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Abstract
As a result of recent advancements in foundation models, including large vision-

language models, several researchers have explored methods of combining multiple
modalities of data as inputs for visual question answering. One key application of
visual question answering in the context of the healthcare domain is automated med-
ical report generation, where chest X-ray images and text-based symptom data for
a patient might be provided as inputs, with the intention of generating a relevant
medical report as an output. However, very few studies analyze the performance
of these models alongside unimodal fine-tuned LLMs, and even fewer compare the
performance of these multimodal models depending on whether they are provided
symptom information as an input. Furthermore, past studies often use simple eval-
uation metrics that look at n-gram overlaps, such as BLEU and ROUGE scores,
which are not effective for generative foundation models that can generate different
sentences with the same semantic meaning.

In this paper, we present two main contributions. First, we compare the perfor-
mance of a variety of approaches for generating medical reports on a dataset of chest
X-Ray medical reports, including a unimodal fine-tuned medical LLM, a multimodal
model without symptom data, and a multimodal model with symptom data. Second,
we introduce four new metrics for evaluating the similarity between generated and
reference medical reports, which we term Word Pairs, Sentence Average, Sentence
Pairs, and Sentence Pairs (Bio). Our results show that multimodal approaches to
medical report generation far outperform unimodal approaches, and providing symp-
tom data slightly improves accuracy for generated medical reports. We also find that
our newly introduced Sentence Pairs evaluation metric more closely measures sim-
ilarity between generated and reference medical reports than all prior metrics, as
evidenced by thorough quantitative and qualitative case study comparisons.

This research fundamentally pushes the frontier of medical report generation by
further reinforcing the accuracy benefits of using multimodal models with symptom
inputs and introducing several more comprehensive, customized scoring metrics for
evaluating generated medical reports.
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Chapter 1

Introduction

1.1 Background
One important responsibility for doctors today is writing medical reports for patients [14]. Since
every patient is different and doctors often see many patients, doctors often spend hours writing
medical reports, when this time could be better spent in other ways. This key problem is shown
in Figure 1.1. In addition, the content in radiology medical reports is often predictable, especially
for clearly diagnosable diseases based on X-Rays [21].

One way to benefit doctors is to automate the process of generating these medical reports.
Doing this would give doctors more time to spend on other tasks, like spending more time with
patients. In addition, automated methods are less likely to make errors, and can be given more
past data to look at, which could potentially make them have more knowledge than any one given
doctor.

In order to generate medical reports, one method we can use involves machine learning,
which involves giving a model a series of input and output examples of inputs for generating a
medical report. In the context of chest X-Rays, inputs could look like frontal/lateral images of
a chest X-Ray, symptoms that the patient has, and medical history for the given patient. Out-

Figure 1.1: Problem: Manually Writing Medical Reports Takes Time
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Figure 1.2: Solution: Automating Writing Medical Reports Saves Time

puts could be a text-based representation of a medical report that best describes the given user’s
disease, if applicable, or whether the user is normal. This is shown in Figure 1.2.

Within the scope of machine learning, there are several approaches that can be used, namely
unimodal and multimodal models. As the name implies, unimodal models focus on one input
modality of data, like just text-based input or just image-based input. Similarly, multimodal
models focus on combining several modalities of data, such as an image along with text. In the
context of chest X-Rays, we can see that simply passing in the image of a chest X-ray into a
model would be unimodal, while passing in the image of a chest X-ray along with the given
patient’s symptoms would be multimodal.

1.2 Motivation

One key application of multimodal machine learning is precision health, with applications in-
cluding neurology and oncology. One such application is medical report generation, which in-
volves taking in some form of an input, such as an image or text, then generating a relevant
medical report. For example, in the context of Chest X-rays, one such input could be an image
of a Chest X-ray image, while an output could be a report that includes what the X-ray image
indicates, any findings based off of the image, and any impressions the image might have. In this
example, the inputs are some given image of a chest X-ray, along with some text that asks the
user to answer a question about the image, and the output is some text that represents the report
for the given input image. This falls within the domain of visual question answering, specifically
image question answering.

One major limitation of previous work in the domain of medical report generation is that
it focuses only on the image data. However, this isn’t representative of the real world, where
radiologists have access to multiple modalities of data for a given patient, including clinical
notes, symptoms, and a given X-ray. For example, many previous projects use an encoder-
decoder based architecture, where the input image gets passed into an encoder, and the decoder
uses a transformer. Recent papers have looked into contextual biomedical report imaging, but
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they still fundamentally use images as the main modality. For example, the ChestBioX-Gen
paper used BioGPT to get the contextual understanding of the task, while also using co-attention
to relate certain parts of the image with text-based descriptions.

Another limitation of previous work is that the generated and reference medical reports are
not compared in the most effective way. As an example, currently many studies refer to BLEU
and ROUGE scores as metrics for comparing generated and reference medical reports. These
methods focus entirely on word overlap, which isn’t relevant in the case of medical reports,
where there are often multiple ways to convey the same diagnostic for a given patient, and where
there are also different types of medical terms used. The generated medical report by some
model could easily be classified as not being similar to a reference medical report, just because
the generated medical report uses synonyms of words in the reference medical report.

1.3 Overview
In this paper, we focus on answering two key questions. First, how effective are multimodal
models (with and without symptom data) in comparison to the standard uni-modal models for
medical report generation? Second, how can we design a better evaluation technique for med-
ical report generation to best capture the similarities between generated and reference medical
reports?

For the first question, we will focus on comparing the accuracy of several approaches on a
dataset of Chest X-Ray medical reports, using both old metrics and new metrics. By systemati-
cally comparing how similar generated and reference reports are across a series of metrics with
500 reports, we’ll be able to tell which models are able to generate reports that are most similar
to reference reports.

For the second question, we will try out 4 new techniques beyond BLEU and ROUGE scores,
namely word pairs, sentence average, sentence pairs, and sentence pairs (bio). We will look at
a subset of 100 generated/reference medical reports, then manually label the comparison of the
two reports, and measure how similar both the prior and new metrics are to the manually scored
similarity for these 100 medical reports.
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Chapter 2

Related Work

In order to better contextualize our contributions, we need to look at the current state of the art.
For our first research question, focused on comparing unimodal and multimodal models, we can
look at existing types of medical report generation models. For our second question, focused on
creating better evaluation metrics for generated medical reports, we can look at current metrics
for evaluating the similarity between generated and reference medical reports.

2.1 Medical Report Generation Models

2.1.1 Unimodal Models

2.1.1.1 LLMs

Recently, large language models, also known as LLMs, have emerged as an effective tool for
generating chat-like responses [24]. LLMs are often trained on a large amount of text-based
data, with the end goal being to generate new text.

One important concept within the LLM space is called fine-tuning, which refers to taking a
pre-trained LLM, then passing in a series of inputs/outputs for a given space, such that the LLM
can effectively learn the same patterns [23]. For example, if an LLM was fine-tuned with a series
of biomedical data question and answer pairs, it would become a fine-tuned medical LLM, with
the ability to generate new answers to a given question in a medical context [23].

Fine-tuned medical LLMs have been used for several biomedical visual question answering
tasks. For example, Yuan et al. looked into creating a continual pretrained method for automatic
medical report generation using an LLM [22]. Similarly, Jung et al. looked into using an LLM
for generating medical notes [10]. Specifically, they used a supervised fine-tuning approach to
finetune the LLM to be able to generate discharge notes given progress notes, then prompted the
finetuned LLM to generate discharge notes.

For our unimodal baseline, we decided to use a fine-tuned medical LLM. There were several
reasons why we chose to do this. To begin with, unlike encoder-decoder models, which we
describe below, LLMs are much larger, like LLaMA [19]. In addition, encoder-decoder models
involve converting an image to text, which has two different modalities of data, even if the input
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is just an image. Since we wanted to comparte a completely unimodal baseline and LLMs are
purely text-based, we thought that using a fine-tuned medical LLM would be a good choice.

2.1.1.2 Encoder-Decoder Models

Encoder-decoder models are models that involve both an encoder and decoder component for
medical report generation [11]. As an example, the encoder might be a CNN to extract features
from an image, while a decoder might be an LSTM to create a sequence of words. One key
challenge with these models is that generated medical reports are often very similar to each
other, when the pictures are relatively similar to each other.

There have been several studies that used encoder-decoder models for medical report gener-
ation. For example, Li et al. focused on an auxiliary signal-guided knowledge encoder-decoder
[11]. Similarly, Babar et al. looked at an encoder-decoder model that involves using a CNN as
an encoder and an LSTM as a decoder [2]. The CNN extracts features from the image, which is
then passed to a decoder, which can generate a sequence of words.

As another example, Sirshar et al created an encoder-decoder based framework that also uses
attention for medical report generation, where they used a CNN encoder, attention mechanism,
and LSTM decoder to generate medical reports [17].

2.1.2 Multimodal Models
Multimodal models involve multiple modalities of data, like images, text, audio, and video. As
opposed to encoder-decoder models, which only involve one type of input data, specifically
images, multimodal models can take multiple modalities of data as inputs, including any combi-
nation of text, images, audio, and videos.

As an example of a multimodal model for the radiology report generation, Thawkar et al.
created XRay-GPT. XRay-GPT passes a given chest X-Ray image into a frozen medical vision
encoder to get relevant features, then a learnable linear transformation layer, and this output is
passed along with a give question to a medical LLM [18]. In this case, XRay-GPT is multimodal,
because there are two main inputs involved, namely an input chest X-ray image and an input text
prompt.

As another example, Wu et al. created MRCL, which stands for multimodal model with re-
cursive contrastive learning [20]. In this model, contrastive pre-training gets used to generate
more expressive text-based and visual-representations. This model involves pre-training an im-
age encoder and sentence encoder, then has two modules, one which generates an impression,
and one which generates the findings for a given medical report.

MAIRA-2 is another multimodal model, but specifically for grounded radiology report gen-
eration [3]. MAIRA-2 was created by a team of researchers at Microsoft, and takes a series
of multimodal inputs, including a frontal image, lateral image, prior frontal image, prior re-
port, task instruction, and indication/technique/comparison. The system message, prior report,
task instruction, and indication/technique/comparison all get converted as tokens/embedding and
passed into a language model. The frontal image, lateral image, and prior frontal image get
passed into a frozen vision encoder, then passed into an adapter to get a representation of visual
tokens, which then get passed into the language model.
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For this research, we chose to MAIRA-2 as our main multimodal baseline. There were sev-
eral reasons we chose to do this. To begin with, MAIRA-2 was released in September 2024,
which means that it was one of the most recent models in the radiology report generation do-
main. In addition, MAIRA-2 was publicly available on HuggingFace, which made it easier to
evaluate, since it was easier to load. MAIRA-2 is also extremely flexible, since users can choose
how many inputs they want to include. For example, users can choose whether to input symp-
tom information, and regardless of whether the user passes in an empty string for the symptom
information or lots of symptom information, MAIRA-2 is able to make predictions. This made
MAIRA-2 a strong choice for this research specifically, since one of the aspects of our first re-
search question was how the performance of the multimodal model would change when it was
given and when it wasn’t given symptom information.

2.1.3 Other Models
In addition to the medical report generation models described earlier, there are several other types
of models, like retrieval-based models and reinforcement learning-based models.

As an example of a retrieval-based model, Endo et al. created CXR-RePaiR, which generates
medical reports with just an image as input [6]. The method involves first storing a large number
of reports, then using a pre-trained encoder to encode each of the reports to get a text embedding.
Next, every time an image is given as an input to the model, the input image gets passed into a
pre-trained image encoder to create an image embedding. The image embedding gets compared
to all of the text embeddings to find the report that is most similar to the image embedding, then
the corresponding report gets returned as the predicted report.

One interesting approach to medical report generation involves reinforcement learning. As an
example, Hou et al. did this with their paper, where they used adversarial reinforcement learning
[7]. In this paper, the main architecture that they used involved a CNN encoder for the image
and sentence decoder, along with adversarial training between the decoder component and the
reward module. In this case, the decoder component creates a report, while the reward module
determines how accurate each report is using a diagnostic accuracy measurement component.
Thus, this method depends on having an accurate method for measuring how accurate a generated
medical report is. We discuss these metrics in the next section.

2.2 Evaluation Metrics

2.2.1 Overview
One important factor in determining how accurate generated medical reports are is the evaluation
metric [15]. Ouis et al split their analysis of evaluation metrics into two parts, specifically quan-
titative metrics and qualitative metrics. As examples of quantitative metrics, they mentioned
BLEU, ROUGE, CIDEr, and METEOR. As examples of qualitative metrics, they mentioned
MeSH, MIRQI, and Keyword Accuracy.

In this research paper, we focus on creating a series of more effective quantitative metrics for
evaluating the quality of generated medical reports. Thus, our key research question, as shown
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Figure 2.1: Metric Calculation Overview

in Figure 2.1, is how to come up with a metric calculation algorithm that will give us an accurate
numerical score.

2.2.2 BLEU Score
BLEU score is a very common evaluation metric for machine translation [16]. The score gets
calculated by comparing n-grams of the generated and reference sentences. In this research, we
used BLEU-1 and BLEU-2 as 2 of our baseline metrics.

In order to calculate the BLEU score, we first imported nltk, then we split the predicted and
reference text into two arrays with their sentences. Next, we used the nltk.translate.bleu score.sentence bleu
function and passed in the reference text along with the predicted text and the weights. For
BLEU-1, we set the weights to be [1,0,0,0], and for BLEU-2, we set the weights to be [0,1,0,0].
Lastly, we returned the output from the sentence bleu function with the [1,0,0,0] weights input
as the BLEU-1 score and the output from the sentence bleu function with the [0,1,0,0] weights
input as the BLEU-2 score.

2.2.3 ROUGE Score
ROUGE score is another common evaluation metric [12]. In this research, we used ROUGE-1,
ROUGE-2, and ROUGE-L as 3 of our baseline metrics.

Rouge-N is a metric that looks at the overlap of n-grams between two pieces of text. Rouge-
1 focuses on the overlap of unigrams, meaning each word. Rouge-2 looks at the overlap of
bigrams. Rouge-L looks at the longest common subsequence.

In order to load the ROUGE score, we used the rouge score library from Python. Specifically,
we used pip3 install rouge score, then imported rouge scorer from rouge score, then created a
RougeScorer object with ”rouge1”, ”rouge2”, and ”rougeL” passed in as input metrics. Lastly,
we used the created object’s score function and passed in the target and predicted report as inputs.
This returned a dictionary of ROUGE values for ROUGE-1, ROUGE-2, and ROUGE-L. For each
key in the dictionary, there was a Score object with a precision, recall, and f-measure value. We
chose to use the f-measure value as our ROUGE score metric value, since the f-measure value
uses both precision and recall.

One key reason why we chose to introduce new metrics for evaluating generated medical
reports is because BLEU and ROUGE scores have several problems, especially in the context of
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Figure 2.2: Problem with BLEU Score and ROUGE Score

generative models. As shown in Figure 2.2, there are cases where two pieces of text have the
same meaning, but use different phrases or two words that are synonyms to express the same
idea. In these cases, the BLEU/ROUGE scores are low, because these scores are looking at exact
word overlap.

2.2.4 RaTE Score

As an example of a more recent approach, Zhao et al. created the RaTE Score, which is a metric
for radiology report generation [25]. The RaTE score paper mentions that they handle cases with
medical synonyms and cases with negation values.

The RaTE score is computed by first getting the medical entity and the corresponding entity
type, then computing the entity embedding, and getting the cosine vector similarity with the
maximum value. The RaTE score uses medical entity recognition to generate a fine-grained
medical entity, which gets passed into a synonym disambiguation function. In addition, the RaTE
score uses medical entity recognition to generate a contextual entity type, which gets passed into
type-aware parameters. The synonym disambiguation component finds the maximum cosine
similarity, which gets passed in as an input to calculate the final RaTE score. The contextual
entity type gets combined with the type set, affinity matrix, and the negative penalty factor to
create a weighted score, which is also passed in as an input to calculate the final RaTE score.

