
An I/O System for Mach 3.0Alessandro ForinDavid GolubBrian Bershadfaf,dbg,bershadg@cs.cmu.eduSchool of Computer ScienceCarnegie Mellon University5000 Forbes Avenue Pittsburgh, PA 15213AbstractThe Mach 3.0 I/O system represents a radical departure from its predecessor { Mach 2.5,which relied on the BSD Unix model of device management. The I/O interface in Mach 3.0 sup-ports device drivers that are largely device-independent, implemented at user-level, and location-independent. Our approach to device management signi�cantly reduces the size of the kernel'smachine-dependent code, enables us to reduce the length of the I/O path, and permits us totransparently manage remote devices on non-shared memory multiprocessor architectures suchas the Hypercube. This paper describes the structure and performance of Mach's I/O system.1. IntroductionThis paper describes the design of the I/O system for the Mach 3.0 kernel [Rashid et al. 89]. Mach'sI/O system is novel in several respects. First, it supports the notion of \device independent" devicedrivers. The I/O system separates out generic driver code common to a class of devices such as ascreen, an Ethernet controller, or a disk, from code which is only dependent on the device controllerchip itself, and from the code which is speci�c to a given processor architecture. Second, theMach I/O system supports user-level device management of mapped devices, enabling applicationprograms, such as an operating system server, to directly control device activity. Finally, the Machkernel provides for location-transparent device management which can be accessed through Mach'sinterprocessor communication (IPC) facilities.1.1. Device Management for Small-Kernel Operating SystemsMach 3.0 is an operating system kernel which is intended to be freely portable across a large numberof processor architectures, o�er network transparency, support e�ciently a variety of operatingsystems implemented as user-level applications, and provide a scheduling interface suitable for theneeds of concurrent, Real-Time and parallel programs.This research was sponsored in part by The Defense Advanced Research Projects Agency, InformationScience andTechnologyO�ce, under the title \Research on Parallel Computing", ARPA Order No. 7330, issued by DARPA/CMOunder Contract MDA972-90-C-0035.

Previous versions of the Mach 3.0 I/O system made it di�cult for us to meet these goals. Wedescribe why this was so, and how the new I/O architecture addresses the problems, in the rest ofthe introduction.A Smaller KernelThe Mach 3.0 kernel had originally inherited the I/O management structure of Mach 2.5, whichin turn derived its I/O system from BSD UNIX. Under BSD, devices could only be described ascharacter-oriented or block-oriented devices. This gross characterization made it di�cult to sharecode across functionally equivalent devices which happened to exist on di�erent system platforms.The I/O system simply had no structure to allow similar devices, for example, a monochrome anda color display, to share code, even though the functions provided by the similar devices are nearlyidentical. We tried, whenever possible, to use the vendor-supplied device drivers when porting Machto a new system architecture. While this could sometimes reduce the time to port, it resulted ina large amount of nearly duplicated code within the kernel because one vendor's interpretation ofhow best to drive a device di�ered from another. Since the drivers were not just device, but alsoprocessor dependent, we had no easy way to exploit the similarities. Worse, the drivers from thevendors themselves were nearly always \cloned" from a pre-existing version that handled a similardevice, resulting in even more code duplication.Device-independent device drivers decrease the amount of Mach's machine-dependent code,thereby decreasing the size of the operating system and the amount of time required to port thesystem to a new system architecture. The generic structure of the new Mach device drivers allows usto wean ourselves from the vendor-supplied drivers, thereby reducing the amount of vendor-ownedcode in our system. Moreover, maintenance of the system is greatly simpli�ed because changes tothe I/O system, for example to increase performance, need only be applied to each class of device,not to each device for each processor architecture for each system.Real-TimeA second problem with earlier versions of the I/O system was that it was designed to run entirely inkernel mode, generally at high priority in ignorance of other scheduling requirements. This ignorancewas because the drivers were often supplied by vendors in the context of a bundled UNIX kernel,which itself has no support for Real-Time computing. The Mach kernel, though, does provide forReal-Time support, so it is necessary to bound the amount of time spent within kernel interrupthandlers down to the \negligible" range.User-level device management reduces the amount of code that runs in privileged kernel mode,and increases the predictability of the kernel's scheduling algorithms.High-Performance I/O DevicesWhile I/O systems of the last 20 years have been measured in megabits per second, those of thenext decade are likely to have data transfer rates on the order of gigabits per second. High-speednetworks, which can provide data at this rate, and multimedia applications, which can similarlyconsume data, are two obvious forcing functions pushing on software architectures to support high-performance I/O.The in-kernel drivers in previous versions of Mach acted not only as device controllers, but alsoas data bu�ers. This meant that data would be ferried across the user/kernel boundary as it passed

