
Formalizing Object Equivalence in Machine
Knitting

Jenny Lin

CMU-CS-24-148

August 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
James McCann, Chair

Jan Hoffmann
Scott Hudson

Adriana Schulz, University of Washington

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Jenny Lin

This research was sponsored by Shima Seiki Mfg Ltd and the National Science Foundation under award numbers 1955444
and 2319182. The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

Keywords: Computer-aided Manufacturing, Computer-aided Design, Program Semantics, Domain
Specific Languages, Machine Knitting, Knot Theory

Abstract
Correctness is a desirable property for any program, whether that program computes an

equation, controls a machine, or interprets data. Defining what it means for a program to
be correct can be surprisingly nuanced, however, especially when that program is used to
create a physical object. We can reframe this problem by treating correctness as a question of
equivalence. Given some target object, is the result of a fabrication process equivalent to the
target object? However, this now requires that we answer the still complicated question of
what it means for two objects to be equivalent. In order to do so, we not only need a precise
definition of object meaning, but also a strong understanding of how we create and interact
with the objects around us.

In this thesis, I tackle this problem of meaning and equivalence for machine knitting pro-
grams. Knitting is the act of taking a few strands of yarn and deforming them into interlocking
loops that result in a stable structure. While knitting machines are capable of quickly fabricat-
ing a vast array of structures with controllable material properties, the complexity of both the
machine control process and the resulting physical object makes translating between the two
incredibly difficult. This gap prevents existing programing and design tools from accessing
the full breadth of its fabrication possibilities. To address this, I formally characterize the
complete space of machine knitting programmings. I begin by introducing fenced tangles,
a novel mathematical object designed to match intuition about knit object meaning. From
there, I use fenced tangles to define a semantics for knitout, which is a low-level language
for controlling v-bed knitting machines. The underlying program meaning is then used to
reason about the correctness of a set of practical program transformations. I then use this
semantic function as guidance for developing Instruction Graphs, which are an intermediate
representation of knit objects. Unlike existing knit object representations, Instruction Graphs
can capture the full range of machine knittable objects and can be verified as machine knit-
table using three easy to check graph embedding properties. Finally, I discuss how fabrication
constraints may enable an algebraic approach to computing machine knitting program equiv-
alence.

iv

Acknowledgments
Like with many parts of my dissertation, I write these acknowledgements with many

strong thoughts and the vague wish that I was better at expressing them. First off, Jim I
literally couldn’t have done this thesis without you, but even in a more figurative sense, I can’t
imagine having anyone else as a thesis advisor. Thank you for teaching me about research,
food, and life. I’m proud to be your student. Next, I’d like to thank my committee Jan, Scott,
and Adriana. Like this thesis, you cover a broad range of specialties, and I really appreciate
the broad range of advice you gave me on research and academia. On the topic of academia,
I’d like to thank the many professors that gave me professional advice, with a special shoutout
to Mor. Thank you for being my supplemental advisor. Your wisdom and confidence helped
keep me grounded through the arduous job search.

The Textiles Lab is full of cool people who have been a ton of fun to work with, both
in research and more esoteric pursuits. Thank you Nur, Ella, Gabrielle, Yuichi, Catherine,
Himalini, Michelle, Holly, Teadora, Pratyay, and others for being amazing labmates. Vidya,
thanks for being a cool collaborator, role model, and friend in the Textiles Lab and during
my internship at Amazon. Tom, thanks for delving into braid theory with me. Let’s get fused
braids figured out! Lea, I will try to stop screaming in excitement whenever I see you, but that
is probably a lost cause. In addition, I’ve been lucky to work with many wonderful external
collaborators. Thank you Sabetta, Jonathan, Gilbert, Yuka, Cem, and Yura for doing funky
knitting research with me. I look forward to doing more in the future. And of course, the
Textiles Lab would be in shambles without the administrative support of Jess and then Brian.
Thanks for helping me navigate paperwork!

It is possible I could’ve done my thesis without the support of my friends, but I wouldn’t
bet on it. I’d like to give a general thanks to all the cool friends I met at board games night, and
everyone at Women and NB lunch, with a special thanks to the various organizers throughout
the years. I am bad at scheduling hangout time with friends, so it’s nice to have that part
figured out! One of the things I will miss most about CMU is getting to just hang out and chat
with the amazing folks in the graphics lab. Thank you Ticha, Arjun1, Other Arjun, Dorian,
Nicole, Ruta, Chris, Hossein, Olga, Nick, Bailey, Tanli, Nupur, Zoë, Rohan, Sreekar, and
everyone else I’ve forgotten to mention. A special shoutout to graphics Evan, who was an
amazing office mate and my Dungeon Master for five(!) years over the course of two(!!)
campaigns. It’s thanks to you that I got to meet Adam, Sara, Tyo, Crucible, Deriaz, and Drae,
and I’m so much happier because of it. And now for the non-exhaustive list of additional
friends I didn’t want to categorize: thanks to Quanquan, Annie, Jess, Ziv, Sol, Yvonne, David,
Marissa, Pallavi, Sara, Ray, Katherine, Justin, PL Evan, Aria, Giulio, Gaurav, and Francisco.
Ben, I’m glad we’re the sort of friends who can clean out each others fridges. Let’s keep
stranging voids for years to come. And thank you Mark. Without you, my life would have less
laughter, and the notation for horizontal composition of fenced tangles would be× instead of
⊗. Truly, a narrowly avoided disaster.

Finally, thank you to my family. Junjun, you’ve always been like a cool, older brother to
me. Vivi, you are my cool younger sister, and I’m so proud to have you in my life. And thank
you Mom, Dad, and Abu, for loving me, and supporting me, and raising me into the person I
am today. I love you.

1Send more pictures of Snowy

vi

Contents

1 Introduction 1
1.1 Thesis Structure . 2

2 Machine Knitting 5
2.1 Knitting Intuition . 5
2.2 Knitting Machine Structure . 6
2.3 Direct Machine Programming . 9
2.4 Automatic Program Generation . 10

3 Knit Object Equivalence 13
3.1 Topology Terminology . 13
3.2 Knitting and Knot Theory . 14
3.3 Fenced Tangles . 15

3.3.1 Basic Definitions . 15
3.3.2 Fenced Tangle Composition . 16
3.3.3 Permutation Tangles . 17

4 Semantics for Knitting Machine Programs 19
4.1 Formalizing Programming Languages . 19
4.2 Formal Knitout . 22

4.2.1 Translation Between Formal Knitout and Actual Knitout 22
4.2.2 Formal Knitout Semantics . 25

4.3 Rewriting Knitout Programs . 29
4.3.1 Rewrite Motivations . 30
4.3.2 Rewrite Rule Proofs . 33

4.4 Results . 46
4.4.1 Pass Optimization . 47
4.4.2 Full to Half Gauge . 48
4.4.3 Sheet Stacking . 48
4.4.4 Pleated Tube . 50

5 Compilation of Unscheduled Knitting Representations 53
5.1 Instruction Graphs . 55

5.1.1 Instruction Graph Definitions . 55
5.1.2 Instruction Graph Semantics . 57

5.2 Machine Knitablity Implies UFO Instruction Graph . 58
5.2.1 Lifting Knitout to Instruction Graphs . 58

vii

5.2.2 Upward, Forward, Ordered . 59
5.3 UFO Instruction Graphs are Machine Knittable . 61

5.3.1 Knitting Machine State . 62
5.3.2 Instruction Generation . 62
5.3.3 Program Composition . 63
5.3.4 Converting Events to Knitout . 64

5.4 System Implementation . 69
5.4.1 Semantic Preserving Graph Rewrite . 70
5.4.2 UFO Check . 71
5.4.3 Lowering (L) . 71
5.4.4 System Limitations . 71

5.5 Case Studies . 73
5.5.1 Interlock Pocket . 73
5.5.2 Barber Pole . 74
5.5.3 Infinity Scarf . 75

6 Practical Verification of Program Equivalence 77
6.1 The Artin Braids . 77
6.2 State Representation . 78
6.3 Optimal A* search . 79

6.3.1 Constraints . 80
6.3.2 Cost Model . 80
6.3.3 State Equivalence . 80
6.3.4 Heuristics . 81

6.4 Results . 82

7 Conclusion 85
7.1 Practical Knit Programming Tools . 85
7.2 Formalizing the Full Fabrication Pipeline . 86
7.3 Alternative Knitting Semantics . 86
7.4 Formalizing Fabrication At Large . 87

Bibliography 89

viii

List of Figures

1.1 The thesis roadmap. 2

2.1 A rectangular swatch of knitting. Highlighted is a single knit. 6
2.2 A needle performing the tuck operation . 7
2.3 A needle performing the knit operation . 7
2.4 Two needles performing the split operation . 8
2.5 A v-bed knitting machine creates fabric by using a carriage to actuate needles arranged

into front and back beds. The beds are positioned in an inverted “v” shape, with the back
bed behind the front bed (and, thus, not visible in this illustration). Yarn is supplied to the
needles by yarn carriers which run along carrier tracks. (Figure based on [Sanchez et al.
2023].) . 8

2.6 A knitout program is merely a sequence of knitting machine operations. When compiled
to a DAT program for a Shima SWG machine, operations are consolidated into passes. . . 9

2.7 A knitting machine may be programmed to make two opposite-bed sheets (a) at separate
needle indices or (b) one in front of the other. However, changing only the carriers used
in (b) can produce (c) a program that makes sheets linked at the edge. We present the
formal foundation required to reason about such subtle equivalences (∼=) and distinctions
(≇) among knitting programs. 10

2.8 Stitch graphs, the post-tracing knit graph representation used in Autoknit [Narayanan et
al. 2018], can represent a two color striped tube; but their scheduling approach fails to
faithfully translate this into machine knitting. Instead, the output contains yarn tangles
because their scheduler does not consider carrier crossings. 11

2.9 Attempting to represent a 7-column, 4-row swatch of interlock fabric with stitch meshes.
Right-going yarns are shown in gold; left-going yarns are shown in purple. Loop edges
are red, yarn edges are green. Arranging stitch faces as they appear in the final fabric
(top right) is aesthetically pleasing, but semantically incorrect, because it doesn’t capture
important yarn/loop crossings in a face. Capturing these crossings requires either, bottom-
left, building a basic block of interlock from sub-stitches; or, bottom-right, capturing a
larger block of the interlock pattern in its own face. In either case, the fabric’s appearance
is distorted by the requirement to route loops and yarns over separate edges. 12

3.1 A fenced tangle, T , and two projections, K and K◦, to fenced tangle diagrams which differ
in their equator orientation. 15

3.2 Equivalent fenced tangle diagrams are connected by sequences of smooth 2D deforma-
tions along with Reidemeister moves (R1-3) and fenced-tangle Reidemeister moves (R4,
R5), which work regardless of the number of arcs connected to the fence. 16

ix

3.3 Tangles without fences (top) can locally “unravel”. Fences (bottom) prevent unravelling
by restricting the motion of arcs at crossings. This is key to capturing the as-fabricated
topology of knit items. 16

3.4 Slab presentation and three types of fenced tangle concatenation. From left to right, an
(n,m)-slab, horizontal concatenation K1⊗K2, vertical concatenation K1 ◦K2, and layer
concatenation K1|K2 . 17

3.5 Given the particular interleaving ι =(1 2) we can define two separate and two merge slabs,
varying by the direction in which the yarns identified by ι are merged from or separated
to. The arrows act as a mnemonic to tell us which direction the ι yarns are being pulled
(reading the slab from bottom to top), and the character acts as mnemonic for whether the
yarns are being merged (Λ) or separated (V). 18

4.1 Formalization approach. The grammar of knitout (Def. 4.2) defines a set of programs,
which is narrowed by our validity relation (Fig. 4.4). Every valid knit program denotes
(i.e., “means”) a fenced tangle (Def. 3.5) via formal knitout semantics (Def. 4.7, Fig. 4.5). 20

4.2 An excerpt of formal knitout code for knitting linen stitch (a) describes the mechani-
cal actions performed by the machine, but is insufficient for describing the resulting knit
topology. Executing the program on initial state S0 produces a unique trace S0

kP−→ S5,
which proves our program is well-formed (b). Each machine state denotes points on a
slab’s boundary, while the trace denotes the fenced tangle that connect said points (c). . . . 23

4.3 The knitting machine consists of two beds of needles where at racking r, front bed needle
f.x is aligned with back bed needle b.x−r. In between the needles are yarn carrier tracks.
These logical machine locations are projected from 2D to 1D physical locations using a
left-to-right, front-to-back order, where each carrier projects to a single point and each
loop projects to two points. These ordered points on a line are what is denoted by a given
machine state E [S]. 26

4.4 Validity relation for knitout programs (see Definition 4.5), where #yarns is the size of the
yarn carrier sequence. Only valid knitout programs denote a fenced tangle. Note that for
a fixed S and ks, S′ is uniquely determined. 27

4.5 Fenced tangles produced by knitout. Part of the definition of knitout semantics (Defini-
tion 4.7). Other than rack, all diagrams are wrapped by the “frame” diagram, which
defines how the yarn carriers being used in an instruction (yarns) are merged (Λ) sepa-
rated (V) and how they are plated (π). State variables (r,Y,L) are all given with respect
to the initial state before an instruction, except for Y ′ in the frame diagram, which refers
to the state after the instruction is done. Note that a group of arcs in parallel annotated as
0-many will disappear from the diagram. Also note that all diagrams here are given for the
positive/right-ward knitting direction (+) and in the front-facing variant. The left-ward,
back-facing diagrams are flips of these diagrams; and the other two cases are derived via
a careful mirroring of the diagrams. All other instruction variation is parametric. 28

4.6 The fenced tangle diagrams denoted by programs (a) and (b) are topologically equivalent.
The diagram transformation is a simple application of ambient isotopy, and their equiva-
lence can also be proven using Lemma 4.14. In contrast, fenced tangles (b) and (c) are not
equivalent due to the change in crossing annotations in the circled region. 29

4.7 Screenshots of the rewrite-editor for Squish rewrite rule and the corresponding fenced
tangles. 34

4.8 The fenced tangle denoted by the conjugate left program. Note it is equivalent to the
fenced tangle for knit + f.x l yarns as seen in figure 4.5i. 45

x

4.9 Knitout code shown in the rewrite-editor and the corresponding fenced tangle. 46
4.10 Rewrite-editor screenshot and the corresponding knitout code of the pass optimization

example. See Definition 4.2 for the formal knitout syntax. Left is typical knitout that
novices tend to write, which is correct but inefficient due to unnecessary carriage passes.
After applying the Swap rewrite rule five times, we can consolidate knit and xfer
instructions so that the number of carriage passes becomes three. The impact of pass
consolidation increases as the size of the program gets larger. 47

4.11 Examples of sheets and tubes converted from full gauge to half gauge using rewrite rules
to guarantee topological equivalence. 49

4.12 Rewrite-editor screenshot and the corresponding knitout of the rewrite sequence for mov-
ing the knit/tuck instruction one to the left or right. The sequence of rewrites in this
example moves two knits (3:knit and 0:knit) from needle f.2 to f.3. 50

4.13 Photos of the fabricated pleated tube examples . 51

5.1 The chapter overview. We first present instruction graphs, which are a high-level knitting
representation that also denote fenced tangles (Section 5.1). By defining the function φ

that lifts all valid knitout programs to instruction graphs while preserving fenced tangle
equivalence (Section 5.2.1), we observe that all graphs in the co-domain of φ have three
graph properties: upward, forward, and ordered (Section 5.2.2). We then define function
L that lowers all UFO instruction graphs to an equivalent formal knitout program (Sec-
tion 5.3). Because we made sure the lifting/lowering functions commute with the deno-
tation functions, we prove that there is an equivalence-preserving bijection between UFO
instruction graphs and valid knitout programs, i.e. all UFO instruction graphs are machine
knittable. 54

5.2 Knit instruction graph nodes draw their contents from a countable set of exemplars, where
each exemplar denotes a fenced tangle. As seen in KNIT-right (a), rotating the exemplar
180◦ around the y axis rotates the fenced tangle as well to produce the mirror image
with all crossing annotations flipped. This is a different fenced tangle than KNIT-left (b).
Similarly, we need a left and right variation for SPLIT (c,d), while all remaining exemplars
(e-i) are equivalent to their mirror image. 56

5.3 Our semantics-preserving lifting function, φ , is defined by the per-statement liftings illus-
trated here. Each case is illustrated in specific but should be considered as a general tem-
plate as per Lin et al.’s construction. (Front/back and left/right variations are not shown,
but are constructable following a similar pattern). The grey boxes labeled idl and idr rep-
resent identity instruction graphs that connect uninvolved loops and yarns from the bottom
to the top boundaries. The grey L-shapes in the labeled tangles follow Lin et al.’s figure in
including both identity tangles and yarn routing. Our illustrated instruction graphs include
yarn routing explicitly; the definition for split includes annotations showing which part
of the figure implements each routing action. 60

5.4 Running our compilation function (L) to convert an UFO instruction graph G ∈ IGUFO

into knitout code. The graph is partitioned between events; then partition boundaries are
locally adjusted for consistent yarn-carrier ordering; finally, each partition is then trans-
formed into a formal knitout program. The tangle denoted by the knitout code matches
the tangle denoted by the instruction graph. (Note that the leftmost ribbon crossing the
lower boundary of the illustrated portion of the instruction graph has a loop count of two
because of earlier operations.) . 61

xi

5.5 The instruction graph of a stockinette sheet can be laid out such that all knit faces are
aligned with the viewing axis (a) This compiles to a full-gauge sheet. If we take a column
of nodes and fold it over, the result can be a program with mixed gauge (b) or an exces-
sively long float (c) depending on the relative locations of the nodes. Two layers with the
same number of columns can be alternated to produce half-gauge code (d). It is important
to note that all these graphs are equivalent from a topological perspective. The variations
(b), (c), and (d) were generated by applying deformations to the original graph (a) under
ambient isotopy using our GUI implementation (see section 5.4.1). 70

5.6 Instruction graphs are a complete unscheduled representation of machine knitting. An
instruction graph is machine knittable if and only if it has an upward, forward, and ordered
(UFO) presentation. Instruction graphs can represent complex knit structures outside the
capabilities of other unscheduled knit representations. For example, this interlock sheet
that contains a stockinette pocket (opening to the right in the instruction graph and knitout
code). Knit object is from a larger version of the same pattern. 74

5.7 Making a striped tube. A basic two-color striped tube is difficult to machine knit because
there is no way to create an ordered presentation graph using only rotation and flatten-
ing. However, a similar design that adds a twist between the yarns can be flattened to an
equivalent upward, forward, and ordered presentation. We used our system to convert a
higher-stitch-count version of this instruction graph to formal knitout; manually simplified
the formal knitout using rewrites; and produced knitout code. When up-scaled and run on
an industrial knitting machine the code produces a spiral tube as desired. 74

5.8 A naive infinity scarf (upper-left) can be flattened into two layers to produce a Forward
graph (lower-left). The cyclic yarn and stitch dependences prevent transforming the graph
to be Ordered and Upward. This requires changing the Instruction Graph to use two
different yarns (upper middle) allow it to be made Ordered; and, futher changing the
graph by modifying the orientation of the nodes (right; with height-compressed version in
dotted circle) allows it to be made fully UFO, and thus knittable. The photograph shows
the results of knitting a vesion of the UFO instruction graph with more rows and columns
of stitches added. 75

6.1 The left-to-right, back-to-front ordering on loops (colored circles) on a machine at zero
racking (left) and -1 racking (right). Note how the relative order of loops on the same bed
does not change. This includes loops on the same needle. 79

6.2 A transition from Si to state T costs a single transfer pass even if it is preceded by some
number of reversible transfers. Thus the states are equivalent, and we can use a single
canonical state canonicalize(S) when representing them in a search. 81

6.3 The Schoolbus + Sliders (sb+s) algorithm [Lin et al. 2018] produces transfer plans within
a factor of 3× of optimal on a set of 6-loop lace-like patterns (flat-lace). 83

6.4 The Collapse-Shift-Expand (cse) algorithm [McCann et al. 2016] produces transfer plans
that stray relatively far from optimal on a set of 8-loop shaped tube problems (simple-tubes).

. 83
6.5 The ad-hoc strategy of concatenating cable and tube rotation plans (dataset cable-tubes)

presents many opportunities for algorithmic optimization. 83
6.6 Our canonical-node optimization results in an approximately two-order-of-magnitude re-

duction in both the search runtime and in the number of nodes expanded in our tests on
the all-short dataset. 84

xii

List of Tables

4.1 Rewriting equivalences (rules) proven in this chapter. Rules with asterisks have precondi-
tions not present in this figure (see associated proof). 30

4.2 When performing operation ks(dir,n.x)=knit dir n.x l yarns or ks(dir,n.x)=tuck dir n.x l (y,s),
conjugate either moves ks one needle to the left (n.x-1) or one needle to the right (n.x+1).
In the back bed case ks(dir,b.n), conjugate only uses the SHIFT macro. In contrast, the
front bed case ks(dir,f.n) requires additional miss instructions to route yarns to the cor-
rect physical carrier location. The correct ordering of miss and SHIFT operations that
prevents intertwining of loops and carriers depends on the dir parameter, producing two
extra cases each. Note that all six cases require preconditions similar to those described in
the proof of Rewrite Rule 5. 43

6.1 Total sum of nodes expanded and time taken for various combinations of heuristics over
the 5002 problems that all heuristics finished. Heuristics were combined using max(h1,h2). 84

xiii

xiv

Chapter 1

Introduction

Computational fabrication is the use of computation to help improve the creation of physical objects. It
is a research area that encompases a broad range of subjects from Computer Aided Design (CAD) inter-
faces to the development of Computer Numerical Control (CNC) machines. In addition to the usage of
computers as direct tools for fabrication, computation is also used to study and improve the fabrication
process itself. Much like in traditional computer science domains, fabrication is concerned with efficiency,
optimality, and feasibility. And with the rise of fabrication tools controlled by computers running instruc-
tion sequences, many computer science techniques can find surprising direct applications in fabrication.
Underlying all of these research problems is a fundamental question that must be addressed: what does it
mean for a fabrication process to have made the right thing?

A principled approach would be to establish a series of desired properties and evaluate whether the
object has these properties. If it does, it is “right”, and if doesn’t, it is “wrong”. This turns our question
of correctness into one of equivalence: given some ideal object (either physical or abstract), is some other
object the same in all the ways that matter? Of course, changing the question does not necessarily mean
we have answered it. First, we must decide what our desired properties are, a task that not only requires
understanding of the object at hand, but also a way to characterize these properties in a way amenable to
evaluation. For example, imagine your favorite jacket is starting to wear out. I might declare that its size
is an important property to consider when we compare it to potential replacements. Yet in order to do this
comparison, we must define what the “size” of your jacket is. Is it the length of its sleeves? The volume
of material? The size category assigned to it by its manufacturer? The usefulness of our definition is
affected by both easy it is to evaluate as well as how reflective it is of reality; measuring multiple features
of a jacket is certainly more tedious than checking whether it is medium or large, but given the lack of
standardization of fashion sizing, it may still save on heartache in the long run.

Let’s say we’ve decided on a series of measurements, or a list of numbers that describes the size
of your jacket. Now imagine that I want to compare your favorite jacket against a sewing pattern; put
another way, I want to define equivalence between a set of fabrication instructions, and a physical object.
At first blush, this seems impossible, as an equivalence relation is defined on two objects from the same
mathematical domain. However, much like we can define a mapping from a physical object to a set of
equivalence criteria, we can define a second mapping on our fabrication instructions. So long as we define
a function that maps this sewing pattern to a list of the same size, we can compare the lists of numbers
and use that to reason about equivalence between your jacket and a sewing pattern.

What I have described is essentially a denotational semantics, or a way of formalizing a concrete
representation like a computer program (or a sewing pattern) as an abstract mathematical object. We
may then reason about properties such as equivalence in the mathematical domain and apply them to

1

Instruction GraphsKnitout

concrete

abstract

Fenced Tangles

Chapter 4 Chapter 5

Chapter 3

compilation from
object description to
machine instructions

Artin Braids

Chapter 6

“meaning” of a
knitting program

“meaning” of a
transfer plan

“meaning” of a
knitting data structure

Transfer Plans

Figure 1.1: The thesis roadmap.

the concrete representation. There are three problems we must keep in mind to ensure our semantics is
useful. First, is that of the domain, or what concrete representations we will seek to formalize. Next,
is the co-domain, or what abstraction we will use when reasoning about formal equivalence. Finally, is
the denotation function itself, or how we map from the concrete representation to the formal abstraction.
After all, we may define all sorts of nonsensical mappings, such as insisting all jackets are size ’M’, but if
they do not reflect reality, they are of no use. In this thesis, I will tackle these problems specifically within
the context of machine knitting.

1.1 Thesis Structure

Machine knitting is an additive fabrication process for soft goods that has experienced a recent surge in
popularity due to increased understanding of the scope and complexity of the objects that can be made. V-
bed weft knitting machines in particular, which use two parallel rows of needles to create shaped tubes and
sheets, have shifted from making relatively simple garments like socks and sweaters, to more complicated
shapes such as athletic shoes and architecture [Popescu et al. 2020], to even programmable materials like
actuators [Albaugh et al. 2019] and force sensors [Ou et al. 2019; Aigner et al. 2022]. To complement this
development, several high-level design and programming systems have been developed to aid in creating
increasingly complex objects. However, these tools only support a of subset of machine knitting programs,
and they suffer from bugs at their edge cases. This is because the complexity of both the machine control
process and the resulting physical object makes translating between the two incredibly difficult. Thus the
full capabilities of machine knitting remain remain locked to all but a small group of experts.

I will begin by building our intuition about knitting, both the physical material we interact with in the
real world, as well as the process of knitting using a machine. This includes both a review of machine

2

structure as well as how the control instructions, or knitting machine programs are generated. From there,
I will move towards discussing a topological knitting equivalence using knot theory. This involves both
reviewing prior work on using knot theory to characterize knitting as well as the first contribution of this
thesis: the fenced tangle, which is a novel mathematical object defined with the explicit goal of being able
to match our intuition of knit object equivalence. This leads us into applications of this idea (Fig. 1.1).

1. Chapter 4 uses the fenced tangle to define a denotational semantics for knitout, a low-level language
that describes knitting machine actions. This semantics is then used to reason about semantics-
preserving program rewrites and their use in knit programming.

2. Chapter 5 then proposes a new intermediate representation of knit objects called Instruction Graphs.
Not only are Instruction Graphs capable of representing any machine knitable object, I prove that
three graph properties are necessary and sufficent for toplogically correct lowering to knitting ma-
chine instructions.

3. Chapter 6 observes how restricting our attention to a subset of knit programs known as transfer
plans and adjusting our program semantics to work with the Artin Braids enables computationally
efficient verification of knit program equivalence. This in turn can be used to search for optimal
programs.

Finally, I will conclude with some observations on alternative formalizations of knitting, other program
properties this may allow us to analyze, as well as how insights from formally defining knit object equiv-
alence might extend to other fabrication domains.

3

4

Chapter 2

Machine Knitting

We begin by building our intuition on what a knit object is: what key properties make one knit object
distinct from another, with a focus on properties that can be controlled during the knitting process. From
there, we review the structure of knitting machines and the basic operations available to it. We can define
any language that allows the use of all cam plate setups and yarn carriers to be a complete knitting machine
language. We then discuss how knitting programs are currently written: either by directly describing
the sequence of machine operations with a low-level language, or by automatically generating machine
operations from a high-level object representation.

2.1 Knitting Intuition

Knitting is the process of taking a few strands of yarn, deforming them into loops, and pulling those loops
through other loops to produce a stable structure. The inset figure shows an example of a knit structure.
We might be tempted to think of knitting as surfaces, given the most common examples of knitting around
us are thin fabrics. However, this is counterproductive towards our goal of a generalized definition for knit
equivalence. A key feature of knitting is how different stitch patterns, or ways loops are entangled with
each other, can result in drastically different visual characteristics and macro-scale material properties.
For example, in the inset figure, all loops were formed by pulling a loop from the back of an existing loop
to its front. However, it is just as reasonable to pull a loop from the front to the back instead. Different
arrangements of front and back knits can produce drastically different appearances and material properties.
We may also do things like change the order in which loops are knit through, the way yarn connecting
loops is routed, and the number of loops that are knit through at once. More advanced techniques can even
be utilized to create surprisingly volumetric structures [Albaugh et al. 2021; Aigner et al. 2022]. While
one can use a tile-based approach to annotate different regions of a surface with different stitch types,
determining the correct set of tiles is actually a very complicated task, which I will discuss in more detail
later on. Thus throughout this thesis, I will reason about knitting at the yarn-level, where the specific
configuration of those yarn in space is what separates one knit object from another.

The yarns used to construct a knit fabric are typically pliable and can slide along other yarns. This
results in soft, deformable fabric structures. Thus in addition to the standard translation and rotation we
apply to rigid objects, we want to be able to bend and stretch knitting while preserving the underlying
stitch structure. However, intuitively, not all of these transformations should preserve object identity. The
yarn in a knit structure can be unravelled to undo the loops and re-knit into a completely configuration.
Including this level of deformation would mean that all knit objects with an equal number of yarns would
be considered equivalent; this trivializes the problem to the point of being meaningless. In practice, any

5

Figure 2.1: A rectangular swatch of knitting. Highlighted is a single knit.

loose ends in a knit object are secured during post-processing to prevent such unravelling. Once the ends
are secured, the loops constituting the object can continue to slide and the fabric can continue to deform in
3D space, but the relationships between yarns that constitute the basic building blocks of the fabric (e.g.,
the highlighted “knit” stitch) remain fixed. Thus we want our equivalence relations to preserve these basic
building blocks.

Finally, the characteristics of the yarn used in knitting has a large impact on the final object. The color,
mechanical construction, and materials in the yarn can have a drastic effect on the final object. That said,
yarn properties are not modified by the knitting process. Thus while choice of yarn has many implications
for the fabrication process, we will not include it in our definition of knit object equivalence. What can
be controlled by the knitting process is the amount of yarn used by each loop. Generally, using more
yarn makes a loop larger and more flexible, while using less yarn makes it smaller and stiffer. As it turns
out, addressing these properties is a surprisingly complicated problem, particularly within the context of
knitting machine programs. Thus we leave these remaining properties for future work, which we discuss
in Chapter 7.

