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Abstract

Our thesis is that a geometric perspective yields insights into the structure of funda-

mental problems, and thereby suggests e�cient algorithms for them. As evidence, we

develop new geometric models and general-purpose tools for removing outliers from

numeric data, reducing dimensionality, and counting combinatorial sets. Then we ap-

ply these techniques to a set of old problems to obtain polynomial-time algorithms.

These include: (1) learning noisy linear-threshold functions (half-spaces), (2) learning

the intersection of half-spaces, (3) clustering text corpora, and (4) counting lattice

points in a convex body. We supplement some of our theorems with experimental

studies.
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Chapter 1

Introduction

In algorithm discovery, a geometric point of view is often an insightful one. A won-

derful example of this is Linear Programming (LP). Algorithms for LP such as the

Simplex method, the Ellipsoid method and Interior point methods can all be pre-

sented and explained in purely algebraic terms. However, the ideas and intuition

behind them become particularly transparent when viewed geometrically. We illus-

trate this in more detail. Consider the following general linear program:

max c1x1 + c2x2 + : : :+ cnxn

subject to the constraints:

a11x1 + a12x2 + : : :+ a1nxn � b1

a21x1 + a22x2 + : : :+ a2nxn � b2

:

:

am1x1 + am2x2 + : : :+ amnxn � bm

This is a linear program in n variables, x1; x2; : : : ; xn, so the problem is in Rn.

The cj's, aij's and bi's are speci�ed real numbers. Each linear constraint corresponds

to a half-space (one side of a hyperplane) in Rn. Hence their intersection, the feasible

region, is a polyhedron (the higher-dimensional analogue of a polygon). The objective

function which we are trying to maximize corresponds to a direction, and its value

of at a point x is simply (a scaling of) its distance from the origin in that direction.

From this perspective it is intuitively clear that the maximum will be achieved at a

3



4 INTRODUCTION

point that is farthest away from the origin in the direction speci�ed by the objective

function. Further, since the feasible region is a polyhedron, the maximum is achieved

at some corner or facet (if there is a �nite maximum) of the polyhedron. The Simplex

method is then a very natural one: start at some vertex of polyhedron1, and move to

an adjacent vertex that improves the value of the objective function, i.e., is farther

away in that direction till this is not possible and then declare that point the maxi-

mum! With a little more work the Ellipsoid and Interior-point methods can also be

explained in a similar fashion.

The models and methods presented in this thesis are all motivated from a geo-

metric perspective. In some cases, the original statement of the problem is not in

geometric terms, yet recasting it in such terms helps us �nd e�cient algorithms.

In some case we derive the �rst polynomial-time algorithms, in other cases where

polynomial algorithms were already known, we improve their e�ciency.

1.1 Overview of new results

Outliers. The �rst scenario we consider is a rather general one. We are presented

with a set of points. Each point has a �xed set of numeric attributes. This data

could be the input to an algorithm, e.g., the training set of a learning algorithm. It is

possible that such a data set has outliers. Typically, this might be due to some error

in collecting the data etc., or it might actually correspond to an interesting pattern.

In any case a useful thing to do would be to �nd (and separate) outliers in the data.

We address this situation by �rst posing the question: what precisely is an outlier?

At �rst sight, our de�nition might seem rather strong. We call a point an outlier (with

respect to a given set of points) if there exists any direction in which the squared

distance of the point from the origin is more than a �xed ratio times the average

squared distance of the data set in that direction [12].

Given this de�nition, two questions arise: (1) Is it possible to quickly detect such

outliers? (2) Is it possible to remove a small subset of the points so there are no

outliers left? We are able give a polynomial-time algorithm for detecting outliers in

n-dimensional data, i.e., points in Rn, and show that for a reasonable ratio of outlier

to average, the number of outliers is at most a small fraction of the total number of

points. Formally,

Lemma 1 For any set of points in Rn, each given to b bits of precision, in polynomial

1This is typically achieved by using additional slack and surplus variables; we omit the details.
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time it is possible to remove less than 1
n
fraction of the set, so that in the remaining

set T , for every vector v 2 Rn,

max
x2T

(v � x)2 � poly(n; b)
1

jT j
X
x2T

(v � x)2;

i.e., the maximum squared distance in any direction is at most a polynomially bounded

number times the average.

Learning noisy perceptrons. As an application of the lemma, we consider the

classical problem of learning a linear threshold function (a half-space in n dimensions,

also called a \perceptron"). Methods for solving this problem generally fall into two

categories. In the absence of noise, this problem can be formulated as a Linear

Program and solved in polynomial time. Alternatively, simple greedy algorithms

such as the Perceptron Algorithm [50] are often used in practice and have certain

provable noise-tolerance properties; but, their running time depends on a separation

parameter, which quanti�es the amount of \wiggle room" available for a solution,

and can be exponential in the description length of the input.

We show that after removing outliers from the training data, a simple modi�ca-

tion of the Perceptron Algorithm �nds a weak hypothesis in polynomial time without

dependence on any separation parameter. Suitably combining these hypotheses re-

sults in a polynomial-time algorithm for learning linear threshold functions even in

the presence of random classi�cation noise, i.e., when the labels of examples pre-

sented to us are inverted with some �xed noise probability. The chapter includes

some experimental studies and lists other potential applications.

Random Projection. The next scenario we examine is one where, as above,

the data points presented to us are in a considerably high dimensional space, i.e.,

they have a large number of attributes. What we would like to do now, however,

is to represent the points in a suitable lower dimensional subspace. Of course, what

constitutes a suitable subspace depends on the speci�c application in mind. We show

that a very simple idea | project the points to a random lower dimensional subspace,

i.e., a random hyperplane through the origin | is very useful in identifying a good

subspace quickly. We analyze this technique as applied to two di�erent problems:

learning the intersection of half-spaces, an old problem, and clustering text corpora,

a relatively new problem. Below we discuss these examples in some detail.

Learning the intersection of half-spaces. The �rst examples is again from

learning theory. An excellent illustration of the complexity of learning is Blum and

Rivest's result about training a 3-node neural network: we are given points in n-

dimensional space each colored with one of two colors, red and blue. It is known that
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the red points can be separated from the blue points using two half-spaces. Finding

these half-spaces, equivalent to training a 3-node neural network, is NP-hard [14]. In

spite of this apparent hardness, it cannot be ignored that the intersection of 2 or, more

generally, k half-spaces, is a natural generalization of a perceptron that approximates

a simple neural network used in many machine learning applications.

How do we get around the di�culty? We restrict the distributions from which

labeled examples are drawn. Under the assumption that the distribution from which

points are presented is \non-concentrated"2, we present a simple algorithm to learn

the intersection of k half-spaces in Rn [60]. Generalizing all previous algorithms for

the problem, our approach works for k up to log n= log log n in polynomial-time. In

addition it explicitly �nds a set of O(k) planes which agree on 1�� of the distribution
with the true set of k planes (with high probability). Our algorithm is inspired by

the the following observation. The true complexity of the problem is determined

not by the dimension n or the number of half-spaces k, but by the dimension of the

subspace spanned by their normal vectors to the de�ning hyperplanes (the \relevant"

subspace). The key step is a projection to random lines (1-dimensional subspaces) to

identify the relevant subspace.

Fast Latent Semantic Indexing. Our second example is drawn from the

burgeoning �eld of Information Retrieval.

Latent Semantic Indexing (LSI) [19] is an information retrieval method which

attempts to capture the hidden structure in a corpus of documents by using techniques

from linear algebra. Vectors representing the documents are projected in a new, low-

dimensional space obtained by singular value decomposition of the term-document

matrix A. This low-dimensional space is spanned by the eigenvectors of ATA that

correspond to the few largest eigenvalues | and thus, presumably, to the few most

striking correlations between terms Queries are also projected and processed in this

low-dimensional space. This results not only in great savings in storage and query time

(at the expense of some considerable preprocessing), but also, according to empirical

evidence reported in the literature, to improved information retrieval [10, 22, 23].

Indeed, it has been repeatedly reported that LSI outperforms, with regard to precision

and recall in standard collections and query workloads, more conventional vector-

based methods.

We use a probabilistic corpus model and probabilistic analysis to prove rigorously

that, under certain conditions, LSI succeeds in capturing the underlying semantics of

2The probability density is polynomially bounded from above and inverse polynomially from

below.
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the corpus and achieves improved retrieval performance.

Then, we propose the technique of random projection as a way of speeding up

latent semantic indexing. This idea yield an interesting improvement on LSI: we can

perform the LSI precomputation not on the original term-document matrix, but on

a low-dimensional projection, at great computational savings and no great loss of

accuracy.

The last result can be seen as an alternative to (and to some extent, a justi�cation

of) sampling in LSI. Reports on LSI experiments in the literature seem to suggest

that LSI is often done not on the entire corpus, but on a randomly selected subcorpus

(both terms and documents may be sampled, although it appears that most often

documents are). There is very little non-empirical evidence of the accuracy of such

an approach. Our result suggests a di�erent and somewhat more elaborate approach

| projection on a random low-dimensional subspace | which can be proved to be

accurate. We supplement some of our theorems with experiments on corpora derived

from our statistical model.

Sampling lattice points. An old question in mathematics concerns the size of

a convex body: how to compute its volume ?

One could imagine placing the body in a grid of equally spaced points and then

counting up the number of points that were inside it. Intuitively, this should approx-

imate the volume of the body. More than 150 years ago, the mathematician Gauss

turned this into a precise question: Exactly when does the volume of a convex body

approximate the number of (unit-spaced) lattice points inside it?

Using a celebrated algorithm of Dyer, Frieze and Kannan [24], we derive a su�cient

condition in answer to Gauss' question: roughly speaking, if the body contains a ball

of radius at least as large as the dimension of the space, then the volume and number

of lattice points are within a constant factor of each other (In fact, this condition is

tight) [40].

From this general condition, we are able to derive polynomial-time sampling (and

counting) algorithms for various special cases of the problem, such as contingency

tables, multi-dimensional knapsack problems, and integral ows.

1.2 Organization of this dissertation

In the rest of this chapter we give some basic mathematical background. In chapter 2

we de�ne outliers, show how to remove them, and apply it learning perceptrons and
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noisy perceptrons.

In chapters 3 and 4 we apply random projection in two di�erent scenarios, �rst

to the intersection of half-spaces, then to quickly approximating the eigenspace of a

matrix.

In chapter 5 we describe an algorithm to sample lattice points in a convex body

and give some applications.

Chapters 2-5 can be read independently of each other. The background section

ahead might be a useful reference for all of them.

1.3 Mathematical background

We recollect some basic de�nitions and well-known theorems from probability, geom-

etry, algebra, and learning theory. The material in this chapter is not meant to be

comprehensive. It concentrates on results that we will employ in the chapters ahead.

Probability

Let X1;X2; : : : ;Xn be independent random variables with �nite expectations and

variances.

Let

S = X1 + : : :+Xn; X = S=n;

� = E[X = E[S=n]; �2 = nvar(X) = (varS)=n:

Then the following upper bounds can be placed on the probability that the sum of

the random variables deviates from its expectation. The �rst inequality below is the

Bienaym�e-Chebyshev inequality and the latter two are Hoe�ding's inequalities [35].

Pr[jX � �j � t] � �2

nt2
(1.1)

Assuming that for all i, 0 � Xi � 1,

Pr[X � � � t] � e�2nt
2

(1.2)

An extension of the previous bound where we assume that for each i, ai � Xi � bi,

Pr[X � � � t] � e�2n
2t2=

Pn

i=1
(bi�ai)2 (1.3)
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Geometry

Bn refers to the ball of unit radius in Rn.

The volume of Bn is
2rn�n=2

n�(n=2)
:

The volume of a cone in Rn of height h and base radius r is

volBn�1r
nh

n
:

Linear algebra

Given a real square matrix A with n rows and n columns, a vector v 2 Rn is an

eigenvector of A with eigenvalue � if

Av = �v:

For more on the theory of eigenspaces we refer the reader to [32, 61].

Learning theory

We recall two basic de�nitions in learning theory. One is Valiant's notion of

Probably Approximately Correct learning (PAC learning) [57].

In the PAC-model we assume that examples are being provided from some �xed

(but possibly unknown) distribution. Given an example distribution D, the error of

a hypothesis h with respect to a target concept c is Probx2D[h(x) 6= c(x)].

In the de�nition below, n is the size of a single example.

An algorithm A PAC-learns a concept class C by hypothesis H if, for any c 2 C,
any distribution D over the instance space, any �; � > 0, and for some polynomial

p, the following is true. Algorithm A with access to labelled examples of c drawn

from distribution D produces with probability at least 1 � �, a hypothesis h 2 H

with error at most �. In addition, A should do so after running for time at most

p(n; 1�; 1�; size(c)) (this trivially puts the same upper bound on the number of exam-

ples seen by the algorithm).

The second important de�nition is the VC-dimension of a concept class [59].

For this we say that a set of points S is shattered by a concept class C if there are

concepts in C that partition S in all of the 2jSj possible ways, i.e., all possible ways

of classifying S are achievable using concepts in C.

Then the VC-dimension of a concept class is the size of the largest set of points

that can be shattered by C.
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Let a hypothesis be a bad hypothesis if its error is more than �. Then the following

nice theorem places an upper bound on the number of examples required for uniform

convergence (i.e., till all bad hypotheses see a wrong example).

Theorem 1 [59]

m = O(
1

�
(V Cdim(C) log(

1

�
) + log

1

�
)):



Chapter 2

Removing Outliers from Numeric

Data

We present a robust notion of outliers in numeric data, and a polynomial-time algo-

rithm to remove a small fraction of any set of points so that the remaining set has no

such outliers.

2.1 Introduction

The term \outlier" is a familiar one in many contexts. Statisticians have several no-

tions of outliers. Typically these notions quantify how far the outlier is from other

values, e.g., the di�erence between the outlier and the mean of all points, the dif-

ference between the outlier and the mean of the remaining values, or the di�erence

between the outlier and the next closest value. In addition this di�erence might be

normalized by some measure of the \scatter" of the set, such as the range or the

standard deviation. Points that are outside some cut-o� are labelled outliers.

One possible cause for the presence of outliers is experimental error. In this case,

of course, it is desirable to detect and remove them. Even if this is not the case,

removing outliers often gives a much clearer or simpler explanation for the remaining

set. Outliers in the data given to a computer program could a�ect its performance.

Conceivably they could slow down or even mislead an algorithm. Machine learning

algorithms are an example where outliers in the training data might lead the algorithm

to �nd a wayward hypothesis.

How does one detect outliers? Simple heuristics for this are based on de�ning

them as above. In the univariate or bivariate cases ( 1-dimensional or 2-dimensional)

11



12 REMOVING OUTLIERS FROM NUMERIC DATA

one could simply plot the points, and visually decide which ones are astray, perhaps

because they are too deviant in one of the coordinates. In general, i.e., in the multi-

variate case, this need not be true. An outlier could be far away from the rest of the

points without being so in any one coordinate.

We develop a robust de�nition of outliers for a point set (or a probability distri-

bution) in n-dimensional space, Rn. Roughly speaking, our notion is that a point is

an outlier if it deviates by some prescribed amount from the average in any direction

(not just one of the coordinate axis directions).

Given this de�nition, two questions arise: (1) Is it possible to quickly detect such

outliers? (2) Is it possible to remove a small subset of the points so there are no

outliers left?

The second question is related to the following concern. Suppose we �nd the

outliers and remove them from the data. It is then possible that points that were

previously not outliers now become outliers. Can this happen repeatedly, so that we

end up removing most of the data set?

In this chapter, we show that for a reasonable ratio of outlier:average, the number

of outliers is at most a small fraction of the total number of points, i.e., on removing

this fraction of points the remaining data set has no outliers. We give a polynomial

time algorithm for detecting outliers in Rn.

This chapter is organized into the following sections. First we state our Outlier

Removal Lemma precisely. Then we give an algorithmic proof of the lemma, i.e.,

we show that it is indeed possible to remove a small number of points so that the

remaining data has no outliers, and describe how to do this e�ciently. In the next

section we apply the lemma to obtain an e�cient algorithm for learning a noisy half-

space. The following section contains a discussion of some experiments we conducted

that suggest that the technique might have wide-ranging applications. We conclude

with some remarks about possible improvements.

