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Abstract

It is well-known that training deep neural networks is a computationally intensive
process. Given the proven utility of deep learning, efficiency is thus an important
concern. We study various aspects of deep networks with the goal of making the
training process more efficient with respect to memory consumption and execution
time. In doing so, we also discuss and contribute to various theoretical facets of the
field.

An unavoidable component in dealing with very large models is the need for
distributing the training over many, sometimes hundreds or thousands, computa-
tional devices. This usually induces a considerable communication overhead that
increases the risk of under-utilization of the system resources. To address this, we
show that the entropy of the weights decreases during training, which thus become
highly compressible—allowing for a considerable reduction in said overhead.

It is common practice to use squashing functions, like the softmax, at the output
layer of neural nets. We study the effect these functions have on the gradient signal
and argue that they may contribute to the well-known vanishing gradient problem.
To this end, we introduce non-squashing alternatives and provide evidence that sug-
gests, that they improve the convergence rate.

Our main contribution is in layer-wise training of deep networks. First, we make
various useful observations on the properties of hidden layers and representations.
Motivated by those, we show that layer-wise training can match the results of full-
model backprop, while considerably reducing the memory footprint of the training
process. We discuss the effect of implicit interlayer regularization (AKA the im-
plicit bias of depth) and introduce new conjectures on its theoretical origin. Based
on these, we show that interlayer regularization can be simulated in a few simple
steps. Additionally, we introduce partition-wise training, which may speed up the
optimization process by allowing for larger batch sizes and improved model paral-
lelism.

Finally, we take a look beyond gradient descent. Drawing on understanding
gained on how and what neural nets learn, a novel solution to fitting multilayer per-
ceptrons to training data is introduced. While it can outperform backpropagation
with stochastic gradient descent on various toy problems, it tends to overfit and be
capacity-hungry on more complex real data. We discuss why, and point to future
ways of addressing this. This solution can be expressed in closed form, albeit we
expect that it will evolve into a hybrid iterative approach. Also, we suspect that our
method might be a substantially better candidate for training deep nets on quantum
computers than backprop.
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Chapter 1

Introduction

1.1 Motivation

The recent second (or third) coming of neural networks (NNs), now known as deep learning
(DL), has undeniably yielded some impressive results in computer vision, natural language pro-
cessing, generative AI, and multiple other fields. This has prompted some to name AI the fourth
industrial revolution. Thus, massive amounts of effort, money, and energy are pouring into the
field, with deep learning by far receiving most of the attention. This means, that a focus on
efficiency is now more important than ever.

Training a single large neural network, on very large data, can potentially consume so much
energy, that hundreds of tons of CO2 will be released into the atmosphere (if the energy source
is e.g. a coal power plant). Thus, AI as a whole, has a daunting potential for exacerbating the
ongoing climate crisis. Another important aspect is that of cost. Due to the ever-increasing sizes
of the models and the data, and the following need for very large compute, training state-of-the-
art neural nets have become prohibitively expensive. This leaves the power of this disruptive
technology in the hands of the few and wealthy. To their credit, some large AI-driven companies
both contribute greatly to the research, and are prone to sharing their models and tools in an open
source manner. However, it is still extremely hard (if not impossible) for smaller companies and
actors in the field to compete. It simply not a level playing field, when the cost of training a single
model can be in the tens of millions of dollars. In the long term, this poses a potential threat of
monopolization—and even serious challenges to Western democracies. That is: too much power
and influence in the hands of a few people (or corporations), that were not democratically elected.

While inference and deployment of AI models is also important, in this thesis, we focus on
the training of deep networks. Our main focus is on new methods and new directions for deep
learning rather than an in-depth analysis of energy and cost optimization. Our consideration of
energy and cost will thus be limited to the consideration of memory consumption and execution
time. The field is changing rapidly, both in terms of machine learning models and the hardware
that implements them. We will present some new results that we believe will enable more cost-
and energy-efficient training, but we are not claiming to offer complete solutions. Instead, we
will focus on motivating the development of these methods and careful experiments to show that
these methods work on interesting problems.
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1.1.1 Our Focus

The past decade, or more, has seen an explosion in methods, architectures, and algorithms related
to deep neural networks. Given the wide range of learning models and techniques, in this work
we limit our main focus to strictly feed-forward (non-recurrent) models with fully-connected
and/or convolutional layers trained with backpropagation [127] and stochastic gradient descent
(SGD) with momentum. When relevant, we briefly expand our focus to include other methods or
architectures, such as ADAM [81] and transformers [30, 118, 146]. Likewise, we limit our focus
mainly to computer vision. We use well-known standard benchmarks such as MNIST, SVHN,
CIFAR-10, CIFAR-100, and the ImageNet 2012 datasets [26, 28, 90, 114].

1.2 Chapters

In the following chapters, we study various aspects related to the efficiency of training deep
neural networks. Below, we will briefly describe the contributions of each of the thesis chapters.

1.2.1 Speeding Up Distributed Learning (Ch. 3)

Large-scale distributed learning plays an ever-more increasing role in modern computing. How-
ever, whether using a compute cluster with thousands of nodes, or a single multi-GPU machine,
communication is a very significant bottleneck. In this chapter, we explore the effects of applying
quantization and encoding to the parameters of distributed models.

We show that, for a neural network, this can be done—without slowing down the conver-
gence, or hurting the generalization of the model. In fact, in our experiments we were able to
reduce the communication overhead by nearly an order of magnitude—while actually improving
the generalization accuracy.

The underlying observation is, that the entropy of the weights decreases during training.
Consequently, they become increasingly compressible as the training progresses. This can be
exploited for quantization and Huffman coding [68].

1.2.2 Gradient Amplification (Ch. 4)

We show that saturating output activation functions, such as the softmax, impede learning on a
number of standard classification tasks. Moreover, we present results showing that the utility of
softmax does not stem from the normalization, as some have speculated. In fact, the normaliza-
tion makes things worse. Rather, the advantage is in the exponentiation of error gradients. This
exponential gradient amplification is shown to speed up convergence and improve generalization.
To this end, we demonstrate faster convergence and better performance on diverse classification
tasks: image classification using CIFAR-10 and ImageNet, and semantic segmentation using
PASCAL VOC 2012. In the latter case, using the state-of-the-art neural network architecture, the
model converged 33% faster with our method than with the standard softmax activation, and that
with a slightly better performance to boot.
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1.2.3 How & What Neural Networks Learn (Ch. 5)

In order to aid the development of new and more efficient methods for training deep neural
networks, we observe and discuss some useful properties of hidden layers and representations.
Historically, DNNs have largely been considered a black box technology. That is, we may know
how to train them, but our understanding of what they learn (in the hidden layers) has been
somewhat vague.

One common view is, that the hidden representations form a feature hierarchy. For convo-
lutional neural nets (CNNs) trained on images, this means that the lowest layers capture simple
features like lines, while upper layers capture more complex concepts (e.g. shapes or scenes).
This may be true, but it is arguably not very useful with respect to developing new methods of
training.

To this end, we illustrate how the classes gradually separate, layer by layer, in a trained neural
net. This observation has multiple interesting consequences and interpretations that are indeed
useful to our purpose. It means, that examples belonging to the same class will tend to cluster
together, leading to the gradual forming of larger and larger regions that are homogeneous, or
pure, with respect to the class label. This corresponds to a gradual linearization, which we can
observe and quantify by solving linear systems of equations on the hidden representations.

Moreover, examples that lie near the centers of such pure regions are more likely to redundant
with respect to correctly learning the decision boundary. As a consequence, we can filter them
away before and during training. To do this, we use a simple k-nearest neighbors approach, and
discard the examples whose k neighbors belong to its own class. In addition, there is an obvious
interpretation of this in information theory.

Lastly, we describe our correlation filter view on neural nets. We explain how the fundamen-
tal process employed by the layers is that of sorting and filtering the input data. Examples are
first sorted with respect to their correlation with the weight vectors, and then filtered by the acti-
vation functions—such that same-class examples line up next to each other, as much as possible,
along each of the feature-dimensions. It is through this process that the layers gradually, from
the bottom up, separate the classes.

1.2.4 Deep Layer-wise Learning (Ch. 6)

While the dominant trend in deep learning literature is training very large models on hundreds
or thousands of GPUs, there is an increasingly important use-case for mobile and embedded sys-
tems. Such systems are typically significantly resource limited, both in compute and memory
capacity. To address the latter, we propose a simple method for deep layer-wise learning (DLL).
In brief, we simply extract an individual layer (or e.g. a residual block) from an architecture,
attach a decision-layer (or block) on top, and train that subnetwork in the usual way with back-
propagation and SGD. In the simplest case, we train each layer individually, from the bottom up,
for n epochs.

DLL matches the results achieved with regular full-network backprop on a number of stan-
dard computer vision benchmarks, while significantly reducing the memory footprint during
training (by 70% in most of our experiments). This constructive training scheme allows for the
incremental addition of layers, such that the final architecture need not be known in advance; we
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hope, that this may lead to new dynamic methods for architecture search.
As a secondary contribution, we show that deep partition-wise learning (DPL) enables the

use of both larger batch sizes, and better model-parallelization schemes. When training deep
nets on the ImageNet dataset, we achieved speedups of 30-55% (279% in one severely memory-
sensitive instance). We suspect, that this method could have a potentially big impact on the future
of very large scale deep learning. If, for example, our results can be successfully replicated in
other fields, like natural language processing. Even a 20% speedup on the training process could
translate into millions of dollars (and tons of CO2) saved.

Furthermore, we observe and analyze the effect of implicit interlayer regularization; i.e. that
depth regularizes. This phenomenon presents a challenge to layer-wise training on certain bench-
marks, because we train very shallow networks. However, we find that interlayer regularization
can be efficiently simulated in a few simple steps. Our work thus has theoretical implications, by
adding new understanding of how and what deep neural networks learn.

1.2.5 Beyond Gradient Descent: Platonic Projections (Ch. 7)
With our improved understanding of the inner workings of neural networks, gained in the previ-
ous chapters, we take a look beyond the confines of gradient descent and error-backpropagation.
Thus, we develop a quite elegant, and surprisingly simple, way of fitting multilayer perceptrons
(MLPs) to training data. By following the principle of gradual class separation, we show that
computing reasonable targets for the hidden layers is easy. Specifically, a good target is a repre-
sentation in which the classes are already separated.

For a supervised learning problem, given a dataset D(X, Y ), we can simply construct such
a target representation from the augmented matrix,

[
X Y

]
. Consider a binary classification

problem with x ∈ R2 and y ∈ {−1,+1}. By augmenting each example with its corresponding
class label, y, we are embedding the two-dimensional input in a three-dimensional space in which
the two classes are perfectly separated in the third dimension; i.e. by the x1 × x2 plane.

Now, if the first hidden layer in our MLP has n > 3 features, we can simply project the
augmented matrix up to n dimensions to obtain our target representation: T1 =

[
X Y

]
P1,

where P1 ∈ R3×n is e.g. a dense random matrix. Such a projection of the augmented matrix,
is what we have named a Platonic Projection. The method owes its name to Plato’s famous
“Allegory of The Cave”, that provided the inspiration for a thought experiment that lead to the
proposed method.

In order to fit the first layer of our MLP, we simply solve a linear system of equations,
such that W1 = X+T1. Now, to solve the next layer, we repeat the process by letting Z1 =
σ(XW1), and computing W2 = Z+

1 T2 where the new target, T2, is the Platonic projection
T2 =

[
Z1 Y

]
P2. We can repeat this process for the following layers as well. Thus, the

complete solution can be expressed by the recurrence relation:

Wi = Z+
i−1Ti

where Ti =
[
Zi−1 Y

]
Pi, Z0 = X , and Zi = σ(Zi−1Wi).

Obviously, the quality of the obtained solution depends heavily on the choice of the projection
matrices, Pi ∈ Rm×n. For example, what happens when m > n, and the projection reduces the
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number of dimensions? Clearly, not just any random dense matrix, Pi, will guarantee that the
classes are still separated. Moreover, while this simple method can outperform backpropagation
with stochastic gradient descent on various toy problems, it tends to overfit and be capacity-
hungry on more complex real data. These, and related issues, are discussed in the chapter. We
offer some possible answers, but this method is still very much work in progress. So, to be clear:
we are not making any strong claims, that the proposed method is better than existing
methods! Merely, we see this as a promising new way forward in the pursuit of more efficient
ways of training deep networks.

Our method, as presented here, can be expressed in closed form. However, we do expect
that it will evolve into a hybrid iterative approach. This would both make it more practical, and
likely play a role in addressing the overfitting. Finally, we suspect that our method might be a
substantially better candidate for training deep nets on quantum computers than backprop.
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Chapter 2

Neural Networks & Notation

A basic feed-forward neural network, AKA multi-layer perceptron (MLP), is a nested function
consisting of a sequence of pairs of affine transformations and non-linear functions; each pair is
referred to as a layer. For example, a two-layer MLP would be y = f2◦f1 = f2(f1(x;W1, b1);W2, b2),
where each layer fi is fi(x;Wi, bi, σi) = σi(xWi + bi). The matrices Wi and the vectors bi are
called the weights and the bias of a layer, respectively. The functions σi(·) are generally non-
linear, and referred to as the activation function (AKA the non-linearity or squasher) of a layer.
A NN with k layers is thus a (k − 1)-nested function y = fk ◦ fk−1 ◦ · · · ◦ f1 that, when trained,
learns some mapping from the set of inputs X to the target outputs Y .

Figure 2.1 shows a 3-4-2 MLP. That is, a two-layer neural network (we don’t include the
input layer in the count) with three inputs, one hidden layer with four neurons, and two outputs;
we say that the width of the input layer is 3, the width of the hidden layer is 4, and the width of
the output layer is 2. To this NN, a single input example x would be a 1 × 3 vector, W1 a 3 × 4
matrix, b1 a 1× 4 vector, W2 a 4× 2 matrix, b2 a 1× 2 vector, and the output y a 1× 2 vector.

It is standard notation in the literature to omit the bias term which is then assumed to be
captured by adding an extra component of 1 to each input vector, such that x = {1, x1, . . . , xn}.
We will adopt this notation from here on. Thus, each layer is now defined by fi(x;Wi, σi) =
σi(xWi).

Definition 1 (Neural Network). A k-layer feed-forward neural network (NN) with layer widths,
di ∈ N, i = 1 . . . k, is a nested function f : Rn 7→ Rp defined by the recurrence relation

fi = σi(τi(fi−1)), f0 = x

where σi : R 7→ R is generally non-linear, τi : Rdi−1 7→ Rdi is a linear transformation, and
d0 = n, dk = p.

For so-called fully-connected layers, τi is an affine transformation. In a convolutional neural
network (CNN) the τi’s can also be the convolution or pooling operations.

In our discussion, we shall be referring to the data representations in a NN:
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Figure 2.1: A 3-4-2 Feed-Forward Neural Network

Definition 2 (NN Representations). In a k-layer neural network, f : X 7→ Ŷ , the representation
Ai = τi(fi−1) is the preimage of σi, and the representation Zi = σi(Ai) is the image of σi, i =
0 . . . k, where Z0 = A0 = X and Zk = Ŷ .

Thus, for a NN we have the hidden representations (i.e. 0 < i < k), Ai = Zi−1Wi and
Zi = σi(Ai).

We will also be referring to the architecture of a neural network. That is, the set of all prop-
erties requd to sufficiently describe a particular network, such as the number of neurons and the
activation functions for each layer. This is the mathematical equivalent to the Protocol Buffer-
and YAML-based formats used by many deep learning software frameworks. For example, the
architecture, Ψ, for our 3-4-2 MLP above would be Ψ = ({4, σ1}, {2, σ2}). Here, and for all
NNs, the linear transformation associated with each layer is implied, namely the affine transfor-
mation. For more complex architectures, involving e.g. convolutions, pooling, or recurrences, it
would need to be specified.

Definition 3 (Architecture). The architecture of a k-layer neural network is the tuple Ψ =
(ψ1, ψ2, . . . , ψk), where each ψi ∈ Ψ is the set of all properties associated with the i’th layer.

We will not concern ourselves with listing all the possible layer types and their associated
properties. We will simply assume that all relevant properties are included in any given config-
uration. Obviously, we will also need to talk about learning problems. Hence, for the sake of
consistency and nomenclature, let us make clear what exactly we mean by that.

Definition 4 (Learning Problem). Given a dataset D(X, Y ), X ∈ Rm×n, Y ∈ Rm×p, and a loss
function, L(Y, Ŷ ), the task of approximating a function f : X 7→ Ŷ such that L is minimized is
referred to as a learning problem.
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We could say that the dataset D captures the learning problem. In the following, we will use
the terms dataset and learning problem interchangeably.
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Chapter 3

Speeding Up Distributed Learning

Large-scale distributed learning plays an ever-more increasing role in modern computing. How-
ever, whether using a compute cluster with thousands of nodes, or a single multi-GPU machine,
the most significant bottleneck is that of communication. In particular, communication between
parallel processes. In this work, we explore and compare different approaches to quantizing
and encoding the parameters of distributed models. We show that, for gradient descent-based
learning algorithms, this can be done - without slowing down the convergence, or hurting the
generalization of the model. As a result, the time required for training may be reduced signifi-
cantly.

With the sizes of today’s datasets growing to giga- and petabytes, we see an increasing need
for distributed solutions to learning problems. In particular, in the deep learning literature, we
have seen the number of parameters in a single model reach the billions. This renders training
on a single node infeasible – both with respect to memory requirements and execution time. It
becomes necessary, and indeed imperative, to distribute the computation across many machines.
However, distributed computing requires communication: data and model parameters must be
exchanged between the worker machines that collaborate on the computation. This communica-
tion overhead can become a serious bottleneck and greatly slow down the learning.

Communication overhead arises both from the need to transfer data to the workers, and the
need to share model parameters among them. In our work we focus on the latter, minimizing
the communication overhead due to exchange of model parameters. Specifically, we focus on
gradient-based methods in a data-parallel setting; i.e. where the dataset is distributed across
workers, and each worker has a complete copy of the model. During training, each worker locally
updates its own model, and the updated model parameters must periodically be synchronized
among all of the workers.

The general approach to minimizing communication overhead has been to simply reduce the
number of parameters that are exchanged, e.g. by having fewer parameters in the first place by
sparsifying them, exchanging only some of the parameters, or by sending them less frequently
[24, 27]. We take a different approach – rather than impoverishing the number of parameters
exchanged, we reduce the communication overhead by reducing the number of bits used to trans-
mit each parameter. We achieve this by quantizing the transmitted values. The Shannon entropy
[132] of the parameters of the network varies with training epoch and the layer of the network
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that they represent. To take advantage of this, we vary the number of bits used to quantize any
value dynamically, based on the observed entropy of the parameter values in any layer, at any
epoch. Additional compression is obtained through Huffman coding [68] of the parameters prior
to transmission. The added overhead of conveying the information about the quantization lev-
els and Huffman code dictionaries, so that the machines receiving these communicated values
can decode them, is insignificant compared to the actual number of bits needed to represent the
parameters. We are thus able to achieve a compression of nearly an order of magnitude in the
communication overhead, for no loss of generalization error in the trained network, as evaluated
on a standard classification task.

Figure 3.1 shows the achieved classification accuracy as a function of the bit rate of the
weights. When we go beyond 6-7 bits we do not gain anything in the precision of the learned
classifier. In the process, we also achieve a second, somewhat surprising result. The introduction
of quantization noise appears to have a beneficial effect on the training. When the parameters
are quantized to a slightly higher bit rate than that required to maintain generalization error, the
resulting network actually achieves lower generalization error than that obtained with unquan-
tized transmission of parameters. Moreover, the training often appears to converge faster. In
effect, we simultaneously achieve reduced communication overhead, improved generalization
error, and faster convergence by quantizing the parameters for communication.

3.1 Parameter Compression
Our solution to reducing communication overhead is to compress parameters before transmis-
sion. In choosing a compression scheme, we must consider many factors including cost (com-
plexity and execution time), memory usage, effectiveness (compression ratio), and impact on
learning (the generalization error of the model). Obviously, the cost of encoding, sending, and
decoding the data must be less than simply sending the data as is. Similarly, cutting down the
cost of communication is meaningless if it affects the learning negatively, such that either the
generalization error increases, or it takes considerably more iterations to converge (so that noth-
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ing is gained with respect to the total execution time). The model parameters to be transmitted
are single- or double-precision floating point numbers. We find simple lossless compression
of these parameters through algorithms such as LZW [157] to generally be ineffective. They
achieve little, if any, reduction in the size of the data, at a significant computational cost. Instead,
we utilize the robustness of model parameters to minor perturbation, particularly during training,
to compose an inexpensive lossy compression scheme through quantization. Secondly, we uti-
lize the relatively narrow range within which most parameter values lie to further compress the
parameters through a lossless compression scheme

All illustrations are based on experiments on the MNIST dataset [88] with a deep neural
network comprising 784 units in the input layer and three subsequent layers of size 392, 50 and
10 neurons respectively. The network is fully connected between any two consecutive layers.
There are thus three sets of weights of size 784 × 392, 392 × 50 and 50 × 10 respectively. The
activation functions of all neurons were tanh non-linearities.

3.2 Quantizing the Parameters
As a first try, we attempted to simply quantize all parameters to a fixed number of bits. To
quantize the values to N bits, we find the largest and minimum values of all weights in each
epoch, and evenly split the range up into 2N bins. Each weight is quantized to the center of
the bin that it falls into. In terms of communication, it will require only N bits to transmit any
weight.

Figure 3.1 shows results obtained with quantization to various levels. The plot shows the
classification accuracy obtained with the fully trained network, as a function of the number of
bits used to quantize the weights. The boxes show the mean, median (red line) and standard
deviation of the results obtained from 1500 runs of training with different initializations. The ac-
curacy obtained with 8-bit quantization is comparable to that obtained without quantization. This
compares very favorably with the 32 bits typically required to represent floating point numbers
in IEEE format.

3.3 Dynamic Selection of Quantization Levels
As network training progresses, the derivative of the mean squared error (MSE) being minimized
with respect to the weights converges towards a small value approaching zero, albeit in a some-
what noisy manner. Figure 3.2 shows the root-mean squared (RMS) value of the derivatives of
the error with respect to network weights for each of the three layers in our network as a function
of epoch. The derivatives for the third layer are scaled by 20 to fit in the plot. We note that
the derivatives converge towards zero for all layers. Also, the derivatives are generally larger at
higher layers of the network.

The derivatives are directly indicative of the degree of quantization that can be tolerated by
the weights. When the derivatives are large, relatively small perturbations of weights can result
in relatively large changes in the error. On the other hand, when the derivatives are small, the
network is tolerant to larger perturbations of the weights. We also know that quantization to a
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larger number of bits results in smaller expected quantization error, while quantization to a fewer
number of bits results in larger quantization error.

These observations together suggest that when the RMS value of the derivative is large, a
larger number of bits are required to quantize the weights. On the other hand, at small RMS
values of the derivative, a smaller number of quantization levels will suffice. This leads us to
propose a dynamic selection of the number of bits to quantize the weights. In each epoch, for
each layer, we will choose the number of bits to quantize the weights in that layer according to
the RMS value of the derivative of the MSE with respect to the weights. Specifically, assuming
the tolerance to changes in the MSE to be some constant T , and the RMS value of the derivatives
to be G, the bin size ∆W that may be expected to perturb the objective to within T is given by
∆W ∝ T/(G + c0), where c0 is a floor that enforces an upper bound on ∆W . Consequently,
the number of bins that the weights are quantized to, Nbin ∝ ∆W−1 ⇒ Nbin ∝ (G + c0). The
number of bits required to quantize the weights comes out to N = logNbin = log(G+ c0) + c1.
c1 may be viewed as a floor on the number of bits used to quantize the weights. To ensure that
N does not go below this value, c0 must be set to 1.0.

3.4 Lossless Compression
The distribution of the weights is not uniform in any layer. Figure 3.3 shows the estimated
entropy of the network weights in the various layer of the network, as a function of epoch. In
each case, for N -bit quantization we have computed the entropy from the normalized histogram
of the weights over the 2N quantization bins. The four panels shows the entropy obtained with
different levels of quantization of the weights. Expectedly, increasing the number of bits used
to quantize the weights increases their entropy; however the overall trend of the entropy remains
the same in all cases.

The entropy is generally less than N , the number of bits used to quantize the weights, and
decreases with the epochs. This indicates that lossless Huffman coding of the quantized weights
can result in significant compression of the weights.

3.5 Bits Required to Quantize the Weights
Comparing Figure 3.3 and Figure 3.2 we note that the entropy is well correlated with the RMS
value of the gradient. Empirically, we find the normalized correlation between log(G + c0) for
c0 = 1 and the entropy of the weights to be greater than 0.75 at all times, and frequently higher
than 0.95, particularly in the higher layers.

This correlation is sufficient for us to use the entropy of the weights as a proxy for the RMS
value in determining the desired quantization. Thus we arrive at the following estimate for the
number of bits required to quantize the weights in the kth level of the network in the eth training
epoch: Nk,e = Hk,e+ c, where Hk,e is the entropy of the weights in the kth layer, in epoch e, and
c is a floor on the number of bits to be used.

The above formula appears self-referential at first glance: the entropy estimate Hk,e itself
depends on the number of bits used to quantize the weights as noted earlier. To resolve this, we
compute Hk,e from a preliminary quantization of the weights to M bits. Typically, it is sufficient
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(a) 65,536 bin / 16 bits.
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(b) 4,096 bins / 12 bits.
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(c) 256 bins / 8 bits.
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(d) 64 bins / 6 bits.

Figure 3.3: Computing the entropy using different sample ratios and number of histogram bins
(bits). The sample ratio (denoted SRate in the legend), representing the fraction of the total set
of weights that was used to estimate the entropy, has very little affect. Lowering the number of
bins merely results in a shift of the entire curve.

to estimate Hk,e from only a small sample of the complete set of weights. Empirically, we have
found that using as few as 3% of the total set of weights can provide us with reliable estimates of
the entropy of the weights in any layer. M is a parameter we can choose. c must be empirically
determined, and now also accounts for the fact that Hk,e depends on M , since increasing M by
a factor of 2K will increase Hk,e by approximately K bits. On the other hand, decreasing M
results in smoother, and potentially more robust estimates of the entropy as seen from Figure 3.3.

3.6 An Algorithm for Dynamic Compression of Weights
Algorithm 1 describes our final algorithm for compresing the network weights. The output of the
algorithm is a set of packaged weights, where the package contains all the necessary informa-
tion required to decode the quantized weights to their actual values. Algorithm 2 describes the
algorithm used to decode the packaged weights to real numbers that can be used by the receiving
node. HuffmanCodebook, Encode and Decode are standard algorithms for computing the Huff-
man codebook, encoding a sequence of bits with a given Huffman code, and decoding a stream
of Huffman codes.