between the application and the device. For low-performance I/O devices, such as SCSI disks,the additional data transfer time was not important. But, for high-bandwidth applications, it wasnecessary to reduce the length of the I/O path.User-level drivers can provide for increased I/O performance because it is possible to avoidexpensive data copies (either physical or virtual) between user and kernel space. Data can instead
ow directly between the application and the device. This can be done by mapping the devicedirectly into an application's address space, just as is done with display devices for graphics-basedworkstations. Where architecturally possible, the Mach 3.0 kernel allows an application to map ahardware device into its address space.Location TransparencyWhile being able to access devices from user-level solves one set of problems, it has the potential tointroduce another. It is important to us that we be able to control a device from any machine, notjust from the one to which the device is attached. For this reason, we have designed an IPC-baseddevice interface, rather than one based on kernel traps, allowing us to implement remote devicedriver management. As is customary in message-passing kernels, the device is viewed as a serverto which client programs make remote procedure calls (RPC). This ability is critical on \NORMA"(No Remote Memory Access) multiprocessors, in which each processor runs its own instance of theMach kernel [Barrera 92]. For example, on the Hypercube, we can run the UNIX server on a fasti860 processor and have it drive a SCSI controller attached to a slower i386 processor.1.2. Some Problems We Weren't Trying To SolveWhile designing the I/O interface for Mach 3.0 another thing was quite clear: the user of such inter-face was not going to be a �nal user application program, but rather an operating system server suchas a �lesystem or protocol server. Therefore we have made no attempt to masquerade I/O devicesas �les or any other \uniform" programming abstraction on the basis that i.) such a uniformity, ifdesired, should be provided at a higher level, and ii.) providing it at the device level creates unnec-essary problems for the many di�erent types of servers that would use the interface. In particular,the Mach kernel is intended to support a variety of di�erent operating system environments, suchas BSD UNIX [Golub et al. 90], MS-DOS [Rashid et al. 91], and MacOS, each one exporting itsown device abstraction. Our approach allows servers for these operating systems to implement theirabstractions at the lowest possible level.The rest of this paper is structured as follows. In Section 2 we describe the structure of our deviceindependent device drivers. In Section 3 we discuss user-level device management. In Section 4 webrie
y describe the IPC-based I/O interface. In Section 5 we discuss some crucial aspects of theperformance of the new I/O system. In Section 7 we brie
y discuss some related work. Finally, wediscuss the system's current status.2. Device Independent Device DriversEarly versions of Mach have used pre-existing BSD UNIX device drivers with minor modi�cationswhich adapt them to the Mach's virtual memory and thread management systems. These driverstypically come from the machine's vendor, and are therefore di�erent across di�erent vendors. Nev-ertheless, there is much in common both across hardware devices and across the software that drives

them.The basic observation that led us in the design of a new implementation paradigm is that hard-ware devices, especially in the case of workstations, are built with o�-the-shelf components, suchas video RAMDAC chips, serial line UARTs, SCSI controllers, Ethernet controllers and so on. Al-though each chip behaves di�erently, within a class of devices all chips basically perform the sameset of functions. For example, every video controller chip has the ability to move the cursor, andevery serial line controller chip can be instructed to set speed and parity. Identifying those commonfunctions and encapsulating them at the bottom of a class-like hierarchy produces a system wherethe code for one chip can be easily replaced by the code for a di�erent one. Not only does thisenhance portability, but it allows us to easily integrate new and better versions of chips as theybecome available over time.By creating classi�cations for devices, and then identifying the chip-dependent interface for eachclass, we are able to write device drivers that are largely independent of the actual make and modelof the piece of hardware that they are driving. Instead of character and block devices we now havea set of functionally grouped device drivers including the screen, console, disk, tape, serial line, andEthernet. Each driver has one or more layers of chip-independent code, which provides