2.2 The Outlier Removal Lemma

We assume that all points are given to some b bits of precision. More precisely, we

de�ne Ib = fp=q : jpj; jqj 2 f0; 1; 2; : : : ; 2b � 1g; q 6= 0g, and assume that our point set

S is restricted to Inb (i.e., Ib � � � � � Ib). Our main lemma states that given a set of

data points in Inb , one can remove a small portion and guarantee that the remainder

contains no outliers in a certain well-de�ned sense.
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Lemma 2 (Outlier Removal Lemma) For any set S � Inb and any " > 0, there

exists a subset S0 � S such that:

(i) jS0j � (1� "� 2�nb)jSj, and

(ii) for every vector w 2 Rn, maxx2S0(w � x)2 � �Ex2S0[(w � x)2],

where � = O(n7b="). Moreover, such a set S0 can be computed in polynomial time.

The algorithm for computing the set S0 of Lemma 2 is quite simple. It is as follows:

First, we may assume that the matrix X of points in S has rank n; otherwise we

simply drop to the subspace spanned. Next we calculate a symmetric factorization

of XXT as A2 = XXT which can be done by a standard eigenvalue/eigenvector

computation. Then, we perform the linear transformation A�1X. The new set of

points (or viewed alternatively, the transformed space) has the property that, for

every unit vector w, Ex2S[(w � x)2] = 1. Then we remove all points x 2 S such that

jxj2 � �=144n. If S now satis�es the condition of the theorem we stop. Otherwise,

we repeat.

The di�cult issue is proving that this algorithm will in fact halt before removing

too many points from S. To do this we show that at each iteration as described above

the volume of an associated dual ellipsoid doubles. From our assumption that points

are given to a �xed number of bits, we can derive an absolute upper bound on the

maximum volume of the ellipsoid, thus bounding the number of iterations. Although

the idea is simple, the proof involves some detailed calculation. The reader could

proceed directly to section 2.3 without loss of continuity.

2.2.1 An algorithmic proof of the lemma

For a set S � Rn (S need not be �nite) and a distribution � on Rn, let

W�(S) = fw 2 Rn : E�[(w
Tx)2 j x 2 S] � 1g:

We will drop the subscript � (on both W and on the expectation E) when the distri-

bution is clear from context. The key to our proof is the following lemma.

Lemma 3 Let � be a measure on Rn which is not concentrated on a subspace of

dimension less than n (i.e. the total measure on any subspace of dimension less than

n is less than 1). Then, for any 0 < � < 1=3n; � = 36n3=� and n su�ciently large,

there exists an ellipsoid S � Rn such that
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(a) Pr(x 62 S) � �.

(b) Either

(i) for all w 2 Rn, maxf(wTx)2 : x 2 Sg � �E((wTx)2 j x 2 S), or
(ii) vol(W (S)) � 2vol(W (Rn)):

Proof. In the entire proof, probabilities and expectations are w.r.t. the distri-

bution �. Let

M = E(xxT )

= A2;

where A is symmetric, and non-singular by assumption. Then

E((wTx)2) = wTMw

for all w 2 Rn. Now let

E = fx 2 Rn : (wTx)2 � wTMw;8w 2 Rng
= fx 2 Rn : ((Aw)T (A�1x))2 � jAwj2;8w 2 Rng
= fx 2 Rn : jA�1xj � 1g:

Note that this shows that E is an ellipsoid. Putting z = A�1x we see that for any

 > 0,

Pr(x 62 E) = Pr(jzj > )

�
nX

j=1

Pr(jzjj � =
p
n)

� n�2
nX

j=1

E(z2j );

by the Chebychev inequality.

But,

E(zzT ) = E(A�1xxTA�1)

= I

and so

Pr(x 62 E) � n2=2:
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We now take  = n=�1=2; S = E and we see that (a) of the lemma is satis�ed.

We now consider two possibilities:

Case (i) For all w 2 Rn,

E((wTx)2 j x 2 S) � 2E((wTx)2)=�:

In this case, for any w 2 Rn, by the de�nitions of E and S,

max
x2S
f(wTx)2) � 2E((wTx)2)

� �E((wTx)2 j x 2 S):

Case (ii) There exists ŵ 2 Rn such that

E((ŵTx)2 j x 2 S) < 2E((ŵTx)2)=�: (2.1)

Let

M1 = E(xxT j x 2 S):
So

E((wTx)2 j x 2 S) = wTMw:

We complete the lemma by showing that

vol(T1) � 2vol(T ); (2.2)

where

T = W (Rn)

= fw 2 Rn : wTMw � 1g

and

T1 = W (S)

= fw 2 Rn : wTM1w � 1g

It will be convenient to show that

vol(AT1) � 2vol(AT ); (2.3)

which is equivalent to (2.2) because the linear transformation A multiplies volumes

by jdet(A)j.
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Note next that by substituting v = Aw we see that

AT = fv 2 Rn : vTA�1MA�1v � 1g
= fv 2 Rn : vTv � 1g
= Bn;

where Bn is the unit ball in Rn.

Furthermore,

E((wTx)2 j x 2 S) � (1� �)�1E((wTx)2)

which follows from E((wTx)2) � E((wTx)2 j x 2 S) Pr(x 2 S). So,

AT1 = fv 2 Rn : vTA�1M1A
�1v � 1g

� fv 2 Rn : vTA�1MA�1v � 1 � �g
= (1� �)Bn: (2.4)

Also, AT1 contains a vector of length � = �1=2=. Indeed, let

v̂ = �
Aŵ

jAŵj :

Then, v̂ 2 AT1 because, from (2.1),

v̂TA�1M1A
�1v̂ =

�2

jAŵj2 ŵM1ŵ
T

� �2

jAŵj2
2

�
ŵMŵT

= 1:

Since AT1 contains an n� 1 dimensional ball around the origin and a point at a

distance of 1�� from the center of the ball, from the convexity of AT1 it follows then

that AT1 contains a cone with base an (n � 1)-dimensional ball of radius 1 � � and

height �.

Thus if Vn denotes the volume of Bn we see, using the bound on �, that

vol(AT1)

vol(AT )
� �Vn�1(1� �)n�1

nVn

� �(1 � �)n�1

2
p
n

� 2:

2
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We now specialize the above result to the case where � is concentrated on Inb . Let

L0 = fx 2 Inb : �(x) � 2�4nbg. So, �(L0) � 1 � jInb j2�4nb � 1� 2�nb.

Let �0 denote the measure induced on L0 by � i.e. �0(x) = �(x)=�(L0) for

x 2 L0. We consider applying the construction of Lemma 3, K times starting with

�0. In general we would expect to construct a sequence of ellipsoids Si This assumes

Case (bii) always occurs. Let �i denote the measure induced on S1 \ S2 \ � � � \ Si by
�0. It is possible that �i is concentrated on a subspace Vi of lower dimension. If so,

we simply work within Vi from then on. This cannot happen more than n times.

Suppose that Case (bi) never occurs. Then there exists a subspace VK of dimension

� and ellipsoids S1; S2; : : : ; SK such that if TK = L0 \ S1 \ S2 \ � � � \ SK \ VK then

(a) dim(TK) = �.

(b) �0(TK) � 1 � �K.

(c) vol�(W (TK)) � 2K=n,

where in (c),

W (TK) = fw 2 VK : E((wTx)2 j x 2 TK) � 1g:

Part (c) takes into account the doubling of volume K times, and restarting each

time we move to a lower dimensional subspace (at most n times).

The above is not possible for su�ciently large K as we will now show by bounding

the length of eachw 2 TK. By assumption, TK contains � linearly independent vectors

v1; v2; : : : ; v� 2 Inb . For any such set of vectors,

E((wTx)2 j x 2 TK) �
�X
i=1

(wTvi)
2�K(vi)

� 2�4nb
�X
i=1

(wTvi)
2:

So if w 2 W (TK) then
�X
i=1

(wTvi)
2 � 24nb: (2.5)

Let B denote the n � n matrix
P�

i=1 viv
T
i so that

wTBw =
�X
i=1

(wTvi)
2: (2.6)

Let B have eigenvalues 0 = �1 = �2 = � � � = �n�� < �� = �n��+1 � �n��+2 � � � � �n.
Let a1; a2; : : : ; an be a corresponding orthonormal basis of eigenvectors. Now if w 2
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VK ; w 6= 0, then

wTBw

wTw
� ��: (2.7)

Since wTvi 6= 0 for at least one i, we can apply (2.6). But �� 6= 0 is a root of a

polynomial of degree at most n� 1 with rational coe�cients �i=�i where j�ij; j�ij �
n!2nb. By a simple computation, this implies that �� � (n!2nb)�2n and so (2.5), (2.6

and (2.7) imply that if w 2 W (TK) then

jwj2 � 24nb22n
2b(n!)2n � 24n

2b

(for b > log n) and so

vol�(W (TK)) � (24n
2b)n=2:

This is a contradiction for K � K0 = 2n4b. We deduce then that

Theorem 2 For any 0 < � < 1=3n and � = 36n3=� and � concentrated on Inb , there

exist k � K0 ellipsoids Si such that if S =
Tk
i=1 Si

(i) �(S) � 1� k�� 2�nb:

(ii) maxf(wTx)2 : x 2 Sg � �E((wTx)2 j x 2 S); for all w 2 Rn.

The previous discussion has been existential in nature and we now show how to

make it constructive. This is relatively easy for a �nite set of m points (i.e � is

concentrated on the m points). Now if we apply the above theorem to � then all of

the ellipsoids and subspaces are computable in polynomial time.

One way to view the algorithm is the following. We wish to �nd a set of points with

the property that in any direction w, the maximum squared value of the projection

of points in that direction is not much more than the average. If initially there is

a direction where this is not true, we apply a transformation to the points (A�1x,

above) that results in their inertial ellipsoid becoming the unit ball. Then we drop

all points outside a multiple  of this ellipsoid and repeat on the smaller set of points

(with their original coordinates). This cannot go on forever since we assume that the

points are represented by bounded rationals and an associated ellipsoid is doubling

in volume at each iteration.

Note that we can make the method constructive for the in�nite case as well by

picking a sample of points and applying VC-dimension arguments.
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2.3 An application: learning a noisy half-space

The problem of learning a linear threshold function is one of the oldest problems

studied in machine learning. Typically, this problem is solved by using simple greedy

methods. For instance, one commonly-used greedy algorithm for this task is the

Perceptron Algorithm [54, 5], described below in Section 2.3.1. These algorithms have

running times that depend on the amount of \wiggle room" available to a solution.

In particular, the Perceptron Algorithm has the following guarantee [50]. Given a

collection of data points in Rn, each labeled as positive or negative, the algorithm

will �nd a vector w such that w � x > 0 for all positive points x and w � x < 0 for all

negative points x, if such a vector exists.1 Moreover, the number of iterations made

by the algorithm is at most 1=�2 where � is a \separation parameter" de�ned as the

largest value such that for some vector w�, all positive x satisfy cos(w�; x) > �, and

all negative x satisfy cos(w�; x) < ��, where cos(a; b) = a�b
jajjbj is the cosine of the angle

between vectors a and b.

Unfortunately, it is possible for the separation parameter � to be exponentially

small, and for the algorithm to take exponential time, even if all the examples belong

to f0; 1gn. A classic setting in which this can occur is a data set labeled according

to the function \if x1 = 1 then positive else if x2 = 1 then negative else if x3 = 1

then positive, ...". This function has a linear threshold representation, but it requires

exponentially large weights and can cause the Perceptron Algorithm to take expo-

nential time. (In practice, though, the Perceptron Algorithm and its variants tend to

do fairly well; e.g., see [7].)

Given this di�culty, one might propose instead to use a polynomial-time linear

programming algorithm to �nd the desired vector w. Each example provides one

linear constraint and one could simply apply an LP solver to solve them [44, 41, 48].

In practice, however, this approach is less often used in machine learning applications.

One of the main reasons is that the data often is not consistent with any vector w

and the goal is simply to do as well as one can. And, even though �nding a vector

w that minimizes the number of misclassi�ed points is NP-hard, variants on the

Perceptron Algorithm typically do well in practice[31, 6]. In fact, it is possible to

provide guarantees for variations on the Perceptron Algorithm in the presence of

inconsistent data (e.g., see [15, 16, 42]2), under models in which the inconsistency is

1If a non-zero threshold is desired, this can be achieved by adding one extra dimension to the

space.
2The word \polynomial" in the title of [15] means polynomial in the inverse of the separation

parameter, which as noted above can be exponential in n even when points are chosen from f0; 1gn.
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produced by a su�ciently \benign" process, such as the random classi�cation noise

model discussed below.

We are given access to examples (points) drawn from some distribution D over

Rn. Each example is labeled as positive or negative. The labels on examples are

determined by some unknown target function w� �x > 0 (i.e., x is positive if w� �x > 0

and is negative otherwise) but each label is then ipped independently with some

�xed probability � < 1=2 before it is presented to the algorithm. � is called the noise

rate.

Our goal is to �nd an algorithm that for any (unknown) distribution D, any

(unknown) target concept w� � x > 0, any (unknown) � < 1=2, and any inputs

�; � > 0, with probability at least 1 � � produces a hypothesis whose error with

respect to the target function is at most �. The algorithm may request a number of

examples polynomial in n; b; 1=�; log(1
�
), and 1

1�2� , and should run in time polynomial

in these parameters as well.

Here we present a version of the Perceptron Algorithm that maintains its proper-

ties of noise-tolerance, while providing polynomial-time guarantees. Speci�cally, the

algorithm we present is guaranteed to provide a weak hypothesis (one that correctly

classi�es noticeably more than half of the examples) in time polynomial in the descrip-

tion length of the input and not dependent on any separation parameter. The output

produced by the algorithm can be thought of as a \thick hyperplane," satisfying the

following two properties:

1. Points outside of this thick hyperplane are classi�ed with high accuracy (points

inside can be viewed as being classi�ed as \I don't know").

2. At least a 1=poly fraction of the input distribution lies outside of this hyperplane.

This sort of hypothesis can be easily boosted in a natural way (by recursively running

the algorithm on the input distribution restricted to the \don't know" region) to

achieve a hypothesis of arbitrarily low error.3 This yields the following theorem.

3Thanks to Rob Schapire for pointing out that standard Boosting results [55, 29] do not apply in

the context of random classi�cation noise. (It is an open question whether arbitrary weak-learning

algorithms can be boosted in the random classi�cation noise model.) Thus, we use the fact that the

hypothesis produced by the algorithm can be viewed as a high-accuracy hypothesis over a known,

non-negligible portion of the input distribution. Alternatively, Aslam and Decatur [3] have shown

that Statistical Query (SQ) algorithms can, in fact, be boosted in the presence of noise. Since our

algorithm can be made to �t the SQ framework (see Section 2.3.5), we could also apply their results

to achieve strong learning.
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Theorem 3 The class of linear threshold functions in Rn can be learned in poly-

nomial time in the PAC prediction model in the presence of random classi�cation

noise.

Remark: The learning algorithm can be made to �t the Statistical Query learning

model [42].

The main idea of our result is as follows. First, we modify the standard Perceptron

Algorithm to produce an algorithm that succeeds in weak learning unless an over-

whelming fraction of the data points lie on or very near to some hyperplane through

the origin. Speci�cally, the algorithm succeeds unless there exists some \bad" vector

w such that most of the data points x satisfy j cos(w; x)j < � for some small � > 0.

Thus, we are done if we can somehow preprocess the data to ensure that no such bad

vector w exists. We apply the Outlier Removal Lemma to ensure this.

Recall that the lemma tells us that given any set S of points in n dimensional

space, each requiring b bits of precision, one can remove only a small fraction of those

points and then guarantee that in the set T remaining, for every vector v,

max
x2T

(x � v)2 � poly(n; b)Ex2T [(x � v)2]:

In this sense, the set remaining has no outliers with respect to any hyperplane through

the origin. In addition, these outliers can be removed in polynomial time. After

removing the outliers, we can then apply a linear transformation so that in the trans-

formed space, for every unit vector v,

Ex2T [(x � v)2] = 1 and max
x2T

(x � v)2 � poly(n; b):

Because the maximum is bounded, having the expectation equal to 1 means that for

every hyperplane through the origin, at least a 1=poly(n; b) fraction of the examples

are at least a 1=poly(n; b) distance away, which then allows us to guarantee that the

modi�ed Perceptron Algorithm will be a weak learner.

