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Abstract
Transient execution attacks present an unprecedented threat to computing sys-

tems. Protecting the operating system (OS) is exceptionally challenging because a
transient execution gadget in the OS can potentially leak the entire memory.

In this work, we propose Perspective, a principled framework for building pliable
and secure speculative execution defenses for the OS. Perspective offers a pliable in-
terface that allows the OS to communicate its security requirements to hardware
defenses, enabling tailored protection against transient execution attacks with lit-
tle performance overhead. The design of Perspective is driven by a taxonomy of
transient execution attacks in the OS kernel: (i) active transient execution attacks,
where the attacker process exploits its own kernel thread to speculatively execute a
transient execution gadget in the kernel, and (ii) passive transient execution attacks,
where the attacker coerces the victim process’s kernel thread to execute a transient
execution gadget. Based on the taxonomy, Perspective introduces Data Speculation
Views (DSVs) and Instruction Speculation Views (ISVs), to mitigate active and pas-
sive attacks, respectively. DSVs define the ownership of kernel data by a given exe-
cution context and block any speculative access to data outside the DSV. ISVs define
the set of kernel functions that can be speculatively executed by a given execution
context. Any transmitter instructions—whose execution could leak secrets, such as
load instructions—that belong to kernel functions outside the ISVs are blocked from
speculative execution. ISVs open up new opportunities of (i) swiftly patching gad-
gets in the OS, (ii) reducing the surface of passive attacks, and (iii) speeding up the
process of auditing transient execution gadgets in the OS.

We build Perspective’s software components in the Linux kernel and model the
hardware components in gem5. We evaluate the security and performance of Per-
spective on a set of microbenchmarks and datacenter applications. Perspective has
an execution overhead over an unprotected kernel of only 3.5% on microbenchmarks
and only 1.2% on datacenter applications.
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Chapter 1

Introduction

Transient execution attacks [59, 60, 69, 69, 87, 107, 123, 123, 129, 135, 141, 145, 147, 149,
151] shattered the security isolation wall of modern processors. These attacks take advantage of
transient instructions that may execute but not subsequently commit. An adversary can leverage
speculative execution gadgets to leak sensitive data over microarchitectural covert channels [109,
157]. Such gadgets can leak any information within the address space in which they reside.
Precariously, transient execution gadgets in the kernel can potentially leak all memory. This is
because operating systems (OS), such as Linux, always map all physical frames [101] in the
kernel address space for performance.

The unabating increase of the OS code base further exacerbates the threat of transient ex-
ecution attacks. Manual code reviews by developers and security auditing become tremen-
dously difficult, if not impossible. Case in point, the Linux kernel has reached 23 MLOC in
2023 [1]. Inevitably, this vast attack surface has led to a continuous stream of speculative execu-
tion CVEs [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 26, 27, 28, 29, 32,
33, 34, 37, 38, 41].

A large body of work has focused on mitigating speculative execution vulnerabilities through
software or hardware defense schemes. On the one hand, deployed software solutions are “spot
mitigations” that provide limited coverage and often miss corner cases, requiring repeated efforts
to resolve [6, 16, 18, 35, 43]. Furthermore, software approaches such as page table isolation [50,
56, 73, 80, 130, 155], Retpolines [142], LFENCEs [51], and even more heavyweight solutions
such as core scheduling [99], cache flushing [100], and SLH [61] can have a significant impact on
performance. For example, SLH shows a system call overhead of 65% on average [86]. Beyond
performance, the deployment of software mitigations requires a lengthy procedure that involves
kernel patches and even microcode updates. Given the requirement to manually add protection
measures for identified gadgets [98], a principled way of mitigating transient execution attacks
is needed.

On the other hand, several hardware solutions have been proposed [47, 62, 63, 72, 81, 85,
93, 97, 110, 112, 120, 126, 127, 139, 140, 150, 156, 158, 159, 163]. Predominantly, hardware
defenses aim to be software transparent and backward compatible. However, without software
information, hardware defenses are rigid, have to be always enabled, may miss corner cases, and
may severely impact performance. Even some of the best-performing solutions [47, 159, 163]
require intrusive changes in the core pipeline and especially in the cache hierarchy. Unfortu-
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nately, such solutions are often impractical for adoption due to the significant verification costs
inherited by their intricate interactions with the microarchitecture.

1.1 Pliable Secure OS Speculation
In this thesis, we propose Perspective [82], a principled framework for building efficient, light-
weight speculative execution defenses for the OS kernel. Perspective offers a pliable interface
between software and hardware that allows the OS to communicate its security requirements to
the underlying hardware protection mechanisms. This interface opens up a new design space
of tailored protection—the hardware protection mechanism selectively protects vulnerable in-
structions based on the security goals and the landscape of transient execution vulnerabilities,
minimizing unnecessary protection. As a result, the hardware protection mechanism can be as
simple as blocking speculative execution of vulnerable instructions while still attaining a low
execution overhead.

The design of Perspective is driven by a taxonomy of transient execution attacks in the OS
kernel. In this taxonomy, we identify two attack scenarios in the kernel: (i) active transient exe-
cution attacks, where the attacker process exploits its own kernel thread to speculatively execute
a transient execution gadget in the kernel and (ii) passive transient execution attacks, where the
attacker coerces the victim process’s kernel thread to speculatively execute a kernel function con-
taining transient execution gadgets. This taxonomy is agnostic to attack variants, such as Spectre
v1 [87], Spectre v2 [87], Spectre RSB [88, 113], Retbleed [151], BHI [55], and others.

Based on our taxonomy, Perspective introduces two types of speculation views, Data Spec-
ulation Views (DSVs) and Instruction Speculation Views (ISVs), to mitigate active and passive
attacks, respectively. A speculation view can be associated with an execution context, e.g., a
process or a container.

The intuition of DSVs is that in an active attack, the attacker process exploits its kernel
thread to speculatively access and leak the data owned by other victim processes or the kernel.
Therefore, a DSV defines the set of data that a given execution context owns. Based on the DSV,
the hardware mechanism can block any speculative access to data that are outside the DSV of
the current execution context, as such access would violate data ownership. As a result, DSVs
eliminate active attacks. In this thesis, we propose one possible approach for associating the data
to the execution context that allocates them.

However, DSVs do not mitigate passive attacks. This is because in passive attacks, the victim
process’s kernel thread speculatively executes kernel functions containing transient execution
gadgets to access and leak its own data, which does not violate data ownership. Therefore, to
thwart passive attacks, Perspective proposes the ISV interface. ISVs enable an execution context
to define the set of kernel functions that are trusted by the context. Any transmitter instructions
that belong to kernel functions outside the ISVs are blocked from speculative execution. In this
thesis, we propose several approaches to generate ISVs by marrying concepts from system call
interposition [3, 5, 67, 77, 83, 96, 136].

The security benefits of ISVs are manyfold. First, ISVs provide an interface to swiftly miti-
gate unforeseen vulnerable kernel functions that contain transient execution gadgets. This benefit
is vital given the continuous discovery of speculative execution vulnerabilities in kernel func-
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tions. Second, a victim program can exclude a large portion of kernel functions that are not used
or infrequently used from its ISV. This use case is akin to kernel debloating [91, 92], reducing
the victim’s surface of passive attacks. Finally, since ISVs provide the guarantee that kernel
functions outside ISVs are blocked from speculative execution, one only needs to audit kernel
functions within ISVs for transient execution gadgets. This approach speeds up the auditing pro-
cess, as ISVs often include only a small fraction of the whole OS kernel functions. Moreover,
any gadgets discovered during auditing can be excluded from ISVs, enhancing security.

We build Perspective’s software components in the Linux kernel and model the hardware
components in gem5. We evaluate the security and performance of Perspective based on a set of
microbenchmarks and datacenter applications. Compared to unmodified Linux running on un-
safe hardware, Perspective’s DSVs eliminate active speculative execution attacks. Furthermore,
ISVs reduce speculatively accessible functions by 95.1%. We then leverage the reduced search
space provided by ISVs to speedup a state-of-the-art speculative execution scanner between 1.14-
2.23× and 1.57× on average, and further block all identified gadgets. Finally, Perspective has
an execution overhead over an unprotected kernel of 3.5% on microbenchmarks and 1.2% on
datacenter applications.