2.2 Knitting Machine Structure

There are many different types of knitting machines with different architectures, but at a high-level, they
all work by using hook-shaped needles to form loops out of yarn that is delivered by yarn carriers. Yarn
carriers can be thought of as specialized tubes where one end of a yarn is threaded through its center and
secured at the machine, either by the in-progress knit, or by grippers that hold inactive, or currently unused
yarns. When a carrier is activated, or brought in, a gripper brings the free end to the needle that uses it
and holds it secure until the yarn carrier is used, which, in theory, secures the yarn in the growing fabric
and allows it to be safely released. Meanwhile, when a yarn carrier is brought out, a gripper grabs the
carrier’s yarn and cuts it. This detaches the carrier from fabric, allowing it to return to the inactive area.
As a carrier’s location changes relative to its attach point, yarn slides through the tube, causing it to release
or (in a limited capacity) pull back in the same strand of yarn it is attached to. This yarn trailing from the
carrier is what is manipulated by a needle to form a new loop. For example, during the tuck operation,
the needle’s hook reaches out and grabs the yarn delivered by a carrier. The needle hook pulls back in,
thus creating a new loop on the needle. If loops already exist on the needle, new loops will be stacked

6

Figure 2.2: A needle performing the tuck operation

Figure 2.3: A needle performing the knit operation

closer to the needle tip. A picture of the tuck operation is shown in Fig. 2.2. Note that in the displayed
example, the yarn carrier starts to the left of the needle, and moves to the right of it. Similarly, the knit
operation also involves the needle hook reaching out to catch a yarn. However, the hook pulls further in,
which pulls the new loops through all existing loops on the needle Fig. 2.3. The old loops then slide off
the needle and hangs underneath it. Once a loop slides off a needle, it cannot be reacquired.

Note that in both these examples, the carrier started to the left of a needle. However, what if the carrier
started to the needle’s right? One option would be for the needle to grab the yarn as the carrier moves
from right-to-left (here on known as the - direction). However, the carrier can also first miss, or move to
the left of the needle before it is grabbed, and then perform the actual operation while moving left-to-right
(the + direction). Because carrier movement always manipulates the location of its associated yarn, +
and - variations form different loop geometries. This means any operation that uses carriers must specify
which direction the carrier is moving.

A single knitting machine needle can accomplish very little, but by arranging multiple needles in a
row called a bed, we can start to knit sheets of fabric by forming each loop in a row using a different
needle. A wide variety of textures can be knit just by using a single bed and knit, tuck, and miss
operations [Twigg-Smith et al. 2024]. However, by introducing a second row of needles, we can greatly
increase the variety of knittable objects, both at the local stitch level and the global geometric level. V-bed
weft knitting machines (Fig. 2.5) consist of two facing beds. Between the two beds runs a number of
tracks, each of which has a single yarn carrier that provides yarn. By knitting on a mixture of front bed
and back bed needles, the resulting fabric will have a mixture of front knits and back knits. In addition,
a second bed can be used to make tubular structures by flattening the tube and assigning each half to one
bed. Finally, we can use pairs of needles on opposing beds to perform an additional operation. The split

7

Figure 2.4: Two needles performing the split operation

operation also forms new loops using yarn from carriers. But instead of dropping the old loops, they are
instead transferred to a different needle Fig. 2.4. The loops are moved without inducing any twist, which
means if we look at the order of a loop stack relative to its needle (e.g. from base to tip) the order of the
transferred stack is reversed relative to its new needle.

All three of these operations can use anywhere from zero to all of the carriers on the machine. In
the case where multiple carriers are used, certain machines can control the relative order of the newly
made loops; earlier carriers in the sequence are closer to the base of the needle. The zero carrier case is
common enough that tuck, knit, and split have the aliases amiss, drop, and xfer. Of particular
interest is the xfer operation, which can be used to move existing loops on the machine to new locations.
While split and xfer can only be performed on needles that are directly across from each other, v-bed
knitting machines can also perform a rack operation, which slides the two beds parallel to each other to
change needle alignment between the two beds.

view of front bed
during knitting

Carrier Tracks

Yarn Carriers Carriage Front Bed

Needle

Figure 2.5: A v-bed knitting machine creates fabric by using a carriage to actuate needles arranged into
front and back beds. The beds are positioned in an inverted “v” shape, with the back bed behind the front
bed (and, thus, not visible in this illustration). Yarn is supplied to the needles by yarn carriers which run
along carrier tracks. (Figure based on [Sanchez et al. 2023].)

The act of actuating the needle itself is performed by a carriage that rides along the length of the
needle beds. The carriage encases a configurable cam plate that engages with needles on the needle bed,
where each machine operation has a different cam plate setup. This has important implications. Any
number of stitches may be performed in one carriage pass as long as the stitches appear in order and use
compatible cam plate setups and yarn carriers. Knitting machine program efficiency is generally increased
by decreasing the number of passes – which means that rearranging knitting instructions without changing
program meaning is an important task for knit programmers.

8

1 ; ! k n i t o u t −2
2 ; ; C a r r i e r s : 1 2 3 4 5 6 7 8 9 10
3 in 2
4 tuck − f3 2
5 tuck − b2 2
6 tuck − f1 2
7 knit + b2 2
8 knit + f3 2
9 knit − f3 2

10 knit + b2 2
11 knit − f1 2
12 out 2

Figure 2.6: A knitout program is merely a sequence of knitting machine operations. When compiled to a
DAT program for a Shima SWG machine, operations are consolidated into passes.

2.3 Direct Machine Programming

Knitting programs have traditionally been written using low-level languages that directly control the knit-
ting machine with a sequence of instructions. The most basic language is knitout [McCann 2017], which
is a generalized language for v-bed knitting machines. It is purely a sequence of machine operations with
no control flow or variables, and it does not explicitly encode pass information.

Proprietary languages from knitting machine vendors, such as KnitPaint [Shima Seiki 2011] and
M1Plus [Stoll 2011], are “written” in a two-dimensional grid, where each row is a single carriage pass
(i.e. slice in time) and each column represents a machine location. The value in each cell specifies which
machine operation is performed at that location, while parameters for a given pass are located to the sides.
Machine-specific details are necessary to ensure that all operations in row can actually be actuated dur-
ing a single carriage pass. The grid-based structure used by KnitPaint and M1Plus can allow for some
understanding of the object structure, but is still divorced from the output geometry. While the x-axis
corresponds to location on the machine, and is thus correlated with the location of loops within the result-
ing object, the y-axis is fabrication time, not position in the object. Thus programs with many localized
operations that do not span the full width of the object will appear stretched out. Furthermore, depth-wise
information about the object is not explicitly visualized and must be inferred from the choice of operation.
These factors combined mean that even visual programs are difficult to interpret as objects.

For example, in Fig. 2.7, we see two very similar programs. Both programs alternate knitting between
carriers 3 and 5, where one carrier knits on front bed needles 1 to 50, while the other knits on back bed
needles 1 to 50, the difference being which carrier is used on which bed. Already, the DAT files looks
more like a single striped object instead of two layers of fabric, with the most noticeable difference being
a few extra rows at the beginning of program Fig. 2.7b. In fact, the actual difference between the resulting
objects is at the edges of the knit. In program Fig. 2.7a, the two layers are unconnected, resulting in two
separate sheets, while program Fig. 2.7b connects the layers to form a bi-colored tube.

9

(a) Stacked Sheets

≇

(b) Linked Sheets
Figure 2.7: A knitting machine may be programmed to make two opposite-bed sheets (a) at separate
needle indices or (b) one in front of the other. However, changing only the carriers used in (b) can produce
(c) a program that makes sheets linked at the edge. We present the formal foundation required to reason
about such subtle equivalences (∼=) and distinctions (≇) among knitting programs.

These CAD systems do support parametric templates for garments such as sweaters and gloves. Li-
braries of textures are also maintained that can be applied to patterns and further edited [Soft Byte Ltd.
1999; Shima Seiki 2011]. Guidebooks of advanced techniques also exist that can assist with this pro-
cess [Underwood 2009]. In addition, meta-programming interfaces like KnitScript [Hofmann et al. 2023]
and the JavaScript frontend of knitout [Carnegie Mellon Textiles Lab 2024] provide abstraction and en-
capsulation, which does reduce the repetitive and laborious tasks associated with low-level programming.

However, using any meta-programming language still requires a detailed understanding of how to
assign low-level structures within the knit object to machine resources and how to use machine operations
to create these structures. Even if knit fabric simulation was advanced enough to provide rapid, predictive
previews of a program’s output, this would still require the programmer to repeatedly iterate within the
realm of machine operations and evaluate in the object space, where the effect of program changes on the
resulting object can be quite unintuitive. A natural question is whether it’s possible to compile from a knit
object representation to low-level instruction sequence.

2.4 Automatic Program Generation

By now, I have hopefully made it clear that low-level languages are incredibly basic and unintuitive, akin
to assembly and gcode in terms of level of control. The amount of domain expertise required to create
even relatively simple objects serves as a high barrier of entry and impeeds experts from leveraging the full
capabilities of knitting machines. To simplify this process and make knitting machine programming more
accessible, researchers have developed various systems that enable the generation of knitting machine
programs from user-friendly, high-level specifications. These systems fall into the category of automatic
compilers, which aim to abstract away the complexities of low-level programming and allow users to focus
on the design aspects of their knitted objects. These methods all start with data structures that represent
the desired object but do not explicitly describe exact machine operations. When converting these data
structures into knitting machine programs, these compilers must both specify which instructions to use for

10

−−−−−−−−−−−−→
[Narayanan et al. 2018]

Figure 2.8: Stitch graphs, the post-tracing knit graph representation used in Autoknit [Narayanan et al.
2018], can represent a two color striped tube; but their scheduling approach fails to faithfully translate this
into machine knitting. Instead, the output contains yarn tangles because their scheduler does not consider
carrier crossings.

creating the specified object, as well as when and where on the machine the instructions will occur. For
hiistorical reasons, the later problem is known as scheduling in the knitting machine literature.

Early systems used primitives that are easy to compile into machine operations. For example, Mc-
Cann et al. [2016] proposes a set of sheet and tube primitives that can be composed into more complicated
shapes. Meanwhile, Popescu et al. [2018] segments a mesh into disc-shaped patches which must be man-
ually seamed to form the final structure. These methods only support one type of knit texture, greatly
simplifying instruction generation, and they sidestep the difficult problem of scheduling by working with
scheduled primitives or using disc-shaped (thus easy-to-schedule) patches, respectively. The Autoknit
system [Narayanan et al. 2018] was the first to include a compiler that converts an unscheduled knit-
ting representation (stitch graphs) to scheduled machine instructions (as part of an automatic pipeline to
converts a 3D meshes into knit objects). Since then, the Autoknit compiler has received two major devel-
opments. Visual Knit [Narayanan et al. 2019] allowed small programs to be attached before and after each
node in the graph. These pre- and post- programs can be used during instruction generation to modify
and insert knit structures. Knit Sketching [Kaspar et al. 2021] extended Autoknit to perform scheduling of
sheets. Many unscheduled knitting design systems essentially propose different high-level specifications
that are lowered to a stitch graph, which is then put through the Autoknit compiler [Narayanan et al. 2019;
Kaspar et al. 2019; 2021; Jones et al. 2021; Wu et al. 2021; Mitra et al. 2023].

Because Autoknit’s compiler was developed within the context of a larger design system, it carries
assumptions from that system that can lead to incorrect outputs. For example, the system does not intend
multiple yarns to be used at the same time unless they are carefully controlled, which leads to yarn tagging
when knitting striped objects (Figure 2.8). At a lower level, the collapse-shift-expand transfer planner used
by Autoknit [McCann et al. 2016] does not guarantee any particular stacking order of loops in decreases
(an important visual feature in lacework [Lin et al. 2018]). Further, the knitability constraints Narayanan
et al. [2018] describe for knit graphs (the data structure that is “traced” to form stitch graphs) are a mixture
of hard fabricability constraints, soft metric constraints for approximating the input mesh geometry, and
best-principle guidelines for generating more reliable knitting programs. So, while they do form a nice
set of intuitive knitability guidelines in the context of a knitting system for 3D meshes, they don’t exactly
define the borders of what is possible in machine knitting.

In contrast to Autoknit’s knit graphs (and their lowered stitch graphs) which only allow a few sim-
ple stitch types, augmented stitch meshes [Narayanan et al. 2019] store complex knitting sub-programs

11

simulated fabric extrinsic crossings (wrong)

w/ “miss” face w/ “interlock” face

Figure 2.9: Attempting to represent a 7-column, 4-row swatch of interlock fabric with stitch meshes.
Right-going yarns are shown in gold; left-going yarns are shown in purple. Loop edges are red, yarn edges
are green. Arranging stitch faces as they appear in the final fabric (top right) is aesthetically pleasing, but
semantically incorrect, because it doesn’t capture important yarn/loop crossings in a face. Capturing these
crossings requires either, bottom-left, building a basic block of interlock from sub-stitches; or, bottom-
right, capturing a larger block of the interlock pattern in its own face. In either case, the fabric’s appearance
is distorted by the requirement to route loops and yarns over separate edges.

in mesh faces, and use connections between face edges to indicate resource routing. Augmented stitch
meshes provide a nice way to visualize and edit many common knitting structures, but require that all “in-
teresting behavior” in the mesh is captured inside faces or their connectivity (not their embedding). This
can create problems when depicting certain multi-layer fabrics, like interlock. Interlock is a dense fabric
composed of two interleaved layers of knit rib. Building interlock using augmented stitch meshes, Fig-
ure 2.9, requires flattening this two-layer fabric in a way that no longer resembles the desired output; since
the “natural” approach of using multiple layers hides important yarn/loop crossing information outside
the faces and their connectivity.

There are two systems that do not rely on a variant of stitch graphs and autoknit’s compiler. The first
is a system for program generation with elasticity control by using single-jersey jacquard patterns [Liu
et al. 2021]. While they also used a dependency graph generated from a knittable stitch mesh, their library
of patterns required a custom compiler that does not generalize to other patterns. The second is KnitKit
[Nader et al. 2021], which aims to be a more flexible system for knit program generation from a high-
level design. KnitKit bridges high-level mesh representations to low-level machine instructions by using
input configurations, or “actions”. Input configurations involve expert-designed graph pattern matching,
which KnitKit’s lowering process handles automatically. The resulting “action graph” is then compiled to
machine instructions using expert-authored routines. This method is akin to employing custom compiler
passes external to the compiler, similar to LLVM or MLIR passes [Lattner & Adve 2004; Lattner et al.
2021]. Verifying the correctness of KnitKit’s compiler requires a general method of verifying action-
routine pairs. The expressivity of their system is also linked to the choice of action library; a more diverse
action library broadens the range of expressible knitting programs, but also requires careful authoring by
an expert.

12

Chapter 3

Knit Object Equivalence

As a reminder, we have decided that knitting is a collection of yarns, where the specific arrangement
of yarns in space is one of its important characteristics. We want some deformations of the object, like
stretching, to preserve equivalence, while others, like unraveling, to not preserve equivalence. What I’ve
just described is evocative of knot theory, or the study of one-dimensional objects embedded in space.
Indeed, it has been observed that an adequate mathematical characterization of knit objects ought to be
rooted in knot theory [Grishanov et al. 2009; Markande & Matsumoto 2020; Qu & James 2021]. But
similar to the situation in solid modeling, existing formalisms are subtly insufficient for capturing the
complete scope of machine knit objects. We begin with a review of the necessary topology concepts
before describing existing knot theoretical approaches to knitting and their limitations for reasoning about
object equivalence.

3.1 Topology Terminology

Topology is the study of topological spaces and homeomorphisms between such spaces. A precise def-
inition of topological spaces relies on point set topology. For more details, please see a standard refer-
ence [Munkres 2000]. Intuitively, a topological space is a set of points where each point within the space
has some neighborhood of points that are also within the topological space. A homeomorphism between
topological spaces is a bijective function that locally preserves the neighborhood for points within the
space (i.e. it is continuous). For example, the open disk S2 is homeomorphic with the Euclidean plane R2

because we can stretch the disk out until its boundary is at infinity to produce the Euclidean plane, and
we can shrink the plane back down to return to the disk. From the perspective of points within the disc,
they are always surrounded by a neighborhood of points, while points near the boundary continue to not
have neighbors “past” infinity. In contrast, the torus T 2 is not homeomorphic to the disk, as any mapping
inevitably puts a boundary point from the disk on then interior of the torus, which has no boundary. This
results in a discontinuity, where the size of the neighborhood suddenly jumps.

While homeomorphism is a kind of equivalence relation, it is not the equivalence relation used for
reasoning about knots. This is because homeomorphism is only concerned with the two topological spaces
in question and does not care about how a space might overlap with itself as it is transformed. Instead, we
work with embeddings, which are continuous, injective functions from one topological space to another.
Given embeddings f ,g : X → Y (X and Y topological spaces), an isotopy is a continuous function H :
X × [0,1]→ Y s.t. H(x,0) = f (x), H(x,1) = g(x), and H(x, t) is an embedding for every t. Intuitively,
the second parameter of H can be understood as “time” s.t. the whole isotopy can be understood as a
continuous motion or interpolation between f and g. As it turns out, directly reasoning about isotopy

13

between embeddings is also subtly incorrect for knot theory, as it allows us to start with any knot, shrink
down regions of it over [0,1), and then transform the regions to straight line segments at t = 1. Instead,
knots are defined to be equivalent under ambient isotopy. Embeddings f ,g : X→Y are ambiently isotopic
if there is an isotopy H from the identity id : Y → Y to some other homeomorphism h : Y → Y s.t. ∀x ∈
X : H(f (x),1) = g(x). That is, intuitively H is a warp of the entire ambient space H that warps f into g.
This, in turn, is the same as being able to bend, stretch, and squash the object described by f to transform
it into g in a way that avoids “cutting” the object.

3.2 Knitting and Knot Theory

The standard definition of a mathematical knot is an embedding of the circle in Euclidean space: S1→R3.
Embeddings of multiple circles are called links. Unlike in knitting, knots and links have no loose ends.
This is in part because all embeddings of the arc [0,1] in Euclidean space are equivalent under ambient
isotopy (as matches our intuition of knit unraveling!). While one can connect loose ends to each other
to produce closed circles, different choices of connections produce different kinds of links, making this
strategy suboptimal for reasoning about object equivalence. Notably, if we abstract knitting to be infinite
two-periodic structures instead of general arrangements of yarn in space, this suggests a canonical method
of connecting loose ends. Both Markande & Matsumoto [2020] and Grishanov et al. [2009] observed
that two-periodic knit structures can be represented with a link embedded in thickened torus T 2× [0,1].
Grishanov et al. [2009] then used knot invariants to classify different types of textile structures, which
Markande & Matsumoto [2020] used them to reason about knittability properites and basic composition.
The ability to use classical knot theory techniques to study knit structures is incredibly powerful. Un-
fortunately, the two-periodic assumption prevents us from applying this technique to equivalence of knit
objects.

An alternative is to represent knitting using other topological objects adjacent to knots. Most promis-
ing for our purposes are tangles [Adams 1994].
Definition 3.1 (Tangle). Let U be a topological space homeomorphic to the closed ball S3 with distin-
guished equator Q⊂ bd(U), which is homeomorphic to the circle S1. A tangle is an embedding of zero or
more arcs and circles γi : [0,1]→U where the endpoint of each arc lies on equator Q. Two tangles T1 and
T2 are equivalent under ambient isotopy.

Rather than reason about tangle equivalence directly, we can instead work with diagrams.
Definition 3.2 (Tangle Diagram). Let V be a topological space homeomorphic to the closed disc. A
tangle diagram in V is an immersion of zero or more arcs and circles γi : [0,1]→ V , where there are a
finite number of transversal intersections pi between arcs (including self-intersections) with each such
“crossing” annotated with one of the two arc segments “passing over” the other.

Two tangle diagrams K1,K2 are equivalent (K1 ∼= K2) if K1 can be transformed into K2 by some se-
quence of the following manipulations: ambient isotopy of V , or Reidemeister moves 1, 2, or 3 (Fig. 3.2).

We say that a tangle diagram K is a projection of a tangle T , Figure 3.1, if there is a projection of R3

to R2 sending U to V , Q to bd(V), γi in U to γi in V , and such that the crossing annotations agree with the
ordering of arcs in R3 as they are projected.
Definition 3.3 (Flip of a Diagram). Note that if K is a projection of T , then K◦ (the diagram obtained by
flipping the order of each crossing, and taking the mirror reflection in R2) is also a projection of T , but not
necessarily an equivalent projection.
Proposition 3.4. Let T , T ′ be two tangles and K, K′ their projections. Then T ∼= T ′ iff K ∼= K′ or K◦ ∼= K′

(see Figure 3.1)

14

arc
crossingfence

tangle

T

K

K◦

Figure 3.1: A fenced tangle, T , and two projections, K and K◦, to fenced tangle diagrams which differ
in their equator orientation.

Characterizing knitting as tangles would allow us to attach all end points to the equator of U . This
prevents them from moving to the interior to trivially unravel everything. However, when defining our
tangle, we must also commit to an ordering of end points on the equator; changing their ordering requires
overlapping two end points on the equator, which is not a valid embedding. While we can define a
convention for attaching the endpoints of knitting to the equator’s boundary, doing so inevitably impacts
equivalence between objects, which is less than ideal. What’s more, knitting techniques such as plating
rely on friction to keep yarns from moving around too much within the knit object. Unrestircted ambient
isotopy on the tangle’s internals means these techniques can not be captured. To address this, my co-
authors and I developed a new mathematical object known as the fenced tangle.

3.3 Fenced Tangles

A fenced tangle is defined similarly to a regular tangle, but additional fences which surround parts of
the tangle and restrict ambient isotopy there. Fences are essentially sub-tangles that are forbidden from
intersecting with each other. They are allowed to hold endpoints, which allows fenced tangles to be de-
tached from the larger boundary while preventing uncontrolled unravelling, so long as fences are placed
appropriately. The introduction of fences allows for semantically meaningful sections of knitting to be
preserved, while still allowing for the kind of flexible deformations expected of knitting. In addition, we
can define a standard presentation of fenced tangles that enables composition of fenced tangles. This will
be useful in the following chapters, where we will use fenced tangle composition to not only define se-
mantic functions, but also reason about program equivalence, machine knitability, and bounds on program
efficiency.

3.3.1 Basic Definitions

Definition 3.5 (Fenced Tangle (Diagram)). Let T be the data for a tangle defined on U . Additionally for
reference, let S2

L be the 2-sphere S2 along with a distinguished equator QL : S1→ S2
L. Then a fenced tangle

on U is defined by the tangle data T , along with a set of embeddings of this reference “fenced sphere”
Li : S2

L→U . These fenced spheres must satisfy the following conditions (i) all spheres are disjoint in U .
(ii) all intersections between arcs and fences are transverse and occur along the equator Li(QL) (fence).
Finally, we relax the tangle condition on where endpoints of arcs are allowed to lie. In addition to the
equator of U or joined up into a circle, endpoints of arcs may also lie on fences. Two fenced tangles are
equivalent if there is an ambient isotopy between them which also carries fences to fences (Fig. 3.3).

Given a fenced tangle diagram K on V , let fences be embeddings of the circles Li : S1→V satisfying

15

K K◦

K∼=

∼=

R1

R2 R3

∼=
or

K K

∼=
R4

R5

∼= ∼=

fence∼=

Figure 3.2: Equivalent fenced tangle diagrams are connected by sequences of smooth 2D deformations
along with Reidemeister moves (R1-3) and fenced-tangle Reidemeister moves (R4, R5), which work
regardless of the number of arcs connected to the fence.

∼=

̸∼=

Figure 3.3: Tangles without fences (top) can locally “unravel”. Fences (bottom) prevent unravelling by
restricting the motion of arcs at crossings. This is key to capturing the as-fabricated topology of knit items.

the following conditions: (i) all fences are disjoint in V . (ii) all intersections between arcs and fences are
transverse. (Similarly, arc endpoints are now allowed to lie on the fence circles instead of only forming
loops or running to the end of the diagram) A fenced tangle diagram is a tangle diagram together with a
set of fences. Two fenced tangle diagrams K1, K2 are equivalent if K1 can be transformed into K2 by some
sequence of ambient isotopies of R2, Reidemeister moves 1, 2, 3, or fenced-tangle Reidemeister moves 4,
5 (Fig. 3.2).

Similar to plain tangles, a fenced tangle diagram K can be a projection of a fenced tangle T , provided
fenced spheres are projected to fences, meaning that the sphere’s equator is projected to a diagram fence
and the volume enclosed by the fenced sphere is projected to the area enclosed by the fence. A similar
proposition holds for K◦.

3.3.2 Fenced Tangle Composition

Having now defined fenced tangles, it is useful to be able to describe them using a composition of simpler
fenced tangle diagrams. To do this, we first define a standard fenced tangle presentation:
Definition 3.6 (Slab Presentation). Let K be a fenced tangle diagram defined on R, a rectangle in the plane.
Then we say K is an (n,m)-slab if there are n arc endpoints lying on the bottom side of the rectangle and
m arc endpoints lying the top side of the rectangle, and no endpoints on the left or right.
Notation 3.7 (Slab Types). It will be useful to refer to the set of (n,m)-slabs by S m

n , so that we may
simply write K ∈S m

n .
We then define three types of tangle concatenation (see Fig. 3.4 for pictorial intuition).

Definition 3.8 (Horizontal Concatenation). Let K1 ∈S m
n and K2 ∈S q

p . By ambient isotopy, we can scale
the rectangles to have equal height. Then if we glue the right side of K1 to the left side of K2 we get their

16

K1⊗K2 K1 ◦K2 K1|K2

Figure 3.4: Slab presentation and three types of fenced tangle concatenation. From left to right, an (n,m)-
slab, horizontal concatenation K1⊗K2, vertical concatenation K1 ◦K2, and layer concatenation K1|K2

horizontal concatenation (K1⊗K2) ∈S m+q
n+p .

Definition 3.9 (Vertical Concatenation). Let K1 ∈ S p
n and K2 ∈ S m

p . Again, by ambient isotopy, we
may assume that the two rectangles have equal width, and that the p top points of K1 align with the p
bottom points of K2. Then we can construct their vertical concatenation (K1 ◦K2)∈S m

n by gluing the two
rectangles along the matching top/bottom.
Definition 3.10 (Interleavings). Let m,n ∈ N. Then, an interleaving ω of m and n (ω ∈ Im,n) can be
specified as a partition of [m+ n] into two sets of size m and n respectively. Let ω ⊆ [m+ n] be the first
set, of size m. Let ω ∈In,m be the opposite interleaving, specified by the second set of ω .
Definition 3.11 (Layer Concatenation). Let K1 ∈S m

n and K2 ∈S q
p , with both defined on the same rect-

angular region R (also achievable by ambient isotopy). Furthermore let ι ∈In,p, and ω ∈Im,q be inter-
leavings of endpoints of K1 and K2 on the bottom (input) and top (output) of this common rectangle R.
Then, (K1|ωι K2) ∈S m+q

n+p is the layering of K1 over K2 according to this interleaving. Let K1|ωι K2 contain
all arcs and labels from both diagrams. Any new crossings are annotated such that arcs from K1 pass over
arcs from K2. Furthermore, K1|ωι K2 is only considered well defined if (i) crossings between arcs and labels
from K1 and K2 are transverse, (ii) all arcs and labels in K1 lie outside of all labels in K2, and (iii) all arcs
and labels in K2 lie outside of all labels in K1.
Lemma 3.12 (Concatenations are Equivalence-Invariant). Let K1 ∼= K′1 ∈S m

n , K2 ∼= K′2 ∈S q
p , and K3 ∼=

K′3 ∈S p
m . Then K1 ◦K3 ∼= K′1 ◦K′3; K1⊗K2 ∼= K′1⊗K′2; and for any choice of ι and ω , K1|ωι K2 ∼= K′1|ωι K′2.

Proof. For K1 ◦K3 and K1⊗K2, this follows trivially from disjointness of the two composite diagrams in
the plane. For K1|ωι K2 the argument is less trivial. K1 and K2 can be unprojected into fenced tangles T1
and T2 on regions U1 and U2, sharing a common equator and a boundary disk in common. The interiors of
U1 and U2 are disjoint, and so can be arbitrarily modified with ambient isotopies before being reprojected
into a layered diagram.

Lemma 3.13. The three concatenation operators are associative, and each has a unit slab: id0⊗K ∼= K ∼=
K⊗ id0; id0|ididK ∼= K ∼= K|idid id0; and for K an (n,m)-slab, idn ◦K ∼= K ∼= K ◦ idm. Therefore it is justified
to omit parentheses when repeatedly concatenating in the same way. Furthermore, idn⊗ idm ∼= idn|idm ∼=
idn+m

Proof. Immediate from drawing diagrams for the relevant equations.

3.3.3 Permutation Tangles

Rather than draw out every tangle diagram in full, we will find it useful to define the structure of some
common fenced tangle slabs and use those to compose more complex fenced tangles.

17

Definition 3.14 (Identity Slabs). Let idn ∈S n
n consist of n arcs running straight up from the bottom to

the top of the slab, called an/the identity slab. When n can be inferred from the context, we simply write
id. id0 is also called the empty tangle.
Definition 3.15 (Permutation Slab). Let o be a permutation of n things specified (equivalently) as a one-
to-one function o : [n]→ [n], which may be notated as a non-repeating list of the numbers in [n] in any
order. Then define the slab πo ∈S n

n as n strands, each running from the ith input point to the o(i)th output
point without crossing itself, and such that whenever the strand starting at input i and the strand starting
at input j cross (with i < j) i crosses over j. All such slabs are equivalent. π−1

o is defined as the unique
slab s.t. πo ◦π−1

o = idn. However, note that in general π−1
o ̸= πo−1 . So for a given permutation o, the four

slabs πo, π−1
o , πo−1 and π

−1
o−1 are distinct. In particular, π

−1
o−1 looks identical to πo, except the crossings are

all right-over-left, rather than left-over-right. (and similarly for the other two cases)
Lastly, we want some way to pick and separate out some number of yarns; and in reverse, a way to

merge them back into a group.
Definition 3.16 (Separate and Merge). Let ι ∈In,p be an interleaving. Observe that ι defines a permuta-
tion function as follows: Let oι be the permutation function that sends the subset ι to [0,n) and the subset
ι to [n,n+ p) with the mapping monotonic within each side of the partition. We define separate to the left
as
←−
V ι = πoι

, and separate to the right as
−→
V ι = πoι

. We define merge from the left as
−→
Λ ι = π−1

oι
, and merge

from the right as
←−
Λ ι = π−1

oι
. Thus, the following inverse identities hold:

−→
Λ ι ◦

←−
V ι =

←−
Λ ι ◦

−→
V ι = idn+p.

Examples of the four slabs are given in Fig. 3.5.
Note that another four similar slabs could have been defined using o−1

ι instead of oι . However, we
will have no use for them: because of the physical constraints of a knitting machine, lower-numbered yarn
carriers must always cross over higher-numbered carriers.

