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Abstract
Methods and concepts from convex optimization have close relations to tra-

ditionally discrete algorithms, and we investigate two separate cases of such. In
part I, we leverage a variant of the Mirror-Prox algorithm from Sherman’s 2017
paper on area-convexity and multicommodity flow, to design a fast Õ(m/ϵ) algo-
rithm for ϵ-fair cuts, a special type of approximate st-min-cut that requires some
st-flow to 1 − ϵ saturate all edges across the cut. Such runtime is an improvement
over the state-of-the-art Õ(m/ϵ3), and the resulting algorithm is much simpler. In
part II, we design a continuous counter part of the Graham Scan convex hull algo-
rithm that computes the tight convex envelope of degree-n univariate polynomials
in O(n3 + n log2 n log b + nb2) with respect to an interval domain, and updates in
O(nb2) with respect to a new interval domain, where 2−b is the relative precision for
float point arithmetic. Such algorithm relies on properties of convex functions for
its proof of correctness, and can be used to construct high quality convex relaxations
for Generalized Additive Models (GAM) with monotone link functions.
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Chapter 1

Introduction

This work is divided into two parts and surveys some bridges between continuous optimization
and discrete algorithms.

In the first part, we present a simple and faster algorithm for computing fair cuts on undirected
graphs, a concept introduced in recent work of Li et al. (SODA 2023). Informally, for any
parameter ϵ > 0, a (1 + ϵ)-fair (s, t)-cut is an (s, t)-cut such that there exists an (s, t)-flow that
uses 1/(1+ϵ) fraction of the capacity of every edge in the cut. Our algorithm computes a (1+ϵ)-
fair cut in Õ(m/ϵ) time, improving on the Õ(m/ϵ3) time algorithm of Li et al. and matching the
Õ(m/ϵ) time algorithm of Sherman (STOC 2017) for standard (1 + ϵ)-approximate min-cut.
Our main idea is to run Sherman’s approximate max-flow/min-cut algorithm iteratively on a
(directed) residual graph. While Sherman’s algorithm is originally stated for undirected graphs,
we show that it provides guarantees for directed graphs that are good enough for our purposes.

In the second part, we present a continuous version of the famous convex hull algorithm,
Graham Scan, for computing the tight convex relaxation of univariate polynomials, and sub-
sequently a high quality relaxation for Generalized Additive Models (GAM) with a monotone
link function and polynomial expressions. Convex relaxation methods are widely used in spa-
tial branch-and-bound type algorithms; However, these relaxation methods do not produce tight
convex relaxations of expressions in general, even for one dimensional cases, and yet tight relax-
ations facilitate branch pruning. We design a continuous version of the Graham Scan convex hull
algorithm, which given a floating point precision of 2−b, computes the tight convex envelope of
a degree-n polynomial in O(n3+n log2 n log b+nb2) time and updates it in O(nb2) with respect
to any interval domain. We further show that our algorithm paired with the famous recursive
convex relaxation from Garth P. McCormick yields a convex relaxation of GAM expressions that
shares the same global optima. We further note that our relaxation is efficient to update as the
variable scopes change during sBB, as re-computation from scratch is not needed.

These two parts highlight the interplay between convex optimization and more traditional as-
pects of discrete algorithms. On one hand, Sherman’s work is essentially a variant of the Mirror-
Prox algorithm, used to solve saddle point problems, and came in handy for approximating max
flows & min cuts; On the other hand, properties of convex functions help us design a continuous
version of Graham Scan, a discrete convex hull algorithm, and our algorithm yields good convex
relaxations of nonliear terms like GAM, which is again useful for optimization purposes.
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Chapter 2

Laplacian-based Flow Algorithm and its
Application in Efficiently Computing
Fair-Cuts

2.1 Background Information on Laplacian-based Flow Algo-
rithm

Continuous optimization methods have seen many prominent uses in algorithm design, and they
often serve as approximation schemes for graph algorithm that are computationally efficient.

One notable attempt to speed up the well-studied max-flow problem is due to Kelner et. al.
[5], which incrementally computes the maximum st-flow by solving a sequence of electrical flow
problems on a network of resistors. In particular, for a graph G with n vertices and m edges,
the authors treats network edges of capacity ce as resistors of resistance re, sets the electrical
potentials at s and t to be 1 and 0 respectively, and minimizes the electrical potential

E(f) := ∥R1/2f∥

subject to Bf = 1s − 1t, where f ∈ Rn
+ is the network flow, R ∈ Rm×m is the diagonal matrix

indicating the electrical resistance on each edge, and B is the discrete divergence operator of G
defined as

Bv,e =


1, if e ∈ E−(v)

−1, if e ∈ E+(v)

0, otherwise

Note that such electrical flow has a closed-form solution

f ∗ = CB⊤(BCB⊤)†(1s − 1t)

and the authors designed an approximate max-flow algorithm by repeatedly computing electrical
flow, then removing the edges where such electrical flows violate the capacities by too much.
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Another independent continuous approach is due to Sherman [29], which instead of solving
for an st-max-flow, routes a general distributed demand vector d ∈ Rn, such formulates the
optimization problem

min
f
∥C−1f∥∞ subject to: Bf = d

and subsequently uses lmax(x) := log (
∑

i e
xi + e−xi) to approximate the infinity norm ∥ · ∥∞,

while converting the equality constraint into a regularization term, which results in the alternative
objective:

ϕ(f) := lmax(C−1f) + lmax(2αR(Bf − d))

where R is some α-congestion approximator of graph, as defined in Definition 3. Such objective
is subsequently minimized via update rule

fe ← fe − η · sign(∇ϕ(f)e)ce

with step size η = ∥C∇ϕ(f)∥1/(1 + 4α2).
A more recent work from Sherman [30] in STOC 2017 generalizes to multi-commodity flow;

it formulates maxflow as a minimax saddle point problem:

min
x

max
y

y⊤Ax− b⊤y − c⊤x

where x is the flow and y is the fractional cut (as a dual variable) and then solves the problem with
a modified version of a continuous optimization algorithm named MirrorProx, first introduced
by A. Nemirovski in [26]. Note that Sherman originally presented the algorithm as a numerical
PDE technique, and its relationship with MirrorProx is suggested by Cohen et. al. in [6].

In subsequent sections, we present an approximate min-cut algorithm (specifically, for fair
cuts, to be introduced later) that makes crucial use of Sherman’s optimization routine in [30].
Specifically, we prove a modified version of Sherman’s Theorem 9 that applies to residual graphs,
and use it to compute ϵ-fair-cuts by iteratively update an initial st-cut. Our result shows that
continuous optimization methods are applicable to approximating variant(s) of st-min-cuts.
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2.2 Introduction

The (s, t)-min-cut and (s, t)-max-flow problems are among the most basic and well-studied prob-
lems in combinatorial optimization. A long line of research on fast algorithms [7, 8, 12, 22] cul-
minated in the recent breakthrough m1+o(1) time algorithm of Chen et al. [4]. A separate line of
research has focused on applying max-flow to solve other cut-based problems in combinatorial
optimization, most notably Steiner min-cut [19], Gomory-Hu tree [1], and expander decompo-
sition [28]. Using the algorithm of Chen et al. as a black box, all of these problems are now
solvable in m1+o(1) time, which is optimal up to the factor mo(1).

On the other hand, the algorithm of Chen et al. (and subsequent improvements [31]) have a
few downsides. First, the algorithms do not quite achieve “near”-linear time, which colloquially
means Õ(m) time where Õ(·) suppresses polylogarithmic factors. In fact, a near-linear time
algorithm appears out of reach with the current techniques, which exploit recursion at the cost of
mo(1) factors. Also, the algorithms are inherently sequential, leaving open the question of parallel
max-flow in m1+o(1) work and sublinear time. These downsides carry over to any algorithm that
requires max-flow as a black box, and hence to the cut-based problems mentioned above.

To address these issues, Li et al. [20] introduced the concept of fair cuts, a robust form of
approximate min-cut. They present an algorithm for (1+ ϵ)-fair cut in Õ(m/ϵ3) time that can be
parallelized,1 and then show how to solve (1 + ϵ)-approximate Steiner min-cut and Gomory-Hu
tree using fair cut as a black box, leading to Õ(m/ϵO(1)) time algorithms for both problems that
can be parallelized. They also establish the first Õ(m) time algorithm for expander decomposi-
tion that can also be parallelized.

The fair cut problem should be viewed as a generalization of (1 + ϵ)-approximate min-cut,
which can be solved in Õ(m/ϵ) time by a recent breakthrough of Sherman [30] but is not robust
enough for the above applications.2 Nevertheless, there was a gap between the Õ(m/ϵ) time
algorithm for (1 + ϵ)-approximate min-cut (and max-flow) and the Õ(m/ϵ3) time algorithm for
(1 + ϵ)-fair cut.

In this paper, we close the gap between the two problems by solving (1 + ϵ)-fair cut in
Õ(m/ϵ) time. Conceptually, we present evidence that fair cut is no harder than approximate
min-cut despite being more robust and powerful.

Theorem 1. There is an Õ(m/ϵ) time randomized algorithm that, with high probability,3 solves
(1 + ϵ)-fair cut on an undirected graph with integral and polynomial capacities.