In order to load the RaTE score, we used the RaTEScore library from pip, then created
a RaTEScore object. Each time we compared the predicted and reference text, we split the
predicted text into an array of sentences, and we split the reference text into an array of sentences.
One limitation of the RaTEScore method is that the number of sentences in the reference array
and the predicted array need to be the same, which means that the arrays needed to have the same
length. However, since the lengths of these two arrays was different in several cases, we chose to
find the array with the lower length, then take the same number of sentences from each array. For
example, if the reference text has 4 sentences and the predicted text has 5 sentences, we found
that the minimum number of sentences across the two was 4 sentences, then we took the first
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Figure 2.3: Problem with RaTE Score

4 sentences in the predicted text and passed in that array, so that both the predicted and target
arrays have 4 elements. Next, we passed these two arrays as inputs into the RaTEScore object
that we created earlier, using the RaTEScore.compute score function. This gave us an array of
all of the scores. Lastly, we took the average of all of these scores to get the final average score.

As shown in Figure 2.3, the RaTE score also has a similar problem to the BLEU/ROUGE
scores. Specifically, the RaTE score underestimates how similar two pieces of text are. In Figure
2.3, the generated medical report and doctor medical report are extremely similar, but the RaTE
score gives a very low score, even though the score should be high. This shows us that the RaTE
Score metric isn’t the most accurate metric.

Given that the more classical scores, like BLEU and ROUGE have problems with understand-
ing text that is phrased differently, while RaTE Score consistently gives low scores, even when
two medical reports are similar to each other, we decided to create our own series of medical
report evaluation metrics.
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Chapter 3

Methods

There are two main types of methods that we used. The first method is for comparing model
performance, which involved loading different types of models and evaluating them on the same
dataset to generate a series of medical reports. The second method is for creating and evaluating
metrics, where we describe each of the 4 new metrics from this research, along with how we
evaluated how effective each of these metrics are, relative to the prior metrics.

3.1 Comparing Model Performance

We chose specifically to compare two techniques to medical report generation, namely uni-
modal text-based models and multimodal text and image-based models. Specifically, we picked
a fine-tuned medical LLM as our uni-modal model and the MAIRA-2 radiology report genera-
tion model as our multimodal model. In order to standardize comparison, we evaluated both of
these models on the same 500 samples from the same dataset, which was the Indiana University
Chest X-Ray dataset. This process is shown in Figure 3.1.

3.1.1 Dataset

For our dataset, we used the Indiana University Chest X-Ray dataset. This dataset contains 7,470
X-ray images, along with 3,955 corresponding reports [13]. The IU-XRay dataset consists of
several columns of data, including the frontal/lateral chest X-ray images, the MeSH value, prob-
lems, information about the images provided, indication, comparison, findings, and impression.
We chose to set the ”findings” column in the IU-XRay dataset to be the generated medical report.
We also used a HuggingFace version of this dataset, titled ”NLMCXR”, to make accessing the
Chest X-Ray images easier, since we could load them more easily use HuggingFace. The spe-
cific link that we used for our Kaggle Dataset is https://www.kaggle.com/datasets/raddar/chest-
xrays-indiana-university, and the specific link that we used for our HuggingFace dataset is here:
https://huggingface.co/datasets/Fakhraddin/NLMCXR.
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3.1.1.1 Pre-Processing

There was a large amount of pre-processing needed for this dataset. There were 3 main input files
that we used. The first was a CSV file consisting of the text-based data, like the MeSH value,
problems, information about the images, indication, comparison, findings, and impression. The
second was a CSV file with the two columns, where the first column was the path to each Chest
X-Ray image and the second column was whether the given image represented a frontal or lateral
Chest X-Ray. The third was a HuggingFace dataset based on the IU-XRay dataset, which had a
series of 7,400 images in the dataset, split with 5.93k rows of data in the train split of the dataset
and 1.51k rows of data in the validation split. This HuggingFace dataset had 3 main categories,
including one for the text of the reference report, another with the path to the image, and a third
with the corresponding image.

First, we loaded the HuggingFace dataset with images for each of the Chest X-Rays, and
used the CSV file that mapped from the path of the image to whether the image was a frontal or
lateral chest X-Ray image to identify which images from the HuggingFace dataset were frontal
and lateral images. We stored each image in a dictionary, where the key was the ID for the patient
along with whether the image was frontal or lateral, and the values were the reference report, the
image, and the filename. We repeated this process for both train split and the validation split, so
the final dictionary had around 7,400 keys.

Next, we went through the first CSV, which has all of the text-based data, and used Pandas to
read the CSV file as a Pandas Dataframe. We iterated through this Pandas Dataframe and created
a dictionary for all of the indications, where the key was the User ID, and the value was a string of
the format ”The indication is <indication>, the problems are <problems>, and the impression
is <impression>”. Within this format, the <indication> value was the text in the indication
field for the row corresponding to the given User ID, the <problems> value was the text in the
problems field, and the <impression> value was the text in the impression field. Since some
of these values have de-identified characters, we removed these by replacing all occurrences of
”XXXX”, which represents de-identified information, with the empty string. We also stored the
reference report using the ”findings” section of the current row for the same User ID. We repeated
this process for all rows in the dataset, and the final dictionary had 3,851 keys.

We iterated through the dataset starting with the first User ID, then looked for the frontal and
lateral keys in the information dictionary, checked to make sure that the given User ID had a
value in the indication dictionary, retrieved the indication string and the reference report string
from the indication dictionary, then checked to make sure that frontal and lateral keys were the
information dictionary, and the reference report was at least 20 characters long.

For each report that met these conditions, we got the frontal and lateral chest x-ray images,
sent it as an input to the MAIRA-2 model without the indication, then got the indication, and
sent it as an input, along with the frontal and lateral chest x-ray images to the MAIRA-2 model
with the indication. We repeated this process until we generated 500 reports with 500 rows of
data that met these conditions. Between each step, we used the torch.cuda.empty cache method
to minimize the amount of GPU RAM that we used.
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Figure 3.1: Model Evaluation Method Overview

Figure 3.2: Medical LLM Overview

3.1.2 Models

There were two main types of models that we used, specifically the Medical LLM and the
MAIRA-2 model. For both models, we ran loading and evaluating the model using Google
Colab Notebooks with 1 A100 GPU. The maximum GPU RAM was 40GB for the A100 GPU,
which is why we chose to run 500 samples, since we were very close to the maximum GPU
RAM limit when we ran the MAIRA-2 model.

3.1.2.1 Medical LLM Model

As shown in Figure 3.2, the purpose of the medical LLM was to convert a series of text-based
inputs, like the symptoms, problems, and impressions from a given patient to a generated medical
report.

In order to do this, we loaded an already fine-tuned Medical LLM model, called ”Bio-
Medical-Llama-3-8B”, from HuggingFace [1]. The model was developed by a company called
”ContactDoctor”, and the model was created by fine-tuning the Llama-3-8B-Instruct base model.
As mentioned in the HuggingFace documentation, the model was fine-tuned on over 500,000 en-
tries of biomedical data from a custom dataset that covers several biomedical topics.

The process of fine-tuning this model is shown in Figure 3.3. As shown in the diagram, a
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Figure 3.3: Fine-tuning Medical LLM Method

Figure 3.4: Prompt for Medical LLM

series of biomedical questions and answers are provided to the base Llama-3-8B-Instruct model,
which produces a fine-tuned medical LLM, like ”Bio-Medical-Llama-3-8B”. This fne-tuned
medical LLM has the ability to predict the next token for medical data, which allows it to generate
medical reports.

The creators of the ”Bio-Medical-Llama-3-8B” model mention that some of the key appli-
cations of this model are helping researchers analyze biomedical articles, helping with making
decisions in a clinical setting, and helping as an educational tool for medical students.

We loaded the model from HuggingFace, then used the transformer text-generation pipeline
with the Torch float 16 datatype. The model was given the system prompt that ”You are an expert
trained on healthcare in the radiology domain, and you need to write a relevant medical report.”.
The user was given the prompt ”Please write a 5-sentence medical report for this patient given
this patient’s medical information:”, followed by the indication information. The indication in-
formation was in the format ”The indication is <indication>, the problems are <problems>, and
the impression is <impression>”. These were all retrieved from the IU-XRay dataset, and were
formatted as one sentence with all 3 pieces of information. Thus, the final prompt was ”Please
write a 5-sentence medical report for this patient given this patient’s medical information: The in-
dication is <indication>, the problems are <problems>, and the impression is <impression>”.
These prompts are shown below, in Figure 3.4.
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Figure 3.5: Multimodal Model without Indication Flowchart

Once the system prompt and the user prompt were defined, we used the transformer text-
generation pipeline to apply the chat template, then created a series of end-of-sentence tokens
to add to the end of the prompt. We passed this as an input to the pipeline, with the parameters
of 256 max new tokens, do sample set to true, the temperature set to 0.6, and the top p-value
set to 0.9. We used these as input parameters because they were the default input parameter
values on the HuggingFace page for this model. After we ran the pipeline, we got the final result
by accessing the first output’s generated text category, then found the remaining words after the
input prompt, which became the medical LLM’s generated output.

We repeated this process of prompting the LLM to generate responses for all 500 samples.
For each sample, we calculated all 10 metrics, then averaged the values across all 500 samples
for each of the metrics, and stored these values as results.

3.1.2.2 MAIRA-2 Model

We loaded the MAIRA-2 model from HuggingFace [3]. The MAIRA-2 model allows users to
input a few different things, including the frontal X-Ray image, the lateral X-Ray image, the
indication, the technique, and prior reports. As shown in Figure 3.5, for the MAIRA-2 model
without the indication, we passed in the frontal and lateral X-Ray images as inputs, along with
the technique as ”PA and lateral views of the chest”. As shown in Figure 3.6, for the MAIRA-2
model with the indication, we passed in the frontal and lateral X-Ray images as inputs, along
with the indication and the same technique. Since the IU-XRay dataset has a different patient for
each row, we didn’t input anything in the prior reports category.

In order to load the MAIRA-2 model, we loaded the model using the AutoModelForCausalLM
library and we loaded the processor using the AutoProcessor lobrary. We converted the model to
be run in eval mode and converted it to be run with CUDA.

In order to run the MAIRA-2 model, we used the processor to format and pre-process the
input, then used the model.generate() function with 300 max new tokens and the use cache field
set to true. Next, we got the prompt length from the shape of the processed input, and got the
output by taking the generated text and finding the rest of the text after the length of the input,
while skipping special tokens. We used the processor.decode() function to decode the output,
removed any leading spaces, then used the processor to convert the output to plaintext, which
we then returned as the final generated text. The only difference between the MAIRA-2 model
without the indication and with the indication is that we passed in the indication text of the
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Figure 3.6: Multimodal Model with Indication Flowchart

Figure 3.7: Inputs to Multimodal Model with Indication

format ”The indication is <indication>, the problems are <problems>, and the impression is
<impression>” as an input in the ”indication” field of the processor’s format and pre-process
input function. Figure 3.7 shows the series of inputs to the multimodal model with the indication
is shown.

We repeated this process for all 500 samples, then calculated the metrics for all 500 samples,
and found the average for each. These values are in the results section.

3.2 Analyzing Evaluation Metrics

3.2.1 Creating Metrics

There are four new metrics that we designed in this research. These metrics are called Word
Pairs, Sentence Average, Sentence Pairs, and Sentence Pairs (Bio).
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Figure 3.8: Word Pairs Flowchart

3.2.1.1 Word Pairs

The Word Pairs method is shown in Figure 3.8. First, we start by pre-processing the predicted and
reference reports by splitting each piece of text into an array of all of the words, then removing
all filler words from the array. Some examples of filler words that we remove are ”and”, ”or”,
”for”, ”not”, ”is”, ”a”, ”the”, ”to”, ”there”, and others.

Once we have these two arrays representing the words in the predicted and target reports, we
go through each word in the target array, then iterate through each word in the reference array.
When we start with the first word in the target array, we compare the first word in the target array
with every word in the reference array, and find the one that is the most similar.

In order to measure how similar two given words are, we first encode each word using a word
vector embedding model, specifically Word2Vec [5]. We loaded the ”Word2Vec-Google-News-
300” vector embedding model using the Gensim Downloader API. This model was trained on
Google News with 100 billion words, and has 3 million words across 300 dimensions. After we
load the word vector for each word, we use the PyTorch cosine similarity function with the two
vectors as input to calculate how similar the word vectors are. This gives us a number from 0 to
1 that represents how similar the two word vectors are.

We repeat this process of comparing the first word in the target array to all of the other words
in the predicted array, and we find the word in the predicted array with the highest word vector
cosine similarity. We add this number to a total score, as shown in Figure 3.9. Next, we go to the
second word in the target array, and repeat this process for each word in the predicted array, then
add the highest cosine similarity value to the total score. Once we have gone through all of the
words in the target array, we calculate the average score by dividing the total score by the number
of times we added a similarity value to the total score. This gives us a final average similarity
score.

We call this metric ”Word Pairs”, because each time we add a new similarity value, that given
value represents how similar a pair of words are, where the first word is from the target array,
and the second word is from the predicted array.

3.2.1.2 Sentence Average

The Sentence Average method is shown in Figure 3.10. First, we split the predicted and reference
text into arrays by splitting on the period character in each report, which gives us an array of
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Figure 3.9: Comparing Words using the Word Pairs Method

Figure 3.10: Sentence Average Overview

sentence for each report. Next, we go through each sentence in each report, and check that the
sentence is at least 10 characters long, then we replace the de-identified characters ”XXXX” with
the empty string so that these filler characters don’t get encoded later on.

As shown in Figure 3.11, once we have processed each of the sentences in the predicted and
target arrays, we first go through each sentence in the predicted array, then get the sentence em-
bedding for each sentence, add each embedding to a total embedding, then divide by the number
of sentences to get the average embedding for the predicted array. In order to get the sentence em-
bedding, we use a sentence transformer, specifically using the SentenceTransformer library, with
the ”sentence-transformers/all-MiniLM-L6-v2” model. In order to encode the sentence, we first
create a model instance using the SentenceTransformer library, then we use the model.encode()
method, where we pass in each sentence as an input, with the convert to tensor method set to be
true.

Similarly, as shown in Figure 3.12, we repeat this process for the reference array, where we
get the target embedding for each sentence in the reference array, then average these embeddings
to a final embedding for the reference array.

Once we have these two averaged sentence embeddings, we use the PyTorch cosine vector
similarity function to measure how similar the averaged sentence embeddings are for the pre-
dicted and target reports. Lastly, we return the cosine vector similarity value, which is between
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Figure 3.11: Sentence Average Method, Averaging Predicted Embeddings

Figure 3.12: Sentence Average Method, Averaging Reference Embeddings
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Figure 3.13: Sentence Average Method, Calculating Final Similarity

Figure 3.14: Problem with Sentence Average Score

0 and 1. This is shown in Figure 3.13.
As shown in Figure 3.14, the main problem with the Sentence Average score is that the values

are all too high. This results in a call to action to design a better metric, which brings us to the
next metric we created.

3.2.1.3 Sentence Pairs

The Sentence Pairs method is very similar to combining the Word Pairs and Sentence Average
methods. First, we split the target and reference report into two arrays, where each array has all of
the sentences in each report, just like in the Sentence Average method. Next, we go through each
sentence, find the ones that have at least 10 characters, and replace the de-identified ”XXXX”
characters with an empty string so that the don’t get encoded, just like we did in the Sentence
Average method. The flowchart for this method is show in Figure 3.15.

Next, we go through each sentence in the target array of sentences. For the first sentence
in the target, we compare that sentence with each of the sentences in the predicted array using
cosine vector similarity with the same sentence embedding model from the Sentence Average
method, then we add the value representing the highest cosine vector similarity for the first target
sentence to a total similarity variable. We repeat this process for every sentence in the target
array, then average the similarity values to get a final similarity value, which we return as the
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Figure 3.15: Sentence Pairs Flowchart

Figure 3.16: Sentence Pairs Method

final metric. This process is shown in Figure 3.16.
In other words, the Sentence Pairs method is essentially just the Word Pairs method, but

instead of using the pre-processing method for words, we use the pre-processing method for
sentences, instead of comparing words, we compare sentences, and instead of using Word2Vec
to encode each word, we use the sentence transformer to encode each sentence.