Figure 3.5: Given the particular interleaving ι = (1 2) we can define two separate and two merge slabs,
varying by the direction in which the yarns identified by ι are merged from or separated to. The arrows
act as a mnemonic to tell us which direction the ι yarns are being pulled (reading the slab from bottom to
top), and the character acts as mnemonic for whether the yarns are being merged (Λ) or separated (V).

18

Chapter 4

Semantics for Knitting Machine Programs

The formal study of programming languages developed in order to unambiguously specify programming
languages and prove properties about them. At one extreme, such theories have allowed us to construct
mechanically verified C compilers [Leroy et al. 2016]. Even without such mechanized proofs, formal-
ization has influenced the design of major programming languages such as Java [Igarashi et al. 2001]
and newer domain-specific-languages, such as the network configuration language P4 [Doenges et al.
2021]. While knitout is a control language for knitting machines, not computers,1they too benefit from
a programming languages approach. When knitout was first presented as a universal language for v-bed
knitting machines, it was essentially defined using a small-step operational semantics, where each knitout
operation causes the machine to perform some mechanical action that results in a change in an abstract
knitting machine state [McCann et al. 2016]. While this semantics is useful for reasoning about properties
of the knitting process, it falls short when reasoning about program equivalence. This is because what we
want to preserve is not the exact actions taken by the machine, but the produced knit object.

Thus in this chapter, I formalize a denotational semantics of the machine knitting language knitout,
where valid knitout programs denote, or “mean” a fenced tangle. This allows fenced tangle equivalence
to be used to define an object-focused definition of knit program equivalence. From there, I use this
semantics to create a set of Rewrite Rules, or program transformations that always preserve the denoted
fenced tangle. The formalization structural overview of the chapter is shown in Figure 4.1.

4.1 Formalizing Programming Languages

To illustrate the concepts of used by this chapter as well as our notational conventions, we will describe a
simple language. For instance, consider the following program in an assembly-like language. It compares
two numbers held in variables R.1 and R.2, and subtracts the smaller variable from the larger.

LT R.3 R.1 R.2 ;
IF R.3 {

SWAP R.1 R.2
} ;
SUB R.4 R.1 R.2

To specify a language including such a program, we must first specify the grammar. We do this using
the well-known Backus-Naur form (BNF) for a context-free grammar. In the following grammar, we
specify that a program or statement (s) is defined to be either a sequence of two other statements or one of
four instructions. (A non-toy example would include more primitive instructions.)

1For example, knitout does not contain, e.g., variables, function calls, or control flow.

19

Formal Knitout Programs (Definition 4.2)

Fenced Tangles (Definition 3.5)

Valid Programs (Fig. 4.4)

Knittable Fenced Tangles

“meaning” E [. . .] (Definition 4.7) Computing

Math

Figure 4.1: Formalization approach. The grammar of knitout (Def. 4.2) defines a set of programs, which
is narrowed by our validity relation (Fig. 4.4). Every valid knit program denotes (i.e., “means”) a fenced
tangle (Def. 3.5) via formal knitout semantics (Def. 4.7, Fig. 4.5).

s ::= i1; s1 | i1
i ::= LT r1 r2 r3
| SUB r1 r2 r3
| SWAP r1 r2
| IF r { s }

r ::= R.n
n ∈ N

Grammars are one example of a structurally inductive definition. Formally, the grammar is defining
a set of strings (or equivalently, ASTs) via induction. To be explicit, let S0 = /0 be the set of all height-0
ASTs. Then, S1 is the set of all 1-instruction programs. In general Si is the set of all programs that can be
constructed from the grammar rules, assuming s1 ∈ Si−1. The set of all grammatical statements is then the
union (or “least fixed point”) of all Si, namely S =

⋃
∞
i=0 Si. Analogously, the syntax for our formalization

of knitout can be found in Definition 4.2.
In general, not every grammatical program may be error-free. In fact, we may not even be able to say

what every grammatical program means. For example, the LT instruction computes and stores a Boolean
value into r1, and the IF instruction branches based on a Boolean value. We could define every non-0
value to be “truthy” as in languages like C or Javascript, but for the sake of our example, let’s instead say
that using an integer where we expect a Boolean is an error.

We now have a decision to make. How do we formalize errors in our language? One approach (which
I do not use in this thesis) is to specify the meaning of errors via some kind of error state. If we were to go
down this route, then we might expect to prove that a type-system for our language prevents such errors.

For knitout, I will follow a second approach to typing. The type-system serves to restrict our atten-
tion to a subset W ⊆ S of “valid” programs. Then we will only worry about specifying the meaning
(i.e., semantics) of these valid programs. Additionally, the typing will annotate our AST with additional
information that makes it easier to specify the meaning of our programs.

Let Γ : {r} → {Int,Bool} be a partial function mapping register names to types, where our partial
function notation is as follows:
Definition 4.1 (Partial function notation). Let A and B be sets with a distinguished default element ⊥ of

20

B. Then a partial function σ ∈ A→ B is a function from A to B with the following notational conventions
and operations defined.

• [] is the empty partial function defined as [](a) =⊥.
• [a 7→ b] is a singleton partial function, defined as [a 7→ b](a) = b and [a 7→ b](a′) =⊥ when a ̸= a′.
• Given σ ∈ A→ B, σ [a 7→ b] is an extension of a partial function defined as σ [a 7→ b](a) = b and

σ [a 7→ b](a′) = σ(a′) when a ̸= a′.
• Given two partial functions σ ,σ ′ ∈ A→ B, σσ ′ is their concatenation (not function composition)

defined as σσ ′(a) = σ ′(a) if σ ′(a) ̸=⊥, and σσ ′(a) = σ(a) otherwise. (i.e., first lookup in σ ′ and
then lookup in σ if that fails)

• For a partial function σ ∈ A→ B, we say that a ∈ σ if σ(a) ̸=⊥
We call this the typing environment. Then we can define a type-checking relation Γ1 ⊢ s ⊣ Γ2, which

says that if the registers hold values with types specified by Γ1, and program s is run, then it will run
successfully and leave the registers holding values with types specified by Γ2. Like the grammar itself,
we define this typing relation via structural induction. For historical and conventional reasons, we do this
using a horizontal line, known as sequent notation: A rule of the form A B

C is equivalent to the logical
statement “If A and B, then C.”

Γ1 ⊢ i ⊣ Γ2 Γ2 ⊢ s ⊣ Γ3 T-Seq
Γ2 ⊢ i; s ⊣ Γ3

Γ(r1) = Γ(r2) T-SWAP
Γ ⊢ (SWAP r1 r2) ⊣ Γ

Γ(r2) = Int Γ(r3) = Int
T-LT

Γ ⊢ (LT r1 r2 r3) ⊣ Γ[r1 7→ Bool]

Γ(r2) = Int Γ(r3) = Int
T-SUB

Γ ⊢ (SUB r1 r2 r3) ⊣ Γ[r1 7→ Int]

Γ(r) = Bool Γ ⊢ s ⊣ Γ
T-IF

Γ ⊢ (IF r { s }) ⊣ Γ

Using these rules, our original example program is well-typed with initial typing environment Γ0 =
[R.1 7→ Int, R.2 7→ Int] and final typing environment Γ′ = Γ0[R.3 7→ Bool, R.4 7→ Int]. (We omit the
derivation to save space.)

For knitout, the analogue of this type-checking rule can be found in Definition 4.5 and Fig. 4.4. Rather
than writing Γ1 ⊢ s ⊣ Γ2, I write S0

ks−→ S1, where S0 and S1 are abstract states of our knitting machine. This
is because type-checking of knitting programs is equivalent to performing a kind of abstract execution or
simulation of the knitting machine – sufficient to determine whether all resources are always present in
the correct places for an execution of the machine to make sense. Despite tje use of arrows (→) this is not
a specification of knitting program semantics.

To complete the definition of our toy language, we must specify what the programs actually mean.
The meaning of most computational programs is the function which that program computes. In particular,
let σ : {r} → (Z∪B) be a partial function mapping register names to integers or Booleans. We call σ

the store, and use ΣΓ to mean the set of all possible stores whose values are consistent with the typing
environment Γ. Then given a well-typed program Γ0 ⊢ s ⊣ Γ1, the denotation (aka. meaning or semantics)
of the program is a function between stores E [Γ0 ⊢ s ⊣ Γ1] : ΣΓ0 → ΣΓ1 . In total, the function E specifies
the semantics of our entire language, rather than a single program. We write E to suggest “evaluation.”

Like every other part of the language, we again use structural induction to define the function E .

21

E [Γ0 ⊢ i; s ⊣ Γ2](σ) =

(
E [Γ1 ⊢ s ⊣ Γ2]◦
E [Γ0 ⊢ i ⊣ Γ1]

)
(σ)

E [Γ0 ⊢ LT r1 r2 r3 ⊣ Γ1](σ) = σ [r1 7→ (σ(r2)< σ(r3))]

E [Γ0 ⊢ SUB r1 r2 r3 ⊣ Γ1](σ) = σ [r1 7→ (σ(r2)−σ(r3))]

E [Γ0 ⊢ SWAP r1 r2 ⊣ Γ1](σ) = σ [r1 7→ σ(r2), r2 7→ σ(r1)]

E [Γ ⊢ IF r { s } ⊣ Γ](σ) =

{
E [Γ ⊢ s ⊣ Γ], σ(r) = true
σ , otherwise

Finally, observe that if we wanted to optimize programs in our toy language, we would be able to
prove that certain rewritings of programs are correct – by appeal to the semantics we have just defined.
For example, it should be the case that swapping the contents of two registers, and then immediately swap-
ping those contents back is equivalent to the identity function (or empty program). A real programming
language may allow us to deduce many such equivalences, or rewrite rules. Such rules form an important
part of compilers, but are tricky to get right in general. Among other uses, formal language semantics
allow us to precisely determine the validity of such rules, and thus develop more reliable and powerful
compilers for a language.

4.2 Formal Knitout

For multiple reasons, we will not formalize knitout as it is defined in the specification [McCann 2017]
(hereafter “actual knitout”), but instead work with a more verbose version that imposes stricter validity
relations while preserving program expressivity. I will begin by explaining the difference between formal
and actual knitout and the reasoning for these changes. From there, I will specify the grammar of formal
knitout in Definition 4.2 using Backus-Naur form (BNF). In Definition 4.5, we define our type-checking
relation S ks−→ S′ on abstract machine states S and S′. Not only does this allow us to restrict our attention
to only valid formal knitout programs, the information contained in machine states S and S′ is useful for
defining the meaning of knitout programs (i.e., their semantics). We define the meaning of individual
machine states E [S] in Definition 4.6 as an intermediary step to defining the fenced tangle denoted by
a valid knitout program E [S ks−→ S′] (Definition 4.7). An example of our formal definitions applied to a
specific program instance is found in Fig. 4.2.

4.2.1 Translation Between Formal Knitout and Actual Knitout

Actual knitout is a UTF-8-encoded text file where operations are new-line separated, and comments are
annotated with the character ;. Optional headers may be used to assign carriers string-based aliases as
well as provide optional definitions such as target machine model and yarn type. Needle locations do not
have a period dividing the bed and index (f1 vs f.1). There are a two “core” operations in actual knitout
that are omitted from formal knitout for simplicity. Fractional racking (rack0.5) offsets the beds such
that needles are interleaved instead of directly across from each other. This is useful for knitting denser
fabrics, but otherwise does not affect object toplogy. Sliders are a feature on some v-bed knitting machines
where a needle has a second storage location that cannot form new loops but can hold a stack of loops
separate from the loops on its hook. This too is useful for knitting denser fabrics, but can be simulated
v-bed machines without sliders by treating every other needle as a storage location.

Actual knitout defines the mechanical meaning of operations in a way that simplifies the writing of
common case machine actions, but causes the resulting knit structure to be highly dependent on machine

22

xfer b.2 f.2;

knit − f.2 3.0 (2,1.0);

xfer f.1 b.1;

miss − f.1 2;

xfer b.1 f.1;

2

3

4

5

1

(a) Formal knitout program (Definition 4.2)

S0 = (0, [f.1 7→ 1][b.2 7→ 1], [2 7→ 3], [2 7→ f.3])

S1 = (0, [f.1 7→ 1][f.2 7→ 1], [2 7→ 3], [2 7→ f.3])

S2 = (0, [f.1 7→ 1][f.2 7→ 1], [2 7→ 2], [2 7→ f.2])

S3 = (0, [b.1 7→ 1][f.2 7→ 1], [2 7→ 2], [2 7→ f.2])

S4 = (0, [b.1 7→ 1][f.2 7→ 1], [2 7→ 1], [2 7→ f.2])

S5 = (0, [f.1 7→ 1][f.2 7→ 1], [2 7→ 1], [2 7→ f.2])

↓ xfer b.2 f.2

↓ knit − f.2 3.0 (2,1.0)

↓ xfer f.1 b.1

↓ miss − f.1 2

↓ xfer b.1 f.1

(b) Program trace defined by validity relations (Fig. 4.4)

E [S4
ks4−−→ S5]

E [S3
ks4−−→ S4]

E [S2
ks3−−→ S3]

E [S1
ks2−−→ S2]

E [S0
ks1−−→ S1]

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

c.1 c.2

c.2c.1

c.3

c.3

E [S1]

E [S2]

E [S3]

E [S4]

E [S5]

E [S0]

(c) Denoted fenced tangle (Fig. 4.5)

Figure 4.2: An excerpt of formal knitout code for knitting linen stitch (a) describes the mechanical actions
performed by the machine, but is insufficient for describing the resulting knit topology. Executing the
program on initial state S0 produces a unique trace S0

kP−→ S5, which proves our program is well-formed
(b). Each machine state denotes points on a slab’s boundary, while the trace denotes the fenced tangle that
connect said points (c).

23

state. For example, in actual knitout the validity of a knit operation does not depend on the initial
location of its carrier sequence. When the operation is executed, the machine will move any carriers that
aren’t already in position to the specified needle, during which the carriers will continue to release yarn.
Only then can it knit with those carriers. Specifying the fenced tangle denoted by this definition of a knit
operation not only requires considering all possible carrier locations, it must also consider additional loops
and carriers passed by any moved carriers. This quickly becomes tedious to define and read. In contrast,
formal knitout defines a knit operation to only be valid if its carriers are already in position. Carriers that
aren’t in position must explicitly be moved with miss operations. This not only lets us use the carriers’
positions as a precondition when defining the fenced tangle, it also constrains the area of new knitting to
the needle where the operation occurs. This makes it much easier to define the class of fenced tangles
denoted by an operation as a composition of identity tangles where nothing has changed in the object
and small, templated fenced tangle located at an operation’s needle. For this reason, a formal knitout
miss operation is only allowed to move one needle at a time, in contrast to miss operations in actual
knitout, which can move past multiple needles. Formal knitout also removes other sequential operations:
in actual knitout, the miss, tuck, in, and out operations can also accept a carrier sequence instead
of just a single carrier, a single rack can change the racking to any value. Essentially, formal knitout
is a de-sugaring of actual knitout that makes implicit carrier movement explicit and unrolls sequences of
actions.

There is an additional class of implicit carrier movement that is present in actual knitout. While
formal knitout treats each operation as updating a carrier’s physical location, actual knitout operations set
a logical location and update the physical location to match as needed. This affects the rack operation,
where in actual knitout, back-bed referenced carriers will move to maintain the same relative location to
their back-bed needles. Furthermore, in actual knitout xfer and split operations update a carrier’s
logical location: for all carriers not in the yarn carrier sequence, if their logical location is relative to
source needle n.x, it is updated to be relative to target needle n′.x′. Using logical locations for carrier
positions often reduces spurious tangles between carriers, which makes it desirable for program writing.
This implicit carrier movement can be simulated in formal knitout by tracking logical carrier locations
and inserting miss operations as is appropriate.

Finally, a few syntactic changes were made to make validity and semantics easier to define on an inde-
pendent program trace. Formal knitout makes in and out specify a machine location, while actual knitout
infers machine location from the first and last operation that uses the carrier, respectively. Loop size l is
a global state parameter that is set with the command stitch or extension x-stitch-length, while
yarn length s is implicit (though s can be somewhat controlled via a combination of tuck and drop
operations).

24

4.2.2 Formal Knitout Semantics

Definition 4.2 (Formal Knitout). A formal knitout program ks is defined according to the following con-
text free grammar:

ks ::= ks1;ks2
| tuck dir n.x l (y,s)
| knit dir n.x l yarns
| split dir n.x n′.x′ l yarns
| miss dir n.x y
| in dir n.x y
| out dir n.x y
| drop n.x
| xfer n.x n′.x′

| rack r
| nop

dir ∈ {−,+}
n,n′ ::= f | b

r,x,x′ ∈ Z
s, l ∈ R

yarns ::= (y,s)+ (without repetition)
y ∈ N

Note that l is the size of a loop produced by a stitching operation and s is the length of yarn running
between this stitch and the last stitch using said yarn. dir is the direction in which the carrier is moving
when executing the operation.

Knitout programs refer to needle locations (on which loops are stored) and yarn carrier locations (at
which loose ends of yarn are held). These logical locations specify the location of loops within the ma-
chine’s structure, the validity and semantics of knitout programs are defined in terms of physical locations
in space (Fig. 4.3). The distinction is defined as follows:
Definition 4.3 (Locations).

• A logical needle location is a pair n.x ∈ nLoc where nLoc = {f,b}×Z is the set of all logical
needle locations. Logical needle locations identify a “front bed” or “back bed” needle location.

• A logical yarn carrier location is a pair of a logical needle location and direction (n.x,dir)∈ ycLoc,
where ycLoc = nLoc×{+,−}. Intuitively, the direction identifies which side of a needle a yarn
carrier is “parked at.”

• A physical needle location is an integer z ∈ Z. The physical location corresponding to a logical
needle location n.x at racking offset r is ⌊f.x⌋r = x and ⌊b.x⌋r = x+ r.

• A physical yarn carrier location is an integer z ∈ Z. The physical location corresponding to a
logical yarn carrier location (n.x,dir) at racking offset r is defined as ⌊n.x,+⌋r = ⌊n.x⌋r + 1 and
⌊n.x,−⌋r = ⌊n.x⌋r. Intuitively, yarn carriers immediately to the left of physical needle location z are
assigned physical location z, while yarn carriers immediately to the right of physical needle location
z are assigned physical location z+1. You can think of these as actually sitting at z−0.5 and z+0.5.
We use whole numbers for simplicity, and we will sometimes use the notation c.z in diagrams for
visual clarity.

Each knitout operation creates yarn geometry and manipulates the machine state:
Definition 4.4 (Knitout Machine State). A knitout machine state S = (r,L,Y,A) consists of:

25

c.x c.x+1.x b.x-rf

Figure 4.3: The knitting machine consists of two beds of needles where at racking r, front bed needle
f.x is aligned with back bed needle b.x− r. In between the needles are yarn carrier tracks. These logical
machine locations are projected from 2D to 1D physical locations using a left-to-right, front-to-back order,
where each carrier projects to a single point and each loop projects to two points. These ordered points on
a line are what is denoted by a given machine state E [S].

• r ∈ Z, the racking offset, or the offset of the needles on the back bed relative to the front bed. At
offset r, back needle b.x− r is across from front needle f.x.

• L ∈ nLoc→ N, a partial function with default value 0 that reports the number of loops on each
needle.

• Y ∈ N→ Z, a partial function that gives the current physical position of the yarn carriers. If the
value is ⊥ (the default value), then we say that the carrier is inactive.

• A ∈ N→ ycLoc a partial function that gives the logical carrier location of where each yarn carrier
is attached to a loop. An inactive carrier (with value ⊥) is not attached.

We define the empty state as S /0 = (0, [], [], []). For a review of partial function notation, see Definition 4.1.
Definition 4.5 ((Valid) Knitout Trace). Given a knitout program ks and knitout machine states S,S′, we say
that executing ks on S produces S′ if the relation S ks−→ S′ holds (as defined in Figure 4.4). As a shorthand,
we may write S0

ks1−→ S1
ks2−→ S2 for S0

ks1;ks2−−−−→ S2, with the additional information that rule V-seq has been
instantiated with intermediate state S1. We also refer to such composite relations as traces of knitout
programs. We say that a knitout program is valid or well-formed if it has a trace. We say that a valid
knitout program ks is complete if it both begins and ends with the empty state S /0

ks−→ S /0. Note that for a
given initial state S and knitout statement ks, the resulting state S′ is uniquely determined.
Definition 4.6 (Machine State Denotation). Let S = (r,L,Y,A) be a machine state. Then E [S], the de-
notation of S, is a set of points on a line, which is divided into annotated segments as follows (also see
Figure 4.3, bottom):

• for each i ∈ Z there is a yarn carrier segment for physical yarn carrier location i, followed by a
front needle segment for physical needle location i, followed by a back needle location segment for
physical needle location i (corresponding to logical location i− r).

• for each k ∈N with Y (k) ̸=⊥, there is a point in yarn carrier segment ⌊Y (k)⌋r = i. This point is the
jth point if there are (j−1) yarns with l < k and ⌊Y (l)⌋r = i.

26

⌊f.x⌋r := x (Y,yarns) =r (n.x,dir) := ∀y ∈ yarns : Y (y) = ⌊n.x,dir⌋r
⌊b.x⌋r := x+ r n.x ∥r n′.x′ := ⌊n.x⌋r = ⌊n′.x′⌋r ∧ n ̸= n′

⌊n.x,+⌋r := ⌊n.x⌋r +1 ⌊n.x,−⌋r := ⌊n.x⌋r

S ks1−→ S′ S′ ks2−→ S′′
V-seq

S ks1;ks2−−−→ S′′

Y (y) =⊥ Y ′ = Y [y 7→ ⌊n.x,dir⌋r]
A′ = A[y 7→ n.x]

A(y) =⊥
V-in

(r,L,Y,A) in dir n.x y−−−−−−→ (r,L,Y ′,A′)

V-nop
S nop−−→ S

Y (y) = ⌊n.x,dir⌋r
Y ′ = Y [y 7→ ⊥]
A′ = A[y 7→ ⊥] A(y) ̸=⊥

V-out
(r,L,Y,A) out dir n.x y−−−−−−−→ (r,L,Y ′,A′)

(Y,yarns) =r (n.x,¬dir) Y ′ = Y [yarns 7→ ⌊n.x,dir⌋r] V-miss
(r,L,Y,A) miss dir n.x yarns−−−−−−−−−−→ (r,L,Y ′,A)

(Y,yarns) =r (n.x,¬dir) Y ′ = Y [yarns 7→ ⌊n.x,dir⌋r] V-tuck
(r,L,Y,A) tuck dir n.x l yarns−−−−−−−−−−→ (r,L[n.x 7→ L(n.x)+#yarns],Y ′,A[yarns 7→ n.x])

(Y,yarns) =r (n.x,¬dir) L(n.x)> 0
Y ′ = Y [yarns 7→ ⌊n.x,dir⌋r]

A′ = A[yarns 7→ n.x]
V-knit

(r,L,Y,A) knit dir n.x l yarns−−−−−−−−−−→ (r,L[n.x 7→ #yarns],Y ′,A′)

|r− r′|= 1
V-rack

(r,L,Y,A) (rack r′)−−−−−→ (r′,L,Y,A)

Y (n.x)> 0
V-drop

(r,L,Y,A) drop n.x−−−−→ (r,L[n.x 7→ 0],Y,A)

n.x ∥r n′.x′ L′ = L[n.x 7→ 0][n′.x′ 7→ L(n.x)+L(n′.x′)]
V-xfer

(r,L,Y,A) xfer n.x n′.x′−−−−−−−→ (r,L′,Y,A[{y : A(y) = n.x} 7→ n′.x′])

n.x ∥r n′.x′

(Y,yarns) =r (n.x,¬dir)
Y ′ = Y [yarns 7→ ⌊n.x,dir⌋r]

A′ = A[{y : A(y) = n.x} 7→ n′.x′][yarns 7→ n.x]
V-split

(r,L,Y,A) split dir n.x l n′.x′ yarns−−−−−−−−−−−−−−→ (r,L[n.x 7→ #yarns][n′.x′ 7→ L(n.x)+L(n′.x′)],Y ′,A′)

Figure 4.4: Validity relation for knitout programs (see Definition 4.5), where #yarns is the size of the yarn
carrier sequence. Only valid knitout programs denote a fenced tangle. Note that for a fixed S and ks, S′ is
uniquely determined.

• for each nl = (n.x) ∈ nLoc with L(nl) = k, there are 2k points in the segment corresponding to
needle location ⌊nl⌋r on the n bed. (These are the k loops on needle nl)

Definition 4.7 (Semantics of Knitout). Let kT = S0
ks1−→ S1 −→ ·· · −→ Sn be a valid knitout program/trace.

Then E [kT] is the fenced tangle which kT denotes, defined inductively. Throughout the definition, we will
work with the slab presentation of fenced tangle diagrams. As an invariant, the input (bottom) boundary

27

(a) Diagrams for individual knitout instructions are
completed by being wrapped in this “frame”

(b) Illustration of rack 1. See text for precise defini-
tion

(c) in + f.x y (d) out − f.x y

(e) xfer f.x b.(x− r) (f) drop f.x

(g) miss + f.x y

(h) tuck + f.x l (y,s) (i) knit + f.x l yarns (j) split + f.x b.(x− r) l yarns

Figure 4.5: Fenced tangles produced by knitout. Part of the definition of knitout semantics (Defini-
tion 4.7). Other than rack, all diagrams are wrapped by the “frame” diagram, which defines how the
yarn carriers being used in an instruction (yarns) are merged (Λ) separated (V) and how they are plated
(π). State variables (r,Y,L) are all given with respect to the initial state before an instruction, except for Y ′

in the frame diagram, which refers to the state after the instruction is done. Note that a group of arcs in par-
allel annotated as 0-many will disappear from the diagram. Also note that all diagrams here are given for
the positive/right-ward knitting direction (+) and in the front-facing variant. The left-ward, back-facing
diagrams are flips of these diagrams; and the other two cases are derived via a careful mirroring of the
diagrams. All other instruction variation is parametric.

28

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

id3

id2 K2

K1

c.2

c.2

c.3c.1

c.1 c.3

(a) ks4;ks3;ks5

∼=

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

id3

id2 K2

K1

c.2

c.2

c.3c.1

c.1 c.3

(b) ks3;ks4;ks5

̸∼=

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

c.2

c.2

c.3c.1

c.1 c.3

(c) ks3;ks5;ks4

Figure 4.6: The fenced tangle diagrams denoted by programs (a) and (b) are topologically equivalent.
The diagram transformation is a simple application of ambient isotopy, and their equivalence can also be
proven using Lemma 4.14. In contrast, fenced tangles (b) and (c) are not equivalent due to the change in
crossing annotations in the circled region.

of E [S ks−→ S′] will match E [S] and the output (top) boundary will match E [S′].
First, we will address the inductive case. E [S ks1−→ S′ ks2−→ S′′] is defined to be the vertical concatenation

of the two slabs E [S ks1−→ S′]◦E [S′ ks2−→ S′′]. This composed diagram is well-defined because its constituent
diagrams are well-defined (by induction) and because their shared boundary must identically be E [S′] (by
invariant).

The nop instruction does nothing, so E [S nop−−→ S] = id. Next, we handle the rack instruction. Let
kT = S rack r−−−−→ S′. We define I<∞[S] to be the partition of E [S] into (on the one hand) all yarn carrier
points and loop points corresponding to front (f) needle locations, and (on the other hand) all loop points
corresponding to back (b) needle locations. We then let ι = I<∞[S] ∈ Im,n be the initial interleaving
of front-bed loops and yarn carriers on the one hand, with the back-bed loops on the other, and let ω =
I<∞[S′] ∈ Im,n be the similar final interleaving after the racking operation. Note that by the validity of
traces, these partition sizes must match. Then, we define the racking denotation as E [kT] = idm|ωι idn. (see
Fig. 4.5b for an example illustration)

For the remaining operations with trace kT = S ks−→ S′, all non-trivial (i.e., not id) effects will be
restricted to a particular physical needle location x, and its interactions with the yarns immediately to
the left and right of the needle (yarn locations x and x + 1). Given the set of points E [S], we define
{E [S]< pl} to be the subset of all points that correspond to a physical location less than pl, while {E [S]>
pl} is all points greater than pl. An examination of the validity relation definition (Fig. 4.4) makes
it clear that {E [S] < ⌊n.x,−⌋r} = {E [S′] < ⌊n.x,−⌋r} and {E [S] > ⌊n.x,+⌋r} = {E [S′] > ⌊n.x,+⌋r}.
Thus the denotation of kT can be expressed as E [kT] = idm⊗Ts⊗ idn, where m = #{E [S] < ⌊n.x,−⌋r},
n = #{E [S]> ⌊n.x,+⌋r}, and Ts is defined for each operation according to figure 4.5.

4.3 Rewriting Knitout Programs

Having defined a formal denotational semantics on knitout using fenced tangles, we can now define what it
means for two knitout programs to be equivalent. If we are purely concerned with the output of programs,
one immediate definition would be topological equivalence of the denoted fenced tangle.
Definition 4.8 (Topological Equivalence of Knitout Programs). Let kP1 and kP2 be the traces of two valid
knitout programs. The programs are topologically equivalent if and only if E [kP1]∼= E [kP2].

This raises the natural question of how do we prove whether two programs are equivalent. A general
algorithm for determining fenced tangle equivalence is ideal but unlikely, given that solving knot equiva-
lence is NP-hard[Koenig & Tsvietkova 2021]. Instead, we work with a simpler problem: given a program
transformation f applied to knitout program ks, is the resulting program f (ks) topologically equivalent?

29

Table 4.1: Rewriting equivalences (rules) proven in this chapter. Rules with asterisks have preconditions
not present in this figure (see associated proof).

Name Rule Proof

Swap*
ks1
ks2
∼= ks2

ks1
§4.3.2

Merge*
ks1
ks2
∼= nop §4.3.2

Squish
xfer n.x n′..x′

xfer n′.x n.x
∼= xfer n′.x′ n.x §4.3.2

Slide
tuck dir n.x (y,s)
xfer n.x n’.x’

∼= tuck dir n′.x′ (y,s)
xfer n.x n’.x’

§4.3.2

Conjugate* ks(+,f.x) ∼=

miss − f.x−1 yarns
SHIFT(f.x,r,−1)
ks(+,f.x−1)
miss + f.x yarns
SHIFT(f.x−1,r−1,1)

§4.3.2

Because the new program must be both valid and equivalent, we will define a stronger version of program
equivalence.

