ones
that work without errors are cp, mv, rm, emacs, netscape, rcs, gcc, make, ld, ftp, latex, gv, dvips,
xdvi, and xfig.

What is more interesting is the commands that don't work. These failures can be explained in terms
of the system calls we have not implemented in libc. We do not support memory mapped �les, so any
program that uses mmap()will not work correctly. This includes running executables from our �le system,
and loading �les in StarO�ce 4.0 Beta.

The functions stat() and lstat() return the size of the actual �le on disk, including the encryption
metadata. This means that commands such as ls will report �les to be larger than they are if copied to
a non-encrypted �le system. As a result of this discrepancy, zip and tar get confused and do not work
correctly.

The two problems listed above can be resolved within libc. The third one is not so simple. If a program
does a fork() followed by an exec() (such as a shell loading a program to run it), then the child process
is supposed to inherit the parents �le descriptors. Our implementation keeps a �le descriptor table in
memory to track encrypted �le information. Since this table is in user memory, it is re-initialized to zero
when the new program starts. This means that our library can \forget" that one of the standard streams
has been redirected to an encrypted �le, since that is determined when the �le is opened. As a result,
redirecting stdin, stdout, and stderr to or from encrypted �les is unreliable, since doing so sometimes
bypasses our encryption mechanism producing unencrypted �les which our library views as corrupted.

7 Future Work

There is a lot of room for improvement in the design of SFS itself. The SFS design has two weak points,
both of which involve freshness in �les. Since a writer of a �le can only communicate with the reader
of the �le through the �le itself, there is no way of a reader validating the freshness of a �le without
communicating with the writer. This also applies when removing a user from an access group | there
is no way of knowing that an access group is fresh without contacting the group administrator. A more
e�cient way of communicating freshness information for �les and groups needs to be found.

Our prototype of SFS has a lot of room for improvement. Since security is its primary concern of
SFS, the security is the �rst thing that should be addressed. Stronger encryption algorithms and longer
keys could be used to improve security. More than one IDEA key could be used for an access group to
improve resistance to cryptanalysis. File compression would also strengthen security. When looking at
the PGP source code, it tries to erase all traces of unencrypted data from bu�ers in RAM after they
are no longer needed | this practice should be adopted in our prototype. Internal bu�ers could also
be stored in non-pageable RAM, so that unencrypted data is never recorded on a non-volatile medium.
Existing, well tested mechanisms for public key storage and distribution could be used, such as using PGP
key management and key rings. Easier to use administrative tools would make mistakes less common,
and therefore improve security. And formal veri�cation of code that handles unencrypted data and keys
could be used to help ensure that they implement the speci�cation of SFS.

Once security is addressed, the usability of SFS is a concern. If SFS is easier to use, then it is more
likely to be used. SFS is no protection at all if it is not used. Firstly, SFS should be complete, and
o�er all the features that other Unix �le systems o�er. Currently, the inability to mmap() �les and the
inability to execute �les from SFS are the two main holes. These features should be added to make SFS
a complete �lesystem.

Performance is also important if SFS is to be usable. There are a number of ways that the performance
of SFS can be improved. Currently, �les are treated as single units, which are encrypted and decrypted all
at once. A blocking implementation would be able to address encrypted �les a block at a time, and reduce

6

6



both open and close latency, as well as disk I/O. A blocking implementation would also work around the
current problem of the entire �le being bu�ered unencrypted in memory, and hence reduce the memory
usage of SFS. If we �nd that �les are not always read in their entirety, a blocking implementation would
also help performance by only decrypting the parts of a �le that are actually used.

Reliability is also a major concern in any �le system. Right now SFS still has a number of unanticipated
features which need to be corrected before it would be called robust. Since it is promising security, using
program veri�cation to validate that the implementation matches the speci�cation. Error handling could
be improved to provide more friendly and informative information to end users.

8 Conclusions

The secure �le system was supposed to provide the ability to securely share �les on an unsecure medium.
We have achieved that in our prototype, at the cost of performance. Our testing was comparing the
performance of local disk accesses to encrypted local disk accesses, which is a worst case scenario |
when accessing a �le remotely over a wide area network, the overhead of our encryption should not be
as bad. The prototype has proven the feasibility and usefulness of SFS, and it shows that there is a lot
of room for future improvements.

9 Appendix A | Exact File Formats

This appendix describes the exact �le formats, byte for byte, that will be used to implement the secure
�le system. Because it was necessary to agree on some convention for word order, we have decided that
all word and long word values will be stored in little endian order.

First, we de�ne some notation:

Symbol Interpretation

LKG the length, in bytes, of a group key, typically 16 bytes
LKU the length, in bytes, of a user's public key
LU the length, in bytes, of a user's user name including the null
LS the length, in bytes, of a signature, typically 16 bytes

The following is the format of a group �le:

Byte O�set Description

0� 3 magic number to identify �le
4� 5 version number of the secure �le system
6� 9 version number of the group �le
10� 11 length of absolute �lename �eld (m) in bytes

(includes terminating null)
12� 15 length of data portion of the �le in bytes (n)
16� (m + 15) full absolute path �lename, null terminated
(m+ 16)� (m + n+ 15) data portion of the �le - the group access list
(m+ n+ 16)� (m + n+ LU + 15) user name, null terminated
(m+ n+ 16+ LU )� (m + n+ LU + LS + 15) writer's signature, signature includes all bytes

0� (m+ n+ LU ) in digest calculation

The group �le data is a list of �xed size user entries. The entire list is sorted in ascending order by
user name, to facilitate binary search of the data. Each of these entries has the following structure:

Byte O�set Description

0� 31 user name, null terminated, all unused bytes set to null
32� 33 user's permission ags for the group
34� (33 + LKG ) the group key encrypted with the user's public key
(34 + LKG) � (33 + LKG + LKU ) the user's public key

The following is the format of a regular �le:

7

7



Byte O�set Description

0� 3 magic number to identify �le
4� 5 version number of the secure �le system
6� 9 nonce for this �le
10� 11 length of absolute �lename �eld (m) in bytes

(includes terminating null)
12� 15 length of data portion of the �le in bytes (n)
16� (m + 15) full absolute path �lename, null terminated
(m+ 16)� (m + n+ 15) encrypted data portion of the �le
(m+ n+ 16)� (m + n+ LU + 15) user name, null terminated
(m+ n+ 16+ Lu)� (m + n+ LU + LS + 15) writer's signature, signature includes all bytes

0� (m + n+ 15) in digest calculation

10 Appendix B | BAN Analysis of Scheme

In this section we apply BAN authentication logic [1] to our scheme.

10.1 Additional Notation

First, we augment BAN logic with some additional notation to allow the representation of our scheme.

10.1.1 Sets

We de�ne four sets which enumerate elements of the scheme:

� USERS: the enumeration of all users.

� ADMIN : the enumeration of all administrators of groups, ADMIN � USERS.

� ACCESSG: the enumeration of all users who have access in a given group G,ACCESS � USERS.

� GROUPS: the enumeration of all groups.

10.1.2 Elements

Now we de�ne the following elements:

� Ui: a user where i 2 USERS.

� Ki: public key for Ui.

� K�1i : private key for Ui.

� Gj: a group where j 2 GROUPS.

� KGj
: group key for group Gj .

� D: a digest (digests are taken on the entire �le in question).

� F : a �le.

� FN : the global, unique path name of a �le F .

� DIR: the global, unique path name of a directory.

� GFj: a group �le for group Gj.

� GFN : the global, unique path name of a group �le GFj.

� WAi: write access for Ui (a boolean value)

� Ua: administrator of a group where a 2 ADMIN .

� Um: last modi�er of a �le where m 2 ACCESS and WAm = true.

8

8



10.1.3 Operators

We de�ne the following operators:

� Ki ! Ui: Ui has key Ki.

� WAi ! Ui: Ui has write access WAi.

� GFx ! DIRi: GFx applies to directory DIRx.

� FN in DIR: the �le name is in the directory.

� F contains X: �le F contains element X.

� D certifies F : D is the correct digest of �le F .

10.1.4 File Formats

We de�ne the format for group �les and regular �les:

� GF contains (GFN; fUi;Ki; fKGgKi
;WAiji 2 ACCESSg; fDg

K
�1

a
)

� F contains (FN; fDatagKG
; fDgK�1m )

10.2 BAN Analysis

We now proceed with the BAN analysis of our scheme. For this analysis, we will assume the identity of
U0, an arbitrary user.

10.2.1 Initial Information

We begin the analysis by listing the beliefs which are based on information which is stored in the local
system, and is thus trustworthy.

U0 believes K0 ! U0: (1)

U0 believes K�1
0

! U0: (2)

Equation 1 and Equation 2 state our trust in our private and public keys.

U0 believes Ka ! Ua; 8a 2 ADMIN: (3)

So we also have the public key of each group administrator.

U0 believes (Gj controls DIR); 8j 2 GROUPS: (4)

This equation represents the mapping from each group to the directory which it controls. In reality, a
group may control more than one directory, but we will continue under this simpli�ed model.

U0 believes (Ua controls Gj); (5)

such that for each j 2 GROUPS, there exists exactly one a 2 ADMIN{so each group is controlled by
exactly one administrator.

U0 believes (Ua controls KGj ); (6)

such that for each j 2 GROUPS, there exists exactly one a 2 ADMIN{this states our belief that the
administrator also controls the key for the group.

U0 believes (Ua controls G); U0 believes (G controls DIR)

U0 believes (Ua controls DIR)
: (7)

So by associativity of control, we believe that the group administrator may be trusted in �les located in
the directory.

9

9



10.3 Authentication of a Group File

Now we will analyze the authentication of a group �le. To reduce the amount of notation in this proof,
we will omit the indices from group �les, groups, and directories since we are dealing with exactly one of
each.

For group �le GF , where GF in DIR, we begin by reading the group �le:

U0 sees GF: (8)

From 3 and 8, we get:

U0 believes (Ka ! Ua); GF contains fDg
K
�1

a

U0 believes (Ua said D)
: (9)

Since the digest is signed by the administrator, we believe that the administrator computed the digest.
Using 9 and the digest:

U0 believes (Ua said D); D certifies GF

U0 believes (Ua said GF )
: (10)

Since the digest coincides with the content of the group �le, we also believe that the administrator created
the group �le. We use our mapping from groups to directories (4), the global �le name included in the
group �le:

U0 believes (Ua said GF ); GF contains GFN;GFN in DIR

U0 believes (Uasaid(GF in DIR))
; (11)

to assert that the administrator placed this group �le in this directory. Using 11 and the fact that the
administrator may be trusted in the directory (7):

U0 believes (Ua said (GF in DIR)); U0 believes (Ua controls DIR)

U0 believes (Ua controls GF )
; (12)

so the group �le is controlled by the administrator since it came from the directory where we trust the
administrator. Using 12 and the jurisdiction rule, we get:

U0 believes (Ua believes GF ); U0 believes (Ua controls GF )

U0 believes GF
: (13)

Because we trust the administrator for this group, and that administrator created the group �le, we may
now trust the group �le. Since we believe the group �le, we therefore also believe its contents:

U0 believes GF;GF contains (Ui;Ki;WAi)

U0 believes (Ki ! Ui;WAi ! Ui)
;8i 2 ACCESSG: (14)

The access list of users, their public keys, and their write access are now available.

U0 believes GF;GF contains fKGgK0
; U0 believes (K0 ! U0)

U0 believes KG ! G
: (15)

Assuming that we have access to this particular group, we may decrypt the key for the group using our
private key, and we may trust that this is the proper group key. Finally, we must verify that this is the
proper group �le for the directory we are accessing (in case an evil user has switched around group �les.

10.4 Authentication of a File

Now that we have authenticated the group �le, we may proceed to authenticate the target �le itself.
For �le F , where F in DIR, we �rst read the �le:

U0 sees F: (16)

Since the �le contains the global �le name, we can look-up the group �le that applies using 4 and 12:

F contains FN;FN in DIR;U0 believes G controls DIR

U0 believes GF ! F
: (17)

10

10



Using this result, 4 and 18:

U0 believes GF ! F; F contains fDg
K
�1

m

; U0 believes Km ! Um

U0 believes (Um said D)
: (18)

The digest is signed by the user to last modify the �le. We use the group �le to look-up the public key
for the user, and verify that the user computed the digest. Using this fact:

U0 believes (Um said D); D certifies F

U0 believes (Um said F )
: (19)

So the user also created the �le, since the digest coincides with the �le. Using the group �le (14):

U0 believes (Um said F ); U0 believes WAm ! Um;WAm = true

U0 believes F
: (20)

This states that if this user has valid write access according to the group �le, then we may believe that
the contents of the �le are valid. Using the group key (15), we may decrypt the data, and trust that it
is valid:

U0 believes F; F contains fDatagKG ; U0 believes KG ! G

U0 believes Data
: (21)

The following fact is obviated by the BAN logic: since we do not deal with nonces or the concept of
freshness, we do not have protection against attacks which replace newer versions of �les with older ones.
However, this attack does not violate our original goal to ensure that only authorized users will be able
to read the content of shared �les. It does mean that we may not support the semantics of deleting a
user from a group once the group �le has been made public. An evil user who is deleted from the group
could add himself back to the group by replacing the new group �le with the old one which listed him as
a user. In order to support deletion of users from groups, we have added a nonce to each �le which must
be veri�ed by a secure means outside of SFS.

10.5 Other Actions

It is not necessary to list the ban logic for other types of �le accesses, since they do no more than
trust the information in the group �les, as already shown. For example, to create a new group �le, the
administrator need only trust his local list of public keys, and then create the group �le (in proper form).
When any user in a given group creates a new �le, the group �le is consulted to obtain the group key,
and then the �le is created. A similar process is performed for updating an existing �le.

11 Appendix C | Syscalls Intercepted in Libc

The following syscalls are intercepted to implement SFS, and are functional in our prototype:

close Close a �le. If the �le is encrypted, encrypt the bu�ered contents, write them out, and sign the
�le.

creat Create a new �le. If encrypted, allocate a bu�er to hold the contents of the �le.

dup,dup2 Duplicate a �le descriptor. If the �le is encrypted, the duplication should be tracked.

fcntl Manipulate �le descriptor. No special actions are taken for an encrypted �le.

fstat Returns status information about the speci�ed �le. If the �le is encrypted, then the meta-data size
has to be subtracted from the returned length.

ftruncate Truncate a �le to a speci�ed length. If the �le is encrypted, then it should be decrypted,
truncated, then re-encrypted.

lseek Reposition read/write �le o�set. If the �le is encrypted, keep a copy of the new o�set locally for
future reads and writes.

open Open and possibly create a �le. If the �le is encrypted, decrypt and read the entire contents of
the �le into a bu�er.

read Read bytes from a �le descriptor. If it is encrypted, simply read from the bu�er.

11

11



rename Change the name or location of a �le. If the �le is encrypted, it needs to be decrypted before
the move, and possibly reencrypted after the move.

write Write bytes to a �le descriptor. If it is encrypted, simply write to the bu�er.

The following syscalls are intercepted to implement SFS, but have not yet been completed in our
prototype:

chroot Change root directory. All encrypted �lenames should be adjusted to reect this change.

exit Close any open �les. If a �le is encrypted, encrypt its bu�ered contents, write them out, and sign
the �le.

llseek Reposition read/write �le o�set. If the �le is encrypted, keep a copy of the new o�set locally for
future reads and writes.

mmap,munmap Map or unmap �les or devices into memory.

readv,writev Reads and writes to / from vectors.

stat,lstat Returns status information about the speci�ed �le. If the �le is encrypted, then the meta-data
size has to be subtracted from the returned length.

sync Commit bu�er cache to disk. If there are encrypted �les open, then they should be �rst written to
disk.

truncate Truncate a �le to a speci�ed length. If the �le is encrypted, then it should be decrypted,
truncated, then re-encrypted.

References

[1] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on Computer

Systems, 8(1):18{36, February 1990.

12

12



13

12   Appendix D – Figures Detailing System Performance

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

P
er

ce
n

ta
g

e 
O

ve
rh

ea
d

Figure 1:  Percentage space overhead.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
u

n
 T

im
e 

in
 S

ec
o

n
d

s

SFS off
SFS unencrypted
SFS encrypted

Figure 2:  Performance evalaution of calling fopen in read only mode.

13



14

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
u

n
 T

im
e 

in
 S

ec
o

n
d

s

SFS off
SFS unencrypted
SFS encrypted

Figure 3:  Performance evaluation of calling fopen and then fclose.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
u

n
 T

im
e 

in
 S

ec
o

n
d

s

SFS off
SFS unencrypted
SFS encrypted

Figure 4:  Performance evaluation of calling fopen and then fread.

14



15

0.0001

0.001

0.01

0.1

1

10

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
u

n
 T

im
e 

in
 S

ec
o

n
d

s

SFS off
SFS unencrypted
SFS encrypted

Figure 5:  Performance evaluation of calling fopen and then fwrite.

0.0001

0.001

0.01

0.1

1

10

100

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
u

n
 T

im
e 

in
 S

ec
o

n
d

s

SFS off
SFS unencrypted
SFS encrypted

Figure 6:  Performance evaluation of calling fopen, fwrite and then fclose.

15



16

0

5

10

15

20

25

30

35

40

45

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

File Size in Bytes

R
el

at
iv

e 
S

lo
w

 D
o

w
n

 C
o

m
p

ar
ed

to
 S

F
S

 O
ff

Unencr to Unencr
Unencr to Encr
Encr to Unencr
Encr to Encr

Figure 7:  Relative slow down of  the cp command.

16



Proportional-Share Scheduling: Implementation and

Evaluation in a Widely-Deployed Operating System

David Petrou and John Milford

dpetrou@cs.cmu.edu, jwm@csua.berkeley.edu

Abstract

This paper explores the feasibility of using lottery schedul-
ing, a proportional-share resource management algorithm,
to schedule processes under the FreeBSD operating system.
Proportional-share scheduling enables exible control over
relative process execution rates and processor load insula-
tion among groups of processes. We show that a straight im-
plementation of lottery scheduling performs worse than the
standard FreeBSD scheduler. This initial result prompted
us to extend lottery scheduling. Except for one test we
run, our resulting system performs within one percent of
the FreeBSD scheduler. We describe our design, evaluate
our implementation, and relate our experience in deploying
our lottery scheduler on production machines.

1 Introduction

This paper explores the feasibility of proportional-share re-
source management in a modern and well-understood op-
erating system. Speci�cally, we employ lottery schedul-
ing [Waldspurger & Weihl 1994] to allocate processor time
in FreeBSD 2.2.5R. We describe and evaluate our imple-
mentation, a hybrid of the FreeBSD scheduler and lottery
scheduling, and relate our experiences in using this sched-
uler on production machines. To begin, we motivate this
paper with a summary of the bene�ts of proportional-share
resource management.

Running processes make progress by consuming system
resources such as processor cycles, network bandwidth, and
storage. Considering processor cycles in particular, mul-
tiprogrammed systems allocate �xed quanta of processor
time to running processes. A CPU scheduling algorithm
based on proportional-share scheduling enables exible con-
trol over the relative rates processes are allocated proces-
sor time quanta. For CPU-bound workloads, such as those
found in some scienti�c and engineering environments, these
rates are equal to the relative rates processes consume CPU.

For example, consider two independent CPU-intensive
scienti�c simulations. These simulations begin running at
timestep 0 and output intermediate results at the end of ev-
ery timestep to be used by a 3-D rendering application. A re-
searcher wants to visualize the results of these timesteps syn-
chronously, but unfortunately the �rst simulation requires
less computation and thus runs three times faster. Using
a proportional-share process scheduler, the researcher can
easily adjust the relative execution rates of the simulations
so that the second process is chosen to run three times as
often.

From a security perspective, proportional-share process
scheduling enables users to carefully restrict the CPU con-
sumption rate of untrusted binaries such as Java applica-
tions, or trusted binaries that use untrusted data such as
WWW helper applications [Goldberg et al. 1996].

We have demonstrated the utility of proportional-share
scheduling with respect to individual processes. Now we
generalize and consider allocating proportions of processor
time to individual users. In a time-sharing system, users
own processes which compete for, among other resources,
CPU time. Proportional-share process scheduling enables
control over the relative rate at which users are permitted
to use this resource. For example, one policy enforces users
with CPU-bound jobs to consume the CPU at an equal rate.
At a given time, if there is one user that wishes to make
progress, he may consume 100% of the CPU, and if there
are two users, they each may consume 50% of the CPU, etc.,
regardless of the number of processes they own. Such control
is useful for Internet service providers, in which hundreds of
competing users log into one machine. With conventional
processor schedulers, it is trivial for one user to monopo-
lize the system with his own processes. Considering desktop
workstations, another policy enables the console user to con-
sume CPU time at a faster rate than users logged into the
system remotely. Naturally, these policies also permit indi-
vidual users to control the relative rate of CPU time that
their own processes consume as in the scienti�c simulation
example.

We believe that the features o�ered by proportional-
share resource management are powerful and desirable. Lot-
tery scheduling, introduced in 1994, is a scheduling algo-
rithm that implements the described features but that is not
in wide use today. Hence, our prime motivation was to de-
termine if there are technical reasons why lottery scheduling
has not supplanted standard operating system schedulers.

After building a straight implementation of the lottery
scheduling algorithm we achieved the desirable features de-
scribed. However, using the standard FreeBSD scheduler as
a baseline for comparison, we experienced poorer responsive-
ness with interactive applications. We discuss the reasons
for this unexpected performance anomaly and then present
extensions to the lottery scheduling algorithm that remedy
it. Our �nal implementation, which is currently running on
two servers and one personal machine, nearly equals the
performance of the FreeBSD scheduler under the bench-
marks we run while providing the desired functionality of
proportional-share resource management. These results in-
dicate that lottery scheduling should be considered for wide
use. However, we do not claim that our implementation

1

17



makes \optimal" scheduling decisions. Our experience with
implementing and examining a process scheduler have raised
some interesting questions that we wish to explore in future
work.

The rest of the paper is organized as follows. In section 2
we describe both FreeBSD's and the lottery scheduling algo-
rithm. Section 3 explains our extensions to the core lottery
scheduling algorithm while section 4 details our implemen-
tation. We evaluate and compare our lottery scheduler with
the FreeBSD scheduler in section 5. In section 6 we present
our experience in deploying our scheduler on production ma-
chines. Section 7 discusses several situations in which our
scheduler \does the wrong thing" and in which correct so-
lutions are not obvious. Finally, section 8 concludes our
paper.

2 Background

An operating system's process scheduler has several con-
icting goals. The scheduler must schedule interactive pro-
cesses so that they are responsive to user input despite not
being able to accurately distinguish interactive processes
from non-interactive processes. The scheduler must also ef-
�ciently schedule batch processes to maximize throughput
despite potential lock conicts between such processes. At
the same time, the scheduler must ensure that no processes
starve. In some contexts, schedulers must ensure that pro-
cesses meet real-time deadlines, although we are not con-
cerned with such systems here.

Following, we contrast the characteristics and goals of
the FreeBSD scheduler with the lottery scheduler.

2.1 Scheduling in FreeBSD

FreeBSD [Lehey 1996, FreeBSD 1997] is a UNIX [Ritchie &
Thompson 1974] operating system for the Intel 80386 plat-
form based on UC Berkeley's 4.4BSD-Lite [4.4BSD 1994,
McKusick et al. 1996] release. FreeBSD's scheduler is a typ-
ical example of decay usage priority scheduling also used in
System V and Mach with 100ms time slices. The scheduler
is implemented with a multi-level feedback queue. Processes
with equal priority are placed onto the same queue. The
scheduler runs round-robin the processes from the highest
priority non-empty queue. The scheduler favors interactive
processes via two mechanisms: (1) the scheduler lowers the
priority of processes that consume CPU, thereby moving
them to lower queues, and (2), the scheduler preempts pro-
cesses before their quanta expire if a higher priority sleeping
process wakes up. FreeBSD's scheduler also employs static
priorities for processes holding kernel resources. These pri-
orities are higher than priorities held by userlevel processes
and exist to enable processes to release high-demand ker-
nel resources quickly. Starvation is avoided by periodically
raising the priority of processes that have not recently run.

The FreeBSD scheduler has several limitations. [Heller-
stein 1993] demonstrates the di�culty in using priorities
in decay usage schedulers to adjust processor consumption
rates. It is non-trivial and potentially computationally ex-
pensive to dynamically adjust priorities of running processes
to attain service rates such as those easily attainable from
proportional-share schedulers. Further, FreeBSD attempts
to provide load-insulation via two crude and unacceptable
mechanisms. The operating system can limit the number
of processes that one user may run simultaneously, and the
operating system can terminate processes that accumulate

more than a certain amount of processor time. These mech-
anisms prevent a user from starting many processes that
consume processor time slowly and from completing a few
processes that consume a lot of processor time over a long
period of time. Lastly, we have noticed odd behavior un-
der the FreeBSD scheduler when simultaneously starting a
large number (� 100) of CPU-bound processes. Initially,
the responsiveness of the entire system (subjectively mea-
sured by observing typing and mouse movement latency)
becomes very poor. After a few moments, the interactiv-
ity improves only to become poor again moments later. We
believe this behavior results from the CPU-bound processes
synchronously moving up and down in the priority queues.

2.2 Lottery Scheduling

Lottery scheduling is a simple scheduling algorithm that pro-
vides proportional-share resource management. Processes
are assigned a number of tickets. When the scheduler needs
to choose a process to run it performs a lottery and chooses
the process that holds the winning ticket. The ratios of
tickets that processes hold determines the ratios of expected
times processes win lotteries. Only the processes that are
runnable (not sleeping, stopped, swapped out, etc.) are eli-
gible for the lottery. Starvation is avoided since no matter
how few tickets a process holds, eventually it will win a lot-
tery. We note that responsiveness with lottery scheduling
appears to degrade more gracefully than with the FreeBSD
scheduler when the system is loaded with a large number of
CPU-bound processes.

A currency mechanism enables users and processes to
hold tickets in di�erent denominations, allowing the aggre-
gate execution rate of all of a user's processes to be varied
with respect to other users. This mechanism provides load
insulation among users. When making scheduling decisions,
the scheduler converts the tickets that a process holds into
tickets in a base currency according to an exchange rate de-
rived from the number of base tickets that fund a user's
currency.

A compensation tickets mechanism improves the rela-
tive CPU consumption accuracy for preempted and short-
sleeping processes and also improves responsiveness for in-
teractive programs. A process that wins a lottery but only
consumes a fraction of its time quantum is granted a tempo-
rary number of compensation tickets valid until the process
is chosen to run again. The process holds an e�ective num-
ber of tickets, equal to the compensation tickets plus the
process's tickets, during the next time the process partic-
ipates in a lottery. For example, a process with 10 tickets
that blocked after using half of its time quantum will receive
20 e�ective tickets during its next lottery, making it twice as
likely to be chosen to run than without these compensation
tickets. Ideally, processes that often block for very short pe-
riods of time (before the next scheduling decision is made)
will receive processor time in proportion to the relative num-
ber of tickets that they hold regardless of what fractions of
their quanta they use. Further, interactive processes, which
generally block for a long period of time after using a small
fraction of their quanta, are very likely to be chosen to run
during the next scheduling decision after they wake up.