both theexternal interface and implements the logic behind the workings of the device driver itself. Onlysimple, core functions at the bottom level deal with the hardware directly. Portability and codesharing are greatly increased by this structure. There is no need, for example, to rewrite the codewhich drives a previously handled SCSI when porting to a new machine that uses a new processorfrom a new vendor.Our approach to device independent device management is similar to the one used in Mach'smachine-independent VM interface (pmap module) to the various Memory Management Units(MMU) [Rashid et al. 87]. The pmap layer encapsulates MMU dependencies beneath the bulkof the VM system. This greatly increases portability, because only the pmap layer needs to bechanged for a new architecture, and code sharing, because much of the pmap layer is constant acrosssimilar MMUs.In the rest of this section, we describe the structure of each of the major device classes supportedin Mach 3.0.2.1. The Serial Line DriverSerial lines and their drivers are among the oldest components of UNIX's I/O system. The chipsin use today, for example, are essentially the same as those that were available ten years ago.Nevertheless, on the software side, each system vendor has supplied its own version of the serial linedriver, but they all derive from the original code written at AT&T [Ritchie and Thompson 78]. Thissituation creates unnecessary code duplication. In addition, we have seen several cases where thesame UNIX ioctl is encoded di�erently because the ioctl interface has semantics that can be speci�cto device drivers. Since this interface is visible to applications, the proliferation of \similar but notquite the same" device drivers has created binary compatibility problems for us.The Mach 3.0 serial line driver is split into a device independent component and a small device(chip) dependent part. The device independent component deals with character bu�ering, and allconsole-related code including:� open/close/read/write functions,� start/stop operations,� modem controls,

� interrupt handlers for the simple case of devices that work on a one-interrupt-per-characterbasis.� send/receive of characters in polling mode to the system console for debugging and errormessages,� switch code for the bitmap driver (mouse and console callouts),� �nding the appropriate console line in a generic kernel,The chip-dependent layer implements only those operations that manipulate the device registersdirectly. These include probing for existence, setting of speed, parity and modem control, andmoving characters on and o� the chip.2.2. The Screen DriverThe portions of code that are shared across all screen devices are the terminal emulator, fonts, screensaver, interface routines such as open/close/read/write, event handling logic for both motion andkeypress events, and other status control operations such as controlling the screen saver and thecursor position.Code that is speci�c to each screen device controls probing, noti�cation of open/close opera-tions, character painting at a given location, scrolling, cursor motion, video on/o� and blanking,enabling/disabling of vertical-retrace interrupts, and returning the physical address of registers foruser space mapping. Even at the lower level, which is chip-speci�c, we have been able to sharesome code across devices. For example, all displays based on framebu�ers share the same code forpainting characters and scrolling text.Separate from the screen module, but logically part of the same driver are the drivers for thekeyboard and mouse. These are structured as devices in their own right, but are only invoked fromthe serial line or screen drivers and not by general user applications. The keyboard driver remapsthe keyboard's keycodes into ascii characters for the terminal emulation task. The mouse driverrepacks bytes from the mouse into coordinates and mouse/tablet button keypresses. Device speci�ccomponents handle the format of the mouse reports and the keycode translation tables.2.3. The SCSI DriverMost current workstations provide a single SCSI interface for accessing mass-storage devices suchas disks and tapes through a common transport layer.Our new SCSI driver has three layers. The upper one is speci�c to each of the major devicesde�ned in the SCSI-2 standard. The code at this layer handles the queueing of requests, taperead errors, bad blocks, disk labels and so on. This layer is implemented as a common source�le for open/close/read/write functions and a switch into device-type speci�c functions for extraopen/close/start/restart operations. Common open-time operations include, for instance, dynami-cally probing a yet-unseen target, and bringing the target online and locking it if it contains remov-able media. Speci�c operations for a disk include setting the logical block size, and reading the sizeand geometry of the disk. Specialized functions, such as disk formatting and bad block scanning,are also exported at this layer.The second layer de�nes the encoding of commands into SCSI messages, but also includes otherutilities such as a watchdog to recognize a hung SCSI bus, data structure allocation and initializationcode, and the de�nition of the per-target status record.

