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Abstract
LP-type problems such as the Minimum Enclosing Ball (MEB), Linear Support

Vector Machine (SVM), Linear Programming (LP), and Semidefinite Programming
(SDP) are fundamental combinatorial optimization problems, with many important
applications in machine learning applications such as classification, bioinformatics,
and noisy learning. We study LP-type problems in several streaming and distributed
big data models, giving ε-approximation linear sketching algorithms with a focus on
the high accuracy regime with low dimensionality d, that is, when d < (1/ε)0.999.
Our main result is an O(ds) pass algorithm with O

(
s (

√
d/ε)

3d/s
)
· poly (d, log (1/ε))

space complexity, for any parameter s ∈ [1, d log (
√
d/ε)], to solve ε-approximate LP-

type problems of O(d) combinatorial and VC dimension. Notably, by taking s =
d log (

√
d/ε), we achieve space complexity polynomial in d and polylogarithmic in 1/ε,

presenting exponential improvements in 1/ε over current algorithms. We complement
our results by showing lower bounds of (1/ε)Ω(d) for any 1-pass algorithm solving the
(1 + ε)-approximation MEB and linear SVM problems, further motivating our multi-
pass approach.
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Chapter 1

Introduction

LP-type problems are a class of problems fundamental to the field of combinatorial optimization.
Introduced originally by Shahir & Welzl, they are defined by a finite set of elements S and a
solution function f which maps subsets of S to a totally ordered domain and also satisfies the
properties of locality and monotonicity [41]. Examples of LP-type problems include the Minimum
Enclosing Ball (MEB) problem, the Linear Support Vector Machine(SVM) problem, and linear
programming (LP) problems for which the class is named. These problems have many applications
in different fields such as machine learning. For example, the MEB problem has applications in
classifiers [14], and support vector machines [15, 44]. The linear SVM problem is a fundamental
problem in machine learning, used in many classification problems such as text classification,
character recognition, and bioinformatics [19]. Linear programs have many uses in data science
problems, with [35] showing that most common machine learning algorithms can be expressed as
LPs. One such example is the linear classification problem, which has applications in many noisy
learning and optimization problems [13, 16, 27]. A related class of problems are semidefinite
programming (SDP) problems, which are useful for many machine learning tasks such as distance
metric learning [48] and matrix completion [17, 18, 40].

For these applications, the size of the input problem can be very large, and often too expensive
to store in local memory. Further, the data set can be distributed between multiple machines which
require a joint computation. In these applications, the large size of data generally means that find-
ing exact solutions to problems is prohibitively expensive in space or communication complexity,
and such many algorithms instead keep and perform computations on a small representation of
the data which allows them to give an answer within a small approximation factor of the original
solution.

One such way to represent data is with linear sketches. For a large dataset P of n elements
from a universe of size U , which can be thought of as a vector U ∈ {0, 1}U where Up is 1 for
each element p ∈ P and 0 otherwise, a linear sketch generally is in the form of an N × U matrix
A, for N ≪ n. Thus, one only has to store A ·U , a vector of size N , which is much cheaper than
storing the full n element data set. Linear sketches are very useful in many big data applications,
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such as data streams where data points are read one by one, or parallel computation where the
data set is split among different machines. This is because updating the data vector U ← U + ep

for a newly read data point p, where ep is the pth standard unit vector, simply requires updating
the sketch as A · U + A·p for the pth column of A, A·p. Similarly, for data distributed among
k machines as P =

∑
i∈[k] Pk, the sketch can be maintained separately by each machine, since

A · P =
∑

i∈[k] A · Pi. As linear sketches consist of matrix-vector products, they are useful
in GPU-based applications, which are particularly suited for these operations. Linear sketching
algorithms have extensive study in big data applications, see [5, 34, 47] for some examples and
surveys. An extension which we build our algorithm in is the multiple linear sketch model, which
corresponds to making adaptive matrix-vector products in each of a small number of rounds [43].

1.1 Our Contributions
In this work, we explore using linear sketches in order to solve approximate LP-type problems in
high accuracy regimes, in which d < (1/ε)0.999, where d is the dimensionality of the problem and ε
is the (multiplicative or additive) approximation accuracy. This regime is applicable to many real
world big data applications, where 1/ε might be several orders of magnitude larger than d. Take for
example [38], where d = 2, 1/ε ∈ [102, 105], and n = 105, or [44] where for some data sets 1/ε is
taken to be much larger than d yet small compared to n.

We present an algorithm in the multiple linear sketch model for solving certain classes of LP-
type problems, which can be utilized in several prominent big data models. Given a universe
S = {−∆,−∆+ 1, . . . ,∆}d of d-dimensional points, we use a linear sketch to reduce an input
set P ⊆ S into a point set Q =

{
(1 + ε)l · e | e ∈ Epc

, l ∈ log1+ε d
}

, where Epc
is a metric ε-net

centered at a point pc ∈ P and d is an O(1) approximation for the distance of the furthest point
in P to pc. Our algorithm is also applicable when S =

{
−1,−1 + 1

∆
, . . . , 1

}d. Now, we reduce
P directly into the point set Q = E where E is the metric ε-net centered at the origin. This linear
sketch can be though of as an N × |S| matrix A for N = l |E| where each row corresponds to one
point possible point (1 + ε)l · e, containing 1’s for all the points p ∈ S with direction closest to
e and norm closest to (1 + ε)l. Intuitively, A · P has the effect of taking each point p ∈ P and
snapping them in the direction of the closest metric ε-net point, and then rounding their norm to
the nearest power of (1 + ε). When Q = E, A · P has the effect of snapping each point p ∈ P to
the closest metric ε-net point. The major benefit of using this linear sketch is that we don’t need to
actually store our metric ε-net. We can calculate where each point is snapped to quickly on the fly,
so we do not suffer the exponential in d space complexity of ε-kernel based formulations.

Our algorithm works in the presence of input point deletions. So, for metric ε-nets centered
around a point, we present a method to find pc and d using only non-deleted points in P . This is
important as our approximation guarantees depend on our metric ε-net. We achieve this with ℓ0
samplers, as they work in the presence of point deletions. Using an ℓ0 sampler, we can sample a
non-deleted input point which becomes our center point pc. Now, by construction of P , we have
an upper and lower bound on the distance of other points from pc. Thus, we can binary search
over powers of 2 in this range, again using an ℓ0 sampler to check for the presence of a point
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with distance to pc larger than the current power of 2 in each iteration. By the end of the binary
search, which takes log log (∆d) iterations, we end up with a 2-approximation for d, considering
only non-deleted points.

This linear sketch of the data can now be used to run our algorithm on, treating it as a smaller
virtual input compared to the original input. Our general algorithm for solving LP-type prob-
lems follows the sampling idea presented by [8], where input points are assigned weights, and a
weighted sampling procedure is used in order to solve the LP-type problem on smaller samples
from the input. By modifying the weights throughout multiple iterations, the algorithm quickly
converges on samples that contain a basis for the LP-type problem, for which the solution is the
solution of the entire input set. By using a metric ε-net for our linear sketch, we can ensure
that our virtual input can be accessed quickly on the fly, and that a solution for virtual input is a
(1 + ε)-approximation solution for the original input.

This approach brings a complication to our weighted sampling procedure. Because our linear
sketch is formed by snapping each input point p ∈ P to a point q ∈ Q, where |Q| = N ≪ |P | = n,
we can have distinct original points p ̸= p′ that are snapped to the same point q. Since our
weight function deals with weights for the snapped points q, and there is no easy way to recognize
duplicates in large (and possibly distributed) input sets, sampling using reservoir sampling over P
will favor these duplicated points. Thus, we utilize ℓ0 estimators and ℓ0 samplers in order to sample
proportional to the number of distinct snapped points q. There is a large body of work on these
estimators and samplers in big data models, see [12, 31, 32] for some examples. An advantage
is that these estimators and samplers are linear sketches, and thus can be implemented in our
algorithm. The tradeoff is that they come with approximations and error probabilities, however we
show that the distribution we sample from by using their approximate weights is within a small
variation distance of the distribution we would obtain from using true weights. As such, we retain
the same analysis and approximate bounds using these estimators and samplers. Note also that this
allows our algorithm to work in the presence of duplicated points in the input, which generally can
prove problematic for sampling based algorithms.

As our algorithm works in the multiple linear sketch model, we can solve LP-type problems in
the following big data models.

• Multipass Streaming: In this model, the input P is presented as a large stream of points.
Our algorithm can make multiple linear scans of this stream, reading one input point at a
time. The goal for our algorithm in the model is to minimize the number of passes over the
stream while maintaining a small space complexity.

• Strict Turnstile: In this model, there is an underlying vector v where vp corresponds to
the point p ∈ U . The input P is presented as a stream of additive updates v ← v + ep or
v ← v − ep, where we are guaranteed that v is itemwise nonnegative. This can be thought
of as a stream of operations insert(p) and delete(p) with the guarantee that no point p ∈ P
has negative copies. Similarly to the multipass streaming model our algorithm can make
multiple linear scans of this stream, with the goal of minimizing the number of passes over
the stream and maintaining a small space complexity.
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• Coordinator: In this model, there are k distributed machines and a separate coordinator
machine connected to each machine via a two-way communication channel. The input P is
distributed among the machines, with the goal of computing a joint solution on P . Commu-
nication between the machines and the coordinator proceeds in rounds, where each round
the coordinator can send a message to each machine, and then each machine can send a
message back. The final computation is done by the coordinator. The goal for our algorithm
in the model is to minimize the number of communication rounds, and maximum bits of
information sent or received in any round.

• Parallel Computation: In this model, there are k distributed machines, connected via two-
way communication channels. Similar to the coordinator model, the input is distributed
among the machines which compute a joint solution on P over rounds of communication.
This solution can be on the union of each machine’s dataset, however one can also use
different combinations. For example, the symmetric difference of data over time across
servers can capture the change in that data. Thus, one might want to optimize over this
difference to predict current trends, see e.g. [26]. The goal for our algorithm again is to
minimize the number of communication rounds, and maximum bits of information sent or
received in any round, known as the load.

We give the following result for LP-type problems that are bounded in combinatorial and
VC-dimension. More detailed bounds and time bounds are given in Sections 3.1, 3.2, 3.3, and 3.4.

Theorem 1.1. For any s ∈ [1, logN ], there exists a randomized algorithm to compute
a (1 + O(ε))-approximation solution to an LP-type problem with VC and combinatorial
dimensions in O(d) with high probability in the following models, using a linear sketch of
size N where logN ∈ poly (d, log (1/ε)), and where bit(p) is the bit complexity to store one
point p ∈ P and a solution f(·).

• Multipass Streaming: An O (ds) pass algorithm with O
(
sN 3/s

)
· poly (d, logN) +(

O(ds) + poly
(
d,N 1/s

))
· bit(p) space complexity.

• Strict Turnstile: An O (ds+ log log (∆d)) pass algorithm with O
(
sN 3/s

)
·

poly (d, logN) +
(
O(ds) + poly

(
d,N 1/s

))
· bit(p) space complexity.

• Coordinator: An O (ds) round algorithm with O
(
k
(
d logN + log

(
dN 1/s

)))
+

O
(
k + poly

(
d,N 1/s

))
· bit(p) load.

• Parallel Computation: An O (ds) round algorithm with
O
(
k
(
d logN + log

(
dN 1/s

)))
+O

(
k + poly

(
d,N 1/s

))
· bit(p) load.

We can use this general algorithm to find approximate solutions for many LP-type problems
which satisfy some elementary properties, as described in Section 2. We emphasize that most
LP-type problems fulfill these properties, and we explain how each of the problems we present
fulfill the properties. We present applications of our general algorithm for the following problems.
Note that for the Linear SVM, Bounded LP, and Bounded SDP problems, we do not have the
log log(∆d) pass increase in the strict turnstile model.

4



• MEB: Given n points P ⊆ {−∆,−∆+ 1, . . . ,∆}d, the objective of the MEB problem
is to find a d-dimensional ball of minimal radius that encloses all of the input points. We
present an algorithm to solve the (1+ε)-approximation MEB problem, outputting a ball that
encloses P and has radius at most (1 + O(ε)) of the optimal radius. For the MEB problem,

we have N ∈ O
(√

d
ε

)d

.

• Linear SVM: Given n labeled points P ⊆
{
−1.− 1 + 1

∆
, . . . , 1

}d × {−1,+1} and some
γ > 0 for which the poins are either linearly inseparable or γ-separable, the objective of
the linear SVM problem is to find a separating hyperplane of P with the largest margin. We
present an algorithm to solve the (1+ε)-approximation linear SVM problem with high prob-
ability, outputting either that the points are linearly inseparable, or outputting a separating
hyperplane (u, b) where ∥u∥2 is at most (1 + O(ε)) of the optimal separating hyperplane.

For the linear SVM problem, we have N ∈ O
(√

d
εγ

)d

.

• Bounded LP: Given an objective vector c ∈
{
−1.− 1 + 1

∆
, . . . , 1

}d such that ∥c∥ ∈ O(1)

and n constraints P ⊆
{
−1.− 1 + 1

∆
, . . . , 1

}d×
{
−1,−1 + 1

∆
, . . . , 1

}
, where for each con-

straint (ai, bi) ∈ P ∥ai∥ , |bi| ∈ O(1), the objective of bounded LP problems are to find a so-
lution x with ∥x∥ ∈ O(1) that maximizes the objective cTx while satisfying the constraints.
We present an algorithm to solve additive ε-approximation bounded LP problems, outputting
a solution that is O(ε) within each constraint, and for which the objective is at most O(ε)

smaller than the optimal solution. For bounded LP problems, we have N ∈ O
(√

d
ε

)d

.

• Bounded SDP: Given an objective matrix C ∈
{
−1.− 1 + 1

∆
, . . . , 1

}d×d such that
∥C∥F ≤ 1 and n constraints P ⊆

{
−1.− 1 + 1

∆
, . . . , 1

}d×d×
{
−1,−1 + 1

∆
, . . . , 1

}
, where

for each constraint (A(i), b(i)) ∈ P
∥∥A(i)

∥∥
2
,
∣∣b(i)∣∣ ≤ 1,

∥∥A(i)
∥∥
F
≤ F , and the number of

nonzero entries of A(i) is bounded by S, the objective of bounded SDP problems are to
find a positive semidefinite solution X of unit trace that maximizes the objective ⟨C,X⟩F
while satisfying the constraints. We present an algorithm to solve additive ε-approximation
bounded SDP problems, outputting a solution that is O(ε) within each constraint, and for
which the objective is at most O(ε) smaller than the optimal solution. For bounded SDP
problems, as we are working with d× d matrices, the combinatorial and VC dimensions are

O(d2), and we have N ∈
(
d2

S

)
·O

((
min(d,S)

ε

)S
1
ε

)
+O

((√
d
ε

)d
)

.