The parameters F , M , and c must be empirically determined. F is the fraction of weights
that are used to obtain the preliminary estimate of entropy, H . M is the size in bits of the initial
quantizer used to obtain this preliminary estimate. c is the quantization floor. Empirically, we
have that F = 0.03, M = 4, and c = 6 provide excellent results. We present experiments that
support this conclusion in the next section.
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3.7 Experiments
We ran experiments to investigate the proposed method and demonstrate its validity. The experi-
mental setup was that described in Section 2. Experiments were run on the 784-392-50-10 neural
network described in Section 3, on the MNIST database. In total, we ran the Backpropagation
algorithm about 1,500 times, while saving all the parameters of the NN after each of the 100
epochs.

3.8 Establishing Optimal Parameter Values
The proposed algorithm has three parameters: (a) the sample ratio F , which determines the
fraction of the weights we use to arrive at H , the preliminary estimate of entropy, (b) the quanti-
zation floor c, and (c) M , the bit size used for the preliminary entropy estimate. We investigate
the setting of each of these.
Estimating F : Figure 3.3 shows the entropy estimates obtained with different sample rates in
each panel. The entropy estimates do not vary much with sample rate. We therefore set F = 0.03,
i.e. 3%. For larger networks an even lower value of F may suffice.
Estimating M and c: The optimal values of M and c are closely coupled. First we establish
the ceiling on the number of bits needed, through fixed-size quantization. Figure 3.1 shows
the generalization accuracies obtained with fixed-size quantization at every quantization level
between 2 and 30 bits. We are able to recover baseline results at 8 bits, which gives us a 75%
reduction in communication (in single-precision) by quantization alone. We therefore consider a
ceiling of 10 bits to provide room for variation.

Ideally, we must explore the entire range of (M, c) values to establish the optimal setting.
Instead, we present a summary that only considers marginal variation of each of the variables,
while assuring the reader that the conclusions noted generalize to the larger search.

In general, we can expect the dynamically assigned quantization size not to exceed the bit-rate
ceiling. The maximum value of the preliminary entropy estimate obtained from M -bit quantiza-
tion is M . Thus, we expect c+M to be no greater than the ceiling. We use this to first establish
an effective value for M . Figure 3.4a shows the generalization performance obtained on the test
set when c +M = 10. Each point on the plot represents the aggregate statistics of 50 trials run
with different initializations. We have varied the floor c from 2 to 10 bits. A ceiling of 10 and
a floor of 10 (represented by “10:10” in the figure) represents fixed quantization to 10 bits. We
observe that we obtain the best results with M = 4, representing a quantization floor of c = 6
bits. Figure 3.4b shows the performance obtained at different values of the floor c, at M = 4. At
M = 4, c = 5 we obtain performance just marginally below baseline, giving us a “sweet spot” in
terms of compression. It is interesting to note that the performance with 9:5, representingM = 4
is actually superior to that obtained with 10:5 representing M = 5.

Thus, we establish c = 5,M = 4, since this results in only minor loss of performance. Figure
3.5 shows the average bit-rate per parameter as a function of epoch. This represents an average
bit rate of 6.8 bits/parameter over all training epochs, and an overall compression rate of 4.70.

Finally, we apply the final stage of Huffman coding to the quantized weights. Figure 3.5 also
shows the average bit-rate obtained with Huffman coding. This results in a significant reduction
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Figure 3.4: Left: Generalization accuracies (a), and convergence (c) for fixed quantization ceil-
ing of 10 bits with varying floor. Right: Generalization accuracies (b), and convergence (d) for a
fixed quantization range of 4 bits with increasing floor. All: The left-most value is the baseline,
and the dots are medians and the line plots the mean.

of bit-rate at every stage, and an overall average bit-rate of 3.55 bits/parameter, representing an
overall compression rate of 9.01 with respect to the baseline with no compression.

3.9 Going beyond the Baseline
Figure 3.4 reveals an interesting fact. The generalization error obtained with c = 6,M = 4 is
actually superior to the baseline. These results are consistent over a large number of runs of
the experiment. The mean bit rate at this setting is 3.78 bits/parameter, representing an overall
compression of 8.47.

Figures 3.4c and 3.4d show the number of iterations required for the training to achieve con-
vergence, where we define converegence as the peaking of generalization accuracy. In all cases
compression of the weights results in faster convergence. At c = 6,M = 4, convergence is
achieved in 20% fewer iterations than the baseline. Considering both the gains from parameter
compression and the faster convergence, we obtain an effective overall reduction of communica-
tion of a factor of 10.32, while also improving generalization error.

3.10 Conclusion & Discussion
As the size of neural networks and the data used to train them increase, not only will more
parameters need to be communicated, they will be done so over increasingly greater numbers
of machines. Gains such as those we report will become very important. The computational
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overhead of compression is miniscule compared to the actual transmission in these scenarios.
Although we have presented the compression scheme in the context of neural networks, it will
apply to gradient-descent based distributed optimimzation in general. Moreover, it can also
be combined with approaches that only transmit a subset of parameters, for additive gains in
compression.

While our results are very promising, the actual numbers reported must still be considered
with caution. A part of our current work is validating these results on much larger corpora. We
are also investingating extensions to model-parallel formalisms [24].

The improved generalization results we observe are, perhaps, not so surprising, since the
effect of quantization is to introduce quantization noise. It is well-known that noise may help
a learning algorithm escape from local minima [51], and has been used in de-noising Auto-
Encoders (DAEs) [147], and other variants such as dropout [55] and DropConnect [148].
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Algorithm 1 Weight Compression Algorithm
1: Input: Weights Wl, l = 1..L for each of the L layers in the net, F , M , c.
2: for layer l = 1..L do
3: Find wlmax = maxw∈Wl

w and wlmin = minw∈Wl
w.

4: Entropy H = Estimate Entropy(W , F, wmin, wmax,M )
5: Compute the number of bits: N = H + c.
6: Quantize Wl: Ql = Quantize(Wl, w

l
max, w

l
min, N ).

7: Estimate Probability Pl = Estimate Distribution(Ql, N )
8: Huffman Codebook Cl = HuffmanCodebook(Pl).
9: Encode Ql: El = Encode(Ql, Cl).

10: Package Pl = [El, wlmin, wlmax,Pl, N ].
11: end for
12: Output: Pl, l = 1..L.
13:

1: function QUANTIZE(W , wmin, wmax, K)
2: Return Q = {

⌊
2N (wmax−w)
wmax−wmin

⌋
∀w ∈ W}

3: end function
4:
1: function ESTIMATE DISTRIBUTION(Q, K)
2: Compute a 2K-bin histogram h(i), i = 1..2K from Q.
3: Normalize the histogram : p(i) = h(i)∑

i h(i)
.

4: Return P = {p(i), i = 1..2K}
5: end function
6:
1: function ESTIMATE ENTROPY(W , F, wmin, wmax,M )
2: Select a random subset Wsel of W of size F |W|.
3: Quantize Wsel: Qsel = Quantize(Wsel, wmin, wmax,M))
4: Estimate P = Estimate Distribution(Qsel,M )
5: Return H = −

∑2M

i=1 p(i) log p(i).
6: end function

Algorithm 2 Weight De-Compression Algorithm

1: Input: El, wlmin, wlmax,Pl, N
2: Huffman Codebook Cl = HuffmanCodebook(Pl).
3: Decode Ql = Decode(El, Cl).
4: Wl = {wmin + (wmax−wmin)(i+0.5)

2N
∀ I ∈ Ql}.

5: Output: Wl
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Chapter 4

Gradient Amplification

It is well-known that saturating activation functions can impede learning in neural nets. When
they saturate they produce very small gradients (e.g. in the flat sections of the sigmoid), that
can cause the optimizer to get stuck (see e.g. [91]). Rectified linear units do not have this
problem, and their success can in part be considered evidence of the severity of the problem of
saturation. However, it is still commonplace to use a saturating activation function at the output
layer, namely the softmax – even though applying the the softmax does not expand the space
of functions that the NN can represent. This is done, in part, so that we may perceive the out-
puts as probabilities, although strictly speaking they are not. In this work, we show that using
non-saturating output activation functions can improve learning on a number of standard com-
puter vision tasks. Moreover, we present results showing that the utility of the softmax does not
stem from the normalization, as some have speculated [39, 79]. Rather, the advantage is in the
exponentiation of error gradients. This exponential gradient amplification is shown to speed up
convergence and improve generalization.

4.1 Squashers & Saturation

Historically, output squashers, such as the logistic sigmoid and tanh functions, have been used
as a simple way of reducing the impact of outliers on the learned model. For example, if you fit
a model to a small dataset with a good amount of outliers, those outliers can produce very large
error gradients that will push the model towards a hypothesis that favors said outliers, leading to
poor generalization. Squashing the output will reduce those large error gradients, and thus reduce
the negative influence of the outliers on the learned model. However, if you have a small dataset,
you should not use a neural network in the first place—other methods are likely to work better.
And if you have a large dataset, the impact of any outliers will be minuscule. Therefore, the
outlier argument is not very relevant in the context of deep learning. What is relevant, however,
is that squashing functions saturate, resulting in very small gradients, appearing in the error
surface as infinite flat plateaus, that slow down learning, and even cause the optimizer to get stuck
[38, 91]. This observation was part of the motivation behind applying the now popular ReLU
activation (rectified linear units) to convolutional neural nets [76, 83, 112]. Surely, the massive
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success of ReLUs (and other related variants) speaks to the importance of avoiding saturating
activations. Thus, it is interesting to investigate if there is an advantage to using non-saturating
activations at the output-layer as well.

4.2 The Softmax Function
The softmax function [16], yj =

exp(xj)∑
i exp(xi)

, is the de facto standard activation used for multi-class
classification with one-hot target vectors. When the normalization term (the denominator) grows
large, the output goes towards zero, and thus the function saturates. The original motivation
behind the softmax function was not dealing with outliers, but rather to treat the outputs of a
NN as probabilities conditioned on the inputs. As useful as this is, we must remember that in
most cases the outputs of the softmax would actually not be true probabilities. To claim that
outputs are probabilities, we must assume a within-class Gaussian distribution of the data, made
in the derivation of the function [16]. In practice, we say that the outputs may be interpreted
as probabilities, as they lie in the range [0; 1] and sum to unity [14, 15]. However, if these are
sufficient criteria for calling outputs probabilities, then the normalization might just as well be
applied after training, which would not make the probabilistic interpretation any less correct.
This way, we can avoid the problem of saturation during training, while still treating the outputs
are probabilities (in case that is relevant to the given application). Another potential drawback of
the normalization is that it bounds the function at both ends s.t. f : R → [0, 1]. Consequently,
when we apply it at the output layer, s.t. y = f(x), where the error gradient (or “error delta”)
∇L(t,y)

∇x = y − t, and t ∈ {0, 1}, we effectively bound the gradients too, which affects all the
previous layers during back-propagation.

4.3 The Main Idea
The first gradient that we compute for backpropagation is the derivative of the loss with respect
to the input end of the output-layer activation function. As pointed out by Bishop [14, 15], for
all the canonical combinations of activation + loss (i.e. linear + mean squared error, sigmoid
+ cross-entropy, and softmax + multi-class cross-entropy), that gradient is computed in exactly
the same way. Namely, ∇L(t,y)

∇x = y − t, where y is the NN output and t is the target (x is the
input to out the activation function of the output layer). Thus, as mentioned above, this gradient
is bounded when y = softmax(x) or y = sigmoid(x). The main motivation for this work is to
investigate whether the observed benefits of using non-saturating hidden activations, such as the
ReLU, will also apply at the output layer. We take the view, that we can choose to amplify the
error signal being backpropagated from the output layer—by our choice of activation and loss
function. Or rather, by our choice of gradient! For example, if we use linear outputs with the
mean squared error (MSE) instead of the softmax + cross-entropy (CE) for classification, then
we can view it as a kind of gradient amplification. In both cases, the gradient is y − t, but this
value can become much larger when y = x than when y = softmax(x) —because the softmax
is bounded and saturates.

Table 4.1 shows what happened when we first applied this view on real data; the MNIST
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Output Activation Error Convergence

Sigmoid 1.8 98.5
Tanh 1.7 95.0
Linear 1.7 73.5

Table 4.1: Median results (20 trials) on MNIST for a 392-50-10 NN with ReLUs in the hidden
layers; final classification error & no. of epochs needed to converge.

dataset [88]. Training a simple three-layer NN (fully connected) with ReLUs in the hidden lay-
ers, we compared the median results obtained over twenty trials with sigmoid, tanh, and linear
output activations. The learning rate was fixed, and carefully tuned for each setting, and neither
dropout [55], batch normalization [72], nor weight decay was used. The NN trained for 100
epochs, and the point of convergence is set to be the epoch where the minimum classification
error was observed. This experiment was repeated multiple times with other hidden activations,
and weight initialization schemes, and they all gave the same result: with linear output acti-
vations, the rate of convergence is reduced by approximately 25 percent (and some moderate
improvements in generalization was observed as well). Note, that the softmax is not included in
the table as it performed poorly on this specific problem.

4.4 Gradient Amplification
The softmax does have one possible advantage over linear output with respect to amplifying error
gradients: namely, the exponentiation of the outputs. The exponential function is monotonic, so
it does not change anything with respect to the one-hot classification, but large errors will be
amplified. As the magnitude of the gradient term, | exp(x) − t|, grows faster than |x − t|, this
allows the optimizer to take bigger steps towards a minimum. An intuitive interpretation of
this would be that when we are confident about an error, we can take an exponentially larger
step towards minimizing that error. The idea bears some resemblance to momentum, where we
gradually speed things up when the directions of the error gradients are consistent.

4.5 Exponential Amplification
If exponentiation of error gradients is good, and saturation is bad, it follows that using an “un-
normalized” softmax, so to speak, should yield an improvement. That is, simply use exponential
outputs, y = α exp(x), but keep computing the error gradients as ∇L(y,t)

∇x = α exp(x)− t = y− t.
For now, we can think of it as an exponential output activation with an incorrect gradient formu-
lation imposed on it, i.e. the canonical y − t (we will derive the loss that it minimizes below).
As seen in Figure 4.1a, this simple change does in fact lead to a consistent boost in performance.
The result was obtained on the CIFAR-10 data [82], with a 5-layer CNN; four convolutional lay-
ers followed by an affine output layer with linear outputs and exponential gradient amplification
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(exp-GA), and batch normalization in all layers. We set α = 0.1, which has worked well in all
our experiments. To further boost the non-linear interaction between the outputs and the targets,
we used larger target values, t ∈ {0, 16} instead of t ∈ {0, 1}. As can be seen in the histograms
of Figure 4.2 (from a different experiment), this produces much larger gradients. The deltas are
roughly in [−6, 10], as opposed to the bounded errors of the softmax, that are in [−1, 1]. The
idea of picking better target values is not new. To reduce the risk of saturating with logistic
units LeCun et al. [91] recommend choosing targets at the point of the maximum of the second
derivative.

Another potential advantage of the exponentiation is that exp(x) asymptotically approaches
zero towards negative infinity. This is especially advantageous with one-hot target vectors, be-
cause we do not care about exact output values as long as the correct class has the largest value.
Hence, we can mostly ignore any negative errors in outputs for the negative classes. This can
be seen as a relaxation of the optimization problem, where we are essentially trying to solve an
inequality for the negative classes instead of an exact equality. With linear activations and the
MSE loss, the optimizer would always try to push the outputs for the negative classes towards
zero. This can lead to situations where an otherwise correct output (i.e. the maximum value
belongs to the node representing the target class) for a given input, xi, leads to a weight update
that renders the output incorrect the next time that xi is seen; this is in exchange for the mean
output for the negative classes being slightly closer to zero than on the previous iteration. This is
undesirable, but we can avoid the problem by using exp-GA.

4.6 Sparse Cross-Entropy Loss
When we change the activation function, but not the way we compute the gradient, we implicitly
change the loss function. The loss that is minimized by exp-GA turns out to be quite interesting:
it is exactly the multi-class cross-entropy with an L1 penalty on the activations. As the L1-norm
induces sparsity, we will call it the sparse cross-entropy loss: L(t, y) =

∑M
m=1

∑K
k=1(|ymk| −

tmk ln ymk) =
∑M

m=1(∥ym∥1−
∑K

k=1 tmk ln ymk), where tmk and ymk denote the k’th component
in them’th example of the target and output vectors, respectively. Imposing sparsity on the output
makes a lot of sense, because our one-hot targets are in fact sparse. To verify the correctness of
this loss, we can take the partial derivative with respect to the input to the activation; it should
be y − t. Assuming that α > 0, then the activation y = αex is non-negative, and we can ignore
the absolute value in the L1-term. The loss for a single output node does not depend on the other
output nodes, so we can ignore the summations and simply consider the loss for a single node:

∂

∂x
(|y| − t ln y) =

∂

∂x
(αex − t ln(αex)) (assuming α > 0)

= αex − t
∂

∂x
ln(αex)

= αex − t (because
∂

∂x
ln(αex) = 1)

= y − t
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To be clear, implementing exp-GA thus requires that we use exponential output units. If
we use a software package that applies automatic differentiation, then we must minimize the
sparse cross-entropy loss. If not, we need to make sure that the output layer gradient is computed
correctly, as y − t.

4.7 Cubic Amplification

Although we can often ignore large negative outputs that yield large negative error deltas, it is
not clear that we can safely ignore all of them. This raises the question whether we may further
boost performance by also allowing for the amplification of large negative errors. For this, we
use a simple polynomial, y = αx3 + β, and again we want the canonical gradient expression,
y− t; let’s call this pow3-GA. This polynomial has a flat section centered around zero where the
gradients will be relatively small. Similar to the left tail of the exponential function, for outputs
that land in that section, the optimizer will thus not push that hard for strict equality. Taking
another look at Figure 4.1a, we see that this does indeed yield a better result; following exactly
the same trend as observed with exp-GA, that the error drops significantly faster than with the
softmax. In this first experiment, we set α = 0.001, β = 0.4, and use target values t ∈ {0, 10}.

4.8 Negative Correlation Loss

The loss that we are minimizing with pow3-GA is not quite as clean and intriguing as what
we saw for exp-GA. We can view it as a negative correlation loss with some penalty terms:
L(t, y) =

∑M
m=1

∑K
k=1(

1
4
αy4mk + βy − tmkymk), α > 0, β ≥ 0, where y = x, and tmk and ymk

denote the k’th component in them’th example of the target and output vectors, respectively. The
last term in the summation, −tmkymk, measures the negative correlation between the target, t,
and the linear output activation, y = x. This is meaningful, and it is essentially the cross-entropy
without the logarithm. The term, +βy, is reminiscent of the L1-norm, with the big difference
that it promotes larger negative y’s. This too is meaningful, especially for the negative classes,
insofar that we again view it as solving an inequality instead of a strict equality. The first term
in the summation, 1

4
αy4mk, acts much like the L2-norm but with a stronger and faster growing

penalty on the magnitude of y (depending on α of course). Again, we verify the correctness of
the loss by taking the partial derivative with respect to the input to the activation, and again we
can ignore the summations and simply consider the loss for a single node:

∂

∂x
(
1

4
αx4 + βx− tx) =

1

4
α

d

dx
x4 +

∂

∂x
(βx− tx)

= αx3 +
∂

∂x
(βx− tx)

= αx3 + β
d

dx
x− t

d

dx
x

= αx3 + β − t
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(a) Median misclassification rates (20 trials) for a 5-
layer CNN with softmax, exponential, and cubic out-
puts.

(b) Misclassification rates for a 10-layer CNN with
softmax (for three different learning rates), exponen-
tial, and cubic outputs.

Figure 4.1: Top-1 misclassification rates on CIFAR-10.

Which is the gradient expression that what we wanted. To clarify, implementing pow3-GA
with automatic differentiation, we must use linear output activations, y = x, and optimize for
the negative correlation loss. With manual differentiation, the simplest approach is to use cubic
activations, y = αx3 + β, and compute the output layer gradient as y − t.

4.9 Experiments

We now study the performance and behavior of gradient amplification on the task of image-
classification on CIFAR-10/100 [82], and the pixel-level task of semantic segmentation on the
PASCAL VOC 2012 dataset [31].

4.10 All Convolutional Net

In this experiment, our purpose is not to get state-of-the-art results but to further study the be-
haviour of our method. We look at the first ten epochs of training with an (almost) all con-
volutional network with ten layers; following the principle presented in [137], but with batch
normalization, and the average pooling layer replaced by a fully-connected one. The latter was
done to make computation more deterministic, so as to allow for better evaluation of the effects
of changing various parameters. Note that pooling involves atomic operations on the GPU, which
can result in relatively large variance in output. For this experiment, we used a fixed learning
rate and carefully tuned it with the purpose of getting the best result within ten epochs. We use
the same α and β values as in our previous experiment, but this time we use different target
values. t ∈ {0, 6} produced better results for exp-GA. With pow3-GA it seemed a good idea to
try negative target values for the negative classes since the function is not bounded at the lower
end; we saw a significant improvement when using t ∈ {−2, 10}.
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Figure 4.2: Top: The distribution of output layer error gradients for softmax, linear with ex-
ponential amplification, and linear with cubic amplification at the start of epoch 1; training a
10-layer CNN on CIFAR-10. Bottom: same, but for epoch 4.

Figure 4.1b shows how the classification error evolved during training. For softmax, we show
results from trying three different learning rates to ensure that our choice of 1.0 really is a good
one. We note that the overall trend is the same as for the 5-layer CNN; for the first 2-5 epochs,
the error rates drop significantly faster with GA than with the softmax. The histograms in Figure
4.2 show the distribution of the output error deltas for the first batch of epoch 1 and epoch 4. The
larger target values used for GA are clearly reflected; resulting in sharper distributions clustered
around the negated target values. This is of course most significant on the first iteration, but the
trend is still very clear in the fourth (and tenth) epoch. This amplification of the output errors has
a significant effect on the gradient signals received in the hidden layers during backpropagation.
Figure 4.3 shows this effect very nicely via the root mean square (RMS) of the gradients. With
exp-GA, the RMS of the hidden layer gradients is an order of magnitude higher than with the
softmax; for pow3-GA it is more than two orders of magnitude. Interestingly, the hidden-layer
RMS-gradients recorded for pow3-GA grow rapidly from the second epoch and onwards. A
similar trend is seen for exp-GA, albeit less dramatically, and for the softmax there is only a
slight upwards trend, and only in the top layers. This amplification correlates well with the error
rates (see Figure 4.1b); the softmax gets stuck early on, and the linear activations with gradient
amplification continue to learn through all ten epochs. All in all, this seems to indicate that
gradient amplification may help alleviate the infamous problem of vanishing gradients [39, 57,
58] in deep neural networks.

4.11 The VGG Architecture
GA was tested on CIFAR-10 with the well-known VGG architecture [134] with 13 and 19 lay-
ers; VGG-13 and VGG-19, respectively. The learning rate and weight-decay were tuned very
carefully. We tried hundreds of different settings and picked the ones that performed best over
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Figure 4.3: RMS of error gradients over ten epochs of training a 10-layer CNN on CIFAR-10.
Left: output layer. Rest: every second hidden layer. Note the upwards trend from epoch 2
onwards in the hidden layers for GA.

(a) Median misclassification rates (8 trials) for VGG-
13 with softmax, exponential, cubic, and linear out-
puts.

(b) Median misclassification rates (8 trials) for VGG-
19 with softmax, exponential, cubic, and linear out-
puts.

Figure 4.4: Classification errors on CIFAR-10 with the VGG architecture.

multiple different random intializations. The learning rate was divided by 10 after 150 and 225
epochs. This learning rate schedule is common in the literature, and using other schedules did
not significantly affect the results.

As shown in Figure 4.4, the benefit of GA is no longer clearly seen from the very beginning
of training, but rather halfway through, or near the end. For VGG-13 both exp-GA and linear
outputs overtake the softmax right after the first reduction of the learning rate (epoch 150), and
for VGG-19 it is after the second reduction (epoch 225). This is because GA can cause overfit-
ting, if applied too aggressively. So, we reduced the learning rate and used smaller target values.
It actually does makes some sense for the benefit of GA to kick in later, as this is also when you
would expect the softmax to saturate more.

Table 4.2 summarizes our results and hyper-parameter settings for the VGG architecture with
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batch normalization. On both the 13- and the 19-layer model, the softmax with the cross-entropy
loss gets the worst median top-1 misclassification rate (over 8 trials) of all. Interestingly, for this
architecture linear activations with the mean squared error yield the best results.

Architecture Activation
+ Loss

Top-1
(Median) LR WD Tval α β

VGG-13 Softmax+CE 5.68 0.05 0.0005 {0, 1} — —
exp-GA 5.61 0.01 0.03 {0, 2} 0.5 —
pow3-GA 5.55 0.1 0.003 {0, 2} 0.001 0.0
Linear+MSE 5.47 0.01 0.03 {−1, 1} — —

VGG-19 Softmax+CE 6.05 0.05 0.0005 {0, 1} — —
exp-GA 5.82 0.01 0.03 {0, 2} 0.5 —
pow3-GA 5.93 0.07 0.0003 {0, 2} 0.001 0.0
Linear+MSE 5.79 0.01 0.03 {−1, 1} — —

Table 4.2: VGG-19 architecture. CIFAR-10 median top-1 misclassification rate (8 trials) &
hyper-parameter settings; learning rate (LR), weight decay (WD), target values (Tval), and GA-
parameters, α & β.

4.12 PyramidNet

GA was tested on CIFAR-10 and CIFAR-100 with the PyramidNet architecture, Han et al. (2017)
[43], with 55 and 110 layers. The widening factor, denoted by α in [43], was set to 48. We used
the same learning rate, weight decay, momentum, and schedule as Han et al. Note, that this is
the same standard schedule that we used earlier; the learning rate was divided by 10 after 150
and 225 epochs.

Table 4.3 summarizes our results and hyper-parameter settings for the PyramidNet archi-
tecture. Neither exp-GA or linear+MSE did well in this setting, but pow3-GA yielded a good
improvement over the softmax+CE on both datasets. For the 55-layer net trained on CIFAR-100,
pow3-GA converged more than 100 epochs sooner than softmax+CE. Somewhat surprisingly,
the learning rates for pow3-GA had to be 1-2 orders of magnitude higher than what we would
usually expect for DNNs.

Although more experiments should be conducted before making any final conclusions, one
interesting observation comes from our experiments on the CIFAR-10/100 datasets. We hypoth-
esize that the newer (and deeper) architectures have become significantly better at dealing with
the vanishing gradient problem; in particular, deep residual networks such as PyramidNet. As a
consequence, the problem of saturation at the output layer is less outspoken, and only the most
extreme type of gradient amplification has a noticeable effect.
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Architecture Activation
+ Loss Top-1 LR WD Tval α β

PyramidNet-55 Softmax+CE 6.02 0.1 0.0001 {0, 1} — —
exp-GA 5.51 0.4 0.0001 {0, 2} 1.0 —
pow3-GA 5.66 7.5 0.000003 {−1, 1} 0.0007 0.0

PyramidNet-110 Softmax+CE 4.98 0.1 0.0001 {0, 1} — —
exp-GA 4.67 0.2 0.0001 {0, 3} 0.5 —
pow3-GA 4.71 5.0 0.000003 {−1, 1} 0.0007 0.0

Table 4.3: PyramidNet architecture. CIFAR-10 top-1 misclassification rate & hyper-parameter
settings; learning rate (LR), weight decay (WD), target values (Tval), and GA-parameters, α &
β.