2.3.1 The Perceptron Algorithm

The Perceptron Algorithm[54, 5] operates on a set S of labeled data points in n

dimensional space. Its goal is to �nd a vector w such that w � x > 0 for all positive

points x and w � x < 0 for all negative points x. We will say that such a vector w

correctly classi�es all points in S. If a non-zero threshold value is desired, this can

be handled by simply creating an extra (n+ 1)st coordinate and giving all examples

a value of 1 in that coordinate.
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For convenience, de�ne `(x) (the label of x) to be 1 if x is positive and �1 if x is

negative. So, our goal is to �nd a vector w such that `(x)(w � x) > 0 for all x 2 S.

Also, for a point x let x̂ = x=jxj. I.e., x̂ is the vector x normalized to have length 1.

2.3.2 The standard algorithm

The standard algorithm proceeds as follows. We begin with w = ~0. We then perform

the following operation until all examples are correctly classi�ed:

Pick some arbitrary misclassi�ed example x 2 S and let w w + `(x)x̂.

A classic theorem (see [50]) describes the convergence properties of this algorithm.

Theorem 4 [50] Suppose the data set S can be correctly classi�ed by some unit vector

w�. Then, the Perceptron Algorithm converges in at most 1=�2 iterations, where

� = minx2Sjw� � x̂j.

Proof. Consider the cosine of the angle between the current vector w and the

unit vector w� given in the theorem. That is, w�w�

jwj . In each step of the algorithm,

the numerator of this fraction increases by at least � because (w + `(x)x̂) � w� =

w � w� + `(x)x̂ � w� � w � w� + �. On the other hand, the square of the denominator

increases by at most 1 because jw+`(x)x̂j2 = jwj2+2`(x)(w � x̂)+1 < jwj2+1 (since x

was misclassi�ed, this means the crossterm is negative). Therefore, after t iterations,

w � w� � t� and jwj < pt. Notice that the former cannot be larger than the latter.

Thus, t � 1=�2. 2

2.3.3 A modi�ed version

We now describe a modi�ed version of the Perceptron Algorithm that will be needed

for our construction. Recall our notation that cos(a; b) is the cosine of the angle

between vectors a and b, or equivalently a�b
jajjbj.

The reason we need to modify the algorithm is this: In the standard algorithm, if

some of the points are far from the target plane (in the sense that cos(w�; x) is large)

and some are near, then eventually the hypothesis will correctly classify the far away

points but may make mistakes on the nearby ones. This is simply because the points

far from w� � x = 0 cause the algorithm to make substantial progress but the others

do not. Unfortunately, we cannot test for points being far or near to the target plane.

So, we cannot produce the rule: \if j cos(w�; x)j is large then predict based on x � w,
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else say `I don't know'." What we want instead is an algorithm that does well on

points that are far from the hypothesis plane, because j cos(w; x)j is something that

the algorithm can calculate. If we then can guarantee that a reasonable fraction of

points will have this property, we will have our desired weak hypothesis (just replacing

w� by w in the above rule).

Speci�cally, our modi�ed algorithm takes as input a quantity � and its goal is to

produce a vector w such that every misclassi�ed x 2 S should satisfy j cos(w; x)j � �.

The algorithm proceeds as follows.

The Modi�ed Perceptron Algorithm

1. Begin with w as a random unit vector.

2. If every misclassi�ed x 2 S satis�es j cos(w; x)j � � (i.e., if jw � x̂j � �jwj) then
halt.

3. Otherwise, pick the misclassi�ed x 2 S maximizing j cos(w; x)j and update w

using:

w w � (w � x̂)x̂:
In other words, we add to w the appropriate multiple of x so that w is now

orthogonal to x, i.e., we add the multiple of x that shrinks w as much as

possible.

4. If we have made fewer than (1=�2) lnn updates then go back to Step 2. Other-

wise, go back to Step 1 (begin anew with a new random unit starting vector).

Theorem 5 If the data set S is linearly separable, then with probability 1�� the mod-

i�ed perceptron algorithm halts after O((1=�2) ln(n) ln(1
�
)) iterations, and produces a

vector w such that every misclassi�ed x 2 S satis�es j cos(w; x)j � �.

Proof. Let w� be a unit vector that correctly classi�es all x 2 S. Suppose it is the
case that the initial (random unit) vector w satis�es w � w� � 1=

p
n. Notice that in

each update made in Step (3), w � w� does not decrease because

(w � (w � x̂)x̂) � w� = w � w� � (w � x̂)(w� � x̂) � w � w�

where the last inequality holds because w misclassi�es x. On the other hand, jwj2
does decrease signi�cantly because (this is just the Pythagorean Theorem)

j(w � (w � x̂)x̂)j2 = jwj2 � 2(w � x̂)2 + (w � x̂)2

� jwj2(1 � �2):
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Thus, after t iterations, jwj � (1 � �2)t=2. Since jwj cannot be less than w � w�, this

means that the number of iterations t satis�es (1 � �2)t=2 � 1=
p
n, which implies

t � (lnn)=�2.

Each time we choose a random initial unit vector for w, there is at least a constant

> 0 probability that w satis�es our desired condition that w �w� > 1=
p
n. Thus, the

theorem follows. 2

We have described the algorithm as one that runs in expected polynomial time.

Alternatively we could stop the algorithm after a suitable number of iterations and

have a high probability of success. In Section 2.3.5 we will alter this algorithm slightly

to make it tolerant to random classi�cation noise.

2.3.4 A new guarantee for an old algorithm

The Modi�ed Perceptron Algorithm can be combined with the Outlier Removal

Lemma in a natural way. Given a data set S, we use the Lemma to produce a

set S0 with jS0j � 1

2
jSj and such that for all vectors w, maxS0(w � x)2 � �ES0[(w � x)2]

where � is polynomial in n and b.

We then reduce dimensionality if necessary to get rid of any vectors w for which

the above quantity is zero. That is, we project onto the subspace L spanned by the

eigenvectors of the XXT matrix having non-zero eigenvalue (X is the matrix of points

in S0). Now, we perform the linear transformation A�1 described in Section 2.2 so

that in the transformed space, for all unit vectors w, ES0 [(w �x)2] = 1. Our guarantee

for set S0 implies that in the transformed space, maxS0 jxj2 � �n. Thus, for any unit

vector w,

ES0[cos(w; x)
2] = ES0

(w � x)2
jxj2

� ES0 [(w � x)2]
maxS0 jxj2

� 1=(�n):

This implies that in the transformed space, at least a 1=(2�n) fraction of the points in

S0 satisfy cos(w; x)2 � 1=(2�n). We can now run the Modi�ed Perceptron Algorithm

with � = 1=
p
2�n, and guarantee that at the end, at least a 1=(2�n) fraction of the

points in S0 satisfy j cos(w; x)j � �.

The �nal hypothesis of the algorithm, in the original untransformed space, is: if

x 62 L or jcos(w;A�1x)j < � then guess the label randomly (or say \I don't know"),

and otherwise predict according to the hypothesis wTA�1x > 0.
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Achieving strong (PAC) learning

The algorithm presented above splits the input space into a classi�cation region

fx : x 2 L and j cos(w;A�1x)j � �g

and a don't-know region

fx : x 62 L or j cos(w;A�1x)j < �g:

By standard VC-dimension arguments [59], if the sample S is drawn from distribu-

tion D, then for any �; � > 0, if S is su�ciently (polynomially) large, then with high

probability (� 1� �), the true error of the hypothesis inside the classi�cation region

is less than �. Furthermore, the weight under D of the classi�cation region is at least

1=poly(n; b); that is, the fraction of S that lies in the classi�cation region is repre-

sentative of the weight of this region under D. Therefore, we can boost the accuracy

of the learning algorithm by simply running it recursively on the distribution D re-

stricted to the don't-know region. The �nal hypothesis produced by this procedure is

a decision list of the form: \if the example lies in the classi�cation region of hypoth-

esis 1, then predict using hypothesis 1, else if the example lies in the classi�cation

region of hypothesis 2, then predict using hypothesis 2, and so on".

2.3.5 Learning with noise

We now describe how the Modi�ed Perceptron Algorithm can be converted to one

that is robust to random classi�cation noise. We do this by recasting the algorithm in

the Statistical Query (SQ) model of Kearns [42] as extended by Aslam and Decatur

[4], and to use the fact that any SQ algorithm can be made tolerant of random

classi�cation noise.

We begin with some observations. For convenience, in the discussion below we

will normalize the examples to all have length 1, so that we need not distinguish

between x and x̂. Recall that `(x) = 1 if x is a positive example and `(x) = �1 if x

is a negative example.

The �rst observation is that the only properties of the point x selected in Step 3 of

the Modi�ed Perceptron Algorithm that are actually used in the analysis of Theorem

5 are:

cos(w; x)`(x) � ��; and (2.8)

cos(w�; x)`(x) � 0: (2.9)
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The second observation is that, in fact, we only need points that approximately achieve

these two properties. In particular, suppose that every point x we use in Step 3

satis�es the relaxed conditions:

cos(w; x)`(x) � ��=2; and (2.10)

cos(w�; x)`(x) � ��2

16
p
n lnn

: (2.11)

The �rst condition guarantees that after t = (8 lnn)=�2 iterations we have jwj �
(1� (�=2)2)t=2 < 1=n. The second guarantees that if initially w �w� � 1p

n
, then after

t iterations w �w� � 1p
n
� t�2

16
p
n lnn

� 1

2
p
n
. Therefore, we are guaranteed to halt before

t iterations have been made.

The �nal observation is that any positive multiple of

�w;S = ES[`(x)x : cos(w; x)`(x) � ��]

will satisfy conditions (2.8) and (2.9), assuming zero noise so that every x 2 S satis�es

(2.9), and if we de�ne `(�w;S) = 1. Furthermore, any point su�ciently near to �w;S

will satisfy the relaxed conditions (2.10) and (2.11). Speci�cally, the de�nition of

�w;S , the fact that all examples have length 1, and condition (2.8) together imply

that j�w;Sj � �. So, any point ~�w;S such that j~�w;S � �w;S j � �3=(16
p
n lnn) satis�es

conditions (2.10) and (2.11).

Statistical queries

Let f be a function from labeled examples to [0; 1]. That is, in our setting,

f : Rn � f�1; 1g �! [0; 1]:

A statistical query is a request for the expected value of f over examples drawn

from distribution D and labeled according to the target concept c; i.e., a request

for Ex2D[f(x; c(x))]. Assuming that f is polynomial-time computable, it is clear

that given access to non-noisy data, this expectation can be estimated to any de-

sired accuracy � with any desired con�dence 1� � in time poly( 1
�
; log(1

�
)), by simply

calculating the expectation over a su�ciently large sample. Kearns [42] and Aslam

and Decatur [4] prove that one can similarly perform such an estimation even in the

presence of random classi�cation noise.4 Speci�cally, for any noise rate � < 1=2 and

4Kearns [42] considers queries with range f0; 1g. Aslam and Decatur [4] extends these arguments

(among other things) to queries with range [0; 1], which is more convenient for our purposes.
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any accuracy (or tolerance) parameter � , the desired expectation can be estimated

with con�dence 1 � � in time (and sample size) poly( 1
�
; log(1

�
); 1

1�2�). Thus, to prove

an algorithm tolerant to random classi�cation noise, it su�ces to show that its use of

labeled examples can be recast as requests for approximate expectations of this form.

The Modi�ed Perceptron Algorithm uses labeled examples in two places. The �rst

is in Step 2 where we ask if there are any points x 2 S such that cos(w; x)`(x) � ��,
and we halt if there are none. We can replace this with a statistical query request-

ing the probability that a random labeled example from D satis�es this property

(formally, a request for Ex2D[f(x; c(x))] where f(x; `) = 1 if cos(w; x)` � �� and

f(x; `) = 0 otherwise) and halting if this probability is su�ciently small. Speci�cally,

we can set � = 1

3
�=(2�n) and halt if the result of the query is at most 2

3
�=(2�n),

where 1=(2�n) is a lower bound on Prx2D(j cos(w; x)j � �) from the Outlier Removal

Lemma.

The second place that labeled examples are used is in Step 3. As noted in the

discussion following equations (2.10) and (2.11), it su�ces for this step to use a

good approximation to �w;S instead of using any speci�c labeled example. We can

�nd such an approximation via statistical queries. Speci�cally, to approximate the

ith coordinate of �w;S , we ask for Ex2D[`(x)xij cos(w; x)`(x) � ��]. This condi-

tional expectation can be approximated as the ratio of the answers to the following

two statistical queries. One is a request for Ex2D[f(x; c(x))] where f(x; `) = `x if

cos(w; x) � �� and f(x; `) = 0 otherwise. The other is Pr[cos(w; x)`(x) � ��] which
we saw how to calculate in Step 2. Note that we are guaranteed from Step 2 that

Pr(cos(w; x)`(x) � ��) is reasonably large. Finally, we combine the approximations

for each coordinate into an approximation ~�w;S of �w;S .

Note that examples are also used in the algorithm for the Outlier Removal Lemma.

However, since this algorithm ignores the labels, it is una�ected by classi�cation noise.

2.4 Experiments and other potential applications

Even though the theoretical bounds established in the previous sections are not small

enough to directly imply the practicality of our techniques, the algorithms seem to

do quite well in practice.

We conducted the two di�erent experiments to gather empirical evidence. Both

were based on the perceptron algorithm.

� E�ciency.
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DATA. Synthetically generated, linearly-separable set of points, with a small

number of outliers (10% - 20%). We generated a set of points at random, then

inserted some outliers by hand.

We ran the perceptron algorithm on data sets of various sizes (using a random

misclassi�ed example at each iteration). Then we removed the outliers, and ran

it again on the outlier-free data, then incorporated the outliers (usually this took

only a few extra iterations). We considered a couple of di�erent variations of

the algorithm, e.g. with the misclassi�ed examples normalized to unit length at

each iteration, and with the outlier-free data transformed so that the expected

squared distance was 1 in every direction. In almost every case the number of

iterations to convergence dropped to 50% of the original number (and lesser in

some cases).

� Quality.

DATA. Breast Cancer measurements [62] on 569 patients with thirty attributes

of measurements on the cell nucleus (such as radius, texture, and smoothness)

and one �eld indicating the diagnosed nature of the cancer, \Benign" or \Ma-

lignant".

On running the perceptron algorithm on the data set for di�erent numbers of

iterations, the best half-space we could �nd correctly classi�ed 79% of the data

set. Next we set the the outlier parameter, � = 5, and removed the outliers.

There were 364 points left (the computation took a few seconds in the MATLAB

environment on an IBM PowerPC). Then we ran the algorithm on the outlier-

free data and tested the half-space obtained on the entire data set. It classi�ed

91% of the data correctly 5.

Remarks: It is possible that there exists an even better half-space for this data

set. On just the outlier-free data, the half-space performed even better.

While these experiments are not in any way conclusive, they indicate that outlier

removal might have many more rami�cations than our theorems imply. One thing is

clear | they call for more extensive experiments.

5It is a mystery to me that there should exist such a good half-space for separating the benign

and malignant cases of breast cancer
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2.5 Conclusion and open problems

In this chapter we have seen evidence that outliers could play a critical role in the

performance and speed of an algorithm. We presented a method to �nd outliers

de�ned in a strong way and proved theoretical guarantees about the method.

Unfortunately these guarantees are rather weak at the moment. Can the ratio

between the maximum and the average, �, in the outlier removal lemma be reduced

to a smaller polynomial? Our experiments suggest that the true bound might be

signi�cantly better.

Can we provide theoretical guarantees for outlier removal in other contexts such

as nearest neighbor search? Very recently, Edith Cohen showed that the Outlier

Removal Lemma can be used to learn a noisy half-space as a single half-space [17].
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Chapter 3

Reducing Dimensionality by

Random Projection I

We use random projection to 1-dimensional subspaces to identify the relevant subspace

in an algorithm for learning the intersection of half-spaces.

3.1 Introduction: the intersection of half-spaces

In this chapter we consider the problem of learning the intersection of k half-spaces in

n dimensions from labelled examples. We are presented with points in n-dimensional

space each labelled positive or negative. The problem is to �nd a set of k half-spaces

such that all the positive examples lie in a single region of intersection of the k half-

spaces and all the negative examples lie outside this region, if such a set of half-spaces

exists. For k = 1, this corresponds to learning a single half-space (also called a percep-

tron), which we considered in the previous chapter. As we observed, learning a single

perceptron is equivalent to linear programming and hence can be solved in polynomial

time. Other solutions to this problem, notably the perceptron algorithm, have also

been studied in the literature [12] (as we saw in the last chapter). While perceptrons

themselves are highly interesting and in fact have directly found applications, it is

often the case that one needs a more complex concept class to accurately model some

phenomenon. The intersection of k half-spaces is a natural generalization of a percep-

tron. Besides its intuitive geometric appeal, in principle any convex concept could be

approximated by an intersection of half-spaces. It also approximates a simple neural

network which is used in many machine learning applications.