We make the following contributions:
• A taxonomy of transient execution attacks and CVEs in the kernel that generalizes transient

execution attacks into active and passive attacks. The taxonomy is agnostic to specific
attack variants such as Spectre v1 and v2.

• Perspective introduces a principled framework for pliable and secure speculative execu-
tion in the kernel through two types of speculation views, data speculation views (DSVs)
and instruction speculation views (ISVs), which protect against active and passive attacks,
respectively.

• We present several design points on top of Perspective. These design points are based
on tracking data ownership through allocation for DSVs and system call interposition for
ISVs.

• A comprehensive security and performance evaluation of Perspective using microbench-
marks and datacenter applications.
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Chapter 2

Background

In this chapter, we provide a brief overview of modern processor execution, transient execution
attacks, and operating system security.

2.1 Speculative Execution
Speculative execution is a fundamental performance optimization of high-performance proces-
sors. Modern processors employ this technique to maintain high throughput and hide latency of
operations such as memory accesses and branch resolutions. When the processor encounters an
instruction whose outcome depends on a previous, yet-to-complete operation (such as a branch
instruction waiting for a condition evaluation), rather than stalling, it makes a prediction about
the outcome and continues executing instructions along the predicted path. If the prediction is
correct, the processor commits these speculatively executed instructions, resulting in improved
performance. If the prediction is wrong, the processor discards, or sqaushes, the results and rolls
back to the previous architectural state. With speculative execution, some instructions may ex-
ecute speculatively but do not commit due to pipeline squashes. We refer to the execution of
instructions that do not commit as transient execution.

2.2 Transient Execution Attacks
Although transient execution cannot alter architectural states, it can leave sensitive information in
microarchitectural states, such as caches, which can be recovered by attackers through microar-
chitectural covert channels [49, 109, 157]. This class of attacks is known as transient execution
attacks [59, 87, 107]. In this thesis, we focus on Spectre-type attacks [59] that exploit transient
execution caused by various prediction mechanisms in the pipeline, such as control-flow mispre-
diction or memory-dependency misprediction. Such attacks exploit fundamental performance
optimizations, making them difficult to defend against.

Spectre v1. The most notable variant of Spectre-type attacks is Spectre v1 [87], which exploits
conditional branch mispredictions. Listing 2.1 shows a Spectre v1 code snippet. The snippet
takes an index variable idx as input, which is controlled by the user. The index is then tested
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Figure 2.1: System call interposition overview.

against the size of array1 to prevent out-of-bound accesses (Line 1). If the check passes,
the code loads an element from array1 (Line 2), which is in turn used as an index to access
array2 (Line 3).

1 if (idx < array1_size) { // mispredicted
2 u8 s = array1[idx]; // access
3 u8 y = array2[s*4096]; // transmit
4 }

Listing 2.1: Spectre v1 [87].

To carry out a Spectre v1 attack, the attacker first mistrains the branch responsible for per-
forming the bounds check (Line 1). Then, the attacker re-invokes the code snippet with an
out-of-bound index. The misstrained branch is taken and transiently executes the out-of-bound
memory access on Line 2, potentially reading a secret value and leaking it through a cache-based
covert channel [157]. This attack process can be generalized into two steps: (i) transiently access
the secret (Line 2); and (ii) transmit the secret through a covert channel (Line 3). We refer to a
code snippet that performs a combination of these two steps as a transient execution gadget.
Spectre v2 & Spectre RSB. Speculative control-flow hijacking attacks, coerce the victim to
transiently execute unintended code paths by exploiting indirect branch and return address pre-
diction, potentially leading to unauthorized data accesses. For example, the attacker can poi-
son a branch target buffer (BTB) entry of a victim indirect branch and point the jump target to
a transient execution gadget. This variant is known as Spectre v2 [87]. Similarly, in Spectre
RSB [88, 113] the attacker poisons a return stack buffer (RSB) entry to speculatively hijack the
control flow of a victim return.

2.3 Operating System Security Isolation
In contemporary operating systems, such as Linux, virtual memory provides memory isolation
between userspace processes and the kernel. To achieve high performance and avoid the high
cost of context switches, the kernel is designed as a monolithic address space. A monolithic
address space enables fast communication between different kernel components as memory can
be directly accessed by any component without the heavy cost of context switching and inter-
process communication. Furthermore, the kernel includes a direct map [101] area that maps all
physical page frames in the system. Consequently, the kernel does not have to set up and tear
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down mappings when it needs to copy data to and from userspace and can easily obtain physical
addresses.
System Call Interposition. System call interposition is a powerful security technique that
reduces the number of systems calls available to userspace processes. Such techniques [2, 3,
4, 67, 119] have been widely adopted by internet browsers [79], cloud deployments including
Amazon’s Firecracker [46, 53], Google’s gVisor [70], and container technologies [66, 90, 114,
133, 143]. When execution transitions into the kernel, a security monitor inspects the system
call and decides if its execution should proceed. Figure 2.1 shows an overview of system call
interposition. First, in step 1 , the application binary is analyzed to create a deny/allow system
call list. This can be performed either statically through binary analysis or dynamically with
tracing. During deployment in step 2 , the list defines the security contract between the userspace
process and the kernel. Every time a process performs a system call, shown in step 3 , the
security monitor intercepts it. Based on the security contract, the monitor decides to block or
allow it in step 4 .

Linux implements system call interposition through its Secure Computing mode (seccomp).
Seccomp allows processes to restrict their system call interface by specifying which system calls
can be made and what argument values are allowed. These restrictions, or filters, are expressed
through Berkeley Packet Filter (BPF) programs, which operate on system call numbers and their
arguments [102]. When a process makes a system call, the kernel evaluates it against these fil-
ters before execution, either allowing the call to proceed or taking action such as terminating the
process or returning an error. By design, BPF programs cannot dereference pointers, which pre-
vents time-of-check-time-of-use (TOCTOU) attacks that are common in system call interposition
frameworks.
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Chapter 3

Threat Model

Perspective’s threat model considers environments where mutually distrusting parties share hard-
ware resources, such as multi-tenant datacenters. We assume an unprivileged adversary who can
trigger transient kernel execution and illegally access the victim’s secret data. For example, the
attacker can carefully prime microarchitectural structures, craft system call arguments, and ex-
filtrate the secret through transient execution such as Spectre v1 [87], Spectre v2 [87], Spectre
RSB [88, 113], Retbleed [151], BHI [55], and so on. The goal of Perspective is to block transient
execution attacks in the OS kernel that enable information leakage between different userspace
processes or between the kernel and the userspace. Additionally, we assume a strong adversary
that can exploit any side channel. Perspective enforces the Spectre threat model [156]. We do
not consider attacks such as Meltdown [107] and MDS [144], as they are fixed in the newest
processors. Non-transient side channels e.g., cache timing side-channels and attacks that leak
non-speculatively accessed data are out of scope. Attacks such as Rowhammer [84], electromag-
netic attack [131], and power side-channels [108] are out of scope.
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Chapter 4

Motivation and Scope

This chapter presents the motivation and scope for developing defenses against transient execu-
tion attacks in operating systems. It describes a taxonomy of transient execution attacks in the
OS (Section 4.1), and our systematic study of transient execution vulnerabilities in the Linux
kernel (Section 4.2).

4.1 A Taxonomy of Transient Execution Attacks in the OS
Operating systems, including Linux, utilize a monolithic address space for high performance.
For example, Linux uses a direct map [101] that maps all physical page frames in the system.
However, from a security standpoint, a monolithic OS is more susceptible to transient execution
attacks. This is because an attacker can circumvent protections, such as bounds checks, to spec-
ulatively access and leak all system memory from the OS address space. To better comprehend
the risks, we present a taxonomy of transient execution attacks in the OS in two main scenarios.
Note that this taxonomy is agnostic to variants of transient execution attacks, such as Spectre
v1 [87], Spectre v2 [87], Spectre RSB [88, 113], Retbleed [151], BHI [55], and others.

Active Transient Execution Attacks. In an active transient execution attack, unauthorized
memory accesses and subsequent disclosures are performed from the kernel thread of the at-
tacker’s process. Consider the example of Figure 4.1. The upper half shows two userspace
processes, Proca and Procv, representing the attacker and the victim. The goal of Proca is to
steal private data owned by Procv, denoted by Secretv. The lower half represents the monolithic
kernel, which is divided into two parts: (i) the kernel code, containing a transient execution gad-
get located on the path of a system call, with r1 being an argument of the system call; and (ii)
the kernel data, encompassing the entire system memory, including Secretv owned by Procv.

