
Machine learning for flash caching
in bulk storage systems

Daniel Lin-Kit Wong

CMU-CS-24-152

September 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Gregory R. Ganger, Chair

David G. Andersen
Nathan Beckmann

Daniel S. Berger (Microsoft Research & University of Washington)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Daniel Lin-Kit Wong

This work is supported in part by the National Science Foundation under grant CNS1956271 and the Parallel Data
Lab consortium members (Amazon, Datadog, Google, Hitachi, Honda, IBM Research, Intel Corporation, Jane Street,
Meta, Microsoft Research, Oracle, Pure Storage, Salesforce, Samsung, Two Sigma, Western Digital and VMware.)

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: flash caching, machine learning for caching, machine learning for systems, bulk
storage systems

Soli Deo gloria
Glory to God alone

Abstract

Flash caches are used to reduce peak backend load for throughput-
constrained data center services, reducing the total number of backend servers
required. Bulk storage systems are a large-scale example; backed by high-
capacity but low-throughput hard disks, they use flash caches to provide a
cost-effective storage layer underlying everything from blobstores to data
warehouses.

However, flash caches must address flash’s limited write endurance by
limiting the number of flash writes to avoid premature wear-out. Thus, most
flash caches rely on admission policies to filter cache insertions and maximize
the workload-reduction value of each write.

This dissertation evaluates and demonstrates potential uses of ML in place
of traditional heuristic cache management policies for flash caches in bulk
storage systems. The most successful elements of my research are embodied in
a flash cache system called Baleen, which uses coordinated ML admission and
prefetching to reduce peak backend load. After learning painful lessons with
early ML policy attempts, I exploit a new cache residency model (episodes) to
guide model training. I focus on optimizing an end-to-end metric (Disk-head
Time) that measures backend load more accurately than IO miss rate or byte
miss rate. Evaluation using 7-day Meta traces from 7 storage clusters shows
that Baleen reduces Peak Disk-head Time (and hence backend hard disks
required) by 12% over state-of-the-art policies for a fixed flash write rate
constraint.

I present a TCO (total cost of ownership) formula quantifying the costs of
additional flash writes against reductions in Peak Disk-head Time in terms of
flash drives and hard disks needed. Baleen-TCO chooses optimal flash write
rates and reduces estimated TCO by 17%.

Workloads change over time, requiring that caches adapt to maintain
performance. I present a strategy for peak load reduction that adapts selectivity
to load levels. I also evaluated workload drift and its impact on ML policy
performance on 30-day Meta traces.

Baleen is the result of substantial exploration and experimentation with ML
for caching. I present lessons learned from additional strategies considered
and explain why they saw limited success on our workloads. These include
enhancements for ML-based eviction, more complex ML models, and opti-
mizing the use of DRAM in hybrid caches. I also present lessons from ML
production deployments.

Code and traces are available via https://www.pdl.cmu.edu/CILES/. These
include our 7-day traces which were the most extensive public collection of
traces from a production bulk storage system at the time of writing.

iv

https://www.pdl.cmu.edu/CILES/

Acknowledgments
The acknowledgments section is my favorite part of a dissertation to read. The

rest of this dissertation tells you a story about my research; the acknowledgments
offer a glimpse into the human side of the PhD and all that went into it.

The advisor The PhD is an apprenticeship, and it was my honor to do mine with
Greg. If you have not met him, imagine a really tall guy standing on a table in a
lecture hall wearing a blue Michigan polo, khaki shorts and a denim PDL jacket.
I am continually learning from him: not just how to do research and ask the right
questions, but also from his personal example. Greg is not by nature showy (unless
basketball or Michigan is involved), which meant that I only learned how smart he
was a couple of years in. He’s hands-on without needing to see the code: more than
once, he diagnosed some bug in my code off a small anomaly in a graph I showed
him. He has mastered the art of nuance, of showing off work while being humble, of
being firm in a gentle manner. Perhaps, then, it is fitting that his trademark answer to
questions in class is: “It depends.” (I now catch myself saying that to junior students,
in one of the many habits I have unconsciously picked up from him.) I am glad,
however, that I could always depend on Greg over the past 7 years, whether through
personal losses, a global pandemic, and (literally) fracturing my spine. Greg never
shies away from doing the right things in the right way, and he does it so smoothly
that outsiders might think it effortless. But the truth is that Greg shows up even more
than his students: during our first paper deadline, he came to the office and left only 2
days later, while we mere mortals had to take breaks to sleep. Despite being a busy
senior professor, he makes sure to make time for his students. You can take Greg out
of a classroom, but you can never take the teacher out of him. He always has a lesson
for you, whether you are a high school student, an undergrad, a master’s student, a
PhD student, a young professor, or a successful software engineer who graduated 20
years ago. Greg, I am so glad that I got the chance to spend the last 7 years with you,
and I can imagine you’ll be giving me career and parenting tips at a FAST reunion
many years down the road.

The committee I first worked with Dave Andersen when we were part of the
ISTC-VCS working on systems for machine learning. He has been an inspiring figure
who always injects energy into the discussion and the room. It was during his OS
class that I first started dabbling in ML for caching. Thank you too, Dave, for letting
me join FAWNLunch, where I found solace and company during a challenging part
of my PhD.

That same class project led me to Daniel Berger, who has been a relentless source
of optimism and who was instrumental to the research that became Baleen (and came
up with the name too). I am grateful for how he helped me work out the details of
Baleen and for the different perspectives that he brings to the discussion. Thanks,
Daniel, for our walk in the woods in Redmond.

Nathan Beckmann helped me gain a deeper appreciation of the intricacies of
systems and got me to develop a habit of doing back-of-the-envelope calculations to
check through my work and develop my own internal mental model.

The other research mentors and collaborators The Parallel Data Lab has been
an amazing home and a unique experience. Thank you to Michael Kozuch, Michael
Kaminsky, Babu, Majd, George Amvrosiadis and Rashmi Vinayak for all the help and
support you’ve given me along the way. The PDL has opened doors to collaborations
including with Meta, without which the work presented in this dissertation would
have been impossible. I owe a big thank you to Hao Wu for working closely with
me to get me the data that I needed. Thank you too to Sathya Gunasekar, Jimmy Lu,
Qing Zhao, Snehal Khandkar, and Abhinav Sharma from Meta.

My Google internship was also an important part of my PhD. Thank you to Peter
Ma, Sudip Roy, Yanqi Zhou, Mangpo Phothilimthana and James Laudon for hosting
me first as an intern and then a Student Researcher.

It’s been a long road getting to here. Thank you Prof Leong Hon Wai, Ben Leong,
Robert Watson, and Ng See Kiong for giving me my first steps into research: of being
crushed, of experiencing the moment "Why am I here? What am I doing here?", and
eventually feeling the irresistible pull to do the PhD.

The students My fellow students at Carnegie Mellon walked with me through the
PhD. Angela was the first PhD student that I worked with at CMU and my closest
student collaborator. Within a month of me arriving at CMU, we were working on a
NSDI submission, the first of many. Paper deadlines with Angela and Greg remain
one of the highlights of my PhD experience. Thank you, Angela, for always being so
encouraging and supportive of my endeavors. Thomas was my second collaborator,
and his wit and sense of humor were so endearing that I had no choice but to follow
him on to his startup. Giulio and Chris rounded out the ISTC-VCS gang. We all spent
countless hours spent together in the CIC and then later in GHC 9009, memories that
will remain with me for a long time.

I flitted between reading groups before finding a home in FAWN. Anuj’s jokes
never failed to crack me up, while I enjoyed Sol’s company and got to learn about

vi

Rust. Thank you Saurabh for taking time to listen to me and help me with my research.
Thank you to Aaron, Andrew, Junwoo and Rajat for your help and for paving the way
ahead for me to follow. Thank you Sara and Juncheng for listening to my talks and
giving me feedback, and to Jack, Lilia and Carson. Thank you Ankush, Daiyaan,
Hojin, Sanjith, Sarvesh, Suhas, Tim, Ziyue and Theo for being fellow members of
Greg’s gang. I thank my fellow PDLers for the retreats and poster sessions, and all
the time that we spent preparing for them.

The Pittsburgh friends Thank you Tze Hui, Akash, Kat and Darby for being my
’normal friends’ and the times snowboarding and climbing together. Thank you to
my church in Pittsburgh, OIF: the Dongs, the Chengs, the Lews, the Khoos, the Wus,
Isaac, the Fus, the McLaughlins, the Chiangs, the Orrs, Shining, Elynna & Michael,
Alex, Dan, Eva & Jason, Fred & Jenny, and everyone else that I missed out.

The staff Thank you Karen Lindenfelser for watching out for me right from the start
and letting me in on that crucial secret: Greg is the best boss. Thank you Joan Digney
for bearing with my late poster submissions and that poster stuck together from pieces
of paper like a serial killer letter. Thank you, Deb Cavlovich, for being so empathetic
and a motherly presence in the whirlwind that is CSD. Thank you Matthew Stewart
for your help in getting me through the last few hoops of my PhD. Thank you to all
the PDL staff who helped me with things little and big, including Chuck Cranor, Chad
Dougherty, Jason Boles, and Mitch Franzos.

My friends To my dearest friends around the world, thank you for always rooting
for me. Thank you Yi Le and Sarah, Yingda and Yuqun, Stacey and Daniel, Jia Ying
and Lumpy, Rachel, Geok Ting, Clement, Yen Seow and all the 09S6K folks. Thank
you to my Pandan church family, including Ivan and Ruth, Gabriel and Okta, William
and Eunice, and Ben and Carmen.

My family I thank my family and the sacrifices they made to support me in my PhD
so far from home. I would like to acknowledge my grandparents, including Nainai
and Gong Gong who passed on during my PhD.

Besides finding Greg, the other big match of my PhD was getting engaged to Tze
Hui. Tze Hui, I am so thankful that God led us together and so excited for the future
we have together.

Finally There are so many more people I would like to thank than there is time and
space to write. I hope that one day, I will be able to thank you in person.

Last but not least, I thank God for his almighty grace and mercy upon me, and for
granting me the breath and strength to complete this dissertation.

vii

viii

Contents

1 Introduction 1
1.1 The case for ML in flash caching . 2
1.2 Baleen: ML for admission and prefetching that optimizes peak HDD load and

storage TCO (HDDs+cache) . 2
1.3 Optimizing for peak load, workload drift and other ML caching explorations . . . 4
1.4 Contributions . 4
1.5 Outline . 7

2 Background 9
2.1 Bulk storage systems in data centers . 9
2.2 Bulk storage limited by disk-head time (DT) . 9
2.3 Flash caches absorb HDD load but have limited write endurance 10

2.3.1 Introducing admission policies and baselines (RejectX, CoinFlip) 11
2.4 Decomposing the caching problem . 11
2.5 Limitations of existing systems . 12
2.6 Related work . 12

3 Experimental setup 21
3.1 Datasets: real traces from production caches for bulk storage systems 21

3.1.1 Trace collection and preprocessing . 21
3.1.2 Workload characteristics . 22

3.2 BCacheSim: our online hybrid cache simulator 24
3.3 Our academic CacheLib testbed . 25
3.4 Validation of BCacheSim simulator and CacheLib testbed 26
3.5 Miscellaneous experimental details . 27

4 Episodes & OPT: modeling flash caching and exploring savings in Disk-head Time 29
4.1 Measure Disk-head Time, not hits or bandwidth 29
4.2 Episodes: an offline model for flash caching . 31
4.3 OPT approximates optimal online admission policy 33

4.3.1 Comparison to LRB’s Relaxed Belady 34
4.4 Extending OPT for prefetching . 34
4.5 Efficiently exploring the space of possible improvements 35
4.6 From analytical model to simulation . 36

ix

4.7 Summary . 36

5 Baleen: Training ML policies for flash caching 37
5.1 ML for flash admission . 37

5.1.1 Design and implementation . 39
5.2 ML for prefetching . 40

5.2.1 Learning what to prefetch: ML-Range 41
5.2.2 Learning when to prefetch: ML-When 41

5.3 Evaluation . 41
5.3.1 Baleen reduces Peak DT over baselines 42
5.3.2 Prefetch selectively, in tandem with admission 45

5.4 Importance of optimizing the right metric: Disk-head Time 46
5.4.1 Reductions in IO miss rate, bandwidth miss rate 47
5.4.2 Comparison to ML baselines: Flashield and CacheLib-ML 48
5.4.3 Overhead . 49
5.4.4 Validation of Baleen on testbed . 49

5.5 Summary . 51

6 Baleen-TCO: choosing the best parameters to minimize cost 53
6.1 Background: TCO dominated by backend HDDs required 54
6.2 Deriving a TCO function based on public data 55
6.3 Baleen-TCO . 55
6.4 Evaluation: Baleen-TCO chooses optimal flash write rate 56

7 Optimizing for peak load 59
7.1 Background . 59
7.2 Indirect optimization for peak load . 59

7.2.1 Choosing parameters to optimize for Peak DT. 60
7.3 Analyzing trends in Peak DT over time . 60

7.3.1 Breaking down DT at peak periods . 63
7.4 Explicitly optimizing for Peak Disk-head Time 63

7.4.1 Varying policy selectivity by system load level 64
7.4.2 Prioritizing episodes by their contribution to peak load 65
7.4.3 Future work . 65

7.5 Summary . 65

8 Workload drift in caching 67
8.1 Background . 67
8.2 Collecting longer traces for analyzing drift . 69
8.3 Evaluating drift across time and clusters . 72
8.4 Drift mitigation via retraining . 73
8.5 Future work . 74
8.6 Summary . 75

x

9 Lessons learned from other ML-guided caching explorations 77
9.1 ML for flash eviction . 77

9.1.1 Background . 77
9.1.2 Analytical model showed potential benefits of early eviction in reducing

cache space needed . 78
9.1.3 Improving eviction by using ML to predict episode properties 79
9.1.4 Future work . 81
9.1.5 Summary . 82

9.2 ML for DRAM placement to reduce writes . 82
9.2.1 Background . 83
9.2.2 Evaluation . 83
9.2.3 Using DRAM to gain more information on episodes before deciding . . . 84
9.2.4 Admit episodes with a very short timespan directly to DRAM 85
9.2.5 Future work . 86

9.3 More advanced models: Cache Transformer . 87
9.3.1 Neural Architecture of Cache Transformer 87
9.3.2 Training setup . 88
9.3.3 Evaluation . 88
9.3.4 Summary . 89

9.4 Segment-aware admission . 89
9.5 Benefit attribution for Baleen and quantifying gap to OPT 91
9.6 Prefetching on PUT . 93
9.7 Lessons from ML deployment in production . 94
9.8 Summary . 95

10 Conclusions, lessons learned and future directions 97
10.1 Lessons learned . 98
10.2 Limitations: data, data, data . 99
10.3 Future directions . 100

Bibliography 101

xi

xii

List of Figures

1.1 Summary of Baleen results . 3

2.1 Disk-head Time for one IO . 10

3.1 Distributions of block popularity, access interarrival times, block sizes, and access
sizes . 24

3.2 Sim-Testbed-Production comparison, RejectX, 1 day 27

4.1 Disk-head Time validated in production . 31
4.2 Episode illustration . 31
4.3 Episode size illustration . 32
4.4 Analytical bound models (an early iteration). 36

5.1 Distribution of hits per episode . 38
5.2 System Architecture . 39
5.3 Baleen reduces Peak DT. 42
5.4 Median DT . 43
5.5 Testbed backend load on Region1 . 43
5.6 Benefits consistent as write rate increases. 44
5.7 Benefits consistent as cache size increases. 45
5.8 ML-Range saves Peak DT . 45
5.9 Choose when to prefetch . 45
5.10 Importance of optimizing Disk-head Time instead of hit ratio 46
5.11 Baleen reduces IO miss rate and byte miss rate 48
5.12 Sim vs Testbed, Baleen . 50
5.13 Testbed backend load over time, on the Region1 trace 51

6.1 Baleen-TCO chooses the optimal flash write rate 56
6.2 Baleen-TCO reduces TCO across all traces . 57

7.1 Choosing best prefetching method based on Peak DT 60
7.2 Testbed backend load on Region1 . 61
7.3 Workloads over a week with Baleen . 62
7.4 Breakdown of Disk-head Time at Peaks . 63
7.5 Peak reduction by varying policy selectivity in response to load 64

xiii

8.1 Types of drift, characterized by the speed and type of change 68
8.2 Request count (no cache) over 3 months . 70
8.3 Block lifetime . 71
8.4 Drift over time decreases ML performance . 72
8.5 Drift: training using a different region . 73
8.6 Retraining frequency . 74
8.7 Longer training history lengths . 74

9.1 Dead Time in episodes . 78
9.2 Maximum interarrival times for episodes . 80
9.3 OPT-TTL: An optimal TTL-based eviction policy with early eviction 80
9.4 Opportunity for differentiated eviction strategies (multiple queues). 82
9.5 Present use of DRAM in hybrid caches . 83
9.6 Proposed use of DRAM in hybrid caches . 84
9.7 Scan and churn workloads . 86
9.8 Cache Transformer architecture. 87
9.9 DT comparison for different ML architectures 88
9.10 Segmentaware admission modeled using sub-episodes 90
9.11 Examples of feature importance methods . 92
9.12 Predicting Prefetch on PUT . 94

xiv

List of Tables

2.1 Related work (Admission policies, other flash caches, eviction policies) 15
2.2 Caching simulators and production systems . 18
2.3 Cache workloads used in literature . 19

3.1 Full statistics of traces. 23

8.1 Statistics of drift datasets . 71

9.1 Predicting different targets for ML eviction . 79
9.2 Online and offline performance of different ML architectures 88
9.3 Recall, precision, and 𝐹1 score of Transformer/GBM/MLP models 89
9.4 Segment-aware admission: illustration of costs and benefits of example decisions 90
9.5 PUT statistics of traces . 93

xv

xvi

List of Algorithms

1 Greedy segmentaware admission policy . 91

xvii

xviii

Chapter 1

Introduction

Flash has become an integral part of storage systems, as it offers IO performance orders of
magnitude more than hard disks (HDDs) while offering storage densities orders of magnitude
greater than dynamic random-access memory (DRAM) for the same cost. Hyperscalars have
consolidated their storage needs into bulk storage systems that are backed by HDDs (due to their
low cost per GB) and fronted by flash caches that absorb demand and compensate for HDDs’ low
IOPS and bandwidth capacity. However, flash has one major weakness distinguishing it from
other storage media: its low write endurance. Any flash caching policy must be designed with this
in mind to avoid premature flash wear-out. We define the flash caching problem as determining
which times to fetch, admit and evict items to minimize backend load given a flash write rate limit.

Bulk storage systems are provisioned according to peak demand for Disk-head Time. If the
system has insufficient IO capacity, requests queue up and slowdowns occur. If sustained, clients
retry requests and failures occur. Thus, bulk storage IO requirements are defined by peak load,
which in turn affects total storage cost.

Replacing heuristics with machine learning (ML) in cache management policies is appealing
as it offers the opportunity to tailor strategies to the workload and incorporate offline insights
into online decisions in a scalable manner. However, applying ML to caching has been difficult
since: 1) caching does not map well to problems in other fields such as computer vision or natural
language processing that are well-solved by supervised learning, and 2) the nature of caching
(in terms of the delayed rewards and how each decision affects subsequent decisions) makes it
challenging for reinforcement learning [6, 36, 42, 49, 51, 98]. Furthermore, systems practitioners
prioritize understanding the decisions made by ML policies and their failure modes; ML policies
need to be introspectable, not just performant [96].

In this thesis, we propose an approach for applying ML to flash caching and gather evidence in
support of this statement:

Thesis statement: ML flash caching policies can reduce total cost in bulk storage systems, but
in order to outperform heuristics in well-tuned production systems, they must have a flexible and
principled design that can adapt to diverse workloads.

1

1.1 The case for ML in flash caching
Large-scale storage continues to be predominantly done with hard disks (HDDs), which provide
much more cost-effective storage than flash. However, HDDs have low throughput, and each can
generally only perform about 100 IOs per second (IOPS). Modern storage systems rely heavily on
flash caches to absorb a substantial fraction of requests and thereby reduce the number of disks
needed to satisfy the IO workload.

Although a functional cache can be realized using traditional approaches, which assume items
can be admitted to the cache arbitrarily, it is important to consider the differing natures of HDDs
and flash SSDs. In particular, the IOPS and bandwidth of HDDs has not kept up with increases in
their capacity, making disk time a key goal of flash caching more than average IO latency. Flash,
on the other hand, provides orders of magnitude higher IOPS, but it wears out as it is written. As a
result, expected SSD lifetime projections assume relatively low average write rate limits, such as
“three drive-writes per day”, meaning 3N TB of writes to a N TB SSD each day. Manufacturers
offer SSDs with even lower endurance (e.g., 1 drive write per day) with correspondingly lower
prices. All of this translates to a need for smart admission policies to decide which items get
written into cache [5, 21]. Eviction policies cannot substitute for admission policies, since the
cost of writes is experienced at admission time, even if the item is immediately evicted afterwards.
Popular policies have included random admission and history-based policies that reject items
without sufficient recent usage.

Machine learning (ML) policies for flash cache admission have been proposed as a solution for
avoiding excessive flash writes. However, caching does not easily map to well-trodden problems in
computer vision or natural language processing. In particular, a policy’s decision is often affected
by its past decisions, and can have synergistic or antagonistic effects on other parts of the system.
While in theory this can be addressed with end-to-end and reinforcement learning techniques, in
practice, such models require large amounts of human capital and computing resources, and do
not necessarily outperform a typical well-tuned production system [6, 36, 42, 49, 51, 98].

Making ML policies introspectable is key to their adoption by systems practitioners [96].
While accurate models are desirable, success also hinges on the correct decisions being posed
to the models. How one uses ML is key: how to generate training examples from traces, how
to arrive at optimal decisions for ML to learn from, which subproblems ML should be applied
to, and how to optimize end-to-end systems performance without sacrificing introspectability,
debuggability, and efficiency.

1.2 Baleen: ML for admission and prefetching that optimizes
peak HDD load and storage TCO (HDDs+cache)

In this dissertation, we evaluated different areas of cache management in which ML could be
applied where there would traditionally be heuristics in a flash cache serving a bulk storage system.
We composed the most successful elements of our research, including ML admission and ML
prefetching, and embodied them in a flash cache called Baleen.

In Baleen, we decompose the flash caching problem into admission, prefetching, and eviction

2

(§2.4). This helped us align policy decisions to well-understood and efficient ML techniques
for supervised learning. We do, however, want to co-design these different components to reap
the full benefits. One may depend on the other to be effective, as we found to be true for ML
prefetching and ML admission.

Baleen explores ML policies for flash caches in bulk storage systems. We introduce a new
analytic approach for access pattern analysis, based on a cache residency model we call episodes
(§4.2), which groups accesses that correspond to an item’s cache residency if admitted. Our
approach provides a more complete view of end-to-end flash caching policy performance, and
enables us to efficiently model policy behavior under multiple constraints. This is especially
useful for flash caches given that the resource burden of an admission is dominated by its flash
writes, which is the same whether the item is admitted at the start or end of the episode. From
our approach, we develop OPT (4.3), an episode-based approximation of optimal admission and
train ML admission policies to imitate OPT. We benchmark them against OPT and other baseline
admission policies on seven recent real-world storage cluster traces collected over 3 years.

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

80

100

Es
ti

m
at

ed
 T

CO
(%

 o
f R

ej
ec

tX
)

(a) Estimated TCO

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

10

20

30

40

50

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

 o
f n

o
ca

ch
e)

(b) Peak load

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

M
ed

ia
n

Ba
ck

en
d

Lo
ad

(%
 o

f n
o

ca
ch

e)

(c) Median load

Figure 1.1: Baleen-TCO reduces (estimated) TCO by 17% and peak load by 16% over the best
baseline on 7 Meta traces by choosing the optimal flash write rate. IO and byte miss rates were
reduced by 14% and 2%. For the default flash write rate, Baleen reduces peak load by 12% over
the best baseline.

Baleen is our resulting ML-guided Flash cache policy. We evaluate it by its savings in Peak
Disk-head Time (§4.1), a measure of peak backend load, and we found that a combination of
ML-guided admission and ML-guided prefetching provides the largest improvement. In deploying
ML, we learned that determining the right optimization metric is not an easy task; an earlier
version of Baleen improved IO hit ratio but had worse end-to-end performance (disk-head time).
Optimizing for the right metric in the ML policy improved both introspectability and system

3

performance. We also developed a variant Baleen-TCO, which chooses the optimal flash write rate
to optimize our estimate of the total cost of ownership (TCO). This also results in improvements
to traditional metrics, reducing IO miss rate by 14% and byte miss rate by 2%.

1.3 Optimizing for peak load, workload drift and other ML
caching explorations

Changes in the request distribution over time pose two challenges to ensuring the continued
performance of admission policies. First, demand changes over shorter time scales (hours, days,
weeks) that give rise to peaks in backend load. Second, workload drift over longer time scales
(months, years) that cause model performance to regress over time. We describe strategies
to optimize Peak Disk-head Time by choosing the right static parameters, and more advanced
strategies for doing by adaptively varying the admission policy selectivity threshold. We perform
the first (to the best of our knowledge) analysis of drift in a production caching system, showing
how policy performance is affected over time if a model is not retrained.

Caching is an age-old problem, and yet the problem of predicting what will be accessed in
the future remains a difficult one to solve. Part of the difficulty is that there are many possible
ways in which to approach the problem and that the tractability of caching solutions is dependent
on the workload. We evaluated numerous other solutions, such as attempts to improve ML
eviction policies, ML for DRAM placement, more advanced models, segment-aware prefetching,
prefetching on PUT, and explain why they did not work for our workloads. In exploring the
space for improvement, quantifying the room for possible improvement is also important and we
sought to break down the gap between Baleen and OPT and attribute Baleen’s benefit over existing
policies.

1.4 Contributions

We propose and evaluate a principled design for ML flash caching to reduce peak backend load
(and thus storage costs), consisting of:

1. Analytical models to present the right decision options to ML (§4) We propose the
episodes model (§4.2) as a new cache residency model that uses offline information to guide
the development and training of ML models. This model simplifies the decision space into
decisions on episodes, to the benefit of both humans (increasing introspectability) and ML.

2. Oracle policies for ML to imitate We propose OPT (§4.3), an episode-based approximation
of optimal admission, and OPT-Range (§4.4), an episode-based approximation of optimal
prefetching. This allows us to apply well-understood supervised learning techniques and to
understand when performance is limited by ML performance versus other factors.

3. Metrics and simulators that accurately assess the impact of ML on systems performance
We propose Peak Disk-head Time (§4.1) as an end-to-end metric for ML model design,
training and evaluation. We show it can be successfully used as an optimization goal during

4

training and that it matches up with systems metrics (disk utilization) collected in production
(§3.4).

4. TCO (HDDs+cache) formula for flash caching systems (§6) In flash caching, the reduction
in backend load (Peak Disk-head Time), and thus the number of HDDs needed, must be
balanced against the number of flash writes which is a cost factor due to additional SSDs
required. We derive a TCO (total cost of operation) formula using public data that allows
configurations with different flash write rates to be compared. We also extend our system to
pick the best target flash write rate for each workload in order to minimize this cost metric.

5. Decomposition of the flash caching problem into smaller subproblems for ML (§2.4). We
propose a heuristic decomposition of the flash caching problem into admission, prefetching,
and eviction. Breaking it down makes it easier for humans to understand the individual
components. ML solutions can be evaluated against comparable heuristics or oracle policies
for each of these subproblems. We propose that these ML solutions be co-designed and
coordinated as they can have synergistic effects on each other.