Our algorithm is iterative, sending flow on each iteration and updating the residual graph,
which is directed. Our main idea is observing that Sherman’s approximate max-flow/min-cut
algorithm (for undirected graphs) actually performs well on certain directed graphs, such as
residual graphs of originally undirected graphs.

1The parallelization requires m1+o(1) work and mo(1) time, but the mo(1) factors can be improved to polyloga-
rithmic by recent work [2]. For simplicity, we do not discuss parallelization in this paper.

2In more technical terms, the concept of uncrossing two cuts breaks down for arbitrary approximate min-cuts.
Fair cuts are designed to satisfy an approximate version of uncrossing, which suffices for the applications.

3We adopt the convention that with high probability means with probability 1 − 1/nO(1) for arbitrarily large
polynomial in n.
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2.2.1 Preliminaries
We work with both undirected and directed graphs in this paper. For an undirected graph G =

(V,E), let
←→
G = (V,

←→
E ) be the directed version of G with each edge replaced by bidirectional

arcs of the same capacity. Given a vertex set S ⊆ V , let ∂S in an undirected graph be the set of
edges with exactly one endpoint in S, and let ∂⃗S in a directed graph be the set of arcs whose tail
is in S and whose head is not in S. We may also use ∂⃗S for an undirected graph G, in which
case we are referring to the bidirected

←→
G .

Throughout the paper, we use cG(·) to denote edge and arc capacities. For an arc/edge set
F , let cG(F ) denote the total capacity of arcs/edges in F . We assume that all capacities are
integers and polynomially bounded; in general, we would incur extra logW terms where W is
the maximum integral capacity, but we stick with polynomially bounded for simplicity.

We represent a flow as a nonnegative vector f ∈ R
←→
E for an undirected graph and f ∈ RE for

a directed graph. The congestion of a flow is max
(u,v)∈

←→
E
f(u, v)/cG(u, v), where

←→
E is replaced

by E for a directed graph. Sometimes we abuse notation and say the flow has congestion κ if the
congestion of the flow is at most κ. A flow is feasible if its congestion is at most 1. A demand is
a vector d ∈ RV with

∑
v dv = 0. A flow satisfies or routes demand d ∈ RV if for each vertex

v ∈ V ,
∑

(v,w) f(v, w) −
∑

(u,v) f(u, v) = dv, i.e., the net flow out of v is exactly dv. A flow is
an (s, t)-flow of value τ if it satisfies demand τ(1s− 1t). Here, 1v is the vector with entry 1 at v
and entry 0 elsewhere. We also use 1 as the all-ones vector.

Given an undirected/directed graph G = (V,E) and a flow f , the residual graph G′ of G for
flow f is the directed graph with arc capacities cG′(u, v) = cG(u, v)− f(u, v) + f(v, u) for each
(u, v) where either (u, v) ∈ E or (v, u) ∈ E. Here, cG(u, v), f(u, v) are zero if (u, v) /∈ E and
likewise for (v, u).

A cut is a bipartition (S, V \ S) of the vertex set where S, V \ S ̸= ∅. It is an (s, t)-cut if
s ∈ S and t /∈ S. For a directed graph G, the value of the cut (S, V \ S) is cG(∂⃗S). We require
the following fact about the submodularity of the directed cut function: for any directed graph G
and two sets A,B ⊆ V , cG(∂⃗A) + cG(∂⃗B) ≥ cG(∂⃗(A ∪B)) + cG(∂⃗(A ∩B)).

We now define the object of study in this paper, a fair cut.
Definition 2. Let s, t be two vertices in V . For any parameter α ≥ 1, we say that a cut (S, V \S)
is an α-fair (s, t)-cut if there exists a feasible (s, t)-flow f such that f(u, v) ≥ 1

α
·c(u, v) for every

arc (u, v) ∈ ∂⃗S.
Definition 3. For any undirected graph G, an α-congestion approximator of G is a matrix R ∈
R[r]×V (where dimension r is unspecified) such that for any demand d whose optimal flow has
congestion OPT (d), it holds that ∥Rd∥∞ ≤ OPT (d) ≤ α∥Rd∥∞.

We defer the matrix notation from Sherman’s approximate max-flow/min-cut algorithm to its
relevant Section 2.4.
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2.3 Fair Cut Algorithm

In this section, we present our fair cut algorithm, establishing Theorem 1. It will be more conve-
nient to prove the following version, where ϵ is replaced by O(ϵ log n).
Theorem 4. There is an Õ(m/ϵ) time randomized algorithm that, with high probability, solves
(1 +O(ϵ log n))-fair cut on an undirected graph with integral and polynomial capacities.

We will use the following approximate max-flow/min-cut primitive for residual graphs, which
we present in Section 2.4.
Theorem 5. Given an undirected graph G, a residual graph G′ of G, two vertices s, t, and a
parameter τ > 0, there is a randomized algorithm that runs in time Õ(m/ϵ) and computes, with
high probability,

1. Either an (s, t)-cut of value less than τ , or
2. A feasible flow f in G′ routing a demand d such that the residual demand τ(1s − 1t)− d

can be routed in G with congestion ϵ.
Equipped with this flow/cut primitive, the fair cut algorithm is quite simple. We iteratively

maintain a cut (Si, V \Si) and a flow fi that both gradually improve over time. On each iteration,
we temporarily remove the edges in ∂Si that are nearly saturated in the right direction, and then
call the flow primitive on the residual graph (minus the removed edges) with a careful choice of
τ . Depending on whether the flow primitive returns a flow or cut, we either update the current
flow or the current cut, leaving the other unchanged.

We present the formal algorithm below.

1. Let f1 be the empty flow and (S1, V \ S1) be an arbitrary (s, t)-cut.

2. For iteration i = 1, 2, . . . , L = Θ(log n):

(a) Let U⃗i ⊆
←→
E be all arcs (u, v) ∈ ∂⃗Si satisfying fi(u, v) ≤ (1 − 4ϵ)cG(u, v), i.e., the

“unsaturated” arcs in ∂⃗Si.

(b) Let Ui ⊆ E be U⃗i with all arcs undirected (and parallel edges removed).

(c) Let Gi ⊆ G be the undirected graph G \ (∂Si \ Ui), i.e., remove all edges in ∂Si that
are “saturated” in the right direction.

(d) Let G′i be the residual graph of Gi for the restricted flow fi|Gi
, defined as the flow fi

with flow on arcs outside
←→
G i removed.

(e) Call Theorem 5 on graph Gi, its residual graph G′i, vertices s, t, and parameter τ =

0.5cG′
i
(∂⃗Si).

(f) If Theorem 5 returns a flow h:
• Set fi+1 = fi + h and Si+1 = Si, i.e., add the new flow but keep the current cut.

(g) If Theorem 5 returns a cut (Xi, V \Xi):
• Set fi+1 = fi and Si+1 as either Si ∪Xi or Si ∩Xi, i.e., update the cut but keep

the current flow. Of the two choices, pick the Si+1 minimizing cG′
i
(∂⃗Si+1).

3. Output the (s, t)-cut (SL+1, V \ SL+1).

It is clear that the algorithm makes O(log n) calls to Theorem 5 and runs in Õ(m) time outside
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these calls, for an overall running time of Õ(m/ϵ). For the rest of this section, we prove its
correctness.

Our measure of progress is the quantity cG′
i
(∂⃗Si), i.e., the total residual capacity of all “un-

saturated” arcs in ∂⃗Si, which we show drops by a constant factor on each iteration.
Lemma 6. If Theorem 5 returns a flow h, then cG′

i+1
(∂⃗Si+1) ≤ 0.75cG′

i
(∂⃗Si).

Proof. Let d be the demand routed by flow h. By Theorem 5, there is a feasible flow r in Gi

routing the residual demand τ(1s − 1t)− d with congestion ϵ. Then, the flow h+ r in G′i routes
demand τ(1s − 1t) (with arbitrary congestion). This flow must pass through the cut ∂⃗Si in G′i,
so h + r sends a net flow of τ across ∂⃗Si. Since the flow r has congestion ϵ in Gi, removing
it from h + r affects the net flow across ∂⃗Si by at most ϵcGi

(∂Si), so the flow h sends at least
τ − ϵcGi

(∂Si) across ∂⃗Si. Each arc (u, v) ∈ ∂⃗Si in G′i satisfies (u, v) ∈ Ui, so fi(u, v) ≤
(1− 4ϵ)cG(u, v) and cG′

i
(u, v) ≥ 4ϵcG(u, v) = 4ϵcGi

(u, v). Summing over all arcs (u, v) ∈ ∂⃗Si

gives cG′
i
(∂⃗Si) ≥ 4ϵcGi

(∂S), so the flow h sends at least τ − 0.25cG′
i
(∂⃗Si) = 0.25cG′

i
(∂⃗Si) flow

across ∂⃗Si.
Let H be the residual graph of Gi for the restricted flow fi+1|Gi

. By definition of residual
graph, the quantity cGi

(∂Si) − cH(∂⃗Si) is exactly the net flow that fi+1|Gi
sends across ∂⃗Si.