In the example of Figure 4.1, similar to the generic Spectre v1 attack discussed in Section 2.2,
Proca first mistrains the branch responsible for performing the bounds check (Line 1 in Fig-
ure 4.1). This can be achieved by repeatedly making the system call with an r1 value that passes
the bounds check, thereby biasing the branch toward being taken. Subsequently, Proca initiates
a system call with an out-of-bound r1 value ( 1 ), enters the kernel space, and speculatively exe-
cutes the transient execution gadget. Due to previous mistraining and the out-of-bound index r1,
the gadget speculatively accesses Secretv ( 2 ), which is then transmitted to the attacker through
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if (r1 < arr1_size)
s = arr1[r1]; // access
… = arr2[s*4096]; // transmit

Kernel

Userspace 1

2

3

Transient execution
Non-transient execution

Secretv

Kernel Code Kernel Data

Procv
Victim

Proca
Attacker

Attacker

1
2
3

Figure 4.1: Example active transient execution attack in the OS. Input r1 is controlled by the
attacker.

r1 = &secret_v;
…
ret;

Function 1

Userspace 1

2

Transient execution
Non-transient execution

Secretv

Kernel Data

Procv
Victim

Proca
Attacker

s = load r1; // access
… = arr2[s*4096]; // transmitFunction 2

4
Attacker

3Hijack

Figure 4.2: Example passive transient execution attack in the OS.

a cache-based covert channel ( 3 ).
Since active attacks exploit the monolithic nature of kernel data, one of Perspective’s defense

mechanisms, discussed in Chapter 5, is to identify kernel data ownership by different contexts—
e.g., different processes or containers. By blocking speculative memory accesses that violate
ownership, Perspective effectively eradicates active transient execution attacks.
Passive Transient Execution Attacks. In a passive transient execution attack, the victim spec-
ulatively executes both access to the secret and transmission of the secret. This scenario is
analogous to “cross-domain transient execution attacks” in Intel’s refined speculative execution
terminology [76]. Since the speculative access to the secret is initiated by the victim, the ac-
cess does not violate data ownership. Consequently, mechanisms that block speculative accesses
violating data ownership are ineffective against passive attacks.

Figure 4.2 illustrates an example of passive attacks. The victim-issued system call executes
Function 1 ( 1 ), which loads a reference of Secretv to r1. Since function 1 does not access
Secretv, its execution does not leak the secret. However, when the victim returns from Function
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Table 4.1: A collection of speculative execution related vulnerabilities targeting the Linux kernel2

Attack
Primitives

Insufficient
Mitigation

CVEs and
Papers Description Origin of

Vulnerabilities
1 Unauthorized

speculative
data access
(Spectre v1)

n/a [38] Array index is
not validated

Xilinx USB
Driver

2 Misuse [11] Reintroduced
Spectre
vulnerabilities in
backporting

ptrace

3 n/a [20, 26, 27, 28,
29]

Out-of-bounds
speculation on
pointer arithmetic

eBPF verifier

4 n/a [21, 86] Speculative type
confusion [86]

eBPF verifier

5 Speculative
control-flow

hijacking
(Spectre v2,

Spectre RSB,
and more)

Hardware [30, 31, 36, 55] Branch history
injection [55]

Indirect calls and
jumps

6 Software [18] LFENCE/JMP is
insufficient on
AMD

Indirect calls and
jumps

7 Software [39, 40, 152] Retbleed [152] Retpoline [142]
8 Misuse [42] Missing

retpolines or
IBPB

KVM

9 Misuse [12, 16, 35, 44] Improper use of
hardware
mitigations

Indirect calls and
jumps

1, the attacker can employ techniques such as Spectre v2 [87] and Spectre RSB [88, 113] to
hijack the victim’s speculative control flow to any kernel function, such as Function 2, which
contains a transient execution gadget ( 2 ). This step serves two purposes: first, it coerces the
victim to speculatively execute a transient execution gadget; second, it creates a speculative type
confusion [86], causing the value in r1 prior to the hijacking, which is a memory reference
to Secretv, to be used out-of-context by the memory access in Function 2. Consequently, the
hijacked execution speculatively accesses Secretv ( 3 ) and transmits the secret through a covert
channel ( 4 ).

Compared to active attacks, passive attacks are challenging to orchestrate, since the attacker
has no control over the victim’s system calls and their arguments. As a result, passive attacks
are generally assisted by hijacking the victim’s speculative control flow to a kernel function that
contains transient execution gadgets [76], as exemplified by Step 2 in Figure 4.2.

Since passive attacks largely exploit the monolithic nature of kernel code, the second defense

2Table 4.1 in this thesis was developed in collaboration with David Rudo, as part of our join research work
published in Perspective [82]
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mechanism of Perspective, which will be discussed in Section 5.3, is to limit the victim’s specu-
lative control flow to a small subset of kernel functions and drastically reduce the attack surface
for passive attacks.

4.2 Studying of Transient Execution Attacks in the Kernel
To gain a deeper understanding of the threats posed by transient execution attacks, we studied
transient execution vulnerabilities in the Linux kernel. Our study focuses on two types of at-
tack primitives that aim to (1) enable unauthorized speculative data access like Spectre v1; and
(2) enable hijacking of the victim’s speculative control flow such as Spectre v2 [87], Spectre
RSB [88, 113], Retbleed [151], BHI [55]. These attack primitives are the basic building blocks
of both active and passive transient execution attacks in the kernel. Moreover, these primitives
have not yet been fully mitigated or are attacks whose mitigations introduce overhead.

Table 4.1 summarizes our findings. The first column of Table 4.1 illustrates the impact of the
vulnerability, falling into two main categories: (i) enabling unauthorized speculative data access
(Spectre v1), or (ii) enabling speculative control-flow hijacking (Spectre v2 and Spectre RSB).
The second column indicates whether the vulnerability results from insufficient mitigations. If
so, it further specifies whether it is caused by insufficient hardware or software mitigations or
misused mitigations. The third column lists the relevant CVEs and academic papers. Finally, the
fourth and fifth columns provide the vulnerabilities’ descriptions and origins in the Linux kernel.
Unauthorized speculative data access (Spectre v1). Rows 1 to 4 list vulnerabilities that enable
unauthorized speculative data access through Spectre v1-like attacks. From top to bottom, Row
1 represents CVE-2022-27223 [38], which identifies a transient execution gadget in the Xilinx
USB peripheral driver with an unprotected index that allows transient outbound accesses. Due to
the vast size of the Linux kernel, such vulnerabilities are often deeply buried within infrequently
used modules, making it challenging to detect.

Then, Row 2 represents a vulnerability [11] that reintroduces Spectre vulnerabilities to ptrace
when backporting Spectre mitigations to earlier Linux versions. This vulnerability highlights the
possibility of accidentally creating transient execution gadgets in the Linux kernel.

Lastly, Rows 3 and 4 list a series of vulnerabilities in the eBPF program verifier. By exploiting
these vulnerabilities, an attacker can inject transient execution gadgets into the Linux kernel by
loading malicious eBPF programs, thereby achieving unauthorized speculative data access. This
category of vulnerabilities is mitigated by fixing the verification logic of the eBPF program and
disallowing unprivileged users to load eBPF programs by default [138].
Speculative control-flow hijacking (Spectre v2, Spectre RSB, and more). Rows 5 to 9 list
vulnerabilities that enable speculative control-flow hijacking through Spectre v2- or RSB-like
attacks. These vulnerabilities are caused by inadequate mitigations. Row 5 shows the Branch
History Injection (BHI) attack [55] that bypasses hardware mitigations [75], which replace soft-
ware mitigations like Retpoline [142]. Rows 6 and 7 list vulnerabilities that originate from insuf-
ficient software mitigations. Row 6 shows a vulnerability caused by the false belief that inserting
an lfence before indirect jumps can defend against Spectre v2 on AMD processors. How-
ever, there is a race condition where an lfence is ineffective. Row 7 represents the Retbleed
attack [152] that targets Retpoline, the most widely used software defense against Spectre v2.
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Lastly, Rows 8 and 9 list a series of misuses of mitigations. These vulnerabilities arise because
of the numerous hardware and software defenses against Spectre v2 on different CPUs that lead
to confusion about which defense should be enabled.
Takeaways. Despite the tremendous efforts of kernel developers and hardware vendors, nu-
merous transient execution vulnerabilities continue to arise. In our study, we find that transient
execution gadgets are often deeply buried within infrequently used code, hindering their detec-
tion. Furthermore, active kernel development can inadvertently reintroduce new vulnerabilities.
Adding to the issue, the OS defenses against speculative control-flow hijacking often fall short
due to insufficient or misuse of mitigations. As a result, an attacker can directly exploit, or coerce
the victim to exploit, an unpatched transient execution gadget deep within the kernel. This en-
ables the attacker to perform active or passive transient execution attacks to steal secrets. These
observations emphasize the necessity of blocking speculative memory accesses that violate data
ownership and limiting the set of functions that can be speculatively executed by a context to a
small subset of all kernel functions.
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Chapter 5