What is the complexity of learning the intersection of k half-spaces? There are

31



32 REDUCING DIMENSIONALITY BY RANDOM PROJECTION I

several negative results about this [9, 14, 46, 49]. In the distribution-free model, where

we make no assumptions on the distribution from which examples are presented to us,

and under the requirement that the algorithm must produce a set of k half-spaces, the

problem cannot be solved in polynomial time even for k = 2 unless RP = NP [14, 49].

On the other hand, for special distributions there are some positive results. Baum [8]

gave an algorithm for learning the intersection of two homogenous half-spaces (a half-

space is homogenous if the hyperplane de�ning it passes through the origin) over any

distribution D that is origin-symmetric, i.e., for any x 2 Rn, D(x) = D(�x) (any
point x and its reection through the origin are equally likely). Recently, Blum and

Kannan [13] gave a polynomial time algorithm for the problem for any constant num-

ber of half-spaces for the uniform distribution on the unit ball in n dimensions. Their

algorithm does not explicitly �nd the half-spaces, instead it �nds a prediction rule

which can be evaluated in polynomial time (for a constant number of half-spaces)

and is probably approximately correct. The running time and number of examples

required by the algorithm are doubly exponential in k.

We present a randomized algorithm for the problem. Besides being simpler, our

algorithm improves on the previous one in three ways:

� It is faster: the running time and number of examples required are (singly)

exponential in k and polynomial in n. Hence we can learn the intersection of

up to O(log n= log log n) half-spaces in polynomial time.

� The concept that it reports is shorter: our algorithm explicitly �nds an (inter-

section of a) set of O(k) half-spaces.

� It can handle more general distributions (for a constant number of half-spaces):

speci�cally any distribution on the unit ball that is not \concentrated", i.e.,

whose probability density is at least 1=poly(n) and at most poly(n) everywhere.

Although our algorithm is quite di�erent from that of Blum and Kannan it is

inspired by the the same observation: the true complexity of the problem is deter-

mined not by the dimension n or the number of half-spaces k, but by the dimension

of the subspace spanned by their normal vectors to the de�ning hyperplanes. Indeed

our algorithm can learn the intersection of any number of half-spaces so long as their

normals span a subspace of dimension O(log n= log log n).

To explain the idea, let us assume that the half-spaces are homogenous, i.e., the

hyperplanes de�ning them pass through the origin (this is actually without loss of

generality for us as shown in section 3.3.5). Let the half-spaces be w1 �x � 0; w2 �x �
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0; : : : ; wk � x � 0. The intersection of these half-spaces is the positive region P .

For each half-space wi � x � 0, wi is the normal vector to the hyperplane de�ning

the half-space (lying in the region opposite the positive region with respect to this

hyperplane). Our goal will be to �nd a set of normal vectors that are very close in

angle to w1; : : : ; wk. For this we consider the set of all normal vectors that de�ne

hyperplanes through the origin which do not intersect the positive region P . This is

precisely the cone at the origin formed by the vectors w1; : : : ; wk. Formally, it is the

set DP of all vectors v such that v =
P

j �jwj, �j � 0. Then each vector v 2 DP

has the property that for any positive example x, v � x � 0. In other words DP is the

set of normal vectors of hyperplanes that do not intersect P . In linear programming

theory P and DP are dual to each other.

The �rst step of the algorithm is to �nd a good approximation to DP . Although

the minimum dimension of a subspace containing DP is at most k (it could be less)

we �rst �nd a good \approximation" to DP in n dimensions. This is done by simply

choosing a large sample of examples and considering the dual DC of their conical

hull C, i.e., the set of homogenous hyperplanes that do not intersect the convex hull

of the examples. In the second step we apply a simple procedure based on random

sampling to identify a k-dimensional subspace close to the subspace containing DP .

Then we project our n-dimensional approximation of DP to this relevant subspace.

Let this projection be D̂C . The next step is choose vectors from D̂C to guarantee

that for each wi there is at least one vector in the sample close to it (in angle). We

could do this by simply considering all points of a su�ciently �ne grid enclosing D̂C .

The size of the sample is chosen to be large enough to guarantee that for each wi

there is at least one vector in the sample close to it (in angle). Finally we prune the

sample using a greedy heuristic. The half-spaces de�ned by the vectors in the pruned

sample constitute the concept output by the algorithm. In other words, we label a

point positive if it lies in the intersection of these half-spaces and negative otherwise.

For most of the discussion we assume that the half-spaces we are trying to learn

are homogenous. In the next section we introduce the framework and notation. Then

we describe our algorithm in detail. Section 3.3.1 is devoted to proving a property

we need of a large sample of examples. Section 3.3.2 outlines a proof of the sampling

procedure used to �nd the relevant subspace. Section 3.3.3 describes the grid we use

for sampling and a bound on the size of the sample we need. Section 3.3.4 discusses the

�nal pruning step. Section 3.3.5 shows how to reduce the non-homogenous case to the

homogenous one (this does not work in general, only for the restricted distributions

we can handle). In a brief concluding section we mention possible extensions of this
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work and some related questions.

3.1.1 Preliminaries

We adopt the terminology used in the literature. To recap quickly, an example is a

point in Rn; a concept is a subset of Rn. An example that belongs to a concept is

a positive example for the concept, and an example that lies outside the concept is a

negative example. Given a set of labelled examples drawn from an unknown distri-

bution D in Rn, and labelled according to an unknown target concept the learning

task is to learn the target concept. What this means is that given an error parameter

� and a con�dence parameter �, with probability at least 1 � � the algorithm has to

�nd a concept that has error at most � on D.
For us the target concept is the intersection of l half-spaces in Rn, such that

the normal vectors to the hyperplanes bounding these half-spaces span a subspace of

dimension k. For most of the chapter we will assume that the hyperplanes bounding

the half-spaces pass through the origin. Each point x 2 Rn is labelled positive or

negative according to the following rule:

`(x) = + if Wx � 0

`(x) = � otherwise:

Here W is a real matrix of rank k with l rows and n columns. Each row wi

represents a half-space wi � x � 0. Hence a point x is labelled positive if it lies in the

intersection of the k half-spaces and it is labelled negative otherwise. Formally, the

positive region P is:

fx 2 Rnjx 2 Bn;Wx � 0g

Examples presented to the algorithm are drawn from some unknown distribu-

tion on the unit ball in n dimensions, Bn. We assume that the distribution is non-

concentrated, meaning that its probability density is at least 1=poly(n) and at most

poly(n) everywhere in the unit ball1. We can also assume that P occupies at least an

� fraction of the unit ball (otherwise we could simply output the concept that labels

every point negative). It is worth noting that such a distribution is a \good" one for

1It is worth noting that such a distribution is a \good" one for the perceptron algorithm discussed

in the previous chapter. We could set the � of the algorithm to be 1=poly(n) and in polynomial time

the algorithm would �nd a half-space that classi�ed all but a polynomial fraction correctly.



3.2. THE ALGORITHM 35

the perceptron algorithm discussed in the previous chapter. We could set the � of

the algorithm to be 1=poly(n) and in polynomial time the algorithm would �nd a

Let DP denote the dual to the cone formed by the positive region.

DP = fv 2 Rn : v =
X
i

�iwi; �i � 0g

We could project down to the subspace spanned byDP and the projections w0
1; w

0
2; : : : ; w

0
l

of the wi's give half-spaces that separate the positives from the negatives in the re-

duced space.

We say that a convex cone K in Rk is �-enclosed by another convex cone K 0 if

K � K 0, and for every point x 2 K 0 \ Bn there is some point y 2 K \ Bn such that

the angle between the vectors x and y is at most �. In other words for each x 2 K 0

there is a y in K such that the angle between x and y at the origin is at most �.

Inversely we say that K 0 �-encloses K.

The projection length of a convex body K along a unit vector (or direction) v is

the length of the 1-dimensional projection of K onto v. Intuitively, it is the width of

the body in the direction v. Formally it is

max
x2K

x � v �min
x2K

x � v

3.2 The Algorithm

The input to the algorithm is an error parameter �, a con�dence parameter �, and a

set of labelled examples. The output of the algorithm is a set of m half-spaces.

Here we give a high-level description of the algorithm. Details and proofs of

individual steps are in later sections. The parameters �i will be speci�ed later.

1. Approximate the dual cone. Let S be the set of positive examples presented

to the algorithm. Let C be the cone formed by the vectors in S and DC be the

dual of C, i.e., the set of normal vectors to hyperplanes that do not intersect

C. The size of S is chosen so that DC �1-encloses DP .

2. Identify the \irrelevant" subspace. We do this by �nding a set of n � k

orthogonal vectors fx1; x2; : : : ; xn�kg as follows: Choose a set of random unit

vectors and let x1 be the one among them such that the projection length of

DC\Bn in the direction of x1 is minimum. Now pick unit unit vectors orthogonal

to x1 and let x2 be the one among them with the minimum projection length
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of DC \ Bn. In this way at step i we �nd a vector xi that is orthogonal to

x1; : : : ; xi�1 and the projection length of DC along xi is small. After n�k steps,
the vectors fx1; : : : ; xn�kg span a subspace that approximates the irrelevant

subspace. The size of the sample is chosen so that at each vector xi is a small

angle (�2) away from being orthogonal to DP .

3. Reduce dimensionality. Project DC (implicitly) to the subspace orthogonal

to that spanned by fx1; x2; : : : ; xn�kg. Let D̂C be the projection.

4. Sample the dual. Consider all lattice points spaced at �3 units in a box that

encloses D̂C . In other words, in the original space for each wi there is a vector

corresponding to some lattice point that makes an angle less than �3 with wi.

5. Prune the sample. Let U be the random sample from the previous step. Let

S1 be a new set of 
(nl) examples. Greedily choose a subset of U of size m as

follows: let u1 be the vector from U such that u1 � x � 0 separates the largest

number of negative examples from the positive examples in S1. Discard the

negative examples that are separated in this way by u1. Let u2 be the vector

from U that separates the largest number of remaining negative examples in

S1 from the positives. Similarly, let ui be the vector from U that separates the

largest number of remaining negatives. The number of steps m is chosen so that

the number of remaining negatives after m steps is less than an �=2 fraction of

the initial number. Output the half-spaces u1 � x � 0; u2 � x � 0; : : : ; um � x � 0.

Given an unlabelled point x, we project it to D̂C and then label it positive if it

lies in the intersection of the above half-spaces and negative otherwise.

In the last step, alternatively, we could extend the vectors u1; : : : ; um to vectors

in Rn and output the corresponding half-spaces in Rn.

In order to learn a constant number of half-spaces in polynomial time, step (4)

of the algorithm could be replaced by any standard method to learn half-spaces in

constant-dimensional space. However, by this approach we can allow the relevant

subspace to have dimension greater than a constant.

3.3 The Analysis

Our main theorem is a performance guarantee for this algorithm for a suitable choice

of the �i's. In the statement below p � 1 is a parameter of the distribution. If D
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has parameter p then the probability density everywhere in the unit ball is between
1

p
and p.

Theorem 6 The above algorithm PAC-learns with parameter � and � the intersection

of l half-spaces whose normals lie in a k-dimensional subspace, and has a bound of

O(poly(n)lkk(
p

�
)k log

1

�
)

on the running time and the number of examples required.

For nearly-uniform distributions, i.e., when p is a constant, this gives us a polynomial-

time algorithm for k up to about log n= log log n.

3.3.1 A large sample of examples

In this section we derive an upper bound on the number of examples required by

the algorithm. Let S be the set of examples. Then jSj should be large enough to

guarantee that the dual to the cone formed by S �1-encloses the dual to the cone

formed by P .

Lemma 4 Let D be a non-concentrated distribution on Bn Let S be a random sample

of positive examples from this distribution and C be the cone at the origin formed by

the points in S. Let D be the dual cone of C. If

jSj = 
(p(n):(
1

�1
)k: log

1

�
)

where p(n) is a �xed polynomial that depends only on D, then with probability at least

1� �, the cone DP is �1-enclosed by DC .

Proof. Let DC0 , the dual of a cone C 0, be the maximum body that �1-encloses DP .

Our goal is to show that the dual DC of the conical hull C of a large enough sample

S will be contained in D0
C with high probability. To prove this we show that for each

point h on the boundary of DC0 , there is a supporting plane of DC which separates h

from DP .

Let h � x0 = 0 be a supporting hyperplane of C 0 such that C 0 lies in the half-space

h � x0 � 0 and consider the convex region P \Bn \ h � x0 � 0. The key idea is to show

that the probability that there is a point in the sample from such a region is high. This

probability is the total probability mass assigned to this part of the unit ball, i.e., it is
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at least 1
p(n)

times the fraction of the volume of the unit ball occupied by this region.

To calculate the fraction of the unit ball occupied by this region, we can �rst go down

to the (k + 1)-dimensional space spanned by w1; w2; : : : ; wl and h. In this space the

volume of the region grows with �1 roughly as at least 1

p(n)
�k1V ol(Bk) where V ol(Bk)

is the volume of the unit ball (this essentially follows from the observation that the

positive region P occupies at least 1=p(n) fraction of Bk). So the probability that any

single example falls in the region is 
(�k1=p(n)). Now we use the VC-dimension of the

intersection of up to l+1 half-spaces to complete the proof. The VC theorem implies

that if we consider a sample of size 
( (l+1)n

�
) then with high probability every concept

in the class, i.e., an intersection of every set of l + 1 half-spaces with more than �

probability will see at least one example in the sample. We set � in the theorem to

be �k1=p(n) to complete the proof. 2

3.3.2 Identifying the relevant subspace

In this section we analyze the procedure to approximately identify the irrelevant

subspace and hence the subspace spanned by DP .

The �rst step is to �nd a vector x1 such that the projection length of DC onto

x1 is small. For this we do a the following. Pick a set of random unit vectors, and

�nd the projection length of DC \ Bn along these vectors. Note that computing the

projection length of DC \ Bn onto a vector x can be done e�ciently: we need to

calculate maxy2DC\Bn x � y and miny2DC\Bn x � y, both of which are convex programs

with simple separation oracles [34]

Let x1 be the direction along which the projection length is minimum. We estimate

the probability that x1 is nearly orthogonal to DP using the following fact.

Fact 1 The volume of the n-dimensional ball of radius r is equal to 2rn�n=2

n�(n=2)
and its

surface area is 2rn�1�n=2

�(n=2)
.

Lemma 5 Let v1; v2; : : : vk be orthogonal unit vectors in Rn and let � � 1p
k
: Then

the probability that a random unit vector x satis�es jvi � xj � �, for all i, is


((1 � k�2)(n�k)=2(�2(n� k))k=2):

In other words the lemma lower bounds the probability that a random unit vector

is nearly orthogonal to each of a �xed set of k vectors.

Proof. Consider the set of of unit vectors x such that jvi�xj � � for all i = 1; : : : ; k.

This is the intersection of the unit ball Bn with 2k half-spaces. The intersection
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contains a \band" which has as its base an n�k dimensional ball of radius
q
(1�k�2)

and a thickness of 2� in the other k orthogonal dimensions. A simple calculation based

on fact 1 gives the bound. 2

Now we sample only from vectors orthogonal to x1, record the vector x2 with the

minimum projection length and repeat this to �nd x2; : : : ; xn�k. Let D̂C denote the

projection of DC to the subspace orthogonal to x1; x2; : : : ; xn�k.

From the lemma it follows, for example, that if we pick n=�k random unit vectors

then with high probability one of them will have a dot product of magnitude less than
�p
n�k with each of a �xed set of k orthogonal unit vectors. By letting the k vectors

to be a set of basis vectors of DP we have that w.h.p. x1 will be nearly orthogonal

to DP .

Lemma 6 Assume the projection length of DC \ Bn along any direction orthogonal

to DP is at most �=2 and along any direction in the subspace spanned by DP is at

least �. Then a sample of n=�k random unit vectors to �nd each xi guarantees that

the vectors x1; ::; xn�k are almost orthogonal to DP , i.e., jvi � xjj � �p
n+1�j�k

for

i = 1; : : : ; k and j = 1; : : : ; n � k. Further any unit vector w 2 DP has a projection

ŵ 2 D̂C such that w � ŵ � 1� �2k log n.