Definition 4.9 (Contextual Equivalence of Knitout Programs). Let ks1 and ks2 be (partial) knitout pro-
grams. If both programs are valid on starting state S and take it to state S′ (i.e., S ks1−→ S′ and S ks2−→ S′) and
these traces denote the same tangle, E [S ks1−→ S′] ∼= E [S ks2−→ S′], we say that ks1 and ks2 are equivalent in
the context of S and write:

S ⊢ ks1 ∼= ks2

Sub-programs that are contextually equivalent can be used to rewrite larger programs while preserving
topological equivalence.

Corollary 4.10 (Local Rewrites). Let ks1;ks2;ks3 and ks1;ks′2;ks3 be two valid knitout programs, where
S ks1−→ S′. If S′ ⊢ ks2 ∼= ks′2, then S ⊢ ks1;ks2;ks3 ∼= ks1;ks′2;ks3 .

By proving small, general statements on program equivalence that can be applied within a larger
context, we can develop a powerful tool for reasoning about the correctness of more complicated program
transformations.

4.3.1 Rewrite Motivations

Now that we have decided to focus on program rewrites, we must decide on which rewrites to validate.
A reasonable starting point would be rewrite rules useful to practical high-level compilation tasks. In the
following section, I examine some common motivations for rewriting programs and provide an overview
of the relevant rewrite rules. The heading Rewrite Rule designates particular lemmas (i.e., propositions)
which are stated so that they are immediately applicable to the rewriting/scheduling of knitout programs. A
high-level summary of the rewrites and their corresponding proofs in Section 4.3.2 are located in Table 4.1
.

30

Fabrication Time

Recall that the knitting machine has two rows of needles known as beds and a larger piece called the
carriage that moves along the needle bed and actuates individual operations via a cam system. Each
movement of the carriage along the bed is known as a carriage pass, and depending on the machine’s
particular cam sets, different operations can be grouped into a single pass. The amount of time required
for a carriage pass is roughly independent of the number of needle operations it contains. This is because
much of the pass consists of a constant acceleration/deceleration phase, and the carriage can actuate any
needles it passes over at no additional cost. Thus when optimizing a knitting program to reduce fabrication
time, the goal is not necessarily to minimize operation count, but to change when operations are executed
such that pass count is minimized. Of course, not all operations can be reordered without changing the
program meaning.

Rewrite Rule (Swap) observes that many knitout operations denote a fenced tangle of the form id⊗
K⊗ id and uses this to define an extent function, which returns the non-identity region of a fenced tangle.
The extent is then used to reason about when two operations commute with each other.
Rewrite Rule 1 (Swap). Two operations can be swapped if their extents are disjoint: S ⊢ ks1;ks2∼= ks2;ks1
whenever ex(ks1)∩ ex(ks2) = /0

In addition to the extent analysis performed on general subprograms in Definition 4.23, I perform a
special case analysis of the SHIFT macro used in Rewrite Rule 5 (Lemma 4.29).

Program Reliability

While knitting machines are generally quite robust, any operation has some chance of failure. For example,
repeated rack operations may introduce excess strain on yarn, while xfer operations may not cleanly
send all loops from source needle n.x to destination needle n′.x′. Thus one aspect of improving knit
program reliability is to remove unnecessary operations. Rewrite Rule Merge does this by considering
pairs of operations that are clear inverses:
Rewrite Rule 2 (Merge). Racking in one direction and then back in the other direction is the same as
doing nothing.

S ⊢ (rack (r±1); rack r)∼= nop

where r is the initial racking value in S.
Missing at n.x in one direction and then back in the other is the same as doing nothing.

S ⊢ (miss dir n.x y; miss ¬dir n.x y)∼= nop

Similarly, Rewrite Rule Squish considers how pairs of aligned xfer operations cancel:
Rewrite Rule 3 (Squish).

S ⊢ xfer n.x n′.x′;xfer n′.x′ n.x∼= xfer n′.x′ n.x

Furthermore, when L(n′.x) = 0 in initial state S,

S ⊢ xfer n′.x′ n.x∼= nop

Machine Specific Compatibility

So far, our formalism has assumed an abstract knitting machine with infinitely wide needle beds that can
be racked to any value, as well as infinitely many carriers. As a result, there will always be enough space

31

to execute a valid knitting program. In practice, the number of needles and carriers is finite (typically on
the order of 103 and 10 respectively), and the beds cannot be racked infinitely. These machine constraints
can be formalized as follows:
Needle and carrier sets A machine has a finite set of available needles and carriers. Thus, only needles

in the range [xmin,xmax] exist. The loop count state function L : nLoc→ N must be zero for any n.x
with x outside of [xmin,xmax]. There are also a finite number of yarn carriers ycount . So, the yarn
carrier state must be a partial function Y : [ycount]→ [xmin,xmax].

Racking Valid racking is constrained to range [rmin,rmax].
In addition, our semantics is geared towards defining topological correctness; thus it makes no use of

loop size parameter l and yarn length parameters s, which control the amount of yarn used for operations.
However, specific machines are not only limited to certain l and s values; they have validity conditions
that are quite complicated and often state dependent. For example, while yarn may stretch and slide a
small amount, it will eventually break when stretched too far. This means that the validity of yarn length
parameter s depends on which loops it is attached to. While fully capturing this logic is beyond the scope
of this thesis, we can define the following basic metric constraints to ensure physical plausibility:

Needle width All needles have some width lmin that serves as a lower bound for the set of valid loop sizes.

Needle spacing Yarn length y must be greater than the physical distance between the operation and its
attach point. Put formally, for each knitout trace S ks−→ S′ where ks is a single operation with needle
argument n.x and yarn carrier sequence yarns, ∀(y,s) ∈ yarns : λ |Y (y)−A(y)| < s, where λ is the
spacing between needles.

Critically, it is necessary to rewrite a program in a way that preserves the denoted fenced tangle, but
changes the elements of the machine state upon which feasible length construction depends. I.e., the
needle locations of loops (L), attach points (A) of yarn carriers, and racking (r) when each operation is
executed. Changing machine racking can be trivially accomplished with a sequence of rack operations,
and loops can be moved to the opposite bed with a single xfer. This is useful for changing the needle
location where tuck operations are performed:
Rewrite Rule 4 (Slide). Let n.x and n′.x′ be defined such that they are the pair f.z and b.z− r, or the pair
b.z− r and f.z. Then let ks(n.x) = tuck dir n.x l (y,s).

S ⊢ ks(n.x); xfer n.x n′.x′ ∼= ks(n′.x′); xfer n.x n′.x′

Note that this rule does not apply to the knit operation. This is because changing which bed a knit
operation occurs on changes its structure. Moving a loop to a needle on the same bed requires a more
involved series of operations:
Definition 4.11 (Rack and Shift Macros). Let

RACK(r, j) := rack r+1;rack r+2; . . . ;rack r+ j

be a knitout program that racks j times to the right starting at racking position r; if j < 0, then similarly
let RACK expand to a sequence of decrementing rack instructions. Furthermore, let

S ⊢ SHIFT(f.x,r, j)∼= xfer f.x b.(x− r);RACK(r, j);

xfer b.(x− r) f.(x+ j)

S ⊢ SHIFT(b.x,r,b.(x+ j))∼= xfer b.x f.(x+ r);RACK(r,− j);

xfer f.(x+ r) b.(x+ j)

32

be a knitout program that transfers loops from any one needle to any one other needle on the same bed by
using an intermediate needle on the opposite bed.

The SHIFT macro and miss instructions can be combined to route loops and yarn carriers to a new
physical location, where an operation can be performed before re-routing everything back to produce the
same ending state. The correct sequence of routing operations is non-trivial to describe and dependent on
the operation’s initial bed {f,b}, its dir parameter {+,−}, and whether the physical needle location is
incremented or decremented {Right,Left}. Thus for clarity, we present only one of six cases here:
Rewrite Rule 5 (Conjugate [f, +, Left]). Let ks(dir,n.x) be either a knit or tuck instruction ks(dir,n.x)=
knit dir n.x l yarns or ks(dir,n.x) = tuck dir n.x l (y,s) (we will simply refer to (y,s) as yarns in
the tuck case). Let S be the state prior to ks. If the following needles are empty L(b.x− r) = 0,
L(f.x−1) = 0, and if there are no yarn carriers in the way that we are not using Y−1(⌊f.x,−⌋r) = yarns,
then

S ⊢ ks(+,f.x)∼= miss − f.x−1 yarns; SHIFT(f.x,r,−1);

ks(+,f.x−1);

miss + f.x yarns; SHIFT(f.x-1, r-1, 1)

(where miss on multiple yarns is simply a sequence of miss operations, one for each yarn)

4.3.2 Rewrite Rule Proofs

Let us consider the example program shown in Fig. 4.2, specifically the subprogram ks2;ks3;ks4:

2 knit − f . 2 3 . 0 (2 , 1 . 0) ;
3 xfer f . 1 b . 1 ;
4 miss − f . 1 2 ;

In figure 4.6 we see the tangle denoted by reordered sub-programs S1
ks3;ks2;ks4−−−−−−→ S4 and S1

ks2;ks4;ks3−−−−−−→ S4
(note that in this specific example, the knitout trace for both rewrites is valid, but that is not necessarily
true for all knitout programs). We see that Fig. 4.6a can be transformed into Fig. 4.6b by an ambient
isotopy. By contrast, Fig. 4.6c and Fig. 4.6b have different crossings between the loop at b.1 and carrier
2 (circled). These diagrams can’t be transitioned between using any combination of Reidemeister moves
and ambient isotopies. Thus the first pair of fenced tangle diagrams prove that S1 ⊢ ks2;ks3 ∼= ks3;ks2 and
the second pair seem to strongly suggest that S2 ⊢ ks3;ks4 ≇ ks4;ks3.

Note, however, that these three tangle diagrams are the denotations of these specific three program
fragments executed on a specific machine state. Proving that two slightly different program fragments are
equivalent would require a new sequence of fenced tangle diagrams, and the correct sequence of Reide-
meister moves may be less trivial. While we can (and do) use templated tangle diagrams akin to the ones
used in Fig. 4.5, a purely diagrammatic approach quickly becomes intractable as fenced tangle complexity
increases. Fortunately, fenced tangle composition is not only useful for defining fenced tangles, but also
for proving topological equivalence. For example, let us consider the following two lemmas (proof left as
an exercise for the reader):
Lemma 4.12. For any fenced tangle slab K ∈ S m

n , vertical concatenation of the identity results in an
equivalent fenced tangle:

idn ◦K ∼= K ∼= K ◦ idm

Lemma 4.13 (◦-⊗ Distributivity). Let Ka ∈ S m1
n1

and Kb ∈ S p1
m1 be one pair of vertically composable

fenced tangles, and Kc ∈ S m2
n2

and Kd ∈ S p2
m2 be a second pair. Then the following compositions are

33

“meaning” “meaning”

f.0

f.0

b.0

b.0b.−1

b.−1

f.−1

f.−1

f.0

f.0

b.0

b.0b.−1

b.−1

Squish

∼=

Figure 4.7: Screenshots of the rewrite-editor for Squish rewrite rule and the corresponding fenced tangles.

34

equivalent:
(Ka ◦Kb)⊗ (Kc ◦Kd)∼= (Ka⊗Kc)◦ (Kb⊗Kd)

These lemmas can then be used to prove a general statement about commutativity of horizontally
separated sub-tangles:
Lemma 4.14 (Commutativity by Horizontal Separation). For any K1 ∈S m

n and K2 ∈S q
p the following

equation holds:
(K1⊗ idp)◦ (idm⊗K2)∼= (idn⊗K2)◦ (K1⊗ idq)

Proof. We begin by using Lemma 4.13 to rewrite (K1⊗ idp) ◦ (idm⊗K2) into (K1 ◦ idm)⊗ (idp ◦K2).
Lemma 4.12 can then be used to slide K1 up and K2 down to produce fenced tangle ((idn◦K1)⊗(K2◦ idq)),
which is congruent to (idn⊗K2)◦ (K1⊗ idq) by another application of Lemma 4.13.

K2

∼=

idm

idp idn

idq

K2K1

K1

Many knitout operations denote (Definition 4.7) a tangle of the form id⊗K⊗ id; and knitout program
composition maps to vertical composition (◦) of fenced tangles. Thus, intuitively, we should be able to
use Lemma 4.14 to prove the correctness of swapping some, but not all, pairs of operations. In fact, we
can go one step further and define an extent function ex(ks) (Definition 4.24) that maps any valid knitout
program to a rectangle [Rxmin,Rxmax]× [Rymin,Rymax] that contains the non-id part of its fenced tangle.
This rectangle can not only be used to generate the horizontal decomposition of E [S ks−→ S′], but its depth-
wise decomposition as well, for which we prove a similar commutativity property using Lemma 4.21.
Using this extent function, we can state the following generalized Rewrite Rule for swapping knitout
subprograms:
Rewrite Rule 6 (Swap). Two operations can be swapped if their extents are disjoint: S ⊢ ks1;ks2∼= ks2;ks1
whenever ex(ks1)∩ ex(ks2) = /0

If we return to our example program rewrite S1 ⊢ ks2;ks3 ∼= ks3;ks2, we find that ex(ks2) = [1.5,2.5]×
[2,∞] and ex(ks3) = {1}× [−∞,∞], making it an example covered by Rewrite Rule Swap. Meanwhile,
ex(ks4) = [1.5,2.5]×{2} intersects with ex(ks3) in both dimensions. Thus Rewrite Rule Swap cannot be
applied.
Notation 4.15 (Concatenation of Interleavings). Let ι1 ∈ In,p and ι2 ∈ Im,q be interleavings. Then
ι1⊔ ι2 ∈In+m,p+q is an interleaving defined (using set representations) as ι1⊔ ι2 = ι1∪{i+n+ p|i ∈ ι2}.
Lemma 4.16 (|-⊗ Distributivity). Let Ka ∈S m1

n1
, Kb ∈S m2

n2
, Kc ∈S q1

p1 , and Kd ∈S q2
p2 . Furthermore, let

ι1 ∈In1,p1 , ω1 ∈Im1,q1 , ι2 ∈In2,p2 , and ω2 ∈Im2,q2 be interleavings. Then,

(Ka|ω1
ι1

Kc)⊗ (Kb|ω2
ι2

Kd)∼= (Ka⊗Kb)|ω1⊔ω2
ι1⊔ι2

(Kc⊗Kd)

Proof. immediate from picture

35

Lemma 4.17 (◦-| Distributivity). Let Ka ∈S m1
n1

, Kb ∈S m2
n2

, Kc ∈S p1
m1 , and Kd ∈S p2

m2 . Furthermore, let
ι ∈In1,n2 , µ ∈Im1,m2 , and ω ∈Ip1,p2 be interleaving functions. Then,

(Ka ◦Kc)|ωι (Kb ◦Kd)∼= (Ka|µι Kb)◦ (Kc|ωµ Kd)

Proof. immediate from picture

Since our semantics will assign a fenced tangle to each knitout program, we will want to know under
what circumstances different sub-programs can be re-ordered (i.e., commute). The following lemmas
will help us develop such commutativity principles by allowing cleaner reasoning about various kinds
of sub-diagrams. Recall Lemma 4.14. We begin by noting that the lemma can be trivially extended as
follows:
Corollary 4.18 (Commutativity by Horizontal Separation). The preceding two lemmas imply that for
any g ∈ N, K1 ∈S m

n , and K2 ∈S q
p the following equation holds, permitting the vertical commuting of

horizontally non-overlapping sub-tangles.

(K1⊗ idg+p)◦ (idm+g⊗K2)∼= (idn+g⊗K2)◦ (K1⊗ idg+q)

In principle we also ought to be able to commute operations occurring in wholly different layers.
However, we can develop even stronger machinery. In many cases, we can explicitly convert composition
by layer into horizontal composition.
Lemma 4.19 (No-Overlap Layering). Let K1 ∈S m

n and K2 ∈S q
p . Then,

K1|ididK2 ∼= K1⊗K2

Proof. By Lemma 3.12, we may assume that the entirety of K1 and K2 are disjoint, with no overlaps, since
there are no interleavings of their loose ends. Consequently the sub-diagrams of K1|ididK2 are horizontally
separated—and can therefore equally well be interpreted as K1⊗K2.

Lemma 4.20 (Layer Decomposition of Separate and Merge). Let ι ∈In,p be an interleaving. Then,

←−
V ι = idp |idι idn
−→
V ι = idn |idι idp
−→
Λ ι = idp |ιid idn
←−
Λ ι = idn |ιid idp

Proof. By the definition of a permutation slab, all crossings must be oriented consistently in merge and
separation slabs. Furthermore, because the permutation oι derived from the interleaving is required to
be monotonic within each half of the partition, we know that the diagram viewed on each such subset of
the yarns must be the identity slab. Therefore, all of these slabs must decompose into a layering of two
identity slabs. Inspection of the four cases confirms the above formulas as correctly specifying the various
interleavings.

The following lemma allows us to convert layering composition into horizontal composition in gen-
eral by “sliding apart” the different layers composing a diagram. This makes it easy to modify layers
independently and separately from the concerns of interleaving patterns.

36

Lemma 4.21 (Sliding Door Lemma). Let K1 ∈S m
n , K2 ∈S q

p and let ι ∈In,p, ω ∈Im,q be interleavings.
Then,

K1|ωι K2 ∼=
←−
V ι ◦ (K1⊗K2)◦

−→
Λ ω

(note:
←−
Λ may be used instead of

−→
Λ)

Proof.
K1|ωι K2 ∼= (idn ◦K1 ◦ idm)|ωι (idp ◦K2 ◦ idq) (by Lemma 3.13)

∼= (idn|idι idp)◦ (K1|ididK2)◦ (idm|ωid idq) (by Lem 4.17)
∼=
←−
V ι ◦ (K1|ididK2)◦

−→
Λ ω (by Lemma 4.20)

∼=
←−
V ι ◦ (K1⊗K2)◦

−→
Λ ω (by Lemma 4.19)

Subprogram Commutativity

Intuitively, if two instructions have “disjoint” effects, then they should commute (ab= ba). In order to cap-
ture this intuition, we will define instruction extents, which allow us to narrowly confine their non-trivial
(i.e., non-id) behavior to a rectangle. Intuitively, the two dimensions of the extent rectangle correspond
to horizontal and depth-wise decomposition respectively2. To be able to define the extent of any valid
program, we can conservatively take the join of the extents of the underlying subprograms.
Definition 4.22 (Join of Rectangles). Let

RA = [Axmin,Axmax]× [Aymin,Aymax]

RB = [Bxmin,Bxmax]× [Bymin,Bymax]

be two rectangles RA ⊆ Q2
∞, RB ⊆ Q2

∞. (where Q∞ = Q∪{−∞,∞}) Their join is defined as the smallest
rectangle enclosing both RA and RB:

RA⊔RB = [min(Axmin,Bxmin),max(Axmax,Bxmax)]×
[min(Aymin,Bymin),max(Aymax,Bymax)]

Definition 4.23 (Extent). We define the extent of a valid knitout program ex(S ks−→ S′) ⊆ Q2
∞ as a 2D

interval (rectangle). Where S and S′ can be inferred from context, we will notate the extent as ex(ks). We
will use [z± 1

2] as shorthand for [z− 1
2 ,z+

1
2].

ex(S ks1−→ S′ ks2−→ S′′) = ex(S ks1−→ S′)⊔ ex(S′ ks2−→ S′′)

ex(tuck dir f.x l (y,s)) = [⌊f.x⌋r±
1
2
]× [−∞,y]

ex(tuck dir b.x l (y,s)) = [⌊b.x⌋r±
1
2
]× [y,∞]

ex(knit dir f.x l yarns) = [⌊f.x⌋r±
1
2
]× [−∞,ymax]

ex(knit dir b.x l yarns) = [⌊b.x⌋r±
1
2
]× [ymin,∞]

ex(split dir n.x n′.x′ l yarns)

2Inspection of Lemma 3.13 makes it clear why a third dimension for vertical decomposition is unnecessary.

37

= [⌊n.x⌋r±
1
2
]× [−∞,∞]

ex(miss dir n.x y) = [⌊n.x⌋r±
1
2
]×{y}

ex(in + n.x y) = {⌊n.x⌋r +
1
2
}×{y}

ex(in − n.x y) = {⌊n.x⌋r−
1
2
}×{y}

ex(out + n.x y) = {⌊n.x⌋r +
1
2
}×{y}

ex(out − n.x y) = {⌊n.x⌋r−
1
2
}×{y}

ex(drop f.x) = {⌊f.x⌋r}×{−∞}
ex(drop b.x) = {⌊b.x⌋r}×{∞}

ex(xfer n.x n′.x′) = {⌊n.x⌋r}× [−∞,∞]

ex(rack r) = [−∞,∞]×{∞}

where ymax and ymin are the minimum and maximum across yarns.
To use these operation extents to decompose the denoted fenced tangles, we begin by defining 2D

coordinates for every point in E [S].
Definition 4.24 (Coordinates of State Denotations). Let

R = [xmin,xmax]× [ymin,ymax]⊆Q2
∞

be an extent rectangle, S be a machine state, and E [S] the denotation of that machine state (where the
extent rectangle for specific programs is defined in Definition 4.23).

Points in E [S] either arise from loops at physical needle locations or active yarn carriers at physical
carrier locations. For each of these points, define “coordinates” p ∈ Q2

∞ as follows: a point arising from
L(f.x)> 0 has coordinates (x,−∞); a point arising from L(b.(x− r))> 0 has coordinates (x,∞); finally,
the point for an active yarn Y (y) ̸=⊥ has coordinates

(
Y (y)− 1

2 ,y
)
.

Put in words, loops are depth-located in front of or behind everything else, at the specified whole
number needle. Meanwhile, yarns are located in depth according to their yarn id, and at 1

2 between
needles.
Lemma 4.25 (Extent Decomposition). Let S ks−→ S′ be a valid knitout program with extent R = ex(ks).
First, we can define various partitions of the set of points E [S]. Let R−x consist of all points with x-
coordinate less than R and R+x similarly points with x-coordinate greater than R; meanwhile, let R|x be the
remaining set of points whose x-coordinate overlaps R. The tri-partition R−y, R+y and R|y may similarly
and independently be defined using y-coordinates.

Then there exist both horizontal and depth-wise decompositions:

E [S ks−→ S′] = idn−x⊗K⊗ idn+x

= idn−y |ω−
ι−

(
K′ |ω+

ι+
idn+y

)
where n−x = #R−x, and similarly for other n•; the points in each id slab corresponding to the appropriate
partition of the state by the extent.

38

Proof. The proof proceeds inductively.
First, consider the case of ks1;ks2. Let R1 = ex(ks1) and R2 = ex(ks2) be the extents of each sub-

program. We will prove the case of the horizontal decomposition; the depth-wise case proceeds similarly.
Let n−x = min(n−x

1 ,n−x
2), and n+x = max(n+x

1 ,n+x
2). Then, both decompositions can be rectified with each

other to share this common trivial slab on the outside, since (e.g.) idn−x
1
= idn−x ⊗ idn−x

1 −n−x (and similarly
for n+x

1 , n−x
2 , and n+x

2).

E [S ks1−→ S′ ks2−→ S′′] = E [S ks1−→ S′]◦E [S′ ks2−→ S′′]

=
(

idn−x⊗ idn−x
1 −n−x⊗K1⊗ idn+x

1 −n+x⊗ idn+x

)
◦(

idn−x⊗ idn−x
2 −n−x⊗K2⊗ idn+x

2 −n+x⊗ idn+x

)
= idn−x⊗

(
idn−x

1 −n−x⊗K1⊗ idn+x
1 −n+x◦

idn−x
2 −n−x⊗K2⊗ idn+x

2 −n+x

)
⊗ idn+x

= idn−x⊗K⊗ idn+x

All other cases concern individual instructions. We justify these by examining the preceding definition
of the extent function, the preceding definition of coordinates, and the denotations in Fig. 4.5. The cases
of tuck, knit, split, and miss are all justified because both the denotation diagram and the extent
encompass the needles at a location and yarns before and after that needle location. The cases of in,
out, drop, and xfer require closer inspection to observe that all non-trivial behavior in the diagram
is confined more narrowly to a single yarn, or single needle location (front and back). Finally the rack
instruction acts non-trivially on the entire back bed but leaves the front-bed fixed.

Having laid the groundwork with the extent function, we can now prove our first rewrite rule in earnest.

Rewrite Rule 1 (Swap).
S ⊢ ks1;ks2 ∼= ks2;ks1

whenever ex(ks1)∩ ex(ks2) = /0

Proof. If ex(ks1)∩ ex(ks2) = R1 ∩ R2 = /0, the R1 and R2 must be horizontally disjoint or depth-wise
disjoint. Without loss of generality, assume they are horizontally disjoint. Furthermore without loss of
generality assume that K2 occurs to the right of K1. Let S0 = S, so that we begin with the trace S0

ks1−→
S1

ks2−→ S2. By Lemma 4.25, we can make the initial decompositions E [S0
ks1−→ S1] = idn−x

1
⊗K1⊗ idn+x

1
and

E [S1
ks2−→ S2] = idn−x

2
⊗K2⊗ idn+x

2
where K1 ∈S q1

p1 and K2 ∈S q2
p2 . In addition, since the operations are

horizontally disjoint, there must exist some number of yarns, g ∈ N in-between the output of K1 and the
input of K2 such that n+x

1 = g+ p2 +n+x
2 and n−x

2 = n−x
1 +q1 +g. The middle step follows from Corollary

4.18.

E [S0
ks1−→ S1

ks2−→ S2] = ((idn−x
1
⊗K1)⊗ idg+p2+n+x

2
)◦ (idn−x

1 +q1+g⊗ (K2⊗ idn+x
2
))

= (idn−x
1 +p1+g⊗ (K2⊗ idn+x

2
))◦ ((idn−x

1
⊗K1)⊗ idg+q2+n+x

2
)

= E [S0
ks2−→ S′1]◦E [S′1

ks1−→ S2]

In the case of depth-wise decomposition, one uses the Sliding Door Lemma (4.21) to convert depth-wise
composition to horizontal composition, thus reducing to the already handled case.

39

While this swap rewrite handles most permissible exchange between non-interacting instructions, the
extent-based analysis is far too conservative when encountering rack instructions, which have an extent
of [−∞,∞]×{∞} due to how racking affects the whole back bed. However, racking can be combined with
xfer operations in the SHIFTmacro to locally rearrange loops between needles (Definition 4.11). Unless
we have some way to localize the effect of this pattern, rack will form an insurmountable barrier to our
attempts to reschedule knitting programs. To streamline the proof of this special case extent function, we
define the following modified macro:
Definition 4.26 (Move Macro). The MOVE macro is the SHIFT macro with an additional RACK to reset
the machine’s racking to r:

MOVE(f.x,r,f.(x+j)) := SHIFT(f.x,r,f.(x+j));

RACK(r+ j,− j)

MOVE(b.x,r,b.(x+ j)) := SHIFT(b.x,r,b.x+j)

RACK(r− j, j)

Definition 4.27 (Move Extent). Let ks be exactly a MOVE sub-program as just defined. Then the move-
extent of ks is a rectangle, like for a basic extent. However, unlike basic extents, move-extents are context-
sensitive: their definition depends on the state S of the knitting machine immediately prior to the MOVE
sub-program.

exm(S,MOVE(f.x,r,f.(x+ j))) = [x,x+ j]× [−∞,ymax]

exm(S,MOVE(b.x,r,b.(x+ j))) = [x− r,x− r+ j]× [ymin,∞]

where ymax is ∞ if L(b.x− r) > 0, otherwise it is max{y | y ∈ Y−1(x′) and x < x′ ≤ x+ j} or −∞ if there
are no yarn-carriers parked between x and x+ j in the state S. Similarly, ymin is −∞ if L(b.x+ r)> 0 and
∞ otherwise.

Much like the previously defined extents on individual operations, exm is used to horizontally and layer
decompose E [S MOVE−−−→ S′] as an intermediate step in proving when a MOVE subprogram can be swapped
with another program. A more detailed proof of this is as follows.
Lemma 4.28 (Move Decomposition). Let ksf = MOVE(f.x,r,f.(x+ j)) and let ksb = MOVE(b.x,r,b.(x+
j)). Let S be an initial state s.t. in the case of ksf, L(b.(x−r)) = 0; and in the case of ksb, L(f .(x+r)) = 0.
ksf admits horizontal and layer decompositions, of the forms

E [S ksf−−→ S′] = idn−×K× idn+

= K′|ωι idm

where for R = exm(S,ksf), n− = #R−x, n+ = #R+x, and m = #R+y.
ksb admits horizontal and layer decompositions, of the forms

E [S ksb−−→ S′] = idn−×K× idn+

= idm|ωι K′

where for R = exm(S,ksb), n− = #R−x, n+ = #R+x, and m = #R−y.

40

Proof. Consider the case of ksb first. Since L(f.x+r) = 0, no loops transferred to the temporary front-bed
needle will get stacked together with any other loops. Any loops that are temporarily transferred to the
front bed, all loops on the front bed, and all yarn carriers remain horizontally stationary over all of the
MOVE operation prior to the final rack operation. Consequently, after the second xfer operation, the
entire back-bed can be layer-separated from the rest of the denoted tangle, and the final racking respects
this decomposition. Thus, the second decomposition is justified. In the case of the first decomposition,
observe that in this final diagram all paths except those starting at ⌊b.x⌋r and ending at ⌊b.x+ j⌋r are
perfectly vertical. Therefore, horizontally we can separate out an identity slab of everything to the left of
⌊b.x⌋r and an identity of everything to the right of ⌊b.x+ j⌋r.

Now consider the case of ksf, which would ideally be symmetric with ksb. Unfortunately, the trans-
ferred loops no longer remain stationary during the racking in-between the transfers. Rather, they and
the entire back bed move in between the two transfers. Once the transferred loops are back on the front-
bed and the racking undone, the same basic argument as above justifies the horizontal decomposition.
However, the layer decomposition is less obvious. Since the transferred loops move in tandem with all
of the back-bed loops, no crossings between them are introduced prior to the final racking sequence. At
this point we can introduce a layer decomposition of the back bed. This would justify consistency with a
rectangular interval of [−∞,∞) in the y-coordinate. However, observe that by definition there are no yarns
between ymax and ∞ inside the horizontal extent of ksf. Therefore, we can layer decompose everything
strictly after ymax from everything at or before ymax.

Lemma 4.29 (Move Swap). Let ks1 be a MOVE subprogram and ks2 some other knitout program. Let S
be an initial state, s.t. S ks1−→ S′ ks2−→ S′′ is valid. We consider the two MOVE cases separately.