3 Design

The preceding section described our �rst lottery scheduling
implementation following the description in [Waldspurger
& Weihl 1994]. With this implementation we were able to

2

18



control the relative execution rates of CPU-bound programs
and insulate user workloads. In other areas the scheduler
performed worse than the FreeBSD scheduler. We observed
\choppy" response when editing �les with background pro-
cesses running and general system slowness when loading
the system with many types of active processes. Our task
at that point was to emulate features in the FreeBSD sched-
uler to remedy these anomalies while upholding the propor-
tional processor utilization promises that lottery scheduling
provides. In addition, user feedback prompted us to emu-
late the semantics of the UNIX nice utility. The following
sections describe these topics.

3.1 Abbreviated Quanta

Users demand fast response from interactive applications. In
the FreeBSD scheduler, various events on a process can po-
tentially trigger a context switch before the running process
uses its full time quantum. Two such events are a process
waking up and a process receiving certain signals. If the
process that receives the event has a higher priority than
the running process, a context switch is forced immediately.
The process will have a higher priority than the running pro-
cess if it has used less CPU time than the running process
recently (or if it was blocked in the kernel as described in
section 3.2). We call this behavior abbreviated quanta, and
we desire to replicate it in our lottery scheduler.

If a process receives an event of this type and has run for
a shorter period of time during its last quantum than the
currently running process1, we force a context switch. The
lottery scheduler will likely choose this process to run over
other processes if it has earned many compensation tickets.
To ensure that the preempted process will receive the pro-
cessor in proportion to the tickets that it holds, the sched-
uler awards this process compensation tickets. (However,
abbreviated quanta will still negatively a�ect processes that
perform poorly when receiving less than a full time quan-
tum, however). Note that after a process receives one of
these events and we force a context switch, we do not un-
conditionally switch to this process but we rather perform
the lottery as usual. One might therefore suppose that there
is little utility to abbreviated quanta because the preempted
process might simply reacquire the CPU. This chance exists,
but it is not common, since we only force a context switch
when the event-receiving process has used less CPU that
the running process, making it probable that it earns more
e�ective tickets than the preempted processes.

3.2 Kernel Priorities

Priority inversion [Lampson & Redell 1980, Birrell 1989,
Hauser et al. 1993] is a well-documented problem in con-
current systems. Consider the following situation. A low
priority process acquires a non-preemptable kernel resource
such as a lock. A medium priority process begins running af-
ter a high priority process blocks waiting for the kernel lock
to be released. The end-result is the high priority process
remains blocked until the scheduler chooses the low priority
process over the medium priority process.

1We actually want to compare the number of e�ective tickets in the
base currency that the event-receiving process holds with the e�ective
tickets in the base currency that would be earned by the running
process if it is preempted at this point. These values are expensive
to compute so we use the time heuristic instead. If our heuristic
fails and we unnecessarily force a rescheduling event, our scheduler
still performs correctly albeit there is the added overhead of an extra
context switch.

In the FreeBSD scheduler, processes are assigned ker-
nel priorities when they block waiting for a kernel resource.
These kernel priorities are higher than priorities held by
userlevel processes and are ordered in importance. Kernel
priorities exist to enable processes to release high-demand
resources quickly [Vahalia 1996, Jolitz & Jolitz 1996, McKu-
sick et al. 1996].

The solution to priority inversion described in [Wald-
spurger & Weihl 1996] is for processes that are blocked on a
resource to temporarily transfer their tickets to the process
that holds the resource2. We admire the elegance of this
solution, but it incurs overhead not found in the FreeBSD
solution. A process that needs a kernel resources will �nd
the resource in use, transfer its tickets, block, and trigger
a context switch. These steps occur before the resource-
holding process gets its boost in CPU consumption rate.
The kernel priorities in FreeBSD minimize the chance that
processes will �nd resources in use altogether.

Another example merits discussion. Consider a swapping
process that goes to sleep waiting for a page from the swap
device. In the FreeBSD scheduler, when the data becomes
available the process wakes with a very high kernel prior-
ity, enabling it to be chosen to run during the next context
switch. In this example, the resource held by the process
when it wakes up, a page in main memory, is preemptable
by other processes. However, preempting this resource is
very expensive. A lottery scheduler that ignores kernel pri-
orities can exhibit the following pathological behavior. A
process wakes up when it receives a needed page. The pro-
cess, however, is not chosen to run during the next context
switch because there are other processes with more e�ec-
tive tickets in the base currency. These other processes, also
needing memory, cause either the recently loaded page or
another page within the process's working set to be evicted,
requiring another page fault before the process can continue.
The end-result is poor system throughput.

These are examples of the straight lottery scheduling al-
gorithm proportionally provisioning the processor, yet fail-
ing to provide good overall system performance. The un-
derlying reason why lottery scheduling fails is because it
makes localized resource allocation decisions without con-
sidering the behavior of the system as a whole. We remind
the reader that our goal was to achieve performance similar
to the FreeBSD scheduler. To that end, we implemented the
following kernel priority extension to lottery scheduling.

We maintain a list of processes that have woken up after
being blocked in the kernel sorted by the FreeBSD kernel
priority number. Before performing the lottery during a
context switch, the scheduler checks to see if the list of pro-
cesses with kernel priorities is empty. If it is not empty, the
scheduler chooses the �rst process on this sorted list to run.
At this point we solve the problems described above but we
violate the proportional processor allocation that was the
motivating reason for implementing lottery scheduling.

We now describe our �x that gives us the best of both
worlds. A timer tracks the total amount of time that the
process has run for, starting when it was picked in a lot-
tery until it is descheduled in userland. The process may
be descheduled many times in the kernel as it acquires ker-
nel resources and the timer continues to increase when the
process runs until the process is descheduled outside of the
kernel. At this point, the scheduler computes its compensa-
tion tickets as described in section 2.2. If the process used
more time than one time quantum, a negative number of

2This mechanism is similar to priority inheritance but permits
additive ticket transfers from multiple blocked processes.

3

19



compensation tickets results. The more a process overran
its quantum, the more negative compensation tickets it re-
ceives. Negative compensation tickets make a process less
likely to be chosen to run. Our timer ensures that we do
not violate the lottery scheduling goals3 while enabling the
scheduler to reduce kernel resource contention.4

3.3 nice Emulation

While deploying our lottery scheduler to production systems
we received requests for our scheduler to support the UNIX
nice utility. nice enables a user to vary the priority of his
processes from -20 (high) to 20 (low) relative to all other
processes in the system. We �rst show that mapping nice

semantics to the lottery scheduler is not obvious and then
present our design.

A na��ve approach to emulating nice semantics is to map
nice values to a process's tickets. This approach fails because
only the relative execution rate of a user's own processes are
a�ected. If a user has only one CPU-bound job running that
is nice'd to +20, then it will receive few tickets, but since
it is the only running process belonging to that user, the
exchange rate will give it all of the base tickets that fund
that user's currency. Alternatively, nice can a�ect the base
tickets that fund a user instead of a�ecting the process's
tickets. This approach also fails, but for a di�erent reason.
Now if a user nice's a process, all of the user's processes will
have a lower priority.

We implement the following solution. We map nice val-
ues to tickets and base tickets. When a process is positively
nice'd, the process holds at most a number of tickets equal
to the nice value to ticket mapping and at most a number
of base tickets equal to the nice value to base ticket map-
ping when a scheduling decision is made. When a process
is negatively nice'd, the process holds at least a number of
tickets and at least a number of base tickets equal to the re-
spective nice value mappings when a scheduling decision is
made. (Recall that only root can negatively nice a process.)
This solution avoids the problems with our approaches de-
scribed above while satisfactorily emulating nice semantics
and remaining in line with the lottery scheduler's goals.

4 Implementation

Our system is divided into two parts. The bulk of the code
is in the kernel �les implementing our lottery scheduler. The
rest of the system are small userlevel programs that make
system calls to adjust scheduling parameters. For brevity,
we leave out some implementation details.

3There is a slight complication to our algorithm. Consider a pro-
cess that spends very little time in userland because it continually
makes blocking system calls. Such a process will receive the proces-
sor during the next context switch after it wakes up in virtue of having
a kernel priority. Eventually it will be descheduled in userland (by
the time slice interrupt) and it will receive a large number of negative
compensation tickets, causing it to wait a relatively long time before
running again. We would prefer a process to lose its kernel priority
status more often and incur fewer negative compensation tickets. Our
solution is to force a context switch if the process is entering userland
(implying that it does not hold a kernel priority) and has accumulated
more than one time quanta on its timer.

4It may be possible to achieve higher process throughput in the
kernel if the ordering of FreeBSD kernel priorities is incorrect for
certain workloads. However, as our goal is to achieve performance
similar to FreeBSD's scheduler, we do not attempt this.

4.1 Kernel Functionality

To describe our kernel code we �rst describe critical pieces
of the standard FreeBSD scheduler. There are 32 multi-level
feedback queues called runqueues. After becoming runnable,
processes are put onto the appropriate runqueue by the as-
sembly language routine setrunqueue(). Processes are re-
moved from runqueues when chosen to run by the scheduler.
The assembly language routine, cpu switch(), (1) saves pro-
cess context, (2) chooses the next process to run (if no pro-
cesses are runnable it idles), and (3) switches to that process.
Apparently for performance considerations, this function vi-
olates the good programming practice that functions should
\do one thing well."5 [Lampson 1984]

We modi�ed cpu switch() to decouple the scheduling de-
cision from the scheduling mechanism. Speci�cally, we re-
arrange some of the assembly code and make calls to a C
function called lott choose next runner(). We store ticket in-
formation along with other necessary scheduling information
in a per-process structure called lott proc. During boot-time
initialization, our function lott init() initializes a hash table
that allows us to access lott proc's quickly. We also main-
tain a doubly-linked list of processes that are runnable. We
replace setrunqueue() with a C function that manipulates
this list. We add the \hand-created" process 0 and all fu-
ture processes created by fork1() to our hash table with a
call to lott add proc(), which assigns processes an initial 10
tickets. Likewise, processes are removed in exit1() with a
call to lott remove proc(). We use a hash table to e�ciently
access a data structure called lott user which holds the num-
ber of base tickets that fund all of the runnable processes
corresponding to a user ID and a reference count that en-
ables us to garbage collect these structures when all of the
processes owned by a user terminate. The setuid() system
call (cf. login) is modi�ed to call lott add user() which cre-
ates a lott user structure and funds the user with 1000 base
tickets.

Any lottery scheduling implementation with compensa-
tion tickets and currencies will be more computationally ex-
pensive than the FreeBSD scheduler. As our goal was to
achieve comparable performance to FreeBSD, we expended
much e�ort in optimizing our implementation. Motivated
by [Massalin & Pu 1989] we factor invariants, defer work,
use many inline functions, and aggressively cache computed
values.

The heart of the lottery scheduling algorithm is in lott -
choose next runner(). First we check to see if both the lists
of processes with kernel priorities and without kernel priori-
ties are empty. If they are empty, we return 0, which causes
cpu switch() to idle. If the kernel priority list is not empty,
we select the �rst process on this list to run. If it is empty,
we proceed to the lottery scheduling algorithm. We need
to �nd the total number of e�ective tickets in the system
so that we can choose a winning ticket within this range.
For each runnable process we perform the following steps.
We check to see if our cached value of the process's e�ective
tickets is valid. If it is not, we compute its e�ective tickets
by dividing the number of microseconds in one time quanta
by the number of microseconds used by the process (this
value is stored by the timer described in section 3.2). We

5The opaque structure of this function is the reason for, in our
opinion, it remaining largely unmodi�ed from the earliest version of
the code that we found. [Parnas 1972] explains that systems should
be decomposed based on \di�cult design decisions or design deci-
sions which are likely to change." We �nd the poor modulariza-
tion of the FreeBSD scheduler unfortunate, as it impedes scheduler
experimentation.

4

20



then multiply this value by the number of tickets that the
process holds to get the number of e�ective tickets. Now we
check to see if our cache of the exchange rate between the
process's e�ective tickets and tickets in the base currency is
valid. If it is not, we compute this exchange rate by dividing
the number of base tickets that fund the user's currency by
the number of tickets in all of the user's runnable processes.
We then check to see if our cache of base tickets held by the
process is valid. If it is not, we compute it by multiplying
the user's exchange rate by the process's e�ective tickets.
At this point we implement the nice \at most/at least" al-
gorithm described in section 3.3 by ensuring that the num-
ber of base tickets lies within the allowable range6. We go
through these computations for each process and maintain
a running count of the total number of base tickets in the
system. When �nished, we pick a random number between
one and this number. Finally, we iterate through the list
of runnable processes one more time to �nd which process
holds the winning ticket.

A few details are worth mentioning. Floating point op-
erations are not permitted in the kernel, so for accuracy we
use �xed point arithmetic. Di�erent parts of the algorithm
require di�erent amounts of precision, and some variables
are capable only of representing a small amount of precision
because the rest of their bits are required to represent whole
number components. Therefore we use both 8 and 12 bit
fractional components for di�erent parts of the algorithm.
For most of the algorithm we compute with 32-bit integers,
allowing us to do arithmetic purely in hardware. Toward the
end of the computation we must use 64 bits. Speci�cally,
when computing a process's base tickets, the exchange rate
and the e�ective tickets are both 32-bit values that when
multiplied, are likely to result in a 64-bit integer. The Intel
80386 architecture can do a 32-bit times 32-bit to 64-bit op-
eration in hardware. We use an inline assembly instruction
for this operation as we could only get the gcc compiler to
either store the result as a 32-bit integer (losing the most
signi�cant 32 bits) or promote the operands and perform
a 64-bit times 64-bit to 64-bit slow software multiplication.
The only 64-bit software emulated arithmetic in our algo-
rithm is where we mod the random number by the total
number of base tickets in the system.

We instrumented both the unmodi�ed FreeBSD kernel
and our lottery scheduler to provide us with pro�ling infor-
mation, some of which will be discussed in sections 5 and 6.2.
We can display information about the last n scheduling
events, including information about processes releasing the
CPU, processes waking up, and time quanta expirations.
This information has been invaluable in helping us debug
our implementation and in measuring our system against
the FreeBSD baseline. A user program requests this infor-
mation by making a system call with arguments that specify
a bu�er location in userspace, and the number, n, of entries
requested. The user process then blocks until n scheduling
events are made. At this point, the kernel calls copyout() to
copy the requested information to the user bu�er and calls
wakeup() to unblock the user process. We note that there
were several potential synchronization problems including
the \lost-wakeup" problem that we had to avoid when im-
plementing our pro�ling code.

6The mapping from nice values to base tickets is basetickets =

10
1

20
(�nice+20)+2.

4.2 Userlevel Programs

We now show how users adjust lottery scheduling param-
eters. All of these programs make system calls to achieve
the described functionality. The �rst set of functions are
available to all users.

set tickets -p<pid> -t<tickets> | Changes the number
of tickets held by <pid> to <tickets>. The user must own <pid>
unless the user is root. <tickets> is in user tickets (as opposed
to base tickets).

run tickets <tickets> <prog> [<arg1> ...] | Executes
<prog> with optional <argN>'s using <tickets> represented in
user tickets.

show tickets [-u<uid>] [-p<pid>] [-x]|Shows the num-
ber of tickets held by <pid>. The <pid> must be owned by the
user, unless the user is root. A <pid> of -1 shows the number of
tickets held by all of the user's processes, the default. Root can
view information on other users by specifying the <uid>, or -1 for
all users. -x shows additional information.

set funding [-u<uid>] -t<base tickets> | Root sets the
number of <base tickets> that funds <uid>'s processes. The
default <uid> is the user ID running the program.

show funding [-u<uid>] | Shows the number of base tickets
that fund <uid>. The default <uid> is the user ID running the
program. If <uid> is -1, all users are shown. Only root can view
another <uid>.

force sched -p<pid> -m|-l|-n <base tickets> | Enables
a user to control the \at most/at least" nice emulation with-
out explicitly making the setpriority() system call used by nice
and renice. -p chooses a process. -m means schedule the pro-
cess with at most <base tickets>. -l means schedule the process
with at least <base tickets> (restricted to root). -n means use
standard lottery scheduling.

lott chuser -p<pid> -u<uid>|Takes <pid> and puts it un-
der <uid>'s currency. Useful for moving processes like X which
run as root under the currency of the user using the process. This
command is restricted to root.

The following programs are available only for lottery
scheduling development.

lott ctl -a <on|off> | Root-only command that turns on
or o� the abbreviated quanta feature. Future controllable features
will be turned on and o� via this command.

lott stat [-i<on|off>] [-l<on|off>] [-c<on|off>]
[-p<pid>] | Turns on or o� pro�ling information gathering and
printing. -i controls statistical information printed out to the sys-
tem console in real-time. -l controls recording of process schedul-
ing data retrievable via lott rinfo. -c controls recording of cycle
count performance data for scheduling functions, again retrievable
via lott rinfo. The defaults for these options are o�. -p makes
the output reect only the chosen process, -1 for all processes,
the default.

lott rinfo [-p<on|off>] [-i<on|off>] [-q<on|off>]
[-c<on|off>] [-s<on|off>] -n<num entries> | Outputs data
concerning the next <num entries> scheduling events as described
in section 4.1. -p controls reporting of process information. -i
controls reporting of when the kernel is idling. -q controls re-
porting of when time slices expire. -c controls reporting of cycle
count performance data. -s alters the output to be machine read-
able for statistical analysis. All of the previous options are on by
default except for -s.

5 Evaluation

The variety of potential workloads makes evaluating sched-
uler performance di�cult. In general, however, our day-
to-day experience matches the results that we obtain from
the benchmarks in this section. Exceptions are explored in
section 6.

All experimental results were obtained from partita,
David Petrou's personal machine. This machine has 64MB

5

21



of main memory and a 200MHz AMD K6 (pentium com-
patible) processor. Unless otherwise noted, no tests caused
the machine to page. In the following �gures error bars rep-
resent 95% con�dence intervals.

We �rst show that the overhead incurred by our lot-
tery scheduler is minimal, and then we demonstrate the
proportional-share resource management properties that we
gain with the lottery scheduler.

5.1 Overhead

We divide our overhead measurements in two parts: (1) mi-
crobenchmarks that quantify the di�erences in time it takes
to execute scheduling operations under both the FreeBSD
scheduler and the lottery scheduler kernels, and (2) mac-
robenchmarks that determine whether these di�erences are
visible when running applications.

5.1.1 Microbenchmarks

We measure scheduling code fragments to quantify time
spent in scheduler overhead. We use the the cycle counter
instruction RDTSC (Read Time-Stamp Counter) which in-
crements a counter every clock cycle [Int 1996] to obtain
accurate measurements. As we ran our tests on a 200MHz
machine, divide \cycles" by 200 to obtain microseconds.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

cy
cl

es

runnable processes

Figure 1: This �gure shows the average number of cycles
(out of at least 1000 measurements) to perform a context
switch via the cpu switch() function while varying the num-
ber of runnable processes. The top curve represents lottery
scheduling while the bottom represents the FreeBSD sched-
uler.

The two most common scheduling operations in both the
FreeBSD and our lottery schedulers are cpu switch() and
setrunqueue(). Under the FreeBSD scheduler, cpu switch()
makes a scheduling decision and performs a context switch.
In our lottery scheduler, cpu switch() calls lott choose next -
runner() to make a scheduling decision and performs a con-
text switch. Figure 1 shows the number of cycles it takes
to run cpu switch() while varying the number of processes7.
Our lottery scheduling algorithm is O(n) in the number of
runnable processes while the FreeBSD scheduler is O(1).
This di�erence in algorithmic complexity is visible in these
results. Figure 2 shows the number of cycles to execute

7Naturally, we include the cycles in lott choose next runner() in

these measurements.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

cy
cl

es

runnable processes

Figure 2: This �gure shows the average number of cycles
(out of at least 1000 measurements) to mark a process
runnable via the setrunqueue() function while varying the
number of runnable processes. The top curve represents
lottery scheduling while the bottom represents the FreeBSD
scheduler.

setrunqueue(), which makes a process runnable. This func-
tion is short and O(1) in both schedulers. We believe that
the FreeBSD version is faster because it is written in assem-
bly. We do not know why the FreeBSD curve uctuates.
With small standard errors, those uctuations are statisti-
cally signi�cant. Table 1 presents this data in numerical
format.

5.1.2 Macrobenchmarks

The previous section uncovered measurable di�erences be-
tween the FreeBSD scheduler and our lottery scheduler. In
this section we determine how visible these di�erences are
on a larger scale. We measure two classes of programs: (1)
interactive programs, and (2) batch programs. Our quality
of service metric for interactive applications is response time
while we consider throughput for batch applications.

We examine interactive applications �rst. We wrote a
benchmark called interactive that continually goes to sleep
for the shortest time possible and measures the time between
going to sleep and the time that it receives the processor
when it wakes up. While we run interactive, we also run
a CPU-bound process in the background. Again, we use
the RDTSC cycle count instruction. We keep in mind that
the minimum latency that humans can discern varies be-
tween 50{150ms depending on the individual [Shneiderman
1992]. Figure 3 measures response time under the FreeBSD
scheduler as a baseline. Due to the way timeouts are han-
dled in FreeBSD, processes cannot sleep on a timer event for
less than 20ms. Figure 4 shows the same experiment under
the lottery scheduler. We achieve very similar results. We
were curious about the utility of abbreviated quanta, so we
disabled this feature within our lottery scheduler and reran
this test. Our poor results are presented in �gure 5. Table 2
presents the data in these �gures numerically.

We now consider throughput of batch processes. Our
test application is rc564 [rc564 1997], a program that tries
to �nd the solution to RSA's 64-bit secret-key challenge. To
exacerbate the a�ect of our added overhead while running
rc564, we also run a varying number of interactive pro-
cesses. These interactive processes, due to abbreviated

6

22



FreeBSD Scheduler Lottery Scheduler
mean/std. err. mean/std. err.

1 process cpu switch() 572.54/2.17 1449.13/3.74
setrunqueue() 114.79/0.51 223.62/1.06

25 processes cpu switch() 835.90/2.35 2874.79/24.76
setrunqueue() 132.40/0.67 285.59/56.73

50 processes cpu switch() 863.11/2.46 4589.64/34.30
setrunqueue() 127.83/0.74 305.19/1.70

75 processes cpu switch() 948.68/2.84 5325.49/30.55
setrunqueue() 166.88/0.53 306.70/1.40

100 processes cpu switch() 1474.50/13.14 7255.03/48.29
setrunqueue() 137.00/1.78 315.27/1.58

Table 1: This table presents the data from �gures 1 and 2 in numerical format. The values are in number of cycles.

1

10

100

1000

0 50 100 150 200

fr
eq

ue
nc

y

time (microseconds)

Figure 3: This histogram shows the response time distri-
bution of interactive under the FreeBSD scheduler while
a CPU-bound process runs. Almost all times are clustered
around 20ms.

mean/std. dev.
FreeBSD Scheduler 20.02/1.60
Lottery Scheduler 20.03/2.00
Lottery (no a.q.) 100.39/7.73

Table 2: This table presents the data from �gures 3, 4,
and 5 in numerical format. The times are in milliseconds.
Over 2000 numbers were gathered for each case.

quanta, increase the number of context switch operations
as shown in �gure 6. The throughput of rc564 versus the
number of interactive processes is shown in �gure 7. We
note that as more interactive processes are run, the per-
formance of rc564 under the FreeBSD scheduler and the
lottery scheduler worsens and diverges. In all runs, rc564
under the lottery scheduler is less than one percent slower
than under the FreeBSD scheduler.

As the previous experiment did not show a large di�er-
ence between the FreeBSD and lottery scheduler, we ran
one last macrobenchmark. In �gure 8 we show the progress
of a program called count, which simply loops and main-
tains a counter of how many loops it made, while running
100 interactive processes. These interactive processes

1

10

100

1000

0 50 100 150 200

fr
eq

ue
nc

y

time (ms)

Figure 4: This histogram shows the response time distri-
bution of interactive under the lottery scheduler while a
CPU-bound process runs. As in the FreeBSD scheduler test,
almost all times are clustered around 20ms.

pushed the number of context switches per second up to
5160 averaged over the run. Again, we achieve performance
within one percent of the FreeBSD scheduler. One potential
criticism is that there are systems that context switch more
than 5160 times per second which may cause our scheduling
overhead to be more apparent. However, we measured the
average number of context switches per second over a 30 sec-
ond interval on wcarchive, the world's largest and busiest
FTP site,8 to be 2589.

5.2 Flexible Execution Rate Control

The previous section demonstrated that the overhead of our
lottery scheduler is negligible for the tests that we ran. Now
we demonstrate the features that we have gained by replac-
ing FreeBSD's decay usage scheduler with lottery schedul-
ing. These are simple measurements and we refer the reader
to [Waldspurger 1995] for an extensive analysis of lottery
scheduling.

We demonstrate the ease at which a user can control
the execution rate of his programs in �gure 9. This �gure
shows three processes assigned tickets in a 3:2:1 ratio. Their

8
wcarchive supports up to and often reaches 2750 simultane-

ous connections and stores 142GB on-line. wcarchive is located at
ftp://ftp.cdrom.com/.

7

23



1

10

100

1000

0 50 100 150 200

fr
eq

ue
nc

y

time (ms)

Figure 5: This histogram shows the response time distri-
bution of interactive under the lottery scheduler without
our abbreviated quanta extension while a CPU-bound pro-
cess runs. The process now must wait a full time quantum,
100ms, before running.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

co
nt

ex
t s

w
itc

he
s 

pe
r 

se
co

nd

interactive processes

Figure 6: This �gure shows the e�ect of increasing the
number of interactive processes on the number of context
switches per second.

progress is plotted along with ideal lines. We were curious
how hard this was to reproduce using the FreeBSD sched-
uler. We achieve something close in �gure 10. However, the
nice values that we discovered, 10, 5, and 0, are hardly in-
tuitively mappable to our goal of 3:2:1. The curves are also
somewhat asymptotic and may diverge over time. Further,
while lottery scheduling maintains the 3:2:1 ratio irrespec-
tive of system load, the FreeBSD scheduler unpredictably
schedules these processes if the system is otherwise loaded.

We demonstrate user workload insulation in �gure 11.
Despite one user running two CPU-bound processes, the sec-
ond user is able to receive twice the throughput from his one
CPU-bound process. We also demonstrate user workload in-
sulation with respect to processes that consume CPU and
I/O. Figure 3 shows the time it takes to compile a program
under an unloaded FreeBSD scheduler, under the FreeBSD
scheduler with another user running 10 CPU-bound pro-
cesses, and under the lottery scheduler with the same 10 pro-
cess load. With lottery scheduling, the compiling user makes

300

305

310

315

320

325

330

335

340

345

350

1 2 3 4 5 6 7 8 9 10

th
ou

sa
nd

s 
of

 k
ey

s 
pe

r 
se

co
nd

interactive processes

Figure 7: This �gure shows the number of keys tried by
rc564 per second while varying the number of interactive
processes. The top curve represents throughput under the
FreeBSD scheduler while the bottom represents the lottery
scheduler. Notice that the scale on the y-axis does not begin
at zero. The performance of the system under the lottery
scheduler is within 1% of the FreeBSD scheduler.

progress much faster than under the FreeBSD scheduler9.
One may doubt the likelihood of a system with 10 runnable
processes. A simple count showed 167 runnable processes
(out of 2820 total processes) on wcarchive.

mean/std. err.
Idle FreeBSD Scheduler 4.95/0.04

Loaded FreeBSD Scheduler 48.55/1.52
Loaded Lottery Scheduler 16.11/0.19

Table 3: This table shows the average time in seconds of 10
trials to compile and link a 2275 line program. We run this
test under an unloaded FreeBSD scheduler, the FreeBSD
scheduler while another user runs 10 CPU-bound jobs, and
the lottery scheduler while another user runs 10 CPU-bound
jobs.