Architecture Activation
+ Loss Top-1 LR WD Tval α β

PyramidNet-55 Softmax+CE 25.23 0.5 0.0001 {0, 1} — —
exp-GA 29.17 0.3 0.00005 {0, 2} 1.0 —
pow3-GA 24.21 20.0 0.000001 {−1, 1} 0.001 0.0

PyramidNet-110 Softmax+CE 21.70 0.5 0.0001 {0, 1} — —
exp-GA 25.51 0.3 0.00005 {0, 2} 0.5 —
pow3-GA 21.41 16.0 0.000001 {−1, 1} 0.001 0.0

Table 4.4: PyramidNet architecture. CIFAR-100 top-1 misclassification rate & hyper-parameter
settings; learning rate (LR), weight decay (WD), target values (Tval), and GA-parameters, α &
β.

4.13 Semantic Segmentation

We now evaluate our method for the pixel-level classification task of semantic segmentation.
The goal in semantic segmentation is to determine class labels for every single pixel in an im-
age. Prior work [7, 45, 96] in this direction use a fully convolutional network with the standard
softmax and multi-class cross-entropy loss for optmization. In this experimwent, we use the Pix-
elNet architecture [7]. This model uses a VGG-16 [134] architecture (pre-trained on ImageNet)
followed by a multi-layer perceptron that is used to do per-pixel inference over hypercolumn
descriptors [45]. It has achieved state-of-the-art performance for various pixel-level tasks such
as semantic segmentation, surface normal estimation, and boundary detection.

We evaluate our findings on the heavily benchmarked Pascal VOC 2012 dataset. Similar to
prior work [7, 45, 96], we make use of additional labels collected on 8498 images by Hariharan
et al. [44]. We keep a small set of 100 images for validation to analyze convergence, and use the
same settings as used for analysis in [7]: a single scale 224×224 image is used as input to train
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bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

E-40 92.3 87.9 43.2 73.6 54.6 68.8 83.9 82.2 77.1 27.7 62.0 50.8 74.6 75.5 80.6 78.7 47.4 74.0 43.2 76.0 60.1 67.3
P-40 92.3 86.0 39.1 74.1 49.4 66.3 84.7 79.7 77.4 26.4 63.2 51.6 71.4 74.7 79.8 76.6 45.1 70.6 47.5 71.8 59.9 66.1
S-40 91.9 84.9 38.5 66.8 54.0 63.4 79.8 72.9 72.7 25.4 63.6 55.4 68.2 72.7 75.5 76.2 46.7 71.6 42.8 71.2 58.4 64.4

S-60 92.4 86.7 39.8 72.4 58.0 65.6 82.9 78.9 77.8 26.6 66.1 59.2 71.6 74.2 77.5 77.1 49.3 73.8 45.7 73.9 58.4 67.1

Table 4.5: Evaluation on Pascal VOC-2012 for Semantic Segmentation: We found our
analysis consistent for the pixel-level task of semantic segmentation. With only 40 epochs,
our formulation exceeds the performance using Softmax+Cross-Entropy for 60 epochs. E de-
onotes exp-GA+mean-squared-error; P denotes pow3-GA+mean-squared-error; and S denotes
softmax+cross-entropy-loss.

the model. All the hyper-parameters are kept constant except the initial learning rate1. We report
results on the Pascal VOC-2012 test set (evaluated on the PASCAL server) using the standard
metrics of region intersection over union (IoU) averaged over classes (higher is better).

Table 4.5 shows our results (both per-class and mIoU) for GA and the standard softmax. We
observe that the model trained using exp-GA converged after 40 epochs, whereas the softmax
model converged after 60 epochs. As seen in Table 4.5, our method provides 33% faster con-
vergence, while yielding a slightly better performance (E-40 vs. S-60). We see a significant 3%
boost in the first 40 epochs with exp-GA (E-40 vs. S-40).

Additionally, recent work [110, 145, 149] in the computer vision community have formulated
regression problems such as depth and surface normals estimation, and trajectory estimation, in
a classification paradigm, in hope of easier optimization and better performance. From these
experiments, we however infer that it is likely not the softmax+cross-entropy that boosts the
performance. Rather, it is the use of one-hot encoding of the target vectors.

4.14 Further Analysis
We can take a slightly more theoretical view on gradient amplification, by reasoning about
second-order properties of the error surfaces induced by exp-GA and pow3-GA. This is typi-
cally done with the Hessian matrix, H , of second derivatives, which tells us something about
the rate of change in the error for a single step of gradient descent. To keep things simple, we
will consider only the case of a single output activation, i.e. a single dimension, so we do not
need the full Hessian, d2

dx2
f will do. We will look at ∂2E

∂x2
, where E is the sum-of-squares error,

E(y, t) = 1
2

∑
i∥y− t∥2. For our purpose we can simply ignore the summation in E, and just an-

alyze ∂2E
∂x2

for a single example, (x, t). Let us start by comparing the Hessians for linear, softmax,
exponential, and cubic activations.

For a linear activation, y = x, the Hessian is simply

Hlinear =
∂2∥y − t∥2

∂x2
= 1 (4.1)

1The initial lr = 1×10−3 for softmax, lr = 1×10−4 for exp-GA, and lr = 5×10−5 for pow3-GA. Lowering
the learning rate for softmax deteriorates the performance.
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Re-writing the softmax activation as y = ex

s
, where s =

∑
i e
xi is a proxy for the normaliza-

tion term, we get

Hsoftmax =
∂2∥ ex

s
− t∥2

∂x2
=
e2x

s2
− ex

s
(t− ex

s
) (4.2)

and for exponential and cubic activations we have,

Hexp =
∂2∥ex − t∥2

∂x2
= e2x − ex(t− ex) (4.3)

Hpow3 =
∂2∥x3 − t∥2

∂x2
= 9x4 − 6x(−x3 + t) (4.4)

If we consider the situation where x is near some local minimum, we know that the error
surface will be locally convex around that point. This means that H ≈ 0, and that the first and
second term in each of the above Hessians will be approximately equal (i.e. they cancel each
other out). Thus, we will ignore the second terms, and simply compare the growth of all the first
terms, as we move x away from that local optimum. Now it becomes immediately evident that
(locally)Hpow3 > Hexp > Hsoftmax > Hlinear, because as x→ ±∞ we get 9x4 > e2x > e2x

s2
> 1

for all s > 1. Unsurprisingly, it all depends on the magnitude of the normalization term of the
softmax, s =

∑
i e
xi . If s is very smallHsoftmax will blow up, so we need to assert the probability

of that happening. At the onset of training, it is reasonable to assume that the input to the softmax
will be evenly distributed around zero. Thus, half of the xi’s are positive, guaranteeing that s > 1
as ∀x > 0, ex > 1. To see what happens later, we can consider a numerical example for one
thousand classes. Even when the model is trained well, such that the xi’s for the 999 negative
classes are likely to be negative and contribute very little to s as exi ≪ 1—it still takes only one
single xi ≥ 0 to make s > 1 (likely to be the one for the positive class). It seems reasonable to
claim that this will probably be the case most of the time.

To back up this claim, we take a look at the actual xi’s recorded during training of the 10-
layer CNN from our CIFAR-10 experiment in the previous section. Figure 4.5 shows how the
normalization term, s, of the softmax actually behaved. It starts out with a value of 2,342 and
increases monotonically from there.

However, we need to remember that for GA the Hessians are a little different, as we are just
amplifying the error gradients, y − t. Thus, the second derivatives are just the derivatives of
those deltas, with Hexp−GA = ex, Hpow3−GA = 3x2, and Hsoftmax = 1 (with the multi-class
cross-entropy loss)—which only adds to our point that GA can minimize the error faster than the
softmax.

4.15 Conclusion
Our results suggest fundamental changes to our default approach to deep network training, and to
our perception of the omnipresent softmax function. Allowing output activations to saturate, and
thus bounding their derivatives, comes at a price. However, by specifically addressing the issue of
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Figure 4.5: Magnitude of the softmax normalization term, s =
∑

i e
xi , recorded for a 10-layer

CNN trained on CIFAR-10. It starts out with s = 2, 342 and blows up from there.

saturation, and choosing unbounded output error derivatives, we get a consistent improvement in
DNN training. For all of the four datasets, MNIST, CIFAR-10, CIFAR-100, and Pascal VOC, and
all of the architectures, we were able to outperform softmax+CE. The test errors are consistently
lower, and the training can converge 25-33% faster. In the case of semantic segmentation with
the PixelNet architecture, this saved a full two days of computation, and lead to an improvement
of the state-of-the-art.

This all comes at no other cost than a few minutes of coding. The only drawback is the
introduction of some new hyper-parameters, α, β, and the target values. However, these have
been relatively easy to choose, and we do not expect that a lot of fine-tuning is required in the
general case.
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Chapter 5

How & What Neural Networks Learn

5.1 Introduction

Understanding how and why neural networks work so well has turned out to be quite non-trivial.
One thing which has certainly contributed to the overall fascination with neural nets is that they
are, however loosely, inspired by how the brain works. This fact has been an essential part of
the classical approach to NN training. An approach that has certainly led to some important
and impressive results. However, this brain analogy has perhaps also contributed somewhat
negatively. Firstly, it has to some extent shrouded neural nets in a veil of mystery—after all, we
still do not completely understand how the brain actually works (and maybe we never will?).
Secondly, it has inadvertently locked the entire field into a brain/backprop paradigm; with a
rather fixed set of underlying assumptions on how things should be done. Notwithstanding the
overwhelming success of this paradigm, and more recent improvements such as ReLUs (first used
by Fukushima in [35, 36], later popularized by [48, 112]), batch normalization [72], dropout [56],
residual networks [48], and transformers [146], the core approach to NN training has not evolved
much since 1986. Hence, so far, many important questions remain unanswered. Thus, the recent
success of neural nets, the era of deep learning, can mostly be accredited to the availability of
more data, as well as the access to more powerful computers. In our context, the biggest concern
may be the absence of alternative training algorithms. In particular, algorithms that are more
efficient than backprop + SGD.

In this chapter, we will first describe three main classical views on deep learning. Next, we
will observe and discuss some properties of the hidden layers & representations of deep neural
networks, and present an alternative view on DNN training. The aim is to establish useful insights
that may aid in finding new ways of training them.

5.2 Three Classical Views on DNNs

Historically, the approach to training and understanding neural networks has been dominated by
three main views. In this section, we will describe these three views in some detail.
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5.2.1 The Brain/Connectionist View
Neural networks owe their name to their structural similarity with the biological brain. Specif-
ically, that they consist of many simple computational units (neurons) that are interconnected.
These connections (or synapses, if you will) are weighted, meaning that any connection between
two neurons can be considered strong or weak. Thus, a trained neural net may be seen as satisfy-
ing a known property of the brain, namely that: “neurons that fire together, wire together”. This
property was first described by Donald O. Hebb in 1949 [49], and lead to the so-called Hebbian
learning paradigm (to which the backpropagation algorithm does not belong, by the way). In
the 1980s, the idea of having many connected units that compute in parallel was referred to as
“parallel distributed processing”. McClelland & Rumelhart presented this view in their seminal
book series of the same name [103, 104, 126]. Later, the view was re-branded as connectionism.
The idea stems back to historical work by McCulloch & Pitts [105], Rosenblatt [124, 125], and
Hebb [49]. Thus, structurally and algorithmically, the main link between artificial neural net-
works and biological ones, is that they fall under the connectionist view. In the case of affine, or
fully connected, layers this is pretty much the only link.

However, in the case convolutional neural nets, it is a different story. They were first intro-
duced by Fukushima in 1980, under the name “Neocognitron”, and were explicitly designed to
have a “structure similar to the hierarchy model of the visual nervous system proposed by Hubel
and Wiesel” [36]. This model of the mamallian visual system, was described in [65, 66, 67] by
Hubel and Wiesel (1959, 1962, 1968), who were later awarded with the Nobel prize. A convo-
lutional network captures three important properties of the primary visual cortex, an area in the
brain also referred to as V1:

1. Like V1, a convolutional layer is organized in a spatial map.

2. The features of a convolutional layer are spatially localized; corresponding to the simple
cells of V1.

3. Pooling layers make CNNs invariant to small shifts in the position of detected features;
roughly corresponding to the complex cells of V1.

For a more detailed account of the connection between CNNs and neuroscience, see Good-
fellow et al. (2016) [39], p. 353-359.

5.2.2 The Feature Hierarchy View
Perhaps the most interesting aspect, in our context, of the CNN/brain link is what they learn.
As it turns out, there is a remarkable similarity between the representations learned by a CNN,
and those of the visual cortex. Figure 5.1, due to Manassi et al. (2013) [101], illustrates the
hierarchical, feedforward visual processing in the four regions of the visual cortex. The authors
state:

“Stimuli are processed in a series of visual areas. V1 neurons are most sensitive
to low-level features, such as edges and lines. In higher visual areas, like V4 and
IT, receptive fields are larger, and neurons are sensitive to complex features, such
as shapes and objects. Responses of high-level neurons are fully determined by the
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neural firing of lower-level neurons. For example, the neural firing to a square is
determined by the neural firing for two vertical and two horizontal lines.”

This hierarchy of features is exactly what we can observe in the layers of a convolutional net.
In fact, Cichy et al. (2016) [21] showed that when “tuned to the statistics of real-world visual
recognition”, CNNs capture “the stages of human visual processing in both time and space from
early visual areas towards the dorsal and ventral streams.”

Figure 5.1: Hierarchical, feedforward visual processing in the visual cortex. This figure from
Manassi et al. (2013) [101]. Visual stimuli passes from the retina through the optical nerve and,
via the lateral geniculate nucleus (LGN) region, to the back of the head where the visual cortex
is located. It enters at V1 and is fed forward to V2, V4, and IT (the inferotemporal cortex). As
depicted, higher and higher level features are detected as the stimuli is fed from region to region.

Figure 5.2 shows a stick figure illustration of what such a hierarchy of features might look
like in a convolutional neural network. The CNN, f , maps the input images to the first hidden
representation which detects simple lines. The next layer detects linear combinations of lines,
i.e. simple shapes, and the next one objects composed by said shapes. The last hidden layer
detects combinations of the objects, i.e. scenes, and the final output is a class label. Note, that
all neural nets contain layers that compute linear combinations of the features from the previous
layer. Thus, the feature hierarchy view is valid for all types of NNs—only the direct link with
the visual cortex is strictly limited to CNNs.

Visualizing the actual features from a CNN is not completely straightforward. Nevertheless,
Zeiler et al. (2014) [155] produced some interesting ones by using the technique of deconvolution
(see their paper for details). As can be seen in Figure 5.3, the features they visualized correspond
very well with the conceptual ones depicted by our stick figures in Figure 5.2.

An interesting observation from Figure 5.3 is that the first layer learns Gabor-like filters. In
2D, a Gabor filter is essentially a Gaussian kernel multiplied by a sinusoidal wave. These filters
are localized with respect to spatial location, frequency, and rotation (unlike e.g. a Fourier basis
which is not localized in space); see Goodfellow et al. (2016), p. 357-359, for an explanation
of Gabor functions and their connection to machine learning. Gabor filters are similar to the
features employed by the simple cells of V1. Neural nets are not alone in learning such functions,
when applied to natural images. Actually, a very wide range of machine learning algorithms are
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Figure 5.2: Stick figure illustration of the feature hierarchy view on DNNs.

Figure 5.3: ConvNet features visualized using deconvolution. This figure adapted from Zeiler et
al. (2014)[155]. Showing a subset of the features from the first four conv-layers (left to right).
The first layer detects Gabor-like features, while the last layer detects much more complex shapes
such a dog faces. The CNN was trained with the ImageNet 2012 dataset.

known to do that. Figure 5.4 shows an example of a Gabor filter bank: the same feature rotated
180 degrees in 64 steps.

In image analysis, Gabor filters are commonly used for edge detection and texture analysis.
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Figure 5.4: Example of a Gabor filter bank. The black and white pixels indicate large negative,
and a large positive weights, respectively. The background color indicates a zero weight. Here
we see the same feature rotated 180 degrees in 64 steps.

Figure 5.5: Example of edge detection using a Gabor filter. The original image (left) is convolved
with the Gabor kernel (middle), which produces the image on the right: the edges are clearly
enhanced.

An edge in an image is characterized by a sharp transition in color along some direction—which
is exactly what the Gabor filter detects (and looks like). In Figure 5.5 we can see what this may
look like. A two-dimensional convolution of the original image with the Gabor filter produces
an image where edges are clearly enhanced, while everything else is mostly filtered away.

5.2.3 The Backprop View

Backpropagation [127] is of course an algorithm. However, implicitly, it also represents a view
on what it means to train a neural net, and what the hidden representations should be. In practice,
backprop is the only algorithm currently being used for training DNNs. After each forward
pass, the algorithm computes the error gradients at the output layer. These gradients are then
propagated backwards, layer by layer, using the chain rule of calculus. For each layer, the weights
are updated such that they take a small step in the direction of their respective negated error
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gradients. This process is repeated, usually thousands of times, until the algorithm converges.
Thus, the following properties can be said to characterize the underlying view of the backprop
algorithm:

1. To learn the weights of the ith layer, we must use precise information about the represen-
tations and error gradients of all the succeeding, jth layers, j > i.

2. All layers must be trained in concert.

3. Training requires differentiability.

4. Training is an iterative process.

The tremendous success of backprop speaks for itself. For roughly 40 years, it has been the
go-to algorithm for training neural networks. Over the past 10-15 years or so, in the era of deep
learning, it has been the driving method behind significant breakthroughs in computer vision,
speech recognition, natural language processing and many other fields. Hence, empirically, the
properties above have been validated many times over. So, to say that they are wrong would
not make much sense. Nonetheless, in the following, we will show that they are at least not
exclusively correct—it all depends on how you view the problem. In fact, when we change
our view on neural network learning, all of those four properties can be made redundant. We
will show how in the following chapters on deep layer-wise learning (Chapter 6), and Platonic
Projections (Chapter 7).

5.3 What Neural Networks Learn
Although the classical views on DNNs have certainly inspired and resulted in a multitude of
important work in the field, there is a need for alternate ones. Mostly because the classical views
do not immediately offer any useful and directly applicable insights (well, apart from that running
backprop is generally a pretty good idea). In this section, we offer some of our own observations
and views on the properties of hidden layers and representation—that we find are indeed useful.

We should note that of course multiple other theoretical contributions have been made to the
field of deep learning in recent years. In our opinion, the most useful one is that of Tishby et
al. [143] which frames deep learning in the context of information theory via the information
bottleneck principle. Another one of note is through spline theory [6], and more recently authors
have shown correspondence between neural networks and quantum field theory [34, 42, 71].

5.3.1 A Discrete Algebraic Cross-Fade From X to Y

A k-layer neural net is a sequential map between k + 1 representations

f : X 7→ Z1 7→ Z2 7→ · · · 7→ Zk−1 7→ Zk = Ŷ (5.1)

In a manner of speaking, assuming Ŷ ≈ Y , we can view this as a discrete algebraic cross-fade
between the two signals X and Y . With every step forward in the map, less of X and more of Y
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is “mixed” into Zi. Or, to put it more mathematically, and relating back to Equation 5.1, we may
say that ideally this will hold for sufficiently large k (and sufficient capacity in the network etc.)

{∥Y − ZiZ
+
i Y ∥}ki=1 → 0, i→ k (5.2)

Empirically, we have shown the validity of this equation multiple times. That is, for classification
problems we have shown that the least squares distance (LSD),

1

m
∥Y − ZiZ

+
i Y ∥2F (5.3)

decreases monotonically in i in a trained network. For example, we recorded the LSD for each
of the hidden layers, while training a four-layer MLP on the MNIST dataset (using backprop +
SGD). As can be seen in Figure 5.6, all the hidden layers move towards the target (in a least
squares sense), and end up satisfying Equation 5.2.

Figure 5.6: The least squares distance (LSD) from each of the hidden representations, Zi, to the
target, Y , recorded in a 784-392-196-50-10 MLP while being trained on the MNIST data.

A related observation was made in [155], only for transfer learning. That is, they showed that
the features of a model pretrained on the ImageNet data become gradually more discriminative,
layer by layer, for the Caltech-101 and Caltech-256 datasets.

5.3.2 Gradual Linearization
In thinking about what this all means for the hidden representations, our Zi’s, as we step back-
wards from the output towards the input layer, some useful intuitions arise. Thus, with each
step backwards in the sequential map, f :

1. Y becomes less and less planar, and more and more bent in the Zi’s.

2. The decision boundary becomes more and more wiggly in Zi space.

41



3. The Zi’s move away from Y (in target space), and towards X—in a least squares sense.

In summary, the goal of NN training is to learn a sequence of hidden representations, Zi, i =
1, . . . , (k − 1), such that at the final Zk−1, the learning problem, D(Zk−1, Y ), has become (suf-
ficiently) linear. Figure 5.7 is a grossly simplified depiction of what it might look like, for a
binary classification problem, if we could visualize the decision boundaries in each Zi space of
the network.

Figure 5.7: The decision boundary, depicted as fi, becomes more and more linear (or less and
less complex), as we map forward through the network.

5.3.3 Gradual Class Separability
Another way of describing what Equation 5.2 implies is in terms of class separability. Or, con-
versely, in terms of class overlap. The goal of classification with neural networks is to produce
a representation, Zk−1, where each class can be separated from all the other classes by a single
hyperplane. This separation happens gradually through the layers, as depicted in Figure 5.8.

Figure 5.8: Cartoon illustration of how the classes gradually separate, layer by layer. Clearly, the
critical regions are those where the classes overlap. Viewing the situation as a Venn diagram, the
goal of learning must then be to minimize the summed cardinality of all set intersections.
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Figure 5.9: The classes gradually becoming more separated through the layers of a 10-layer
CNN. Showing the two first principal components of the input, output, and hidden layers 2, 4, 6,
and 8.

This process can be shown on real data too. We trained a 10-layer CNN on the CIFAR-10
dataset, and then visualized the hidden representations. To avoid clutter, we used only four of
the classes, which each were plotted with individual colors. As these representations are in very
high dimensions, and cannot be visualized directly in 2D, we plotted them along their first two
principal components. As one can see in Figure 5.9, the result shows that the classes gradually
become more and more separated (or disentangled), as we step forward from layer to layer. This
literally means, that the decision boundary (or Y in Zi space) becomes more and more planar,
and consequently, that the LSD(Y, Zi) =

1
m
∥Y − ZiZ

+
i Y ∥2F must decrease as i increases.

Note, that multiple other authors have also observed this gradual class separability (and lin-
earization), such as [10, 73, 100, 111, 119, 150, 155].

5.3.4 The Rubik’s Cube View
A visually pleasing way of thinking about neural nets is, what we have dubbed, The Rubik’s Cube
View. The key observation underlying it is that it is all about binning the data. Concretely, for
each layer, the goal is to bin the data into as few bins as possible—with the constraint that
each bin is pure (or homogeneous) with respect to the class label. This view is thus exactly
in line with the view of Tishby et al. [133, 143]. Whereas they arrived at it through information
theory, we arrived at the same conclusion through algebra, geometry, and empirical observations.
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Figure 5.10: Conceptual illustration of the Rubik’s cube view on deep learning. The job of any
layer is to map the classes into fewer bins (linear regions) than were present in the previous layer.

Figures 5.8 and 5.9 illustrate our observation quite clearly: as the classes separate, samples tend
to be surrounded mostly by samples from their own class. Visually, this is somewhat similar to
solving a Rubik’s cube, where the sides gradually become more and more “pure” in color, as you
solve it; as depicted in Figure 5.10.

Pure Voronoi Maps

The squares in each of the Zi depicted in Figure 5.10 (as 2D Rubik’s cubes) form a Voronoi map;
see Definition 5.

Definition 5 (Discrete Euclidean Voronoi Map). Let X be a finite discrete set of points in Rn,
and let C = (c1, c2, . . . , ck), ci ∈ Rn, be a tuple of centroids. The Voronoi map of C on X ,
denoted V (C) ∈ X , is the tuple V ∗(C) = (v1, v2, . . . , vk) of Voronoi cells (or regions), where
each cell is given by

vi = {x ∈ X|∀j ̸= i.∥ci − x∥2 ≤ ∥cj − x∥2}

In fact, the squares form a Pure Voronoi map; see Definition 6. That is, a Voronoi map with
the added constraint that the cells be pure (homogeneous) with respect to the class label. We
could also call it a pure partitioning (or tessellation) on D(X, Y ).

Definition 6 (Pure Voronoi Map). Let D(X, Y ) be a dataset of pairs, (x, y) ∈ D, let C =
((c1, y1), (c2, y2), . . . , (ck, yk)), ci ∈ Rn, be a tuple of labelled centroids, and let ℓ(ci) = yi
denote the label of ci. A pure Voronoi map on D, denoted V (D) = V (X;Y ), is the tuple
V (C) = (v1, v2, . . . , vk) of pure Voronoi cells (or regions), where each cell is given by

vi = {(x, y) ∈ D|y = ℓ(ci) ∧ ∀j ̸= i.∥ci − x∥2 ≤ ∥cj − x∥2}

As we shall see below, pure Voronoi maps provide a useful way of reasoning about neural
networks, their hidden representations, and the complexity of learning problems.

Pure Entropy

If we consider the cell-wise distribution of samples in V (D) a probability distribution, we can
compute the entropy of it. The probability of each cell is its frequency
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p(vi) =
|vi|
|D|

Thus, we simply define the pure entropy as follows:

Definition 7 (Pure Entropy). Let V (D) be a pure Voronoi map (Definition 6). The pure entropy,
denoted H(V (D)), is the Shannon entropy over the probability distribution of the cells in V (D)

H(V (D)) = −
∑

v∈V (D)

p(v) log p(v), where p(v) =
|v|
|D|

We will be using the notation, H∗(D) = H∗(X;Y ), when making statements about a given
dataset (or representation). The asterisk indicates that the pure Voronoi map used to compute the
pure entropy is considered optimal. That is, V ∗(D), is minimal with respect to the number of
Voronoi regions, and the probability distribution over those regions is as sharp as possible—such
that it minimizes H(V (D)). This assumption of optimality is useful, in that we cannot always
expect to know, or even be able to compute, the correct V (D).