Our algorithm provides powerful results for these problems, and for our general LP-type prob-
lem framework, when we set the parameter s equal to logN . As we have logN ∈ poly (d, log (1/ε)),
this allows us to achieve algorithms with pass and space complexities polynomial in d in polylog-
arithmic in 1/ε. Table 1.1 compares our results to those of prior work.

For the approximate MEB problem, there are many results, as discussed in Section 1.2. Here,
we highlight two results for (1 + ε)-approximation MEB, by Zarrabi-Zadeh and Bâdoiu & Clark-
son [9, 51]. Zarrabi-Zadeh achieves a 1 pass algorithm with O

(
(1/ε)

d−1
2 log (1/ε)

)
space com-
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Table 1.1: Result Comparisons for Various LP-type Problems

Problem Ref. Previous Complexity Our Complexity

MEB [51]
1 pass

O
(
(1/ε)

d−1
2 log (1/ε)

)
space O

(
d2 log (

√
d/ε)

)
passes

poly (d, log (1/ε)) space

[9]
⌈2/ε⌉ passes
O (d/ε) space

Linear
Classification [25]

Õ (1/ε) passes
Õ (1/ε2)space

O
(
d2 log (

√
d/ε)

)
passes

poly (d, log (1/ε)) space

Bounded SDP [28] O

(
1
ε2

logn

(
F2(n+log d)+ 1

ε
S log d

+min
(

1
ε2

S log d,d2
)

1
ε2

log d

))
time Õ

(
d2S log

(
d
ε

) (
n+ d6

))
time

[42]
O
(√

d log (d/ε)
)

passes
O
(
n2 + d2

)
space

O
(
d4 log (

√
d/ε)

)
passes

poly (d, log (1/ε)) space

plexity, and Bâdoiu & Clarkson achieve a ⌈2/ε⌉ pass algorithm with O (d/ε) space complexity. In
contrast. we achieve an O (d2 log (

√
d/ε)) pass algorithm with poly (d, log (1/ε)) space complexity.

The Zarrabi-Zadeh result is among many (1+ε)-approximation algorithms that utilize an ε-kernel.
While these algorithms require one pass, they require space complexity of 1/εO(d). Thus, we present
a large increase in space efficiency over this method. We also present a lower bound on the space
complexity for any one-pass algorithm for the MEB problem of (1/ε)Ω(d) in Section 4, which further
motivates our multi-pass approach. While the result by Bâdoiu & Clarkson has space complexity
polynomial in d, it is also polynomial in 1/ε in passes and space. Thus, in the high accuracy regime,
we present an exponential improvement over their result.

Another approach to the (1+ε)-MEB problem is by using the ellipsoid algorithm with a similar
metric ε-net construction. While this algorithm also can achieve poly (d, log (1/ε)) pass and space
complexity, we present two main improvements over using this approach. Most importantly, as
our algorithm is in the multiple linear sketch model, we are able to apply our result to the turnstile
model, where there is addition and removal of points in the input stream, and the coordinator and
parallel computation models, where the input is distributed. As the ellipsoid algorithm is not in the
multiple linear sketch model, it cannot, for example, find the MEB of the symmetric difference of
pointsets from two machines. Further, the bulk of our algorithm utilizes ℓ0 samplers and estimators
and simple arithmetic, which can allow our algorithm to be practical to implement.

As we present in Section 3.7.1, our algorithm for additive ε-approximation bounded LPs can
be used to solve the linear classification problem. Note that our result finds an exact classi-
fier. We compare our result to the result by [25], who achieve an algorithm with Õ (1/ε) passes
and Õ (1/ε2) space complexity. In contrast. we achieve an O (d2 log (

√
d/ε)) pass algorithm with

poly (d, log (1/ε)) space complexity. In the high accuracy regime, this represents an exponential
improvement over their result in pass and space complexity.

Another application of our framework is for additive ε-approximation bounded SDP problems.
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As we present in Section 3.8.1, our formulation can be used to solve for the saddle point problem
within the unit simplex. For this problem, Garber & Hazan provide a result of

O

(
1

ε2
log n

(
F 2(n+ log d) +

1

ε
S log d+min

(
1

ε2
S log d, d2

)
1

ε2
log d

))
operations [28]. In contrast, we are able to achieve a time bound of Õ

(
d2S log

(
d
ε

)
(n+ d6)

)
,

which gives us an exponential improvement in 1/ε dependence, significant in the high accuracy
regime. Another result is by [42] who show an O

(√
d log (d/ε)

)
pass algorithm with Õ (n2 + d2)

space complexity. In contrast, we achieve an O (d4 log (d/ε)) pass algorithm with poly (d, log 1/ε)
space complexity. In the high accuracy regime with a large number of constraints n ≫ 1/ε, this
presents a loss in number of passes polynomial in d, while achieving a significant decrease in space
complexity, as our result does not depend on n at all.

1.2 Related Work
Approximation algorithms for LP-type problems in big data models have been well-studied, where
the trade-off between approximation ratio, number of passes, and space complexity has given rise
to different techniques being used for different regimes.

A classic result for the MEB problem is a 1-pass 3/2-approximation algorithm by Zarrabi-Zadeh
& Chan, that uses O(d) space complexity [52]. Allowing O(d) passes, an algorithm by Agarwal
& Sharathkumar, with further analysis by Chan & Pathak, achieves a 1.22-approximation with
O ((d/ε3 log (1/ε))) space complexity [1, 21]. For the (1 + ε)-approximation problem, much work
is done in the single-pass model. These algorithms are based on storing extremal points, called an
ε-kernel, and achieve a space complexity of (1/ε)O(d) [2, 3, 20, 51]. There is also a body of work
on bounding the size of these ε-kernels, as they are useful to achieve low-space representations of
large data [10, 24, 33, 50]. [7] present a lower bound of (1/ε)Ω(d) on the size of an ε-kernel. In
the multi-pass model, there is a classic result by Bâdoiu & Clarkson, which presents a ⌈2/ε⌉-pass
algorithm with O(d/ε) space complexity [9]. This algorithm is widely used in big data models, for
its linear dependence on d/ε for space and 1/ε for pass complexity, and simplicity [38, 44].

Linear programs are frequently studied in big data models, with a major focus on exact multi-
pass LP results. One recent result is by [8] who give an O(ds) pass algorithm with
O(n1/s) · poly (d, log n) space complexity for any s ∈ [1, log n]. Setting s = log n, their algorithm
takes O(d log n) passes and has poly (d, log n) space usage. This result gives a large improve-
ment over previous results, and is applicable to other LP-type problems as well as the coordinator
and massively parallel computation models. Their algorithm builds on Clarkson’s sampling based
method [23], and utilizes reservoir sampling to sample a µ-net [22]. We build on the ideas pre-
sented by [8], to solve LP-type problem approximations. Certain approximation LP algorithms
in big-data models are studied by Ahn & Guha who give a (1 + ε)-approximation algorithm for
packing LPs [4], and [30] who give a (1 + ε)-approximation algorithm for covering LPs. The
linear classification problem is also well studied, as a fundamental machine learning problem. The

7



classic result for this problem is mistake bound of the perceptron algorithm [39]. A more recent
result is by [25], which achieves O (1/ε2 log n) iterations to find a linear classifier.

There is a lot of study on approximate semidefinite programs, which focus on different regimes.
A result that focuses on bounded SDP problems is by Garber & Hazan [28], that give bounds on
solving saddle point problems with certain assumptions about the problem input. We use similar
assumptions to compare our results for the saddle point optimization problem. For the regime with
a low number of constraints and a large dimension, a recent result is by [42]. which achieves an
O
(√

d log d/ε
)

pass algorithm with Õ (n2 + d2) space complexity.

1.3 Preliminaries
Throughout this work we employ the use of various sketching primitives as well as concepts. This
section provides some descriptions and examples.

ℓ0 Estimator There is a 1-pass streaming algorithm which given additive +1 updates to an un-
derlying vector v in {0, 1, . . . , poly (n)}n, gives a (1±ζ)-approximation to the number of non-zero
coordinates of v, denoted ℓ0(v), with error probability δ, and using O( log δ

−1

ζ2
+ log n) bits of mem-

ory [12].

ℓ0 Sampler There is a 1-pass streaming algorithm which given additive +1 updates to an under-
lying vector v in {0, 1, . . . , poly (n)}n, outputs a coordinate i in the set of non-zero coordinates of
v, where for each non-zero coordinate j in v, we have i = j with probability 1

ℓ0(v)
± 1

poly(n)
, using

O(polylog (n)) bits of memory [31].

TV Distance The Total Variation (TV) distance is a metric on the space of probability distribu-
tions over a discrete set X . If P and Q are distributions over X , the TV distance between P and
Q is given by

TV(P ,Q) = 1

2

∑
x∈X

|Pr
P
(x)−Pr

Q
(x)|.

The TV distance is also an integral probability metric with respect to the class of functions with
co-domain {0, 1}. That is,

TV(P ,Q) = sup

{∣∣∣∣ E
x∼P

[f(x)]− E
x∼Q

[f(x)]

∣∣∣∣ : f : X → {0, 1}
}
.

Chernoff Bound We use the following formulation of the Chernoff bound. Given t independent
random variables X1, . . . , Xt that take values in the range [0, 1], and letting X :=

∑t
i=1Xi denote

their sum, for any δ > 0

Pr(X ≥ (1 + δ)E [X]) ≤ e
−δ2E[X]

2+δ .
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Metric ε-net Given a metric space (M,d), a metric ε-net is a set of points E ⊆ M such that for
any point p ∈M , there exists a point e ∈ E for which

d (p, e) ≤ ε.

For large metric spaces, i.e. when M = {−∆,−∆+ 1, . . . ,∆}d, this formulation requires too
many points. In this case, we give an alternate formulation. In the case where M is large, given a
center point pc, which we consider to be the origin, and a corresponding norm ∥q∥ = d(q,pc) for
each point q ∈M , a metric ε-net is a set of points where for any point q ∈M , there exists a point
e ∈ E for which

d

(
q

∥q∥
, e

)
≤ ε.

This inequality can be multiplied by ∥q∥ on both sides for the equivalent definition

d(q, ∥q∥ e) ≤ ε ∥q∥ .

Combinatorial Dimension The combinatorial dimension of a problem is the maximum cardi-
nality of a basis for the problem, denoted ν. For LP-type problems, we consider a basis as the
minimum number of points required to define a solution to the problem.

Set System A set system is a pair (X,R) where X is a set of elements, and R is a collection of
subsets of X . For example, in the MEB problem, the set system can be thought of as (P,B) where
P ∈ Rd is a set of points and B is a collection of all balls that enclose a subset of points.

VC Dimension Given a set system (X,R) and Y ⊆ X , the projection of R on Y is defined
as R|Y := {Y ∩R | R ∈ R}. The VC dimension of (X,R) is the minimum integer λ where
|R|Y | < 2|Y | for any finite subset Y ⊆ X such that |Y | > λ [37].

ϵ-net Given a set system (X,R), a weight function w : X → R, and a parameter ϵ ∈ [0, 1],
a set N ⊆ X is an ϵ-net with respect to w(·) if N ∩ R ̸= ∅ for all sets R ∈ R such that
w(R) ≥ ϵ · w(X) [37].

Lemma 1.2 (Corollary 3.8 from [29]). For any set system (X,R) of VC dimension d < ∞, finite
A ⊆ X , and ϵ, δ > 0, if N is the set of distinct elements of A obtained by

m ≥ max

(
4

ϵ
log

2

δ
,
8d

ϵ
log

8d

ϵ

)
random independent draws from A, then N is an ϵ-net forR with probability 1− δ.

While this construction in its original presentation by Haussler & Welzl [29] applies to the
trivial weight function w(x) = 1, by drawing with probability proportional to an element’s weight,
an ϵ-net with respect to w(·) can be obtained for any weight function [8].

Notation. To not cause confusion between metric ε-nets and ϵ-nets, we refer to the latter as µ-nets.
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Vector and Matrix Norms For vectors we use the 2-norm, where for a length n vector v

∥v∥ =
√∑

i∈[n]

vi.

For matrices, we use several definitions of norms. For an n ×m matrix A, we use the following
definitions of norm.

• Entry-wise 1-norm: ∥A∥ =
∑

i∈[n],j∈[m] Aij .

• Spectral norm: ∥A∥2 = maxv∈Rm,∥v∥≠0
∥Av∥
∥v∥ .

• Frobenius norm: ∥A∥F =
√∑

i∈[n],j∈[m] A
2
ij .

• Schatten 1-norm: ∥A∥∗ =
∑min(n,m)

i=1 σi(A), where σi(A) are the singular values of A.

1.4 Organization
The rest of this work is organized as such. Chapter 2 presents our algorithm in the multiple linear
sketching model for solving general LP-type problems. Chapter 3 presents applications of our al-
gorithm to various big data models, namely the multipass streaming, strict turnstile, coordinator,
and parallel computation models. Further, it shows the application of our algorithm to solving
various LP-type problems, namely the MEB, Linear SVM, Bounded LP, and Bounded SDP prob-
lems. Chapter 4 presents lower bounds for the MEB and Linear SVM problems in the single pass
streaming model.

10



Chapter 2

Algorithm

In this chapter, we present our algorithm for Theorem 1.1, in the multiple linear sketch model. It
is inspired by the algorithm presented in [8]. However, we remove a dependence on the number of
points in the original stream, n, by employing the use of linear sketches, where we snap the space
of input points to a smaller space of discrete points formed by a metric ε-net. This allows us to
compute ε-approximation solutions to the problems while using much lower storage complexity.

As we utilize the ideas of [8], we retain the needed properties for LP-type problems from their
result, which we present as properties (P1) and (P2). Further, we add a third property that must
be fulfilled, (P3). We stress that most natural LP-type problems follow properties (P1) and (P2),
and that property (P3) follows naturally for most if not all (1+ ε)-approximation solutions to these
problems. Our algorithm therefore requires an LP-type problem (S, f) to satisfy the following
properties:

(P1) Each element x ∈ S is associated with a set of elements Sx ⊆ R where R is the range of f .

(P2) For all P ⊆ S, f(P ) is the minimal element of
⋂

x∈P Sx.

(P3) For all P,Q ⊆ S where Q is the set of points resultant of snapping all the points p ∈ P to a
metric ε-net, a (1 +O(ε))-approximation to f(Q) is a (1 +O(ε))-approximation to f(P ).

As an example, consider the MEB problem where S is the set of all d-dimensional points, R is
the set of all d-dimensional balls, and f is the function that returns the minimum enclosing ball of
the points in its input. For properties (P1) and (P2), each point in the MEB problem is associated
with the set of all balls that enclose it. For any set of points, the intersection of these sets of balls
are precisely the set of balls that enclose all of them, and thus the MEB of the points is the minimal
element of this set. Property (P3) follows intuitively because “unsnapping” a set of points from a
metric ε-net can only increase the size of their MEB by a small amount. A formal proof of this
property for the MEB problem is given in section 3.5.