If ks1 = MOVE(f.x,r,f.x+ j); L(b.(x− r)) = 0 in S and S′; and exm(S,ks1)∩ ex(ks2) = /0; then

S ⊢ ks1;ks2 ∼= ks2;ks1

If ks1 = MOVE(b.x,r,b.x+ j); L(f.(x+ r)) = 0 in S and S′; and exm(S,ks1)∩ ex(ks2) = /0; then

S ⊢ ks1;ks2 ∼= ks2;ks1

Proof. The proof is structurally the same as for Rewrite Rule 1, with the additional use of Lemma 4.28.
Because of the additional preconditions and context-sensitivity of the move decomposition lemma, we
must ensure that the preconditions are satisfied in both S and S′; but these are already explicit preconditions
of this rewrite.

Canceling Subprograms

Next we consider programs which in some way cancel each other, akin to the algebraic law a−1a = id in
group theory. As one might expect, these rules all involve operations which do not produce fences since it
can be trivially proven that equivalent fenced tangles must have an equal number of fences.
Rewrite Rule 2 (Merge). Racking in one direction and then back in the other direction is the same as
doing nothing.

S ⊢ (rack (r±1); rack r)∼= nop

where r is the initial racking value in S.
Missing at n.x in one direction and then back in the other is the same as doing nothing.

S ⊢ (miss dir n.x y; miss ¬dir n.x y)∼= nop

41

Proof. First we consider merging the two rack operations ks1;ks2. Recall that E [S rack r−−−−→ S′] = idn|ι
′

ι idm

where ι = I<∞[S] and ι ′ = I<∞[S′]. Then, again by distributivity

E [S rack (r±1);rack r−−−−−−−−−−→ S] =
(

idn|ι
′

ι idm

)
◦ (idn|ιι ′ idm)

= (idn ◦ idn)|ιι(idm ◦ idm)

= idn+m

= E [S nop−−→ S]

Similarly, the proof for merging the two miss operations m1;m2 for yarn y proceeds by observing
that both miss operations have a compatible layer decomposition, and that the composition within each
layer is simply id.

Let S′ be the state between the two miss operations. Let ι< = I<y[S] ∈ In,m+1 be the interleaving
of all yarns and loops in front of yarn y and ι> = I>y[S] ∈I1,m be the interleaving of the yarn y with all
of the yarns and loops behind yarn y. Similarly, let ι ′< = I<y[S′] and ι ′> = I>y[S′]. Then E [S m1−→ S′] =

idn|
ι ′<
ι<
(id1|

ι ′>
ι>

idm) and E [S′ m2−→ S] = idn|ι<ι ′<(id1|ι>ι ′> idm). Therefore, by distributivity

E [S m1;m2−−−→ S] =
(

idn|
ι ′<
ι<
(id1|

ι ′>
ι>

idm)
)
◦
(

idn|ι<ι ′<(id1|ι>ι ′> idm)
)

= (idn ◦ idn)|ι<ι<
(
(id1 ◦ id1)|ι>ι>(idm ◦ idm)

)
= idn+1+m

= E [S nop−−→ S]

Rewrite Rule 3 (Squish).

S ⊢ xfer n.x n′.x′;xfer n′.x′ n.x∼= xfer n′.x′ n.x

Furthermore, when L(n.x) = 0 in initial state S,

S ⊢ xfer n.x n′.x′ ∼= nop

Proof. Either n.x = f.z, in which case n′.x′ = b.(z− r); or n.x = b.(z− r) and n′.x′ = f.z. Without loss of
generality, assume the latter case (the former is symmetric via flipping the diagrams 180◦). The non-trivial
part of the diagram denoted by this composite program is shown above. Once composed, this is the same
diagram that xfer f.z b.(z− r) denotes. If L(f.z) = 0 in S, then this sub-diagram is simply id2n, which
is denoted by nop as well—demonstrating the second claim.

42

Table 4.2: When performing operation ks(dir,n.x) = knit dir n.x l yarns or ks(dir,n.x) =
tuck dir n.x l (y,s), conjugate either moves ks one needle to the left (n.x-1) or one needle to the right
(n.x+1). In the back bed case ks(dir,b.n), conjugate only uses the SHIFT macro. In contrast, the front
bed case ks(dir,f.n) requires additional miss instructions to route yarns to the correct physical carrier
location. The correct ordering of miss and SHIFT operations that prevents intertwining of loops and
carriers depends on the dir parameter, producing two extra cases each. Note that all six cases require
preconditions similar to those described in the proof of Rewrite Rule 5.

Front Back

+ - any

Left

miss − f.x−1 yarns
SHIFT(f.x,r,−1)
ks(+,f.x−1)
miss + f.x yarns
SHIFT(f.x−1,r−1,1)

SHIFT(f.x,r,−1)
miss − f.x yarns
ks(−,f.x−1)
SHIFT(f.x−1,r−1,1)
miss + f.x−1 yarns

SHIFT(b.x,r,−1)
ks(dir,b.x−1)
SHIFT(b.x−1,r−1,1)

Right

SHIFT(f.x,r,1)
miss + f.x yarns
ks(+,f.x+1)
SHIFT(f.x+1,r+1,−1)
miss − f.x+1 yarns

miss + f.x+1 yarns
SHIFT(f.x,r,+1)
ks(−,f.x+1)
miss − f.x yarns
SHIFT(f.x+1,r+1,−1)

SHIFT(b.x,r,1)
ks(dir,b.x+1)
SHIFT(b.x+1,r+1,−1)

Subprogram Machine Location

We have now explained how to cancel and commute various knitout instructions relative to each other.
This allows us to change the order in which we perform operations and remove redundant operations.
However, it doesn’t yet allow us to “reschedule” programs in the sense of adjusting gauge or changing
which needle we use to perform a substantive operation (e.g., knit, tuck).

In the case of the tuck operation, which produces the same yarn topology independent of the bed
it occurs in, a single xfer operation can be used to change the needle argument to the same physical
location on the opposite bed.

Rewrite Rule 4 (Slide). Let n.x and n′.x′ be defined such that they are the pair f .z and b.z− r, or the pair
b.z− r and f .z. Then let ks(n.x) = tuck dir n.x l (y,s).

S ⊢ ks(n.x); xfer n.x n′.x′ ∼= ks(n′.x′); xfer n.x n′.x′

Proof. Without loss of generality, assume n.x = f.z, n′.x′ = b.z− r, and dir =+ (the other cases involve
symmetric diagrams of equivalent complexity). We can see that a simple application of Reidemeister
moves R3 and R4 can be used to slide the fence produced by tuck under front bed loops and over the
back bed loops to transform from the diagram on the left to the diagram on the right. Further, observe that
in the case where L(n.x) = 0, the diagram can be further simplified and a xfer instruction removed via
Rewrite Rule 3.

43

∼=

L(f.x) L(b.z-r)

f.z

f.z

b.z− r

b.z− r

L(f.z) L(b.z-r)

f.z

f.z

b.z− r

b.z− r

In order to move an operation to a different needle on the same bed, we must use a sequence of
operations. All resulting loops and yarn carriers produced by the operation would then need to be moved
back to match the appropriate end state S′. This is particularly important for the knit instruction, which
has a mirrored structure depending on which bed it’s performed on (the difference between a knit and a purl
in hand-knitting). Continuing the algebraic analogy to group theory, we might expect a structure similar
to ghg−1 (the conjugation of h by g) and h to be similar or equivalent given a suitably trivial g. In fact, this
is the right way to think about moving operations around, though the exact knitout operations in g and g−1

vary depending on the operation being conjugated. Due to the asymmetry in machine operations rack,
knit, and tuck, generating the correct sequence of routing operations requires breaking conjugate into
six different cases seen in Table 4.2. All six cases use similar logic for transforming between the fenced
tangle diagrams. Thus we walk through the proof of only one case below.
Rewrite Rule 5 (Conjugate [f, +, Left]). Let ks(dir,n.x) be either a knit or tuck instruction ks(dir,n.x)=
knit dir n.x l yarns or ks(dir,n.x) = tuck dir n.x l (y,s). (we will simply refer to (y,s) as yarns in
the tuck case). Let S be the state prior to ks. If the following needles are empty L(b.x− r) = 0,
L(f.x−1) = 0, and if there are no yarn carriers in the way that we are not using Y−1(⌊f.x,−⌋r) = yarns,
then

S ⊢ ks(+,f.x)∼= miss − f.x−1 yarns; SHIFT(f.x,r,−1);

ks(+,f.x−1);

miss + f.x yarns; SHIFT(f.x-1, r-1, 1)

(where miss on multiple yarns is simply a sequence of miss operations, one for each yarn)

Proof. The proof is given in figure 4.8. We briefly expound on details here.
Because only and exactly yarns are present at ⌊f.x,−⌋r, the unconjugated diagram has no initial

−→
V yarns; only the final

←−
Λ yarns. In the conjugation diagram, this final merge cancels against the initial

separation of the knit instruction, allowing yarns to become separated from the other yarns initially parked
at ⌊f.x−1,−⌋r. The rest of the diagram fairly trivially deforms back to the unconjugated diagram, using
standard Reidemeister moves.

44

Figure 4.8: The fenced tangle denoted by the conjugate left program. Note it is equivalent to the fenced
tangle for knit + f.x l yarns as seen in figure 4.5i.

45

(a) A screenshot of the rewrite-
editor. Knitout instructions are
shown as nodes in a graph, while
loops and yarns are shown as edges.

f.0

f.0

b.0

b.0− r

f.1

f.1

b.1

b.1− r

tuck − f.1 8 (1,1)

tuck − f.0 8 (1,1)

miss + f.0 1

xfer f.0 b.0

xfer b.0 f.1

rack 1

knit + f.1 8 (1,1)

(b) The fenced tangle and knitout code corresponding to the
screenshot. Note that knitout code is read from bottom up to
match the fenced tangle presentation. The yarn carrier id is 1
and the yarn lengths are all 1 needle spacing unit.

Figure 4.9: Knitout code shown in the rewrite-editor and the corresponding fenced tangle.

4.4 Results

To demonstrate the usefulness of these rewrite rules, my co-authors and I implemented an editor for
applying our rewrite rules to formal knitout programs. The editor is written in JavaScript and runs on a
browser. The interface implements common useful interactions such as multi-select, zoom, drag, etc. The
interface of the rewrite-editor is shown in Fig. 4.9a, and the corresponding fenced tangles and the formal
knitout code is shown in Fig. 4.9b.

Because knitout is time monotonic by definition, it can be visualized as an upward time-dependent
graph. Each knitout instruction is visualized as a block that spans needle locations which the instruction
uses. For example, 13:tuck shows an instruction that is a tuck operation, and is the 13th operation in the
program. Note that numbers such as 13 are timestamps, not unique instruction IDs. Therefore they can
change after the rewrites. The rewrite-editor visualizes all the knitout instructions except for the rack
instruction. Instead, the machine’s racking value is tracked for each instruction internally.

Instruction nodes are augmented with orange circles such as 1 , which annotate each loop with an id
and the location of the incoming and outgoing loop, and green circles such as 3 , which visualize the yarn
carrier id and the location of the incoming and outgoing yarn. Empty loops and yarns are visualized as
gray circles . When one loop or yarn connects two instructions, we draw a vertical dependency line with
the corresponding color.

For each needle location, the front bed is visualized as a white column and the back bed is visualized
as a grey column. The yarn carrier location exists on both sides of the needle locations, and is visualized
as a green column. Program rewrites are performed by selecting instructions followed by the appropriate
rule (Fig. 4.7). The rewrite is applied only if it is correct given the program context.

To demonstrate the expressivity of the rewrite rules, we programmed four examples using the rewrite-
editor and knit them on a Shima Seiki SWG091N2 (15 gauge) two-bed knitting machine. All the inputs
to the rewrite-editor were either handwritten or produced by simple JavaScript code, and all the rewrites

46

Swap ∗5
5 carriage pass 3 carriage pass

xfer f.3 b.3

xfer f.3 b.3knit − b.3 8 (3,1)

knit − b.3 8 (3,1)xfer b.3 f.3

xfer b.3 f.3

xfer f.2 b.2

xfer f.2 b.2

knit − b.2 8 (3,1)

knit − b.2 8 (3,1)

xfer b.2 f.2

xfer b.2 f.2

Figure 4.10: Rewrite-editor screenshot and the corresponding knitout code of the pass optimization ex-
ample. See Definition 4.2 for the formal knitout syntax. Left is typical knitout that novices tend to write,
which is correct but inefficient due to unnecessary carriage passes. After applying the Swap rewrite rule
five times, we can consolidate knit and xfer instructions so that the number of carriage passes becomes
three. The impact of pass consolidation increases as the size of the program gets larger.

were performed on the rewrite-editor to produce the output. Since the rewrite rules apply on individual
instructions, scheduling large knitout programs can be challenging. Thus, we did rewrites on small ver-
sions of each knitout program and then expanded them using a Python script that duplicates and enlarges
the program. Length annotation parameter units are based on the spacing between needles (approximately
1.7mm on our machine). Thus a length annotation of 1 can be respected if the yarn connects adjacent
needle location, but is invalid if the loops are two needles apart. Loop length parameters are kept constant
throughout the examples at 8 (which we decided would correspond to our machine’s default loop length
setting).

4.4.1 Pass Optimization

When teaching, we have noticed that machine knitting novices tend to write knitout that is correct but
inefficient. For example, when writing knitout instructions to back bed knit (a ‘purl’ in hand-knitting)
several loops held on the front bed, a novice will write a transfer-knit-transfer sequence for each loop.
This sequence is visualized on the rewrite editor in Fig. 4.10 (left). Such per-stich interleavings are
inefficient because knit and xfer operations require separate carriage passes. Re-ordering the code to
group knits and xfers into separate blocks results in fewer passes and a shorter knitting time.

We optimized the carriage passes by applying a sequence of Swap operations on the original knitout
code. Fig. 4.10 shows a small example of how such optimization can be done in the rewrite-editor
using the following sequence of Swap operations. Note that numbers in nodes are not unique IDs but are
timestamps.

1. Swap (8:xfer, 9:xfer)

47

2. Swap (9:xfer, 10:knit)

3. Swap (10:xfer, 11:xfer)

4. Swap (7:knit, 8:xfer)

5. Swap (6:xfer, 7:xfer)

The input knit structure had 60 rows and 30 columns. Before scheduling, there were two knit-xfer
switches per row and column. Therefore, the initial number of passes was 2 ∗ 60 ∗ 30 = 3600. After
applying the rewrite Swap, there are only four knit-xfer switches per row, because xfers and knits
are consolidated across columns. Therefore, the number of passes is 60∗4 = 240.

The manufacturer’s design software for our knitting machine [Shima Seiki 2011] estimates the original
code’s runtime at 50 minutes 30 seconds while the optimized version needs only 3 minutes 26 seconds.
The rewrite optimized version is 14.7x faster, which roughly corresponds to the ratio of the number of
passes, which is 3600/240 = 15.

4.4.2 Full to Half Gauge

Consider a tightly knit sheet of knit fabric, constructed on a contiguous sequence of machine needles. The
same sheet can also be produced by using needles that are further spaced out, for example using every
other needle (i.e., on ‘half-gauge’). While this change in gauge affects the ability of a machine to respect
yarn length parameters, the topology of the underlying structure remains intact. Adjusting the gauge and
moving instructions to desired locations while preserving topological equivalence is a ubiquitous task in
machine knitting. Given this, we demonstrate how our rewrite rules can be used to transform a full-gauge
fabric to half-gauge.

In the following example, we use a rewrite sequence pattern for moving the instructions to a neigh-
boring needle, which is illustrated in Fig. 4.12. We first apply the rule Conjugate Right to two knit
instructions 3:knit and 0:knit. Conjugate Right will insert misses and xfers as described in sec-
tion Section 4.3. Then, we Swap the xfers until they are next to each other and apply Squish to cancel
redundant xfers.

We scheduled a full gauge sheet (Fig. 4.11a) to a half gauge sheet (Fig. 4.11b), and a full gauge tube
(Fig. 4.11c) to a half gauge tube (Fig. 4.11d) by moving each knit and tuck instruction to the right.
Note that the half-gauge examples are wider than their full-gauge despite having the same topology. This
is because the increased spacing in the half gauge example prevents the annotated yarn length from being
respected.

4.4.3 Sheet Stacking

Recall the example discussed in Chapter 2, where a novice attempted to reschedule two sheets with in-
terleaved construction passes so that instead of lying adjacent on the machine, one sheet was directly in
front of the other. We scheduled two separate, adjacent sheets (Fig. 2.7a) so that they were correctly
stacked (Fig. 2.7b) using the rewrite-editor. We performed this scheduling task by first moving all the knit
instructions in the back bed sheet to use the same physical needle locations as the front bed sheet, using
the same sequence of rewrite rules as Fig. 4.12. Then, we used the Swap rule to swap knit instructions
until the sheets were correctly interleaved.

Note that the proof for the Swap rule relies on the swapped instructions having disjoint extents. This
scenario requires repeated swapping of instruction knit dir f.x 8 (y f ,1) with knit dir b.x 8 (yb,1). In
our original program, y f = 3 and yb = 4. This means the extents of the operations are disjoint, and the

48

(a) Full-gauge sheet (b) Sheet transformed to half-gauge

(c) Full-gauge tube (d) Tube transformed to half-gauge

Figure 4.11: Examples of sheets and tubes converted from full gauge to half gauge using rewrite rules to
guarantee topological equivalence.

49

Conjugate Right
3:knit

0:knit

Swap ∗12 Squish

knit - f.2 8 (3,2)

knit + f.2 8 (3,2)

knit - f.1 8 (3,2)

miss + f.1 3

knit - f.3 8 (3,2)

knit + f.3 8 (3,2)

knit - f.1 8 (3,2)

miss + f.1 3

miss + f.2 3

miss - f.2 3

Figure 4.12: Rewrite-editor screenshot and the corresponding knitout of the rewrite sequence for moving
the knit/tuck instruction one to the left or right. The sequence of rewrites in this example moves two
knits (3:knit and 0:knit) from needle f.2 to f.3.

Swap rule is safe to perform. If instead y f = 5, the instructions would no longer be disjoint, making the
rewrite unsafe. Executing the program with this change in carriers results in the error seen in Fig 2.7c.

4.4.4 Pleated Tube

Existing knit design systems that automatically schedule knitout programs all have the limitation that
they cannot schedule structures that require overlapping more than two sheets at the same physical needle
location. This excludes structures like pleats, where a fold in the fabric is secured at one end. However,
using a technique known as fractional gauging, it is possible to machine knit such structures. At a high
level, n separate sheets can be scheduled to the machine by abstracting the needle bed as bins of width n
needles. The i-th sheet in the stack is then assigned to the i-th needle in a bin. This technique requires
careful usage of transfers to keep the sheets from intertangling. Therefore, it normally involves much trial
and error by an experienced knitting machine programmer.

I, an experienced knitting machine programmer, wrote a knitout program to make a tube with pleats.
The tube has locations where there are 4 layers at the same time. Therefore, the program was written in
1/4th gauge (each layer uses one out of every four needle indices). However, knitting at 1/4th gauge
means the machine is forced to put more yarn between each loop. Put another way, s ≥ 4 for all s
parameters in the program. We can see this extra yarn in the fabricated result (Fig. 4.13a). In addition,
the program had many extraneous transfers, which reduces fabrication reliability. These ideally should be
removed.

To address these issues, we rewrote the program from 1/4th gauge to 2/3rd gauge (each layer uses
one out of every three needle indices, where two layers share the same index). This gauge adjustment used
high-level rewrite strategies similar to the full to half gauge and sheet intersection examples (see Fig.4.12).
Extraneous transfers were removed using Squish and Slide. In the resulting pleated tube, we can see that it
is narrower and that the bottom of the tube, where most of the extra transfers occurred, looks neater (Fig.
4.13b).

50

(a) 1/4th gauge, before rewrites (b) 2/3rd gauge, after rewrites
Figure 4.13: Photos of the fabricated pleated tube examples

51

52

Chapter 5

Compilation of Unscheduled Knitting
Representations

Last chapter, I presented a denotational semantics for knitout. This is essentially a mapping from low-level
machine control operations to a knit object (specifically fenced tangles). The knit compilers described in
Chapter 2 are interested in the inverse direction: mapping from knit objects to low-level control operations.
Robust knit compilers enable users to design and essentially “write” knitting programs solely by working
with intuitve, unscheduled object reprsentations, which would greatly simplify the knit programming
process.

That said, we cannot simply invert our denotation function and directly use fenced tangles to represent
knit objects. For one, a fenced tangle is a mathematical object, not a data structure we can manipulate on
a computer. To be precise, while the knitout semantic function defined last chapter maps from a program
to a specific presentation of a fenced tangle, the actual semantic domain is the equivalence class of fenced
tangles under ambient isotopy. Rather than try to express an abstract mathematical concept on a finite,
physical computer, we instead need to define a data structure, or computer representation that also denotes
a fenced tangle. From there, we can reason about the correctness of compilation functions between the
knit object representation (i.e. unscheduled representation) and knitout programs by appealing to the
equivalence of their respective denoted fenced tangles.

This leads to the question of what that representation should be. A natural choice might be a data
structure that describes a presentation of a fenced tangle, but this runs into the issue that most fenced
tangles are not machine knittable; for a simple example, consider any fenced tangle that includes an
embedded circle. Ideally, we want a knit representation that is both complete (represents the result of
any valid sequence of machine operations) and sufficient (only represents objects that can be made with a
sequence of machine operations). This is precisely the goal of this chapter.

In the following sections, I will introduce instruction graphs, which are an unscheduled representation
of machine knitting. Unlike earlier graph-based representations of knitting, which are only concerned with
graph connectivity, instruction graphs treat the embedding of the graph in space as important semantic
information. This results in a knit representation that can precisely describe the topology of the object as
fenced tangles. I show that instruction graphs with certain easy-to-check properties (upward, forward, and
ordered) are exactly the ones that can be machine knit. This allows us to define a compilation function
from instruction graphs to knitout that is sound and complete: it will correctly lower an any instruction
graph that can be knit to an equivalent knitout program. An overview of the chapter structure is shown in
Fig. 5.1.

53

Instruction
Graph (IG)

IGUFO = φ(KO) Knitout (KO)

Labelled
Tangles

concrete

abstract

Fenced Tangles

Machine Knittable

EK
EG

§5.2.2 §5.3lowering (L) Def. 4.2

§3.3

EK(KO) = EG(IGUFO)

EG(IG)

Def. 4.7
§5.1.2

§5.2.1lifting (φ)
§5.1.1

Figure 5.1: The chapter overview. We first present instruction graphs, which are a high-level knitting
representation that also denote fenced tangles (Section 5.1). By defining the function φ that lifts all
valid knitout programs to instruction graphs while preserving fenced tangle equivalence (Section 5.2.1),
we observe that all graphs in the co-domain of φ have three graph properties: upward, forward, and
ordered (Section 5.2.2). We then define function L that lowers all UFO instruction graphs to an equivalent
formal knitout program (Section 5.3). Because we made sure the lifting/lowering functions commute
with the denotation functions, we prove that there is an equivalence-preserving bijection between UFO
instruction graphs and valid knitout programs, i.e. all UFO instruction graphs are machine knittable.

54

5.1 Instruction Graphs

Before formally defining instruction graphs, let’s discuss their design goals. As the primary objective
is to express all machine-knittable structures, instruction graphs should, at a minimum, be capable of
expressing every fenced tangle denoted by a valid formal knitout program (EK [kP]). If we examine the
semantic definition of each primitive knitout operation, we notice: first, there is a countable family of
tangles that can appear inside fences; and, second, there are two types of arc bundles between fences:
those that are parameterized by loop count L, and those that are parameterized by yarn carrier position Y .
External to fences, the type of an arc bundle never changes. This allows us to partition machine knittable
fenced tangles into three key structures:

1. Fences, which contain some templated tangle that depends on the associated operation. All arcs that
exit the top of a fence either enter the bottom of a different fence or exit the top of the bounding
slab. All arcs that enter the bottom of a fence either exited the top of a different fence or the bottom
of the bounding slab.

2. Loop stacks, which are an even number of arcs that move as a parallel bundle. All arcs in a loop
stack connect the same pair of fences. Except for when two loop stacks are merged by ending up
on the same needle, anything that crosses one arc in a loop stack crosses all arcs in a loop stack.

3. Yarns, which move independently but have restrictions on their crossing order with other yarns.
We define the instruction graph (G) in Section 5.1.1, specify its semantics as a denotation to fenced

tangles (EG), and define an equivalence relation (∼=G) in Section 5.1.2.

5.1.1 Instruction Graph Definitions

A knit instruction graph has three features: a set of nodes, along with arcs and ribbons that connect
them. The nodes are affine transforms of a countable set of exemplars(Definition 5.2), which correspond
to specific machine operations; the arcs are paths in space corresponding to yarns; and the ribbons are
framed paths in space corresponding to loop stacks. Annotations on arcs and ribbons are used to track
carrier id and loop stack counts respectively. Intersection is not permitted between these primitives except
at specific connection points on node boundaries.
Definition 5.1 (Instruction Graph). An instruction graph is a tuple G = (N,A,R) where:
Nodes each node n ∈ N consists of a reflection-free, non-degenerate affine transformation of some par-

ticular exemplar.
Arcs each arc a ∈ A consists of a piecewise-linear path embedded in space a : [0,1]→ R3, along with a

yarn-carrier annotation id(a) ∈ N
Ribbons each ribbon r ∈ R a framed piecewise-linear path embedded in space r = (p, n̂), with underlying

path p : [0,1]→ R3, and unit vector n̂ : [0,1]→ R3.
Furthermore, an instruction graph must satisfy

• for each arc, one of its endpoints is coincident with some exemplar’s arc input port, and the other
with some arc output port. The exemplar and arc must agree on yarn carrier id.

• for each ribbon, two opposite sides (beginning and ending) intersect nodes at exactly some exem-
plar’s output ribbon port and exactly some input ribbon port (respectively). The ribbon and ports
must agree on loop count, and the dot product of the ribbon’s binormal and the exemplar’s local
z-axis must be zero.

• for each node, all ports should be coincident to exactly one arc or ribbon (no more, no less).
• other than these ports, no arcs, ribbons, or nodes intersect in space.

55

Figure 5.2: Knit instruction graph nodes draw their contents from a countable set of exemplars, where
each exemplar denotes a fenced tangle. As seen in KNIT-right (a), rotating the exemplar 180◦ around the
y axis rotates the fenced tangle as well to produce the mirror image with all crossing annotations flipped.
This is a different fenced tangle than KNIT-left (b). Similarly, we need a left and right variation for SPLIT
(c,d), while all remaining exemplars (e-i) are equivalent to their mirror image.

56

An exemplar is a carefully-chosen snippet of yarn topology that represents regions of knitting that
cannot be denoted using arcs and ribbons: fenced regions places where loop stacks are combined. Each
exemplar consists of an axis-aligned rectangular domain with a set of input ports on a line along its lower
face and a set of output ports on a line along its upper face.
Definition 5.2 (Exemplar). An instruction graph exemplar is a fenced tangle defined on [−1,1]3 with an
equator at z = 0. Exemplars must be drawn from a finite set of classes (defined in Figure 5.2) and have all
endpoints on the equator grouped and annotated as follows:
Arc input ports Each a−i ∈ A− is an end-point lying on the lower equator line segment [−1,1]×{−1}×

{0}; id(a−i) ∈ N is the yarn carrier id of this port.
Arc output ports Each a+i ∈ A+ is an end-point lying on the upper equator line segment [−1,1]×{1}×

{0}; id(a+i) ∈ N is the yarn carrier id of this port. The number of end-points in A− is the same as
the number of end-points in A+, and for all i, id(a−i) = id(a+i).

Ribbon input ports r−i ∈R− is an end-point lying on the lower equator. #r−i = n is the “number of loops”
associated with this port.

Ribbon output ports r+i ∈ R+ is an end-point lying on the upper equator. #r+i = n is the number of loops,
similarly.

Much like with fenced tangles, we will find it useful to construct more complicated Instruction Graphs
out of simpler ones. To this end, we define Partial Instruction Graphs and method for composing them.
Definition 5.3 (Partial Instruction Graph). A partial instruction graph is an instruction graph defined
within R× [0,1]× [0,1], in which the endpoints of arcs and ribbons are allowed to to lie on either the input
boundary R×{0}×{0} or the output boundary R×{1}×{0}. Boundaries also have ports, an interleaved
sequence of n arc points and m ribbon points in R, where arcs are annotated with a yarn carrier id yc, and
ribbons are annotated with loop count l. Arcs and ribbons attached to the boundary must agree on carrier
id and loop count annotations respectively. A partial instruction graph with no inputs nor outputs is simply
an instruction graph.
Definition 5.4 (Vertical Composition of Partial Instruction Graphs). We define the vertical composition
G0 ◦G1 of partial instruction graphs G0 = (N0,A0,R0) and G1 = (N1,A1,R1) as G = (N,A,R) where:
N = N0∪N1; A is the result of joining A0 and A1 at any common endpoints; and R the result of joining R0
and R1 at any common endpoints. For this to make sense, the output arc and ribbon endpoints of G0 must
be in one-to-one correspondence with input arc and ribbon endpoints of G1; the correspondence must
match the ordering along input/output lines. Furthermore, the vertical composition of partial instruction
graphs is only well-defined when all matching arcs agree on id, and all matching ribbons agree on loop
count annotation and frame at the joined endpoints.

5.1.2 Instruction Graph Semantics

While formal knitout represents fenced tangles coupled with an explicitly-specified set of machine oper-
ations and relies on machine semantics to provide spatial information, instruction graphs directly encode
spatial information without including machine-specific details (e.g., which needle will be used to create
each structure). Consequently, instruction graphs can represent a larger space of fenced tangles than those
that can be machine-knit. Therefore, defining the semantics of instruction graphs is crucial. Similar to
how the semantics of formal knitout were defined as a denotation on fenced tangles (EK), we define the
semantics of an instruction graph as a denotation of fenced tangles (EG).
Definition 5.5 (Instruction Graph Denotation). Let (N,A,R) be a partial instruction graph. We define the
number of inputs n and number of outputs m as follows. Let p be a ribbon endpoint (for ribbon r) on
the input or output line. Then, let #p = 2 · #r (twice the loop count). Then n is the number of input arc

57

endpoints plus ∑p∈input #p, and m is the number of output arc endpoints plus ∑p∈output.
Then, the denotation of our partial instruction graph is a slab, EG[(N,A,R)] ∈S m

n defined as follows.
Let every arc a ∈ A be sent to an arc a ∈ A′; let every ribbon r ∈ R be sent to a set of k = 2 ·#r arcs ri ∈ R′

(0 ≤ i < k), where the binormal of the ribbon is used to offset the ribbon’s path p by i ∗ ε , where ε is
small enough to prevent any additional intersections. Lastly, let every node n be sent to arcs a ∈ A′ and
fences Li ∈ L′ specified by n’s exemplar, and transformed by the affine transformation of n. Wherever
there are ports on the boundary of a node/exemplar, the corresponding arcs/ribbons external to the node
and arcs internal to the node the endpoints will be coincident. Finally, we define a fenced tangle by joining
together all arcs with coincident endpoints into contiguous arcs. Along with the labels L′, this defines a
fenced tangle on an (n,m)-slab.