We evaluate this design through the following studies:

• Baleen: ML-driven admission and prefetching for flash caches (§5)
Baleen is a flash cache that uses coordinated ML admission and ML prefetching to reduce
backend load in bulk storage systems. After learning painful lessons from early ML policy
attempts, we exploit a new cache residency model (episodes) to guide model training, and
focus on optimizing the end-to-end metric Disk-head Time which balances IO hit rate and
byte hit rate. We also propose OPT, an episode-based approximation of optimal admission,
which we use both to train ML admission on and as a benchmark. We developed both
our BCacheSim simulator and our CacheLib testbed against production system counters.
Evaluation on Meta traces from seven storage clusters collected over three years shows
that Baleen reduces Peak Disk-head Time (and backend capacity required) by 12% over
state-of-the-art policies.

• Baleen-TCO: balancing the costs of flash writes against reductions in HDD load (§6)
We derive a TCO (total cost of operation) formula that can be used to evaluate cost reductions
from reducing Peak Disk-head Time against the cost of additional flash writes. We evaluated
an extension, Baleen-TCO, which chooses the best flash write rate for each workload
(whereas a static flash write rate target is manually set in the status quo). This additional
flexibility allows Baleen-TCO to save additional Peak Disk-head Time on some workloads
while minimizing flash writes where it is not beneficial, reducing TCO by 17% compared to
existing ML policies.

• Optimizing Peak Disk-head Time (§7) Ideally, backend capacity is provisioned to match
peak load. It thus makes sense to devote special attention to reducing peaks. We describe the
importance of optimizing peak load and show a case study that illustrates how optimizing
average load can lead to the wrong outcome. We proceeded to evaluate strategies to explicitly
optimize peak load. One such strategy was redistributing flash write rate budget from
off-peak periods to peak periods. where we varied the ML policy to be much more selective
during off-peak periods, saving 8.0% of flash writes with a reduction of 1.4% in peak load.

5

• Analyzing workload drift in caching (§8) Workload drift refers to changes over time in
access patterns and the popularity of items, which can cause ML model performance to
decrease due to a mismatch between data at training and inference time. We collected
additional longer traces and show that drift is substantial and results in a decrease in ML
policy performance even over a period of 3 months. We evaluate the efficacy of the common
strategy of retraining.

• ML for eviction (§9.1) We study the third subproblem in our heuristic decomposition:
eviction policies. Existing ML eviction policies have been evaluated in the context of
DRAM caches. In contrast, the conventional policy in flash caches has been to use a simple
eviction policy (such as LRU or FIFO) in favor of having a complex admission policy.
However, given that the time between an item’s first and last access before eviction can
range from minutes to hours in a flash cache, using a simple eviction policy such as LRU
leaves significant potential savings on the table. If items could be evicted immediately
after they are last accessed, instead of waiting to leave the cache, this would result in a
potential reduction of 11% in average Disk-head Time. We evaluated policies that use
episode timespan and episode maximum interarrival time for early eviction.

• ML for DRAM placement (§9.2) Conventional wisdom in hybrid cache design is to
promote an object to DRAM when there is a hit on it in flash, and to insert DRAM evictions
into flash. We consider how DRAM might be used selectively to reduce flash writes, instead
of letting every item pass through DRAM. DRAM should be used to gain more information
on episodes the policy is unsure about, and to bypass flash entirely for episodes with a very
short timespan, or that have a scan or churn pattern.

• Cache Transformer: exploring more advanced ML models (§9.3) We rely on Gradient
Boosting Machines (GBMs) in Baleen, which are relatively simple models compared to
the range of advanced deep neural network architectures available today. We design a
Transformer-based caching model and evaluated it, showing that the GBM performs just as
well on our workloads.

• Segment-aware admission and prefetching (§9.4). We explore how more fine-grained
admission policies might further reduce DT, and describe our attempts at doing so and the
challenges in achieving those benefits.

• Prefetching on PUT (§9.6) We explore the viability of prefetching an item upon PUT, and
describe ML models we trained to do so. We show why the problem is challenging and of
limited benefit given our workloads.

• Attributing Baleen’s benefit over previous policies and breaking down the gap to OPT
(9.5) We analyze how Baleen was able to achieve better results than previous ML policies
(e.g., by introducing size awareness). We show that Baleen still has significant room for
improvement, as quantified by the gap of 16% in DT between Baleen and OPT. We attribute
some of these to late admissions, and also examine how Baleen is limited by its labels by
looking at how a Bayes Optimal classifer would do.

6

1.5 Outline
The rest of this dissertation is organized as follows:

• Chapter 2 (Background) gives background on bulk storage systems in the context of modern
data centers, the flash caching problem (balancing absorption of HDD load against limited
flash write endurance), and related work.

• Chapter 3 (Experimental setup) goes over our datasets, simulator and testbed.
• Chapter 4 (Episodes & OPT: modeling flash caching and exploring savings in Disk-head

Time) introduces our episodes model for flash cache residencies, our approximation of of
optimal for flash admission (OPT) and prefetching (OPT-Range), and our analytical flash
cache model.

• Chapter 5 (Baleen: Training ML policies for flash caching) describes how we train ML
policies for flash admission and prefetching in Baleen, and validated it on production
workloads.

• Chapter 7 (Optimizing for peak load) investigates the optimization of peak load by choosing
algorithm parameters and varying admission selectivity by system load.

• Chapter 8 (Workload drift in caching) introduces the concept of workload drift and evaluates
ML performance in response to drift over months, as well as analyzing different aspects of
retraining, a common mitigation measure.

• Chapter 9 (Lessons learned from other ML-guided caching explorations) presents a number
of case studies such as ML for flash eviction, ML for DRAM placement, and Cache
Transformer.

• Chapter 10 (Conclusions, lessons learned and future directions) summarizes the contribu-
tions and lessons learned in the course of this dissertation.

7

8

Chapter 2

Background

A cache1 is a smaller and faster storage placed in front of a larger and slower backend storage.
Over time, caching has grown to encompass not just setups with different memory speeds (CPU
cache and DRAM), but also the same memory at different locations (CDNs) and different storage
mediums (flash drives and hard disks). In this dissertation, we focus on flash caching, which has
become an integral part of bulk storage systems that are found in hyperscalar data centers in which
much of the world’s data resides.

2.1 Bulk storage systems in data centers
Tectonic is an example of a bulk storage system, which aggregates persistent storage needs in
data centers (e.g., from blobstores and data warehouses). Flash caches are used to reduce the
load on the backing HDDs and meet throughput requirements. Other systems have a similar
design [28, 58, 69].

Accesses are made to byte ranges within blocks. Blocks are mapped to a location on backing
HDDs, and subdivided into smaller units called segments that can be individually cached.
(Tectonic has 8MB blocks and 128 KB segments.) Upon an access, the cache is checked for all
segments needed to cover the request byte range. If any are missing, an IO is made to the backing
store to fetch them, at which point they can be admitted into the cache.

Each cluster has 10,000s of storage nodes independently serving requests. Each node has 378
TB in HDDs [58], 400 GB in flash cache, and 10 GB in DRAM cache (37,800:40:1). We focus on
the scope of the individual node.

2.2 Bulk storage limited by disk-head time (DT)
At scale, hard disks (HDDs) remain the choice of backing store as they are cheaper by 10X per TB
over SSDs [54]. Newer HDDs offer increased storage density, resulting in shrinking throughput

1The term cache, as used in computing, originated at the IBM Systems Journal in 1967 to replace the term "High
Speed Buffer" in papers describing the IBM System/360 Model 85 [70]. This was a year after Belady’s well-known
paper was published, in which the term cache does not actually appear [4].

9

(IOPS and bandwidth) per GB as more GBs are served by the same disk head.
Disk-head time (defined in §4.1) on backing HDDs is a premium resource, especially with

workloads that are more random than sequential. The mechanical nature of HDDs results in a
high, size-independent access time penalty (e.g., 10 ms) for positioning the read/write head before
bytes are transferred. With a high read rate (e.g., 5.5 ms/MB), a request could take 10 to 70 ms
(Fig 2.1).

0 1 2 3 4 5 6 7 8
IO Size (MB)

0

20

40

60

D
is

k-
he

ad
ti

m
e

(m
s)

Research Testbed
11.5ms seek, 143MB/s
Meta

Figure 2.1: Disk-head Time (DT) for one IO. When a HDD performs an IO, the disk head seeks
before it reads data. For tiny IOs, throughput is limited by IOPS; for large IOs, by bandwidth. DT
encompasses both metrics and generalizes to variable-size IOs.

In provisioning bulk storage, peak demand for disk-head time matters most. If the system
has insufficient IO capacity, requests queue up, and slowdowns occur. If sustained, clients retry
requests and failures occur, affecting user experience. Thus, bulk storage IO requirements are
defined by peak load, which in turn affects storage costs.

We will describe in §4.1 the details of our proposal to use Disk-head Time as a metric, and
evaluate it using production traces.

2.3 Flash caches absorb HDD load but have limited write
endurance

Flash caching plays an important role in absorbing backend load, compensating for disk-head time
limitations of the underlying HDDs. This setup enables resource-efficient storage for workloads
that exceed the throughput requirements of HDDs but which are infeasible to store using flash
alone. With the trends towards higher density HDDs and fewer bytes per HDD spindle, flash
caches unlock more usable bytes per spindle.

While managing throughput is the primary goal of flash caching, tail latency can improve as a
result of reduced backend contention [97]. Flash caches also add flexibility for matching system
throughput to ever-growing demand, as it is easier to enlarge flash caches than swap out existing
HDDs. When AI training put pressure on storage bandwidth at Meta, the solution was to add a
disaggregated flash caching tier [103].

10

Flash does not have access setup penalties, but does have wearout that translates into long-term
average-write-rate limits. SSD manufacturers rate their drives’ endurance in terms of drive-writes
per day (DWPD) over their warranty period. Caching is an especially challenging workload
for flash, since items will have widely varying lifetimes, resulting in a usage pattern closer to
random I/Os than large sequential writes. Items admitted together may not be evicted at the same
time, worsening write amplification. Writing every miss into flash would cause it to wear out
prematurely. Admitting everything requires up to 492 MB s−1 or 43 DWPD for our traces; for an
SSD rated at 3 DWPD over 5 years, this means a reduced lifetime of just 4 months (i.e., 14 × as
fast). One solution is SSD capacity overprovisioning, but this can rapidly become a dominant part
of the total storage costs [5, 96].

2.3.1 Introducing admission policies and baselines (RejectX, CoinFlip)
Flash caches leverage admission policies (APs) to decide if items should be inserted into the
flash cache or discarded, and have simple eviction policies (LRU, FIFO) to minimize write
amplification [5]. Like eviction policies, admission policies weigh the benefit of hits from new
items against lost hits from evicted items. They must also weigh the write cost of admitting the
new item against other past or future items. Policies have an admission threshold that can be
varied to achieve the target flash write rate. We provide some examples.
• CoinFlip (baseline) On a miss, segments for an access are either all admitted, or not at all, with

probability 𝑝. This simple policy does not need tracking of past items seen.
• RejectX (baseline) rejects a segment the first 𝑋 times it is seen. Past accesses are tracked using

probabilistic data structures similar to Bloom filters. We use 𝑋 = 1 and vary the window size of
past accesses to achieve the desired write rate. Both Meta [5] and Google [96] used this prior to
switching to more complex policies.

• ML admission policies use offline features to make decisions in addition to online features such
as past access counts. An ML model can be trained offline based on a trace (as we do), or online
using reinforcement learning.

2.4 Decomposing the caching problem
We define the caching problem as determining which times we should fetch, admit, and evict each
segment to minimize the backend’s DT given a flash write rate limit.

We propose a heuristic decomposition of this problem into three subproblems: admission,
prefetching, and eviction. This makes it easier to reason about the optimal solutions to each
sub-problem and the training and behavior of ML solutions for each part. Making ML solutions
easier to train, understand, and debug mitigates production engineers’ common criticism of their
blackbox nature [67].

Admission: Whether to admit something into cache in anticipation of future hits that reduce
DT Here, we trade off the disk-head time saved against the write rate used from caching an item.
We model this as a binary classifier, where misses are admitted if the output probability exceeds

11

the policy threshold. We also considered regression models (e.g., predicting no. of expected hits).
Such models eliminate the threshold parameter, but we found they perform worse end-to-end,
perhaps because their loss functions incentivize performance at all thresholds (write rates) rather
than just those at the boundary.

Prefetching: Whether to prefetch extra segments outside the current access range (which
was a miss) Here, we trade off DT saved from hits on the first accesses against the additional
time spent in cache, and for incorrect prefetches, the DT wasted and the opportunity cost of the
wasted flash write rate. We further decompose the prefetching problem into a) deciding what
segments to prefetch and b) when to prefetch (whether the expected benefit exceeds the cost, taking
into account the possibility of mispredictions).

Eviction: Which segment in the cache to pick for eviction upon an admission Here, one can
employ existing approaches for non-flash caches, including ML-based policies. In Baleen, we
employ a simple eviction policy (in our case, LRU) as is used in production systems. We evaluated
ML-based flash-aware eviction policies but left them out of Baleen given the low savings in DT.

2.5 Limitations of existing systems
Existing works are often:
• Not modular. Without a modular design, the system can be oversimplified and miss out on key

design considerations [21], or else veer towards too much complexity and be difficult to debug
and reason about.

• Optimizing for intermediate metrics. Many systems optimize hit rate [8, 18, 21, 38, 63, 72],
bandwidth [68, 69] or write rate without considering the larger system the cache is part of. This
makes them less performant and robust.

• Not focused on peak periods. Almost all systems report averages, giving less accurate
assessments of system performance, as bad performance at peak can be covered up by good (but
ultimately unhelpful) off-peak performance. To our knowledge, only one other system evaluates
load at peak [69].

• Not co-designed. Many systems focus on a single aspect like flash admission [5, 18, 21] or
eviction [3, 8, 38, 44, 63, 68, 69, 72, 77, 106] without considering the effect of one part on
another, in the belief that their benefits will be fully retained when applied with other techniques.
To our knowledge, only two other systems evaluate multiple subproblems, such as admission
and eviction [1] or admission and prefetching [97].

2.6 Related work
Production flash caching systems CacheSack [96, 97] optimizes admission policies for the
flash cache in front of Google’s bulk storage system, Colossus. This design shares Baleen’s
objectives of co-optimizing backend disk reads and flash write endurance. CacheSack partitions

12

traffic into categories using metadata and user annotations, assigning probabilities to each of
4 simple admission policies for each category by solving a fractional knapsack problem. This
offline approach has slower reaction times than Baleen, and does not evaluate load at peak. Meta’s
Tectonic bulk storage system uses a CacheLib-managed flash cache, with an ML admission policy
that does not use episodes and does not perform prefetching (which we evaluate against as the
CacheLib-ML baseline). § 5 shows that this approach is significantly less effective than Baleen.
Kangaroo [53] improves CacheLib’s small object cache, and is orthogonal to Baleen, which
improves performance for large objects. Amazon’s AQUA [2] also fills a similar role for Redshift
(data warehouse), acting as an off-cluster flash caching layer with S3 as the backing store. Bulk
storage systems backed by HDDs and fronted by cache servers can also be found at Alibaba
Cloud [39] and Tencent [101].

Non-ML flash admission policies CacheLib [5] is Meta’s general-purpose caching library
and includes random and RejectX admission policies for flash caches. Section 2.3.1 introduces
RejectX. Section 5.3 extensively compares Baleen to random (CoinFlip) and RejectX. LARC [30]
is equivalent to RejectX and was the default admission policy used at Google prior to CacheSack.
TinyLFU [18] proposed a frequency-based admission policy that leverages probabilistic data
structures for compact history representation. Baleen adds ML, size-awareness, disk performance
goals, and prefetching over TinyLFU.

ML-based flash caching policies Flashield [21] addresses the lack of information on flash
admission candidates by putting them in a DRAM buffer first. The item’s usage history is used
to generate features for a support vector machine classifier. However, we found this approach
infeasible as DRAM lifetimes are too short in practice (see § 5.4.2). More targeted applications
of ML aim to exclude one-hit-wonders [80] or items that have no reads [102]. Reinforcement
learning has also been used to train a feedforward neural network for admission policies on CDNs,
given a broad set of features [33]. Baleen adds more flexible admission policies, size-awareness,
disk performance goals, and prefetching over these works. Early work on flash caching focused on
flash-friendly eviction policies [61]. Recent work instead uses simpler eviction policies such as
CLOCK or FIFO, and leaves the heavy lifting to the admission policy [96]. Smart policies for
data placement seek to reduce write amplification [14], and can be used in tandem with Baleen.

Prefetching policies CacheSack [97] incorporated static prefetching policies as choices for
their optimization function. [107] implemented heuristic-based prefetching for photo stores,
but found significant room for improvement relative to their offline optimal. Others have posed
caching as a scheduling problem in the context of streaming video and incorporated aspects of
prefetching [45, 65, 76]. In databases, Leaper trains a ML prefetcher to exploit reuse at the key
range level [95].

Models for caching and offline optimal Bélády’s MIN algorithm is the optimal eviction
policy [4]. [68] introduces Relaxed Bélády for eviction which prunes the decision space like
OPT does; however OPT makes stronger assumptions valid for flash admission and decides at a
higher granularity (see § 4.3.1). Raven [29] is a probabilistic approximation of MIN. [16] sought

13

to extend Bélády to admission with a container-optimized MIN that optimizes hit rate while
minimizing flash erasures, but did not provide an online algorithm. Our proposed OPT policy is
the only online policy that approximates the optimal flash admission policy, and which can easily
optimize an arbitrary metric like DT, not just hit rate.

ML for eviction Some policies seek to learn from Bélády, such as LRB which learns a relaxed
Bélády [68], and RL-Bélády [87]. A key challenge to using RL is the long delays for rewards. [6]
Others seek to go beyond Bélády, such as LRU-BaSE [83]. MAT [88] reduces ML inference
overhead by using a heuristic to filter out likely candidates. HALP [69] augments a heuristic with
ML for the YouTube CDN. Deep learning has also been applied to learn forward reuse distance
with LSTMs [40] and reinforcement learning [86]. [66] uses a support vector machine with
features they derived from training an LSTM. [17] proposes that a classical caching policy be
run in parallel with ML policies, allowing the implementation to switch to the better-performing
policy dynamically. ML-based eviction is orthogonal to Baleen’s contribution and cannot control
flash write rates.

Metrics: byte miss rate, object miss rate and Disk-head Time We are not the first to recognize
the need to balance object miss rate and byte miss rate in caching when object sizes vary [82].
Some have approached this through the lens of size-awareness [8, 20]. One policy, LRU-BaSE [82],
tries to optimize both object miss ratio and byte miss ratio. Disk-head Time is known in the
storage community [12, 47, 48, 78, 79] with a number of cluster systems and disk scheduling
algorithms from the 2000s that optimized for it. To the best of our knowledge, Baleen is the first
flash caching policy that optimizes for Disk-head Time.

14

Table 2.1: Summary of related work

System Year AP/
PF/E1

Metric Peak2Flash3 ML On-
line

Size-
aware

Real eval-
uation4

Application Main contributions

Caches with admission policies
Baleen [85] 2023 AP,

PF
DT ✓ ✓✓ GBM ✗ ✓ TB (CL) Bulk storage ML imitates optimal

approximation (based
on episodes residency
model)

CacheSack [96, 97] 2022 AP,
PF

TCO
(hits, flash
writes)

✓✓ ✗ ✓ ✓ Prod
(Google)

Bulk storage Greedy, computes best
policy per category ev-
ery 5 mins

CacheLib [5] 2020 AP Hits ✓ GBM ✗ Prod
(Meta)

Bulk stor-
age, CDN,
Key-value,
Graph

Use recent history (in
Bloom filters) as fea-
tures

RL-Bélády [87] 2020 AP, E Hits FF
(AP),
GBM
(E)

✓ ✓ ✗ CDN FF trained using Monte
Carlo, GBM predicts
next request time, Auto-
tune eviction threshold

Flashield [21] 2019 AP Hits ✓ SVM ✗ ✓ TB (mc) Key-value Use recent history (hits
in DRAM) as features

AViC [1] 2019 AP, E Hits,
Bytes

GBM ✗ CDN Predict future access
time, rejects one-hit-
wonders

TinyLFU [18, 20] 2017 AP Hits ✗ ✓ ✓ [20] TB (Caf) Web services,
Block I/O

Admits items above fre-
quency threshold

continued on next page
1 AP = Admission Policy, PF = Prefetching, E = Eviction Policy.
2 ✓= Evaluates at peak.
3 ✓= Evaluates flash writes, ✓✓= Explicitly co-optimizes for flash writes.
4 TB = Testbed, Prod = Production, ✗= Simulator, CL = CacheLib, Caf = Caffeine, ATS = Apache Traffic Server, SC = SegCache, mc =

memcached, V = Varnish.

15

System Year AP/
PF/E1

Metric Peak2Flash3 ML On-
line

Size-
aware

Real eval-
uation4

Application Main contributions

AdaptSize [8] 2017 AP Hits ✗ ✓ ✓ TB (V) CDN Admits items below size
threshold

Other flash caches
LRB [68] 2020 E Bytes ✓ GBM ✓ TB (ATS) CDN Randomly sample items;

ML chooses one to evict
Pannier [38] 2017 E Hits,

latency
✓ ✗ - Sim+SSD Block I/O Middleware

RIPQ [72] 2015 E Hits ✓ ✗ - Prod
(Meta)

Blob storage Segmented-LRU, GDSF

Policies for DRAM caches
GL-Cache [91] 2023 E Hits,

Bytes
GBM ✓ ✓ TB (SC) CDN, Block

I/O
Groups similar objects
together to aid ML

HALP [69] 2023 E Bytes ✓ MLP ✓ Prod
(YouTube)

CDN Heuristic shortlists can-
didates for ML to evict

MAT [88] 2023 E Bytes GBM ✓ TB (CL) CDN, Key-
value, Block
I/O, Object
Store

Heuristic shortlists can-
didates for ML, which
predicts TTL. Focuses
on reducing ML over-
head.

LRU-BaSE [82] 2022 E Hits,
Bytes

DQN ✓ ✓ Prod (Ten-
cent)

CDN RL with CDN- and LRU-
specific improvements

Zhou et al [106] 2021 E Hits ✓ ✗ ✗ Bulk storage Mine text tags for fea-
tures

continued on next page
1 AP = Admission Policy, PF = Prefetching, E = Eviction Policy.
2 ✓= Evaluates at peak.
3 ✓= Evaluates flash writes, ✓✓= Explicitly co-optimizes for flash writes.
4 TB = Testbed, Prod = Production, ✗= Simulator, CL = CacheLib, Caf = Caffeine, ATS = Apache Traffic Server, SC = SegCache, mc =

memcached, V = Varnish.

16

System Year AP/
PF/E1

Metric Peak2Flash3 ML On-
line

Size-
aware

Real eval-
uation4

Application Main contributions

CACHEUS [63] 2021 E Hits RL ✓ ✗ Block I/O Improves LeCaR for
scan and churn work-
loads

Parrot [44] 2020 E Hits Trans-
formers

✗ ✗ CPU Imitates approximated
Belady

LeCaR [77] 2018 E Hits RL ✓ ✗ Block I/O Regret minimization
LHD [3] 2018 E Hits ✗ ✓ ✓ TB (mc) Key-value,

Block I/O
Optimize for hit density

1 AP = Admission Policy, PF = Prefetching, E = Eviction Policy.
2 ✓= Evaluates at peak.
3 ✓= Evaluates flash writes, ✓✓= Explicitly co-optimizes for flash writes.
4 TB = Testbed, Prod = Production, ✗= Simulator, CL = CacheLib, Caf = Caffeine, ATS = Apache Traffic Server, SC = SegCache, mc =

memcached, V = Varnish.17

Table 2.2: Caching simulators and production systems

Name (Author) Target Status Lang Papers Eviction Admission
Simulators
BCacheSim
(Daniel Wong)

Bulk storage Active Dev Python [85] LRU, FIFO,
LIRS, TTL

Baleen, Re-
jectX, Coin-
Flip, OPT

libCacheSim
(Juncheng Yang)

Key-value,
CDN

Active Dev C++ [89, 91] See below TinyLFU

Eviction policies: FIFO, LRU, Clock, LFU, LFU with dynamic aging, ARC, SLRU, GDSF,
LeCaR, Cacheus, Hyperbolic, LHD, LRB, GLCache, Belady, BeladySize

webcachesim2
(Zhenyu Song)

CDN Maint mode C++ [68] See below AdaptSize,
Adaptive-
TinyLFU

Eviction policies: LRB, LR, Belady, Relaxed Belady, Inf, LRU, B-LRU, ThLRU, LRUK, LFUDA,
S4LRU, ThS4LRU, FIFO, Hyperbolic, GDSF, GDWheel, LeCaR, UCB, LHD, Random

Production systems
CacheLib (Meta) Key-value,

bulk storage,
CDN

Active Dev C++ [5, 53,
85]

LRU, Seg-
mented LRU,
LRU-2Q,
TTL, FIFO

TinyLFU,
RejectX,
Random

Caffeine (Ben-
jamin Manes)

In-memory Maint mode Java [18, 19,
20]

Pelikan/ Seg-
Cache (Twitter)

In-memory
key-value

Stable Rust [91]

18

Table 2.3: Cache workloads used in literature. We include all bulk storage system traces in
addition to selected CDN, block I/O and key-value traces that have been used in multiple papers.

Source Year Meta-
data
fea-
tures

Length Avg
Req
Size

Avg
Obj
Size

#Num Total
trace
size

Public Years
in use

#Papers Used by

Bulk storage
Meta
(Tectonic)

2024 ✓ 30-day Not yet 2024 Thesis (drift)

Meta
(Tectonic)

2021,
‘23

✓ 7-day 3
MB

6.3
MB

4 170
GB

✓ 2023 1 Thesis
(Baleen) [85]

Google
(Colossus)

2022 ✓ 2-day ✗ 2023 1 CacheSack [96]

Meta
(Tectonic)

2019 ✓ 7-day 3
MB

5.8
MB

3 11
GB

✓ 2020–
23

2 CacheLib [5], The-
sis (Baleen) [85]

Block I/O1

Alibaba 2020 31-day 751
GB

✓ SepBIT [83], [39]

TencentCloud2020 9-day ✓ OSCA [101]
Fujitsu
(SYSTOR)

2016 28-day 9
KB

31
KB

52
GB

✓ 2016–
23

Many [37]

CloudPhysics
(VM)

2015 7-day ✓ 2015–
23

2+ GL-Cache [91],
Cacheus [63]

MSR
Cambridge

2007 ✗ 7-day 40
KB

5 GB ✓ 2009–
23

Many Pannier [38],
LHD [3], Cloud-
Physics, GL-
Cache [91],
MAT [88]

FIU 2008 3-mth 8
KB

29
GB

✓ 2018 1+ LeCaR [77]

CDN
Meta 2023 7-day 3 40

GB
✓

Google
(YouTube)

2021 3-day ✓2 2023 1 HALP [69]

Tencent
(QQPhoto)

2016 9-day ✓ 2018–
22

1+ LRU-BaSE [82]

continued on next page
1 Block I/O is defined by SNIA as including "block level (e.g., at the logical volume manager, disk driver, etc.

level) and block protocol (e.g., SCSI, ATA, Fibre Channel) traces." We distinguish this from bulk storage
(distributed exascale cluster storage systems used in the cloud that aggregate storage needs of many systems).

2 Google has offered to release two traces (a developed market region and an emerging market region) upon
signing of a data sharing agreement.