Our algorithm is as such. First, we define the metric ε-net we use. We start by taking any point
to use as the center of our metric ε-net. For example, in the multipass streaming model, this can
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be the first point. We call this point pc. Now, we can shift our input points so that this point acts
as the origin. This will also give us the useful fact that now any other point’s norm is defined as its
distance to pc. We can use this point to create a metric ε-net by allowing, for each d dimensions,
the values −1 + i ε√

d
where i ranges in

[
0, 2

√
d
ε

]
. It is clear to see that this creates a metric ε-net

as it is is a lattice covering the unit d-cube (which contains the unit d-sphere), where the distance
between net points ei and ei+1, where i denotes the value for each coordinate, is ε. Thus, any point
that is scaled to the unit d-sphere will be at most ε

2
away from a point in our metric ε-net. The size

of this metric ε-net is
(
1 + 2

√
d

ε

)d

. It is important to note that while this net is sub-optimal in its
size, its major advantage as a lattice is that it can be described succinctly, so its storage complexity
is small. Further, it is easy to calculate the closest metric ε-net point to an arbitrary point pi.

The crux of our algorithm is therefore to use this metric ε-net to create a linear sketch of the
input. Given any point in the input p ∈ P , we can get the point p

∥p∥ . This point resides in our
metric ε-net, and thus we can snap it to its closest metric ε-net point. Now, we can scale it back
up, but we round down the norm to

(
1 + 2

ε

)l for some l ∈ N. This has the effect of discretizing
our point space along the metric ε-net directions, so that our linear sketch has size bounded by⌈
log1+ε (maxp∈P ∥p∥)

⌉ (
1 + 2

√
d

ε

)d

. In some problems, we will be presented with input points
already inside the unit d-cube, or a d-cube of bounded size. In these cases, we only need to snap
the input points to the closest metric ε-net point. We refer to the size of our linear sketch as N , and
maintain that it is small compared to the size of the input, n.

Notation. For the sake of clarity, we will refer to the input points p ∈ P as original points, and
these new points q ∈ Q as snapped points.

Before we explore the algorithm proper, we note a side effect of creating this sketch. Shrinking
the point space means that distinct points in the original input can now map to the same point. As
our algorithm includes weighted sampling over the snapped points, we must treat these as one point
and not two overlapping points. In order to achieve this, we utilize ℓ0 estimators and samplers, as
defined in [12] and [31] respectively, which allow us to consider estimates on points and sample
from them without running into the problem of overlapping. We note that these ℓ0 estimators and
samplers are linear sketches, and such are able to be used in the models present in our algorithm.

Our algorithm proceeds in iterations. Throughout, we maintain a weight function w : Q → R

that maps each snapped point to a weight. Each snapped point starts at weight 1, and may be
multiplied by N 1/s each iteration. In each iteration, the goal of the algorithm is to sample a small
subset of the snapped points that contain a basis for the optimal solution to the problem, and is
thus able to give us that solution while keeping a low space complexity. This goal is achieved by
sampling a µ-net with respect to w(·) from the snapped points using Lemma 1.2. As we explain
previously, this sampling cannot be done directly from the snapped points Q because of overlaps,
and so we need to utilize ℓ0 estimators and samplers. Since each point can increase in weight at
most once in each iteration, we have a number of discrete weight classes, for which we create
estimators and samplers. This allows us to randomly sample each unique snapped point with
probability proportional to its weight by randomly selecting a weight class in accordance to the
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class’ total estimated weight, and then using its sampler to uniformly sample a point from that
weight class.

Given a sample B, we can calculate its solution f(B), and find the set V of points that violate
f(B) (for example, in the MEB problem, violators are points that are outside of the ball). Two
sets of ℓ0 estimators are now used to calculate estimated weights of the snapped points Q and
the violators V , overestimating the weight of Q and underestimating the weight of V . If the
estimated weight of V is at most µ times the estimated weight of S, then we denote this iteration
as successful, and multiply the weight of each violator by N 1/s. The intuition behind this is that
our algorithm tries to find a basis for the problem. Thus, samples from successful iterations can be
thought of as good representations of Q, and violators of those samples are more likely to be points
in that basis, and should thus be given a higher weight in sampling. The algorithm finishes when
there are no violators, at which point it has successfully found f(Q), and as such we can return a
(1 +O(ε))-approximation to f(P ) using Property (P3).

Pseudocode for for the algorithm is provided in Algorithm 1, which uses Algorithms 2 and 3 as
helper functions to sample a µ-net and to check the success of an iteration.

Algorithm 1: An Algorithm for LP-Type Problems

input : A stream P of n points p ∈ {−∆,−∆+ 1, . . . ,∆}d
output: A 1 +O(ε) approximation for f(P )

1 Take a point p1 ∈ P , as the origin

2 Create the metric ε-net
{
(v1, v2, . . . , vd) ∈ Rd | vi = −1 + i ε√

d
where i ∈

[
0, 2

√
d
ε

]}
3 rm ← maxpi∈P ∥pi∥

4 Define N :=
⌈
log1+ε rm

⌉ (
1 + 2

√
d

ε

)d

5 Choose s ≤ lnN
6 Define µ := 1

10νN1/s where ν is the combinatorial dimension of the LP-type problem.
7 repeat
8 B ← SampleMPoints(P, µ, w(·), current iteration number t)
9 if CheckViolatorsWeight(P, µ, w(·), current iteration number t, f(B)) then

10 Denote iteration successful
11 Set w(q) = w(q) ·N 1/s for each violator q ∈ V

12 end
13 until V = ∅
14 Let f(B) be the last solution
15 return (1 +O(ε)) approximation to f(B)
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Algorithm 2: SampleMPoints
input : A stream P of n points p ∈ {−∆,−∆+ 1, . . . ,∆}d, a parameter µ, weight function

w(·), and integer t
output: A set B of unique points in m := max

(
8λ
µ
log 8λ

µ
, 4
µ
log 2

1
4

)
samples drawn with

replacement according to w(·)

1 Define m := max
(

8λ
µ
log 8λ

µ
, 4
µ
log 2

1
4

)
2 Create t (1± 1

m3/2 )-approximation ℓ0 estimators with error probability 1
poly(N)

and t ℓ0

samplers with error probability 1
poly(N)

, (one for each weight class), where the underlying
vectors are of size N and indexed by points q ∈ Q.

3 foreach pi ∈ P do
4 qj ← pi snapped to nearest metric ε-net direction and rounded down
5 Increment w(qj)

th estimator and sampler by 1 in the qj
th position

6 end
7 fi ← estimate for each estimator i ∈ [t]

8 pi ← fiN
i/s∑t

j=1 fjN
j/s

9 B ← ∅
10 repeat m times
11 Pick j ∈ [t] randomly according to probabilities pi
12 q ← sample point from j th sampler
13 B ← B ∪ {q}
14 end
15 return B
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Algorithm 3: CheckViolatorsWeight
input : A stream P of n points p ∈ {−∆,−∆+ 1, . . . ,∆}d, a parameter µ, weight function

w(·), integer t, and f(B)
output: A boolean representing if the weight of violators for f(B) is small enough

1 Create two sets of t (1± 1
4
)-approximation ℓ0 estimators with error probability 1

poly(N)
, (two

for each weight class), where the underlying vectors are of size N and indexed by points
q ∈ Q

2 foreach pi ∈ P do
3 qj ← pi snapped to nearest metric ε-net direction and rounded down
4 Increment w(qj)

th estimator in the first set by 1 in the qj
th position

5 if f
(
B ∪

{
qj

})
> f(B) then // qj is a violator

6 Increment w(qj)
th estimator in the second set by 1 in the qj

th position
7 end
8 end
9 f ′

i ← estimate for each estimator i ∈ [t] in the first set
10 f ′′

i ← estimate for each estimator i ∈ [t] in the second set
11 return 1

(1+ 1
4
)

∑
i f

′′
i N

i/s ≤ µ · 1
(1− 1

4
)

∑
i f

′
iN

i/s

2.1 Algorithm Correctness

In this section, we show that our algorithm correctly computes a valid (1 + O(ε))-approximation
to the solution of the LP-type problem, f(P ).

Claim 2.1. Given an LP-type problem (S, f) and a set of input points P , Algorithm 1 correctly
returns a (1 +O(ε))-approximation to f(P ).

Proof. The algorithm only returns when a computed solution f(B) has no violators. Thus, for
any point qj /∈ B, f

(
B ∪

{
qj

})
≤ f(B). Further, since B ⊆ B ∪

{
qj

}
, by the monotonic-

ity property for LP-type problems, we have that f(B) ≤ f
(
B ∪

{
qj

})
. Such, we have that

f(B) = f
(
B ∪

{
qj

})
.

We can further this by using the locality property for LP-type problems, so that for any qk /∈ B,
f(B) = f

(
B ∪

{
qj

}
∪ {qk}

)
. Proceeding in an inductive setting for all qj ∈ Q\B, we will have

that f(B) = f (B ∪ (Q \B)) = f(Q).

Finally, we use property (P3), in order to conclude that our result f(B) is a
(1 +O(ε))-approximation to f(P ).

15



2.2 Algorithm Iteration Count

In this section, we bound the total number of iterations our algorithm takes at O(νs) where ν is the
combinatorial dimension of the LP-type problem, and s is our parameter with range [1, logN ]. To
do this, we first bound the number of successful iterations our algorithm takes, which we then use
to achieve a total bound on the number of iterations.

Claim 2.2. Each iteration of Algorithm 1 is denoted successful with probability at least 2/3.

Proof. The intuition behind this claim is that when points are sampled in accordance to their
weights, we can use Lemma 1.2 to state that our sample is a µ-net with probability 3

4
. While

our sampling is not exact and based on ℓ0 estimators and samplers, we show using a TV distance
argument that we retain this 3

4
probability. Using this, we show that our condition for success is

fulfilled with probability 3
4
− 1

poly(N)
, where the error is due to the error of our estimators, which

still gives an overall 2
3

success probability. A full proof is provided hereafter.

The first step towards showing this is getting a probability bound on how many iterations will
have the sample be a µ-net. By Lemma 1.2, a sample obtained from
m := max

(
8λ
µ
log 8λ

µ
, 4
µ
log 2

1
4

)
draws with probability proportional to the points’ weights will

result in a µ-net with respect to w(·) with probability at least 3/4. However, we have to account
for the approximations and error probabilities of our ℓ0 estimators and samplers, as we use them to
get our draws.

To account for this, we will look at the TV distance between the distributions where the m
drawn samples are taken with probabilities according to the actual weights, and with probabilities
according to our estimates.

Let P be the actual distribution, and Q be our estimated distribution. Then, looking at the TV
distance, we have that

TV(P ,Q) = 1

2

∑
B

|PrP(B)−PrQ(B)|

=
1

2

∑
B

PrQ(B)

∣∣∣∣PrP(B)

PrQ(B)
− 1

∣∣∣∣ . (2.1)

We can now bound the quotient of these two probabilites. For simplicity and generality, we will
refer to the approximation ratio of the ℓ0 samplers as (1 + ζ).

Lemma 2.3. PrP (B)
PrQ(B)

≤
(
1 + 1

poly(N)

)m (
1+ζ
1−ζ

)m

.

Proof. We proceed by induction on m.
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Base Case Consider a singleton sample B1, and let K1 be the event of B1’s weight class being
chosen. Then we get the quotient

PrP(B1)

PrQ(B1)
=

PrP(B1 | K1)

PrQ(B1 | K1)

PrP(K1)

PrQ(K1)

≤
(
1 +

1

poly (N)

)
PrP(K1)

PrQ(K1)
by the errors of the ℓ0 samplers and estimators

≤
(
1 +

1

poly (N)

)(
1 + ζ

1− ζ

)
by the error of the ℓ0 estimators

as desired.

Induction Step Consider now the sample B of m sample points B1, . . . , Bm, and let Ki be the
event of Si’s weight class being chosen. Then we get the quotient

PrP(B)

PrQ(B)
=

PrP(Bm)

PrQ(Bm)

PrP(B1, . . . , Bm−1)

PrQ(B1, . . . , Bm−1)

≤ PrP(Bm)

PrQ(Bm)

(
1 +

1

poly (N)

)m−1(
1 + ζ

1− ζ

)m−1

by the induction hypothesis.

We can now notice that PrP (Bm)
PrQ(Bm)

= PrP (B1)
PrQ(B1)

since the samples are drawn independently with re-
placement. Thus, we get that

PrP(B)

PrQ(B)
=

(
1 +

1

poly (N)

)m (
1 + ζ

1− ζ

)m

completing our induction proof.

Now, we can plug this back into Equation 2.1, and use the fact that the sum of all probabilities
of a distribution is 1, to get that

TV(P ,Q) ≤ 1

2

((
1 +

1

poly (N)

)m (
1 + ζ

1− ζ

)m

− 1

)
.

Using our ℓ0 sampler approximation ratios of
(
1 + 1

m3/2

)
, we get that this TV distance converges

to 0, which means that our distribution will be sufficiently close to the actual distribution, and so
we will retain that each sample will be a µ-net with probability at least 3/4. We will now case on
this event when our sample B is a µ-net.

Let f(B) be the solution of the sample B. First, we claim that for the set of violators V , we
have that w(V ) ≤ µ · w(Q). Assume for the sake of contradiction that w(V ) > µ · w(Q). Since
V ∈ R and B is a µ-net with respect to w(·), this implies that B ∩ V ̸= ∅. So, consider a point
e ∈ B ∩ V . Since e ∈ V , f(B ∪ {e}) > f(B). However, since e ∈ B, B ∪ {e} = B, and such it
cannot be that f(B∪{e}) > f(B). Thus, due to this contradiction, we have that w(V ) ≤ µ ·w(S).
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Now, we want to show that 1
(1+η)

∑
i f

′′
i N

i/s ≤ µ · 1
(1−η)

∑
i f

′
iN

i/s, as that is when we denote an
iteration successful. First, we define fi,V as the number of violators in the ith weight class, and sim-
ilarly fi,Q as the number of snapped points in the ith weight class. Using these definitions, we can
rewrite w(V ) and w(Q), separating by weight class, as

∑
i fi,VN

i/s and
∑

i fi,QN
i/s respectively.

Plugging these new expressions in, we have that∑
i

fi,VN
i/s ≤ µ

∑
i

fi,QN
i/s. (2.2)

By the definition of our estimators, for any i we have that

(1− η)fi,Q ≤ f ′
i ≤ (1 + η)fi,Q.

So, we have that fi,Q ≤ 1
(1−η)

f ′
i , and so multiplying by the weight of the class and summing

over all weight classes we have that∑
i

fi,QN
i/s ≤ 1

(1− η)

∑
i

f ′
iN

i/s.