The bottommost layer handles the hardware proper and only has two interface functions: one toprobe, and one to start a SCSI command. There is only one single upcall from this layer, to notifycompletion of a SCSI command and start the next one for the same device.A Methodology for Handling SCSI ChipsSCSI chips typically require several interrupts per transaction, therefore it is important to dismiss theinterrupts quickly. Some of the older SCSI chips, for example, require between 5 and 21 interruptsper disk read and write operation. We have structured our SCSI chip module as a set of \scripts,"which are a list of condition-action pairs. One script might cover all SCSI commands that needsto receive data from the device, another one for transfers in the opposite direction. The conditionencodes a possible value from the status registers, and the action is a function pointer. At interrupttime, the status registers are compared against the condition. If they match, the action routineis invoked. Otherwise, control transfers to an error handler associated with the script. At eachinterrupt, the anticipated condition-action pair is advanced to the next entry in the script untilthe command completes. For example, disconnections are handled as errors in the processing of aregular, non-disconnecting script. The script pointer is simply saved in the target device's statusrecord and restored later when the target reconnects.Our use of scripts, which draws on the design of the NCR 53C700, simpli�es the writing ofthe chip-speci�c code by allowing us to use a single generic control module. Only scripts, actionfunctions, and error handlers need to be written for each new SCSI chip. The more sophisticatedSCSI boards, which include a processor, memory and other logic, do not require scripts because theyare capable of handling most of the protocol details on their own.Pushing Harder on SCSISCSI is a
exible model for device management | nearly any device can be interfaced via SCSI. InMach 3.0, we need only write a small amount of machine-independent code to make a new deviceaccessible across all machines. For example, we have connected two machines via a SCSI cable,much like we do with Ethernets, inventing a \host" device that can be used just like an Ethernet.This required only 46 lines of new machine-independent code, and the sharing of another 130 lineswith the tape driver. We were able to use the existing structure to handle all of the SCSI nuances.Handling of a CD-ROM only required adding two lines of C code to the existing disk driver toprevent the issuing of write requests. We have dual-mounted the same disk on a DECstation 3100and a IBM PC with only one additional line of code in the existing DS3100 adapter module.2.4. The Ethernet DriverThe Mach 3.0 I/O system includes support for only one Ethernet driver based on the Lance chipcontroller. As most machines use this chip, we have not had much incentive to factor out code com-mon to other Ethernet controller chips. Nevertheless, in importing Ethernet drivers from vendors,we have observed a \cloning" syndrome similar to that for other device drivers (which drive di�erentchips). Our Lance driver is used on four di�erent workstations. The driver copes with a variety ofminor system dependencies through the use of callouts to machine-dependent functions that handlethe movement of data in and out of the Lance's memory, and for translating a host address into aphysical address usable by the Lance chip. Most of the system dependencies are due to the di�erentways in which the Lance handles DMA across di�erent platforms.The bulk of the machine independent code in the network driver deals with more general issues

such as allocating and deallocating IPC bu�ers, delivering messages to users, and using the packet�lter [Mogul et al. 87]. This code is common to all Ethernet drivers and can be generalized to anynetwork interface.3. User-Level Device ManagementDevices can be managed from user-level by vectoring all device interrupts out to an application'sthread. The kernel maps to user space the device's registers, a shared page containing some controlinformation, and some memory for handling DMA to/from the device. When an interrupt comes, asmall interrupt routine1 saves any volatile register state in the shared page for later use by the usercode, and then dismisses the interrupt, typically by disabling the interrupt enable bit in the device,or by reading an \interrupt-acknowledge" register. When the user thread runs it just invokes thedriver's interrupt routine as if it were handling the interrupt in kernel-mode. After all necessaryprocessing, the thread then re-enables interrupts in the device.Our approach to user-level device management allows us to reuse existing kernel-mode driversto a large extent, even though they run in user-mode. We have generally been able to run a kernel-mode driver in user-mode by providing some simple \sca�olding" for facilities that are normallypresent in the kernel, such as priority emulation and memory allocation, but not normally presentin a user-level application. The only synchronization required for user-level device management isbetween the kernel's interrupt handler and the application thread. Presently, we use Mach's generalthread suspend (from user-mode) and thread resume (from kernel-mode) primitives.The small interrupt routine that vectors hardware interrupts to threads can be loaded in thekernel either dynamically or statically. Presently, we do it statically at link time, although we couldprovide a server that does dynamic linking and downloading in kernel space using the system's VMprimitives, as is done on the NeXT. The interrupt routine only needs to invoke one kernel functionto wake up the interrupt thread.We should note that our user-level strategy scheme only requires one dedicated thread per device.It does not actually dictate whether this thread runs in user or kernel mode. Indeed on certainarchitectures, where mapping device registers is not possible, it might be mandatory that the threadruns in privileged mode.Presently, we are running with user-level drivers for the Ethernet and the SCSI disk. TheEthernet driver was the �rst user-level driver we wrote, and is in fact the same custom driver (seeSection 2) that �rst ran in the kernel. Our main motivation for moving the driver out of the kernelwas our dissatisfaction with the performance of the in-kernel driver. By mapping the driver directlyinto the UNIX server's address space where the network protocols are implemented, we avoid oneextra copy of the data, almost doubling the speed relative to earlier versions of Mach 3.0. In fact,current network performance for throughput intensive applications, such as FTP, is about the sameas that for Mach 2.5, which implements UNIX in kernel space.For the SCSI driver, we initially used the vendor's code directly on a DECstation 5000, and onlylater moved on to our own device independent machinery described earlier. We did this in order toassess the impact, in terms of performance and programmability, of moving existing, mature driversout of the kernel would have. Performance is discussed in Section 5. In terms of programming,we were pleased to discover that the e�ect was minimal, and was all concentrated on the interfacebetween the driver and the sca�olding code, not between the driver and the device. In fact, duringour initial port, we didn't try to understand much of the code in the vendor's original driver | itwasn't necessary.1For example, on the MIPS architecture, the routine is 128 bytes.