6 Experience

Here we discuss our experience in using the lottery scheduler
on two production machines and one personal machine.

6.1 soda and meeko

We have deployed our lottery scheduler on two production
machines, soda.csua.berkeley.edu and meeko.eecs.ber-

keley.edu. soda is the central machine for the Computer
Science Undergraduate Association at UC Berkeley. soda

has 2300 accounts and often has over one hundred users
logged on. Common users activity include participation in
a chat room and code development. soda also manages 973
mailing lists besides serving mail for its users. meeko belongs
to the FreeBSD Users' Group at UC Berkeley. meeko o�ers
WWW service and mirrors part of wcarchive on its FTP

9We expected the compile under lottery scheduling to run faster
than shown. We are investigating what our bottleneck is.

8

24



0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300

op
er

at
io

ns

time (s)

Figure 8: We run interactive 100 times and plot the
progress of count. The FreeBSD scheduler is represented by
the curve with the steeper slope while the second line repre-
sents progress under the lottery scheduler. The interactive
processes caused 5160 context switches on average, well
above what we experience on the busiest systems. Lottery
scheduling is still less than 1% slower in this case.

server. In addition, meeko exports a �lesystem via NFS.
There are usually 5 users logged into meeko actively devel-
oping code. That these systems have been running and in
heavy use for weeks and that we have received no perfor-
mance complaints from users is a testament to our code's
stability and performance. Users report no lag related to
the scheduler showing that the compensation ticket mecha-
nism coupled with abbreviated quanta and kernel priorities
are su�cient to provide good responsiveness.

We determine that load insulation works on our deployed
code by looking at the output of the UNIX top utility while
two users run the CPU-bound processes xoopic and rc564.
xoopic [xoopic 1997] is a particle-in-cell plasma simulation
that calculates particle positions and velocities by discretiz-
ing Maxwell's equations in time and space on a 2-D mesh.
Tables 4 and 5 show the results.

PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND
555 jwm 92 0 808K 164K RUN 0:17 16.34% 16.25% rc564

553 peterm 90 0 7392K 8012K RUN 0:18 16.28% 16.21% xoopic
552 peterm 90 0 7392K 8012K RUN 0:18 16.12% 16.06% xoopic
550 peterm 90 0 7392K 7852K RUN 0:18 16.12% 16.06% xoopic

551 peterm 90 0 7392K 7864K RUN 0:18 16.08% 16.02% xoopic
554 peterm 89 0 7392K 8012K RUN 0:18 16.05% 15.98% xoopic

Table 4: This table shows output from top while two users
are running one and �ve CPU-bound processes respectively
under the FreeBSD scheduler. The lack of load insulation
enables peterm to obtain an unfair percentage of the CPU.

We have experienced an interesting problem with our em-
ulation of nice semantics on meeko. Memory was slightly
overcommitted and we nice'd rc564 and interactive pro-
cesses to -20 (highest priority). At this point the perfor-
mance of many processes plummeted and a lot of CPU time
was spent in the kernel (system time). Our untested the-
ory is that other processes were spending most of their time
page faulting. Before one of these low priority processes is
able to make progress in userland it is context switched out

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70

op
er

at
io

ns

time (s)

Figure 9: This �gures demonstrates the progress of three
count processes under lottery scheduling. The curves from
top to bottom have 30, 20, and 10 tickets respectively. Also
shows are straight lines representing ideal processor utiliza-
tion. Notice that when processes �nish, the remaining pro-
cesses execute faster.

PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND

296 jwm 98 0 808K 392K RUN 0:28 52.21% 48.71% rc564
272 peterm 76 0 7392K 7544K RUN 1:02 11.63% 11.63% xoopic

275 peterm 65 0 7392K 7716K RUN 0:57 9.61% 9.61% xoopic
282 peterm 64 0 7392K 8032K RUN 0:50 9.50% 9.50% xoopic

274 peterm 55 0 7392K 7636K RUN 0:57 7.90% 7.90% xoopic
273 peterm 53 0 7392K 7600K RUN 0:55 7.13% 7.13% xoopic

Table 5: This table shows output from top while two users
are running one and �ve CPU-bound processes respectively
under the lottery scheduler. jwm is able to receive about
50% of the CPU despite having only one runnable process.

and stands the chance of having pages in its working set
evicted. We currently map a nice value of -20 to 10000 base
tickets, an order of magnitude higher than the default num-
ber of base tickets, 1000, that fund a user's currency. We
believe that this mapping is too aggressive and the problem
we observed may diminish if we map -20 to a lower number
such as 5000 base tickets.

6.2 partita

partita is the only machine running our lottery scheduler
that is also running the X window system. We have ob-
served the following problem that we have not been able to
address. We experience slight choppiness when holding a
key down (30 keys=s) in emacs using X while also running
a CPU-bound process in the background. After closely ex-
amining the output from our lott rinfo scheduler pro�ler,
we determined that our scheduler was functioning correctly,
and that emacs was running as soon as it had a keystroke,
preempting the CPU-bound job. We also found no choppi-
ness when running emacs outside of X. From the following
series of events, we see that it is X that is not running as
often as it should, causing the perceived choppiness: First
X is running and emacs is asleep waiting for a keystroke.
We press a key. Since we implement abbreviated quanta,
and since emacs holds a kernel priority, emacs preempts X
and runs immediately. Now emacs goes to sleep waiting for

9

25



0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70

op
er

at
io

ns

time (s)

Figure 10: This �gures demonstrates the progress of three
count processes under the FreeBSD scheduler. We sought
to emulate �gure 9 and ran the programs from top to bot-
tom with nice 0, nice +5, and nice +10 respectively. Also
shows are straight lines representing ideal processor utiliza-
tion.

the next keystroke. Up to this point, both the FreeBSD
scheduler and the lottery scheduler behave the same. Both
X and the CPU-bound job are runnable and as both pro-
cesses were preempted running userlevel code, neither have
a kernel priority. X probably has more compensation tick-
ets than the CPU-bound job, making it more likely to be
chosen to run, but occasionally, the CPU-bound job will be
run instead, resulting in choppiness. In the FreeBSD sched-
uler, the CPU-bound job runs often enough during the times
when both X and emacs are sleeping to attain a lower prior-
ity. In this case, X always holds a higher priority than the
CPU-bound job and is always chosen to run �rst. We can
virtually eliminate this choppiness under the lottery sched-
uler by assigning the X window process 100 tickets, ten times
more than the default of 10 tickets. We are trying to deter-
mine how common this problem occurs while investigating
more general solutions.

7 Future Work

Besides the X anomaly described in the previous section,
our work raises many issues that we leave for future work.
We describe some of these in turn.

The ticket transfer mechanism is one aspect of lottery
scheduling that we have not implemented. If one process
desires a result that another process computes, the �rst pro-
cess can \loan" its own CPU consumption rate to the second
process. Now this second process will use CPU time at the
aggregate rate initially granted to both processes. When
the result is computed, it sends the result to the �rst pro-
cess along with the right to consume CPU at the certain
rate \borrowed" from the �rst process.

For example, a process blocked on interprocess commu-
nication can loan its tickets the server processes. Clients and
servers can be explicitly written to make these transfers, or
we can try to provide this functionality automatically. We
notice that most IPC take the form of read() and write()
system calls. In many cases we can determine which pro-
cesses are communicating and automatically transfer tickets
from the reader (the client blocked on a result) to the future

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100

op
er

at
io

ns

time (s)

Figure 11: This �gure shows the progress of three count

processes under lottery scheduling. The top curve represents
a count process run by one user while the bottom curves
represent two count processes run by another user. When
the �rst count �nishes, the other count processes have made
47% and 46% progress toward completion (50% is ideal).

writer (the server computing the result), and back again af-
ter the write completes. Such transfers can alleviate priority
inversion among userlevel code.

In a distributed setting, an RPC layer can be written to
transfer tickets among clients and servers. Consider a busy
web server. Important clients can pay money for a certain
number of tickets. These tickets are transmitted to web
servers along with a URL in an unforgeable capability. The
web server then schedules responses to queries based on the
number of tickets that web clients hold.

There are some client/server scenarios on a single ma-
chine in which it is not clear that ticket transfers will work.
Consider the printer command lpr and the printer daemon
lpd owned by root. A user executes lpr which terminates
and then at some time in the future, lpd executes on that
user's behalf. This violates load insulation as the root-owned
process is working on behalf of a user from its own tickets.
There is no clear way to transfer tickets from the user to
root because lpr has terminated before lpd runs. Similar
arguments can be made for other system daemons such as
sendmail.

A more di�cult problem concerns scheduling diverse re-
sources. For example, consider the pagedaemon process, a
root-owned process that moves pages between memory and
the swap device on behalf of all users. A process that is
paging is not penalized for the time that the pagedaemon is
executing on its behalf. On one hand, we would like to re-
duce the rate at which large processes page memory on the
assumption that this will free up disk-bandwidth for other
processes. Unfortunately, this may simply cause the large
process to page even more as it doesn't have a chance to use
its pages before they are evicted.

[Waldspurger & Weihl 1994] explains that proportional-
share resource management can be applied across diverse
resources but does not provide an algorithm or policy by
which an entire system can be scheduled toward optimal
system performance. [Hauser et al. 1993, Nieh et al. 1994]
suggest that adjusting priorities (tickets) toward higher-level
scheduling goals is very di�cult or intractable. We �nd the
pursuit of more intelligent system-wide resource schedulers

10

26



an exciting research question. We envision a framework by
which a process registers its scheduling goals and the op-
erating system schedules system resources to the process
based on ticket-like objects. A cost-bene�t analysis such as
in [Patterson et al. 1995] considers the types of resources re-
quested and how other processes may be a�ected by having
those resources revoked.

8 Conclusion

We began this work with the goal of discovering why lottery
scheduling, and by extension proportional-share scheduling,
is not a standard part of modern operating systems. Our
initial implementation followed [Waldspurger & Weihl 1994]
and enabled control over process execution rates and pro-
cessor load insulation at the cost of system responsiveness.
After examining the FreeBSD scheduler, we decided to apply
both abbreviated quanta and kernel priorities to our lottery
scheduler. These techniques have been applied without al-
tering the proportional-resource management semantics. In
addition, user feedback prompted us to add support for the
UNIX nice utility. Our measurements show that our op-
timized scheduler incurs more overhead than the FreeBSD
scheduler, but that these di�erences are negligible even un-
der large workloads. We achieve throughput and responsive-
ness nearly equal to FreeBSD except for one case concerning
the X window system. Our remaining benchmarks indicate
that we do achieve exible control over the rate at which pro-
cesses consume CPU. Our lottery scheduler was deployed to
two production machines where we observe similar results.
Our experience spurred many issues that we wish to ex-
plore in future work. This paper demonstrates that lottery
scheduling is a viable process scheduler for the workloads
we have tested. Our �ndings warrant further investigation
into incorporating lottery scheduling as a standard part of
operating system kernels.

9 Availability

Our lottery scheduler is available from http://www.cs.cmu.edu-
/~dpetrou/freebsd lottery.tar.gz. Included are two new kernel
source �les, a context di� for applying patches to 14 existing ker-
nel �les, and the source for 10 userlevel programs that interact
with the scheduler.

10 Acknowledgments

We thank UC Berkeley's Computer Science Undergraduate Asso-
ciation and FreeBSD Users' Group for permitting us to deploy our
experimental kernel on their production machines. Peter Mardahl
kindly o�ered xoopic for some of our benchmarks. We thank
Aaron Smith for convincing us that emulating nice semantics
was necessary. Thanks also go to David Greenman for providing
us with statistics on wcarchive.

References

[4.4BSD 1994] The 4.4BSD source code, 1994. See ftp://-
ftp.cdrom.com/pub/bsd-sources.

[Birrell 1989] Birrell, A. D. An introduction to programming
with threads. Technical Report 35, Digital Equip-
ment Corporation Systems Research Center, Palo
Alto, CA, January 1989.

[FreeBSD 1997] The FreeBSD Operating System, 1997. See
http://www.freebsd.org/.

[Goldberg et al. 1996] Goldberg, I., Wagner, D., Thomas, R.,
and Brewer, E. A. A secure environment for untrust-
ed helper applications: Con�ning the wily hacker. In
Proceedings of the 1996 USENIX Security Sympo-
sium, 1996.

[Hauser et al. 1993] Hauser, C., Jacobi, C., Theimer, M., Welch,
B., and Weiser, M. Using threads in interactive
systems: A case study. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles,
pp. 94{105, December 5{8 1993.

[Hellerstein 1993] Hellerstein, J. L. Achieving Service Rate Ob-
jectives with Decay Usage Scheduling. IEEE Trans-
actions on Software Engineering, 19(8):813{825, Au-
gust 1993.

[Int 1996] Intel. Pentium Pro Family Developer's Manual, vol-
ume 2, 1996.

[Jolitz & Jolitz 1996] Jolitz, W. F. and Jolitz, L. G. Source Code
Secrets: The Basic Kernel, volume 1. Peer-to-Peer
Communications, Inc., 1996.

[Lampson & Redell 1980] Lampson, B. W. and Redell, D. D.
Experiences with Processes and Monitors in Mesa.
Communications of the ACM, 23(2):105{117, Febru-
ary 1980.

[Lampson 1984] Lampson, B. W. Hints for Computer System
Design. IEEE Software, 1(1):11{28, January 1984.

[Lehey 1996] Lehey, G. The Complete FreeBSD. Walnut Creek,
September 1996.

[Massalin & Pu 1989] Massalin, H. and Pu, C. Threads and in-
put/output in the synthesis kernel. In Proceedings
of the 12th ACM Symposium on Operating System
Principles, volume 23, pp. 191{201, December 1989.

[McKusick et al. 1996] McKusick, M. K., Bostic, K., Karels,
M. J., and Quarterman, J. S. The Design and
Implementation of the 4.4BSD Operating System.
Addison-Wesley Publishing Company, Inc., 1996.

[Nieh et al. 1994] Nieh, J., Hanko, J. G., Northcutt, J. D., and
Wall, G. A. SVR4 UNIX scheduler unacceptable for
multimedia applications. Lecture Notes in Computer
Science, 846, 1994.

[Parnas 1972] Parnas, D. L. On the criteria to be used in de-
composing systems into modules. Communications
of the ACM, 15(12):1053{1058, December 1972.

[Patterson et al. 1995] Patterson, R. H., Gibson, G. A., Gint-
ing, E., Stodolsky, D., and Zelenka, J. Informed
prefetching and caching. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
pp. 79{95, December 3{6 1995.

[rc564 1997] Project RC5, 1997. See http://www.distributed.-
net/rc5/.

[Ritchie & Thompson 1974] Ritchie, D. M. and Thompson, K.
The UNIX time-sharing system. Communications of
the ACM, 17(7):365{375, July 1974.

[Shneiderman 1992] Shneiderman, B. Designing the User Inter-
face: Strategies for E�ective Human-Computer In-
teraction. Addison-Wesley Publishing Co., Reading,
MA, second edition, 1992.

[Vahalia 1996] Vahalia, U. UNIX Internals: The New Fron-
tiers. Prentice-Hall, Englewood Cli�s, NJ 07632,
USA, 1996.

[Waldspurger & Weihl 1994] Waldspurger, C. A. and Weihl,
W. E. Lottery Scheduling: Flexible Proportional-
Share Resource Mangement. In Proceedings of the
1st USENIX Symposium on Operating Systems De-
sign and Implementation, pp. 1{11, November 14{17
1994.

11

27



[Waldspurger & Weihl 1996] Waldspurger, C. A. and Weihl,
W. E. An object-oriented framework for modular
resource management. In Fifth Workshop on Object-
Orientation in Operating Systems (IWOOOS '96),
October, 1996. Seattle, WA, 1996.

[Waldspurger 1995] Waldspurger, C. A. Lottery and Stride
Scheduling: Flexible Proportional-Share Resource
Management. PhD dissertation, Massachusetts In-
stitute of Technology, September 1995.

[xoopic 1997] XOOPIC Plasma Simulation Program, 1997. See
http://ptsg.eecs.berkeley.edu/xoopic/xoopic.html.

12

28



Fault Tolerance in an Eventually-Serializable Data

Service

Oleg Cheiner� Istvan Derenyiy

January 30, 1998

1 Introduction

Replication is used in distributed systems to improve availability and to increase throughput. The
disadvantage of replication is the additional e�ort required to maintain consistency among replicas
when serializing operations submitted by clients. Several notions of consistency have been de�ned.
The strongest notion of consistency is atomicity, in which replicas emulate a single centralized
object. Methods to achieve atomicity include write-all/read-one [4], primary copy [5, 6, 7], majority
consensus [8], and quorum consensus [9, 10]. Achieving atomicity often has a high cost; some
applications, such as directory services, are willing to tolerate some transient inconsistencies to
avoid paying this cost. This gives rise to di�erent notions of consistency. Sequential consistency [11],
guaranteed by systems such as Orca [12], allows operations to be reordered as long as they remain
consistent with the view of isolated clients. Other systems provide even weaker guarantees to the
clients [13, 14, 15] to get better performance.

Fekete et al. [1] de�ned a highly available eventually-serializable data service (ESDS). They
speci�ed general conditions for such a service, and presented an algorithm based on lazy replication,
in which operations received by each replica are gossiped in the background. Responses to operations
may be out-of-date, not reecting the e�ects of operations that have not yet been received by a given
replica. The de�nition of ESDS includes a formal speci�cation of the data service and an abstract
distributed algorithm that implements the service.

ESDS relaxes consistency guarantees provided by serializable distributed data services to improve
system e�ciency and availability. An important consideration in the design of ESDS was that it
could be employed in building real systems. Cheiner recently developed a distributed experimental
prototype of the ESDS system [2]. Empirical tests on the implementation showed that ESDS scales
at least up to 20 replicas and can exploit parallel replication to achieve better throughput. The tests
also showed how ESDS exposes a tradeo� between performance and consistency to its users. The
tradeo� balance can be shifted toward consistency and away from performance (and vice versa) by
varying consistency restrictions on the operations submitted to the system.

2 Our Contributions

The ESDS implementation in [2] does not tolerate replica failures. However, ESDS lends itself to a
fault-tolerant distributed implementation due to the redundancy inherent in data replication. We
extend the implementation in [2] to tolerate replica faults, while preserving guarantees of eventual
consistency and the performance advantages of replication. Our modi�cations deal with two models

�Carnegie Mellon University, oleg@cs.cmu.edu
yCarnegie Mellon University, derenyi@cs.cmu.edu

1

29



of replica failure. In the fail-stop model, replica nodes may crash. Crashed replicas do not respond
to user requests or send gossip messages to other replicas. In the fail-stop-restart model, the replicas
are allowed to rejoin the system after a crash and restart.

Our report speci�es the semantics of the failure models and the desired behavior of working
replicas in the face of failures.

To compensate for the lack of immediate consistency guarantees, ESDS provides a mechanism
for specifying dependencies between operations explicitly. The abstract algorithm in [1] uses prev

sets to identify the dependencies. Each operation x submitted to the system includes a prev set of
operations that must be applied to the state before x. However, it is impractical to require users
of an ESDS-based system to specify large dependency sets. Furthermore, prev sets are ine�cient.
A prev set may include any operations that have been previously submitted to the system, and
therefore the upper bound on the size of prev sets grows linearly with the number of operations
submitted to the system. The time it takes to verify that an operation's prev set has been satis�ed,
the memory required to store an operation, and the cost of gossiping an operation will all grow
linearly with the number of operations as well. In addition, the system is not able to take advantage
of stabilization of old operations and discard their identi�ers because the identi�ers may later appear
in a new operation's prev set.

Our changes to the ESDS implementation remove the ine�ciencies that result from using prev

sets. We substitute the multipart timestamp technique in place of prev sets to keep track of system
dependencies. The multipart timestamp technique is based on Lamport's logical clocks [16]. The
approach is similar to the multipart timestamp implementation in [18].

3 ESDS Overview

This section is an overview of the work upon which our project is based. Section 3.1 describes the
abstract algorithm from [1]. Section 3.2 briey summarizes the prototype implementation from [2].

3.1 The Algorithm

ESDS is a distributed data service based on the lazy replication model. The service maintains copies
of its state at multiple distributed replicas. A typical operation is executed by a single replica,
which immediately returns an answer to the user. Replicas update each other by \lazy" exchange of
gossip messages in the background. Thus, ESDS relaxes consistency guarantees provided by more
traditional (serializable) distributed data services in return for lower latency and higher throughput.

The nodes participating in an execution of ESDS consist of a �xed number of replicas and a
set of client front ends. Front ends interact with the replicas on behalf of users. They submit user
requests to the replicas, attempting to balance the load on the replicas and obtain an answer with
the smallest possible latency. The front ends may submit an operation more than once in order to
�nd a closer replica, or to make progress in the event that some of the replicas are down.

For every operation submitted to the system the front ends must generate an identi�er uid that
is globally unique across the system. In addition, an operation has several attributes that specify
its semantics. First, the operation de�nes the transformation to be applied to the data object and
the value to be returned to the user. Second, the operation may be causally dependent on other
operations previously processed by the system [18]. To capture this dependence, the operation's
state contains a prev component, a set of operation uids that must be executed before it.

Despite allowing transient inconsistency among the replicas, ESDS provides provable guarantees
that in the limit an eventual total order is established on all operations, and that the total order
is identical at all replicas. For some operations it may be desirable to disallow even transient
inconsistency. An operation is de�ned to be stable if the pre�x of the eventual total order up to that
operation is known at every replica. The last state component of an operation is a strict boolean
ag. By setting the strict ag, the client can force the replicas to stabilize the operation before
returning an answer for it. Thus, if all operations are strict, the data service becomes atomic.

2

30



Each replica r maintains several state components to support lazy replication and guarantee
eventual serialization:

� doner [i], i 2 [1::n] (n is the number of replicas)

� solidr[i], i 2 [1::n]

� minlabelr.

For all i, doner [i] is the set of uids of operations that replica r knows are \done" at replica i. An
operation is done at replica i if its value can be computed at that replica. To preserve dependencies
speci�ed by an operation's prev set, a replica does not enter the operation into its done set until all
operations in the prev are done at the replica.

Solidr [i] is likewise a set of operation uids. The interpretation of x 2 solidr[i] is that replica r

knows that replica i knows that x is done at every replica. When an operation is in solidr[i] for
all i, it has stabilized. A replica sends answers for strict operations only after they have entered all
solid sets at that replica. Minlabelr is a function that assigns a globally unique label to each done
operation. The labels in the range of minlabelr are totally ordered. Thus, minlabelr speci�es the
order in which the operations have been done. To compute a value for a done operation, replicas
�rst apply all preceding operations in the minlabelr order to the initial state, and then apply the
operation for which they are computing a value. As an optimization, replicas can keep a copy of
the stable state - the result of applying all stable operations to the initial state. The value of a done
operation that has not yet stabilized is computed by applying all unstable done operations to a copy
of the stable state, without modifying the stable state itself.

Replicas update each other via gossip messages. A gossip message from replica r to replica r
0

includes doner [r], solidr[r], and minlabelr . Upon receiving the message, r0 updates its local done
and solid sets for r and r

0 and merges minlabelr0 with minlabelr. In the absence of new operations
from clients, after a few rounds of gossip replicas gravitate towards identical done and solid sets and
minlabel orders.

For a more detailed description of the algorithm, the reader is referred to [1].

3.2 A Prototype Implementation

The original ESDS prototype [2] is a straight translation of the algorithm into a distributed program
written in C++. The prototype uses an implementation of the MPI Standard [19] for communica-
tions between system nodes. The major design modules include replica nodes, front end nodes, and
operations. The state of each C++ module is exactly as speci�ed in the algorithm, except for some
additional bookkeeping state.

The prototype de�nes an abstraction barrier between the ESDS layer and the data service ap-
plication running on top of it. Th ESDS layer acts as a building block for constructing distributed
data services. An ESDS-based application always includes three modules: (1) service state, (2)
service operations, and (3) return values for service operations. Together these modules implement
a non-distributed version of the data service. The job of the ESDS layer is to distribute the appli-
cation service across multiple replicas according to the semantics of the ESDS algorithm. The three
application modules are opaque to the ESDS layer, which makes calls to the modules to handle all
application-speci�c computation (e.g. applying an operation to the application state and producing
a return value).

4 Multipart Timestamps

We substituted a more e�cient method for tracking causal dependencies between operations in place
of prev sets. Our approach is based on a technique called multipart timestamps.

3

31



Amultipart timestamp t is a n-tuple (t1; : : : ; tn) of nonnegative integer counters. In the context of
ESDS, n corresponds to the number of replicas. A partial order is de�ned on multipart timestamps:
t � s i� tj � sj for j 2 [1::n]. Two multipart timestamps are merged by taking their component-wise
maximum. Our design includes a module implementing this de�nition of multipart timestamps.

In this optimization we remove prev sets from operation state and rede�ne the protocol for
keeping track of dependencies between operations using multipart timestamps.

In the new protocol the state of operation j includes two new multipart timestamp components,
prev-ts and op-ts (op-ts is initially all zeros). Replica state also gets two multipart timestamp
components, val-ts and rep-ts, both initially all zeros. The meanings of the new state components
are as follows:

� op-ts is assigned to each new operation by the receiving replica in the manner described below.
Op-ts is guaranteed to be unique for each operation.

� prev-ts plays the same role that the prev set played in the unoptimized version. It speci�es
that any other operation with an op-ts smaller than this operation's prev-ts must be done
before this operation. In other words, for each pair of operations i and j, j.op-ts < i.prev-ts
) j is in i's prev set.

� val-ts is the merge of op-ts timestamps of all operations done at the replica.

� rep-ts is the current replica timestamp, used to assign values to op-ts of newly submitted
operations in the protocol below.

The protocol works as follows:

1. Every time replica r receives a new operation i from a frontend, it increments r.rep-ts[r],
assigns r.rep-ts to i.op-ts, and sends the value of i.op-ts to the frontend. The frontend then
forwards i.op-ts to the client.

2. When a client wants to specify that operations i1; : : : ; ik must precede operation j, it merges
i1.op-ts; : : : ; ik.op-ts and assigns the result to j.prev-ts.

3. When replica r does operation i (i.e. moves it into doner[r]), it merges i.op-ts into r.val-ts.

4. Gossip messages from replica r to replica r0 contain r.rep-ts. Upon receipt of the gossip
message, replica r0 merges r.rep-ts into r0.rep-ts. For all operations ik 2 doner [r] included in
the gossip message, r0 merges ik.op-ts into r0.val-ts.

5. When replica r wants to do operation i and needs to check that i's dependencies have been
satis�ed, it checks that i.prev-ts � r.val-ts.