Figures 5.11 & 5.12 show the pure Voronoi maps (and corresponding entropies) on simple
binary classification problems. Please note, that the maps were computed with a naive, and very
inefficient, recursive algorithm that does not scale to large data—and does not guarantee that the
map is optimal. Regardless, the depicted results are still meaningful and correctly illustrate the
concept.

Now, we are ready to state an important inequality, that captures the Rubik’s cube view. For
a classification problem, or any D(X, Y ) where H(X) > H(Y ), the following should hold for a
well-trained neural net

H∗(X;Y ) > H∗(Z1;Y ) > · · · > H∗(Zk−1;Y ) > H∗(Zk;Y ) (5.4)

The restriction to H(X) > H(Y ) is probably important here, and we may think of it as
representing many-to-one relationships; i.e. f : X 7→ Y is injective. In practice, we suspect
that the inequality holds for most well-trained neural nets. But, at least in theory, it should not
hold for autoencoders, and probably many generative models (e.g. for deep fakes); because
H(X) = H(Y ), representing one-to-one relationships, i.e. f : X 7→ Y is bijective.

Thus, for autoencoders, or any D(X, Y ) where H(X) = H(Y ), the inequality becomes
an equality (ideally)

H∗(X;Y ) = H∗(Z1;Y ) = · · · = H∗(Zk−1;Y ) = H∗(Zk;Y ) (5.5)

For such problems, the best the DNN can do is to extract a minimal sufficient statistic forX in the
encoder part of the network. This essentially boils down to getting rid of redundant dimensions.

5.3.5 Information Theory
Taking a view from information theory, in the vein of Tishby et al. [133, 143], we can state a
number of things. Of course, this all requires that we assume that all the representations, X,Zi,
and Y , in Equation 5.1 are random variables. And that the sequential map itself is a Markov
chain. This assumption is probably debatable, but we’ll play along.
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Figure 5.11: The pure (but not optimal) Voronoi maps & entropies for sinusoidal decision
boundaries of frequencies 1, 2, 4, and 8. The number of necessary centroids, |C|, increases
with the frequency of variation, and so does the pure entropy, H∗(X; y). Thus, capturing the
complexity of the learning problems. Left: the dataset, D(X, y). Middle: the pure Voronoi
map, V (D), on top of D. Right: V (D) shown with the centroids.

Mutual Information

Firstly, as pointed out in [143], due to the data processing inequality (DPI), we have

I(Y ;X) ≥ I(Y ;Z1) ≥ I(Y ;Z2) ≥ · · · ≥ I(Y ; Ŷ ) (5.6)
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Figure 5.12: Illustrating the effect of sample density on the pure Voronoi map & entropy
for a sinusoidal decision boundary of frequency 1. The number of necessary centroids, |C|,
increases with the number of samples, m, and so does the pure entropy, H∗(X; y). As one would
expect, the centroids center near the decision boundary. Left: the dataset, D(X, y). Middle: the
pure Voronoi map, V (D), on top of D. Right: V (D) shown with the centroids.

Which says that any information lost about Y in Zi can never be recovered in any subsequent
Zj>i
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Conditional Entropy

Secondly, we can apply the same argument as for Equation 5.4. Namely, that for a classification
problem, or any D(X, Y ) where H(X) > H(Y ), the following should hold for a well-trained
neural net

H(X) > H(Y |X) > H(Y |Z1) > · · · > H(Y |Zk−1) > H(Y |Zk) ≈ H(Y ) (5.7)

This is notably similar to Equation 5.4. In other words, the pure entropy is a proxy for the
conditional entropy:

H∗(X;Y ) ≃ H(Y |X) (5.8)

Representational Entropy

Using the DPI and Equation 5.7, we can deduce another fundamental relationship. Again, we
assume that H(X) > H(Y ):

H(X) > H(Z1) > · · · > H(Zk−1) > H(Zk) ≈ H(Y ) (5.9)

This follow logically from the assumption, H(X) > H(Y ); since the Zi’s approach Y so must
their entropies. It also follows from the relationship, I(Y ;X) = H(Y ) − H(Y |X), and Equa-
tions 5.6 & 5.7. Interestingly, Jacobsen et al. [73] showed that while this discarding of irrelevant
information does happen, it is not a necessary condition for learning representations the gener-
alize well.

Information Filtering

The above three observations from information theory comprise the information filtering view
on deep learning:

The goal of each layer (or representation) is to filter away information in Zi, that
does not carry information about the label, Y .

Therefore, the amount of information decreases with every layer. This might be somewhat
counter-intuitive. For example, thinking about the layers as a feature hierarchy, may leave one
with the impression that information actually builds up through the layers. That is deceptively
misleading! What increases is not the information, but our certainty about the label:

When the certainty goes up, the uncertainty goes down, and consequently so does
the entropy (AKA the information).

5.4 k-Filtering & k-Redundancy
In line with the observations above, that the classes gradually separate and that the pure entropy
decreases (Equation 5.4), we propose a simple method for removing redundant samples before
or during training. We use the following redundancy criterion:

48



Figure 5.13: Illustrating the effect of k-filtering on toy data. Removing the examples whose k or
more nearest nearest neighbors belong to its own class, has an effect similar to that of removing
examples whose distance to the decision boundary, f , is higher than some value, ϵ. Conceptually,
we can thus think of k-filtering as leaving an ϵ-band of data points around the decision boundary.
The points inside this ϵ-band are associated with high uncertainty (AKA information) about the
class label.

A sample is considered redundant if all of its k nearest neighbors belong to its own
class.

Intuitively, an example positioned far away from the decision boundary, such that all the other
examples in its neighborhood belong to one single class, has little to no uncertainty attached
to the question of what its own label should be. Conversely, an example placed close to the
decision boundary, with neighbors belonging to multiple different classes, has high uncertainty;
i.e. it belongs to a high entropy region (or neighborhood). Thus, such examples carry more
information about the decision boundary. More precisely,

The shortest distance from an example to any point on the decision boundary is di-
rectly indicative of how much information the example carries about the decision
boundary (and the function that must be learned). Specifically, being close to the
boundary indicates that a sample belongs to a region in input space where the con-
ditional entropy, H(Y |X), is high. There is thus a notion of locality assigned to the
concept of entropy.

In practice, we run KNN on large mini-batches of the data, and remove samples that
satisfy the redundancy criterion. Conceptually, we can think of k-filtering as leaving an ϵ-band
of data points around the decision boundary. Figure 5.13 illustrates the idea.

Definition 8 (k-redundancy). For a dataset, D(X, Y ), the k-redundancy is the percentage of
samples that were removed by the k-filtering algorithm for a given choice of k.

The k-redundancy makes for a simple method for quantifying something meaningful about
the individual layer representations. Figure 5.14 shows the layerwise redundancies recorded
during the training of a VGG13 convnet on the CIFAR10 dataset. As we can see, the recording
confirms the inequality, Equation 5.4, by saying that the k-redundancy increases monotonically,
layer by layer. Meaning, that the probability of a sample being surrounded by mostly other
samples from its own class increases. Consequently, the pure entropy decreases.
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(a) Epoch 40 (b) Epoch 120

(c) Epoch 200 (d) Epoch 280

Figure 5.14: The k-redundancy of the 12 hidden layers of the VGG-13 architecture after 40, 120,
200, and 280 epochs of training on the CIFAR10 dataset, for k = 5, 10 and 20. The k-redundancy
grows slowly in the lowest layers, but very rapidly in the middle layers. After 200 epochs, the
k-redundancy of the top five hidden layers is nearly 100%. Thus, the k-redundancy looks like a
sigmoidal function of the layer index.

A related observation was reported in [119]. For the CIFAR-10 dataset, the authors showed
that a 1-nearest neighbor classifier applied to the learned representations achieved increasingly
higher accuracy, layer by layer.

5.4.1 A Few Experiments

The well-known MNIST dataset, and similar ones like KMNIST, and FashionMNIST [22, 90,
152], are so redundant that 30-60% of the examples can be filtered away before training—without
significantly impacting the final test accuracy. Table 5.1 lists the results we got when k-filtering
the datasets before the training began. We tested the method on two architectures, a vanilla
4-layer CNN and VGG-13 [135], and for a wide range of choices for k.
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Dataset Baseline k* k=5 k=10 k=20
Vanilla CNN-4
MNIST 99.54(100%) k=24: 99.55(57%) 97.17(18%) 99.43(34%) 99.50(53%)
FashionMNIST 92.02(100%) k=42: 92.25(80%) 90.83(42%) 91.55(56%) 91.89(69%)
KMNIST 97.09(100%) k=25: 97.40(69%) 97.17(24%) 97.25(42%) 97.29(62%)
VGG-13
MNIST 99.60(100%) k=27: 99.61(61%) 99.20(18%) 99.48(34%) 99.53(53%)
FashionMNIST 93.41(100%) k=104: 93.65(92%) 92.37(42%) 93.15(56%) 93.27(69%)
KMNIST 98.26(100%) k=9: 98.76(39%) 98.63(24%) 98.58(42%) 98.45(62%)

Table 5.1: k-Filtering Results. Test accuracies achieved with pre-filtered data, for different
choices of k, with two different convnet architectures: a vanilla 4-layer CNN, and VGG-13. k*
is the choice of k that produced the highest test accuracy. The percentages in parentheses show
the fraction of the dataset that was used for that training run.

Considering the amount of MNIST-models trained over the past almost three decades, it is
quite staggering to think about how much time and energy could potentially have been saved
(especially when computers were much slower than today). Other datasets, like CIFAR10 &
CIFAR100, are not redundant at all. Rather, they are under-sampled, which is why we rely
heavily on data augmentation in order to get good results.

5.4.2 The Checkerboard Conundrum

(a) Full Dataset (b) k-Filtered Data

Figure 5.15: The checkerboard classification problem: given an (x, y)-coordinate, what is the
color (class) of the square it belongs to? Showing both the full dataset (left) and the k-filtered
one (right).
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In our work, we rather stumbled upon a bit of a conundrum. Namely, the checkerboard
problem. As depicted in Figure 5.15, it is a binary classification problem where, given an (x, y)-
coordinate, the task is to label it as belonging to either a red or a blue square. The data consists
of 5,000 points sampled randomly from an 8 × 8 checkerboard. There was no noise added to
the data, and we do not worry about generalization, we just want to train an MLP to essentially
memorize the points. Clearly, this is a very simple task. What makes it interesting is that, against
all intuition, no good solution can be found by backprop + SGD. This is very surprising,
because this problem is a cakewalk for a decision tree or an SVM. A binary decision tree needs
just 64 levels to get zero error on the (training) data; one for each of the 64 squares. So, it
seems just wrong to say that an MLP cannot be trained to at least very high precision on the
same data? However, that was exactly the case! No matter what we tried, with respect to the
hyperparameters, number of layers, activation functions, and choice of optimizer, the learning
always got stuck and around 51-53% classification accuracy.

The Problem: Symmetry

Our analysis eventually led us to visualize the error gradients in the input space. And that clearly
illustrated what was going on. The points and the classes were sampled uniformly on the interval
[−0.5, 0.5] (along both axes), and the learning problem is symmetric around both diagonals.
This causes a “face-off” between directly opposing gradients along the two diagonals in input
space; as depicted in Figure 5.16. The magnitude of these gradients dominate the optimization
problem, which causes the optimizer to get stuck.

Figure 5.16: Vector field of the error gradients (as they look in input space) of a two-layer MLP,
while training with SGD + backprop on the checkerboard problem. Left: directly opposing
gradients appear along the diagonals when training with the full dataset. Middle: zooming in on
a diagonal (in the left figure), clearly showing the gradient “face-off”. Right: filtering the center
points of each square away reduces the dominance of the diagonal s.t. the optimizer doesn’t get
stuck.

However, as shown in Figure 5.16 (right), after k-filtering the data, the dominance of the
gradients along the diagonals is reduced. Consequently, the optimization does not get stuck
during training, and now an MLP can be fitted to arbitrary precision.
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This result begs the question: does there exist a class of similar (symmetric) learning prob-
lems, that cannot be learned by neural networks, or gradient descent, without filtering the data?
It is easy to imagine other strategies for removing samples. In this instance, we could simply
remove examples along the diagonals. However, in the general case the gradients would not
line up in such an obvious way, and deciding what examples to remove could get complicated.
k-filtering offers a simple and relatively safe way of removing redundant (and possibly problem-
atic) samples.

5.5 How Neural Networks Learn
In Section 5.3, we presented some alternate views on what the layers of a deep neural network
learns. Our observations led us to develop a rather useful way of viewing how they learn. We
call it: the correlation filter view.

5.5.1 The Correlation Filter View
Most, if not all, machine learning algorithms find structure in data by utilizing some notion of
similarity or locality. kNN selects examples by counting the labels of their k nearest neighbors.
k-means assigns examples to clusters based on their (Euclidean) distance to k centroids. And
a decision tree gradually selects examples based on how they fall into smaller and smaller bins
(intervals) of individual features. The fundamental operation applied in neural networks for
quantifying similarity is that of correlation.

5.5.2 Correlation
The type of correlation in question is not one of causality, or the correlation between events in
time. Rather, it measures correlation in space or direction. In an MLP, it is expressed as the
dot product between an input vector and a weight vector. Formally, the term refers to slightly
different but related things in different fields. The one most resembling our notion of correlation
is cross-correlation.

For two discrete-time signals, f and g, the cross-correlation is defined as

Rfg(n) =
∑
i

f [i]g[i− n] (5.10)

Note that the (one-dimensional) convolution differs only from the cross-correlation by a reversal
of the order of the indices into the second signal, g. Thus, the convolution of f by g is given by
f ∗ g = Cfg(n) =

∑
i f [i]g[n − i]. In other words, cross-correlation is simply a convolution

where the second signal is time-reversed: Rfg = f [i] ∗ g[−i].
In statistics, if two random variables X and Y have zero mean, then their covariance is their

dot product, Cov(X, Y ) = E[X · Y ]. Their correlation is the cosine of the angle between
them.

As the cosine of the angle between vectors x and w is given by their dot product divided by
the product of their norms, we can think of x · w as the “un-normalized” correlation (or cosine
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similarity). If x and w are positively correlated, x ·w > 0, then the angle between them is acute,
if the correlation is negative, x · w < 0, the angle is obtuse, and if they are uncorrelated the
two vectors are orthogonal and x · w = 0. Note that we usually omit the · when writing the dot
product, but we have included it in this section for clarity.

Geometry & Sorting

Figure 5.17 shows the correlation heatmap for a vector, w. For any vector, x, that points into the
half-space denoted S+ the correlation is positive, and vice versa for the half-space denoted S−.
For neural nets, we often think of x as a point and of w as a weight vector. Thus, S+ is the set of
points such that ∀x ∈ S+.xw > 0, and conversely for S− we have ∀x ∈ S−.xw < 0.

Figure 5.17: Correlation heatmap. Showing the correlation (dot product) heatmap for the
vector w (red means high/positive, and blue means low/negative correlation). s0 is the vector
(or plane, in higher dimensions), orthogonal to w, of zero correlation. S+ and S− denote the
half-space of positive (x · w > 0) and negative (x · w < 0) correlation, respectively. Adding a
bias, shifts s0 along the direction of w, and is thus equivalent to shifting the activation threshold
(of e.g. a ReLU).

Geometrically, for a set of training examples contained in the rows of a matrix, X ∈ Rm×n,
and a weight vector, w ∈ Rn×1, the matrix-vector product, a = Xw, denotes a linear projection
of the examples, xi ∈ X , onto the real line. The order in which the examples, xi, fall onto R
is exactly decided by their correlation (or angle) with w. Thus, computing a = Xw is akin to
sorting the examples by their correlation (or “similarity”) with the weight vector, w.

5.5.3 Filtering
For a single feature, zi = σ(Xwi), if σ is the ReLU and the bias is zero, then all x ∈ S− are
mapped to 0, while all x ∈ S+ are mapped to R+. Consequently, for all the points, x ∈ S+,
the activation map, σ : x 7→ z, is bijective; i.e. it is invertible and represents a one-to-one
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relationship. However, for the points, x ∈ S−, it is injective, not invertible, and denotes a
many-to-one relationship. Such many-to-one mappings, employed by the large flat regions of the
commonly used activation functions, are effectively filtering the input.

These regions are characterized by having zero, or nearly zero, first derivatives. Thus, they
also act as filters on the gradient signals during backpropagation. That is, all inputs that fall into
a flat region of any σ(·) will lead to a multiplication by zero (or a very small number) in the
gradient-backpropagation phase.

Please note that the filtering, as we refer to it in this context, is not strictly equivalent to
losing (or filtering away) information. From the point of view of information theory, this not
guaranteed to happen from merely applying an activation function with flat regions. In practice,
the activation functions will almost certainly play a role when actual information is filtered away
in a DNN. But so will any dimensionality reduction applied by narrow layers. For example, by
reducing the number of dimensions to below the intrinsic dimensionality of the data. Conversely,
if there is a massive dimensionality increase in a layer, then even if most samples fall into the flat
regions of σ, there is no guarantee that information will indeed be lost (in that layer as a whole).

The filtering, that we are referring to here, is the filtering away of individual positions along a
single dimension or feature. A set of samples, or inputs to σ, that are all mapped to the same value
by σ, become indistinguishable from each other (in that dimension). This allows the following
layer to treat them as one (again, in that dimension) such that they can easily be ignored entirely,
or may all contribute in the exact same way to an upstream computation.

We should add that, strictly speaking, most of the commonly used activation functions, such
as the squashers (the hyperbolic tangent and the logistic sigmoid), are actually fully invertible.
However, in practice, that does not matter to our argument. Firstly, in practice, they are not
fully invertible because their inverses yield complex numbers in the flat regions. Secondly, if
you move far enough out in the asymptotically flat regions, the differences in the output of those
functions will be so infinitesimal that, in practice, it makes no real difference to the computations
in a neural net.

5.5.4 The Process: Sort & Filter
According to the correlation filter view, the mantra a neural network lives by is thus: to “sort
& filter” the input. The fundamental process that enables a network to solve the Rubik’s cube
(Section 5.3.4), so to speak, is therefore:

For each feature, zi = σ(Xwi), to sort and filter the input such that same-class
examples line up next to each other, as much as possible, along each of the feature-
dimensions.

Selection

It is useful to distinguish between the inputs that get filtered, and those that do not. We will use
the terms “deselected” and “selected”, respectively. The selection of a feature, z = σ(Xw),
shall be denoted S+(z) and refer to the subset of examples (row vectors), xi ∈ X , whose projec-
tions onto R, ai = xiw, fall outside any flat regions in the activation map, σ : R 7→ R (i.e. they
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pass through the activation unfiltered). Conversely, the deselection of z shall be denoted S−(z)
and refer to the subset of examples whose projections onto R fall inside a flat region of σ (i.e.
they are filtered).

Arguably, we can now view the job of any feature as that of selection (through sorting
and filtering). That is, to select a subset of all the samples from the training data, S+(z) ⊂ X ,
such that the entropy over the class distribution is lowered. In other words, we could interpret it
to mean that H(Y |S+(z)) < H(Y |X). And similarly, that S+(z) has higher k-redundancy and
lower pure entropy—in that one feature-dimension (see Sections 5.4 & 5.3.4). Again, relating
back to the Rubik’s Cube view of Section 5.3.4, and to Tishby et al. with their Information Bot-
tleneck view [133, 143], the word “selection” is but a synonym for “binning”.

To support our view, we recorded some feature-wise class distributions from the selections
of a 3-layer MLP (784-300-50-10 with ReLUs) over 5 epochs of training on the MNIST dataset.
The results are shown in Figures 5.18, 5.19, and 5.20, epoch 0 refers to the state prior to training
(i.e. the random initialization). In the first layer, for the first feature H(Y |Z) goes from 3.26, at
the onset of training, to 3.12 after the fifth epoch. In layer 2, H(Y |Z) drops from 3.26 to 2.55
(feature 1), while in the third layer H(Y |Z) goes from 3.03 to 0.09 (also feature 1).
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Figure 5.18: Layer 1 of a 3-layer MLP. The class distributions of the selections of two features
over the first five epochs, the corresponding feature-wise conditional entropies, H(Y |Z), and
the total classification accuracy of the model at that epoch. Epoch 0 refers to the state prior to
training (i.e. the random initialization).
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Figure 5.19: Layer 2 of a 3-layer MLP. The class distributions of the selections of two features
over the first five epochs, the corresponding feature-wise conditional entropies, H(Y |Z), and
the total classification accuracy of the model at that epoch. Epoch 0 refers to the state prior to
training (i.e. the random initialization).
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Figure 5.20: Layer 3 of a 3-layer MLP. The class distributions of the selections of two features
over the first five epochs, the corresponding feature-wise conditional entropies, H(Y |Z), and
the total classification accuracy of the model at that epoch. Epoch 0 refers to the state prior to
training (i.e. the random initialization).
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In addition, we trained 4-layer MLP (784-392-196-50-10 with ReLUs) for 50 epochs on the
MNIST dataset while recording H(Y |Z) for each of the hidden layers. The result is shown in
Figure 5.21. For the i’th layer, H(Y |Zi) was computed as the average entropy over the class
distributions of the selections of all the individual features in the layer. In order to produce the
plot, we deliberately used a very low learning of 3e-06.

Figure 5.21: Layer-wise Conditional Entropies. Left: H(Y |Zi) recorded for each hidden layer
over 50 epochs of training. Right: The mean squared error (MSE). H(Y |Zi) is computed as the
average entropy over the class distributions of all the features in the i’th layer (i.e. their selections,
S+(zj)). The 4-layer MLP, with ReLU activations, was trained on the MNIST dataset. Notice
that the layer-wise entropies, H(Y |Zi), closely resemble the situation depicted for the least
squares distance (LSD) in Figure 5.6.

While these results alone are by no means sufficient to make any strong claim about the
validity of our view, they clearly favor it. Also, they are consistent with our results on the k-
redundancy and k-filtering (Section 5.4), as they are essentially expressing the same thing—just
at the feature level instead.

Discriminative Intervals & Locality of Entropy

While we suspect H(Y |S+(z)) < H(Y |X) to hold pretty generally, one can also imagine sit-
uations where it does not—at least not for all of S+(z). For example, it could hold only for a
subset of the selection that lie on the same interval. If σ is the ReLU (i.e. all positive inputs
are selected), then as we move away from zero along an interval (0, b] in the image of σ, we
may encounter mostly examples from a single class, such that the conditional entropy over that
interval is low. Moving beyond the point b, we may then observe the opposite: examples from
many different classes lined up next to each other. Meaning that, over the interval, (b,∞], the
corresponding class distribution is highly uniform; making the conditional entropy high. We
may say, that (0, b] is a discriminative interval, while (b,∞] is not.
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Figure 5.22 illustrates the idea of such discriminative intervals. In the depicted example,
applying the ReLU would select the most discriminative interval, (0, b]. Similarly to Figure
5.13 of Section 5.4, this illustrates that there is a notion of locality assigned to the concept of
conditional entropy.

Figure 5.22: Discriminative interval. Illustrating how input examples may fall in the interval
[a, b], as they are projected onto the real line via a weight vector, w. Along the interval, [a, 0], the
label (color) of the samples changes frequently. We associate this interval with high conditional
entropy, H(Y |X). Conversely, the interval (0, b] is associated with low conditional entropy; i.e.
locally in the interval the average uncertainty about what the label should be is low. In other
words, (0, b] is more discriminative than [a, 0].

5.5.5 The Learning: Probe Vectors
There is an interesting analogy with our view and the Fourier transform.

The Fourier Transform & The Probe Phasor

For a continuous signal, or function, the Fourier transform is defined as:

X(f) =

∫ ∞

−∞
x(t)e−i2πftdt (5.11)

e−i2πft is sometimes referred to as the kernel function of the Fourier transform, but generally
in physics and complex number theory it is called a phasor. It relies on Euler’s formula, eiθ =
cos θ + i sin θ, and can be thought of as a probe phasor; a pulse with which the signal, x(t), is
probed for its energy at frequency f . The probing is done by computing the correlation between
the signal and sinusoids of different frequencies (and phases).

Probe Vectors

The process of sorting and filtering, that each single weight vector applies to its input, lends us
a new view on weight vectors, namely as probe vectors. Just as the probe phasor of the Fourier
transform probes a signal for the presence of frequencies:

Weight vectors probe their input space for discriminative directions. That is, for
directions that yield discriminative selections.

61



A discriminative direction in the i’th layer is thus any choice of wj such that Zi−1wj ∈ R
contains a discriminative interval that can be selected by the activation function of choice, σ.
Preferably, the cardinality of the discriminative selection, |S+(σ(Zi−1wj)|, is large.

To elaborate further on the Fourier transform as an analogy, we can take a look at Figure 5.23.
It shows an imaginary labelling function, ℓ, assigning labels to two classes over an interval on
the real line. ℓ(x) is a smooth function that oscillates around 0, and its sign determines the class
labels, yi = sign(ℓ(xi)). In consequence, the frequency components contained in the signal,
ℓ(x), represent the frequencies of variation in the data (i.e. their labels).

Figure 5.23: Labelling Function & Frequency of Variation. An imaginary labelling function,
ℓ, assigning labels over an interval, [a, b], for a binary classification problem s.t. yi = sign(ℓ(xi)).
The oscillations in ℓ thus determine the frequency of variation in the data/labels.

We can now think of learning as the process of identifying intervals where ℓ is dominated by
low-frequency components. For example, by using the short-time Fourier transform (STFT) to
compute a spectrogram of ℓ.

Learning With Probe Vectors

The process of fitting a neural network to some training data, D(X, Y ), can now be conceptually
outlined as follows:

1. Initialize the weight vectors at random s.t. that they visually would resemble a bunch of
pins stuck in a ball (centered at the origin); approximately covering the surface of the ball
uniformly.

2. For each vector (or “pin”), drag it around in different directions until a discriminative
interval is identified.

3. Repeat the process for all feature vectors in the layer, while making sure that all the samples
in X are contained in at least one feature’s selection.

In step 2, we might consider adding that one should attempt to find the most discriminative
interval possible; making it a greedy algorithm. Deciding what interval is the “most discrim-
inative” would probably entail making some kind of trade-off between the cardinality of the
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corresponding selection and the conditional entropy. For instance, selecting a single example
would, in the view discussed here, be equivalent to minimizing H(Y |S+(zj)). That is hardly
ideal in the general case.

This process could be applied in a bottom-up layer-wise manner, but it is not required. Per-
haps, picking individual weights vectors at random, from all the layers, would have some kind
of regularizing effect. Regardless, our intention is not actually to train neural nets in this exact
way; rather, as stated, it is a view on the learning process.