3 MemCachier is a commercial memcached service.19

Source Year Meta-
data
fea-
tures

Length Avg
Req
Size

Avg
Obj
Size

#Num Total
trace
size

Public Years
in use

#Papers Used by

Wikipedia 2018 14-day ✓ 2020–
23

3+ LRB [68], GL-
Cache [91],
MAT [88]

Key-value (e.g., Memcached, Redis)
Meta 2022 5-day 1 24

GB
✓

Twitter 2020 7-day 54 14
TB

✓ 2020–
21

2+ [89], Seg-
cache [90]

IBM Cloud
Object Stor-
age

2019 ✗ 7-day 0.2
MB

1
MB

98 88
GB

✓ 2020–
23

3+ [23], MAT [88]

MemCachier3≤2017 7-day ✗ 2017–
23

4+ LHD [3],
Flashield [21],
Hyperbolic [11],
MAT [88]

1 Block I/O is defined by SNIA as including "block level (e.g., at the logical volume manager, disk driver, etc.
level) and block protocol (e.g., SCSI, ATA, Fibre Channel) traces." We distinguish this from bulk storage
(distributed exascale cluster storage systems used in the cloud that aggregate storage needs of many systems).

2 Google has offered to release two traces (a developed market region and an emerging market region) upon
signing of a data sharing agreement.

3 MemCachier is a commercial memcached service.

20

Chapter 3

Experimental setup

In this chapter, we introduce the bulk storage workloads used throughout the rest of this dissertation.
We also describe the hybrid cache simulator we designed around the episodes model, and detail
our efforts to ensure the fidelity of its results, including an academic testbed we set up to run our
policies in CacheLib.

3.1 Datasets: real traces from production caches for bulk
storage systems

A factor that differentiated our work was our extensive collection of caching traces from high-
performance production caches for bulk storage systems. We are grateful to our collaborators at
Meta who helped us collect traces over the years from 2019 to 2024.

Note that the workload drift section employs additional traces beyond the ones presented here.
They are described in §8.2.

Comparable traces The closest traces we know of are the Google CacheSack [97] traces, which
are not publicly available. The Google Thesios [60] traces were promising and we evaluated them,
but we were unable to use them directly as they were sampled post-cache. Many prior caching
papers, even as recent as 2023, were still using the MSR traces from 2007, as can be seen in
Table 2.6.

3.1.1 Trace collection and preprocessing

Traffic to the bulk storage system was sampled on the storage nodes themselves, which was where
the flash also was. Traffic was sampled before it hit the flash cache.

Trace collection in 2019 The process through which the 2019 traces were collected is unknown,
but we strongly suspect that each trace was collected by sampling the traffic at a single node.

21

Trace collection from 2021 onwards Starting from 2021, the trace collection process was
standardized to take a sample from every single storage node in the cluster at a fixed sampling rate
(e.g., 1

4000). These thousands of machine-specific samples were then aggregated and buffered for
30 days in a separate system. which could be dumped to collect a trace for the last 30 days.

The sampling rate and number of nodes are recorded at the time the trace was dumped, and
we use this to determine the fraction of a machine’s traffic that the received trace represents:
𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑜𝑑𝑒𝑠

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒
, so that we can scale the cache size correctly.

Trace anonymization Before we receive the traces, they would be anonymized by replacing
string values with integers in a process similar to one-hot encoding. From 2024, the trace
anonymization process was augmented to ensure that keys were consistently anonymized across
dumps, enabling traces dumped at different timepoints to be stitched together to form a longer
trace.

Preprocessing To speed up evaluations and standardize our evaluation process, we further
downsample the trace from Meta by sampling it on the block key space. Learning point: We
weigh each block by the number of accesses, and found that this reduced variance when using
different samples of the trace and also allowed us to use smaller samples (as low as 0.05%) of the
trace while still getting meaningful results.

Time of collection The Region1 and Region2 traces were recorded from different clusters over
the same 7 days in Oct 2019, while the Region3 trace was recorded from another cluster over
3 days in Sep 2019. Region4 was recorded over 7 days in Oct 2021, and the remaining traces
(Region5, Region6, Region7) were collected in Mar 2023.

3.1.2 Workload characteristics
Description of clusters and their workloads Early clusters (also known in this text as a Region)
each supported only one tenant (such as data warhouse or blob store), but eventually clusters were
made multi-tenant. Clusters had thousands of nodes, although this number would flunctuate over
time, including during the course of the trace, as individual machines failed or were rotated out.

This is a description of the workloads for each cluster:

1. Regions 1-3 (2019): each a data warehouse
2. Region4 (2021): data warehouse
3. Region5 (2023): 10 “tenants”, largest being data warehouse and blob store
4. Region6 (2023): 10 “tenants”, largest being data warehouse and blob store
5. Region7 (2023): 10 “tenants”, largest being data warehouse and blob store
6. Regions 4-7 are from different geographical regions.

Each tenant supports 100s of applications. Data warehouse is storage for data analytics (e.g.,
Presto, Spark, AI training), with larger reads than blob storage. Blobs are immutable and opaque,

22

and include media (photos, videos) and internal application data (e.g., core dumps). See the
Tectonic[58] paper for further details.

Trace statistics We make a few observations from the data in Table 3.1:
1. Admit-All Write Rate, the flash write rate required to admit everything, varies but exceeds

300 MB/s for most of the traces, a rate that would wear out an SSD within a few months
instead of 5 years, underlining the importance of flash admission policies.

2. The average block size is 5–6 MB and the average access size is 2–3 MB, much larger than
the 10s of KBs in the Block I/O storage traces shown in Table 2.6.

3. One-hit wonder rate is high, meaning that the cumulative penalty for flash admission false
positives is significant.

4. The high percentage of PUT-only blocks with no subsequent GETs makes predicting whether
to prefetch on PUT very, very challenging, since there are minimal features and the odds are
stacked against having any reuse.

Table 3.1: Full statistics of traces.

Dataset Year Request
Rate
(𝑠−1)

Avg
Block
Size
(MB)

Access
size
(MB)

Comp-
ulsory
miss
rate1

One-
hit-
wonder
rate2

PUT-
Only
Blocks

#PUT /
#Acc

Admit-All
Write Rate

Region1 2019 244 5.70 3.41 18% 54% 46% 13% 316 MB/s
Region2 2019 106 5.07 2.85 39% 83% 81% 14% 121 MB/s
Region3 2019 139 6.71 2.42 19% 48% 46% 16% 45 MB/s
Region4 2021 406 5.87 2.87 14% 53% 40% 10% 280 MB/s
Region5 2023 364 6.84 2.62 18% 59% 33% 9% 480 MB/s
Region6 2023 404 6.77 2.74 14% 55% 38% 10% 478 MB/s
Region7 2023 426 5.71 2.23 17% 62% 38% 12% 492 MB/s
1 Compulsory miss rate refers to the ratio of blocks to accesses;
2 One-hit-wonder rate is the fraction of blocks with no reuse.

23

The popularity distribution of blocks (Fig 3.1a) fit a Zipf(𝛼 = 0.8) distribution, where the
𝑖-th most popular block has a relative frequency of 1/𝑖𝛼 . Fig 3.1b shows the interarrival time
distribution, with the converged eviction age for Baleen marked with crosses. For all traces, less
than 20% of interarrival times exceed the converged eviction age. Fig 3.1c and Fig 3.1d shows the
size distribution for blocks and accesses respectively. The majority of blocks are the maximum
size (8 MB) with averages of 5.1-6.8 MB across traces, but most accesses are only a fraction of
the block with the median access less than 2 MB.

100 101 102 103 104 105 106 107 108

Block popularity rank
100

101

102

103

104

105

106

#
Ac

ce
ss

es
 p

er
 b

lo
ck

Region1
Region2
Region3
Region4

Region5
Region6
Region7
Zipf(α= 0.8)

(a) Block popularity (log-log). × denotes 400 GB.

100 101 102 103 104 105

Interarrival time (s)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(o
f a

cc
es

se
s)

1
se

c

1
m

in

1
hr

1
da

y

Region1
Region2
Region3
Region4

Region5
Region6
Region7

(b) Interarrival times for accesses to the same block.
× denotes eviction ages for Baleen at 400 GB & 3
DWPD.

0 1 2 3 4 5 6 7 8
Block size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(o
f b

lo
ck

s)

Region1
Region2
Region3
Region4

Region5
Region6
Region7

(c) Block size distributions.

0 1 2 3 4 5 6 7 8
Access size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(o
f a

cc
es

se
s)

Region1
Region2
Region3
Region4

Region5
Region6
Region7

(d) Access size distributions.

Figure 3.1: Distributions of block popularity, access interarrival times, block sizes, and
access sizes. In a, lower values of 𝛼 indicate it is harder to cache.

3.2 BCacheSim: our online hybrid cache simulator
We developed a Python simulator to accurately estimate CacheLib performance without doing
the actual heavy lifting. This is an approach taken by other ML for Systems projects [73]. This
lightweight simulator is easier to include in a ML training pipeline, and takes as input a Tectonic
trace and measures many end-to-end metrics (e.g., average eviction age, Peak DT) that cannot
be obtained from offline episode analysis. Having the training setup be Python-centric aids in

24

faster prototyping, ease of use by data scientists, and ease of integration with existing ML training
pipelines.

Modeling of HHD and SSD differences Baleen accounts for differences in hardware (HDDs,
SSDs) via the target flash write rate and constants in the TCO & disk-head time formulas. For flash,
the pertinent characteristics are those affecting endurance (and thus write rate). Fig 5.6 and 5.7
show Baleen performing at different flash write rates and cache sizes. For HDDs, our simulations
assume a constant average seek time and bandwidth in the DT formula (Eq 4.2). These parameters
vary minimally across disks, as illustrated in Fig 4.1 (simple formula closely matches actual disk
utilization in production). Baleen includes a small benchmark to measure these constants for a
given disk.

Simulation time 624 machine-days were used for the final runs to generate the results used in
the paper. Each simulation of a ML policy takes at least 30 minutes, multiplied by 7 traces and 10
samples each.

3.3 Our academic CacheLib testbed
In the absence of production access, we took the additional step of creating an academic testbed
environment that resembles the production environment more closely. Like BCacheSim, our
Python simulator, it replays bulk storage workloads that were recorded from production systems.
Compared to BCacheSim, however, it has the following advantages: 1) it performs actual cache
insertions, evictions and disk accesses on real hardware, and 2) it does so using the same CacheLib
library used in production (along with its accompanying characteristics and quirks), increasing the
likelihood our reported gains will be more easily realized in production.

Hardware The Tectonic production setup used to record traces and counter values has a 400 GB
flash cache, 10 GB DRAM cache and 36 HDDs. Our academic testbed uses enterprise-grade
hardware, but with less HDDs per node and thus a proportionally smaller cache size. It is a
24-node cluster, where each node has a 16-core Intel Xeon E5-2698 CPU, 64 GB of DRAM, Intel
P3600 400 GB NVMe SSD, Seagate ST4000NM 4 TB HDDs, and runs Ubuntu 18.04. The SSDs
and HDDs used are enterprise-grade. The size of the cluster does not affect the veracity of the
testbed as each individual experiment run only involves one node; multiple nodes are used to
speed up the completion of the experiments, given the large number of runs necessary (number of
policy configurations times 7 traces times 10 samples from each trace).

Modifications to CacheLib We implemented support for ML admission and prefetching policies.
Our prefetcher is implemented as a header-only library that other CacheLib applications may
include. We mock calls to Tectonic so that every miss issues a real IO of the right size against
HDDs, and measure the wall-clock time as Disk-head Time consumed. Static features are stored
in the CacheLib payload, while history counts are tracked by CacheLib. We added functionality
to CacheBench (CacheLib’s benchmark suite) to replay Tectonic traces. Our mock application

25

follows Tectonic’s behavior of breaking down each IO into one or more CacheLib acccesses.
CacheLib employs a region-based LRU, with different regions for different sizes. Since segments
are uniformly 128 KB, we set region size to 142 KB to contain one segment each plus overhead.

Prefetching implementation in CacheLib applications Every request to the bulk storage
system references a block in the backing store and a byte range within that 8 MB block. Each
request is translated by the application into (potentially multiple) CacheLib segment-level requests.
CacheLib is not aware that segments may belong to the same block.

Thus, prefetching must be implemented by the application issuing requests against CacheLib,
which is the bulk storage system in our case (Fig 5.2). For our studies, we implemented it in
CacheBench. On each client request, Baleen’s prefetcher will be triggered after the application
has queried CacheLib and found out whether segments are hits or misses. Thus, the prefetcher has
access to the client request metadata and knows how many requested segments were present in
cache. On a miss, the application makes a request to the backing store, giving the prefetcher a
chance to fetch extra segments and insert those into cache.

3.4 Validation of BCacheSim simulator and CacheLib testbed

In this section, we validate both the CacheLib testbed and our Python simulator (BCacheSim)
against the Meta production environment.

Fig 3.2 shows that testbed and simulator are faithful to production counters for disk utilization.
We compare production counters for one day (collected on a per-minute basis and aggregated
to 10-min intervals) to simulator and testbed results for a trace collected on the same day. One
observes that the lines for the testbed and the production counters are remarkably similar even
though the trace used for the testbed line is only 1% of 1/10000 (10−6) of the full traffic pattern
that is responsible for the Production Counters line (in green).

26

6AM 9AM
12PM 3PM 6PM 9PM

12AM 3AM

Time

0

5

10

15

20

25

30
Ba

ck
en

d
Lo

ad
 (

%
)

Region6

Sim (0.1%)
Testbed (1%)
Production Counters

Figure 3.2: Sim-Testbed-Production comparison, RejectX, 1 day

3.5 Miscellaneous experimental details
Sample rates used Testbed results (used to validate our simulator at a fixed flash write rate) used
1-5% samples (maximum sample rate is 5%, limited by the ratio of HDDs (2:36)). For each trace,
we used the smallest trace percentage that gave us consistent results with higher trace percentages.
For the newer traces, the lower value was used, while the higher value was required for the older
traces collected in 2019 which were smaller with less requests.

Simulator results used sampling rates from 0.1% to 5%. A higher sample percentage was used
for smaller workloads. We scale to a 400 GB-equivalent flash cache and our target flash write rate.

ML training setup I wrote a Python module that generates episodes and trains the ML models.
This plugs into BCacheSim. The episodes module takes in a trace and returns the ML models. I
then run simulation loops to converge on an assumed eviction age and admission policy threshold.
LightGBM [32] was used for training and inference, with 500 rounds of boosting and 63 leaves.

A train-test split is performed on the time dimension, i.e., the first day of each workload is
used as training data, with the remaining days used for testing.

Metrics The savings from using Baleen are dominated by the degree by which it reduces the
number of HDDs required to handle peak load. Therefore, our evaluation focuses on Peak DT

27

(see § 4.3). To aid comparison across traces, we normalize each policy’s Peak DT by the Peak DT
required with no cache.

Admission policy baselines We compared Baleen to 4 baselines: RejectX, CoinFlip, and two
state-of-the-art ML baselines, Flashield [21] and CacheLib [5]). We focus on RejectX as it is
publicly available and has been chosen over state-of-the-art ML models in industry. The CacheLib
ML policy addresses Flashield’s limitations (see §5.3.1) and uses non-episode-related features.

28

Chapter 4

Episodes & OPT: modeling flash caching
and exploring savings in Disk-head Time

This chapter describes elements of the principled approach we developed for ML in caching. We
wanted to be able to try and prototype different ideas quickly, and get an upper bound on their
possible benefits. Also important was to establish how far the gap to optimal was for different
scenarios and workloads in order to quantify the possible benefits of improving caching algorithms.

We identified Peak Disk-head Time of the backend hard disks as the key metric that should
be optimized in bulk storage systems and their caches, given a fixed target flash write rate. We
devised the episodes model to facilitate reasoning about flash caching, making it easier to describe
and think about caching policies. In a nutshell, using episodes decouples formerly dependent
decisions by summarizing the state of the cache in a single statistic: the assumed eviction age. Our
OPT policy (which approximates an optimal online admission policy) followed naturally from the
episodes model.

Using our analytical model allowed us to approximate cache performance, get upper bounds,
and see cache behavior at the extremes, but greater fidelity to production systems was necessary.
Thus, we developed BCacheSim, our online flash caching simulator, and validated those results
against a CacheLib academic testbed and CacheLib in production, as discussed earlier (§3).

4.1 Measure Disk-head Time, not hits or bandwidth

We quantify backing store load via disk-head time (DT), which is a metric that balances IOPS and
bandwidth.

Definition Disk-head Time (DT) is the cost of serving requests to the backend. For a single IO
that fetches 𝑛 bytes, with 𝑡𝑠𝑒𝑒𝑘 the time for one disk seek and 𝑡𝑟𝑒𝑎𝑑 the time to read one additional
byte:

𝐷𝑇 𝑖 = 𝑡𝑠𝑒𝑒𝑘 + 𝑛 · 𝑡𝑟𝑒𝑎𝑑 (4.1)

29

Definition Backend load (Utilization) of a time window is the total DT needed to serve misses,
normalized by provisioned DT (1 disk-sec per disk per sec): 𝑈𝑡𝑖𝑙𝐷𝑇 =

∑
𝑖 𝐷𝑇𝑖

𝐷𝑇𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑
, where∑︁

𝑖

𝐷𝑇 𝑖 = 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐼𝑂𝑠 · 𝑡𝑠𝑒𝑒𝑘 + 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 · 𝑡𝑟𝑒𝑎𝑑 (4.2)

DT accurately models throughput constraints of bulk storage systems. DT models both
the IOPS and bandwidth limitations of the backing HDDs. (This concept can be extended to
other systems with IO setup and transfer costs, such as CDNs.) In our caching setup, we fetch the
smallest range covering all cache misses, and normalize DT by HDDs per node to get backend
load.

In Fig 4.1, we validate DT that can be calculated using only two production counters, IO
misses and bytes fetched, against system-reported disk utilization on a Meta production cluster in
Feb 2023. The peaks line up within 1%, which was surprisingly accurate given the simplicity of
this formula (𝑡𝑠𝑒𝑒𝑘 and 𝑡𝑟𝑒𝑎𝑑 are constants) and the vagaries of production systems (included in the
system disk utilization measurements). Industry experts were initially surprised by this finding
given that this simple formula does not account for the variation in seek time between different
locations on the disk platter (and related optimizations like skewing and disk head scheduling),
queuing delays, file system fragmentation, and numerous other factors. On our academic testbed,
we recorded and measured the variability of Disk-head Time and found that while the time
consumed to perform individual disk I/Os did vary from the formula-predicted time (on average,
11%), this was not sufficient to perturb the trends sufficiently in production as shown in Fig 4.1.

DT correctly balances IO misses and byte misses. In practice, 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 ≈ 𝑀𝑖𝑠𝑠𝑒𝑠𝐵𝑦𝑡𝑒𝑠
(there is a very small difference due to non-consecutive misses). Hence,

∑
𝐷𝑇 can be interpreted

as a weighted sum of IO misses and byte misses, and reducing DT consumed reduces the familiar
caching metrics of IO miss rate and byte miss rate.

Conversely, optimizing only the IO miss rate or byte miss rate may result in mistakes made.
For example, IO hit rate cannot distinguish these two scenarios though one is better than the
other. Consider two blocks, both with 64 accesses. For the first block, each of the 64 segments is
requested, one at a time. For the second block, every access requests all 64 segments. While both
require the same cache space and save the same IOs, caching the second block saves more DT.

Definition Peak DT is the P100 backend utilization (𝑈𝑡𝑖𝑙𝐷𝑇), measured every 10 minutes. The
peak refers to the 10-min interval with the highest DT:

𝑃𝑒𝑎𝑘𝐷𝑇 = 𝑈𝑡𝑖𝑙𝑃100
𝐷𝑇 (4.3)

Peak DT is proportional to the number of backend servers required. System capacity, such
as the number of backend servers, is provisioned to handle peak load in systems that need to meet
real-time demand. Therefore, to reduce the backend size required, Peak DT should be minimized.
This introduces the need for scheduling (i.e., when to spend the flash write rate budget) to prioritize
the admission of items that contribute to the Peak DT. As explicitly optimizing admission for the

30

0 1 2 3 4 5 6
Days

0

20

40

60

Ba
ck

en
d

Lo
ad

 (
%

)
System-Reported Disk Utilization
UtilDT (using FetchesIOs & FetchesBytes counters)

Figure 4.1: DT validated in production. Our DT formula (plugging counters into Eq 4.2) matches
measured disk utilization (blue) closely, with the peaks lining up within 1%. This was surprisingly close.
The peak of 58% occurs on Day 0.

peak introduces significant complexity, we leave that for future work. For this paper, we design
our admission and prefetching policies to minimize average DT (and show that they are successful
in reducing Peak DT), and optimize for Peak DT in other aspects of the system. To improve
admission, we must first know what “better” looks like. We use Disk-head Time as an end-to-end
throughput metric to evaluate this. This section describes our decomposition of the flash caching
problem, and our attempt at approximating an optimal admission policy (OPT) and a framework
(episodes) to evaluate the cost-benefit trade-offs of not just admission policies, but orthogonal
improvements such as prefetching.

4.2 Episodes: an offline model for flash caching

Figure 4.2: An episode is a group of accesses during a block’s residency. Accesses (in blue) are
grouped into two episodes as the interarrival time (in red) exceeds the assumed eviction age.

31

Figure 4.3: Episodes span space (measured in segments) in addition to time. An episode’s size is
the smallest number of segments required to be admitted to get all possible hits within an episode.
OPT-Range (§ 4.4) is (1,3) and (2,3) respectively.

We devised an offline model for flash caching for efficient evaluation of flash caching improvements,
and to facilitate the training of ML-based policies. This model revolves around episodes, which
are defined as:

Definition An episode is a sequence of accesses that would be hits (apart from the first access)
if the corresponding item was admitted. It is defined on a block (the rationale being that a cache
hit only occurs if all segments are present in cache).

An episode may span multiple segments, and as shown in Fig 4.3, an episode’s size is the
number of segments needed to cache it. This leads naturally to a formulation for prefetching. (An
important distinction between episodes and block-level LRU analysis is that different episodes for
the same block can have different sizes.) An episode’s timespan is the length of time between the
first access of any segment and the last eviction of a segment.

We generate episodes to aid ML training by exploiting the model of an LRU cache as evicting
items at a constant logical time (eviction age) after the last access [7, 15, 24, 52]. In an LRU
cache, the eviction age is the logical time between an item’s last access & eviction. As shown in
Fig 4.2, we group accesses into episodes such that all inter-arrival times within episodes are no
larger than the assumed eviction age.

Episodes provide a direct mapping to the costs and benefits associated with an admission, and
which corresponds directly to the decisions being made by admission policies. These benefits and
costs are associated with an item’s entire lifespan in cache, and are not obvious from looking at
a stream of individual accesses. Moreover, with flash caching, it is optimal to admit as early as
possible in the episode, given that the flash writes required are a fixed cost. By shifting the mental
model from interdependent accesses to independent episodes, we can reason about decisions more
easily.

Decisions on episodes can be made independently by assuming a constant eviction age. This
also allows decisions to be made in parallel. The added pressure on cache space via an admission
is accounted for via downward pressure on the eviction age. We determine an appropriate eviction
age using simulations that measure the average eviction age. In reality, the eviction age is not
constant and varies with cache usage over time. One approach deals with this by calculating
policies for a wide range of possible eviction ages [96]. However, we find that in terms of
end-to-end performance, Baleen is not sensitive to the assumed eviction age (typically 2+ hours)
as long as it is not extremely low (e.g., seconds to minutes).

32

The episode model also allows for an efficient offline analytical analysis of policies via Little’s
Law. Given the arrival rate and assumed eviction age, we can estimate the cache size required,
and set the eviction age such that the analytical cache size is equal to the cache size constraint.
While this is much more efficient than an online simulation and is useful to explore a greater range
of parameters than is possible with online simulation, the numbers will differ from simulated ones
as the cache size constraint is not enforced all the time, only as a long-term average.

Admission policies can be viewed as partitioning these episodes into those admitted and
discarded. This can be done via scoring episodes and ranking them by score, and we elaborate on
this in the next section.

4.3 OPT approximates optimal online admission policy
Using episodes, we can devise an admission policy (AP) for online simulation that approximates
the optimal AP using offline information from the entire trace.

1. Each block’s accesses are grouped into episodes using an assumed eviction age.
2. All episodes are scored and sorted.
3. The maximum no. of episodes are admitted such that the total flash writes required do not

exceed the write rate budget.
During online simulation, accesses will be admitted if they belong to episodes marked as

admitted during the offline process. OPT scores each episode to maximize on the DT saved if
admitted and to minimize its size (flash writes required to admit):

𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐷𝑇𝑆𝑎𝑣𝑒𝑑 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)
𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) (4.4)

In the development of OPT, we also evaluated other scoring functions.

𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐻𝑖𝑡𝑠 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) (4.5)

𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐻𝑖𝑡𝑠 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)
𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) (4.6)

𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐻𝑖𝑡𝑠 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)
𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) ·𝑇𝑖𝑚𝑒𝑠𝑝𝑎𝑛(𝐸𝑝𝑖𝑠𝑜𝑑𝑒) (4.7)

𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐷𝑇𝑆𝑎𝑣𝑒𝑑 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)
𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) ·𝑇𝑖𝑚𝑒𝑠𝑝𝑎𝑛(𝐸𝑝𝑖𝑠𝑜𝑑𝑒) (4.8)

(4.9)

Eq 4.5 is straightforward and intuitive. Adding size-awareness to caching algorithms, as we
did by incorporating the episode size in Eq 4.6, was an important improvement which has also
been observed by others [8]. Hit density, as used in LHD [3], is in theory the best objective
function for a standard cache eviction policy, but we found that (as shown in Eq 4.7, and its DT
variant, Eq 4.8) to be suboptimal in our flash caching case. This lends credence to our belief that

33

for flash caching, the flash writes incurred are typically the limiting factor rather than the time
spent in cache, and thus it makes to prioritize flash writes and also to make admission decisions as
early as possible, since the cost is paid at time of admission.

4.3.1 Comparison to LRB’s Relaxed Belady

At first glance, the use of the assumed eviction age to generate episodes may resemble LRB’s
Belady boundary, but we explain how episodes are different and the advantages of using episodes
for flash caching.

For context, LRB [68] introduces Relaxed Bélády for eviction, which only considers objects for
eviction beyond a time it calls the Belady boundary. Like our OPT’s use of the assumed eviction
age, it prunes the decision space making it more efficient; our OPT is able to make stronger
assumptions (due to the flash admission context), and train ML at a higher granularity of disjoint
episodes, whereas LRB still operates at the finer granularity of accesses and is choosing which
object is more likely to be good (has higher Good Decision Ratio) whereas OPT can determine
which object is better to admit).

In addition, we evaluated weighing some terms more, e.g., 𝐻𝑖𝑡𝑠 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)
𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒)2 , but found that it only

decreased performance.

4.4 Extending OPT for prefetching

Episodes are also used to design our prefetchers and generate OPT labels for prefetching. By
default, on a miss, the smallest IO that covers all missed segments is made, i.e., no prefetching
occurs. It is possible to extend this IO and preemptively admit more segments. If done correctly,
this reduces the total no of IOs needed and thus reduces DT.

Prefetching the correct segments is important to achieve a reduction in DT given a write bound.
With imperfect admission policies, predicting a confidence value is necessary to balance the risk
of real prefetching costs against possible benefits. Otherwise, prefetched segments compete with
segments admitted from misses and drive up write rate while not reducing DT, meaning an overall
reduction in DT for the same write bound. Note that the costs and benefits of prefetching must be
evaluated against the opportunity cost of using writes for admission of missed blocks instead.

Deciding when to prefetch Fetching insufficient segments results in minimal or no DT reduction.
On the other hand, fetching excess segments results in a high write rate. To balance these trade-offs,
we need to know our confidence in our range prediction.

For instance, prefetching the entire block on every miss will result in an overall IOPS reduction
given write rate constraints. A blunt method to increase precision is to prefetch on every 2nd
miss or on every partial IOPS hit (when some but not all segments in an access return a hit).
This indicates that part of the block was admitted to cache. For OPT prefetching, we prefetch on
OPT-Ep-Start, the start of the episode as determined by the episode model.