Observe that the denotation forgets all length annotations, similarly to the denotation of knitout.
Definition 5.6 (Instruction Graph Equivalence). Two instruction graphs are equivalent if and only if their
denoted fenced tangles are equivalent.

Given this definition, it also trivially follows that any transformation on the instruction graph under
ambient isotopy of R3 is also equivalent. This is because any transformation under ambient isotopy of an
instruction graph also transforms the denoted fenced tangle under ambient isotopy. Since ambient isotopy
preserves the structure and relationships between components in 3-dimensional space, it also preserves
the equivalence of fenced tangles. Therefore, applying an ambient isotopy to an instruction graph results
in an equivalent fenced tangle. A GUI implementation of such equivalence-preserving transformation is
described in Section 5.4.1.
Corollary 5.7 (The Denotation of Vertical Composition is Vertical Composition). Let G = G1 ◦G2 be a
partial instruction graph vertically composed out of G1 and G2. Then, EG[G1 ◦G2]∼= EG[G1]◦EG[G2].

5.2 Machine Knitablity Implies UFO Instruction Graph

Now that we’ve defined instruction graphs, we will proceed to demonstrate that all valid formal knitout
programs denote a fenced tangle that is equivalent to one denoted by an instruction graph with a few
easy-to-check properties (upward, forward, and ordered). We will proceed by developing a function to
“lift” valid formal knitout programs to instruction graphs and then examine the properties of these lifted
instruction graphs.

5.2.1 Lifting Knitout to Instruction Graphs

In order to demonstrate that instruction graphs can represent all machine-knittable structures, we define a
lifting, φ : KO→ IG, from valid formal knitout programs to instruction graphs that preserves the meaning
(denoted tangles) of the programs.

Our definition for φ closely follows the structure of the definition of the formal knitout denotation
function EK (Definitions 4.6, 4.7, and Figure 4.5):
Definition 5.8 (Lifting Function). Let φ : KO→ IG be lifting function that translates valid formal knitout
programs into instruction graphs, as follows:

1. The lifting of a program is the vertical concatenation of the lifting of each step of the program trace:

φ (kP)≡ φ

(
S0

ks1−→ S1

)
◦ · · · ◦φ

(
Sn−1

ksn−→ Sn

)
(5.9)

where the ks∗ are individual formal knitout statements (i.e., kP = ks1; . . . ;ksn), and the S∗ are ma-
chine states along the execution trace of kP.

58

2. The lifting of a given step is an instruction graph slab that implements the instruction and passes
through uninvolved loops/yarns on either side:

φ(S ks−→ S′)≡ See Figure 5.3 (5.10)

With φ defined, it is straightforward to state our main result from this section:
Theorem 1 (Everything Machine Knittable is an Instruction Graph). For any valid formal knitout program
kP ∈ KO, there exists an instruction graph G ∈ IG such that EG[G]∼= EK [kP].

Proof. We show that G = φ(kP) satisfies the hypothesis. Notice that both φ(kP) and EK [kP] are built from
vertical slabs, one per instruction. So (by Corollary 5.7) it suffices to inspect the denotation of each slab
in φ(kP) and confirm that it is equivalent to the slab in EK [kP] – i.e., to check that

EG[φ(Si−1
ksi−→ Si)]∼= EK [Si−1

ksi−→ Si]

for every step ks∗ in the execution of kP.
This can be verified by visual inspection of each case in Figure 5.3.

5.2.2 Upward, Forward, Ordered

Having defined a semantics-preserving lifting φ from valid formal knitout programs to instruction graphs,
we now have a clearer picture of exactly the instruction graphs that correspond to valid machine knitting
programs. We call this subset IGUFO ⊂ IG (the subscript’s meaning will become obvious anon):

IGUFO ≡ {φ(kP) | kP ∈ KO} (5.11)

Observe that any instruction graph that denotes a knittable fenced tangle must be equivalent to one in
this set. Therefore, it is interesting to see if we can find any properties that characterize IGUFO. We define
three such properties below which (coincidentally) map to fabrication constraints of knitting machines.
For now, it is easy to verify by inspection of the definition of φ that every instruction graph G ∈ IGUFO

has these properties; in the next section we will show that any instruction graph with all three of these
properties is equivalent to one in IGUFO.
Definition 5.12 (Upward). All nodes have their local y axis aligned with the global y axis, and all arcs
and ribbons travel strictly upward (are strictly increasing in y coordinate).

Knitting is a sequence of instructions where later instructions depend on the results of earlier instruc-
tions. They cannot depend on operations that have not yet occurred. The knitting machine does not have
the ability to rotate anything, which means the result of each operation has a fixed orientation that cannot
be changed.
Definition 5.13 (Forward). All node transforms have their local z axis facing along the global +z or −z
axis. The normal vector of all ribbons is always aligned with the global +z or −z axis.

Knitting machines have only front-bed and back-bed needles, not needles at other orientations, so they
can only perform operations in these two orientations. Again, because the knitting machine cannot rotate
anything, there is no formal knitout operation that can insert twist into loops. Thus all arcs in a loop run
in parallel and never cross each other.
Definition 5.14 (Ordered). All arcs that share the same y coordinate must have distinct carrier IDs. If
two arcs also share the same x coordinate, the arc with the smaller carrier ID must also have the smaller z
coordinate (carrier crossing order is consistent with carrier ID).

59

id
l

id
r

id
r

id
l

split + f.x b.(x− r) l yarns

lifting (φ(S
ks−→ S′))
statement (ks)

denotation (EK[S
ks−→ S′])

id
l

id
r

tuck + f.x b.(x− r) l (y,s)

id
l

id
r

knit + f.x l yarns

id
l

id
r

in + f.x y

id
l

id
r

out + f.x y

id
l

id
r

drop f.x

id
l

id
r

xfer + f.x b.(x− r)

id
l

id
r

miss + f.x y rack 1

layout:

key
partial instruction graph
partial fenced tangle fence curve yarn i/o and uninvolved loop/yarn routing

uninvolved loop/yarn routing

Figure 5.3: Our semantics-preserving lifting function, φ , is defined by the per-statement liftings illustrated
here. Each case is illustrated in specific but should be considered as a general template as per Lin et al.’s
construction. (Front/back and left/right variations are not shown, but are constructable following a similar
pattern). The grey boxes labeled idl and idr represent identity instruction graphs that connect uninvolved
loops and yarns from the bottom to the top boundaries. The grey L-shapes in the labeled tangles follow
Lin et al.’s figure in including both identity tangles and yarn routing. Our illustrated instruction graphs
include yarn routing explicitly; the definition for split includes annotations showing which part of the
figure implements each routing action.

60

G7

G6

G5

G4
...

...

single-event partitions made consistent

PGB’s

per-slab compilations denoted fenced
tangle

events

ribbon×arc

KNIT node

MERGE node

ribbon×ribbon

G′7

G′6

G′5

G′4
...

... L (G4)
xfer f.2 b.2
xfer f.1 b.1
rack −1
xfer b.2 f.1
rack 0
rack 1
xfer b.1 f.2
rack 0

xfer f.1 b.1
rack −1
xfer b.1 f.0
rack 0
xfer f.2 b.2
rack −1
xfer b.2 f.1
rack 0
miss − f.2 2
miss − f.2 1

L (G5)

event code
post-event code

miss − f.1 2
L (G6)

xfer f.0 b.0
knit − b.0 1 (2,1)
xfer b.0 f.0

L (G7)

Figure 5.4: Running our compilation function (L) to convert an UFO instruction graph G ∈ IGUFO into
knitout code. The graph is partitioned between events; then partition boundaries are locally adjusted for
consistent yarn-carrier ordering; finally, each partition is then transformed into a formal knitout program.
The tangle denoted by the knitout code matches the tangle denoted by the instruction graph. (Note that
the leftmost ribbon crossing the lower boundary of the illustrated portion of the instruction graph has a
loop count of two because of earlier operations.)

The ordered property captures two restrictions: first that a given carrier cannot be used by operations
that occur at two separate physical locations. Second, the constraint that the carrier with the smaller id
crosses in front of the carrier with the larger id corresponds to how carriers sit on parallel rails, thus
restricting the carrier to movement along only one axis. This fact is also visible in the fenced tangles
denoted by knitout operations: all crossings between arcs denoted by carriers are defined using separation
and permutation slabs, which in turn are uniquely determined by permutations on carrier ids.

5.3 UFO Instruction Graphs are Machine Knittable

The previous section showed that the UFO properties will always be satisfied by some presentation of an
instruction graph that represents a machine-knittable structure. In this section, I demonstrate that the UFO
properties are also sufficient to guarantee machine knittability. Similarly to the proof in Section 5.2.1, I do
so by defining a total mapping L : IGUFO→ KO that preserves fenced tangle equivalence.
Theorem 2 (Every UFO Instruction Graph is Machine Knittable). For all UFO instruction graphs G ∈
IGUFO, there exists a valid knitout program kP ∈ KO where EG[G]∼= EK [kP]

At a high level, L : IGUFO→ KO is a divide-and-conquer algorithm that flattens input graph G along
the z axis and segments it into partial graphs until a partial graph has only a single event: either a node,
or a ribbon crossing with an arc or a ribbon. The x-order of ribbons and arcs on the boundary of the
partial graph will define machine states between events; while each event will map to a carefully-defined
subprogram that transitions between machine states and includes any necessary fenced regions. These
subprograms are then concatenated to a full program. Each subprogram consists of a core, which captures
the fenced tangle denoted by the event, and potentially a pre-program that allocates space for the core
operation or a post-program that fills in empty space to ensure the program is compatible with the machine
states before and after the event. An example of L applied to a partial instruction graph can be seen in
Fig. 5.4.
Definition 5.15 (Compilation of Instruction Graphs). Given UFO instruction graph G, lowering function
L decomposes the graph into partial instruction graphs G∼= G1 ◦G2 ◦ . . .◦Gn, where each partial instruc-

61

tion graph contains a single event. It returns L (G1)◦L (G2)◦ . . .◦L (Gn), where L (Gi)= S ks−i ;ks∗i ;ks+i−−−−−−→ S′

Knitout program ksi is then a case decomposition depending on the event in partial instruction graph.

5.3.1 Knitting Machine State

We begin by defining the mapping from instruction graph boundaries to knitting machine states.
Definition 5.16 (Lowering IG boundaries). Let B be an instruction graph boundary with n arc ports and
m ribbon ports, where each point is annotated with a yarn carrier id yc, and each interval is annotated with
loop count l. M (B) is defined as follows.

Beginning with S = S /0 we use i = 0 to track the next free needle, and iterate along the sequence of
ports. If the port is a ribbon, then L= L[f.i 7→ l], and i is incremented (i.e., there are l loops on front-needle
i). If the port is an arc, then Y = Y [yc 7→ ⌊f.i,−⌋0] (i.e., the yarn carrier is parked to the left of the next
free needle). In short, all loop stacks and carriers are scheduled into a single contiguous block, where all
loop stacks are placed on the front bed, leaving the back bed empty.

This results in the following invariant for machine states generated from this mapping:
Definition 5.17 (Front-bed packed). Machine state S = (0,L,Y,A) is front-bed packed if for ∀x ∈ [0,m] :
L(f.x)> 0 and L(n) = 0 for all other needles n. In addition, for all active carriers yc, Y (yc) ∈ [0,m+1].

Note that the order of carriers on B is not necessarily the same as the order of carriers in E [M (B)].
This is because formal knitout’s denotation puts all yarn carriers at the same machine location in ascend-
ing order by carrier id. Meanwhile, instruction graphs boundaries do not necessarily have this property.
However, it is always possible to segment a UFO instruction graph so its boundary is consistent with
knitting machine states.
Definition 5.18 (Consistent). Let B(i) be the i-th element of B, The boundary is consistent if for every
pair B(i) and B(i+1) that are both arc endpoints, id(B(i))< id(B(i+1)). Put another way, all contiguous
sequences of arc endpoints have increasing yarn carrier annotations. A UFO partial instruction graph is
consistent if both its boundaries are consistent. An instruction graph with no inputs nor outputs is also
consistent.
Lemma 5.19. [Consistent UFO Graph Decomposition] Let G be a consistent UFO instruction graph.
For any decomposition G1 ◦G2 ∼= G with shared boundary B, there exists a corresponding decomposition
G′1 ◦G′2 ∼= G, where G′1 = G1 ◦PG−1

B and G′2 = PGB ◦G2 are consistent.

Proof. Let c(B) be the permutation that takes a instruction graph boundary and makes it consistent only by
permuting arc ports. Recall that any permutation o can be used to define the unique permutation tangle πo.
This means we can define UFO permutation graph PGB that has no events and has B as its input boundary
and c(B) as its output. More specifically, PGB is the unique instruction graph up to equivalence where
EG[PGB]∼= π

−1
c(B)−1 . Similarly, PG−1

B is the UFO permutation graph with no nodes that has c(B) as its input
boundary and B as its output. It denotes πc(B)−1 . We know that vertically concatenating a permutation
tangle with its inverse results in a tangle equivalent to the identity. Thus EG[PG−1

B] ◦EG[PGB] ∼= id, and
G′1 ◦G′2 ∼= G1 ◦G2

5.3.2 Instruction Generation

Using Lemma 5.19, we can assume that we are always working with consistent partial instruction graphs.
We now need to define L (G) for every partial instruction graph, and prove that it is equivalent to G and
valid with respect to its input and output states. The exact definitions are found in Section 5.3.4, but at a
high level, the intuition is as follows:

62

Let G be our consistent UFO instruction graph with a single event. We can always decompose the
graph into G = PG−1

B∗− ◦G∗ ◦PGB∗+ , where G∗ is the graph with no arc crossings and only a single event,
with B∗− and B∗+ as its input and output boundary. Each program L (G) is defined so that the denoted
tangle can be vertically decomposed into K1 ◦EG[G∗] ◦K2. Because PG−1

B∗− and PGB∗+ are permutation
graphs, we can prove that they denote K1 and K2 by showing they are also permutation slabs with the
same permutation and crossing annotation. By definition, any yarn-yarn crossings in K1 and K2 will have
the correct crossing order. Thus when defining our programs, it is sufficient to show that except for the
slice that maps to G∗, the surrounding tangles only contain crossings between yarns. Put more intuitively,
the ordered property means that the exact crossings between yarn carriers can be ignored so long as the
yarn is routed to and from the right destinations.

Now let us describe the details of each program. L (G) is a valid program kP = S ks−;ks∗;ks+−−−−−−→ S′. An
event e either surrounds a node or a crossing. Either way, it can be bounded in a rectangle where a set of
arcs A− and ribbons R− enters at the bottom, and a set of arcs A+ and ribbons R+ exits at the top. The
size of each ribbon set is at most 2. Events where R− and R+ are equal are relatively straightforward.
Crossings events only require swapping the physical locations of the yarns/loop stacks with miss/xfer
instructions in a way that produces the correct crossing order. IN and OUT nodes have empty ribbon sets,
and are just the corresponding knitout operation on id(A−) and id(A+) respectively. For KNIT nodes, the
orientation and type of node is used to determine the dir and needle parameter n, while yarns = id(A−).
For all these examples, both the pre and post program are nop.

For events SPLIT and TUCK, where #R− < #R+, a similar procedure is used to determine the argu-
ments to the core program. However, one of the needles f.x used by the program is already full, which
would create a spurious merge if not addressed. Thus ks− = SHIFT RIGHT (S,x) moves all loops and
carriers to the right of f.x over by one to free it up (Procedure 1). In contrast, events DROP and MERGE
leave behind an empty needle at f.x, which produces a state that violates our invariant on machine states
Definition 5.17. Thus ks+ = SHIFT LEFT (S∗,x) is used to shift loops and yarn to fill in the empty
needle, where S∗ is the result of running ks−;ks∗ on S (Procedure 2).

Note that the machine state invariant is not only necessary for ensuring valid program composition, it
is helpful for ensuring the denoted fenced tangle is equivalent. Leaving all back bed needles free ensures
the SHIFT programs can always be used to correctly move loops around, and it removes the potential for
extra crossings with back bed loops.

5.3.3 Program Composition

Assuming general position, it is always possible segment a UFO graph so that the resulting partial graphs
each contains a single event. The final step in proving our mapping is correct is showing instruction graph
composition maps to knitout program composition.

Lemma 5.20 (Instruction Graph Composition is Knitout Composition). Given consistent graph G = G1 ◦
G2, kP1 = L (G1) and kP2 = L (G2), kP1;kP2 is a valid knitout program, where EK [kP1;kP2]∼= EG[G]

Proof. Our mapping M : B→ S takes partial instruction graph boundaries to knitting machine states. The
lowering function L : G→ S kP−→ S′ maintains the invariant that S = M (B−) and S′ = M (B+), where B−

and B+ are the input and output boundaries of G, respective. The shared boundary between G1 and G2
maps to the shared machine state between kP1 and kP2, which guarantees the composition of the programs
is valid.

63

Procedure 1 SHIFT RIGHT
Input: S, Machine state x, needle index

yarns←{y : Y (y) ̸=⊥}
i← max({n : L(f.n)> 0})
while i≥ x do

for yc ∈ yarns do
if Y (yc) = i+1 then

miss + f.i+1 yc;
xfer f.i b.i;
rack 1;
xfer b.i f.i+1;
rack 0;
i← i−1

Procedure 2 SHIFT LEFT
Input: S: Machine state x: needle index

yarns←{y : Y (y) ̸=⊥}
i← x+1
j← max({n : L(f.n)> 0})
if Y (yc) = i then

miss − f.x yc;
while i≤ j do

xfer f.i b.i;
rack −1;
xfer b.i f.i−1;
rack 0;
for yc ∈ yarns do

if Y (yc) = i+1 then
miss − f.i yc;

i← i+1

5.3.4 Converting Events to Knitout

In this section, we define L (G) for all consistent UFO instruction graphs with a single event. For each
example, we need to show that the resulting trace is valid, and that the denoted fenced tangles are equiva-
lent. This could be proven by carefully drawing out the templated fenced tangle diagram for each picture
and comparing it against EG[G].

Definitions and Lemmas

Recall the high level strategy is to show that for program kP = L (G), EK [kP] = K1 ◦EG[G∗]◦K2, where
G∗ is the slice of G that only contains an event and no other crossings, and K1 and K2 are the permutation
tangles that connect the appropriate instruction graph boundaries of G and G∗. It is straightforward to find
the knitout program that contains G∗, as we can look to φ for guidance. However, we can see in the knitout
denotation function that any single knitout operation denotes not just the sliver EG[G∗], but additional
permutation tangles in the frame. If we vertically decompose that tangle, we get two permutation tangles,
but the composition of those with other permutation tangles is not necessarily a permutation tangle. We
need a slightly stronger mathematical object, which we define below.
Definition 5.21 (Ordered Permutation Slab). A permutation slab is the unique tangle that routes strand i
to position o(i), where strand i crosses over j for any strand q(i)< q(j), where q is some annotation that
establishes a total order on its input.
Lemma 5.22 (Ordered Permutation Slab Concatenation). The vertical composition of two ordered per-
mutation slabs that share the same annotation scheme is also an ordered permutation slab.

Note that a permutation slab is just a special case of the ordered permutation slab where q maps i to
itself. Thus we can show that EK [kP] ∼= EG[G] simply by showing that kP is a valid program that can
be decomposed into ks1;ks2;ks3, where ks1 and ks3 are the correct ordered permutation tangles and ks2
contains EG[G∗]. Towards that goal, we make the following observations:
Lemma 5.23 (Miss Permutation). Let S = (r,L,Y,A) be a machine state where L(f.x) = 0 and L(b.x = 0).
kPl is the valid trace that results from running miss f.x + yl on S, where yl is some carrier parked to the

64

left of f.x (Y (yl) = x). Similarly, kPr runs miss f. x − yl on S, where yr is some carrier parked to the
right (Y (yr) = x+1). EK [kPl] and EK [kPr] are both ordered permutation tangles.

This lemma can be combined with the rewrite rules proven in Section 4.3.2 to prove the following:
Lemma 5.24 (SHIFT RIGHT Permutation). Let S be a front-bed packed machine state. Then for any x,
SHIFT RIGHT (S,x) is an ordered permutation tangle.
Lemma 5.25 (SHIFT LEFT Permutation). Let S be a front-bed packed machine state, and S′=(0,L[f.x 7→
0],Y,A). Then for any x, SHIFT LEFT (S′,x) is an ordered permutation tangle.

Instruction Graph Events

In the following section, we look at programs L (G) = S0
ks−−−→ S1

ks∗−→ S2
ks+−−→ S3, where G a consistent

partial instruction graph with a single event and S0 and S3 were mapped from from the input and output
boundaries B− and B+ using the mapping in Definition 5.16. We use the notation ribbon(B, i) for the i-th
ribbon port in boundary B and arcs(B, i) for the set of arcs between ribbon(B, i−1) and ribbon(B, i)

For all cases, we know exactly which ribbon and arc ports on the boundary are connected to each
event, as connecting to a different port would involve at least one crossing involving a ribbon (a second
event). In addition, we know that we can create the correct permutation tangles with an operation on a
single yarn carrier sequence derived from the node, as all nodes by definition have the same carrier id
sequence for their input and output arc ports. We get this sequence as follows:

For any node n with arc ports ai ∈ A−, if the node is facing forward, yarns = [id(ai),s] for increasing
i. If it is facing backwards, yarns is instead ordered by decreasing i.

Because this is only a proof about fenced tangle denotation, we can ignore anything related to metric
properties. Thus for brevity, we will use constants s and l in all programs and leave A out of the machine
state, with the understanding that it is being filled out as is appropriate.

Case: R− = R+ In this situation, there is no need to reallocate loops, so ks− = nop and ks+ = nop. This
means S1 = M (B−) and S2 = M (B+).

ribbon-ribbon crossings Let r1 be the ribbon that connects ribbon(B−,x) and ribbon(B+,x+ 1).
r2 is the ribbon that connects ribbon(B−,x+1) and ribbon(B+,x).

If r1 crosses in front of r2:
ks∗ = x f er f.i b.i;

x f er f.i+1 b.i+1;
rack 1;
x f er b.i f.i+1;
rack 0;
rack −1;
x f er b.i+1 f.i;
rack 0

Otherwise:
ks∗ = x f er f.i b.i;

x f er f.i+1 b.i+1;
rack −1;
x f er b.i+1 f.i;
rack 0;
rack 1;
x f er b.i f.i+1;
rack 0

65

We know that both arcs(B−,x+1) and arcs(B+,x+1) are empty, as that implies the existence
of at least one arc-ribbon crossing, which is a second event. Thus in both cases, ∄y : Y1(y) =
x+ 1. This paired with the front-bed packed condition means these programs denote exactly
the correct crossing between loops.

ribbon-arc crossings Let a be the arc that crosses ribbon r, which connects ports ribbon(B−,x)
and ribbon(B+,x). There are four cases to consider.

a connects arc(B−,x) to arc(B+,x+1) and crosses over r:

x f er f.x b.x
miss + f.x id(a)
x f er b.x f.x

a connects arc(B−,x) to arc(B+,x+1) and crosses under r:

miss + f.x id(a)

a connects arc(B−,x+1) to arc(B+,x) and crosses under r:

miss − f.x id(a)

a connects arc(B−,x+1) to arc(B+,x) and crosses over r:

x f er f.x b.x
miss − f.x id(a)
x f er b.x f.x

Crossing order between loops and yarns in knitout is determined by whether the loop is on
the front or the back bed. Thus the crossed loop is temporarily transfered to the back bed as
appropriate.

IN and OUT The IN node is rotationally symmetric and has a single input arc port connected to
arcs(B+,x) by a:

ksIN = in − f.x id(a);

Similarly, the OUT node has a single output arc port connected to arcs(B−,x) by a:

ksOUT = out − f.x id(a);

In both cases there is only one strand connected to the fence, so it is trivial to slide it to the
correct location.

knit There are two KNIT nodes (right, left) with two rotational orientations (+, -). It has a single
in/out ribbon port (r− and r+) and a sequence of in/out arc ports (A− and A+) on both its in
and out boundaries. In all cases, the node’s input ribbon is connected to ribbon(B−,x), and its
output ribbon is connected to ribbon(B+,x).

If the node is a KNIT-right facing forward, there are arcs connecting ports in arc(B−,x) to A−,
and arcs connecting A+ to ports in arc(B+,x).

ks∗ = knit + f.x l yarns;

66

If the node is a KNIT-left facing forward, there are arcs connecting arc(B−,x+1) to A−, and
arcs connecting A+ to arc(B+,x).

ks∗ = knit − f.x l yarns;

If the node is a KNIT-right facing backward, there are arcs connecting arc(B−,x+ 1) to A−,
and arcs connecting A+ to arc(B+,x). Transfers are performed so the knit is performed on
the back bed before being returned to the front bed.

ks∗ = xfer f.x b.x
knit − b.x l yarns;
xfer b.x f.x

If the node is a KNIT-left facing backward, there are arcs connecting arc(B−,x) to A−, and
arcs connecting A+ to arc(B+,x). As another backwards node, it must also be made on the
back bed.

ksKNIT−le f t = xfer f.x b.x
knit + b.x l yarns;
xfer b.x f.x

Constructing the right fence for the backwards fence requires knitting on the back bed needle.
The loop is immediately transferred back to front bed, ensuring S2 = M (B+).

Case: R− < R+ In this case, the core program ks∗ makes use of some needle f.x that is already occupied
in S0 = M (B−). Thus ks− = SHIFT RIGHT (S0,x) is run, which results in S1 = (0,L0[f.x 7→
0][∀i > x : f.i 7→ L0(f.i−1)],Y0[∀Y0(y)> i : y 7→ i+1]). Because SHIFT RIGHT is being applied
to a front-bed packed machine state, it will always denote an ordered tangle.

tuck There is only one TUCK node with two rotational orientations (+, -). It has a single arc port
on its in and out faces and a single ribbon port on its out face. The node’s output ribbon
connects to r+ = ribbon(B+,x). Because the tuck node can appear between a sequence of
arcs, there is a set of arcs Amove that connect arc(B−,x) to arc(B+,x+1). This yarn carrier set
ym = {a ∈ Amove : id(a)} will be moved before the tuck operation.

For the + case, a− is the arc that connects a point in arc(B−,x) to the node’s input port, while
a+ connects the node’s output port to a point in arc(B+,x+1):

ks∗ = miss + f.x ym;
tuck + f.x id(a−);

For the - case, a− is the arc that connects a point in arc(B−,x) to the node’s input port, while
a+ connects the node’s output port to a point in arc(B+,x). SHIFT RIGHT and the additional
miss operations on ym have cleared out space around f.x, but we need an additional miss to
move id(a−) into position:

ks∗ = miss + f.i ymove;
miss + f.i id(a);
tuck − f.i id(a);

In both these cases, the additional miss operations move past an empty needle, so we know
from Lemma 5.23 that they denote ordered permutations. The resulting state S2 =B+ in both
cases, so ks+ = nop.

67

split There are two SPLIT nodes (left,right) that can face forwards or backwards, for four cases
total. They have a single input ribbon port r− and two output ribbon ports r+1 and r+2 , as well
as a sequence of arc ports A− and A+ on both the in and out faces. A split operation results
in one stack of loops on a front bed needle, and another stack of loops on the back bed needle.
Thus after executing the appropriate split operation, ks∗ must also transfer the back bed
loop to the front bed in a way that results in no loop crossings.

If the node is a SPLIT-left facing forward, there are arcs connecting ports in arc(B−,x) to
A− and arcs connecting A+ to arc(B+,x−1). Ribbons connect ribbon(B−,x−1) to r−, r+1 to
ribbon(B+,x−1), and r+2 to ribbon(B+,x).

ks∗ = split − f.x−1 b.x−1 l yarns;
rack 1;
x f er b.x−1 f.x;
rack 0

If the node is a SPLIT-right facing forward, there are arcs connecting ports at arc(B−,x− 1)
to A− and arcs connecting A+ to arc(B+,x+ 1). Ribbons connect ribbon(B−,x− 1) to r−,
r+1 to ribbon(B+,x−1), and r+2 to ribbon(B+,x). Here, the split operation is immediately
followed by miss operations to move yarns to the right of both output loops.

ks∗ = split + f.x−1 b.x−1 l yarns;
miss + f.x yarns;
rack 1;
x f er b.x f.x+1;
rack 0

If the node is a SPLIT-right facing backward, there are arcs connecting ports at arc(B−,x) to
A− and arcs connecting A+ to arc(B+,x− 1). Ribbons connect ribbon(B−,x− 1) to r−, r+1
to ribbon(B+,x), and r+2 to ribbon(B+,x−1). Note how rotating the node means the smaller
ribbon port relative to the exemplar’s axis attaches to the larger boundary port. Otherwise
there would be a ribbon-ribbon crossing.

ks∗ = x f er f.x−1 b.x−1;
split − b.x f.x l yarns;
rack 1;
x f er b.x−1 f.x;
rack 0

If the node is a SPLIT-left facing backward, there are arcs connecting ports at arc(B−,x−1)
to A− and arcs connecting A+ to arc(B+,x). Ribbons connect ribbon(B−,x− 1) to r−, r+1 to
ribbon(B+,x), and r+2 to ribbon(B+,x−1).

ks∗ = x f er f.x−1 b.x−1;
split + b.x−1 f.x−1 l yarns;
miss + f.x yarns;
rack 1;
x f er b.x f.x+1;
rack 0

68

Following the logic used in the ribbon crossing case, we know that arcs(B−,x) and arcs(B+,x) are
empty, and before we run ks∗, yarn carrier position x is empty. In all these cases, any additional
miss operations are performed after split and before moving the loop on b.x− 1 to f.x. This
means f.x is empty during the miss, and the operations denote ordered permutations. In addition,
when the loop is moved to fill in the empty needle, yarn carrier position x is still empty, and no
yarn-loop crossings occur. The resulting state S2 = M (B+), so ks+ = nop.