Finally, we note that this line of thinking bears some resemblance with that of our depart-
ment’s own, Scott Fahlmann (and collaborators), in his work on the cascade-correlation learning
architecture [32, 33]. In this method, hidden units are added to an MLP and trained, one by one,
in a greedy manner.
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Chapter 6

Deep Layer-wise Learning

6.1 Introduction

The past decade or more has seen a consistent increase in the number of layers and parameters
used in deep neural networks. This has spawned a lot of research on how to deal with the
resulting increase in the complexity of the optimization problem, and how to build systems that
can efficiently handle the massive data-processing involved. While the dominant trend in deep
learning literature is training very large models on hundreds or thousands of GPUs, there is an
increasingly important use-case for mobile and embedded systems. Such systems are typically
significantly resource limited, both in compute and memory capacity. To address the latter, we
propose a simple method for deep layer-wise learning (DLL). In brief, we simply extract an
individual layer (or e.g. a residual block) from an architecture, attach a decision-layer (or block)
on top, and train that subnetwork in the usual way with backpropagation and SGD. In the simplest
case, we train each layer individually, from the bottom up, for n epochs.

DLL alleviates the vanishing gradient problem [57] by significantly reducing the number of
layers that gradients must be backpropagated through. We trained a 1000-layer MLP on the
MNIST dataset using greedy layer-wise learning—this is impossible with regular full backprop.
With this, we can at most train MLPs of 15-25 layers, and besides that: the entire model would
not fit in memory. DLL is also quite flexible. Arbitrary size blocks of layers can be trained
at a time, such that one can maximize resource utilization by matching the memory footprint
of the algorithm to the available memory. Furthermore, in cases where the full model does fit
in memory, but only for very small batch sizes, deep partition-wise learning (DPL) may offer
faster execution (whereas DLL is usually significantly slower than full backprop). By splitting
a very deep model into a few large partitions (e.g. 10-40 layers or residual blocks), we allow
for significantly larger batch sizes to be used during training. On a GPU, there can easily be
a 10-fold speedup when training with a large batch size, compared to a very small one. Thus,
there is often plenty of room for any overhead incurred by fitting the model partition by partition.
Moreover, assuming that the number of partitions is much smaller than the number of layers in
the architecture, near-optimal model-parallelization may be achieved with DPL (see Section 6.8).

Lastly, sequential bottom-up DLL is a constructive training scheme allows for the incremental
addition of layers, such that the final architecture need not be known in advance. Potentially, this
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may lead to new methods for online architecture search, where layers (or blocks) are added and
trained, as needed, until a desired precision has been achieved for the model.

6.1.1 Gradual Class Separability
Historically, neural nets have largely been considered a black box with respect to what each in-
dividual layer learns. This is due to the highly non-linear nature of the internal processing of the
input data. Our method is based on the hypothesis that the classes separate gradually, layer by
layer, in the hidden representations; as discussed in detail in Chapter 5. Disregarding any im-
plicit penalties for regularization, this would imply that the layer-local training objectives
are largely the same. We have empirically confirmed the hypothesis on a number of trained
DNNs. An example of the gradual separation of classes is depicted in Figure 5.9. Please refer to
Chapter 5 for more information on our motivation and theoretical justification for our proposed
method.

6.2 Deep Layer-wise Learning
DLL operates on the architecture of a neural network. That is, the set of all properties required
to sufficiently describe a particular network, such as the number of neurons and the activation
functions for each layer (see Chapter 2, Definition 3).

6.2.1 The Fundamental Algorithm
Deep layer-wise learning is similar to the training process for stacked autoencoders (SAEs)[52].
Only, instead of using the identity mapping as the target in each layer—we simply use the actual
target, Y . Thus, we can think of DLL as the process of stacking target-encoders. The canonical
use-case is to train an individual layer, ψi, by adding a single decision-layer on top. For this, we
take a dataset, D(X, Y ), and a k-layer architecture, Ψ, and decompose the learning problem into
k−1 two-layer sub-architectures, Ψ(i) = (ψi, ψk), which we train sequentially, one by one, from
the bottom up. The hidden representation, Zi, learned at the i’th sub-architecture, becomes the
input to the next sub-architecture. Hence, the subnet specified by Ψ(i+1) = (ψi+1, ψk), is trained
on the dataset D(i)(Zi, Y ). Note, that ψk denotes the decision-layer, and at each subnet its input-
dimensionality is adapted to match the output-dimensionality of the layer being trained. Figure
6.1 illustrates the process for a four-layer architecture.

The pseudocode for the training process is listed in Algorithm 3. This is the algorithm in
its simplest form, and it expects all the layers to have parameters. However, we may choose to
train more than one hidden layer at a time. For example, as in [60], we could train the equivalent
of a ResNet-block at a time. And some layers could have no trainable parameters (e.g. pool-
ing layers), in which case it makes sense to include them in the training of the last preceding
parameter-layer(s). Moreover, in most cases, it is more efficient to train segments of layers at a
time (or segments of residual-blocks). We will discuss that in Section 6.5.
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Figure 6.1: Layer-wise Training of a 4-layer NN: First, fit the 2-layer NN, f1, then discard
W̃ and keep W1 for the final architecture. Get the hidden representation Z1 (by forwarding X
through the first layer of f1), and repeat the process for f2 using Z1 as the input. Do the same for
f3, but this time keep both set of weights, W3 and W4 for the final architecture.

Algorithm 3 Deep Layer-wise Learning Algorithm

1: Input: Dataset D(X, Y ), k-layer architecture Ψ = (ψ1, . . . , ψk), and loss function L
2: for layer i = 1..k − 1 do
3: Let ψ′

k be a decision-layer with input dimensionality matching the output of ψi
4: Sub-architecture Ψ(i) := (ψi, ψ

′
k)

5: Two-layer neural net fΨ(i) : X 7→ Z 7→ Ŷ
6: Weights Wi, W̃ := argmin

Wi,W̃

L(Y, fΨ(i)(X;Wi, W̃ ))

7: if i < k − 1 then
8: Input X := Forward(X,ψi,Wi)
9: else

10: Weights Wk := W̃
11: end if
12: end for
13: Output: {W1, . . . ,Wk}
14:
15: function FORWARD(X,ψ,W )
16: Let fψ(·;W ) denote the function specified by ψ, as computed using weights W
17: Representation Z := fψ(X;W )
18: Return Z
19: end function
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6.2.2 Practical Concerns

Decision-block vs decision-layer

Very often the number of features in a hidden layer is so large, that using a single (fully-
connected) decision-layer becomes needlessly expensive, due to a quadratic blow-up in the num-
ber of parameters. We can reduce the number of features by adding a few extra decision-layers.
For example, down-conv or down-pooling layers; i.e. convolutional or pooling layers that re-
duce the size of the feature map, and / or the number of channels. In many cases, this uses less
memory, runs faster, and gets better results. The latter is due to implicit interlayer regulariza-
tion; see Section 6.6. Whenever we use more than a single decision-layer, we refer to it as a
decision-block.

Feeding data to the training layer (or block)

For all but the first layer, we need to feed the training data through previous layers, in order
to get the input representation to the layer currently being trained. In Algorithm 3, we simply
assume that the entire data fits in memory (or on disk), and that no data augmentation is used. In
practice, it is rarely so! Unless dealing with small data and narrow layers, it is mostly not even
practical to write the intermediate representations to disk; it easily blows up to terabytes of data.
Moreover, when heavy data augmentation is required, you get a unique dataset for each epoch
of training. The augmentation is done directly on the input images (or whatever your data is),
and can generally not be replicated in latent space. Hence, we use a feednet to provide data to
the training process. That is, mini-batches are drawn from the raw data, D(X, Y ), augmented as
usual, and then fed through the feednet. The output of the feednet now becomes the input to the
actual layer that is under training. When fitting the i’th layer, the corresponding feednet, f (i)

feed,
has the architecture, Ψ(i)

feed = (ψ1, . . . , ψi−1). Note, that even while using a deep feednet, we still
see very significant reductions in the memory consumption during training; easily 40-70%. Of
course, it depends on the architecture and the batch size being used, but the overhead of training
(vs. inference) is significant. For the feednet, we do not need to store layer activations (or their
gradients) for backpropagation, or any optimizer-related parameters such as momentum.

Feature checkpointing

When training a very deep network, the feednets can also become very deep. If necessary,
checkpointing the latent features at a few narrow layers, can be useful in order to reduce the
execution time or the device memory consumption. Suppose we pick layer j to be checkpointed.
During the training of that layer, we store all the mini-batches of output activations, Zj , for that
layer in RAM or on disk. Whenever the q’th layer, q > j, is training, we then draw the exact
mini-batches, Zj , in the same order as they were recorded, and feed them through the cropped
feednet with architecture, Ψ(q)

feed = (ψj+1, . . . , ψq−i).
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6.3 Backprop & Related Work
The problem that backpropagation addresses, in the training of multi-layer neural networks, is
that of credit assignment. Specifically, to each of the hidden units, it assigns a measure of respon-
sibility for the error obtained at the output end of the NN. Backprop represents an “everything is
connected” type of view on NN training. In this view, all layers (and weights) must be trained
jointly, and absent any information about the upper layers, layer-wise training is not possible;
see Section 5.2.3.

Already in 1986, LeCun presented a different idea, called target propagation [87, 89]. Sim-
ply speaking, the idea is to estimate good targets for the hidden layers, and use those for learning
the weights. More recently, this idea was picked up by Bengio (2014), who proposed to use
autoencoders for credit assignment via target propagation [12]. Bengio argues that this is “bio-
logically more plausible” with respect to how the brain works. The idea was later implemented
by Lee et al. (2015) in the form of difference target propagation [92]. Although the method
proposed by Bengio is not a greedy layer-wise training algorithm, it is conceptually related to
our work.

In the 1990s, multiple alternatives to backprop were explored in the literature. One such al-
ternative is to train (shallow) neural nets using decision trees; first fit a decision tree to the given
data, and then map the learned tree to a neural network, see e.g. [78, 120, 131]. This method
obviously limits the space of functions that can be reached. Yet, it is of some interest to us,
because it is also a locally greedy algorithm for training NNs.

This line of thinking is exactly captured in the direct feedback alignment approach proposed
by Lillicrap et al. (2016) [94]. Motivated by neuroscience and “biological plausibility” the au-
thors propose a simple way of assigning errors to the hidden layers. Instead of backpropagating
exact error gradients through each layer and its non-linearity, random (linear) projections of the
output error delta is used. The random feedback weights, i.e. the projections, are fixed during
training and the NN learns to adapt to the incoming error signal. “In essence, the network learns
to learn”, the authors argue. With this approach, they achieve error rates similar to those of stan-
dard backprop on a number of tasks.

Deep networks with stochastic depth [61] is another related technique. Conceptually, it could
be doing random layer-wise training if all but one layer is omitted in every gradient update. It
significantly differs from DLL in that, for each mini-batch during training, you randomly create
networks with expected smaller depth. This is achieved by adding stochastic skip-connections
between the layers (or blocks). Unlike with DLL, you always keep the entire network in memory,
and the full architecture is always used for testing. Additionally, with this approach you are ef-
fectively training all the layers in concert, just stochastically, and thus you get more coordination
between the layers than with bottom-up DLL. This method is obviously substantially differently
from ours.

One approach to decoupling the training of the layers is to use synthetic gradients, as pro-
posed by Jaderberg et al. (2017) [75]. That is, at each individual layer an auxiliary model is
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attached which learns to predict the gradients coming from the layers above. These models also
need to be trained, but they can wait for the true gradients to arrive, while the actual layer being
trained can proceed (without locking). This approach thus consumes more memory and compute
than DLL (and even than full-model backprop). To be clear, this is not layer-wise learning but
the method uses some layer-local error signals.

An honorable mention must go to Geoff Hinton’s proposed a layer-wise training scheme,
namely the “Forward-Forward Algorithm” [53]. This method replaces the backward pass of the
backpropagation algorithm with a second forward pass. Similar to our own method, it uses a
layer-local training objective and eliminates the need to save intermediate activations for all the
layers in the network during training; making it more memory efficient. Furthermore, Hinton
argues that this layer-wise scheme is also more “biologically plausible”. This approach differs
significantly from our own, and to our knowledge does not match the state of the art for end-to-
end backprop + SGD.

6.3.1 “Local Learning” Literature
Our work falls into the category of local learning. The deep learning “era” was indeed, in part,
set off by a related method, namely greedy layer-wise unsupervised pre-training [13, 54, 122]
(followed by a full-model supervised stage). Using layer-local error signals has been proposed
by multiple authors. In 2015, two papers independently proposed to insert intermediate losses
at hidden layers of deep architectures, which are then combined with the global loss. In the
22-layer GoogLeNet, Szegedy et al. [139] added two auxiliary classifiers to aid the vanishing
error signal backpropagated from the global loss during training. The “deeply supervised nets”
of Lee et al. [92] adds intermediate classifiers at every hidden layer—thus, partially resembling
a greedy layer-wise training scheme.

To our knowledge, the first work that strictly uses local error signals is that of Nøkland et al.
(2019) [117]. While their motivation is both biological plausibility and layer-wise training—it
is not actually layer-wise training; they just use layer-local losses. That is, all the layers are
still trained in concert, but each hidden layer has two decision models attached, one for the
cross-entropy loss and another for the similarity matching loss. This means, that the layers are
still able to adapt to each other, from the bottom up, as the incoming representations change
during training. In Section 6.6 we argue that this has a regularizing effect on the training; we
refer to it as forward regularization. This is a distinct advantage over our proposed method
of strictly bottom-up, and completely decoupled, layer-wise learning. Their method also
consumes significantly more memory than ours. Note, that the authors do not include any
results on modern architectures or for heavily augmented data.

Related to this method is the local unsupervised contrastive learning proposed by Xiong et
al. (2020) [153]. These authors also perform the forward pass in the usual end-to-end way, but
then use layer-local contrastive losses for unsupervised training. Thus, this method too benefits
from forward regularization. Notably, equivalently to our own discovery that a sliding window
approach significantly improves the results (see Section 6.5), the authors propose to train two
residual blocks at a time (with one overlapping block between each stage). As this is an unsuper-
vised method it is not directly comparable to ours. The authors do not include results on modern
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architectures.

To our understanding, and as also pointed out in [150], the current consensus in the com-
munity is that layer-wise learning suffers from certain challenges, and generally does not match
the performance of full-network backprop! This is largely based on two papers by Belilovsky
et al. (2019 & 2020) [10, 11]. Somewhat surprisingly, despite referring to their work as layer-
wise learning, they only report one single actual layer-wise result; for AlexNet [83]. Indeed,
all the competitive results reported are for training three layers at a time. Furthermore,
like Nøkland et al. [117], the authors avoid modern architectures and heavy data augmentation.
Unlike our own work, the authors do not address the issue of overfitting and the lack of implicit
interlayer regularization. In [11] they specifically focus on the potential model parallelization
and propose a scheme similar to what we present in Section 6.8; i.e. partition-wise learning.

The work by Wang et al. (2021) [150] attempts to overcome the inherent challenge in layer-
wise learning. To this end, they hypothesize that too much task-relevant information is discarded
in the lower layers; causing problems upstream. They introduce the Information Propagation
(InfoPro) loss to specifically address the issue. Interestingly, the proposed loss formulation
looks very similar (if not equivalent) to the well-known information bottleneck method (Tishby
(2000)[144]), that was famously applied to deep nets in [133, 143]. While the authors do cite this
work, they do not point out the obvious similarity with their own method. Similarly to Nøkland
et al. (2019) [117], in the actual implementation, they add two auxiliary models to each layer.
One model for the cross-entropy and another for a reconstruction loss on a decoder. The latter
is a proxy for the mutual information, I(Zi;X), and is intended to prevent the aforementioned
information loss. To the best of our knowledge, this work represents the state-of-the-art of
published results on local learning. Again, these authors do not report a single actual layer-
wise learning result. Indeed, they report unfavorable results on training two layers at a time
with ResNet-32, and their approach only matches the results of full-model backprop when they
split a network into two partitions (what we refer to as partition-wise training; see Section 6.8).
To be clear, that means that they train 55 layers at a time for ResNet-110, and 16 at a time for
ResNet-32. According to our own observations, this is easy to do and does not require any extra
auxiliary loss (such a the proposed decoder reconstruction loss); see Section 6.8. Nonetheless,
in their head-to-head comparisons they do appear top be doing better than the previous methods
for local learning. Furthermore, similar to all authors: they do not include results on modern
architectures or for heavily augmented data.

The only actual single-layer bottom-up layer-wise learning result, that we are aware of, is
that of Huang et al. (2017) [60]. The authors show that you can in fact train the blocks of a
ResNet sequentially, one at a time. To do this, they take a boosting [129] approach to block-wise
training, and prove that the training error decays exponentially with the depth of the network. A
decision-layer is added to each ResNet-block while training, and all but the last one is discarded
afterwards—a process nearly identical to Algorithm 3. It is thus a ResNet-block-wise greedy al-
gorithm, that treats each block like a weak classifier, as known from regular boosting theory. The
blocks must then satisfy the weak learning condition, i.e. that they must do better than random
guessing with respect to the classification task at hand; see e.g. [129, 130]. Unfortunately, and as
also pointed out in [150], while Huang et al. provide mathematical proof for their method, they
provide only very limited empirical evidence. We contend, that this method will overfit signifi-
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cantly absent any additional regularization (such as what we propose in Section 6.6.3). To this
point, we note that both Wang et al. [150] and Belilovsky et al. [10], reported quite poor results
for this method.

State of the Art

In our own experiments, we have observed that matching the results of full-model backprop with
DLL is significantly harder when:

1. Using heavily augmented data.

2. The layers are narrow.

3. Actually training a single layer at a time; i.e. it becomes progressively easier the more
layers you train at a time, as discussed in Section 6.5.

4. Using modern block-based architectures such as EfficientNet or vision transformers (see
Sections 6.6.2 & 6.6.3).

Therefore, we believe that it is not a coincidence that, prior to the present work, no authors have
reported results on modern architectures. They all strictly report on older architectures like VGG
and Wide ResNets—and do not use heavily augmented data. Most likely, they observed the same
issues that we did for modern architectures and heavy data augmentation; i.e. when no forward
and backward dropout is applied (see Section 6.6.3).

We would like to point out that we are the first to:

1. Match the performance of full-model (end-to-end) backprop with actual single-layer de-
coupled bottom-up training.

2. Report results on heavily augmented data.

3. Report results on modern architectures.

Thus, to the best of our knowledge: the method presented in this chapter significantly
outperforms all previously published results for local learning.

6.4 First Results

We first tested DLL on two architectures: a vanilla 4-layer CNN, and the well-known VGG-13 ar-
chitecture [135], using the MNIST, Kuzushiji-MNIST (KMNIST), and FashionMNIST datasets
[22, 88, 152]. No data augmentation was used. The VGG architecture has three affine (decision)
layers with dropout at the top, so it seemed natural to use those as a decision-block. For the
vanilla CNN, we used a single affine decision-layer. The results are shown in Table 6.1.
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Architecture Dataset Baseline DLL

Vanilla CNN MNIST 99.54 99.58
KMNIST 97.09 96.72
FashionMNIST 92.02 92.20

VGG-13 MNIST 99.60 99.65
KMNIST 98.26 97.94
FashionMNIST 93.41 93.45

Table 6.1: First DLL Results. No data augmentation. Batch size 128. Baseline trained 100
epochs. Learning rate and weight-decay were the same for both baseline and DLL; 0.05 and
8e-5, respectively. The learning rate was fixed for all epochs.

Observations and Takeaways

• Early stopping matters: for these relatively easy datasets, and when no data augmentation
is used. The lower layers will overfit if trained for too long. We trained layers 1-3 for 30,
40, and 50 epochs, respectively. All subsequent layers trained 60 epochs.

• Not all layers are necessarily needed: For VGG-13, the peak test accuracies were achieved
already in layer 4-7, leaving the remaining layers redundant. Thus, DLL acts as a kind of
online pruning, insofar that it reduces the number of redundant parameters (i.e. layers) in
the network—at least when the architecture has significantly more capacity than needed
for a particular task.

The good news is, that it was simple and easy to implement and run the layer-wise training,
and it worked well on the MNIST-like datasets. The bad news is, that on harder benchmarks,
such as CIFAR-10 [82], this single-layer bottom-up training scheme induces overfitting. This is
caused by a reduction in the amount of implicit interlayer regularization (see Section 6.6). One
way to address this, is by training segments of layers at a time.

6.5 Deep Segment-wise Learning
While our main focus is on layer-wise learning, deep segment-wise learning (DSL) deserves to
be mentioned. For this, we use a sliding window approach. That is, instead of a single layer, we
train segments of k consecutive layers at a time. Segments may or may not overlap, depending
on the window step size. Figure 6.2 shows the effect of increasing the segment (or subnet) size:
higher and higher test accuracies are achieved. Thus, this figure illustrates the effect of implicit
interlayer regularization; namely, that depth regularizes.

This behavior has been consistently observed in our work; over a wide range of architectures
and datasets. For practical purposes, the take-home message is clear: the more layers you train
at a time, the easier it gets, so maximize the subnet size to match the available memory. This
observation is consistent with the result reported by other authors; please see the related work
section.
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Figure 6.2: Effect of Increasing Subnet Size. Training the MobileNetV2 architecture on the
CIFAR10 dataset for 50 epochs per subnet (transfer learning); without any dropout or other
additional regularization. For a subnet of size k, the overlap with previous layers is k − 1.
Bigger-sized subnets have more implicit interlayer regularization and thus achieve much better
test accuracy.

6.6 Interlayer Regularization
Implicit regularization (AKA implicit bias) has been widely studied in the literature. It is an
inherent property of gradient descent [98], and stochastic gradient descent (SGD) [18, 136].
Several applications have been studied such as matrix factorization [40], SGD with deep nets
[4, 8, 29, 84, 102, 115, 116, 142], dropout [108, 156], and data augmentation [95]. Importantly,
several authors have discussed how depth regularizes by inducing low-rank solutions [4, 37,
46, 69, 74, 142].

6.6.1 How Layers Regularize

Interlayer regularization, or the implicit bias of depth, is a rich topic that cannot be fully covered
in the present work. We will briefly present two conjectures that motivate our method. A few
observations from the literature are relevant, namely that lower frequencies of variation in
the data are learned first, and high frequencies are learned later in the training process [9,
17, 121, 154], and that DNNs converge bottom-up; i.e. lower layers converge first, and upper
layers last [20]. A logical inference from these two observations is that lower layers are more
likely to capture lower frequencies of variation in the data, while upper layers capture higher
frequencies.

In our opinion, two mechanisms, that have not previously been explicitly mentioned in the
literature, contribute to the regularizing effect of depth: forward and backward regularization.
The underlying assumption is, that inconsistency (or noise) regularizes. This should not be con-
troversial, as it is well established in the literature. Notably, the motivation behind dropout is
to prevent “the co-adaptation of feature detectors” by adding noise [56]. We prefer the term in-
consistency over noise, in this context, because it refers to the consistency of weight updates. If
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they are inconsistent (e.g. the signs are constantly changing), then the weights are less likely to
change a lot over time; they will mostly wobble back and forth.

Conjecture 1 (Forward Regularization). The input distribution to all but the first layer is in-
consistent (constantly changing) as long as the layers below it are still learning. This has a
regularizing effect, in that only the most consistent, least varying, parts of the input can be
learned. This effect is exaggerated with increasing depth; i.e. the upmost layer receives the most
inconsistent input distribution over time.

Conjecture 2 (Backward Regularization). The gradient distribution backpropagated from the
top layer becomes increasingly inconsistent with each layer. Thus, the first/lowest layer receives
the most noisy, most varying, gradient signal during training. This has a regularizing effect, in
that the most consistent, least varying, parts of the gradient signal will affect the weights the
most over time. This effect is exaggerated with increasing depth.

It is our contention, that these conjectures are consistent with and, at least in part, account for
the aforementioned observations, and that lower layers capture lower frequencies. The frequen-
cies of variation stem from the data, where regions of low complexity, that e.g. are homogenous
with respect to the class label, are associated with low frequencies (and vice versa). Thus, lower
layers mostly capture the least complex regions in the data, whereas upper layers capture the
more complex (heterogeneous) regions.

6.6.2 One Solution: Random Robin

With DLL training, we can simulate forward regularization by adapting a random robin training
scheme. That is, instead of training the layers strictly sequentially from the bottom up, we split
the training into multiple rounds. For each round, we randomize the layer ordering and train only
a few epochs at a time. This way, upper layers still get the regularizing benefit of inconsistent
and changing input distributions! This scheme requires us to keep track of the state of each of
the training processes (one for each of the layers), and thus takes up extra memory for optimizers
etc. The pseudocode is listed in Algorithm 4 (assume IsRandom = True).
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Figure 6.3: Rank & Random Robin. Stable rank of the weights in each layer of VGG-13
models trained in three different ways: bottom-up (DLL), random robin (DLL), and full-model
backprop (baseline). Random robin is clearly much closer to the baseline.

Algorithm 4 Round Robin Training
1: Let S be a list of training states (one per layer)
2: Let IsRandom be a boolean variable
3: Let Nepochs be the no. of epochs to train per round
4: Let Nrounds be the no. of robin rounds
5: Let I = [1, 2, . . . , k] be the layer ordering
6: for round = 1 . . . Nrounds do
7: if IsRandom then
8: RandomlyPermute(I)
9: end if

10: for i in I do
11: for epoch = 1 . . . Nepochs do
12: TrainOneEpoch(S[i])
13: end for
14: end for
15: end for

We tested this scheme on the VGG architecture [135], and saw a very clear regularizing effect.
In fact, we were unable to match the results of full backprop with strict bottom-up training, but
with the random robin scheme we could. Another positive indication in favor of the method is
depicted in Figure 6.3: the stable rank of the weights matches the baseline markedly better than
with bottom-up training. However, on more modern architectures, such as EfficientNet v1 & v2
[140, 141], random robin did not suffice.
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6.6.3 A Better Solution: Forward & Backward Dropout

A typical modern DNN architecture starts with a single stem convolutional layer, followed by
a number of repeated building blocks, and a classifier/decision head. Some common building
blocks are: residual, inverted residual, and transformer blocks. These blocks are carefully de-
signed, and have a regularizing effect that we cannot match with forward regularization (random
robin) alone. Therefore, we take another approach to regularizing DLL training.

For training a single block (or layer) from the original architecture, we construct a temporary
subnet by adding a decision-block atop the block in question. We now simulate forward regu-
larization by applying dropout to the input. To capture how the input distributions will stabilize
during training as the (lower) layers converge, the dropout probability decays exponentially in
the epoch number. Additionally, we also simulate backward regularization, by applying dropout
only to the gradients being backpropagated from the decision-block to the layer/block being
trained. This dropout probability is fixed for all epochs. This is closely related to the idea of
adding Gaussian noise to the gradients, as in [113]. By only applying dropout to the gradients,
we assure that the layer does not overfit to high frequencies, while allowing the decision-block to
do exactly that. Overfitting in the decision-block is perfectly fine, as we discard it after training.
Also, we want the decision-block to be able to absorb a good amount of the loss, so to speak. If
we over-regularize it, the learning will get stuck too early. Figure 6.4 shows a DLL subnet with
forward and backward regularizers.