Since G′i is the residual graph of Gi for the restricted flow fi|Gi
, the quantity cGi

(∂Si)−cG′
i
(∂⃗Si)

is exactly the net flow that fi|Gi
sends across ∂⃗Si. Since fi+1|Gi

= fi|Gi
+ h, the difference

of quantities (cGi
(∂Si)− cH(∂⃗Si))− (cGi

(∂Si)− cG′
i
(∂⃗Si)) is exactly the net flow that h sends

across ∂⃗Si, which is at least 0.25cG′
i
(∂⃗Si). In other words, cH(∂⃗Si) ≤ cG′

i
(∂⃗Si)−0.25cG′

i
(∂⃗Si) =

0.75cG′
i
(∂⃗Si). Any previously “saturated” arc (u, v) ∈ ∂⃗Si \ U⃗i is still “saturated” in flow fi+1

(i.e., fi+1(u, v) > (1− 4ϵ)cG(u, v)) since the arc is absent from G′i and hence carries no flow in
h. Since Si+1 = Si, we have ∂Si\Ui ⊆ ∂Si+1\Ui+1, which means that Gi ⊇ Gi+1. In particular,
the arcs in ∂⃗Si present in G′i+1 are also present in H , and they have the same capacity since both
G′i+1 and H are residual graphs for a restriction of fi+1. We conclude that cG′

i+1
(∂⃗Si) ≤ cH(∂⃗Si),

and
cG′

i+1
(∂⃗Si+1) = cG′

i+1
(∂⃗Si) ≤ cH(∂⃗Si) ≤ 0.75cG′

i
(∂⃗Si),

as promised.

Lemma 7. If Theorem 5 returns a cut (Xi, V \Xi), then cG′
i+1

(∂⃗Si+1) ≤ 0.75cG′
i
(∂⃗Si).

Proof. By Theorem 5, the cut (Xi, V \Xi) satisfies cG′
i
(∂⃗Xi) ≤ τ = 0.5cG′

i
(∂⃗Si). By submod-

ularity of the cut function cG′
i
(∂⃗S),

cG′
i
(∂⃗Si) + cG′

i
(∂⃗Xi) ≥ cG′

i
(∂⃗(Si ∪Xi)) + cG′

i
(∂⃗(Si ∩Xi)),

and by the choice of Si+1,

cG′
i
(∂⃗Si+1) ≤

1

2

(
cG′

i
(∂⃗(Si∪Xi))+cG′

i
(∂⃗(Si∩Xi))

)
≤ 1

2

(
cG′

i
(∂⃗Si)+cG′

i
(∂⃗Xi)

)
≤ 0.75cG′

i
(∂⃗Si).

We now claim that cG′
i+1

(∂⃗Si+1) ≤ cG′
i
(∂⃗Si+1). Note that arcs present in both G′i and G′i+1

must have the same capacity since fi+1 = fi, so it suffices to show that the arcs in ∂⃗Si+1 present
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in G′i+1 are a subset of those present in G′i. Any arc (u, v) ∈ ∂⃗Si+1 present in G′i+1 satisfies
(u, v) ∈ U⃗i+1, so fi(u, v) = fi+1(u, v) ≤ (1 − 4ϵ)cG(u, v). If (u, v) ∈ ∂⃗Si as well, then
(u, v) ∈ U⃗i and the arc belongs to G′i. Otherwise, if (u, v) /∈ ∂⃗Si, then there are two cases. If
Si+1 = Si ∩ Xi, then since u ∈ Si+1 ⊆ Si, we must have v ∈ Si as well. So the edge (u, v) is
not in ∂Si, which means the arc (u, v) belongs to G′i, establishing the claim. If Si+1 = Si ∪Xi,
then since v ∈ V \ Si+1 ⊆ V \ Si, we must have u ∈ V \ Si as well. So the edge (u, v) is not in
∂Si, and the same argument follows.

Putting everything together, we conclude that cG′
i+1

(∂⃗Si+1) ≤ cG′
i
(∂⃗Si+1) ≤ 0.75cG′

i
(∂⃗Si).

Finally, we prove the correctness of the algorithm, establishing Theorem 4.
Lemma 8. The output (SL+1, V \ SL+1) is a (1 +O(ϵ log n))-fair cut with high probability.

Proof. By Lemmas 6 and 7, we have cG′
i+1

(∂⃗Si+1) ≤ 0.75cG′
i
(∂⃗Si) for each iteration i. Since

capacities are polynomially bounded, we start with cG′
1
(∂⃗S1) ≤ nO(1), so for large enough L =

Θ(log n) we have cG′
L+1

(∂⃗SL+1) < 4ϵ with high probability. Any arc (u, v) ∈ U⃗L+1 belongs

to ∂⃗SL+1 and satisfies cG′
L+1

(u, v) ≥ 4ϵcG(u, v) ≥ 4ϵ, so no such arcs exist. In other words,

U⃗L+1 = ∅, and it follows that fL+1(u, v) ≥ (1 − 4ϵ)cG(u, v) for all arcs (u, v) ∈ ∂⃗SL+1. To
establish fairness, it remains to augment fL+1 to an (s, t)-flow.

By construction, fL+1 = h1+h2+· · ·+hL, and there exist flows r1, . . . , rL in G of congestion
ϵ such that each hi + ri is an (s, t)-flow. In particular, the flow f ′ = fL+1 + r1 + · · · + rL is
an (s, t)-flow. Since r1 + · · ·+ rL has congestion O(ϵ log n), we have |f ′(u, v)− fL+1(u, v)| ≤
O(ϵ log n) · cG(u, v) for all arcs (u, v). In particular, for each arc (u, v) ∈ ∂⃗SL+1,

f ′(u, v) ≥ fL+1(u, v)−O(ϵ log n) · cG(u, v)
≥ (1− 4ϵ)cG(u, v)−O(ϵ log n) · cG(u, v)

≥ 1

1 +O(ϵ log n)
cG(u, v),

so the (s, t)-flow f ′ certifies that (SL+1, V \ SL+1) is a (1 +O(ϵ log n))-fair cut.
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2.4 Approximate Max-Flow on Residual Graphs

In this section, we show how to apply Sherman’s approximate max-flow/min-cut algorithm on
directed residual graphs of an underlying undirected graph. The flow may not satisfy the input
demand, but the leftover demand will be routable with low congestion on the undirected graph.
Our main goal is to prove Theorem 5, restated below.
Theorem 5. Given an undirected graph G, a residual graph G′ of G, two vertices s, t, and a
parameter τ > 0, there is a randomized algorithm that runs in time Õ(m/ϵ) and computes, with
high probability,

1. Either an (s, t)-cut of value less than τ , or
2. A feasible flow f in G′ routing a demand d such that the residual demand τ(1s − 1t)− d

can be routed in G with congestion ϵ.
We first introduce some preliminaries from Sherman [30]. For a matrix A ∈ Rn×m, define

the matrix norm ∥A∥∞→∞ = max
∥v∥∞=1

∥Av∥∞, and define nnz(A) as the number of nonzero entries

in A. Define ∆m
k ⊆ Rm×k as the set of matrices X ∈ Rm×k with X ≥ 0 and

∑
j Xij = 1 for all

i ∈ [m]. We now present a key subroutine from [30]:
Theorem 9 (Corollary 1.8 of [30]). There is an algorithm that, given B ∈ Rn×k, and A ∈ Rn×m

with ∥A∥∞→∞ ≤ 1, takes Õ(knnz(A)ϵ−1) time and outputs either,
(1) X ∈ ∆m

k such that AX ≤ B + ϵR where R ∈ ∆n
k .

(2) Y ∈ Rk×n, Y ≥ 0 such that tr(Y (AX −B)) > 0 for all X ∈ ∆m
k .

This result can be used to solve approximate multi-commodity flow, as indicated by Lemma 4.2
of [30] (re-stated as Lemma 10). Sherman only provided a sketch proof in the original paper. For
specificity and completeness, we state and prove Lemma 11, which is (i) a refined and two-
commodity flow version of Sherman’s Lemma 4.2 for some residual network G′ of G and some
st-demand B, and (ii) equivalent to the Theorem 5 that we seek to prove in this section.

For a given directed graph G = (V, E⃗), we represent a flow f by its vector of congestions
on edges, which is a nonnegative vector in RE⃗ where for each arc (u, v) ∈ E⃗, the flow f sends
f(u,v)cG(u, v) flow. Note that ∥f∥∞ is exactly the congestion of the flow. We define CG ∈
RE⃗×E⃗ as the diagonal matrix whose entry (u, v) is the capacity of arc (u, v) ∈ E⃗. We define
DG ∈ RE⃗×V as the matrix whose row (u, v) ∈ E⃗ has vector (1u − 1v)

⊤, also called the discrete
divergence operator which maps any vector DGCGf to the demand satisfied by the flow f . If
G = (V,E) is an undirected graph, we treat it as a directed graph with a bi-directed edge set

←→
E .

Given a directed graph G = (V,E), we say G′ = (V,E ′) is a subgraph of G (denoted as
G′ ≤ G) iff for all (u, v) ∈ V × V , it holds that cG′(u, v) ≤ cG(u, v). In particular, if G′ is some
residual network for undirected G, then it holds that G′ ≤ 2G.