34

Deciding what to prefetch: Whole-Block, OPT-Range The straightforward choice is to prefetch
the entire 8 MB block (Whole-Block). However, the resultant write rate is too high, making it
infeasible unless combined with prefetching on every partial IOPS hit. To evaluate how well we
could perform given offline information from the whole trace, we introduce OPT-Range, which
uses the generated episodes to determine an optimal range of segments to prefetch. OPT-Range is
the minimal range of segments that covers all accesses in an episode. For the episodes in Fig 4.3,
OPT-Range is (1,3) for Ep 1 and (2,3) for Ep 2. Whole-Block always fetches (1,64).

4.5 Efficiently exploring the space of possible improvements

Little’s Law [27, 43] states the expected number of jobs in the system (𝐸 [𝑁]) is equal to the
product of the arrival rate (𝜆) and the mean time that jobs spent in the system (𝐸 [𝑇]).

𝐸 [𝑁] = 𝜆 · 𝐸 [𝑇] (4.10)

We apply this to flash caching, as follows:

• 𝜆, the arrival rate is the flash write rate
• 𝑁 , the number of jobs in the system, is the number of cacheable items, i.e., the flash cache

size divided by the size of each item
• 𝑇 , the time that jobs spend in the system, is the sum of the eviction age (the time between an

item’s last hit and eviction) and the item’s useful time or timespan (the time between an
item’s admission/first access and the last access before being evicted)

This means that we have 3 constraints: the target flash write rate (which fixes 𝜆), the cache size
(which determines 𝑁) and the assumed eviction age (which determines 𝑇). In truth, there are only
two free parameters here as setting two will lead to only one valid value for the last parameter.

When we run the analytical model, we fix the flash write rate and cache size and converge on
the eviction age through a loop that terminates when the expected cache size is equal (or very
close) to the target cache size.

We can think of cache policies as a pareto frontier on a Disk-head Time saved rate against cache
size (or flash write rate) graph. Better policies move the frontier outwards. On these graphs, we
can plot Max-WriteRate (if everything is admitted) or Max-CacheSize (if eviction age is infinite)
respectively, which establishes an upper bound on how much savings could be gained from the
optimal policy.

35

Figure 4.4: Analytical bound models (an early iteration).

This analytical model also allows us to easily determine, say, the flash write rate needed to
admit all items, or the maximum cache size for a certain flash write rate, flash in a far faster and
elegant fashion than running multiple simulations in a loop.

4.6 From analytical model to simulation
Converging on Eviction Age, Policy Threshold Parameters We repeatedly run the offline
episode model and online simulation in a loop to converge on values for assumed eviction age
(EA) and admission policy threshold. Recall that episodes are generated with an assumed EA.
These episodes are used to train models, which are used in an online simulation where the average
EA can be measured. We initialize assumed EA to an arbitrary value of 2 hours and repeat episode
generation, model training, and online simulation until the assumed EA converges on the average
EA from an online simulation. Within each loop iteration, there is another nested loop to find
the correct admission policy threshold that results in the simulation achieving the target flash
write rate. This inner loop aims to offset the small differences between offline analysis and a
higher-fidelity online simulation.

4.7 Summary
In this chapter, we set up the metric (Peak Disk-head Time) that we will use to measure policies, in
addition to introducing the episodes model which we use in the design of Baleen. In addition, we
established the veracity of our metric and other design assumptions (in particular, the Disk-head
Time formula and episodes using an assumed eviction age) through comparisons with production
counters.

In the next chapter, we describe how Baleen builds on these foundations to train ML admission
and ML prefetching policies.

36

Chapter 5

Baleen: Training ML policies for flash
caching

We describe how Baleen provides episode-based solutions to two problems: how to train an
ML-based admission policy, and using prefetching to improve beyond admission policies.

5.1 ML for flash admission
All caches, including flash caches, need to weigh the value of an item being inserted against the
value of evicted and future items. However, flash caches are at a disadvantage relative to RAM
cache, because:

• DRAM caches do not need admission policies as they can defer decisions to the eviction
policy, which has the advantage of knowing the item’s usage while in cache.

• Flash caches incur write costs at insertion time, forcing admission policies to decide a priori
to optimize the limited write budget. A longer residency better amortizes this upfront write
cost. In contrast, the space-time cost of an item is incurred at a steady rate over time in
DRAM caches.

We describe 4 challenges for ML admission:

Correct optimization metric is not obvious. The right metric is important not only because
optimizing it gives better performance, but because it makes the system more robust. Systems
practitioners know the importance of using end-to-end metrics such as IO hit rate, rather than
cache hit rate (problem: an IO hit can require multiple cache hits) or ML model accuracy (problem:
asymmetrical misprediction cost and class imbalance). Yet even optimizing for IO hit rate is still
an (easy) misstep, as a policy that increases the IO hit rate but consumes much more bandwidth
may result in overall higher DT, and require more HDDs to serve that load.

The cost of a misprediction is asymmetrical. Mispredictions consist of false positives (FPs)
and false negatives (FNs). A FP incurs a full write cost (reducing writes left for true positives),
and time in cache. FPs have a large performance impact since given the limit on flash writes. With

37

an FN, a hit is lost but the policy may have further chances to admit the item. These lost hits are
insignificant for popular items, but have an outsized impact on items with only a few potential hits.
There is a long but heavy tail of such items; our traces show many admitted items with 5–8 hits
(Fig 5.1). Policies trading off too many FNs for FPs suffer a performance hit [96].

100 101 102

No of accesses per episode

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Region1
Region2
Region3
Region4
Region5
Region6
Region7

Figure 5.1: Distribution of hits per episode. This reflects the possible hits accrued from
admitting an item. The majority of episodes have only 1–2 hits, with many admitted episodes
having only 5–8 hits.

Classes are highly imbalanced. Since most items will not be admitted (94% in our experiments),
true negatives (accesses that should not be admitted) far exceeds the number of true positives
(accesses that should be admitted). Indeed, we observe that while ML admission policies may
achieve a high ML accuracy, this does not always translate into a high cache hit rate. We found
typical solutions (oversampling, undersampling, and sample weights) ineffective at countering the
extreme imbalance.

Admission policies operate only on misses. For an ML policy, it makes sense to train only on
accesses in a trace that result in misses, rather than all accesses in the trace. However, this requires
an online simulation to determine which accesses are misses, adding additional complexity to
training.

38

5.1.1 Design and implementation

Training
Trace

Episodes model

used to train
Admission Policy

Prefetcher

Flash Cache
(e.g., CacheLib)

Bulk Storage

Deployment

Admission Policy

Prefetcher IOIO

Figure 5.2: Architecture. An admission policy in CacheLib decides whether to admit items into
flash. Prefetching (preloading of data beyond current request) takes place in Tectonic.

Episodes generated from the trace are used to train an admission policy, as shown in Fig 5.2. The
policy is a binary classification model. We describe:

1. how we generate training data and labels from episodes,
2. what features and architecture we use for the ML admission model,
3. how we determine appropriate values for training parameters (assumed eviction age,

admission policy threshold) through an iterative loop, and
4. how we implement ML admission in CacheLib.

Features Baleen’s admission policy utilizes a total of 9 features, grouped into offline metadata
and online usage counts.

Metadata features are provided by the bulk storage system and supplied in the trace. These
metadata features identify the provenance of the request (namespace, user) and indicate whether
the block is tagged as temporary (e.g., as a result of a JOIN) or permanent. Feature cardinality is
less than 100 for namespaces and less than 200 for users. Both features are associated with the
system user (internal service) executing the request rather than an end user. These features are
often the same for accesses to the same object and almost always the same for accesses belonging
to the same episode. These features are provided per IO and thus the same for all segments.

Online dynamic features (times the item is accessed in the last 1,2, . . . 6 hours) change with
every access. This can be measured at the block or segment level. For Baleen, we record both
the number of IOs for each block and the cumulative segment accesses for each block to use as
features. For each workload, a simple simulation is done on the training set (the first day) to

39

collect these dynamic features. We do not use individual segment counts as features, as this would
add 64 features without an appreciable increase in performance.

Modeling admission as binary classification We admit misses if the classifier’s output
probability exceeds the policy threshold. We also considered regression models (e.g., predicting
no. of expected hits). Such models eliminate the threshold parameter, but we found they
perform worse end-to-end [21], perhaps because their loss functions incentivize performance at
all thresholds and not just those at the boundary.

Training data and label generation The goal is to differentiate episodes at the decision
boundary, which tend to have few accesses. Learning to identify these episodes is hard but
important as they are significant in aggregate. To avoid a training bias towards popular but
easy-to-differentiate episodes, only the first 6 accesses from each episode are incorporated into
training data. Baleen learns to imitate OPT, and the binary labels are determined by whether that
episode, based on its score, would have been admitted under OPT.

Gradient boosting machines (GBM) We chose to use GBMs as they are fast and have some
inherent tolerance to overfitting and imbalanced classes. Compared to deep neural networks, they
are far more efficient and are well-proven to run within the latency requirements of a production
caching system [5]. Practitioners also find them easier to understand, given that they are based on
widely-understood decision trees.

Adding a ML admission policy to CacheLib The open-source version of CacheLib supports
flash admission policies, but does not include a mechanism for storing and supplying features
to ML admission policies. We describe how this may be done. For the static metadata features,
they can be embedded as part of the item payload. Since payloads are a few MB on average,
storing the features (less than 1 kB) in this way does not impose any significant overhead. To
provide the dynamic features, counts of accesses are tracked in CacheLib using a count-min-sketch
data structure (similar to bloom filters, but with counts). Each data-structure holds the count for
approximately one hour, with a queue of 6, such that we have counts at hour-level granularity for
the last 6 hours.

5.2 ML for prefetching

On a miss, a backend IO must be made to retrieve all missed segments. This IO can be extended and
more segments admitted. Done correctly, compulsory misses (when a segment is first observed)
are eliminated, reducing disk-head time. However, prefetching mistakes are costly as they consume
both writes and extra DT.

Next, we describe the design of our ML prefetching policies. We train models to solve two
subproblems: what to prefetch, and when to prefetch.

40

5.2.1 Learning what to prefetch: ML-Range

We need a ML model that predicts a range of segments for prefetching. We do this by training
the model to imitate OPT-Range, the smallest range of segments needed for all accesses in an
episode to be hits (defined in §4.4). We use the same metadata features as the ML admission
model (namespace, user, temporary/permanent flag), but add size-related features (access start
index, access end index, access size). We train two regression models to predict the episode range
start and end. Each episode is represented once in the training data, with only episodes that meet
the score cutoff for the target write rate included. As training data, we use the episodes that would
be admitted according to the analytical model for the target write rate.

5.2.2 Learning when to prefetch: ML-When

Mispredictions by the ML admission policy and in ML-Range can easily cause prefetching to hurt
instead of help. In reality, the expected benefit will be lower than OPT prefetching and the cost
can only be higher. DT saved from prefetching ML-Range may not be realized (which we call
underfetch, see Eq 5.1a). Further, prefetching mispredictions are costly in terms of DT consumed
to fetch unused segments (which we call overfetch, see Eq 5.1b) and the opportunity cost of flash
writes used to store them.

ML-When aims to address this by excluding episodes that do not have a high probability of
benefiting from prefetching. In particular, it hedges against the broader effect of prefetching
on eviction age by requiring that the marginal DT gained from ML prefetching (𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿

𝑒𝑝𝑠 ,
Eq 5.1c) be larger than 𝜖 (ML-When label, Eq 5.1e). 𝜖 is a proxy for the unknown broader
opportunity costs of flash writes and cache space, and set to 5 ms (for comparison, an IO seek is
12 ms).

𝑈𝐹 : 𝑢𝑛𝑑𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒 if ML-Range ⊂ OPT-Range (5.1a)
𝑂𝐹 : 𝑜𝑣𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝐷𝑇𝑈𝑠𝑒𝑑 (extra segments) (5.1b)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇
𝑒𝑝𝑠 = 𝐷𝑇

𝑁𝑜𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ
𝑒𝑝𝑠 − 𝐷𝑇𝑂𝑃𝑇−𝑅𝑎𝑛𝑔𝑒

𝑒𝑝𝑠 (5.1c)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿
𝑒𝑝𝑠 =

{
0 if underfetch
𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇

𝑒𝑝𝑠 −𝑂𝐹 otherwise
(5.1d)

ML-When(𝑒𝑝𝑠) = 𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡
𝑀𝐿−𝑅𝑎𝑛𝑔𝑒
𝑒𝑝𝑠 > 𝜖 (5.1e)

For general, non-ML-specific details of prefetching in CacheLib, please see §3.3.

5.3 Evaluation

This section evaluates and explains Baleen’s effectiveness in reducing backend peak load for 7
real workload traces.

41

5.3.1 Baleen reduces Peak DT over baselines

Region1
Region2

Region3
Region4

Region5
Region6

Region7

Trace

0

10

20

30

40

50

60

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

 o
f n

o
ca

ch
e)

CoinFlip
RejectX
CacheLib-ML
Baleen (No Prefetch)
Baleen

Figure 5.3: Baleen reduces Peak DT.

Fig 1.1b shows Baleen reduces Peak DT over RejectX by an average of 12% across all traces for a
fixed target flash write rate. Fig 5.3 shows this ranges from 5% to 29% across the traces. Region1,
Region3 and Region4 derive most of their gains from prefetching.

Flashield is not shown in the graphs as it failed on half the trace samples due to insufficient
training data (more details in § 5.4.2). If we consider only workloads Flashield could train a model
on, Baleen outperformed Flashield by 18%.

42

Region1
Region2

Region3
Region4

Region5
Region6

Region7

Trace

0

20

40

60

80

M
ed

ia
n

Ba
ck

en
d

Lo
ad

(%
 o

f n
o

ca
ch

e)
CoinFlip
RejectX
CacheLib-ML
Baleen (No Prefetch)
Baleen

Figure 5.4: Median DT

In Fig 5.4, we show that Baleen also reduces Median DT over RejectX by X% acrsos all traces
for a fixed target flash write rate. In our experience, we find that doing better at the peak usually
means that the median also improves and generally does not result in a regression at the median.
However, the converse is not true, which we will talk about in §5.4.

Reducing the peak Fig 5.5 shows the load over the 7-day Region1 trace in a testbed experiment
for Baleen and baselines. We can observe that there is a large reduction in the peak on Day 5 when
using Baleen.

1 2 3 4 5 6 7 8
Peak for Day

0

10

20

30

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

)

CoinFlip
RejectX

Baleen (No Prefetch)
Baleen

Figure 5.5: Testbed backend load on Region1. Day 1 (shaded) is used as training data. Peak is
on Day 5 and is lowest for Baleen.

43

Training on episodes (instead of accesses) is essential to ML prefetching Episodes make it
easier to reason about flash caching and was key to designing both OPT and ML prefetching. We
also found that in the absence of episodes, others in the literature devised ad-hoc sampling heuristics
that would achieve the same goal of avoiding ML training bias towards popular objects [68]. In
addition, we quantify the benefit of episodes by comparing Baleen to an earlier ML admission
policy that did not use episodes (CacheLib-ML). Adding prefetching to RejectX or CacheLib-ML
would cause it to perform worse than without prefetching.

Benefits consistent at higher write rates and larger cache sizes Fig 5.7 shows that Baleen
allows for a reduction in cache size by 55% while keeping the same Peak DT as RejectX, or
alternatively a reduction in Peak DT equivalent to a 4X increase in cache size. As expected,
increasing write rate or cache size has diminishing returns in reducing Peak DT. Also, the different
admission policies (without prefetching) start to converge, indicating that admission by itself is
insufficient to drive further reductions in Peak DT.

0

40

80
Region1

0

10

20

Region2

0

5

10
Region3

Policy
CoinFlip
RejectX
Baleen (No Prefetch)
Baleen

0 40 80
0

25

50

Region4

0 40 80
0

20

40
Region5

0 40 80
0

20

40
Region6

0 40 80
0

20

40
Region7

Write Rate (MB/s)

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

)

Figure 5.6: Benefits consistent as write rate increases.

44

0

50

100
Region1

0

40

80
Region2

0

4

8

Region3
Policy

CoinFlip
RejectX
Baleen (No Prefetch)
Baleen
400GB

0 1 2
0

25

50

Region4

0 1 2
0

25

50

Region5

0 1 2
0

20

40

Region6

0 1 2
0

20

40

Region7

Cache Size (TB)

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

)

Figure 5.7: Benefits consistent as cache size increases.

5.3.2 Prefetch selectively, in tandem with admission

0

10

20

30

40

50
Peak

0

10

20

30

40

50

60

70

Median

Ba
ck

en
d

Lo
ad

 (
%

 o
f n

o
ca

ch
e)

Baleen No prefetching
Baleen All on Partial Hit
Baleen ML-Range on Partial Hit
OPT AP OPT-Range on OPT-Ep-Start

Figure 5.8: ML-Range saves Peak DT. ML-
Range outperforms the baseline (whole block)
and No Prefetching at the expense of Median
DT.

0

10

20

30

40

50
Peak

0

10

20

30

40

50

60

70

80
Median

Ba
ck

en
d

Lo
ad

 (
%

 o
f n

o
ca

ch
e)

Baleen No prefetching
Baleen ML-Range on Every Miss
Baleen ML-Range on ML-When
Baleen ML-Range on Partial Hit

Figure 5.9: Choose when to prefetch. Indis-
criminate prefetching (on Every Miss) can hurt.
Using ML-When or Partial Hit reduces Peak
DT without compromising Median DT.

]

We show both ML-Range and ML-When are effective in reducing Peak DT over static baselines,
and contribute to Baleen’s robustness across the multiple traces. We also show that prefetching
must be paired with a good admission policy; if not, the same prefetching policy can hurt rather
than help.

We defined the static prefetching baselines (such as fetching the Whole-Object always, or
on Partial Hit) in §4.4, in addition to an approximate optimal for prefetching (OPT-Range and
OPT-Ep-Start).

45

ML-Range outperforms no prefetching and fixed range prefetching. Using ML to decide
what to prefetch (ML-Range) saves 16% of Peak DT over no prefetching, and 4% over a simple
baseline (All on Partial Hit) (Fig 5.8). Baleen admission is used in all cases, with only the
prefetching policy varied. We note this comes with a small increase in Median DT. When we use
Baleen admission with OPT prefetching (not shown in Fig 5.8 for brevity), it betters it (possible as
OPT-Range does not account for mistakes by Baleen’s ML admission policy), suggesting that the
admission policy is the limiting factor rather than ML-Range.

ML-When helps Baleen discriminate between beneficial and bad prefetching. ML-When
expresses Baleen’s confidence in the quality of its ML-Range prediction. A general challenge with
prefetching is that one is predicting without a direct signal (such as a miss in the case of admission).
If used indiscriminately, prefetching can hurt rather than help. This is best illustrated by how
prefetching ML-Range on Every Miss is worse than no prefetching in Fig 5.9. Prefetching only on
ML-When or on Partial-Hit consistently does better than both no prefetching and prefetching on
every miss across all traces.ML-When performs better on 2 traces (Region2, Region7) and Partial
Hit on the remaining 5.

Poor admission decisions lead to poor prefetching ML prefetching reduces Peak DT most
when paired with a good admission policy like Baleen. With RejectX, prefetching is less helpful
or even hurts (in Region7). Thus, the Baleen admission policy is important to the performance
of prefetching despite not always reducing Peak DT by itself. Adding prefetching to CoinFlip
yielded results similar to RejectX.

5.4 Importance of optimizing the right metric: Disk-head Time

0

10

20

30

40

50

60

70

80

M
ed

ia
n

Ba
ck

en
d

Lo
ad

(%
 o

f n
o

ca
ch

e)

Baleen No prefetching
Baleen ML-Range on Every Miss
Baleen ML-Range on ML-When
Baleen ML-Range on Partial Hit

Figure 5.10: Importance of optimizing Disk-head Time instead of hit ratio. Using the
“ML-Range on Every Miss" prefetching option resulted in an improvement in IO hit rate at the
expense of Disk-head Time.

Optimizing for IO hit ratio can be misleading as doing so is optimal for reducing seeks, not
total disk-head time. Policies that do so may reduce IOs at the expense of increased bandwidth,

46

which can be a net loss in bandwidth constrained systems. For the prefetching option "ML-Range
on Every Miss" from Fig 5.10, relative to no prefetching, the mean Disk-head Time used ratio
worsened from 67% to 73% despite the IO hit ratio increasing from 46% to 47%.

5.4.1 Reductions in IO miss rate, bandwidth miss rate

We show that Baleen, in reducing Peak Disk-head Time (and TCO; more to come in §6), also
improves the commonly used metrics of IO miss rate and byte miss rate. For ease of comparison,
we also show median load, TCO and peak load.

We can infer from Fig 5.11a and Fig 5.11b that Baleen’s prefetching improves IO miss rate
at the expense of byte miss rate (the difference between the light green and blue bars), with an
overall reduction in peak load and thus TCO.

47

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

IO
 m

is
s

ra
te

 (
%

)

(a) IO miss rate

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

By
te

 m
is

s
ra

te
 (

%
)

(b) Byte miss rate

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

80

100

Es
ti

m
at

ed
 T

CO
(%

 o
f R

ej
ec

tX
)

(c) Estimated TCO

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

10

20

30

40

50

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

 o
f n

o
ca

ch
e)

(d) Peak load

Co
in

Fl
ip

Re
je

ct
X

Ca
ch

eL
ib

-M
L

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
Ba

le
en

-T
CO

0

20

40

60

M
ed

ia
n

Ba
ck

en
d

Lo
ad

(%
 o

f n
o

ca
ch

e)

(e) Median load

Figure 5.11: Baleen also reduces IO miss rate and byte miss rate, two commonly used caching
metrics.

5.4.2 Comparison to ML baselines: Flashield and CacheLib-ML
Flashield We compared Baleen to Flashield, a state-of-the-art ML baseline. We adapted the
implementation of Flashield used in the S3-FIFO paper in SOSP 2023 [94]. Flashield was worse
than our RejectX baseline.

In practice, we found that a disadvantage of this approach is that DRAM lifetimes are too short
to yield useful features. (Flashield assumes a 1:7 DRAM:Flash ratio, whereas Tectonic has a 1:40
ratio.)

Flashield failed on half the trace samples due to insufficient training data, because it relies on

48

items’ hits in DRAM for its features and labels. With DRAM lifetimes of seconds-to-minutes,
most items never receive DRAM hits. Considering only workloads favorable to Flashield (that it
could train a model on), Baleen outperformed Flashield by 18%.

Comparison to CacheLib-ML CacheLib-ML is a ML model that Meta used in production for
3 years, which was first described by Berg et al [5]. Baleen uses the same ML architecture (GBT)
and serving (inference) setup, but a different training setup (episodes and optimizing DT instead
of hit rate). Based on this, we assert that Baleen’s architecture is feasible for production with
acceptable inference overhead. Meta’s implementation is proprietary but general lessons learnt
from it were described in §9.7.

5.4.3 Overhead

Baleen’s runtime overheads are low in the context of caching for bulk storage systems.

CPU inference overhead Baleen adds 4 inferences per IO miss (admission, start & end of
ML-Range, ML-When). The system is limited by the latency of disk IOs upon misses (10–70ms
per IO) rather than ML inferences (30 microseconds per inference). Even when replaying a trace
at full speed, CacheLib only contributes a small fraction of overall system CPU utilization (5% of
the 16-core CPUs in our testbed) because it is waiting for disk IO, and thus using ML policies
only translate to an additional 1% increase in overall CPU usage.

Metadata overhead Baleen also stores static metadata features in the payload (<1kB), but as
payloads are at least 128KB, this overhead is not significant (<1%).

Training overhead Baleen uses gradient boosting machines and is able to get good results even
with highly sampled training data. Training is done on the CPU and takes under a minute, with
training duration never coming close to being a limiting factor.

5.4.4 Validation of Baleen on testbed

As we did not have direct access to production hardware, we ran simulations (on our Python
simulator, BCacheSim) and testbed evaluations (using our modified version of CacheLib) on our
academic testbed. We described this testbed and validated it against production using baseline
policies and production counters earlier in §3.4.

Fig 5.12 shows us validating Baleen on our simulator against Baleen on our testbed.

49

Mon Tue
Wed Thu Fri Sat

Sun

Time

0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)
Region6

Sim (0.1%)
Testbed (1%)

Figure 5.12: Sim vs Testbed, Baleen

50

0 1 2 3 4 5 6 7
Trace Time (Days)

0

5

10

15

20

25

30

35
Ba

ck
en

d
Lo

ad
 (

%
)

Region1CoinFlip
RejectX
Baleen (No Prefetch)
Baleen
Training Data

Figure 5.13: Testbed backend load over time, on the Region1 trace. Peak-to-mean ratio is 2.
Granularity is 10 mins.

In Fig 5.13, we show Baleen and the other baselines on Region1 evaluated on our testbed, with
each point on the graph representing the backend load over a 10-minute window.

5.5 Summary
Baleen uses episode-guided ML to guide both prefetching and cache admission, reducing peak
disk time by 16% and TCO by 17% on real workload traces, compared to state-of-the-art ML
policies. Although applying ML to caching policies is an expected advancement, Baleen’s design
arose from false-step lessons and a cache residency formulation (episodes) that improves training
effectiveness, provides a target (OPT), and exposes the value of ML-guided prefetching. As such,
Baleen is an important step forward in flash caching for disk storage.

51

52

Chapter 6

Baleen-TCO: choosing the best parameters
to minimize cost

In this chapter, we describe the TCO function we devised and Baleen-TCO, an extension of Baleen
which minimizes our TCO function.

A TCO function allows us to quantify the cost impact of changes in caching policies, which is
important for multiple reasons:

1. Evaluating the development cost of caching improvements Designing new caching
policies requires the investment of valuable software engineering man-hours.

2. Comparing caching improvements against other non-caching opportunities Being able
to consider the opportunity cost of investing in caching is important. For instance, improving
another part of a storage pipeline may not be directly measurable in cache metrics and thus
difficult to compare without a TCO function. Moreover, even within the realm of caching,
not everyone is mentally calibrated and can quickly translate the impact of, say, a 20%
reduction in Peak Disk-head Time, into a ballpark cost reduction figure.

3. Picking a point on the cache’s pareto frontier Each policy represents a set of possible
points. It is desirable to automatically determine the optimal flash write rate, and additionally
capture benefit from being able to vary it by workload instead of using a single static flash
write rate target.

However, there are difficulties that come with using the true TCO (total cost of operation) as a
metric:

1. It may reveal commercial secrets. Exact costs (e.g., of procuring new equipment or power
prices) are often under non-disclosure clauses in contracts. It could also be used to infer the
volume of a business and thus reveal material financial information. It may also introduce
legal risk by providing ammunition for opponents in lawsuits.

2. It is not a ‘pure’ reflection of system performance. Costs can change over time for
reasons unrelated to system performance, making TCO numbers challenging to compare and
interpret over time (whereas the meaning of a 60% hit-rate, for instance, does not change).

3. Devising a model for TCO can itself be costly. Coming up with an all-encompassing cost
model for a system is itself a research endeavor and can require significant effort to collate

53

and keep up-to-date. Yet some sort of model is required for an algorithm to optimize it.
We strike a balance between these trade-offs in designing our TCO formula, which allows us

to measure (and thus optimize) the percentage of cost reduction, without needing to work with (or
reveal) exact dollar costs. We focus on media costs (cost of SSDs and HDDs), which are known to
dominate the true TCO function [96, 97]. Moreover, for a fixed hardware generation where we can
only vary the amount of storage capacity by varying the number of servers, we assert that many of
the variable non-media costs (e.g., power, CPU, networking) will also grow proportionately to the
media costs.

6.1 Background: TCO dominated by backend HDDs required
Related work on caching’s impact on TCO in bulk storage systems CacheSack [97] uses a
TCO function (described only as the cost of disk reads and the cost of written flash bytes) and
finds the optimal policy per category (a feature) that minimizes TCO. They reported a 7.7% TCO
reduction, with a 9.5% reduction in disk reads and a 17.8% reduction in flash writes. Note this is
not directly comparable to our results since we are using different workloads.