3.2.1.4 Sentence Pairs (Bio)

The Sentence Pairs (Bio) method is a variation of the Sentence Pairs method, where instead of
using a more general sentence transformer to encode each sentence, then using cosine vector
similarity to compare the encoded sentence, we use radiology embeddings. Thus, the main
difference is in how the similarity between the reference and predicted sentences is calculated,
as shown in Figure 3.17.

First, we load the Microsoft BioMedVLP-CXR-BERT-Specialized model from Hugging-
Face, then get the tokenizer and the model [4]. When we compare a target sentence and a
predicted sentence, we first put both of the sentences into an array with two elements, then pass
this array in as two text prompts using the loaded tokenizer’s batch encode plus method. We pass
in the text prompts as input, and specify that we want to add special tokens, we want the longest
padding, and we want to return tensors as a PyTorch tensor.
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Figure 3.17: Sentence Pairs (Bio) Difference

Figure 3.18: Sentence Pairs (Bio) Similarity Calculation Method

Next, we use the loaded CXR-BERT model’s get projected text embeddings function with
the input IDs from the tokenizer output and the attention mask from the tokenizer output. Lastly,
we use the torch.mm() method to multiply these embeddings with the transposed embeddings,
which gives us a 2x2 similarity matrix for the predicted and target sentence. We return the value
in the first row and second column, which corresponds to how similar the target sentence is to
the predicted sentence, then convert the value from a tensor to a float, then return the value as
the similarity score between the two sentences. Aside from this difference in calculating the
sentence similarity score, the rest of the method is the exact same as the regular Sentence Pairs
method. This similarity calculation method is shown in Figure 3.18.

The key intuition behind this method is that we wanted to use radiology-focused embeddings.
The CXR-BERT-specialized model from Microsoft was trained on chest X-Ray information, by
taking the CXR-BERT-general model, then using continual pretraining to make the model be
even more specialized for Chest X-Ray information. The CXR-BERT-specialized model is also
trained using contrastive learning at the end, in order to align the text and image embeddings for
Chest X-Ray information.

The goal of using these radiology embeddings instead of the sentence transformer is that
they might be able to better distinguish between two sentences that use keywords that are more
relevant to Chest X-Ray information, since the sentences that are being passed into the CXR-
BERT-specialized model to be encoded are coming from generated and reference Chest X-Ray
reports. As we discuss in the results section, the Sentence Pairs (Bio) method actually performs
worse than the regular Sentence Pairs method.
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Figure 3.19: Quantitative Evaluation Method

3.2.2 Analyzing Metrics
Once we had defined both the prior metrics mentioned in the related work section and the new
metrics mentioned earlier, we needed to come up with an effective method for evaluating how
accurate our metrics were. In order to most effectively analyze these metrics, we used both
quantitative analysis and qualitative analysis.

3.2.2.1 Quantitative Analysis

First, we randomly sampled 100 generated reports from the 500 reports that we ran our method
on. For this random sample of 100 reports, we manually scored each generated report from a
scale of 0 to 10. We repeated this process for all 100 pairs of generated and reference reports,
which gave us a ground truth value as a manually-labeled score for how similar the generated
report was to the reference report. This method is shown in Figure 3.19. The rubric that we used
to manually score each generated report is shown below in Table 3.1.

Once we had these 100 manual labels for each report, we got the values for all 10 automatic
metrics, including the 6 prior metrics and the 4 prior metrics, by getting the relevant metrics for
each generated report. Next, we compared each of these 10 metrics with the manual score. In
order to measure how tightly correlated each metric was to the manual score, we created scatter
plots, then plotted the trendline and recorded the R-squared value. In order to measure how
close each metric was to the manual score, we calculated the RMSE between each metric and
the manual score, across all 100 generated reports. All 10 of the plots and the RMSE chart are in
the results section.

3.2.2.2 Qualitative Analysis

In order to better understand the performance of our 4 new metrics on individual examples of
generated and reference medical reports, we sampled 10 reports from the larger sample of 100
reports, and recorded each of these reports, along with the manual score and the values from each
of the 4 new metrics for how similar each pair of generated and reference report were. We made
sure that each report had a different value for the manual score, to make sure that we could see
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how the metrics performed across different levels of how good the report was. The table with
these 10 reports, along with the manual score for each generated report and the values of the 4
new metrics for each generated report is in the results section.

Manual Score Rubric
Similarity of the Generated Report to the Reference Report Manual Score
The generated report is focused on a different topic from the ref-
erence report with no keywords in common

0

All major important details missing, but there is at least one rela-
tively important keyword mentioned

1

Almost all major important details missing, except for one or two
important keywords

2

At least two very important pieces of information are missing, or
the generated report has a relatively different meaning from the
reference report

3

Half of the report is the same as the reference report, but multiple
important pieces of information are not included

4

Most important information is included, but there are multiple im-
portant keywords not included

5

Mostly similar report, except missing one very important piece of
information or two pieces of relatively important information

6

Mostly similar report, except missing one important piece of in-
formation

7

Similar report, except for a few keywords, at least one of which is
relatively important to include

8

Extremely similar report, except for a few keywords that aren’t
that important to include

9

Exact same report, with the exception of 1 or 2 terms 10

Table 3.1: Manual Score Rubric for Evaluating Metrics
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Chapter 4

Results

4.1 Model Comparison
There were three main types of models that we evaluated, specifically the fine-tuned Medi-
cal LLM, the MAIRA-2 multimodal model without symptom information as an input, and the
MAIRA-2 multimodal model with symptom information as an input.

In order to compare the performance of each of these 3 models, we ran each of them sepa-
rately on the same 500 samples, compared the predicted report with the reference report for each
sample, calculate all of the metrics for each sample, then averaged the metrics across all 500
samples.

As mentioned, there were a total of 10 metrics that we measured. The first 5 are classical prior
work, specifically BLEU-1, BLEU-2, ROUGE-1, ROUGE-2, and ROUGE-L. The 6th metric is
more recent prior work, called the RaTE Score, which was developed in 2024 by a group of
researchers as a metric specifically for radiology report generation. The last four metrics are all
new metrics presented in this research paper, specifically the Word Pairs score, Sentence Average
score, Sentence Pairs score, and the Sentence Pairs (Bio) score.

4.1.1 BLEU score
Table 4.1, below, shows the BLEU score across all three models. As the table shows, the BLEU-
1 score for the multimodal models is significantly higher than that of the medical LLM, with
0.149 and 0.207 for MAIRA-2, compared to 0.105 for the medical LLM. The BLEU-2 score
shows a similar pattern, where the BLEU-2 score for the multimodal models is 0.053 and 0.067,
compared to the medical LLM, which has a score of 0.020. The BLEU scores also show that,
within the context of the MAIRA-2 model, introducing the symptoms as an input helps improve
the model’s performance, with the BLEU scores for MAIRA-2 with the indication being 0.207
and 0.067, compared to 0.149 and 0.053 without the indication.

4.1.2 ROUGE Score
Table 4.2, below, shows the ROUGE-1, ROUGE-2, and ROUGE-L scores for all 3 models.
Similar to the bLEU scores, we can see that there is a significant benefit that MAIRA-2 has

25



BLEU Score Across Methods
Model BLEU-1 BLEU-2
Medical LLM 0.105 0.020
MAIRA-2 (no indication) 0.149 0.053
MAIRA-2 (indication) 0.207 0.067

Table 4.1: Comparison of BLEU Metric Values for Each Model

in comparison the medical LLM. We can also see that there is a slight benefit from adding the
indication for the MAIRA-2 model with the indication, since the values are 0.367, 0.126, and
0.257, as compared to 0.341, 0.123, and 0.246 for the model without the indication.

ROUGE Score Across Methods
Model ROUGE-1 ROUGE-2 ROUGE-L
Medical LLM 0.190 0.040 0.126
MAIRA-2 (no indication) 0.341 0.123 0.246
MAIRA-2 (indication) 0.367 0.126 0.257

Table 4.2: Comparison of ROUGE Metric Values for Each Model

4.1.3 RaTE Score
As shown by Table 4.3, below, the RaTE score shows a similar pattern as the BLEU and ROUGE
scores. The RaTE score for MAIRA-2 is much higher than the RaTE score from the medical
LLM, with the MAIRA-2 model without the indication having a RaTE score of 0.265, while the
medical LLM has a RaTE score of 0.207. Similarly, we can see that the MAIRA-2 model with
the indication has slightly better performance than the MAIRA-2 model without the indication.

RaTE Score Across Methods
Model RaTE Score
Medical LLM 0.207
MAIRA-2 (no indication) 0.265
MAIRA-2 (indication) 0.276

Table 4.3: Comparison of RaTE Metric ValuesValues for Each Model

4.1.4 Word Pairs and Sentence Average
Table 4.4, below shows the scores from the Word Pairs and Sentence Average methods. First,
we can see that the Word Pairs score gives the medical LLM an extremely high score, at 0.462.
This makes sense, because the medical LLM is prompted with the indication information, which
consists of relevant keywords for the problems that the given patient is having, along with rel-
evant symptoms. When the fine-tuned medical LLM is prompted with this information, it is
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more likely that the model will include these keywords in the generated report. The Word Pairs
method, as mentioned earlier, tries to find relevant keywords from the reference text in the gen-
erated text, which means that the generated text is more likely to have these words, since it has
been prompted with these keywords. By contrast, the MAIRA-2 model without the indication
has not been given any information about relevant symptoms or problems, which means that the
MAIRA-2 model without the indication does not have the ability to mention these keywords.
Thus, we can see that the Word Pairs score for the medical LLM is higher than that of MAIRA-2
without the indication. Similarly, we can see that the MAIRA-2 model with the indication infor-
mation performs better than the MAIRA-2 model without the indication, with the model having
a Word Pairs score of 0.514 with the indication, compared to 0.443 without the indication.

In terms of the Sentence Average score, we can see two key observations. First, we notice the
same pattern of the MAIRA-2 model being more effective than the medical LLM. This makes
sense, because instead of searching for specific keywords like the Word Pairs metric, the Sen-
tence Average metric calculates sentence embeddings for each sentence, averages them, then
compares the two vector cosine similarity values. Thus, the medical LLM doesn’t get a much
larger advantage from being given relevant keywords, since it still needs to generate sentences
that are similar to that of the reference report. The other key observation is that all of the Sen-
tence Average metric values are extremely high in comparison to other metrics. For example, the
value for the medical LLM is 0.575, the value for MAIRA-2 without the indication is 0.748, and
the value for MAIRA-2 with the indication is 0.745. Although MAIRA-2 is relatively effective
at medical report generation, an average score around 0.75 is higher than the manually-graded
average from the sample of 100 reports, which was around 0.62. This shows us that the Sentence
Average metric might not be the best metric to use.

Word Pairs and Sentence Average Values for Each Model
Model Word Pair Sentence Average
Medical LLM 0.462 0.575
MAIRA-2 (no indication) 0.443 0.748
MAIRA-2 (indication) 0.514 0.745

Table 4.4: Comparison of Word Pairs and Sentence Average for Each Model

Putting together the last two metrics, we can introduce two new metrics, specifically Sentence
Pairs and Sentence Pairs (Bio). Table 4.5, below, shows these values across all of the models.

As shown below, the Sentence Pairs method shows a significant benefit from using MAIRA-2
compared to the medical LLM. We can see that the Sentence Pairs metric has a value of 0.5583
for MAIRA-2 without the indication and 0.5792 for MAIRA-2 with the indication, which is
much higher than the medical LLM value of 0.417.

Based off of the intuition of the Sentence Pairs method, we would expect that using the CXR-
BERT embeddings would improve the performance of the metric. However, Table 6 shows that
this isn’t the case. As shown by the metrics for the Sentence Pairs (Bio) metric, the metric is
extremely high across all 3 models. We see the same pattern of the MAIRA-2 model performing
better than the medical LLM, but all of the models have a value greater than 0.7, which means
that all of the metric values are higher than expected. Similar to the other metrics, the Sentence
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Pairs (Bio) method shows a significantly higher value for MAIRA-2 than the medical LLM, but
the value of MAIRA-2 with the indication is only slightly higher than MAIRA-2 without the
indication.

Sentence Pair and Sentence Pairs (Bio) Values for Each Model
Model Sentence Pair Sentence Pairs (Bio)
Medical LLM 0.417 0.707
MAIRA-2 (no indication) 0.5583 0.797
MAIRA-2 (indication) 0.5792 0.804

Table 4.5: Comparison of Sentence Pair and Sentence Pairs (Bio) for Each Model

4.2 Evaluation Metric Comparison
As mentioned earlier, we measured 6 prior metrics and created 4 new metrics in this paper. In
order to best measure how effectively these metrics are able to grade medical reports, we decided
to run a small study where we manually graded a subset of medical reports and compared these
manual grades with the evaluation metric values from all 10 of these evaluation metric methods.

As mentioned earlier, we ran the prediction algorithm on 500 reports from the IU-XRay
dataset. In order to get a random sample, we randomly sampled 100 reports form this subset,
and manually graded the generated report for the MAIRA-2 model with the indication. For each
report, we compared the generated report with the reference report to check how similar the
reports were. In particular, we checked to see if there were any important details that were not
in the generated report when compared to the reference report. We graded each of these reports
from a scale of 0 to 10, where 0 means that there were no similarities across the predicted and
reference reports, and 10 means that they were exactly the same, with the exception of a few
words that are synonyms of each other.

After manually grading these reports on a scale from 0 to 10, we converted the score to a
score from 0 to 1 by dividing each of the grades for the reports by a factor of 10. Once we
had these scores from 0 to 1, we created a series of scatterplots showing these values for each
report, compared to the automatically generated metric value. We repeated this process for all
10 metrics in order to compare how similar the metric’s value was to a manually scored value for
how similar the generated and reference text are.

4.2.1 Plot Comparison
4.2.1.1 BLEU Score Plot Comparison

Figures 4.1 and 4.2 show that the BLEU-1 score is not an effective metric compared to the manual
score, mainly because the BLEU-1 score underestimates the value compared to the BLEU-1
score. For example, in Figure 4.1, for the manual scores between 0.8 and 1, the majority of the
BLEU-1 scores are below 0.5, which shows that BLEU-1 scores are too low in comparison to the
actual values needed. Figure 1 also shows the equation for the trendline, which is y=0.148x +
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Figure 4.1: BLEU-1 Score vs. Manual Score Scatter Plot

0.132, and the R-squared value, which is 0.096. This shows us that the BLEU-1 score is not very
tightly correlated with the manual score, which means that the BLEU-1 score is not the most
effective metric. In Figure 4.2, the standardized version of Figure 4.1, we see the same pattern,
where there is high variance, with the points that have a high manual score still sometimes being
low, even in the standardized version of the BLEU-1 score. This shows us that BLEU-1 is
not the most effective metric, even with standardization. Figures 4.3 and 4.4 show a similar
pattern of BLEU scores being too low. However, since BLEU-2 looks for similarities in pairs
of words, we can see that the plot has values that are even lower than BLEU-1. In Figure 4.3,
the majority of the BLEU-2 scores are under 0.25, even for manual scores that are between 0.8
and 1. Similar to the BLEU-1 metric, the equation for the trendline for the BLEU-2 score plot
is y=0.0971*x + 0.0118, while the R-squared value is 0.104. The R-squared value is extremely
low, which shows us that the BLEU-2 score is not the most effective metric. As shown in Figure
4.4, when we standardize the values, we see that the BLEU-2 score values has several outliers
that are significantly above the manual score values, which shows that the BLEU-2 score might
overestimate values compared to the manual score, when it is standardized.

4.2.1.2 ROUGE Score Plot Comparison

As shown in Figures 4.5 and 4.6, the ROUGE-1 score is much more effective at being more cor-
related with the manual score. The trendline in Figure 4.5 has an equation of y=0.233*x+0.242,
which has a higher coefficient than the BLEU-1 and BLEU-2 score coefficients. Similarly, the R-
squared value is much higher for ROUGE-1, with a value of R-squared = 0.237. Thus, ROUGE-1
seems like a more effective metric than BLEU-1 and BLEU-2. Similarly, Figure 4.6 shows that
most points are relatively close to the trendline, which means that the ROUGE-1 score more
closely matches the manual score than any of the BLEU metrics. We can also see that the stan-
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Figure 4.2: Standardized: BLEU-1 Score vs. Manual Score Scatter Plot

Figure 4.3: BLEU-2 Score vs. Manual Score Scatter Plot
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Figure 4.4: Standardized: BLEU-2 Score vs. Manual Score Scatter Plot

dardized slope is 0.487, which is significantly higher than the standardized slope of the BLEU-1
and BLEU-2 metrics, which were 0.31 and 0.323.