Now we present the original version and also our refined version of Lemma 4.2 of [30] side
by side:
Lemma 10 (Lemma 4.2 of [30]). Let R by any matrix with ∥RDC∥∞→∞ ≤ 1. Then, there is
an algorithm that takes Õ(knnz(RDC)ϵ−1) time and outputs either,

(1) A feasible flow F such that ∥R(DF −B)∥∞→∞ ≤ ϵ

(2) A dual solution showing B is infeasible to route
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Lemma 11 (Refined version of Lemma 4.2 of [30]). Let G′ be the residual network of some
undirected graph G, and B = τ(1s − 1t) is some st-demand vector with weight τ > 0. Then
there exists an algorithm that takes Õ(mϵ−1) time and outputs either,

(1) A feasible flow F = [f, f∅] such that ∥R(DG′CG′F −B)∥∞→∞ ≤ ϵ

(2) An st-cut of value less than τ , which certifies that B is infeasible to route
where R is an α = (log n)O(1)-congestion approximator of G.

A key observation is that Lemma 11 is the same as Theorem 5! This is because with an
additional poly-logarithmic time, we can use a high-enough precision ϵ that enables use to treat
α as a constant.

Note the setting of the refined Lemma 11: the congestion approximator R is for the undirected
graph G, while the divergence operator DG′ and the capacities CG′ are for some residual graph G′

of G. This distinction is important because good congestion approximators for directed graphs
do not exist in general: let H be a 2-vertex graph with a pair of antiparallel edges, each with
capacity c1, c2, and fix any demand vector d; then for any α-congestion approximator R of H ,
we have ∥Rd∥∞ = ∥R(−d)∥∞, so that by definition OPT (d), OPT (−d) both need to be within
the interval [∥Rd∥∞, α∥Rd∥∞], which means that α ≥ max (c1,c2)

min (c1,c2)
must hold. This means either

(1) the relative ratio between c1, c2 can be arbitrarily large, which means α can be large, making
R a poor congestion approximator, or (2) H cannot be an arbitrary directed graph, which limits
the direct use of Sherman’s flow algorithm on residual networks.

Sherman’s proof of Lemma 10 depends on Theorem 9; yet to prove Lemma 11 using Theo-
rem 9, there are a few problems to be addressed:

(a) Let R be some α-congestion approximator of G from Theorem 4.4 from [30], then What
is an upper-bound of nnz(RDG′CG′)? This will affect the algorithm’s complexity.

(b) Using Theorem 9 requires some matrix R′ that satisfies ∥R′DG′CG′∥∞→∞ ≤ 1, while also
serve as a good congestion approximator for G (since otherwise Lemma 11 will not equal
to Theorem 5 up to a poly-logarithmic factor). On a high level, it suffices to first compute
some α-congestion approximator of R of G, then down-scale R by a constant factor to
satisfy the operator-norm constraint.

(c) Theorem 9 outputs a continuous dual variable Y in case of infeasibility; it is necessary to
round Y into a proper st-cut.

We use Lemma 12 to address (a), Lemma 13 to address (b), and Lemma 14 to address (c).
Lemma 12. Given an undirected graph G and let G′ be a residual graph of G, there exists an
algorithm that succeeds with high probability in Õ(m) time, and constructs some α-congestion
approximator R of G, which satisfies

nnz(RD′GC
′
G) ≤ O(m log n)

.

Proof. We cite Theorem 4.4 from Sherman [30] to compute an α-congestion approximator R
of G with α = (log n)O(1) in Õ(m) time with high probability, where R is specifically column
sparse, i.e. each column contains O(log n) many nonzero entries. Observe that (RD′GC

′
G)r,e ̸= 0

iff the directed edge e is in the cut represented by row r of R, and since R is column sparse, there
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can only be O(log n) many cuts in R that contain e; overall we obtain

nnz(RD′GC
′
G) ≤ O(m log n)

Lemma 13. Given an undirected graph G, a subgraph G′ ≤
←→
G , and an α-congestion approxi-

mator R of G, it holds that ∥RDG′CG′∥∞→∞ ≤ 2.

Proof. Fix any vector f ∈ R
←→
E with ∥f∥∞ = 1, and let d := D←→

G
C←→

G
f . Notice that each pair of

anti-parallel arcs e+, e− of
←→
G has the same capacity, and adding a constant to fe+ , fe− will not

change the demand routed by the flow; we perform such operations on each pair of anti-parallel
arcs to obtain some f ′ such that min(f ′e+ , f

′
e−) = 0 for all pairs of anti-parallel arcs. Now it is

evident that ∥f ′∥∞ ≤ 2, and that f ′ corresponds to a flow fG of G with demand d and congestion
≤ 2, so

∥RDGCGf∥∞ = ∥Rd∥∞ ≤ OPT (d) ≤ ∥fG∥∞ = 2

and it follows that
∥RDGCGf∥∞ = ∥Rd∥∞ ≤ 2

so
∥RDGCG∥∞→∞ ≤ 2.

Let F := {f ∈ R
←→
E : ∥f∥∞ ≤ 1} be the set of all directed flows of congestion 1. Since

cG′(u, v) ≤ cG(u, v) for all arcs (u, v) ∈
←→
E , we have the set inclusion

{DG′CG′f : f ∈ F} ⊆ {DGCGf : f ∈ F}

so
max
f∈F
∥RDG′CG′f∥∞ ≤ max

f∈F
∥RDGCGf∥∞ ≤ 2

and it follows that ∥RDG′CG′∥∞→∞ ≤ 2.

Note that Sherman’s Stochastic Matrix Algorithm, as per Corollary 1.8 of [30], may output
a dual, and when leveraging Sherman’s algorithm to solve approximate (s, t)-max-flow, we may
need to explicitly compute a corresponding (s, t)-cut that is integral. The following lemma con-
structs such a cut in a directed graph, given an infeasibility criterion from Sherman’s algorithm:
Lemma 14. Given a directed graph G and a “potential” vector ϕ ∈ Rn on vertices, we define a
corresponding flow fϕ via the following:

(fϕ)uv =

{
1, if ϕu > ϕv

0, otherwise

We also suppose that
ϕ⊤(d−DGCGfϕ) > 0
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for some demand d. Then if we sort the vertices by decreasing the potential ϕv, there must be
some prefix S ⊂ V , such that

∑
v∈S dv > cG(∂⃗S), certifying the infeasibility of such a demand.

Furthermore, the cut (S, V \ S) can be computed in O(m+ n log n) time.
Moreover, if d = τ(1s − 1v) for two vertices s, t ∈ V and parameter τ > 0, then the cut

(S, V \ S) is an (s, t)-cut with cG(∂⃗S) < τ .

Proof. We begin with some notation. Let V>x := {v ∈ V (G) : ϕv > x} denote the set of
vertices of G whose potential is strictly greater than x, and let ∆(S) :=

∑
v∈S dv denote the sum

of demands in the set S of vertices.
Let M be some positive real number such that |ϕv| < M for all v ∈ V (G). We seek to prove∫ M

−M
∆(V>x)dx = ϕ⊤d > ϕ⊤(BGCGfϕ) =

∫ M

−M
cG(∂⃗V>x)dx

because then there must be some −M ≤ x ≤ M s.t. ∆(V>x) > cG(∂⃗V>x), and setting S = V>x

achieves the desired ∆(S) > cG(∂⃗S).

1. For the first equality, it holds that∫ M

−M
∆(V>x)dx =

∫ M

−M

∑
v∈V

dv · 1[ϕv > x]dx =
∑
v∈V

∫ M

−M
dv · 1[ϕv > x]dx =

∑
v∈V

dv(ϕv +M)

and since d is a demand, it holds that
∑

v dv = 0, so the above equals∑
v∈V

dvϕv = ϕ⊤d

2. For the second equality, we start from the definition of fϕ and have

ϕ⊤(BGCGfϕ) =
∑
v

ϕv · (−
∑

(u,v)∈E

cG(u, v)1[ϕu > ϕv] +
∑

(v,w)∈E

cG(v, w)1[ϕv > ϕw])

=
∑

(u,v)∈E

cG(u, v)1(ϕu > ϕv)(ϕu − ϕv)

=
∑

(u,v)∈E

cG(u, v)max(0, ϕu − ϕv)

=

∫ M

−M

∑
(u,v)∈E

cG(u, v)1((u, v) ∈ ∂⃗(V>x))dx

=

∫ M

−M
cG(∂⃗V>x)dx

3. The inequality follows from the assumption ϕ⊤(d−BGCGfϕ) > 0.
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Furthermore, if d = τ(1s − 1t), then notice that

∆(S) > cG(∂⃗S) ≥ 0

and the only way for ∆(S) > 0 is if s ∈ S and t /∈ S, in which case ∆(S) = τ , so (S, V \ S) is
an (s, t)-cut with cG(∂⃗S) < τ .

To identify the set S = V>x, it suffices to iterate through the cuts corresponding to all O(n)

prefixes S = V>x, keeping track of ∆(S) and cG(∂⃗S). We may start with |S| = 1, which includes
the vertex v with the highest potential ϕv, identify edges in the cut, and compute the value of
cG(∂⃗S); then we keep adding vertices to S, one at a time, in the order of decreasing potentials,
and for each added vertex, we re-compute the set of edges in the new cut, then compute the
associated capacity. Each update after adding some vertex v requires iterating through deg(v)
many edges, and since

∑
v deg(v) = 2m, the overall time complexity to find the minimum

threshold cut is O(m) (after the initial sorting by ϕv in O(n log n)).