Similarly, as we have that

(1− η)fi,V ≤ f ′′
i ≤ (1 + η)fi,V ,

we have that
1

(1 + η)

∑
i

f ′′
i N

i/s ≤
∑
i

fi,VN
i/s.

Plugging these into (2.2), we get that

1

(1 + η)

∑
i

f ′′
i N

i/s ≤ µ · 1

(1− η)

∑
i

f ′
iN

i/s,

with probability at least 1− 1
poly(N)

, which comes from the error probability of the estimators.

So we know that each iteration will be denoted a successful iteration with probability at least
3/4 − 1

poly(N)
. Given a sufficiently large N such that 1

poly(N)
≤ 1/12, we have that each iteration

will be denoted a successful iteration with probability at least 2/3.

We now note that the weight function w(·) is only updated when there is an iteration that is
deemed successful. By Claim 2.2 each iteration is deemed successful with probability at least 2

3
.

By the Chernoff bound, if the algorithm takes t iterations, then with probability at least 1− e−Ω(t),
at least t

2
of these iterations are denoted as successful. It follows that bounding the number of

successful iterations using the weight function gives us a bound on the total number of iterations.

Claim 2.4. Algorithm 1 takes O(νs) iterations with probability at least 1− 1
poly(N)

− e−Ω(t).
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Proof. The proof follows by upper and lower bounding the weight of the set Q after the tth iteration
denoted successful, which can then be used together to bound t at O(νs) with high probability. The
proof is provided hereafter.

For the sake of simplicity and generality, with we will refer of the approximation ratio of the ℓ0
samplers as (1 + η).

Note that since for all q ∈ Q w0(q) = 1, w0(Q) ≤ N .

Now, we claim that for any integer t ≥ 1 after the tth iteration denoted successful,

N t/νs ≤ wt(Q) ≤ e
(1+η)2t

10(1−η)2ν ·N. (2.3)

Lemma 2.5. For any integer t ≥ 1, after the tth iteration denoted successful, N t/νs ≤ wt(Q).

Proof. Consider an arbitrary basis B∗ of Q, defined by k points for some k ≤ ν. Since B∗ ⊆ Q,
wt(B

∗) ≤ wt(Q). Thus, it suffices to show that N t/νs ≤ wt(B
∗).

Now, observe that for the set of violators V for an iteration, if V ̸= ∅, then V ∩ B∗ ̸= ∅. This
is because if we assume for contradiction that V ∩ B∗ = ∅, then for any point e ∈ B∗, e /∈ V ,
meaning that f(B ∪ {e}) ≤ f(B). Further, from the monotonicity property, f(B ∪ {e}) ≥ f(B),
and so f(B ∪ {e}) = f(B).

Inductively repeating this for all points in B∗ using the locality property, we get that
f(B ∪B∗) = f(B). Further, by the monotonicity property, we have that

f(B∗) ≤ f(B ∪B∗) ≤ f(Q).

But since B∗ is a basis for Q, it must be that f(B∗) = f(Q). Connecting these all together, we get
that f(B) = f(Q).

Finally, to achieve our contradiction, we can notice that in this case it cannot be that B has
any violating points e′, since by monotonicity f(B ∪ {e′}) ≤ f(Q) = f(B). So, we have a
contradiction to the fact that V ̸= ∅, and thus V ∩B∗ ̸= ∅.

Now for each i ∈ [t], define Bi as the sample in the ith iteration denoted successful. For any
l ∈ [k], let al be the number of samples Bi that are violated by ql ∈ B∗, i.e.,

al = |{i ∈ [t] | f(Bi ∪ {ql}) > f(Bi)}| .

Since in each iteration denoted successful, there have been some violators (as the algorithm did
not return after it), we know that V ∩ B∗ ̸= ∅ for these iterations, and so there must exist at least
one ql which violated Bi for each i ∈ [t]. Thus, we have that

∑k
l=1 al ≥ t.
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Now, looking at B∗, we can see that

wt(B
∗) =

k∑
l=1

wt(ql)

=
k∑

l=1

(
N1/s

)al
≥ k

(
N

1/s
)∑k

l=1 al/k by Jensen’s inequality

≥ k
(
N

1/s
)t/k

≥ N t/νs as k ≤ ν

proving the lemma.

Lemma 2.6. For any integer t ≥ 1, after the tth iteration denoted successful, wt(Q) ≤ e
(1+η)2t

10(1−η)2ν ·N .

Proof. First, by how the weights are set, we have that

wt+1(Q) = wt(SQ) + (N
1/s − 1) · wt(V ) ≤ wt(Q) +N

1/s · wt(V ). (2.4)

We also know from our definition of a successful iteration that

1

(1 + η)

∑
i

f ′′
i,tN

i/s ≤ µ · 1

(1− η)

∑
i

f ′
i,tN

i/s (2.5)

where the estimate f ′
i on the tth iteration is denoted f ′

i,t and similarly for f ′′
i,t.

We rewrite wt(Q) and wt(V ) in this form, as
∑

i fi,t,QN
i/s and

∑
i fi,t,VN

i/s respectively.

By the definition of our estimators, for any i we have that

(1− η)fi,t,Q ≤ f ′
i,t ≤ (1 + η)fi,t,Q

So, we have that 1
(1−η)

f ′
i,t ≤

(1+η)
(1−η)

fi,t,Q, and so multiplying by the weight of the class and
summing over all weight classes we have that

1

(1− η)

∑
i

f ′
i,tN

i/s ≤ (1 + η)

(1− η)

∑
i

fi,t,QN
i/s =

(1 + η)

(1− η)
wt(Q).

Similarly, as we have that
(1− η)fi,t,V ≤ f ′′

i,t ≤ (1 + η)fi,t,V ,

we have that

(1− η)

(1 + η)
wt(V ) =

(1− η)

(1 + η)

∑
i

fi,t,VN
i/s ≤ 1

(1 + η)

∑
i

f ′′
i,tN

i/s.
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Plugging these into (2.5), we get that

(1− η)

(1 + η)
wt(V ) ≤ µ · (1 + η)

(1− η)
wt(Q)

with probability at least 1
poly(N)

, which comes from the error probability of the estimators. This
can further be rearranged into

wt(V ) ≤ µ · (1 + η)2

(1− η)2
wt(Q).

Now, plugging this into (2.4), we get that

wt(Q) ≤ wt−1(Q) +N
1/s · µ · (1 + η)2

(1− η)2
wt−1(Q)

=

(
1 +N

1/s · µ · (1 + η)2

(1− η)2

)
wt−1(Q)

=

(
1 +N

1/s · 1

10 · ν ·N 1/s
· (1 + η)2

(1− η)2

)
wt−1(Q)

=

(
1 +

1

10 · ν
· (1 + η)2

(1− η)2

)
wt−1(Q).

We can further unroll this inequality until we get

wt(Q) ≤
(
1 +

(1 + η)2

10ν(1− η)2

)t

w0(Q) ≤ e
(1+η)2t

10ν(1−η)2 ·N

with probability at least 1− 1
poly(N)

, proving the lemma.

Connecting both sides of (2.3), we get N t/νs ≤ e
(1+η)2t

10(1−η)2ν ·N , which can be rearranged to get

t

ν
≤ 10(1− η)2

10(1− η)2 − (1 + η)2
s.

Now, taking η = 1/4, we can simplify this as t
ν
≤ 3

2
s, bounding the number of successful itera-

tions t at 3
2
νs. Thus, the total number of iterations the algorithm takes is bounded by O(νs) with

probability at least 1− 1
poly(N)

− e−Ω(t).
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Chapter 3

Applications

In this section, we present some applications of our algorithm. As our algorithm is built in the
multiple linear sketch model, it can be utilized for many big data models. We highlight the main
challenges of adapting to these models and how we adapt our algorithm for them, achieving the
results of Theorem 1.1.

Note that during the weighted sampling procedure, the large size of the input, and even our
linear sketch, makes it prohibitively expensive to store the weight of each point, or to send it as
part of messages. Notice however that the weight of a point only changes when it is a violator
point for a successful iteration. Thus, instead of keeping the weight directly, we can store the
solutions f(B) of successful iterations. Since these solutions require little space (for example, the
MEB solution is a center point and radius) they take significantly less storage space, and also are
extremely cheap to send and receive in distributed models. Our algorithm can then check any point
against these stored solutions to calculate its weight on the fly. We explain this idea further in
Section 3.1

When adapting our sampling procedure to distributed models, there are two hurdles. First, one
cannot take a sample of m points by asking machines to sample m points each, as this would
lead to a load of m · k points. Further, since we are doing weighted sampling, machines need
to sample in accordance with other machines’ weights. In order to fix both of these problems,
we employ the following protocol, which We describe for the coordinator model, noting that it
can be implemented in the parallel computation model similarly by having one machine assume
the role of the coordinator. Each machine sends the coordinator the total weight of their subset
of points. The coordinator then calculates how many of the m sample points B each machine
shall sample, and sends them this number. Now, the machines can sample a subset Bi, and send
them to the coordinator. Notice that m points are sent in total now, instead of per machine, so the
load is reduced to m. A similar procedure is followed to see if an iteration is successful, where
each machine calculates and sends their total violator weight. This protocol is fully laid out in
Section 3.3.

Finally, as our algorihm handles models with deletion of points, such as the strict turnstile
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model, we must make sure when constructing our metric ε-net around a central point, that the
point will exist at the end of the stream. We also need to find an approximation for the distance of
the furthest point from it, to define the size of our net. Failing to do so can lead to our net failing to
follow Property (P3). The idea behind our fix is to use ℓ0 samplers, which work in the presence of
deletions. We first sample any non-deleted point, which becomes the center of our net. Now, as our
input points are from the set {−∆,−∆+ 1, . . . ,∆}d, we have an upper and lower bound on the
distance any point can be from our sampled center. Such, we simply binary search over the powers
of 2 in this range and sample a non-deleted point with norm larger than the current power of 2 in
each iteration. When we find the largest power of 2 where a non-deleted point exists, the distance
to that point gives us a 2-approximation of the largest distance from our center point. As the binary
search takes O (log log (∆d)) iterations, we get only a miniscule increase in pass complexity. We
explain this procedure in detail in Section 3.2.

Using these techniques, we are able to utilize our algorithm in many big data models. We now
present the specifics of these models, as well as our results for them. Then, we present different
problems our algorithm can be used to solve, and the results for each problem.

3.1 Application in the Multipass Streaming Model
The first model we consider is the multipass streaming model. In this model, our input is presented
as a stream of points P , and our algorithm is allowed to make multiple linear scans of this stream,
while maintaining a small space complexity.

Our algorithm is well suited for handling a large stream of data, as it creates a linear sketch
of the data points. Therefore, all of our sampling and estimation can easily be done with the
aid of our ℓ0 samplers and ℓ0 estimators. The major consideration we have to make is in how
we calculate and store the weights of each snapped point, because we use that to decide which
estimators and samplers to use for each point. We clearly cannot store the weight of each snapped
point, as that would take up space linear in the number of snapped points. However, one can notice
that the weight of a snapped point changes only when it is a violator of a successful iteration, at
which point it is multiplied by N 1/s. Thus, it suffices to instead store the solution f(B) for each
successful iteration. Now, the weight of a snapped point is simply N v/s, where v is the number of
stored solutions f(B) it violates, which can be calculated on the fly efficiently.

Given this, we can calculate the number of passes needed by our algorithm. First, we see that
each iteration of our algorithm requires two passes over the stream. As seen in the last paragraph,
getting the weight of each snapped point while creating our sample can be done in one pass.
Further, after calculating a solution f(B), checking for violators can also be done in one pass.
Finally, we require one initial pass over the data to set our origin point as well as to get the value
of N .

The space complexity of our algorithm comes from the four quantities it stores, those being the
ℓ0 estimators, ℓ0 samplers, previous solutions f(B), and the current sample B. Note that we do
not actually need to store the metric ε-net points, as with our construction being a lattice, we can
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quickly access the closest metric ε-net point to any point pi ∈ P .

In each iteration we have t
(
1± 1

m3/2

)
-approximation ℓ0 estimators with 1

poly(N)
error. Each of

these estimators has a space usage of O(m3 logN). We also have 2t
(
1± 1

4

)
-approximation ℓ0

estimators with 1
poly(N)

error. Each of these estimators has a space usage of O(logN). Finally, we
have t ℓ0 samplers with with 1

poly(N)
error, each of which has a space usage of polylog (N). Given

that t is bounded by O(νs), and that m is in O
(
νλN 1/s log

(
νλN 1/s

))
, we have a total storage from

all of these of O
(
ν4sλ3N 3/s

)
·polylog (λ,N). The t previous solutions can be stored in O(νs) ·Sf

space, where Sf is the storage needed to store a solution f(B). Finally, a sample of m points can
be stored in O

(
νλN 1/s log

(
νλN 1/s

))
· bit(p) space, where bit(p) is the bit complexity to store

one point p ∈ P . Combining all of these, the total space complexity for our algorithm is

O
(
ν4sλ3N3/s

)
· polylog (λ,N) +O(νs) · Sf +O

(
νλN

1/s log
(
νλN

1/s
))
· bit(p).

We are mostly interested in the multi-pass case where s = logN . First, note that in this case N3/s

becomes constant. Further, we have that logN = log
(⌈
log1+ε rm

⌉)
+ d log

(
1 + 2

√
d

ε

)
. The first

term diminishes quickly. Thus, we obtain a space complexity of

O

(
ν4λ3d log

(
d

ε

))
·polylog

(
λ, d, log

(
d

ε

))
+O

(
νd log

(
d

ε

))
·Sf+O (νλ log (νλ))·bit(p).

The time complexity of our algorithm depends on three operations we perform in each iteration.
The first operation is to create our sample B. This can be done in O(m) time per iteration since
each point can be sampled from our ℓ0 samplers in linear time. The second operation is to calculate
the solution for our sample, f(B), which is done once per iteration. The third operation is to check
if a snapped point is a violator, i.e. to calculate if f (B ∪ {q}) > f(B). This operation is done for
all points each iteration. For a given LP-type problem, we can denote the time bounds for these as
TB and TV . Together, this gives us a total time complexity over O(νs) iterations of

O (νs (TV · n+m+ TB)) .

In order for our algorithm to be efficient in time complexity, we want TV to be constant time, and
TB to be polynomial in d, and logarithmic in 1

ε
.

All together, we achieve the following result for the multipass streaming model.