Perspective Design

Perspective introduces a principled framework for building pliable and secure speculative exe-
cution defenses for the OS Perspective offers a pliable interface that allows the OS to commu-
nicate its security requirements to underlying hardware protection mechanisms. At a high level,
Perspective consists of two types of Speculation Views, Data Speculation Views (DSVs) and In-
struction Speculation Views (ISVs), which aim to thwart active and passive transient execution
attacks in the kernel as presented by our taxonomy of attacks in Section 4.1. Perspective’s design
is rooted in this taxonomy, instead of attack variants, and hence it can mitigate all variants.

5.1 The Perspective Framework

Data Speculation Views (DSVs). In active transient execution attacks, unauthorized memory
accesses and subsequent disclosures are performed from the kernel thread of the attacker’s pro-
cess to leak data owned by other victim processes or the kernel. The Perspective framework
mitigates this class of attacks by isolating the kernel state based on ownership. Specifically, Per-
spective associates each process with a DSV. A DSV defines the set of data that a given execution
context owns. Any speculative access to data outside the DSV is protected. For simplicity, we
assume a simple but aggressive protection mechanism that blocks the speculative memory access
until it becomes non-speculative. As the majority of accesses during kernel execution do not
violate ownership, DSVs impose very low execution overhead even if the protection mechanism
is as aggressive as blocking speculative accesses. In Section 5.2, we discuss one potential DSV
design by defining ownership based on memory allocations.

Figure 5.1 shows an example of DSVs. The userspace processes live on the upper side of the
figure, while the monolithic kernel space contains the kernel code and data. The kernel code is
represented as a function call graph, where each circle represents a kernel function. DSVs are
depicted in Figure 5.1 as a gray pattern with a colored line that represents the owner process.
For example, Figure 5.1 shows that during the execution of Proca, the speculative access of the
function C is blocked as it tries to access data that belong to Procv’s DSV. Similarly, a process
is only allowed to transiently access data within its own DSV, e.g., the transient access from
node F .
Instruction Speculation Views (ISV). In passive transient execution attacks, both the access
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Figure 5.1: An example of data speculation views (DSVs) and instruction speculation views
(ISVs).

to and the transmission of the secret are speculatively carried out by the victim’s kernel thread.
To thwart passive attacks, Perspective proposes the ISV interface that defines the set of kernel
code that can be speculatively executed by a given execution context. To simplify the discussion,
we assume that ISVs are defined at a kernel-function granularity, however, in practice ISV pro-
tection is applied at the instruction granularity. Any transmitter instructions—whose execution
could leak secrets, such as load instructions—that belong to kernel functions outside the ISVs are
protected (e.g., blocked from speculative execution). The ISV becomes active when a process
transitions from userspace into the kernel, e.g., due to a system call. Figure 5.1 illustrates the
ISV of Proca using the call graph, where the kernel functions that belong to the ISV are enclosed
in the orange line. For example, consider the control-flow edge from node A to node B . Be-
cause node B is outside the defined ISV, the program cannot speculatively execute transmitter
instructions from node B . Section 5.3 introduces multiple possible ways to generate an ISV for
a given victim program.

The security benefits of ISVs are manyfold. First, ISVs provide an interface to swiftly miti-
gate unforeseen vulnerable kernel functions that contain transient execution gadgets. This benefit
is vital given the continuous discovery of transient execution vulnerabilities in kernel functions.
Second, a victim program can exclude a large portion of kernel functions that are not used or
infrequently used from its ISV. This use case is akin to kernel de-bloating [91, 92], reducing
the victim’s surface of passive attacks. Finally, since ISVs provide the guarantee that kernel
functions outside ISVs are blocked from speculative execution, one only needs to audit kernel
functions within ISVs for transient execution gadgets. To this end, we augment with Perspec-
tive’s ISVs a state-of-the-art speculative execution gadget scanner [78] to dramatically reduce
the scanner’s gadget search time and produce strict ISVs that block all identified gadgets. Note
that an attacker can hijack the victim’s speculative control flow to the middle of a function that
is within the ISV, Perspective builds on top of control flow integrity (CFI) techniques [89] to
defend against these types of attacks.

Outlook. The interfaces of DSVs and ISVs open up a new design space of protection schemes
against transient execution attacks. By changing the approaches of defining data ownership
or generating ISVs, one can create various schemes tailored to their security requirements and
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performance goals. In the following sections, we present several design points for DSVs and
ISVs.

5.2 Defining Data Ownership for DSVs Through Allocations
The Perspective framework has many potential design points of DSVs by varying the defini-
tion of data ownership. We propose defining data ownership for DSVs based on the context of
execution that the kernel operates on behalf of during memory allocation. Our insight is that
allocations provide a strict security guarantee as they separate resources based on contexts. This
approach simplifies Perspective’s integration with real-world operating systems as allocations
are commonly tracked for resource control.
Implicit and Explicit Memory Allocations. To guide our design, we identify two main types
of kernel allocations, explicit and implicit allocations. We define as explicit all the allocations
where the kernel allocates resources explicitly requested by userspace, e.g., memory, sockets, or
files. The upper part of Figure 5.2 shows an example of an explicit allocation. Arrows represent
the transitions between userspace and the kernel. Time traverses vertically from top to bottom.
In step 1 , the userspace process executes the mmap() system call.1 Then in step 2 , the kernel
allocates available pages on behalf of the process. During this time, Perspective assigns the
allocated pages to the DSV of the process. Finally, in step 3 the kernel returns the virtual
address (VA) to userspace. Similarly, in the case of a page fault, the allocated page will be
associated to the DSV of the faulting process. In the case of munmap(), Perspective removes
pages from the DSV.

Implicit allocations are usually allocated by the kernel on behalf of the process for book-
keeping and metadata management. An implicit allocation example is shown in the lower part
of Figure 5.2. The userspace process executes in step 4 the poll() system call. Within the
system call, the kernel may allocate memory, e.g., through kmalloc(), to store metadata about
the file descriptors being polled. This is shown in step 5 . Such allocations belong to the process,
and hence Perspective protects them by adding them to the process DSV. Finally, in step 6 , the

1We assume the MAP POPULATE flag is set for simplicity.
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return value of the number of file descriptors with events is returned to the userspace.
In practice, most implicit allocations are handled through slab allocations, e.g., through in-

terfaces such as kmalloc() in Linux. The goal of the slab allocator is to maximize memory
utilization and therefore tries to pack the allocations together [58, 105]. As a result, data be-
longing to mutually distrusting processes may get allocated even within the same cache line. For
example, Linux slab allocations can be as small as 8 bytes [103, 104], much smaller than the
contemporary cache line sizes of 64 bytes. However, this approach introduces a major challenge
to security isolation. This is because Perspective would need to track data ownership at a gran-
ularity as small as 8 bytes, leading to high bookkeeping overhead. Perspective resolves implicit
allocations by designing a secure slab allocator that isolates different execution contexts. We
further discuss our implementation in Section 6.1.

5.3 Generating ISVs with System Call Interposition
We leverage the principled security guarantees of ISVs provided by the Perspective framework
to propose a methodology on how to realize ISVs. Our proposal marries concepts from sys-
tem call interposition (Section 2.3) used for application sandboxing with speculative execution.
Specifically, Perspective introduces two techniques based on static and dynamic system call in-
terposition to define personalized ISVs for each context.