Case: R− > R+ In this situation, all loops are in position for the core program, so ks− = nop, and S1 =
M (B−). However, running these core programs results in state S2 = (0,L1[f.x 7→ 0],Y1), where the
empty needle at f.x means S2 is not front-bed packed. Thus ks+ = SHIFT LEFT (S2,x) is used to
fill in the empty needle and produce state S3 = (0,L2[∀i≥ x : f.i 7→ L2(f.i+1)],Y0[∀Y (y)> i : y 7→
i+1]). This results in S3 = M (B+).

merge The MERGE node has two input ribbon ports (r−1 and r−2) and a single output ribbon port
r+. Since the node is rotationally symmetric, we only need to consider one case. Let r−1 be
connected to ribbon(B−,x− 1), r−2 be connected to ribbon(B−,x), and r+ be connected to
ribbon(B+,x).

ksMERGE = x f er f.x b.x;
rack −1;
x f er b.x f.x−1;
rack 0;

Much like the argument for the ribbon crossing case, we know that ∄y : Y1(y) = x+1 because
the graph has a single event. Thus the program stacks the loops without introducing additional
crossings.

drop A DROP node has only has a single input ribbon port r−, and it is rotationally symmet-
ric along its y-axis. Thus there is a single case. Let r be the ribbon connecting r− and
ribbon(B−,x).

ksIN = drop f.x;

5.4 System Implementation

In the previous sections, we established that all machine-knittable structures can be represented as UFO
instruction graphs, and all UFO instruction graphs are machine-knittable. In this section, we present
the implementation of our compiler and an associated instruction graph construction and editing system,
which demonstrates the practical applications of our theoretical framework. Our compiler possesses two
key properties: completeness and soundness. Completeness ensures that the compiler can handle all
machine-knittable structures as input, while soundness guarantees that if the compilation process succeeds,
the output will be machine-knittable. We present the implementation of our system in three subsections,
and then talk about the system limitation.

Our system is implemented in C++, and provides visualization (during editing) using the OpenGL API.
The data structures to represent an instruction graph are reasonably straightforward. Each node stores a
position, orientation, and scale, along with a pointer to an exemplar which defines the node type. Yarn arcs
and loop ribbons store references to the nodes they connect to, with loop ribbons additionally storing a flag
to indicate the orientation of their connection. Yarn arcs are stored as polylines with associated metadata

69

(a) full gauge (b) mixed gauge (c) long float (d) half gauge

Figure 5.5: The instruction graph of a stockinette sheet can be laid out such that all knit faces are aligned
with the viewing axis (a) This compiles to a full-gauge sheet. If we take a column of nodes and fold
it over, the result can be a program with mixed gauge (b) or an excessively long float (c) depending on
the relative locations of the nodes. Two layers with the same number of columns can be alternated to
produce half-gauge code (d). It is important to note that all these graphs are equivalent from a topological
perspective. The variations (b), (c), and (d) were generated by applying deformations to the original graph
(a) under ambient isotopy using our GUI implementation (see section 5.4.1).

for (e.g.) construction lengths; loop ribbons are also stored as polylines with metadata, including a twist
value which indicates the total deviation of their frame from the minimum-twist frame along their length.

5.4.1 Semantic Preserving Graph Rewrite

Our system supports semantics-preserving instruction graph rewriting (e.g., Figure 5.5). Users can trans-
late, rotate, and scale portions of the instruction graph, while the system runs a rudimentary physics
system to prevent interpenetration. Particularly, each frame, the system dices arcs and ribbons into chains
of spheres with equal separation, moves each sphere toward its neighbors to smooth/shorten the chains,
and resolves collisions by incrementally pushing the spheres apart. Pull-through is avoided by limiting the
step size. Twist values are updated incrementally by recomputing the minimum-twist frame along each
ribbon and choosing the minimum rotation possible that keeps the loop aligned to its connection point.

Semantics-preserving rewrites are useful because, as we will explore in depth in the next section, there
exist instruction graphs that are not UFO but can be deformed into UFO, making them fabricable. This
step is analogous to user-scheduling 1 in rewrite-based user-schedulable languages ([Ikarashi et al. 2022;
Hagedorn et al. 2020]). In user-schedulable languages, scheduling performs loop transformations that
preserve the semantic equivalence of the input program. Similarly, in our context, the user performs graph
transformations that preserve the semantic equivalence of the input graph.

1not to be confused with the resource allocation problem in knitting, which uses the same term but has a different meaning

70

5.4.2 UFO Check

The lowering process is only well-defined on an instruction graph if that instruction graph satisfies the
upward, forward, and ordered properties. Therefore, our system checks these properties before running
its lowering code. Since all machine-knittable structures are UFO, if the input graph does not meet these
criteria, the system can confidently emit an error. This step is analogous to backend checks, such as
data-race detection and memory access checks, in traditional compiler implementations.

Upward. To check upwardness, the system to iterates through all nodes, yarns, and loops, locally check-
ing orientation (nodes) and monotonicity (yarns, loops).

Forward. Forwardness checking is also easy, and involves checking node orientations and iterating
along every ribbon to look at the local frame’s y-axis. (In the case of the ribbon’s local frame, a tolerance
is used to allow for floating point error when computing the orientations.)

Ordered. The ordered check is the only one that requires global information about the instruction graph
(particularly, all live yarn edges at a given y-coordinate and all yarn-yarn crossings when the graph is pro-
jected along the z-axis). This check is deferred until the sweep-line-based planar arrangement construction
detailed in the next section.

5.4.3 Lowering (L)

So far, using our GUI, we have demonstrated that instruction graphs can be rewritten into a UFO presenta-
tion if possible, and the UFO check can ensure that the graph indeed satisfies the UFO properties. The final
part is implementing the lowering function (L), which translates the input instruction graphs into a formal
knitout. This step is analogous to backend code generation in traditional compiler implementations.

Our lowering implementation detects events by incrementally constructing a planar arrangement using
a sweep-line algorithm. To make the computation easier to think about, all positions are rounded to an
integer grid, with the size of the grid chosen to be small relative to the feature size of the instruction graph
in order to avoid aliasing. Nodes are replaced by a single point at their centers, with extra edges stretching
out to the connected arcs and ribbons (during event processing, the purpose of each connected ribbon can
be deduced by its order in entering/exiting the node).

The core of the function is an event processing loop that iterates through events by ascending z-
coordinate, storing a next-event queue and a sorted list of current yarn and loop edge segments. At each
event (crossing or node), it calls an event processing function and updates its next-event queue and current
segments list. Our code uses the GMP library’s exact rationals to compute exact results where appropriate
(e.g., when sorting event times).

The event processing functions proceed as described in Section 5.3, generating the appropriate formal
knitout instructions to implement each node and update the on-machine layout of all loops. The ordered
property is also incrementally checked by running code on arc-arc crossings to check carrier ids, and by
looking through the list of active yarns whenever a new yarn is brought in.

5.4.4 System Limitations

Our GUI system is both sound and complete. It is complete because users can deform any machine-
knittable structure into a fabricable UFO presentation using semantics-preserving rewrites. This ensures
that our compilation process can handle all machine-knittable structures as input. The system is sound

71

because the UFO check verifies that the instruction graph satisfies the UFO properties, ensuring it meets
the necessary conditions for machine knittability, and the lowering function correctly translates the in-
struction graph into a valid and executable knitout. However, it is important to note that the soundness and
completeness of our system are only with respect to topological equivalence. There are many features,
described below, that we did not consider in our current implementation.

Program Efficiency

In order to guarantee a topologically correct knit program for any UFO input, our compiler makes several
assumptions that are bad for knit program efficiency. For example, leaving everything stored on the front
bed by default means the program is constantly performing transfers that could be removed entirely. To
fabricate our results, we applied the local rewrites from Section 4.3 to improve the pass consolidation in
the compiled knitout. Modifying the compiler to allow for long term back-bed storage and simple pass
consolidation is a clear improvements.

Metric Properties

In the prior sections of this chapter, we described a compilation process from an instruction graph to
formal knitout that guarantees topological correctness as defined with fenced tangles. However, in or-
der to generate fabricable programs, we also need to ensure the metric properties, or amount of yarn in
different regions of the object, is appropriate. These properties are controlled by the l and s parameters
in loop-making operations. Small l and s values generally result in smaller, stiffer stitches, while large
l and s values produce larger, looser stitches. Extreme metric parameters beyond the capabilities of the
yarn/machine will often result in fabrication failure. If the s parameter is too small relative to the attach
point of the yarn carrier, excess tension can tear the yarn and even damage the machine. Meanwhile, an
excessively large s parameter will result in too little tension, which makes loop formation less reliable. A
general solution for satisfying metric constraints is beyond the scope of this thesis.

Thus, in our implementation, we defer this problem by putting additional metric annotations on rib-
bons and arcs that are propagated to the l and s parameters of the appropriate knitout operations. This
places the burden of checking compatibility between metric annotations and the scheduled program on
the user. However, despite these restrictions, we note several techniques to help users generate reasonable
metric results.

Prior work on generating knit programs from unscheduled input often has a ‘regularity’ property,
where the desired amount of yarn per stitch is approximately constant throughout the knit [Narayanan
et al. 2018; Nader et al. 2021]. Put another way, there is a (mostly) constant l and s used throughout the
entire program. Because our compiler schedules instruction graphs by packing events as closely together
as possible, it is limited in the types of layouts it can generate. However, we can exert some control on the
metric layout.

Let us consider a simple instruction graph that denotes a sheet that is four loops wide and only uses
front bed operations (Fig. 5.5). Properly tracking float length for arbitrary programs is difficult, as transfers
and misses can be used to wrap ongoing floats around other yarns or loops. For these simple examples,
we can approximate float length f = |Yj(y)−A j(y)|w+ ε for ks j ∈ [tuck,knit,split], where the width
of a needle is w and ε accounts for the small distance between needles. An immediately obvious layout
is to make it so that all nodes face forward and lie in adjacent columns, Fig. 5.5a. When scheduled, this
results in a full-gauge sheet, where f = ε for all floats. We can also use the transformations implemented
in Section 5.4.1 to take the rightmost edge and fold it over Fig. 5.5b. The resulting instruction graph is
still UFO, but it now constructs the fourth column on f2, and the third column on f3. This results in a

72

mixed gauge sheet, where f = w for some needles, while the f = ε . This transformation can be taken to
an extreme by stretching the end column even further until it is at the leftmost edge of the sheet Fig. 5.5c.
This results in a float of length 3w+ ε between f.0 and f.3, which is likely to strain the involved yarn.
However, if we rotate and translate an additional column so that front and back bed alternate, we get a
half-gauge schedule, which like full-gauge, has a mostly consistent distance of w+ ε between attached
loops. Thus we see how an expert user can leverage their choice of UFO graph embedding to control the
metric properties of the resulting program. Note that through all of these manipulations, our system our
system guaranteed that the toplogical properties remained consistent.

User Interface

We presented a GUI meta-programming interface for instruction graphs, enabling users to interactively
manipulate and transform these graphs. Many potential improvements could enhance the user experience,
particularly in the user interface for semantic-preserving graph rewrites (Section 5.4.1). Although it is the-
oretically possible to generate UFO presentations for all the examples in Section 5.5 using the deformation
rewrite feature of our editor, this process proved to be excessively tedious in practice. As a result, all the
instruction graphs in the case studies were directly meta-programmed using C++ code. This cumbersome
manual process at the stitch level is unsurprising, given that instruction graphs are designed to function as
an IR rather than a user-facing abstraction.

Designing a user interface to leverage its capabilities effectively is future work. This will involve
determining the appropriate meta-programming abstractions for these transformations, such as clipping
to an axis or repeating patterns. Future features could include additional transformations, heuristics for
optimal UFO embedding, and the development of a lifting function to convert the instruction graph back
into a human-readable knitting pattern. Moreover, while enriching the frontend meta-programming inter-
face could be an interesting avenue for exploration, it may not be strictly necessary if the instruction graph
becomes an IR targeted by other knitting compiler systems.

5.5 Case Studies

This section will explore the actual fabricated results and analyze how UFO properties manifest in knit-
ting structures. We will discuss the importance of topological correctness, the relevance of this work to
practical knitting, and highlight the practical implications of UFO properties.

5.5.1 Interlock Pocket

As discussed in Chapter 2, existing systems struggle to fabricate interlocking structures. The Interlock
Pocket shown in in Figure 5.6 is an example of a structure that existing systems could only create using
unverified escape hatches, which distort the geometry of the desired object. In order to fabricate the Inter-
lock Pocket using these systems, you would need to specify a design that doesn’t resemble the intended
final product (Fig. 2.9). However, the interlocking structure that stitch graphs struggle with can be easily
handled using instruction graphs. With instruction graphs, we can successfully employ the naive strategy
used in Fig. 2.9 to lay out the geometry of nodes and connections in space. Instruction graphs treat the
routing of yarns and crossings as explicit information to be compiled, ensuring that the necessary cross-
ings are generated accurately. This approach enables the successful fabrication of interlocking structures.
Furthermore, we can transition between interlock and a folded stockinette sheet to create a pocket-like
structure. To make the instruction graph UFO, we can simply stretch it out along the z-axis. The fab-

73

instruction graph UFO presentation generated knitout code knit result

Figure 5.6: Instruction graphs are a complete unscheduled representation of machine knitting. An instruc-
tion graph is machine knittable if and only if it has an upward, forward, and ordered (UFO) presentation.
Instruction graphs can represent complex knit structures outside the capabilities of other unscheduled knit
representations. For example, this interlock sheet that contains a stockinette pocket (opening to the right
in the instruction graph and knitout code). Knit object is from a larger version of the same pattern.

∼≠∼=
∼=

final knit
formal knitout

∼=

optimized knitout

lowering (L)
rewrites translation machine knitting§4.3 §4.4

Figure 5.7: Making a striped tube. A basic two-color striped tube is difficult to machine knit because there
is no way to create an ordered presentation graph using only rotation and flattening. However, a similar
design that adds a twist between the yarns can be flattened to an equivalent upward, forward, and ordered
presentation. We used our system to convert a higher-stitch-count version of this instruction graph to
formal knitout; manually simplified the formal knitout using rewrites; and produced knitout code. When
up-scaled and run on an industrial knitting machine the code produces a spiral tube as desired.

ricated result of the Interlock Pocket can be seen in Fig. 5.6, demonstrating the capability of instruction
graphs to handle complex interlocking structures that challenge existing systems.

5.5.2 Barber Pole

The barber pole example is a structure that autoknit’s stitch graph can describe but cannot schedule cor-
rectly – when scheduled by autoknit, rather than resulting in a hollow tube, the tube is “tagged” together
by carrier crossings resulting in a figure-of-8 shape (Fig. 2.8). If, on the other hand, we transform this
example barber pole into an instruction graph (Figure 5.7), we encounter non-ordered crossings that are

74

Figure 5.8: A naive infinity scarf (upper-left) can be flattened into two layers to produce a Forward graph
(lower-left). The cyclic yarn and stitch dependences prevent transforming the graph to be Ordered and
Upward. This requires changing the Instruction Graph to use two different yarns (upper middle) allow
it to be made Ordered; and, futher changing the graph by modifying the orientation of the nodes (right;
with height-compressed version in dotted circle) allows it to be made fully UFO, and thus knittable.
The photograph shows the results of knitting a vesion of the UFO instruction graph with more rows and
columns of stitches added.

difficult to remove solely through the deformation of the object. Rather than knitting the wrong thing,
the instruction graphs system shows us a knitability flaw in our specification2. Adding twists between the
yarn carriers in a single column allows us to make the example UFO, and, further, gives us the control to
place this crossings on the edge of the object where they will not glue the front and back together.

5.5.3 Infinity Scarf

In this section, we walk through how the UFO properties can guide us in transforming an unfabricable
design – a cyclic infinity scarf, Figure 5.8 – into something that can actually be machine knit. Instead
of pursuing an impossible transformation, we create a different instruction graph that maintains the same
high-level geometric properties (a tube knit sideways). To create an infinity scarf, one might start by
envisioning the structure like the upper left in Fig. 5.8. Using our GUI editor, it is possible to deform
the graph to satisfy the forward property (lower-left). However, the cyclic dependencies inhibit both the
ordered property by forcing a single yarn to be in two places at the same time. Thus this object cannot be

2It is possible that there exists a way to transform the original input without changing its topology. However, finding such a
transformation or proving its existence is challenging, and we did not pursue this avenue in our work. Moreover, even if we find
a transformation, it might be impossible to invert on the physical object.

75

made on a knitting machine. To satisfy the ordered property, we need to construct a different graph (upper
middle) in Fig. 5.8 using two yarns instead of one. This modification eliminates the cyclic dependency
and allows the graph to be ordered. However, this graph still has a problem; it is not upward because the
stitches on the back (depicted in light green) are facing downwards. No knitting machine can create a
knit upside-down. To address this issue, we have to create yet another graph, shown in the bottom-middle
of Fig. 5.8. This graph can be made UFO by stretching it along the z-axis (rightmost figure), making it
fabricable. By transforming this modified graph into a UFO presentation and knitting it, we successfully
produce the desired infinity scarf.

76

Chapter 6

Practical Verification of Program
Equivalence

In prior chapters, we have used fenced tangles to prove the correctness of a mapping between knitting
representations: first a set of rewrite rules of knitout programs, and then a compilation function from
instruction graphs to knitout programs. However, what if we are not presented with a mapping? What if
we are presented with two knitting programs of unknown origin and asked to evaluate whether they are
equivalent? As stated before, a general solution for knot equivalence is NP-hard [Koenig & Tsvietkova
2021]; since knots are a subset of fenced tangles, a general solution to fenced tangle equivalence feels
unlikely. However, what we need is not a general solution to fenced tangle equivalence, but a solution that
works on machine knittable fenced tangles. In fact, if we restrict our set of knitting programs further, we
can work with a much simpler topological object with multiple polytime solutions: the Artin Braids.

Braid theory is the topological study of groups whose elements are intertwining strands with fixed
endpoints [Murasugi & Kurpita 2012]. More precisely, braids are the subset of n,n slab tangles where all
arcs move monotonically from the input to output boundary. While most knitout operations do not denote
braids, three do: xfer, rack, and miss. This chapter uses this observation to optimize transfer plans,
or subprograms that contain only xfer and rack operations (though we will discuss how this work can
be extended to miss operations). The Artin Braid Group not only enables fast equivalence checks on
arbitrary pairs of transfer plans, but also a measure of complexity that can be used as a lower bound for
transfer plan complexity. These combine to enable search for optimal transfer plans.

6.1 The Artin Braids

Definition 6.1 (The Artin Braids). Let b ∈S n
n be a tangle where the movement of strands are monotonic

along the time axis.

Much like with fenced tangles, braids can be composed with each other to form more complex braids.
Put another way, we can decompose a braid into smaller, simpler braids, where each braid only has a single
crossing. These braids can then be used to generate any braid, and any composition of these generators
will result in another braid. The Artin Braid Group also has a corresponding algebraic definition that
describes the composition of generators as a word:

Definition 6.2 (The Artin Braid Group). The Artin Braid Group Bn on n> 1 strands is the group generated

77

by generators σ
+
1 . . . σ

+
n−1 with the equivalence relations:

σ
+
i σ

+
j = σ

+
j σ

+
i for |i− j|> 1

σ
+
i σ

+
j σ

+
i = σ

+
j σ

+
i σ

+
j for |i− j|= 1

When writing and drawing braids, we use the convention that positive crossing, σ
+
i , represents the ith

strand crossing over the i+ 1st strand, and the inverse (negative) crossing, σ
−
i , represents the ith strand

crossing under the i+1st strand. Braid words are products of generators, where the leftmost generator is
the most recently executed generator, and the rightmost generator is least recent.

An inverse of a word can be quickly found as follows:
Definition 6.3 (Braid word inverse). Given the braid word W =σ

±
i σ
±
j . . .σ±k , the word W−1 =σ

∓
k . . .σ∓j σ

∓
i

is its inverse, where the product W−1W is equivalent to the trivial identity braid with no crossings, ε .
Due to the equivalence relations, each member y of the braid group Bn is an equivalence class of braid

words, all of which represent the same underlying topological braid. The word problem on braids asks
whether two braid words W and W ′ belong to the same equivalence class, i.e. are the same topological
braid. There exist a variety of solutions to the word problem, of which several use what are known as
simple positive braids:
Definition 6.4 (Simple positive braid). The simple positive braids are the set of braids where all crossings
are positive, and every pair of strands crosses at most once.

The symmetric normal form [Dehornoy 2008] rearranges each braid word into a carefully ordered
sequence of simple positive braids and inverse simple positive braids. This sequence is proven to be
unique for each member of the braid group, thereby reducing the word problem to a question of strict
equality.

6.2 State Representation

Because this chapter is based on an earlier paper focused on transfer planning [Lin & McCann 2021],
it uses a different convention from Chapter 4 for mapping the machine state in 3D to a 2D ordering
necessary for fenced tangle diagrams. Note that here, loops are ordered left-to-right, back-to-front, as seen
in Figure 6.1 (note how the assignment of loops 1 and 2 swaps). Traditionally, transfer planning ignores
the presence of carriers. We may justify this by imagining that all carriers are functionally inactive, or
parked outside the extent of the transfer plan. Unlike with full knitting programs, transfer plans only move
existing loops and never change the existing number of loops on the machine. Thus instead of representing
machine state as a partial function from needles to loop count, we instead instantiate a constant number
of loops L, where L[i] is a loop’s current needle location. Furthermore, no operation separates the two
legs of a loop from each other, nor induces twist between them. Thus we can treat each loop as a single
strand in the braid. From there, a loop’s needle location is used to establish its position within the braid.
In addition, this work looks at actual knitout instead of formal knitout. In practice, this only means that
rack operation used throughout the chapter is in reality closer to the RACK macro (Definition 4.11).

Observe that any transfers that occur at racking r do not change the loop ordering. It is only when the
machine’s racking value changes that any loops in back bed b would be sent to different needles in front
bed f , potentially changing the loop ordering. Furthermore, loops on the same bed never change order
relative to each other; a loop in f can only potentially cross a loop in b. Thus the resulting braid word
from a racking operation can be found by tracking the differences in loop ordering using Algorithm 3.

Let V be the braid word produced by a single racking operation and Y be the symmetric normal braid
representing the previous state’s ordering. The braid word VY represents the new state. Note that a single

78

1

2 3

4

5 6

2

1 3

6

4 5

Figure 6.1: The left-to-right, back-to-front ordering on loops (colored circles) on a machine at zero racking
(left) and -1 racking (right). Note how the relative order of loops on the same bed does not change. This
includes loops on the same needle.

Procedure 3 Racking Operation
Input: ordered list of loops L, old racking r, new racking r′

Output: braid word V
1: V ← ε

2: if r′ < r then
3: for i = 0 . . .n do
4: if L[i] ∈ b then
5: for j = i−1 . . .0 do
6: if L[j] ∈ f ∧L[i]+ r′ ≤ L[j] then
7: V ← σ jV

8: else if r′ > r then
9: for i = n . . .0 do

10: if L[i] ∈ b then
11: for j = i+1 . . .n do
12: if L[j] ∈ f ∧L[i]+ r′ > L[j] then
13: V ← σ

−
j−1V

14: return V

rack operation causes any two strands to cross only at most once, and resulting crossings are either all
positive or all negative. Thus V is either a simple positive braid or its inverse. Therefore, the symmetric
normal form of VY can be calculated in O(n log(n)) operations [Epstein et al. 1992].

Given an initial list of loop locations and an initial braid, the resulting state from any list of transfer
operations can be determined. Because the ordering used for the braid word also captures the ordering of
loops in a stack, it is sufficient for a state to only store each loop’s needle position instead of explicitly
storing the loop list of each needle.

6.3 Optimal A* search

Given this discrete representation of transfer plan meaning, I now use search techniques to find minimum-
length transfer plans. The search is based on A*, where a state’s immediate neighbors are those reachable
via any number of transfers followed by a single racking operation, and the goal has a braid equivalent
to input braid W and loops at target needle locations L. We now model the constraints of the machine
knitting process to restrict the search, and propose several modifications to the state representation to
improve search performance.

79

6.3.1 Constraints

Loops on a knitting machine are constructed using a single continuous strand of yarn, where the amount
of yarn between adjacent loops can be varied. This physical connection can break when connected loops
are moved too far apart. To account for this, we define a slack constraint [s−,s+] on the distance between
connected loops la and lb. In other words:
Definition 6.5 (Slack Constraint). Connected loops la and lb respect slack when s− ≤ pos(la)− pos(lb)≤
s+, where

pos(l) ::=
{

i if l ∈ fi

i+ r if l ∈ bi

Note that, for loops on opposite beds, the machine’s racking affects whether the loops respect slack.
Thus the set of all connected loops which lie on opposite beds can be used to define a valid racking range
for a given machine state.

We also explicitly define which needles are available, as certain needles on the machine may be occu-
pied by loops that should not be moved by the transfer plan. This must also be taken into account when
determining whether a transfer is reversible.

6.3.2 Cost Model

Recall that the machine can execute any number of transfers in a single transfer pass as long as they occur
at the same racking. Therefore, it’s useful to think of transitionsbetween machine states as ({x f er},rack)
pairs, where {x f er} is one of the 2n subsets of n total distinct transfer operations for a given state, and
rack is one of the valid racking operations for the state post {x f er}. The cost of a transition is 0 if x f er is
empty, and 1 otherwise.

6.3.3 State Equivalence

A* search stores visited states in memory in order to avoid expanding the same state multiple times. This
makes fast state equality checks essential. In fact, we can do better than just strict equality. For two
different states which produce the exact same set of subsequent states under expansion, we can prune the
state space by searching only one of them. In this section I define a function, canonicalize, to identify
such equivalence classes in which this property holds true.

Recall that xfer(n,n′) can be reversed by xfer(n′,n) if n′ is an empty needle. Consider two states S
and S′, which are identical except for a single loop that is on needle n in state S, and needle n′ in state S′.
If xfer(n,n′) is reversible and the transfer set from S to some state includes xfer(n,n′), then that transfer
can be reversed with xfer(n′,n) to acquire the transfer set that would reach the same state from S′. If
the transfer set from S does not include xfer(n,n′), then S′ can use the same set plus xfer(n′,n). This
means that in a search, no matter which of the two states are expanded first, it will visit all states that can
be reached from the other state, making the second expansion redundant.

Now consider some non-empty transfer set X at racking r. This set would have cost 1. Any number of
additional transfers can be performed before and after X , and as long as they also occur at racking r, they
can be rolled into the existing transfer pass for cost 0. Thus if we define some reversible transfer function
that sends all equivalent loop states to a single, canonical loop state, the function can be applied before
the duplicate check, making it a simple equality check. These reversible transfers would then combine
with the x f er portion of the expansion, making it a zero-cost transformation. Let canonicalize denote an
operation on a given state, which performs all reversible transfers on back bed loops, essentially loading
as many loops as possible to the front bed without performing any irreversible transfers (Figure 6.2).

80

Figure 6.2: A transition from Si to state T costs a single transfer pass even if it is preceded by some
number of reversible transfers. Thus the states are equivalent, and we can use a single canonical state
canonicalize(S) when representing them in a search.

Then, during the search, our code stores visited states and checks against them all under application of
canonicalize.

6.3.4 Heuristics

To guide the search, we provide the following heuristics based on the braid word and the loop locations.

Braid Word Length

Let len(Y) give the number of simple braids contained in the symmetric normal form Y . This notion of
braid length changes by at most one after multiplication by another simple braid [Epstein et al. 1992].
Rather than start with the identity braid ε and check equivalence against the target braid W , we can let
the initial state be W−1 and let ε be the target braid. The resulting braid produced by the plan will still
be the target braid W , and len(Y), where Y is the symmetric canonical braid stored in the state, will be a
consistent heuristic.

Offsets

If we consider a relaxed version of the transfer planning problem that has infinite slack, reversible loop
stacking, and is only concerned with needle position and not relative ordering, then a solution can be
found by solely considering each loop’s offset, or the single racking value that would move a loop from
its current location to its destination. We can define Op,r – the set of sets of offsets that can be brought to
zero in p steps starting at racking r – using the following recurrence:

Op+1,r′ ≡
{
{x,x+(r′− r) | x ∈ S} | S ∈ Op,r

}
(6.6)

O0,r ≡
{
{{0}} if r = 0

/0 otherwise
(6.7)

Notice that the number of offsets at most doubles every step. Thus we can establish the following
lower bound:

81

Theorem 3. Any problem with n unique non-zero offsets requires are least ⌊log2(n+1)⌋ passes to solve.
Our offset table heuristic goes further, computing and storing Op,r (effectively, a pattern database [Fel-

ner et al. 2007]) for r ∈ [−8,8] and p≤ 8. In order to facilitate fast lookups in O , our code builds a table –
for every racking r – of all maximal1 achievable offset-sets and their associated minimum step count. This
table is sorted by step count. To look up a query set in the table for the current racking value, the code
examines entries in order until a containing set is found and returns the associated step count. This lookup
is accelerated by maintaining a “skip” value for each offset alongside each row in the table, indicating the
next table entry in which that offset appears. These skip values are used by our code to avoid needing to
check every row.

6.4 Results

All experiments were performed on a mid-range workstation-class computer running Debian GNU/Linux
with an Intel Core i7-8700K 3.7GHz / 12-thread CPU – though our search is single-threaded – and 64GB
of RAM.

Optimal plans We compare the optimal plans produced by canonical-node A* search against two ex-
isting transfer planning algorithms: schoolbus+sliders (sb+s) and collapse-shift-expand (cse). Both
algorithms have limitations on the types of problems they can and are best suited to solve, so we used
three test sets for comparison.

For each test case, our test harness first ran the existing algorithm to generate a transfer sequence,
then used that transfer sequence to construct a target state, and, finally, ran our search algorithm with that
target state. (This procedure is needed because cse chooses stacking and rotation direction without user
control, so it may plan to one of several possible output states.)

The first set, flat-lace, consists of all 28,696 unique transfer problems with eight loops, stacks
of at most three loops, distance between loops increasing by at most one, and no loop crossings (ca-
bles/twists). Problems that only differ by translation are considered equivalent. In other words, this is the
set of eight-loop problems that sb+s can solve. Results are shown in Figure 6.3. As expected, sb+s
is able to solve these cases in relatively few (< 15) passes, and, indeed, is optimal in 2942 of the cases
(≈ 10% of trials which finished). However, there is still room to improve, since in the remaining cases,
sb+s uses up to 2.8× the passes of the optimal solution.

The second set, simple-tubes, contains all 2113 problems on eight-loop tubes, where pairs of
adjacent loops can either remain adjacent, be stacked atop each other, or be separated by an empty needle,
and the overall tube can be rotated. These mimic the basic shaping operations used, e.g., by [Narayanan
et al. 2018]; and, thus, the problems that cse was designed to solve. Figure 6.4 shows that cse produces
optimal solutions in a much smaller fraction of problems: only 36 (≈ 1.7%) were optimal, and solutions
were sometimes more than 4× slower. This is not unexpected, as cse may require up to O(n2) passes in
the worst case [Lin et al. 2018].