As shown in Figures 4.7 and 4.8, ROUGE-2 seems more effective than the BLEU score
metrics, but also seems to be much lower than the manual scores. As shown in Figure 4.7,
we can see that all of the points with a manual score between 0.8 and 1.0 have a ROUGE-2
score below 0.5, which shows us that the ROUGE-2 score is too low. The R-squared value is
higher than the BLEU-1 and BLEU-2 metrics, with an R-squared value of 0.179, but the R-
squared value is lower than the R-squared value for the ROUGE-1 metric, which was 0.237.
Figure 4.8 shows a similar pattern, with there being high variance in the ROUGE-2 score when
the standardized manual score is 1, and a standardized slope of 0.423, which is lower than the
ROUGE-1 standardized slope of 0.487. Thus, we can see that ROUGE-2 performs worse than
ROUGE-1.

As shown in Figures 4.9 and 4.10, ROUGE-L has the highest R-squared value out of all of the
BLEU and ROUGE metrics, with an R-squared value of 0.251. This makes sense, since ROUGE-
L measures the longest common subsequence between the generated and reference reports, and
reports with the same subsequence of words are more likely to be much more similar to each
other. As shown in Figure 4.9, similar to ROUGE-2, ROUGE-L values are on the lower end.
This makes sense, because in order for two reports to have a high ROUGE-L value, they would
have to use the exact same words in the same order, which is very rare. Figure 4.10 shows this
very clearly, with most points being towards the center and there being relatively few outliers.
In addition, Figure 4.10 has a standardized slope of 0.501, which is higher than the standardized
slope from BLEU-1, BLEU-2, ROUGE-1, and ROUGE-2.
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Figure 4.5: ROUGE-1 Score vs. Manual Score Scatter Plot

Figure 4.6: Standardized: ROUGE-1 Score vs. Manual Score Scatter Plot
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Figure 4.7: ROUGE-2 Score vs. Manual Score Scatter Plot

Figure 4.8: Standardized: ROUGE-2 Score vs. Manual Score Scatter Plot
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Figure 4.9: ROUGE-L Score vs. Manual Score Scatter Plot

Figure 4.10: Standardized: ROUGE-L Score vs. Manual Score Scatter Plot
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Figure 4.11: RaTE Score vs. Manual Score Scatter Plot

4.2.1.3 RaTE Score Plot Comparison

As shown in Figures 4.11 and 4.12, the RaTE score also has a low R-squared value of 0.145. As
shown in Figure 4.11, unlike the BLEU and ROUGE metrics, the RaTE score has some points
that have a high score, especially for points with a manual score between 0.8 and 1. In addition,
the trendline equation is y=0.221x+0.139, which has a relatively high coefficient. However, the
majority of the RaTE score values are under 0.5, which shows that the RaTE score gives values
that are too low, in comparison to the manual score. In addition, the R-squared value for the
ROUGE-L metric is much higher, which shows that the RaTE score is not the most effective
metric, even when compared to past metrics. Figure 4.12 shows a similar trend, where when the
standardized manual score is 1, the majority of the standardized RaTe score values are under 1,
with only a few points above 1.

4.2.1.4 Word Pairs and Sentence Average Plot Comparison

As mentioned earlier, there are 4 new metrics that we introduce in this paper, which are Word
Pairs Sentence Average, Sentence Pair, and Sentence Pairs (Bio). In this section, we’ll look at
how effective the Word Pairs and Sentence Average metrics are.

As shown in Figures 4.13 and 4.14, the Word Pairs score has values closer to 0.5 on average,
but the R-squared value is 0.133, which is relatively low. The trendline for the points in Figure
4.13 is y=0.159x + 0.43, which is relatively low as well. This shows us that, although the values
for the Word Pairs metric are closer to the expected values on average, the Word Pairs values are
not as tightly correlated with the manual score as other methods. Figure 4.14 shows a similar
pattern, where there is high variance in the standardized Word Pairs score when the standardized
manual score is slightly above 1, but significantly lower variance when the manual score is less
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Figure 4.12: Standardized: RaTE Score vs. Manual Score Scatter Plot

than 0.
As shown in Figures 4.15 and 4.16, the Sentence Average score has extremely weak per-

formance in terms of being correlated with the manual score. The trendline equation for the
Sentence Average score in Figure 4.15 is y=0.0612x+0.722, which has a very low coefficient.
The R-squared value is 0.054, which is also extremely low, thus showing that the Sentence Aver-
age score does not have a strong correlation with the manual score. As shown in the plot, we can
see that the majority of values for the Sentence Average are around 0.75, and all of the values are
above 0.5, even for generated reports that have a manual score between 0 and 0.2. Given this,
we can see that the Sentence Average metric has values that are too high and is also very weakly
correlated with the manual score. This shows us that using the average method is not as effective
as the pairing method used in the Word Pairs method. This pattern is also shown in Figure 4.16,
where the standardized Sentence Average score points are far from the trendline across each of
the standardized manual score points. In addition, the corresponding trendline slope for the Sen-
tence Average score is 0.232, which is much lower than any of the other standardized trendline
slope values.

4.2.1.5 Sentence Pair and Sentence Pairs (Bio) Plot Comparison

Building upon the intuition from the Word Pairs metric and the Sentence Average metric, we can
look at how effective the Sentence Pairs metric is. As shown in Figures 4.17 and 4.18, this metric
has the most effective correlation with the manual score. The R-squared value is 0.283, which
is the highest out of all of the metrics measured. In addition, the trendline equation in Figure
4.17 is y=0.208x + 0.461, which has a much higher slope than both the Word Pairs method and
Sentence Average methods. One potential limitation that the Sentence Pairs score has is that
almost all of the score value are above 0.5, even for values with a manual score between 0 and
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Figure 4.13: Word Pairs Score vs. Manual Score Scatter Plot

Figure 4.14: Standardized: Word Pairs Score vs. Manual Score Scatter Plot
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Figure 4.15: Sentence Average Score vs. Manual Score Scatter Plot

Figure 4.16: Standardized: Sentence Average Score vs. Manual Score Scatter Plot

38



Figure 4.17: Sentence Pairs Score vs. Manual Score Scatter Plot

0.2, but even considering this, the Sentence Pairs metric has the best performance out of all of the
metrics measured. This pattern is also shown in Figure 4.18, where all of the points are relatively
close to the trendline, and the slope is higher than all past metrics, at 0.532. Thus, we can see
that the Sentence Pairs metric is the most effective metric.

Similar to the Sentence Pairs metric, the Sentence Pairs (Bio) metric uses the same concept,
but with radiology sentence embeddings instead of sentence transformer embeddings. As shown
in Figure 4.19 and 4.20, the Sentence Pairs (Bio) method has the majority of points having a
score over 0.75, which means that the values are much higher than the manual score. In addition,
the equation for the trendline in Figure 4.19 is y=0.189x+0.7, which has a lower slope than the
Sentence Pairs metric without the radiology embeddings. The R-squared value for this metric is
0.211, which is much lower than the Sentence Pairs score without the CXR-BERT embeddings,
which had a value of 0.283. Thus, we can see that the Sentence Pairs metric without the CXR-
BERT embeddings has the highest performance. This pattern is also shown in Figure 4.20, where
there are several outliers with significantly lower standardized Sentence Pairs (Bio) scores than
the standardized manual scores, and the points are spread out. In addition, the standardized
trendline slope is 0.459, which is lower than both the Sentence Pairs metric and ROUGE-L
metric. This shows that Sentence Pairs (Bio) is not the most effective metric.

4.2.2 RMSE Comparison
Although using scatterplots is an effective way of measuring how closely the metrics correlate
with the manual score, another important method for determining how effective metrics are is
measuring their numerical similarity to the manual score. One technique that is often used to
compare a series of predicted and actual values is RMSE, or root mean squared error. In order
to compute this, we went through each of the 100 manual scores from 0 to 1 and calculated the

39



Figure 4.18: Standardized: Sentence Pairs Score vs. Manual Score Scatter Plot

Figure 4.19: Sentence Pairs (Bio) Score vs. Manual Score Scatter Plot
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Figure 4.20: Standardized: Sentence Pairs (Bio) Score vs. Manual Score Scatter Plot

square of the difference between the manual score and the metric score. Next, we averaged these
values across all 100 rows of data, then took the square root of the average value. We repeated
this process for all 10 metrics.

In order to make sure that comparisons were fair across each of the metrics, we also stan-
dardized the RMSE values. In order to do this, we standardized each set of 100 measurements
per metric using the equation standardized metric = (original metric value - mean across all 100
original metric values)/(standard deviation across all 100 original metric values).

Table 4.6, shown below, shows these values for all 10 of the metrics. As shown by the table,
the standardized RMSE value is the lowest for the Sentence Pairs method, which shows that the
Sentence Pairs metric is closest to the manual score. We can also see that the RMSE values for
the Sentence Average metric is quite high, at around 1.2, which shows that the Sentence Average
metric does not accurately measure how similar the generated and reference medical reports are.
All 4 of the metrics that we introduce in this research is relatively close to 1, while the BLEU-2
score is much higher, at 1.5. Overall, we can see that there is variance between the quality of
the metrics that we introduce, but the Sentence Pairs metric is the most accurate within all of the
new metrics, and outperforms all of the prior metrics. This is also shown visually in Figure 4.21.

4.2.3 R-squared Comparison
Another way to measure the quality of these metrics is to use the R-squared value, which stays
the same both with and without standardization.

As shown in Table 4.7, the metric with the highest R-squared value is the Sentence Pairs
metric, which has an R-squared value of 0.283. This further reinforces our conclusion from
the RMSE comparison, and shows that the Sentence Pairs metric more effectively measures the
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Standardized RMSE Values for all 10 metrics
Model Standardized RMSE Value
BLEU-1 1.169
BLEU-2 1.641
ROUGE-1 1.008
ROUGE-2 1.068
ROUGE-L 0.994
RaTE 1.107
Word Pairs 1.122
Sentence Average 1.233
Sentence Pairs 0.963
Sentence Pairs (Bio) 1.035

Table 4.6: Comparison of Standardized RMSE Values for Each Metric

similarity between generated and reference medical reports than any of the past metrics, because
the Sentence Pairs metric has the strongest correlation. On the other hand, the Sentence Average
metric has a very low R-squared value, at 0.054, which shows that the correlation between the
Sentence Average score and the manual score is very weak. This information is also shown in
Figure 4.22.

Standardized R-squared Values for all 10 Metrics
Model Standardized R-squared Value
BLEU-1 0.096
BLEU-2 0.104
ROUGE-1 0.237
ROUGE-2 0.179
ROUGE-L 0.251
RaTE 0.145
Word Pairs 0.133
Sentence Average 0.054
Sentence Pairs 0.283
Sentence Pairs (Bio) 0.211

Table 4.7: Comparison of Standardized R-squared Values for Each Metric

4.2.4 Manual Score Table
Similar to the plot comparison and the RMSE comparison, we created a table of all 100 reports
that we manually scored, along with the reasoning for each of the scores given to each of the
reports. This table is shown in Table 8.1, which is in the appendix.
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Figure 4.21: Standardized RMSE vs. Scoring Metric

Figure 4.22: Standardized R-Squared Values vs. Scoring Metric
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4.2.5 Qualitative Comparison
Another effective way to compare the 4 new metrics that we introduce in this research, as com-
pared to the 6 prior metrics, is by looking at examples where the new metric was much higher
than previous metrics. In order to do this, we picked a sample of 10 generated reports. For each
of these reports, we show the value of the Sentence Pairs score, the manual score, and the other
scores.

In Table 4.8, WP means Word Pairs SA means Sentence Average, SP means Sentence Pair,
and SPB means Sentence Pairs (Bio).

Abbreviation for Each Metric
Metric Abbreviation
Manual Score M
Word Pairs WP
Sentence Average SA
Sentence Pairs SP
Sentence Pairs (Bio) SPB

Table 4.8: Abbreviation for Each Metric

In order to make sure that the representative shows all possible accuracies, we picked one
example from each of the different manual scores, from 1 to 10. Each generated report, the
reference report, the manual score, and the scores from the 4 new metrics are shown in the table
below.

As shown in Table 4.9, for the generated report that was manually rated as a 1 out of 10, the
Word Pairs and Sentence Pairs values were the lowest, at 0.435, while the Sentence Average and
Sentence Pairs (Bio) values were much higher. This makes sense, because, as mentioned before,
the Sentence Average and Sentence Pairs (Bio) metrics have extremely high values.

For the generated report that was manually rated as a 10 out of 10, we can see that the two
reports have the exact same meaning, but use slightly different words. For example, the generated
report says that the osseous structures are unremarkable, while the reference report says that they
are without acute abnormality. All of the four new metrics have values greater than 0.65, and
we can see that the Sentence Pairs metric has a value of 0.76, which is relatively close to 1.
Similarly, although the Sentence Average and Sentence Pairs (Bio) metrics are generally greater
than 0.7, in this example, the Sentence Average score is 0.873 and the Sentence Pairs (Bio) score
is 0.947. This shows that these scores also show a significant increase when the generated and
reference reports have the same meaning.

Qualitative Example Table
Generated Reference M WP SA SP SPB

44



The lungs are adequately
inflated. No focal airspace
opacity pleural effusion
or pneumothorax. Un-
changed small airways.
Normal cardiomediastinal
silhouette. Normal im-
aged portion of the upper
abdomen. Degenerative
changes are present at the
spine.

There are prominent epi-
cardial fat pads unchanged
from prior. The car-
diomediastinal silhouette
and pulmonary vascula-
ture are within normal lim-
its. There is no pneumoth-
orax or pleural effusion.
There are no focal areas
of consolidation. There
is atherosclerosis of the
aortic XXXX. Unchanged
streaky opacities in the bi-
lateral costophrenic sulci
XXXX represent chronic
scarring or atelectasis.

1 0.486 0.7 0.435 0.741

There is a right central line
with the tip in the right
atrium. There is a left cen-
tral line with the tip in the
superior vena cava. Heart
size is within normal lim-
its. There is bilateral hi-
lar lymphadenopathy right
greater than left consistent
with history of sarcoido-
sis. There is asymmetric
right lower lobe airspace
disease. There is no pneu-
mothorax or pleural effu-
sion.

Right dual-lumen inter-
nal jugular central ve-
nous catheter seen with
tip overlying the cavoatrial
junction. Heart size at
the upper limits of nor-
mal. Low lung vol-
umes with bronchovascu-
lar crowding. Patchy
bibasilar air airspace opac-
ities right greater than left.
No visualized pneumoth-
orax. Prominence of
the mediastinum consis-
tent with history of sar-
coid.

2 0.656 0.744 0.587 0.619

45



The lungs are clear. There
is no pneumothorax or
pleural effusion. There is
no consolidation. There is
mild cardiomegaly. Me-
dian sternotomy wires are
present. There is a com-
ponent of atherosclerosis
of the aortic arch. There
are degenerative changes
of the thoracic spine.

There has been interval
sternotomy with in-
tact midline sternotomy
XXXX. The heart is near
top normal in size with
unfolding of the aorta.
The lungs are grossly clear
with no focal airspace
opacity pleural effusion
or pneumothorax. The
osseous structures are
grossly normal.

3 0.404 0.789 0.575 0.899

The heart is normal in
size. The right middle
lobe airspace disease is
improved. The lungs are
clear. No pleural effusion
or pneumothorax. The di-
aphragm mediastinum and
hilar regions are unre-
markable.

The cardiomediastinal sil-
houette is normal size and
configuration. Pulmonary
vasculature within normal
limits. There is right mid-
dle lobe airspace disease
may reflect atelectasis or
pneumonia. No pleural ef-
fusion. No pneumotho-
rax. Elevated right hemidi-
aphragm.

4 0.677 0.89 0.707 0.735

The lungs are hypoin-
flated. No focal airspace
opacity pleural effusion
or pneumothorax. Mini-
mal left basilar scarring is
again demonstrated. The
cardiac silhouette is at
the upper limit of nor-
mal for size. Unchanged
hilar contours. Surgical
clips project over the up-
per abdomen. Degenera-
tive changes are present at
the spine.