Using Lemmas 13 and 14, we finally prove Theorem 5:

Proof. To convert a single commodity flow into a right stochastic matrix problem, we consider
the “empty demand” as another type of commodity. Specifically, we fix k = 2 and X = [f, f∅],
where f is the vector of a flow of congestion 1, with its entries indicating congestion on edges,
and f∅ is the vector indicating remaining congestion, defined as f∅ := 1 − f ; we also define
A := DG′CG′ , and B := [d, d∅], where d∅ := DG′CG′1 − d is the empty demand vector. Then
AX = B encodes a solution for the single commodity problem.

Next, we cite Theorem 4.4 from Sherman [30] to compute an α-congestion approximator R
of G with α = (log n)O(1) in Õ(m) time with high probability; apply Lemma 12 and we obtain

nnz(RDG′CG′) ≤ O(m log n)

Since G′ is a residual graph of G, we have G′ ≤ 2G, and applying Lemma 13 on subgraph
G′/2 (and then scaling up by factor 2) gives ∥RDG′CG′∥∞→∞ ≤ 4. Now define R′ := R/4 and

A2 :=

[
R′A
−R′A

]
and B2 :=

[
R′B
−R′B

]
, so that

∥A2∥∞→∞ = ∥R′A∥∞→∞ = ∥RA/4∥∞→∞ = ∥RDG′CG′/4∥∞→∞ ≤ 1

and we invoke Theorem 9 to obtain, in time Õ(k nnz(A2)ϵ
−1) ≤ Õ(k nnz(RDG′CG′)ϵ−1) ≤

Õ(mϵ−1), either

1. some X and some S1, S2 ∈ ∆n
2 such that{
R′AX −R′B ≤ ϵS1

R′(−A)X −R′(−B) ≤ ϵS2

2. some Y = [y1, y2] > 0 such that

tr(Y (A2X −B2)) ≥ 0

for all feasible flows X = [f, f∅]
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In the first case, combining the two inequalities gives

−ϵS2 ≤ R′(AX −B) ≤ ϵS1

thus each row ri ∈ R2 of R′(AX −B) satisfies ∥ri∥∞ ≤ ϵ, so that ∥ri∥1 ≤ 2ϵ, and

∥R′(Af − d)∥∞→∞ = max
∥v∥∞=1

∥R′(Af − d)v∥∞

= max
∥v∥∞=1

max
i
|(R′(Af − d)v)i|

= max
i

max
∥v∥∞=1

|(R′(Af − d)v)i|

= max
i
∥(R′(Af − d))i∥1

≤ max
i
∥(R′(AX −B))i∥1

≤ 2ϵ

and it follows from definition of R that if the algorithm returns some flow X = [f, f∅], then the
residual demand Af − d can be routed with congestion ≤ O(ϵ) with respect to the undirected
graph G. We may retroactively set ϵ a constant factor smaller so that the congestion is ≤ ϵ.

In the second case, it equivalently holds for all feasible flows X = [f, f∅] that

y⊤1 (

[
A
−A

]
f −

[
d
−d

]
) + y⊤2 (

[
A
−A

]
f∅ −

[
d∅
−d∅

]
) > 0

By construction of duplicated rows, we have yi =

[
wi

zi

]
, and either one of

(i) w⊤1 (Af − d) + w⊤2 (Af∅ − d∅) > 0

(ii) z⊤1 (Af − d) + z⊤2 (Af∅ − d∅) < 0

is true. We further notice that

A(f + f∅) = d+ d∅ ⇐⇒ Af − d = −(Af∅ − d∅)

so we substitute and either one of

(i) (w2 − w1)
⊤(d− Af) > 0

(ii) (z1 − z2)
⊤(d− Af) > 0

is true; either of which, according to Lemma 14, implies the existence of some (s, t)-cut (S, V \S)
with cG(∂⃗S) < τ that can be computed in O(m+ n log n) time.
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Chapter 3

Continuous Graham Scan and its
Application for Constructing GAM Convex
Relaxations

3.1 Background Information on McCormick Envelope and sBB
Deterministic global optimization of general nonlinear programs have long been a difficult com-
putational problem; yet such optimization problems have a variety of uses, for example chemical
and process engineering [10, 18], certification [25], and power systems [21]. Since such prob-
lems are NP-hard, general purpose efficient algorithms do not exist. Despite that, researchers
have designed various computational schemes, to hopefully tackle certain instances of such prob-
lems.

Perhaps the most famous family of such algorithms is the spatial Branch-and-Bound (sBB)
paradigm, first seen in the work of Garth P. McCormick [24] in his 1976 Mathematical Program-
ming paper. With a wide variety of implementations, as seen in the references above, the general
structure remains the same: consider the following optimization problem

min f(x = [x1, ..., xk]), x ∈ S ∩B, B :=
∏
i

[xL
i , x

U
i ]

where S is the feasible region specified by the constraints, and each xL
i , x

U
i are the lower and

upper bounds of variable xi. The sBB algorithms incrementally approach the global optima by
apply the following steps repeatedly:

(i) Partition the hyper-rectangle B into many smaller hyper-rectangles B1, B2, ...

(ii) For each Bi, use local optimization methods to solve for some pi, such that f(x(i)) = pi
for some x(i) ∈ S ∩ Bi. Such pi is an upper estimate of the global optima within partition
S ∩Bi.

(iii) For each Bi, we compute some convex set Ci ⊃ S ∩Bi.

(iv) For each Bi, we compute some convex function gi, such that gi(x) ≤ f(x) for all x ∈ Ci.

(v) For each Bi, we use convex optimization techniques (e.g. interior point method) to find di,
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such that gi(x(i)) = di for some x(i) ∈ Ci. Such di is a lower estimate of the global optima
within partition S ∩Bi.

(vi) Compare the intervals [pi, di] across all i; discard a partition Bi if it provably does not
contain the overall global optima (specifically, there exists some j such that pj < di).

(vii) Repeat (i) through (vi) for each of the remaining Bi

Such routine is proven in [24] to eventually converge to the global optima as more partitions
are generated. However, we note that step (iii) and step (iv) require constructing convex relax-
ations of functions. In particular, [24] gives a recursive routine for computing convex relaxations
of factorable expressions. We use fcv, fcc to denote the convex under-estimator and concave
over-estimator (also called convex and concave relaxations) of some function f . The recursive
routine is presented as follows:

(a) (u+ v)cv = ucv + vcv

(b) (uv)cv = inf(u)vcv + ucv inf(v)− inf(u) inf(v)

(c) (f(u))cv = eIf(mid(fcv(u), fcc(u), argminIf))

where f is a univariate function with known properties (which we call intrinsic functions), eIf
is the tight convex relaxation of f within interval I ⊂ R, and mid indicates point-wise medium.

McCormick’s recursive envelope is in general not tight; yet we show that for a large subclass
of Generalized Additive Models (GAM), McCormick’s recursive envelope matches the original
expression at their global minima when paired with our continuous version of Graham Scan.
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3.2 Introduction
Spatial Branch-and-Bound (sBB) have seen wide uses in solving a variety of continuous and
nonconvex optimization problems, particularly when an approximate global optima is desired
and the problems otherwise lack specific structures to exploit. The popular approaches like
[3, 14, 24] all involve partitioning the variable space, finding convex relaxations of each partition,
optimizing the original and relaxed problems in each partition to obtain an interval containing the
true global optima, and then pruning the provably suboptimal branches to reduce computation
cost. Although being an optimization method, sBB have also seen uses for verification of certain
mathematical models [25].

Traditional convex relaxation methods like the McCormick Relaxation [24], which recur-
sively computes the convex envelope of factorable expressions, tend to produce very lose en-
velopes for nested expressions of even one variable, as we will see in [add section], which
does not facilitate branch pruning. Although such an issue is generally unavoidable for high-
dimensional functions, tight convex envelopes of univariate polynomials are relatively efficient
to compute, and incorporate them into nonlinear programs with many univariate expressions may
yield promising results.

One type of non-linear expression with many univariate polynomial terms is a class of non-
linear surrogate models called the Generalized Additive Mode (GAM) [15, 16], which is based
on the Kolmogorov-Arnold approximation Theorem [cite]. Specifically, we consider optimizing
the following objective:

min
x∈Rn

Φ

(
n∑

i=1

ϕi(xi)

)
(3.1)

where the function Φ is called a link function and introduces nonlinearity, while each of the ϕi are
called functional forms, which can be obtained by back-fitting algorithms like mentioned in [16].
Such formulations appear in several contexts, such as the architectures of Kolmogorov-Arnold
Networks (KAN) [23], and as a surrogate modeling technique [9, 11]. In particular, we focus on
the setting where each ϕi is a univariate polynomial (e.g., a spline function), as seen in [33].

However, gaps still exist, and there are two questions:
1. While convex envelopes of univariate polynomials (and univariate functions in general)

already exist, they have to be re-computed if we alter the domain of the function, as it
frequently occurs in any sBB routine.

2. If we are able to construct tight convex envelopes of each univariate function in Equa-
tion (3.1), then how good of a convex envelope can we obtain?

We summarize our contributions on two points:

1. We propose‘ a continuous version of the Graham-Scan algorithm, which was first pro-
posed in [13], with a bitangent computing subroutine that relies on root-finding, and show
that it is indeed more efficient than existing methods for updating the subsequent convex
envelopes as the variable scopes change during sBB.