For the final set, cable-tubes, we constructed 1183 transfer sequences by prepending 1x1 and 2x2
cables (loop crossings) to plans generated by cse for eight-loop tubes with rotations. The comparison
with optimal transfer sequences (Figure 6.5) shows that there are significant fabrication speed gains to be
made by combining cable and rotation transfers instead of performing them sequentially, as might be done
by a programmer putting together an ad-hoc solution.

1I.e., if both S,R ∈ Op,r and S⊂ R, then only R is stored.

82

2

3

4

5

6

NaN

2 4 6 8 10 12 14
sbs pass count

op
tim

al
 p

as
s

co
un

t Problem
counts

1000

2000

3000

4000

Figure 6.3: The Schoolbus + Sliders (sb+s) algorithm [Lin et al. 2018] produces transfer plans within a
factor of 3× of optimal on a set of 6-loop lace-like patterns (flat-lace).

2
3
4
5
6
7
8

NaN

2 4 6 8 10 12 14 16 18 20 22 24 26 28
cse pass count

op
tim

al
 p

as
s

co
un

t

Problem
counts

30
60
90

Figure 6.4: The Collapse-Shift-Expand (cse) algorithm [McCann et al. 2016] produces transfer plans
that stray relatively far from optimal on a set of 8-loop shaped tube problems (simple-tubes).

4

5

6

7

NaN

8 10 12 14 16 18 20 22 24 26 28 30 32
cse+cable pass count

op
tim

al
 p

as
s

co
un

t

Problem
counts

20
40
60

Figure 6.5: The ad-hoc strategy of concatenating cable and tube rotation plans (dataset cable-tubes)
presents many opportunities for algorithmic optimization.

83

10

100

10 100 1000 10000
Runtime Without Node Collapse

R
u

n
tim

e
 W

ith
 N

o
d

e
 C

o
lla

p
s
e

Pass Count 2 3 4 5 Improvement 1x 10x 100x

10

100

Node Expansions Without Node Collapse

N
o

d
e

 E
x
p

a
n

s
io

n
s
 W

ith
 N

o
d

e
 C

o
lla

p
s
e

1e+02 1e+03 1e+04 1e+05

Figure 6.6: Our canonical-node optimization results in an approximately two-order-of-magnitude reduc-
tion in both the search runtime and in the number of nodes expanded in our tests on the all-short
dataset.

Scenario Nodes Time (s) Speedup
No Heuristic 471451589 582264.3 1×
+ Braid 281291965 330931.9 1.8×
+ Log Offsets 2500142 2612.2 223×
+ Braid+Log 1663664 1688.6 344×
+ Prebuilt 259985 274.1 2124×
+ Braid+Prebuilt 184265 189.8 3067×

Table 6.1: Total sum of nodes expanded and time taken for various combinations of heuristics over the
5002 problems that all heuristics finished. Heuristics were combined using max(h1,h2).

Canonical Node We also examined the effect of canonicalizing on the time and memory requirements
of the search on all-short, the subset of all datasets for which our search found a solution in < 100ms.
As can be seen in Figure 6.6, the number of node expansions improves by a factor of 3165×, and runtime
by 3828×, with larger problems experiencing more improvement. Of the few problems where canonical-
node is slower (34 out of 5902 total problems), much of the slow down can be attributed to additional
overhead from the canonicalize operation. We conjecture that the 10 problems where canonical-node
expands more nodes is due to tie breaking between equally weighted states.

Heuristics In addition, we looked at the performance of various heuristics for the A* search (Table 6.1).
Our combined offset table and braid word length heuristic provide a three-order-of-magnitude reduction
in both memory usage and search time compared to using no heuristic, and a one-order-of-magnitude
reduction compared to the simpler combined braid word length and log offset heuristic. Building the
offset table took 5.2 seconds, making it a strict improvement for larger problems even without amortizing
the time required to build the table across multiple problems. Furthermore, taking the maximum of braid
word length (which only looks at the braid) and offset table (which only looks at loop positions) provides
improvements over using either heuristic alone.

84

Chapter 7

Conclusion

In this thesis, I presented the first formal characterization of knit object equivalence that encompasses the
complete domain of machine knitting programs. This result allows us to finally answer the fundamental
question of whether two knitting programs are the same. This in turn enables many additional research
directions on both the theory of machine knitting as well as the practice of developing systems and tools
for machine knitting practitioners. For example, the program optimality discussed in Chapter 6 was only
possible because program equivalence was well defined. Furthermore, I believe insights from how I
developed this definition is not only useful for developing a more nuanced semantics of machine knitting,
but can also guide formalizations for other computational fabrication techniques as well. I conclude
with some immediate applications and extensions of this formalization, followed by some thoughts on
formalization within the greater field of computational fabrication.

7.1 Practical Knit Programming Tools

There reamins much future work and interesting problems that must be addressed before the formaliza-
tions proposed in this work can be integrated into practical systems. For example, integrating the instruc-
tion graph into other automatic knitting compiler systems as an IR would ensure that existing compilers
will also have a sound and complete lowering and scheduling process. As mentioned earlier, the instruc-
tion graph semantics only ensure topological correctness, which we believe is an essential property that all
knitting compiler systems should possess. However, other knitting compiler systems might be concerned
with additional properties, such as material properties. In such cases, a naive copy-paste of the instruc-
tion graph would be insufficient, and developers of those systems would need to augment the property
specifications in the formalization of the instruction graph to accommodate their specific requirements.

Furthermore, while the proofs in this work provide a theoretical foundation for compiler verification,
they are not mechanized. To create an end-to-end verified knitting compiler, it would be necessary to
formalize the semantics and proofs using proof assistants such as Coq, Lean, or Agda. To the best of
our knowledge, no existing knitting compilers are fully mechanized, making this an interesting avenue
for future research. We believe that the work represents a step towards the development of fully verified
knitting compilers, and we hope that it will inspire further advancements in this field.

The editors presented in this thesis also raise interesting questions as to what would be an appropriate
user interface for guiding the compilation and optimization process. The current implementations of
the knitout rewrite editor and instruction graph editor are fully manual, which makes scheduling and
optimization a tedious task. An immediate question is how these transformations could be automated.
However, this also raises the question of what operations shouldn’t be fully automated in order to provide

85

more user control. An interesting point about instruction graphs is that while any deformation of the
graph under ambient isotopy preserves object equivalence, this deformation must also be performed on
the physical object, which may not always be feasible. A more interactive scheduler may be useful not only
for building intuition about the automated knitting process, but also for reasoning about post-processing
effort and material constraints.

7.2 Formalizing the Full Fabrication Pipeline

In this thesis, I examined two representations used within the machine knitting pipeline: knitout programs,
which are a sequence of machine control operations, and instruction graphs, which are an intermediate
representation of a knit object. These representations are only a slice of the full fabrication pipeline.
Extending formal semantics to representations used in the design process and physical fabrication systems
would allow for provable guarantees about the complete fabrication pipeline.

For example, while instruction graphs are useful for precisely describing the exact topology of a spe-
cific knit object, such level of detail may be excessive during the initial design phase. While these design
specifications may be less precise, that does not make them less important for specifying the correctness
of an object. For example, 2D surfaces are useful as a simplified representation of many knit objects,
and a given designer might be uninterested in the precise stitch topology so long as the global topology is
respected. These degrees of freedom may then be leveraged when generating an optimal machine knitting
program. If these high-level designs can be formalized as a set of verifiable object properties, this would
not only allow for verification of program generation process, but also improve the downstream fabrication
process. In addition, a denotational semantics for design representations can also be used to characterize
which programs a design system can create as well as which programs a system can distinguish between.
Design systems must juggle expressibility and simplicity, and a formal definition of system expressibility
could be used to better characterize this trade off.

In addition, the current operational semantics for knitting machine programs assumes an idealized
knitting machine with idealized materials. In practice, knitting occurs on a physical machine with physical
materials that may introduce all sorts of errors during the fabrication process. Different machines then have
different ways of addressing these errors. For example, machines with sophisticated tension mechanisms
may perform more drastic shaping operations, and elastic yarns more closely approximate the infinitely
stretchy arcs in our definition of fenced tangle equivalence. While the UFO condition must necessarily be
satisfied for any v-bed knitting machine, practical machine knitability is impacted by the specific machine
architecture and material properties of the yarn.

7.3 Alternative Knitting Semantics

Throughout this thesis, I have focused on preserving topological properties when compiling and optimiz-
ing knitting machine programs. However, this is just one of the many properties of knit objects that are
important. One that begs immediate attention from a practical fabrication standpoint is metric properties,
or how much yarn is used to construct knit structures. An approach I’ve taken to provide some reasoning
about metric properties is to essentially annotate regions of Instruction Graphs and fenced tangles with the
length of yarn that should be in that region. However, a truly practical knit compiler should consider ad-
ditional fabrication constraints, such as metric measurements, program efficiency, and program reliability
(i.e., how likely an instruction set can be executed without error). Furthermore, allowing any transfor-
mation under ambient isotopy is likely too broad a set of transformations when searching the space of
equivalent instruction graph embeddings, as those transformations must then be inverted in the real world.

86

Including metric properties as a first-class semantic property is the next big step in practical verification
of the machine knitting pipeline.

In addition, there are additional topological properties that are not addressed by the work in this
thesis. Stability, or whether a constructed loop remains a loop or unravels into a different structure. For
example, the fenced tangle depicting two knit stitches in Fig. 3.3 actually will unravel into the single
larger loop depicted by a regular tangle. Novices frequently create unstable structures by mistake, while
experts will sometimes use controlled unraveling to adjust metric properties of a knit or to create support
structures that increase fabrication reliability. Further more, stability is less a binary categorization and
more a continuum along which certain structures require intervetion post-fabrication to overcome internal
friction, while others will immediately unravel during the knitting process and result in cascading failures.
Capturing this property will likely require a semantic function that is less generous with its placement of
fences in the fenced tangle or a different semantic object entirely.

What’s more, there are knitting techniques that cannot be captured using ambient isotopy on fenced
tangles. Those familiar with machine knitting might be concerned that the forward property forbids the
formation of twisted loops. This is demonstrably untrue, as twisted loops are a common technique/artifact
in machine knitting. In fact, we can see them in the subtle seam of “spin” scheduling example in figure
7 of McCann et al. [2016]. The explanation for this is rather nuanced. First, twisted loops can be formed
so long as there is a semantic preserving rewrite that untwists the loops so that the graph is in UFO
presentation. This transformation is what causes the twisted loops in McCann et al. [2016]. However, there
are additional techniques for twisting loops that are not captured by equivalence on fenced tangles. These
techniques are a potential way to locally remove twists from ribbons, which is particularly interesting
given that we can prove certain configurations of twisted ribbons and nodes can never be made forward
using the existing definition of instruction graph equivalence. Subtle transformations like these raise
additional questions on the correct mathematical definition for knit objects.

Finally, in Chapter 6 I examined how an alternative semantic function mapping to the Artin Braids
allows for a more compact presentation as well as an efficient general solution to transfer plan equiva-
lence. A natural followup question is whether this approach can be extended to all valid machine knitting
programs. If we examine the fenced tangles denoted by the remaining knitout operations, however, we see
that they include non-monotonic arcs as well as fences, which have no clear parallel in the Artin Braids.
One useful observation is that knitting machine programs denote a subset of fenced tangles, where all
arcs outside of fenced regions are monotonic. This suggests that much like how fenced tangles served as
a useful extension of tangles for representing knitting, an extension of the Artin Braids may allow for a
more computationally tractable abstraction of machine knitting.

7.4 Formalizing Fabrication At Large

The knot theory contributions in this work suggest several immediate applications in other textiles-adjacent
fabrication methods. The translation between hand knitting instructions and output object are similarly
opaque, and humans are both more dexterous and less repeatable than machines. Textile techinques like
crochet, braiding, and solid knitting [Hirose et al. 2024] also involve the execution of a sequence of oper-
ations that deforms a strand of yarn into a specific topology that could be easily unravelled. This makes
fenced tangles a natural semantic domain to consider for these fabrication methods. However, I believe
that the real insight of these thesis lies with the question I raised back in the introduction: what does it
mean for a fabrication process to have made the right thing?

Let us return to the toy example I raised, where we tried to define equivalence on the size of your
favorite jacket. Now, imagine how we might evaluate other properties, such as its color, or texture, or the

87

way it feels on your body. While it is certainly possible to convert these properties into more measurable
quantaties, these subtlties lead into our second problem: what are the desired properties that make an
object distinct? Put another way, what properties can change while still preserving an object’s identity?
For example, we may take the viewpoint that all properties are important, but this quickly brings us to a
situation where nothing is equivalent, not even an object compared with itself miliseconds into the future.
After all, age is something we can measure. Taken to another extreme, we can insist that an object is
always the same as itself, but this neglects any transformations that have happened to an object over time.
If you loan me your jacket, and the next day I return it with a big ink stain on the front, is that the same
jacket? What if instead I’d cut it into pieces? Sewn those pieces back together? Or even just washed it
and used the wrong detergent? Not only are these qualities hard to quantify, they are highly situational.
Depending on the events and people involved, there might be drastically different answers as to whether
two objects are the same. In some ways, coming up with a single canonical definition of object equivalence
may be impossible.

Yet it is precisely because object meaning is so nuanced varied that I believe that it is critical to
develop precise, mathematical characterizations of object fabrication. Having a mathematical definition
of object equivalence means we can precisely define the boundaries of what is and is not the same. We
can examine the edge cases where this definition deviates from our intuition of the physical phenomenon.
And we can precisely communicate how the entire fabrication pipeline, from input design, to machine
control program, to final object, preserve or change the underlying meaning. While formal categorization
of inherently subjective phenomenon will inevitably abstract away the nuances in how humans interact
with the world around them, the precision of these abstract models provide us with useful insight. And
that, dear reader, is important no matter how or what it is that you want to create.

88

Bibliography

Adams, C. (1994). The Knot Book. New York, NY: W.H. Freeman. ISBN: 9780821886137.
Aigner, R., Haberfellner, M. A., and Haller, M. (2022). “Spacer: knitting ready-made, tactile, and highly

responsive spacer-fabric force sensors for continuous input”. Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology. UIST ’22. Bend, OR, USA: Association
for Computing Machinery. ISBN: 9781450393201. DOI: 10.1145/3526113.3545694. URL:
https://doi.org/10.1145/3526113.3545694.

Albaugh, L., Hudson, S., and Yao, L. (2019). “Digital fabrication of soft actuated objects by machine
knitting”. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. CHI
’19. Glasgow, Scotland Uk: Association for Computing Machinery, pp. 1–13. ISBN: 9781450359702.
DOI: 10.1145/3290605.3300414. URL: https://doi.org/10.1145/3290605.
3300414.

Albaugh, L., McCann, J., Hudson, S. E., and Yao, L. (2021). “Engineering multifunctional spacer fabrics
through machine knitting”. Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI ’21. Yokohama, Japan: Association for Computing Machinery. ISBN: 9781450380966.
DOI: 10.1145/3411764.3445564. URL: https://doi.org/10.1145/3411764.
3445564.

Carnegie Mellon Textiles Lab (2024). Knitout-frontend-js. [Online]. Available from: https://github.
com/textiles-lab/knitout-frontend-js.

Dehornoy, P. (2008). “Efficient solutions to the braid isotopy problem”. Discrete Applied Mathematics
156.16. Applications of Algebra to Cryptography, pp. 3091–3112. ISSN: 0166-218X. DOI: https:
//doi.org/10.1016/j.dam.2007.12.009. URL: http://www.sciencedirect.
com/science/article/pii/S0166218X08000437.

Doenges, R., Arashloo, M. T., Bautista, S., Chang, A., Ni, N., Parkinson, S., Peterson, R., Solko-Breslin,
A., Xu, A., and Foster, N. (Jan. 2021). “Petr4: formal foundations for p4 data planes”. Proc. ACM
Program. Lang. 5.POPL. DOI: 10.1145/3434322. URL: https://doi.org/10.1145/
3434322.

Epstein, D. B. A., Paterson, M. S., Cannon, J. W., Holt, D. F., Levy, S. V., and Thurston, W. P. (1992).
Word Processing in Groups. Natick, MA, USA: A. K. Peters, Ltd. ISBN: 0867202440.

Felner, A., Korf, R. E., Meshulam, R., and Holte, R. C. (2007). “Compressed pattern databases”. Journal
of Artificial Intelligence Research 30, pp. 213–247.

Grishanov, S., Meshkov, V., and Omelchenko, A. (2009). “A topological study of textile structures. part i:
an introduction to topological methods”. Textile Research Journal 79.8, pp. 702–713.

Hagedorn, B., Lenfers, J., Koehler, T., Gorlatch, S., and Steuwer, M. (2020). A language for describing
optimization strategies. arXiv: 2002.02268 [cs.PL].

Hirose, Y., Gillespie, M., Bonilla Fominaya, A. M., and McCann, J. (July 2024). “Solid knitting”. ACM
Trans. Graph. 43.4. DOI: 10.1145/3658123. URL: https://doi.org/10.1145/3658123.

89

https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3290605.3300414
https://doi.org/10.1145/3290605.3300414
https://doi.org/10.1145/3290605.3300414
https://doi.org/10.1145/3411764.3445564
https://doi.org/10.1145/3411764.3445564
https://doi.org/10.1145/3411764.3445564
https://github.com/textiles-lab/knitout-frontend-js
https://github.com/textiles-lab/knitout-frontend-js
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.009
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.009
http://www.sciencedirect.com/science/article/pii/S0166218X08000437
http://www.sciencedirect.com/science/article/pii/S0166218X08000437
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3434322
https://arxiv.org/abs/2002.02268
https://doi.org/10.1145/3658123
https://doi.org/10.1145/3658123

Hofmann, M., Albaugh, L., Wang, T., Mankoff, J., and Hudson, S. E. (2023). “Knitscript: a domain-
specific scripting language for advanced machine knitting”. Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology. UIST ’23. San Francisco, CA, USA: Asso-
ciation for Computing Machinery. ISBN: 9798400701320. DOI: 10.1145/3586183.3606789.
URL: https://doi.org/10.1145/3586183.3606789.

Igarashi, A., Pierce, B. C., and Wadler, P. (May 2001). “Featherweight java: a minimal core calculus for
java and gj”. ACM Transactions on Programming Languages and Systems 23.3, pp. 396–450. ISSN:
1558-4593. DOI: 10.1145/503502.503505. URL: http://dx.doi.org/10.1145/
503502.503505.

Ikarashi, Y., Bernstein, G. L., Reinking, A., Genc, H., and Ragan-Kelley, J. (2022). “Exocompilation for
productive programming of hardware accelerators”. Proceedings of the 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation. PLDI 2022. San Diego,
CA, USA: Association for Computing Machinery, pp. 703–718. ISBN: 9781450392655. DOI: 10.
1145/3519939.3523446. URL: https://doi.org/10.1145/3519939.3523446.

Jones, B., Mei, Y., Zhao, H., Gotfrid, T., Mankoff, J., and Schulz, A. (Dec. 2021). “Computational design
of knit templates”. ACM Trans. Graph. 41.2. ISSN: 0730-0301. DOI: 10.1145/3488006. URL:
https://doi.org/10.1145/3488006.

Kaspar, A., Makatura, L., and Matusik, W. (2019). “Knitting skeletons: a computer-aided design tool for
shaping and patterning of knitted garments”. Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. UIST ’19. New Orleans, LA, USA: Association for Com-
puting Machinery, pp. 53–65. ISBN: 9781450368162. DOI: 10.1145/3332165.3347879. URL:
https://doi.org/10.1145/3332165.3347879.

Kaspar, A., Wu, K., Luo, Y., Makatura, L., and Matusik, W. (July 2021). “Knit sketching: from cut & sew
patterns to machine-knit garments”. ACM Trans. Graph. 40.4. ISSN: 0730-0301. DOI: 10.1145/
3450626.3459752. URL: https://doi.org/10.1145/3450626.3459752.

Koenig, D. and Tsvietkova, A. (2021). “Np–hard problems naturally arising in knot theory”. Trans. Amer.
Math. Soc. Ser. B 8.15, pp. 420–441. ISSN: 2330-0000. DOI: 10.1090/btran/71.

Lattner, C. and Adve, V. (2004). “Llvm: a compilation framework for lifelong program analysis & trans-
formation”. Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization. CGO ’04. Palo Alto, California: IEEE Computer Soci-
ety, p. 75. ISBN: 0769521029.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle, R., Shpeisman, T., Vasi-
lache, N., and Zinenko, O. (2021). “Mlir: scaling compiler infrastructure for domain specific compu-
tation”. Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Opti-
mization. CGO ’21. Virtual Event, Republic of Korea: IEEE Press, pp. 2–14. ISBN: 9781728186139.
DOI: 10.1109/CGO51591.2021.9370308. URL: https://doi.org/10.1109/
CGO51591.2021.9370308.

Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., and Ferdinand, C. (2016). “Compcert – a
formally verified optimizing compiler”. ERTS 2016: Embedded Real Time Software and Systems. Ed.
by SEE. Toulouse, France: SEE.

Lin, J. and McCann, J. (2021). “An artin braid group representation of knitting machine state with ap-
plications to validation and optimization of fabrication plans”. 2021 IEEE International Conference
on Robotics and Automation (ICRA). New York, NY, USA: Institute of Electrical and Electronics
Engineers, pp. 1147–1153. DOI: 10.1109/ICRA48506.2021.9562113.

Lin, J., Narayanan, V., and McCann, J. (2018). “Efficient transfer planning for flat knitting”. Proceedings
of the 2nd ACM Symposium on Computational Fabrication. SCF ’18. Cambridge, Massachusetts: As-

90

https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3488006
https://doi.org/10.1145/3488006
https://doi.org/10.1145/3332165.3347879
https://doi.org/10.1145/3332165.3347879
https://doi.org/10.1145/3450626.3459752
https://doi.org/10.1145/3450626.3459752
https://doi.org/10.1145/3450626.3459752
https://doi.org/10.1090/btran/71
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/ICRA48506.2021.9562113

sociation for Computing Machinery. ISBN: 9781450358545. DOI: 10.1145/3213512.3213515.
URL: https://doi.org/10.1145/3213512.3213515.

Liu, Z., Han, X., Zhang, Y., Chen, X., Lai, Y.-K., Doubrovski, E. L., Whiting, E., and Wang, C. C. (2021).
“Knitting 4d garments with elasticity controlled for body motion”. ACM Transactions on Graphics
(TOG) 40.4, pp. 1–16.

Markande, S. G. and Matsumoto, E. (2020). “Knotty knits are tangles in tori”. Proceedings of Bridges
2020: Mathematics, Art, Music, Architecture, Education, Culture. Ed. by Yackel, C., Bosch, R., Tor-
rence, E., and Fenyvesi, K. Phoenix, Arizona: Tessellations Publishing, pp. 103–112. ISBN: 978-1-
938664-36-6. URL: http://archive.bridgesmathart.org/2020/bridges2020-
103.html.

McCann, J. (2017). The “knitout” (.k) file format. [Online]. Available from: https://textiles-
lab.github.io/knitout/knitout.html.

McCann, J., Albaugh, L., Narayanan, V., Grow, A., Matusik, W., Mankoff, J., and Hodgins, J. (July 2016).
“A compiler for 3d machine knitting”. ACM Trans. Graph. 35.4, 49:1–49:11.

Mitra, R., Makatura, L., Whiting, E., and Chien, E. (2023). “Helix-free stripes for knit graph design”. ACM
SIGGRAPH 2023 Conference Proceedings. SIGGRAPH ’23. , Los Angeles, CA, USA, Association
for Computing Machinery. ISBN: 9798400701597. DOI: 10.1145/3588432.3591564. URL:
https://doi.org/10.1145/3588432.3591564.

Munkres, J. (2000). Topology. Featured Titles for Topology. Prentice Hall, Incorporated. ISBN: 9780131816299.
URL: https://books.google.com/books?id=XjoZAQAAIAAJ.

Murasugi, K. and Kurpita, B. (2012). A Study of Braids. Mathematics and Its Applications. Springer
Netherlands. ISBN: 9789401593199. URL: https://books.google.com/books?id=
VLTnCAAAQBAJ.

Nader, G., Quek, Y. H., Chia, P. Z., Weeger, O., and Yeung, S.-K. (July 2021). “Knitkit: a flexible system
for machine knitting of customizable textiles”. ACM Trans. Graph. 40.4. ISSN: 0730-0301. DOI: 10.
1145/3450626.3459790. URL: https://doi.org/10.1145/3450626.3459790.

Narayanan, V., Albaugh, L., Hodgins, J., Coros, S., and McCann, J. (Aug. 2018). “Automatic machine
knitting of 3d meshes”. ACM Trans. Graph. 37.3, 35:1–35:15.

Narayanan, V., Wu, K., Yuksel, C., and McCann, J. (July 2019). “Visual knitting machine programming”.
ACM Trans. Graph. 38.4. ISSN: 0730-0301. DOI: 10.1145/3306346.3322995. URL: https:
//doi.org/10.1145/3306346.3322995.

Ou, J., Oran, D., Haddad, D. D., Paradiso, J., and Ishii, H. (2019). “Sensorknit: architecting textile sensors
with machine knitting”. 3D Printing and Additive Manufacturing 6.1, pp. 1–11.

Popescu, M., Rippmann, M., Liew, A., Reiter, L., Flatt, R. J., Mele, T. V., and Block, P. (2020). “Structural
design, digital fabrication and construction of the cable-net and knitted formwork of the knitcandela
concrete shell”. Structures 31, pp. 1287–1299.

Popescu, M., Rippmann, M., Van Mele, T., and Block, P. (2018). “Automated generation of knit pat-
terns for non-developable surfaces”. Humanizing Digital Reality. Ed. by al., D. R. K. et. Singapore:
Springer.

Qu, A. and James, D. L. (July 2021). “Fast linking numbers for topology verification of loopy structures”.
ACM Trans. Graph. 40.4. ISSN: 0730-0301. DOI: 10.1145/3450626.3459778. URL: https:
//doi.org/10.1145/3450626.3459778.

Sanchez, V., Mahadevan, K., Ohlson, G., Graule, M. A., Yuen, M. C., Teeple, C. B., Weaver, J. C., Mc-
Cann, J., Bertoldi, K., and Wood, R. J. (2023). “3d knitting for pneumatic soft robotics”. Advanced
Functional Materials n/a.n/a.

91

https://doi.org/10.1145/3213512.3213515
https://doi.org/10.1145/3213512.3213515
http://archive.bridgesmathart.org/2020/bridges2020-103.html
http://archive.bridgesmathart.org/2020/bridges2020-103.html
https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
https://doi.org/10.1145/3588432.3591564
https://doi.org/10.1145/3588432.3591564
https://books.google.com/books?id=XjoZAQAAIAAJ
https://books.google.com/books?id=VLTnCAAAQBAJ
https://books.google.com/books?id=VLTnCAAAQBAJ
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1145/3450626.3459778
https://doi.org/10.1145/3450626.3459778
https://doi.org/10.1145/3450626.3459778

Shima Seiki (2011). Sds-one apex3. [Online]. Available from: http://www.shimaseiki.com/
product/design/sdsone_apex/flat/.

Soft Byte Ltd. (1999). Designaknit. [Online]. Available from: https://www.softbyte.co.uk/
designaknit.htm.

Stoll (2011). M1plus pattern software. [Online]. Available from: http://www.stoll.com/stoll_
software_solutions_en_4/pattern_software_m1plus/3_1.

Twigg-Smith, H., Whiting, E., and Peek, N. (2024). “Knitscape: computational design and yarn-level sim-
ulation of slip and tuck colorwork knitting patterns”. Proceedings of the CHI Conference on Human
Factors in Computing Systems. CHI ’24. , Honolulu, HI, USA, Association for Computing Machinery.
ISBN: 9798400703300. DOI: 10.1145/3613904.3642799. URL: https://doi.org/10.
1145/3613904.3642799.

Underwood, J. (2009). “The design of 3D shape knitted preforms”. PhD thesis. Fashion and Textiles,
RMIT University.

Wu, K., Tarini, M., Yuksel, C., Mccann, J., and Gao, X. (2021). “Wearable 3d machine knitting: automatic
generation of shaped knit sheets to cover real-world objects”. IEEE Transactions on Visualization and
Computer Graphics.

92

http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.softbyte.co.uk/designaknit.htm
https://www.softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://doi.org/10.1145/3613904.3642799
https://doi.org/10.1145/3613904.3642799
https://doi.org/10.1145/3613904.3642799

	1 Introduction
	1.1 Thesis Structure

	2 Machine Knitting
	2.1 Knitting Intuition
	2.2 Knitting Machine Structure
	2.3 Direct Machine Programming
	2.4 Automatic Program Generation

	3 Knit Object Equivalence
	3.1 Topology Terminology
	3.2 Knitting and Knot Theory
	3.3 Fenced Tangles
	3.3.1 Basic Definitions
	3.3.2 Fenced Tangle Composition
	3.3.3 Permutation Tangles

	4 Semantics for Knitting Machine Programs
	4.1 Formalizing Programming Languages
	4.2 Formal Knitout
	4.2.1 Translation Between Formal Knitout and Actual Knitout
	4.2.2 Formal Knitout Semantics

	4.3 Rewriting Knitout Programs
	4.3.1 Rewrite Motivations
	4.3.2 Rewrite Rule Proofs

	4.4 Results
	4.4.1 Pass Optimization
	4.4.2 Full to Half Gauge
	4.4.3 Sheet Stacking
	4.4.4 Pleated Tube

	5 Compilation of Unscheduled Knitting Representations
	5.1 Instruction Graphs
	5.1.1 Instruction Graph Definitions
	5.1.2 Instruction Graph Semantics

	5.2 Machine Knitablity Implies UFO Instruction Graph
	5.2.1 Lifting Knitout to Instruction Graphs
	5.2.2 Upward, Forward, Ordered

	5.3 UFO Instruction Graphs are Machine Knittable
	5.3.1 Knitting Machine State
	5.3.2 Instruction Generation
	5.3.3 Program Composition
	5.3.4 Converting Events to Knitout

	5.4 System Implementation
	5.4.1 Semantic Preserving Graph Rewrite
	5.4.2 UFO Check
	5.4.3 Lowering (L)
	5.4.4 System Limitations

	5.5 Case Studies
	5.5.1 Interlock Pocket
	5.5.2 Barber Pole
	5.5.3 Infinity Scarf

	6 Practical Verification of Program Equivalence
	6.1 The Artin Braids
	6.2 State Representation
	6.3 Optimal A* search
	6.3.1 Constraints
	6.3.2 Cost Model
	6.3.3 State Equivalence
	6.3.4 Heuristics

	6.4 Results

	7 Conclusion
	7.1 Practical Knit Programming Tools
	7.2 Formalizing the Full Fabrication Pipeline
	7.3 Alternative Knitting Semantics
	7.4 Formalizing Fabrication At Large

	Bibliography