Proof. From lemma 5 the vector x1 satis�es vi � x1 � �p
n�k . For the purpose of

analysis we can view the second step of the algorithm as �rst projecting DC to the

subspace orthogonal to x1 and then sampling from all unit vectors in that subspace.

The projection of vi is vi � (vi � x1)x1. So again from the lemma we have

jvi � x2j = j[vi � (vi � x1)x1] � x2j � �p
n� 1� k

At the tth step, the projection of vi is vi�Pt�1
j=1(vi �xj)xj and it follows that jvi �xjj �

�p
n+1�t�k .

To prove the second part, for a unit vector w 2 DP , ŵ = w �Pn�k
j=1 (w � xj)xj. So

w � ŵ = 1�Pn�k
j=1 (w � xj)2. We rewrite w as

Pk
i=1 �ivi where

P
i �

2
i = 1 and then

jw � xjj = j
kX
i=1

�i(vi � xj)j

� �p
n+ 1� j � k

X
i

�i � �

s
k

n + 1� j � k
:

We plug this into the expression for w � ŵ to get that w � ŵ � 1� �2k log n. 2
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The �rst assumption of the lemma can be satis�ed by setting �1 = �2=2 in the

previous step of the algorithm. The second assumption is not really restrictive. If it is

not true, then that means that we can reduce the problem to one in k�1-dimensional

space. By setting � = �2p
k logn

we get that each w 2 DP has a projection ŵ 2 D̂C at

an angle of no more than �2 for small values of �2.

3.3.3 Sampling the dual

The next step is to �nd a sample the projected dual so that there is a point in the

sample within �3 of each wi'. We do this by simply �nding a sample that has point

close to every point of D̂C \ Bk. Let Zk be the integer lattice in k dimensions, and

let �3Zk be a scaled down integer lattice where the least spacing between points is �3.

Then the sample we consider is fD̂C \Bk \ �3Zk. It is easy to see that the size of the

sample is bounded by ( 1

�3
)k.

3.3.4 Pruning the sample of normal vectors

Here we show that m = O(l). Let S1 be a fresh sample of examples. From standard

V C-dimension arguments it is enough to �nd a set of half-spaces that have an error

less than � on a sample whose size is the V C-dimension. So we choose jS1j to be


(nl).

Let v1; v2; : : : ; vl be the vectors in U that are closest in angle to w0
1; w

0
2; : : : ; w

0
l

respectively. Let Pv be the region v1 � x � 0; : : : ; vl � x � 0. Pv is the positive region

according to these vectors. Assume that the combined error of these half-spaces with

respect to the actual set of half-spaces is bounded by �=2. In other words there is a

set of l half-spaces in U that correctly classify a (1 � �
2
) fraction of the distribution.

This can be achieved by setting �2 + �3 =
�
2k

in the previous steps of the algorithm.

Our procedure to prune U is the following: pick the best u from U , i.e., the vector

u such that the half-space u � x � 0 separates the maximum number of negatives

from the positives in S1. Call it u1. Then pick the best u for the remaining negative

examples and so on. From fairly standard set cover guarantees it follows that a greedy

set of l half-spaces must separate at least half as many as the best set of l half-spaces,

and a set of l log r greedy half-spaces separate at least 1� 1

r
fraction of what the best

set of l half-spaces can separate. We formalize this in the following theorem.

Theorem 7 A greedily chosen set of 2l log r half-spaces will with high probability

correctly classify at least (1� 1

r
)(1� �

2
) fraction of the distribution and hence achieve
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PAC-learning.

Setting r to be less than �
3
(say) gives us a set of O(l) planes that correctly classify

1� � of the distribution.

3.3.5 The non-homogenous case

The discussion so far has assumed that the half-spaces we are trying to learn are

homogenous. Of course this may not be the case in general, and here we show a

simple reduction from the general (non-homogenous) case to the homogenous case by

going to a representation in one more dimension, i.e., in Rn+1. The key issue will

be to make sure that we can do this while keeping the distribution in the new space

non-concentrated. We make two observations for this.

Our �rst observation is that all the algorithm needs is a distribution on the unit

sphere (rather than the ball) in Rn such that:

Any convex region of the sphere with more than 1=p(n) fraction of the area of the

sphere should have probability mass between 1=q(n) and q(n) for some polynomials

p(n); q(n). (Analogously, any c1 fraction should have probability mass between c2 and

1=c2 for constants c1; c2.)

Our second observation is that we only need the above condition to hold for the

part of the unit sphere that is in the positive region. (Negative examples are used

only in the last step.)

The following mapping from the unit ball Bn in R
n to the unit sphere Sn in R

n+1

satis�es these conditions.

yi =
nxiq

n2jxj2 + 1)2
for i = 1; : : : n

yn+1 =
1q

n2jxj2 + 1

This corresponds to blowing up Bn by a factor of n then placing it on the plane

yn+1 = 1 and then mapping it stereographically to the unit sphere (scaling the length

of the image).

The new coordinate yn+1 lies between 1 and 1p
n2+1

, i.e., points are mapped only

to the part of the sphere in the half-space yn+1 � 1p
n2+1

. Suppose the positive region

in Rn is given by the set of (possibly non-homogenous) half-spaces wi � x � bi for

i = 1; : : : ; l:
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Then in Rn+1 the positive region is given by the half-spaces

(wi;�bin) � y � 0

yn+1 � 1p
n2 + 1

This is then approximated by the homogenous half-spaces (wi;�bin) � y � 0 and

yn+1 � 0 and we can run the algorithm to learn them. The \blow-up" factor n could

be replaced by any poly(n). Note that it does not matter that only (about) half the

sphere is used.

3.4 Conclusion and open problems

We have seen the simplicity and utility of random projection as applied to a classical

problem in learning theory. In the next chapter we study random projection in

a rather di�erent context, namely information retrieval. Random projection also

seems to be a natural scheme for rounding semide�nite relaxations to vertex-ordering

problems. Recently, Kleinberg [45] gave an algorithm for �nding approximate nearest

neighbors using similar techniques. It is my feeling that other applications are waiting

to be discovered. We conclude this chapter with some questions about the algorithm

presented here.

Can the running time of the algorithm for learning the intersection of half-spaces

be improved to polynomial in 1

�
? Indeed an algorithm that is fully polynomial, i.e.,

polynomial in k as well, might be possible for non-concentrated distributions. I do

not know any hardness reduction that would make this unlikely.

Can we learn the intersection of k hyperplanes when the examples are drawn from

the uniform distribution on the vertices of a hypercube? This does not induce a non-

concentrated distribution on the sphere and so the methods in this chapter cannot

be applied directly. One reason that the problem is interesting for this distribution

is that it includes as a special case the problem of learning DNF-formulae.



Chapter 4

Reducing Dimensionality by

Random Projection II

We use random projection to quickly approximate the eigenspace of a matrix and

apply it to speeding up the information retrieval technique known as Latent Semantic

Indexing.

4.1 Introduction: Information Retrieval

The complexity of information retrieval is best illustrated by the two nasty classical

problems of synonymy (missing documents with references to \automobile" when

querying on \car") and polysemy (retrieving documents about the Internet when

querying on \sur�ng"). One possible approach to dealing with these two problems

would be to represent documents (and queries) not by terms (as in conventional

vector-based methods), but by the underlying (latent, hidden) \concepts" referred to

by the terms. This hidden structure is not a �xed many-to-many mapping between

terms and concepts, but depends critically on the corpus (document collection) in

hand, and the term correlations it embodies.

Latent Semantic Indexing (LSI) [19] is an information retrieval method which

attempts to capture this hidden structure by using techniques from linear algebra.

Vectors representing the documents are projected in a new, low-dimensional space

obtained by singular value decomposition of the term-document matrix A. This low-

dimensional space is spanned by the eigenvectors of ATA that correspond to the few

largest eigenvalues | and thus, presumably, to the few most striking correlations

between terms (see Section 4.1.1 for a brief description of the technique). Queries

43
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are also projected and processed in this low-dimensional space. This results not

only in great savings in storage and query time (at the expense of some considerable

preprocessing), but also, according to empirical evidence reported in the literature, to

improved information retrieval [10, 22, 23]. Indeed, it has been repeatedly reported

that LSI outperforms, with regard to precision and recall in standard collections and

query workloads, more conventional vector-based methods.

There is very little in the literature in the way of a mathematical theory that

predicts this improved performance. An interesting mathematical fact due to Eckart

and Young (stated below as Theorem 8) which is often cited as an explanation of

the improved performance of LSI states, informally, that LSI retains as much as

possible the relative position of the document vectors. This, however, may only

provide an explanation of why LSI does not deteriorate too much in performance over

conventional vector-space methods; it fails to justify the observed improvement.

This is a �rst attempt at using mathematical techniques to rigorously explain

the improved performance of LSI (Section 4.2 starts with a brief comparison with

previous uses of probabilistic techniques in information retrieval). Since LSI seems to

exploit and reveal the statistical properties of a corpus, we must start with a rigorous

probabilistic model of the corpus (that is to say, a mathematicalmodel of how corpora

are generated); we do this in Section 4.2. Briey, we model topics as probability

distributions on terms. A document is then a probability distribution that is the

convex combination of a small number of topics. We also include in our framework

style of authorship, which we model by a stochastic matrix that modi�es the term

distribution. A corpus is then a collection of documents obtained by repeatedly

sampling a probability distribution on combinations of topics and styles.

Once we have a corpus model, we would like to determine under what conditions

LSI results in enhanced retrieval properties. We would like to prove a theorem stat-

ing essentially that if the corpus is a reasonably focused collection of meaningfully

correlated documents, then LSI does well. The problem is to de�ne these terms so

that (1) there is a reasonably close correspondence with what they mean intuitively

and in practice, and (2) the theorem can be proved. In Section 4.3 we prove results

that, although not totally comprehensive and general, de�nitely point to this direc-

tion. In particular, we show that in the special case in which (a) there is no style

modi�er; (b) each document is on a single topic; and (c) the terms are partitioned

among the topics so that each topic distribution has high probability on its own terms,

and low probability on all others; then LSI, projecting to a subspace of dimension

equal to the number of topics, will discover these topics exactly, with high probability
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(Theorem 9).

In Section 4.4 we point out an interesting fact: if we project the term-document

matrix on a completely random low-dimensional subspace, then with high probability

we have a distance-preservation property akin to that enjoyed by LSI. This ran-

dom projection idea may yield an interesting improvement on LSI: we can perform

the LSI precomputation not on the original term-document matrix, but on a low-

dimensional projection, at great computational savings and no great loss of accuracy

(Theorem 11).

This last result can be seen as an alternative to (and a justi�cation of) sampling

in LSI. Reports on LSI experiments in the literature seem to suggest that LSI is

often done not on the entire corpus, but on a randomly selected subcorpus (both

terms and documents may be sampled, although it appears that most often docu-

ments are). There is very little non-empirical evidence of the accuracy of such an

approach. Our result suggests a di�erent and more elaborate (and computationally

intensive) approach | projection on a random low-dimensional subspace | which

can be rigorously proved to be accurate. We supplement several of our theorems with

experiments on corpora derived from our statistical model.

4.1.1 A review of LSI in information retrieval

A corpus is a collection of documents. Each document is a collection of terms from

a universe of n terms. Each document can thus be represented as a vector in <n
where each axis represents a term. The ith coordinate represents some function of the

number of times the ith term occurs in the document. This is the standard vector-

space representation of documents. There are several candidates for the right function

to be used here; we assume that it is the relative frequency of the term (number of

times the term occurs/total number of terms in the document).

Let A be an n � m matrix whose rows represent terms and columns represent

documents. Let the rank of A be r. Let the singular values of A be �1 � �2 � : : : � �r

(not necessarily distinct), i.e., �2
1; �

2
2; : : : �

2
r are the eigenvalues of AA

T . The singular

value decomposition of A expresses A as the product of three matrices A = UDV T ,

where D = diag(�1; : : : ; �r) is an r � r matrix, U = (u1; : : : ; ur) is an n � r matrix

whose columns are orthonormal, and V = (v1; : : : ; vr) is an m � r matrix which is

also column-orthonormal.

LSI works by omitting all but the k largest singular values in the above decompo-

sition, for some appropriate k; here k is the dimension of the low-dimensional space
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alluded to in the informal description of Section 4.1. It should be small enough to

enable fast retrieval, and large enough to adequately capture the structure of the

corpus. Let Dk = diag(�1; : : : ; �k), Uk = (u1; : : : ; uk) and Vk = (v1; : : : ; vk). Then

Ak = UkDkV
T
k

is a matrix of rank k, which is our approximation of A. The rows of VkDk above

are then used to represent the documents. In other words, the column vectors of A

(documents) are projected to the k-dimensional space spanned by the column vectors

of Uk; we sometimes call this space the LSI space of A.

How good is this approximation? The following well-known theorem gives us some

idea.

Theorem 8 (Eckart and Young, see [32].) Among all n�m matrices C of rank at

most k, Ak is the one that minimizes kA� Ck2 = P
i;j(Ai;j � Ci;j)2.

Therefore, LSI preserves (to the extent possible) the relative distances (and hence,

presumably, the retrieval capabilities) in the term-document matrix while projecting

it to a lower-dimensional space. It remains to be seen in what way it improves these

retrieval capabilities.

4.2 The Probabilistic Corpus Model

There are many useful formal models of IR in the literature, and probability plays

a major role in many of them | see for instance the surveys and comparisons in

[30, 53, 56]. The approach in this body of work is to formulate information retrieval as

a problem of learning the concept of \relevance" that relates documents and queries.

The corpus and its correlations plays no central role. In contrast, our focus is on the

probabilistic properties of the corpus.

Since LSI exploits and brings out the structure of the corpus it will fare well

in a meaningful collection of strongly correlated documents, and will produce noise

in a random set of unrelated documents. In order to study the dependence of the

performance of LSI on the statistical properties of the corpus, we must start with a

probabilistic model of a corpus. We state now our basic probabilistic model, which

we will work with for much of this chapter. In Section 4.5.1 we will extend this to a

more general graph-theoretic model in which the conductances of subsets of vertices

will play a role.
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Let the universe of all terms be U . A topic is a probability distribution on U . A

meaningful topic is very di�erent from the uniform distribution on U , and is concen-

trated on terms that might be used to talk about a particular subject. For example,

the topic of \space travel" might favor the terms \galaxy" and \starship", while rarely

mentioning \misery" or \spider". A possible criticism against this model is that it

does not take into account correlations of terms within the same topic (for example,

a document on the topic \Internet " is much more likely to contain the term \search"

if it also contains the term \engine").

The structure of documents is also heavily a�ected by authorship style. We model

style as a jU j � jU j stochastic matrix (a matrix with nonnegative entries and row

sums equal to 1), denoting the way whereby style modi�es the frequency of terms.

For example, a \formal" style may map \car" often to \automobile" and \vehicle,"

and seldom to \car" | and almost never to \wheels." Admittedly, this is not a

comprehensive treatment of style; for example, it makes the assumption { not always

valid { that this inuence is independent of the underlying topic.

A corpus model C is a quadruple C = (U;T ;S;D), where U is the universe of terms,

T is a set of topics, and S a set of styles. T̂ � Ŝ �Z+, where by T̂ we denote the set

of all convex combinations of topics in T , by Ŝ the set of all convex combinations of

styles in S, and by Z+ the set of positive integers (the integers represent the lengths of

documents). That is, a corpus model is a probability distribution on topic combina-

tions (intuitively, favoring combinations of a few related topics), style combinations,

and document lengths (total number of term occurrences in a document).

A document is generated from a corpus model C = (U;T ;S;D) through the

following two-step sampling process. In the �rst step, a convex combination of topics

T̂ from T̂ , a convex combination of styles Ŝ from Ŝ, and a positive integer ` are

sampled according to distribution D. Then terms are sampled ` times to form a

document, each time according to distribution T̂ Ŝ. A corpus of size m is a collection

of m documents generated from C by repeating this two-step sampling process m

times.