4. I/O InterfaceThe I/O interface is de�ned in a language-independent MiG de�nition �le and consists of the fol-lowing remote procedure calls:device open(master device port, mode, name, device) Open procedure, returns a device portdevice close(device) Close procedure.device write(device, mode, recnum, data, num bytes, bytes written) Write procedure, returnsthe number of bytes actually written.device read(device, mode, recnum, bytes wanted, data, bytes read) Read procedure, returns thedata and the amount of bytes read. Reply can be asynchronous.device map(device, protection, o�set, size, pager, unmap) Map procedure, returns a port pagerfor mapping to user space, usable with vm map().device set status(device,
avor, status) Change the device status, device-speci�c.device get status(device,
avor, status) Inquiry the device status, device-speci�c.Device names are strings, and are system-speci�c. Our convention is to use an alphabetic stringfollowed by an optional decimal number which identi�es di�erent instances of similar devices. Recordnumbers are interpreted in a device-speci�c manner: a disk uses this unsigned index to point to aphysical block, while a serial line just ignores it. Read and write operations can either return datainline or out-of-line. For devices that return data asynchronously, like the Ethernet, for example,a read call can be split in the request and reply sides, possibly with a di�erent thread dequeueingreplies. Operations on the status of a device, such as modem control operations on a serial line forinstance, are very much device-speci�c.Note that any entity that abides by this interface quali�es as a Mach device, whether it isimplemented inside or outside of the kernel. The same interface is exported by the kernel for thedevices it handles itself, therefore a user application will see no di�erence whether the driver isimplemented in the kernel or in a user process. It is conceivable that a user-space driver couldexport some other interface, perhaps shared memory based, to other tasks on the same machine.Indeed, the current prototype, in which the SCSI driver is in the same task as default pager [Golub& Draves 91], exports the disk to the UNIX server via the RPC interface and to the default pagervia local function calls.It's important to note that Mach's support for distributed shared memory [Forin et al. 89] doesnot enable remote mappings of the chip's registers because devices do not access their registersthrough the memory management unit (MMU).For devices that are implemented inside the kernel we provide a layer of code that handles VMand scheduling. At this level, we wire pages that are used to move data between user and kernelspace. We also use the page-list technique, described in [Barrera 91], to speed up the paths throughthe VM code.Scheduling issues are also handled here. Each device-speci�c function returns a code indicatingwhether the operation requested was able to complete, or was queued for later processing. If queued,the address of a completion function is noted in the request record. When the request has beenhandled, the driver's interrupt routine causes the completion function to be executed within thecontext of a kernel-mode thread. For example, in the case of a device write, the completion functiondeallocates memory and sends back a simple reply message to the writer with the a completion codeindicating success or failure.