Ladin et. al. [18] give a semiformal argument that this protocol never violates dependency
speci�cations.

Figure 1 demonstrates timestamp-based constraints in action with a small example execution.
Two replicas and one client participate; the frontends have been omitted to reduce clutter. The
sequence of messages between participants is indicated by the numbers on the arrows.

The hypothetical data service's state is a string. Each operation appends its uid to the end
of the string, and the resulting string is returned to the client. The client's intent is to submit
two operations and make sure the �rst operation occurs before the second. The execution starts in
Figure 1a with the client submitting operation 1 to replica 0, with prev-ts = < 0; 0 >. The client
gets back op-ts = < 1; 0 > for operation 1. The client now sends operation 2 to replica 1. The
prev-ts of operation 2 is set to op-ts of operation 1 by the client, indicating that operation 1 is in
operation 2's prev set1. Next, replica 1 checks 2.prev-ts against 1.val-ts. Since 2.prev-ts 6� 1.val-ts

1the message from replica 1 to the client with operation 2's op-ts is omitted from the �gure

4

32



   Replica 0
 val-ts = <0,0>

   Replica 1
 val-ts = <0,0>

 Client

       Op 1:
prev-ts = <0,0>

       Op 1:
op-ts = <1,0>

       Op 2:
prev-ts = <1,0>

2

  Gossip op 2:
prev-ts = <1,0>
 op-ts  = <0,1>

4

(a)

   Replica 0
 val-ts = <1,0>

   Replica 1
 val-ts = <1,0>

 Client

2

     Do op 1:
prev-ts = <0,0>
  op-ts = <1,0>   Gossip op 1:

   op is done
 op-ts  = <0,1>

3

(b)

   Replica 0
 val-ts = <1,0>

   Replica 1
 val-ts = <1,1>

 Client

     Do op 2:
prev-ts = <1,0>
  op-ts = <0,1>

(c)

1

Value for op 1: “1”

1

Value for op 2: “1,2”

2

3

1

Figure 1: Multipart Timestamp Example

5

33



(i.e. operation 2's prev-ts is not smaller than replica 1's val-ts), replica 1 knows that operation 2's
dependencies have not been satis�ed, so it is not possible to do the operation at this point. Instead
replica 1 sends a gossip message to replica 0.

The execution continues in Figure 1b. Replica 0 now has two undone operations, but it cannot
do operation 2 (for the same reason replica 1 could not do it). So replica 0 does operation 1 and
sends the value to the user. It then gossips the new information about operation 0 to replica 1. Upon
receiving this gossip message, replica 1 knows that operation 1 has been done and merges 1.op-ts
into 1.val-ts. At this point 2.prev-ts � 1.val-ts, so operation 2 is ready to be done. In Figure 1c
replica 1 does operation 2 and returns the correct value to the client.

Remark: To complete the multipart timestamp implementation, it is necessary to take care
of the case when a client submits an operation to more than one replica simultaneously and gets
di�erent op-ts values for the operation. This has been relegated to future work, as it is not essential
to our goal of implementing a working timestamp prototype and measuring its advantages against
the prev set approach.

5 Fault Tolerance

We describe the failure models and our implementation of fault tolerance in the presence of faults
that conform to those models in this section.

5.1 Failure Models

In this project we consider two fault models: fail-stop and fail-stop-restart. In the fail-stop model the
failed replica crashes and never comes back up. All the state of a crashed replica and the messages
queued in its input channels is lost. In the fail-stop-restart model, crashed replicas are allowed to
rejoin the computation after crashing.

We would like for the system's external behavior to remain unchanged (except perhaps in perfor-
mance) in the presents of stopping failures. Clients should be able to continue submitting operations
to the system and receive responses according to normal ESDS semantics. Failure recovery should
also be transparent to the clients, except for possible performance degradation.

5.2 Fault Tolerance Design

In our protocol for dealing with stopping failures each replica periodically broadcasts keep-alive

messages to other replicas, indicating that it is still functioning. To make our failure model more
concrete and to simplify our design, we introduce two timing assumptions about keep-alive messages.
The �rst assumption is that live replicas broadcast repeat keep-alive messages within a �xed time
period, which we will call Talive. Failure to issue a keep-alive broadcast within Talive of the last such
broadcast is equivalent to a stopping fault (i.e. replicas are assumed not to issue any other messages
afterward). The second assumption is that latency of the channels between replicas is bound above
by a constant Tl.

These assumptions allow us to use a simple fault tolerance protocol for fail-stop faults. Each
replica r waits for a keep-alive message from other replicas that it considers live. If Talive + Tl time
elapses without a keep alive message from replica r0, r immediatelyputs r0 in its set of crashed replicas
and then continues execution as if r0 never participated in the system. Our timing assumptions
guarantee that when this happens, r0 has indeed crashed (and was not merely delayed). In a short
time after r declares r0 crashed, other replicas will also declare r0 crashed. This observation leads to
an informal argument that this protocol is safe with respect to strict operations, as follows.

Suppose (without loss of generality) that replica r is the �rst to decide that replica r
0 has

crashed. Since r has not received a keep-alive message from r
0 for Talive + Tl time units, by our

timing assumptions no other replica can receive a message from r
0 after r decides that r0 has crashed.

6

34



Therefore, after a �nite period of time all other replicas will also decide that r0 has crashed. In the
meantime, in the absence of messages from r

0 the other replicas can exhibit only a subset of the
behaviors that they could exhibit had they declared r

0 crashed simultaneously with r. So safety is
preserved.

To add recovery to this mechanism, we require that each replica write to stable storage the
location of all other replicas at the time of system invocation (so that it knows how to contact them
after a crash and restart). Our recovery protocol for the fail-stop-restart model proceeds as follows.
A replica r0 restarting after a crash broadcasts a begin-recovery message to every other replica. Upon
receipt of a begin-recovery message from r

0, replica r sends r
0 a special \recovery" gossip message.

This message has the same structure and content as a regular gossip message, with one di�erence.
A regular gossip message is an incremental update, including only the information that has changed
since the previous gossip message between the same replicas. A recovery gossip message contains
full (rather than incremental) information, as if this were the �rst time r gossiped to r

0.

After r has sent the recovery gossip message to r
0, it considers r

0 as live and acts as if r0 was
always up. This is the essential step for preserving safety during recovery. It ensures that r and r

0

never give inconsistent responses to a strict operation2. Any strict operation that r replied to before

sending the recovery gossip message to r
0 will immediately become stable at r0 upon receipt of the

recovery gossip message. After sending the recovery gossip message to r
0, r explicitly waits for any

strict operation to stabilize at r0 before replying to it.

The restarting replica r
0 now gathers recovery gossip messages from all other replicas. Since

together this collection of recovery gossip messages contains all the information present in the sys-
tem, r0 reconstructs its entire volatile state to be consistent with other replicas without further
communication. Once the reconstruction is complete, r0 resumes normal operation immediately.

Two complications must be taken care of. First, a restarting replica cannot wait inde�nitely
for recovery gossip messages from all replicas, since some of them might be down. We assume
that every live replica sends the recovery gossip message within Talive of the arrival of the begin-

recovery message. The restarting replica must wait for Talive + 2Tl time units after broadcasting
begin-recovery, but it declares all replicas whose recovery gossip did not arrive within that time
to be down. Second, more than one replica may be recovering simultaneously. So a restarting
replica might receive a begin-recovery message from another restarting replica. If that happens, the
simultaneously recovering replicas signal to each other not to wait for a recovery gossip message
from them, but simply to consider each other live.

Remark: The system may lose information about an operation if the subset of replicas that
knows about the operation goes down before gossiping about it to other replicas. To tolerate such
occurrences, two di�erent approaches may be employed. One approach is for individual replicas
to write the information about operations known to them to stable storage, i.e. to implement
transaction semantics for locally known operations. Another approach is for clients to re-submit the
operation to other replicas after a timeout. The latter approach sacri�ces client transparency, but
it is easier to implement and can still preserve user transparency. We have not implemented these
approaches.

6 ESDS Application: Bank Accounts

The original work on lazy replication and ESDS [1] suggests that directory and information services
(and similar applications) are most suitable for ESDS because immediate consistency is not impor-
tant to users of most such systems. We implemented a simpli�ed application that keeps track of
bank accounts to highlight the features of ESDS and show that it could potentially be useful for a
wider variety of applications. Using the bank application, we can demonstrate the usage of strict
and non-strict operations and timestamp-based dependencies.

2Recall that the pre�x of a strict operation x, i.e. the operations applied to the data service state before x, must

stabilize at every replica before any replica replies to x

7

35



The application maintains a customer-account database in a banking environment. Branches of
the bank are located at physically di�erent sites. The bank maintains a global database of customer
accounts, implemented as an application layer on top of ESDS. At least one replica node resides
at each branch. Operations submitted to a particular branch are forwarded to the local frontend.
During normal operation, the frontend submits these operations to the local replica. However, if
that replica happens to be down, the branch can continue to function by having the front-end submit
the operations to remote replicas.

The database maintains a set of data tuples in the form of (NAME, AMOUNT). In addition of
opening a new account and closing an established one, we implemented three basic operation which
can be carried out on an account. The operations are listed below with the corresponding ESDS
speci�cations:

1. Withdrawal : strict = TRUE, prev-ts = FULL

2. Deposit : strict = FALSE, prev-ts = EMPTY

3. Balance:

� Local, Hurried: strict = FALSE, prev-ts = EMPTY

� Local, Quick: strict = FALSE, prev-ts = LOCAL-FULL

� Global, Prompt: strict = FALSE, prev-ts = FULL

Assume that the last operation submitted to replica r was received timestamp (t1; : : : ; tn). By
EMPTY, LOCAL-FULL, and FULL prev-tss we mean the following:

� EMPTY = (0; : : : ; 0)

� LOCAL-FULL = (0; : : : ; 0; tr; 0; :::;0)

� FULL = (t1; : : : ; tn)

EMPTY prev set contains no operations, a LOCAL-FULL prev set includes all operations previ-
ously submitted at replica r (and no others), and a FULL prev set includes all previously submitted
operations at all replicas that replica r knows about.

A Deposit operation always succeeds, and it is independent of its ordering relative to other
operations on the same account. We implemented Deposit without any dependency constraints.
On the other hand, a Withdrawal of the amount X can result in di�erent answers to the client,
depending on whether the account has su�cient funds. If it does not, the Withdrawal operation
does not change the amount on the account and returns an error message. Otherwise, it decreases
the amount in the account by X. Permitting two Withdrawal operations on the same account to
occur concurrently at di�erent replicas would allow the client to withdraw money she does not have.
Therefore, we implementedWithdrawal as a strict operation.

It is up to the customer to determine what level of inconsistency she can tolerate in a Balance

operation in exchange for lower latency. Using the Hurried option, there is no guarantee that
previously submitted operations for the account will be visible by the Balance lookup. With Quick
Balance lookup, all previously submitted operations at the local branch will be visible, but there
is no guarantee with respect to operations submitted at other branches. Using Prompt Balance

lookup, all operations known at the local replica will be visible, but there is no guarantee that
deposit operations carried out at other branches and not yet gossiped to the local branch will be
visible.

7 Evaluation

In this section we discuss our correctness testing strategy and present empirical measurements of
the impact of our changes on ESDS performance. The �gures referred to by this section are at the
end of the document.

8

36



7.1 Evaluating Correctness

To test correctness of a given extension, we developed a simple database application with speci�c
update operations. The application submits sequences of operations to ESDS and looks for errors in
return values and the �nal state of the database. In case of correct behavior, the database reaches
a well de�ned state, which is testable by the application. Incorrect behavior includes all types of
out-of-order executions for strict operations, ignored dependency constraints, duplicate executions
of operations, and unexecuted operations.

We modi�ed the system slightly to allow the application some control over the distribution of
operations to replicas. Such control is important if the application is to measure the impact of faults
on performance accurately.

7.1.1 Multipart Timestamps

Since timestamps implement only dependency constraints between operations in ESDS, we made
a working assumption that the switch from prev sets to timestamps did not disturb correctness
of the prototype with respect to strict operations3 Thus, the application tests correctness of the
timestamp-based ESDS system with respect to non-strict operations only.

For this phase of testing, we set up executions with N clients and corresponding N replicas. For
the purposes of testing we gave clients direct control over which replicas receive the operations.

The clients submit a continuous stream ofM operations to their corresponding replica in rounds,
with one operation per round per client (a total of M � N operations is submitted). The state of
the test application is a two dimensional array, where an element (m;n) corresponds to operation m
submitted to replica n. The array is initialized to zeros, and each operation increments the value of
its corresponding array element. Clients examine the distribution of executed operations by reading
the array at a replica.

The prev-ts timestamp of operation m submitted by client n is (m�1;m�1; :::;m�1). That is,
each operation has all operations from previous rounds in its prev set. At each round, clients read
back the current state of their replica and check for that the array contains a 1 at each position that
corresponds to an operation from a previous round. Thus the clients can decide whether all prev
set operations were carried out exactly once before the operation from the current round returned.

The �nal version of the time-stamp extension never failed the described test. We ran the test
several times, with di�erent number (1-6) replicas, and with up to 1000 operations at each replica.

7.1.2 Fault Tolerance

Correctness of the fault tolerance extension requires that in the presence of failures the system still
maintains consistent state. In the fail-stop mode it means that after a replica died, the rest of the
replicas remain consistent and give responses according to ESDS semantics. In the fail-stop-recovery
mode, in addition to the above mentioned requirement, the restarting replica(s) should get into a
consistent state with the functioning replicas. The recovering replica also should not give responses
that are inconsistent with anything other replicas have done while the recovering replica was down.
As the correctness requirement for the failure-stop mode is a subset of that of the failure-stop-
recovery mode, we tested the correctness of the second model only. We used the newly implemented
timestamp prev sets during testing.

After recovery of a replica has completed, We can force the functioning replicas to serialize by
submitting a strict operation with a prev set that includes all previously submitted operations to the
newly recovered replica. When this operation returns, we can check that all previously submitted
operations should have applied at all replicas in the same order.

3Dependency constrains among operations are orthogonal to strictness in ESDS. This is reected in the ESDS

prototype design.

9

37



The general scenario of the testing is the following: a client submits random operations (strict,
non-strict, with di�erent prev sets) to all live replicas in turn. Meanwhile, at random intervals
it sends KILL or RESTART messages to one or more randomly selected replicas. After sending
a RESTART message, it immediately submits a strict operation with a prev set of all previously
submitted operations to the restarted replica4. After this operation, all previous operations should
be stabilized at all replicas, and the system should be in a consistent state. The client checks this
by submitting operations to each live replica which do not modify the state, but simply return it.

In our original test application the client(s) could check whether each of a set of operations were
carried out exactly once, but not the order in which they were carried out. To be able to test that the
sequence of the pre�x operations to a strict operation does not change at any point after the strict
operation returns, we extended the application. In the new version the application state includes an
additional �eld C, which keeps track of how many operations have already been carried out on the
state. A new operation sets its corresponding �eld in the state equal to C if the �eld is currently
zero, and equal to -1 otherwise.

With this modi�cation, the client can check the global consistency of the system, i.e. that every
replica applies all operations in an identical order. It is also necessary to verify that this order will
be stable for the rest of the system execution. The client checks this by keeping a copy of the last
consistent state, incrementally updating it at each correctness check step (after each RESTART
message), and checking it against the current state of the replicas.

7.2 Evaluating Performance

This section presents performance results for our modi�cations to ESDS.

7.2.1 Multipart Timestamps vs. Prev Sets

This optimization improves the algorithm along three dimensions. By substituting constant-size
timestamps for unbounded prev sets, it reduces memory requirements and message sizes. Further-
more, with this protocol the time to check dependencies for one operations is reduced from O(n) to
O(1). We present empirical evidence for these claims in this section.

Using a slightly modi�ed version of the test application, we measured response latency of the
unoptimized and optimized versions of the system, using 1 Pentium II workstation running RedHat
Linux 4.2. The measurement run submitted M operations for N (between 1 and 4) replicas, with
operation m going to replica m mod N . We measured the latency of the operations experienced by
the clients. Each operation m had a prev set of operations (0 : : :m � 1)5.

The collected data con�rmed our hypotheses. Figure 2 shows the measured latency for a set of
600 operations6 submitted to a system consisting of one replica. We ran a set of three measurements
with the original prev set and with the timestamp implementation each. From the graph we can see
the performance advantage of the timestamp extension. The latency of operations in the timestamp
implementation is constant, whereas in the original prev set implementation it is an increasing
function of the number of submitted operations.

With more than one replica the response latency in the prev set implementation exhibits even
worse characteristics, mainly due to the gossip overhead of prev sets. To demonstrate the behavior
of systems with multiple replicas, we plotted the measurements for 2, 3, and 4 replicas in Figure 3
through 5. From the �gures we can see that the performance of the original prev set implemen-
tation seriously degrades as the number of operations increases. The timestamp implementation
outperforms the original prev set implementation in each scenario.

4By measuring the response time for this operation, we can e�ectively measure the length of recovery, as the
operation from the newly restarted replica was not return before the replica �nished its recovery period. The result
of this measurement is shown on Figure 11

5To describe this dependencywith timestamps, we modi�ed the computation of the timestampprev sets as follows:
prev-ts = (t1; : : : ; xN ), where ti = upper bound(m

N
) if i < m; ti = lower bound(m

N
) otherwise.

6We limited the number of operations to 600 in latency measurements due to time constraints.

10

38



Reponse Latency
1-Replica Execution

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

Number of Operations

m
se

c Time Stamps
Prev Sets

Figure 2: Response Latency - 1 Replica Execution

Response Latency
2-Replica Execution

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Number of Operations

m
se

c Time Stamps
Prev Sets

Figure 3: Response Latency - 2 Replica Execution

11

39



Response Latency
3-Replica Execution

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600

Number of Operations

m
se

c Time Stamps
Prev Sets

Figure 4: Response Latency - 3 Replica Execution

Response Latency
4-Replica Execution

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Number of Operations

m
se

c Time Stamps
Prev Sets

Figure 5: Response Latency - 4 Replica Execution

12

40



Memory Cost of Storing Operations

0

50000

100000

150000

200000

250000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

Number of Operations

B
yt

es Prev Sets
Time Stamps

Figure 6: Memory Cost - 1 Replica Execution

Figures 6 and 7 contrast the memory cost of storing ESDS operations in the unoptimized prev

set-based system and in the timestamp-based system. Each operation submitted to the system had
all previously submitted operations in its prev set. Figure 6 plots the amount of memory taken
up by operations at one replica as a function of the number of submitted operations in a 1-replica
execution. Figure 7 plots the same for a 3-replica execution. In both cases we observed an O(n2)
total memory cost in the prev set system and an O(n) total memory cost in the multipart timestamp
system. This is not surprising, since the size of a given operation's prev set is linear in the number
of previously submitted operations, whereas the size of prev-ts and op-ts is constant.

Figures 8 and 9 plot the total amount of gossip tra�c that ESDS replicas have generated by the
time of response to each operation. Figure 8 shows the results for a 2-replica execution and Figure 9
shows the results for a 3-replica execution7. The communication costs shown in the �gures have
trends similar to the memory costs: an O(n2) total cost for the prev set-based system and an O(n)
total cost for the timestamp-based system. Since gossip messages consist entirely of operations, the
reasons for the memory cost results apply to communication cost results as well.

7.2.2 Fault Tolerance

With the system extended by fault tolerance, we performed two categories of experiments. First, we
measure the e�ect of replica crashes on latency and throughput of the system. Second, we measured
the length of recovery in the fail-stop-restart model, as well as the impact of recovery overhead on
performance.

To measure the impact of replica crashes and recovery on performance, we set up the following
scenario. Two clients submit a continuous stream of non-strict operations without prev sets to
two corresponding replicas. After a certain number n of operations (we used N = 150 in our
measurement), one of the clients kills its corresponding replica and continues to submit its operations
to the remaining replica. After another N new operations, the client restarts its own replica and
immediately redirects its operations back to it. This cycle is repeated two times. Meanwhile, the
other client keeps submitting its operations to its replica. Using our original test application and

7The 1-replica execution case is not interesting since there is no gossip in that con�guration.

13

41



Memory Cost of Storing Operations

0

50000

100000

150000

200000

250000

300000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

Number of Operations

B
yt

es Prev Sets
Time Stamps

Figure 7: Memory Cost - 3 Replica Execution

Communication Cost of Gossip Messages

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

Number of Operations

B
yt

es Prev Sets
Time Stamps

Figure 8: Communication Cost - 2 Replica Execution

14

42



Communication Cost of Gossip Messages

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

Number of Operations

B
yt

es Prev Sets
Time Stamps

Figure 9: Communication Cost - 3 Replica Execution

Latency With Two Replicas, One Killed Periodically

0

1000

2000

3000

4000

5000

6000

7000

8000

50 100 150 200

sec

m
s Rep_0

Rep_1

Figure 10: Impact of Crashes on Performance - A Simple Example

15

43



Duration of Recovery

0

5000

10000

15000

20000

25000

0 5 10 15 20 25

Number of Crashes

m
se

c

Figure 11: Crash Recovery Time

client code, we measured the latency of all operations in this execution, running the two replicas in
parallel on two Pentium II machines. The results are shown in Figure 10.

In addition to a few random peaks (the two biggest ones at around 72 and 140 seconds), several
interesting observation can be made from the graph.

1. The latency of the operation submitted immediately after the restart message is also the length
of the recovery period of the restarted replica. We can clearly see two big peaks in the latency
graph for replica 0. The peaks correspond to the operations submitted to the recovering replica
right after the restart message. They show the recovery time (on the Y axis).

2. During the time period when replica 0 is crashed (and client 0 already submits its operations
to replica 1), but replica-1 still does not know that replica 0 has crashed, we observe a linear
increase in response latency at both clients. This is due to the fact that replica 1 is expecting
gossip messages from replica 0 and does not stabilize its operations. This means that the
number of done but unstable operations keeps increasing at replica 1. The replica re-applies
such operations to the stable state every time it responds to a new operation. The time it
takes to do this work grows linearly until the moment when replica 1 realizes that replica 0
has crashed. At this point replica 1 stabilizes all its done operations, and the latency drops
back to its normal (pre-crash) level.

3. Although we expected the overall throughput to decrease during the period when only one
replica is up, it did not happen. This shows that the remaining replica is not saturated even
when it serves two clients at the same time.

As mentioned in section 7.1.2, we measured recovery time with respect to the number of
submitted operations for 2 replicas. The results appear in Figure 11. It is clear that the
recovery time is increasing as the number of operations submitted to the system increases.
This is not surprising, since restarting replicas rebuild their state from \scratch" by applying
all submitted operations to the initial state.

16

44



8 Future Work

ESDS allows frontends to submit an operation to more than one replica. Using this feature, frontends
can achieve increased performance by dynamic load balancing and make progress when the replicas
they normally talk to go down. As we briey noted earlier, the present implementation of timestamps
does not work with this feature, as operations submitted to di�erent replicas are assigned di�erent
timestamps. Future work is needed to work out the semantics of a timestamp model that correctly
handles these cases.

With the present implementation, frontends do not participate in the failure-recovery mechanisms
and do not check whether a replica is down. As frontends keep track of all pending operations at
them, it is possible to resubmit operations that have been lost by crashed replicas from the frontend.
Implementing this feature is also part of future work.

With the original implementation of prev sets, the system has to keep track of even the stabilized
operations, as they can be referred to any time by a prev set of a new operation. For the time being,
prev sets and timestamp prev sets coexist in the system, but a system using exclusively timestamps
could delete stabilized operations from its memory. The future implementation of this feature is
important, as it reduces the memory usage to a long-term bounded value.

Deleting stabilized operations also a�ects the way the recovery procedure of replicas is imple-
mented. The present implementation relies on having all operations submitted to it available at the
time of recovery. If replicas delete stable operations, this method will no longer work. It should be
modi�ed so that replicas could recover using a combination of the stable state of other replicas and
unstable operations remaining in the system.

Finally, for our fault tolerance work we made strong assumptions about the communication and
computation delays in the system. In addition to reliable communication channels, we assumed that
a replica can not delay its keep-alive messages for a longer period of time than the length of the time-
out. Assuming this, we did not have to handle cases when one (or more) replicas declare another
one crashed, when in reality it was simply delayed. In a more realistic environment inconsistency
can occur when a replica is still functioning after it has been declared to be crashed. Future work
is needed to work out methods by which replicas can synchronize their decisions regarding this
question.

References

[1] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-Serializable Data
Services. PODC 1996, pp. 300-310.

[2] O. Cheiner. Implementation and Evaluation of an Eventually-Serializable Data Service. Master

of Engineering Thesis, Massachusetts Institute of Technology, August 1997.

[3] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[5] P. Alsberg and J. Day. A principle for resilient sharing of distributed resources. In Proceedings

of the 2nd International Conference on Software Engineering, pp. 627-644, Oct. 1976.

[6] M. Stonebraker. Concurrency Control and Consistency of Multiple Copies of Data in Distributed
INGRES. IEEE Transaction on Software Engineering, 5(3):188-194, May 1979.

[7] B. Oki and B. Liskov. Viewstamp Replication: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of the 7th ACM Symposium on Principles of

Distributed Computing, August 1988.

17

45



[8] R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases. ACM Transactions on Database Systems, 4(2):180-209, June 1979.

[9] D. Gi�ord. Weighted Voting for Replicated Data. In Proceedings of the 7th ACM Symposium
on Principles of Operating Systems Principles, pp. 150-162, December 1979.

[10] M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM Trans-
actions on Computer Systems. 4(1):32-53, February 1986.

[11] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9):690-691, September 1979.

[12] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming of
distributed systems. IEEE Transactions on Software Engineering, 18(3):190-205, March 1992

[13] M. Fischer and A. Michael. Sacri�cing Serializability to Attain High Availability of Data in an
Unreliable Network. In Proceedings of the ACM Symposium on Database Systems, pp. 70-75,
March 1982.

[14] A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An Exercise in Distributed
Computing. Communications of the ACM, 25(4):260-274, 1982.

[15] H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, and O. Schmueli. Notes on a Reliable
Broadcast Protocol. Technical Memorandum, Computer Corporation America, October 1985.

[16] L. Lamport. Time, Clocks, and Ordering of Events in a Distributed System. Communications
of the ACM, 21(7):558-565, July 1978.

[17] W. Gropp and E. Lusk. User's guide for MPICH, a portable implementation of MPI. Technical
Report ANL-96/6, Argonne National Laboratory, 1994.

[18] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy replication: Exploiting the semantics
of distributed services. ACM Transactions on Computer Systems, 10(4):360-391, Nov. 1992.

[19] The Message Passing Interface Forum. The MPI message-passing interface standard.
http://www.mcs.anl.gov/mpi/standard.html, May 1995.

18

46



Design and Evaluation of a Compressed File System

Project Final Report

15-712 Software Systems

Jun Gao, Sanjay Rao, Peter Venable
(jungao, sanjay, pvenable@cs.cmu.edu)

1 Introduction

In this project, we consider issues involved in the design of a compressed �le system. We propose
algorithms for structuring a compressed �le, and analyze the tradeo�s each make with regard to
space and time e�ciency. We hypothesize that no single algorithm would prove satisfactory for
all possible �le access patterns. We implement each of these algorithms at the user level, and
evaluate their performance with workloads representing di�erent sets of access patterns to validate
our hypothesis. We also integrate all these algorithms into a single hybrid system that allows the
user to select an appropriate algorithm for the access patterns he expects on each individual �le,
thus optimizing performance.