2. We further prove that given tight convex envelopes computed by such methods, the recur-
sive McCormick relaxation yields a convex relaxation of the entire GAM that is tight at the
global optima, which the authors believe have promising implications in scenarios where
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GAMs are used as components when formulating large hierarchal optimization problems,
as in such cases, high quality convex envelopes of such models shall lead to tighter relax-
ations overall.

It came to our notice that even outside of the context of optimization, convex hull algorithms
for functions (or more generally, parametric curves) do exist, and there are two popular fami-
lies of approaches: the first type is to compute convex hulls of curves by solving polynomial
equations, as seen in [17]; while such approach is very general, the complexity seems high at
ÕB(n

7 + n6τ), partly due to the algebraic nature of the algorithm; and even if a numerical al-
ternative approach exists, it is unclear how efficiently can it update the convex hull when the
domain of the parametric curve (function) changes. Another type is by computing the collection
of bitangents via Hough transformation [32]; while popular for computer vision purposes, this
approach seem to generally require discretizations of the curves, which means achieving ma-
chine precision is impractical; and still, it is unclear if it can be modified to efficiently update the
convex hull if the domain changes.

On the other hand, our setting focuses on functions instead of parametric curves, which
enables us to use an expensive root finding step to pre-compute the segments of the functional
forms that are convex; all subsequent updates caused by change in variable domain during sBB
are easy to implement, as it only involves updating a stack-like data structure and finding unique
solutions of bitangents, as opposed to the more general settings addressed in [17, 32], where
multiple solutions might exist.

3.2.1 Assumption, Background Information and Notations

Assumption: Throughout the paper, we assume that real number arithmetic is precise up to b
many bits; in other words, approximations can at most obtain a relative error of 2−b. In other
words, barring catastrophic cancellation, approximations within a precision of 2−b is assumed to
be numerically accurate.

Notations: We further clarify some non-standard notations:
(1) We use Pn to denote the collection of univariate polynomials up to degree n.

(2) Given a function f : R→ R and a set S ⊂ R, we use f(S) to denote {f(x) : x ∈ S}, and
use Gf (S) to denote the graph of f restricted to S, and use Epif (S) to denote the epigraph
of f restricted to S.

(3) For lists M,N and element l in algorithms, we use M :: N to indicate concatenating lists
M with N , and N :: l to indicate appending element l to the end of list M .

(4) For a function f : R → R, some subset S ⊂ R, such that f is invertible over S, we use
f−1|S : f(S)→ S to denote the inverse of restriction of f over S.

(5) Given S, T ⊂ R, we use S ≤ T to denote that s ≤ t for all (s, t) ∈ S × T .

(6) Given a vector space V and a differentiable function f : V → R, we define its associated
Bregman Divergence Df (·, ·) : V × V → R as

Df (y, x) := f(y)− f(x)−∇f(x)⊤(y − x)
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Intuitively, it is a measurement of distance, and can be viewed as a generalization of p-
norms and KL-divergence.

In particular, we make the following remarks regarding Bregman Divergence:
Remark 15. For a differentiable function f : V → R, the followings hold about Bregman
Divergence:

(i) x0 is a root of Df (y, ·) iff the tangent line of f at x0 goes through (y, f(y)). In particular,
y is a root of Df (y, ·).

(ii) Df (y, ·) has no roots other than y if f : [a, b]→ R is strictly convex or strictly concave.

We further note that property (ii) is a strict version of Bregman Divergence’s non-negativity.

3.2.2 Examples illustrating McCormick Envelope’s Drawback
To illustrate that McCormick Envelopes defined in [24] may perform poorly even for univariate
expressions, we present the following example:

Fix some k ∈ N, and define the following function

f(x) := x2k − x2k+2

with 0 ≤ x ≤ 1.
We proceed to compare two possible convex / concave envelopes of this function, namely

McCormick Envelope versus Bernstein Inequality + Interval Arithmetic.
(1) For McCormick Envelopes, we treat all powers of x as intrinsic functions over x for max-

imum tightness, which leads to the pair of convex / concave envelopes{
fcv = x2k − 1

fcc = 1− x2k+2

(2) For Bernstein Inequality, we first convert f into Bernstein Basis, so that

f(x) =
1

(k + 1)(2k + 1)
B2k,2k+2 +

1

k + 1
B2k+1,2k+2

where Bi,n :=
(
n
i

)
xi(1 − x)n−1 is the standard definition of Bernstein Basis. Then we

apply first derivative tests, and conclude by Extreme Value Theorem that

argmaxx Bi,n =
i

n

which leads to an interval around each Bernstein Basis Function

0 ≤ Bi,n ≤
(
n

i

)(
i

n

)i(
n− i

n

)n−i

0 ≤ Bi,n ≤ 1
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where the last line is obtained by expanding the binomial via definition, expanding the
fractional terms, and use the fact that

nn

n!
≥ ii

i!
· (n− i)n−i

(n− i)!

which is easily obtained by term-wise comparison.
Substitute the intervals back into f(x) and we obtain

0 ≤ f(x) ≤ 1

(k + 1)(2k + 1)
+

1

k + 1
=

2k + 2

(k + 1)(2k + 1)
=

2

2k + 1

so we obtain {
fcv = 0

fcc =
2

2k+1

Now we compare the area-between-envelopes for these two cases, and see that
AreaMcCormick =

∫ 1

0

(2− x2k − x2k+2)dx ∼ O(1)

AreaBernstein =
2

2k + 1
∼ O

(
1

k

)
which means that as k gets large, recursive McCormick Envelopes perform arbitrarily worse
than even not-necessarily-optimal convex and concave envelopes, like the ones provided by the
Bernstein inequalities.
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3.3 Continuous Graham Scan for Univariate Convex Enve-
lope

We begin with two remarks about convex envelopes of univariate functions:
Remark 16. Let f : [xL, xR] → R be any polynomial, and fcv is its convex envelope over
[xL, xR], then there exists points xL = x0, x1, ..., xn = xR, such that fcv =

∑n−1
i=0 1[xi,xi+1]gi,

where gi = fi or gi is a affine function.
Remark 17. If any of the afore-mentioned gi is affine, then it is tangent to the graph of f at 2
points.

These remarks motivate an algorithm for computing tight convex envelopes for a univariate
polynomial p; On a high level, given a polynomial p, our algorithm first computes the set of in-
tervals on which p is convex, then computes bitangent lines across these intervals, and combines
the bitangent lines via mimicking the famous Grahan Scan algorithm of [13] for convex hull of
2D points.
Definition 1. For any degree n univariate polynomial p over the domain I := [xL, xU ] ⊂ R, we
define the associated Convex Intervals CII(p) to be the set of intervals {I1, I2, ... ⊂ I}, such
that d2

dx2p(x) ≥ 0 for all x ∈ Ii, Ii ∈ CII(p).
For convenience of notation, we treat degenerate intervals located at the boundary of the

domain, namely [xL, xL] and [xU , xU ], as convex intervals.
Definition 2. Given any degree n univariate polynomial p , and two convex intervals I1, I2 ∈
CI(p), we define bitanp(I1, I2) as the unique affine function g(x), such that g(I1 ∪ I2) ≤
p(I1 ∪ I2), and p− g has exactly one root in each of I1 and I2.

Computation of convex intervals require finding all roots of a polynomial, which can be
approximated to a relative error of 2−b (ie. up to machine precision, according to our assumption)
in O(n3 + n log2 n log b) time by solving the eigen-problem for the companion matrix of p,
according to Pan and Chen’s work in [27].

We encode such root finding procedure as all real roots, and present the following
subroutine for computing the convex intervals CI(p) of p:

Algorithm 1 Convex Interval Computation
Input: p ∈Pn, I = [xL, xU ] ⊂ R
R← all real roots(D2p)
R← (R ∩ I) ∪ {a, b}
sort R in ascending order
C ← []
for adjacent pairs (ri, ri+1) ∈ R do

if d2

dx2p(
ri+ri+1

2
) ≥ 0 then

C ← C :: [ri, ri+1]
end if

end for
return [xL, xL] :: C :: [xU , xU ]

To construct the convex envelope of some degree n univariate polynomial p, we need to
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compute two-point tangent lines that connect suitable pairs of intervals in CI(p). We will use
the following theorem, the proof of which we defer to Section 3.4 and the algorithm of which we
present at Algorithm 3.
Theorem 18. Given a univariate polynomial p, convex intervals Il, Ir on p, and floating point
precision ϵ, there exists an algorithm that takes O(b2) and computes bitanp(Il, Ir) up to arith-
metic precision.

Using the above theorem and Remark 4, we mimic Graham Scan and design a general algo-
rithm for constructing the convex envelope of any one-variable polynomial.
Theorem 19. There exists an algorithm that, given the convex intervals of any univariate poly-
nomial p of degree n, O(n) queries to bitangent computation routine (ie. Algorithm 3) and an
additional O(n) time, computes the tight convex envelope of p within any interval [xL, xU ].

In particular, given the O(n3+n log2 n log b) complexity for finding roots of a polynomial, as
well as the O(b2) complexity of computing unique bitangents via Algorithm 3, the overall convex
envelope algorithm takes

O(n3 + n log2 n log b+ nb2)

to run initially, and
O(nb2)

for subsequent updates as the domain changes, as recomputation of roots are not needed.