6.7 DLL Experiments

The point of these experiments is not to claim that DLL achieves higher test accuracies. Rather,
we merely wish to show that layer-wise training is a reasonable option for memory-limited
systems. As can be seen in Table 6.2, for all but one single experiment (out of 44), DLL
matches the result achieved by the standard full-model backpropagation to within 0.3 percent-
age point. The DLL training was strictly bottom-up (each layer was fully trained before pro-
ceeding to the next layer). We used several well-known convolutional and transformer archi-
tectures [99, 106, 128, 135, 140, 141], and four standard benchmarks for image classification
[23, 82, 114].
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Figure 6.4: DLL Training. Left: a typical modern DNN architecture starts with a single stem
convolutional layer, followed by a number of repeated building blocks, and a classifier/decision
head. Some common building blocks are: residual, inverted residual, and transformer blocks.
Right: when training a single block (or layer) from the original architecture, we construct a
temporary subnet by adding a decision-block atop the block in question. To simulate interlayer
regularization, dropout is applied to the input, as well as to the gradients being backpropagated
from the decision-block to the layer/block being trained. Note, that the no. of decision convs,
and the number of channels that they have, is adapted to match the available memory (and other
constraints).
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CIFAR10 CIFAR100 SVHN STL10
Architecture Basel. DLL Basel. DLL Basel. DLL Basel. DLL

VGG-13 94.40 94.38 (30%) 72.95 73.85 (35%) 97.47 97.62 (30%) 85.33 86.06 (40%)
ShuffleNetV2×0.5 91.70 91.71 (23%) 69.78 66.25 (30%) 97.29 97.07 (30%) 78.58 83.66 (30%)
ShuffleNetV2×1.0 94.20 94.01 (30%) 73.65 73.55 (35%) 97.68 97.48 (30%) 85.51 86.30 (30%)
ShuffleNetV2×2.0 95.49 95.46 (30%) 77.07 76.90 (30%) 97.89 97.60 (30%) 80.92 88.65 (22%)
MobileNetV2 95.56 95.18 (30%) 76.22 75.99 (35%) 97.30 97.56 (30%) 80.51 80.76 (30%)
EfficientNet-B0 93.99 94.30 (30%) 67.20 73.25 (30%) 97.40 97.73 (30%) 78.35 83.59 (30%)
EfficientNet-B1 94.76 94.67 (30%) 63.46 72.65 (30%) 97.48 97.66 (30%) 76.08 84.08 (30%)
EfficientNet-B2 93.85 94.60 (18%) 68.18 73.16 (30%) 97.61 97.63 (30%) 74.29 83.12 (30%)
EfficientNet-B3 95.26 95.32 (30%) 64.94 74.12 (30%) 97.68 97.63 (30%) 78.22 84.54 (30%)
EfficientNetV2-S 95.96 95.69 (30%) 68.90 71.68 (30%) 97.85 97.54 (30%) 72.65 81.08 (35%)
MobileViT-v2 93.88 94.63 (30%) 72.01 72.53 (30%) 97.31 97.07 (30%) 77.72 85.28 (30%)

Table 6.2: DLL Results. DLL matches full-model backpropagation to within 0.3 percentage-
point (in all but one case); with much lower memory consumption (shown in parentheses). Fur-
ther details of the DLL training configurations are listed in Table 6.3).

For each subnet trained, we adjusted the number of channels in, and the number of, conv-
layers in the decision-block to match the memory restriction of 30± 0.5% (relative to full-
model backprop). This restriction held for all but 6 of 44 experiments, where we allowed 35-
40% relative memory use, while in two instances approximately 20% sufficed. For most ex-
periments, the test accuracy peaked after training roughly half of the layers; leaving the
following layers redundant. We generally achieved better results when the learning rate de-
creased exponentially in the layer index, and conversely for the weight decay. To match the
baseline results, each model was trained with the same batch size (128), and the same number of
epochs; 300 per layer. If the test accuracy was not within 0.5 percentage point of the baseline
result, we increased the number of epochs. This was required in 10 of 44 runs. In four cases, we
had to increase the subnet size to 2; effectively making it DSL with a segment size of 2 and an
overlap of 1 layer.

All models were trained using a batch size of 128, and the ADAM-W optimizer [97], as well
as with Cutout + AutoAugment data augmentation. The baselines were trained for 300 epochs
with learning rates and weight decay found via hyperparameter search (using Optuna [3] with
default settings). We used a multi-step learning rate schedule, multiplying the learning rate by
0.1 after 50% and 75% of the epochs were completed. For VGG-13, a single layer is an actual
conv-layer, for all other architectures it is a residual block (or similar building block). See Table
6.3 for more details.
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Architecture Dataset Subnet
size Epochs Learn.

rate
Weight

dec.
Grad
noise Dropout Max.

DC
Peak
layer

Relative
mem. use %

VGG-13 CIFAR10 1 300 3e-03 1e-06 0.6 0.8 4 5 of 10 30.0
VGG-13 CIFAR100 1 300 3e-03 1e-06 0.6 0.8 4 5 of 10 35.1
VGG-13 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 5 of 10 30.2
VGG-13 STL10 1 300 3e-03 1e-06 0.6 0.8 4 4 of 10 40.3
ShuffleNetV2×0.5 CIFAR10 1 450 1e-02 8e-06 0.3 0.8 3 8 of 16 23.3
ShuffleNetV2×0.5 CIFAR100 1 600 3e-03 1e-06 0.6 0.8 4 6 of 16 30.3
ShuffleNetV2×0.5 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 10 of 16 30.2
ShuffleNetV2×0.5 STL10 1 300 9e-04 3e-06 0.6 0.8 4 8 of 16 30.0
ShuffleNetV2×1.0 CIFAR10 1 300 8e-03 8e-06 0.3 0.8 4 6 of 16 30.1
ShuffleNetV2×1.0 CIFAR100 2 300 3e-03 1e-06 0.6 0.8 4 10 of 16 35.1
ShuffleNetV2×1.0 SVHN 1 600 4e-03 1e-06 0.6 0.8 4 7 of 16 30.1
ShuffleNetV2×1.0 STL10 1 300 4e-03 1e-06 0.6 0.8 4 7 of 16 30.0
ShuffleNetV2×2.0 CIFAR10 2 300 3e-03 1e-06 0.6 0.8 4 6 of 16 30.0
ShuffleNetV2×2.0 CIFAR100 2 300 3e-03 1e-06 0.6 0.8 4 11 of 16 30.1
ShuffleNetV2×2.0 SVHN 1 450 3e-03 1e-06 0.6 0.8 4 9 of 16 30.0
ShuffleNetV2×2.0 STL10 1 300 2e-03 2e-06 0.6 0.8 4 6 of 16 21.9
MobileNetV2 CIFAR10 1 450 3e-03 1e-06 0.6 0.8 4 5 of 17 30.0
MobileNetV2 CIFAR100 2 300 3e-03 1e-06 0.6 0.8 4 13 of 17 35.1
MobileNetV2 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 9 of 17 30.0
MobileNetV2 STL10 1 300 2e-03 2e-06 0.6 0.8 4 14 of 17 29.9
EfficientNet-B0 CIFAR10 1 450 6e-03 1e-06 0.3 0.5 4 5 of 18 30.0
EfficientNet-B0 CIFAR100 1 300 2e-03 1e-06 0.3 0.8 4 4 of 18 30.0
EfficientNet-B0 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 5 of 18 30.0
EfficientNet-B0 STL10 1 300 3e-03 1e-06 0.6 0.8 4 3 of 18 30.0
EfficientNet-B1 CIFAR10 1 400 5e-03 2e-06 0.3 0.8 4 7 of 25 30.0
EfficientNet-B1 CIFAR100 1 300 1e-03 1e-06 0.3 0.8 4 4 of 25 30.0
EfficientNet-B1 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 7 of 25 30.5
EfficientNet-B1 STL10 1 300 3e-03 1e-06 0.6 0.8 4 5 of 25 30.4
EfficientNet-B2 CIFAR10 1 450 8e-03 8e-06 0.3 0.8 3 7 of 25 18.4
EfficientNet-B2 CIFAR100 1 300 3e-03 1e-06 0.6 0.8 4 4 of 25 30.4
EfficientNet-B2 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 6 of 25 30.0
EfficientNet-B2 STL10 1 300 8e-04 2e-06 0.6 0.8 4 5 of 25 30.1
EfficientNet-B3 CIFAR10 1 400 5e-03 8e-06 0.3 0.8 4 4 of 28 30.0
EfficientNet-B3 CIFAR100 1 300 3e-03 1e-06 0.6 0.8 4 4 of 28 30.3
EfficientNet-B3 SVHN 1 300 3e-03 1e-06 0.6 0.8 4 6 of 28 30.0
EfficientNet-B3 STL10 1 300 3e-03 1e-06 0.6 0.8 4 5 of 28 30.2
EfficientNetV2-S CIFAR10 1 600 4e-03 8e-06 0.3 0.8 4 5 of 33 30.1
EfficientNetV2-S CIFAR100 1 300 5e-03 1e-06 0.6 0.8 4 16 of 33 30.0
EfficientNetV2-S SVHN 1 300 5e-03 1e-06 0.6 0.8 4 4 of 33 30.0
EfficientNetV2-S STL10 1 300 5e-03 1e-06 0.6 0.8 4 2 of 33 35.0
MobileViT-V2 CIFAR10 1 300 3e-03 1e-05 0.5 0.8 3 5 of 10 30.0
MobileViT-V2 CIFAR100 1 300 3e-03 1e-05 0.5 0.8 3 6 of 10 30.0
MobileViT-V2 SVHN 1 150 3e-03 1e-05 0.5 0.8 3 5 of 10 30.0
MobileViT-V2 STL10 1 300 3e-03 1e-05 0.5 0.8 3 4 of 10 30.0

Table 6.3: DLL Training Details. The subnet size is the number of layers trained at a time.
The learning rate and weight decay are the base values used at the first layer (i = 0). At the i’th
layer the learning rate is base · 0.8i, and the weight decay is base · 1.15i. Grad noise is the
dropout probability on the gradients backpropagated from the decision-block to the layer/block
being trained. Dropout refers to the input dropout rate at the first epoch (of training any in-
dividual layer); decays by 0.95 after each epoch. Max. DC is the maximum no. of decision
conv-layers allowed when searching for a suitable decision-block configuration (that meets the
memory restriction of 30 ± 0.5% ). Peak layer is the layer index (counting from 1), where the
highest test accuracy was achieved. Relative memory use is the maximal percentage of memory
consumed (including the feednet) during the training of any layer—relative to training the whole
architecture with the same batch size (i.e. the baseline).
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Architecture Dataset Epochs Learn.
rate

Weight
dec.

Grad
noise Dropout

EfficientNetV2-M CIFAR10 5 · 1.08i 3e−5 · 1.08i 5e−4 · 0.99i 0.0 0.0
EfficientNetV2-M CIFAR100 2 · 1.08i 5e−6 · 1.08i 5e−4 · 0.99i 0.0 0.0
EfficientNetV2-M STL10 5 · 1.08i 3e−5 · 1.08i 5e−4 · 0.99i 0.0 0.0
EfficientNetV2-M Flowers 5 · 1.08i 3e−5 · 1.08i 5e−4 · 0.99i 0.0 0.0
EfficientNetV2-M Pets 5 · 1.08i 1e−5 · 1.08i 5e−4 · 0.99i 0.0 0.0
MobileViT-V2 CIFAR10 15 · 1.20i 8e−4 · 1.2i 5e−4 0.3 0.3
MobileViT-V2 CIFAR100 15 · 1.20i 2e−4 · 1.2i 5e−4 0.3 0.3
MobileViT-V2 STL10 18 · 1.20i 2e−4 · 1.2i 5e−4 0.3 0.3
MobileViT-V2 Flowers 18 · 1.20i 8e−4 · 1.2i 5e−4 0.3 0.3
MobileViT-V2 Pets 18 · 1.20i 2e−4 · 1.2i 5e−4 0.3 0.3

Table 6.5: DLL Transfer Learning Details. All models were trained using a batch size of 128,
and the ADAM-W optimizer [97]. The baselines were trained for 300 epochs with learning rates
and weight decay found via hyperparameter search (using Optuna [3] with default settings). The
layer index is i (counting from zero). To prevent overfitting, we run just 2 to 18 epochs in the
first layer, and the learning rates are low and were fixed for all epochs (no schedule applied). All
models were trained with Cutout + AutoAugment data augmentation.

6.7.1 Transfer Learning

While transfer learning also works well with DLL, it is somewhat more brittle. The obvious
reason is that the intricate structure learned between the layers (the feature hierarchy) during
pretraining is much easier to maintain and utilize when fine-tuning all the layers in concert. With
layer-wise training, it is easy to overfit and break something—especially in the lower layers.
Therefore, we use low learning rates and run only very few epochs in the lowest layers (2 to
18), and progressively increase the number of epochs for fine-tuning as we move up through the
network. We do the same with the learning rate, i.e. it grows exponentially in the layer index
(contrary to when training from scratch, where it decays). In all experiments, the test accuracy
peaked in one of the two top layers. Thus, with transfer learning, we can now take advantage of
the full depth of the models. See more details in Table 6.5).

EfficientNetV2-M MobileViTV2-100
Dataset Basel. DLL Basel. DLL

Pets 89.56 89.40 90.52 90.71
Flowers 97.79 97.07 95.79 95.51
STL10 92.85 92.15 94.05 94.30
CIFAR10 97.34 95.65 96.00 95.87
CIFAR100 84.23 82.06 82.53 81.09

Table 6.4: DLL Transfer Learning Results. The details of the DLL training configurations are
listed in Table 6.5.
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6.8 Deep Partition-Wise Learning

Our results and observations indicate that training large partitions of a deep model separately
should be both possible and fairly straightforward. To confirm this, we tested deep partition-
wise learning (DPL) on the EfficientNetV2 architecture [141].

6.8.1 CINIC10+

The CINIC10 dataset [26] has train, test, and validation sets of 90,000 images each. We combine
the train and validation sets, such that there are 180,000 images for training and 90,000 for
testing. We will refer to it as CINIC10+, and use it for DPL with EfficientNetV2-S. We split the
model into four partitions of 10 layers each, and trained on a single GPU. No dropout, forward
or backward (AKA gradient noise), was used. The baseline trained for 300 epochs with a batch
size of 512, and the learning rate and weight decay were found by hyperparameter tuning (using
Optuna with default settings). For DPL we used exactly the same settings. However, at the i’th
partition (counting from zero), the learning rate and weight decay were multiplied by 0.5i. The
baseline took 5h31m to train and got a test accuracy of 90.97%. Bottom-up training with DPL
(using a feednet) took 8h50m and the test accuracy was 90.70%.

6.8.2 Data Filtering

However, we can speed up DPL by utilizing the fact that the data becomes increasingly redun-
dant in the middle to upper layers with training (see Section 5.4). Thus, by applying online
k-filtering and switching to a round-robin training scheme (see Algorithm 4), 10 epochs per
round, with feature-checkpointing in device memory (see Section 6.2.2), the training completes
in just 4h30m and achieves 90.93% test accuracy. It appears, that the data filtering has a slight
regularizing effect. We paused the k-filtering for the first 30 epochs, and then applied it to batch
sizes of 6148 with k = 10 (capping the filtering at 60% of the data). Figure 6.5 shows the sig-
nificant effect of k-filtering on the execution time. Note that part of the overall drop in execution
time is due to feature-checkpointing in device memory (avoiding the need for a feednet).

6.8.3 Optimal Model Parallelism

Model parallelism is highly attractive, but hard to achieve in practice. As shown in Figure 6.6,
the naive approach leads to severe under-utilization due to the sequential dependencies of the
forward and backward passes. This can be somewhat alleviated by using micro-batches [64].
At least in theory, DPL should allow for near-optimal model parallelism, as it only requires
pushing the output from each forward pass to the next device/model-partition; via a shared disk
or interconnect. In practice, it would also require that the partitioning is done such that a training
pass takes approximately the same amount of time on all devices. As illustrated, in Figure 6.7,
this guarantees that no device will ever be idle while waiting for data (except for at the very
beginning).
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Figure 6.5: Effect of k-Filtering. The partition-wise training time per epoch. After 30 epochs,
the filtering kicks in, causing a significant drop for partitions 2 & 3, while partition 0 sees a small
increase due to the added overhead of online k-filtering. After 50% of the epochs, the learning
rate is dropped, causing an increase in both accuracy and k-redundancy; from there, partitions 2
& 3 see only ∼50% of the data.

6.8.4 ImageNet Results

We tested DPL on the EfficientNetV2 (small, medium, and large) architecture [141] with the
ImageNet 2012 dataset [28] and various standard crop sizes used in the literature (224 to 512).
We adapted the training script from PyTorch Image Models [151] to accommodate DPL; our
code is available here [INSERT ANONYMOUS REPOS!!!].

Execution Time

Our DPL implementation was the simplest possible, as we used an NVME drive as the inter-
connect. Thus, we start separate processes for each partition; each of them waiting for data to
be written by the preceding partition, while writing their own features to disk for the next. For
the baselines, we used PyTorch’s Distributed Data Parallel (DDP) backend, which also was used
when a DPL partition was allocated more than a single GPU. Table 6.6 shows some examples
of the speedup achieved with DPL over full backprop with DDP. The biggest and deepest model
(EfficientNetV2-Large), benefits the most (up to 279%), while the smallest one gains the least
(only 4-8%). These results are inversely correlated with the batch sizes (i.e. the memory con-
sumption of the models). We chose the batch sizes, and the DPL partitioning, to maximize the
image throughput during training. The partitions thus varied greatly in size (i.e. the number of
layers / building blocks), as the lowest layers consumed significantly more memory and compute.

Our experiments were run on highly heterogeneous hardware (varying CPU, RAM, PCIe,
and NVME speeds), with 4-8 consumer-grade GPUs (NVIDIA RTX 3090 & 4090) with 24 GB
of device memory. Note, that with our current implementation, sharing data via an NVME drive,
we would not expect to see significant speedups when running on enterprise-grade GPUs (e.g.
NVIDIA A100 or H100). This would require an implementation that utilizes fast interconnects
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Figure 6.6: Naive vs. Pipeline Parallelism. (a) An example neural network with sequential
layers is partitioned across four accelerators. Fk is the composite forward computation function
of the k-th cell. Bk is the back-propagation function, which depends on both Bk + 1 from the
upper layer and Fk. (b) The naive model parallelism strategy leads to severe under-utilization due
to the sequential dependency of the network. (c) Pipeline parallelism divides the input mini-batch
into smaller micro-batches, enabling different accelerators to work on different micro-batches
simultaneously. Gradients are applied synchronously at the end. Note: this figure and caption
borrowed from the GPipe papers by Huang et al. [64]

(NVLink), and probably larger models, like GPT-4 [118]. Therefore, we strongly encourage
other researchers (with access to large compute) to test DPL on very large models.

Test Accuracy

As a sanity check, we completed the training of a few ImageNet models. We used similar settings
as in [141], except for a smaller crop size (224 instead of 380 pixels), and lower batch size
(160 for the baseline) in order to match the available memory. The learning rate was lowered
accordingly (to 0.016). The baseline had a test accuracy of 81.78%, while our two model-
parallel DPL models (two partitions) achieved accuracies of 81.81% and 81.59%. For the
latter, we used data filtering, and filtered away 25% of the data fed to the second partition
(starting from epoch 31). Instead of k-filtering, which is expensive in high dimensions (due to
the need for computing a distance matrix), we used online loss filtering. That is, we simply used
the loss attached to an example in the first partition as a proxy for its redundancy, and omitted
those with lowest loss. This is similar to Selective-Backprop [77]; only, we filter away examples
in the forward pass.
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Figure 6.7: Optimal Model Parallelism. At least in theory, DPL should allow for near-optimal
model parallelism, as it only requires pushing the output from each forward pass to the next
device/model-partition; via a shared disk or interconnect. In practice, it would also require that
the partitioning is done s.t. a training pass takes approximately the same amount of time on all
devices. As illustrated, this guarantees that no device will ever be idle while waiting for data
(except for at the very beginning).

6.9 Conclusion & Future Work
The memory-limited training scenario becomes increasingly important as AI & ML become
more ubiquitous. We have shown, that layer-wise learning is a viable option for exactly that situ-
ation. This, and partition-wise learning, potentially opens up more new ways of distributing deep
learning on small and low-cost devices. We hope, that this could be a step toward democratizing
the technology, which is currently dominated by a few large and wealthy corporations.

While we have tested our method solely on image classification benchmarks, we have no rea-
son to believe that it would behave substantially differently in other domains. However, highly
specialized model architectures and methods may require some additional research and adapta-
tion.

Moreover, other methods exist for reducing the memory footprint of deep net training. How-
ever, our method does not compete with those. Rather it stands to gain equally from said methods,
such as low-precision training or gradient checkpointing [19]. Thus, we have not included any
comparisons with such other methods in this work.

In the short term, we think that DPL could have the most significant impact on the field. For
example, large language models are notoriously expensive to train. If DPL can be successfully
applied to that domain, it could literally reduce that cost by millions of dollars (and save a lot of
energy and emissions). This would be a significant result. Thus, we humbly repeat our appeal
for capable researchers to investigate this.

Lastly, having successfully applied our two conjectures on interlayer regularization to layer-
wise training, we are optimistic that they can be converted to stronger and more rigorous state-
ments.
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DDP DPL
Arch. Crop GPUs Batch im/s Part. Alloc. Batch im/s Speedup
Small 224 4x3090 288 2270 2 2-2 2350 2323 4%

512 4x3090 48 560 2 3-1 80 499 8%
Medium 224 8x4090 160 2952 4 3-2-2-1 512 3752 27%

224 4x4090 160 1165 2 2-2 320 1624 39%
256 4x4090 128 900 2 2-2 256 1280 42%

Large 224 4x3090 64 477 4 1-1-1-1 384 741 55%
384 4x4090 24 87 4 1-1-1-1 128 330 279%
512 4x3090 16 113 4 1-1-1-1 64 150 33%

Table 6.6: DPL Performance Examples. The columns are: architecture (EfficientNetV2 vari-
ant), image crop size in pixels, no. of GPUs used (RTX 3090s or 4090s), DDP: batch size and
image throughput, DPL: no. of partitions, GPU allocation per partition, batch size, and image
throughput. And finally, the speedup achieved with DPL over standard DDP (full backprop).

86



Chapter 7

Beyond Gradient Descent: Platonic
Projections

7.1 Introduction
Since its publication in Nature in 1986 [127] the backpropagation algorithm—combined with
stochastic gradient descent (SGD)—has been the standard method for training neural networks.
Using the chain rule of calculus, it solves the problem of assigning errors to the hidden layers,
and thus far no viable alternatives have been found. It is fair to say that without backprop we
would not have seen the many recent successes in deep learning. However, while it has been an
extremely successful algorithm, it also suffers from severe drawbacks. It typically takes hundreds
of passes over the data for the algorithm to converge, which can be very resource-demanding with
respect to time, memory, hardware, and energy consumption. Also, backpropagation + SGD
relies heavily on hyperparameter tuning and, consequently, expert knowledge. Furthermore, it
has proven to be very challenging to build a solid theoretical framework around it, and thus neural
networks have long been considered a black box by many (albeit this is changing somewhat).
For these reasons, much of the literature is concerned with treating the symptoms rather than the
cause, so to speak. Popular methods such as dropout, batch normalization, momentum, ResNets,
and LSTMs are thus designed to deal with specific challenges inherent in the backprop + SGD
paradigm. Therefore, a quest for an alternative to backprop is warranted. This work is an attempt
at finding such an alternative.

Another possibly important reason for pursuing alternatives to backprop, is the much bal-
lyhooed potential of quantum of computing. If the prophecies come true, quantum com-
puting will fundamentally change how deep nets are trained and used. Unfortunately, error-
backpropagation might not be a suitable algorithm for quantum computation. Recent work by
Abbas et al. (NeurIPS 2023) [1], shows how the reliance on reusing intermediate results (layer
activations and gradients) makes backprop hard, if not impossible, to use efficiently on quantum
computers. The authors state the following:

If the difficulty to achieve an efficient scaling is due to inherently quantum proper-
ties, perhaps backpropagation is not the correct method for optimization of quantum
models, which seems to be a growing belief for classical models too...
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The method we are introducing, in this chapter, does not have the same reliance on intermediate
results. It is a strictly bottom-up approach, without any iterations over the data. Additionally,
it relies on solving a sequence of linear systems, and there already exists an efficient quantum
algorithm for computing matrix inverses: the Harrow–Hassidim–Lloyd (HHL) algorithm [47].
Potentially, this makes our method a substantially better candidate for training quantum models
than backpropagation.

With our improved understanding of the inner workings of neural networks, gained in the pre-
vious chapters, we take a look beyond the confines of gradient descent and error-backpropagation.
Thus, we develop a quite elegant, and surprisingly simple, way of training multilayer percep-
trons (MLPs). In a nutshell, we will show that MLPs can be fitted to training data by solving a
sequence of least squares problems. By following the principle of gradual class separation, we
show that computing reasonable targets for the hidden layers is easy. Specifically, a good target
is a representation in which the classes are already separated.

To be very clear: we are not making any strong claims about the method presented in
this chapter! This is very much work in progress. We present it here for its novelty, its obvious
relevance to the topic of this thesis, and because we believe that it does show some promise with
respect to finding a viable alternative to the backprop + SGD paradigm.

7.2 Plato & the Allegory of the Data

The proposed method owes its name to the ancient Greek philosopher, Plato (approx. 423–348
BC). Specifically, to the famous Allegory of the Cave from his seminal work Republic (approx.
375 BC); see e.g. [123]. The idea came by way of a thought experiment, in which we used
Plato’s allegory as an analogy for what happens inside the layers of a neural network during a
supervised learning process.

7.2.1 Allegory of the Cave

In Plato’s allegory, some prisoners have spent their entire lives, in chains, sitting with their backs
to a wall. Directly in front of them is another wall on which shadows appear. Over the years,
they start to recognize the different shapes of the shadows, and assign names to them. Having
never experienced anything else, the prisoners believe that what they see on the wall in front of
them is the actual real world.

Unbeknownst to them, behind the wall that they are chained to, a large flame is burning.
Regularly, prison guards walk in front of the flame while holding up different objects. Thus, the
shadows that the prisoners regard as their reality, are actually cast by those objects. Their whole
world-view is thus controlled and decided by the prisoners in an elaborate scheme to manipulate
them. Figure 7.1 shows a typical depiction of the scenario.

Eventually, a prisoner escapes from the cave, and gets to see the actual real world. He quickly
realizes, that the world of shadows in which he has lived his entire life, was not real. In a word,
it was but a poor projection of reality. That prisoner, Plato says, is a philosopher.
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Figure 7.1: Plato’s Cave. A typical depiction of Plato’s famous Allegory of the Cave. The
prisoner only ever sees the shadows, not the real objects themselves. He believes that the two-
dimensional colorless projections are the actual real world. Image credit: MatiasEnElMundo /
Getty Images.