2 Algorithms for structuring compressed �les

We present a few algorithms for structuring compressed �les and discuss the tradeo�s each makes
regarding the amount of metadata that needs to be maintained, the amount of space the compressed
�le occupies, and the time to access the compressed �le. The algorithms are presented from the
perspective of user-level implementation. They can be modi�ed for better performance in a kernel
implementation. For further discussion, see Appendix A.

In the following discussion, Logical File refers to the user's view of the �le, and Physical File

refers to the �le in the underlying �lesystem (eg. ext2fs) in which the compressed representation of
the data in the logical �le is stored. Metadata refers to the metadata that needs to be maintained
over and above what a normal Unix �lesystem maintains. A Change to a logical �le refers to an
operation that changes its contents without changing its size (e.g. replacing a character).

The algorithms are as follows:

1. The Physical �le is obtained by directly compressing the entire logical �le. The advantage
is that this approach leads to maximum space e�ciency, as there is maximum compression,
and there is no overhead of maintaining metadata. The disadvantage is that an update, or a
random access to a part of a large �le requires dealing with the entire �le.

2. The Logical �le is split into �xed-size Logical Blocks. Each of these is compressed, and the
compressed chunks are organized contiguously in the Physical File. The metadata required
is a per-logical-block entry that keeps track of where the compressed chunk corresponding to
that logical block is present in the physical �le. This approach is e�cient for random access
of a large �le. However, a change made to a logical block of a �le may change the size of the
corresponding compressed chunk, and this requires explicit copying of the rest of the �le.

3. The logical �le is split into logical blocks, each of which is compressed into chunks that are
initiallymaintained contiguous in the physical �le. Further, each chunk terminates with a \rest

1

47



of the logical block" pointer (which is empty initially). When any change to the logical block
causes an increase in the size of the corresponding compressed chunk, space corresponding to
the increase is allocated at the end of the �le, and the \rest of logical-block" pointer is updated
to point to this new allocated space. Note that repeated increases in size could lead to a logical
block being represented by a chain of discontiguous chunks. When a change to a logical block
causes a decrease in the size of the corresponding compressed chunk, the extra space is not
freed but could be reused to accommodate future increases of the same chunk. During non-
busy hours, the physical �le may even be cleaned o�ine, to get rid of fragmentation and to
ensure that each logical block is arranged contiguously rather than as a chain of non-contiguous
blocks. This approach requires per-logical block metadata overhead that keeps track of where
in the physical �le the particular logical block was at the start of processing, as well as the
current size of the logical block after compression.

4. The Logical �le is split into �xed-size Logical Blocks. The Physical �le is viewed as consisting
of a set of �xed-size physical blocks. Each logical block is compressed; a certain amount of
forced space is added to it and it is mapped onto consecutive blocks of the physical �le. Note
that the extra space reserved for a logical block is more than the minimum forced space added
due to physical block alignment. The amount of forced space added is the same for all logical
blocks of a given �le, but it may vary from �le to �le depending on an indication given by the
user. This algorithm requires a per logical-block metadata overhead that keeps track of where
in the physical �le the particular logical block is and the number of physical blocks that the
logical block occupies. It is not highly space e�cient due to internal fragmentation. A change
in size to a compressed chunk due to a change made to the corresponding logical block of the
�le could in most cases be accommodated by the extra space available in the last physical
block of that chunk, thus avoiding explicit recopy of the �le. However, explicit recopy cannot
be avoided when the change of size requires a change in the number of physical blocks to be
allocated.

We summarize the trade-o�s between individual algorithms in Figure 1.

2.1 Metadata

Each �le begins with a generic header identifying the algorithm used and the logical and physical
size of the �le. Each of algorithms 2,3 and 4 requires a per-logical-block entry. For algorithms 2 and
4, all metadata is at the start of the �le. There are a small number of direct entries for any �le, and
on demand larger blocks of metadata entries are allocated that can accommodate entries for say k

logical blocks. An explicit recopy in these algorithms involves updating of all metadata entries, and
having the entire metadata at the start is more e�cient. The disadvantage of this is that during an
append of a large �le, a new metadata block needs to be created for every k logical blocks created,
which in turn requires recopying of the �le. In algorithm 3, we dealt with per-logical-block entries
in a similar fashion to how UNIX inodes deal with disk-block addresses. That is, there are slots for
a few direct entries, and a few indirect entries. The direct pointers point to real data blocks and
the indirect pointers point to a metadata block which contains pointers pointing to real data blocks.
These indirect pointer blocks are kept mixed with data blocks, instead of being grouped together at
the beginning of the �le, as in algorithms two and four.

3 Software Design

3.1 Description

The system in which we compare various algorithms for structuring compressed �les is a \transpar-
ent" �lesystem for linux. By \transparent" we mean that once the �lesystem is mounted, it can be
treated like any other mounted �lesystem. Ordinary UNIX commands, such as ls, cp, cat, or rm,
plus most existing software, work as expected, which has the bonus of making the system a prototype

2

48



 No.    METADATA  STORAGE  SPACE EFFICIENCY TIME  EFFICIENCY

1. Compress or Decompress entire

file.

 DESCRIPTION      BRIEF

No extra storage. Highly efficient. Good for small files, and sequential

access of large files. Bad for random

access, append or change to large files.

2. Compress or Decompress logical

blocks of file, store contiguously.

Per Logical block entry that tracks

compressed physical file.

Less efficient than

(1) as compression

of smaller chunks.

Good for small files, sequential access ,

random access and update of large files.

Bad for change to large files - recopy.

3. Compress or Decompress logical

blocks of file, store contiguously.

where the logical block maps to in the

Similar to (2) for all kinds of accesses,

"Rest of logical block" pointer is

maintained for each compressed chunk.

increase in size of compressed chunk,

create space at the end corresponding

to the size-increase and 

 

update the

"rest of lb pointer". Any space freed

due to a decrease in size is reused

to accomodate future increases.

4.

Also, clean offline.

Per logical block entry that tracks

where the logical block mapped to

in the compressed physical file

at the start of a run., and the current

also, pointer space for each fragment

of the compressed chunk 

corresponding to each logical block.

Slightly worse than

(2) offline. Potentially

suffers from internal

fragmentation online,

except for change where much more

efficient.. Also, may suffer from slight

performance loss for reads due to

parts of a logical block being 

discontiguous.

Map each compressed logical block

onto integral number of consecutive

physical blocks, forcing some space

for each logical block. Causes 
internal fragmentation.

Worse than (2) due

to internal 

fragmentation. Worse

than (3) too. 

bad as (2) if explicit recopy needed.

size of compressed logical block.

small.

but this is likely to be

due to shrinkage,

Per logical block entry that tracks

where the logical block maps to

in the compressed physical file, as

well as the number of physical blocks
occupied by that logical block.

For changes, usually similar

to (3). However may be as

 If change in logical block leads to

Figure 1: Algorithms for Structuring Compressed Files.

Generic
Header

NumOfBlks

Start

Start End

Size

Size

Size

  Generic
  Header

End

Start End Start

Start End

End

Start End

 NPB

 NPB

 NPB

 NPB: Number of physical
           blocks in this logical block.

                (4)

NumOfBlks

  Generic
  Header

Start

Start

End

End

Size

Size

Size

End

End

End

Start

Start

Start

Start End

Data Block

NumOfBlks

Start End

Start

Start

End

End

Direct
Pointers

Indirect
Pointers

Indirect
Pointer
Block

Rest 
Pointer

Signature

Generic Header

  (1)

  (2)

(3)

AlgoCode

OrigLen

CompLen

ForcedSpace

Figure 2: Metadata used in algorithms 1-4.

3

49



 test suite

userfs

compression/

decompression

compressed file system

userfs integration

algorithm#4

algorithm#3

algorithm#1

algorithm#2
ext2fs

Figure 3: Module Decomposition

Kernel

User-level

Disk.

User Application Compressed File
System

VFS

Ext2FS
UserFS

Figure 4: Filesystem Access Data Path

for a truly general-purpose compressed �lesystem. Of course, in this experimental system, some less
crucial features of transparency are not implemented, but they could easily be added in a production
system. Similarly, this prototype is implemented with the crutch of userfs; in a production system
speed would be greatly enhanced.

3.2 Module Decomposition

Module Descriptions

1. userfs integration - Handles �lesystems calls which are passed though userfs. Provides a clean
and small interface to the compression/decompression module and to each algorithm.

2. compression/decompression - Compresses and decompresses data. Handles blocks either indi-
vidually or in a stream.

3. algorithms - Each algorithm described above will be implemented separately, conforming to
the same interface to the userfs integration module.

4. test suite - The test suite will apply the workloads described below and gather cost information
for analysis and evaluation.

Figure 3 illustrates the relationships between these modules.

3.3 UserFS

Our implementation is on a Linux platform. We use userfs 0.9.2. Userfs is a mechanism that allows
a normal linux user process to be a �lesystem. This needs to be loaded into the kernel as a module.

4

50



Once a userfs module is mounted to a directory, such as /mnt/compressed, any �lesystem accesses
referring to �les within that directory tree are sent to the userfs module. In order to implement a
compressed �lesystem, we wrote a module to handle all the major �lesystem calls, compressing and
decompressing along the way. When a system call requests data through userfs, our module looks
up the physical �le corresponding to the virtual �le in the mounted directory, processes metadata to
�nd the correct part of the �le, decompresses the data, and passes it through userfs to the application
which made the (ordinary) system call. The system works similarly for other operations, such as
writing to a �le. Figure 4 traces the path of a system call.

3.4 Hybrid System

As an application of this knowledge, we have implemented the compressed �lesystem with all four
algorithms available in a hybrid fashion. That is, �les may be individually speci�ed as to which
algorithm they should use, so the best algorithm for each �le can be chosen, depending on its
speci�c workload.

The user speci�es which algorithm to use by simply typing a pre�x to the �lename when creating
the �le. For example, to use algorithm 2 when creating a �le named my�le, use a �lename like
/mnt/compressed/algorithm2:my�le. The forced space for algorithm 4 may be speci�ed in a similar
fashion. For example, to use algorithm 4 with 128 bytes of forced space per logical block, use a
�lename like /mnt/compressed/algorithm4:128:my�le.

This system also makes it very simple to do the \o�ine cleaning" recommended for �les which
become fragmented after many updates. To clean a �le, simply copy it to a temporary �le, delete
the original, and recopy the the temporary �le back to the old name. This causes the �le to be
freshly written with no fragmentation.

4 Evaluation Methodology

4.1 Hypothesis

Particular algorithms for structuring compressed �les should work better than others for speci�c
�le access patterns, and di�erent ones should work better for di�erent workloads. We verify this
with empirical results and demonstrate which algorithms are appropriate for which workloads, and
investigate how much di�erence the choice of algorithm makes.

4.2 Test Circumstances

The test software is a set of simulations written by ourselves, and therefore easy to control. It
repeatedly runs the same set of tests (including various workloads) using various algorithms. The
results of the test consist of time and space measurements. The space measurements are easy to
observe by simply inspecting the �les.

For time measurements, we use the system real-time clock, purportedly accurate to one microsec-
ond, which is well in excess of the precision needed for our measurements, which are usually in the
tens of seconds. We chose real time to insure that all relevant time expenses are included, such as
system time, userfs time, I/O time, etc. The downside of this is that other system processes can
a�ect the results. We minimize this by running the �nal tests on a minimal system, that is, with no
other work going on.

Since the test software involves some use of randomization, the random number seeds are regu-
lated so that the exact same test is used for each algorithm. That way the results of each test run
are directly comparable across algorithms. In di�erent test runs, di�erent sets of random numbers
are used.

5

51



4.3 Workloads

The following list of �le access patterns has been selected from a wide range of possible patterns as
representative workload set. Each workload is annotated with a real-world example it represents.
We had considered the possibility of testing a much wider range of workloads, but concluded that it
is better to have a small set of realistic workloads representing familiar tasks than a more complete
set that includes many loads rarely encountered in practice, which would result in a proliferation of
data and obscure the results. Hence, these representative workloads should su�ce:

1. Sequential read of a large �le (e.g. grep).

2. Many appends of a very large �le. For example, consider applications that monitor and log
tra�c passing a network. The log could grow very large, recommending compression, but
frequent updates must be handled e�ciently.

3. Random rewrites of records, interleaved with sequential reads (Eg. Database applications).

4.3.1 Files used

A mention of the �les that we used is in order, as the compression process depends highly on the
nature and content of the �le, and could have an important bearing on the results seen. The �les
used are summarized in the table below. In future, we refer to these �les by their �le sizes. An
important limitation in our evaluation is that the biggest �le we used was only 4 MB, and potentially
more interesting results could have been obtained with larger �les.

File Size Description
20K Text File containing mainly alphabets, and a few digits.
130K Text File containing mainly alphabets, and a few digits.
1MB A �le that contains a list of several IP addresses.
4MB A �le that has a log of several Network packets.

5 Results and Analysis

We present and discuss the results obtained for each of the workloads on every algorithm. Algo-
rithm 0 refers to an algorithm that does no compression, and is used as a baseline for comparison.
(It is implemented so as to experience the overhead of userfs, except that it directly accesses an
uncompressed version of the �le).

5.1 Sequential Test

This test was conducted by sequentially reading a �le 100 times. Reported below is the total time
for the 100 sequential reads, and the percentage compression obtained ((Origsize � Compsize) �
100=Origsize).

Sequential
Time(sec) Compression(%)

Algorithm 20K 130K 4MB 20K 130K 4MB
0 0.35 2.10 107.21 0 0 0
1 2.95 15.19 50.26 60.38
2 10.35 73.49 1966.51 44.59 47.66 69.63
3 10.39 73.67 1944.88 42.16 47.42 69.30
4 10.41 73.47 1959.37 41.28 43.58 66.60

As expected, Algorithms 2,3,4 perform very similarly in terms of time-e�ciency while Algorithms
2 and 3 do slightly better than Algorithm 4 with regard to space-e�ciency. Also as expected is

6

52



Algorithm 1's better space e�ciency as compared to the other algorithms. While we expected
Algorithm 1's time e�ciency to be slightly better than that of other algorithms, we were surprised
to �nd the remarkable improvement of a factor of �ve. This may be explained due to our optimized
implementation of Algorithm 1. We wanted to avoid decompressing the entire �le for the read of
each block during a sequential read of the �le. To do this, we maintained enough state with a
�le being read, so that if it was identi�ed that the �le is being sequentially read, then we could
carry on the decompression process from where it had stopped in the previous read. However, the
previous read call may have caused more data to have been decompressed than needed by that call
itself; To ensure that any meaningful optimization is derived, we decided to cache this extra data.
Consequently, we were using a cache of 8KB. Note that this caching is inherently essential for
the good performance of the algorithm, and even a modest cache of 8K could mean a tremendous
performance improvement for the algorithm. No doubt, a good performance improvement could be
expected using caching in the other algorithms as well.

5.2 Append Test

In this test, we started o� with a �le size 0, and appended data constantly till it reached the
sizes shown in the Table below. Each append operation itself appended 10 random words from a
collection of about 300 English words, as well as some redundant information that was common
across all appends. After each append the �le was ushed on to disk. The Table below reports the
�le-sizes created, the compression ratio achieved and the total time for the �nal �le to be created
after all the appends.

Append

Time(sec) Compression(%)
Algorithm 20K 130K 4MB 20K 130K 4MB

0 0.08 0.49 16.86 0 0 0
1 53.41 61.45
2 10.68 74.85 2573.77 54.06 53.69 55.59
3 10.68 75.78 2613.59 42.96 44.62 46.51
4 10.50 74.60 2486.90 49.90 47.74 49.89

Algorithms 2 and 4 seem to perform better than Algorithm 3 with regard to space e�ciency. The
reason for this is that repeated appends to Algorithm 3 causes each logical block to be represented as
a chain of consecutive fragment, each fragment having the associated overhead of the next fragment
pointer. However, we believe that this shortcoming can be overcome in a future implementation by
modifying Algorithm 3 so that if there is an increase in size of the compressed chunk corresponding
to that logical block which owns the last fragment in the physical �le, then, the size of the last
fragment is increased, rather than a new fragment created. Algorithm 2 is slightly better than 4
because it has no reserved space at the end of each physical block.

Algorithms 2,3,4 perform similarly in terms of time e�ciency. Algorithm 1 is horribly slow in this
instance, because each change to the �le (each append) requires the decompression, and subsequent
recompression of the entire �le, resulting in O(n2) time cost (where n is the number of appends).
This is so bad that we didn't even bother measuring algorithm 1 on large �les.

5.3 Database Test

Each of the test �les was considered to consist of records of size 64 bytes. A change operation was
implemented by reading some random record (64 bytes) of the �le, and modifying it. The modi�ed
record consisted of 64 randomly generated letters of the English Alphabet. Usually the modi�ed
record was more random than the initial record, and would increase the size of the compressed �le.
The Database test itself consisted of 10 runs, each run involving 50 changes

to the �le, and 1 sequential read. The �le was opened before and closed after each of the 10
runs. The table below presents the total time for the 500(10*50) changes, and total time for the

7

53



10 sequential reads. The compression percentage values give the compression percentages after the
changes have been made.

Database Test
Change(sec) Read(sec) Compression(%)

Algorithm 20K 130K 4MB 20K 130K 4MB 20K 130K 4MB
0 0.16 0.25 0.59 0.03 0.21 7.49 0 0 0
1 270.93 0.33 30.96
2 53.81 61.94 45.94 1.30 8.20 177.77 23.97 37.31 68.94
3 54.35 61.69 31.89 1.36 8.31 178.59 11.28 34.29 68.52
4 53.66 61.46 34.12 1.31 8.23 198.00 19.54 33.92 65.85

Algorithm 1 has the best compression; Algorithm 2 has better compression than Algorithms 3
and 4. Between Algorithm 3 and 4 however, the space e�ciency is better for Algorithm 3 for larger
�les, while it is better for Algorithm 4 for smaller �les. There is wastage of space in Algorithm 4
due to internal fragmentation; On the other hand heavy changes to a small number of logical blocks
(as with the 20K �le which had 3 logical blocks and 500 changes), would cause each of these logical
blocks to consist of a long chain of fragments in Algorithm 3, each fragment having some space
wasted for the rest of the chain pointers. For larger �les however, it is more unlikely that the same
logical block is so heavily changed, and secondly the pointer overhead becomes more insigni�cant.

When we consider change-times, Algorithm 1 is extremely slow, and we deemed it su�cient to
show the poor performance for a small �le. Algorithm 3 is almost 33 % faster than Algorithm 2 for
changes to the 4 MB �le. This is because it avoids explicit recopy of the �le, that is needed for every
change in Algorithm 2. Algorithm 3 is slightly faster than Algorithm 4, because of the occasional
recopies required for Algorithm 4. For smaller �les, the change times of the three algorithms is
almost indistinguishable; this may due to the low costs of explicit recopy of a small �le.

While the main purpose of this test was to analyze the change-times, we also measured the
sequential-read times mainly to see if there was any loss of performance in sequential reads with
Algorithm 3. We found that the loss of performance is marginal, if at all; more surprisingly, there
seems to be a slight deterioration of performance for Algorithm 4. We believe that the good per-
formance for Algorithm 3 is probably explained by the fact that the fragmentation is very light
for the larger 4 MB �le; for the smaller �les good values are seen in spite of heavy fragmentation
possibly because of a read-ahead mechanism in the underlying �lesystem (ext2fs). We do not have
a satisfactory explanation for the poorer performance of Algorithm 4: one possible explanation is
that the compressed �le is larger in size, and the extra time is due to the reading of a bigger �le.

5.3.1 Algorithm 4 Parametrization

All our experiments involving Algorithm 4 so far involved a forced-space of 0. In this section, we
study the e�ect of varying the forced space. Of the operations read,append and change, the only
operation where we expect a di�erence in performance is change and we focus only on this. In this
case, the test �les were viewed as consisting of records of size 256 bytes. A change operation involved
reading a random 256 bytes, and replacing it with a set of random alphabets. The test itself involved
10 runs, each run consisting of 100 change operations. The �le was opened before and closed after
each run. Presented below is the total time taken for all the (10*100) changes, the compression rates
before any change was made, and the compression rates after all the changes were made.

Algorithm 4
Time(sec) Compression(%) Initial Compression(%)Final

FS 1MB 4MB 1MB 4MB 1MB 4MB
0 76.33 80.70 74.23 66.59 51.98 60.69
64 76.85 79.56 74.08 65.71 51.92 60.49
256 75.61 73.28 74.08 63.20 51.92 59.90

8

54



Our initial expectations were that increasing the forced space would lead to poorer space perfor-
mance, but better time performance. While our observations seem to indicate the trend, it is not as
pronounced as we had expected. For the other �les we tried (< 1MB), the variation in forced-space
caused almost no di�erence in performance.

6 Conclusions and Future Work

In this project, we considered issues involved in the development of a compressed �le-system. We
speci�cally focussed on the problem of structuring a compressed �le in this system. We have built a
hybrid system, that supports di�erent algorithms for structuring compressed �les, and have shown
that particular algorithms perform better with particular access patterns. The user has the choice
of indicating which algorithm he would like to use based on the access patterns likely to be seen on
the �le. Based on our evaluations, we make the following recommendations:

1. Sequential Read - Algorithm 1 with minimal caching works very well; Further it gives the
best compression ratio. The cache required is small (8K), and is critically essential for good
performance of the Algorithm.

2. Appends - Algorithm 2 works well being as time-e�cient as Algorithms 3 and 4, yet having a
much better space e�ciency.

3. Changes - Algorithm 3 seems to be the best candidate. It evidently outperforms Algorithms 1
and 2. Our evaluation shows its performance to be slightly better than Algorithm 4 in terms
of time e�ciency; It is better than Algorithm 4 with regard to space e�ciency (except for
small Files); Finally, it has the bene�t that it can be cleaned o�ine, which is not available to
Algorithm 4. We had feared a slight loss in performance for sequential access; however such
a loss was not revealed in our evaluations. Further, our evaluations revealed only a marginal
improvement on forcing free space in Algorithm4. On the balance, it is fair to choose Algorithm
3 over Algorithm 4 in most cases.

While our system functions as a prototypical compressed �lesystem, demonstrating a basic
amount of transparency and showing the relative merits of various algorithms, it is not really prac-
tical for regular use. It is too slow to compete with other �lesystems, and it doesn't support all
operations, such as symbolic links. While it would be relatively simple to extend its functionality to
include all the regular �lesystem operations, the e�ciency can only be improved so much while the
system resides in user space, passing all calls through the extra userfs layer. A production version
of this system should be integrated with VFS inside the kernel instead of using userfs. Not only
would this avoid the overhead of multiple redirections of system calls, but it would allow some of
the algorithms to be improved through direct access to the underlying disk layout mechanism and
would enable metadata to be kept seperate from the data along with the traditional UNIX inode.

A look at the various tables shows us that the time-e�ciency of all our algorithms is disappoint-
ing when compared to the e�ciency of an uncompressed system. Note that this overhead is not due
to userfs, as the uncompressed system was also allowed to experience the overhead associated with
userfs. However, adopting good caching-mechanisms could help alleviate the overhead associated
with compression somewhat; The remarkable performance of Algorithm 1 on sequential accesses
with just an 8K cache seems very encouraging in this respect. Caching mechanisms that must be in-
vestigated include (i) Caching of Metadata on the opening of a �le, as some of our algorithms require
frequent updating of metadata entries; (ii) Caching of logical blocks when they are uncompressed,
so that a subsequent access to the same logical block does not require the compression overhead.

Finally, in this project, we have not considered issues related to fault tolerance (e.g. If a system
crashes while we are in the process of updating metadata, recopying �le etc. then the �le contents
are badly destroyed). However, this question is orthogonal to the design of a compressed �le system
itself, and methods normally employed in regular �le systems could be used.

9

55



7 Relationships to Course Material

The main focus of this project was on comparing and improving compressed �le layout algorithms,
which took place in the context of the development of a compressed �lesystem. Clearly, this is
directly related to the class topic of �lesystems. In addition, at a high level our investigation is
directed at identifying situations where each of several competing techniques is e�ective and trying
to support all of them, rather than discover one globally best technique. This approach has been
motivated by several class readings (e.g. Munin).

10

56



A Kernel Implementation

We discuss how the algorithms described earlier may be implemented at the kernel level one by one:

1. Can be implemented as is.

2. Metadata is added to the usual contents of each UNIX inode. Per logical block entries may
be organized in the fashion of direct, indirect and doubly indirect blocks. An optimization is
that the per-logical-block entry need only contain the byte in the compressed �le where the
corresponding compressed chunk starts.

3. Metadata is added to the usual contents of each UNIX inode, adding doubly indirect pointers.

4. Metadata is added to the usual contents of each UNIX inode. Per logical block entries may be
organized in the fashion of direct, indirect and doubly indirect blocks. The block size of the
physical �le may be �xed as the physical disk block size. An explicit recopy of data can be
avoided, by having only a recopy of inode pointers.

B Compression Algorithm

We have chosen the Lempel-Ziv-Welch (LZW) algorithm1 to compress and decompress data. LZW
was developed by Terry Welch in 1984 for hardware implementation in high performance disk con-
trollers by re�ning an earlier algorithmpublished by Lempel and Ziv in 1978. This algorithm belongs
to the category of dictionary methods in data compression, which utilizes the property of many data
types containing repeating code sequences. Text �les and image �les are two good examples of such
data type.

The LZW method is very popular in practice (e.g. image GIF format, UNIX compress utility)
and its major advantage over other dictionary methods (e.g. LZ77) is its speed, because the number
of string comparisons is signi�cantly less.

The LZW algorithm creates a dictionary of the phrases that occur in the input data. When an
encountered phrase is already present in the dictionary, only the index number of this phrase will
be sent to the output.

This method also does not need to read in the whole input data to perform the compression
which gives no limitation on the �le size, i.e. the �le length can be much larger than the available
memory size.

The algorithm itself contains two parts: Encoding and Decoding.
Notation: P = current pre�x, C = current character.

B.1 The Encoding Algorithm

1. At the start, the dictionary contains all possible roots, and P is empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

a.if it is, P := P+C (extend P with C);

b.if not,

i.output the code word which denotes P to the codestream;

ii.add the string P+C to the dictionary;

iii.P := C (P now contains only the character C);

4. Are there more characters in the charstream?

if yes, go back to step 2;

if not:

i.output the code word which denotes P to the codestream;

ii.END

1LZW algorithm is a patent of Unisys. (US Patent No. 4558302). Free use of the method is allowed except for the
producing of commercial software

11

57



B.2 The Decoding Algorithm

1. At the start the dictionary contains all possible roots;

2. cW := the first code word in the codestream (it denotes a root);

3. output the string.cW to the charstream;

4. pW := cW;

5. cW := next code word in the codestream;

6. Is the string.cW present in the dictionary?

if it is,

i.output the string.cW to the charstream;

ii.P := string.pW;

iii.C := the first character of the string.cW;

iv.add the string P+C to the dictionary;

if not,

i.P := string.pW;

ii.C := the first character of the string.pW;

iii.output the string P+C to the charstream and add it to the

dictionary (now it corresponds to the cW);

7. Are there more code words in the codestream?

if yes, go back to step 4;

if not, END.