Proof. We present the following algorithm, which is a continuous analog of the famous Graham
Scan

Algorithm 2 Continuous Graham Scan
Input: p ∈Pn, I = [xL, xU ] ⊂ R
S ← []
for c1, c2, ... in CII(p) do

l← bitanp(ci, ci+1)
while S not empty and top(S) has slope greater than that of l do

bitanp(cj, ci) := top(S)
S ← S[: −1]
l← bitanp(cj, ci+1)

end while
S ← S :: l

end for
return S

where bitanp(·, ·) is defined at Definition 2.
For runtime of this algorithm, note that each left-side convex interval only enters and leaves

the stack S at most once each; since there are O(d) convex intervals, there are O(d) stack opera-
tions; and since there is one bitangent computation per stack operations, it holds that the overall
runtime is O(d) queries to a bitangent algorithm, plus an additional O(d).

For correctness of the algorithm, we start with a technical lemma:
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Lemma 20. When Algorithm 2 recomputes the bitangent (ie. updates the variable l) within the
while loop, the new bitangent has a slope no less than the old bitangent.

Proof. In a particular iteration of the while loop, we denote the convex intervals cj, ci, ci+1 as
I1, I2, I3. Due to their indexing, we have I1 ≤ I2 ≤ I3; see the introduction section for ordered
comparison between sets.

Since the algorithm did not exit the while loop, it must hold that the stack S is nonempty, and
has bitanp(I1, I2) at its top, where the temporary variable l equals to some bitanp(I2, I3),
and that

d

dx
bitanp(I1, I2) >

d

dx
bitanp(I2, I3) (3.2)

where d
dx

indicates taking the slope of the bitangents. In other words, the top of the stack S
is a bitangent with a smaller slope than the bitangent below it in S. Since the newly updated
bitangent is bitanp(I1, I3), it is equivalent to show

d

dx
bitanp(I1, I3) ≥

d

dx
bitanp(I2, I3)

By definition of bitangents, the function p − bitanp(I1, I2) has a root in I1 and a root in I2;
we call these roots x1, x2; similarly, the two roots of p − bitanp(I2, I3) are called y2, y3. In
particular, this means x1 ∈ I1, x2, y1 ∈ I2, and y2 ∈ I3. We note that

bitanp(I1, I2)(y1) ≤ p(y1) = bitanp(I2, I3)(y1)

where the inequality is from tangents being under-estimators of convex functions (in this case, p
is convex over I2) and the equality is from bitanp(I1, I2) tangent to p at x2.

Apply Equation (3.2) to the above equation, and we obtain

bitanp(I1, I2)(t) < bitanp(I2, I3)(t) ∀t < y1

In particular, since I1 < I2 < I3, we have x1 ≤ {x2, y1}, and

bitanp(I1, I2)(x1) < bitanp(I2, I3)(x1)

By definition of the bitangents, we substitute the tangent-points with values of p(·), and have

p(x1) < bitanp(I2, I3)(x1)

so that bitanp(I2, I3) is strictly above p at x1. Now if bitanp(I2, I3) intersects p at two points
within I1, then we use Mean Value Theorem and obtain some x0 ∈ I1, such that p′(x0) =
d
dx
bitanp(I2, I3); since evidently p(x0) ≤ bitanp(I2, I3)(x0), it holds that

Dp(x0, y2) < 0

by applying Lemma 21 on I1, I3, we obtain

k =
d

dx
bitanp(I2, I3) <

d

dx
bitanp(I1, I3) = k∗
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and we are done.
If otherwise bitanp(I2, I3) does not intersect p at two points, then let (x∗, y∗) be the two

tangent points of bitanp(I1, I3); we add a large enough quadratic function centered at x∗ to
p|I1 , so that bitanp(I1, I3),bitanp(I2, I3) remains the same, but now bitanp(I2, I3) does
intersect p at two points within I1, so we conclude with the same logic as above.

Now we proceed to prove the correctness of algorithm. In particular, the bitangents S com-
puted by Algorithm 2 naturally yields the following convex relaxation of p:

C(x) :=

{
bitanp(ci, cj)(x), if sup ci ≤ x ≤ inf cj and bitanp(ci, cj) ∈ S

p(x), otherwise

We first note that the slopes of all computed bitangents in S follow a monotonically in-
creasing order, so C(x) is convex over the I by first order convexity; we next note that any
bitanp(ci, cj) ∈ S indeed under-estimates p: suppose otherwise that there is some bitanp(ci, cj) ∈
S, where bitanp(ci, cj)(r) > p(r) for some r, and ci is on left side of cj . Then by smooth-
ness of p, there must be another convex interval ck of p sandwiched between ci, cj . However
this state is unachievable, because bitanp(ck, cj) would necessarily have more positive slope
than bitanp(ci, cj), contradicting Lemma 20. It thus follows that C(x) encodes some convex
relaxation of p(x).

For tightness of the convex relaxation, we use c1, ..., ck to denote the convex intervals of p
sorted from left to right, and let h′t be the half space above tx+ bt, where

bt := max{b ∈ R | tx+ b ≤ p(x)∀x ∈ [xL, xR]}

we further let G := EpiC([xL, xR]) be the epigraph of the convex envelope C(x) within [xL, xR].
Now it suffices to show

G ⊆
⋂
t∈R

h′t

In particular, for any t ∈ R, one of the following holds:

(a) when d
dx
bitanp(ci, cj) ≤ t ≤ d

dx
bitanp(cj, ck) and bitanp(ci, cj),bitanp(cj, ck) ∈

S. Then there is some unique u ∈ cj where C ′(u) = t, so tx + bt is tangent to C(x) at u,
and since C(x) convex, we have tx+ bt under-estimate C(x), therefore G ⊂ h′t.

(b) When t < d
dx
bitanp(c1, c2) or t > d

dx
bitanp(ck−1, ck), it is evident that tx+bt intersects

with the graph of p at a unique point within either c1 or ck, which is part of graph of C, so
by convexity of C(x), we again have tx+ bt under-estimate C(x), therefore G ⊂ h′t.

In either case, it follows that G ⊂ h′t, so C(x) is indeed the tightest convex relaxation of p.

26



3.4 Computation of Unique Bitangents for Polynomials

Similar to the exact convex hull algorithm of rational parametric curves from INRIA [17], we
compute bitangent lines via solving for polynomial equations; the key idea, however, is that since
the outline of our algorithm mimics that of Graham Scan, we only need to compute bi-tangents
with respect to specific pairs of convex intervals; since each pair of convex intervals admit a
unique bitangent, the polynomial equation shall have a unique root associated with each pair of
convex intervals.

We discuss the two possible types of bitangents separately:

1. With one fixed point
Given a polynomial p restricted to domain [xL, xU ], a bitangent of graph of p may intersect
with one of xL or xU . Assume that a = (xL, f(xL)). It suffices to find some point b =
(xb, f(xb)), where the tangent line of f at xb passes through a. From Remark 15 1 item (i),
we may equivalently solve for

Dp(xL, x) := p(xL)− p(x)− p′(x)(xL − x) = 0

which is trivially obtained using bisection method.

2. With no fixed point
In particular, computing the bi-tangent with respect to a pair of disjoint convex intervals
Ix, Iy involves solving the polynomial equations

Dp(x, y) = Dp(y, x) = 0

subject to constraint (x, y) ∈ Il × Ir. But such equations become

{
p(y)− p(x)− p′(x)(y − x) = 0

p(x)− p(y)− p′(y)(x− y) = 0

Rearrange and we have (p′(x)−p′(y)) · (x−y) = 0, which means p′(x) = p′(y) must hold
at the true solution, since Ix ∩ Iy = ∅ and therefore x ̸= y must hold. On the other hand,
given a pair of x, y such that p′(x) = p′(y), if such x, y does not equal the true solution
(x∗, y∗) of the equation, then their Bregman Divergence Dp(y, x) can be used to determine
whether p′(x) ≤ p′(x∗) or otherwise.

Inspired by the above observation, we set up a simple algorithm that solves for such p′(x∗)
essentially using bisection method:
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Algorithm 3 Bisection Algorithm for Computing Two-Point Tangent Line
kmin, kmax ← p′′(Il) ∩ p′′(Ir)
for t = 1, ..., T = ⌈log(1/ϵ)⌉ do

k ← (kmin + kmax)/2
xl, xr ← (p′)−1|Il(k), (p′)−1|Ir(k)
if Dp(xl, xr) > 0 then

kmax ← k
else

kmin ← k
end if

end for
return (p′)−1|Il(k), (p′)−1|Ir(k)

To prove the correctness of this algorithm, we start with a technical lemma:
Lemma 21. Let Il, Ir be disjoint convex intervals of p such that Il < Ir, and let xl, xr be the
unique values in Il, Ir such that p′(xl) = p′(xr) = k, and let p′(x∗) = p′(y∗) = k∗ be the unique
solution to the above polynomial equation with x∗ ∈ Il, then k − k∗ and Dp(xl, xr) have the
same sign.