Designing a TCO function In the absence of actual cost numbers, we approximate TCO (total
cost of ownership) based on public information. We design a function that is focused on the same
cost components as [97] (SSD writes and HDD reads).

Weassuming that the cost of HDD reads is proportional to the HDDs required (and Peak DT),
and the cost of written flash bytes is proportional to the SSDs purchased in the long run:

𝑇𝐶𝑂 ∝ 𝐶𝑜𝑠𝑡𝐻𝐷𝐷 · #𝐻𝐷𝐷𝑠 +𝐶𝑜𝑠𝑡𝑆𝑆𝐷 · #𝑆𝑆𝐷𝑠 (6.1)

We calculate relative TCO savings using the Peak DT saved with our baseline AP RejectX
(𝑃𝑒𝑎𝑘𝐷𝑇0), and relative to the default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0).

TCO1 ∝
PeakDT1

𝑃𝑒𝑎𝑘𝐷𝑇 0
· #𝐻𝐷𝐷𝑠0 +

𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷

· FlashWR1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· #𝑆𝑆𝐷𝑠0 (6.2)

This gives us a TCO function based on a policy’s Peak DT (𝑃𝑒𝑎𝑘𝐷𝑇1) and the flash write rate
chosen (𝐹𝑙𝑎𝑠ℎ𝑊𝑅1).

The skewed ratio of HDD to SSD capacity in bulk storage systems like Tectonic (945:1 [58])
means that SSD cost is a fraction of TCO relative to HDD cost (3% on our workloads), even though
SSDs are more expensive on a per-GB basis. Hence, reducing Peak DT (and HDDs needed) is key
to reducing TCO.

Comparison with CacheSack Like CacheSack, our function focuses on the two major elements
of SSD writes and HDD reads. However, we have a number of differences: 1) We provide a
detailed derivation of the function. 2) They assume that that other costs (CPU, RAM, power,
network) are negligible; we assert that they are not (and have confirmed this with industry experts).
However, we assert that for a given hardware generation, we make scaling changes by changing
the number of servers and not how much storage is inside each server, and we assert thus most of

54

these costs (CPU, RAM, power, network) will scale proportionally with the the media costs and
thus can be dropped to simplify the TCO function. 3) We focus on the cost of Disk-head Time at
the peak, instead of the mean number of disk reads (or equivalently, hit ratio).

6.2 Deriving a TCO function based on public data

We provide a line-by-line derivation of Eq 6.2 below.

TCO1 ∝
PeakDT1

𝑃𝑒𝑎𝑘𝐷𝑇 0
· #𝐻𝐷𝐷𝑠0 +

𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷

· FlashWR1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· #𝑆𝑆𝐷𝑠0 (6.3a)

𝑇𝐶𝑂1 ∝ 𝑃𝑒𝑎𝑘𝐷𝑇 1 · 𝑅1 + 𝐹𝑙𝑎𝑠ℎ𝑊𝑅1 · 𝑅2 (6.3b)

𝑅1 =
1

𝑃𝑒𝑎𝑘𝐷𝑇 0
(6.3c)

𝑅2 =
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· #𝑆𝑆𝐷𝑠0

#𝐻𝐷𝐷𝑠0
· 𝐶𝑜𝑠𝑡𝑆𝑆𝐷
𝐶𝑜𝑠𝑡𝐻𝐷𝐷

(6.3d)

=
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· 1

36
· 170

281
(6.3e)

We calculate relative TCO savings using the Peak DT saved with our baseline admission policy
RejectX (𝑃𝑒𝑎𝑘𝐷𝑇0), and relative to the default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0). From [58], we
know that each node has 1x 1-TB SSD and 36x 10-TB HDDs (#𝐻𝐷𝐷𝑠0

#𝑆𝑆𝐷𝑠0
= 36).

The price of storage procured by hyperscalars is commercially sensitive and would be lower
than prices available to the public. However, we assume that the percentage savings the hyperscalars
can extract in their contract negotiations is similar for both SSDs and HDDs, and thus would
cancel out in our formula since we use only the ratio. This allows us to use public prices of SSD
and HDD storage, which we take from Newegg. We substitute the 2023 price of a 10TB HDD
($281) and a 1 TB SSD ($170) on Newegg [56, 57] (𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷
= 170

281), i.e., the HDD is 6x cheaper
per TB than the SSD. As a point of comparison, a 2020 industry report stated a 10x difference [54],
which is in the same order of magnitude as the 6x used in our calculations.

6.3 Baleen-TCO

Vanilla Baleen allows us to determine the Peak Disk-head Time savings from a cache policy at
a fixed flash write rate and cache size. Baleen-TCO optimizes our TCO function by simulating
Baleen over a range of flash write rates (as illustrated in Fig 6.1) to get the respective Peak DT.
Baleen-TCO then chooses the optimal flash write rate to minimize the TCO function. This is done
on a per-workload basis, since the optimal flash write rate can vary between workloads. We also
considered allowing it to vary over time, but this did not seem necessary, at least in the 7-day
workloads we evaluated Baleen-TCO on, and was also more realistic given the relative inelasticity
(from a planner’s point of view) of capacities in the bulk storage systems we know.

55

8 10 12 14 16 18 20
Target DWPD

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

) Region1
Region2
Region3

Region4
Region5

Region6
Region7

Figure 6.1: Baleen-TCO reduces TCO by choosing a higher flash write rate when justified to
lower peak backend load. × denotes the optimal flash write rate for that workload.

Baleen-TCO can be easily adapted for other companies or deployments (or even used to predict
what may change with changes in media cost ratios caused by advancements in technology), since
it allows for a different flash-to-HDD cost ratio to be substituted in.

6.4 Evaluation: Baleen-TCO chooses optimal flash write rate
Workloads have different optimal flash write rates. In Fig 6.1, we observe that some workloads,
like Region4, benefit from an increased flash write rate budget, whereas others do not, in which
case one should reduce costs from flash. These higher optimal flash write rates were significantly
higher than the static flash write rate budget previously set by Meta, thus unlocking even more
savings from Baleen. One should also note that there is no single flash write rate that is optimal
for all workloads, justifying the additional complexity from this adaptive strategy.

Baleen-TCO saves additional 4% of TCO over vanilla Baleen. Fig 6.2 shows Baleen-TCO
reducing TCO by 17% over CacheLib-ML and 18% over RejectX. If a constant flash write rate
target is used, Baleen is able to reduce TCO by 14% over RejectX. Thus, Baleen-TCO saves an
additional 4% over Baleen with a fixed write rate. We note that there is an improvement in all
regions except Region1 and Region3, and there are no regressions in TCO.

Flash writes account for 2% to 5% of TCO (3% on average). While 5% may seem small, it is
still significant as it means that adopting an inferior flash admission policy can rapidly increase
costs (say, if the bad policy requires double the flash write rate, that means TCO could jump by
5%).

56

Region1
Region2

Region3
Region4

Region5
Region6

Region7
Average

0

20

40

60

80

100

120

TC
O

 (
%

 o
f R

ej
ec

tX
)

CoinFlip
RejectX
CacheLib-ML
Baleen (No Prefetch)
Baleen
Baleen-TCO

Figure 6.2: Baleen-TCO reduces TCO across all traces. On average, Baleen-TCO saves an
additional 17% over CacheLib-ML, 14% over RejectX, and 4% over Baleen with a fixed flash
write rate.

57

58

Chapter 7

Optimizing for peak load

Ideally, backend capacity should be provisioned to handle peak load in order to fulfill assurances
and SLOs (service-level objectives) to customers during periods of high load. In practice, existing
caching systems optimize for average load, rather than peak load. In this chapter, we show why it is
important to optimize for peak and not not average load (as we did initially), our early attempts to
optimize indirectly for peak load, and our subsequent attempts to optimize for the peak explicitly.

7.1 Background
Caches are crucial to reducing peak backend load in modern clouds [62, 69]. Although this
is widely accepted, most large-scale caching works evaluate average performance instead of at
peak load (Table 2.6), with only one work other than Baleen doing so [69], with none explicitly
optimizing for the peak. This presents missed opportunities, as 1) it may be possible to decrease
the peak further if explicitly optimizing for it, and 2) further resource savings are possible at
off-peak, e.g., by admitting less during off-peak periods to save on flash writes. Previous works on
caching at the block I/O level have reduced peak load by offloading IOs to underutilized hosts [55]
decomposing and rescheduling data flows [46], traffic shaping [81], or resizing cache according
to load [109]. These solutions are not suitable for the modern data center cache as they either
require modifications to the storage system itself (some of which is already in place, such as traffic
shaping [58]), or assume the problem can be pushed further down the stack to cloud providers.
Bulk storage systems consolidate storage needs of many subsystems; while this may smooth out
some peaks in demand, the presence of co-mingled workloads also make optimizing the peak a
more challenging task and less easy to optimize by hand, given that a policy that is optimal for
one cluster may not be optimal for the next [97].

7.2 Indirect optimization for peak load
This section details early attempts at optimizing for Peak DT. In these cases, parameters are chosen
to maximize Peak DT, while the underlying admission and prefetching policies still optimize for
episodes’ contribution to mean DT. This strikes a balance between introducing the additional

59

complexity which would come by making it a scheduling problem, while still optimizing for the
correct metric. This could be useful in guiding practitioners who want to modify an existing
production cache to optimize Peak DT.

7.2.1 Choosing parameters to optimize for Peak DT.
Choosing prefetching method to optimize for Peak DT. Prefetching is key to Baleen’s
performance on most workloads, but on some workloads, ML-When is not aggressive enough as
it optimizes for the mean, not Peak DT. To correct for this, we allow Baleen to choose another
prefetching option per workload (e..g, ML-Range on Partial-Hit) if it is better at reducing Peak DT
in training. This allows us to pick prefetching methods that optimize the peak but are suboptimal
in terms of average Disk-head Time. Without this extra optimization, savings over RejectX would
have been reduced from 12% to 6.6%. In Fig 7.1, we show how this extra optimization enables a
reduction in Peak DT for Region4.

1 2 3 4 5 6 7
Peak for Day

0

10

20

30

40

50

Pe
ak

 B
ac

ke
nd

 L
oa

d
(%

)

Region4

Baleen (All on Partial Hit)
Baleen (ML Prefetch)
Baleen (ML-Range on Partial Hit)
Baleen (No Prefetch)
RejectX

Figure 7.1: Choosing best prefetching method based on Peak DT in Region4. Picking the best
prefetching method using Peak DT instead of Median DT enables a significant reduction in Peak
DT. Here, the highest peak for each day (i.e., the maximum of the hourly peaks) is shown.

Baleen-TCO optimizes for Peak Disk-head Time. In the design of Baleen-TCO, we have it
evaluate each flash policy write rate by the Peak Disk-head Time of policies performing on that
level. Please refer to §6 for more details.

7.3 Analyzing trends in Peak DT over time
We first sought to gain intuition into trends in Peak DT over time in order to inform our attempts
to explicitly optimize Peak Disk-head Time.

60

1 2 3 4 5 6 7 8
Peak for Day

0

10

20

30
Pe

ak
 B

ac
ke

nd
 L

oa
d

(%
)

CoinFlip
RejectX

Baleen (No Prefetch)
Baleen

Figure 7.2: Load variation over a week in Region1. The peak is on Day 5. Smoothing (hourly
averaging) has been applied, while the shaded area indicates the period used as training data.

Fig 7.2 shows the load variation over one week on a testbed (smoothed to hourly intervals).
While the peak for all policies is in the middle of Day 5, the second-highest peak is different for
different policies, if you look at Day 5 (CoinFlip and Baleen without prefetching) and Day 7.5
(Baleen and RejectX). While reducing the peak generally means reducing the average as well,
what is useful for reducing one policy’s peaks may not be as useful for a different policy. Noting
that each point is one hour, we can see that while there are periods of sustained activity lasting
days, individual bursts of load may only be 1-3 hours.

Peak periods are often sustained for less than a day, as shown in Fig 7.3, and often just an hour
or two, which is close to the average eviction age of 2 hours. This means admission policies can in
theory effectively reduce the peak, as the peak period is long enough to reap the delayed rewards
from changes in the admission policy’s decisions. (This delay refers to the time for a ML policy
to detect increased load, adjust its admission decisions and get hits on its admitted items.) As
these traces are only a week long, they do not show longer peak periods spanning days (e.g., Black
Friday, major sports events) or weeks (e.g., company performance review).

61

Sun
Mon Tue

Wed Thu Fri Sat

Time

0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)

Region1

(a) Region1

Sun
Mon Tue

Wed Thu Fri Sat

Time

0.0

0.5

1.0

1.5

2.0

Ba
ck

en
d

Lo
ad

 (
%

)

Region3

(b) Region2

Fri Sat Sat
Sun Sun

Mon
Mon Tue

Time

0

1

2

3

4

5

Ba
ck

en
d

Lo
ad

 (
%

)

Region2

(c) Region3

Wed Thu Fri Sat
Sun

Mon Tue

Time

0

5

10

15

20

25

30

35

40

Ba
ck

en
d

Lo
ad

 (
%

)

Region4

(d) Region4

Mon Tue
Wed Thu Fri Sat

Sun

Time

0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)

Region5

(e) Region5

Mon Tue
Wed Thu Fri Sat

Sun

Time

0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)

Region6

(f) Region6

Mon Tue
Wed Thu Fri Sat

Sun

Time

0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)

Region7

(g) Region7

Figure 7.3: Workloads over a week with Baleen on our testbed. We observe that peak periods
are typically sustained for 1-2 hours. 62

7.3.1 Breaking down DT at peak periods

Fig 7.4a breaks down DT at the peak hours. We observe that most of the reduction in Peak DT
comes from eliminating seeks rather than read time, often through prefetching. Certain traffic
patterns affect some policies more, which is why the DT peaks for different policies can differ. In
particular, Baleen’s peaks occur when prefetching is not beneficial.

Re
je

ct
X

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
(M

L
Pr

ef
et

ch
)0

5

10

15

20

25

30

Ba
ck

en
d

Lo
ad

 (
%

)

Window=644

Peak for
RejectX

Re
je

ct
X

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
(M

L
Pr

ef
et

ch
)

Window=645

Peak for
Baleen (ML Prefetch)

Seeks
Bandwidth (Prefetch)
Bandwidth (Misses)

(a) Region1

Re
je

ct
X

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
(M

L
Pr

ef
et

ch
)

Ba
le

en
(M

L-
Ra

ng
e

on
 P

ar
ti

al
 H

it
)0

1

2

3

4

Ba
ck

en
d

Lo
ad

 (
%

)

Window=642

Peak for
RejectX

Re
je

ct
X

Ba
le

en
(N

o
Pr

ef
et

ch
)

Ba
le

en
(M

L
Pr

ef
et

ch
)

Ba
le

en
(M

L-
Ra

ng
e

on
 P

ar
ti

al
 H

it
)

Window=646

Peak for
Baleen (ML Prefetch)

Seeks
Bandwidth (Prefetch)
Bandwidth (Misses)

(b) Region7

Figure 7.4: Breakdowns of Disk-head Time at Peaks. Each graph shows the peak 10-min
window for that setup. Baleen’s Disk-head Time reduction is mostly due to reduced seeks.

Fig 7.4 shows policies’ performance at the respective peak windows for Baleen and RejectX.
The peak window can differ from policy to policy, as one policy may be good at dealing with a
traffic pattern that causes peaks for other policies, but be foiled by a pattern that is handled well by
others. This makes optimizing the peak a whack-the-mole game. Baleen’s worst time intervals are
those in which prefetching is not beneficial. This suggests that a policy wanting to optimize Peak
DT could do by being aware of the current load level and able to adapt to it.

7.4 Explicitly optimizing for Peak Disk-head Time

We explored how we could explicitly optimize Peak Disk-head Time. This introduces the additional
complexity of scheduling (i.e., when to spend the flash write rate budget) to prioritize admission
of items that contribute to the Peak Disk-head Time.

63

7.4.1 Varying policy selectivity by system load level
Design An online and more flexible method that is not dependent on retraining would be to
vary the behavior of the ML policy dynamically in response to load. One approach is to make
the admission policy threshold a function of the load factor. This would in effect transfer the
write rate budget from off-peak to period periods. Since we seek to optimize Peak Disk-head
Time, incurring more misses during off-peak periods to save on flash writes for use during peak
periods is a viable strategy for a policy. As eviction ages are around 2 hours, this implies that
hits from admitted episodes must happen in less than that time. Thus, we considered it likely that
admission decisions will have a positive effect within the peak period, as they are often sustained
over multiple hours.

Evaluation We performed an experiment where we modified OPT and only allowed it to admit
to the cache during periods of high load (defined as being than 30% of the last peak). We show
the results in Fig 7.5, with the modified OPT labeled as “Peak Reduce”.

09-13 12

09-14 00

09-14 12

09-15 00

09-15 12

09-16 00

09-16 12

09-17 00

Real Trace Time

0

2

4

6

8

10

Ba
ck

en
d

lo
ad

Baseline (35.2 MB/s)
Peak Reduce (32.4 MB/s)

Figure 7.5: Peak reduction by varying policy selectivity in response to load. A dynamic
admission policy threshold based on the load level was able to reduce flash writes by 8.0% and
Peak DT by 1.4% on Region3. The long-term average flash write rate for the respective policies is
included in brackets in the legend.

This reduced Peak Disk-head Time by only 1.4%, but was able to reduce flash writes by 8.0%.

64

From this, we draw the inference that more fundamental changes (e.g., scoring episodes by their
usefulness in reducing Peak DT) are required to optimize explicitly for peak load.

7.4.2 Prioritizing episodes by their contribution to peak load
In this set of experiments, we sought to explicitly prioritize the admission of episodes that would
help to bring down peak load.

Design Our design sought to accomplish this by tweaking the training data. In both cases, we
identified a fixed ‘peak period’ from a previous simulation run on that trace with Baleen. We
experimented with two approaches:

1. Weigh episodes that overlap with the peak period higher than episodes that do not
overlap with the peak period. The intuition was that the ML might identify common
characteristics of items that are cached during periods of peak load and prioritize these
items.

2. Tweak the episode scoring function to account for how much DT was saved during the
peak period.

Evaluation Initial experiments using the analytical model suggested that significant savings
were possible, with a modified ‘PeakOPT’ policy reducing Peak Disk-head Time by 29% over
vanilla ‘OPT’. However, we could not translate these savings over to simulation.

We modified both OPT and Baleen policies and evaluated both in simulation. The modified
OPT policy (which we called OPT-PeakDT) had a regression with a new, much higher peak
appearing in a different part of the trace. The modified Baleen policy did not perform better than
the vanilla Baleen policy.

7.4.3 Future work
Extend analytical model to peak The current model calculates the average Disk-head Time
saved rather than peak. It would be useful to extend it to allow easier calculation of Peak Disk-head
Time without requiring a full simulator run. One possible way to approximate this is to divide
trace time into smaller intervals (e.g., 10 minutes) and calculating the Disk-head Time saved per
interval from each admitted episode. A further improvement would be to permit different assumed
eviction ages for each of those smaller sections of the trace.

7.5 Summary
We were able to reduce Peak Disk-head Time by choosing the right parameters (e.g., prefetching
method and flash write rate) in conjunction with an underlying admission policy that optimize mean
Disk-head Time. However, we were unsuccessful in directly optimizing the peak by modifying the
scoring function in the admission policies.

65

Our efforts suggested that it was harder to avoid regressions than we initially anticipated and
we believe that a more complex solution would be required to directly optimize Peak Disk-head
Time.

66

Chapter 8

Workload drift in caching

Caching, at its core, is the problem of predicting what items will be used (i.e., popular) in the
future. Workload drift, which refers to changes over time in access patterns and the popularity
of items, is therefore a threat to the success of a caching policy. Mitigating drift is important to
ensure ML-based caches perform well in the long run and not solely at time of deployment or
publication.

Our study of caching drift was motivated by the experience of our collaborators at Meta,
who found that ML caching policies performed the best at initial deployment and regressed over
the years despite periodic retraining (details in §10.1). Moreover, the impact of drift has been
corroborated in other applications of ML for large-scale systems, with Microsoft reporting a ML
accuracy drop of up to 40% in its network incident routing (NIR) and VM CPU utilization models,
with its ML NIR outperformed by a non-ML solution 28% of the time [50].

Our explorations quickly garnered the interest of industry, but a significant limitation was the
availability of long-term traces for evaluating drift in caching. Thus, collecting the necessary
traces became an important part of this work. The longest public traces prior to this work were 7
days; over a 6-month period, we were able to collect usable data amounting to two 30-day traces.

We found that ML for caching solutions are indeed vulnerable to workload drift. Common
drift mitigations adopted by ML-based caches include periodic retraining of models on new data
or the adoption of online policies (like reinforcement learning) that continuously update their
assumptions with incoming data. We evaluated multiple parameters of (re)training, such as the
frequency of retraining and the training window length.

8.1 Background

Unlike computer vision or natural language processing where data has a stable sample space,
storage access patterns are inherently subject to change over time, whether from configuration
changes, data migrations, changing user demand, or system changes [50, 64]. This problem is
exacerbated in bulk storage systems which consolidate a multitude of storage workloads and
applications and need to meet the needs of the entire spectrum of cloud computing customers.

67

Figure 8.1: Types of drift. Different severity and speeds of drift are shown, including noisy blips,
in this figure from [35].

Categorizing drift Workload drift is classified by the ML literature into 1) covariate drift, where
the data distribution changes, and 2) concept drift, where the target concept changes and breaks
the assumptions underpinning a model.

Another way to categorize drift is by its cause. We describe three types of drift highlighted in
the literature [25, 74, 110] noting these are neither exhaustive nor mutually exclusive [110]. We
also illustrate them in Fig 8.1.

• gradual and incremental drift, caused by changes in item popularity over time e.g., a slow
shift towards video content over photos and text

• sudden drift, caused by abrupt (and permanent) changes, e.g., a sharp rise in deployments
of large language models

• recurring drift, a temporary shift caused by cyclic or irregular phenomena, e.g., Black
Friday sales or an election campaign launch

Drift mitigation in the ML literature Many complex solutions exist in the ML literature for
dealing with drift [10, 13, 22, 34, 59, 71, 84] and tend to revolve around window-based solutions,
change detection, and ensembles. However, they were not designed for real-time use in production
systems and have issues such as a high computational cost, the need to wait for ground truth
(labels), and not being designed to deal with covariate and concept drift simultaneously [50].
While Matchmaker [50] addresses a number of these concerns in its design (which finds the most
similar data batch and uses the matching model for inference), it is hardly a panacea given that it
delivered significant gains on only 1 of their 2 case studies, leaving much room for improvement.
Matchmaker [50], DriftSurf [71] and AUE [13] are examples of state-of-the-art solutions for drift
that would be ideal benchmarks.

Drift in caching ML caching policies are often designed to have models that are trained offline
on a trace and then deployed periodically to production [5, 21, 44]. Online methods collect data
locally for retraining [96] or do incremental updates with reinforcement learning [8, 18, 87].

While workload drift has been studied in the larger context [25, 31, 71, 74] and in ML for

68

systems [50], its effect on caching is relatively unknown. We know of only one other large-scale
caching work that evaluates drift [82], with none explicitly tackling it. In that work, LRU-BaSE,
an eviction policy that uses deep reinforcement learning to improve byte miss ratio without
worsening object miss ratio, is evaluated on a synthetic drift scenario where two traces are
spliced together (corresponding to the sudden drift scenario described earlier in this chapter).
Robustness to different workloads is a closely related problem, which has been examined in
workload analyses [89] with adaptive solutions proposed for setting cache parameters [19]. Such
parameters are often manually set for the workload (e.g., ghost cache size is set to 6 hrs in [5] and
20 hrs in [97]), and may need to be dynamically set to properly cope with workload drift.

Drift mitigation in caching A common mitigation for workload drift is periodic retraining, at
the cost of training overhead and complexity for model deployment. If retraining is done on the
node itself, this incurs additional CPU and memory overhead to collect training data and train the
model. While it is possible to reduce ML overhead with heuristics [69, 88], it would be better to
know how often retraining even needs to be done and to reduce the need for retraining in the first
place. Further, retraining intervals used in production ML-based caches vary from seconds [88] to
5 minutes [97] to days to months, with no principled way of determining the right interval.

Another simple mitigation for workload drift is to allow a ML policy to fall back on a
well-understood heuristic policy, alleviating systems practitioners’ fear of performance regressions
(e.g., [17] runs a classical policy in parallel with ML and uses the better performing policy).
However, this merely limits the downside of ML policies instead of tackling the actual problem
and potentially unlocking better ML policy performance.

8.2 Collecting longer traces for analyzing drift
As we are focused on drift as it pertains to caching, we decided to evaluate on datasets derived
from cache traces (as opposed to generic datasets as used in [50]). Acquiring the appropriate
cache traces for drift analysis was an important and challenging part of this process. We needed
traces that were:

1. Long enough. The duration of previous public caching traces only went up to 7 days, which
made it difficult to distinguish between short-term day-to-day variations and longer term
gradual drift. We needed traces that were long enough for gradual drift to be present.

2. Contained features for ML. There were other storage traces of appropriate length but
which did not have the metadata features needed for a ML policy.

3. Collected before the flash cache. Google released two months of storage I/O traces along
with the Thesios publication [60], for which we were very grateful. They did contain ML
features, but as they were collected post flash cache, many requests would have already been
absorbed by the flash cache and were not available for our analysis.

Consequently, we collaborated with Meta to collect additional traces from Jan to June 2024, for
which we were most grateful for. We show part of this trace in Fig 8.2. Unfortunately, due to a bug
in the key anonymization process that we only discovered later, only two continguous one-month

69

periods of the trace was usable for caching analysis. Notwithstanding this, a 30-day long trace is
still four times longer than the longest publicly available trace of 7 days (as per Table 2.6).

Longer traces were collected by using a fixed key anonymization method. Trace dumps were
manually collected every month and subsequently stitched into a longer trace.

2024-02-01

2024-02-15

2024-03-01

2024-03-15

2024-04-01

2024-04-15

2024-05-01

2024-05-15

Date

0

N
um

be
r

of
 R

eq
ue

st
s

(N
o

Ca
ch

e)

Region5
Region7
Region8

Figure 8.2: Request load level without cache over 3 months. This figure shows the request load
level over a period of 3 months without caching.

In the end, we ended up using 3 trace periods for comparison:

1. 7 days ending 2023-March-25 (20230325)
2. 1 month ending 2024-March-02 (20240302)
3. 1 month ending 2024-June-11 (20240611)

We had data for 3 regions (Region5, Region7 and Region8). Region5 and Region7 were
present in our 2023 traces, whereas Region8 was new. During our preliminary analysis, we found
that Region5 experienced sudden drift in May due to a sharp decrease in incoming load level,
which our collaborators confirmed. In our evaluation later in this chapter which is focused on
gradual drift, we thus focused on Region7 and Region8.

Block reuse over time We analyzed the longest time that each block is seen in the trace (i.e., the
time between the first and last access to the block). We found that a majority of blocks were not
seen after 2-4 days, as shown in Fig 8.3.

70

0 5 10 15 20 25 30
Number of Days Block Is Seen In Trace

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti

on
 o

f B
lo

ck
s

20240611/Region5
20240611/Region7
20240611/Region8

Figure 8.3: Block lifetime. The majority of blocks were seen in the trace for no longer than 2-3
days, indicating a high degree of turnover in the key space.