Theorem 3.1. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute a (1 +
O(ε))-approximation solution to an LP-type problem in the multipass streaming model, that takes
O(νs) passes over the input, with

O
(
ν4sλ3N3/s

)
· polylog (λ,N) +O(νs) · Sf +O

(
νλN

1/s log
(
νλN

1/s
))
· bit(p)

space complexity and O (νs (TV · n+m+ TB)) time complexity, where Sf is the storage needed
to store a solution f(B), and bit(p) is the bit complexity to store one point p ∈ P .
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3.2 Application in the Strict Turnstile Model
In the strict turnstile model, there is an underlying vector v where the ith element of the vector
corresponds to a point pi ∈ P . This vector is initialized to 0. The input is then presented a stream
of additive updates to the coordinates of v, presented as v ← v+ei or v ← v−ei, where ei is the
ith standard unit vector. At the end of the stream, we are guaranteed that v is itemwise nonnegative.
This stream can also be thought of as operations insert(pi) and delete(pi), with the guarantee that
at the end of the stream, no point pi has negative copies. Our algorithm is allowed to make multiple
linear scans of this stream, while maintaining a small space complexity.

The application of our algorithm to this model is very similar to the multipass streaming model,
because it is based on a linear sketch of the data points. Note that ℓ0 samplers and estimators work
in the presence of insertions and deletions of points. We again can use the same way of calculating
the weights as in the multipass streaming model, meaning that the number of passes over the input
stream is the same in each iteration.

The only additional hurdle presented by the strict turnstile model is that we cannot simply pick
the first point in the data stream as our origin and center of our metric ε-net and get the maximum
distance point in order to define N . This is because we need to make sure that the points we use
here are not ones that will end up at zero copies at the end of the input stream. Instead, we present
the following scheme. We first use an ℓ0 sampler in order to sample a distinct non-deleted point
p, which we can then think of as our origin, and set up our metric ε-net around. We also notice
that it suffices to get an O(1)-approximation of the largest norm of a (shifted) non-deleted point.
Further, note that as each input point is in {−∆,−∆+ 1, . . . ,∆}d, this norm is upper bounded by
O
(
∆
√
d
)

and lower bounded by 1. We perform a binary search over the powers of 2 in this range.
Since there are O(log(∆d)) powers of 2 in the range, the binary search will take O(log log(∆d))
iterations. In each iteration of this search, we will use an ℓ0 sampler in order to sample a distinct
non-deleted point with norm above the current power of 2. When we find the largest such power
of 2 where there exists a non-deleted point, we will have a 2-approximation of the largest norm
from our origin point p1, and this can set our N . Each iteration of the binary search requires one
pass over the data, and there is the initial pass to find p1, which gives us a total increase in the pass
count of O(log log(∆d)) over the multipass streaming model.

The space and time complexities of our algorithm in the strict turnstile model match the multi-
pass model for each iteration of the algorithm. Fort he initial creation of the net, we do constant
time work to sample one point each iteration, giving us the following result.

Theorem 3.2. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute a (1 +
O(ε))-approximation solution to an LP-type problem in the multipass streaming model, that takes
O(νs+ log log(∆d)) passes over the input, with

O
(
ν4sλ3N3/s

)
· polylog (λ,N) +O(νs) · Sf +O

(
νλN

1/s log
(
νλN

1/s
))
· bit(p)

space complexity and O (νs (TV · n+m+ TB) + log log(∆d) · n) time complexity, where Sf is
the storage needed to store a solution f(B), and bit(p) is the bit complexity to store one point
p ∈ P .
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3.3 Application in the Coordinator Model
In the coordinator model, there are k distributed machines and a separate coordinator machine,
which is connected to each machine via a two-way communication channel. The input set P is
distributed among the machines, with each machine i getting a part Pi, and the goal is to jointly
compute the solution f(P ) for the LP-type problem. Communication between the machines pro-
ceeds in rounds, where each round the coordinator can send a message to each machine, and then
each machine can send a message back. The final computation is done by the coordinator. In
the coordinator model, our algorithm aims to minimize the number of communication rounds and
maximum bits of information sent or received in any round.

Again, notice that we can use the same idea of samplers and estimators at each machine, as
well as the idea of on-the-fly weight calculation by storing previous solutions. The major imple-
mentation detail now is how to sample m points in the distributed setting and denote success of
iterations. We will achieve this by the coordinator calculating what share of the m point sample
each machine should be responsible for, and then building up an m point sample from the samples
of each machine.

Our algorithm can do both of these in each round with three rounds of communication be-
tween the coordinator and the machines. First, at the start of each round, if the last round was
deemed successful, the coordinator sends each machine the solution f(B), for each machine
to store and use in their weight calculations. The machines send the coordinator the weight of
their subset of snapped points, w(Qi) =

∑
qj∈Qi

w(qj). Now, the coordinator generates m i.i.d.
numbers x1, . . . , xm where each number i ∈ k has probability of being picked according to the
weight share of machine i, i.e. Pr [i is generated] = w(Qi)

w(Q)
where w(Q) =

∑
i∈[k] w(Qi) is cal-

culated by the coordinator. Starting the second round of communication, the coordinator sends
each machine i a number yi = |{l | xl = i}|. Each machine then uses its ℓ0 samplers to sam-
ple yi points from its subset Qi, according to the weight share of each snapped point qj , i.e.

Pr
[
qj is sampled

]
=

w(qj)

w(Qi)
, and sends this sample to the coordinator. This sampling system en-

sures that in total, Pr
[
qj is sampled

]
=

w(qj)

w(Qi)
· w(Qi)

w(Q)
=

w(qj)

w(Q)
, and thus the sample is correctly

weighted. The coordinator then combines each machine’s sample to create the total sample B,
and calculates f(B). For the final round of communication, the coordinator sends f(B) to all
machines, which they use to calculate their subset’s violators. They send back the weight of their
violator set, w(Vi). If all of these w(Vi)’s are 0, then the algorithm is done. If not, the coordinator
can calculate whether the iteration is successful, and continue to the next.

To complete our analysis, notice that the start of the algorithm requires two rounds of commu-
nication, one round for any machine to send a point to take as the origin, and a second round for
the coordinator to send that point to the machines, and for the machines to send back their furthest
distance from it.

To calculate the maximum load over a round of communication, we look at the messages being
sent. The start of the algorithm has each message representable as a point, so the maximum load is
k · bit(p). Then, in each iteration, we have four different messages to account for. A solution has
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size Sf , so sending it has load k · Sf . Each weight being sent is bounded by w(Q), which itself is
upper bounded by N ·

(
N 1/s

)t on the tth iteration. Since we have O(νs) iterations, we can bound
the load of sending weights at k · O (ν logN). Each number yi is bounded by m, giving a total
load of k · logm. Finally, the samples being sent by each machine have in total m elements, thus
the load is m · bit(p).

All together, we achieve the following result for the coordinator model.

Theorem 3.3. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute a
(1 +O(ε))-approximation solution to an LP-type problem in the coordinator model, that takes
O(νs) rounds of communication, with

O
((
k + νλN

1/s log
(
νλN

1/s
))
· bit(p) + k · Sf + k log

(
νλN

1/s
)
+ kν logN

)
load, where Sf is the storage needed to store a solution f(B), and bit(p) is the bit complexity to
store one point p ∈ P . The local computation time of the coordinator is O (νs (m+ TB + k)),
and the local computation time of each machine i is O (νs (niTV )) where ni = |Pi|.

3.4 Application in the Parallel Computation Model
In the parallel computation model, there are k distributed machines, which are each connected
via two-way communication channels. The input set P is distributed among the machines, with
each machine i getting a part Pi, and the goal is to jointly compute the solution f(P ) for the
LP-type problem. Communication between the machines proceeds in rounds, where each round the
machines can communicate with each other in messages. In the coordinator model, our algorithm
aims to minimize the number of communication rounds and maximum bits of information sent or
received in any round.

Our procedure for running our algorithm in the parallel computation model is simply to run it
as our algorithm for the coordinator model, assigning one of the machines to act as the coordinator.
Thus, we can achieve the same bounds on the rounds of communication and maximum load. For
the computation times, one machine will have a computation time on the order of the coordinator
time added to the machine time, and other machines will have computation times same as in the
coordinator model.

3.5 Solving the MEB Problem
One important application of our algorithm is in solving the MEB problem. Given n points
pi ∈ {−∆,−∆+ 1, . . . ,∆}d, the objective of the problem is to find a d-dimensional ball
(c, r) ∈ Rd ×R with center c and radius r that encloses all of the input points, i.e. where for
all points pi, d(c,pi) ≤ r, and which has the smallest such radius r.

The MEB problem is an LP-type problem where S is the set of d-dimensional points, and f(·)
is the function that maps from a set of points to their MEB. The combinatorial dimension of the
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MEB problem is ν = d+1, as any MEB in d dimensions defined by d+2 points P can be defined
by any d + 1 point subset of P . However, there are MEB instances defined by d + 1 points that
cannot be defined by a d point subset, e.g., 3 vertices of an equilateral triangle in 2 dimensions.
Further, the VC dimension of the MEB set system is λ = d+ 1 [46].

Now, we show that the MEB problem satisfies the properties (P1), (P2), and (P3). For (P1),
each point can be associated with the set of all balls that enclose it. For (P2), it can be seen that for
a set of points, the intersection of sets of balls that enclose them is the set of balls that enclose the
whole set. Thus, it is natural that the MEB is the minimal such ball. Finally, for (P3), we show that
for an MEB (c, r) of a set of snapped points Q, the ball (c, (1+4ε)r) is a (1+O(ε))-approximation
MEB of the set of original points P . We show this using two lemmas.

Lemma 3.4. All points pi ∈ P are inside the ball (c, (1 + 4ε)r), i.e., d(c,pi) ≤ (1 + 4ε)r.

Proof. Say point pi was snapped to ∥pi∥ ek for some point ek on the metric ε-net and rounded up to
qj . We know ∥pi∥ ek is between (1 + ε)lek and (1 + ε)l+1ek for some l, and so
∥pi∥ ∈

[
(1 + ε)l, (1 + ε)l+1

]
.

We first bound d(c,pi).

d(c,pi) ≤ d(c, qj) + d(pi, qj) by the triangle inequality

≤ r + d(pi, qj) as (c, r) is the MEB of Q

≤ r + d(pi, ∥pi∥ ek) + d(∥pi∥ ek, qj) by the triangle inequality

≤ r + ε ∥pi∥+ d(∥pi∥ ek, qj) by the metric ε-net

≤ r + ε ∥pi∥+ (1 + ε)l+1 − (1 + ε)l

= r + ε ∥pi∥+ ε(1 + ε)l

≤ r + ε ∥pi∥+ ε ∥pi∥
= r + 2ε ∥pi∥ .

Now, we know
∥∥qj

∥∥ is (1+ε)l+1 as it was snapped down. Thus, since ∥pi∥ ∈
[
(1 + ε)l, (1 + ε)l+1

]
,

we can say that ∥pi∥ ≤
∥∥qj

∥∥. Plugging this in, we get

d(c,pi) ≤ r + 2ε
∥∥qj

∥∥ .
Now, since

∥∥qj

∥∥ is d(qj,p1) and p1 was unaffected by the snapping and rounding as the center
of the ε-net, both qj and p1 are in (c, r). This means their distance is bounded by 2r, meaning∥∥qj

∥∥ ≤ 2r. Plugging this in, we get

d(c,pi) ≤ r + 4εr

≤ (1 + 4ε)r.

Lemma 3.5. (c, r) is no larger than (1 + O(ε)) times the size of the MEB of the original points
(c∗, r∗), i.e., r ≤ (1 +O(ε))r∗.
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Proof. First, we know from the proof of Lemma 3.4 that d(pi, qj) ≤ 2ε ∥pi∥. As ∥pi∥ is d(pi,p1),
we can use the fact the fact that the MEB (c∗, r∗) contains all points pi, to bound this distance by
2r∗. Thus, ∥pi∥ ≤ 2r∗. So we can say that d(pi, qj) ≤ 4εr∗.

Thus, since (c∗, r∗) encloses all the original points pi ∈ P , the ball (c∗, r∗ + 4εr∗) encloses all
the snapped and rounded points qj ∈ Q.

Thus, r ≤ r∗ + 4εr∗ as (c, r) is the MEB for Q, and so r ≤ (1 + 4ε)r∗.

Together, these lemmas show that the ball (c, (1+4ε)r) is an enclosing ball for P , and is within
1 +O(ε) of the MEB for P , which together show (P3).

Thus, our algorithm can be utilized to solve the (1 + 4ε)-approximation MEB problem. Notice
that a solution to the MEB problem is a ball (c, r) and can thus be stored in 2 bit(p) space. Further,
violator checks can easily be done on a stored solution by checking whether for a snapped point
q, whether d(c, q) ≤ r, giving us TV = O(1) for the MEB problem. The MEB of a sample of m
points can be found in O

(
(m+ d)3

)
[49], which gives us TB for the MEB problem. Therefore, we

can achieve the following result for the MEB problem, using the results from Theorems 3.1, 3.2,
and 3.3.

Theorem 3.6. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute a
(1 + 4ε)-approximation solution to the MEB problem with high probability in the following mod-

els, where bit(p) is the bit complexity to store one point p ∈ P , and N =
⌈
log1+ε rm

⌉ (
1 + 2

√
d

ε

)d

.

• Multipass Streaming: An O (ds) pass algorithm with O
(
d7sN 3/s

)
· polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and O

(
ds

(
n+ (m+ d)3

))
time com-

plexity.

• Strict Turnstile: An O (ds+ log log (∆d)) pass algorithm with O
(
d7sN 3/s

)
·polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and O

(
ds

(
n+ (m+ d)3

))
time com-

plexity.

• Coordinator / Parallel Computation: An algorithm with O (ds) rounds of communication
and O

((
k + d2N 1/s log

(
dN 1/s

))
· bit(p) + k log

(
dN 1/s

)
+ kd logN

)
load. The local com-

putation time of the coordinator is O
(
ds

(
(m+ d)3 + k

))
, and the local computation time

of each machine i is O (dsni) where ni = |Pi|.

3.6 Solving the Linear SVM Problem
A seperate application of our algorithm is as a Monte Carlo application in solving the Linear SVM
Problem. In the problem, we are given n points pi = (xi, yi) where xi ∈

{
−1,−1 + 1

∆
, . . . , 1

}d

and yi ∈ {−1,+1}. We are also given some γ > 0 for which the points are either inseparable or
γ-separable. The objective of the problem is to determine either that the points are inseparable, or
to compute a d-dimensional hyperplane (u, b) where b is the bias term, which separates the points
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with the largest margin, i.e. to solve the quadratic optimization problem

min
u∈Rd

∥u∥2 subject to yi
(
uTxi − b

)
≥ 1 for all i ∈ [n] . (3.1)

The linear SVM problem is an LP-type problem where S is the set of tuples of d-dimensional
points and ±1 y values, and f(·) is the function that maps from a set of points to their optimal
separating hyperplane, or to the value infeasible. The combinatorial dimension of the linear SVM
problem is ν = d+ 1 for a separable set, and ν = d+ 2 for an inseparable set. For a separable set,
this can be seen as any basis is in the form of a hyperplane with y = ±1 and a point with y = ∓1.
For an inseparable set, another point with y = ∓1 on the opposite side of the hyperplane is needed.
Thus, ν ≤ d+ 2. Further, the VC dimension of the linear SVM set system is λ = d+ 1 [46].