4.3 An attempt to explain LSI's success

We now establish a result based on our model that provides some intuition for LSI's

empirical success. We begin with some tools from spectral analysis in Section 4.3.1;

following our analysis in Section 4.3.2, we give some experimental results using our

synthetic model in support of this analysis. More extensive experimentation using
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large corpora of \real" documents further supports this analysis (see Section 4.5).

4.3.1 Tools

The following lemma formalizes the intuition that if the k largest singular values

of a matrix A are well-separated from the remaining singular values then the sub-

space spanned by the corresponding singular vectors is preserved well when a small

perturbation is added to A.

Lemma 7 Let A be an n�m matrix of rank r with singular value decomposition

A = UDV T ;

where D = diag(�1; : : : ; �r). Suppose that, for some k, 1 � k < r, �k=�k+1 > c�1=�k

for su�ciently large constant c. Let F be an arbitrary n �m matrix with kFk2 � �,

where � is a su�ciently small positive constant. Let A0 = A + F and let U 0D0V 0T

be its singular-value decomposition. Let Uk and U 0
k be n � k matrices consisting of

the �rst k columns of U and U 0 respectively. Then, U 0
k = UkR + G for some k � k

orthonormal matrix R and some n � k matrix G with kGk2 � O(�).

The proof of this lemma, given in the appendix, relies on a theorem of Stewart [33]

about perturbing a symmetric matrix.

4.3.2 Analysis of LSI

We now show that in a restricted version of our probabilistic model, LSI brings

together documents on the same topic while keeping apart documents on di�erent

topics. Let C = (U;T ;D) be a corpus model. We call C pure if each document talks

only about a single topic. We call C �-separable, where 0 � � < 1, if a set of terms

UT is associated with each topic T 2 T so that (1) UT are mutually disjoint and

(2) for each T , the total probability T assigns to the terms in UT is at least 1 � �.

We call UT the primary set of terms of topic T . The assumption that a corpus is

�-separable for some small value of � is more realistic if the documents are assumed

to be preprocessed to eliminate commonly-occurring stop-words.

Let C be a pure corpus model and let k = jT j denote the number of topics in

C. Since C is pure, each document generated from C is in fact generated from some

single topic T : we say that the document belongs to the topic T . Let C be a corpus

generated from C and, for each document d 2 C, let vd denote the vector assigned to
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d by the rank-k LSI performed on C. We say that the rank-k LSI is �-skewed on the

corpus instance C if, for each pair of documents d and d0, vd �vd0 � �kvdkkvd0k if d and
d0 belong to di�erent topics and vd � vd0 � 1 � �kvdkkvd0k if they belong to the same

topic. Informally, the rank-k LSI is �-skewed on a corpus (for small �), if it assigns

nearly orthogonal vectors to two documents from di�erent topics and nearly parallel

vectors to two documents from a single topic: LSI does a particularly good job of

classifying documents when applied to such a corpus. The following theorem states

that a large enough corpus (speci�cally, when the number of documents is greater

than the number of terms) generated from our restricted corpus model indeed has

this nice property with high probability.

Theorem 9 Let C be a pure and �-separable corpus model with k topics such that the

probability each topic assigns to each term is at most � , where � > 0 is a su�ciently

small constant. Let C be a corpus of m documents generated from C. Then, the

rank-k LSI is O(�)-skewed on C with probability 1�O(m�1).

Proof. Let Ci denote the subset of the generated corpus C consisting of docu-

ments belonging to topic Ti, 1 � i � k. To see the main idea, let us �rst assume that

� = 0. Then, each document of Ci consists only of terms in Ui, the primary set of

terms associated with topic Ti. Thus, the term-document matrix A representing cor-

pus C consists of blocks Bi, 1 � i � k: the rows of Bi correspond to terms in Ui and

columns of Bi correspond to documents in Ci; the entire matrix A can have non-zero

entries in these rows and columns only within Bi. Therefore, ATA is block-diagonal

with blocks BT
i Bi, 1 � i � k. Now focus on a particular block BT

i Bi and let �i and

�0i denote the largest and the second largest eigenvalues of BT
i Bi. Intuitively, the ma-

trix BT
i Bi is essentially the adjacency matrix of a random bipartite multigraph and

then, from the standard theory of spectra of graphs[18], we have that �0i=�i ! 0 with

probability 1 as � ! 0 and jCij ! 1. Below we give a formal justi�cation of this

by showing that a quantity that captures this property, the conductance [36] (equiva-

lently, expansion) of BT
i Bi is high. The conductance of an undirected edge-weighted

graph G = (V;E) is

min
S�V

P
i2S;j2S wt(i; j)

minfjSj; jSjg

Let x1; x2; : : : ; xt be random documents picked from the topic Ti. Then we will

show that the conductance is 
( jtj
jTij), where jTij is the number of terms in the topic

Ti. Let G be the graph induced by the adjacency matrix BT
i Bi. For any subset S of
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the vertices (documents),

X
i2S;j2S

wt(i; j) =
X

i2S;j2S
xi � xj

= (
X
i2S

xi) � (
X
j2S

xj):

Assume w.l.o.g. that jSj � jSj. Let ps be the probability of the sth term in Ti. Then

we can estimate, for each term,
P

j2S x
j
s � minfps=2; ps � �g with probability at least

1� 1

2t
using the independence of the xj's via a simple application of Cherno�-Hoe�ding

bound [35]. Using this we lower bound the weight of the cut (S; S):

(
X
i2S

xi) � (
X
j2S

xj) �
X
i2S

xis(minfps=2; ps � �g)

which is 
( jSjjTij) with high probability by a second application of the Cherno�-Hoe�ding

bound. The desired bound on the conductance follows from this.

Thus, if the sample size m = jCj is su�ciently large, and the maximum term

probability � is su�ciently small (note this implies that the size of the primary set

of terms for each topic is su�ciently large), the k largest eigenvalues of ATA are �i,

1 � i � k, with high probability. Suppose now that our sample C indeed enjoys this

property. Let ûi denote the eigenvector of BT
i Bi corresponding to eigenvalue �i (in

the space where coordinates are indexed by the terms in Ti) and let ui be its extension

to the full term space, obtained by padding zero entries for terms not in Ti. Then, the

k-dimensional LSI-space for corpus C is spanned by the mutually orthogonal vectors

ui, 1 � i � k. When a vector vd representing a document d 2 Ci is projected into

this space, the projection is a scalar multiple of ui, because vd is orthogonal to uj for

every j 6= i.

Caveat: Although the above argument might seem to support the spec-

ulation that each basis vector of the LSI space found by LSI corresponds

to one topic, this is not necessarily the case, at least in our model. If

the eigenvalues �i, 1 � i � k, in the above analysis are all distinct, then

LSI indeed �nds ui, 1 � i � k, as the basis vectors. However, if some

of the eigenvalues are identical, then LSI may �nd a di�erent set of basis

vectors. Note that the argument in the previous paragraph is not relying

on LSI �nding exactly the eigenvectors ui, 1 � i � k; it relies only on LSI

identifying the subspace spanned by those vectors. This observation may

sound an inessential side note because in our probabilistic corpus genera-

tion model, the probability that two of the eigenvalues �i, �j are identical
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goes to zero. In the more general case � > 0 we consider below, however,

we may not expect LSI to identify individual eigenvectors corresponding

to single topics, even if the eigenvalues are all distinct.

When � > 0, the term-document matrix A can be written as A = B+F , where B

consists of blocksBi as above and F is a matrix with small kLk2-norm (not exceeding �

by much, with high probability). As observed in the above analysis for the case � = 0,

the invariant subspaceWk of BTB corresponding to its largest k eigenvalues is an ideal

representation space for representing documents according to their topics. Our hope

is that the small perturbation F does not prevent LSI from identifyingWk with small

errors. This is where we apply Lemma 7. Let W 0
k denote the k-dimensional space the

rank-k LSI identi�es. The �-separability of the corpus model implies that the two-

norm of the perturbation to the document-term matrix is O(�) and, therefore by the

lemma, the two-norm of the di�erence between the matrix representations of Wk and

W 0
k is O(�). Since W

0
k is a small perturbation of Wk, projecting a vector representing

a document in Ci into W 0
k yields a vector close, in its direction, to ui (the dominating

eigenvector of BT
i Bi). Therefore, the LSI representations of two documents are almost

in the same direction if they belong to the same topic and are nearly orthogonal if

they belong to di�erent topics. A quantitative analysis (Lemma 10) shows that the

rank-k LSI is indeed O(�)-skewed on C with high probability. 2

4.3.3 Experiments

Even though Theorem 9 gives an asymptotic result and only claims that the prob-

ability approaches 1 as the size parameters grow, the phenomenon it indicates can

be observed in corpora of modest sizes, as is seen in the following experiment. We

generated 1000 documents (each 50 to 100 terms long) from a corpus model with 2000

terms and 20 topics. Each topic is assigned a disjoint set of 100 terms as its primary

set. The probability distribution for each topic is such that 0.95 of its probability

density is equally distributed among terms from the primary set, and the remain-

ing 0.05 is equally distributed among all the 2000 terms. Thus this corpus model is

0.05-separable. We measured the angle between all pairs of documents in the original

space and in the rank 20 LSI space. The following is a typical result. Call a pair of

documents intra-topic if the two documents are generated from the same topic and

inter-topic otherwise.
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intra-topic inter-topic

min max average std min max average std

original space 0.801 1.39 1.09 0.079 1.49 1.57 1.57 0.00791

LSI space 0 0.312 0.0177 0.0374 0.101 1.57 1.55 0.153

Here, angles are measured in radians. It can be seen that the angles of intra-topic

pairs are dramatically reduced in the LSI space. Although the minimum inter-topic

angle is rather small, indicating that some inter-topic pairs can be close enough to be

confused, the average and the standard deviation show that such pairs are extremely

rare. Similar results are obtained from ten repeated trials. Results from experiments

with di�erent size-parameters are also similar in spirit.

In this and the other experiments reported here, we used SVDPACKC [11] for

singular value decomposition.

4.4 Fast LSI via pandom projection

A lemma of Johnson and Lindenstrauss shows that if points in a vector space are pro-

jected to a random subspace of suitably high dimension, then the distances between

the points are approximately preserved. Although such a random projection can be

used to reduce the dimension of the document space, it does not bring together se-

mantically related documents. LSI on the other hand seems to achieve the latter, but

its computation time is a bottleneck. This naturally suggests the following approach:

1. Apply a random projection to the initial corpus to l dimensions, for some small

l > k, to obtain, with high probability, a much smaller representation, which is

still very close (in terms of distances and angles) to the original corpus.

2. Apply rank k LSI to the documents in the projected space to get the �nal result.

We prove that the above approach is good in the sense that the the �nal representation

is very close to what we would get by directly applying LSI. Another way to view this

result is that random projection gives us a fast way to approximate the eigenspace

(eigenvalues, eigenvectors) of a matrix.

We �rst state the Johnson-Lindenstrauss lemma.

Lemma 8 (Johnson and Lindenstrauss, see [28, 38].) Let v 2 Rn be a unit vector,

let H be a random l-dimensional subspace through the origin, and let the random
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variable X denote the square of the length of the projection of v onto H. Suppose

0 < � < 1

2
, and 24 log n < l <

p
n. Then, E[X] = l=n, and

Pr(jX � l=nj > �l=n) < 2
p
le�(l�1)�

2=4:

Using the above lemma, we can infer that with high probability, all pairwise Eu-

clidean distances are approximately maintained under projection to a random sub-

space. By choosing l to be 
( logm
�2

) in Lemma 8, we have with high probability that

the projected vectors, after scaling by a factor
q
n=l, fv0ig, satisfy

kvi � vjk2(1� �) � kv0i � v0jk2 � kvi � vjk2(1 + eps):

Similarly inner products are also preserved approximately: 2vi � vj = v2i + v2j �
(vi � vj)2. So the projected vectors satisfy

2v0i � v0j � (v2i + v2j )(1 + �)� (vi � vj)
2(1 � �)

Therefore, v0i � v0j � vi � vj(1� �)+ �(v2i + v2j ). In particular, if the vi's are all of length

at most 1, then any inner product vi � vj changes by at most 2�.

Consider again the term-document matrix A generated by our corpus model. Let

R be a random column-orthonormal matrix with n rows and l columns, used to

project A down to an l-dimensional space. Let B =
q

n
l
RTA be the matrix after

random projection and scaling, where,

A =
rX

i=1

�iuiv
T
i

and

B =
tX

i=1

�iaib
T
i

are the SVD's of A and B respectively.

Theorem 10 Let � be an arbitrary positive constant. If l � c logn
�2

for a su�ciently

large constant c then, for p = 1; : : : ; t

�2p �
1

k
[(1� �)

kX
i=1

�2
i �

i�1X
j=1

�2j ]:

Proof. The pth eigenvalue of B can be written as

�2p = maxjvj=1v
T [B �

p�1X
j=1

ajb
T
j ]

T [B �
p�1X
j=1

ajb
T
j ]v
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Consider the above expression for v1; : : : ; vk, the �rst k eigenvectors of A. For the

ith eigenvector vi it can be reduced to

vTi (B
TB �

p�1X
j=1

�2jbjb
T
j )vi

vTi B
TBvi �

p�1X
j=1

�2j (bj � vi)2

�2
i juTi Rj2 �

p�1X
j=1

�2j (bj � vi)2

� (1� �)�2
i �

p�1X
j=1

�2j (bj � vi)2

Summing this up for i = 1; : : : ; k,

kX
i=1

vTi B
TBvi � (1 � �)

kX
i=1

�2
i �

p�1X
j=1

�2j

kX
i=1

(bj � vi)2

Since the vi's are orthogonal and the bj's are unit vectors,

� (1� �)
kX
i=1

�2
i �

p�1X
j=1

�2j

Hence

�2p � maxviv
T
i B

TBvi � 1

k
[(1� �)

kX
i=1

�2
i �

p�1X
j=1

�2j ]

2

Theorem 11

kB2kk22 � (1� �)kAkk22

In other words the matrix obtained by RP+LSI recovers most of the matrix ob-

tained by direct LSI.

If we further assume that only the top k eigenvalues of ATA are dominant, than

we can prove more.

How much faster is the two step method? Let A be an n � m matrix. Then

the time to compute LSI is O(mn2) for a dense matrix. On the other hand if A

is sparse, this goes down to O(mnc) where c is the (average) number of non-zero

entries in a column of A, i.e. the number of terms in a document. The time to
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compute the random projection to l dimensions is O(mnl) for dense matrices and

O(mcl) for sparse matrices. After the projection, the time to compute LSI is O(ml2).

So the total time is O(ml(l + c)). To obtain an � approximation we need l to be

O( logn
�2

). Thus the running time of the two-step method is asymptotically superior:

O(m(log2 n+ c log n)) compared to O(mnc).

4.5 Conclusion and further work

Recently, in personal communication, S. Vathyanathan and D. Modha (at IBM Al-

maden) give preliminary reports of success on real-life corpora with methods involving

RP and SVD.

A theoretician's �rst reaction to an unexpected (positive or negative) empirical

phenomenon is to understand it in terms of mathematical models and rigorously

proved theorems; this is precisely what we have tried to do, with substantial if partial

success. What we have been able to prove should be seen as a mere indication of

what might hold; we expect the true positive properties of LSI to go far beyond the

theorems we are proving here.

There are several speci�c issues to be pursued here. Two of them are, a model

where documents could belong to several topics, and one where term occurrences are

not independent. Another issue is, does LSI address polysemy? We have seen some

evidence that it handles synonymy.

Theory should ideally go beyond the ex post facto justi�cation of methods and

explanation of positive phenomena, it should point the way to new ways of exploiting

them and improving them. Section 4.4, in which we propose a random projection

technique as a way of speeding up LSI (and possibly as an alternative to it), is an

attempt in this direction.

4.5.1 A more general model

In this model we will view the corpus as an edge-weighted graph. There is a vertex

in the graph for each document. The weight of an edge between two documents u

and v denotes the similarity between the documents, with higher weight indicating

greater similarity, e.g. u � v. Documents that constitute a topic form an induced

subgraph with high conductance [36] in this graph. This addresses the intuitive idea

that two documents could be related through other documents even if they do not

have many terms in common directly. Also notice that, in general, a single document
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could belong to many di�erent topics, which calls for a substantial extension of the

theory and techniques developed here.

We now extend our analysis of LSI to this more general setting. Assume that

each document belongs to a single topic. The graph can then be partitioned into

the topics, so that the subgraph induced by each topic has high conductance. The

adjacency matrixATA can thus be written as A0TA0+F with the following properties:

� A0TA0 is a block diagonal matrix

� Each block corresponds to a topic

� The �rst two eigenvalues of each block are well-separated.