Table 8.1: Statistics of drift datasets

Dataset Time Request
Rate
(𝑠−1)

Obj
Size,
Avg
(MB)

Access
Size,
Avg
(MB)

Compulsory
miss rate

One-hit-
wonder
rate

PUT-
Only
Blocks

#PUT /
#Acc

Region5 20230325 364 6.84 2.62 18% 59% 33% 9%
Region5 20240302 326 5.12 3.16 72% 93% 23% 18%
Region5 20240611 21.2 5.81 5.01 57% 86% 52% 43%

Region7 20230325 426 5.71 2.23 17% 62% 38% 12%
Region7 20240302 218 4.52 2.75 83% 95% 20% 18%
Region7 20240611 120 4.61 2.32 22% 53% 29% 19%

Region8 20240302 242 4.82 2.96 69% 92% 29% 22%
Region8 20240611 48.4 5.64 3.55 37% 74% 40% 30%

Trace statistics Table 8.1 shows statistics for the different traces and time periods. We note that
the compulsory miss rate appears to have the most variability across time periods, and postulate
that it might be useful in designing a measure of drift.

71

8.3 Evaluating drift across time and clusters

We performed two sets of experiments, where we used 1) a different time period for training or
2) a different cluster for training. In both cases, we evaluated on the respective cluster for the
20240611 period.

Baleen (All on Partial Hit)

Baleen (ML Prefetch)

Baleen (ML-Range on Partial Hit)

Baleen (No Prefetch)
0

10

20

30

40

50

60

Pe
ak

 b
ac

ke
nd

 lo
ad

(%
 o

f n
o

ca
ch

e)

TrainGroup
20230325
20240611

(a) Region7, 14.5 months’ gap

Baleen (All on Partial Hit)

Baleen (ML Prefetch)

Baleen (ML-Range on Partial Hit)

Baleen (No Prefetch)
0

5

10

15

20

25

30

35

Pe
ak

 b
ac

ke
nd

 lo
ad

(%
 o

f n
o

ca
ch

e)

TrainGroup
20240302
20240611

(b) Region8, 3 months’ gap

Figure 8.4: Drift over time decreases ML performance. The increase in peak load is worse
with ML prefetching methods (the middle two). The y-axis shows performance on the TestGroup.
TrainGroup refers to the time period used to train the model; the TestGroup, which refers to the
time period used to test the model, was in both cases 20240611.

Figure 8.4 shows that training the ML model using an older dataset (in blue) causes a decrease
in performance. A larger performance degradation was observed with Region7, where the gap
between the training and test period was longer. With Region7, a larger gap is observed when
Baleen is used with ML prefetching, with the smallest gap when Baleen is used with static
prefetching (All on Partial Hit).

72

Baleen (All on Partial Hit)

Baleen (ML Prefetch)

Baleen (ML-Range on Partial Hit)

Baleen (No Prefetch)
0

5

10

15

20

25

30

35

40

Pe
ak

 b
ac

ke
nd

 lo
ad

(%
 o

f n
o

ca
ch

e)

TrainGroup,TestGroup
(Region7, Region8)
(Region8, Region8)

(Region8, Region7)
(Region7, Region7)

Figure 8.5: Drift: training using a different region decreases performance. The colors denote
the trace used at test time, with a shaded pattern if the training trace used is a different cluster than
that used for testing.

Figure 8.5 evaluated how performance would be affected if different regions are used for
training and testing, which could also be considered a form of synthetic drift (sudden drift) since
the change is not across time. Training the ML model using training data from a different cluster
(albeit from the same time period) shows a decrease in performance. The drop in performance is
worse for methods that use ML prefetching (the middle two) and the least when static prefetching
is used (All On Partial Hit).

8.4 Drift mitigation via retraining
To the best of our knowledge, researchers have not explored how long a window should be used to
gather training data or how often the model should be retrained.

Frequency of retraining We created an online variant of Baleen (Baleen-Online) which
accumulates training data on the fly (and uses RejectX as a fallback option initially until it had
accumulated enough training data). We then tested it with different retraining frequencies, with
the results shown in Fig 8.6. We found that the sweet spot for retraining interval on our datasets
was between 12 to 24 hours, given a fixed training history length of 2 hours. Too frequent or too
infrequent retraining caused worse performance. The trend in average Disk-head Time saved in
Fig 8.6(a) can also be seen in Peak Disk Head Time in Fig 8.6(b).

73

0 1 2 3 4 5 6 7
Retraining Frequency (Days)

0

2

4

6

8

10

12

14

16

D
is

k-
H

ea
d

Ti
m

e
Sa

ve
d

(%
)

Region7

Baleen-Online (No prefetching)
Baleen-Online (ML Prefetch)
Baleen-Online (All on Partial Hit)

(a) Region7, Average DT saved

0 1 2 3 4 5 6 7
Retraining Frequency (Days)

0

10

20

30

40

50

60

70

80

Pe
ak

 D
is

k-
H

ea
d

Ti
m

e
(%

)

Region7

Baleen-Online (No prefetching)
Baleen-Online (ML Prefetch)
Baleen-Online (All on Partial Hit)

(b) Region7, Peak DT

Figure 8.6: Retraining frequency. Baleen-Online performs best with a retraining period of 12 to
24 hours. The results shown use a constant training history length of 2 hours and are evaluated on
a 1-month trace from June 2024.

Length of training data We also conducted experiments to vary the length of training data
retained to understand how much history is needed for an effective ML policy, and to understand
the impact of the length of training data separately from retraining frequency. In Fig 8.7, we show
that a longer training data history does not increase the performance of Baleen-Online, and indeed
it is relatively insensitive to the training data length when given a fixed retraining frequency of 24
hours.

0 1 2 3 4 5 6 7
Train History Length (Days)

0

2

4

6

8

10

12

14

16

D
is

k-
H

ea
d

Ti
m

e
Sa

ve
d

(%
)

Region7

Baleen-Online (No prefetching)
Baleen-Online (ML Prefetch)
Baleen-Online (All on Partial Hit)

(a) Region7, Average DT saved

0 1 2 3 4 5 6 7
Train History Length (Days)

0

5

10

15

20

25

Pe
ak

 D
is

k-
H

ea
d

Ti
m

e
(%

)

Region7

Baleen-Online (No prefetching)
Baleen-Online (ML Prefetch)
Baleen-Online (All on Partial Hit)

(b) Region7, Peak DT

Figure 8.7: Training history length. Baleen-Online does not require very long training data
retention. The results shown use a constant retraining frequency of 24 hours and are evaluated on
a 1-month trace from June 2024.

8.5 Future work
A system that optimally mitigates drift should adapt quickly to drift, distinguish noise from drift,
and recognize recurring contexts, according to [74]. For the context of flash caching in data

74

centers, we also desire that the system be computationally efficient as it must run in real-time on a
data stream with many queries per second and be able to recognize recurring contexts without
storing an excessive amount of past data.

Identifying recurring contexts and mitigating recurring drift Instead of using a raw access
trace, we will need to devise a compact representation of training data (likely episode-based), and
to come up with a similarity metric to aid in identifying recurring contexts. Clustering, such as
that used in GL-Cache [91], will be useful to reduce the number of past contexts we need to store.

A simple, first-cut solution would be to implement a drift detector and build in a heuristic
policy as a fallback. A more complex solution would involve recognizing recurring drift. This
means comparing the current workload to past patterns, which can be done in whole (comparing
the current hour with a past hour) or in part after detanglement (comparing the current hour for
items with this feature value with a past hour for items with the same feature value). Exploiting
recurring contexts has the most potential for improving performance, since unseen data drift (that
has not occurred in the past) is unavoidable for all drift mitigation systems [50]. Being able to
detect and handle different speeds of change is important. In hyperscalars where flash caches are
common, some causes of sudden change (e.g., configuration changes) are caught by site reliability
engineers and performance testing, and addressed in a timely manner. Slow drift can be harder to
deal with as it creeps up over time, and if the original engineers who implemented a ML caching
policy are no longer available to deal with it, the easiest solution for a systems practitioner is to
turn the ML policy off and revert to a heuristic baseline. It would be useful for our solution to
quantify the different types of covariate drift (e.g., the number of new feature values) and concept
drift (e.g., how different the decision tree models are) over time and optionally trigger an alarm to
flag the need for human intervention.

Federated learning Being able to operate at the level of the individual node (perhaps via
federated learning [31]) instead of requiring central training and coordination would be a bonus.

Feature selection We should also consider adding seasonality features such as day-of-week
and hour-of-day. Automated feature selection may also be part of a drift mitigation solution, as
features may become less or more useful over time (for instance, the pipeline feature was part of
an initial ML model but later dropped).

8.6 Summary
In this section, I presented the first substantive study of drift in ML for caching which I evaluated
on month-long traces (the second-longest public trace is 7 days long) collected by my Meta
collaborators. I developed a online variant of Baleen (Baleen-Online) and offer some insights into
retraining, a common drift mitigation method. I show that retraining is useful in preventing large
accuracy drops over the timescale of months and that a 12 to 24 hours retraining frequency is
optimal for our workloads. While my experiments may seem to differ from the observations of
practitioners that motivated this work (drift that hurt ML performance despite retraining), our

75

data was from a much shorter period (months as opposed to years) and could only be collected
after the period in which they experienced drift that caused them to stop using ML for caching.
To further explore the issue of gradual drift across years would require historical caching traces
spanning years into the past, which do not exist for the Meta Tectonic system.

76

Chapter 9

Lessons learned from other ML-guided
caching explorations

Baleen is the end result of substantial exploration and experimentation with ML for caching,
including negative outcomes from which we drew lessons and see unrealized potential. This
section shares and quantifies these lessons.

9.1 ML for flash eviction
We examined how we could use ML for eviction, in tandem with our ML admission and our ML
prefetching policies. While having a good admission policy may be instrumental to flash caching
performance, using a standard eviction policy (LRU, FIFO) in tandem with it leaves performance
on the table. ML for eviction is a well-studied problem compared to admission and prefetching,
and we provide more detail on the challenges we faced and the opportunities for future work.

9.1.1 Background
ML has been applied to eviction policies in DRAM caches, while the conventional policy in
flash caches has been to use a simple eviction policy (such as LRU or FIFO) and have a complex
admission policy. However, flash caches like RIPQ [72] have eviction policies (Segmented-LRU,
GDSF) designed to reduce write amplification, indicating that being flash-aware can matter in
eviction policies too.

For a simple DRAM cache, Bélády’s algorithm [4] (evicting the item with the longest time
to next access) is the optimal eviction policy for maximizing hit ratio. This assumption breaks
down quickly in real systems: others have shown it is not optimal for flash caching as it does not
consider write endurance [16], nor is it optimal for variable size objects [9, 82], optimizing byte
miss ratios [82], or variable size caches [41]. Despite these limitations, Bélády’s remains the
go-to benchmark for eviction policies [99] even though other benchmarks have been proposed to
address some of its limitations [9, 16, 41].

A common way to apply ML to eviction is to learn a relaxed version of Bélády. With any ML
variant of Bélády, the efficacy of the method hinges upon how well the time to an item’s next

77

access can be predicted, which varies from workload to workload. Different ML architectures have
been tried including GBMs [68, 88], SVMs [66], LSTMs [40], and RL [86, 87]. Offline methods
are trace-based, which often requires separate training infrastructure and may be susceptible to
workload drift, while online methods such as RL suffer from a long delay in rewards [6]. Others
have proposed different ways to apply ML, such as learning from distribution (e.g., LHD [3]),
learning from simple experts (e.g., LeCaR [77], CACHEUS [63]), and group-level learning [91].

While surveying ML eviction policies, we found others encountered problems that Baleen
addresses, e.g., the need to prioritize sampling less popular objects around the decision bound-
ary [68] and insufficiency of optimizing for hit ratio alone [82]. They mitigated these problems by
applying one-off heuristics that were not adopted by successive works. Applying the episodes
model could improve the training process for predicting time to the next access. We can also exploit
characteristics of flash caching workloads (e.g., focus on throughput over latency, block-segment
structure) and apply ML to eviction in other ways, such as classifying items into different eviction
queues.

9.1.2 Analytical model showed potential benefits of early eviction in reducing
cache space needed

Episode #2

Episode #1

One LRU queue = One Eviction Age = Same Dead Time

Time

Block 1

Block 2

Dead Time

Dead Time

Figure 9.1: Dead Time in episodes. The dead time of an episode is the logical time between the
last access in an episode and the time it is evicted. This is equal to the cache’s eviction age. For
LRU, the expected dead time for each item is constant. A longer eviction age is necessary to get
all hits in Episode 2, but not Episode 1. Episode 1 would have less dead time while still getting all
hits with a much lower eviction age.

Dead time accounts for 50% of time in cache. If items could be evicted immediately after they are
last accessed in an episode, instead of waiting to leave the cache, this would decrease dead time to
zero and result in a greater effective cache size. Episode-based analysis showed mean Disk-head
Time could be reduced by up to 11%, showing that there is still significant room for improvement
in eviction policies.

78

9.1.3 Improving eviction by using ML to predict episode properties

Using ML to predict episode timespan. The most useful episode property to predict would
be episode timespan, the time between the first and last access in an episode. An eviction policy
could evict the item after the predicted time passes. If perfectly accurate, this would reduce dead
time to zero. Moreover, this could also be used to group together things that will be evicted at the
same time to lower flash write amplification. We trained ML regression models to predict episode
timespan, but found ML model accuracy to be low, as shown by the low 𝑅2 score in Table 9.1.
Thus, we sought to evaluate other episode properties.

Using ML to predict maximum interarrival time for a TTL-based (time-to-live) eviction
policy. The maximum interarrival time of an episode is the largest of the interarrival times
between accesses. We found that this could be predicted much better than episode timespan, as
shown in Table 9.1. In a typical LRU eviction policy, the dead time is the cache eviction age. The
eviction age of a cache is necessarily larger than the maximum interarrival time of all episodes. If
we knew the maximum episode interarrival time, we could evict items before the full eviction age,
thus reducing dead time and cache space needed.

Fig 9.2 shows the cumulative write rate of episodes for increasing maximum interarrival times,
indicating that the majority of episodes have a maximum interarrival time of 10 minutes or less,
meaning that the many items could be evicted early 10 minutes after the last access, instead of
having to wait for the full eviction age of the cache (e.g., 2 hours). Otherwise, for many of these
items that have a few accesses in quick succession, the time spent in cache is dominated by the
2-hour eviction age (and thus dead time) rather than the useful timespan which may only be a few
minutes.

Metric 𝑅2 score
Timespan (logical) 0.34
Timespan (wall-clock) 0.36
Max Interarrival Time (wall-clock) 0.52

Table 9.1: Predicting different targets for ML eviction We evaluated different episode properties
for use as intermediate targets in ML eviction policies. Timespan refers to the time between
the first and last access in an episode, while the maximum interarrival time refers to maximum
time between any two consecutive accesses in the episode. Logical time refers to time in logical
timestamps (the order of requests seen by the cache). 𝑅2 (coefficient of determination) is a
regression metric measuring the goodness of fit, with random noise having a value of 0 and a
perfect fit having a value of 1.

79

100 101 102 103 104

Max Interarrival time in episode (s)
0

20

40

60

80

100

CD
F

of
 W

ri
te

s
(%

)

1
se

c

10
 s

ec
s

1
m

in

10
 m

in
s

1
hr

Region1
Region2
Region3
Region4

Region5
Region6
Region7

Figure 9.2: Maximum interarrival times for episodes. For example, episodes with interarrival
times no larger than 10 seconds account for 40% of writes in OPT-admitted episodes for Region3.

We implemented a TTL (time-to-live) cache where each cache item has an associated expiry
time, which is extended with every hit. If the time since the last access exceeds the TTL, the item
is considered as available for eviction. We then evaluated an extension of OPT called OPT-TTL,
where TTL is set to the maximum interarrival time within each episode. This saved 2% of
Disk-head Time for Region7, as shown in Fig 9.3.

2023-03-19

2023-03-20

2023-03-21

2023-03-22

2023-03-23

2023-03-24

2023-03-25

2023-03-26

Real Trace Time

0

5

10

15

20

25

U
ti

l (
G

ET
)

(%
)

baseline
ttl

Figure 9.3: OPT-TTL: An optimal TTL-based eviction policy with early eviction. This saved
only 2% of Disk-head Time for Region7, indicating that there remains work to be done.

Additional work remains to be done to explore how the amount of Disk-head Time savings can
be increased, and to translate the policy from OPT to ML (and deal with the accompanying drop
as we go from potential to actual savings).

80

In terms of feasibility of implementation, CacheLib supports efficient TTL eviction in DRAM
with Meta employing it successfully in key-value stores where the TTL is set manually for each
use case. However, additional work is required to adapt it for flash (without excessive write
amplification) and to predict an appropriate TTL.

9.1.4 Future work

Improving on TTL-based eviction Here, we list additional improvements that could be
implemented to improve on the current TTL-based eviction policy.

1. Adjust the TTL prediction on successive hits. A further extension would be to continue
adjusting the TTL value as hits (and information) arrive, and not just set it once at insertion.
For instance, a possible strategy could be to adjust the TTL prediction based on observed
interarrival times after the item is inserted. (In a queue-based implementation, this could be
realized by having allowing evictions from one queue to be inserted into another queue, not
unlike what is described in the Multi-Queue policy for second level buffer caches [108],
although care needs to be taken to avoid additional flash writes in the process.)

2. Predict variance of interarrival times for episodes Episodes could be grouped by their
predicted maximum interarrival time plus a constant (𝑀𝑎𝑥𝐼𝐴 + 𝑐), where 𝑐 corresponds
to the variance of interarrival times. The access patterns of blocks vary in predictability,
ranging from those with short, deterministic timespans/interarrival times to access patterns
that are essentially memory-less and Poisson-like. Determining where an episode falls on
this spectrum can be helpful in adjusting the eviction strategy (and potentially admission as
well).

Future work could also include a full evaluation with smaller cache sizes (to see if the same Peak
Disk-head Time can be achieved with smaller caches), as well as comparisons with state-of-the-art
eviction policies such as LRB [68] and TinyLFU [18].

Using multiple FIFO or LRU queues Another avenue of work would be to apply ML to a setup
with multiple LRU or FIFO queues, and to determine the optimal queue sizes for those setups.
Recently, cache policies centered on FIFO queues have been shown to work well in production
DRAM caches [92, 94, 100].

Having multiple LRU queues would allow for differentiated eviction while being simpler to
implement than a TTL cache, with less overhead. If we knew the maximum interarrival time of
episodes, we could group insertions into different queues by their maximum interarrival time,
reducing dead time and making better use of the cache space. Episodes could be grouped by their
(predicted) maximum interarrival times (e.g., 0-10 seconds, 10-60 seconds, 1-10 minutes, 10-60
mins, above 60 minutes).

81

Multiple LRU queues

Ep #1

Ep #4

Ep #2

Ep #3

Dead

Dead

Dead

Dead

Ep #1

Ep #4

Ep #2

Ep #3

D Dead

DeadD

Eviction Age = 2 hrs

Eviction Age = 2.2 hrsEviction Age =
10 mins

(a) Single queues

Multiple LRU queues

Ep #1

Ep #4

Ep #2

Ep #3

Dead

Dead

Dead

Dead

Ep #1

Ep #4

Ep #2

Ep #3

D Dead

DeadD

Eviction Age = 2 hrs

Eviction Age = 2.2 hrsEviction Age =
10 mins

(b) Multiple queues

Figure 9.4: Opportunity for differentiated eviction strategies (multiple queues).

For example, in Fig 9.1, Episode 1 has a much lower maximum interarrival time than Episode
2. With a single LRU queue (Fig 9.4a, the eviction age is the same for both episodes and there is
more dead time. Each episode remains intact as long as the eviction age is more than its maximum
interarrival time. Thus, Episode 1 can be placed in a queue with a much lower eviction age without
loss of hits compared to for Episode 2. By placing these episodes in separate queues (Fig 9.4b), the
dead time for Episode 1 will be reduced, making the cache more efficient in its use of space. This
efficiency increase is reflected in the slightly higher eviction age for the second queue in Fig 9.4b.

The amount of cache space to allocate to each queue could determined offline using our
episodes model based on the expected size footprint of admitted items from each group (i.e., by
reading off the y-axis for the intersections between the dotted vertical lines and each workload’s
CDF in Fig 9.2.)

9.1.5 Summary

In summary, our ML for eviction efforts showed us the difficulty of predicting episode timespan,
while showing that there was potential for a TTL-based eviction policy which predicts the
maximum interarrival time of episodes.

9.2 ML for DRAM placement to reduce writes

The design of hybrid caches and how to best use a mix of DRAM and flash is a recurring topic of
interest. Conventional wisdom is to promote an object to the higher level in a memory hierarchy
(i.e., DRAM) when there is a hit on an object in a lower level (i.e., flash). This was designed
with latency in mind, but does not help in reducing flash writes (see §9.7). If an item is present
simultaneously in DRAM and flash, it means wasted space.

We found that a small DRAM cache used in this conventional manner does not contribute
significantly in improving end-to-end caching metrics. Thus, instead of retaining popular items in
DRAM, we sought to explore if DRAM could be used to play a very different function within our
hybrid cache setup: reduce flash writes.

82

Now: DRAM evictions get inserted into flash
On flash hit, items are inserted into DRAM

DRAM cache (10GB)

Flash cache (400GB)

Item reinserted to DRAM on hit

Figure 9.5: Use of DRAM in hybrid caches. DRAM is typically used as a small cache in
front [5] or behind [97] a larger flash cache. All items must pass through DRAM, meaning that
popular items (that will be admitted to flash anyway) waste space in the DRAM cache.

9.2.1 Background

In hybrid caches, heterogeneous storage mediums are used to meet design goals. HDDs are most
cost-effective for capacity and flash drives are more cost-effective for IOs than HDDs. DRAM
has higher throughput per byte than flash, but Tectonic-Shift [103] found that the bandwidth of
DRAM-only storage nodes is in practice limited by NIC throughput (at 100 Gbps) and that flash
drives would have the same bandwidth per watt as DRAM.

Flashield [21] admits every item to DRAM first and uses the number of reads and writes
to determine which items are more suited for flash, while treating DRAM and flash as a single
memory pool for eviction (CLOCK, a LRU approximation, is used). In production systems,
DRAM has been used as an additional buffer in front of [5] or behind [97] a larger flash cache.
The high flash-to-DRAM ratio of production caches (1:40 in Meta’s Tectonic [26]) means that the
effect of DRAM on end-to-end systems metrics are limited and that DRAM lifetimes are too short
for Flashield (which was designed for a 1:7 ratio) to be effective [5]. (More details are provided in
§5.4.2.)

Thus, we assert that a better way to utilize a small amount of DRAM would be to use it
selectively and judiciously to reduce flash writes instead of letting every item pass through DRAM.
This is a fundamental difference with other systems that also use DRAM as a filter [5, 21]. In
Tectonic, the DRAM available for caching is 1/40 that of flash [26], meaning that using DRAM to
extend the cache size or even to collect features for later admission has minimal impact. When we
simulated a DRAM cache in front of the flash cache, a DRAM eviction age of 10 seconds to 1
minute was typical.

9.2.2 Evaluation

We proposed and evaluated multiple approaches, all of which revolved around admitting only a
fraction of items to DRAM and ensuring that they are retained in DRAM for only a short time
before being evicted.

83

Decide

DRAM

Flash

DRAM

Flash

Items we are
sure will get hits

in flash

Items with short timespan
or scan pattern

Items we are
unsure about

Admit to DRAM for short
period and defer flash

admission decision

Admit to DRAM only Admit to flash only

Figure 9.6: Proposed use of DRAM in hybrid caches. We proposed that items be classified
into three groups: those that should be admitted to DRAM only, those that we expect to gain
more knowledge on within their DRAM lifetime, and those that should be admitted to flash only,
bypassing DRAM.

9.2.3 Using DRAM to gain more information on episodes before deciding
Design Here, we use DRAM to gain more information and figure out which items are worth
admitting into flash. For items in this category, upon a hit (or more, if necessary to make the
decision to admit), they would be evicted from DRAM and inserted into DRAM.

With a perfect admission policy, items would be admitted into flash directly. Real policies
make mistakes: false positives (causing wasted writes) and false negatives (lost opportunities
to reduce backend load). 45% of flash writes are wasted for Baleen (i.e., do not receive a hit
after being admitted) which is double that of OPT’s 20%, showing that flash writes could be
reduced by up to 25% with better ML admission. Moreover, items that share the same metadata
features cannot be distinguished the first time they are seen by a ML admission policy. Admitting
such items into DRAM provisionally for observation gives the cache additional information to
distinguish whether they will have further reuse.

While systems such as Flashield [21] may also use DRAM as a filter, the key difference is
that they let every item pass through DRAM. This results in DRAM lifetimes that are too short to
collect the information required. To mitigate this, we propose to reduce both the number of unique
items admitted to DRAM and to cap the DRAM lifetimes of items.

First, apply a filter to select items for DRAM, such as by selecting items that are within the 10%
of items closest to the admission threshold cut-off, or by training a ML model to identify those
items that would benefit (e.g., items that are indistinguishable at first access but have subsequent
follow-up accesses that enable them to be separated from the duds). Second, use a FIFO-like
policy instead of LRU to avoid popular items hogging DRAM. Third, add a heuristic to quickly
evict items to flash items that have been shown to be worth admitting to flash.

84

We are not the first to suggest using a FIFO policy for modern caches, with others having
compared the trade-offs of FIFO and LRU [23, 93].

Results We assessed the feasibility of this approach by looking at the information gained about
an item during its DRAM lifetime. We found that 37.2% of OPT-admitted episodes (equal to
45.7% of write budget) have a second access within 10s of the first, while 26.7% of OPT-rejected
episodes have a second access within 10s of the first. If there is a second access within 10s of the
first, the probability of the episode being an OPT-admitted episode is 23.5%. This suggests that
the threshold for admission to flash may need to be higher than 1 hit within 10 seconds in order for
precision to be acceptable and avoid excessive false positives.

However, we realized that the DRAM to flash ratio is too skewed in our setup for this to work
well. Most items never receive enough DRAM hits during the time needed and the features are
not discriminating enough to be able to filter enough episodes out to the degree required to raise
eviction age to the length required to get the amount of data required.

In future work, we would want to evaluate this approach with much larger RAM caches to see
if that would make this approach feasible.

9.2.4 Admit episodes with a very short timespan directly to DRAM
Design These episodes are short enough to be stored in DRAM for their entire lifetime and
bypass flash entirely. Since their useful time in cache is so short, their eviction age under a typical
policy like LRU would dwarf the time between the first and last hit and thus these episodes would
have a high dead time ratio.

In choosing admitted episodes to place in DRAM instead of flash, we prioritize episodes with
the short time in cache regardless of their size to maximize the benefit-cost ratio (as flash writes
and space taken up in DRAM are both proportional to the episode size and thus cancel out), we
aim to admit episodes with the shortest time in cache regardless of their size in order to maximize
the benefit-cost ratio:

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡

𝐶𝑜𝑠𝑡
=

𝑊𝑟𝑖𝑡𝑒𝑠𝑆𝑎𝑣𝑒𝑑

𝑆𝑝𝑎𝑐𝑒𝐼𝑛𝐷𝑅𝐴𝑀 ×𝑇𝑖𝑚𝑒𝐼𝑛𝐷𝑅𝐴𝑀
=

𝑁𝑜𝑂𝑓 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑁𝑜𝑂𝑓 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ×𝑇𝑖𝑚𝑒𝐼𝑛𝐶𝑎𝑐ℎ𝑒
=

1
𝑇𝑖𝑚𝑒𝐼𝑛𝐶𝑎𝑐ℎ𝑒

A policy like FIFO rather than LRU makes sense here, given that we expect these episodes to
have a short timespan. We can train a ML model to identify episodes with a short timespan, with
this model being run on the first miss.

Results Using the analytical model, we assessed the potential benefit from this approach.
Consider a DRAM eviction age of 10 seconds. 11.3% of OPT-admitted episodes have interarrivals
no longer than 10 seconds (from Fig 9.2). If we can identify them and admit them only into
DRAM, we could save 7.8% of flash writes. If we are able to increase DRAM eviction age to
1-min, those numbers increase to 15.6% of OPT-admitted episodes and savings of up to 11.0% in
writes.