There is some minimal
patchy opacity in left
base which may represent
atelectasis or scarring.
The lungs are otherwise
clear. The heart and
mediastinum are normal
for age. There is some
arthritic changes of the
skeletal structures and
there has been previous
rotator XXXX repair on
the right.

5 0.443 0.711 0.553 0.789
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The lungs are adequately
inflated. No focal airspace
opacity pleural effusion or
pneumothorax. Normal
cardiomediastinal silhou-
ette. Normal imaged por-
tion of the upper abdomen.
Degenerative changes are
present at the spine.

Cardiac and mediastinal
contours are within nor-
mal limits. Atheroscle-
rotic aorta. Mild blunt-
ing left costophrenic re-
cess possibly mild atelec-
tasis or scarring. No con-
fluent lobar consolidation
or large volume pleural ef-
fusion. Thoracic spondy-
losis.

6 0.438 0.778 0.503 0.91

The lungs are clear. No
pneumothorax or effusion.
Unremarkable cardiome-
diastinal silhouette.

Normal heart size. Clear
hyperaerated lungs. No
pneumothorax. No pleural
effusion. XXXX subster-
nal density may be related
to a pectus deformity.

7 0.434 0.839 0.647 0.885

Heart size is within normal
limits. Lungs are with-
out focal airspace consol-
idation. No evidence of
pleural effusion or pneu-
mothorax. Soft tissues and
osseous structures are in-
tact.

Heart size and pulmonary
vascularity appear within
normal limits. The lungs
are free of focal airspace
disease. No pleural ef-
fusion or pneumothorax is
seen.

8 0.738 0.822 0.83 0.951

Lungs are clear without
mass consolidation pleural
effusion or pneumothorax.
Cardiomediastinal silhou-
ette and pulmonary vascu-
lature are within normal
limits. Osseous structures
are unremarkable.

Normal heart size and me-
diastinal contours. The
lungs are clear. There is no
pneumothorax or pleural
effusion. No acute bony
abnormalities.

9 0.573 0.728 0.591 0.881
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The lungs are clear. No
pneumothorax. No pleural
effusion. No pulmonary
edema. The cardiomedi-
astinal silhouette is nor-
mal. The osseous struc-
tures are unremarkable.

The lungs are clear bi-
laterally. Specifically no
evidence of focal consol-
idation pneumothorax or
pleural effusion. Cardio-
mediastinal silhouette is
unremarkable. Visualized
osseous structures of the
thorax are without acute
abnormality.

10 0.661 0.873 0.76 0.947

Table 4.9: Examples of Generated Reports and New Metric
Values
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Chapter 5

Discussion

5.1 Model Comparison
One key observation that we see after comparing the unimodal and multimodal performance is
that the multimodal model far outperforms the unimodal model across all metrics. This makes
sense, because the unimodal medical LLM doesn’t have access to the chest X-ray images, which
are the primary inputs needed to generate an accurate chest X-ray medical report.

Another interesting observation from the results is that the multimodal model with symptom
data only performs slightly better than the multimodal model without symptom data. We found
this surprising, because we originally hypothesized that adding symptom information would re-
sult in a significant benefit. According to our results, it seems like the only metric that showed
a large benefit was the Word Pairs metric. This benefit in the Word Pairs metric is most likely
because including symptom data as an input results in the model generating a medical report that
has similar keywords to the symptoms, and the symptoms are likely included in the reference
report.

One potential explanation for why the multimodal model with symptom data only performs
slightly better than the multimodal model without symptom data is that the average quality of
the symptom data might be inaccurate. For example, if the chest X-ray indicates that there are
problems, yet the patient for the corresponding chest X-ray mentions that they don’t have any
symptoms because they are unaware of their problems, the multimodal model with symptom
information could be less likely to generate a medical report that focuses on the symptom in-
formation. Similarly, if the symptoms mention several problems that aren’t found in the chest
X-ray, the multimodal model with symptom information could be more likely to mention those
problems as keywords in the medical report, even if the given patient doesn’t actually have those
problems.

5.2 Evaluation Metric Comparison
One thing that we found very surprising was that the radiology-based text-encoder Sentence
Pairs method we created, titled ”Sentence Pairs (Bio)”, had such inflated scores. The core moti-
vation behind creating the ”Sentence Pairs (Bio)” metric in the first place was to design a system
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that was specifically designed for the radiology embedding case, but the results show that the
Sentence Pairs (Bio) metric has worse performance than the regular Sentence Pairs metric.

We think that one potential reason for this is that two sentences in the radiology embedding
space are more likely to be similar to each other, which results in the radiology embedding score
inflating the final similarity between any two given sentences. In the future, we can try other
radiology sentence embedding models to see if these new sentence embedding approaches can
make the Sentence Pairs method more accurate.

Based on the evaluation metrics, we can see that the Sentence Pairs metric performs the best,
with the lowest standardized RMSE value, at 0.963. This makes sense, because the Sentence
Pairs metric combines the best aspects of the Word Pairs metric and the Sentence Average metric.
Similar to the Word Pairs metric, the Sentence Pairs metric compares individual sentences to
find the pair of sentences that are as similar as possible, instead of taking an average, which
can inflate similarity scores. Similar to the Sentence Average metric, the Sentence Pairs metric
uses sentence embeddings, which means that comparisons also include the relationship between
words in a given sentence. This is especially helpful for cases where there is ”not” followed by a
keyword, since using sentence embeddings will be able to effectively differentiate between two
sentences, where one has the word ”not”, and the other one doesn’t.

Another important result is that the standardized RMSE values of the other metrics aside
from Sentence Pairs, do not outperform some of the prior metrics. In particular, the Sentence
Average metric has the highest standardized RMSE amongst the new metrics that we introduce,
with a standardized RMSE of 1.233. It makes sense that the Sentence Average metric does not
effectively measure how similar the generated and reference medical reports are to each other,
because two reports in the radiology report domain are always going to be very similar to each
other. In other words, averaging sentences might be useful when comparing topic similarity
between two different reports, but since all reports that we compare are chest X-ray medical
reports, the Sentence Average metric does not serve as an effective method for measuring the
similarity between the generated and reference medical reports.

5.3 LLM as a Judge

One interesting approach for comparing generated and reference text is the ”LLM as a Judge”
approach, as shown in Figure 5.1. In this method, an LLM is given both the generated text and
the ground truth, then is asked to measure how similar the generated text and ground truth text
are. This could also involve giving the LLM some structure, like asking the LLM to follow a
certain structure similar to a rubric that humans would use to measure how similar the generated
and reference medical reports are. Our approaches are quite different from this, because we only
use the existing data from the generated and reference text, instead of an external model that
determines how similar the text is. However, this is an interesting area of future work.

Some researchers, like Zheng et al, looked at evaluating chat bot assistants using other LLMs,
wher these Judge LLMs are able to evaluate the model on more open-ended questions [26]. This
same process can be applied in this context, where an LLM is able to use text-based reasoning to
identify how similar the generated and reference medical reports are.
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Figure 5.1: Using an LLM to Compare Generated and Reference Medical Reports

5.4 Impact
As mentioned earlier, there are two key research questions that we address with this research.

First, we compare several different types of medical report generation techniques. As men-
tioned earlier, we split the types of medical report generation techniques into 3 main types,
including the unimodal text-based fine-tuned medical LLM, the multimodal MAIRA-2 model
without the indication, and the multimodal MAIRA-2 model with the indication.

After comparing these 3 models using 10 different metrics on 500 samples, we found that
both multimodal models perform better than the unimodal fine-tuned medical LLM, and the mul-
timodal model with indication information performs slightly better than the multimodal model
without indication information.

Second, we introduced 4 new metrics for evaluating how similar generated and reference
medical reports are, including Word Pairs, Sentence Average, Sentence Pairs, and Sentence Pairs
(Bio). In order to measure how effective these metrics are, we took 100 medical reports from
the 500 samples, then measured the R-squared and RMSE between each of the metrics and the
manual score, with the end goal of measuring how similar these metrics were to manual scores.
Based off of this analysis, we found that the Sentence Pairs metric performs better than every
metric in the prior work, across both the standardized R-squared and standardized RMSE values.

There are several key applications that this research has. To begin with, our answer to the
first research question shows that multimodal models perform better than unimodal models, but
those with symptom information don’t perform significantly better than those without symptom
information. In order to address this, future researchers can try improving the quality of the
symptom information to see if there is further improvement in the model’s accuracy with the
symptom information.

The new metrics that we introduce also have several key impacts. For example, these metrics
can be used in reinforcement learning-based methods, where having an accurate reward function
is extremely important. These metrics can also be helpful as a method for determining how
accurate future models are for medical report generation.
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Chapter 6

Limitations

6.1 Models

One key limitation of this research is the number of models that we considered, along with types
of different models. Specifically, we could consider more models than just a medical LLM and
multimodal model with and without symptom information. As mentioned earlier in the paper,
there are several models aside from just these two, including retrieval-based approaches, graph
neural networks, and reinforcement-learning based approaches. In the future, we could compare
the performance of all of these other approaches along with the medical LLM and MAIRA-
2 model, to better identify which type of multimodal model has the highest performance for
medical report generation.

6.2 Dataset

One major limitation in this thesis is the quality of the IU Chest X-Ray dataset that we used. Since
the IU Chest X-Ray dataset is publicly available, the dataset creators chose to remove certain
personal information from the dataset, including exact ages and other relevant information. Thus,
some of the symptom and indication information sections in the dataset are not very useful, and
potentially serve as extra noise in all of the models that we tested. In addition, it’s possible that
the reference medical reports from the dataset are not as long as full medical reports that doctors
could write.

Another limitation of this research is the number of data points that we used, at 500 samples.
In order to address this, future work could consider using a larger dataset, like MIMIC-IV and
MIMIC-CXR. These datasets have around 200,000 images, as opposed to the IU-XRay dataset.
In the context of the IU-XRay dataset, we only focused on a subset of the IU-XRay dataset, but
we could have used the entire dataset if we wanted to further increase the dataset size.
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6.3 Evaluation Metrics
There are several limitations for each of the evaluation metrics that we introduce in this research
paper. To begin with, all of our evaluation metrics include some dependency on another metric.
For example, the Word Pairs metric is based on word vector embeddings from Word2Vec, the
Sentence Pairs metric is based on sentence embeddings from a sentence transformer, and the
Sentence Pairs (Bio) metric is based on embeddings from CXR-BERT. These dependencies mean
that the metrics can potentially be limited by the performance of the word vector embeddings and
the sentence embeddings. In other words, if the word embeddings or sentence embeddings are
inaccurate, it is likely that our methods are also inaccurate, since they are based on these existing
approaches.

6.3.1 Word Pairs
The main limitation of the Word Pairs metric is that it just checks for keyword overlap, which
means that the metric is not robust to cases where the metric is comparing two medical reports,
where one has the phrase ”no” + keyword, and the other just has the keyword. In other words,
since the Word Pairs metric just looks for keyword overlap and pre-processes out other words,
the metric can measure two medical reports with exact opposite meanings as being the same.

6.3.2 Sentence Average
The main limitation of the Sentence Average metric is that it has a very inflated score. This
makes sense, because the Sentence Average score takes the average of all sentence embeddings,
which is likely to be similar to the average of all sentence embeddings for another medical report
since the two reports are in the medical domain. However, this limits how useful this metric is.
One area of future work to address this problem would be to scale the metric value down, then
see how that impacts how effective the metric is.

6.3.3 Sentence Pairs
Although Sentence Pairs is a major improvement on the Word Pairs and Sentence Average meth-
ods, the method still considers the generated and reference reports to both be a bag of sentences.
In other words, the model doesn’t take into account the relationship between sentences, and in-
stead measures how similarity pairs of sentences are. In addition, it’s possible that one word
in the reference report is similar to multiple words in the predicted report, in which case the
Sentence Pairs metric value will get inflated. In order to address this, future work can focus on
adding a penalty so that the generated report and the reference report don’t keep using the same
reference sentence in finding the best sentence from the predicted report.

6.3.4 Sentence Pairs (Bio)
Beyond the limitations mentioned for the Sentence Pairs metric, the Sentence Pairs (Bio) metric
is also limited by the quality of CXR-BERT encoding model. If the two sentences in the two
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medical reports are always encoded to be extremely similar to each other, then it is very likely
that the CXR-BERT encoding model is not differentiating accurately between two generated
medical reports. In order to address this future work can explore different sentence transformers
from the medical domain that do a better job of differentiating two sentences in the medical
domain.

6.4 GPU Resources
One of the most major limitations across this research thesis was lack of more powerful GPU
resources. Due to resource limitations, we chose to run all code for this project on Google Colab
with one A100 GPU instance. The A100 GPU instance has a limit of 40 GB of GPU RAM on
Colab, which was just barely enough to run the MAIRA-2 model on 500 samples. In the future,
we could consider using multiple GPUs or increasing the GPU RAM for the current GPU, with
the end goal of being able to train the model on more data.
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Chapter 7

Conclusion

7.1 Model Comparison
One important conclusion is that we can see that multimodal models like MAIRA-2 are signif-
icantly more accurate than uni-modal models. Furthermore, we can see that giving information
on symptoms helps give a small increase in the accuracy of the model. By systematically com-
paring the accuracy of these models on the IU-XRay dataset, we can see that these results hold
across 500 samples.

In order to further reinforce these conclusions, we can run the dataset on more examples from
the IU-XRay dataset or from larger datasets, like MIMIC-CXR, which contains over 370,000
chest X-ray images [8]. This is much larger than the IU Chest X-Ray dataset that we used in this
research, which only contains around 7,400 chest X-ray images [13].

7.2 Evaluation Metric Comparison
Second, we can see that all of our evaluation metrics are more effective than past evaluation
metrics. In this paper, we randomly sampled 100 samples from the total amount of 500 samples,
then graded each one of these 100 samples on a scale of 0 to 10, converted the metrics to a
score from 0 to 1, and compared these human-graded scores to the generated metrics across all
10 metrics. Based on both the standardized R-squared score and the standardized RMSE, the
Sentence Pairs method performs better than the past metrics. The R-squared score measures the
association between the generated score values and the manual score, while the RMSE measures
how far the generated score is from the manual score across all 100 samples. From both of these
metrics, we can see that the Sentence Pairs method performs the best, which shows us that this
is the best evaluation metric.

One way to further validate that our metrics are more effective than past metrics is to run a
user study with doctors, instead of using the manual score. Since doctors actively write medical
reports, they are more likely to be able to accurately measure how similar a generated and ref-
erence medical report are. Due to time limitations, we manually graded 100 reports, but future
work could include asking doctors to grade a series of reports, in order to get a more accurate
ground truth metric for how similar a generated medical report is to a reference medical report
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that a doctor would write.

7.3 Evaluation Metric Applications
The new evaluation metric that we discuss also has a wide variety of applications. Future re-
searchers can use it as a method for measuring how similar generated and reference medical
reports are for their own medical report generation approaches. Reinforcement-learning based
approaches can also use this metric has an effective way to reward models for generating higher
quality medical reports, especially for cases where the generated report uses different medical
terms or describes the given patient’s condition using different words.
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Chapter 8

Future Work

8.1 Adversarial Inputs

One interesting avenue of future work is testing adversarial inputs to multimodal models. For
example, let’s consider the MAIRA-2 model with indication information, where the two different
input modalities are a given image of a chest x-ray and some text-based symptom information.
We could try changing the image or the indication slightly, with the end goal of identifying
whether the model is robust to changes in the symptom information. This could look like adding
noise to one of the input images, or changing the symptom information to mention problems
when there aren’t any problems, then seeing the extent to which the generated medical report
changes as a result.

This area is extremely relevant and important, because it’s important to measure how robust
the models we develop are to attacks that alter data. It’s also interesting to see how confident
the model is about data, even when it’s irregular. These insights can help us build more robust
multimodal medical report generation models.

8.2 Medical Context

Another interesting area of future work is comparing the accuracy of models trained without a
medical context and those trained with a medical context. For example, in the unimodal exam-
ple of the LLM fine-tuned on medical data, we could compare the fine-tuned medical LLM’s
performance on medical report generation with a base LLM’s performance on medical report
generation.