7.2.2 Plato’s Theory of Forms
The Allegory of the Cave is part of Plato’s theory of Forms; often referred to as the theory of
Ideas. Plato believed that the physical observed world is, in a sense, not the real world. All the
things, objects, patterns, relations, and emotions, that we perceive through our senses are but
imperfect images or copies of their true eternal forms. Thus, every single thing, and every single
concept, has a real, true, and perfect form that only exists in the eternal and unchanging world
of forms (or ideas). Plato refers to this as Eidos, and it is not a place that exists in time or space.
Rather, we can think of Eidos, as the eternal plane in which all universal truth about a
concept exists. As humans, we are destined to perceive only various changing phenomena, that
merely mimic the true forms; just like the prisoners observing the shadows in the cave.

7.2.3 Allegory of the Data (A Thought Experiment)
As a thought experiment, let us use Plato’s cave as an analogy to training deep nets. We, the
humans conducting the training, then become the prison guards, and the layers of the DNN
become the prisoners. In the supervised learning setting, we know the (ground) truth about
all inputs to the network (i.e. their labels)—but we only show the layers random (non-linear)
projections of the input examples; namely, Z = σ(XW ). Like the prisoners in Plato’s cave, the
layers must now attempt to make sense of what they “see”.

If the guards, holding up the objects in front of the flame, represent Eidos, then we must ask:

89



what exactly does Eidos represent in our machine learning scenario? What is the ML equivalent
of the plane in which all truth about a concept exists? Well, all the “truth” that we know, and have
access to, is the data itself. So, that plane must somehow contain both the inputs,X ∈ Rm×n, and
the target outputs Y ∈ Rm×k. However, it cannot just be any random mixture of the two. It must
be, that in such an ideal plane, or representation, the concepts captured by the data are clearly
encoded. As we have seen, a neural net takes something linear and gradually linearizes it. That
is, it gradually separates the classes. Therefore, it makes sense to say that for a neural network,
an ideal representation of the data is one in which the classes are linearly separated. From a
philosophical perspective, one could argue that indeed linearity is the mathematical equivalent
of understanding. After all, linear equations, and linear relationships, are the easy ones: it is all
the non-linear stuff that usually makes tings hard.

The absolute simplest way of obtaining such an ideal representation is by the concatena-
tion of X and Y . In other words, it is exactly the augmented matrix that we all know from
Gaussian elimination: A =

[
X Y

]
. Any (Platonic) projection of this matrix is essentially

the equivalent of the shadows in Plato’s cave. And that is the moral of the story, so to speak.
In the following sections, we will show how this simple observation, can be applied to the fit-
ting of MLPs to data. Figure 7.2 shows some examples of what such augmented (Platonic)
representations may look like for toy data. As we can readily see, for binary classification prob-
lems with y ∈ {−1,+1}, the two classes are perfectly separated by the a1a2-plane at a3 = 0.
Hence, we can exactly recover the targets from the augmented matrix A, by the multiplication
y = A

[
0 0 1

]T .

7.3 The Basic Idea

7.3.1 Platonic Projection

As described above, a Platonic (or ideal) representation is one in which the classes are separated.
We may simply construct one, in the form of the augmented matrix, A =

[
X Y

]
. A Platonic

projection is thus any projection of this augmented matrix—in which the classes remain sepa-
rated. In other words, such that there exists a linear transformation that (sufficiently accurately)
recovers Y from said projection:

Definition 9 (Platonic Projection). For a dataset D(X, Y ), X ∈ Rm×n, Y ∈ Rm×k, and some
P ∈ Rn+k×d, a Platonic Projection is given by T =

[
X Y

]
P such that there exists a matrix,

Q ∈ Rd×k, where ∥Y − TQ∥F < ϵ for some sufficiently small ϵ > 0.

Note, that in practice, ϵ probably does not need to be very small for many of the layers. Par-
ticularly in the early layers of a very deep network, attempting enforce a high degree of class
separation is probably unnecessary. When the projection does not reduce the number of dimen-
sions, such that d ≥ n+ k, then any dense random matrix, P , will likely guarantee that Q exists.
For example, if d > k + d, then multiplication by P will take the (k + d)-dimensional hyper-
plane, on which

[
X Y

]
lies, and scale, skew, and rotate it in a d-dimensional space. Thus,

the classes will remain separated. Only by knocking out one or more dimensions in
[
X Y

]
,
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Figure 7.2: Augmented/Platonic Representations. Three toy classification problems with la-
bels, y ∈ {−1,+1}. Left: Input data, X ∈ Rm×2. Right: Their corresponding augmented
(Platonic) representations, A =

[
X Y

]
∈ Rm×3. The two classes are perfectly separated by

the a1a2-plane at a3 = 0.
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may we possibly lose information about Y—and this will most likely not happen with a dense
random (full-rank) matrix.

Conversely, if the projection is dimensionality-reducing, then we need to take extra care when
picking P . For example, in the binary classification examples shown in Figure 7.2, we want to
maintain the information contained in the third dimension, a3, of the augmented representations.
This requires, that at least one of the column vectors in P is not exactly orthogonal to the a3-axis.
More on the topic of picking P later.

7.3.2 An Algorithm
Earlier, in Chapter 5, we saw how the least squares distance (LSD) decreases, while the k-
redundancy (Definition 8) increases, in each layer during the training. More importantly, the
LSD also decreases in the layer index (i.e. from one layer to the next); and again, conversely
for the k-redundancy. This is an expression of the gradual linearization and class separability in
the hidden representations. Furthermore, in Chapter 6 we saw how layer-wise training of deep
networks is able to match the results of full-model backpropagation with SGD. All in all, these
observations strongly indicate that the layer-local training objective is largely the same for all
layers. It is exactly these observations that motivate our method.

Notwithstanding that, there is a lot to be said about the implicit regularization stemming from
gradient descent, depth, and other factors (see Section 6.6), the layer-local training objective is, of
course, class separation (AKA linearization). Thus, for a neural network, Zi = σ(Zi−1Wi), Z0 =
X , we argue that:

1. A good layer-local target representation is one in which the classes are separated.

2. For the right choice of Pi, a Platonic projection Ti =
[
Zi−1 Y

]
Pi is therefore a good

target.

3. Assuming that σ is monotonic, Ti is a good target in the preimage of σ.

4. An MLP, Zi = σ(Zi−1Wi), can be solved in a sequential least squares manner, such that

Wi = Z+
i−1Ti

Please note, that we use the term “solved” loosely, and make no claims about optimality or
the generalization properties of the solution. In the sections below, we will study the behavior
and performance of the method by testing it on a handful of smaller datasets. We will start by
fitting a simple sinusoid.

7.4 Related Work
The literature we referenced for deep layer-wise learning (Chapter 6) also somewhat applies here.
Moreover, conceptually, our method also bears some resemblance with the well-known kernel
trick, insofar that we are purposefully creating a high-dimensional space in which the classes a
separated. The kernel trick traces all the way back to Mercer’s famous theorem (1909) [107],
which was first applied to pattern recognition in 1964 [2]. However, to our knowledge, there is
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not much directly related work out there. We found only two methods that are closely related: the
Extreme Learning Machine introduced by Huang et al. in 2004 [62, 63], and the Pseudoinverse
Learning Algorithm for MLPs introduced by Gui & Lyu (also in 2004) [41].

The latter resembles our method a lot, insofar that it is a greedy layer-wise bottom-up algo-
rithm that uses the pseudoinverse. Unlike our method, the authors do not introduce a method
for estimating targets for the hidden layers—they do not use any targets at all. Instead, they
simply use the layer-local pseudoinverse as the weight matrix: Wi = Z+

i−1. That is an interesting
idea, but it seems erroneous to not use the target, Y , in the hidden layers at all. Effectively, this
method assumes that for a given set of inputs, there is a single configuration of the hidden-layer
weights which is ideal for any arbitrary labeling. More importantly, for a dataset with m exam-
ples, this method strictly fixes the width of all hidden layers to m. Thus, all but the first and last
layer will have m2 weights. Even for the MNIST dataset [90], that would mean 60,000 units in
every single layer, and even a shallow 3-layer MLP would have 3.6B parameters. That is not just
intractable, it is also completely unnecessary. For this reason, we will not be using this method
as a reference in our experiments.

The Extreme Learning Machine of Huang et al. is considerably more tractable. Their basic
observation is that random features work well—if you have a lot of them. Hence, they fit single
hidden-layer MLPs by simply using random weights in the first layer (to which they fit a linear
decision layer). Obviously, this approach does not scale to multiple hidden layers, as the final
result would depend almost entirely on the narrowest hidden layer; i.e. adding more layers does
not help. In Section 7.9.2 we compare this method to our own.

7.5 Fitting a Sinusoid
In Figure 7.3, we listed the code we used to fit a 3-layer MLP (with hidden layers of width 16)
to a sinusoid, y = sin(x); i.e. two periods, normalized to the domain (−1, 1), 5000 samples. It
clearly illustrates the simplicity of the fundamental idea:

• concatenate the layer-local representation of the data, Zi, with the target, Y ,
• multiply with a random matrix, Pi, to get the target, Ti,
• and solve a linear system of equations (using the pseudoinverse of Zi).

And that is it. It could hardly be much simpler than that. Figure 7.4 shows the fitted function
plotted on top of the training data. They are almost indistinguishable, and the mean squared error
is 2e−5.

7.5.1 Multiple Tries For P
As long as we are picking the projection matrices at random (from e.g. a normal distribution,
as above), an obvious improvement to our method is to pick the best P from a set of random
matrices. We do this by running the algorithm Ntries times (per layer), each with a different
choice of Pi, and pick the one that yields the lowest LSD, 1

m
∥Y − ZiZ

+
i Y ∥2F (see Equation

5.3), on its corresponding representation, Zi. Note, that the pseudoinverse only needs to be
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1 import torch
2

3 # CONFIG:
4 nhid = 16
5 afun = torch.nn.CELU()
6 x, y = get_dataset("sine")
7

8 # FIT LAYER 1:
9 b = torch.ones((x.shape[0], 1))

10 Z_0 = torch.cat([b, Z_0], dim=1)
11 P_1 = torch.randn(1 + Z_0.shape[1], nhid)
12 T_1 = torch.cat([Z_0, y], dim=1) @ P_1
13 W_1 = torch.linalg.pinv(Z_0) @ T_1
14

15 # FIT LAYER 2:
16 Z_1 = afun(Z_0 @ W_1)
17 Z_1 = torch.cat([b, Z_1], dim=1)
18 P_2 = torch.randn(1 + Z_1.shape[1], nhid)
19 T_2 = torch.cat([Z_1, y], dim=1) @ P_2
20 W_2 = torch.linalg.pinv(Z_1) @ T_2
21

22 # FIT OUTPUT LAYER:
23 Z_2 = afun(Z_1 @ W_2)
24 Z_2 = torch.cat([b, Z_2], dim=1)
25 W_3 = torch.linalg.pinv(Z_2) @ y
26 yhat = Z_2 @ W_3

Figure 7.3: Fitting a 3-layer MLP with Platonic Projections. All we need is a few lines of code,
using random matrices, column-wise concatenation, pseudoinverses, and matrix multiplication.
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Figure 7.4: Fitting a 3-layer, 1-16-16-1 MLP to a sinusoid.

computed once per layer! We only need to recompute the target, Ti, and the solution Wi =
Z+
i−1Ti (reusing the pseudoinverse).

Figure 7.5 illustrates the effect of increasing Ntries. We fitted 10,000-layer networks to the
sine problem, using four different layer widths for the hidden layers. There is a clear improve-
ment going from one to just five tries per layer, and error curves become more stable (less noisy).
Clearly, the choice Pi matters.

In Figure 7.6, we see the lowest mean squared errors (AKA LSD), achieved at any layer of
the 10,000-layer networks, plotted as a function of Ntries. Overall, going from one to five tries
has the most significant effect.

7.5.2 Scaling Factors α & β

Scaling the target matrices also has a clear effect on the results. In practice, we thus compute
them as such: Ti = α

[
Zi−1 βY

]
Pi. We can think of Ti as a linear mixture of Zi−1 and

Y , where β controls the weight of Y , and α scales the magnitudes of the components in Ti.
We observe that it is generally a good idea to give higher weight to Y than to Zi−1. The right
choice of α may depend on numerical aspects of the underlying algorithm used to compute the
pseudoinverses (typically obtained via the SVD). Figure 7.7 shows the impact of the scaling
factors on the results.
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(a) Num. of hidden units = 2 (b) Num. of hidden units = 4

(c) Num. of hidden units = 8 (d) Num. of hidden units = 16

Figure 7.5: Illustrating the effect of increasing the number of tries, Ntries (denoted as “n” in
the figure legends). 10,000-layer networks were fitted to the sine problem for four different
layer widths (i.e. number of units in each of the hidden layers): 2, 4, 8, and 16. There is a
clear improvement going from one to just five tries per layer; especially for the two narrowest
networks (2 and 4 hidden units). For the widest network (16 hidden units), the error curve of
the single-try network becomes very noisy after around 2000 layers—while the others remain
smooth.
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Figure 7.6: The lowest errors achieved (in any layer) as a function of the number of tries, n.
“nhid” denotes the number of units in each of the hidden layers (AKA layer widths). The y-axis
is logarithmic. Going from 1 to 5 tries has the most significant effect overall.

7.6 The Two Spirals Problem
The two spirals problem, depicted in Figure 7.8, is somewhat of a classic challenge for neural
nets. According to [86], it as was first proposed in a post on the connectionist mailing list by
Alexis P. Wieland of the Mitre Corporation (probably around 1987-1988).

7.6.1 Baseline Result
By today’s standards, this is an easy binary classification problem for a neural network. Indeed,
we can fit the training data arbitrarily well to a 5-layer MLP with tanh activations, using SGD +
backprop. We used a 2-32-32-32-32-1 network and trained it for 75 epochs (in single precision)
with a learning rate of 0.01, no weight decay, a momentum of 0.9, and a batch size of 32. The
learning rate was lowered after 56 epochs (divided by ten). The resulting cross-entropy loss
curve is shown in Figure 7.9. The final cross-entropy loss was 0.334, and the classification
accuracy was 99.17%. The training ran on an NVIDIA RTX 4080 GPU, and took 52 seconds.

7.6.2 Platonic Projections
Fitting the same 5-layer MLP to the two spirals data with platonic projections, we set our scaling
factors to α = 0.1 and β = 10. With Ntries = 1, the classification accuracy is just 89.73%,
and the execution time is 0.018 second, while with Ntries = 5 it is 92.69% (0.039 second), with
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(a) The effect of scaling factor, α. The highest value yields the lowest layer-local error but also causes the
process to diverge in the subsequent layers.

(b) The effect of scaling factor, β. Higher is better, but going to e.g. 100 makes the results worse.

Figure 7.7: Illustrating the effect of changing the scaling factors, α and β, for 100-layer networks
with 8 units in each hidden layer.
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Figure 7.8: The Two Spirals Learning Problem. In our experiments, we used 5,000 samples.

Figure 7.9: Loss curve for the two spirals problem. After 75 epochs, the cross-entropy loss was
0.334 and the classification accuracy was 99.17%.
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Ntries = 50 it is 94.51% (0.249 second), and with Ntries = 500 the accuracy is 94.37% (2.03
seconds).

The most significant factor contributing to this bad result is that we deliberately seeded the
random number generator with a particularly “unlucky” number. However, as it turns out, it also
stems from numerical issues related to the underlying algorithm used to compute pseudoinverses
in PyTorch. More on that in Section 7.6.2 below.

Faster Execution With Least Squares

When we are not using many tries per layer, and thus do not need to reuse Z+
i−1, we may take

advantage of PyTorch’s least squares implementation, torch.linalg.lstsq. Instead of first comput-
ing the pseudoinverse, and then the matrix product, Wi = Z+

i−1Ti, we can do it all in one single
call. This is usually faster. For example, fitting a 5,000-layer narrow MLP (12 hidden units per
layer) takes 3.4 seconds with least squares, and 6.3 seconds when using pseudoinverses (on our
CUDA device).

To add L2 regularization, we can use the well-known closed-form solution to ridge regres-
sion: W = (XTX +λI)−1XTY , where the “ridge parameter” λ ≥ 0 controls the strength of the
regularization. Adding positive numbers to the diagonal (with λI), also improves the numerical
stability as it lowers the condition number of XTX . Moreover, as XTX is square, we can now
also use torch.linalg.inv. Even better, we can use torch.linalg.solve which is both faster (like with
lstsq) and more numerically stable than torch.linalg.inv.

Numerical Stability

The pseudoinverse implementation relies on the SVD, which is computed using the gesvd and
gesvdj algorithms of NVIDIA’s cuSOLVER library 1. So far, we have been using the standard
single-precision (32-bit) floating point numbers on CUDA-enabled GPUs. If we switch to double
precision, we immediately get 99.99% accuracy (using the same “bad seed”, and Ntries = 1).
Of course this takes longer, 0.1 second, and consumes twice as much memory. Luckily, we
can improve the single-precision accuracy, by simply setting the (absolute) tolerance of
torch.linalg.pinv to 1e-5.. This yields a slightly better result of 95.60% accuracy. The default
tolerance used by PyTorch is set relative to the matrix dimensions and the data type.

We studied the numerical stability of platonic projections over 1,000 runs on both the CPU
and a CUDA-enabled GPU. The results are listed in Table 7.1. Comparing the mean and stan-
dard deviation of the classification accuracy over 1,000 tests, the best results are achieved in
double precision (64 bits) on both the CPU and the GPU. Manually setting the tolerance of
torch.linalg.pinv significantly improves the single-precision results. Note, that the table includes
results for two different settings for the scaling factors, as well as for torch.linalg.lstsq and
torch.linalg.solve. In 64 bits, all three methods (pinv, lstsq, and solve) are fairly robust to the
change in scaling factors. In 32 bits, the CPU implementation of solve fails with an error mes-
sage saying that the input matrix is singular. In this case, we could fix the problem by increasing
the amount of L2 regularization (thus lowering the condition number of the matrix). We used a
low number for the L2 penalty in order to illustrate the issue of stability.

1See docs.nvidia.com/cuda/cusolver/index.html
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CPU CUDA
32 bits 32 bits 64 bits 32 bits 32 bits 64 bits

tol=default tol=1e-5 tol=default tol=default tol=1e-5 tol=default
α = 0.1, β = 10.0 α = 0.1, β = 10.0

pinv 80.25± 8.11 87.16± 2.51 99.17± 1.63 80.71± 7.73 86.94± 2.84 99.15± 1.66
lstsq 61.92± 8.75 87.75± 11.33 98.50± 2.57 87.13± 0.93 87.14± 0.95 99.92± 0.21
solve Failed Failed 94.87± 2.43 84.42± 5.72 84.42± 5.64 94.87± 2.49

α = 1.0, β = 2.0 α = 1.0, β = 2.0

pinv 97.46± 1.80 99.83± 0.36 99.93± 0.19 97.48± 1.74 99.92± 0.16 99.93± 0.19
lstsq 95.95± 3.04 95.70± 10.28 99.93± 0.17 99.90± 0.20 99.88± 0.23 99.92± 0.18
solve Failed Failed 99.95± 0.15 92.31± 6.47 92.78± 5.84 99.94± 0.15

Table 7.1: Numerical stability of platonic projections. Showing the mean and standard de-
viation of the classification accuracy over 1,000 tests. Comparing two different settings for
the scaling factors (α and β), and two different PyTorch methods: torch.linalg.pinv (pinv) and
torch.linalg.lstsq (lstsq). In 64 bits, both methods are fairly robust to the change in scaling fac-
tors. Manually setting the tolerance (tol) significantly improves the stability of the results for
pinv overall, and in one case for lstsq.

7.7 The Checkerboard Problem

In Section 5.4.2, we saw how the checkerboard problem contains symmetries that prevent it from
being learned easily with SGD + backprop. We showed, how filtering away a significant amount
of data points could resolve the issue. Not being gradient-based, platonic projections do not
suffer from that same problem. We can solve for a solution in closed form.

We fitted two MLPs, a deep and a shallow one, in both single and double precision with
Ntries = 1. The layer-wise least squared distances (MSEs of the layer-local least square solu-
tions) are shown in Figure 7.10. We tried two different settings for the scaling factors. Inter-
estingly, for this experiment torch.linalg.pinv performed much better than torch.linalg.lstsq.
The latter had troubles converging, was very slow, and gave poor results. In both precisions, and
for both choices of scaling factors, the deep 500-layer MLPs all got 100% classification accuracy.
The shallower MLPs got from 99.88% to 100% accuracy.

One thing to note about these results: the networks needed to have a lot of capacity in
order to get above 99% accuracy. This could indicate, that platonic projections are not efficient
with respect to network capacity. Figure 7.11 shows the MSEs and accuracies achieved with
a shallow 4-layer MLP for a range of layer widths (number of units in each hidden layer). At
1024 units, the accuracy is 95.62% and at 2048 units it is 99.84%. The latter network thus has
3 × 2048 + 1 = 6145 nodes, and more than 8.4 million parameters. That is a lot. In essence,
we are just memorizing 5,000 two-dimensional samples. It seems evident, that a much smaller
network should be able to capture that information.
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(a) MSE vs width (b) Accuracy vs width

Figure 7.11: Mean squared error (MSE) and classification accuracy as a function of layer width
(no. of units per hidden layer). Obtained from shallow (4-layer) MLPs with ReLU activations,
Ntries = 5, α = 0.08, β = 200. The widths used are powers of two: 2, 4, 8, 16, . . . , 2048.

7.8 Going Deterministic With PCA

Thus far, we have relied on random projection matrices, Pi, drawn from a normal distribution.
Obviously, a deterministic solution would be desirable. The big question then is: how do you
deterministically pick a good projection matrix? Below, we will introduce two complimentary
approaches.

7.8.1 Platonic PCA

Consider the representation Z ∈ Rm×n and Y ∈ Rm×k. The purpose of a projection matrix, P ,
acting on an augmented representation, A = α

[
Z βY

]
, is to produce a target representation,

T , in which the classes are separated. There is a simple way of utilizing A itself to find a
reasonable candidate for a projection matrix. Namely, by using the principal components of A.
In this augmented space, if β is large enough, the variance in the Y -dimensions (i.e. the k last
columns inA) will dominate and thus pull (at least some) principal components in their direction.
Those components will be discriminative directions in the platonic representation.

Figure 7.12 illustrates the situation for linearly separable data in 2D. As we can see, two of
the three principal components are discriminative. That is, they are not orthogonal to the third
dimension (containing the labels, y ∈ {−1,+1}). In this specific case, it means that their matrix-
vector products with A will yield target vector representations ti ∈ T in which the two classes
are separated. In the general case, including datasets with highly non-linear decision boundaries,
this might not exactly be the case—unless we pick a very large value for β. At this point, it is
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unclear to us if that would be desirable. We may not need perfect separation of classes in the
general case (for the target vectors, that is).

As also depicted in Figure 7.12, an appealing property of the principal components of A is
that they actually reveal a solution to Xw = y. The blue vectors show the optimal solution,
w∗, as found by an SVM. Two of the principal components are parallel with w∗ in the two-
dimensional plane where the original data, X , lies. Or, said in another way, their orthogonal
projections onto the plane spanned by the first two dimensions, land exactly on top of w∗. Thus,
in this specific case, we can solve the equation, Xw = y, by taking the first two components
from the first principal component, c: w =

[
c1 c2

]T , where c =
[
c1 c2 c3

]T . This gives us
the right direction for w, such that sign(Xw) = sign(y). To minimize ∥y − Xw∥2, we would
also need to correctly scale the solution, such that w = λ

[
c1 c2

]T , for some λ > 0.
In the general case, particularly the non-linear one, we cannot expect the principal compo-

nents to line up this perfectly with the optimal solution. However, according to our preliminary
investigations, they do tend to still be correlated with it. For example, this is illustrated with a
sinusoidal decision boundary in Figure 7.13. This begs the question, if we could indeed use the
principal components of A as our weight vectors? However, in our experiments, this does not
appear to work nearly as well as using them as projection vectors, pi ∈ P .

7.8.2 Sorted PCA
A limitation of Platonic PCA is that it can produce at most n + k weight vectors. This is un-
fortunate, in that a common pattern for neural nets is to have a vast increase in the number of
dimensions (features) in the very first layer. Therefore, we need a deterministic method that can
handle that.

Arguably, the role of the very first layer is not necessarily to be discriminative, but rather to
act as a good communication channel for the layers upstream. To do this, it should contain weight
vectors that reflect the distribution of the data, such that they mainly point in directions where a
lot of the data lies. In other words, they should be correlated with the data. The simplest way of
achieving this is to use samples from the input data itself as weight vectors. For example, we
could draw them uniformly at random from the dataset. For a large enough sample, this selection
of vectors would indeed reflect the distribution of the data, as required. However, we can do
much better than that.

Once again, we will use PCA. In the following manner:

1. Take the first principal component, c, of either X or A =
[
X Y

]
.

2. Compute v = Xc.

3. Obtain the indices, i, that sort the components in v in ascending order.

4. Pick the samples (rows) from X that correspond to evenly spaced indices in i (i.e. pick
every k’th indice).

To be clear: this is not a platonic projection, but a way of selecting samples from the dataset
to be used as weight vectors. Our PyTorch implementation of the algorithm is listed in Figure
7.14. This simple approach works quite well in our experiments. In Section 7.9.2, we compare
its performance to other approaches.
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7.8.3 Fully Deterministic Platonic Projections
As it turns out, our two PCA-based methods work best in combination. Thus, for fully deter-
ministic platonic projections, we use Sorted PCA in the first layer only, and Platonic PCA for
all the subsequent layers. Sorted PCA only works well in the first layer, and even when reducing
the dimensionality of the input it outperforms Platonic PCA (except from in the more extreme
cases; see Figure 7.15). We will show this in the next section.

7.9 MNIST Results
For the final test of our method, we used the MNIST dataset of handwritten digits [90]. Albeit, a
classical benchmark in machine learning, it is a very easy learning problem by today’s standards.
In other words: if our method does not do very well on this data, it is not reasonable to believe
that it will work well in general.

7.9.1 Baseline Result
As our baseline result, we trained a three-layer, 784-392-50-10, MLP with ReLU activations for
ten epochs. We used SGD with a batch size of 128, a learning rate of 0.02, weight decay of
0.003, a momentum of 0.9, and softmax outputs with the cross-entropy loss. The learning rate
was divided by 10 after the eighth epoch. On the training set, the final classification accuracy
over the ten classes was 99.92%. The final test accuracy was 98.12%.