� The matrix F is a perturbation of low norm.

Let there be k topics in the corpus. Applying lemma 7 we see that a rank k

LSI will closely approximate the eigenspace spanned by the �rst k eigenvectors of

A0TA0. Assuming that the �rst eigenvalues of the blocks are all greater than any of

the second eigenvalues, this implies that LSI will separate the documents according

to their topics.

4.6 Appendix: Proof of Lemma 7

In the following version of Lemma 7, we take some speci�c values for some constants

to facilitate the proof; note that the choice of those values are arbitrary to a large

extent.

Lemma 9 Let A be an n�m matrix of rank r with singular value decomposition

A = UDV T ;

where D = diag(�1; : : : ; �r). Suppose that, for some k, 1 � k < r, 21=20 � �1 �
: : : � �k � 19=20 and 1=20 � �k+1 � : : : � �r. Let F be an arbitrary n � m

matrix with kFk2 � � � 1=20. Let A0 = A+ F and let U 0D0V 0T be its singular-value

decomposition. Let Uk and U 0
k be n � k matrices consisting of the �rst k columns of

U and U 0 respectively. Then, U 0
k = UkR + G for some k � k orthonormal matrix R

and some n� k matrix G with kGk2 � 9�.

The proof of this lemma relies on a theorem of Stewart [33] about perturbing a

symmetric matrix.
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Theorem 12 Suppose B and B + E are n� n symmetric matrices and

Q = [ Q1 Q2 ]

k n� k

is an n � n orthogonal matrix such that range(Q1) is an invariant subspace for B.

Partition the matrices QTBQ and QTEQ as follows, where B11 and E11 are k � k

matrices:

QTBQ =

2
4 B11 0

0 B22

3
5

QTEQ =

2
4 E11 E12

E21 E22

3
5

If

� = �min � �max � kE11k2 � kE22k2 > 0;

where �min is the smallest eigenvalue of B11 and �max is the largest eigenvalue of B22,

and kE12k2 � �=2 then there exists an (n � k) � k real matrix P such that

kPk2 � 2

�
kE21k2

and the columns of Q0
1 = (Q1+Q2P )(I + P TP )�1=2 form an orthonormal basis for a

subspace that is invariant for B + E.

Proof. of Lemma 9. We apply Theorem 12 to B = AAT , E = A0(A0)T �B. We

choose the block-diagonalizing matrix Q in the theorem to be U followed by n � r

zero-columns. Thus, when we write Q = [Q1Q2], Q1 = Uk, the �rst k columns of U ,

and Q2 consists of remaining columns of U followed by zero-columns. Since UTBU is

a diagonal matrix, QTBQ is also a diagonal matrix. Let QTEQ be decomposed into

blocks Eij, 1 � i; j � 2, as in Theorem 12. To apply the theorem, we need to bound

kEi;jk2. We do this simply by bounding kEk2. Since E = (A+F )(A+F )T �AAT =

AF T + FAT + FF T , we have kEk2 � 2kAk2kFk2 + kFk22 � 2(21=20)� + �2 <

(43=20)�. Therefore, kEijk2 � (43=20)�, 1 � i; j � 2. The non-zero eigenvalues of

B are �2
1; : : : ; �

2
r . Of these, �2

1; : : : ; �
2
k � 361=400 and �2

k+1; : : : ; �
2
r � 1=400. Hence

� = �min � �max � kE11k2 � kE22k2 is positive: � > 361=400 � 1=400 � (43=10)� �
137=200. Also we have kE12k2 � (43=20)� � 43=400 < �=2 and all the assumptions

of Theorem 12 are satis�ed. It follows that there exists an ((n � k) � k matrix P

satisfying kPk2 � 2

�
kE21k2 � 7� such that

Q0
1 = (Q1 +Q2P )(I + P TP )�1=2 (4.1)
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forms an orthonormal basis for a subspace that is invariant for B+E. This invariant

subspace corresponds to the k largest singular values of A+F . Therefore, the column

vectors of U 0
k, (the �rst k eigenvectors of B+E) span the same invariant subspace as

that spanned by the column vectors of Q0
1. In other words, there is a k�k orthonormal

matrix R such that U 0
k = Q0

1R.

Since kQ1k2 � 1, kQ1k2 � 1, and

kPk2 � 7�, it follows from (4.1) that Q0
1 = Q1 +H for some H with kHk2 � 9�.

Therefore, U 0
k = UkR +HR, with kHRk2 � 9�, as claimed. 2

The following lemma is also used in the proof of Theorem 9.

Lemma 10 Let U 2 Rn�k be a matrix with orthonormal columns and let W 2 Rn�k

be a matrix with kW � Uk2 � �. Let u; v; w 2 Rn be vectors such that kUTuk2 =

kUTvk2 = kUTwk2 = 1, (UTu;UTv) = 1 and (UTu;UTw) = 0. Let u0; v0; w0 2 Rn be

arbitrary vectors with ku� u0k2; kv � v0k2; kw � w0k2 � �. Then,

(W Tu0;W Tv0) � (1� 4�)kW Tu0k2kW Tv0k2; and

(W Tu0;W Tw0) � 4�:



Chapter 5

Sampling Lattice Points

When is the volume of a convex polytope in Rn close to the number of lattice points in

the polytope? We show, algorithmically, that if the polytope contains a ball of radius

n
p
logm, where m is the number of facets, then the volume approximates the number

of lattice points to within a constant factor.

5.1 Introduction

In recent years, random sampling has become ubiquitous in its applicability. In this

chapter we return to a classic theme of random sampling, namely uniform generation

and approximate counting. The connection between uniformly generating from com-

binatorial sets and approximately counting them was observed more than a decade

ago [37]. Following that, the Markov Chain Monte-Carlo method has yielded e�-

cient algorithms based on random walks for a variety of generation (and counting)

problems.

Here we consider the problem of counting approximately the number of lattice

points in an n�dimensional polytope of the form

P = fx 2 Rn : Ax � bg;

where A is an m�n matrix of nonnegative reals and b is an m� vector of nonnegative

reals. Letting Zn denote the set of integer points (points with all integer coordinates),

we are interested in the problem of estimating jP \Znj given A; b. Closely related to

it is the problem of sampling nearly uniformly from the set P \ Zn [37].

This problem includes as a special case several combinatorial counting problems

that have been studied - like that of estimating the permanent of a 0-1 matrix [36],

59
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the number of contingency tables [26], solutions to knapsack problems [25] etc.. It is

well-known that the �nding jP \Znj exactly is # P-hard [58]. It is also easy to show

that it is NP-hard to estimate jP \ Znj to any polynomial (in input length) factor.

For completeness, we include a proof of this folklore result here.

An approach to the problem is to reduce it to the tractable problem of estimating

the volume of P or a related polytope (see [24]). Intuitively, it is easy to argue that if

each entry of b is su�ciently large, then the number of integer points in the polytope

is close to the volume of the polytope. In fact, this general principle can be dated

back to Gauss, and has been the subject of many fascinating studies (see e.g. [27]).

In this chapter, we prove that if the polytope contains a ball of radius 
(n
p
logm),

then the volume of P approximates jP \Znj well. We also show that this is essentially

tight. The proof is relatively simple and is algorithmic, so it actually yields an

algorithm to sample nearly uniformly from P \ Zn under the condition. We give

a simple class of examples to show that the bound is tight to within constants.

From this general result, several interesting special cases follow.

One interesting case is that of sampling uniformly from the set of nonnegative

integer matrices with speci�ed row and column sums (called \contingency tables").

Speci�cally, the problem is the following : for natural numbersm;n, we are given \row

sums" r1; r2; : : : rm and column sums c1; c2; : : : cn which are all nonnegative integers

with
P
ri =

P
cj. We are to pick a sample nearly uniformly from the integer points

in the polytope

P = fx 2 Rmn
+ :

X
j

xij = ri for i = 1; 2; : : :m
X
i

xij = cj for j = 1; 2 : : : ng:

This problem arises in Statistics and Combinatorics [20, 21]. Dyer, Kannan and

Mount [26] gave a polynomial time algorithm for this problem provided ri 2 
(mn2)

and cj 2 
(nm2). Our general result here implies the earlier result, with a simple

proof (and with slightly weaker assumptions).

A second special case is that of sampling nearly uniformly from the set of inte-

gral s � t ows in a network G = (V;E). We show that if each edge capacity is

at least jEj
q
jEj, we can do the sampling in polynomial time and hence also solve

approximately the problem of counting the number of integral ows. In contrast, we

recapitulate the folklore result that it is NP-hard to estimate the number of integral

ows when the capacities are all 1. It is an interesting open problem to reduce this

gap.

A third special case is the b-matching problem. In this problem, we are given non-

negative integers b(v) associated with the vertices of a graph G. A b-matching is an



5.2. THE SAMPLING THEOREM 61

edge-weighted subgraph of G whose degree at vertex v is at most b(v). Optimization

over the set of b-matchings of a graph is studied e.g. in [34]. Here we show that if all

the b(v)'s satisfy b(v) � jEjdeg(v), where deg(v) is the degree of vertex v in G, then

we can sample uniformly from the set of b-matchings.

Another special case is that of the multidimensional knapsack problem. Here the

polytope P is of the form

P = fx 2 Rn : Ax � b; 0 � xi � d; for i = 1; : : : ; ng;

where A is a nonnegative integer matrix and d is a vector of \upper bounds". Without

loss of generality, we may assume that djAij � bi for all i; j. It is shown in [25] that

if all dj � n2, then there is a polynomial time algorithm to count approximately the

number of integer points in P . We show that our general result gives a polynomial

time algorithm with slightly better bounds.

5.2 The Sampling Theorem

We call a point in Rn with all integer coordinates an integer point. If x is any point,

and � a positive real, we denote by C(x; �) the cube of side 2� with x as center.

Suppose A is an m� n matrix of reals and b is an m� 1 of nonnegative reals and

P = fx 2 Rn : Ax � bg:

Let r be the maximum number (over integral points x) of facets of P that intersect

any C(x; 1) for x an integral point. Let Ai denote the i th row of A. Then our main

result can be summarized as follows.

Theorem 13 For any polytope P satisfying bi 2 
(n
p
log rjA(i)j) for all i, there

exists a polynomial time algorithm for nearly-uniformly sampling P \ Zn.

The running time of the algorithms will be inversely proportional to the desired

accuracy. The rest of this section is devoted to proving this theorem by constructing

a sampling algorithm.

Let c be any positive real to be speci�ed later and let b0 be a m�vector de�ned
by

b0i = bi + (c+
q
2 log r)jAij:

Let P 0 = fx : Ax � b0g:
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Our idea will be to pick a point p from P 0 from a probability density close to the

uniform. We will then \round" p to obtain an integer point; if the integer point is

in P , we accept, otherwise, we reject and repeat. We will use a natural probabilistic

rounding procedure which we describe presently. This simple rounding procedure

used in a di�erent context by Raghavan and Thompson e.g. [52], is the main new

ingredient here.

For p 2 Rn, we de�ne a vector-valued random variable X(p) by

X(p)i =

8<
: bpic+ 1 with probability pi � bpic
bpic with probability 1 � pi + bpic

where the X(p)i; i = 1; 2; : : : n are chosen independently.

Theorem 14 Suppose p is picked from a probability density P whose variational

distance to the uniform density on P 0 is at most ". Then for any x 2 P \Zn, we have

1� 2e�c
2 � "

vol(P 0)
� Pr (X(p) = x) � 1

vol(P 0)
:

Proof. First we establish the lower bound. The idea is to bound the probability

of picking an integer point x in terms of the probability of picking x given that we

pick a continuous point in C(x; 1).

De�ne fYigni=1 to be independent identically distributed real valued random vari-

ables each distributed according to the density function 1 � jtj on the real interval

t 2 [�1 + 1]. In the calculations below, dp is an in�nitesimal n-dimensional volume

and dP is the probability of picking a point from dp. Then for any x 2 P \ Zn, and

p 2 Rn, with jpi � xij � 1, we have that

Prob. density (x+ Y = p) =
nY
i=1

(1� jpi � xij):

Also, Pr(X(p) = xjp) =
nY
i=1

(1� jpi � xij):
Z
p2P 0

Pr(X(p) = xjp)dP =
1

vol(P 0)

Z
p2P 0

Pr(X(p) = xjp)dp + "0;

where j"0j � ".

Now,
Z
p2P 0

Prob. density (x+ Y = p)dp =

Z
p2C(x;1)

Prob. density (x+ Y = p)dp �
Z
C(x;1)nP 0

Prob. density (x+ Y = p)dp
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� 1�
rX

i=1

Pr(AiY � b0i � bi):

Now for a �xed i, consider the random variables

Zj =
jX

k=1

AikYk:

It is easy to see that E(Zj jZj�1) = Zj�1, so the fZjg form a Martingale. Also,

jZj � Zj�1j � Aij. So applying Azuma's inequality [1], we get that

Pr(AiY � b0i � bi) � 2e�c
2

=r:

This proves the lower bound in the Theorem.

The upper bound on the probability follows by

Z
p2C(x;1)

Prob. density (x+ Y = p)dp = 1:

We show that each x 2 P \ Zn gets picked with about the same probability by

the following algorithm.

Sampling Algorithm

Suppose � > 0 is given.

� Pick a point p from P 0 with c =
q
ln 4

�
, according to a probability density P

whose variational distance to uniform is at most �
2
.

� If X(p) is in P , then return it; otherwise reject and repeat.

It remains to show that the probability of rejection is not too high assuming

bounds on bi.

Lemma 11 If bi � 8n
q
log r

�
jAij for all i, then the probability of acceptance of the

sampling algorithm is at least 1
32
.

Proof. The probability of acceptance is

X
x2P\Zn

Pr(X(p) = x) � 1

4

jP \ Znj
vol(P 0)

:

We show that

jP \ Znj � 1

8
vol(P 0):



64 SAMPLING LATTICE POINTS

To this end, suppose we pick p from the uniform density from

P 00 = fx : Aix � bi � (c+
q
2 log r)jAijfor i = 1; 2; : : :mg

and let x = X(p). Then by the same argument as before, with probability at least
1

4
, x will be in P \ Zn. Also, for a �xed x 2 P \ Zn, the probability that we get

X(p) = x by this process is at most 1=vol(P 00). So,

jP \ Znj
vol(P 00)

� Prob. that X(p) 2 P � 1

4
:

Thus, jP \ Znj � 1

4
vol(P 00). Now,

vol(P 0)

vol(P 00)
� max

i

 
bi + (c+

p
2 log r)jAij

bi � (c+
p
2 log r)jAij

!n
� 2:

2

For algorithmic purposes we can weaken the lower bound to be that each compo-

nent of b is 
(njA(i)j
p

log r

logn
).

Note that we assumed as hypothesis that bi 2 
(n
p
log rjA(i)j). It is easy to see

that this is equivalent to saying that a ball of radius 
(n
p
log r) with the origin as

center is contained in P . It is then a simple matter to remove the restriction that the

ball have the origin as its center.

The latest algorithms for estimating the volumes of convex sets (or sampling from

them) are quite fast: O�(n5) [39]. This follows a long series of improvements starting

from [24] and [47]. It is worth mentioning that these \continuous" random walks are

now provably much faster than their discrete counterparts.

The arguments used in proving Theorem 13 also prove

Theorem 15 Let P be a polytope in Rn with m facets containing a ball of radius


(n
p
logm). Then there is a constant c such that

cjP \ Znj � vol(P ) � 1

c
jP \ Znj:

5.3 Special cases of the theorem

5.3.1 Contingency tables

The problem is as described in the Introduction. But it will be more convenient to deal

with a full dimensional polytope. With some simple manipulation, it is easy to see
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that as in [26], we can de�ne the polytope P with fxijg; 1 � i � m�1 1 � j � n�1
as the variables de�ned by the following constraints :

n�1X
j=1

xij � ri 8i

m�1X
i=1

xij � cj 8j

m�1X
i=1

n�1X
j=1

xij �
m�1X
i=1

ri � cn xij � 0:

In the above, as well as in the rest of the section, i will run through 1; 2; : : :m � 1

and j will run through 1; 2; : : : n� 1 unless otherwise speci�ed.