Similarly to how system call interposition techniques define an allow list of system calls for
an application, we identify potential entry functions to the kernel. Then, we use static or dynamic
analysis to find the set of kernel functions used by these entry functions. These functions are
trusted and form the basis of the ISV of the application.

Our approach avoids one of the common pitfalls of system call interposition. In particular, in
conventional system call interposition enforcement, blocking a system call can have detrimental
effects on applications as they may lead to irrecoverable errors and crashes. As a result, the
system call allow list ends up being overly permissive to avoid usability problems. Instead,
Perspective’s insight is that even if kernel functions are excluded from the ISV, execution can
continue non-speculatively. As a result, Perspective’s ISVs can dramatically reduce the barrier
for adoption.
Static ISVs. One approach to define ISVs is by statically analyzing the application binary. The
first step is to identify the system calls that may be used by a given program. Next, Perspective
statically analyzes the kernel binary to identify the set of functions that could be invoked during
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each system call. Then, it combines the set of system calls with the set of functions that could be
invoked by each system call to form a static ISV at the granularity of functions for the application.

Figure 5.3(a) shows an example of generating ISV with static analysis. The kernel code
is represented as a call graph composed of function nodes, where the node A is the system
call entry point. A call edge, shown as a solid line arrow, represents calling relations between
functions. From the entry point A , the static analysis recursively follows the call edge to traverse
and record all kernel functions that might be called during the execution of the system call. These
functions form the static ISV, which is marked as a gray cloud that engulfs a subset of function
nodes.

As with any technique that relies on an accurate call graph, indirect jumps pose a major
challenge because they are hard to reason with statically, making it hard to identify functions are
reachable via only indirect jumps. Figure 5.3(a) shows reachable nodes connected with a dotted
blue arrow. Such reachable nodes are not included in the static ISV. Therefore, any speculative
indirect jumps to these reachable nodes are blocked from speculative execution even if these
reachable nodes are safe to speculatively execute, incurring unnecessary overhead. Shown in
Figure 5.3(a) with an orange dotted line, a transient transition from node A to C is allowed in
the static ISV but not from A to B , as the latter is a reachable node.

Dynamic ISVs. While static ISVs present a viable solution, to further reduce the attack surface
of the kernel, Perspective introduces a dynamic technique to define ISVs. Specifically, Perspec-
tive leverages kernel-level process tracing to identify the set of actively used system calls and
kernel function paths. Based on this information, Perspective generates a personalized dynamic
ISV consisting of the kernel functions that are traced. Figure 5.3(b) shows the same high-level
call graph but depicts a dynamic ISV that now includes a reduced set of nodes compared to the
static ISV.

Compared to static ISVs, there are two benefits of using dynamic ISVs. First, dynamic ISVs
can further reduce the attack surface over static ISVs by including only functions that are actually
used by the application, not the functions that could be used. Second, dynamic ISVs generally
offer better performance. This is because dynamic ISVs capture functions that are reachable
via only indirect jumps, which otherwise would not be included in a static ISV. As shown in
the example, in contrast to the static ISV, node A can transiently reach node B , potentially
improving performance. In addition, node G is now excluded from the ISV, improving security.

5.4 Discussion of ISVs

Dynamically Reconfigurable ISVs. An ISV provides an interface for dynamically configurable
security at runtime. While an ISV is built offline and later provided to the OS at application
startup, ISVs can become stricter later on. Specifically, during the runtime of the application,
one can shrink the ISVs as certain system calls or function paths are no longer needed, reduc-
ing the attack surface. Furthermore, in a scenario where new vulnerabilities are found in kernel
functions, the ISV can be adjusted to exclude affected functions, effectively mitigating new vul-
nerabilities without kernel patches and potentially expensive server downtime. Finally, it enables
system administrators to install ISVs that could be applied to all or selected applications.
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Accelerating Security Auditing with ISVs. Perspective’s ISVs unlock the potential to effi-
ciently identify gadgets using security auditing techniques such as static analysis, taint tracking,
and fuzzing [74, 78, 121]. This is because functions excluded from ISVs cannot speculative ex-
ecute, the auditing only needs to examine functions within ISVs, drastically reduce the search
space We demonstrate this point in Chapter 8 with Kasper [78], a state-of-the-art speculative ex-
ecution gadget scanner that uses taint analysis and fuzzing. This approach significantly improves
the overall gadget discovery rate, as we demonstrate in Chapter 8.
Enhancing ISVs with Auditing. Perspective can leverage the accelerated security auditing to
further enhance the security of ISVs. Specifically, after Perspective produces ISVs through sys-
tem call interposition (Section 5.3), it can use them to bound the search space of kernel auditing.
Perspective then uses the results of the ISV auditing to exclude all the vulnerable functions iden-
tified by the audit from the ISVs. We describe Perspective’s implementation in Chapter 6 and
present the results in Chapter 8.
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Chapter 6

Perspective Implementation

This chapter presents the implementation of the Perspective architecture. It describes the op-
erating system support for Perspective’s speculation views (Section 6.1), and the architectural
extensions required to efficiently control speculation (Section 6.2).

6.1 Operating System Support
The design principles of Perspective are general and applicable to most operating systems. For
our implementation prototype, we build Perspective on top of the Linux kernel and control groups
(cgroups [106]) for resource tracking. However, alternative implementations based on pro-
cesses are also simple to implement, allowing Perspective to be applicable to most commercial
operating systems, including Mac OS X, FreeBSD, and Windows. Our implementation includes
about 400 LOC of changes for DSV management and the secure slab allocator. We further
modify the kernel (about 400 LOC) to expose speculation view metadata to the simulator. To
generate ISVs on top of radare2 [122] we require about 150 LOC. Finally, our modifications to
Kasper [78] are about 150 LOC. Next, we discuss the implementation of instruction and data
speculation views of Perspective.
Data speculation views with cgroups. The primary requirement to support DSVs in the kernel
is the ability to track the ownership of resources. In Perspective we use cgroups [106] to asso-
ciate allocations with a DSV per container. For kernel threads, each of them belongs to distinct
DSVs to improve isolation. The kernel buddy allocator (through alloc pages()) obtains the
cgroup ID of the current process context during allocations and associates the allocated physical
frames to a DSV for the corresponding page in the direct map. As a result, Perspective asso-
ciates each page in the direct map with appropriate DSVs fully protecting the direct map. This
approach is sufficient for mapping a frame into the userspace (e.g., in the page fault handler) or
using a frame solely in the kernel. When a physical frame is freed, Perspective disassociates it
from its DSV.
A Secure Slab Allocator. As discussed in Chapter 5, slab allocations are particularly challeng-
ing in current OS designs as they pack memory across mutually distrusting processes [103, 104].
To address this challenge Perspective introduces a secure slab allocator that isolates different
contexts of execution at the granularity of pages. Specifically, for each slab serving a particular
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object size or type, Perspective maintains separate lists of physical pages to store objects for each
cgroup, eliminating collocation.
Resolving Unknown Allocations. Perspective tracks resource ownership through the page and
the slab allocator, but on rare occasions memory used by the kernel does not use these two pri-
mary interfaces. We classify such allocations as unknown. By default, unknown memory does
not belong to a DSV, hence Perspective conservatively blocks speculation. We identify three
main sources of unknown allocations. First, unknown allocations may originate from global vari-
ables defined in the kernel code. For example, some are structs of function pointers describing
operations that can be performed on a file. When possible Perspective redesigns the allocation
mechanisms to replicate such structs dynamically per process. Second, some allocations are
per-cpu variables allocated at boot-time. Finally, the per-process kernel stack is allocated from
vmalloc during fork. Perspective tracks it and adds it to the process DSV.
Generating instruction speculation views. To generate ISVs, we have designed a static and
dynamic analysis framework. Specifically, for static ISVs we identify system call paths used by
a given binary by extending Radare2 [122], a state-of-the-art binary analysis tool. Second, we
identify the function path for a given system call. Our framework combines the two to statically
define ISVs at the instruction granularity per program. For dynamic analysis, we rely on the
tracing subsystem of Linux to dynamically identify the system calls and their function paths in
the kernel on a per-process and container basis. The result is a dynamic ISV profile.
Improving Kernel Auditing. Perspective can significantly improve the performance of kernel
auditing by drastically reducing the search space only within ISVs. There are various techniques
to identify gadgets using static analysis, taint tracking, and fuzzing [74, 78, 121]. We select
Kasper [78] for our implementation, a state-of-the-art speculative execution gadget scanner that
uses taint analysis and fuzzing. Specifically, we improve Kasper’s kernel auditing performance
by modifying Kasper and the underlying kernel fuzzer Syzkaller [71] to bound their search space
within the ISVs. The result is a drastically reduced search space (Chapter 8).
Enhancing ISVs with Auditing. Perspective can further leverage the results of kernel audit-
ing to generate even stricter ISVs. Specifically, after Perspective generates ISVs and Kasper
performs its gadget analysis, we leverage the results of the analysis to exclude all identified vul-
nerable functions from the ISV, further enhancing their security. While the kernel analysis is
bound by the capabilities of the underlying toolchain, Kasper and Syzkaller for our implementa-
tion, Perspective’s approach can be leveraged for other analysis techniques as well [74, 115, 121].
We present the security enhanced ISVs in Chapter 8.