For the linear SVM problem, there is an additional hurdle to overcome. That is, if the points
are too close together, running our algorithm with a metric ε-net might not retain separability.
Therefore, we instead create a metric εγ

2
-net centered at the origin, where ε < 1

2
. This means

that we have snapped points qi = (zi, yi) where zj = xi + ei for some metric net point ei with
∥ei∥ ≤ εγ

2
. Our algorithm then finds the hyperplane that solves the quadratic optimization problem

min
u∈Rd

∥u∥2 subject to yi
(
uTzi − b

)
≥ 1 for all i ∈ [N ] . (3.2)

The added benefit of this is that we do not need to use the additional search in the turnstile model,
and can use the same metric net. We also run our algorithm as a Monte Carlo algorithm, where if
we do not find a solution in the first O(ds) iterations, we return that the point set is not separable.
This gives us an algorithm with a one-sided error. That is, if a point set is inseparable, we will
always output as such. If it is separable however, we will output a (1 + O(ε))-approximation for
the optimal separating hyperplane with high probability.

Given this new way of running our algorithm, we now show that the linear SVM problem
satisfies the properties (P1), (P2), and (P3). As a constrained optimization problem, it satisfies (P1)
and (P2) naturally. Each point is associated with the set of hyperplanes (u, b) that satisfy its
constraint, and for a set of constraints, the solution minimizes ∥u∥2 over hyperplanes that satisfy
all constraints. Finally, for (P3), we show that for the optimal hyperplane (u, b) separating a set
of snapped points Q, the hyperplane ((1 + 2ε)u, (1 + 2ε)b) is a (1 + O(ε))-approximation of the
optimal hyperplane separating the set of original points P . We show this using two lemmas.

Lemma 3.7. The hyperplane ((1 + 2ε)u, (1 + 2ε)b) separates all original points pi ∈ P , i.e.,
yi
(
(1 + 2ε)uTxi − (1 + 2ε) b

)
≥ 1 for all i ∈ [n].

Proof. First, for any i, from our problem description, we know that yi
(
uTzi − b

)
≥ 1. Working

with that, we get

yi
(
uTzi − b

)
≥ 1

=⇒ yi
(
uT (xi + ei)− b

)
≥ 1

=⇒ yi
(
uTxi − b

)
≥ 1− yiu

Tei.
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Now, we look at yiuTei. Since yi ∈ {−1,+1}, we can say that yiuTei ≤
∣∣uTei

∣∣, which itself is
bounded by ∥u∥ ∥ei∥ by the Cauchy-Schwarz inequality.

By construction, we know that ∥ei∥ ≤ εγ
2

.

Moreover, since the original points are γ-separable, and snapping to the metric net moves each
point at most εγ

2
, we know that the snapped points are (γ − εγ)-separable, and so γ

2
-separable as

ε ≤ 1
2
. Thus, using the definitions of linear SVM

2

∥u∥
≥ γ

2

=⇒ ∥u∥ ≤ 4

γ
.

So, plugging these two results in we have that yiuTei ≤ 2ε. Thus, we have that

yi
(
uTxi − b

)
≥ 1− 2ε

=⇒ yi

(
1

1− 2ε

(
uTxi − b

))
≥ 1

=⇒ yi
(
(1 + 2ε)

(
uTxi − b

))
≥ 1 for small ε

giving us the desired result.

Lemma 3.8. The objective of Problem 3.2 is no larger than (1 + O(ε)) times the objective of
Problem 3.1, i.e., ∥u∥2 ≤ (1 +O(ε)) ∥u∗∥2.

Proof. For small ε, (1 +O(ε)) ∥u∗∥2 ≈ ∥(1 +O(ε))u∗∥2, so it suffices to show that

∥u∥2 ≤ ∥(1 +O(ε))u∗∥2 .

We know that for any i, yi
(
u∗Txi − b∗

)
≥ 1. So, by the same argument as Lemma 3.7

yi
(
(1 + 2ε)u∗Tzi − (1 + 2ε) b

)
≥ 1.

Thus, as ((1 + 2ε)u∗, (1 + 2ε) b∗) is a solution to Problem 3.2, and (u, b) is the minimal solu-
tion to the optimization problem, ∥u∥2 ≤ ∥(1 +O(ε))u∗∥2 as desired.

Together, these lemmas show that the hyperplane ((1 + 2ε)u, (1 + 2ε)b) is a separating hy-
perplane for P , and is within 1 + O(ε) of the objective function for Problem 3.1, which together
show (P3).

Thus, our algorithm can be utilized to solve the (1 + 2ε)-approximation linear SVM problem.
Notice that a solution to the linear SVM problem is a hyperplane (u, b) and can thus be stored
in 2 bit(p) space. Further, violator checks can easily be done on a stored solution by checking
whether for a snapped point q = (z, y), whether y

(
uTz − b

)
≥ 1, giving us TV = O(1) for the

linear SVM problem. The optimal separating hyperplane of a sample of m points can be found in
O
(
(m+ d)3

)
[49], which gives us TB for the linear SVM problem. Therefore, we can achieve the

following result for the linear SVM problem, using the results from Theorems 3.1, 3.2, and 3.3.
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Theorem 3.9. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute a
(1 + 2ε)-approximation solution to the linear SVM problem with high probability in the following

models, where bit(p) is the bit complexity to store one point p ∈ P , and N =
(
1 + 4

√
d

εγ

)d

.

• Multipass Streaming: An O (ds) pass algorithm with O
(
d7sN 3/s

)
· polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and O

(
ds

(
n+ (m+ d)3

))
time com-

plexity.

• Strict Turnstile: An O (ds) pass algorithm with O
(
d7sN 3/s

)
· polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and O

(
ds

(
n+ (m+ d)3

))
time com-

plexity.

• Coordinator / Parallel Computation: An algorithm with O (ds) rounds of communication
and O

((
k + d2N 1/s log

(
dN 1/s

))
· bit(p) + k log

(
dN 1/s

)
+ kd logN

)
load. The local com-

putation time of the coordinator is O
(
ds

(
(m+ d)3 + k

))
, and the local computation time

of each machine i is O (dsni) where ni = |Pi|.

3.7 Solving Bounded Linear Programming Problems up to Ad-
ditive Epsilon Error

So far, we have dealt with applications with multiplicative error, i.e. where our solution is within
(1 + O(ε)) times the optimal solution. We can also use our algorithm to solve problems up to
additive error. One application for this usage is in certain linear programming applications we will
explore. Linear programs in general are optimization problems of the form

max
x∈Rd

cTx subject to aT
i x ≤ bi for all i ∈ [n] (3.3)

where the input is the objective vector c as well as n input constraints pi = (ai, bi).

We will work with a certain class of linear programs, where the input points, as well as the solu-
tion vector x is bounded, i.e., for all constraints i, ∥ai∥ , |bi| ∈ O(1), as well as ∥c∥ , ∥x∥ ∈ O(1).
Given this, we can run our algorithm by snapping each constraint point pi to a metric O(ε)-net
to get a′

i = ai + ei where ∥ei∥ ≤ O(ε) and b′i = bi + fi where |fi| ≤ O(ε). As a note, this
construction means that we require no additional passes in the turnstile model to create our net,
similar to the linear SVM problem. This snapping then gives us the LP

max
x∈Rd

cTx subject to a′T
i x ≤ b′i for all i ∈ [N ] . (3.4)

The optimal solution to LP (3.4), x, then gives an additive ε-approximation solution to LP (3.3) as
well.

Linear programs are the eponymous LP-type program, where S is the set of constraints of the
LP and f(·) is the function that maps the set of constraints to their optimal solution, or to the
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value infeasible. An important note is that there might be multiple optimal solutions for a set
of constraints, in which case any tie-breaking system may be used (a common one is to take the
lexicographically smallest optimal point). The combinatorial dimension of linear programming is
ν = d, as d is the number of variables of the LP, and the VC dimension is λ = d + 1, since each
constraint for an LP induces a feasible half-space [36, 46].

We now show that linear programs satisfy the properties (P1), (P2), and (P3). As a constrained
optimization problems, they satisfy (P1) and (P2) naturally. Each constraint is associated with
the halfspace that satisfies it, and for a set of constraints, the objective function is maximized over
points that satisfy all constraints. Finally, we show a modified (P3) as we are now deal with additive
approximations. We show that for the optimal solution cTx satisfying a set of snapped constraints
Q, the solution x gives an additive ε-approximation to the optimal solution cTx∗ approximately
satisfying the original constraints P . We show this using two lemmas.

Lemma 3.10. The solution x approximately satisfies all original constraint points pi ∈ P , i.e.,
aT
i x ≤ bi +O(ε) for all i ∈ [n].

Proof. First, for any i, from our problem description, we know that a′T
i x ≤ b′i. Working with that,

we get

a′T
i x ≤ b′i

=⇒ (ai + ei)
T x ≤ bi + fi

=⇒ aT
i x ≤ bi − eT

i x+ fi

Now, we look at −eT
i x. It is bounded by

∣∣eT
i x

∣∣, which itself is bounded by ∥ei∥ ∥x∥ by the
Cauchy-Schwarz inequality. By construction, we know that ∥ei∥ ≤ O(ε), and as given by our
class of problem, ∥x∥ ∈ O(1). So, plugging these two results in we have that −eT

i x ≤ O(ε).
Further, we have that fi is bounded by O(ε) by construction. Thus, together we have that

aT
i x ≤ bi +O(ε)

as desired.

Lemma 3.11. The objective of LP (3.4) is at most O(ε) smaller than the objective of LP (3.3), i.e.,
cTx ≥ cTx∗ −O(ε).

Proof. We know that for any i, aT
i x

∗ ≤ bi. So, by the same argument as Lemma 3.10

a′T
i x∗ ≤ b′i +O(ε)

Thus, x∗ is a solution to the additive ε-approximation of LP (3.4). So, if we denote the optimal
solution to it as x′, we have that cTx′ ≥ cTx∗. It then only remains to show that the optimal
solution to the additive ε-approximation of LP (3.4) x′ is not too much larger than the optimal
solution to the exact LP (3.4). This follows because both ∥c∥ and ∥x∥ are bounded in O(1).
Allowing the constraints to be approximately satisfied by O(ε) can make the optimal point increase
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in norm by at most a (1+O(ε)) multiplicative factor, and thus an additive O(ε) factor for bounded
norm. Thus, we have that cTx′ ≤ cTx+O(ε). Plugging this in, we get

cTx ≥ cTx∗ −O(ε)

as desired.

Together, these lemmas show that the solution x satisfies the constraints P , and is within addi-
tive O(ε) of the objective function for LP (3.3), which together show (P3).

Thus, our algorithm can be utilized to solve additive ε-approximation LP problems. Notice that
a solution to an LP is a point x and can thus be stored in bit(p) space. Further, violator checks can
easily be done on a stored solution by checking whether it satisfies a given constraint, giving us
TV = O(1) for LP problems. The optimal solution to an LP with d variables and m constraints can
be found in Õ (md+ d2.5) [45], which gives us TB for LP problems. Therefore, we can achieve
the following result for bounded LP problems, using the results from Theorems 3.1, 3.2, and 3.3.

Theorem 3.12. For any s ∈ [1, d log (1/ε)], there exists a randomized algorithm to compute an
additive ε-approximation solution to bounded LP problems with high probability in the following

models, where bit(p) is the bit complexity to store one point p ∈ P , and N ∈ O
(√

d
ε

)d

.

• Multipass Streaming: An O (ds) pass algorithm with O
(
d7sN 3/s

)
· polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and Õ (ds (n+md+ d2.5)) time com-

plexity.

• Strict Turnstile: An O (ds) pass algorithm with O
(
d7sN 3/s

)
· polylog (d,N)+

O
(
ds+ d2N 1/s log(dN 1/s)

)
·bit(p) space complexity and Õ (ds (n+md+ d2.5)) time com-

plexity.

• Coordinator / Parallel Computation: An algorithm with O (ds) rounds of communication
and O

((
k + d2N 1/s log

(
dN 1/s

))
· bit(p) + k log

(
dN 1/s

)
+ kd logN

)
load. The local com-

putation time of the coordinator is Õ (ds (md+ d2.5 + k)), and the local computation time
of each machine i is O (dsni) where ni = |Pi|.

3.7.1 Solving the Linear Classification Problem
One example of a bounded LP where our algorithm can be used to achieve a useful result is the
linear classification problem. In the problem, we are given n labeled examples pi, comprising
of a bounded d-dimensional feature vector xi ∈

{
−1,−1 + 1

∆
, . . . , 1

}d and a corresponding label
yi ∈ {−1,+1}. The goal of the problem is to find a separating hyperplane u, which can be thought
of as a normal vector u ∈ Rd where ∥u∥ = 1, such that yi

(
xT
i u

)
≥ 0 for all points pi. We will

consider the related approximate optimization problem, where we assume that there is an optimal
classifier u∗ such that yi

(
xT
i u

∗) ≥ ε for all points pi. We thus want to find a classifier that is
within additive ε of the separation of this optimal classifier.
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This problem can be written as a bounded LP as such. First, notice that we have two types of
constraints, xT

i u ≤ 0 for any point pi with yi = −1, and xT
i u ≥ 0 for any point pi with yi = +1.

For simplicity, we will actually consider the negation of any such example, so we will actually
consider points p′

i = (x′
i, y

′
i) where x′

i = −xi and y′i = −yi if yi = +1, and x′
i = xi and y′i = yi

otherwise. This allows us to only have constraints of the type

x′T
i u ≤ 0 for all i ∈ [n] .

Our objective is to maximize the separation of u, which is mini∈[n]x
′T
i u. While this objective isn’t

linear as is, it can be made linear by utilizing an additional variable representing the separation,
and n additional constraints.

Thus, we can use our general framework for bounded LP problems in order to solve this problem
with separation that is within additive ε of the optimal hyperplane’s separation. This gives us a very
important benefit. Namely, since the optimal hyperplane’s separations is ε, our hyperplane will in
fact be a separating hyperplane for the original points, meaning that our solution fully satisfies the
original constraints P . Thus, we are able to solve the linear classification problem with an additive
ε-approximation of the largest separation, in the bounds given in Theorem 3.12.

3.8 Solving Bounded SDP Problems up to Additive Epsilon Er-
ror

Another additive ε-approximation application of our algorithm is in solving bounded semidefinite
programming problems. These problems are optimization problems of the form

max
X∈Rd×d

⟨C,X⟩F subject to
⟨A(i), X⟩F ≤ b(i) for all i ∈ [n]

X ⪰ 0
(3.5)

where ⟨·, ·⟩F is the Frobenius inner product, i.e. ⟨A,B⟩F =
∑

i,j AijBij , and X ⪰ 0 denotes X as a
positive semidefinite matrix. The input will be the objective matrix C as well as n input constraints
pi =

(
A(i), b(i)

)
.