The impact of this research would be to show the extent to which domain-specific knowledge
helps both unimodal and multimodal models make accurate predictions and generate accurate
medical reports.
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8.3 Trusting Inputs
Another interesting question to consider would be the extent to which the model trusts the image
compared to the symptom. For example, if a normal chest X-ray is also given an indication that
says that there are negative symptoms, or if a negative chest X-ray is given an indication that
the patient is normal, we could look at the predicted medical report to determine how much the
model weights the image compared to the indication.

8.4 LLM as a Judge
As mentioned in the discussion section, one interesting approach for future work in developing
better evaluation metrics would be the LLM-as-a-judge approach, where we ask an LLM to mea-
sure how similar a generated and reference report are. In the future, we could use a similar rubric
to the one that we followed manually, but instead of manually judging the similarity between the
reports, we could supply it as input to an LLM, which can then judge the reports.

8.5 Ground Truth Labels
In this thesis paper, one assumption that we made is that the best ground truth label is simply the
reference report, but it’s also possible that predicting keywords or predicting key problems is a
better method for comparing predictions made by a multimodal model. We could compare what
happens when we assign each type of medical report to a category, and identify the extent to
which comparing categories is more or less effective than comparing generated medical reports.

8.6 Datasets
Lastly, with more compute power, we could both expand the dataset and expand the number of
models that we compare. First, we could expand the dataset to include MIMIC-IV and MIMIC-
CXR, which consist of much more samples [8, 9]. MIMIC-IV consists of data for 364,000
individuals, while MIMIC-CXR consists of 377,100 images of relevant Chest X-rays. When
compared to the IU Chest X-Ray dataset, both of these datasets are much larger, which means
that they could potentially result in higher quality training data for a larger model.

8.7 Models
In terms of models, we could try additional multimodal models. Although MAIRA-2 is a high-
performing model, there are several other multimodal models for medical report generation. For
example, we could look at retrieval-based methods, like the one that Endo et al. explored [6]. As
an alternative, we could look into
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Appendix

8.8 Manual Score Table

Manual Score Table
Generated Report Reference Report Manual

Score
(0-10)

Justification

Heart size is within normal lim-
its. There is mild tortuosity of
the thoracic aorta. The lungs
are without focal airspace con-
solidation. There is no evidence
of pleural effusion or pneumoth-
orax. Soft tissues and osseous
structures are intact.

The cardiac silhouette and medi-
astinum size are within normal
limits. There is no pulmonary
edema. There is no focal consol-
idation. There are no XXXX of
a pleural effusion. There is no
evidence of pneumothorax.

8 mentions
everything
except the
mild tor-
tuosity of
the thoracic
aorta

No acute pulmonary findings.
Sternal wires and surgical clips
are present. The lungs are clear.
No pleural effusion or pneu-
mothorax is identified. The heart
size is normal. The mediastinal
and hilar contours are normal.

Borderline cardiomegaly. Mid-
line sternotomy XXXX. En-
larged pulmonary arteries. Clear
lungs. Inferior XXXX XXXX
XXXX.

4 does not
mention
the car-
diomegaly
or enlarged
pulmonary
arteries

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

No focal areas of consolidation.
No suspicious pulmonary opac-
ities. Heart size within normal
limits. No pleural effusions. No
evidence of pneumothorax. Os-
seous structures intact.

8 does not
mention
the osseous
structures
being intact
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Bones and soft
tissues: No acute abnormality
demonstrated.

Heart size is normal. There is
tortuosity of the thoracic aorta
stable compared with prior. No
focal airspace disease or effu-
sion. No pleural effusions or
pneumothoraces. Degenerative
changes in the thoracic spine.

6 does not
mention
the tortuos-
ity of the
thoracic
aorta or the
thoracic
spine

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

The cardiac contours are normal.
The lungs are clear. Thoracic
spondylosis.

6 does not
mention
thoracic
spondylosis

The lungs are clear. No pleu-
ral effusion or pneumothorax is
identified. The heart and me-
diastinal silhouette are normal.
The osseous structures are unre-
markable.

The heart is normal in size and
contour. The lungs are clear
without evidence of infiltrate.
There is no pneumothorax or ef-
fusion.

9 mentions
the exact
same things

The cardiac silhouette is normal
in size. The left lung appears
clear of any focal area of con-
solidation. There is a faint 8
millimeter nodular opacity at the
left lung base. Calcified gran-
uloma is identified at the left
lung base. No evidence of pleu-
ral effusion. No evidence of
pneumothorax. There is a calci-
fied granuloma at the right upper
lung. The osseous structures ap-
pear intact.

The cardiac and mediastinal con-
tours are within normal limits.
The lungs are well-inflated and
clear. There is an 8mm nodule
in the left lower lobe XXXX cal-
cified granuloma. There is no
pneumothorax or effusion. Bony
structures of the thorax are intact
with minimal early degenerative
change.

7 mentions
calcified
granuloma
but not the
thorax
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The lungs are clear. The heart
is normal in size. The aorta
is mildly ectatic. There is no
edema or effusion or congestion.
No significant bony abnormality
is demonstrated. There is evi-
dence of a prior cervical spine
surgery.

The heart is normal in size. The
mediastinum is unremarkable.
The lungs are clear. Mild scolio-
sis and degenerative changes of
the thoracic spine noted.

5 does not
mention
scoliosis
or degen-
erative
changes of
the thoracic
spine

The cardiac silhouette is normal
in size. The lungs are clear of in-
filtrates edema or effusions. No
lung masses or nodules are seen.
The bony structures are unre-
markable.

Chest. Both lungs are clear and
expanded with no pleural air col-
lections or parenchymal consoli-
dations. Heart and mediastinum
remain normal. Lumbosacral
spine. XXXX disc spaces and
alignment are normal. Sacrum
and sacroiliac joints are normal.

7 ”mention
that ev-
erything is
fine

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

The cardiomediastinal silhouette
and vasculature are within nor-
mal limits for size and contour.
The lungs are normally inflated
and clear. Osseous structures are
within normal limits for patient
age.

9 mean the
exact same
thing

The lungs are clear. There is
no pneumothorax or pleural ef-
fusion. The cardiac silhouette is
unremarkable. The mediastinum
is unremarkable. There are no
acute osseous abnormalities.

Lungs are clear without fo-
cal consolidation effusion or
pneumothorax. Normal heart
size. Negative for pneumoperi-
toneum. Mild degenerative
changes of the thoracic spine.

6 do not
mention
the de-
generative
changes in
the thoracic
spine

The cardiomediastinal silhouette
is normal. No focal consolida-
tions pleural effusions or pneu-
mothorax. Osseous structures
demonstrate no acute abnormal-
ity. Bilateral hyperexpansion
and interstitial prominence.

There is a single calcified gran-
uloma in the right lung base.
The lungs are otherwise grossly
clear bilaterally. There is no
pneumothorax or pleural effu-
sion. Cardiac and mediastinal
silhouettes are normal. There
are cholecystectomy clips in the
right upper quadrant of the ab-
domen. Small T-spine osteo-
phytes are noted.

6 does not
mention
the t-spine
osteophytes
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The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Normal heart size. Clear hyper-
aerated lungs. No pneumotho-
rax. No pleural effusion. XXXX
substernal density may be re-
lated to a pectus deformity.

7 mention
everything
esxcept the
substernal
density

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

The lungs are clear bilaterally.
Specifically no evidence of fo-
cal consolidation pneumothorax
or pleural effusion.. Cardio me-
diastinal silhouette is unremark-
able. Visualized osseous struc-
tures of the thorax are without
acute abnormality.

9 mean the
same thing

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Heart size and vascularity nor-
mal. Lungs are clear. No ef-
fusions. No pneumothorax. Vi-
sualized osseous structures unre-
markable.

10 mean the
same thing

The lungs are clear. No pneu-
mothorax or pleural effusion.
Unremarkable cardiomediastinal
silhouette.

There is a calcified granuloma in
the right midlung zone. Lungs
are otherwise clear. There is no
pleural effusion or pneumotho-
rax. The heart and mediastinum
are normal. The skeletal struc-
tures are normal. Surgical clips
are present in the right upper
quadrant.

3 does not
mention the
calcified
granuloma
or surgical
clips
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
Nodular opacity projects over
the right upper lobe and this is
an artifact as it does not project
over the lateral projection. No
airspace consolidative process.
No pleural effusion or pneu-
mothorax. Left lung: Nodular
opacity projects over the left up-
per lobe and this is an artifact
as it does not project over the
lateral projection. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Bones and soft tissues: No acute
abnormality demonstrated.

There are no airspace opacities
to suggest pneumonia. There is
a vague nodular like opacity in
the right midlung measuring 1.2
cm projecting through the poste-
rior 7th and 8th ribs. This may
be artifact. Chest fluoroscopy
would confirm this. Heart and
pulmonary XXXX appear nor-
mal. There are calcified subcari-
nal and right hilar lymph XXXX.
The pleural spaces are clear.

4 mentions
there being
something
int he left
and right
lungs

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

The Cardiopulmonary silhouette
is normal. The Heart size is nor-
mal. The lungs are clear with
no pulmonary effusions or pneu-
mothorax.

9 mean the
same thing

Cardiomediastinal silhouette is
normal. Pulmonary vascularity
is normal. Lungs are clear with-
out evidence for infiltrate. No
pleural effusions are seen. No
evidence of a pneumothorax.

Low lung volumes. Heart size
and mediastinal contour within
normal limits. No focal air space
consolidation pneumothorax or
pleural effusion. Mild thoracic
spine degenerative change.

3 does not
mention the
low lung
volumes or
the thoracic
spine de-
generative
change

Heart size is within normal lim-
its. Lungs are without focal
airspace consolidation. No ev-
idence of pleural effusion or
pneumothorax. Soft tissues and
osseous structures are intact.

Heart size and pulmonary vascu-
larity appear within normal lim-
its. The lungs are free of focal
airspace disease. No pleural ef-
fusion or pneumothorax is seen.

8 ”mean the
same thing
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Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

Normal heart size and mediasti-
nal contours. The lungs are
clear. There is no pneumotho-
rax or pleural effusion. No acute
bony abnormalities.

9 mean the
same thing

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

The heart size is normal. The
mediastinal contour is within
normal limits. The lungs are free
of any focal infiltrates. There are
no nodules or masses. No visible
pneumothorax. No visible pleu-
ral fluid. The XXXX are grossly
normal. There is no visible free
intraperitoneal air under the di-
aphragm.

9 mean the
same thing

The lungs are hyperinflated. No
focal airspace opacity pleural ef-
fusion or pneumothorax. No
pulmonary nodules are identi-
fied. Normal cardiomediastinal
silhouette. Normal imaged por-
tion of the upper abdomen. De-
generative changes are present at
the spine.

Chest: Stable cardiomediasti-
nal silhouette. Pulmonary vas-
cularity is within normal lim-
its. Hyperlucent apices. Neg-
ative for focal airspace disease
or consolidation. Negative for
pneumothorax or pleural effu-
sion. Healed remote left 9th rib
fracture. Right shoulder: Nega-
tive for fracture or dislocation.

7 ”mention
the same
thing

The lungs are clear. There
is no pleural effusion or pneu-
mothorax. There is stable car-
diomegaly and aortic calcifica-
tions. There is no pulmonary
edema. Degenerative changes
are seen in the thoracic spine.

Heart size is unchanged. Aortic
calcification is noted. No pneu-
mothorax. No large pleural ef-
fusions. There are unchanged
XXXX opacities throughout the
lungs which XXXX represent
scarring. Lungs are hyperex-
panded.

4 ”doesn’t
mention
that the
lungs are
hyperex-
panded
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The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Normal cardiomediastinal
silhouette. Normal imaged por-
tion of the upper abdomen. De-
generative changes are present at
the spine.

Cardiac and mediastinal con-
tours are within normal lim-
its. Atherosclerotic aorta. Mild
blunting left costophrenic recess
possibly mild atelectasis or scar-
ring. No confluent lobar consol-
idation or large volume pleural
effusion. Thoracic spondylosis.

6 does not
mention the
atheroscle-
rotic aorta

PA and lateral views of the
chest. No infiltrate effusion or
pneumothorax identified. Car-
diac and mediastinal contours
are within normal limits. The
soft tissues are intact.

The heart size and pulmonary
vascularity appear within normal
limits. The lungs are free of fo-
cal airspace disease. No pleu-
ral effusion or pneumothorax is
seen.

9 mean the
same thing

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Linear atelectasis or scar
is seen near the right lung base.
The cardiac silhouette is at the
upper limit of normal for size.
A prosthetic valve projects over
the heart. Surgical clips project
over the mediastinum. Nor-
mal imaged portion of the up-
per abdomen. Early degenera-
tive changes are present at the
spine.

Atrial septal occluder artifact.
Rotated frontal position overall
heart size within normal limits
no typical findings of pulmonary
edema. XXXX densities in
the left base small focal XXXX
opacity in the right base with
focal posterior right hemidi-
aphragm elevation and obscured
right costophrenic XXXX. Bi-
apical pleuroparenchymal irreg-
ularities most compatible with
scarring chronic appearing right
5th rib contour deformity. No
pneumothorax seen.

3 ”does not
mention
the biapical
pleuro-
parenchy-
mal irregu-
larities

The heart is normal in size. No
focal infiltrate is seen. There
is no marked central vascular
congestion. No pleural effusion
or pneumothorax is seen. The
bones are unremarkable for age.

Overall hyperexpanded lungs
with flattening of the diaphragms
consistent with obstructive lung
disease. Lungs are clear without
focal consolidation. No pleu-
ral effusions or pneumothoraces.
Heart and mediastinum of nor-
mal size and contour. Degener-
ative changes in the spine.

3 does not
mention
obstruc-
tive lung
disease
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Right upper lobe consolidation
consistent with pneumonia. No
pleural effusion or pneumotho-
rax. Cardiomediastinal silhou-
ette and pulmonary vasculature
are within normal limits. Os-
seous structures are unremark-
able.

There is a right upper lobe opac-
ity. Cardiomediastinal silhouette
is normal. Pulmonary vascula-
ture and XXXX are normal. Os-
seous structures and soft tissues
are normal.

8 mentions
the right
upper lobe
opacity

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

No pneumothorax pleural effu-
sion or focal airspace disease.
Heart size normal. Stable
cardiomediastinal silhouette.
Nodular opacities consistent
with chronic granulomatous
disease. Bony structures intact.

4 does not
mention
chronic
granulo-
matous
disease

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

The heart size and pulmonary
vascularity appear within normal
limits. The lungs are free of fo-
cal airspace disease. No pleu-
ral effusion or pneumothorax is
seen.

9 mean the
same thing

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Heart size is normal. The lungs
are grossly clear. No pleural ef-
fusions or pneumothoraces. The
hilar and mediastinal contours
are stable. Normal pulmonary
vascularity. No overt edema.

7 ”means the
same thing

No indwelling catheters are
seen. A central venous line is
seen with the tip at the caval
atrial region. The lungs are
clear. The costophrenic angles
are sharp. No pneumothorax.
The cardiac silhouette is normal
in size. The osseous structures
are unremarkable.

Heart size within normal limits
stable mediastinal and hilar con-
tours right chest XXXX tip in the
low SVC. Monitoring device ar-
tifacts. No focal alveolar consol-
idation no definite pleural effu-
sion seen. No typical findings of
pulmonary edema.

6 mentions
the caval
atrial
region

No pleural effusion or pneu-
mothorax. No focal consoli-
dation. Cardiomediastinal sil-
houette and pulmonary vascula-
ture are unremarkable. Osseous
structures are unremarkable.

The lungs are clear. There is no
pleural effusion or pneumotho-
rax. The heart and mediastinum
are normal. The skeletal struc-
tures are normal.

9 mean the
same thing
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Other: Calcified
granuloma projects over left up-
per lobe. Bones and soft tissues:
No acute abnormality demon-
strated.

Heart size within normal lim-
its. Mild hyperinflation of the
lungs. Mild pectus excavatum
deformity. Stable left mid lung
calcified granuloma. No focal
airspace disease. No pneumoth-
orax or effusions.