References

[1] K. Sayood, Introduction to Data Compression, pp.97-116, Morgan Kaufmann Publishers,
Inc., 1996.

[2] Data Compression Reference Center, Compres-

sion Algorithms, http://www.rasip.fer.hr/research/compress/index.html, Faculty of Elec-
trical Engineering and Computing, Zagreb, Croatia.

[3] Jeremy Fitzhardinge, Userfs 0.9.4.2,
http://sunsite.anu.edu.au/archives/linux/ALPHA/userfs/userfs.lsm

12

58



January 28, 1998

1 of 15

Dishrag: Distributed, Shared
Objects in Java

Doug Rohde, Rick Romero, Philip Wickline

We have created a system, Dishrag, which supports distributed computing in
the Java language. This provides a library of routines for object control and
sharing along with a Java pre-processor which tracks object modifications for
efficient updating. Dishrag offers ten sharing policies, which differ in their
level of concurrency control and are best suited for particular access
patterns. We analyze the performance of these policies on various tasks,
assess the overhead in each basic operation of the system, and describe
several distributed applications that have been implemented using Dishrag.

1.0 Introduction

Traditionally, shared memory packages, such as Munin, have operated at the level of a virtual memory page.
However, from the programmer’s perspective, code is typically designed around structured memory. This realiza-
tion has led to the development of object-oriented programming languages which reify this conceptual structure.
Therefore, unless one wishes to share a complete address space, it makes little sense to design a sharing system
around memory pages when applications are designed around objects. Therefore, we have developed a shared
memory system which operates at the level of objects, making it a more natural extension to methods of writing
conventional single-processor applications.

Our system, Dishrag (thedistributedsharing agent), is an extension to the Java programming language. It allows
the user considerable control over the object locking and distribution for robust and efficient concurrency without
significantly altering the object-oriented programming model. In this paper, we outline the interface and imple-
mentation of dishrag. We describe and analyze the various sharing policies supported by the system and describe
several applications that have been implemented using Dishrag, included parallel sorting and matrix multiplica-
tion and a parallel theorem prover.

2.0 Interface Design

This section describes the user interface to Dishrag. Additional details of functionality will be developed in the
following sections. Currently, the management of shared objects is handled through an auxiliary control object
associated with the user-defined shared object. An alternative design would have been to insert control informa-
tion into the users’ objects during preprocessing. However, this would have made the system less adaptable to the
sharing of primitive types and other classes whose source code is unavailable.

59



Interface Design

2 of  15 Dishrag: Distributed, Shared Objects in Java

A user makes an object shareable by labelling it as implementing theShareable  interface. They need not
define special methods for the object, other than a basic constructor.  The preprocessor will insert the necessary
methods into the object prior to compilation.

2.1 Shared Object Creation

Static methods of theSharing.Share  class are used to gain access to a control object, which is of type
SharedObject. ThePublish  procedure creates an object server to handle requests for the object and regis-
ters an entry for it accessible to outside processes.

SharedObject Object Share.Publish(Object O, String name, int policy,
 int history);

Dishrag objects are not migratory, in the sense that the object server remains in the same process for the lifetime
of the object. Publish automatically subscribes to the shared object, returning a control object whose use is
described below. Thename argument specifies the name by which subscribes with address this object.policy
sets the sharing model used for this particular object. Once set, sharing policies cannot be modified. The policies
available in Dishrag are described in Section 4.0, on page 4. Thehistory  field is used by the object server to
determine how many old versions of the object will be remembered for clients who have previously accessed the
object. This is used to minimize the information necessary to update a client’s copy.

TheUnpublish call will remove the network entry for the named object, preventing further subscriptions.
Current outstanding copies of the object, however, remain valid.

void Share.Unpublish(String name);

Subscribe  is used by a client to access a shared object. Thename is as described in thePublish  call and
host  is the machine on which the object was published.

SharedObject Share.Subscribe(String name, String host);

2.2 Object and Lock Management

The following methods are implemented by the classSharing.SharedObject :

Shareable GetObject();

void AcquireRead();

void ReleaseRead();

void AcquireWrite();

void ReleaseWrite();

GetObject  returns the user’s actual object. It might seem desirable to provide a shared object system that hides
all aspects of locking from the user. However, this is a severe limitation because it would preclude the user from
doing such things as locking two objects simultaneously during a safe dual-update. While Munin only supports a
single form of lock, Dishrag offers both read and write locks. This allows interactions between clients to be con-
siderably more efficient, with features such as buffered writes and write locks that allow readers to continue but
block other writers.

The exact behavior of the acquire and release procedures is protocol dependent. In non-request protocols, the
user is guaranteed to have the latest version of the object on return. Provided that the user protects all code that

60



Interface Design

Dishrag: Distributed, Shared Objects in Java 3 of 15

alters the object with these locks, the object is always guaranteed not to change, aside from user modifications,
prior to a release.

Four additional commands are used in some policies:

void Commit();

void StopUpdates();

void AcquireUpdatedRead();

void AcquireUpdatedWrite();

In access policies, changes are buffered and are only written back to the server when another client wishes to
access the object.Commit  forces the changes to be written back immediately. This is necessary, for example, if
the client wished to exit.StopUpdates  is used inupdate policies, in which the client automatically receives all
changes. Automatic updates will resume upon the next read or write acquire. Inrequest policies, the user is
allowed to retain out-of-date objects and must explicitly request updates. This is done using theAcquireUp-
datedRead  andAcquireUpdatedWrite  methods.

2.3 Remote Threads

In order to facilitate distributed programming, Dishrag provides methods for starting threads on remote
machines.

void Launch.launch(Runnable r, String where);

We do not intend to emulate a sharing mechanism in which the new thread “inherits” all of the class members of
the parent thread. All sharing of this sort must be done explicitly by the programmer.

2.4 Synchronization

While the acquire and release methods provide one level of synchronization control, robust concurrent program-
ming requires additional mechanisms for synchronization. Therefore, Dishrag supports barriers, which can be
used as traditional barriers which wait for a fixed number of accesses before releasing all waiters or can act as
“conditions” which allow direct notification.

Barrier BarrierObj.Publish(String name, int limit);

void  BarrierObj.Unpublish(Barrier B);

Barrier BarrierObj.Subscribe(String name, String host);

The above procedures are much the same as those for shared objects, though a barrier is not created prior to pub-
lishing, as is an object. Thelimit  field is used to specify how many waiters are required before the barrier will
break. A non-positive value is used for a condition, which has no limit on the number of waiters.

The following calls can be made on aBarrier:

61



The Preprocessor

4 of  15 Dishrag: Distributed, Shared Objects in Java

void Wait();

void Notify();

void NotifyAll();

Wait  will cause the current thread to wait until a notify occurs or the barrier breaks.Notify  is guaranteed to
wake up a single waiter andNotifyAll  will wake them all up.

3.0 The Preprocessor

In order to minimize the cost of updates, we have taken special measures to avoid shipping entire objects over the
network. Using a bit field, we keep track of which fields of an object have been modified since an update, and
ship the contents of only those fields. The preprocessor is responsible for annotating the user’s code so that the
proper bit is set whenever an assignment is made to a field. In addition, the preprocessor inserts methods into the
object for generating and interpreting exportable, compact representations of updates to the object. By adding
methods instead of relying on Java introspection, we have full access to all fields of the object instead of just the
public ones.

Ideally the preprocessor would recognize repeated updates and coalesce the bit field statements into a single
update at the end of a block or following a loop. The current version only performs simple tracking, however, and
all changes to object fields must be contained within methods defined by that object. More efficient assignment
tracking could be implemented with a modification to the Java virtual machine.

4.0 Sharing Policies

In order to produce efficient behavior under a variety of access patterns, Dishrag provides ten sharing protocols.
Earlier systems, such as Munin, offered a collection of disparate protocols of seemingly ad hoc design. On the
other hand, the Dishrag protocols are based on a simple, coherent framework: each protocol is determined by a
reasonable pair of values of just two parameters. Nevertheless, we believe that this set will be able to efficiently
handle the specific access patterns for which special Munin protocols were designed. This is partially due to the
existence of distinct read and write locks provided by our system.

4.1 Parameters

The first protocol parameter is thesynchronization mode. There are five possible modes:read-only, exclusive,
access, release, andmultiple-writer. Exclusive allows only a single reader or writer at a time. Access and release
are two forms of single writer/multiple reader modes. In access, a writer blocks other readers and writers when
writing begins. The writer need not do anything special upon release of the write lock. In fact, unless there are
other clients waiting for the object, changes need not be written back to the server upon release of the write lock.

In release synchronization mode, on the other hand, a working writer blocks other writers but allows readers to
continue. This results in a greater level of concurrency and makes it faster to begin writing. However, when the
write is released, the changes must immediately be written back to the server and versions held by the other cli-
ents either invalidated or updated. Therefore, the trade-off is that buffering is not possible and write releases are
more expensive. Multiple-writer mode is essentially equivalent to release mode except that writers treat other
writers just like readers.

62



Sharing Policies

Dishrag: Distributed, Shared Objects in Java 5 of 15

The second protocol parameter is themodification mode. There are three such modes:invalidate, update, and
request. Invalidate mode causes all clients to be invalidated by a write. If the synchronization is access, this
occurs when a writer acquires the lock. If the synchronization is release, this occurs when the writer releases the
lock. Update mode is similar except that other clients automatically receive updates rather than invalidates. Note
that in update mode each client will always have the previous version when a write occurs so the same update
may be sent to all of them and no modification history needs to be stored in the server.

In request mode, users are allowed to retain out-of-date copies. No invalidates or updates are ever sent and clients
must explicitly request any updates. This might be desirable in a situation similar to a web page in which a single
resource is potentially read by very many clients, the server does not wish to keep track of the clients as it must
with an invalidate or update policy, and it is not detrimental for a client to be reading a slightly out-of-date copy.
Munin does not appear to support such a policy.

Although there are five synchronization modes and three modification modes, not all pairs define reasonable pol-
icies. Read-only mode is only consistent with a request policy. Exclusive control is only consistent with invali-
date mode. Finally, access synchronization does not make sense with an update policy because access relies on
requests by other clients to cause a write-back by the last writer and read requests are only made the first time a
client locks the object in update mode. What remains are ten policies, described individually below for clarifica-
tion.

4.2 Protocols

Read-only: Although users may write their local copies of such objects if they wish, read-only objects have no
mechanism for sending changes back to the server. The object is sent to the client by the server on creation and at
the user’s request thereafter.

Exclusive: The exclusive policy allows only one readers or writer at a time. Any read or write attempt will cause
the current owner, if there is one, to write back any changes they have made once they release their lock. The new
owner is then sent any necessary changes as is allowed to proceed. Repeated writes by the same client will be
buffered and only written back when another client wishes to obtain the lock. Munin’smigratory policy is like
this, although it does not use a fixed server.

Access-invalidate: This and the next four policies allow multiple readers but only one writer. In this policy,
invalidates are sent to all readers before a writer may begin to write. Therefore, readers are not allowed to hold
out-of-date copies. As inexclusive, the writer only sends changes back to the server when the server requests
them. The invalidate and request policies use version numbers to allow the server to keep track of which pieces of
the object have changed since a client’s previous request so that only necessary updates are transmitted. This is
equivalent to Munin’sconventional policy.

Access-request: As in all request policies, no updates or invalidates are sent in this policy. If a writer is working,
read or write requests will be blocked until the writer is done. When a writer releases the lock, updates are only
returned to the server if another client is waiting.

Release-invalidate: In this and other release policies, readers are allowed to continue reading when a writer
begins. Once the writer is done, the changes will be written back to the server immediately, without waiting for a
request. When the changes arrive at the server, the current readers are invalidated.

Release-update: This policy is similar to the previous one except that, when a writer sends changes back to the
server, the changes are forwarded to each of the readers rather than sending invalidation messages. If a client

63



Testing and Evaluation

6 of  15 Dishrag: Distributed, Shared Objects in Java

wishes to stop receiving updates, they must explicitly notify the server. No version numbers are required in this
policy. Release-update reduces the number of messages required, provided that the object has a relatively stable
sharing pattern, particularly if a frequent reader, rather than a frequent writer, forms the critical path. Munin’s
reduction policies may essentially be special cases of this policy.

Release-request: This is identical toaccess-request except that update requests are not blocked if there is a write
occurring. The reader requesting the update will simply be given the last version of the object. This allows
quicker responses to update requests but may be undesirable in some circumstances.

Multiple-writer-invalidate : In the multiple writer policies it is up to the user to keep writers from stepping on
one another’s toes. These policies might be thought of as release rather than access policies as writers will not
block anyone when they begin and writers will write-back their changes as soon as they are done writing without
waiting for a request from the server.

Multiple-writer-update : This is the same as the previous policy except that updates are sent to everyone rather
than invalidates. As inrelease-update, clients must explicitly tell the server when they no longer want updates.
Munin’s producer-consumer andwrite-sharedpolicies are similar to this, although the latter appears to perform
updates immediately upon each write, rather than waiting for a release of the write lock.

Multiple-writer-request : This allows anyone to retain out of date copies. All clients must explicitly request
updates. Munin’sresult policy appears to be a special case of this in which only the reader

4.3 Multi-threaded Clients

In writing distributed programs, it may be desirable to have multiple threads in a single client process group
which share the same local copy of an object. Therefore, Dishrag offers concurrency protection mechanisms
within the client process to ensure that multiple threads don’t violate the lock guarantees. However, implement-
ing the same protocol interactions at the client level as occur at the server level would be exceedingly complex
and would require that multiple copies of an object be made within the client process. This would change the
user’s programming model more than we would like because the user could no longer retain references to their
shared object except through the control object.

Therefore, only access synchronization is supported by the client-level code. If a user wishes to have multiple
threads in the same process interact with an object using exclusive, release, or multiple-writer synchronization,
they must have those threads separately subscribe to the object. The threads will then have their own copies and
will interact through the server. When the server sends a client an update, that update must wait until all client
threads release their locks on the object before it can perform. Because the server need not wait for this to occur,
a new thread is spawned on the client to perform an update and the server may continue after only a short delay.

5.0 Testing and Evaluation

We have evaluated Dishrag in a number of ways. We first present timing measurements of each of the basic net-
work operations used by the system. Then we will describe several illustrative sharing patterns that might occur
in a Dishrag application and compare the performance of each of the protocols on the patterns, analyzing their
strengths and weaknesses in practice. Finally, we describe three useful applications that have been implemented
using Dishrag.

64



Testing and Evaluation

Dishrag: Distributed, Shared Objects in Java 7 of 15

5.1 Component Benchmarks

Table 1 shows the time in milliseconds required to perform various operations. Timing was evaluated on an
Ultrasparc 1 client communicating with 266 MHz Pentium II server attached to different ethernets within the
same building. Dishrag uses Java’s built-in remote method invocation (RMI) procedures for all communication.
Although each RMI call appears to create and destroy a TCP connection and spawn a new thread in the receiver,
it is still relatively quick compared to the overhead of the other basic procedures.

Subscribing to an object is no more costly than obtaining an update, although this subscribe does not include the
cost of the necessary first update. The row labelled “obtain an empty update” is the cost for the client to send a
read request to the server and receive back the object updates when there are actually no updates to be returned.
There is quite a bit of overhead in obtaining an empty update. This is partially due to the cost of grabbing locks in
the server and partially due to the fact that, in the current implementation, the server returns an “updater” object
even when that object contains no update information. This could be optimized by returning nothing when an
update is unnecessary. However, this would have relatively little effect in practice as an empty update will only
actually be sent if the user acquires and releases a write lock without writing to the object.

It appears that each additional 1KB of data in an update message costs roughly 10 milliseconds per update. The
next two rows of the table list the cost for the server to push either an invalidate or an update to a busy client. The
invalidate is less than twice the cost of a basic RMI call. The update is a bit more costly because it must wait for
the client to spawn a new thread before it can return. The time necessary to wait on a barrier (where no waiting is
actually done because the barrier breaks immediately) is only slightly greater than an RMI call. This is important
because barrier waits are quite frequent in many applications and it is often the thread on the critical path that
breaks the barrier.

5.2 Sharing Patterns

In order to evaluate the sharing protocols and illustrate their performance characteristics in relatively controlled
situations, we implemented four small testing programs. Each program contained a server which spawned four

TABLE 1. Time in milliseconds to perform simple Dishrag operations

Operation Time

Minimal RMI call 2.7

Publish an object 75.6

Subscribe to an object 18.5

Obtain an empty update 21.4

Obtain a 1KB update 32.1

Obtain a 2KB update 41.7

Obtain a 3KB update 52.3

Send an invalidate 4.6

Send an empty update 9.8

Publish a barrier 31.1

Subscribe to a barrier 9.0

Wait and break a barrier 3.4

65



Testing and Evaluation

8 of  15 Dishrag: Distributed, Shared Objects in Java

client threads on different machines. We measured the average time to complete each program using each of the
protocols other than read-only.

In Program 1, a single 1KB object was used. One client acted as the writer, repeatedly acquiring a write lock,
writing to the object, and releasing the lock. The other four clients acted as intermittent readers. Each one would
read the object an average of once for every ten writes. Barriers were used to synchronize the clients so that read-
ers were aware of the number of writes that had occurred. Figure 1 shows the average time required to complete
100 iterations of the loop using each of the protocols.

Of primary interest in reading these charts is the comparison between access-invalidate, release-invalidate, multi-
ple-writer-invalidate, and release-update. This first sharing pattern is best suited for access policies. Because
reads only occur following approximately 1/3 of the writes, there is potential for the writer to buffer multiple
writes. This is taken advantage of by the exclusive and access-policies. Access is slightly better than exclusive as
readers do not interfere on those occasions when they both wish to access the object. Although it doesn’t do write
buffering, multiple-writer-invalidate is surprisingly good here. Although the number of messages sent in this
sharing pattern is the same for it and release-invalidate, multiple-writer-invalidate is faster because there is less
overhead in the server. In the release policy, all read and write requests that reach the server must get on a queue
before they can complete. Because multiple-writer provides less synchronization control, it lets these requests go
straight through.

The update policies are particularly bad for this sharing pattern because most of the updates are unnecessary.
Two versions of each request policy are shown. The eager version requests an update on every read and the lazy
version only requests an update on 10% of the reads. Clearly the lazy versions perform well because they require
few updates, with multiple-writer-request the fastest overall. Interestingly, the eager versions are still quite good.
In fact, for this sharing pattern, each eager request policy should be faster than the corresponding invalidate pol-
icy because they do exactly the same number of operations, but the request policies avoid sending any invali-
dates. The performance of eager request policies would quickly decline if the sharing pattern involved clients
performing multiple reads between each write.

Program 2 was identical to Program 1 except that readers performed a read following every write, not just 10% of
the writes. The results are shown in Figure 2. Now the benefit of the access mode disappears because there is
never an opportunity for buffered writes. Because it doesn’t allow concurrency between the writer and the read-
ers, access-invalidate is now worse than release-invalidate. Although exclusive did quite well on Program 1
because the sparse reads caused little interference, that is not the case in this program. The multiple-writer poli-
cies continue to outperform release because of their lower overhead. Although the update policies are not per-
forming extraneous updates, they still do poorly in this situation because the updates are performed on the critical
path while the writer is waiting to release its lock. Again the eager request policies did quite well because they
avoid invalidates, but multiple-writer-invalidate turned out best overall, aside from the lazy patterns.

Rather than one writer with multiple readers, Program 3 involves multiple writers with a single reader. On each
iteration of the loop, each of the writers writes to a separate object while the reader sits idle and then the reader
reads from all of the objects. In this case, the exclusive and access policies do poorly because there is no opportu-
nity for buffering and the writers block out the reader unnecessarily. The release and multiple-writer invalidate
and request policies are better because they allow the writers to begin the next iteration while the reader is still
reading. However, the benefit of the update policies is finally revealed. The cost of performing the updates is now
mostly paid in parallel by the writers rather than on the reader’s critical path. The update policies even outper-
formed the lazy request policies in which the reader was only accessing each object 10% of the time.

Like Program 3, the final illustrative program had four writers and a single reader. However, in this case the writ-
ers were all writing to the same object. As expected, the results, shown in Figure 4, indicate that the multiple-

66



Testing and Evaluation

Dishrag: Distributed, Shared Objects in Java 11 of 15

writers invalidate and request strategies were superior. Of note is the poor performance of the release consistency
policies. In access-invalidate, each writer must send a single message invalidating the previous writer and obtain-
ing their updates. However, in release-invalidate each writer pushes their updates to the server and then the next
writer must still send them an invalidate. The update policies result in pathological behavior on this sharing pat-
tern. Not only is each writer unnecessarily sending updates to the reader, they are sending them to other writers
as well. Multiple-writer-update takes a bit under a third the time of release-update because most of this occurs in
parallel, but it is still four times more costly than multiple-writer-invalidate.

Aside from confirming most of our initial expectations, these analyses have lead to a number of interesting real-
izations. Access-request is a good, safe choice for a single-writer/multiple-reader policy. Its ability to buffer
writes means that it will rarely be doing detrimental amounts of extra work, as a release policy might with many
repeated writes. On the opposite end is the update policies. There can be situations in which update policies are
optimal, but the benefit over an invalidate policy is at best small. The cost of using an update policy in the wrong
situation, however, can be considerable.

An unintuitive finding is that a multiple-writer policy may actually be desirable even when only a single writer is
ever active. Often, the user will be using barriers or other control mechanisms to enforce a particular pattern of
access. In this case, the safeguards provided by single-writer policies are unnecessary. Because of their low over-
head, the multiple-writers policies may be more efficient alternatives. Similarly, although the request policies
were intended for relatively rare situations in which out-of-date copies are acceptable, our tests revealed that it
may be beneficial to replace an invalidate policy with a greedy request policy that always seeks an update. Pro-
vided that the sharing pattern is known not to contain two reads in a row, this will incur no extraneous updates but
will avoid any invalidate calls.

5.3 Practical Applications

5.3.1 Parallel Matrix Multiplication
In order to examine the usefulness of Dishrag for computational sub-problems, we implemented a simple matrix
multiply program that will read in two matrices, decide on an optimal way to split them into two sub-problems,
and then will run the sub-problems as new threads on arbitrary machines. This application does not require any
amount of information sharing, in the sense that the sub-problems are independent and the parent process is just
waiting for the spawned children to complete. The depth of problem splitting is a settable parameter. For pur-
poses of the analysis, it is easiest to just examine the case of depth one, a single split, compared to no splitting.
The objective in the splitting is to minimize the amount of data being transferred over the network while keeping
the problem sizes for each part equal. The three ways to split the problem and their costs are shown below for
matrices  and  of size  and .X Y x y,( ) y z,( )

67



Testing and Evaluation

12 of  15 Dishrag: Distributed, Shared Objects in Java

Basically, the first split will be used for roughly square matrices, but the bottom two methods will be used for
splitting rectangular matrices. The following table presents the timing for several various runs of this program.
All times are reported as the average of five runs. The Null problem is one that reads in the files and outputs a
result file, to mimic all I/O operations done except for those explicitly involved in the matrix multiply. In the Sin-
gle Machine, Split once condition, three threads are run on a single machine, but each is running with its own
copy of the shared objects and no actual memory sharing occurs. In the Two Machines, Split Once condition, the
first sub-problem is run on the local machine but as before it obtains its own copy of the object from the server. In
the Three Machines, Split once, the server reads in the data and launches worker threads on two separate,
machines, waiting for them to complete and then forming the final result. The second table immediately has
removed the time for the Null problem from the remaining.

TABLE 2. Matrix Splitting and associated network cost of sub-problem splitting

Split Pattern Size of Sub-problem Input
Size of Sub-
problem Output

TABLE 3. Timing for various size matrix multiplies and sub-problem splitting

Matrix Sizes
Time for Null
Problem

Single
Machine, no
Splitting

Single
Machine, Split
once

Two
Machines,
Split once

Three
Machines,
Split once

5.99 8.51 9.95 10.39 10.92

6.35 9.48 11.15 11.5 10.7

18.39 27.35 31.28 27.05 27.76

60.85 98.48 103.4 94.53 93.51

Xl Xr
Yt

Yb
------ XlYt XrYb+=

xy( ) 2⁄ yz( ) 2⁄+ xz

Xt

Xb
------ Y

XtY

XbY
----------=

xy( ) 2⁄ yz+ xz( ) 2⁄

X Yl Yr XYl XYr= xy yz( ) 2⁄+ xz( ) 2⁄

40 80 30, ,( )

50 40.75,( )

100 100 100, ,( )

200 180 200, ,( )

68



Testing and Evaluation

Dishrag: Distributed, Shared Objects in Java 13 of 15

The most immediately observation to make it that for small problems, we pay too much of a penalty in creating
sub-problems and launching new threads to improve total elapsed time measures. For big problems, we do see an
improvement, but it is clear that we are paying a big penalty for splitting the problem onto multiple machines. It
appears that the cost of preparing and moving the objects across the network is actually prohibitive for anything
other than large problems. Given the time required by the application code just to read in the matrices from disk,
which was typically twice as long as it took to compute the answer, this is not terribly surprising.

One final result that shows large sub-problems do induce a savings if run in parallel was done on a pair of
 matrices. The time to run the problem on a single machine was 271s, and the time to run it on three

machines was 124s, without including the Null problem time of 150s.

5.3.2 Parallel Sort

We also implemented a parallel sorting program, which would read in a file to wort, split the work up among an
arbitrary number of machines. Each machine would perform a merge sort, and the results would then be merged
back at the initial server. Unfortunately, we have not gotten this program to work on large lists, and it appears to
be a bug in the Java Virtual Machine that is causing object serialization to fail. The strings to sort are imple-
mented as linked lists, whereas the above matrices were actually arrays. Transforming this problem into one
which uses arrays, however, would incur a extra copying costs above and beyond everything introduced by our
system. So, although it is implemented, we were unable to obtain any meaningful numbers for this application.
On the bright side, it took only about an hour and a half to write and debug from scratch.

5.3.3 Parallel Theorem Proving

We also implemented a simple distributed propositional theorem prover using Dishrag. This system uses goal
directed search to attempt to prove queries from a database propositional hereditary harrop formulas.

The theorem proving program, called gds (Goal Directed Search), parallelizes its computation by maintaining a
queue of subgoals to be proven. These subgoals may be dequeued and solved by a pool of worker threads, which
simply repeatedly dequeue a goal from the queue and attempt to solve it, writing back the result to a shared
object in which the creator of the subgoal can monitor. In the process of solving a subgoal more subgoals may be
found which are in turn placed upon the work queue.