5. PerformanceWe consider two performance measurements for the new I/O system. The �rst is in terms of thereduction in size of device driver code. This is primarily a function of the new device independentdrivers. The second measurement is in terms of performance; that is, how fast can data be pushedthrough the I/O system.5.1. Size ConsiderationsWe have observed, on average, a factor of two reduction in the size of device drivers relative to thoseprovided by vendors. Moreover, our new drivers often include additional functionality. The screendriver, for instance, is one fourth the size (MIPS object code) of that shipped by the vendor, andnow includes a terminal emulator. The extra code needed to support a hi-resolution screen requiredonly 2KB of object code, compared to over 60KB if the new driver were cloned from an existingone (as is the standard practice). The chip-dependent code in the serial line driver takes about 4KBfor each of the two chips we currently support. The support code for the NCR 53C94 SCSI chip isabout 10KB, half the size of the vendor's chip-speci�c code. The most complicated SCSI chip so farneeds about 17KB of MIPS object code. The simplest one is about 5KB of Intel 386 object code.The machine-independent code is also compact. For example, the machine-independent code tosupport all of the SCSI tapes is about 4KB. The total size of the Lance driver for four machinesis less than 8KB. The size of the machine-independent code for the entire I/O system in a genericDECstation con�guration is 154KB.The strictly machine-dependent device code is less than 6KB, and all of that is for handlingDMA. Moreover, all of code is written in C. The remaining machine-dependent code in the system is92KB, including 20KB of debugger support code and 13KB of
oating point emulation code. Table 1summarizes these numbers and shows that the new I/O system is signi�cantly \less" machine-dependent (and therefore more portable) than other components in the system.DECstation MK64 Generic KernelComponent Size (KB) %MI I/O 154 96.6MD I/O 6 3.4MI other code 364 79.8MD other code 92 20.2Total MI 518 84.1Total MD 98 15.9Table 1: Maximum Kernel Object Code Sizes.5.2. Speed ConsiderationsOur new drivers perform no worse than those that they replace. In some cases, performance is evenimproved because of the mapped devices and the generic script facilities which allow us to rapidlydismiss anticipated interrupts.

The Screen and Serial DriversFor the screen and serial drivers, there are no observable performance di�erences between our newdrivers and the vendor's. In the case of the screen driver, this is because the vendor's driverwas already mapped into user space, and because the kernel resident code has little impact onperformance. In the case of the serial driver, it's because measuring performance di�erences at theslow speeds of 9600 or 19200 baud (typically the maximum rate for serial lines) is di�cult.The Ethernet DriverFor the Ethernet driver, we measured substantial performance improvements over the vendor'soriginal driver. For example, an FTP using the same 4.3 BSD network code (pre Van Jacobsen)between two DECstation 3100s went from 120KB/sec to 230KB/sec.The SCSI DriverInitially, we measured the performance of an out-of-kernel SCSI disk driver which was identicalto the vendor's original in-kernel driver. That is, we did not measure the impact that \deviceindependence" had on the performance of the SCSI driver. We discovered that the in-kernel andout-of-kernel drivers performed similarly. The additional cost of having to dispatch a device interruptout to user-level was insigni�cant compared to the long seek and rotational delays associated withdisks (the average delay we saw was about 10 ms across a number of SCSI disks).We next measured the impact that our device independent approach had on performance byreplacing the vendor's driver (at user-level) with our own. On a DECstation 3100, we saw themaximum disk throughput improve from 700KB/sec to 850KB/sec with our new driver.2 Thethroughput here was limited by a slow disk. We then replaced the disk with a faster one, andmeasured throughput of 1.52MB/sec, which is the maximum rate at which data can be movedbetween the SCSI bu�er and the processor's main memory.The SCSI driver is a particularly challenging case because of the large number of interruptsrequired to perform commondevice functions. We were clearly adding some overhead to the interruptpath. Because many SCSI devices tend to generate many interrupts per hardware operation, wewere concerned that extensive coding changes would be required to get good performance. As theperformance numbers demonstrate, this turned out not to be the case.6. Some Observations about I/O SystemsThis investigation of the I/O subsystem was originally just motivated by the need of doing a clean,free, reference port of Mach 3.0 to one of the many possible workstations on the market. The�ndings of the process, and past experiences in porting Mach to the many machines we ported it toare intriguing enough to prompt some more general re
ections.2In order to measure maximum throughput, we wrote a carefully tuned �le-reading program that does reads outof order to maximize \hits" on the sector's location.