5 mentions
everything
except
the pectus
excavatum
deformity
and the
mild hyper-
inflation

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Normal cardiomediastinal con-
tours. Clear lungs bilaterally. No
pneumothorax or large effusion.

10 exact same
meaning

The cardiomediastinal silhouette
is normal. No focal consolida-
tions pleural effusions or pneu-
mothorax. Osseous structures
demonstrate no acute abnormal-
ity.

The cardiomediastinal silhouette
and pulmonary vasculature are
within normal limits. There is
no pneumothorax or pleural ef-
fusion. There are no focal areas
of consolidation.

9 mentions
everything
except
doesn’t use
the term
pulmonary
vasculature

The lungs are clear. No pneu-
mothorax or pleural effusion.
Unremarkable cardiomediastinal
silhouette.

The heart size and pulmonary
vascularity appear within normal
limits. The lungs are free of fo-
cal airspace disease. No pleu-
ral effusion or pneumothorax is
seen.

10 same
meaning

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

The heart size and mediastinal
silhouette are within normal lim-
its for contour. The lungs are
clear. No pneumothorax or pleu-
ral effusions. The XXXX are in-
tact.

8 ”same
meaning
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The cardiac silhouette is mildly
enlarged. No mediastinal or hilar
mass or lymphadenopathy. No
lung nodule in the right lung. No
airspace consolidative process in
the right lung. No pleural ef-
fusion or pneumothorax in the
right lung. No lung nodule in the
left lung. No airspace consolida-
tive process in the left lung. No
pleural effusion or pneumotho-
rax in the left lung. No acute ab-
normality in bones and soft tis-
sues.

The lungs and pleural spaces
show no acute abnormality. Sta-
ble left upper lobe calcified gran-
uloma. Heart size is mildly
enlarged pulmonary vascularity
within normal limits. Mild tortu-
osity of the descending thoracic
aorta.

2 does not
mention the
calcified
granuloma
or the mild
tortuosity
of the
thoracic
aorta

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. The cardiac silhouette is
at the upper limit of normal for
size. Atherosclerotic calcifica-
tions are present at the aorta.
Normal imaged portion of the
upper abdomen. Degenerative
changes are present at the spine.

Heart size and mediastinal con-
tour are normal. Pulmonary
vascularity is normal. is not
diffuse interstitial prominence
which has chronic appearance.
Cannot exclude early pulmonary
edema. Two airspace consolida-
tion or effusion. XXXX are os-
teopenic. No visible pneumoth-
orax.

3 ”does not
mention
pulmonary
edema

The cardiac silhouette is normal
in size. The lungs are clear of in-
filtrates edema or effusions. No
lung masses or nodules are seen.
The bony structures are unre-
markable.

Cardiomediastinal silhouette
and pulmonary vasculature are
within normal limits. Lungs are
clear. No pneumothorax or pleu-
ral effusion. No acute osseous
findings. XXXX degenerative
changes of the thoracic spine.

4 does not
mention
degen-
erative
changes in
the thoracic
spine

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Normal cardiomediastinal
silhouette. Normal imaged por-
tion of the upper abdomen. No
acute osseous findings.

The cardiomediastinal silhouette
is within normal limits for ap-
pearance. The trachea is mid-
line. No focal pulmonary con-
solidation. No pneumothorax.
No pleural effusion. Minimal
degenerative changes of the tho-
racic spine.

5 does not
mention
the thoracic
spine
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The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Normal cardiomediastinal con-
tours. No focal consolidation or
pleural effusions. No pneumoth-
orax.

9 mentions
everything
except the
focal con-
solidation
term

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. No pulmonary nodules are
identified. Normal cardiomedi-
astinal silhouette. No evidence
of lymphadenopathy. Normal
imaged portion of the upper ab-
domen. Degenerative changes
are present at the spine.

The lungs are clear. There
is hyperinflation. Calcifica-
tion is seen over the anterior
mediastinum XXXX a calcified
lymph node at is not identified
on the PA projection. The heart
is normal. Arthritic changes the
spine are seen.

3 ”does not
mention
calcifica-
tion

The lungs are clear. The
costophrenic angles are sharp.
No evidence of pleural effusion.
No pneumothorax. The cardiac
silhouette is within normal lim-
its. There is atherosclerotic cal-
cification of the aortic arch. A
percutaneous biliary catheter is
seen in the right upper quadrant
of the abdomen. Degenerative
changes are present in the spine.

The heart size and pulmonary
vascularity appear within normal
limits. The lungs are free of fo-
cal airspace disease. No pleu-
ral effusion or pneumothorax is
seen. No non-calcified nodules
are identified.

2 ”says that
there is cal-
cification
and de-
generative
changes in
the spine

The lungs are clear. No pneu-
mothorax or pleural effusion.
Unremarkable cardiomediastinal
silhouette.

Heart size and pulmonary vascu-
larity appear within normal lim-
its. The lungs are free of fo-
cal airspace disease. No pleu-
ral effusion or pneumothorax is
seen. Degenerative changes are
present in the spine.

4 does not
mention
the de-
generative
changes
present in
the spine
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The right-sided dialysis catheter
tip projects over the right atrium.
The left-sided dialysis catheter
is unchanged in position with
the distal tip projecting over the
right atrium. Mild cardiomegaly
is similar to prior study. There
is mild pulmonary vascular con-
gestion. Bibasilar airspace opac-
ities and bilateral pleural effu-
sions are similar to prior study.
No pneumothorax. No acute
bony abnormalities.

There has been interval place-
ment of a dual-lumen dialy-
sis catheter with the distal tip
projected over the right atrium.
Moderate cardiomegaly is iden-
tified. There is mild calcification
of the transverse XXXX. XXXX
airspace opacities are identified
with bilateral pleural effusions.

9 mentions
the car-
diomegaly

The lungs are clear. There is no
pneumothorax or pleural effu-
sion. The cardiomediastinal sil-
houette is unremarkable. There
are mild degenerative changes of
the thoracic spine.

Normal heart size. No focal air
space consolidation pneumoth-
orax pleural effusion or pul-
monary edema. Anterior osteo-
phytes of the thoracic spine.

7 mentions
problems
with the
thoracic
spine

The lung fields are clear. The
costophrenic angles are sharp.
No pneumothorax. The car-
diac silhouette is mildly en-
larged. Mild biomechanical de-
generative changes are seen of
the thoracic spine.

Cardiomegaly is unchanged.
Stable superior mediastinal
contour with tortuous calci-
fied aorta. Normal pulmonary
vascularity. No focal air space
consolidation pleural effusion or
pneumothorax. No acute bony
abnormality. Changes of prior
right mastectomy.

4 mentions
degen-
erative
changes
in the tho-
racic spine
instead of
the tortuous
calcified
aorta

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Normal cardiomediastinal
silhouette. Atherosclerotic calci-
fications are present at the aortic
arch. Normal imaged portion of
the upper abdomen. No acute os-
seous findings.

Heart size mediastinal contour
and pulmonary vascularity are
within normal limits. No focal
consolidation pleural effusion or
pneumothorax is identified. No
acute osseous abnormality iden-
tified.

6 mentions
atheroscle-
rotic
calcifica-
tions when
they are
not in the
reference
report

Cardiac silhouette and mediasti-
nal contours are normal. Lungs
are clear. No pleural effusion.
No osseous abnormality.

Lungs are clear. No pleural effu-
sions or pneumothoraces. Heart
and mediastinum of normal size
and contour.

9 means the
same thing
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PA and lateral views of the chest
submitted. Mediastinum: The
cardiac silhouette is enlarged but
unchanged. No mediastinal or
hilar mass or lymphadenopathy.
Right lung: No lung nodule. No
airspace consolidative process.
No pleural effusion or pneu-
mothorax. Left lung: No lung
nodule. No airspace consolida-
tive process. No pleural effusion
or pneumothorax. Other: Retic-
ular opacity within the periph-
ery of the lungs bilaterally is un-
changed and may be due to in-
terstitial lung disease. Bones and
soft tissues: No acute abnormal-
ity demonstrated.

Redemonstration of interstitial
opacities consistent with pa-
tient’s history of pulmonary fi-
brosis. Unchanged calcified
granulomas at the left greater
than right hilum and in the pre-
tracheal region. No pneumoth-
orax pleural effusion or focal
airspace consolidation. Cardio-
mediastinal size is the upper lim-
its of normal. Pulmonary vascu-
lature is normal . XXXX XXXX
intact.

3 mentions
intersti-
tial lung
disease
instead of
calcified
granulomas
and the
cardiome-
diastinal
size being
on the
larger side

The cardiomediastinal silhouette
is normal in size and configura-
tion. No infiltrates pleural effu-
sions or vascular congestion. No
acute bony abnormalities.

The heart and mediastinum are
unremarkable. The lungs are
clear without infiltrate. There
is no effusion or pneumothorax.
There is a mild levoscoliosis of
the thoracic spine. There is mild
widening of the right acromio-
clavicular joint which may be
postsurgical or posttraumatic in
XXXX.

3 ”does not
mention the
levoscolio-
sis of the
thoracic
spine

The lungs are hypoinflated. No
focal airspace opacity pleural ef-
fusion or pneumothorax. Min-
imal left basilar scarring is
again demonstrated. The car-
diac silhouette is at the upper
limit of normal for size. Un-
changed hilar contours. Surgi-
cal clips project over the upper
abdomen. Degenerative changes
are present at the spine.

There is some minimal patchy
opacity in left base which may
represent atelectasis or scarring.
The lungs are otherwise clear.
The heart and mediastinum are
normal for age. There is some
arthritic changes of the skele-
tal structures and there has been
previous rotator XXXX repair
on the right.

5 mentions
scarring
in the left
base
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The heart is normal in size. No
focal infiltrate is seen. There
is no marked central vascular
congestion. No pleural effu-
sion or pneumothorax is seen.
The bones are unremarkable for
age. Bilateral breast implants are
seen.

The heart is normal in size.
The mediastinum is unremark-
able. The lungs are grossly clear.
Bilateral breast prostheses are
noted.

7 mentions
the same
things

The lungs are clear. No pleu-
ral effusion or pneumothorax is
identified. The heart and me-
diastinal silhouette are normal.
The osseous structures are unre-
markable.

Cardiac and mediastinal con-
tours are within normal limits.
The lungs are clear. Bony struc-
tures are intact.

9 ”mean the
exact same
thing

The feeding tube courses be-
neath the diaphragm with tip
out of the field-of-view. The
left subclavian line is unchanged
in position. Bilateral pleural
effusions are again noted right
greater than left. Bibasilar
airspace disease is again noted.
Lucency is again noted in the left
upper quadrant of the abdomen.

There is a left subphrenic cres-
centic lucency this is concerning
for pneumoperitoneum. There
are low lung volumes and bi-
lateral moderate to large pleural
effusions with bibasilar atelec-
tasis/airspace disease that are
larger in size in comparison to
the prior exam. No pneumoth-
orax. Heart size upper limits of
normal. The left central venous
catheter tip overlies the lower
SVC. The feeding tube has been
placed in the interval and ex-
tends below the diaphragm and
below the XXXX-of-view.

7 mentions
the left
subphrenic
crescentic
lucency

Normal cardiac mediastinal con-
tour. Lungs are clear. No consol-
idation or fluid. No bone lesion.

The cardiomediastinal silhouette
is within normal limits for size
and contour. The lungs are nor-
mally inflated without evidence
of focal airspace disease pleural
effusion or pneumothorax. Os-
seous structures are within nor-
mal limits for patient age..

9 ”means the
same thing
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Bones and soft
tissues: No acute abnormality
demonstrated.

On the right there is marked nar-
rowing of the hip joint space uni-
formly throughout. Osteophyte
formation is present with some
sclerosis and subchondral cyst
formation vertically along the
superior acetabulum and femoral
head. I do not see evidence for
fracture or destructive process.
AP view of the femur shows no
femoral XXXX destructive pro-
cess or other significant abnor-
mality. For of the Left hip shows
near-complete obliteration of the
joint space with severe subchon-
dral sclerosis and cystic forma-
tion in both the superior acetab-
ulum and superior aspect of the
femoral head. No fracture or
destructive process is identified.
Surgical markers were XXXX
in the images and left hip for
the purpose of surgical planning.
PA and lateral chest show the
lungs to be clear. There may be
some hyperinflation. No pleu-
ral effusion is identified. The
heart is normal in size. There
are calcified mediastinal lymph
XXXX. The skeletal structures
appear normal.

3 does not
mention the
calcified
mediastinal
lymph or
hyperinfla-
tion

The lungs are clear. There is
no pleural effusion. There is no
pneumothorax. There is mild
cardiomegaly. There is a tor-
tuous aorta. There are degen-
erative changes of the thoracic
spine.

Mild cardiomegaly. Mild un-
folding of the thoracic aorta. No
focal air space opacity. No pleu-
ral effusion or pneumothorax.
Visualized osseous structures are
unremarkable in appearance.

6 mentions
the mild
car-
diomegaly
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The cardiac silhouette is normal
in size. There is a 4.8 cm opacity
in the left lower lobe. This is fa-
vored to be pleural based. There
is also a small opacity at the right
cardiophrenic angle. This is fa-
vored to be a fat pad. There
is no pleural effusion. There is
no pneumothorax. The osseous
structures are unremarkable.

There is a approximately 4 cm
opacity with one XXXX margin
and the other ill-defined in the
lateral lower left lung is seen on
the PA view. This is not defi-
nitely seen on the lateral view.
There is no pneumothorax or
pleural effusion. The cardiac
silhouette is within normal lim-
its. There are T-spine osteo-
phytes. There is no pneumoth-
orax or pleural effusion. There
are calcified hilar lymph XXXX
there

4 ”does not
mention
the T-spine
osteophytes

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

The cardiac and mediastinal con-
tours are within normal limits.
The lungs are well-inflated and
clear. There is no focal con-
solidation pneumothorax or ef-
fusion. The bony structures of
the thorax are unremarkable.

9 ”mean the
same thing

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

Cardiomediastinal silhouettes
are within normal limits. Lungs
are clear without focal con-
solidation pneumothorax or
pleural effusion. Bony thorax is
unremarkable.

9 ”mean the
same thing

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Normal cardiomediastinal
silhouette. Atherosclerotic calci-
fications are present at the aor-
tic arch. Surgical clips project
over the left neck. Degenerative
changes are present at the spine.

Stable appearing bilateral calci-
fied lymph XXXX. The cardiac
silhouette and mediastinal con-
tours are within normal limits.
No focal opacity. No large pleu-
ral effusion. There is no pneu-
mothorax.

4 mentions
degen-
erative
changes at
the spine
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Cardiac silhouette is normal.
Mild thoracic aortic tortuosity.
No airspace consolidations or
pleural effusions. No bony ab-
normality. Two-view left knee
demonstrates mild degenerative
disease medial compartment. No
effusions.

Chest. Lungs are clear and ex-
panded. Heart normal. Left
knee. No change marked nar-
rowing large osteophyte forma-
tion multiple synovial osteo-
chondromas.

3 mentions
thoracic
aortic
tortuosity

The cardiac silhouette is normal
in size. The lungs are clear of in-
filtrates edema or effusions. No
lung masses or nodules are seen.
The bony structures are unre-
markable.

Heart size normal. Lungs
are clear. XXXX are normal.
No pneumonia effusions edema
pneumothorax adenopathy nod-
ules or masses.

9 mentions
no lung
masses
instead of
specifically
saying
pneumonia

PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Bones and soft
tissues: No acute abnormality
demonstrated.

There are no focal areas of con-
solidation. No suspicious pul-
monary opacities. Heart size
within normal limits. No pleural
effusions. There is no evidence
of pneumothorax.

9 ”mention
the same
thing
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Bones and soft
tissues: No acute abnormality
demonstrated.

Chest. The trachea is mid-
line. Negative for pneumothorax
pleural effusion or focal airspace
consolidation. The heart size
is normal. Abdomen. No
pneumoperitoneum. There is
a normal bowel XXXX pattern.
Air and stool visible through-
out the entire large colon in-
cluding the rectum. No ab-
normally dilated small bowel
loops. No evidence for intus-
susception or small bowel ob-
struction. No pathologic cal-
cifications XXXX over the ab-
domen or pelvis. XXXX XXXX
are without fracture or destruc-
tive lesion though there are mild
degenerative changes through-
out the lumbar spine. Small hi-
atal hernia is not as well demon-
strated on this exam.