Proof. We discuss two cases:

(1) if k < k∗, then by strict convexity of p in Il, we have

xl = (p′)−1|Il(k) < (p′)−1|Il(k∗) = x∗

We further consider two tangent lines of p, namely{
ℓxl

(x) = p(xl) + p′(xl)(x− xl)

ℓx∗(x) = p(x∗) + p′(x∗)(x− x∗) = p(y∗) + p′(y∗)(x− y∗)

Both of which are tangent to p within Il, so by convexity, we have for all x > x∗

ℓx∗(x) = p(x∗) + p′(x∗)(x− x∗)

≥ ℓxl
(x∗) + p′(x∗)(x− x∗)

> ℓxl
(x∗) + p′(xl)(x− x∗)

= ℓxl
(x)

where the first inequality is from ℓxl
being a tangent of p, the function p being convex in Il,

and that xl, x
∗ ∈ Il; the second inequality is from p′(x∗) = k′ > k = p′(xl). In particular,

we substitute x = xr and have
ℓx∗(xr) > ℓxl

(xr)

which holds because xr ∈ Ir ≥ Il ∋ x∗, so we expand and have

p(x∗) + p′(x∗)(xr − x∗) > p(xl) + p′(xl)(xr − xl)
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Note that Dp(y
∗, x∗) = 0, so p(y∗)− p(x∗)− p′(x∗)(y∗−x∗) = 0; add this to the left hand

side and we have

p(y∗) + p′(y∗)(xr − y∗) > p(xl) + p′(xl)(xr − xl)

rearrange and we have

p′(xl)(xr − xl) < p(y∗) + p′(y∗)(xr − y∗)− p(xl)

by convexity of p in Il, we have

p(y∗) + p′(y∗)(xr − y∗) ≤ p(xr)

so combined, we have
p′(xl)(xr − xl) < p(xr)− p(xl)

p′(xr)(xl − xr) > p(xl)− p(xr)

and it follows that Dp(xl, xr) < 0.
(2) If k > k∗, then a similar argument follows, and we have Dp(xl, xr) > 0.

Now we prove the correctness of Algorithm 3, the bisection algorithm:
Lemma 22. The above algorithm is correct, if the unique solution (x∗, y∗) is in the interior of
Ix × Iy.

Proof. Define k∗ = p′(x∗). Observe that

((p′)−1|Il(k∗), (p′)−1|Ir(k∗)) = (x∗, y∗)

so it suffices to show that the binary search converges to a correct k = k∗. We discuss two cases:

(1) if k < k∗, then by Lemma 21, we have Dp(xl, xr) < 0

(2) If k > k∗, then by Lemma 21, we have Dp(xl, xr) > 0

Therefore in either case, the bisection algorithm always picks the interval that contains k∗, which
completes the proof.

Note that when such unique solution is not in the interior of Ix × Iy, the problem is reduced
to the “One fixed point” subcase.

Since the algorithm takes O(log(1/ϵ)) bisection rounds, each requiring root finding subrou-
tines for computing p−1(...)|..., which also takes up to O(log(1/ϵ)), we obtain the following:

Theorem 18. Given a univariate polynomial p, convex intervals Il, Ir on p, and floating point
precision ϵ, there exists an algorithm that takes O(b2) and computes bitanp(Il, Ir) up to arith-
metic precision.
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3.5 Good Convex Relaxation of Polynomial GAM
We show that given a Generalized Additive Model M(x) = ϕ (

∑
i pi(xi)) composed of many

univariate polynomials pi and a differentiable monotone link function ϕ : R → R, and given
the tight convex envelopes of the composing univariate polynomials, which can be computed
by Algorithm 2, the well-know recursive convex relaxation scheme due to Garth P. McCormick
[24], combined with bounds-tightening at the link function, yields a convex relaxation M ′ of M ,
such that minx cM(x) = minxM(x), and argminxcM(x) = argminxM(x).
Theorem 23. Let hyper-rectangle B =

∏d
i=1[x

L
i , x

U
i ] ⊂ Rd be the permissible domain of all

variables xi; We define a Generalized Additive Model M : B → R, such that

M(x) = Φ(P (x)) = Φ

(
d∑
i

pi(xi)

)
where the link function Φ : R → R is monotonic and either increasing or decreasing; for any
function f : S → R, we further use esf, Esf to denote the tight convex and concave envelopes
of f with respect to domain S. We further let M ′ : B → R be the recursive convex envelope of
M constructed similar to McCormick’s procedure in [24], such that

(i) P− :=
∑

i e[xL
i ,x

U
i ](pi), P

+ :=
∑

i E[xL
i ,x

U
i ](pi)

(ii) I := [infB P−, supB P+], which is easily computed via component-wise minimization.
(iii) M ′(x) := eIΦ(P

−(x)) if Φ is increasing, and M ′(x) := eIΦ(P
+(x)) otherwise

Then the following properties hold:
(a) M ′ is convex relaxation of M : specifically, M ′ is convex and M ′(x) ≤M(x) ∀x ∈ B.
(b) minxM

′(x) = minx M(x), and argminxM
′(x) = argminxM(x)

(c) Let cM be the recursive McCormick relaxation of M as defined in [24], except that the
convex envelopes cpi of each pi is tight, so cpi = e[xL

i ,x
U
i ]pi, and similarly for Cpi . Then

cM(x) = M ′(x) for all x. In essence, such procedure indeed is the same as McCormick
relaxation using the best known univariate convex envelopes.

Proof. For (a), we specifically focus on the case where Φ is monotonically increasing: for any
v, w ∈ Rd, we define qv,w(t) := P−(v + tw); intuitively, qv,w is the restriction of P− onto a
one-dimensional affine subset of Rd, parameterized by t; since P− is a sum of convex functions
and therefore convex, we have qv,w convex. Since both eIΦ and qv,w are convex, and eI non-
decreasing, we have eIΦ ◦ qv,w convex in t. Since v, w arbitrary, it follows from zeroth order
convexity that M ′ := eIΦ ◦ P− is convex in B. Furthermore, for any x ∈ B, we have

P−(x) =
∑
i

e[xL
i ,x

U
i ]pi(xi) ≤

∑
i

pi(xi) = P (x)

where the inequality follows from definition of convex envelope, so

M ′(x) = eIΦ(P
−(x)) ≤ Φ(P−(x)) ≤ Φ(P (x))

where the first inequality is due to eIΦ being the tight convex envelope of Φ within I , which is
within the possible range of values of P−; and the second inequality is due to P− ≤ P and that
Φ is monotonically increasing.
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In case where Φ monotonically decreases, we follow an analogous proof. For convexity,
we perform a restriction and notice that f ◦ g is convex if f is convex and decreasing, and g
is concave. For underestimation, we notice that P ≤ P+ and use the fact that Φ is monotone
decreasing to derive

M ′(x) = eIΦ(P
+(x)) ≤ Φ(P+(x)) ≤ Φ(P (x))

For (b), assume without loss of generality that Φ is monotonically increasing, then note that
eIΦ is also monotonically increasing: eIΦ is a piecewise function made up of sections of Φ and
bitangent lines to the graph of Φ, so eIΦ is differentiable; if eIΦ′(x) < 0 for some x, then either
by definition or by Mean Value Theorem, we can find some z such that Φ′(z) < 0, which is a
contradiction. Now since eIΦ monotonically increasing, we have

argminx∈BM
′(x) = argminx∈BP

−(x) = [argminxi∈[xL
i ,x

U
i ] e[xL

i ,x
U
i ]pi(xi)]

⊤

= [argminxi∈[xL
i ,x

U
i ] pi(xi)]

⊤ = argminx∈BP (x) = argminx∈BM(x)

where the first equality is by monotonicity of eIΦ, the second and fourth equality is by the fact
that each component of the summation is independent, the third equality is by definition of tight
convex envelope, and the last equality is by monotonicity of Φ.

Now fix x∗ := argminx∈BM(x). Then by definition of tight convex envelope, we have

P−(x∗) =
∑
i

e[xL
i ,x

U
i ]pi(x

∗
i ) =

∑
i

pi(x
∗
i ) = P (x∗)

so we have P−(x∗) = P (x∗) = infB P−; due to the monotonicity of Φ, we have eIΦ(infB P−) =
Φ(infB P−), so

min
x∈B

M ′(x) = M ′(x∗) = eIΦ(P
−(x∗)) = Φ(P (x∗)) = M(x∗) = min

x∈B
M(x)

and we are done with the case for Φ being monotonically increasing; for the other case, we follow
a similar proof, with the only difference being taking the argmax of P+ instead.

For (c), we note that P−, P+ are exactly the McCormick envelopes of P , so it suffices to
consider the relaxation at Φ. If Φ is monotonically increasing, then for any x ∈ B, we have

eIΦ(mid(cP (x), CP (x), z
Φ
min)) = eIΦ(mid(P−(x), P+(x), inf

B
P−)) = eIΦ(P

−(x)) = M ′(x)

where the first inequality is due to Φ being monotonically increasing and therefore minimizes
at infB P−; the second equality is by definition. Note that the left hand side of the equality is
precisely the McCormick’s convex envelope of Φ(P (x)).

If otherwise Φ is monotonically decreasing, then we have

eIΦ(mid(cP (x), CP (x), z
Φ
min)) = eIΦ(mid(P−(x), P+(x), sup

B
P+)) = eIΦ(P

+(x)) = M ′(x)

where the first inequality is due to Φ being monotonically decreasing and therefore maximizes
at supP+. Note that the left hand side of the equality is once again precisely the McCormick’s
convex envelope of Φ(P (x)), so we are done.
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