6.1. Horror StoriesCutting the Wrong CornersEconomy is the foremost rule that has driven the design of current workstations. The results areoftentimes detrimental to performance. Most workstation manufacturers choose to include only aa cheap, dumb SCSI chip rather than a smart, more expensive SCSI board. This means anywherebetween 5 and 21 interrupts to the CPU per (disconnecting) disk read or write operation. As anextreme case, we have seen an early SCSI disk disconnect on each and every sector transferred. Thisrequired 3*16+5=53 interrupts to read an 8KB disk block. We changed our SCSI driver to optionallydisable disconnections for selected targets, but such work-arounds should not be necessary.As another example, we have ported Mach to a multiprocessor which was built without anyDMA support for disk I/O. The idea was that a multiprocessor machine can probably waste oneprocessor in dealing exclusively with I/O. The CPU in this case must pick each individual byte outof the SCSI chip, just like a serial line. Unfortunately, the particular SCSI chip chosen would run 5times faster in synchronous mode | a mode that necessitates a true DMA path to memory.Balancing CostsMany customers are willing to pay extra money for faster and color displays. This has generateda variety of solutions and o�erings, often concealing important economic and performance consid-erations. Many users �nd it hard to understand why a high performance color machine should beslower at scrolling screen text than a monochrome one. At least some of the e�orts in designinggraphic accelerators, for example, should go into including higher speed screen memory. Moreover,it makes little sense to attach a slow graphics I/O processor to a fast CPU.Delivering Promised FunctionAnother area where we hit many obstacles is the one of DMA. Any DMA device that cannot be usedto access each and every byte at any physical address creates a software problem which can only besolved by data copies that slow down the machine. This is even more of a problem considering thatwith today's CPUs, memory is often the bottleneck. We have seen machines that can only DMAtwo good bytes every other two bytes, some that can only use a good byte every four (and not bytezero), and some that get a good 16 bytes in a row, but only every other 16 bytes. In other instances,the DMA is \normal," but the mapping between physical address and address to be used by theDMA chip is incredibly complicated. DMA chips which can address as much as the CPU can arerare.CachesA big cache helps with the performance of user applications, but is less helpful for the operatingsystem [Ousterhout 90]. As for the I/O system, a machine with a DMA chip is essentially a mul-tiprocessor with cache coherency problems which should not be overlooked. If the cache does notsnoop the bus, it is necessary to factor into each I/O operation the cost of
ushing the cache, whichon many machines is not a trivial one, not even for a relatively small address range such as a pagesize. The cost of
ushing can be as high as 25% of the entire page fault cost. In Mach, we cansomehow help by avoiding the instruction cache
ush for pages that are not mapped (by the user)

with execute permission, as we do on the MIPS architecture for instance. This only mitigates theproblem, and only in the case of separated instruction and data caches.6.2. SuggestionsAn I/O system that performs in the gigabyte throughput range will require radical departures fromtoday's practices. High bandwidth will only be possible with large grain data transfers, e�ectivebu�ering and memorymapping techniques. This is only possible if hardware and software cooperate.It is important to handle more than one transaction per interrupt because interrupts have abad e�ect on cache and CPU (pipeline) performance. High-performance I/O systems will have toreduce the number of interrupts required to handle data transfer. Otherwise, tomorrow's fasterCPUs will spend all their time handling one network packet at a time, just as they do today withserial lines. Large data transfers are possible because main memories are large enough to hold datain anticipation of it being used, and modern virtual memory systems are able to e�ectively cachethe data.Given our experiences with with user mode drivers, we can consider other uses of memorymapping techniques that improve performance. Consider, for instance, a machine where each deviceis accessible as a separate memory bank on the main memory bus. This large piece of dual-portedmemory is where the operating system server allocates bu�ers used for I/O. This structure gainstwo advantages. First, the bus is used only for CPU transactions since devices DMA to their localmemory. Second, the copy of data in and out of application space is made by using mapped �letechniques [Golub et al. 90] only once and in large chunks. This copy eliminates the need for datacache
ushes, because the source data can be marked as non-cacheable.An I/O interface di�erent from that of UNIX would avoid even this one copy. Many otheroperating systems have successfully used such a bu�er \reserve-�ll-release" strategy.An alternative setup is one where the interface between the main CPU and an I/O device is interms of an external pager interface itself. The device itself is the external pager and interacts withthe main CPU in terms of pagein/pageout requests in a fault-driven fashion. This is a generalizationof our work on shared memory servers [Forin et al. 89]. The di�erence now is that instead of onlydealing with \communication" issues we also deal with \permanent storage" and data retrievalissues. If the memory mapping is between two hosts, then we have a distributed shared memorysemantics. If the mapping is between a host and a peripheral device (disk, tape, printer, scanner),then we will either retrieve data (read fault) from the device or write it to the device (write fault).By mapping, the host communicates to the device the data it wants to address (e.g. what diskblocks). By faulting, the host signi�es that the transfer should take place. In this way, we canuse lazy evaluation to drive I/O devices. The device now has the advantage of being able to makedecisions of its own as to what stays in the main memory and what doesn't. It can, for instance,remove access to a page just because it is convenient to write it out at that particular point in time,or it can prefetch data and supply it to the kernel in anticipation of an upcoming need.7. Related WorkOther systems use some of the same techniques for I/O management that we have used in Mach 3.0.Jim Gettys [Gettys 91] has recently rewritten the screen driver for Ultrix by factoring the code intochip-speci�c modules and generic code. In Sprite [Ousterhout et al. 88], device drivers are structuredlike ours | functionally specialized into much the same set, although the implementation does notstress chip-speci�city as much as Mach's. An experimental version of UNIX based on a micro-kerneldone at DEC ran with device drivers in user-space [Palmer & Palmer 89].