4 does not
mention the
mild de-
generative
changes
throughout
the lumbar
spine

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

Lungs are clear bilaterally.There
is no focal consolidation pleu-
ral effusion or pneumothoraces.
Cardiomediastinal silhouette is
within normal limits. XXXX are
unremarkable.

9 ”mean the
same thing

No acute cardiopulmonary ab-
normality. The lungs are clear.
No pneumothorax or pleural ef-
fusion. Normal-sized cardiac sil-
houette. There are degenerative
changes of the thoracic spine.

No pneumothorax pleural effu-
sion or airspace consolidation.
Cardiomediastinal size is within
normal limits. XXXX XXXX
intact.

3 mentions
degen-
erative
changes
in the tho-
racic spine
when it is
not in the
reference
report
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The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Normal cardiomediastinal
silhouette. Normal imaged por-
tion of the upper abdomen. De-
generative changes are present at
the spine. The ribs are poorly
penetrated on chest x-ray. No
definite fracture of the imaged
portion of the right ribs.

No focal consolidation no
definite pleural effusion seen.
Exaggerated kyphosis with
increased AP dimension of
the thorax curvilinear density
projected over the right anterior
3rd and 4th ribs beyond which
lung markings are seen XXXX
skin fold artifact. Mild aortic
ectasia/tortuosity no typical
mediastinal widening to suggest
vascular injury. Contour irregu-
larity of the lateral right 9th rib
of indeterminate age.

6 ”mention
the fracture
at the right
ribs

The lungs are clear. No pneu-
mothorax. No pleural effusion.
No pulmonary edema. The car-
diomediastinal silhouette is nor-
mal. The osseous structures are
unremarkable.

The lungs are clear bilaterally.
Specifically no evidence of fo-
cal consolidation pneumothorax
or pleural effusion. Cardiome-
diastinal silhouette is unremark-
able. Visualized osseous struc-
tures of the thorax are without
acute abnormality.

10 ”means the
exact same
thing

Normal cardiac mediastinal con-
tour. Lungs are clear. No consol-
idation or fluid. No bone lesion.

No acute osseous abnormality.
The soft tissues are within nor-
mal limits. Normal cardiomedi-
astinal silhouette and hilar con-
tours. No focal area of consoli-
dation pleural effusion or pneu-
mothorax.

9 ”means the
same thing

The cardiomediastinal silhouette
is normal. No focal consolida-
tions pleural effusions or pneu-
mothorax. Calcified granulomas
again present in the right lung.
Bilateral hyperexpansion and in-
terstitial prominence.

There is scattered calcified gran-
ulomas. The lungs are other-
wise grossly clear. Cardiac and
mediastinal silhouettes are nor-
mal. Pulmonary vasculature is
normal. No pneumothorax or
pleural effusion. No acute bony
abnormality.

5 mentions
the cal-
cified
granulomas
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The lungs are clear. No pleu-
ral effusion or pneumothorax is
identified. The heart and me-
diastinal silhouette are normal.
The osseous structures are unre-
markable.

2 images. Heart size and pul-
monary vascular engorgement
appear within limits of nor-
mal. Mediastinal contour is un-
remarkable. No focal consoli-
dation pleural effusion or pneu-
mothorax identified. No con-
vincing acute bony findings.

9 ”means the
same thing

The cardiac silhouette is mildly
enlarged. There is a hiatal her-
nia. No lung nodule. No
airspace consolidative process.
No pleural effusion or pneu-
mothorax. No acute abnormality
in bones and soft tissues.

Lung volumes are XXXX.
XXXX opacities are present in
both lung bases. A hiatal hernia
is present. Heart and pulmonary
XXXX are normal.

4 mentions
the hiatal
hernia

The cardiomediastinal silhouette
is normal. No focal consolida-
tions pleural effusions or pneu-
mothorax. Osseous structures
demonstrate no acute abnormal-
ity.

Cardiomediastinal silhouette is
within normal limits in overall
size and appearance. Central
vascular markings are symmet-
ric and within normal limits. The
lungs are normally inflated with
no focal airspace disease pleural
effusion or pneumothorax. No
acute bony abnormality. Stable
scarring in the right lung apex.

7 mentions
everything
except sta-
ble scarring
in the right
lung apex

PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Reticular opac-
ity left upper lobe is unchanged
and likely due to scarring. Bones
and soft tissues: No acute abnor-
mality demonstrated.

Stable appearance of the left up-
per lung lobe with scarring vol-
ume loss and pleural thicken-
ing. Cardiomediastinal silhou-
ette is within normal limits nor-
mal appearance similar to prior.
Volume loss in the left lung sta-
ble. Right lung is clear. There is
no XXXX focal airspace disease
pleural effusion or pneumotho-
rax. Mild scarring at the right
apex. No acute bony abnormal-
ity.

6 mentions
that the
reticular
opacity in
the left up-
per lobe is
unchanged
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The cardiac silhouette is normal
in size. There is a nodular opac-
ity in the periphery of the left up-
per lobe which may represent a
parenchymal nodule or pleural-
based lesion. There is an area
of airspace disease in the right
upper lobe which is not signif-
icantly changed from the refer-
ence exam. No pleural effu-
sion or pneumothorax is seen.
The left lung is otherwise clear.
No acute osseous abnormality is
seen.

The cardiomediastinal silhouette
and vasculature are within nor-
mal limits for size and con-
tour. There is right upper lobe
airspace disease.. There is a
rounded nodular opacity in the
left upper lung measuring ap-
proximately 7 mm which may
represent further sequela of in-
fectious process versus other
pathology. Osseous structures
are within normal limits for pa-
tient age.

6 mentions
the nodular
opacity
in the left
upper lobe

The cardiomediastinal silhouette
is normal in appearance. The
central pulmonary hila and pe-
ripheral vascular markings are
normal in appearance. The lungs
are adequately expanded with-
out evidence of focal opacifica-
tion mass or nodule. The pleura
chest wall and diaphragms are
normal in appearance. There is
no pleural effusion or pneumoth-
orax. The osseous structures and
soft tissues are unremarkable.

The lungs are clear bilaterally.
Specifically no evidence of fo-
cal consolidation pneumothorax
or pleural effusion.. Cardio me-
diastinal silhouette is unremark-
able. Visualized osseous struc-
tures of the thorax are without
acute abnormality.

8 ”mean the
same thing
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Other: The
lungs are hyperinflated compati-
ble with chronic obstructive pul-
monary disease. Bones and soft
tissues: No acute abnormality
demonstrated.

Heart size normal. Tortuous
aorta. Calcified hilar lymph
XXXX XXXX sequela of prior
granulomatous disease. Hyper-
inflated lungs. The otherwise
lungs are clear. The bilat-
eral apices are partially excluded
from the XXXX-of-view. There
is the interval fixation of the
right humeral fracture XXXX
appears grossly intact. Osteope-
nia. Exaggerated kyphosis of the
thoracic spine.

2 mentions
that the
lungs are
hyperin-
flated

Clear lungs. No pleural effu-
sion or pneumothorax. Cardio-
mediastinal silhouette and pul-
monary vasculature are within
normal limits. Osseous struc-
tures are unremarkable.

Lungs are clear. No pleural effu-
sions or pneumothoraces. Heart
and mediastinum of normal size
and contour.

10 ”mean the
exact same
thing

The right pleural effusion and
adjacent atelectasis are stable.
There is also a small left pleu-
ral effusion. The lungs are oth-
erwise clear. The heart and
mediastinum are within normal
limits. There are degenerative
changes in the spine.

Exam limited by patient rotation.
Mild rightward deviation of the
trachea. Stable cardiomegaly.
Unfolding of the thoracic aorta.
Persistent right pleural effusion
with adjacent atelectasis. Low
lung volumes. No focal airspace
consolidation. There is severe
degenerative changes of the right
shoulder.

2 mentions
the right
pleural
effusion

The lungs are clear. No pleu-
ral effusion or pneumothorax is
identified. The heart and me-
diastinal silhouette are normal.
The osseous structures are unre-
markable.

Frontal and lateral views of the
chest show an unchanged car-
diomediastinal silhouette. No
XXXX focal airspace consolida-
tion or pleural effusion.

8 ”means the
same thing
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Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

There are no focal areas of con-
solidation. No suspicious pul-
monary opacities. Heart size
within normal limits. No pleu-
ral effusions. No evidence of
pneumothorax. Osseous struc-
tures intact.

9 ”mean the
same thing

The lungs are adequately in-
flated. No focal airspace opac-
ity pleural effusion or pneumoth-
orax. Unchanged small air-
ways. Normal cardiomediastinal
silhouette. Normal imaged por-
tion of the upper abdomen. De-
generative changes are present at
the spine.

There are prominent epicar-
dial fat pads unchanged from
prior. The cardiomediastinal sil-
houette and pulmonary vascu-
lature are within normal lim-
its. There is no pneumotho-
rax or pleural effusion. There
are no focal areas of consoli-
dation. There is atherosclerosis
of the aortic XXXX. Unchanged
streaky opacities in the bilateral
costophrenic sulci XXXX repre-
sent chronic scarring or atelecta-
sis.

1 mentions
degen-
erative
changes in
the spine
instead of
atheroscle-
rosis

The heart is normal in size. The
right middle lobe airspace dis-
ease is improved. The lungs are
clear. No pleural effusion or
pneumothorax. The diaphragm
mediastinum and hilar regions
are unremarkable.

The cardiomediastinal silhouette
is normal size and configura-
tion. Pulmonary vasculature
within normal limits. There is
right middle lobe airspace dis-
ease may reflect atelectasis or
pneumonia. No pleural effu-
sion. No pneumothorax. Ele-
vated right hemidiaphragm.

4 mentions
the right
lobe
airspace
disease
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PA and lateral views of the chest
submitted. Mediastinum: Car-
diac silhouette size is normal.
No mediastinal or hilar mass or
lymphadenopathy. Right lung:
No lung nodule. No airspace
consolidative process. No pleu-
ral effusion or pneumothorax.
Left lung: No lung nodule.
No airspace consolidative pro-
cess. No pleural effusion or
pneumothorax. Bones and soft
tissues: No acute abnormality
demonstrated.

The cardiomediastinal silhouette
is within normal limits. The
lungs are clear without areas of
focal consolidation. There is a
calcified granuloma within the
left lung base. There is sug-
gestion of a deep sulcus sign
on the right. No definite pleu-
ral line of pneumothorax visual-
ized. There is age-indeterminate
wedging of several midthoracic
vertebral bodies.

1 ”does not
mention the
calcified
granuloma

No acute cardiopulmonary dis-
ease. The lungs are clear. The
costophrenic angles are sharp.
No pneumothorax. The cardiac
silhouette is normal. The os-
seous structures are unremark-
able.

The heart pulmonary XXXX and
mediastinum are within normal
limits. There is no pleural effu-
sion or pneumothorax. There is
no focal air space opacity to sug-
gest a pneumonia.

9 ”means the
same thing

There is a right central line with
the tip in the right atrium. There
is a left central line with the
tip in the superior vena cava.
Heart size is within normal lim-
its. There is bilateral hilar lym-
phadenopathy right greater than
left consistent with history of
sarcoidosis. There is asymmet-
ric right lower lobe airspace dis-
ease. There is no pneumothorax
or pleural effusion.

Right dual-lumen internal jugu-
lar central venous catheter seen
with tip overlying the cavoa-
trial junction. Heart size at the
upper limits of normal. Low
lung volumes with bronchovas-
cular crowding. Patchy bibasi-
lar air airspace opacities right
greater than left. No visualized
pneumothorax. Prominence of
the mediastinum consistent with
history of sarcoid.

2 mentions
the bilateral
hilar lym-
phadenopa-
thy due
to the
history of
sarcoidosis
like the
reference
report

The cardiac silhouette is normal
in size. The lungs are clear of in-
filtrates edema or effusions. No
lung masses or nodules are seen.
The bony structures are unre-
markable.

The heart is normal in size.
The mediastinum is unremark-
able. Small nodular opacity left
upper lobe may represent early
infiltrate. The lungs are other-
wise clear. There is no pleural
effusion.

6 mentions
everything
except the
small nodu-
lar opacity
in the left
upper lobe
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The cardiac silhouette is normal
in size. No focal infiltrate is
seen. There is no marked central
vascular congestion. No pleu-
ral effusion or pneumothorax is
seen. The bones are unremark-
able for age.

Lungs are clear. No pleural effu-
sions or pneumothoraces. heart
and mediastinum are stable with
normal sized heart. Degenera-
tive changes in the spine.

4 mentions
everything
except
the de-
generative
changes in
the spine

The lungs are clear. There is
no pneumothorax or pleural ef-
fusion. There is no consol-
idation. There is mild car-
diomegaly. Median sternotomy
wires are present. There is a
component of atherosclerosis of
the aortic arch. There are degen-
erative changes of the thoracic
spine.

There has been interval ster-
notomy with intact midline ster-
notomy XXXX. The heart is
near top normal in size with un-
folding of the aorta. The lungs
are grossly clear with no focal
airspace opacity pleural effusion
or pneumothorax. The osseous
structures are grossly normal.

3 mentions
the ster-
notomy
wires

The cardiac silhouette is normal
in size. The lungs are clear of in-
filtrates edema or effusions. No
lung masses or nodules are seen.
The bony structures are unre-
markable.

Both lungs are clear and ex-
panded. Heart and mediastinum
normal.

10 ”means the
same thing

The lungs are clear. No pneu-
mothorax or effusion. Unre-
markable cardiomediastinal sil-
houette.

The heart size is on the upper
limits of normal. There is no
mediastinal widening. The lungs
are clear bilaterally. No large
pleural effusion or pneumotho-
rax. The XXXX are intact.

8 mentions
everything
except that
the heart
size is on
the upper
limits of
normal
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The cardiac silhouette is en-
larged. There is aneurysmal di-
latation of the aortic arch and
descending thoracic aorta. The
lungs are free of confluent in-
filtrates. No pleural effusions
are present. The cardiac sil-
houette is enlarged. There is a
large amount of calcification in
the aortic arch.

Frontal and lateral views of
the chest with overlying exter-
nal cardiac monitor leads show
an unchanged cardiomediastinal
silhouette. Cardiac silhouette at
the upper limits of normal in
size. Tortuous ectatic aorta. The
aortic XXXX is near 5 cm in
diameter. There is a retrocar-
diac left paraspinal bulge con-
cerning for a descending tho-
racic aortic aneurysm. There is
biapical scarring. No XXXX
focal airspace consolidation or
pleural effusion. XXXX spine
spondylitic changes.

3 mentions
that the
cardiome-
diastinal
silhouette
is enlarged

No acute findings in the lungs.
No consolidation pleural effu-
sion or pneumothorax. No acute
findings in the heart. No acute
findings in the mediastinum. No
acute findings in the bones.

Heart size within normal limits
stable mediastinal and hilar con-
tours. No focal alveolar consol-
idation no definite pleural effu-
sion seen. No typical findings
of pulmonary edema. No pneu-
mothorax. Mild dextrocurvature
of the spine again noted.

7 mentions
everything
except
the mild
dextrocur-
vature of
the spine

Lungs are clear without mass
consolidation pleural effusion or
pneumothorax. Cardiomediasti-
nal silhouette and pulmonary
vasculature are within normal
limits. Osseous structures are
unremarkable.

Lungs are clear. Heart size nor-
mal. The XXXX are unremark-
able.

8 mentions
the cardio-
mediastinal
silhouette
instead of
mentioning
that the
heart size is
normal
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The cardiomediastinal silhouette
and pulmonary vascularity are
normal. Lung volumes are nor-
mal. No acute pulmonary in-
filtrate pulmonary edema pleural
effusion or pneumothorax. Bony
thorax appears intact. No ra-
diopaque foreign body or focal
air trapping. No free intraperi-
toneal air.

Normal heart size and mediasti-
nal contours. The lungs are hy-
perinflated but clear. No pneu-
mothorax or pleural effusion. No
acute bony abnormalities.

9 ”means the
same thing

Table 8.1: Manually Scored Generated and Reference Med-
ical Reports, with Justification
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