However, further progress on our workloads was stymied by the lack of success in developing
an accurate model to predict episode timespan, as explained in §9.1.3. However, this could be

85

worth revisiting on other workloads or feature sets that enable accurate prediction of episode
timespan.

9.2.5 Future work
Avoid flash entirely for blocks with a scan and churn pattern. These episodes may have long
timespans at the block level, but at the segment-level have no reuse during their cache lifetime and
thus the useful timespan of each segment is zero. Scan and churn patterns are present in most
workloads and known to be challenging for LRU and LFU caches [63]. Scan patterns are those in
which items are accessed exactly once (often in sequence), while churn workloads have working
sets larger than the cache size potentially causing the cache to lose older valuable items. Examples
for both are shown in Fig 9.7.

Figure 9.7: Scan and churn workloads. Scan, churn, LRU-friendly and LFU-friendly workloads
from the FIU block I/O traces are shown in this figure from [63].

An example of a scan pattern is a block being accessed segment-by-segment in sequence, with
no actual reuse of any segment. In churn workloads, items are equally likely to be accessed and
not necessarily in sequence.

Scan episodes in particular are good candidates for prefetching and admission, but should be
prioritized for placement in DRAM and fast eviction after a single hit as there is no reuse. If churn
workloads have too large a working set and too poor spatial locality to benefit from prefetching,
they should be rejected from both flash and DRAM.

A ML model could be trained to identify blocks with a scan pattern and then admit them
directly to DRAM, bypassing flash.

Adding features to coordinate eviction with prefetching Adding the prefetcher’s decision as a
decision would be a promising extension, since we expect prefetching may be positively correlated
with both. We also expect this to increase the net benefits from prefetching, since, for instance,
coordinating with the prefetcher to default to faster eviction or DRAM placement for prefetched
segments would help to reduce the cost of false positives in prefetching.

86

9.3 More advanced models: Cache Transformer
GBMs are relatively simple and thus we also implemented more complex ML models for learning
cache access patterns. Specifically, we add two deep models used to learn sequences in natural
language processing:

Baseline: MLP feedforward A basic multilayer perceptron (MLP) feedforward model that
takes the same features as our GBM model, i.e., only features from the current access, with a
single hidden layer of size 80.

Cache Transformer architecture A Transformer [75] encoder that uses features from the prior
ℎ (ℎ = 16) accesses in addition to the current access. Instead of sequences of words, it uses
sequences of accesses. We describe the details in the section below.

9.3.1 Neural Architecture of Cache Transformer

Figure 9.8: Cache Transformer architecture.

As shown in Fig 9.8, the Cache Transformer architecture consists of a series of Transformer
encoders stacked together, with a linear classifier at the end. Before being passed to the first
encoder, the windows are normalized and a sinusoidal positional encoding is applied. The encoders
serve the purpose of learning and evaluating the self-attention between different accesses in the
window. After the windows are passed through all the encoders, a final linear layer maps the last
encoder’s output to the model’s prediction, which is represented as a probability distribution.

First, the model passes the sequence through a sinusoidal positional encoding to inject relative
position information. Then, the encoded sequence is passed through 6 encoders with 4 attention
heads each, followed by a linear layer that maps to a similar binary probability distribution to the
MLP feedforward model.

87

9.3.2 Training setup
Neural network models such as the Transformer used PyTorch for training and prediction. When
training the Transformer neural network models, positive training examples are upsampled to
balance out the classes and reduce the tendency to overfit. The MLP used for comparison had one
80-size hidden layer. Neural network training was done using RaySGD on a cluster with 8 Nvidia
GeForce Titan X GPUs.

9.3.3 Evaluation
We found that GBM performs best (0.2% better than Cache Transformer), despite only having
features for the current access. This was contrary to our hypothesis that more historical information
and access to the pattern of accesses would help model performance.

0 5 10 15
Drive Writes Per Day (DWPD)

0

10

20

30

40

50

Se
rv

ic
e

Ti
m

e
Sa

ve
d

(%
)

GBM
Transformer
Feedforward
OPT

(a) Disk-head Time Saved against Write Rate.

0.28 0.30 0.32 0.34 0.36
True/false score

0

10

20

30

40

50

Se
rv

ic
e

Ti
m

ed
 S

av
ed

 (
%

)

GBM
Transformer

(b) Disk-head Time Saved against true/false linear
regression score (𝑅2). 𝑅2 goes from 0 (random
noise) to 1 (perfect fit).

Figure 9.9: Different architectures for ML admission. GBM is the best non-OPT policy. A
10%-trace was used. Mean DT is reported here, relative to no cache. Service Time is the old name
for Disk-head Time.

Table 9.2: Performance of different models, online and offline. ℎ denotes the number of past
accesses used as input into the model. Write rate and IO hit rate are from online simulations.

Model (ℎ, history) Loss Offline accuracy Online accuracy Write Rate IO hit rate
MLP feedforward (ℎ = 1) 0.41 90.2% 88.5% 28.1 MB/s 48.1% (-8.6%)
Transformer (ℎ = 16) 0.18 92.6% 89.5% 42.9 MB/s 49.3% (-6.5%)
GBM (ℎ = 1) - 93.8% 91.1% 37.9 MB/s 49.4% (-6.3%)
OPT - 100% 100% 30.4 MB/s 52.7%

Delving deeper, we show the precision and recall for the different methods in Table 9.3. We
observe that GBM produces the highest F1-score, i.e., it balances recall and precision the best.

88

The MLP has the highest precision at the expense of recall. We observe that amongst the ML
models, the trend in write rates corresponds with the trend in precision.

Table 9.3: Recall, precision, and 𝐹1 score of models. GBM has the best 𝐹1 score amongst
non-OPT policies.

Model Precision
(%)

Recall (%) F1
score

MLP feedforward (ℎ = 1) 85.6 35.5 0.502
Transformer (ℎ = 16) 66.7 50.7 0.576
GBM (ℎ = 1) 76.8 51.9 0.619
OPT 100 100 1

9.3.4 Summary

Although we cannot dismiss the possibility that the Cache Transformer model is held back by our
training process, a challenge we struggled with was the highly imbalanced classes. GBMs are
known to be robust and work out of the box on many datasets. Baleen hence uses GBM given that
it performs best and is the most efficient of the options explored.

9.4 Segment-aware admission

Segment-aware admission’s potential Baleen operates at the block level and can only choose
to admit or reject the entire access range, rather than individual segments (unlike RejectX). This
approximation results in performance being left on the table, versus admitting only what is actually
needed. We speculate that some of RejectX’s strong performance as a baseline is due to its ability
to admit only part of a block.

Extending episode model for segment-awareness Segment-aware admission allows the policy
to admit only part of an episode, i.e., a sub-episode. A sub-episode is a consecutive range of
segments from an episode, that are always accessed at the same time. There are four sub-episodes
in Fig 9.10a and 9.10b, represented by the four colors. The cost of these sub-episodes are the
number of segments written (y-axis), whereas the benefit (in hits) depends on the exact combination
of sub-episodes admitted (see Table 9.4).

89

now
pesetas BJÉFFtf

now no

man

DPtinbenefit

cost includescostot

A wrongonehot
bonded

now Bfts

greedy

B

(a) Naive

imma BJtF
best FIFTEEN

best

trains
pipe

D

if

fractional

upperbound

peanut It

IIepisodes

(b) Time-aware

imma BJtF
best FIFTEEN

best

trains
pipe

D

if

fractional

upperbound

peanut It

IIepisodes

(c) Optimal

Figure 9.10: Segmentaware admission modeled using sub-episodes 9.10a represents a naive
segment-aware model, 9.10b represents a time-aware model that is more accurate in modeling
cache space and (c) represents a model that allows admissions for the same segment twice in one
episode. 9.10c is complex to implement as it must model re-admissions and segments falling out
during the episode. Sub-episodes present are represented by the different colors. The y-axis is
the segment offset, and the x-axis is time. Each column represents one access or I/O. The cost
of these sub-episodes are the number of segments written (y-axis), whereas the benefit (in hits)
depends on the exact combination of sub-episodes admitted. See Table 9.4 for examples.

Table 9.4: Costs and benefits are illustrated for sample decisions. These are with reference to
the sub-episodes presented in Fig 9.10a and Fig 9.10b. EA stands for Eviction Age.

Admit Hits (IOPS) Hits (Segments) Segments Useful time in cache Total time in cache (∝ 1
cache size)

{orange} 0 4 2 2 * 7 (episode timespan) = 14 14 + 2 * EA
{yellow} 3 7 1 1 * 7 = 7 7 + 1 * EA
{orange, yellow} 5 11 3 3 * 7 = 21 21 + 3 * EA

Figure 9.10 shows 3 different ways of modeling segment-aware admission:

1. by splitting only along the segment dimension (1D bin-packing),
2. by splitting along both the segment and time dimension (improved version of 1D bin-packing),
3. allowing further splits along the time dimension (2D bin-packing).

Together, Figure 9.10 and Table 9.4 illustrate the decision space that a segment-aware policy must
consider.

Making our analytical model and simulators segment-aware added another level of complexity
as they now had to keep track of which of the 64 segments were being admitted. Our revised
segment-aware analytical model estimated a potential reduction of Disk-head Time by 11%.

To get decisions for an online policy, we posed the problem of segment-aware admission as a
bin-packing problem. We developed a greedy solution to the fractional knapsack version of this
problem and ran it in simulation to give an upper bound of the benefit attainable. Further, we
developed a greedy heuristic algorithm shown in Algorithm 1 to determine admission decisions.

90

Algorithm 1 Greedy segmentaware admission policy

Require: PQ: Priority queue weighted by 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡

𝑐𝑜𝑠𝑡

// Generate all possible episodes and put into priority queue
1: for each block do
2: for each episode do
3: for each unique segment range do
4: // Create a sub-episode
5: 𝐶𝑜𝑠𝑡 ← number of flash writes (segments to be written)
6: 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 ← hits (excluding first access in each episode)
7: PQ.insert(𝑆𝑢𝑏𝐸𝑝𝑖𝑠𝑜𝑑𝑒(Cost, Benefit))
8: EpisdesByBlock.append(SubEpisodeId)

// Run greedy algorithm to iteratively pick the best SubEpisodes to admit
9: 𝑊𝑟𝑖𝑡𝑒𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔←𝑊𝑟𝑖𝑡𝑒𝐵𝑢𝑑𝑔𝑒𝑡

10: while𝑊𝑟𝑖𝑡𝑒𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 > 0 do
11: 𝐸𝑝𝑠 ← PQ.pop() ⊲ Pick episode with highest benefit/cost
12: 𝐽𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑡𝑒𝑛 ← []
13: for Segment in Eps.SegmentRange do
14: if IsWritten[Block][Segment] is false then ⊲ Mark segments as written
15: 𝐼𝑠𝑊𝑟𝑖𝑡𝑡𝑒𝑛[𝐵𝑙𝑜𝑐𝑘] [𝑆𝑒𝑔𝑚𝑒𝑛𝑡] ← 𝑇𝑟𝑢𝑒

16: 𝑊𝑟𝑖𝑡𝑒𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔←𝑊𝑟𝑖𝑡𝑒𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 − 1
17: 𝐽𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑡𝑒𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑆𝑒𝑔𝑚𝑒𝑛𝑡)
18: for each OtherEps that overlaps with Eps.SegmentRange do
19: // Update Marginal Cost
20: 𝑂𝑡ℎ𝑒𝑟𝐸𝑝𝑠.𝐶𝑜𝑠𝑡 ← 𝑂𝑡ℎ𝑒𝑟𝐸𝑝𝑠.𝐶𝑜𝑠𝑡 −∑𝑠∈𝐸𝑝𝑠.𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑅𝑎𝑛𝑔𝑒,𝑠∈𝐽𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑡𝑒𝑛 1

At the time, we were deciding between prioritizing development on segment-aware admission
versus getting prefetching to work. Our results from the fractional algorithm showed that the
potential gains from prefetching had far more impact than even a perfect segment-aware policy
could have. The impact of prefetching turned out to be substantial, as we discussed during in the
chapter of Baleen.

Summary Our judgment call is that segment-awareness did not yield sufficient benefits to justify
including it in Baleen and adding significant complexity (and source of bugs), but we would not
rule out the possibility of a different trade-off being made for other bulk storage systems with
different workload characteristics.

9.5 Benefit attribution for Baleen and quantifying gap to OPT

Understanding how Baleen derives its benefits over other policies is essential for other practitioners
to understand if the gains are also applicable to their own systems.

91

Baleen’s metadata features are essential to its performance We attempted to assess the
importance of Baleen’s features in 3 ways, in decreasing order of convenience: 1) Decision
tree importances, 2) SHAP (SHapley Additive exPlanations) values, and 3) ablation studies in
which we evaluated Baleen end-to-end using a subset of features for training. Our conclusion
was that there is no substitute for ablation studies, especially when the relationship between ML
model accuracy and end-to-end system performance (in Disk-head Time) is a noisy one. That
being said, decision tree importances are cheap to compute and are still helpful as a quick sanity
check. Decision-tree classifiers (including the Gradient Boosting Machines we use) offer feature
importances for free, most commonly by counting the number of times each feature is used in a
split during the model building process.

(a) Decision Tree importances (splits)

(b) SHAP values

Figure 9.11: Examples of feature importance methods

Using ablation studies, we determined that the metadata features (user, namespace, op) were
the most useful, followed by the size-related features (start, end, size) and then the dynamic
usage-based features. We also evaluated additional features such as the shard but found they did
not improve performance by any appreciable amount.

92

Size-awareness is essential and Baleen learns it implicitly. In early experiments with ML
admission, we took an existing ML policy and added size-awareness to it by taking the model’s
output probability and dividing it by the number of flash writes required to admit the item, which
gave a 5%-savings in mean DT.

We found that with Baleen’s episodes model, we could do away with this explicit size-awareness
and instead optimize for size-awareness end-to-end by having it incorporated in the scoring function
of OPT. As long as size-related features (IO start, IO size) were provided, Baleen was able to learn
size-awareness implicitly.

Baleen suffers from late admissions but is limited by feature quality Fig 5.8 shows a
remaining gap of 16%, indicating significant room for improvement. Episode-based analysis
shows 9% of DT is lost to late admissions (i.e., where episodes are admitted after the first access).
We observed Baleen learning to reject almost all items on the first access (a behavior similar to
RejectX). Many training examples shared identical features (on the first miss) but had different
labels. Baleen thus predicted the most probable label for each feature set (i.e., Bayes Optimal
classifier behavior). We validated this finding by approximating a Bayes optimal classifier in
analysis, and found an appreciable gap between it and OPT. Since dynamic, history-based features
cannot differentiate unseen items, we hypothesize that better metadata features are required to
distinguish the few true positives.

9.6 Prefetching on PUT

Prefetching-on-PUT can yield an additional hit on the first-ever access to the item. However, the
odds make it a challenging problem as many written blocks are not touched again for the duration
of our traces. The classes are even more severely skewed than for plain admission or prefetching,
making it a burden rather than a boon for admission most of the time.

Table 9.5: PUT statistics of traces

Dataset Year PUT-Only Blocks #PUT / #Acc
Region1 2019 46% 13%
Region2 2019 81% 14%
Region3 2019 46% 16%
Region4 2021 40% 10%
Region5 2023 33% 9%
Region6 2023 38% 10%
Region7 2023 38% 12%

93

Figure 9.12: Predicting Prefetch on PUT. We show the recall and precision curves of two ML
classifiers needed for Prefetch-on-PUT to work. HasEpisode denotes whether an item inserted
upon PUT will get a hit before being evicted, whereas ToPrefetch predicts whether the episode
will be admitted by the OPT given the flash write rate constraints. A classifier with a recall of 1
returns true on all true positives and a classifier with a precision of 1 has zero false positives.

We trained two classifiers: one to predict ToPrefetch, whether a PUT is followed by an
episode that will be admitted by OPT; and HasEpisode, whether the time between a PUT and the
subsequent GET is less than the cache eviction age.

Table 9.5 shows that an average of 46% of blocks across traces only have PUTs, meaning that
This means that a classifier must be extremely accurate or else incur costly false positives.

Unfortunately, as shown by Fig 9.12, the ML classifier we trained does not exhibit a good
precision-recall curve (to the right and up is better), with precision dropping rapidly as recall
increases. We trained two classifiers: one to predict ToPrefetch, whether a PUT is followed by
an episode that will be admitted by OPT; and HasEpisode, whether the time between a PUT and
the subsequent GET is less than the cache eviction age. For a RAM cache, predicting HasEpisode
correctly is sufficient, but for a flash cache, the policy also has to predict ToPrefetch correctly.
Both need to be accurate in order for prefetching on PUT to work for a flash cache. Thus, we
deem it not suitable for our workloads, but would not rule it out for other workloads with higher
incidences of read-after-writes.

9.7 Lessons from ML deployment in production

We summarize a few lessons gleaned from 3 years of ML deployment in production caches at
Meta. We were able to address some of these issues with Baleen, while others remain for future
work.

94

ML model performance does not always translate to production system performance. The
same algorithm performs differently when moved from offline to online settings, and again when
moved from development to production environments. Evaluation in production is slow (many
days needed to collect data in real time) and laborious (restarts, aborts, debugging). This makes
it challenging to tune thresholds and evaluate improvements to ML policies. The plethora of
directions makes it hard to decide on the best path forward without extensive exploratory research.
This motivated our episodes model that allows for the principled design of ML policies that
can directly optimize systems metrics like DT under write rate constraints, and quickly evaluate
the end-to-end impact of hypothetical improvements without the effort to implement them in
production or debugging unrelated production noise.

Rethink use of DRAM in flash caching. The typical use of DRAM is as a small cache
before [5, 21] (or after [96]) flash, with admission decisions made on DRAM evictions. When
Meta moved the admission policy from post-DRAM to pre-DRAM, there was surprisingly minimal
impact on end-to-end metrics such as hit rates or Disk-head Time. The initial motivation was
saving DRAM bandwidth, as this became a bottleneck with Admit-All rates near 500 MB/s (Table
3.1). The impact was small – while a DRAM cache may appear to absorb hits, it is simply stealing
them from the flash cache. Since DRAM eviction ages (a few seconds) are so much shorter than
flash (2+ hrs), almost every item worth caching needs to be in flash. Further, the write costs of
an item are proportional to its size, and any potential avoidance of flash writes is limited by how
small the DRAM cache is (2.5% of flash cache). Flexible placement of the admission policy
enables optimizations such as prefetching, which must be done prior to inserting into the topmost
cache. In summary, we need to find better uses for DRAM than simply adding it before a flash
cache as part of a hybrid cache.

9.8 Summary
In this chapter, we presented multiple studies showing features we considered but which ultimately
did not make it into Baleen. Leveraging our analytical model and simulators, we were able to
estimate the potential benefits of different approaches and discern which were the most promising
avenues to peruse.

A common thread in our explorations was that the benefit assessed from our proposals did
not always match our initial intuition. For every modification that resulted in an improvement,
there were many we tried which did not. While our intuition did improve over time, being able to
prototype quickly and cut off explorations at the analytical model stage before progressing to a full
implementation was always helpful.

We were also able to identify the limiting factors in the workloads that limited the benefit of
modifications (and conversely, what it would take to see benefits.)

95

96

Chapter 10

Conclusions, lessons learned and future
directions

This dissertation proposes the following thesis statement:

ML flash caching policies can reduce total cost in bulk storage systems, but in order to
outperform heuristics in well-tuned production systems, they must have a flexible and principled
design that can adapt to diverse workloads.

In investigating this thesis statement, I conducted numerous studies in which I applied machine
learning (ML) to different areas of flash caching for bulk storage systems. I assessed the viability
of each application of ML to flash caching on real production workloads using my simulator
(BCacheSim) and a CacheLib testbed.

Outperforming heuristics in well-tuned production systems. Baleen represents a collection
of our best policies (ML admission and ML prefetching) working in concert to deliver a significant
reduction of 12% in backend load (Peak Disk-head Time) on 8 distinct clusters from 4 different
years, with 10 workloads in total. We benchmarked our policies against the time-tested heuristics
used in production and state-of-the-art ML baselines.

Reducing total cost in bulk storage systems. Baleen-TCO demonstrated a substantial
reduction of 17% of total costs based on our TCO (total cost of operation) formula, which
quantifies media costs, the largest cost component of bulk storage.

Principled approach to ML policy design. To help one understand what optimal looked like,
I developed the episode model and OPT, an approximation of optimal for flash admission.

I also established Peak Disk-head Time as the correct metric to use for evaluating flash caches
in bulk storage systems. In designing each application of ML, I used our analytical model to
determine upper bounds, then designed a episode-based optimal for label generation, followed by
training machine learning models to imitate the episode-based optimal.

Flexible design to adapt to diverse workloads. I evaluated strategies to mitigate the peak
with adaptive selectivity based on load levels, and evaluated Baleen’s performance under workload
drift over time.

97

10.1 Lessons learned
Optimizing the wrong metric is an easy misstep: hit rate is not necessarily the right metric
for caching problems. We learned a painful lesson with our early ML policy attempts when
we took for granted that optimizing hit rate was correct because it was the unquestioned metric
for caching in both industry and academia. (Indeed, hit rate is so entrenched that some people
thought we were hiding something by not showing it.) Our initial prototypes for prefetching and
admission increased IO hit rate, but was actually worse for DT. To overcome this, we redesigned
our ML admission policy and introduced a prefetching confidence prediction (ML-When). Going
back to the drawing board to redesign our caching policies cost us an extra year, but it was a
valuable experience that gifted us Disk-head Time (a re-discovery), which was an elegant leap
from previous incremental approaches that tried to balance object hit rate and byte hit rate.

Finding a way to approximate optimal is key to ML for caching (and ML for systems). A ML
model can be no better than the training data given to it. Most ML models are supervised, and thus
a way is needed to generate (approximate) optimal labels for the ML policy to imitate in making
decisions. This dissertation presented such oracular models including OPT for admission and
OPT-Range for prefetching. This is also a boost for model introspectability, which is essential to
winning over systems practitioners given a widespread skepticism of ML in the systems community,
as well as for debugging. Being able to benchmark against an approximate optimal and to know
how much headroom is present before investing significant effort in developing a ML approach
has been very valuable.

ML-based caching should aim for encapsulation of ML, caching, and storage. Designing
bespoke ML for caching solutions requires coordination between ML experts (for model training),
caching experts (for integration), and the storage backend owner (for deployment and monitoring).
This involves one more area of expertise than most other ML for systems problems. There is no
clear path to single ownership of the problem, making it difficult to sustain over time. It is hard for
a service owner to prioritize spending engineering resources to aid the design phase of unproven
ML solutions. Baleen provides an analytic framework that ML experts could optimize DT on
without requiring caching expertise. Designing ML models around episodes makes it easier for
caching experts to reason about. Having the DT formula correspond closely to measured DT
(Fig 4.1) in production assures caching and storage experts that a reduction in calculated DT will
translate to a drop in disk utilization. Further, with setups that are tightly-coupled by hand and
not automatically, performance regressions may occur as systems and workloads change. Models
often performed the best when they were first deployed and slowly regressed over time even with
retraining using the same set of features. In contrast, Baleen was designed primarily using traces
from 2019 but also demonstrates improvements on traces from 2021, 2023 and 2024.

Making the right assumptions and approximations. The beauty of the episodes model is
in its decoupling of decisions that were formerly dependent on the cache state (and thus other
decisions that would affect cache contents). A single parameter (the assumed eviction age) was
sufficient to summarize the cache state for the most common eviction policies (LRU, FIFO). For

98

prefetching, choosing the right granularity to make decisions at and determining that the segment
range was sufficient to capture most of the benefit (as opposed to working with the much larger
decision space of individual segments) was the right decision and approximation to make.

Data-driven development is especially important in ML for caching. I quickly learned the
importance of data-driven development and prioritization of possible improvements. In the
beginning, I eyeballed small samples of the trace in order to brainstorm possible modifications,
but later realized that the situations I observed, while interesting, were not necessarily common
enough to be worth solving.

Knowing which fidelity and context to develop in at the right time is key to making good
progress. We ended up with 4 contexts in which policies could be evaluated: the analytical
model, BCacheSim simulation, testbed CacheLib, and production CacheLib. There is a time
to work on something in the analytical model, a time to work on it in simulation, and a time
to work on it in CacheLib. A significant determinant of the velocity of research is influenced
by the art of choosing how much time to spend working on an improvement in the respective
contexts. Given the trade-offs between development velocity and testing fidelity, a funnel-shaped
pipeline is right: some improvements should be filtered out at the analytical model stage, and
some after simulations, with only simulation-proven policies making their way into the CacheLib
implementation. Looking back, for a number of studies, less time should have been spent at
the analytical model stage (where we figure out the maximum benefit) with more time at the
simulation stage (where we figure out the achievable benefit).

There is a time to evaluate a component in isolation, and a time to evaluate it end-to-end.
Getting prefetching to work required a delicate balance between both, particularly since prefetching
required a good admission policy to work, and admission by itself did not yield as much benefits
as expected.

10.2 Limitations: data, data, data

I discovered that data, rather than model architectures, was almost always the limiting factor in my
explorations.

Discriminative features from automatic mining of unstructured text data. Academics suffer
from not having enough rich features and longer traces, whereas the woe of industry practitioners
is having too many sources of features and not enough time to clean it up into a trace. Much of the
untapped signal lies in unstructured text data such as logs and tags, which is also the same data that
is difficult to satisfactorily anonymize for public release. One promising avenue are embedding
models that could be trained on the unstructured data and then used as a source of black box
features for other downstream models. Coming up with such intermediate representations [104]
was the original, grander vision of [105, 106]. The advent of large language models (LLMs) may
unlock hitherto untapped sources of features with much lower engineering effort than power. This

99

would be helpful for applications such as the prediction of episode timespan, ML for eviction and
ML for prefetching-on-put.

Longer continuous caching traces to study drift. To understand gradual drift that takes place
on the timescale of multiple months, we would require a continuous trace that spans the full time
period. An important enabler to this would be an automatic trace collection pipeline that can store
multiple months of data, to avoid the need for manual collection and stitching together of traces.

10.3 Future directions
We discuss avenues for future research arising from the work in this dissertation.

Use of episodes in other caching work. Episodes can be used to model other caching problems,
and not just for admission and flash caching. Besides eviction policies, it could be used to modeling
problems of placement and tiering.

Use of Disk-head Time and variants in storage Despite its name, the use of the Disk-head
Time concept (where there is a constant setup time per access and a part that scales with bytes
transferred) can be extended to more than HDD-backed systems. In fact, the concept can be
extended to any situation where there are multiple tiers of storage and where there is a constant
setup time in fulfilling requests, including in the cloud. This includes cloud object storage (such as
Amazon S3 and Cloudflare R2), CDNs (content delivery networks), and storage hierarchies with
multiple types of flash. Another way to look at it is that Disk-head Time will be useful whenever
there is a need to optimize both object miss rate and byte miss rate.