6.2 Architectural Extensions
The goal of the hardware design of Perspective is to expose the speculation view metadata to the
hardware and efficiently control speculation.
Exposing ISVs to Hardware. Perspective’s ISVs are at the granularity of instructions, enabling
Perspective to block the speculative execution of any instruction that does not belong to the ISV
irrespective of its type. To expose ISVs to hardware, we propose a simple design that associates
a page of code in the kernel with an ISV page through a fixed virtual address offset, enabling
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fast ISV access. The offset is defined by the OS at process creation time. An ISV page holds
an entry for each instruction at the same offset as in the code page. Each entry is a single bit
that identifies whether that instruction belongs to the ISV. With this design Perspective only
needs to populate ISV pages on demand based on usage when a first access to an ISV page is
performed. Figure 6.1(a) shows the virtual address space and how the code pages are mapped to
the ISV pages through the offset. Furthermore, Perspective maintains a hardware structure near
the processor pipeline, called the ISV cache, that stores ISV entries. Figure 6.1(b) shows the ISV
cache. The ISV cache is indexed by the instruction VA. On a hit, a response is returned to the
pipeline to identify if Perspective needs to block speculative execution. In an ISV cache miss,
the speculative execution of the instruction is blocked, and the instruction VA combined with the
offset is sent to the TLB to locate the physical address of the ISV page. As we will see in the
evaluation, due to the small amount of code accessed by applications during kernel execution, the
ISV cache achieves a very high hit rate of 99%. To avoid ISV cache flushes on context switches,
we tag entries with the address space identifier (ASID) similar to other tagged structures. Similar
implementations have been proposed in prior work [137, 162] for other purposes.

Exposing DSVs to Hardware. Our goal is to minimize hardware changes in existing processors.
To this end, Perspective implements DSV based on virtual ranges on a per-context basis inspired
by upcoming secure processor extensions such as Intel’s TDX [25]. Specifically, Perspective
introduces a data structure called the Data Spection View Metadata Table (DSVMT), which is
similar to TDX, and it is accessed in parallel to the TLB. Perspective leverages the DSVMT
during kernel execution to identify DSV metadata. The DSVMT is organized as a three-level
tree structure supporting the three contemporary page sizes (4KB, 2MB, 1GB). The leaf entry
corresponds to 4KB pages. Each entry defines if a given page belongs in the DSV, and hence the
DSVMT entries are only a single bit. Perspective further maintains a small DSVMT hardware
cache located close to the processor pipeline that is checked on access. On a miss, instead of
waiting for a refill, Perspective conservatively blocks speculation. Because DSVMT entries are
very small, Perspective enjoys very high hit rates close to 99% as shown in Section 9.2. We
believe that a realistic adoption path is for Perspective to extend secure architecture extensions
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such as TDX. We opted against storing the DSV information in page tables because that would
require intrusive changes in how the kernel currently uses page tables for the direct map, adding
significant complexity to managing page tables and context switching.
Controlling Speculation. To control speculation, in Perspective the hardware adds a fence
ahead of the instruction based on DSV and ISV. In this way, an attacker cannot observe side
effects from speculative execution. A fenced instruction is allowed to proceed when it reaches
the Visibility Point [156]: at the head of the ROB or when no older instructions can squash it. On
DSV and ISV misses, instructions are blocked, and request is sent to the cache hierarchy after the
instruction reaches its VP. On a hit, DSV and ISV LRU bits are not updated until the instruction
reaches its VP.
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Chapter 7

Methodology

Full-system Simulation. We model an out-of-order processor shown in Table 7.1 using cycle-
level simulation with gem5 [57]. We evaluate the following defense schemes: (i) UNSAFE is the
baseline architecture, which is not protected against transient execution attacks; (ii) FENCE is a
hardware-only defense that delays all speculative loads until all prior branches are resolved; (iii)
PERSPECTIVE-STATIC is the FENCE scheme augmented with the proposed Perspective hard-
ware, running our modified Linux kernel. PERSPECTIVE-STATIC utilizes static ISVs; (iv) PER-
SPECTIVE is the same as PERSPECTIVE-STATIC, except it uses dynamic ISVs. (v) PERSPEC-
TIVE++ extends PERSPECTIVE with stricter, ISV++, as discussed in Chapter 8.
Benchmarks and Applications. We evaluate the performance of Perspective on LEBench [125],
a microbenchmark suite for Linux, as well as four datacenter applications, Redis [94], httpd [14]
(Apache web server), nginx [124], and memcached [68]. Each workload runs within a container
and Perspective leverages cgroups as discussed in Chapter 6. For LEBench, we run the ROI for
each microbenchmark, and use the evaluation methodology of the original work [125]. For dat-
acenter applications, the client and the server communicate over the loopback interface, which
is less likely to bottleneck applications on I/O and represents the worst case for Perspective. We
run httpd and nginx for 40K requests using ab [52]. We run Redis for 20K requests using redis-
benchmark [95] and average over all individual tests. We run memcached for 160K requests
using memslap [164]. We measure the percentage of time that applications spend in the OS dur-
ing our experiments by tracking userspace/kernel time in the simulator: 50% for httpd, 65% for
nginx, 65% for memcached, and 53% for Redis.
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Table 7.1: Full-System Simulation Parameters.
Parameter Value
Architecture 2 out-of-order x86 cores at 2.0 GHz
Core 8-issue, out-of-order, 62 Load Queue entries, 32 Store

Queue entries, 192 ROB entries, L-TAGE branch predic-
tor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32 KB, 64 B line, 4-way, 2 cycle Round Trip (RT) la-
tency, 1 hardware prefetcher

Private L1-D Cache 32 KB, 64 B line, 8-way, 2 cycle RT latency, 1 hardware
prefetcher

Shared L2 Cache Slice: 2 MB, 64 B line, 16-way, 8 cycles RT latency
Coherence Directory-based MESI protocol
DRAM 50 ns RT latency after L2
ISV Cache 128 entries, 32 sets, 4-way; 57 bits / entry
DSV Cache 128 entries, 32 sets, 4-way; 53 bits / entry
OS Kernel Linux v5.4.49
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Chapter 8

Security Evaluation

As discussed in Chapter 4, speculative execution attacks in the kernel can be categorized into
active and passive attacks. This taxonomy is agnostic to a specific attack variant, as any variant
such as Spectre v1, v2, BHI, Retbleed and others, can be exploited to perform either active or
passive attacks. Since Perspective’s design is rooted in this taxonomy, not attack variants, it can
mitigate all variants.

8.1 Active Attacks Security Analysis
Active attacks are the most potent scenario as they are initiated directly by the attacker’s kernel
thread and are relatively simple to perform. Perspective completely eliminates active attacks.
This is because Perspective’s DSVs provide a strong security guarantee that an attacker cannot
speculatively access kernel memory that has been allocated to other contexts. As a result, any
speculative execution attack variant is blocked from performing active attacks. We leverage the
identified CVEs in Table 4.1 to launch Proof-of-Concept (PoC) active attacks. Perspective’s
DSVs effectively mitigates all active attacks.

8.2 Passive Attacks Security Analysis
In passive attacks the victim process’s kernel thread speculatively executes kernel functions con-
taining transient execution gadgets to access and leak its own data. To this end, ISVs enable an
execution context to define the set of kernel functions that are trusted by the context. Any trans-
mitter instructions—whose execution could leak secrets, such as load instructions—that belong
to kernel functions outside the ISVs are blocked from speculative execution.