8. Current StatusThe work described here has been a developing part of the Mach 3.0 kernel since the middle of1989. We invite the interested reader to obtain a copy of Mach 3.0 by way of anonymous FTP toCS.CMU.EDU.The device independent serial driver has been ported to two chips (DEC DZ7085 and Zilog 5380)on three machines. The screen driver currently handles two monochrome and �ve color displaytypes, and is used on two workstation types (VAX and MIPS based). Other ports are under way.The SCSI driver has been ported to four di�erent workstation types (VAX, MIPS, I386, M88k)and handles �ve di�erent SCSI controllers ranging from the �rst-generation NCR 5380 to the second-generation NCR 53C94 to the user-friendly Adaptec 1540. Others, outside of CMU, are using thesedrivers for Mach ports to other systems.The user-level Ethernet driver has been in use now for almost two years on three versions ofthe DECstation (2100, 3100 and 5000/200) with a fourth one just completed (5000/120) and a �fthone underway (Omron Luna 88k). It is distributed as part of the single-server UNIX emulator fromCMU.References[Barrera 91] Barrera, J. S. A Fast Mach Network IPC Implementation. In Proceedings of the SecondUSENIX Mach Symposium, This issue, November 1991.[Barrera 92] Barrera, J. S. Operating System Support for Multicomputers. PhD dissertation, Schoolof Computer Science, Carnegie Mellon University, To be completed in 1992.[Forin et al. 89] Forin, A., Barrera, J., Young, M., and Rashid, R. Design, Implementation andPerformance Evaluation of a Distributed Shared Memory Server for Mach. In 1988 WinterUsenix, January 1989.[Gettys 91] Gettys, J. E{mail communication posted on the mach3 mailing list, July 1991.[Golub & Draves 91] Golub, D. and Draves, R. Moving the Default Memory Manager Out of theMach Kernel. In Proceedings of the Second USENIX Mach Symposium, This issue, Novem-ber 1991.[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program.In Proceedings of the Summer 1990 USENIX Conference, pages 87{95, June 1990.[Mogul et al. 87] Mogul, J., Rashid, R., Accetta, M. The Packet Filter: An E�cient Mechanism forUser-level Network Code. In Proceedings of the 11th Symposium on Operating SystemsPrinciples, pages 39{51, 1987.[Ousterhout et al. 88] Ousterhout, J., Cherenson, A., Douglis, F. The Sprite Network OperatingSystem In IEEE Computer, Vol 21-2, pages 23{26, February 1988.[Ousterhout 90] Ousterhout, J. Why Aren't Operating Systems Getting Faster As Fast As Hard-ware? In Proceedings of the Summer 1990 USENIX Conference, June 1990.[Palmer & Palmer 89] Palmer, R., Palmer, L. Informal Communication at the First OSF KernelDevelopers Meeting, Cambridge, September 1989.[Rashid et al. 89] Rashid, R., Baron, R., Forin, A., Golub, D., Jones, M., Julin, D., Orr, D., Sanzi,R. Mach: A Foundation for Open Systems. In Proceedings of the Second IEEE Workshopon Workstation Operating Systems, page 109{113, September 1989.

[Rashid et al. 87] Rashid, R., Tevanian, Jr., A., Young, M., Golub, D., Baron, R., Black, D.,Bolosky, W., and Chew, J. Machine-Independent Virtual Memory Management for PagedUniprocessor and Multiprocessor Architectures. In Proceedings of the 2nd Symposium onArchitectural Support for Programming Languages and Operating Systems, April 1987.[Rashid et al. 91] Rashid, R., Malan, G., Golub, D., and Baron, R. DOS as a Mach 3.0 Application.In Proceedings of the Second USENIX Mach Symposium, This issue, November 1991.[Ritchie and Thompson 78] Ritchie, D., Thompson, K. The UNIX time-sharing system. In BellSystem Technical Journal, July 1978.[Tokuda & Nakajima91] Tokuda, H., Nakajima, T. Evaluation of Real-Time Synchronization inReal-Time Mach. In Proceedings of the Second USENIX Mach Symposium, This issue,November 1991.