To apply Theorem 13, we will reformulate the problem with the substitution

yij = xij �mn:

Then the polytope P in y-space is de�ned by

n�1X
j=1

yij � ri �mn(n� 1) 8i

m�1X
i=1

yij � cj �mn(m� 1) 8j

m�1X
i=1

n�1X
j=1

yij �
m�1X
i=1

ri � cn �mn(n� 1)(m� 1)

yij � �mn:

Now if ri � 2mn2 for each ri and cj � 2nm2 for each cj , P satis�es the theorem's

requirements. We can relax these conditions slightly, namely it su�ces to have ri �
2mn2=

p
logmn and cj � 2nm2=

p
logmn for each ri and each cj respectively.

5.3.2 Integral ows

In this section we consider the problem of sampling (nearly) uniformly from the

set of integral s � t ows in a network. Although our approach could be used for

directed graphs, for simplicity we assume here that we are given an undirected graph

G = (V;E) with capacities on the edges C : E ! R+, and two distinguished vertices

s; t 2 V called the source and the sink respectively. An integral ow is an assignment

of integers to the edges corresponding to a ow from s to t. Such an assignment must



66 SAMPLING LATTICE POINTS

respect the capacity constraints, namely the ow through an edge must be less than

the capacity, and the conservation constraints, namely the net ow at a vertex must

be zero. To set up the problem as a polytope, we make two modi�cations to G. First

we add the edge (t; s) to the graph (if it is not present) so that we can enforce the

conservation constraints at all vertices (i.e. including s and t). Then we arbitrarily

direct every edge so that E is now a set of directed edges. The resulting polytope of

feasible solutions, P , has the following constraints:

�C(i; j) � xij � C(i; j) 8(i; j) 2 EX
j:(i;j)2E

xij =
X

j:(j;i)2E
xji 8i 2 V:

This polytope is not full-dimensional in RjEj. It will be more convenient to work

with a full-dimensional polytope, so we apply some further transformations. Choose a

spanning tree T of G (such a spanning tree exists because in order to have a non-zero

ow we can assume that s and t are in the same connected component; any component

that does not contain s or t is irrelevant and can be deleted). For simplicity, we can

assume that T is an arborescence, rooted at s (say), by directing the edges of T �rst,

when we chose directions, and then the rest of the edges. Number the vertices in

post�x order along T , so that each vertex gets a higher number than any descendant

of it. Consider the conservation constraint for a leaf vertex i, let (k; i) 2 T be the

leaf edge.

xki =
X

j:(i;j)2EnT
xij �

X
j:(j;i)2EnT

xji:

By substituting these expressions for leaf edges in the conservation constraints for

next-to-leaf vertices, and recursing, we get the following equations, one for each tree

edge (k; l):

xkl =
X
i2S(l)

0
@ X
j:(i;j)2EnT

xij �
X

j:(j;i)2EnT
xji

1
A 8(k; l) 2 T

Here S(l) denotes the set of vertices in the subtree rooted at l in T . So the

polytope P can be reformulated in RjEj�jV j+1 space as

�C(i; j) � xij � C(i; j) 8(i; j) 2 E n T

�C(k; l) �
X
i2S(l)

0
@ X
j:(i;j)2EnT

xij �
X

j:(j;i)2EnT
xji

1
A � C(k; l) 8(k; l) 2 T:
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Since each constraint trivially has at most E variables, if each capacity is at least

jEj 32 then we can apply the theorem to sample the integer points of P nearly uniformly

(and thus also count the number of integral ows). Note that a simple modi�cation

will allow us to sample the number of ows of a speci�ed value f .

5.3.3 Hardness of counting ows

To contrast with the above result, we recount the folklore result that it is NP-hard to

count approximately the number of ows. We do this by reducing the NP-complete

problem of deciding whether a graph has a Hamilton cycle to this approximate count-

ing problem.

Theorem 16 It is NP-hard to count the number of s� t simple paths in a graph with

n vertices to any poly(n) factor.

Proof. Let k; l 2 Z+ be two numbers which we will �x later. We replace each

edge of G by lk edges: �rst divide the edge into l edges by introducing l � 1 new

vertices, and then replace each resulting edge with k parallel edges.

The number of cycles in the new graph G0 will tell us if the original graph G is

hamiltonian. If G is Hamiltonian then G0 has at least (kl)n = kln cycles (correspond-

ing to a single Hamilton cycle). On the other hand, if G has no cycles of length n, an

upper bound on the number of cycles in G0 is kl(n�1)2nn! because there are fewer than

2nn! cycles in G and each has at most kl(n�1) representatives in G0. By a suitable

choice of k; l with each only O(n), we can make the �rst number higher than any

�xed poly(n) times the second number. Thus counting the number of cycles in G0 up

to any poly(n) factor would let us decide if G is Hamiltonian.

Finally, the number of cycles involving a particular edge (u; v) is just the number

of paths/ows from u to v in the graph with the edge deleted and all capacities set

to 1. 2

5.3.4 b-matchings

Given an undirected graph, G = (V;E), and a function b : V ! Z+, a b-matching

is an assignment of positive integers to edges, x : E ! Z+, so that the sum of the

weights on edges incident at a vertex v is at most b(v). A b-matching is perfect if it

has a weight of exactly b(v) at every vertex. A perfect b-matching can be found in
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polynomial time (if one exists) using the ellipsoid algorithm [34]. Here we consider

the problem of sampling from the set of b-matchings uniformly at random.

Let P be the polytope de�ned by the following constraints.

x(e) � 0 8e 2 E

x(�(v)) � b(v) 8v 2 V

In the second set of constraints, �(v) represents the edges incident to v and x(�(v))

is the sum of the weights on these edges. Any integer solution satisfying the above

constraints is a valid b-matching of G.

Let jEj = m, and d(v) be the degree of a vertex v. To apply the theorem, we use

the following substitution,

y(e) = x(e)�m:

Then in y-space, we have the following polytope

y(e) � �m

y(�(v)) � b(v)�md(v):

Now for any b such that b(v) � 2md(v) for all v 2 V , and in particular for b such

that each b(v) � 2mn, we can sample b-matchings of G nearly uniformly. This can be

extended to sampling capacitated b-matchings, where there are additional constraints

on the maximum weights assigned to edges [34].

5.4 Tight examples

In this section we give examples to show that our bound on the components of b is

tight (up to a
p
log r factor). Consider the simplex in n dimensions,

P = fx 2 Rn :
nX
i=1

xi � b; xi � 0 8ig

To derive an upper bound, we can reformulate P (thereby centering it around the

origin). We substitute,

yi = xi � n:

Then in y-space, P becomes,
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nX
i=1

yi � b� n2; yi � �n 8i:

So now for b � n2 + n
p
n, P satis�es the conditions of the theorem.

Let us examine what happens if b is slightly smaller. The volume of the simplex

is bn=n! and the number of lattice points in P , i.e., the number of ways of dividing b

into n or fewer parts is

0
@ b+ n� 1

n� 1

1
A. So the ratio of the number of lattice points

to the volume is
n(b+ n� 1)!

bnb!

which is the same as

n

b
(1 +

n� 1

b
)(1 +

n� 2

b
)::(1 +

1

b
):

The latter is lower bounded by

n

b
(1 +

n� 1

2b
)
n
2 :

For any c such that b � cn2, this is exponential in 1=c (the ratio is about e
1

c ), showing

that the volume is no longer a good approximation to the number of lattice points.

5.5 Conclusion and open problems

Is the dependence of our main theorem on m, the number of facets, necessary? It

would be nice to get rid of it.

Although we have presented a (nearly) tight condition for sampling lattice points,

it is possible that a di�erent point of view would yield more general algorithms. For

example, for lattice point based random walks, what are some simple, easy-to-verify

conditions that guarantee rapid-mixing?



70 SAMPLING LATTICE POINTS



Bibliography

[1] N. Alon and J. Spencer The probabilistic method. John Wiley (1992).

[2] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting

polynomials. In Proceedings of the 23rd Annual ACM Symposium on Theory of

Computing, pages 402{409, May 1991.

[3] J. A. Aslam and S. E. Decatur. General bounds on statistical query learning

and PAC learning with noise via hypothesis boosting. In Proceedings of the

34th Annual Symposium on Foundations of Computer Science, pages 282{291,

November 1993.

[4] J. A. Aslam and S. E. Decatur. Improved noise-tolerant learning and generalized

statistical queries. Technical Report TR-17-94, Harvard University, July 1994.

[5] S. Agmon. The relaxation method for linear inequalities. Canadian Journal of

Mathematics, 6(3):382{392, 1954.

[6] E. Amaldi. From �nding maximum feasible subsystems of linear systems to feed-

forward neural network design. PhD thesis, Swiss Federal Institute of Technology

at Lausanne (EPFL), October 1994. (Ph.D. dissertation No. 1282, Department

of Mathematics).

[7] J. A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of

Research. MIT Press, 1988.

[8] E. B. Baum. Polynomial time algorithms for learning neural nets. In Proceedings

of the Third Annual Workshop on Computational Learning Theory, pages 258-

272. Morgan Kaufmann (1990).

[9] Eric B. Baum. On learning a union of half spaces. Journal of Complexity, 6(1):67-

101, March 1990.

71



72 BIBLIOGRAPHY

[10] M. W. Berry, S. T. Dumais, and G. W. O'Brien. Using linear algebra for intelli-

gent information retrieval. SIAM Review, 37(4), 1995, 573-595, 1995.

[11] M. W. Berry, T. Do, G. W. O'Brien, V. Krishna, and S. Varadhan. SVDPACKC

(Version 1.0) User's Guide. University of Tennessee, April 1993.

[12] A. Blum, A. Frieze, R. Kannan and S. Vempala. A polynomial-time algorithm for

learning noisy linear threshold functions. In Proceedings of the 37th Symposium

on the Foundations of Computer Science, 330-338, 1996.

[13] A. Blum and R. Kannan. Learning an intersection of k halfspaces over a uni-

form distribution. In Proceedings of the 34th Symposium on the Foundations of

Computer Science, 312-320, 1993.

[14] A. Blum and R. Rivest. Training a 3-node neural network is NP -hard. Neural

Networks, 5:117-127, 1992.

[15] T. Bylander. Polynomial learnability of linear threshold approximations. In

Proceedings of the Sixth Annual Workshop on Computational Learning Theory,

pages 297{302. ACM Press, New York, NY, 1993.

[16] T. Bylander. Learning linear threshold functions in the presence of classi�ca-

tion noise. In Proceedings of the Seventh Annual Workshop on Computational

Learning Theory, pages 340{347. ACM Press, New York, NY, 1994.

[17] E. Cohen. Learning a noisy perceptron by a perceptron in polynomial time. To

appear in Proc. of the Thirty-Eighth Annual IEEE Symposium on the Founda-

tions of Computer Science, 1997.

[18] D.M. Cvetkovi�c, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press,

1979.

[19] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.

Indexing by latent semantic analysis. Journal of the Society for Information

Science, 41(6), 391-407, 1990.

[20] P. Diaconis and B. Efron. Testing for independence in a two-way table. Annals

of Statistics, 13, pp. 845-913, (1985).

[21] P. Diaconis and A. Ganguly. Rectangular arrays with �xed margins. in Proceed-

ings of the workshop on Markov Chains, (1994).



BIBLIOGRAPHY 73

[22] S.T. Dumais, G.W. Furnas, T.K. Landauer, and S. Deerwester. Using latent

semantic analysis to improve information retrieval. In Proceedings of CHI'88:

Conference on Human Factors in Computing, New York: ACM, 281-285, 1988.

[23] S.T. Dumais. Improving the retrieval of information from external sources. Be-

havior Research Methods, Instruments and Computers, 23(2), 229-236, 1991.

[24] M. Dyer, A. Frieze and R. Kannan. A random polynomial time algorithm for

estimating the volumes of convex bodies. Journal of the ACM, 38, 1991.

[25] M. E. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic and U. Vazirani. A

mildly exponential time algorithm for approximating the number of solutions to

a multidimensional knapsack problem. To appear in Combinatorics, Probability,

and Computation.

[26] M. Dyer, R. Kannan and J. Mount. Sampling contingency tables. To appear in

Random Structures and Algorithms.

[27] P.Erd�os, P. M. Gruber and J. Hammer. Lattice points. Longman (1989).

[28] P. Frankl and H. Maehara. The Johnson-Lindenstrauss Lemma and the Spheric-

ity of some graphs, J. Comb. Theory B 44 (1988), 355-362.

[29] Y. Freund. An improved boosting algorithm and its implications on learning

complexity. In Proceedings of the Fifth Annual ACM Workshop on Computa-

tional Learning Theory, pages 391{398. ACM Press, 1992.

[30] N. Fuhr \Probabilistic models of information retrieval," Computer Journal, 35,

3, pp. 244{255, 1992.

[31] S. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural

Networks, 1(2):179{191, 1990.

[32] G. Golub and C. Reinsch. Handbook for matrix computation II, Linear Algebra.

Springer-Verlag, New York, 1971.

[33] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Univer-

sity Press, London, 1989.

[34] M. Grotchel, L. Lov�asz and A. Schrijver.Geometric algorithms and combinatorial

optimization. Springer-Verlag, (1988).



74 BIBLIOGRAPHY

[35] W. Hoe�ding (1963). Probability inequalities for sums of bounded random vari-

ables, Journal of the American Statistical Association 58 13{30.

[36] M. Jerrum and A. Sinclair. Approximating the permanent. Siam J. Comp. 18,

pp. 1149-1178, (1989).

[37] M. Jerrum, L. G. Valiant and V. V. Vazirani. Random generation of com-

binatorial structures from a uniform distribution. Theor. Comp. Sci. 43, pp.

169-188,(1986).

[38] W. B. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into

Hilbert space, Contemp. Math. 26 (1984), 189{206.

[39] R. Kannan, L. Lov�asz and M. Simonovits. Random walks and and an O�(n5)

volume algorithm for convex sets. Preprint, 1996.

[40] R. Kannan and S. Vempala. Sampling lattice points. In Proceedings of the

Twenty-Ninth Annual ACM Symposium on Theory of Computing.

[41] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4(4):373{395, 1984.

[42] M. Kearns. E�cient noise-tolerant learning from statistical queries. In Pro-

ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,

pages 392{401, 1993.

[43] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.

MIT Press, 1994.

[44] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math-

ematics Doklady, 20:191{194, 1979.

[45] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In

Proc. 29th ACM Symposium on Theory of Computing, 1997.

[46] P. M. Long and M. K. Warmuth. Composite geometric concepts and polynomial

predictability. In Proceedings of the Third Annual Workshop on Computational

Learning Theory, pages 273-287. Morgan Kaufmann (1990).

[47] L. Lov�asz and M. Simononovits. Mixing rate of Markov chains, an isoperimetric

inequality, and computing the volume. In Proceedings of the 31st Symposium on

the Foundations of Computer Science, pp. 346-355, (1990).



BIBLIOGRAPHY 75

[48] W. Maass and G. Tur�an. On the complexity of learning from counterexamples.

In Proceedings of the Thirtieth Annual Symposium on Foundations of Computer

Science, pages 262{267, October 1989.

[49] N. Megiddo. On the complexity of polyhedral separability. Technical Report RJ

5252, IBM Almaden Research Center, August 1996.

[50] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Ge-

ometry. The MIT Press, 1969.

[51] C. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala. Latent Semantic

Indexing: A probablistic analysis. Preprint 1997.

[52] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4), pp. 365-

374, (1987).

[53] C. J. van Rijsbergen Information Retrieval Butterworths, London 1979.

[54] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, 1962.

[55] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{

227, 1990.

[56] H. R. Turtle and W. B. Croft \A comparison of text retrieval methods," The

Computer Journal, 35, 3, pp. 279{289, 1992.

[57] L. G. Valiant. A theory of the learnable. Comm. of the ACM, 27(11):1134-1142,

1984.

[58] L. G. Valiant. The complexity of computing the permanent. Theor. Comp. Sci.

8, pp. 189-201, (1979).

[59] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-

tive frequencies of events to their probabilities. Theory of Probability and its

applications, XVI(2):264{280, 1971.

[60] S. Vempala. A random sampling based algorithm for learning the intersection of

half-spaces. To appear in Proc. of the Thirty-Eighth Annual IEEE Symposium

on the Foundations of Computer Science, 1997.

[61] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,

London 1965.



76 BIBLIOGRAPHY

[62] Wisconsin Diagnostic Breast Cancer Database.