Attack Surface Reduction. To assess the passive attack surface reduction of Perspective, we
measure the surface as the number of functions that can be speculatively executed in the Linux
kernel. Table 8.1 reports the relative reduction in the attack surface after applying ISVs to dif-
ferent applications. Perspective’s personalized ISVs reduce the attack surface by at least 90.9%
across all evaluated benchmarks and applications. Using static ISVs (ISV-S), Perspective reduces
the number of functions that can be speculatively executed to only an average of 9% to that of
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Table 8.1: Attack surface reduction with Perspective.
Config LEBench httpd nginx memcached redis
ISV-S 92% 91% 90% 91% 90%
ISV 96% 94% 94% 96% 95%

Table 8.2: Perspective’s MDS/Port/Cache gadget reduction.
Benchmark ISV-S ISV ISV++
LEBench 87% / 87% / 83% 93% / 93% / 93% 100% / 100% / 100%
httpd 84% / 84% / 78% 91% / 92% / 92% 100% / 100% / 100%
nginx 84% / 83% / 78% 91% / 91% / 91% 100% / 100% / 100%
memcached 84% / 84% / 78% 92% / 92% / 92% 100% / 100% / 100%
redis 83% / 83% / 78% 91% / 91% / 91% 100% / 100% / 100%

Linux. With dynamic ISVs (ISV), this number is further reduced to an average of just 4.9% of
Linux. This is because dynamic ISVs eliminate functions that static analysis unnecessarily in-
cludes. As a result, passive transient execution attacks of any variant are blocked within 95.1%
of the kernel functions. In summary, these results highlight the significant reduction in the attack
surface achieved by Perspective through personalized ISVs with system call interposition.

Search Space and Transient Execution Gadgets.1 Perspective’s ISVs reduce the number of
speculative accessible functions to 5% of the entire kernel, hence, the gadget search space is
reduced from 28K functions in Linux down to only 1.4K. To better understand the potential
security gains of this reduction, we leverage Kasper [78], a state-of-the-art transient execution
gadget scanner that uses taint analysis and fuzzing via Syzkaller [71]. Specifically, we (a) quan-
tify the potential transient execution gadgets that Perspective’s ISVs eliminate, (b) leverage the
reduced search space of ISVs to speed up the gadget search process, and (c) utilize the results of
the analysis to produce even stricter ISVs.

First, based on the results obtained from the authors of Kasper, we calculate the number of
gadgets that are blocked from transient execution attacks with Perspective’s ISVs. Kasper [78]
identifies 1533 potential speculative execution gadgets in the whole Linux kernel. It identifies
805 microarchitectural buffers (MDS), 509 port contention (Port), and 219 cache-based covert
channels (Cache) potential gadgets. Perspective blocks all transiently accessible gadgets ex-
cluded from the ISVs which account for 78% with static ISVs (ISV-S) and more than 91% with
dynamic ISVs (ISV). Although our threat model (Chapter 3) does not include MDS attacks, as
they are fixed in current processors, Perspective’s ISVs still provide significant reduction. Over-
all, the results demonstrate the ability of Perspective to drastically reduce the attack surface of
the Linux kernel by reducing the accessible gadgets.

Next, we leverage the security guarantee that kernel functions outside ISVs are blocked from
speculative execution to limit Kasper’s gadget scanning to only the kernel functions that are

1The search space and transient execution gadgets section presented in this thesis was developed in collaboration
with David Rudo, as part of our joint research work published in Perspective [82].
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within ISVs. Figure 9.1 shows the results. Perspective speeds up Kasper’s gadget discovery
rate (gadgets/hour) by 1.57× on average. We see that the speedups are even more profound in
applications such as nginx reaching 2.23×. In summary, we have shown that Perspective is able
to speed up existing kernel analysis techniques and potentially open up new possibilities for other
solutions that are currently not considered possible or tractable for large OS code bases.

We further leverage the analysis of Kasper augmented with Perspective to produce even
stricter dynamic ISVs as described in Section 5.3 and Section 6.1. Specifically, we use the
analysis of Kasper to remove all identified vulnerable functions from the ISVs. The resulting
ISVs (ISV++) block all identified gadgets as shown in Table 8.2.

Finally, we evaluate ISV protection with practical attacks by launching Proof-of-Concept
(PoC) passive attacks using transient execution gadgets in CVEs of Table 4.1. Because the
transient execution gadgets in those CVEs are excluded from the ISVs, the attacker cannot coerce
the victim to speculatively execute them, blocking passive attacks.
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Chapter 9

Performance Evaluation

This chapter presents the performance evaluation of Perspective. It describes the performance re-
sults across different benchmarks and applications (Section 9.1), and detailed sensitivity analysis
of Perspective that sheds more light into Perspective’s design (Section 9.2).

9.1 Performance Results

LEBench. Figure 9.2 shows the latency of LEBench tests on all schemes, including FENCE,
PERSPECTIVE-STATIC, PERSPECTIVE, PERSPECTIVE++, normalized to UNSAFE. Among all
the evaluated schemes, FENCE has the highest average execution overhead of 47.5%. In system
calls such as select and poll, the overhead of FENCE can be as high as 228.3%. This is
because the execution spins in the kernel repeatedly, paying the cost of mitigations. On the other
hand, PERSPECTIVE-STATIC, PERSPECTIVE, and PERSPECTIVE++ exhibit very little execution
overhead in most cases, with an average overhead of 4.1%, 3.6%, and 3.5% respectively. Per-
spective schemes only experience moderate overhead in big-fork and page-fault, where
most of the overhead originates from DSVs as new allocations are created. Overall, Perspective
shows little overhead in LEBench.

Datacenter Applications. Figure 9.3 shows the throughput of datacenter applications in re-
quests per second normalized to UNSAFE. The UNSAFE baseline throughput is 11.5K, 18K,
55K, and 40.7K RPS for httpd, nginx, memcached, and redis respectively. The results show
that FENCE can induce significant slowdowns, with an average overhead on throughput of 5.7%.
The key-value stores, memcached and Redis, suffer the most due to the high cost of frequent
blocking of memory accesses. PERSPECTIVE-STATIC, PERSPECTIVE, and PERSPECTIVE++
achieve nearly the same performance as UNSAFE, with an average overhead on throughput of
1.3%, 1.2%, and 1.2% respectively. In the case of httpd, PERSPECTIVE-STATIC performs a
bit worse than PERSPECTIVE with dynamic ISVs, due to an increased number of indirect jumps
whose targets cannot be statically analyzed and included in static ISVs, as we discuss in Sec-
tion 9.2.

Comparing to Spot Software Mitigations. We further compare to software mitigations (KPTI [73]
and Retpoline [142]) in Linux, which are spot mitigations only for Meltdown and Spectre-v2.
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Figure 9.1: Speedup of Kasper’s gadget discovery rate (gadgets/hour).

They show an average overhead of 14.5% in LEBench and 5% on datacenter applications. With-
out KPTI, the performance overhead of spot mitigations is 6.6% and 1.2% for micro and macro
benchmarks respectively. Perspective provides better security than spot software mitigations and
only shows an overhead of 3.5% and 1.2% respectively.
Comparing to Hardware Mitigations. To provide a better understanding of Perspective, we
further compare it to two state-of-the-art hardware-only schemes: Delay-on-Miss (DOM) [127]
and Speculative Taint Tracking (STT) [158]. They represent two design points in the spectrum
between hardware complexity and performance, with DOM being simpler and slower, and STT
more complex and faster.

Compared to the unsafe baseline, DOM shows an average overhead of 23.1%, while STT
shows an average overhead of 3.7% in the microbenchmarks. The overhead profile of both DOM
and STT is similar to FENCE, where several benchmarks like those based on select, poll, and epoll
show overheads of 204% for DOM and 26.4% for STT. On the other hand, Perspective shows
an average overhead of 3.5% on microbenchmarks. Overall, in microbenchmarks, Perspective
is significantly faster than DOM and slightly faster than STT. In terms of macrobenchmarks, all
three configurations show good performance, achieving normalized throughput of 98.3%, 99.6%,
and 98.8% for DOM, STT, and Perspective respectively. Overall, all three configurations show
marginal overhead in practice.