We will work with a certain bounded class of SDP problems. Namely, we will have the follow-
ing boundedness assumptions.

• X has unit trace, i.e. Tr(X) = 1,

• ∥C∥F ≤ 1 where ∥·∥F is the Frobenius norm.

Further, for all constraints i

•
∥∥A(i)

∥∥
2
≤ 1 where ∥·∥2 is the spectral norm,

•
∥∥A(i)

∥∥
F
≤ F ,

• The number of nonzero entries of A(i) is bounded by S,
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•
∣∣b(i)∣∣ ≤ 1.

Our algorithm solves these problems by solving them as bounded LP problems with the solution
vector x ∈ Rd2 where x = Vec(X). This gives us the natural objective function maxx∈Rd2 cTx
where c = Vec(C). For the constraints of these LPs, we consider the two different type of SDP
constraints separately. First, we have constraints of the type ⟨A(i), X⟩F ≤ b(i), which we can
represent as a(i)Tx ≤ b(i) where a(i) = Vec(A(i)). We also have the constraint that X must be
positive semidefinite, i.e. X ⪰ 0. This is equivalent to the constraints yTXy ≥ 0 for all vectors
y ∈ Rd where ∥y∥ = 1. We can represent each of these as constraints (y ⊗ y)Tx. The problem
however is that we would need an infinite amount of these constraints, as there are infinite y vectors
to consider.

Thus, we again utilize metric ε-nets. For each A(i), we note that a naive lattice where each
coordinate A

(i)
jk is snapped to the nearest multiple of ε

d
would suffice, however we can achieve a

tighter bound because of the assumption that A(i) has at most S nonzero entries. We can therefore
create a net for each of the

(
d2

S

)
possible combinations, where each net size is exponential in

S rather than d2. Now, for any A(i), its nonzero coordinates must be fully captured by at least
one of these nets, and so we can deterministically choose one and snap it to a point in that net.
We can further snap to the nearest multiple of ε

min(d,S)
in order to decrease the size of each net.

Finally, notice that for each coordinate of A(i),
∣∣∣A(i)

jk

∣∣∣ ≤ ∥∥A(i)
∥∥
2
≤ 1. Thus each net is of size(

2min(d,S)
ε

+ 1
)S

, and therefore we have a total size of
(
d2

S

)
· O

((
min(d,S)

ε

)S
)

for the nets. For

each bi, we can snap it to the nearest multiple of ε, giving a net of size O
(
1
ε

)
. In total, this means

that in our snapped LP, we have
(
d2

S

)
·O

((
min(d,S)

ε

)S
1
ε

)
constraints of the form ⟨A′(i), X⟩F ≤ b′(i).

For the positive semidefinite constraints, we create a lattice where each coordinate is a multiple

of ε
d
√
d
. This gives us a metric ε-net of size O

((
d
√
d

ε

)d
)

, and so we can reduce the infinite

constraint space into that many constraints of the form zTXz ≥ 0 where z ∈ Rd are points on the
metric ε-net. We can call the original (infinitely numerous) constraints Y , and the new constraints
Z.

Because our algorithm now solves an LP, our combinatorial dimension is ν = d2, and our VC
dimension is λ = d2 + 1. Further, the problems satisfy the properties (P1) and (P2). Finally,
because of the different formulation of our nets, we have to show (P3), again. We show that for the
optimal solution ⟨C,X⟩F satisfying a set of snapped constraints Q and Z, the solution X + 3ε

d
I ,

where I is the d × d identity matrix, gives an additive ε-approximation to the optimal solution
⟨C,X∗⟩F approximately satisfying the original constraints P and Y . We show this using three
lemmas.

Lemma 3.13. The solution X + 3ε
d
I approximately satisfies all original constraint points pi ∈ P ,

i.e., ⟨A(i), X + 3ε
d
I⟩F ≤ b(i) +O(ε) for all i ∈ [n].
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Proof. First, for any i, from our problem description, we know that ⟨A′(i, X⟩F ≤ b′(i). Working
with that, we get

⟨A′(i, X⟩F ≤ b′(i)

=⇒
∑
j,k

A
′(i)
jk Xjk ≤ b′(i)

=⇒
∑
j,k

(
A

(i)
jk + e

(i)
jk

)
Xjk ≤ b(i) + f (i)

=⇒
∑
j,k

A
(i)
jkXjk ≤ b(i) + f (i) +

∑
j,k

−e(i)jkXjk.

First, we look at f (i). It is bounded by
∣∣f (i)

∣∣, which by construction is bounded by ε. Secondly, we

look at
∑

j,k−e
(i)
jkXjk. That is bounded by

∑
j,k

∣∣∣e(i)jkXjk

∣∣∣ = ∑
j,k

∣∣∣e(i)jk

∣∣∣ |Xjk|. We can bound this

quantity in two ways. First, by construction,
∣∣∣e(i)jk

∣∣∣ ≤ ε
min(d,S)

. Thus, we get that

∑
j,k

∣∣∣e(i)jk

∣∣∣ |Xjk| ≤
∑
j,k

ε

min(d, S)
|Xjk|

=
ε

min(d, S)

∑
j,k

|Xjk|

=
ε

min(d, S)
∥Xjk∥ where ∥·∥ is the Entry-wise 1-norm

≤ ε

min(d, S)
d ∥Xjk∥∗ where ∥·∥∗ is the Schatten 1-norm

=
dε

min(d, S)
.

Secondly, for all j, k, we have that |Xjk| ≤ ∥X∥2 ≤ ∥X∥F ≤ ∥X∥∗ = 1. We can thus plug this in
to get

∑
j,k

∣∣∣e(i)jk

∣∣∣ |Xjk| ≤
∑
j,k

∣∣∣e(i)jk

∣∣∣
≤ S

ε

min(d, S)
since at most S e

(i)
jk ’s are nonzero.

Thus, putting these together, we have that
∑

j,k

∣∣∣e(i)jk

∣∣∣ |Xjk| ≤ ε. So, plugging these in, we get the
result

⟨A(i), X⟩F ≤ b(i) + 2ε.
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Now, we can explore ⟨A(i), X + 3ε
d
I⟩F . We can see that

⟨A(i), X +
3ε

d
I⟩F =

∑
j

A
(i)
jj

(
Xjj +

3ε

d

)
+
∑
j ̸=k

A
(i)
jkXjk

= ⟨A(i), X⟩F +
3ε

d

∑
j

A
(i)
jj

≤ ⟨A(i), X⟩F +
3ε

d
d
∥∥A(i)

∥∥
2

≤ b(i) + 2ε+ 3ε

= b(i) + 5ε

as desired.

Lemma 3.14. The solution X + 3ε
d
I satisfies all constraints y ∈ Y , i.e., yT (X + 3ε

d
I)y ≥ 0 for

all y ∈ Rd such that ∥y∥ = 1.

Proof. First, from our lattice construction, we know that zTXz ≥ 0 for z = y+e, where ∥e∥ ≤ ε
d
.

If e = 0⃗ then we directly have the desired bounds. Assuming e ̸= 0⃗, we get

zTXz ≥ 0

=⇒ (y + e)TX(y + e) ≥ 0

=⇒ yTXy ≥ −eTXy − yTXe− eTXe.

First, we look at eTXe. Notice that this is bounded by
∣∣eTXe

∣∣, which is bounded by ∥e∥ ∥Xe∥
by Cauchy-Schwarz. Further, ∥Xe∥ is bounded by ∥X∥2 ∥e∥. We already saw in Lemma 3.13 that
∥X∥2 is bounded by 1, and by construction ∥e∥ ≤ ε

d
. Thus eTXe ≤

(
ε
d

)2 ≤ ε
d
.

Now, looking at eTXy and yTXe, we can use similar logic to bound both by
∥∥eT

∥∥ ∥y∥ ∥X∥.
Since ∥y∥ = 1 by construction, these terms are then bounded by ε

d
.

Plugging these in, we get the result

yTXy ≥ −3ε
d
.

Now, we can look at yT (X + 3ε
d
I)y. We see that

yT (X +
3ε

d
I)y = yTXy +

3ε

d
yT Iy

= yTXy +
3ε

d
∥y∥2

≥ −3ε

d
+

3ε

d
= 0

as desired.
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Lemma 3.15. The objective of the snapped LP is at most O(ε) smaller than the objective of
SDP (3.5), i.e., ⟨C,X + 3ε

d
I⟩F ≥ ⟨C,X∗⟩F −O(ε).

Proof. We know that for any i, ⟨A(i), X∗⟩F ≤ b(i). Further, X∗ ⪰ 0 So, by the same argument as
Lemmas 3.13 and 3.14

⟨A′(i), X∗⟩F ≤ b′(i) + 2ε and zTX∗z ≥ −3ε

d
.

Thus, X∗ is a solution to the additive ε-approximation of the snapped LP. So, if we denote the
optimal solution to it as X ′, we have that ⟨C,X ′⟩F ≥ ⟨C,X∗⟩F . It then only remains to show that
the optimal solution to the additive ε-approximation of the snapped LP X ′ is not too much larger
than the optimal solution to the exact snapped LP. This follows because both ∥C∥F and ∥X∥f
are bounded by 1. the LP formulation of the SDP has bounded vectors c and x. So, we can use
the same analysis as done for the proof of 3.11. So, we have that ⟨C,X ′⟩F ≤ ⟨C,X⟩F + O(ε).
Plugging this in, we get

⟨C,X⟩F ≥ ⟨C,X∗⟩F −O(ε).

Finally, it only remains to show that

⟨C,X +
3ε

d
I⟩F ≥ ⟨C,X⟩F −O(ε),

This also follows similarly to the analysis of Lemma 3.13, such that

⟨C,X +
3ε

d
I⟩F = ⟨C,X⟩F +

3ε

d

∑
j

Cjj

≥ ⟨C,X⟩F −
3ε

d

∣∣∣∣∣∑
j

Cjj

∣∣∣∣∣
≥ ⟨C,X⟩F −

3ε

d
d ∥C∥2

≥ ⟨C,X⟩F − 3ε ∥C∥F
≥ ⟨C,X⟩F − 3ε

as desired.

Together, these lemmas show that the solution X + 3ε
d
I satisfies the constraints P and Y , and

is within additive O(ε) of the objective function for SDP (3.5), which together show (P3).

Thus, our algorithm can be utilized to solve additive ε-approximation SDP problems. Notice
that a solution to an SDP is a point (X + 3ε

d
I) and can thus be stored in bit(p) space. Further,

violator checks can easily be done on a stored solution by checking whether it satisfies a given
constraint, giving us TV = O(1) for SDP problems. For the bounds of the problem, notice that we
convert an SDP problem into an LP problem on d2 dimensions. Thus, we can use the TB for LPs
with d2 variables and m constraints. Therefore, we can achieve the following result for bounded
SDP problems, using the results from Theorems 3.1, 3.2, and 3.3.

40



Theorem 3.16. For any s ∈ [1, d2 log (1/ε)], there exists a randomized algorithm to compute an
additive ε-approximation solution to bounded SDP problems with high probability in the following
models, where bit(p) is the bit complexity to store one point p ∈ P , and

N ∈
(
d2

S

)
·O

((
min(d,S)

ε

)S
1
ε

)
+O

((
d
√
d

ε

)d
)

.

• Multipass Streaming: An O (d2s) pass algorithm with O
(
d14sN 3/s

)
· polylog (d,N)+

O
(
d2s+ d4N 1/s log(dN 1/s)

)
· bit(p) space complexity and Õ (d2s (n+md2 + d5)) time

complexity.

• Strict Turnstile: An O (d2s) pass algorithm with O
(
d14sN 3/s

)
· polylog (d,N)+

O
(
d2s+ d4N 1/s log(dN 1/s)

)
· bit(p) space complexity and Õ (d2s (n+md2 + d5)) time

complexity.

• Coordinator/Parallel Computation: An algorithm with O (d2s) rounds of communication
and O

((
k + d4N 1/s log

(
dN 1/s

))
· bit(p) + k log

(
dN 1/s

)
+ kd2 logN

)
load. The local com-

putation time of the coordinator is O (d2s (md2 + d5 + k)), and the local computation time
of each machine i is O (d2sni) where ni = |Pi|.

3.8.1 Solving SDP Saddle Point Problems in the Unit Simplex
One example of a bounded SDP where our algorithm can be used to achieve a useful result is the
saddle point problem

max
X

min
p∈∆n

∑
i∈[n]

pi
(
⟨A(i), X⟩F − b(i)

)
(3.6)

where for all i ∈ [n], A(i) ∈ Rd×d are symmetric and b(i) ∈ R. ∆n = {x ∈ Rn | x ≥ 0, ∥x∥1 = 1}
is the n − 1 dimensional unit simplex, and X ∈ Rd×d is a positive semidefinite matrix of trace 1.
In the case where the optimal solution to Equation 3.6 is nonnegative, then solving it up to additive
ε error is equivalent to finding an X that satisfies all constraints ⟨A(i), X⟩F ≥ b(i) up to additive ε
error. The optimization version of this is maximizing a margin σ where ⟨A(i), X⟩F ≥ b(i) + σ.

Notice that the constraints of the problem directly fit into our framework for bounded SDP
problems, and the margin σ can be represented as an aditional variable in our LP formulation.
The maximization objective maxσ now requires a 1-hot vector c, which fits into our boundedness
constraint.

Thus, we can use our general framework for bounded SDP problems in order to solve this
problem up to an additive ε-approximation, in the bounds given in Theorem 3.16.
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Chapter 4

Lower Bounds

In this section, we motivate the usage of multipass algorithms for achieving subexponential space
complexity in (1 + ε)-approximations for LP-type problems in the high accuracy regime, where
d < (1/ε)0.999. We establish these lower bounds for the MEB and linear SVM problems by analyz-
ing the communication complexity with reductions from the Indexing problem.

It is a well-known result that a lower bound on the 1-round communication complexity for a
problem gives a lower bound on the space complexity of 1-pass streaming algorithms, as a 1-pass
streaming algorithm can be turned into a 1-round communication protocol by having Alice run the
streaming algorithm on her points and send the state of the algorithm to Bob, who finishes running
the algorithm on his points [6], meaning that our communication complexity lower bounds give
the same space complexity lower bounds for the MEB and linear SVM problems.

We use the standard two party communication model. A problem in this model is a function
P : A× B → C. Alice receives an input A ∈ A and Bob receives an input B ∈ B. In an r-round
protocol, Alice and Bob communicate up to r messages with each other, where the sender and
receiver alternate with each round. In particular, if r is even then Bob sends the first message to
Alice. If r is odd then Alice sends the first message to Bob. After r rounds of communication, Bob
outputs some C ∈ C. The goal is for Bob to output P (A,B).