Figure 5 summaries the results of our tests of gds on Dishrag. We asked gds to solve large theorems (approxi-
mately 200 connectives and base propositions) from a large database (approximately 200 connectives and base
propositions). We tested gds proving the same theorems using one, two, three, and four machines. As the table
shows, the fastest times were achieved using only a single processor. This is most likely due to the fact that gds
does not encode its database or queries in such a way that sharing can be realized between different subgoals,
forcing Dishrag to constantly retransmit the same data. Also gds makes no attempt to choose the appropriate

Matrix Sizes

Single
Machine, no
Splitting

Single
Machine, Split
once

Two
Machines,
Split once

Three
Machines,
Split once

2.52 3.96 4.40 4.93

3.13 4.8 5.15 4.35

8.96 12.89 8.66 9.37

37.63 42.55 33.68 32.66

40 80 30, ,( )

50 40.75,( )

100 100 100, ,( )

200 180 200, ,( )

300 300,( )

69



Conclusions and Future Work

14 of  15 Dishrag: Distributed, Shared Objects in Java

granularity of subgoals to submit to the work queue. Instead, anytime that it finds a conjunction of goals to be
solved it makes one of them into a task to be put on the work queue. A more successful approach might be to
only submit those subgoals which are sufficiently large, thereby amortizing communication cost.

6.0 Conclusions and Future Work

Dishrag implements a useful set of object sharing and synchronization cross-platform primitives that extend the
Java core language. The idea of sharing entire objects as opposed to memory segments is needed in Java in order
to implement useful parallel applications. We have also shown that the primitives for locking and synchroniza-
tion are relatively inexpensive, but the cost associated with updating an object over the network is expensive. At
the earliest design stages, we had chosen to use Java’s serialization primitives for data shipping, and it appears as
if the serialization of an object is a bottleneck in our tested applications. The synchronization and locking meth-
ods also use serialization, but in those instances, the actual amount of data being shipped over the network using
serialization is minimal, and in fact quite similar to RPC. We were wary of relying on the network too much, but
that ended up being relatively small cost compared to the overhead in preparing to send an object over the net-
work.

Currently, our pre-processor that tags updates on an object’s fields is very simple, and several optimizations
could be made to it. Consecutive updates should be coalesced when possible into a single update, and updates
should be moved outside of loops. Tt is also possible to do away with the pre-processor entirely through modifi-
cations of the underlying virtual machine. Considering the current cost we are paying to serialize the object, it is
not clear that the cost introduced by the tagging of updates as they occur is prohibitive in practice.

A second improvement would be to reduce our reliance on the serialization primitives. However, this would also
require changes to the Java virtual machine. Currently, object serialization occurs to an object that is a TCP
stream, but there are still several layers of indirection between the code that actually can serialize an object and
the code that writes to the stream. To make the shipping of an object faster, a more monolithic approach might be
necessary.

7.0 Related Articles

 The Charlotte project has implemented distributed shared objects for java as part of a metacomputing package
for the web. In contrast to Dishrag, they track changes to objects by requiring users to access fields throw special
get and set methods. This means that users cannot use the language in the familiar way, using =, ++, +=, etc.

Charlotte does not attempt to track changes to individual fields in an object; instead, once any one field is set, the
entire object is marked dirty and must be shipped to update other users copies. Dishrag has potential to be more
efficient in cases where large object are shared, but only small portions of them are modified. Charlotte also only
implements one simple sharing policy, where Dishrag provides a range of policies, similar to Munin.

Munin provides multi-protocol distributed shared memory. Unlike Dishrag, it shares data on a page level, and not
on an individual object level. This means that performance can be hindered by “false sharing”, that is, data which
is treated as dirty simply because it is on the same memory page as data which has been modified, even though it
has not itself been modified. On the other hand, in order to avoid ever incorrectly marking code as dirty, Dishrag
is forced to insert code to track changes to each field. This may impose an unacceptable performance overhead in
some situations.

70



Fighting Fire with Truth: a Concurrent Transactional
Truth Maintenance System

Michael Mateas and Kamal Nigam

1 Introduction

A Justification-based Truth Maintenance System (TMS) is an AI component used by a problem solver tocache
inferences. Traditionally, TMSs are tightly coupled to a single problem solver and are single-threaded. The problem
solver issues one request at a time to the TMS and is the only process issuing such requests. In this paper we describe
a concurrent, transactional TMS, which supports multiple simultaneous requests from multiple sources.

This project intersects with system issues discussed in the course, specifically threads (concurrency) and transaction
processing. Throughout this paper, we will reference specific ideas from the course as they arise.

This paper will first describe TMSs and motivate the usefulness of a TMS that supports concurrency. Then we will
describe the design and implementation of our transactional TMS. Next we’ll present our evaluation methodology,
including the design of a fire model to generate test data. Finally, we’ll present and analyze the evaluation results.

2 Truth Maintenance Systems

A TMS caches inferences made by an inference engine and uses the cached inferences to make conclusions more
quickly than the inference engine could if it had to remake the conclusion from scratch. The TMS is able to process
cached inferences quickly because it only handles propositional knowledge, while the inference engine is handling
some arbitrary reasoning model (e.g. first order logic, model based reasoning). In the case of first order logic, the
inferences cached in the TMS refer to specific variable bindings.

For example, an inference engine may have the rule

On Fire(X) ^Combustibles(X) ^Next To(X;Y ) ^Next To(Y; Z) ) At Risk(Z) (1)

meaning that if a location is ever on fire, and there are combustibles (e.g. greasy rags) at that location, then any location
a distance of two locations away from this one is at risk. This rule applied to the facts OnFire(a), Combustibles(a),
Next To(a, b), and NextTo(b, c) would be used to derive the fact AtRisk(c).

The problem solver would then ask the TMS to create nodes representing these facts and to connect these nodes
together in a justification network. The justification network for this particular inference would consist of a DAG
with directed arcs leading from OnFire(a), Combustibles(a), NextTo(a, b), and NextTo(b, c) to At Risk(c). Now,
if in the future one of the antecedents (say OnFire(a)) became “out” (TMS jargon for becomes false orunknown)
then At Risk(c) would automatically become out without the inference engine having to do any work. As the chains
of inference become longer, the TMS saves more inference work (assuming that the truth values of facts used as
justifications by cached inferences change, allowing an inference to be reused).

Traditional TMSs are not concurrent. A single problem solver interacts with the TMS. Only one operation (e.g.
changing an assumption, adding a justification structure) is active in the TMS at any one time. A concurrent TMS
would allow multiple processes to simultaneously update truth values in the TMS. Assuming the justification graph
is bushy, such concurrency would be a win, since conflicts would be relatively rare. Yet these updates must be made
transactionally in order to maintain consistency in the TMS. For example, a process should never see the state where a
precondition is out (e.g. OnFire(a)) but the antecedent is still in (e.g At Risk(c)).

3 Design and Implementation

This section describes the design and implementation of the components making up our system.

3.1 TMS

The TMS maintains a directed graph of nodes, whereeachnode represents a propositional fact. There are four node
types: premise, assumption, and “regular”. Premise nodes are always in; assumption nodes can be set in or out by an
external process; and regular nodes have their value set by justification structures.

The primary functions provided by the TMS are:

171



a b c d

e

j1 j2

Figure 1: TMS justification

� enable-assumption(node) : Make an assumption node in.

� retract-assumption(node) : Make an assumption node out.

� in-node?(node) : Returns true if a node is in.

� out-node?(node) : Returns true if a node is out.

� tms-create-node(datum, assumptionp, contradictoryp) : The basic operation to create a
new node in the TMS. The arguments assumptionp and contradictoryp are set appropriately to create an assump-
tion or contradiction node. If both of these arguments are false, then a normal node is created.

� justify-node(informant, consequent, antecedents) : Creates a justification structure in the
TMS (draws in the arcs of the dag). Informant is the node corresponding to the rule justifying an inference. The
consequent is the node representing the fact concluded by an inference. The antecedents is a list of thenodes
representing the facts used by the rule to infer the consequent.

� supporting-justification-for-node(node) : Returns a description of the nodes which justify (are
the antecedents of) of anode.

The TMS and transaction manager (described below) follow an object oriented design. The primary objects in the
TMS are nodes, justifications, and the TMS object itself. Justifications are the objects that connect antecedentnodes
to a consequent node. The TMS object stores global lists (e.g. list of all nodes, list of all assumptions), which support
dumping global state.

3.2 Transaction Manager

The transaction manager provides atomicity (commit and abort), isolation (two phase locking) and consistency, but
does not provide durability (recreation of state in the face of system failure).

3.2.1 Impossibility of avoiding deadlock

The transaction manager provides deadlock detection in the form of timeouts. Transactions which timeout on a lock
are aborted. We are not able to avoid deadlocks through a lock ordering scheme because of the the inherent function
of TMSs. Consider the justification graph in Figure 1.

Nodee has two justifications,j1 and j2 . Suppose nodesa andb are currently in andj1 is the current justification
of e. If a is set out, thene becomes out (its current justification is no longer satisfied). At this point, the process that
seta out would have two writelocks ona ande. After settinge out, the TMS begins looking for an alternative support
for e. In this case, there is a second justificationj2 , which, if its antecedents are satisfied (are in), would provide a
support to makee back in. To check whether the antecedentsc andd are in, the process has to readlock them. If they
were both in,e would be set back in and the transaction would complete. Notice that even in this simple example,
a transaction which looked like a single operation at the requester level (make the assumption nodea out), resulted
in four operations in the TMS and the acquisition of two writelocks and two readlocks. Now suppose that after the

272



process had acquired a writelock ona but before it had acquired a readlock (checking the alternative justification) on
c , another process writelocksc to change its value to out. The outness begins propagating down towardse. Process
2 needs to acquire a writelock one to finish the propagation but process 1 holds a writelocke. Process 1 is waiting
to acquire a readlock onc to check ifj1 is able to serve as support fore, but process 2 holds a writelock onc . The
two processes are deadlocked. In general, a process changing an assumption node will acquire locks “down” from the
assumptions as it propagates assumption node changes and back “up” towards the assumptions aseachnode that went
out looks for alternative support. This pattern makes it impossible to establish a partial order on lock acquisition.

3.2.2 Locking scheme

We employ standard readlocks (shared) and writelocks (exclusive). In addition, we allow the holder of a readlock
to promote it to a writelock. Our promotion policy is adapted from [Gray79] and [Bayer76]. When the holder of a
readlock asks to promote it, if there are no other holders of readlocks they are granted an immediate promotion. If
there are other readlocks, the promoter is placed at the front of the lock grant queue. Once the current readers finish,
the promoter will be granted their writelock before any other waiting readers or writers receive the lock. When a
process requests a lock promotion, if there is already someone waiting to promote on the lock, the requesting process
aborts. If promote waiter queues longer than one were allowed, then, when the first promoter acquired a writelock, all
the other promote waiters would have effectively released their readlocks in the middle of their transactions, breaking
two phase locking, and thus losing serializability.

We support lock promotion because of the hidden pattern of lock acquisition that occurs in the TMS. A process
may be issuing a transaction consisting of only two assumption updates (to different nodes). From the point of view of
the transaction issuer, it is only acquiring locks on two different nodes. But because the TMS does truth propagation
and searches for alternative support, the transaction is actually acquiring many read and writelocks. Readlocked
nodes acquired during the first update (searching for support), may need to be written during the second update (value
propagation). At this point the transaction needs to promote locks.

An alternative design we considered is to eliminate readlocks entirely;only writelocks are supported. This simplifies
locking logic, and possibly lowers the number of aborts (no aborts due to multiple promoters). But it has the obvious
drawbacks of decreasing the amount of concurrency and increasing the amount of copying between transaction scratch
space (shadow nodes; see below). A minor optimization is to acquire read and writelocks if a transaction consists
of only a single TMS operation but to acquire only writelocks if it consists of multiple operations. Because of the
decrease in concurrency, we decided to implement the lock promotion strategy.

The listener, which looks at incoming requests and dispatches them to the TMS (see below), uses a hash table
to map names of nodes (which is how requester refer to nodes) into node pointers (which is how the TMS refers to
nodes). Since the hash table needs to be updated whenever a new node is created, the hash table must also be read and
writelocked. The granularity of locking in the hash table is individual hash buckets. Since hash buckets are meta-data
(used only to get to the real data), the lock strategy on buckets doesn’t have to obey two phase locking [Bayer76].
Whenever a readlock is acquired on a bucket (to map a name to a pointer), the lock is immediately released when the
node is found. This decreases spurious contention between readers and writers on hash buckets.

The lock logic is localized in a class called Tlockable. If an entity wants to be lockable, it inherits from this class.
In our system, TMS nodes, hash buckets, and global node and justification lists (in the TMS proper) are all lockable
entities. We adapted the locking algorithm from [Birrell93] to support lock promotion.

3.2.3 Transaction state

When a transaction begins, a transaction record is allocated and a transaction ID (a pointer to this record) is returned
to the caller. The transaction record holds transaction state for the duration of the transaction. This state includes:

� thread : Identifier of the thread processing the transaction.

� readlocked nodes : List of TMS nodes readlocked by the current transaction.

� shadow nodes : List of records associating a shadow node with a TMS node (list of writelocked nodes).

� new nodes : List of new nodes created during this transaction.

� new justs : List of new justifications created during this transaction.

� jtms node lists to change : List of write intentions to node lists maintained in the TMS.

� jtms justs to change : List of write intentions to justification lists maintained in the TMS.

373



� shadow buckets : List records associating a shadow hash bucket with a hash bucket (list of writelocked
buckets).

� readlocked bucket : The bucket currently readlocked by this transaction (a transaction can only have one
bucket readlocked at a time).

3.2.4 Shadow objects

In order to support atomicity, all write changes are written to shadow objects. On successful commit, shadow objects
are copied back onto real objects and the shadows are deallocated. On abort, shadow objects are deallocated with no
copy.

An instance of a shadow of an object is a member of the class of that object. For example shadow hash buckets
are members of class hash bucket and shadow TMS nodes are members of class TMSnode. The fact that shadow and
real objects are the same class means that the same code that manipulates a real object can manipulate a shadow. This
design choice made it easy to convert our non-transactional TMS (which we wrote first) into a transactional TMS.
For example, consider the following two code fragments. The first code fragment is the non-transactional TMS node
method to enable an assumption. All references to identifiers not declared in the method are to class members.

// Makes an assumption in.
void tmsnode::enable_assumption()
{

if (assumption == F) throw TMSNODE_enabled_non_assumption();
if (label == OUT) {

make_node_in(NULL);
if (my_jtms->debugging == T)

printf("Propagating IN from %s\n", name);
propagate_inness();

}
else if (support != NULL) support = NULL;

}

The second code fragment shows the same method modified to be transactional.

// Makes an assumption in.
void tmsnode::enable_assumption(tid_t tid)
{

tmsnode* shadow_node = Twritelock_node(this, tid);
if (shadow_node->assumption == F) throw TMSNODE_enabled_non_assumption();
if (shadow_node->label == OUT) {

make_node_in(NULL, tid);
if (my_jtms->debugging == T)

printf("Propagating IN from %s\n", name);
propagate_inness(tid);

}
else if (shadow_node->support != NULL) shadow_node->support = NULL;

}

Notice that now all TMS node methods take a transaction ID as an argument. At the beginning of the routine, the
node is writelocked. Twritelocknode returns a pointer to a shadow node. All references to data members now occur
through this pointer. Other than that, the code stays the same. If the method was readlocking instead of writelocking,
readlock would return a pointer to the real node (assuming that the node hadn’t been previously writelocked in the
same transaction). The code that references data members doesn’t care if the pointer is to a real or shadow node, since
shadows and reals are the same type.

Updates to the TMS global lists are not handled via shadows. Use of shadows for these lists would involve an
inordinate amount of copying. For the global lists, a list of write intentions are maintained instead. Since deletion o
renaming of TMS nodes is not a supported functionality, this implementation is not problematic.

474



3.2.5 Use of transaction state

The transaction state is used every time an object is readlocked or writelocked, every time a new TMS node or
justification is created, and on commit and abort. In this section we will describe how the transaction state is used for
each of these operations.

When an object is readlocked, the transaction manager first checks whether the object has been previously
readlocked in this transaction. If so, readlock returns a pointer to the object itself. Next, the transaction manager
checks whether this transaction already holds a writelock for this object. If so, a pointer to the shadow object is
returned. If the object is neither read nor writelocked, then the object is readlocked, the object is added to the readlock
list, and a pointer to the object is returned.

When an object is writelocked, the transaction manager checks whether the transaction already holds a writelock
on this node and if so returns the shadow pointer. Next it checks if the object is readlocked by this transaction. If so,
it promotes the lock, removes the object from the readlocked list, creates a shadow copy of the object, adds the real
object and associated shadow to the shadow list, and returns the shadow pointer. If the object is neither read nor write
locked, the object is writelocked and the same shadow creation as in the case of promotion is done.

When a new TMS node or new justification is created, the new object is registered with the transaction. The newly
registered object is placed in the new object list. These lists are used for abort cleanup.

On commit, the contents of all shadow objects are copied onto real objects, the locks are released, and the transaction
record is cleaned up.

On abort, the locks are released and the transaction record is cleaned up (including deleting newly created objects
that have been registered with the transaction). Finally, the thread associated with the transaction is killed.

3.3 Listener

The listener module handles concurrent incoming requests and manages a thread pool to perform operations inside the
TMS. The primary thread listens on the main socket for new sensor connections. Upon connecting, it submits a request
to the thread pool to handle the new connection. Some thread from the pool will then read the stream of transactions
from the connection. It will request TMS actions to be performed by the thread pool. Thus, every sensor uses two
threads in the TMS – one to process the request, and one to do the actual work. We use this duality approach to handle
aborted transactions. When a transaction is aborted because of potential deadlock, the worker thread is killed after all
its locks are released to stop it from progressing further on its work. The killed thread is replaced with a new thread,
so the pool does not dry up. To maintain communication with the sensor, the thread that works cannot be the thread
that communicates. To synchronize, they use signals to pass back return values of successful and unsucessful work.

3.4 Sensor

The sensor module is a simple program that reads in a trace file generated by our simulator and sends it to the TMS in
transaction-sized chunks. If a transaction succeeds, it proceeds normally. In the event of an abort, the process delays
for a random amount of time on the order of tens of milliseconds to allow the conflicting process to complete, and
tries again. On successive aborts, the potential delay length grows linearly. The sensor tracks transaction latency, total
throughput and abort statistics over the course of a run. These numbers are used in the evaluation process.

4 Evaluation Methodology

4.1 Evaluation Criteria

Our primary goal in evaluating the concurrent TMS is to demonstrate that the addition of concurrency is beneficial to
the performance of the system. Our primary measure of performance will be throughput, measured in terms of sensor
updates processed per second. Sensor updates form the core and bulk of operation that drives the system, and thus, we
hope to minimize the latency of these operations while providing high concurrency.

We hypothesize that as we increase the number of concurrently running sensor threads, throughput will increase up
to a point. Slack in the system due to network overhead, paging of virtual memory to and from disk, and other sources
is time lost to a single sensor. In concurrent implementations, this time can be recaptured by other sensors, especially
if data locality prevails, andeach sensor can work independently. Eventually, however, too much concurrency will
slow the system. With more sensors, the chances of locking conflicts grows, and threads will be increasingly required
to wait for one another. Overhead costs of managing multiple threads will also slow the system. We hypothesize that

575



there will be dramatic gains in throughput as we increase the number of sensors, and then a slow decay in throughput
as we push on system limits and data locality.

As explained in section 3.2.1, deadlock can occur in a concurrent TMS if nodes that share consequences (under
transitive closure of justifications) are simultaneously updated. In the fire scenario, facts associated with the same
location will sharemany consequences. Facts associated with locations next to each other will sharesomeconsequences.
As noted in section 4.3, as the distance between locations grows, it becomes more and more unlikely that they will
share any consequences. We measure the effect of locality of updates on TMS performance by measuring throughput
and the number of aborts for a number of traces with different locality. We hypothesize that as concurrent TMS updates
become more spatially separated (relative to the fire model), peformance (both in throughput and number of aborts)
should improve.

We also measure the cost of transactions. There is significant overhead in providing atomicity and consistency,
because partially completed work is kept separate from committed work. We will quantify the cost to the system for a
single sensor updating the TMS. It is not relevant to test the cost of transactions in a multiple-sensor scenario, because
isolation is lost without transactions.

4.2 Fire Model

To motivate the necessity of a real-time, concurrent, consistent TMS, we have simulated the problem domain of fighting
fires on a ship. We include diagnosis, prevention, and proactive recovery from fires. Consider a ship with a multitude
of remote sensors in different locations. These sensors are heterogeneous in type, such as smoke detectors, airflow
detectors, temperature sensors, and voice and motion sensors to detect the presence of people. These sensors, or their
agents update the TMS in real time with their values. Working in parallel, consider the existence of automatic inference
engines that combine evidence from sensor values to determine higher-level states of the world. For, example, if the
smoke detector goes off in the bathroom, it may deduce that someone is sneaking an illicit cigarette, but if the smoke
detector goes off and the heat detector is high, then there is a fire in the bathroom. These inference engines supply
conclusions to the TMS, with their antecedents, and the TMS takes responsibility for updating the conclusions as the
sensors change.

In addition to fire diagnosis for the ship, the inference engines recognize situations where it is appropriate to take
action to combat the fire and prevent its spread. For example, if there is a fire, we automatically turn on the sprinkler
system. These actions are also the result of inferences made, and the TMS is responsible for ordering their execution
whenever such action-level concepts become valid. As another action example, the TMS can also take irreversible
actions, such as shutting unopenable fire doors. It is imperative that we do not needlessly lock people into locations
from which they cannot escape. Because of this, it is necessary that the TMS maintain consistent state between the
sensors, higher-level analysis, and actions it orders in the world. Yet, it must provide this consistency in the face of
real-time sensor updates and high concurrency.

Our domain model of the first-order inference rules used are shown in the figure below. To take these inference
rules and apply them to a fire scenario, we built a simulator to generate sensor readings appropriate for a fire, and to
generate propositional instantiations of the inference rules as appropriate. The simulator uses a probabilistic model of
fire progression. At each discrete time step, the simulatorupdates the state ofeach location. Fire spreads to adjacent
locations probabilistically, based on the presence of combustibles, airflow, and the activation of sprinklers, and the
open or closed status of firedoors between locations. The duration of a fire at a location depends probabilistically on
the presence of combustibles, and the duration of sprinkler activation in the location.

Smoke(X) ^ TemperatureMed(X) ) On Fire(X) (2)

TemperatureHi(X) ) On Fire(X) (3)

TemperatureMed(X) ^Combustibles(X) ) On Fire(X) (4)

Smoke(X) ^Combustibles(X) ) On Fire(X) (5)

Smoke(X) ) At Risk(X) (6)

TemperatureMed(X) ) At Risk(X) (7)

On Fire(X) ) At Risk(X) (8)

On Fire(X) ^Next To(X;Y ) ) At Risk(Y ) (9)

At Risk(X) ^ Airflow(X;Y ) ) At Risk(Y ) (10)

On Fire(X) ^Combustibles(X) ^Next To(X;Y ) ^Next To(Y; Z) ) At Risk(Z) (11)

Motion Sensor(X) ) PeopleAt(X) (12)

676



Voice Sensor(X) ) PeopleAt(X) (13)

:Motion Sensor(X) ^ :Voice Sensor(X) ) :PeopleAt(X) (14)

At Risk(X) ^ PeopleAt(X) ) SoundAlarm(X) (15)

On Fire(X) ^ SprinklerAt(X) ) Activate Sprinkler(X) (16)

At Risk(X) ^ SprinklerAt(X) ^Combustibles(X) ) Activate Sprinkler(X) (17)

Airflow(X;Y ) ^At Risk(X) ^ Ventilation(X) ^ :PeopleAt(X) ) CloseVentilation(X) (18)

On Fire(X) ^ Ventilation(X) ^ Airflow(X;Y ) ) CloseVentilation(X) (19)

Fire Door(X) ^ At Risk(X) ^ :PeopleAt(X) ) CloseFire Door(X) (20)

Fire Door(X) ^On Fire(X) ) CloseFire Door(X) (21)

From an updated state of the world, we generate a sensor trace by creating sensor values based on the state of the
world, and adding to the trace whenever the values differ from the previous turn. For example, a smoke sensor will be
activated 60% of the time if there was smoke on the previous turn. If there is a fire at a location, there is an 80% chance
of smoke for obvious causal reasons. Also, smoke will travel to neighboring locations, especially if there is airflow in
that direction. This is also modeled probabilistically. Thus, given the state of the world as the fire progresses, it was
straightforward to generate sensor traces.

To generate the inference trace, it is necessary to model how the inference engine works, and how it discovers new
rule instantiations. We posit that rule instantiations will only be discovered by an inference engine after sensor values
in the TMS reflect that a rule is valid and necessary to discover a new analysis, or take a new action. In other words, if
the TMS could use the rule, after a certain time of inference engine work, it will be inserted into the TMS. To this end,
we fully preseeding a TMS with all propositional instantiations of all of our rules. The simulator updated the sensors
on a turn-by-turn basis in the TMS. When a propositional rule was first used in the TMS to make a node IN, a callback
was issued to the simulator. The simulator modeled the time for inferencing work to discover this newly used rule, and
after the appropriate delay, added the rule to the inference trace. In this way, the sensor trace and the inference trace
are tightly coupled with respect to realism.

In our model of the world, the TMS orders actions to be taken to fight and prevent the fire. Some of these actions
are irreversible (like closing fire doors) and others are used as appropriate (like turning on and off sprinklers). The
simulator accepts callbacks from the TMS on these actionnodes when building these traces. On a callback, if anode
would have already been created by the inference engine, we take appropriate action by updating the state of the world,
after a simulated delay as a time cost for taking real-world actions. This further increases the simulated synchronization
between the TMS and the ship on fire.

4.3 Trace Generation

Using the simulator described above, we modeled a fire on a ship with 150 locations over 1,000 timesteps. We generated
a sensor trace of 84,185 transactions with 220,831 sensor updates and an inference trace of 2,250 rule discoveries
for 1,096 analysis and action nodes, with a total TMS size of 6796 nodes. It is appropriate that the inference trace
is considerably smaller than the sensor trace, because once a rule is discovered, the TMS automatically maintains its
values. The sensors, however, must be constantly updated when their values change.

To support the different methods of evaluation, it is necessary to take the sensor trace, and divide it differently,
so tests by concurrency and locality can be performed. To test locality, we divided the trace into five traces. To vary
the data locality of the updates, we relied on the underlying physical model of the fire scenario. Intuitively, sensor
updates to one location will effect strongly effect actions and deductions for that location. It will also somewhat effect
its neighbors, but the effect on locations far away will be nearly non-existent. Looking in more depth at our inference
rules, most of them pertain to a single location, or a location, and its near neighbors. Only a rare chain of specific
inference rules will allow a sensor update in one location to effect another location far away. Thus, in dividing up the
sensor trace by locality, we mapped sensor updates from consecutive locational regions into a single sensor to provide
high locality. For very low locality, we took the sensor updates foreach location, and distributed them among all
five thread updaters. We also made intermediate splits along this spectrum by by varying the number of consecutive
locations in a region, and by varying the evenness of distribution of a single location among sensor updaters.

To create different sensor threads to measure throughput on varying amounts of concurrency, we chose a fixed
locality policy, of using seven consecutive locations per sensor thread. Then, we divided the sensor trace using this
policy among any number of sensor updaters that we chose. We tested divisions of between one and ten concurrent
sensor updaters. Ineach of our runs, we also provided a single inferenceupdater that handled inserting all the new
inferences.