7.9.2 Single Hidden-Layer Networks
As discussed previously, the first layer plays a special role in a neural net. Thus, we compared the
performance of four different methods on MLPs with a single hidden layer and ReLU activations:

1. Purely random weights (for the hidden layer), W1 ∼ N (0, 1); equivalent to the Extreme
Learning Machine [62, 63].

2. Platonic projections with random projection matrices, P ∼ N (0, 1).

3. Platonic PCA (deterministic).

4. Sorted PCA (deterministic).

To be clear, we used the above approaches to compute the weights for the single hidden
layer, and then solved as linear equation for the output layer. For all our MNIST experiments,
we used a one-hot representation for the target class labels. We used the closed-form ridge
regression formulation with pytorch.linalg.solve, and the L2 penalty set to a high value of 50,000.
Empirically, this helps a lot for the linear systems being solved; indicating that they are not
well conditioned. For all three platonic methods, we set α = 1 and set β = 10, 000 for the
deterministic methods, and β = 10 for the random projections. These values were decided
empirically.

Table 7.2 shows the results for five different hidden layer widths: 98, 196, 392, 784, and
1568. We computed the mean and standard deviations on the test accuracy over 100 trials (for
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Method width = 98 width = 196 width = 392 width = 784 width = 1568
Train Acc.

Random. W 76.32± 0.81 83.17± 0.34 87.98± 0.22 91.66± 0.12 94.51± 0.07
Random. P 88.84± 0.17 90.41± 0.11 91.98± 0.08 93.63± 0.06 95.26± 0.05

Platonic PCA 88.85± 0.00 89.52± 0.00 90.58± 0.00 91.53± 0.00 N/A
Sorted PCA 85.64± 0.00 90.31± 0.00 92.89± 0.00 94.87± 0.00 96.38± 0.00

Test Acc.
Random. W 77.28± 0.89 83.86± 0.40 88.26± 0.28 91.52± 0.23 93.89± 0.15
Random. P 89.19± 0.22 90.55± 0.14 91.89± 0.13 93.34± 0.12 94.63± 0.11

Platonic PCA 89.21± 0.00 89.76± 0.00 90.63± 0.00 91.36± 0.00 N/A
Sorted PCA 86.19± 0.00 90.71± 0.00 93.14± 0.00 94.64± 0.00 95.88± 0.00

Table 7.2: Classification accuracies for a two-layer MLP (ReLU activations) fitted to
MNIST, for five different hidden layer widths. For the two randomized methods, the results
are means and standard deviations over 100 trials. For all widths, the three platonic projections
methods (Random P & Deterministic) do better than random weights (aka Extreme Learning
Machine [62, 63]). The deterministic PCA-based algorithms, consistently achieve the highest
test accuracies.

the randomized methods). As shown, platonic projections consistently outperform the networks
with purely random weights in the hidden layer (the Extreme Learning Machine). Sorted PCA
works best for all but the narrowest hidden-layer width (98 units).

We also plotted the MSE and accuracy over a much larger range of hidden-layer widths. For
this, we skipped Platonic PCA and stuck to Sorted PCA for the deterministic approach. For the
two randomized methods, we picked the models with the highest test accuracy of 5 trials. The
results a shown in Figure 7.15. Again, we see a clear dominance of our method over purely
random weights. Interestingly, random projections consistently yield lower MSEs on both the
training and the test data, while Sorted PCA clearly wins on the accuracy.

7.9.3 3- & 4-Layer MLPs

Finally, we tested deterministic platonic projections on three- and four-layer networks. We
started with out baseline network, 784-392-50-10, and increased the number of parameters from
there. In total, we tested nine different architectures (all with ReLU activations).

Re-Weighted Samples For Platonic PCA

For these experiments, we employ another method which improves our results a bit. That is, at
each layer, we keep track of the errors on each sample. We keep an exponential moving average
(EMA) over the squared errors for each sample, and use them as weights (or importance) only
when we compute the projection matrices, Pi, using platonic PCA.

At the onset of training, we initialize a vector of ones, d ∈ Rm×1. After fitting each hidden
layer, we fit a decision layer to the obtained hidden representation, Zi, and compute an output
estimate, Ŷ . Then, for each sample, we update d as such: dj = λEMA · dj + (1 − λEMA) · ej ,
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Train Test Train Test
Hid. Layer Widths #Param. L2 Time MSE MSE Acc. Acc.
392-50 0.33M 0.50 0.06s 1.5E-02 1.5E-02 95.07 95.07
392-250 0.41M 0.50 0.06s 1.0E-02 1.1E-02 95.54 95.36
588-350 0.67M 0.01 0.07s 8.6E-03 9.0E-03 96.50 96.25
784-392 0.93M 0.03 0.09s 7.6E-03 8.4E-03 97.04 96.55
784-588-588 1.43M 0.01 0.15s 6.3E-03 7.6E-03 97.30 96.62
1568-1200-1000 4.32M 0.01 0.40s 4.0E-03 6.0E-03 98.57 97.32
1960-1568 4.63M 0.01 0.39s 4.2E-03 6.2E-03 98.71 97.51
3136-2000-1500 11.75M 0.05 1.04s 2.3E-03 5.3E-03 99.56 97.58
6500-4500-3000 47.89M 0.03 4.80s 1.6E-03 8.2E-03 99.90 97.83

Table 7.3: MNIST results for deterministic Platonic Projections on ten different 3- to 4-layer
MLPs with ReLU activations. The weights for the first layer were found using Sorted PCA.
Subsequent hidden layer were fitted to weighted Platonic PCA targets (λEMA = 0.02). We used
the closed-form ridge regression formulation with L2 regularization, and torch.linalg.solve in
single precision on an RTX 4080 GPU. Both the train and test accuracy is strictly increasing in
the number of parameters.

where ej = ∥yj − ŷj∥22 is the sum-of-squares error on the j’th example. Now, when we compute
the platonic PCA, we use the augmented matrix, A = α

[
Zi−1 βd⊙ Y

]
. That is, each of the

one-hot row vectors yj ∈ Y are now scaled by their corresponding weight (or importance), dj .
This scheme improved our classification accuracies by around 0.5 to 1.5 %-point.

Results

For these experiments, we used very large values for the β scaling factor: from 1e6 to 8e7. These
large values markedly improve the classification accuracies. For a 784-2500-1500-500-10 MLP
we get just 90.19% training accuracy with β = 10, while it jumps to 99.14% with β = 1e7 Also,
the MSE drops by an order of magnitude. We set α = 1 for all the models.

Again we used the ridge regression formulation with torch.linalg.solve. The L2 factor varied
slightly between the nine different architectures, and we used λEMA = 0.2 for updating the
sample weights, d. The results are listed in Table 7.3.

As can be seen, the classification accuracy is strictly increasing in the number of parameters.
This is a good indicator that our method can in fact improve with more capacity (and layers).
However, the results are not great compared to our baseline. None of the models go above
98% test accuracy—even with almost 48 million parameters. Also, we see a good amount of
overfitting. The amount of overfitting increases in the number of parameters, which is consistent
with the traditional views on the bias-variance trade-off.

7.10 Discussion
By following the principle of gradual class separation (discussed in Chapter 5), we have shown
how a simple method for estimating targets for hidden layers can work quite well. The method
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is elegant in its simplicity, easy to implement, and of course very efficient (at least with respect
to execution time). Unfortunately, as we have seen with our MNIST results, it suffers from
overfitting and inefficient use of network capacity. Perhaps, it is not so surprising that a closed-
form full-batch method overfits. For instance, it has been known for years that using large batch
sizes induce overfitting in DNNs [80], and that training longer can mitigate it [59]. Nonetheless,
the shear value of a closed-form solution to neural nets (and any method significantly more
efficient than backprop), warrants further exploration of our method. And, after all, we have
shown some rather promising results. Moreover, to our knowledge, our closed-form solution is
the first of its kind. That is, one that works for multiple layers with arbitrary width.

7.10.1 What Is Missing From Our Method?

Implicit Regularization

As we discussed in Chapter 6, and as our results for deep layer-wise learning (DLL) strongly
indicate, there is a lot of implicit regularization present in the SGD + backprop approach. This
is of course completely absent from platonic projections in its current form. It seems key, to
explicitly address this if we are to improve our method. Perhaps, part of the solution to this issue
is to convert our method into more of a hybrid iterative approach; based on mini-batches. This
would also reduce the memory footprint, and make our algorithm more tractable. However, we
currently do not know how to achieve this.

Poor Use of Network Capacity

Additionally, it is clear that the estimated hidden-layer targets, Ti = α
[
Zi−1 βY

]
, are far

from ideal with respect to efficiently utilizing network capacity. It is currently not understood
why that is the case. For platonic PCA, one contributing factor may be the enforcing of orthogo-
nality. This could very well not be desirable. In Figure 7.12, we can clearly see how the second
principal component is not discriminative; it is orthogonal to third axis (containing the target,
y). This is a direct effect of the orthogonality constraint. Other methods, such as independent
component analysis (ICA) [50], do not have that constraint. Arguably, this would better enable
them to adapt to the distribution of the data; and to “pay more attention” to the most dense and
complex regions of the input space.

Activation Function Alignment

Until now, we have conveniently avoided the topic of the activation functions and their role.
Our motivation for proposing platonic projections is heavily based on the correlation filter view
described in Section 5.5.1. Here, we explained the sort and filter process, where the weight
vectors sort the input examples, and the activation functions filter them. The present form of our
method implicitly takes the approach that if we just do a good enough job with the sorting (i.e.
finding discriminative directions), we can blindly apply any activation function. Admittedly, this
is a rather lackluster approach. Most likely, we could improve our method by better aligning
our targets, Ti, and the resulting weight vectors with the activation functions. Or, conversely,
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dynamically adapt the activation functions themselves to capture the best selections (see Section
5.5.1) from the (sorted) pre-activations, i.e. aj = Zwj .

7.10.2 Why Does It Work?
Even though our method is clearly motivated by the principle of gradual class separation, it is
also not completely understood why it works as well as it currently does (albeit, it still leaves
some to be desired). For example, one could imagine that only projecting the targets, Y , such
that our hidden-layer targets are of the form Ti = Y Pi, would also work well. But it does not!
Our working hypothesis for this is, that by including the input representation, Zi−1, and letting
Ti =

[
Zi−1 Y

]
Pi, we are more likely to get targets that can actually be reached from Zi−1.

That is, the target vectors, tj ∈ Ti, will be in (or least not orthogonal to) the range of Zi−1

(i.e. in col(Zi−1)). Furthermore, when Ti = Y Pi and Y is a one-hot representation, all the
examples belonging to the same class get assigned exactly the same hidden-layer target. This is
inconsistent with what neural nets usually learn, and it makes the least squares problem harder
(more ill-conditioned). Arguably, when we assign a unique target to each of the samples with
Ti =

[
Zi−1 Y

]
Pi, we are also relaxing the linear system (i.e. enlarging the set of acceptable

solutions).
Another interesting perspective comes from expanding the solution (omitting the i’s)

W = Z+T = Z+
[
Z Y

]
P (7.1)

Assume that P =
[
PZ PY

]
, and note that Z+Z = I . Then Equation 7.1 expands into

W = PZ + Z+Y PY (7.2)

Thus, when P is a random matrix, our solution is little more than a random projection of the least
squares solution, Z+Y , plus a random matrix, PZ . However, as mentioned above, W = Z+Y P
(or T = Y P ) does not work well in practice. This could suggest that adding the noise, PZ , acts
a regularizer in this case. Of course, when P is chosen deterministically, using Platonic PCA
as described in Section 7.8.1, Equation 7.2 takes an entirely different meaning. Specifically, PZ
now contains the orthogonal projections of the principal components (of A =

[
Z Y

]
) onto

the plane where Z lies. Which is just the first n components in those principal component vectors
(if Z is n-dimensional). Some of them will indeed be discriminative directions in the data. So,
adding PZ to Z+Y PY would “push” the least squares solution (projected by PY ) in the direction
of the principal components of A. And that appears to be important (empirically).

7.10.3 Future Work
There are several interesting avenues worthy of investigation for the improvement of platonic
projections. In no particular order, some of them are:

1. How to robustly improve a found solution. Currently, we are stuck with the first solution
we find, and cannot gradually improve it.

2. Enabling the use of mini-batches; effectively turning it into a hybrid iterative approach.
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3. Exploiting partitioned, block matrix, and parallelized implementations of the pseudoin-
verse, such as [5, 25, 70, 138].

4. On a related note: how to use data augmentation techniques without making the least
squares problems intractable.

5. Explicitly inducing low rank solutions and match the matrix rank behavior of the traditional
approach.

6. Methods for explicitly mimicking implicit regularization. E.g. by using noise, as we did
successfully with DLL.

7. Exploring alternatives to PCA for the deterministic methods. For example, ICA.

8. Adapt the method to convolutional and attention layers.

9. Investigate if our method is suitable as a weight initialization scheme.

10. Increasing the utilization of available network capacity. For example, by online pruning
and selection of features, weight vectors, and projection vectors.

11. Investigate the suitability of platonic projections for quantum computing.
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(a) #hidden units = 2500, #hidden layers = 4, α =
0.06, β = 25.0

(b) #hidden units = 2500, #hidden layers = 4, α =
0.08, β = 200.0

(c) #hidden units = 300, #hidden layers = 500, α =
0.06, β = 25.0

(d) #hidden units = 300, #hidden layers = 500, α =
0.08, β = 200.0

Figure 7.10: Layer-wise mean squared errors (MSE) on the checkerboard problem for two MLPs
with $ReLU activations, two choices for α and β, and for both single and double precision (FP32
and FP64). Top: 4 hidden layers with 2500 units each. Bottom: 500 hidden layers with 300
units each. Left: α = 0.06, β = 25.0. Right: α = 0.08, β = 200.0. With the deepest
double-precision network, we see an extremely low MSE of 2.6e−22.
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(a) The two-dimensional training data, X . (b) PCA in the platonic space, A =
[
X Y

]
. An-

gle 1.

(c) PCA in the platonic space, A =
[
X Y

]
. An-

gle 2.
(d) PCA in the platonic space, A =

[
X Y

]
. An-

gle 3.

Figure 7.12: Platonic PCA illustrated. Showing three different angles of the same system. The
blue vectors, w∗, show the optimal solution to Xw = y (found by an SVM). The black, dark
gray, and light gray vectors are the first, second, and third principal components, respectively. In
the platonic space, two of the principal components are parallel with w∗ in the a1a2-plane where
X lies.
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(a) The two-dimensional training data, X . (b) PCA in the platonic space, A =
[
X Y

]
.

Figure 7.13: Platonic PCA illustrated for a non-linear problem. The blue vectors, w∗, show
the optimal solution to Xw = y (found by an SVM). The black, dark gray, and light gray vectors
are the first, second, and third principal components, respectively. In the platonic space, the first
principal component is positively correlated (but not parallel) with w∗ in the a1a2-plane where
X lies. The third principal component is negatively correlated with w∗.

1 def sorted_pca(Z, num_samples):
2 """
3 Select samples evenly along the first principal component
4 """
5 # Get the first principal component, pc_1
6 pc_1 = pca_torch(Z, num_components=1).pc.T
7 # Project the data onto pc_1
8 Z = Z @ pc_1
9 # Sort the result

10 ix = torch.argsort(Z[:, 0])
11 n = ix.numel()
12 # Pick evenly spaced indices
13 i = torch.arange(0, n - 1, n / num_samples).round().long()
14 # Return the indices of the samples to be used as weight vectors
15 return ix[i]

Figure 7.14: Our PyTorch implementation of Sorted PCA. Assume that there is a function,
pca torch, that returns the principal components of an input matrix.
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Figure 7.15: Mean squared errors (MSE) and classification accuracies for a two-layer MLP with
ReLU activations fitted to the MNIST dataset. Plotted as a function of the width of the single
hidden layer. The deterministic method, Sorted PCA, compared to platonic projections with
random P ∼ N (0, 1), and with purely random weights, W ∼ N (0, 1). The latter is equivalent
to the Extreme Learning Machine proposed in [62].
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Chapter 8

Concluding Remarks & Further Thoughts

We have explored various methods and aspects related to the efficiency of deep learning.

8.1 Connecting the Dots: Entropy & Rank
In Chapter 3 we observed how the entropy over the distribution of the individual weights de-
creases during training, and how it allows us to compress the weights for distribution over a
network. This reduction in entropy seems fundamental. Indeed, in Section 5.3.5 on information
theory, we argued that well-trained neural nets should satisfy strict inequalities on the layer-wise
representational and conditional entropies; at least if we assume that H(X) > H(Y ). If we
believe that, then making the connection that this must also be reflected in the weights should
be possible. From there, it would be valuable to theoretically verify that the entropy over the
distribution of the individual weights must also decrease; thus providing a theoretical justifica-
tion for the method proposed in Chapter 3. Related to this, there is the question of matrix rank,
which is known to play an important role with respect to the generalization properties of DNNs.
As discussed in Section 6.6, implicit regularization (including interlayer regularization) has been
shown to induce low-rank solutions. For both the weights and the representations (activations),
it would be interesting if a connection between their entropies and their ranks could be estab-
lished. However, considering that an identity matrix has full rank and very low entropy, such a
connection may be very hard, or impossible, to directly establish.

8.2 Extending Our Work on the Properties of Layers & Rep-
resentations

Chapter 5 introduced various useful properties of the layers and representations of neural nets.
The Rubik’s Cube View 5.3.4 illustrates how same-class examples gradually cluster, or bin, to-
gether in the layers. And the pure entropy, H∗(X;Y ), provides a tangible way of quantifying
this, while also establishing a natural connection to information theory. As we have seen, these
ideas are closely related to the gradual class separability and linearization which has been a recur-
ring theme in this thesis. We would like to extend these views and observations more generally
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to machine learning. Perhaps, they can inspire related observations on other methods that would
be suitable for a different kind of textbook. However, as useful as our observations have been for
our present purpose, they are not complete. Something is missing.

In some sense, the Rubik’s Cube View, k-redundancy, and pure entropy, are all indicating that
a k-nearest-neighbor classifier is all we need. That is clearly not the case! It seems obvious that
the process of training DNNs with backprop + SGD must be doing something that significantly
distinguishes the resulting model from a kNN classifier. It is currently not understood precisely
what that is. One important aspect has to be the implicit regularization reported by so many
authors (see Section 6.6), and explicitly addressed by our approach to deep layer-wise learning
(DLL) in Chapter 6. It would be very interesting to investigate how the implicit regularization
affects the binning of the data; and the pure entropy. Our DLL results clearly indicate, that our
greedy layer-wise algorithm needed to be not so greedy, after all. In other words: we should not
be too quick with the binning of the data.

8.3 How Do Layers Actually Regularize Each Other?
In Section 6.6 we briefly presented our two conjectures on forward & backward regularization.
As we were able to turn those conjectures into a simple method (forward & backward dropout),
that allowed us to match the results achieved with full backprop, it is reasonable to assume that
they are valid. But it is also reasonable to say, that they probably do not paint the full picture.

8.3.1 Vanishing Gradients Regularize
One interesting conjecture, that we arrived at during our work on this thesis, is that vanishing
gradients regularize. Yes, the (infamous) problem of vanishing gradients [57] could play a key
role in the very success of deep learning. Our reasoning for making this somewhat surprising
(possibly controversial) conjecture is comprised by the following statements:

1. The vanishing magnitudes of the gradient signals likely correspond to vanishing informa-
tion.

2. The key question is: what information (or magnitude) vanishes first?
3. Conjecture: gradients stemming from the highest frequencies of variation in the data (i.e.

in the labels) vanish first, while the lowest frequencies vanish last.

We will elaborate on statement 1 in the next section. Our conjecture in statement 3, if correct,
would explain why lower layers tend to learn to capture the lower frequencies of variation, and
conversely for the upper layers; as we suggested in Section 6.6 on interlayer regularization. This
would indeed have a regularizing effect, insofar as we can consider it a type of smoothing,
or low-pass filtering, on the functions being learned in each of the layers.

Vanishing Gradient Information

Trivially, scaling any discrete random variable (i.e. multiplying it with a non-zero scalar) does
not change its entropy; it merely changes the bin-sizes. Thus, we must be careful when making
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statements that equate the vanishing magnitudes of the gradients with the loss of information.
Nonetheless, we have seen evidence that noise builds up in both the forward and backward
passes; i.e. that the representations/signals in the forward pass and the gradients/signals in the
backward become increasingly inconsistent (noisy), layer by layer. Somehow, this makes it
tempting to conclude that information is lost in the process.

If we take the approach of Tishby et al. [133, 143], and apply the data processing inequality
(DPI). Then, a straightforward formulation of the vanishing gradients problem in terms
of information follows. Namely, that the following inequality holds for the gradients being
backpropagated using the chain rule:

I(
∂L
∂Ŷ

;
∂L

∂Zk−1

) ≥ I(
∂L
∂Ŷ

;
∂L

∂Zk−2

) ≥ · · · ≥ I(
∂L
∂Ŷ

;
∂L
∂Z1

) (8.1)

The possibly controversial conjecture, that we would like to eventually prove, is that
this equation should indeed be a strict inequality. Or, at least, if we freeze the weights at a
given point in the training and consider the layer-wise gradients random variables then, with high
probability, a strict inequality would be observed to hold.

One approach to proving this conjecture, would be to argue that the loss of information is
caused by the frequent multiplication by zero (due to the flat regions of the activations having
zero-gradients); i.e. re-parameterization by non-invertible functions. Over time, during the train-
ing process, this is arguably similar to lowering the sample rate. Now, if we apply something
like the Nyquist-Shannon Sampling Theorem, this implies that the information lost from the
gradient signal must be high frequency components; i.e. frequencies above the expected Nyquist
rate. It is worth noting, that the Nyquist-Shannon Theorem also holds for non-uniformly sampled
signals (see Landau (1967), Mishali et al. (2009)[85, 109]). While this line of thinking may not
end up strictly holding, we do find it appealing.

8.3.2 What Are the Frequencies of Variation?

Unless when explicitly fitting a sinusoid with multiple frequency components, what exactly “fre-
quencies of variation” means might not be immediately clear. Consider a set of m training
examples, xi ∈ R2. Assume that the data is uniformly sampled over an interval such that they
form a rectangle centered at the origin. There is a left side of the data, XL where all samples
have negative first coordinates, and a right side, XR, with positive first coordinates. Now, we
assign labels to the samples in XL such that, in the Rubik’s Cube view (Section 5.3.4), they look
like a checkerboard with many many squares (exactly as the leftmost representation in Figure
5.10). Conversely, for the right side, XR, we assign labels such that the checkerboard has very
few squares (like the rightmost representation in Figure 5.10). For this dataset, we would say that
locally, in the left region, the frequency of variation is high. Similarly, the frequency of variation
is locally low in the right side.
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8.3.3 How the Frequencies of Variation Are Affected Differently
The Information Argument

Additionally, for our example data, we can conclude that for the left-side samples, the k-redundancy
is low, while it is high for the right side. Hence, the k-redundancy is inversely proportional to the
frequency of variation. This relationship between redundancy and frequency is thus similar
to the one captured by the Nyquist-Shannon Theorem. That is, the higher the frequency, the
more samples are needed (and the less the signal-redundancy is). Therefore, we would argue that
if information is lost in the backprop chain, then it is more likely to relate to a high-frequency
(high-entropy) region, like XL, than to a low-frequency region. And, of course, if increasingly
more information is lost in the backward pass, then the logical conclusion would then be: that
the lower layers are more likely to capture low-frequency components (or regions in the data),
because the information about the high-frequency components never reaches them (it has van-
ished). In other words: low-frequency regions are more robust to noise (and information loss),
and have a lower sample complexity than the high-frequency regions.

The Magnitude Argument

Besides the information argument, another appealing one can be made in support of our con-
jecture that vanishing gradients act as a regularizer. It comes from reasoning about how the
magnitude of the gradient contributions of a region in the data is related to its frequency of
variation. Consider again our high-frequency region, XL. In the loss surface, this region would
give rise to a significantly flatter surface than the low-frequency region,XR. Because, any weight
update affecting the samples in XL can potentially only correct a small number of labels—with
a correspondingly small reduction of the loss. Conversely, in the low-frequency region, XR, a
single weight update can contribute a much larger reduction in the loss. In other words: high-
frequency (aka high-uncertainty, high-entropy, high-complexity) regions will tend to produce
gradients with small magnitudes, while low-frequency regions will produce high-magnitude gra-
dients. Indeed, it seems there must be an inverse relationship between the frequency of variation
and amplitude; i.e. in the loss surface and in the gradients. However, we also need to take into
account the number of samples (which would also affect the amplitude), so any formal statement
on this relationship must include the sample density of a given region as a factor.

8.4 Robust Layer-wise Training
In Chapter 6 we showed that, contrary to the apparent consensus in the community so far, layer-
wise learning (DLL) can work well. However, it has to be said that layer-wise learning generally
is harder. It is more brittle, probably because of the lack of orchestration and adaptation between
the layers that would happen implicitly with full-model backprop. Future work on DLL should
definitely include a broader investigation of the robustness of the method—and include data and
architectures from more domains (e.g. language models).

It is commonly understood, that starting out with a large learning rate and annealing it during
the training process is a good approach. Large learning rates can aid the process in escaping local
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minima and thus have a regularizing effect (see for example [93]). In our DLL experiments, we
exponentially decayed the initial learning rate in the layer index, while exponentially increasing
the weight decay. The former is in part motivated by the fact that the learning process as a whole
is further along whenever we move from one layer to the next. The latter is to compensate for
the reduced regularization caused by starting with a lower learning rate. However, we should
also consider our brief analysis from above, on how vanishing gradients regularize, and why the
layers capture progressively higher frequencies of variation. From this point of view, it makes
sense that when you are fitting low-frequency regions in the data, you can afford to take large
steps. As we move from the bottom and up through the layers, the frequencies of variation that
are captured get higher, and thus the optimizer (i.e. the weights) must take smaller steps.

8.5 Practicality of a Closed-Form Solution
Arguably, the practicality of a closed-form solution to neural nets, such as our Platonic Projec-
tions proposed in Chapter 7, is probably somewhat limited. Even if it did match the state of the
art on test accuracy and capacity-consumption, it is impractical on very large data and very large
models. Therefore, as we stated in the discussion of the chapter, our method will probably evolve
into more of a hybrid solution based on mini-batches.

However, there are certain domains in which Platonic Projections, even in its current form,
would potentially be very valuable. As with DLL, edge devices could benefit tremendously
from a computationally very efficient solution. Also, as mentioned earlier, quantum computing
might turn out to be a very important application. Lastly, every use-case where speed is more
important than accuracy could see huge benefits from our method. One candidate would be
quantitative finance. For example, many algorithmic trading applications rely on extremely
noisy data that comes in real time, and critical trading decisions must be made every second,
or every minute. In the field, it is common to use simple linear regression because many many
models can be fitted quite fast. Since the data is extremely noisy, high accuracy is not expected.
In this scenario, it is easy to imagine that the ability to fit more powerful models (MLPs) extremely
fast (using our method), could have a big impact.
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