100

Bibliography

[1] Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir Halepovic, Shuai Hao, Yan Liu, and
Subhabrata Sen. Avic: a cache for adaptive bitrate video. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And Technologies, pages
305–317, 2019. 2.5, 2.1

[2] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran
Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta, Sebastian Hillig, et al.
Amazon Redshift re-invented. In Proceedings of the 2022 International Conference on
Management of Data, pages 2205–2217, 2022. 2.6

[3] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving cache hit rate by
maximizing hit density. In NSDI, pages 389–403, 2018. 2.5, 2.1, 2.3, 4.3, 9.1.1

[4] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal, 5(2):78–101, 1966. 1, 2.6, 9.1.1

[5] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, et al. The CacheLib
caching engine: Design and experiences at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 753–768, 2020. 1.1, 2.3, 2.3.1, 2.5,
2.6, 2.1, 2.2, 2.3, 3.5, 5.1.1, 5.4.2, 8.1, 9.5, 9.2.1, 9.7

[6] Daniel S Berger. Towards lightweight and robust machine learning for CDN caching. In
Proceedings of the 17th ACM Workshop on Hot Topics in Networks, pages 134–140, 2018.
1, 1.1, 2.6, 9.1.1

[7] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. Exact analysis of TTL
cache networks. Performance Evaluation, 79:2–23, 2014. 4.2

[8] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. AdaptSize: Orchestrating
the hot object memory cache in a content delivery network. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages 483–498, 2017. 2.5,
2.6, 2.1, 4.3, 8.1

[9] Daniel S Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical bounds on optimal
caching with variable object sizes. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 2(2):1–38, 2018. 9.1.1

[10] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM international conference on data mining,
pages 443–448. SIAM, 2007. 8.1

101

[11] Aaron Blankstein, Siddhartha Sen, and Michael J Freedman. Hyperbolic caching: Flexible
caching for web applications. In USENIX Annual Technical Conference, 2017. 2.3

[12] Scott A Brandt, Carlos Maltzahn, Anna Povzner, Roberto Pineiro, Andrew Shewmaker, and
Tim Kaldewey. An integrated model for performance management in a distributed system.
OSPERT 2008, page 25, 2008. 2.6

[13] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept drift:
The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and
Learning Systems, 25(1):81–94, 2013. 8.1

[14] Chandranil Chakraborttii and Heiner Litz. Reducing write amplification in flash by death-
time prediction of logical block addresses. In Proceedings of the 14th ACM International
Conference on Systems and Storage, pages 1–12, 2021. 2.6

[15] Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web caching systems: Modeling, design
and experimental results. IEEE Journal on Selected Areas in Communications, 20(7):
1305–1314, 2002. 4.2

[16] Yue Cheng, Fred Douglis, Philip Shilane, Grant Wallace, Peter Desnoyers, and Kai Li.
Erasing Belady’s limitations: In search of flash cache offline optimality. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 379–392, 2016. 2.6, 9.1.1

[17] Jakub Chłędowski, Adam Polak, Bartosz Szabucki, and Konrad Tomasz Żołna. Robust
learning-augmented caching: An experimental study. In International Conference on
Machine Learning, pages 1920–1930. PMLR, 2021. 2.6, 8.1

[18] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU: A highly efficient cache admission
policy. ACM Transactions on Storage (ToS), 13(4):1–31, 2017. 2.5, 2.6, 2.1, 2.2, 8.1, 9.1.4

[19] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Adaptive software cache
management. In Proceedings of the 19th International Middleware Conference, pages
94–106, 2018. 2.2, 8.1

[20] Gil Einziger, Ohad Eytan, Roy Friedman, and Benjamin Manes. Lightweight robust size
aware cache management. ACM Transactions on Storage (TOS), 18(3):1–23, 2022. 2.6, 2.1,
2.2

[21] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mo-
hammad Alizadeh, and Sachin Katti. Flashield: a hybrid key-value cache that controls
flash write amplification. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 65–78, 2019. 1.1, 2.5, 2.6, 2.1, 2.3, 3.5, 5.1.1, 8.1, 9.2.1,
9.2.3, 9.7

[22] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonstationary
environments. IEEE Transactions on Neural Networks, 22(10):1517–1531, 2011. 8.1

[23] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat. It’s time to revisit
LRU vs. FIFO. In Proceedings of the 12th USENIX Conference on Hot Topics in Storage
and File Systems, pages 12–12, 2020. 2.3, 9.2.3

[24] Christine Fricker, Philippe Robert, and James Roberts. A versatile and accurate approxima-
tion for LRU cache performance. In 2012 24th international teletraffic congress (ITC 24),

102

pages 1–8. IEEE, 2012. 4.2
[25] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.

A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.
8.1, 8.1

[26] Sathya Gunasekar. From DRAM to SSDs, challenges with caching at FB scale. https:
//www.youtube.com/watch?v=RQUHnKbbOkI&t=490s, 2021. 9.2.1

[27] Mor Harchol-Balter. Performance modeling and design of computer systems: queueing
theory in action. Cambridge University Press, 2013. 4.5

[28] Dean Hildebrand and Denis Serenyi. Colossus under the hood: a peek into Google’s
scalable storage system, 2021. 2.1

[29] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and Zhi-Li Zhang. Raven: belady-guided,
predictive (deep) learning for in-memory and content caching. In Proceedings of the 18th
International Conference on emerging Networking EXperiments and Technologies, pages
72–90, 2022. 2.6

[30] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and Cheng Chen. Improving flash-based
disk cache with lazy adaptive replacement. ACM Transactions on Storage (TOS), 12(2):
1–24, 2016. 2.6

[31] Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B Gibbons.
Federated learning under distributed concept drift. In International Conference on Artificial
Intelligence and Statistics, pages 5834–5853. PMLR, 2023. 8.1, 8.5

[32] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. Advances
in neural information processing systems, 30, 2017. 3.5

[33] Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K Sitaraman. RL-Cache:
Learning-based cache admission for content delivery. IEEE Journal on Selected Areas in
Communications, 38(10):2372–2385, 2020. 2.6

[34] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An ensemble method for
drifting concepts. The Journal of Machine Learning Research, 8:2755–2790, 2007. 8.1

[35] Bartosz Krawczyk and Alberto Cano. Online ensemble learning with abstaining classifiers
for drifting and noisy data streams. Applied Soft Computing, 68:677–692, 2018. 8.1

[36] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen, Amit Sharma,
and Aleksandrs Slivkins. Harvesting randomness to optimize distributed systems. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks (HotNets), pages
178–184, 2017. 1, 1.1

[37] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto Fukumoto, and
Mariko Sugawara. Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure. In Proceedings of the 10th ACM International Systems and Storage
Conference, pages 1–11, 2017. 2.3

[38] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pannier: Design and analysis of
a container-based flash cache for compound objects. ACM Transactions on Storage (TOS),

103

https://www.youtube.com/watch?v=RQUHnKbbOkI&t=490s
https://www.youtube.com/watch?v=RQUHnKbbOkI&t=490s

13(3):1–34, 2017. 2.5, 2.1, 2.3
[39] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth analysis of cloud

block storage workloads in large-scale production. In 2020 IEEE International Symposium
on Workload Characterization (IISWC), pages 37–47. IEEE, 2020. 2.6, 2.3

[40] Pengcheng Li and Yongbin Gu. Learning forward reuse distance. arXiv preprint
arXiv:2007.15859, 2020. 2.6, 9.1.1

[41] Pengcheng Li, Colin Pronovost, William Wilson, Benjamin Tait, Jie Zhou, Chen Ding, and
John Criswell. Beating OPT with statistical clairvoyance and variable size caching. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 243–256, 2019. 9.1.1

[42] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong Zhou, Lifei Zhu, Zhao Lucis Li, Zibo
Wang, Qi Chen, Quanlu Zhang, Chuanjie Liu, et al. AutoSys: The design and operation of
Learning-Augmented systems. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 323–336, 2020. 1, 1.1

[43] John DC Little. A proof for the queuing formula: L= 𝜆 w. Operations research, 9(3):
383–387, 1961. 4.5

[44] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan Ahn.
An imitation learning approach for cache replacement. In International Conference on
Machine Learning, pages 6237–6247. PMLR, 2020. 2.5, 2.1, 8.1

[45] Jiangchuan Liu and Bo Li. A QoS-based joint scheduling and caching algorithm for
multimedia objects. World Wide Web, 7:281–296, 2004. 2.6

[46] Lanyue Lu, Peter Varman, and Kshitij Doshi. Graduated qos by decomposing bursts: Don’t
let the tail wag your server. In 2009 29th IEEE International Conference on Distributed
Computing Systems, pages 12–21. IEEE, 2009. 7.1

[47] Christopher R Lumb and Richard Golding. D-sptf: Decentralized request distribution in
brick-based storage systems. ACM SIGPLAN Notices, 39(11):37–47, 2004. 2.6

[48] Christopher R Lumb, Jiri Schindler, Gregory R Ganger, et al. Freeblock scheduling outside
of disk firmware. In FAST, volume 2, pages 275–288, 2002. 2.6

[49] Martin Maas. A taxonomy of ML for systems problems. IEEE Micro, 40(05):8–16, 2020.
1, 1.1

[50] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi. Matchmaker: Data drift
mitigation in machine learning for large-scale systems. In D. Marculescu, Y. Chi, and
C. Wu, editors, Proceedings of Machine Learning and Systems, volume 4, pages 77–
94, 2022. URL https://proceedings.mlsys.org/paper_files/paper/2022/file/
069a002768bcb31509d4901961f23b3c-Paper.pdf. 8, 8.1, 8.1, 8.2, 8.5

[51] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mohammad
Alizadeh. Variance reduction for reinforcement learning in input-driven environments.
arXiv preprint arXiv:1807.02264, 2018. 1, 1.1

[52] Valentina Martina, Michele Garetto, and Emilio Leonardi. A unified approach to the
performance analysis of caching systems. In IEEE INFOCOM 2014-IEEE Conference on

104

https://proceedings.mlsys.org/paper_files/paper/2022/file/069a002768bcb31509d4901961f23b3c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/069a002768bcb31509d4901961f23b3c-Paper.pdf

Computer Communications, pages 2040–2048. IEEE, 2014. 4.2
[53] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gunasekar,

Jimmy Lu, Daniel S Berger, Nathan Beckmann, and Gregory R Ganger. Kangaroo: Caching
billions of tiny objects on flash. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 243–262, 2021. 2.6, 2.2

[54] Chris Mellor. Enterprise SSDs cost ten times more than nearline disk drives.
https://web.archive.org/web/20221004225419/https://blocksandfiles.com/
2020/08/24/10x-enterprise-ssd-price-premium-over-nearline-disk-drives/,
2020. Accessed: 2022-10-04. 2.2, 6.2

[55] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony IT
Rowstron. Everest: Scaling down peak loads through i/o off-loading. In OSDI, volume 8,
pages 15–28, 2008. 7.1

[56] Newegg. Newegg: Seagate Exos X18 ST10000NM018G 10TB 7200 RPM 256MB Cache
SATA 6.0Gb/s 3.5" Hard Drives. https://web.archive.org/web/20230921032117/
https://www.newegg.com/seagate-exos-x18-st10000nm018g-10tb/p/
N82E16822185024?Item=N82E16822185024, 2023. Accessed: 2023-09-20. 6.2

[57] Newegg. Newegg: Dell Intel D3-S4620 960GB SATA 6Gb/s 2.5-inch Enterprise
SSD. https://web.archive.org/web/20230921032102/https://www.newegg.com/
dell-d3-s4620-960gb/p/2U3-000S-00104?Item=9SIA994K4B2373, 2023. Accessed:
2023-09-20. 6.2

[58] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav
Sharma, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, et al.
Facebook’s Tectonic filesystem: Efficiency from exascale. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 217–231, 2021. 2.1, 3.1.2, 6.1, 6.2, 7.1

[59] Ali Pesaranghader and Herna L Viktor. Fast hoeffding drift detection method for evolving
data streams. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
Part II 16, pages 96–111. Springer, 2016. 8.1

[60] Phitchaya Mangpo Phothilimthana, Saurabh Kadekodi, Soroush Ghodrati, Selene Moon,
and Martin Maas. Thesios: Synthesizing accurate counterfactual i/o traces from i/o
samples. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, ASPLOS ’24,
pages 1016–1032. Association for Computing Machinery, 2024. ISBN 9798400703867.
doi: 10.1145/3620666.3651337. URL https://doi.org/10.1145/3620666.3651337.
3.1, 3

[61] Timothy Pritchett and Mithuna Thottethodi. SieveStore: a highly-selective, ensemble-level
disk cache for cost-performance. In Proceedings of the 37th annual international symposium
on Computer architecture, pages 163–174, 2010. 2.6

[62] Liana V Rodriguez, Alexis Gonzalez, Pratik Poudel, Raju Rangaswami, and Jason Liu.
Unifying the data center caching layer: Feasible? profitable? In Proceedings of the 13th
ACM Workshop on Hot Topics in Storage and File Systems, pages 50–57, 2021. 7.1

105

https://web.archive.org/web/20221004225419/https://blocksandfiles.com/2020/08/24/10x-enterprise-ssd-price-premium-over-nearline-disk-drives/
https://web.archive.org/web/20221004225419/https://blocksandfiles.com/2020/08/24/10x-enterprise-ssd-price-premium-over-nearline-disk-drives/
https://web.archive.org/web/20230921032117/https://www.newegg.com/seagate-exos-x18-st10000nm018g-10tb/p/N82E16822185024?Item=N82E16822185024
https://web.archive.org/web/20230921032117/https://www.newegg.com/seagate-exos-x18-st10000nm018g-10tb/p/N82E16822185024?Item=N82E16822185024
https://web.archive.org/web/20230921032117/https://www.newegg.com/seagate-exos-x18-st10000nm018g-10tb/p/N82E16822185024?Item=N82E16822185024
https://web.archive.org/web/20230921032102/https://www.newegg.com/dell-d3-s4620-960gb/p/2U3-000S-00104?Item=9SIA994K4B2373
https://web.archive.org/web/20230921032102/https://www.newegg.com/dell-d3-s4620-960gb/p/2U3-000S-00104?Item=9SIA994K4B2373
https://doi.org/10.1145/3620666.3651337

[63] Liana V Rodriguez, Farzana Beente Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami,
Jason Liu, Ming Zhao, and Giri Narasimhan. Learning cache replacement with CACHEUS.
In FAST, pages 341–354, 2021. 2.5, 2.1, 2.3, 9.1.1, 9.2.5, 9.7

[64] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner,
Vinay Chaudhary, and Michael Young. Machine learning: The high interest credit card
of technical debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014
Workshop), 2014. 8.1

[65] Shan-Hsiang Shen and Aditya Akella. An information-aware QoE-centric mobile video
cache. In Proceedings of the 19th annual international conference on Mobile computing &
networking, pages 401–412, 2013. 2.6

[66] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the
cache replacement problem. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 413–425, 2019. 2.6, 9.1.1

[67] Leon Sixt, Evan Zheran Liu, Marie Pellat, James Wexler, Milad Hashemi Been Kim, and
Martin Maas. Analyzing a caching model. arXiv preprint arXiv:2112.06989, 2021. 2.4

[68] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh Ghorbani,
Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett Witchel, et al. Learning
relaxed belady for content distribution network caching. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 529–544, 2020. 2.5, 2.6,
2.1, 2.2, 2.3, 4.3.1, 5.3.1, 9.1.1, 9.1.4

[69] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altınbüken, Eugene Brevdo, Jimmy
Coleman, Xiao Ju, Pawel Jurczyk, Richard Schooler, and Ramki Gummadi. HALP:
Heuristic aided learned preference eviction policy for YouTube content delivery network.
In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),
2023. 2.1, 2.5, 2.6, 2.1, 2.3, 7.1, 8.1

[70] George C Stierhoff and Alfred G Davis. A history of the IBM Systems Journal. IEEE
Annals of the History of Computing, 20(1):29–35, 1998. 1

[71] Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B Gibbons.
Driftsurf: Stable-state/reactive-state learning under concept drift. In International Confer-
ence on Machine Learning, pages 10054–10064. PMLR, 2021. 8.1

[72] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, Kai Li, Wen Xia, Yucheng Zhang,
Yujuan Tan, Phaneendra Reddy, Leif Walsh, et al. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and Storage Technologies (FAST 15),
pages 373–386, 2015. 2.5, 2.1, 9.1.1

[73] Tianqi Tang, Sheng Li, Lifeng Nai, Norm Jouppi, and Yuan Xie. Neurometer: An integrated
power, area, and timing modeling framework for machine learning accelerators industry
track paper. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 841–853. IEEE, 2021. 3.2

[74] Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer
Science Department, Trinity College Dublin, 106(2):58, 2004. 8.1, 8.1, 8.5

106

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017. 9.3

[76] Olivier Verscheure, Chitra Venkatramani, Pascal Frossard, and Lisa Amini. Joint server
scheduling and proxy caching for video delivery. Computer Communications, 25(4):
413–423, 2002. 2.6

[77] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason Liu, Raju
Rangaswami, Ming Zhao, and Giri Narasimhan. Driving cache replacement with ml-based
LeCaR. In HotStorage, pages 928–936, 2018. 2.5, 2.1, 2.3, 9.1.1

[78] Matthew Wachs and Gregory R Ganger. Co-scheduling of disk head time in cluster-based
storage. In 2009 28th IEEE International Symposium on Reliable Distributed Systems,
pages 278–287. IEEE, 2009. 2.6

[79] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R Ganger. Argon:
Performance insulation for shared storage servers. In FAST, volume 7, pages 5–5, 2007. 2.6

[80] Hua Wang, Jiawei Zhang, Ping Huang, Xinbo Yi, Bin Cheng, and Ke Zhou. Cache what
you need to cache: Reducing write traffic in cloud cache via “one-time-access-exclusion”
policy. ACM Transactions on Storage (TOS), 16(3):1–24, 2020. 2.6

[81] Hui Wang and Peter Varman. Statistical workload shaping for storage systems. In 2009
International Conference on High Performance Computing (HiPC), pages 274–283. IEEE,
2009. 7.1

[82] Peng Wang and Yu Liu. Optimizing replacement policies for content delivery network
caching: Beyond Belady to attain a seemingly unattainable byte miss ratio. arXiv preprint
arXiv:2212.13671, 2022. 2.6, 2.1, 2.3, 8.1, 9.1.1

[83] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang, Chao Shi, and Lilong Huang.
Separating data via block invalidation time inference for write amplification reduction in
Log-Structured storage. In 20th USENIX Conference on File and Storage Technologies
(FAST 22), pages 429–444, 2022. 2.6, 2.3

[84] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden
contexts. Machine learning, 23:69–101, 1996. 8.1

[85] Daniel Lin-Kit Wong, Hao Wu, Carson Molder, Sathya Gunasekar, Jimmy Lu, Snehal
Khandkar, Abhinav Sharma, Daniel S. Berger, Nathan Beckmann, and Gregory R. Ganger.
Baleen: ML admission & prefetching for flash caches. In 22nd USENIX Conference on
File and Storage Technologies (FAST 24), pages 347–371, Santa Clara, CA, February
2024. USENIX Association. ISBN 978-1-939133-38-0. URL https://www.usenix.org/
conference/fast24/presentation/wong. 2.1, 2.2, 2.3

[86] Nan Wu and Pengcheng Li. Phoebe: Reuse-aware online caching with reinforcement
learning for emerging storage models. arXiv preprint arXiv:2011.07160, 2020. 2.6, 9.1.1

[87] Gang Yan and Jian Li. RL-Bélády: A unified learning framework for content caching. In
Proceedings of the 28th ACM International Conference on Multimedia, pages 1009–1017,
2020. 2.6, 2.1, 8.1, 9.1.1

107

https://www.usenix.org/conference/fast24/presentation/wong
https://www.usenix.org/conference/fast24/presentation/wong

[88] Dongsheng Yang, Daniel S Berger, Kai Li, and Wyatt Lloyd. A learned cache eviction
framework with minimal overhead. arXiv preprint arXiv:2301.11886, 2023. 2.6, 2.1, 2.3,
8.1, 9.1.1

[89] Juncheng Yang, Yao Yue, and KV Rashmi. A large scale analysis of hundreds of in-memory
cache clusters at Twitter. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 191–208, 2020. 2.2, 2.3, 8.1

[90] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 503–518, 2021. 2.3

[91] Juncheng Yang, Ziming Mao, Yao Yue, and KV Rashmi. GL-Cache: Group-level learning
for efficient and high-performance caching. In 21st USENIX Conference on File and Storage
Technologies (FAST 23), pages 115–134, 2023. 2.1, 2.2, 2.3, 8.5, 9.1.1

[92] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and KV Rashmi. Fifo can be better
than lru: the power of lazy promotion and quick demotion. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, pages 70–79, 2023. 9.1.4

[93] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and K.V. Rashmi. Fifo can be better
than lru: the power of lazy promotion and quick demotion. In The 19th Workshop on Hot
Topics in Operating Systems (HotOS 23), 2023. 9.2.3

[94] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak. Fifo queues
are all you need for cache eviction. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 130–149, 2023. 5.4.2, 9.1.4

[95] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie Wang,
Rongyao Chen, Jianying Wang, and Gui Huang. Leaper: A learned prefetcher for cache
invalidation in lsm-tree based storage engines. Proceedings of the VLDB Endowment, 13
(12):1976–1989, 2020. 2.6

[96] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer Wolfmeister.
CacheSack: Admission optimization for Google datacenter flash caches. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 1021–1036, 2022. 1, 1.1, 2.3, 2.3.1,
2.6, 2.1, 2.3, 4.2, 5.1, 6, 8.1, 9.7

[97] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, Homer Wolfmeister, and
Junaid Khalid. CacheSack: Theory and experience of Google’s admission optimization for
datacenter flash caches. ACM Transactions on Storage, 19(2):1–24, 2023. 2.3, 2.5, 2.6, 2.1,
3.1, 6, 6.1, 7.1, 8.1, 9.5, 9.2.1

[98] Jieming Yin, Subhash Sethumurugan, Yasuko Eckert, Chintan Patel, Alan Smith, Eric
Morton, Mark Oskin, Natalie Enright Jerger, and Gabriel H Loh. Experiences with
ML-driven design: A NoC case study. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 637–648. IEEE, 2020. 1, 1.1

[99] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal data placement
for heterogeneous cache, memory, and storage systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(1):1–27, 2020. 9.1.1

108

[100] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and KV Rashmi. {SIEVE} is
simpler than {LRU}: an efficient {Turn-Key} eviction algorithm for web caches. In 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pages
1229–1246, 2024. 9.1.4

[101] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin Cheng.
OSCA: An Online-Model based cache allocation scheme in cloud block storage systems.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 785–798, 2020.
2.6, 2.3

[102] Yu Zhang, Ke Zhou, Ping Huang, Hua Wang, Jianying Hu, Yangtao Wang, Yongguang
Ji, and Bin Cheng. A machine learning based write policy for SSD cache in cloud block
storage. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1279–1282. IEEE, 2020. 2.6

[103] Mark Zhao, Satadru Pan, Niket Agarwal, Zhaoduo Wen, David Xu, Anand Natarajan, Pavan
Kumar, Shiva Shankar P, Ritesh Tijoriwala, Karan Asher, Hao Wu, Aarti Basant, Daniel
Ford, Delia David, Nezih Yigitbasi, Pratap Singh, Carole-Jean Wu, and Christos Kozyrakis.
Tectonic-Shift: A composite storage fabric for large-scale ML training. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), 2023. 2.3, 9.2.1

[104] Giulio Zhou. Building reliable and transparent machine learning systems using structured
intermediate representations. PhD thesis, Carnegie Mellon University, 2024. 10.2

[105] Giulio Zhou and Martin Maas. Multi-task learning for storage systems. In Proc. ML Syst.
Workshop, 2019. 10.2

[106] Giulio Zhou and Martin Maas. Learning on distributed traces for data center storage
systems. Proceedings of Machine Learning and Systems, 3:350–364, 2021. 2.5, 2.1, 10.2

[107] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie
Liu, and Tianming Yang. Improving cache performance for large-scale photo stores via
heuristic prefetching scheme. IEEE Transactions on Parallel and Distributed Systems, 30
(9):2033–2045, 2019. 2.6

[108] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replacement algorithm for
second level buffer caches. In USENIX Annual Technical Conference, General Track, pages
91–104, 2001. 1

[109] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch. Saving cash by
using less cache. In 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
12), Boston, MA, June 2012. USENIX Association. URL https://www.usenix.org/
conference/hotcloud12/workshop-program/presentation/zhu. 7.1

[110] Indrė Žliobaitė. Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784,
2010. 8.1

109

https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zhu
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zhu

	1 Introduction
	1.1 The case for ML in flash caching
	1.2 Baleen: ML for admission and prefetching that optimizes peak HDD load and storage TCO (HDDs+cache)
	1.3 Optimizing for peak load, workload drift and other ML caching explorations
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Bulk storage systems in data centers
	2.2 Bulk storage limited by disk-head time (DT)
	2.3 Flash caches absorb HDD load but have limited write endurance
	2.3.1 Introducing admission policies and baselines (RejectX, CoinFlip)

	2.4 Decomposing the caching problem
	2.5 Limitations of existing systems
	2.6 Related work

	3 Experimental setup
	3.1 Datasets: real traces from production caches for bulk storage systems
	3.1.1 Trace collection and preprocessing
	3.1.2 Workload characteristics

	3.2 BCacheSim: our online hybrid cache simulator
	3.3 Our academic CacheLib testbed
	3.4 Validation of BCacheSim simulator and CacheLib testbed
	3.5 Miscellaneous experimental details

	4 Episodes & OPT: modeling flash caching and exploring savings in Disk-head Time
	4.1 Measure Disk-head Time, not hits or bandwidth
	4.2 Episodes: an offline model for flash caching
	4.3 OPT approximates optimal online admission policy
	4.3.1 Comparison to LRB's Relaxed Belady

	4.4 Extending OPT for prefetching
	4.5 Efficiently exploring the space of possible improvements
	4.6 From analytical model to simulation
	4.7 Summary

	5 Baleen: Training ML policies for flash caching
	5.1 ML for flash admission
	5.1.1 Design and implementation

	5.2 ML for prefetching
	5.2.1 Learning what to prefetch: ML-Range
	5.2.2 Learning when to prefetch: ML-When

	5.3 Evaluation
	5.3.1 Baleen reduces Peak DT over baselines
	5.3.2 Prefetch selectively, in tandem with admission

	5.4 Importance of optimizing the right metric: Disk-head Time
	5.4.1 Reductions in IO miss rate, bandwidth miss rate
	5.4.2 Comparison to ML baselines: Flashield and CacheLib-ML
	5.4.3 Overhead
	5.4.4 Validation of Baleen on testbed

	5.5 Summary

	6 Baleen-TCO: choosing the best parameters to minimize cost
	6.1 Background: TCO dominated by backend HDDs required
	6.2 Deriving a TCO function based on public data
	6.3 Baleen-TCO
	6.4 Evaluation: Baleen-TCO chooses optimal flash write rate

	7 Optimizing for peak load
	7.1 Background
	7.2 Indirect optimization for peak load
	7.2.1 Choosing parameters to optimize for Peak DT.

	7.3 Analyzing trends in Peak DT over time
	7.3.1 Breaking down DT at peak periods

	7.4 Explicitly optimizing for Peak Disk-head Time
	7.4.1 Varying policy selectivity by system load level
	7.4.2 Prioritizing episodes by their contribution to peak load
	7.4.3 Future work

	7.5 Summary

	8 Workload drift in caching
	8.1 Background
	8.2 Collecting longer traces for analyzing drift
	8.3 Evaluating drift across time and clusters
	8.4 Drift mitigation via retraining
	8.5 Future work
	8.6 Summary

	9 Lessons learned from other ML-guided caching explorations
	9.1 ML for flash eviction
	9.1.1 Background
	9.1.2 Analytical model showed potential benefits of early eviction in reducing cache space needed
	9.1.3 Improving eviction by using ML to predict episode properties
	9.1.4 Future work
	9.1.5 Summary

	9.2 ML for DRAM placement to reduce writes
	9.2.1 Background
	9.2.2 Evaluation
	9.2.3 Using DRAM to gain more information on episodes before deciding
	9.2.4 Admit episodes with a very short timespan directly to DRAM
	9.2.5 Future work

	9.3 More advanced models: Cache Transformer
	9.3.1 Neural Architecture of Cache Transformer
	9.3.2 Training setup
	9.3.3 Evaluation
	9.3.4 Summary

	9.4 Segment-aware admission
	9.5 Benefit attribution for Baleen and quantifying gap to OPT
	9.6 Prefetching on PUT
	9.7 Lessons from ML deployment in production
	9.8 Summary

	10 Conclusions, lessons learned and future directions
	10.1 Lessons learned
	10.2 Limitations: data, data, data
	10.3 Future directions

	Bibliography