777



220

240

260

280

300

320

340

360

380

1 2 3 4 5 6 7 8 9 10

tra
ns

ac
tio

ns
/s

ec
on

d

number of threads

Throughput vs. number of threads

Figure 2: Throughput for various levels of concurrency. Notice that as we increase the number of sensor threads,
throughput increases significantly, leveraging the slack in the system. Eventually, though, the overhead of the multiple
threads, and the loss of data locality provides a slower decay in throughput.

5 Results and Analysis

All our experiments were run on an older 100 MHz DEC Alpha with 25 Meg RAM. All the sensor updaters ran on a
different machine running over a local ethernet connection. External network traffic was minimal, and no other load
on the machine running the TMS was present other than regular system maintenance processes.

Figure 2 shows the effect of concurrency on throughput. Notice that the effect of adding even a second sensor
updater increases throughputby about 50%. This indicates that there was significant slack in the system to be leveraged.
This slack lay both in the network and on the machine. About half of the image size of the TMS was resident in the
machine’s memory, and active paging was noticed. Maximal concurrency was reached around five or seven sensor
update threads with a throughput of about 365 transactions per second. Each transaction varied in size from one to
four sensor updates.

Figure 3 provides evidence that as concurrency grows, the loss of data locality becomes a more serious issue. The
number of aborts due to timeouts on lock acquisition grows more than linearly with the number of concurrent threads.
It is reassuring to see that the drop in throughput in Figure 2 corresponds nicely with the increase in aborts in Figure 3.
This suggests that the maximum concurrency is declining due to these effects of data locality under high concurrency.

Figure 4 presents throughput figures for increasing amounts of locality when there are five sensor threads running
concurrently. Surprisingly, there is no dominant trend suggesting that poor locality effects throughput. The presence
of multiple updaters working in the same region doesn’t have a strong impact on performance. This means that
the unavoidable potential for deadlock among nodes that share consequences is not an impediment to the use of a
concurrent TMS at this level of concurrency. It is likely, though that with larger amounts of concurrency, these locality
issues would have a real effect. Note that the number of aborts in Figure 3 for ten concurrent updaters is an order of
magnitude higher than for five updaters. This would seem to indicate that the real issues due to data locality are not
felt at this level of concurrency, even though we are getting optimal throughput at five sensor updaters.

Figure 5 show the number of aborted transactions with our different locality policies. This shows that indeed, our
policies do have an effect on locality, as the number of conflicts decreases with our increase in locality. However, given
that there are 84,000 transactions in the run, the percentage of aborts changes from 0.29% on the high end to 0.14%
on the low end. These numbers are small enough that it indicates again that conflicts due to locality are not a driving
factor for performance at this level of concurrency.

In our measurement of the cost of transactions, we compared the throughput when running a single sensor updater
with and without transactions. With transactions turned on, we got a throughput of 241 transactions per second. With
transactions turned off, we got a throughput of 397 transactions per second. This indicates that we are paying a
significant penalty for using transactions. In fact, the maximal throughput we got in the concurrent case was about
equal to using a single case with no transactions. However, this result does not lead us to believe that transactions are

878



0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f a
bo

rts

number of threads

Number of aborts vs. number of threads

Figure 3: The number of aborted transactions as a function of concurrency. Note the natural increase in the number
of aborted transactions as concurrency increases. This graph supports our hypothesis that the loss of throughput with
large amounts of concurrency is due in part of a loss of data locality. The number of aborted transactions is a strong
measure of data locality. The sudden increase in aborted transaction corresponds to the loss in throughput.

300

320

340

360

380

400

420

440

1per 2per 3per 1loc 7loc

tra
ns

ac
tio

ns
/s

ec
on

d

Increasing Locality

Throughput versus Locality

Figure 4: The throughput as a function of locality. The labels on the x axis refer to different ways of dividing up
updates among threads. As we move to the right, the local region owned by a thread (meaning it is the only updater
for facts in the region) increases. Note that there is no strong trend in the figure.

979



100

120

140

160

180

200

220

240

1per 2per 3per 1loc 7loc

nu
m

be
r o

f a
bo

rts

Increasing Locality

Aborted transactions versus Locality

Figure 5: The number of aborts as a function of locality. As the region owned by a single updater increases, the number
of aborts decreases.

of no use. First, many of our transaction operations made heavy use of list copying to maintain correct state. Many of
these list copies could be avoided by adding extra logic to our list iterators to be knowledgeable about shadow objects.
This would increase the performance of the transaction module. Secondly, the amount of stall time in our system was
not particularly large. Once could easily imagine significantly larger TMSs that require heavy disk access to maintain
persistent storage that would involve much more stall time. Such a system would benefit even more with concurrency,
and the cost of transactions in such a system might be small in comparison to its benefits. In conclusion, we have
shown that a transactional, concurrent TMS is feasible, and demonstrates expected properties of standard concurrent
systems.

6 Bibliography

� Bayer, R., and Schkolnick, M.Concurrency of Operations on B-Trees. 1976.

� Birrell. An Introduction to Programming with Threads. 1989.

� Gray, J. N. Notes on Data Base Operating Systems, inOperating Systems: An advanced Course. Springer-Verlag,
1979.

1080



A User-Level File Service Based on Watchdogs

Mihai Budiu, Raluca Budiu fmihaib+,ralucav+g@cs.cmu.edu

December 15, 1997

Abstract

This paper describes a user-level extension to the �le mechanism o�ered by the Linux kernel.
Unprivileged user processes (called henceforth \watchdogs") can control the access to �les and
manage �le contents transparently for the processes which use these �les. The exibility of this
mechanism is exploited in the implementation of a simple user-level remote-�le service which
has very good performance on some benchmarks, due to an enhanced cache manager.

1 Motivation

Our thesis is the following: \sometimes increased exibility may be preferred to a rigid (but
generally fast) scheme."1

To prove this assertion we move a service (remote �le + caching) from the kernel to the user
space. We gain much in exibility, at the expense of some overhead. Our caching service is moved
in user space because it does not �t well the internal interfaces of a Unix kernel, using vastly
di�erent paradigms (i.e. caching on variable-sized intervals). However, in order to make this
service available to previously written applications (without having to modify them), we build a
system call interception layer which permits cooperation of the kernel and the caching service.

2 Terminology and Organization

We will use the term \watchdog" both to refer to a process which \supervises" a �le by �ltering
accesses to it, and to refer to the data structures of the kernel used for this purpose.

We will refer to the supervised �les as \clients" of the watchdog. We also occasionally blur the
distinction between the processes which act on client �les, calling them \clients" as well (although
this position is entirely transparent to them).

This document is structured like follows: section 3 shows how the new kernel mechanism can
be used, section 4 describes how the kernel intercepts system calls and passes them to a user-level
\watchdog", section 5 estimates the performance of the watchdog mechanism theoretically and
empirically. Section 6 discusses the new �ling service we have implemented and how it uses the
watchdog services; the performance is measured in a variety of ways. Section 7 concludes.

1This is basically a variant of the end-to-end argument in [Saltz84]: only the application can decide what kind of
semantics it needs, and no general-purpose mechanism can satisfy all the needs that may arise.

1

81



3 User Level Interaction

We begin by describing the kernel part of out project. We have a mechanism by which a user
process (the watchdog) can register to observe the system calls done on a set of �les. The kernel
intercepts the system calls of other processes (clients) and sends a description of the intended
action to the watchdog. The watchdog replies to the kernel indicating how the system call should
be executed. There are three possibilities:

� The system call should fail and an error should be reported to the user;

� The system call should be executed using the normal execution path;

� The system call should be handled by the watchdog on behalf of the kernel (\faked"); the
results will be passed from the watchdog to the kernel and from the kernel to the client
process.

The best way to understand how a watchdog interacts with the kernel is to see a very simple
example. Here is a how an (unprivileged!) user can write a simple watchdog, which just traces
opens, fakes reads and denies writes on a �le (we elliminated error processing from the code):

#include "watchdog.h"

int main()

{

int fd, /* file to supervise */

wd; /* watchdog interface */

char buf[] = "Pass this data to the client on read";

fd = open("file_name", O_RDWR); /* need R/W permission */

wd = watchdog(fd); /* sys call: register as watchdog. wd=file descriptor */

while (1) {

struct wd_request wq; /* kernel will describe syscall here */

struct wd_reply wr; /* watchdog will give answer here */

read(wd, (char*)&wq, sizeof(wq)); /* This blocks the watchdog until

the kernel has info to report */

switch (wq.operation) {

case WD_OPEN:

printf("Process %d opens `file_name', mode %d\n", wq.mode);

wr.action = WD_ALLOW; /* let the process perform

the requested operation */

break;

case WD_READ:

printf("Process %d reads from `file_name', offset %ld,"

"size %ld\n", wq.pid, wq.offset, wq.size);

wr.action = WD_FAKE; /* the watchdog will supply the

read data */

if (wq.size < sizeof(buf)) wr.size = wq.size;

else wr.size = sizeof(buf); /* How much data supplied */

wr.buffer = buf; /* This is the supplied data. */

break;

2

82



case WD_WRITE:

printf("Process %d wants to write in `file_name', offset %ld,"

"size %ld\n", wq.pid, wq.offset, wq.size);

wr.action = WD_DENY; /* Block the requested action */

break;

}

write(wd, (char *)&wr, sizeof(wr)); /* Send the answer to the kernel */

if (wq.operation == WD_CLOSE) break; /* If a client closed file, stop */

}

close(fd); /* stop watching this file */

close(wd); /* close the watchdog channel */

}

4 Internal Architecture

Figure 1 shows the internal architecture and functioning of the kernel part of our system.

file vnode

ordinary
process process

Standard file system call interface

File system calls
with augumented
semantics

1

23
4

5
7

6

KERNEL

USER

9

10
11

12

0

13

14

8

VFS

Specific Filesystem Code

Cache, device drivers

watchdog vnode

watchdog

Figure 1: Architecture of the system

Here is a step-by-step description of a typical interaction to a supervised �le, which shows how

a run through the code in section 3 is handled internally.

We assume that the watchdog has opened the supervised �le previously and that it has created

the watchdog inode. The rest of the processing goes like follows:

0. The watchdog does a read() call on the watchdog inode to wait for information from the

kernel. This suspends the watchdog process;

1. A process makes a system call on the supervised �le;

2. The VFS level intercepts the system call;

3

83



3. The client �le inode builds a data structure inside the watchdog inode describing the at-
tempted system call on the �le;

4. The process is suspended and the watchdog process is woken up;

5. This data structure describing the system call is passed to the watchdog as a result of the
watchdog read() system call in step 0; the watchdog is woken up;

6. The watchdog does some processing based on the received information;

7. The watchdog may decide to directly access the �le;

8. The watchdog's �le access goes directly to the true �le, without being intercepted by the
VFS layer;

9. The watchdog does a write() system call on the watchdog inode, sending to the kernel its
decision; it may decide to send a piece of data which is to be \served" to the process as the
�le contents;

10. The kernel decodes the decision;

11. The kernel resumes the suspended process;

12. The VFS layer carries the action indicated by the watchdog; data sent from the watchdog is
received by this inode like being �le data;

13. The suspended process may be let to access the �le directly itself if the watchdog says so;

14. The system call of the client on the �le terminates.

Everybody is ready for a new cycle of operations starting from step 0.

4.1 Architectural Details

Everything is handled entirely in the VFS layer [Klei86], so no �le-system dependent code had to
be changed. This makes the watchdogs applicable on any type of object which is represented in
the �lesystem (e.g. sockets, directories, pipes).

The watchdog �le is basically represented in the kernel by a vnode2 of a special type. A process
can have only one watchdog �le, which is used to multiplex all the information about the system
calls on the \client" �les.3 Unlike [Bersh88], which de�nes a special message-passing interface for
kernel-watchdog communication, we use a �le abstraction mechanism for this purpose.

The bulk of the kernel code consisted in implementing the proper methods for this new type of
�le: read(), write() and close(). There is also some amount of code for system call interception;
the intercepted system calls are right now read(), write(), lseek(), open() and close().

Data movement between the watchdog process and its clients is accomplished with the same
mechanism used for (unnamed) pipes (i.e. copy-in to a kernel bu�er associated with the watchdog
inode and copy-out to the user space).

2Linux uses the terminology \inode" for the objects traditionally called vnodes.
3As a possible extension, if watchdog processes will be multithreaded, the kernel could maintain one watchdog

vnode per thread.

4

84



5 Performance Evaluation

In all the experiments that follow we measured the timing repeatedly using very lightly loaded
machines both for the client and the server. We could not control the load on the AFS servers,
though.

5.1 The Critical Path: An Estimation

Unfortunately all of the above steps except step 0 are on the critical path for any client system
call. A standard system call (i.e. on non supervised �les) would contain only steps 1, 2, 13, 14.
All the other are pure overhead which has to be rather low to make this new feature attractive.

The bottom line of the performance estimation as it depends on our machine, is summarized
in table 1. The data is for a PentiumII at 266Mhz, with 64M RAM, running Linux 2.0.30.

Operation Cost/operation

2 extra system calls 2�s/call
2-tens extra context switches 7.5�s/switch
2 additional data copies 20-40ms/Mb4

Table 1: Overhead Estimation (compared to a standard �le system call).

5.2 Performance Evaluation Experiments

To assess the true overheads we performed some micro-tests. We measured 5 ways to perform some
operations on �les on the local disk (i.e. the watchdog performs the client operation on another
�le on the local disk). For this test the data is actually in the bu�er cache, because the test is
repeated many times to measure precisely:

� Simple operation using the operating system (labeled \OS");

� Operation denied by the watchdog (denied);

� Operation allowed by the watchdog and performed by the OS (allowed);

� The operation is performed by the watchdog on behalf of the process (faked);

� The same operation using a named pipe instead of a �le (pipe) and an ordinary process
instead of a watchdog at the other end of the pipe.

The tests are for the following operations:

� Make a lseek() system call (which may fail, in the case of pipes);

� Make a lseek() followed by a read() system call for one byte;

� Make a lseek() followed by a read() system call for one page (4Kbytes);

� Make a lseek() followed by a read() system call for 10 pages (40Kbytes)

� Make a lseek() followed by a read() system call for 1 Megabyte.

4This depends on cache parameters, hit rate and other factors; the �gure is true for large transfers (comparable
to the L2 cache size, of 512K).

5

85



The table 2 gives the wall-clock time in microseconds. The precision of the measurement is
within 1%.

Operation seek read(1) read(4096) read(40K) read(1M)

OS 2.1 5.1 8.6 220 21406
denied 17 33 33 33 33
allowed 17 35 42 270 22968
faked 20 44 88 634 50300
pipe 2.2 11 66 720 57812

Table 2: Basic operation cost (�s) | cache hits.

It is worth noticing that the cost of this kind of IPC is on a par with pipes, and even better for
large transfers (this is due to the fact that we allocate more bu�er space in the kernel than a pipe
so we imply fewer context switches, and because we can allow read() system calls to return large
amounts of data, reducing the number of kernel crossings necessary to fetch it).

To evaluate the cost of an operation which does not hit in the cache is much more di�cult,
because of the low timer resolution which cannot be used to measure non-repetitive events. A
coarse measurement estimated the cost of reading 1 Mb sequentially from the disk at 150ms.

5.3 Conclusions Based on Overhead Estimation

The bottom line for overheads of the watchdog scheme is in table 3.

Data Disk accessed Watchdog overhead

little no factor of 10
much no factor of 2
any yes within 20%

Table 3: Watchdog Overhead: a Summary.

This gives us hints about the types of operations where watchdogs may be e�ective5. These
are:

� Operations with poor locality (demanding thus frequent disk access);

� Operations on large pieces of data which can bene�t from application-speci�c optimizations6.

5Assuming that the functionality of the watchdog could be implemented in the �lesystem itself; watchdogs have
however an unlimited range of behaviours, many of which could not be easily �tted inside a kernel.

6There is actually an extra cost due to the pageable nature of the watchdog bu�ers (being in user space). This
can be somewhat controlled with a system call like vadvise(). This does not have measurable impact on any of our
measurements in this paper because we have a very large core memory and we use a lightly loaded machine.

6

86



6 Application | Remote File Service with Smart Caching

We have implemented a \poor man's NFS7" on top of a watchdog. This very simple �lesystem is
con�gured to fetch the �les from various servers using TCP/IP.

We use in the watchdog the interval-cache library developed by Mihai during the summer for
the PDL. This gives us exibility in accommodating highly variable access patterns and lets us
tune the behaviour of the cache to enhance throughput for the cases illustrated previously.

6.1 Application Architecture

The �gure 2 shows the architecture of the remote �le service. For this implementation of the
watchdog caching service we have used two pieces of code that we have developed previously: a
simple user-level threads package and the smart interval-cache manager. We rewrote the bottom-
half of the cache manager and we have written a watchdog to use the services of the top-half. We
had to carry minor modi�cations to the cache itself, to accommodate for variable-sized �les (the
cache was designed to handle �xed-size partitions).

Kernel Kernel

Threads library
process
Client

WatchdogFile server

TCP/IP pipe

(bottom half)
Driver
Cache

System call interception layer

(top hslf)
Cache

Figure 2: Architecture of the Remote File Service

Table 4 presents an overview of the parts we implemented/used.

Code Description Developed

Client Accesses the �les transparently Unmodi�ed
Watchdog Receives system calls and decides action From scratch
Interception Kernel layer to redirect system calls From scratch
Cache (top) Caches variable sized intervals Adapted
Cache (bottom) Interfaces with the remote server From scratch
Threads Very simple user-level threads Unmodi�ed
File server Handles remote requests From scratch
Benchmarks Various tests From scratch

Table 4: Project code breakdown.

7This �lesystem provides right now only little of the NFS functionality (e.g. no directory operations). There's no
reason why this functionality could not be extended.

7

87



6.2 Performance for the Application

As mentioned in the performance section, the interval cache can give increased performance for
some types of accesses; the ones that would bene�t most are:

� Very small scattered writes which this cache can perform asynchronously, without having
previously to write-allocate (i.e. read) the containing block;

� Very large sequential operations.

6.2.1 Sequential Tests

We compared our implementation with NFS on transferring a very large �le between two computers
in the CMU LAN. The server was running in both cases on a SUN SPARC4, gs20, and the watchdog
and the client were running on the same Linux workstation on which we carried the previous
measurements.

We have set the block size of our interval-cache to be 64Kb for this test. The interval-cache is
using a rather small cache (compared to the OS which can use the whole 64M RAM) of 640Kb.

The test consists in copying a very large �le (2M) between the two ends. The command running
the test is cp vmunix file8. In all tests the �le was not cached locally at the beginning of the
unique transfer. The four �lesystems compared are:

� UFS: the local Unix Filesystem;

� NFS: the Sun Network File System;

� AFS: the Andrew File System;

� WD: our watchdog-based �le system.

The times are accurate within 20% (observed from repeated measurements); variations are due
to poor timer resolution and unpredictable environment (network).

Protocol Source Destination Time (s)

UFS local disk local disk 0:2
NFS NFS partition local disk 8:4
WD remote partition local disk 6:9
AFS AFS partition local disk 5:3

NFS local disk NFS partition 61
WD local disk remote partition 11:3
AFS local disk AFS partition 9:5

Table 5: Large sequential writes performance; WD cache capacity is 640KB, WD cache block is
64K. Time is given in seconds.

Note that NFS can bene�t from the read-ahead, while our simple �le server/watchdog has no
such facility (yet). This is why the read performance of NFS is so much better than the write
performance. The write performance of NFS is very bad.

8It is important to note that cp reads the �le in 4K sized blocks. However, this does not coincide with the unit

of transfer from the remote �le server.

8

88



6.2.2 Sequential Performance as Function of Bu�er Sizes

The performance of the copy test depends on two parameters:

� The amount of data transfered by the copy program in a system call (i.e. the read() bu�er
size);

� The size of the cache block.

Table 6 displays this dependency, which we measured by re-implementing the cp program to
use larger bu�ers.

Syscall block 1K 4K 16K 64K

Cache block To local disk

64K 8 7 7 8
32K 13 13 13 9
16K 27 27 28 8
8K 54 54 27 8

To remote disk9

64K 10 10 10 4
32K 16 16 16 4
16K 30 23 4 4
8K 48 57 4 4

Table 6: Sequential WD copy time (in seconds) function of the cache block size and of the request
size. The cache size is constant at 640K.

Observe that the performance is very good even if the cache uses small blocks (1K), but the
client makes accesses in large chunks. This happens because the cache is an interval cache, and
manipulates sets of cache blocks as units. The cache initiates simultaneously operations for many
blocks which form a contiguous range, using scatter-gather (the readv()/writev() system calls),
and these transfers are viewed by the transport protocol as a single large unit.

The write performance is even better because our cache handles writes smaller than the cache
block size asynchronously, and thus the timing that we see comes mainly because the cache has
been �lled and has to be ushed. A very interesting phenomenon occurs in column 3 of the write
test (16K syscall block), where a smaller block size for transfer gives actually better throughput!
This is due to the way our cache handles incomplete blocks. If a syscall bu�er size is a precise
multiple of the cache block size this is handled more e�ciently than if it is a divisor10. Another
abnormal value is the 57; we conjecture that this is due to a transient overloading of the network
(we should re-do this measurement).

9The close() system call terminates in our implementation after data is ushed from the local cache, but does
not wait for con�rmation from the remote end; this is why write times are sometimes shorter. This is one advantage
of the reliable transport protocol which we have chosen.

10A more detailed knowledge of the internals of our cache is necessary to understand this behaviour. Basically
our cache can accept writes to a quarter of a cache block without doing any read, because it stores the data and a
descriptor. This descriptor takes space in the cache, so four quarters of a block do not actually �t in a block; writing
the fourth one triggers a write-allocate: the block is read (unnecessarily!) and the quarters are overwritten. The
cache could be improved in this respect.

9

89



6.2.3 Random Access Tests

We used two arti�cial tests; we believe that such access patterns are plausible for some scienti�c
applications, of course, at some larger scale. One could certainly argue that there is something
contrived in these tests, as the right way to solve this problem is to use the same caching technique
in a user-level library. Remember though that we are not touching the application!

� Matrix multiplication: a �le is initialized to contain two randomly generated integer matrices
of 50*50 elements, and next their product is computed in a third matrix at the end of the
�le. Each 4-byte element is accessed directly with a read() of write() system call.

� Selection sort: a �le is initialized to contain 200 random integer values (on 4 bytes each); a
sorting program orders the �le \in situ".

In all the tests the data is in a remote �le. We used a 4Kb block for our cache for this test.
The data �ts entirely in the local cache in all cases, so the cost we see is mainly given by the cache
management.

Table 7 gives the performance measurement:

Test Protocol Duration (s)

Matrix UFS 1:6
NFS 301
WD 22:5
AFS 4:69

Sort UFS 0:2
NFS 13:6
WD 1:7
AFS 0:4

Table 7: Random access performance.

The performance of NFS on these tests is abysmal. It is more than 12 times slower than our
caching method.

The multiplication test is doing O(n2) writes and O(n3) reads. To see which of these operations
is the bottleneck we carried measurements for several matrix sizes. The NFS time grows more like
n
2 for small values of n, so we conjecture that small writes (even with good locality) have very

poor performance on NFS. A further investigation would dump the tra�c between the client and
the server to observe the cache behaviour. We haven't done that yet.

6.2.4 A Hard Test for AFS

AFS beats our method for the previous tests because it practically performs all data accesses
locally, so it has the advantage of lower overhead. We devised another test on which our scheme
outperforms AFS on cold-cache start, and almost equals AFS performance on warm-cache start11.
The test consists of a series of 20 bytes writes strided at variable distance of each other in an

11We could control the AFS cache behaviour by logging onto another client and creating/deleting the �le from
there, relying on the coherent cache protocol of AFS.

10

90



existing 2Mb �le. Our cache used 64K blocks, the same as the AFS caching unit. Here is the
minimum12 time as measured by repeating the experiment 4 times (the measured time includes
the close() system call, which synchronizes caches in both AFS and WD):

Protocol Cache Stride Intervals written Time (s)

AFS cold 1K 64*25 9:8
AFS warm 1K 64*25 5:5
AFS cold 64K 25 10:0
AFS warm 64K 25 5:6

WD cold 1K 64*25 6:3
WD warm 1K 64*25 6:4
WD cold 64K 25 6:4
WD warm 64K 25 6:4

The results show indeed that the number of writes in AFS is not as important as the number
of 64K intervals spanned; crossing such a boundary incurs a very high cost in AFS. This proves
that the AFS caching scheme is prone to ine�ciencies for some access patterns, which can be
successfully avoided by the watchdog.

7 Conclusions

This project proves that the cost of the exibility obtained by implementing services in user space
can sometimes be recovered if the services �t what the client applications need. The kernel of-
fers a single service, customized to give good performance for a class of applications (e.g. the
cache is e�ective when locality is good). However, using our scheme we can implement simulta-

neously di�erent cache schemes for di�erent applications, tuning the behaviour for independent
optimizations.

7.1 Course Relevance

This project draws from the following topics treated in the course:

� Concurrency and threads: programming in the kernel is writing monitor code; the watchdog
itself is multithreaded;

� File system design and implementation; caching services;

� Delegating services to the user space (idea discussed at the memory management in the
context of Mach);

� Networking.

7.2 Future Work

The project suggests some interesting development paths. Some simply intend to enhance func-
tionality, while other may exploit other applications of the watchdog scheme. Here are some ideas:

12We had big variability in the results at the measurement, which was probably due to a loaded network. We

think that the important one is the minimum time to complete, as this one cannot be arti�cially diminished by any

experimental circumstances.

11

91



Functionality enhancement: our project has some limitations which can be easily overcome

with more implementation time. Some of these are:

� The watchdog has to be able to answer to the requests in any order;

� Right now the watchdog read() system call is non-interruptible;

� Client system calls on supervised �les are also non-interruptible;

� The watchdog has to have all supervised �les open; this puts a limit on the number of �les
it can simultaneously service;

� More system calls should be intercepted; �rst candidates: directory operations, mmap(),

getpage(), putpage(), fcntl(), etc.

Other applications:

� It would be interesting to evaluate the remote �le service for some large scienti�c applications

with large data sets which strain AFS to make it non-local;

� Some other applications of watchdogs seem worth implementing. Many ideas are given in
[Bersh88]. To these we can add: distributed shared memory, cgi-bin for web servers, etc.

References

[Bersh88] B. B. Bershad, C. B. Pinkerton. Watchdogs | Extending the UNIX File System. Com-

puting Systems, 1, 1988, pp. 169.

[Saltz84] J. Saltzer, D. Reed, D Clark | The End-to-End Argument in System Design. ACM

Transactions on Computer Systems, vol 2, nr. 4, 1984, pp 277{288.

[Faul91] R. Faulkner, R. Gomes. The Process File System and Process Model in UNIX System V.

Proceedings of the 1991 Winter USENIX Conference, Jan. 1991, pp.243{252.

[Klei86] S. R. Kleiman, 1986. Vnodes: An Architecture for Multiple File System Types in Sun
Unix. USENIX Summer Conference Proceedings 1986, pp. 238{247.

[Vaha96] Uresh Vahalia. Chapters 9, 10, 11 in UNIX Internals., Prentice Hall, 1996.

12

92