In terms of complexity, STT requires complex taint tracking additions to the processor pipeline,
making its adoption difficult in practice. On the other hand, DOM requires simpler modifications,
however its performance overhead can be significant. Perspective represents a balanced design
with minimal hardware changes compared to DOM and STT while achieving low overhead. We
believe that Perspective achieves its goal of attaining high performance while enabling software
to take control of transient execution in the kernel.

9.2 Sensitivity Analysis

Breakdown of Speculation Views. Table 10.1 shows the percentage of fenced instructions
that were caused by Perspective’s DSVs and static, dynamic ISVs, and ISV++. Such fences
would represent false positives due Perspective’s implementation since we are focusing on be-
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Figure 9.2: LEBench suite’s normalized latency to an unsafe baseline under different schemes.
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Figure 9.3: Requests per second normalized to an unsafe baseline.

nign workloads. Both LEBench and applications exhibit similar profiles. The results show that
on average, the ISV-Static accounts for 20% of the total number of fenced instructions, while the
DSV accounts for 80%. In ISV-Dynamic, the ISV percentage decreases to 18%. This is because
dynamic ISVs may capture reachable functions that static ISVs cannot. The fence rate is on
average 9 and 37 fences per kilo instructions for ISVs and DSVs, respectively. ISV++ exhibits
similar characteristics.
Unknown Allocations. As discussed in Section 6.1, some allocations beyond those handled by
the page and slab allocators may be classified as unknown. Accessing memory from unknown
allocations can cause stalls in the processor pipeline. We quantify their impact by selectively
disabling blocking of unknown accesses. On average, unknown allocations in the kernel’s direct
map are responsible for 1.5% of Perspective’s overhead on LEBench and marginal overhead on
applications. We believe that additional engineering efforts can further reduce this overhead.
Hardware Structures. Perspective introduces the ISV and DSV caches. Both caches are or-
ganized as 128-entry 4-way set associative caches and provide very high hit rates close to 99%
for both microbenchmarks and applications. The reason is that a small cache can hold the rela-
tively small working set of instructions and data in the kernel. Table 9.1 show the characteristics
of Perspective’s hardware structures: area, access time, energy, and leakage power. The data
correspond to 22nm and is obtained with CACTI [54]. Although the access time to Perspective
structures is a fraction of a cycle, to be conservative we account for 2 cycles.
Memory Fragmentation. Perspective utilizes separate physical pages to store objects for dif-
ferent cgroups. This approach provides strong isolation, but it can lead to increased memory
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Table 9.1: Hardware Structure Characterization.
Configuration Area Access Time Dyn. Energy Leak. Power
DSV Cache 0.0024 mm2 114 ps 1.21 pj 0.78 mW
ISV Cache 0.0025 mm2 115 ps 1.29 pj 0.79 mW

fragmentation. We use slabtop to track the memory utilization ratio, defined as the size of
active objects divided by the total size of objects. On average, Perspective’s secure slab allocator
incurs a minimal memory usage overhead of 0.91%.
Domain Reassignment. When a slab object is freed, it is typically returned to its original slab
for future allocations. However, if all objects in a slab become free, the entire page is returned
to the buddy allocator for general use. In Perspective’s secure slab allocator, these page-level
operations require domain reassignment to ensure security isolation between different contexts.

We analyzed the percentage and frequency of page-level operations caused by slab object
frees in Perspective’s secure slab allocator. The percentage of page-level operations in the slab
allocator is low across all workloads. For redis, 0.23% of slab object frees result in a page
being returned to the buddy allocator. Other applications exhibit even lower ratios, with httpd,
nginx, and memcached showing ratios of 0.01%, 0.01%, and 0.003% respectively. The absolute
frequency of these page-level operations also remains low. For redis, 96 slab object frees result in
a domain reassignment per second. Other applications show much lower frequencies, with httpd,
nginx, and memcached showing 4, 3, 2 occurrences per second, respectively. The low percentage
and frequency of page-level operations suggests that the overhead of domain reassignment during
page allocation and freeing is minimal. The majority of slab operations occur at the object level
within already-allocated pages, allowing Perspective to maintain its strict isolation guarantees
without significant performance impact.
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Chapter 10

Related Work

Numerous hardware-only defense mechanisms have been proposed [47, 62, 63, 72, 81, 85, 97,
110, 112, 126, 127, 139, 140, 150, 156, 158, 159, 163] to defend against transient execution
attacks. Invisible speculation schemes such as InvisiSpec [156], SafeSpec [81], DAWG [85],
DOM [127], conditional speculation [97], MuonTrap [48], CleanupSpec [126], GhostMinion [47]
focus primarily on blocking cache-based covert channels through techniques like shadow caches
or cache partitioning, but do not comprehensively protect against all speculative channels. For
example, DOM (Delay-on-Miss) proposes delaying speculative loads that miss in the L1 cache
until they become non-speculative. Restrictive speculation schemes like CSF [139], NDA [150],
STT [158], SPT [62], SDO [159] take a more comprehensive approach to block all speculative
covert channels by selectively delaying unsafe instructions defined by the scheme. For instance,
STT introduces speculative taint tracking based on information flow tracking techniques to delay
only transmitter instructions that depend on speculatively accessed data. Recent optimizations
like Pinned Loads focus on improving performance by resolving memory consistency violations
earlier to accelerate the advancement of visibility points. While hardware defenses offer great
software transparency, they lack the necessary information to determine which data and execu-
tion paths require protection. Consequently, they either conservatively protect all speculative
instructions that could leak information [127, 150, 156], or conservatively infer what data is not
confidential [62, 158], resulting in high execution overhead or complex hardware.

Prior work on system call interposition [2, 3, 5, 67, 77, 83, 96, 136] has focused solely on
application sandboxing to protect the kernel against traditional attacks such as buffer overflows.
Similarly, a body of work has focused on architectural support for memory-based protection [64,
128, 134, 148, 153, 154]. These works focus on traditional attacks rather than transient execution
attacks.

Kernel mitigations have primarily focused on page table isolation to mitigate unauthorized
data accesses. KPTI separates userspace and kernel page tables in order to mitigate Meltdown-
style attacks. Other software-only approaches [50, 56, 80, 130, 155] also rely on page tables
to block speculation through page faults. However, these approaches require context switches,
leading to substantial overhead. Furthermore, when access to unmapped data is required, the
kernel needs to switch to the complete mappings, voiding isolation [56].

Control flow integrity (CFI) [45, 65, 111, 116, 117, 118, 132, 146, 160, 161] is a powerful
technique that can reduce the attack surface of the kernel. CFI prevents attackers from diverting
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Table 10.1: Percentage of fenced instructions due to ISV and DSV.
Config LEBench httpd nginx memcached redis
ISV-S/DSV 27% / 73% 20% / 80% 15% / 85% 13% / 87% 23% / 77%
ISV/DSV 22% / 78% 12% / 88% 16% / 84% 15% / 85% 23% / 77%
ISV++/DSV 22% / 78% 13% / 87% 16% / 84% 15% / 85% 23% / 77%

the victim’s control flow to attacker-chosen logic. Recent works, such as SpecCFI [89], leverage
CFI to restrict speculative execution, increasing the bar for attacks. Such techniques are orthog-
onal to Perspective. First, Perspective introduces DSVs to protect data accesses, which is not the
goal of SpecCFI, CET [132], and CFI in general. Second, SpecCFI and CET would mark all
kernel functions as legal, and hence speculation would be able to reach any function irrespective
of the userspace process making the system call. This leaves a large attack surface vulnerable.
ISVs provide tailored protection to applications, as an attacker cannot hijack the control flow to
speculatively execute a function outside the ISVs. We demonstrate this point in Section 8.2 as
Perspective drastically reduces the attack surface of the kernel.
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Chapter 11

Conclusion

This thesis presents Perspective, a principled framework for secure speculation in the operat-
ing system. Perspective introduces Data Speculation Views (DSVs) and Instruction Speculation
Views (ISVs) to mitigate active and passive attacks, respectively. DSVs define the ownership of
kernel data by a given execution context. ISVs define the set of kernel functions that can be spec-
ulatively executed by a given execution context. Perspective’s ISVs open up the opportunities of
(i) swiftly patching gadgets in kernel functions, (ii) reducing the surface of passive attacks, and
(iii) speeding up the kernel auditing process. Our evaluation showed that Perspective achieves
significant security improvements with minimal performance overhead.
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