The r-round communication complexity of a problem P , denoted CCr(P ), is the minimum
worst-case cost over all protocols in which Bob correctly outputs P (A,B) with probability at least
2/3. In this model, cost is measured by the total number of bits sent between Alice and Bob
throughout the r messages.

In the Indexing Problem, denoted Indn, Alice is given a binary string b ∈ {0, 1}n and Bob is
given an index i ∈ [n]. The goal is for Bob to output the ith bit of b. It is well-known that the
1-round randomized communication complexity of Indn is CC1(Indn) = Ω(n).
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4.1 Lower Bound for the MEB Problem
In this section, we provide the following lower bound for the communication complexity of the
1-round MEB problem.

Theorem 4.1. For d < (1/ε)0.999, any 1-round communication protocol which yields a
(1 + ε)-approximation for the MEB problem requires

(
1
ε

)Ω(d) bits of communication.

Proof. The proof proceeds by reduction from Indn to MEB. Given an instance of the indexing
problem, Alice uses a scheme in order to transform her bitstring b into a set of at most n points
P ∈ Rd, one point pj for each bj = 1. Separately, Bob uses a scheme in order to transform his
index i into a single point q ∈ Rd. We then show that if bi = 1, then the MEB of the at most n+1
points P ∪ {q} obtained by Alice and Bob has radius 2, while if bi = 0 then the MEB has radius
at most 2−Ω(ε) where ε satisfies n =

(
1
ε

)⌊d/4⌋. This therefore gives a
(
1
ε

)Ω(d) lower bound on the
communication complexity of any 1-round communication protocol for a (1 + ε)-approximation,
which gives the same lower bound on the space complexity of any 1-pass streaming algorithm for
the (1 + ε)-approximation MEB problem. A full proof is provided hereafter, which first shows a
lower bound for d = 2, and then extends it to higher dimensions.

First we proceed with the proof when d = 2.

Let ε =
(
1
n

)2 and Alice’s points p(1),p(2), . . . ,p(n) ∈ R2 be equally spaced points on the unit
circle, where

p(j) =
(
cos

(
2πj
√
ε
)
, sin

(
2πj
√
ε
))

.

For each j ∈ [n], if bj = 1, then Alice adds p(j) to her portion of the input stream to the MEB
problem. Bob adds to his portion of the input stream the point q ∈ R2, given by

q =
(
3 cos

(
π + 2πi

√
ε
)
, 3 sin

(
π + 2πi

√
ε
))

,

such that q is the point opposite p(i) through the origin such that
∥∥p(i) − q

∥∥ = 4. Without loss of
generality, we assume that i = n. Then, we have p(i) = (1, 0) and q = (−3, 0). If bi = 1, then
both p(i) and q are part of the input stream to Alice and Bob’s instance of MEB. In this case, it is
easy to see that the MEB is that which has a diameter from p(i) to q, meaning that the MEB has
radius 2.

However, if bi = 0, then p(i) is not part of the input to the MEB instance. Thus, it remains
to show that

∥∥p(j) − q
∥∥ ≤ 4 − Ω(ε) for all other j where bj = 1. It is clear that we only need

to consider j such that p(j) is to the right of the origin, as any point p(j) left of the origin clearly
satisfies this inequality. We can bound the square of this distance using the Pythagorean theorem
as

∥p(j) − q∥2 =
(
cos

(
2πj
√
ε
)
+ 3

)2
+
(
sin

(
2πj
√
ε
))2

= 10 + 6 cos
(
2πj
√
ε
)
.
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Thus, as this distance only depends on the cosine, and thus only on the x coordinate of p(j), we
can see that the distance from q is larger the further right a point is. Thus, the radius of the MEB
is bounded above by the distance from q to p(1) (or symmetrically p(n−1)). So, plugging in for j
we have that

∥p(1) − q∥2 = 10 + 6 cos
(
2π
√
ε
)
.

It is a known result that cos(θ) < 1− 4θ2

π2 for all θ ∈ (0, π
2
) [11]. Thus we have that

∥p(1) − q∥2 = 16− 96ε

which yields that the distance between p(1) and q is 2− Ω(ε), giving our desired result.

We now extend this idea to an arbitrary dimension d satisfying d <
(
1
ε

)0.999.
Without loss of generality, we assume d is even. If it is not, we can simply disregard one

of the dimensions. Let ε =
(
1
n

)4/d. As in the 2 dimensional case, we define Alice’s n points
p(1),p(2), . . . ,p(n) ∈ Rd where each point p(j) is given by a sequence {jk}

d/2
k=1 in {1, 2, . . . , 1√

ε
},

so that the ℓ-th coordinate of p(j) is given by

p
(j)
ℓ =


√

2
d
cos

(
2πj ℓ+1

2

√
ε
)

if ℓ is odd,√
2
d
sin

(
2πj ℓ

2

√
ε
)

if ℓ is even.

Informally, we pair up the axes of d-dimensional space, and choose the points on the unit circle
which when projected onto the plane of a pair of axes will resemble the 2-dimensional case. Alice
and Bob choose their points as in the 2-dimensional case. Without loss of generality, we assume
that i = n and that p(i) is given by the sequence ik =

√
ε for all k ∈ [d

2
]. Then, we have that p(i) is

the point where the ℓ-th coordinate is given by

p
(i)
ℓ =

{√
2
d

if ℓ is odd,

0 if ℓ is even.

We then have that q is point such that the ℓ-th coordinate is given by

qℓ =

{
−3

√
2
d

if ℓ is odd,

0 if ℓ is even.

As in the 2-dimensional case, it can easily be seen that if bi = 1, then the MEB has radius 2. If
bi = 0, then the radius of the MEB is bounded above by the distance from q to p(j), where p(j) is

45



given by j1 = 1 and jk =
1√
ε

for all k ̸= 1. We can now bound the squared distance.

∥p(j) − q∥2 =
d/2∑
k=1

[√
2

d
cos

(
2πjk
√
ε
)
+ 3

√
2

d

]2

+

[√
2

d
sin

(
2πjk
√
ε
)]2

=

d/2∑
k=1

20

d
+

12

d
cos

(
2πjk
√
ε
)

=

(
20

d
+

12

d
cos

(
2π
√
ε
))

+

d/2∑
k=2

(
20

d
+

12

d
cos

(
2πjk
√
ε
))

≤
(
20

d
+

12

d
cos

(
2π
√
ε
))

+

d/2∑
k=2

(
20

d
+

12

d

)
bounding cos by 1

=

(
20

d
+

12

d
cos

(
2π
√
ε
))

+

(
16− 32

d

)
≤

(
20

d
+

12

d
− 196ε

d

)
+

(
16− 32

d

)
bounding cos by [11]

= 16− 192ε

d
.

This yields that the distance between p(j) and q is 2− Ω( ε
d
), giving a lower bound of

(
1
εd

)Ω(d).

In the regime where d <
(
1
ε

)0.999, this is
(
1
ε

)Ω(d), which is our desired result.

4.2 Lower Bounds for the Linear SVM Problem
In this section, we provide the following lower bounds for the communication complexity of the
1-round linear SVM problem.

Theorem 4.2. For d < (1/ε)0.999, any 1-round communication protocol which yields a
(1 + ε)-approximation for the linear SVM problem requires

(
1
ε

)Ω(d) bits of communication.

Proof. The proof follows the structure of the proof for Theorem 4.1, with a reduction from Indn to
linear SVM. Alice transforms her bitstring into at most n points labeled−1, and Bob transforms his
index into a point labeled +1. We show then that if bi = 1, then the separating hyperplane (u, b)
of P ∪ {q} obtained by Alice and Bob has ∥u∥ = 4, while if bi = 0 then ∥u∥ ≤ 4 − Ω

(
ε
d

)
.

This therefore gives a
(
1
ε

)Ω(d) lower bound on the communication complexity of any 1-round
communication protocol for a (1 + ε)-approximation, which gives the same lower bound on the
space complexity of any 1-pass streaming algorithm for the (1 + ε)-approximation linear SVM
problem. A full proof is provided hereafter.
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Again, without loss of generality, we assume d is even. If it is not, we can simply disregard
one of the dimensions. Let ε =

(
1
n

)4/d. We define Alice’s n points, which are all labelled −1,(
p(1),−1

)
,
(
p(2),−1

)
, . . . ,

(
p(n),−1

)
∈ Rd × {−1,+1} where each point p(j) is given by a

sequence {jk}
d/2
k=1 in {1, 2, . . . , 1√

ε
}, so that the ℓ-th coordinate of p(j) is given by

p
(j)
ℓ =


√

2
d
cos

(
2πj ℓ+1

2

√
ε
)

if ℓ is odd,√
2
d
sin

(
2πj ℓ

2

√
ε
)

if ℓ is even.

Alice and bob construct an input to the Linear SVM problem as follows: Alice adds to the input
the labeled point (p(j),−1) for each j ∈ [n] such that bj = 1, and Bob adds to the input the labeled
point (2p(i),+1). Call this instance of Linear SVM I, and let (u∗, b∗) be the optimal solution to
this instance. We make use of the following two lemmas, which will be proven later.

Lemma 4.3. If bi = 1, then ∥u∗∥ = 4.

Lemma 4.4. If bi = 0, then ∥u∗∥ ≤ 4− Ω( ε
d
).

It then follows from the above lemmas that Alice and Bob can solve the indexing problem
by obtaining a (1 + Θ( ε

d
))-approximation for I. Indexing has a lower bound of Ω(n) bits of

communication, so we have that in general, a (1 + ε)-approximation of linear SVM must have a
lower bound of

(
1
εd

)Ω(d) bits of communication. In the regime where d <
(
1
ε

)0.999, this is a lower

bound of
(
1
ε

)Ω(d).

Proof of Lemma 4.3. Suppose that bi = 1. Let v be the vector given by

v =
[
1 0 1 0 · · · 1 0

]T
.

Without loss of generality, assume that p(i) is the point characterized by j1 = j2 = · · · = jd/2 = 0,

that is, p(i) =
√

1
2d
v. This can always be achieved via a rotation of the working space. Consider

the hyperplane given by
√

32
d
vTx− 3 = 0. For any point p(j) which was potentially inserted into

I with label −1 by Alice, we have√
32

d
vTp(j) − b =

√
16

d2

d/2∑
ℓ=1

cos(2πjℓ
√
ε)− 3

≤ d

2

√
16

d2
− 3

= 1.
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Similarly, for the point 2p(i) inserted into I with label +1 by Bob, we have

2

√
32

d
vTp(i) − 3 = d

√
16

d2
− 3

= 1.

Thus, (
√

32
d
v, 3) is a feasible solution to I. To see that this is optimal, observe

∥2p(i) − p(i)∥ = ∥p(i)∥ = 1

2
=

2∥∥∥√32
d
v
∥∥∥ .

Thus, we must have that ∥u∗∥2 = 4.

Proof of Lemma 4.4. Suppose that bi = 0. Let v be as defined in the proof of Lemma 4.3. For
each j ∈ [n], let q(j) be the orthogonal projection of p(j) onto the line spanned by v. Let J
be the instance of linear SVM consisting of the pairs (q(j),−1) for all j ∈ [n] such that bj = 1
and the pair (2p(i),+1). It follows from orthogonality that if the hyperplane αvTx − β = 0 is a
feasible solution to J , then it must also be a feasible solution to I. Using this fact, we proceed by
showing there exists a hyperplane αvTx−β = 0 which is a feasible solution to J and is such that
∥αv∥2 ≤ 4− Ω( ε

d
). First, we observe that for all j ∈ [n]

q(j) = projv(p
(j))

=

〈
p(j),v

〉
⟨v,v⟩

v

=

 d/2∑
ℓ=1

2

d

√
1

2d
cos(2πjℓ

√
ε)

v.
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With this, we obtain that for each j such that bj = 1, we have

∥∥2p(i) − q(j)
∥∥ = ∥v∥

∣∣∣∣∣∣
√

2

d
−

d/2∑
ℓ=1

2

d

√
1

2d
cos(2πjℓ

√
ε)

∣∣∣∣∣∣
=

√
d

2

∣∣∣∣∣∣
√

2

d
−

d/2∑
ℓ=1

2

d

√
1

2d
cos(2πjℓ

√
ε)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1−
d/2∑
ℓ

1

d
cos(2πjℓ

√
ε)

∣∣∣∣∣∣
≥

∣∣∣∣1− (
1

d

(
d

2
− 1

)
+

1

d
cos(2π

√
ε)

)∣∣∣∣
=

∣∣∣∣12 +
1

d

(
1− cos(2π

√
ε)
)∣∣∣∣

≥
∣∣∣∣12 +

1

d
(1− (1− 16ε))

∣∣∣∣
=

1

2
+

16ε

d
.

Since all points in J are in the line spanned by v, and the points are separable, there must exist a
feasible hyperplane αvTx− β = 0 such that

2

∥αv∥
= min

{∥∥2p(i) − q(j)
∥∥ : j ∈ [n] and bj = 1

}
≥ 1

2
+

16ε

d
.

Fnally, this gives that

∥αv∥ ≤ 4d

d+ 32ε
≤ 4− 8ε

d
= 4− Ω

(ε
d

)
.

giving us the desired result.

Theorem 4.5. For d < (1/ε)0.999, any 1-round communication protocol which determines is a set

of binary labeled points is γ-separable requires
(

1
γ

)Ω(d)

bits of communication.

Proof. The proof is similar to that of Theorem 4.2, with a reduction from Indn to determining
γ-separability. Alice transforms her bitstring exctly as in the proof of Theorem 4.2, and Bob
chooses a set of d points, labeled +1, which lie in the unique hyperplane that is orthogonal to the
line spanned by the point p(i), which is the point Alice would transform bi in the case where bi = 1,
and also contains p(i), such that p(i) lies in the segment between some pair of points chosen by
Bob.

Since p(i) can be written as a convex combination of two of Bob’s points, it is clear that the
points chosen by Alice and Bob are inseparable if bi = 1, as then Alice will include p(i) in P .
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If however bi = 0, then there will be a separating hyperplane parallel to Bob’s set of points,
and midway between that and the closest point of Alice. This hyperplane induces a margin
of size Ω

(
16γ
d

)
, which gives a lower bound on the communication complexity of determining

γ-separability of
(

1
γ

)Ω(d)

.

50



Chapter 5

Conclusion

In this work, we explore solving (1+ε)-multiplicative and ε-additive approximation LP-type prob-
lems in the multiple linear sketching model. We achieve results with pass and space complexities
polynomial in the dimensionality of the problem d and polylogarithmic in ε. This provides expo-
nential improvements on many current results in the high accuracy regime, i.e. when d < (1/ε)0.999.
We apply our algorithm to various big data models and LP-type problems, namely the multipass
streaming, strict turnstile, coordinator, and parallel computation models, as well as the MEB, Lin-
ear SVM, Bounded LP, and Bounded SDP problems. We also provide lower bounds on the MEB
and Linear SVM problem in the single pass model, motivating our multi-pass approach.
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